
King
BlackBerry Developm

ent

Companion
eBook
Available

Advanced

Advanced

BlackBerry
Development

Trim: 7.5 x 9.25 spine = 0.84375" 448 page count

Unlock the secrets of
advanced BlackBerry development

Chris King
	 COMPANION	eBOOK	 SEE	LAST	PAGE	FOR	DETAILS	ON	$10	eBOOK	VERSION

US $39.99

Shelve in
Mobile Computing

User level:
Intermediate-Advancedwww.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

 SPOT MATTE

ISBN 978-1-4302-2656-7

9 781430 226567

53999

•	 Learn	to	create,	debug	and	deploy	professional	quality	
BlackBerry	applications

•	 Discover	the	breadth	of	the	BlackBerry	platform	and	unlock	its	
potential.

•	 Incorporate	key	features	such	as	cryptography,	video	and	text	
messaging	into	your	code

Do you want to write compelling software for some of the most popu-
lar phones in the world? This book shows you how to write top-notch,

professional applications for the BlackBerry platform. In my career developing
mobile software I’ve found that vital information is often buried deep inside
multiple API documents, whitepapers, message boards, sample code, and the
heads of engineers who have fought against problems until they were solved.
Unless you’re lucky enough to work with a bright and friendly person who is
an expert with a lot of spare time on their hands, it’s difficult to get a compre-
hensive view of how everything hangs together. I enjoy writing BlackBerry
software, and have battled many of the issues that can trip up developers, so I
wrote this book to help others get over those hurdles. Building software is fun;
dealing with a phone’s foibles is not.

Once you get comfortable with the platform and its quirks, you’ll find BlackBerry
programming very rewarding. You’ll learn about many of the cool features available
for your use, like recording audio, playing video, and sending text messages. You’ll
learn the deep voodoo of cryptography. Perhaps most exciting of all, you’ll see how
your applications can burrow into the phone’s core features, becoming indispens-
able to users.

Whether you’re a veteran looking for a map across the BlackBerry minefield, or a
new recruit learning the lie of the land, this book will show you the best way to
achieve your objectives. I hope that, by the time you finish this book, you won’t just
know how to write great BlackBerry apps, but will be able to write them quickly and
get them working on as many phones as possible with as few headaches as pos-
sible. Good luck, and have fun!

Chris King	is	a	software	engineer	specializing	in	mobile	
development.	Having	developed	applications	for	
BlackBerry,	Android,	Java	ME,	BREW,	and	Windows	Mobile	
devices,	his	software	has	been	pre-loaded	on	tens	of	
millions	of	phones	in	the	United	States	alone.

Download at WoweBook.Com

Advanced BlackBerry
Development

■ ■ ■

Chris King

Download at WoweBook.Com

Advanced BlackBerry Development

Copyright © 2009 by Chris King

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2656-7

ISBN-13 (electronic): 978-1-4302-2657-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

President and Publishing: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Levon Dolbakian
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Kari Brooks-Copony and Mary Tobin
Compositor: LaurelTech
Indexer: BIM Indexing and e-Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer questions
pertaining to this book in order to successfully download the code.

Download at WoweBook.Com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For Mom and Dad

Download at WoweBook.Com

iv

Contents at a Glance

■ Part 1: Advanced APIs..1

■ Chapter 1: Getting Started..3

■ Chapter 2: Media Capture...41

■ Chapter 3: Media Playback ..71

■ Chapter 4: Wireless Messaging..115

■ Chapter 5: Cryptography ..163

■ Part 2: Device Integration ..193

■ Chapter 6: Personal Information ..195

■ Chapter 7: Browser ..241

■ Chapter 8: Digging in Deep...277

■ Part 3: Going Pro ..317

■ Chapter 9: RIM Security ...319

■ Chapter 10: Porting Your App ..349

■ Chapter 11: Advanced Build Techniques..379

■ Chapter 12: Conclusion ..397

■ Appendix: Codec Support ...401

■ Index ..409

Download at WoweBook.Com

v

Contents

Contents at a Glance..iv

Contents ...v

About the Author ..x

Acknowledgments...xi

Introduction..xii

■ Part 1: Advanced APIs..1

■ Chapter 1: Getting Started..3

Initial Setup .. 3

Application Types ... 10

Connecting to Files and Networks ... 23

App: Media Grabber.. 30

Excelsior... 39

■ Chapter 2: Media Capture...41

BlackBerry vs. Sun APIs ... 41

Creating a MediaPlayer .. 48

Controlling Output .. 49

Recording Audio ... 51

Using the Camera... 53

Download at WoweBook.Com

■ CONTENTS

vi

Video Capture ... 55

Invoking the RIM Alternative .. 56

App: Media Grabber.. 59

Excelsior... 69

■ Chapter 3: Media Playback ..71

Finding Content .. 71

Playing Audio.. 81

Playing Video.. 93

Displaying Images .. 93

Invoking Native Apps.. 101

App: Media Reviewer ... 103

Excelsior... 113

■ Chapter 4: Wireless Messaging..115

The Messaging Quiver.. 115

Sending Text Messages ... 126

Sending Multimedia Messages .. 132

Plugging In to Email ... 135

Receiving Text Messages... 145

Receiving MMS Messages ... 150

Reading Email .. 152

PIN Messaging.. 155

App: Sending and Receiving Media Messages... 156

Excelsior... 161

■ Chapter 5: Cryptography ..163

Is It Secret? Is It Safe? ... 163

SATSA... 167

Bouncy Castle... 168

RIM Crypto Classes .. 173

Using the Certicom Classes.. 178

Download at WoweBook.Com

■ CONTENTS

vii

Other Encryption Choices ... 180

App: Securing MediaGrabber ... 183

Excelsior... 190

■ Part 2: Device Integration ..193

■ Chapter 6: Personal Information ..195

Address Book ... 195

Adding Contacts ... 206

Editing Contacts ... 207

Saving Contacts ... 212

Searching for Contacts... 213

Reading Contact Data... 217

Deleting Contacts ... 218

Invoking the Native Address Book.. 219

The BlackBerry Calendar.. 221

Using BlackBerry Calendar Events ... 226

Showing Calendars .. 228

I Have A ToDo List? .. 231

Take a Memo.. 233

Personal Changes... 234

App: Selecting Recipients .. 236

Excelsior... 239

■ Chapter 7: Browser ..241

Browser Types ... 241

Web Development or App Development? ... 247

Launching the Browser .. 249

Embedding a Browser in Your App... 253

Embedding Your App in a Browser... 264

App: Friend Tracker.. 269

Excelsior... 275

Download at WoweBook.Com

■ CONTENTS

viii

■ Chapter 8: Digging in Deep...277

A Content Handling System.. 277

Iconic.. 298

Native Menus ... 304

App: Enter from Anywhere ... 308

Excelsior... 316

■ Part 3: Going Pro ..317

■ Chapter 9: RIM Security ...319

The Ownership Question .. 319

Security Policies: “You Can’t Do That!”.. 320

User Permissions: “May I Do This?” .. 326

Firewall: “Don’t Go There” ... 337

MIDlet Permissions: “I Will Do These Things”.. 340

Application Signing: “Do I Know You?”.. 343

App: Ask for Permissions ... 343

Excelsior... 347

■ Chapter 10: Porting Your App ..349

Understanding Hardware Differences .. 349

Understanding OS Differences ... 360

Understanding Language Differences .. 363

Understanding Platform Differences .. 371

App: Localized Text .. 373

Excelsior... 378

■ Chapter 11: Advanced Build Techniques..379

Moving Beyond Eclipse .. 379

Versioning Strategies ... 383

Debugging and Logging ... 387

Other Build Issues .. 389

App: Logging, Building, and Updating .. 392

Download at WoweBook.Com

■ CONTENTS

ix

Excelsior... 395

■ Chapter 12: Conclusion ..397

Parting Shots.. 397

Resources... 398

Summit... 399

■ Appendix: Codec Support ...401

Notes .. 406

■ Index ..409

Download at WoweBook.Com

x

About the Author

 ■ Chris King is a software engineer specializing in mobile development. He has written a
wide variety of embedded and downloadable libraries and applications, including wireless
messaging, lifestyle, shopping, music, and video applications. His software has been pre-
loaded on tens of millions of phones in the United States. Chris develops applications for
BlackBerry, Android, Java ME, BREW, and Windows Mobile devices. Chris has written
articles on mobile development, and was the technical reviewer for the books Android
Essentials by Chris Haseman and Beginning Java ME Platform by Ray Rischpater. He
currently serves as a Senior Engineer for Gravity Mobile in San Francisco.
Chris graduated summa cum laude from Washington University in St. Louis with majors in
Computer Science and English Literature. When he isn’t programming or writing for fun or

profit, Chris can be found reading, baking, cycling, or hiking throughout the San Francisco Bay Area.

Download at WoweBook.Com

■ INTRODUCTION

xi

Acknowledgments

First and foremost, I owe Ray Rischpater an enormous debt for the creation of this book. It would be an
understatement to say that it couldn’t have happened without him. Ray wrote the book that got me started in
mobile development; he encouraged me to move to Silicon Valley; he was an excellent mentor and teacher during
our years together at Rocket Mobile; he gave me the honor of tech reviewing his Java ME book; and he
recommended me to Apress for this current book. I feel fortunate to call Ray a colleague; I feel blessed to call him a
friend.

Working with the fine staff at Apress has been a joy. Steve Anglin had the vision for this book and got the
project off the ground. My editor Mark Beckner was encouraging and helpful throughout the process, both for the
writing and for dealing with unexpected administrative issues. Ewan Buckingham provided thoughtful feedback as
the book came together. Mary Tobin masterfully coordinated the sizeable team, and even rolled up her sleeves to
help edit chapters as we hurried to reach a deadline. Kari Brooks-Copony did a fantastic job copy-editing the
chapters and helped make the words flow. I’m grateful for all their efforts, as well as those from everyone else at
Apress who I didn’t have the chance to meet.

Levon Dolbakian, my technical reviewer, deserves particular kudos for his contributions to the book. Levon
worked extremely hard, plowing through the wide variety of material, and going the extra mile to check the
accuracy of all the examples. In the process he uncovered compatibility issues, identified confusing passages, and
pointed out where additional explanations would be helpful. The result is a far more accurate book. Any
remaining errors are solely my own.

No book or person exists in a vacuum, and I feel extremely grateful for all the people who have supported me
throughout my career and made software development such a rewarding field. I’m particularly thankful for Jim
Alisago, Erik Browne, Graham Darcey, Cathy Donovan, Dr. Chris Gill, Dr. Ken Goldman, Jonathan Jackson, Craig
Kawahara, Mike Ma, Chad Moats, Sasha Parry, Greg Peters, Ian Peters-Campbell, Brian Pridham, Rajiv
Ramanasankaran, Dave Robaska, Tom Seago, Charles Stearns, Young Yoon, and Wayne Yurtin. My apologies for
anyone whose name I may have forgotten; I consider myself fortunate to have met a surplus of talented and
generous people in my career.

A special shout-out goes to the whole gang at Gravity Mobile. Gravity has been one of the most exciting,
challenging, and fun places that I have worked, and Noah Hurwitz and Chris Lyon deserve enormous credit for
creating such a wonderful environment. I’m especially thankful to work for Sam Trychin, who isn’t only one of the
smartest people I know, but also one of the nicest. Big thanks as well to Chris Haseman, the ultimate connector.
Chris seems to know everyone and everything, and has been instrumental in getting me started at Gravity, lining up
writing gigs, and more. Chris seems to succeed at everything he tries, and inspires me to push myself harder. I also
appreciate Todd Meyer’s approval of this project.

Last but not least, special thanks to Jason Salge. Jason taught me how to be a professional programmer,
enabling the transition from academic theory to practical development. Jason has been an invaluable mentor,
showing me the ropes in the telecom industry, encouraging my architectural aspirations, helping me learn the
questions to ask in a start-up, and above all, demonstrating how to be a good person. Jason provided the
opportunities that set my feet on this path, and I will always be grateful.

Download at WoweBook.Com

■ INTRODUCTION

xii

Introduction

Carrying a BlackBerry used to speak volumes about a person. When you saw someone tapping at that wide
keyboard with both thumbs, you could safely assume that the owner was a businessperson, and that their time was
so valuable that they couldn’t afford to be out of touch from the office. Today, you can no longer make that
assumption. BlackBerry devices are carried by teenagers, surfers, knitters, seemingly everyone. The rest of the
world has caught on to what initially attracted people to these phones: BlackBerry devices offer the Internet in a
pocket-sized block. Anyone who has experienced that large screen, that expansive keyboard, that powerful
processor, will not be content to return to a crammed phone with a multi-tap dial pad.

The explosion in the number of BlackBerry devices has raised peoples’ expectations, and also created a
tempting marketplace for programmers everywhere. BlackBerry applications offer a surprisingly rich and
expressive interface for a mobile device, and people are willing to pay for the best apps available. People sell their
applications on BlackBerry App World, through off-deck stores like Handango, and through wireless carrier stores.
Many more people program for fun and load their applications on their own devices or those of friends. And,
because BlackBerry still has a dominant presence in the enterprise marketplace, many programmers write
applications particularly for their internal business customers.

This book will show you how to make the most of your BlackBerry applications. It focuses on the most fun, the
most impressive, and the most rewarding aspects of development. By the time you finish, you should be able to
write professional-quality applications.

The Book’s Anatomy
Advanced BlackBerry Development is divided into three parts. Each part concentrates on a particular theme. The
book was designed to be read in sequence, as each chapter builds on the chapters that come before, but veteran
developers can easily move to the parts that interest them the most.Part 1, “Advanced APIs”

This first part of the book focuses on the rich feature set offered by modern BlackBerry devices. By examining
individual topics, you can gain a great depth of knowledge about the material.

 Chapter 1, “Getting Started”: Provides a quick introduction to BlackBerry development. You’ll

see how to set up your programming environment and learn the fundamentals of Java

development for BlackBerry.

 Chapter 2, “Media Capture”: Shows how to record audio and video from within your application

or other applications on the device.

 Chapter 3, “Media Playback”: Describes the vast range of media types supported by BlackBerry

and how to include each one within an application.

Download at WoweBook.Com

■ INTRODUCTION

xiii

 Chapter 4, “Wireless Messaging”: Introduces the technologies used to send and receive various

types of messages including SMS, email, and BlackBerry PIN.

 Chapter 5, “Cryptography”: Offers a quick primer on security, including how to obscure

information, determine authenticity, and prevent tampering. Discusses the various toolkits

available for cryptography, their advantages, and how to use each.

Part 2, “Device Integration”

 This part of the book turns towards leveraging the existing functions of the device. Canny

programmers will take advantage of the resources built into each BlackBerry, and learn how to

make their app indispensible to the user.

 Chapter 6, “Personal Information”: Examines the various repositories of personal data on the

phone, such as the address book and calendar. Shows how to read, update, and create new

records from within your application.

 Chapter 7, “Browser”: Explores the rich set of integration possibilities with the built-in browser,

including opportunities for embedding your app within the browser or vice versa. Describes

the various types of browsers and how they impact your development.

 Chapter 8, “Digging In Deep”: Covers a variety of useful techniques such as providing

customized icons, communicating between applications, and adding options to the device’s

native menus.

Part 3, “Going Pro”

 While the first two parts of the book primarily focus on adding features to your applications,

this last part focuses on technique: how to improve your software in ways that may not be

visible to the user, but that make it more robust and improve your efficiency.

 Chapter 9, “RIM Security”: Deciphers the often baffling security model that constraints the

behavior of BlackBerry applications. This chapter explains the critical issues that may come up

as you develop your application or that emerge only after it has been released. In the process,

you’ll learn what tools are available to get the permissions you need, and how to deal with cases

where your app is forbidden from doing certain things.

 Chapter 10, “Porting Your App”: Provides an overview of the many issues to face when you make

your application available for multiple devices or multiple countries. By learning these lessons

early, you can make the inevitable porting process much quicker and more enjoyable.

 Chapter 11, “Advanced Build Techniques”: Shows how to move from a one-person operation to

a more professional and organized approach. Introduces the many tools available for use,

including build scripts, debug logging, release packages, and more.

 Chapter 12, “Conclusion”: Shares some final thoughts on development and offers resources for

further education.

How to Read This Book
Depending on your background and goals, you might approach this book in different ways. The chapters are
designed to be read in order, as later chapters may reference content from earlier chapters. However, such

Download at WoweBook.Com

■ INTRODUCTION

xiv

references are made explicit in the text, and you might find it more useful to approach the book in another order
according to your interests or most pressing deadlines.

Novice
If you are new to BlackBerry development, you should start with Chapter 1, which offers an accelerated
introduction to the platform. Spend as much time here as you need and continue once you are comfortable with
all the material. You can continue reading the remainder of the book in sequence, working through all the
examples and reading the notes.

ApprenticeIf you have some familiarity with BlackBerry development, you can skim Chapter 1, reading any
topics that are unfamiliar. From here, you can proceed through the book in sequence, focusing on the chapters
that offer new material.

Journeyman
Veteran Java ME developers will notice that many of the BlackBerry APIs, particularly those related to media and
wireless messaging, are similar or identical to their Java ME counterparts. I point out the important differences
within the text. These developers should particularly focus on Chapter 1 for setting up their BlackBerry
environment and Chapter 9 to learn about the critical differences between Java ME and BlackBerry security.

Master
Finally, BlackBerry experts can largely skip Chapter 1, and refer to individual chapters to learn about particular
topics of interest. Veterans will recognize the importance of BlackBerry device software versions, and will pay
particular attention to the tables that show the significant differences between versions.Notes on Conventions

One of my personal pet peeves is that most programming books today are written as if it was still 1990. Thanks
to the ubiquitous availability of Javadocs, we can easily look up the details about individual methods. Thanks to
modern IDEs, we can easily discover available APIs and find out how to use them properly.

In writing this book, I’ve focused on the things that you can’t easily see in the Javadocs: the meaning behind
methods, when to call particular APIs, and the tradeoffs between various solutions. To avoid distraction, I
generally omit parameters when I name a method. I generally omit the package name when I name a class. In
Eclipse, Ctrl+Space is your friend. Of course, in situations where usage is ambiguous, I provide the details
explaining which item is being used.

Similarly, exception handling is a great tool for writing robust software, but tends to muddy even the simplest
examples. I generally omit exception handling when introducing a new method unless its exceptions are
particularly unusual.

The end of each chapter contains a longer set of sample code that runs as a stand-alone application. Here, I
fully handle all exceptions, include full package names, and do everything else to show how a real-world
application should perform.

Your Media App
Each chapter contains numerous small snippets of code designed to help illustrate particular points. The end of
each chapter is devoted to creating a useful, stand-alone application that incorporates concepts from throughout
the chapter. In order to provide the experience of writing a realistic, feature-rich application, you will be building a
single media-sharing application throughout the course of the book. Each chapter from Chapter 2 onward will
contribute a new section to it, gradually improving it from a skeleton of an app to a robust platform for media
communication.

Complete source code for this media app is provided at the Apress web site, http://www.apress.com. You can
download the sample for each chapter, along with any other listings provided within the main body of the chapter.
I encourage you to use the source code as a reference, not an answer key. You will learn the most by working
through the sample yourself, adding sections gradually, then running and observing the code. If you skip chapters

Download at WoweBook.Com

http://www.apress.com

■ INTRODUCTION

xv

while reading, you might want to download the previous chapter’s source code solution, and then make the
modifications for the current chapter on your own.

The Trailhead
I go hiking in the mountains almost every weekend. I love the sensations you get in a good hike. You feel
invigorated by the sense of mystery and possibility. As you climb higher and higher, the ground drops away below
you. You start to gain perspective, with your visual range extending to yards and then miles. As you continue to
ascend, you see even more of the landscape, but it isn’t static: every curve brings an unexpected new sight, every
switchback a fresh vista. No matter how challenging a hike is, once you reach the summit you feel that it’s all
worthwhile, and feel a sense of ownership as you survey the land below you.

I find that learning a new technology is a great deal like that sort of hike. When you start, you can only see the
things right in front of you: the editor, the syntax, the tools. As you continue to progress, you begin to catch sight of
the wide range of features that the technology offers. You gain more and more mastery, and with that experience
comes perspective, as you begin to see how the technology’s pieces all work together. But as with a hike, you can
always keep going a little further, always learn something new. I’ve found BlackBerry programming to be a
particularly fun trail, and hope you will enjoy the journey too. Keep striving, keep moving upward, and appreciate
the view.

Download at WoweBook.Com

 210

Download at WoweBook.Com

1
Advanced APIs
The best BlackBerry apps take advantage of the rich set of advanced APIs available on

this platform. The chapters in Part 1 describe some of the most exciting and

compelling features available to you. Chapter 1 provides a crash course in building a

variety of RIM applications that can access the local filesystem and the Internet. From

there, learn how to use the device to shoot photos, record sound and video, and use

the captured data in your app. Next, see the wide variety of options available for

playing video, animations, and audio content. Connect the BlackBerry to the rest of the

mobile world with wireless messaging and email technologies. Finally, incorporate

today’s techniques for safeguarding data into your own applications.

Part

Download at WoweBook.Com

Download at WoweBook.Com

1Chapter

Getting Started
Welcome to the wonderful world of BlackBerry app development! Chapter 1 is intended
to get you up to speed as quickly as possible, so you can get right into the good stuff,
and it assumes no previous knowledge other than a basic grasp of Java. This chapter
will walk you through downloading software, setting up your environment, and then give
you a quick tour through the basics of BlackBerry app development. You may linger,
skim, or skip ahead as your patience demands.

Initial Setup
As with any new language or platform, you will need to install some new software and
set up your computer appropriately. There are many different ways to run a successful
BlackBerry project. RIM supports only Windows development, but it has done a good
job of releasing tools that enable development on a variety of configurations. This
section will focus on what I have found to be the simplest and most effective setup for
independent development, with occasional notes for alternative choices you might
consider.

Getting Java
You will be developing in Java for the BlackBerry, but before we get that far, we need to
make sure Java on your desktop is running properly. RIM uses Java for their toolchain—
the set of programs that will convert your application source files into a format that can
run on the mobile device. Additionally, our Eclipse IDE requires a Java runtime
environment.

To see if Java is installed, open a command prompt. You can do this by clicking Start ➞
Run, typing cmd, and pressing enter. A black-and-white command prompt window will
appear. Type java -version. You should see something like the following:

java version "1.6.0_14"
Java(TM) SE Runtime Environment (build 1.6.0_14-b08)
Java HotSpot(TM) Client VM (build 14.0-b16, mixed mode, sharing)

Download at WoweBook.Com

CHAPTER 1: Getting Started

4

The specific version number isn’t important, just getting a response. If Java is not
installed or is not configured correctly, you will see an error like the following:

'java' is not recognized as an internal or external command,
operable program or batch file.

To install Java, go to http://java.sun.com and look for the Java SE download. You only
need to install the Java Runtime Environment (JRE). However, if you plan on doing other
Java development besides BlackBerry, you can download the full Java Development Kit
(JDK), which also includes the JRE.

Tip: When installing any development software, I suggest you pick an install path that has no
spaces in it. For example, instead of installing to c:\Program Files\Java, install to
c:\dev\java. This will save you time in the future, as some Java programs and other useful
utilities have a hard time working with files that have spaces in their name. Follow this rule for
all the other downloads in this chapter, as well.

Once you have downloaded and installed the JRE, try opening another command
prompt and typing java -version again. If it still doesn’t recognize the command, you
probably need to add Java to your PATH environment variable. In Windows XP, you can
access this by right-clicking on My Computer, selecting Properties, clicking the
Advanced tab, and then clicking Environment Variables. Make sure the path to your
installed java.exe directory is included in the PATH. This will probably be something like
c:\dev\java\jre1.6.0_14\bin.

Goldilocks and the Three IDEs
Once upon a time, a developer was evaluating which IDE to use when writing BlackBerry
apps. First she tried the RIM JDE. “Oh my!” she exclaimed. “This IDE is much too ugly!”
Then she tried Netbeans. “This IDE doesn’t understand BlackBerry,” she complained.
Finally, she installed Eclipse with the BlackBerry Plug-in. “Ahhh,” she smiled. “This IDE
is just right!”

The reality is that you can develop in any IDE that you want. The question is how much
time and effort you will invest in getting everything to work right. I’ve found that Eclipse
is the best platform for doing serious development, and it has only gotten better and
easier since RIM released their official Plug-in. I will be using Eclipse for my examples in
the rest of this book, and I recommend installing it unless you are already doing
BlackBerry development in another environment.

To get started, go to http://eclipse.org. I suggest you download a recent release of
the Eclipse IDE for Java EE Developers. Depending on what other kinds of development
you do, you may choose to use another package. This is fine, but Eclipse EE contains
the most options and will give you the greatest flexibility.

Download at WoweBook.Com

http://java.sun.com
http://eclipse.org

CHAPTER 1: Getting Started

5

Caution: As of this writing, there are compatibility issues with Eclipse 3.5 (Galileo) and the
BlackBerry JDE Plug-in for Eclipse. If you experience problems, use the older 3.4 (Ganymede)
version of Eclipse. This is currently located in the Downloads page of the Eclipse web site,
where you can select ‘‘Older Versions.’’ You can safely install multiple versions of Eclipse into
separate directories on your computer.

Eclipse doesn’t have a standard Windows installer. Instead, you simply unzip it to a
folder on your computer. You could put it somewhere like c:\dev\eclipse. To make it
easier to launch, you can right-click and drag the eclipse.exe icon to your desktop or
task bar in order to create a shortcut.

When you first launch Eclipse, it will ask you to choose a workspace. You can create
one wherever you like. Do not check the option for “Use this as the default and do not
ask me again.” One quirk of BlackBerry development is that each BlackBerry app you
develop will require its own separate workspace, so you will be switching workspaces
as you go through this book.

Plugged In
I have been a fan of Eclipse for many years now, in large part because of its very flexible
and powerful Plug-in system. Plug-ins allow developers to tune their workspace for their
specific tasks, without needing the bother of relearning a new tool for each new task.

There are currently two ways to install the Plug-in. The first is to go to BlackBerry’s
developer web page (currently located at http://na.blackberry.com/eng/developers/)
and download the Plug-in as an EXE file. This is the simplest approach, as you can
simply download the large file, run it, and then restart Eclipse.

The other way to install the Plug-in is directly through Eclipse. I recommend taking this
approach, as it allows you more control over what you install and provides a better way
to get updates.

In Eclipse, click the Help menu, then Software Updates. Click the Available Software tab,
then click Add site. For the location, enter http://www.blackberry.com/go/eclipseUpdate.
The BlackBerry Update Site will display. Several options are available. At a minimum,
you will need to select the BlackBerry JDE Plug-in for Eclipse and at least one
BlackBerry Component Pack.

Download at WoweBook.Com

http://na.blackberry.com/eng/developers
http://www.blackberry.com/go/eclipseUpdate

CHAPTER 1: Getting Started

6

Note: You may be asked to enter a user name and password. You can register for a free
developer account on the BlackBerry web site if you have not already done so. This prompt
may appear multiple times, so continue entering the account name and password until it goes
away. The servers hosting the Plug-in are sometimes temperamental and will fail with
unhelpful messages; other times, the installation may appear to hang when it is actually
progressing. If you cannot install through Software Updates, you can try again later, or install
the EXE file directly as described above.

If you have a particular BlackBerry device in mind, pick the Component Pack that
matches the software version of that device. All these files are very large, so you should
probably only start with a few even if you know you will eventually want more.

Tip: You can find the software version on your BlackBerry by selecting Options, and then
About. It should be a value like ‘‘4.5.0.81’’. When selecting a component pack, only the first
two numbers are important. The rest will be used to select an appropriate simulator.

You should restart Eclipse once the install is complete. After it restarts, you will see a
new BlackBerry menu option at the top. You will also have access to two new debug
configurations: BlackBerry Device and BlackBerry Simulator. Figure 1-1 shows what
your Eclipse environment should look like once you have installed the Plug-in and
started a new project.

Download at WoweBook.Com

CHAPTER 1: Getting Started

7

Figure 1-1. Eclipse configured for BlackBerry development

BlackBerry Programs
If you are developing for a personal BlackBerry device, you probably already have the
BlackBerry Desktop Manager and the BlackBerry Device Manager installed. If not,
installing them is very easy. Go to http://www.blackberry.com and look for the “Desktop
Software” download. You may need to select your provider and download the
appropriate version for them. You will need to fill out a short form with your name and
contact information. Run the downloaded setup file. You may be prompted to install
additional software, such as the .NET Framework runtime. Once it’s complete, reboot
your computer if prompted. The next time you connect your BlackBerry device to the
computer, Windows should automatically install the drivers to access it.

You can launch the BlackBerry Desktop Manager by going to your Start menu and
looking under BlackBerry. Depending on your installation choices, the manager may
automatically start when you log in to Windows. Figure 1-2 shows the BlackBerry
Desktop Manager running.

Download at WoweBook.Com

http://www.blackberry.com

CHAPTER 1: Getting Started

8

Figure 1-2. BlackBerry Desktop Software

Note: BlackBerry Desktop Software is not specifically a tool for developers. Every BlackBerry
user can install it, and most do. It is included in this setup process because the Desktop
Manager offers one of the easiest ways to install apps onto your device, either for debugging or
to deploy.

Simulator Files
Downloading the proper simulator files for the devices you plan to run on is essential,
because different types of devices will have different screen sizes and input modes.
Even if you have two devices with the same model number, they will behave differently
depending on what software version they are running. Simulators are not just important
for testing on the computer, though. They also contain essential information for
debugging on the actual device.

If you have the physical device you will be using, find the device software version by
visiting Options, then About. You will be looking for a version that matches all parts of
the version number. For example, if your device has version 4.5.0.81, only use 4.5.0.81,
not another version that starts with 4.5.0. You can download simulator packs from the
BlackBerry web site. The exact location will change, so your best bet is to visit the
Developers page and look around for the BlackBerry Smartphone Simulators. You will
see many, many choices. Pick the one that matches your exact version number and
device model and, if applicable, carrier. You’ll need to click through another web

Download at WoweBook.Com

CHAPTER 1: Getting Started

9

form—get used to it, as there is no way to save your information. Download the
simulator file, then run it to install. You can install to any directory you like.

To switch to using a new simulator in Eclipse, follow these steps, and restart Eclipse if
you are ever prompted to do so.

1. Click the Window menu, then Preferences.

2. Expand the BlackBerry JDE menu and select Installed Components.

3. From the drop-down list, select the component pack that corresponds
to your device version. For example, pick 4.5 for a device with version
4.5.0.81. If you don’t see your component pack listed, install it following
the instructions in the section titled “Plugged In” earlier in this chapter.

4. Click the MDS Simulator option and navigate to the MDS directory that
matches the component pack from Step 3.

Note: The directory will be located under your Eclipse install folder. The path should look
something like eclipse\plugins\net.rim.eide.componentpack4.x.x_4.6.x.xx\
components\MDS.

5. Click OK. If you already have a project in Eclipse, you will be prompted
to rebuild it.

6. Click Run, then Debug Configurations.

7. Create a new BlackBerry Simulator configuration.

8. Click the Simulator tab.

9. From the Profile drop-down, select the item that corresponds to the
simulator you installed.

You will now be able to use your device’s proper simulator, and you will have access to
high-quality on-device debugging.

The Keys to Development
So far, you have installed everything you need to get started writing BlackBerry
software. There’s a catch, though: RIM has marked some of their APIs as restricted, and
if your program uses any of these APIs, it will not run on the device unless it has been
code signed.

Code signing is covered in more detail in Chapter 9. For now, just be aware that this is
often a necessary step in development. It can take from a few days to a few weeks to
receive code signing keys, so start this early.

Download at WoweBook.Com

CHAPTER 1: Getting Started

10

You apply for the keys from the BlackBerry developer web site. Once again, you will
need to fill out a form with information. As part of the form, you will be asked for an email
address. Be aware that RIM will send multiple emails to this address every time you sign
an application. Also, keep in mind that you must sign an application every time you
make a change and load it on the device. It isn’t unusual for a large RIM app to generate
50 or more emails on a single signing. Therefore, I strongly urge you to enter an
unmonitored email address here, or one where you can automatically delete emails from
the signing server. If you use your personal email address instead, it will make your life
miserable.

The form also includes a question about Certicom cryptography keys. Certicom
cryptography is covered in more detail Chapter 5; for now, you can just say “No” here.
You should also pick a unique 10-digit PIN. There is a nominal charge for receiving code
signing keys, currently $20. You will need one set of keys for each computer you will use
for development. The RIM servers sometimes have problems; if you aren’t able to
complete your order online, you can choose to fax it in instead.

Eventually, you should receive an email from RIM with three key files and instruction on
installation. Follow the email instructions. If you run into problems during your
installation, follow the links in the email for more support. Once you have installed and
registered the keys, you will be all set. You have a limited number of signatures, but the
limit is absurdly high, so you don’t need to worry about ever running out.

You will initially install the signing keys for a particular version of BlackBerry device
software, such as 4.5 or 6.1. At first, you will only be able to sign applications built for
that particular device type. There are two fixes for this, though: first, you can safely use
an old version of the RIM signing tool on newer versions of device software. In other
words, you can use the 4.5 signing tool on builds for 6.1, but not vice versa. Second,
you can copy the files SignatureTool.jar, sigtool.db, sigtool.set, and sigtool.csk
from one version of the desktop software to another. This also works to sign
applications using both the BlackBerry Eclipse Plug-in and another environment on the
same computer.

Tip: If you installed the BlackBerry Plug-in, your SignatureTool should be located in a directory like
C:\dev\eclipse\plugins\net.rim.eide.componentpack4.5.0_4.5.0.16\

components\bin.

That’s it for setup! You now have all the tools you will need to write, debug, and install
your own BlackBerry apps.

Application Types
Early in your development cycle, you will face an important decision—what kind of
application architecture you should use. BlackBerry supports three very different types
of programs, and each offers a unique set of advantages and style of development. This
section will provide a quick tour and critique of the available options.

Download at WoweBook.Com

CHAPTER 1: Getting Started

11

MIDlets
A MIDlet is a Java ME application. Java ME, previously known as J2ME, was developed
by Sun Microsystem in the 1990s as an early way to write Java applications for
extremely limited devices. The ME stands for Micro Edition, and the initial requirements
were very micro indeed: devices could have as little as 192 kilobytes of RAM. Over the
years, Java ME has expanded and matured along with the mobile market, gradually
adding new features and support as they become widely available in handsets.

A collection of optional features for Java ME is called a JSR, or Java Specification
Request. You will encounter some of the more popular JSRs later in this book. JSRs
cover features like filesystem access, media playback, XML parsing, and more. RIM has
been pretty good at adopting the most widespread and useful JSRs. You can find some
of a BlackBerry’s supported JSRs by visiting the device’s Options menu, then selecting
About. You will likely see several options such as “Micro Edition File” and “Micro Edition
Bluetooth.”

Java ME is available on a wide range of handsets, not just BlackBerry devices. Due to
different display sizes, supported JSRs, and other discrepancies, MIDlets rarely actually
offer “Write once, run everywhere” functions. Still, porting between two Java ME phones
is much easier than porting between two different platforms.

MIDlet Behavior
When a user launches a MIDlet, the device will run it in a stripped-down version of the
Java Virtual Machine. Unlike a regular Java SE application, which is entered through a
static main() function and runs until its threads are terminated or it calls
System.exit(), a MIDlet is a managed application. A managed application’s methods
will be invoked by the managing platform when it needs to respond to something, such
as the app pausing or the user selecting a button. This architecture should be familiar to
developers of Java servlets and other Java EE applications.

The simplest MIDlets need to reply to only three events: the application starting,
pausing, or exiting. An application should handle necessary initialization when starting,
release scarce resources when pausing, and perform any remaining cleanup when
exiting.

MIDlet UI
MIDlet programming supports several choices for user interface programming. The
simplest, but most limited, is using Screen objects. Each Screen instance corresponds to
an application screen. A Form is a type of Screen that can contain multiple Item objects.
Examples of items include text entry fields, labels, and images. Using screens allows
you to very quickly build up an application UI with your desired functions. Unfortunately,
the UI is usually quite limited and unattractive. Screens tend to look better on BlackBerry
devices than on most other Java ME devices, but they still do not look nearly as nice as
other UI frameworks.

Download at WoweBook.Com

CHAPTER 1: Getting Started

12

When using a Screen, users will interact with your application through Command objects.
Each Command is a specific action the user can take. In an email program, the commands
might include choices to compose a new message, save the current message, run a
spell checker, or exit the app. You will be notified by the application manager when the
user has selected a Command. In BlackBerry apps, commands will display when the user
presses the BlackBerry Menu key.

An alternative to Screen is to subclass Canvas. A Canvas allows you to completely control
the appearance of your app, down to the level of the pixel. When your app needs to draw,
it will be provided with a Graphics context. You can use this to directly draw images,
text, rectangles, arcs, and even arbitrary blocks of pixels. This system offers maximum
flexibility for creating great looking apps. However, it is also considerably more complex.

A Canvas-based app can continue to use Command objects, but it also gains the ability to
directly interact with the user. You will be notified when the user presses a key or
interacts with the screen, both for click ball-based BlackBerry devices and touch-based
ones. With these capabilities, it becomes possible to write more advanced user
interfaces. For example, you could add keyboard shortcuts to your email program or flip
between images when the user clicks on them.

Finally, a GameCanvas offers a useful set of behaviors for developers who are writing
games or other applications that demand a high degree of interactivity. Screen and
Canvas apps are primarily reactive, waiting for notifications and deciding how to
respond. GameCanvas allows you to directly query the key states and immediately start
painting in response. This gives you maximum control over application speed and
responsiveness. Additionally, a GameCanvas offers an offscreen Graphics context that you
can progressively draw to before copying it directly to the screen.

A MIDlet Example
Follow these steps to write a simple MIDlet that will be your first BlackBerry app.

1. Start Eclipse and select a fresh workspace.

2. Click File ➞ New, then Project.

3. Expand BlackBerry and select BlackBerry Project. Click Next. Name it
HelloWorld. If you hate the idea of writing another Hello World
application, call it something else. Click Finish.

4. Right-click the HelloWorld project and select Properties.

5. Click BlackBerry Project Properties in the left pane and fill out the Title,
Version, and Vendor fields. You may enter any text you like. To avoid
confusion, I like to keep my MIDlet title and project title consistent, so I
enter HelloWorld here. Also, check the box for “Always make project
active.”

Download at WoweBook.Com

CHAPTER 1: Getting Started

13

6. Click the Application tab and select “MIDlet” from the Project Type
drop-down, as shown in Figure 1-3.

Figure 1-3. Making a MIDlet

7. Press OK to exit the properties.

8. Right-click on the src folder in your Project Explorer, then select New,
and then Class. (If you can’t see your src folder, try expanding the
project by pressing the + sign near the project name.)

9. Give this class a name. I chose HelloWorld. Also provide a package
name. I will be using packages under com.apress.king throughout this
book.

10. Set the superclass to javax.microedition.midlet.MIDlet.

11. Keep “Inherited abstract methods” checked.

12. Click Finish.

You now have an empty MIDlet. If you wanted, you could run it right now. There isn’t
much point, though, since it doesn’t do anything yet.

Listing 1-1 shows how to implement a simple MIDlet. This app uses the screen-based
approach to development. It displays a simple message on the screen and offers an
option to quit the app. Because the app is so simple, there is nothing to do when the

Download at WoweBook.Com

CHAPTER 1: Getting Started

14

app is paused, and it always destroys itself in a straightforward manner. As you can see,
very little boilerplate code is needed to get this running.

Listing 1-1. A Basic MIDlet

package com.apress.king;

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class HelloWorld extends MIDlet implements CommandListener
{

 protected void startApp() throws MIDletStateChangeException
 {
 Form form = new Form("Welcome!");
 StringItem text = new StringItem(null, "Hello, World!");
 form.insert(0, text);
 Command quitCommand = new Command("Quit", Command.EXIT, 0);
 form.addCommand(quitCommand);
 form.setCommandListener(this);
 Display.getDisplay(this).setCurrent(form);
 }

 public void commandAction(Command c, Displayable d)
 {
 if (c.getCommandType() == Command.EXIT)
 {
 try
 {
 destroyApp(true);
 notifyDestroyed();
 }
 catch (MIDletStateChangeException e)
 {
 e.printStackTrace();
 }
 }
 }

 protected void destroyApp(boolean arg0) throws MIDletStateChangeException
 {
 notifyDestroyed();
 }

 protected void pauseApp()
 {
 // This method intentionally left blank.
 }

}

Download at WoweBook.Com

CHAPTER 1: Getting Started

15

Running a MIDlet
It’s now time to run your first app on the simulator. To do this, select the Run menu in
Eclipse, then choose “Debug As,” and finally “BlackBerry Simulator”. Your default
simulator will appear and begin booting.

Note: Later in this chapter, we will see how to start a simulator with networking enabled.

Developers who have previously written for other Java ME phones will be encouraged to
hear that RIM’s device simulators are very faithful to the actual devices. On the majority
of Java phones, simulators provide an overly idealized depiction of the runtime
environment. Those simulators are usually fast and bug-free, while the actual mobile
device is neither. If you have thoroughly debugged your application on a RIM simulator,
though, you can be reasonably confident that it will run well on the actual device. (Of
course, there is no way to be completely sure until you actually try it. We’ll cover that
step at the end of this chapter.)

The downside to this accuracy, though, is that the simulator tends to be rather slow. It
takes about as long to boot up as an actual device does. Be patient, and eventually you
will see the home screen.

Now, locate the HelloWorld app. On older devices, it will typically be located
somewhere on your home screen. On newer devices, it will usually be placed within
a Downloads folder, which you can find by pressing the BlackBerry Menu key and then
scrolling around. Once you find it, click the icon. It will launch, looking something
like Figure 1-4. Note that the exact appearance will vary based on what simulator you
are using.

Download at WoweBook.Com

CHAPTER 1: Getting Started

16

Figure 1-4. A simple MIDlet running in the simulator

MIDlet Evaluation
MIDlets should be your first choice if you are planning on writing an application for both
BlackBerry and Java ME devices. The consistent programming style will make the whole
process much simpler, and you’ll minimize the amount of rework.

However, you are giving up the chance to take the fullest advantage of the BlackBerry
platform if you go this route. Even the best-looking MIDlets won’t integrate cleanly with
other applications on the phone, and discerning users will detect that something is
different about them.

If you choose to write a MIDlet, I suggest using Screen classes when you are writing a
demo or an app where you don’t care about the UI. Use a Canvas for commercial
applications, and a GameCanvas for games or other high-quality interactive apps.

Download at WoweBook.Com

CHAPTER 1: Getting Started

17

The rest of this book contains a good amount of information that can be applied to
MIDlets. To learn even more, particularly more details about the user interface options,
consider reading Beginning Java ME Platform by Ray Rischpater (Apress). Most of the
content in that book can be applied to writing MIDlets for BlackBerry devices.
(Disclaimer: I am the technical reviewer of that book.)

CLDC Applications
MIDlets provide a good bridge of compatibility between Java ME and BlackBerry
devices. BlackBerry CLDC, on the other hand, was engineered from the ground up
specifically for BlackBerry, and this framework provides the best integration with the
native device behavior. Applications written with this platform tend to have a polished
feel that is familiar to BlackBerry users.

CLDC stands for Connected Limited Device Configuration. Somewhat confusingly,
MIDlets are also technically CLDC applications. Java ME provides support for a wide
range of applications; the most popular are the MIDlets, which are defined as part of
MIDP, the Mobile Information Device Profile. RIM has taken the CLDC foundation and
created their own custom user interface on top of it as a replacement for MIDlets. Within
this book, I will use the terms “MIDlet” or “MIDP MIDlet” to refer to a MIDlet app, and
the terms “CLDC” or “BlackBerry CLDC” to refer to a BlackBerry CLDC app.

Note: The two types of apps can share almost anything, except for their UI classes. This means
that BlackBerry CLDC applications should never import a class under the
javax.microedition.lcdui or javax.microedition.midlet packages, and MIDlets
should never import a class under the net.rim.device.api.ui package hierarchy. On the
other hand, BlackBerry CLDC applications can freely use non-UI Java ME classes under the
javax.microedition package, and MIDlets running on BlackBerry can use RIM classes
under the net.rim package.

CLDC Behavior
BlackBerry CLDC apps function like a hybrid between Java SE and MIDlets. They do
have a static main() function that starts the application and will run until completion.
Your main class should extend UiApplication. UiApplication is the heart of a CLDC
app; it provides the following crucial capabilities:

 An event dispatcher that is responsible for managing all user input and
updates to the user interface.

 A screen stack that maintains application state.

 Standard controls for menu actions and other commonly used elements.

Once your app starts the event dispatcher, it will behave similarly to a MIDlet: it will be
notified when important events occur and can take actions in response.

Download at WoweBook.Com

CHAPTER 1: Getting Started

18

CLDC UI
Screen objects form the building blocks for CLDC applications. CLDC screens are
located in the net.rim.device.api.ui package, and they are completely different from
the MIDlet screens located in the javax.microedition.lcdui package. A Screen typically
contains one or more displayable items, and also performs specialized logic related to
those items. If you were writing a calendar app, you might use one screen to show the
entire calendar view, another screen for creating new appointments, and a third screen
to view previously entered appointments. Each screen would offer different options
depending on its purpose.

An app is composed of screens, and each screen is composed of fields. A CLDC Field
is roughly analogous to a MIDlet Item. RIM offers a rich set of standard fields for things
like displaying images and text, and even more advanced fields for displaying things like
maps. One specialized type of Field is the Manager. A Manager controls the appearance
and behavior for its own children fields. One Manager may lay out its children
horizontally, another vertically, and another as a grid. By using managers, you can
create elaborate and attractive user interfaces.

You can also subclass Field, Manager, or any other class to add your own desired
functions and appearance. For example, you might override DateField in your calendar
app to create dates that fit in with the visual style of your app, and you might add
custom functions to immediately display appointments when the user selects a date.

In the most extreme cases, you may choose to override the paint() method for a Screen
or a Field. This will allow you unlimited control over the look of your app. However, the
existing Field implementations look quite good, and most allow ways that you can
easily customize them. You can create attractive apps by sticking to the default toolkit.

A CLDC Example
Now that you’ve created a MIDlet, making a CLDC app will go more quickly. Switch to a
fresh workspace and create a new project called HelloUniverse. Follow the instructions
in the previous section “A MIDlet Example,” but this time keep the Project Type as the
default of “CLDC Application.” Create a new class called HelloUniverse that extends
net.rim.device.api.ui.UiApplication. Listing 1-2 shows a simple CLDC app that
performs the same basic function as the previous MIDlet application. For this example
we will be configuring a basic MainScreen with some non-interactive elements. Future
examples in this book will show how to create more interactive CLDC applications.

Listing 1-2. A Basic BlackBerry CLDC Application

package com.apress.king;

import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.container.MainScreen;

Download at WoweBook.Com

CHAPTER 1: Getting Started

19

public class HelloUniverse extends UiApplication
{

 public void start()
 {
 MainScreen main = new MainScreen();
 LabelField label = new LabelField("Hello, Universe");
 main.add(label);
 UiApplication app = UiApplication.getUiApplication();
 app.pushScreen(main);
 app.enterEventDispatcher();
 }

 public static void main(String[] args)
 {
 (new HelloUniverse()).start();
 }

}

You’ll note that this is even less code than was used in the MIDlet. When you build a
CLDC app, you get a lot of useful capabilities for free, including automatic state
management that allows a user to navigate back through your app and exit. You can
override these behaviors if you want, but the default is correct in most cases.

Run your app using the same steps as described in the previous section “Running a
MIDlet.” Even though the code is different, you build, load, and launch BlackBerry CLDC
applications the same way you do MIDlets, and they will be placed in the same location.
Figure 1-5 shows the running CLDC application.

Download at WoweBook.Com

CHAPTER 1: Getting Started

20

Figure 1-5. A BlackBerry CLDC application running in the simulator

Note: You’ll observe that HelloWorld is still installed, even though you have switched
workspaces and started a new project. Although you can only debug one project at a time, any
changes you make to the BlackBerry simulator will persist across multiple launches. If you’d
like to return to a clean slate, you can do so by clicking on the Eclipse BlackBerry menu, then
selecting Erase Simulator File. There are multiple options for deleting everything, deleting the
SD card, deleting preferences, and deleting applications.

CLDC Evaluation
Using the BlackBerry CLDC UI is probably the best choice if you are writing an app on
your own BlackBerry for fun, if you know that your app is only intended for BlackBerry
devices, or if you want to get the highest level of visual integration with the BlackBerry
platform. RIM has done a good job at providing attractive, flexible, extensible visual

Download at WoweBook.Com

CHAPTER 1: Getting Started

21

elements. It takes little effort to create a nice-looking app, and you can customize the
look as much as you like.

For these reasons, I will be using CLDC applications in my examples for the remainder
of the book. Most of the topics can also be used in MIDlet applications, and I will
provide occasional directions on how to adapt to MIDlets.

To keep the focus on the advanced topics of this book, I tend to use simple Screen
classes that are informative but not flashy. If you’d like to learn more about designing
user interfaces for BlackBerry CLDC apps, please consult Beginning BlackBerry
Development by Anthony Rizk (Apress).

Libraries
The last major type of application is a library. “Application” is a misnomer here, since a
library is, by definition, headless. A library can provide functions to other applications
and can perform tasks, but it cannot be directly launched by a user and does not
provide any user interface.

Library Functions
You’ll rarely ever distribute a library by itself. Instead, you typically will bundle a library
with one or more applications. There are several benefits to doing this. It allows you to
encapsulate functions and separate them from the application. If you have multiple apps
that need to decode videos, then rather than writing video decoding functions and
copying them to both apps, you could just place those functions within a library. When
you fix bugs or add new video formats to decode, you only need to update the library.

Libraries can also be useful for performing simple tasks that don’t require user
interaction. You might use a library that scans for temporary files left behind by your
main app and cleans them up, or that tells the device to start your application when the
user receives a particular email.

A Library Example
Create a new Eclipse workspace and start a third project, this one called GoodbyeWorld.
Follow the instructions in the previous section in this chapter titled “A MIDlet Example,” but
this time select the Project Type “Library” and check the option for “Auto-run on startup”.
Create a new class GoodbyeWorld with the default superclass of java.lang.Object.

This particular library will be calling some privileged API methods, so we will notify the
build environment that our app has the proper access. Select the Eclipse BlackBerry
menu, then choose Configure BlackBerry Workspace. Click Code Signing in the left
pane, and verify that all the options are checked. You should have RIM BlackBerry Apps
API, RIM Crypto API, and RIM Runtime API selected. If you happen to know that you
cannot access one or more of these, for example if you are in a region without
permission to use the Crypto API, leave those options unchecked. The compiler will

Download at WoweBook.Com

CHAPTER 1: Getting Started

22

generate a warning if your code attempts to call these restricted methods. You will still
be able to call them on the simulator, but they will fail on the device.

Listing 1-3 shows this library’s implementation. You’ll notice a special entrance function
called libMain(). Not every library needs one, but if “Auto-run on startup” is selected,
then the system will run this method if it is available. In this example, we check to see if
the HelloUniverse application is installed. If so, we wait for the device to finish booting
up, and then launch it.

Listing 1-3. A Basic Library

package com.apress.king;

import net.rim.device.api.system.*;

public class GoodbyeWorld
{

 public static void libMain(String[] args)
 {
 System.out.println("GoodbyeWorld launching");
 int handle = CodeModuleManager.getModuleHandle("HelloUniverse");
 ApplicationDescriptor[] descriptors = CodeModuleManager
 .getApplicationDescriptors(handle);
 if (descriptors.length > 0)
 {
 ApplicationDescriptor descriptor = descriptors[0];
 try
 {
 ApplicationManager manager = ApplicationManager
 .getApplicationManager();
 while (manager.inStartup())
 {
 try
 {
 Thread.sleep(1000);
 }
 catch (InterruptedException ie)
 {
 // Ignore.
 }
 }
 manager.runApplication(descriptor);
 }
 catch (ApplicationManagerException e)
 {
 System.out.println("I couldn't launch it!");
 e.printStackTrace();
 }
 }
 else
 {
 System.out.println("HelloUniverse is not installed.");
 }

Download at WoweBook.Com

CHAPTER 1: Getting Started

23

 System.out.println("Goodbye, world!");
 }

}

When you run this in the simulator, you will see the same screen display as in Figure 1-5,
but this time, no action on your part is necessary. Also, if you look in the Console view
for the BlackBerry Simulator Output Console in Eclipse, you will see the message
GoodbyeWorld launching included within the app startup messages.

Library Evaluation
The possibilities for libraries are practically endless. They can enhance your other
applications by providing useful utilities or running common tasks. They are especially
useful when you have a portfolio of apps and want to share existing technology between
them.

That said, most applications don’t use libraries, and most don’t need them. Think
carefully about what your library is supposed to accomplish, whether it’s actually useful,
and whether a library is the best place to put those functions. It might be fun to
automatically start up an application, but many users would likely be annoyed by that
behavior.

Use your best judgment, and you may find situations where libraries are the best
solution to a problem. The examples in this book do not use libraries often, but most of
the code that does not have a UI component could be placed within a library.

Connecting to Files and Networks
Java ME introduced a new framework to the Java language. The Generic Connection
Framework, or GCF, provides a generic mechanism for accessing many different kinds
of resources that exist outside your app. The GCF will be used in all but the most trivial
applications, whether you are building a MIDlet or a BlackBerry CLDC app.

A GCF Overview
The Connector class provides an entry into the GCF. Connector is a factory class—one
that is responsible for creating other objects. When you call Connector.open(), you
provide a connection string describing the resource you want to access. Connection
strings look like URLs, but can describe a wide variety of connection types. Examples
include http://apress.com, sms://+14155550100 and
file:///SDCard/BlackBerry/Music/.

If the device supports the requested connection type, it will return an object that
implements the appropriate subclass of Connection. Figure 1-6 shows the relationship
between Connector and Connection, along with a few representative Connection types. If
the device does not support a particular type of connection, Connector will throw a

Download at WoweBook.Com

http://apress.com
file:///SDCard/BlackBerry/Music

CHAPTER 1: Getting Started

24

ConnectionNotFoundException. You may encounter an IOException in a variety of
situations, such as if networking is disabled when your app requests a network connection.

Figure 1-6. BlackBerry GCF connections

Because connections represent scarce resources, your app should be prepared to
gracefully deal with situations in which they are not available. Depending on the type of
resource and the error, you might prompt the user to try again later. Also, because they
are scarce, you should take care to clean up Connection objects once you have finished
with them by calling their close() method. This will return underlying resources, such as
file handles or Internet sockets, to the BlackBerry operating system. The sample code
below shows how to open a particular type of connection and clean it up once done.

String connectString = "http://www.apress.com";

HttpConnection connection = null;
try
{
 connection = (HttpConnection)Connector.open(connectString);
 // Read from the connection here.
}
catch (ConnectionNotFoundException cnfe)
{
 System.err.println("Couldn't find connection for " + connectString);
}
catch (IOException ioe)
{
 System.err.println("IO exception for " + connectString + ":" + ioe);
}
finally
{
 if (connection != null)
 {
 try
 {
 connection.close();
 }
 catch (IOException ioe) {}
 }

}

Download at WoweBook.Com

http://www.apress.com

CHAPTER 1: Getting Started

25

File Access
File connections are not part of core Java ME, but are specified as part of JSR 75, which
all modern BlackBerry devices offer. File connections allow you to read and write files
within the BlackBerry device’s built-in storage or an SD (Secure Digital) card. This
capability allows you to offer extra storage in your app, produce useful files for the user,
or communicate with other apps on the phone.

Paths
RIM devices offer two file-system roots. One, located at /store/home/user, corresponds
to the device’s internal memory. This is limited in size and should be used for small files
only. However, it is also fast and responsive and should always be available.

The other root, /SDCard, corresponds to the device’s Secure Digital card. This is a
removable memory card that is often used for storing large media files. SD cards also
offer ways to encrypt files and protect them with Digital Rights Management (DRM). SD
cards for BlackBerry devices can be quite large—several gigabytes in size—and users
will rarely mind if you use them to store files for your app. However, there is no
guarantee that any given user will have an SD card inserted in their device, and you
should be prepared to handle situations where it is unavailable.

You indicate a file URL by attaching the file:// prefix. An example of a full path to a
local file is file:///SDCard/BlackBerry/Music/song.mp3. Note that there are three
slashes after file:, not two.

Access
Each Connection can be opened in one of three modes:

 Connector.READ indicates that your app will only be reading data from
this resource.

 Connector.WRITE indicates that your app will only be writing data to
this resource.

 Connector.READ_WRITE allows your app to both read from and write to
this resource.

By default, connections will open with READ_WRITE access. This is generally desirable,
particularly since bugs in some versions of BlackBerry device software cause read
operations to fail if a connection is opened with only READ access.

Even when you request these access levels, users still may choose to override your
selection. It is reasonable to show an error message to the user asking them to make
changes that will allow your app to function properly. Chapter 9 will discuss in more
detail how to do this.

Download at WoweBook.Com

file://prefix
file:///SDCard/BlackBerry/Music/song.mp3

CHAPTER 1: Getting Started

26

Streams
A Connection object by itself represents a resource. In order to interact with a file, you
will need to open an appropriate stream by calling one of the following methods:

 openInputStream() returns a raw byte stream for reading.

 openOutputStream() returns a raw byte stream for writing.

 openDataInputStream() allows your app to read basic Java types,
such as int and String, from the stream.

 openDataOutputStream() allows your app to write basic Java types to
the stream.

Note: BlackBerry does not support many standard Java I/O classes such as
BufferedInputStream.

Although you have successfully obtained a FileConnection object, opening the stream
may still fail. Security is generally not checked until you attempt to access the file. It is
also possible that the file itself does not exist yet, or another app has a lock on it. Be
prepared to handle SecurityException, IllegalModeException, and IOException.

Once you have an appropriate stream, you can read or write to it as you would in a
standard Java application. Operations on streams are synchronous and blocking. This
means that when you call a stream method like read() or write(), the method will not
return until the operation is complete or an error occurs. If you are reading or writing a
large file, this may take a long time. Because of this, it is a good practice to perform
stream I/O operations in a separate thread.

The following code shows an example of opening a stream from an already opened file
connection. As with connections, streams represent scarce resources and should be
cleaned up when no longer needed.

DataInputStream dis = null;

try
{
 dis = connection.openDataInputStream();
 String bestPlayer = dis.readUTF();
 int highScore = dis.readInt();
 System.out.println(bestPlayer + " scored " + highScore + " points.");
}
catch (IOException ioe)
{
 System.err.println(ioe);
 ioe.printStackTrace();
}
finally
{
 if (dis != null)
 {

Download at WoweBook.Com

CHAPTER 1: Getting Started

27

 try
 {
 dis.close();
 }
 catch (IOException ioe) { }
 }

}

When you are writing to a stream, be aware that the operating system may be buffering
the output. If your app writes individual bytes to a file, it would be highly inefficient to
access the filesystem at each byte. All pending bytes will be written out when the
close() method is called, or when the program calls flush() on the stream, as
demonstrated in the following code snippet.

DataOutputStream dos = connection.openDataOutputStream();

dos.writeUTF("Sally Jones");
dos.writeInt(100);
dos.flush();
dos.writeUTF("Joe Smith");
dos.writeInt(98);

dos.close();

Other Operations
Although streams are the most important resources provided by a FileConnection, the
interface offers several other useful methods, including the following:

 exists() checks to see whether the file or directory is present on the
filesystem.

 create() creates a new, empty file at this location.

 mkdir() creates a directory at this location.

 delete() destroys this file or directory.

 list() returns all the files and subdirectories in this directory.

 fileSize() reports how many bytes a file occupies on the filesystem.

Note: Always include the trailing / character when specifying a directory path, such as
file:///SDCard/BlackBerry/Music/. If you don’t, the BlackBerry operating system
cannot determine whether you are referring to a file or to a directory of that name.

The following code snippet checks to see whether a file exists. If it doesn’t, it will create
it. The create() method does not automatically create directories, so this code first
checks to see that the containing directory exists.

String directoryPath = "file:///SDCard/BlackBerry/Music/";

Download at WoweBook.Com

file:///SDCard/BlackBerry/Music
file:///SDCard/BlackBerry/Music

CHAPTER 1: Getting Started

28

FileConnection connection = (FileConnection)Connector.open(directoryPath);
if (!connection.exists())
{
 connection.mkdir();
}
connection.close();
String filePath = "file:///SDCard/BlackBerry/Music/song.mp3";
connection = (FileConnection)Connector.open(filePath);
if (!connection.exists())
{
 connection.create();
}

connection.close();

Networking
Almost every interesting mobile app includes some sort of networking. It might share
messages with other users, back up data on a remote server, or download new game
levels. The GCF provides access to a variety of network types, and RIM’s custom
extensions to the GCF allow you to write networking code that takes advantage of
BlackBerry device features.

Types of Connections
On BlackBerry devices, a variety of protocols are understood by the Connector.open()
factory method. Table 1-1 lists some of the most useful.

Table 1-1. Network Connection Types

Protocol
Name

Returned Interface
Type

Comments Example Required Permission

http HttpConnection http://eff.org javax.microedition.
io.Connector.http

https HttpsConnection Secure
version of
http

https://www.amazon.com javax.microedition.
io.Connector.https

socket StreamConnection Raw TCP
socket

socket://mysite.com:1066 javax.microedition.
io.Connector.socket

udp DatagramConnection UDP socket udp://streamingsite.com:
1812

javax.microedition.
io.Connector.
datagram

The platform also supports more esoteric connections, including to USB ports and raw
SSL. This book will use HTTP for examples as this is one of the most common and
feature-rich protocols.

Download at WoweBook.Com

file:///SDCard/BlackBerry/Music/song.mp3
http://eff.org
https://www.amazon.com
socket://mysite.com:1066
udp://streamingsite.com:

CHAPTER 1: Getting Started

29

HTTP Requests
RIM has defined a set of custom optional parameters that may be included when
requesting a network connection. These are used to control features that are not
addressed by the standard Java ME interfaces or that apply only to BlackBerry
connections. Table 1-2 shows the optional parameters that can be applied to an HTTP
connection.

Table 1-2. Optional Parameters for HTTP Connections on BlackBerry

Parameter Name Meaning Valid Values

deviceside Whether to connect via direct TCP or a proxy
connection

true or false

interface Non-cellular connection to use wifi

WapGatewayAPN The Access Point name to use as a gateway Domain name

WapGatewayIP The gateway to use for a WAP connection IP address

WayGatewayPort The port to use for a WAP connection Integer

WapSourceIP Local IP address IP address

WapSourcePort Local port for this connection Integer

WapEnableWTLS Whether to force a secure WAP connection true or false

TunnelAuthUsername User name for APN String

TunnelAuthPassword Password for APN String

Of all these parameters, the most important is deviceside. You will generally want to set
this to true unless you are specifically developing an app for a BES environment.
Otherwise, corporate users may be blocked from accessing the site you attempt to
reach.

Optional parameters are appended to your connection string and separated by
semicolons. To open a direct TCP connection over Wi-Fi to the CIA’s web site, you
would use the connection string http://www.cia.com;deviceside=true;interface=wifi.

Caution: If you specify a Wi-Fi connection and no Wi-Fi is available, the connection will throw
an exception instead of failing back to a regular cellular connection.

When calling Connector.open() for a network connection, you may choose to specify
whether the connection should time out. By default, a connection will wait until the other
server replies or an error occurs; however, sometimes no response will come, either

Download at WoweBook.Com

http://www.cia.com

CHAPTER 1: Getting Started

30

because the server is unresponsive or a network connection has quietly dropped. It’s a
good practice to request the timeout notification so you can display an error to the user.
An example of requesting a connection with a timeout follows. The final true parameter
indicates that we want to receive an exception if the connection is not successfully
opened in a timely manner.

HttpConnection conn = (HttpConnection) Connector.open(
 "http://www.cia.gov;deviceside=true", Connector.READ, true);

Once you have an HttpConnection, you can choose to set the request method (GET,
POST, or HEAD) by calling setRequestMethod(), and specify any custom headers (such as
the User-Agent or accepts) by calling setRequestProperty(). Once the connection is set
up and you are ready to send or receive data, open the corresponding stream type and
begin using it. All the same rules that applied to FileConnection objects also apply here:
run within a separate thread, be prepared for errors, and clean up after yourself when
done.

App: Media Grabber
You now know enough essentials to create a functional BlackBerry app. Throughout this
book we will be building a media-sharing application through examples at the end of
every chapter. This first chapter will concentrate on building up the framework of the
app and giving you practice with running and debugging it. In the process, we’ll also use
some of the features covered in this chapter.

Writing the App
Follow the instructions from earlier in this chapter to start a new Eclipse workspace and
create a new BlackBerry CLDC application called MediaGrabber. Within that project,
create a class called MediaGrabber that extends UiApplication. We’ll write a static
main() function that starts running the app, a simple UI to display, and a custom thread
that uses the GCF to download a file and compare it to the local filesystem. Listing 1-4
shows the complete class.

Listing 1-4. An App that Grabs and Stores Data from the Internet

package com.apress.king;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Date;

import javax.microedition.io.Connector;
import javax.microedition.io.HttpConnection;
import javax.microedition.io.file.FileConnection;

import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.LabelField;

Download at WoweBook.Com

http://www.cia.gov

CHAPTER 1: Getting Started

31

import net.rim.device.api.ui.container.MainScreen;
import net.rim.device.api.util.Arrays;

public class MediaGrabber extends UiApplication
{

 public static void main(String[] args)
 {
 MediaGrabber app = new MediaGrabber();
 app.begin();
 }

 public void begin()
 {
 MainScreen s = new MainScreen();
 LabelField label = new LabelField("Kilroy Was Here");
 s.add(label);
 pushScreen(s);
 (new WebChecker()).start();
 enterEventDispatcher();
 }

 private class WebChecker extends Thread
 {
 public void run()
 {
 HttpConnection http = null;
 FileConnection file = null;
 InputStream is = null;
 OutputStream os = null;
 try
 {
 http = (HttpConnection) Connector.open(
 "http://www.google.com;deviceside=true",
 Connector.READ_WRITE, true);
 is = http.openInputStream();
 // Read the first 4 kilobytes.
 byte[] networkBuffer = new byte[4096];
 is.read(networkBuffer);
 is.close();
 http.close();
 file = (FileConnection) Connector
 .open("file:///store/home/user/last.html");
 if (file.exists())
 {
 System.out.println("We last checked Google on "
 + new Date(file.lastModified()));
 byte[] fileBuffer = new byte[4096];
 is = file.openInputStream();
 is.read(fileBuffer);
 is.close();
 if (Arrays.equals(networkBuffer, fileBuffer))
 {
 System.out.println("Google hasn't changed.");
 }
 else

Download at WoweBook.Com

http://www.google.com
file:///store/home/user/last.html

CHAPTER 1: Getting Started

32

 {
 System.out.println("Google's doing something new.");

 }
 file.delete();
 }
 else
 {
 System.out.println("Looks like the first time we've run!");
 }
 file.create();
 os = file.openOutputStream();
 os.write(networkBuffer);
 }
 catch (IOException ioe)
 {
 System.err.println("An I/O error occurred: " + ioe);
 }
 catch (Exception e)
 {
 System.err.println("An unexpected error occurred: " + e);
 }
 finally
 {
 try
 {
 if (os != null)
 os.close();
 if (file != null)
 file.close();
 if (is != null)
 is.close();
 if (http != null)
 http.close();
 }
 catch (Exception e)
 {
 // Ignore
 }
 }
 }
 }

}

Debugging on the Simulator
Because this is the first app to write that requires network support, an extra step is
necessary before running. Click on Run, then Debug Configurations. Click on the
BlackBerry Simulator entry, and click the new launch configuration icon in the upper left.
A new configuration will display. Name it what you like, such as MediaGrabber
BlackBerry. Click the Simulator tab and change the Profile from “Default Simulator” to
one of the other choices. Mark the checkbox by the message that starts with “Launch

Download at WoweBook.Com

CHAPTER 1: Getting Started

33

Mobile Data System” as shown in Figure 1-7. Finally, click on the Common tab and
check both options under “Display in favorites menu.” Click Debug.

Figure 1-7. Configuring Eclipse to launch the MDS

Caution: Only one copy of the BlackBerry simulator can run at a time. Exit any previous
simulator windows you have open before starting a new debug session.

The simulator window will launch again, but this time you will also see a black-and-white
terminal window display with a lot of rapidly scrolling text, as shown in Figure 1-8. This
is the Mobile Data System terminal. As mentioned before, the BlackBerry Simulator is
very accurate to real device behavior, and this accuracy extends to the way BlackBerry
devices access the Internet. The simulator cannot directly access the Internet
connection on your development computer; instead, it connects to the MDS, which
simulates a real wireless connection, and behind the scenes uses your computer’s
Internet connection to provide data.

Download at WoweBook.Com

CHAPTER 1: Getting Started

34

Figure 1-8. The MDS status terminal

To test that the MDS is working properly, click the Browser icon within the BlackBerry
simulator and enter the URL of your favorite web page. You should see it load in this
window, similarly to how it would look on an actual device.

Now you are ready to debug your app. Double-click the side of the Java editing window
on line 46, at the line that starts with http = (HttpConnection). A blue breakpoint
marker should appear here, as shown in Figure 1-9. Launch your application. The
simulator will freeze. You may get a prompt in Eclipse asking if you’d like to open the
Debug perspective. Answer Yes here, and check “Remember my decision.”

Download at WoweBook.Com

CHAPTER 1: Getting Started

35

Figure 1-9. Setting a debug breakpoint in Eclipse

You are now in the Eclipse debug view. Even if you have never used Eclipse before, you
should recognize its capabilities as similar to other IDEs you may have used such as
NetBeans or Visual Studio. You can inspect the values of local variables, add watches to
expressions, and control execution of the code. The keyboard commands are F5 to step
into a method, F6 to step over the next line, and F7 to step out of a method. Press F8 to
continue running until the next breakpoint.

Spend a few moments experimenting. You’ll see that you can observe all the data that
comes down from the network connection. If there is a problem, you can view the
exception that is thrown and determine how to solve it. Launch the app again, noting the
different path it takes the second time. Once you’re comfortable in the debugger view,
you’ll be ready to move on to the actual device.

Debugging on the BlackBerry Device
To debug on the BlackBerry, you first must load the application. The simplest way to do
this is via the following steps:

1. Right-click on MediaGrabber and select Generate ALX File.

2. Connect a BlackBerry device and open the BlackBerry Desktop
Manager.

3. Click Application Loader.

4. Click Start under Add/Remove Applications.

5. Click Browse.

Download at WoweBook.Com

CHAPTER 1: Getting Started

36

6. Navigate to where you created your Eclipse workspace. If you aren’t
sure where this is, right-click on MediaGrabber in Eclipse, click
Properties, and look for Location.

7. Select the file MediaGrabber.alx.

8. Click Next, then click Finish.

Once your app is loaded, first try running it directly yourself. You may be prompted for
permission to access www.google.com; we’ll see how to remove that in a little while. You
should see the same screen you saw when running the simulator. Exit the app. Next,
with the device still connected via the USB cable, click Run ➞ Debug As ➞ BlackBerry
Device. Your device will freeze for a few moments while it connects. Within Eclipse, you
may see a lot of messages about missing .debug files. You can click “Don’t ask me this
again.”

Once the debugger has finished connecting to the device, launch the app again. The
device will freeze when it hits the breakpoint, and you can step through the code as you
did with the simulator. For the most part, the debugger behaves the same in both
places: you can view variables, control progress through the application, and so on. You
may notice that sometimes execution will pause within a RIM class; you will be able to
view the entire call stack but not the specific code that is executing. This typically
happens when an exception is thrown within RIM code, sometimes due to an action
within your code. You can usually step back out of this function or press F8 to continue
running and observe what happens; sometimes such exceptions are handled internally
before they reach you.

You also may see that sometimes debugger progress stops altogether. This is because
the device is waiting for input from the user. This happens most often when a security
prompt displays in response to an operation in your program. Answering Yes or No to
this prompt will determine whether an exception is thrown in your app.

If you are unable to debug your app on the device, or if you cannot view variable values,
please carefully review the steps above. In particular, make sure you are using the
simulator that corresponds to the device you are debugging on and double-check the
device software version numbers and model numbers.

Finally, sometimes the debugger just detaches while your program is debugging, which
can be annoying. Make sure your USB cable is firmly connected; if the problem persists,
it may help to carefully set your breakpoints and avoid inspecting certain variables, since
certain combinations can result in disconnection.

Working with Devices
On-target debugging is a powerful tool. There is no substitute for running your code on
an actual phone and being able to see exactly what is happening. However, running on
the phone is more complex than running on the simulator, and there are a few points to
keep in mind.

Download at WoweBook.Com

http://www.google.com

CHAPTER 1: Getting Started

37

First, make sure that your particular phone is in a good state for running the app.
Devices acquired second-hand through eBay or elsewhere can come with
configurations that may block certain operations or fail to make connections. Chapter 9
will specifically address the issue of security policies on ex-corporate phones. If your
device was originally created for another carrier, you may need to fill out the APN
information for the current carrier; this is usually accessed via Options ➞ Advanced ➞
TCP. You can find the proper APN settings on your carrier's web site or in an Internet
search.

If you are writing your app for one particular device or for a known configuration, such
as devices for a particular company's BES, you just need to set it up to work with those
device settings. However, if you want to run on a variety of device types and carriers,
you'll need to more carefully think about how to support those differences. You can
create a single binary that attempts to detect a user's configuration and uses
appropriate settings for them; or, you can create separate versions of the app for each
configuration and let users choose which one to install. Chapter 10 addresses this in
more detail.

The BlackBerry Desktop Manager is a convenient tool for loading your app, but it can be
a little tedious if you are frequently making changes to test on the device. It keeps track
of application version numbers, so if you are making a change, either increase the
version number (for example, from 1.0.0 to 1.0.1) within Eclipse before building, or
delete the old application before attempting to install. Otherwise, the Desktop Manager
will see that you have the current version of the app and will not attempt to upgrade.
This book will use the Desktop Manager for testing on the device. To learn about
alternate ways of deploying your app, consult Beginning BlackBerry Development by
Anthony Rizk (Apress).

When you are making changes to your code, make sure that the updated COD file is
correctly built before you load the ALX with Desktop Manager. The simplest way to do
this is to hit the Debug on Simulator option first; you can cancel the simulator before it
finishes loading.

BlackBerry devices can take a very long time to reboot after installing an app. To
minimize the need to reboot, be sure to exit your app before deleting it or installing an
updated version.

Sign Me Up
Hopefully you have received your BlackBerry code signing keys by now. If not, you can
skip this part and continue with the later chapters in this book. Return here once you
have installed the keys and are ready to start signing.

Caution: Signatures are applied to the most recently built version of the application, which may
not include any recent changes you have made in Eclipse. Before starting the signing process,
run the application in the simulator to make sure that the updated application was built.

Download at WoweBook.Com

CHAPTER 1: Getting Started

38

In Eclipse, click the BlackBerry menu, then Request Signatures…. The Signature Tool
window will display. Depending on the size of your application and the code you call,
there may be many more items shown. You will see some extra SignerID entries that you
cannot receive signatures for; this is normal, as these are for advanced cryptography or
internal RIM use. Also, you may not see some SignerID entries for keys you do possess.
Again, don’t be concerned; not all keys will be needed, especially for simple apps.

If you are behind a proxy, click Properties and then fill in your proxy information.
Otherwise, just click Request and type in the password you created when you installed
the code signing keys, as shown in Figure 1-10. The signing tool will contact the RIM
signing servers and download the signature files. You will see a message window
describing the status or failure of the signing operation. Click OK and then click Close to
dismiss the window.

Figure 1-10. Requesting a signature

Caution: Whenever you sign an application, you must request a signature from the RIM
signing servers. These servers are notorious for their occasional outages of varying lengths that
can strike at any time. If you have a deadline for your project, do yourself a favor and plan to
finish ahead of time so you aren’t stuck if the signing servers happen to be offline right before
you need to ship.

Now, replace the old version of your app with the updated signed version. Run
MediaGrabber again. Ta-da! No more prompt asking for permission to access Google! (If
the prompt persists, see Chapter 9 for more details on eliminating this.) Signed
applications gain certain privileges, among them less frequent prompting of users. More
importantly, though, only signed applications are allowed to access certain protected
RIM APIs. Much of the content in this book requires signing to run.

Download at WoweBook.Com

CHAPTER 1: Getting Started

39

Once you get the hang of signing, it should become an almost automatic process. It
doesn’t add as much overhead as some other OEMs’ solutions do. Still, it can be
tedious to sign when you are frequently making changes that need to be tested on the
device. Try to do as much work on the simulator as you can. If you are in a professional
environment, consider some of the techniques discussed in the upcoming chapter
Advanced Build Techniques. Ideally, though, you should be able to happily develop 95%
of your app on the desktop, maybe 5% testing on the device, and then just apply a final
set of signatures before distributing it.

WANT MORE?

MediaGrabber isn't actually grabbing any media yet—we'll start doing that in the next chapter. However,
this is a good opportunity to play around with the basic app now and get a feel for how development works
on the BlackBerry. Here are a few suggestions.

 Spruce up the MainScreen and text. Use a layout Manager to position the text in the
center of the screen. Style the LabelField to make it more attractive.

 Try checking multiple web pages in addition to Google. Save each to a separate file.
Make sure you are cleaning up your connections after each one. Tip: Create a helper
method that can handle any URL.

 If you can, try running the app on different devices from different carriers. Do you
need to make any changes for them?

Spend as much time as you like on these or other improvements. Once you feel comfortable with making
and testing changes, you are ready to move on.

Excelsior
You have crossed the first threshold for writing advanced BlackBerry apps. Although the
treatment in this chapter has been brief, you have learned the essentials for writing
useful BlackBerry apps. You now have a functioning environment that allows you to
write, test, and deploy your application on the simulator and on BlackBerry devices. You
have learned the differences between MIDlets, BlackBerry CLDC applications, and
library modules, and when to use each. You have built simple user interfaces. Most
importantly, you know how to send and receive data over the wireless network, how to
save and read files, and the essential structure of the Generic Connection Framework.

With these tools at your disposal, you can write a variety of useful apps. The remainder
of this book will take that core knowledge to the next level by introducing you to the
advanced tools and techniques of BlackBerry development. We'll start by examining the
advanced features for media capture.

Download at WoweBook.Com

Download at WoweBook.Com

 41

2Chapter

Media Capture
For several years, manufacturers have been selling phones with promises of increased
convenience. They say you shouldn’t carry a phone, a camera, and a tape recorder—
instead, buy one device that combines all those functions. What was once exotic
packaging has now become standard, and even inexpensive phones now usually
contain media recording capabilities.

One of the most obvious signs of the BlackBerry phone’s evolution from a business-
centric tool to a general-purpose device is its embrace of this trend. Most new
BlackBerry devices contain a camera and microphone.

While the convenience factor is nice, the fact is that you typically won’t get a camera
that’s as good as a stand-alone camera. A major advantage of having a camera on a
phone, though, is that it becomes another tool for software developers. A regular
camera just takes pictures, but a camera phone can do much more: display and
manipulate those pictures, share them with your friends, detect how bright it is, try to
recognize faces, and more. This chapter introduces the media APIs that allow you to
consume the information coming from your device and start doing interesting things
with it.

BlackBerry vs. Sun APIs
Because RIM’s Java ME platform includes the standard set of multimedia APIs (MMAPI),
developers already comfortable with Java ME development can immediately use these
familiar interfaces in their programs. The Sun concept of media is based around a media
Player object that plays and records media.

In addition to these standard APIs, BlackBerry has also added its own set of functions
that allow access to abilities that are unavailable to most Java phones. Throughout this
book you will notice that such packages start with "net.rim". In contrast, Java
packages start with "java" or "javax". Generally, the RIM APIs will offer more
compelling features, but at the price of being more difficult to port to other platforms.

Download at WoweBook.Com

CHAPTER 2: Media Capture 42

The Sun Standard: A MediaPlayer Connection
Historically, Sun has see-sawed between two extremes when it comes to Java. Their
initial release of Java included an enormous set of libraries with a bewildering array of
packages, classes, and methods. Each individual component had a very well-defined
role, but that meant learning many new components. With Java ME, the pendulum
swung the other way with the introduction of the Generic Connection Framework (GCF).
Now you had a single component, like a Connector, that was responsible for a wide
variety of tasks such as accessing the network or writing a file. The MMAPI is very
similar to the GCF in that there are only a few classes to learn, but a great deal of
nuance in their use.

Sun broadly defines media to include all audio operations and all visual operations
except for the display of still images. In the same way that you access Connection
subtypes by making requests to the Connector class, you access Player instances by
making requests to the Manager class. Unlike the GCF, though, there are no subclasses
of Player; instead, each Player can support an arbitrary number of Control objects.
Each Control allows you to manipulate some aspect of the recording/playback
operation. For example, playing back a video may provide access to a VideoControl,
FramePositioningControl, and VolumeControl, while playing back an audio file will offer
only the VolumeControl. Figure 2-1 illustrates two possible configurations of Player
objects. This sort of separation allows RIM and other manufacturers to add additional
functionality based on new features, and not the specific media type.

Figure 2-1. Obtaining different Players from a Manager

Note: Manager and other media classes can be found under the
javax.microedition.media package hierarchy.

Download at WoweBook.Com

CHAPTER 2: Media Capture 43

Push Me/Pull You
The MMAPI distinguishes between two general tasks involved in any media operation.
First comes the data delivery protocol. You can think of this like the TCP/IP stack that
you use to download a file over the network. TCP/IP doesn’t care whether you’re
downloading a movie, audio, or text; it’s only concerned with how to get the data to you.
MMAPI uses the interface DataSource to represent the data delivery protocol. A
DataSource might represent a network connection, a file connection, or even a
randomized source of data. In the case of media recording, the DataSource will be the
piece of hardware used to provide that media.

Once the data has been delivered, the next task is to handle that data content. Content
handling involves looking at the raw bytes that have arrived and then performing some
task with them. MMAPI’s Player class is used as a content handler. Depending on what
type of content you’ve asked for, it might decode an audio stream and direct it to the
phone’s speakers. When recording media, the Player will generally translate the raw
input data into a usable format for you to consume.

It is interesting to note that the same two objects have totally opposite roles when
recording or playing. In a recording scenario, the DataSource deals with phone hardware
and the Player writes to a representation; in a playback scenario, the DataSource reads
a representation and the Player writes to phone hardware. This flexibility can make the
MMAPI difficult to understand, but it also accounts for its power. By not tying
themselves to the scenarios they could imagine, the MMAPI’s authors have created a
system that can evolve to accomplish tasks that were not possible at the time the
standard was written.

Note: The one aspect of the MMAPI that does not follow this DataSource/Player design is
the aspect that appears to have aged badly. At the time of its creation, the majority of phones
did not support compressed audio formats, and programs relied on simple tone-based audio
playback. Rather than creating a DataSource for those notes and a Player to output them,
the authors created a method Manager.playTone() that would generate a single note. The
widespread adoption of compressed audio has rendered this method largely useless, and its
presence in the API feels like an anachronism.

The Life of a Player
Player instances have a standard lifecycle. As handheld devices (even BlackBerry
devices) have fewer resources available than desktop computers, the MMAPI strives to
keep as light a footprint as possible. Therefore, resources will only be acquired as they
are necessary. You can queue up multiple media operations without worrying too much
about memory usage, and MMAPI will automatically provide them with appropriate
access as needed.

Download at WoweBook.Com

CHAPTER 2: Media Capture 44

Each step through the lifecycle means you have taken more resources and are closer to
actually performing the media operation. The Player will generally advance forward, but
in certain cases can return to an earlier state, as shown in Figure 2-2. Details on each
state are shown in the following list:

 UNREALIZED: This indicates that you have requested the media
operation, nothing more. In a sense, it “isn’t real” yet.

 REALIZED: Once a Player enters the Realized state, it knows what it
has to do in order to complete the operation. Depending on the
request type, it may involve communicating with the filesystem,
checking capabilities, or other initial setup. A realized Player should
generally be “ready,” but not holding on to any scarce resources. For
example, if you are going to take a picture, the Player will not be
holding an exclusive lock on the camera hardware in this state.

 PREFETCHED: This state must be entered before the operation starts; but
for recording tasks, it will likely not do anything. In playback
operations, this is generally where data will be downloaded and
buffers filled.

 STARTED: A Player that has started continues to operate. When
recording, you have exclusive control of the recording hardware while
in this state. When playing back, the media is playing during this time.

 CLOSED: Once you have finished with a Player, it enters this state. A
closed Player has released nearly all of its resources and cannot be
restarted; you must create a new Player if you wish to repeat the
operation.

Figure 2-2. The life cycle of a Player object

At any time you have a Player object, you can call close() to shut it down. This will
release all scarce resources and make it unavailable for further operations. Alternately,
you can call the deallocate() method. This will return it to the REALIZED state unless it

Download at WoweBook.Com

CHAPTER 2: Media Capture 45

hasn’t yet been realized, in which case it will keep the Player in the UNREALIZED state.
Use deallocate() when you need to give up resources but intend to continue using this
Player—for example, if your application contains both an audio and a video recorder,
you could create both Player objects, then call deallocate() to share the microphone
between them. This would be more efficient than tearing down and recreating the
Players from scratch each time you record.

The five states certainly offer a lot of options for managing your Player objects.
Fortunately, you don’t need to explicitly deal with them unless your app requires it. A
Player is smart enough to automatically move through the required states so, for
example, if you instruct an UNREALIZED Player to start playing, it will automatically
handle any realization and prefetching necessary.

Media operations can be blocking and time-consuming, so you may want to create,
configure, and start your Player on a separate thread from the main UI thread.
Somewhat confusingly, while most methods on Player are blocking synchronous calls,
start() is not. When control returns from the call to start(), the Player is still running.
You will generally want this thread to exit or wait until the operation is complete.

Listen to Me
The five states give a big picture of what your media is doing, but sometimes you’ll want
more granularity than that. It might be nice to know when you have recorded 30
seconds of audio, or when a stream has run out of data and needs to buffer.

RIM supports these use cases by offering a standard listener interface. By implementing
PlayerListener, your application can register with a Player instance, as shown in Figure
2-3. PlayerListener defines a single method, playerUpdate(), which will be invoked
whenever something interesting happens.

Figure 2-3. Registering a Listener with a Player

Updates are tagged as Strings, with additional information optionally provided in an
accompanying Object. This flexible design allows manufacturers to define their own event
types without requiring changes to the interface. MMAPI defines a broad set of standard
event names and makes them available as public fields in the PlayerListener interface.
You will need to add references to any RIM-specific event types in your own code. Table
2-1 shows the Player events that can be generated during media capture.

Download at WoweBook.Com

CHAPTER 2: Media Capture 46

Table 2-1. Player Events During Recording

String Definition Meaning EventData
Type

EventData
Value

recordError RECORD_ERROR An error occurred
while recording. Call
setRecordLocation
or setRecordStream
on the RecordControl
to try again.

String Detailed
error
message

recordStarted RECORD_STARTED Recording has
begun.

Long Time

recordStopped RECORD_STOPPED Recording has
stopped.

Long Time

net.rim.device.internal.
media.recordCommitted

N/A Recording commit
completed.

N/A N/A

Listing 2-1 implements a basic listener class that provides updates about the current
status of a recording operation. However, a similar class could perform additional tasks
as well, such as automatically restarting capture if an error occurs.

Listing 2-1. A Status Update PlayerListener

import javax.microedition.media.*;

import net.rim.device.api.ui.component.LabelField;

public class RecordingListener implements PlayerListener
{
 private LabelField status;

 public RecordingListener(LabelField status)
 {
 this.status = status;
 }

 public void playerUpdate(Player source, String event, Object data)
 {
 if (event.equals(PlayerListener.RECORD_STARTED))
 {
 status.setText("Recording started...");
 }
 else if (event.equals(PlayerListener.RECORD_STOPPED))
 {
 status.setText("Recording stopped...");
 }
 else if (event.equals(PlayerListener.RECORD_ERROR))
 {
 status.setText("Uh-oh! Error:" + data);

Download at WoweBook.Com

CHAPTER 2: Media Capture 47

 }
 else if (event.equals("net.rim.device.internal.media.recordCommitted"))
 {
 status.setText("Recorded data saved.");
 }
 else
 {
 status.setText(event + ":" + data);
 }
 }

}

Attach the PlayerListener to the Player, and you will start receiving updates
automatically.

player.addPlayerListener(new RecordingListener(status));

Adding a PlayerListener is purely optional. Most advanced applications will want to
receive these sorts of notifications so they can update the user and take other actions,
but for simple operations, you’ll be fine sticking with the basic Player API

Have Content, Will Travel
Once the Player is finished and your capture is complete, what’s next? Depending on
the type of capture you’re doing, you’ll have access to different Control objects, each
with its own mechanism for accessing the correct data. If you are taking a snapshot, you
can call a synchronous method on VideoControl that will return you the bytes for that
shot. If you are capturing audio, you can obtain a RecordControl object and provide it
with a file name or output stream that should be used to store the data.

Generally speaking, once you have finished your recording, you should get the data and
then close the Player as soon as possible. This will make your application and the rest
of the phone more responsive, freeing up memory and resources for other tasks.

What Else Is There?
So far, everything described is part of the standard MMAPI. It is a fairly complete
solution, and fortunately, RIM has implemented most of their media capabilities within
this interface. In some situations, though, you may prefer to use the native RIM
applications to perform capture instead of doing it all yourself. There may be advantages
to this—the RIM applications will be more familiar to the user and may contain more
features than you will implement in your own—but doing so is generally more
complicated.

The package net.rim.blackberry.api.invoke contains a class, Invoke, which can be
used to launch a variety of native applications. For example, to start the camera, you
would simply call Invoke with the proper parameters.

Invoke.invokeApplication(Invoke.APP_TYPE_CAMERA, null);

Download at WoweBook.Com

CHAPTER 2: Media Capture 48

The second parameter is an optional set of arguments that can be passed to the
application. To launch in video record mode, use the appropriate parameter in
CameraArguments.

Invoke.invokeApplication(Invoke.APP_TYPE_CAMERA, new
 CameraArguments(CameraArguments.ARG_VIDEO_RECORDER));

At this point, your application is backgrounded, and you will not be able to interact with
the user. However, your application can monitor the filesystem for newly created files,
and then use them as if they were created by your application. You’ll see an example of
this later in the chapter.

Creating a MediaPlayer
As noted earlier, any media operation requires both a DataSource and a Player. In
practice, the Manager class is equipped to provide an appropriate DataSource for most
request types, so you can request a Player by simply passing in the proper String for
the type of capture you want to make.

This raises a very important question: What happens if it fails? On a BlackBerry device
that has a built-in camera, such as a Curve 8300, it should work; but on a device without
a camera, like an 8800, it will obviously fail. If you are developing for your own personal
device, this isn’t a problem—you know its capabilities and what will work. However, if
you hope to run on many different devices, you will need to be prepared to handle
situations where the device doesn’t support an operation.

Chapter 10 provides much more detail on strategies to solve this problem. Fortunately,
though, there is a clean way to determine at runtime whether the user’s device can
succeed. MMAPI defines a standard set of system properties, including the media-
related properties shown in Table 2-2. By calling System.getProperty() with a given
property name, you can determine what the device supports. Based on this, you can
show an appropriate message to the user or disable an option entirely instead of waiting
for it to fail.

Table 2-2. MMAPI System Properties

Key Description Returns

supports.audio.capture Whether audio capture is
supported

“true” or “false”

supports.video.capture Whether video capture is
supported

“true” or “false”

supports.recording Whether recording is supported “true” or “false”

audio.encodings Supported audio capture
formats

Space-delimited set of audio
formats (e.g., “audio/pcm
audio/amr”). null if not supported.

Download at WoweBook.Com

CHAPTER 2: Media Capture 49

Table 2-2. MMAPI System Properties (continued)

Key Description Returns

video.encodings Supported video capture
formats

Space-delimited set of video
formats (e.g., “video/3gpp
video/mp4”). null if not supported.

video.snapshot.encodings Supported video snapshot
formats for the getSnapshot
method

Space-delimited set of image
formats (e.g., “image/jpeg
image/bmp image/png”). The first
format is the default. null if not
supported.

Once you have checked that this device supports your desired operation, simply issue
the request to the Manager.

if (System.getProperty("supports.video.capture").equals("true"))

{
 Player player = Manager.createPlayer("capture://video");

}

Caution: In order to keep the listings as focused and useful as possible, the short code
snippets that you’ll see like this will show only the most pertinent parts of an operation. They
omit standard boilerplate that actual apps must include (like catching exceptions) or should
include (like checking return values for validity). The longer listings at the end of each chapter
are designed to show fully functioning programs, and these do include all required exception
handling. That being said, it is very important to think about those exceptions. They aren’t just
there to inconvenience you, but to warn about very likely possibilities. Even if you have verified
that your device supports an operation, there is a host of reasons why it might fail. For
example, some other application might have an exclusive lock on the resource, or you may
have insufficient permissions. You should be prepared to catch a MediaException and
IOException from nearly every MMAPI method call, and take a sensible action in response.

Controlling Output
Your Player will contain at least one Control—a RecordControl—which determines what
will happen with your recorded audio or video data. Obtain the RecordControl by asking
the Player for it.

RecordControl recorder = (RecordControl)player.getControl("RecordControl");

The RecordControl contains a variety of useful functions. For our purposes, the most
interesting are the options for determining where output should be directed. The more

Download at WoweBook.Com

CHAPTER 2: Media Capture 50

generic option is setRecordStream(), which takes an OutputStream. Theoretically, you
could use this to directly send the captured data to an HTTP server, an encryption layer,
or some other fancy stream. In practice, this method is often used when you’re
interested in getting the raw bytes of the audio. This capture would require outputting to
a proper Stream.

ByteArrayOutputStream out = new ByteArrayOutputStream();
recorder.setRecordStream(out);
// Record here
byte[] rawData = out.toByteArray();

A very convenient alternative to an OutputStream is the method setRecordLocation(),
which takes a URL. This choice will write output directly to the specified location, freeing
you from any responsibility for handling the actual recording data.

recorder.setRecordLocation("file:///SDCard/BlackBerry/Music/recording.amr");

RecordControl offers several other useful operations. You will almost always use the
following options:

startRecord() indicates that capture can begin. If necessary, it will wait until the
associated Player has entered the STARTED state.

stopRecord() pauses capture. You can call startRecord() later to resume capture
again.

commit() will cease capture and deliver the recorded data as earlier directed by
setRecordStream() or setRecordLocation(). A commit occurs asynchronously: the
data may not actually be saved until some time after the method returns. Your
program should not attempt to access the output, whether a stream or a file, until
after the "net.rim.device.internal.media.recordCommitted" event has been
delivered to a PlayerListener.

For certain apps, the following choices may be useful, as well:

reset() will erase the current recorded contents. If you call reset(), none of the
data up to this point will be written out.

setRecordSizeLimit() will set a cap, in bytes, on the amount of data that can be
recorded. This is extremely useful if, for example, you are letting the user record
video onto internal memory, or if you otherwise wish to cap the size of the output.
commit() will automatically be called once the specified limit has been reached.

getContentType() reports the format of the recorded media, such as "audio/amr" or
"video/3gp". In practice, you will probably already know this, but it can be
informative if using the default unspecified format.

Download at WoweBook.Com

file:///SDCard/BlackBerry/Music/recording.amr

CHAPTER 2: Media Capture 51

Tip: One item you do not have control over is the format of the output. Your format is set to
what you specify when creating the Player; you cannot, for example, capture in AMR and
output in MP3. If you want such a conversion, you will need to do so yourself by capturing in
one format, examining the bytes, and writing out in the other format.

Recording Audio
By now you should have a general idea of how the recording process works. You will
request a Player, configure it for your desired capture, start it to begin recording, and
then stop it once the recording is complete. At that point you can retrieve the recorded
audio data.

Before you start, though, you should ask yourself whether you care what format that
data will be in. RIM offers several choices for audio encoding. Your choices are
described in Table 2-3. Note that each choice has a required minimum device software
version and will not work on versions below this.

Table 2-3. Audio Capture Formats

URL Recorded Format Available with Version

capture://audio AMR 4.2

capture://audio?encoding=amr AMR 4.2

capture://audio?encoding=audio/amr AMR 4.2

capture://audio?encoding=pcm PCM 4.2

capture://audio?encoding=audio/basic PCM 4.2

capture://audio?encoding=gsm GSM 4.6

capture://audio?encoding=x-gsm GSM 4.6

capture://audio?encoding=qcelp QCELP 4.7

Note: BlackBerry devices currently support AMR narrow band, not the higher quality AMR wide
band. PCM recording is mono, 8 kHz, 16-bit.

Compared to what’s available for playback, this isn’t as rich a set of choices; for
example, there is no option to record in MP3 format. However, depending on your
application needs, some formats may be better than others. Some are more widely
compatible, some are more compressed, and others offer more fidelity. AMR is a very

Download at WoweBook.Com

CHAPTER 2: Media Capture 52

highly compressed format that is optimized for speech, so it would be perfect for
applications like a voice memo recorder. On the other hand, PCM is more appropriate
for general nonvoice audio capture, and it produces files that are more likely to be
compatible with other programs.

You can determine at runtime what formats are supported by calling
System.getProperty("audio.encodings"). This is helpful if you prefer to record in a
particular format, but can fall back on another format if it is unavailable. This is especially
important because even if a device has the appropriate software version number, not
every capture mode is necessarily supported. For example, CDMA devices (such as
phones on the Sprint or Verizon networks in the United States) may not support PCM
regardless of their version.

Capture
At the time you request the Player, you are asking for a particular format. However, you
still need to decide where the data will end up. You can use a RecordControl for this
purpose. RecordControl.setRecordStream() offers a generic way to output to any
desired stream type, such as a byte array or a network connection. For convenience,
RecordControl.setRecordLocation() will allow you to write out to a particular file.

The following pseudocode example shows the simplest way to record a 5-second audio
clip.

Player player = Manager.createPlayer("capture://audio?encoding=amr");
RecordControl recorder = (RecordControl)player.getControl("RecordControl");
recorder.setRecordLocation("file:///SDCard/BlackBerry/Music/recording.amr");
recorder.startRecord();
player.start();
Thread.sleep(5000);
recorder.commit();
player.close();

Note: This example assumes that the device has a BlackBerry-formatted SD card inserted. In
an actual application, you would want to verify that it is available. If you’d prefer to save to internal
memory, you could write to a path under file:///store/home/user. For the best portability,
use FileSystemRegistry.listRoots() to obtain a list of all currently mounted filesystems.

Considering everything that takes place, it’s rather impressive that this takes only about
eight lines of code to write. Real-world applications will be longer, but as you can see,
the essential steps are very straightforward.

Download at WoweBook.Com

file:///SDCard/BlackBerry/Music/recording.amr
file:///store/home/user

CHAPTER 2: Media Capture 53

Using the Camera
Image capture is slightly more complex than audio capture. The MMAPI does not
actually provide an interface for grabbing data directly from the camera. Instead, it
allows you to capture a screenshot from the device screen. This means you’ll need to
display the camera viewfinder on the device screen, and then do your capture from that.

Tip: Keep your eyes open. Future versions of BlackBerry may support JSR 234, Advanced
Multimedia Supplements (AMMS). AMMS builds on top of MMAPI to provide much finer control
over recording operations, including zoom, flash, focus, image and audio effects, and more.
Given RIM’s track record of adopting successful JSRs that match BlackBerry device
capabilities, it seems probable that this may be available in the future.

As with audio capture, you have several choices when it comes to image capture. Unlike
with audio, you do not need to make your choice at the time you create the Player.
Instead, once you have access to a VideoControl, you can pass your requested format
to VideoControl.getSnapShot(). Some supported image types follow:

"rgb565"

"encoding=jpeg&width=1600&height=1200&quality=superfine"

"encoding=jpeg&width=1600&height=1200&quality=fine"

"encoding=jpeg&width=1600&height=1200&quality=normal"

"encoding=jpeg&width=1024&height=768&quality=superfine"

"encoding=jpeg&width=1024&height=768&quality=fine"

"encoding=jpeg&width=1024&height=768&quality=normal"

"encoding=jpeg&width=640&height=480&quality=superfine"

"encoding=jpeg&width=640&height=480&quality=fine"

"encoding=jpeg&width=640&height=480&quality=normal"

Most options should be self-explanatory: JPEG images are supported for capture, and
you have a choice of several different resolutions and three levels of quality. What about
that “rgb565” outlier? This is a choice to retrieve raw pixel data instead of a compressed
JPEG format. In RGB565, every 2 bytes refer to a single pixel. Within those 16 bytes, the
top 5 bits represent the red value, the next 6 bits represent the green, and the final 5 bits
represent the blue. You’ll want to avoid this format unless you plan on manually
manipulating the pixels in memory. Also, confirm that your target device does actually
support capture in this format.

Even though RIM offered MMAPI support starting with device software version 4.2, it
initially did not implement all aspects of the JSR. This isn’t bad—the JSR allows
manufacturers to only support parts—but it can be confusing, since the API defines the
getSnapShot() method even when it is not supported. As with audio, you should check

Download at WoweBook.Com

CHAPTER 2: Media Capture 54

to make sure that the particular device you are running on supports image capture and
that it provides the format you intend to use.

Take a Picture
When taking a picture, you must display the viewfinder within your app screen, as
shown in Figure 2-4.

Figure 2-4. A picture-taking app

Capturing an image still requires obtaining a Player, but the rest of the process is
different, as shown in the following pseudocode.

Player player = Manager.createPlayer("capture://video?encoding=video/3gpp");
player.start();
VideoControl control = (VideoControl)player.getControl("VideoControl");
Field cameraView = (Field)control.initDisplayMode
 (VideoControl.USE_GUI_PRIMITIVE, "net.rim.device.api.ui.Field");
screen.add(cameraView);

Download at WoweBook.Com

CHAPTER 2: Media Capture 55

Thread.sleep(1000);
byte[] snapShot = control.getSnapshot
 ("encoding=jpeg&width=640&height=480&quality=normal");
player.close();

Several things are worth noting here.

 initDisplayMode() can take one of two arguments.
USE_GUI_PRIMITIVE is designed to return a UI element that can be
incorporated into your screen. When building a RIM CLDC Application,
pass "net.rim.device.api.ui.Field" as the second parameter to
retrieve a Field. When building a MIDP MIDlet, pass
"javax.microedition.lcdui.Item" to retrieve an Item that can be
inserted into your Form.

 If you are building a MIDlet, you also have the option of calling
initDisplayMode() with the parameters USE_DIRECT_VIDEO and
"javax.microedition.lcdui.Canvas" or
"javax.microedition.lcdui.game.GameCanvas". This will return a
special Canvas that you can set with Display.setCurrent(), offering a
full-screen viewfinder.

 In all cases, the viewfinder must actually be visible on the screen prior
to calling getSnapShot().

 Unlike audio recording, once we have obtained a VideoControl,
nothing remains to be done with the Player. You can continue to take
as many snapshots as you want until you close the Player. If you
attempt to take pictures too quickly, however, getSnapShot() may
return null. The camera requires time to clear out its buffer and
prepare for the next shot.

Video Capture
BlackBerry devices can support video capture starting with device software version 5.0.
As you might expect, video capture combines features of audio capture and image
capture. Like audio capture, you are recording over a duration instead of at a particular
point in time. Like image capture, you must place a viewfinder on the screen. As with
both, you should query system properties for "supports.video.capture" and
"video.encodings" to determine whether recording is supported and what formats are
available for capture.

Player player = Manager.createPlayer("capture://video?encoding=video/3gpp");

player.start();
VideoControl control = (VideoControl)player.getControl("VideoControl");
RecordControl recorder = (RecordControl)player.getControl("RecordControl");
Field cameraView = (Field)control.initDisplayMode
 (VideoControl.USE_GUI_PRIMITIVE, "net.rim.device.api.ui.Field");
screen.add(cameraView);

Download at WoweBook.Com

CHAPTER 2: Media Capture 56

recorder.setRecordLocation("file:///SDCard/BlackBerry/videos/recording.3gp");
recorder.startRecord();
Thread.sleep(5000);
recorder.stopRecord();
recorder.commit();
player.close();

Video recording offers the same options as audio recording for controlling where your
output data goes. It offers the same options as audio recording for initializing the display
mode and placing the viewfinder on the display.

Invoking the RIM Alternative
As discussed earlier, sometimes you may want to launch a native RIM application to
handle media capture instead of using MMAPI. Some times this will be your only choice,
such as if you need to take a picture on a device without software version 4.6 or take a
video on a device without version 5.0. Even if your device supports your desired
operation, you may prefer the interface of the native application to what you can provide
on your own.

Starting recording in this manner is much simpler than MMAPI: it only takes a single line
to start. On the other hand, getting data back out is quite a bit trickier. Because Invoke
does not offer a mechanism for passing capture information back to the invoker, your
only choice is to observe the filesystem. Once you see that a valid file has been created,
you can assume that it was created by the capture application, and then perform
whatever processing you want on it.

The listener must implement the FileSystemJournalListener interface. It will receive
notifications whenever the filesystem has changed. Listing 2-2 shows a basic listener
that will notify via system output when a video has been saved. At the same point, it also
could prompt the application to do something with that file.

Listing 2-2. A Class That Listens for Recorded Video Files

public class VideoFileListener implements FileSystemJournalListener

{
 private long lastChangeNumber = 0;
 public void fileJournalChanged()
 {
 long nextChangeNumber = FileSystemJournal.getNextUSN();
 for (long change = nextChangeNumber – 1; change >= lastChangeNumber
 && change < nextChangeNumber; --change)
 {
 FileSystemJournalEntry entry = FileSystemJournal.getEntry(change);
 if (entry == null)
 {
 break;
 }

Download at WoweBook.Com

file:///SDCard/BlackBerry/videos/recording.3gp

CHAPTER 2: Media Capture 57

 if (entry.getEvent() == FileSystemJournalEntry.FILE_ADDED)
 {
 String path = entry.getPath();
 if (path != null && path.indexOf(".3gp") != -1)
 {
 System.out.println("Video saved in " + path);
 break;
 }
 }
 }
 lastChangeNumber = nextChangeNumber;
 }

}

Then, just register your listener before launching the camcorder app. It will launch after a
brief delay, as shown in Figure 2-5.

VideoFileListener listener = new VideoFileListener();

UiApplication.getUiApplication().addFileSystemJournalListener(listener);
Invoke.invokeApplication(Invoke.APP_TYPE_CAMERA, new

 CameraArguments(CameraArguments.ARG_VIDEO_RECORDER));

Note: If you want to run this code on an actual device, you will need to sign your COD to
provide access to the RIM APIs. Read more about this process in Chapter 9, which discusses
the RIM security model.

Download at WoweBook.Com

CHAPTER 2: Media Capture 58

Figure 2-5. An image captured by the native camera app

Several items in Listing 2-2 bear closer examination.

 RIM uses a journaled filesystem, where each file operation is assigned
a unique number. For performance reasons, you should search
backward from the most recent operation to the oldest, as shown
earlier in Listing 2-2. Otherwise, it may take a very long time to find the
event you’re looking for.

 fileJournalChanged() will be invoked every time a file is added,
deleted, or modified. It’s very possible that it will be called for a file
other than our video. Keeping track of lastChangeNumber ensures that
even when it is called multiple times, each entry is checked only once.

 Likewise, because this can be called for any file, we should verify that
the correct type of file was added before accepting it. Here we just
print it out; in a real application, you would likely pass the file name
back to the main application for more processing.

Download at WoweBook.Com

CHAPTER 2: Media Capture 59

 Don’t forget to unregister your listener once you have the data or
detect that the user has canceled and returned to your application. Do
this with UiApplication.removeFileSystemJournalListener().

 APP_TYPE_CAMERA has been available since software version 4.2 to
capture still images. ARG_VIDEO_RECORDER was added in version 4.6 to
record videos.

Most developers will likely view the Invoke system as a stop-gap measure. It’s good to
have available for phones that do not support your desired capture mode in a given
software version, but it provides less control and will generally be a poorer user
experience. Fortunately, as devices increasingly migrate to more advanced software
versions, the need for this alternative will fade away.

App: Media Grabber
It is time to start work on our media sharing application. The end of each chapter will tie
together the various topics and examples given so far and provide a complete,
functioning application. This first entry is a stand-alone app that, depending on your
device capabilities, allows you to record audio, still images, and/or video and save them
to a specified location. Listing 2-3 presents the heart of the program: a Screen that will
capture media. It is configurable to support all types of capture.

Listing 2-3. A Media Capture Screen Class

package com.apress.king.mediagrabber;

import java.io.*;

import javax.microedition.io.Connector;
import javax.microedition.io.file.FileConnection;
import javax.microedition.media.*;
import javax.microedition.media.control.*

import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.MenuItem;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.MainScreen;
public class RecordingScreen extends MainScreen implements PlayerListener
{
 public static final int RECORD_AUDIO = 1;
 public static final int RECORD_PICTURE = 2;
 public static final int RECORD_VIDEO = 3;

We’ll use a simple state machine to keep track of the current operation and guide
recording progress. The other instance variables will handle the actual media operations
and the visual interface.

Download at WoweBook.Com

CHAPTER 2: Media Capture 60

 public static final int STATE_WAITING = 1;
 public static final int STATE_READY = 2;
 public static final int STATE_RECORDING = 3;

 private volatile int state = STATE_WAITING;

 private int type;
 private String location;

 private Player player;
 private RecordControl recorder;
 private VideoControl video;
 private Field cameraView;

 private LabelField status;

 private ByteArrayOutputStream dataOut;

Each MenuItem will display in the BlackBerry menu. To keep these class definitions
compact, they call helper methods to perform their actual tasks.

 private MenuItem goItem = new MenuItem("Go", 0, 0)

 {
 public void run()
 {
 go();
 }
 };
 private MenuItem stopItem = new MenuItem("Stop", 0, 0)
 {
 public void run()
 {
 stop();
 }
 };
 private MenuItem doneItem = new MenuItem("Return", 0, 0)
 {
 public void run()
 {
 close();
 }
 };

 public RecordingScreen(int type, String location)
 {
 this.type = type;
 this.location = location;
 status = new LabelField("Waiting");
 add(status);
 dataOut = new ByteArrayOutputStream();
 initMedia();

 }

Download at WoweBook.Com

CHAPTER 2: Media Capture 61

We initialize the media objects when first constructing the screen. As a result, the media
operations are executed on the main thread and not a separate thread. Some Player
methods, such as starting and stopping, are asynchronous, so you can safely call them
from any thread without delay. Other operations, like the realize() and prefetch() that
implicitly occur when you first call start(), block until they complete. This may seem
dangerous to astute readers, as blocking operations should be called from a separate
thread. Fortunately, BlackBerry devices do not delay long when starting capture, so you
can safely fudge the rules here. This is handy, because you need to start your VideoControl
before you can obtain the Field, and you must add your Field to the screen from the
main UI thread. In other words, doing these tasks synchronously greatly simplifies the
code. You’ll see examples of handling media on separate threads in Chapter 3.

 public void initMedia() {

 try
 {
 switch (type)
 {
 case RECORD_AUDIO:
 player = Manager.createPlayer("capture://audio");
 player.start();
 break;
 case RECORD_PICTURE:
 case RECORD_VIDEO:
 player = Manager.createPlayer("capture://video");
 player.start();
 video = (VideoControl)player.getControl("VideoControl");
 cameraView = (Field)video.initDisplayMode(
 VideoControl.USE_GUI_PRIMITIVE, "net.rim.device.api.ui.Field");
 add(cameraView);
 break;
 }
 player.addPlayerListener(this);
 state = STATE_READY;
 status.setText("Ready");
 }
 catch (MediaException me)
 {
 status.setText(me.getMessage());
 }
 catch (IOException ioe)
 {
 status.setText(ioe.getMessage());
 }

 }

We add the appropriate MenuItem objects to the menu based on the current state of the
application. For example, “Go” will only display if we are in the READY state.

 public void makeMenu(Menu menu, int instance)

 {
 if (instance == Menu.INSTANCE_DEFAULT)

Download at WoweBook.Com

CHAPTER 2: Media Capture 62

 {
 if (state == STATE_READY)
 {
 menu.add(goItem);
 }
 else if (state == STATE_RECORDING)
 {
 menu.add(stopItem);
 }
 menu.add(doneItem);
 }
 super.makeMenu(menu, instance);

 }

Our actual media operations are quite simple, requiring just a couple method calls.
Because image capture is so different from audio/video capture, it uses a separate
helper method.

 private void go()

 {
 if (type == RECORD_PICTURE)
 {
 takeSnapShot();
 }
 else
 {
 recorder = (RecordControl)player.getControl("RecordControl");
 if (recorder != null)
 {
 recorder.setRecordStream(dataOut);
 recorder.startRecord();
 state = STATE_RECORDING;
 status.setText("Recording");
 }
 }
 }

 private void takeSnapShot()
 {
 try
 {
 byte[] imageData = video.getSnapshot
 ("encoding=jpeg&width=640&height=480&quality=normal");
 if (imageData != null)
 {
 writeToFile(imageData, location + "/image.jpg");
 status.setText("Image taken");
 }
 else
 {
 status.setText("Please try again later.");
 }
 }
 catch (IOException ioe)

Download at WoweBook.Com

CHAPTER 2: Media Capture 63

 {
 status.setText(ioe.getMessage());
 }
 catch (MediaException me)
 {
 status.setText(me.getMessage());
 }

 }

This helper method moves data from an in-memory buffer to a persistent store. You’ll
notice that the FileConnection is opened with READ_WRITE access, even though only
WRITE is required. This is because of a bug in older versions of BlackBerry device
software that caused writes to fail unless READ_WRITE was requested. Newer software
versions do not have this problem, but it doesn’t hurt to ask for the extra access.

Also, note that the file OutputStream is closed before the FileConnection. Certain
versions of BlackBerry device software do not respond well if the FileConnection is
closed first, which can leave you unable to reopen the file later.

 private void writeToFile(byte[] data, String fileName) throws IOException

 {
 FileConnection file = null;
 OutputStream output = null;
 try
 {
 file = (FileConnection)Connector.open(fileName, Connector.READ_WRITE);
 if (file.exists())
 {
 file.delete();
 }
 file.create();
 output = file.openOutputStream();
 output.write(data);
 }
 finally
 {
 if (output != null) { output.close(); }
 if (file != null) { file.close(); }
 }
 }

 private void stop()
 {
 try
 {
 if (type == RECORD_AUDIO || type == RECORD_VIDEO)
 {
 recorder.commit();
 if (type == RECORD_AUDIO)
 {
 writeToFile(dataOut.toByteArray(), location + "/audio.amr");
 }
 else

Download at WoweBook.Com

CHAPTER 2: Media Capture 64

 {
 writeToFile(dataOut.toByteArray(), location + "/video.3gp");
 }
 status.setText("Data saved");
 state = STATE_READY;
 }
 }
 catch (IOException ioe)
 {
 status.setText(ioe.getMessage());
 }
 }

 public void playerUpdate(Player arg0, String arg1, Object arg2) {
 System.out.println("playerUpdate: " + arg1);
 }

}

Listing 2-4 presents the RecordingChoiceScreen. This is the first visual element that will
display, and offers minimal text as well as menu options for supported forms of media
capture.

Listing 2-4. Examining Device Capabilities and Presenting Options

package com.apress.king.mediagrabber;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.MainScreen;

public class RecordingChoicesScreen extends MainScreen
{
 private BasicEditField location = new BasicEditField
 ("Save location:", "file:///SDCard/BlackBerry", 100,
 Field.FIELD_VCENTER | BasicEditField.FILTER_FILENAME);
 private MenuItem audioItem = new MenuItem("Record Sound", 0, 0)
 {
 public void run()
 {
 launchRecorder(RecordingScreen.RECORD_AUDIO);
 }
 };
 private MenuItem pictureItem = new MenuItem("Take a Picture", 0, 0)
 {
 public void run()
 {
 launchRecorder(RecordingScreen.RECORD_PICTURE);
 }
 };
 private MenuItem videoItem = new MenuItem("Record Video", 0, 0)
 {
 public void run()

Download at WoweBook.Com

file:///SDCard/BlackBerry

CHAPTER 2: Media Capture 65

 {
 launchRecorder(RecordingScreen.RECORD_VIDEO);
 }
 };

 public RecordingChoicesScreen()
 {
 setTitle("MediaGrabber");
 add(new LabelField("Please enter a save location, then select
 a recording choice from the menu."));
 add(location);
 }

 public void close()
 {
 location.setDirty(false);
 super.close();
 }

 public void makeMenu(Menu menu, int instance)
 {
 if (instance == Menu.INSTANCE_DEFAULT)
 {
 String property = System.getProperty("supports.audio.capture");
 if (property != null && property.equals("true"))
 {
 menu.add(audioItem);
 }
 property = System.getProperty("video.snapshot.encodings");
 if (property != null && property.length() > 0)
 {
 menu.add(pictureItem);
 }
 property = System.getProperty("supports.video.capture");
 if (property != null && property.equals("true"))
 {
 menu.add(videoItem);
 }
 }

 super.makeMenu(menu, instance);
 }

 private void launchRecorder(int type)
 {
 String directory = location.getText();
 RecordingScreen screen = new RecordingScreen(type, directory);
 UiApplication.getUiApplication().pushScreen(screen);
 }

 public boolean onSavePrompt()
 {
 return true;
 }

}

Download at WoweBook.Com

CHAPTER 2: Media Capture 66

In this class, onSavePrompt() is overridden to suppress a warning about editing the
location field. Since we don’t actually save this field, the warning isn’t necessary.

Finally, Listing 2-5 shows the application’s entry point, which creates and starts our
RecordingChoicesScreen.

Listing 2-5. MediaGrabber Application

package com.apress.king.mediagrabber;

import net.rim.device.api.ui.UiApplication;

public class MediaGrabber extends UiApplication
{
 public static void main(String[] args)
 {
 new MediaGrabber().enterEventDispatcher();
 }

 private MediaGrabber()
 {
 pushScreen(new RecordingChoicesScreen());
 }

}

Go ahead and try running the application, ideally both in the simulator and on the
device. After you successfully run the app, you can find the newly created files by
entering the native Media application, then pressing Menu and selecting Explore.
Navigate to the directory you selected.

You may notice a few problems at first in the simulator. First of all, because there isn’t
an actual camera attached, you must provide the camera image. You can do this by
opening the native Camera application, or by selecting the Camera Image… option from
the simulator menu. Figure 2-6 shows this option in a recent simulator.

Download at WoweBook.Com

CHAPTER 2: Media Capture 67

Figure 2-6. Configuring the simulator with a virtual camera image

Second, you’ll need to insert a virtual SD card for the simulator, which you can do by
configuring the simulator. I prefer the option of using a directory on the host PC filesystem,
which allows me to easily view files as they are created, modified, and destroyed. In
Eclipse, this option is available in the run configuration, as shown in Figure 2-7.

Download at WoweBook.Com

CHAPTER 2: Media Capture 68

Figure 2-7. Adding a virtual SD card to the simulator

You will probably encounter security prompts when you run the application on the
device. Dealing with these prompts is covered in depth in Chapter 9. For now, simply
provide all permissions whenever the device asks for them.

How do you debug when things go wrong? Most developers have their favorite
techniques. Remember, you can view any information that is printed to the System.out
log. When the application is running on the device, never underestimate the usefulness
of attaching it to your IDE for an interactive debugging session!

WANT MORE?

If you would like to further enhance the behavior of this app, here are some tasks you can try for extra
credit. These go above and beyond the improvements made in later chapters.

 Instead of using hard-coded media formats, parse the supported types provided by
System.getProperty() and provide the user with a list of options.

 Let the user choose the file name. Check to make sure they are saving in a valid location.

 Suggest alternatives locations to save the file, such as internal storage.

Touches like this will make an app particularly intuitive and useful.

Download at WoweBook.Com

CHAPTER 2: Media Capture 69

Excelsior
Congratulations! You have taken a giant step forward in mastering BlackBerry
programming. As you have seen, the media capture APIs offered by RIM are quite
powerful, providing control over the hardware capabilities of recent devices. You must
consider your target market and decide what devices to support, and then check what
media capture options are provided on that target. You can use MMAPI to embed media
capture functions into your own application, giving you a high level of control over the
user experience. Alternately, you can use RIM’s Invoke API to pass off control to a
native application, and then observe the results on your own.

Media capture can be a compelling application by itself; it’s no coincidence that new
RIM phones come pre-loaded with a camera app. The most exciting apps, though, are
those that use capture to obtain data and then do interesting things with it. In Chapter 3,
we’ll start looking at ways to display the media you have captured.

Download at WoweBook.Com

 70

Download at WoweBook.Com

3Chapter

Media Playback
One of the most exciting opportunities modern mobile phones offer is the chance to
deliver high-quality media experiences. Entire companies have been founded to provide
personal television channel delivery, radio station rebroadcast, or similar repackaging of
media. In many other applications, you can use media to enhance the features of your
app. You might add background music to your game, a tutorial video to a productivity
app, or a slideshow mode to a real estate app.

You must rely on your own judgment to decide whether media is appropriate for your
app, and, if it is, to select the appropriate content. Once the time comes to actually
present the media, BlackBerry devices offer a set of APIs for locating and playing that
content. As with media capture, you can choose between standard MMAPI interfaces
that embed playback within your app, or RIM interfaces to use a native app.

Finding Content
Because BlackBerry devices are feature-rich and live on the network, you have a
plethora of choices for finding and delivering media files to play. This section discusses
the various options and the tradeoffs each offers.

Local Filesystem
You can use the FileConnection API to discover and load content. BlackBerry devices
offer both internal memory and external SD card storage. The former is fast and reliable,
but limited in size. It is fine for storing app data, but you will annoy your users if you fill it
up with large media files. The SD card offers a large amount of storage, but there is no
guarantee that the user will have a card inserted at any time.

How to Use
You should first use the FileSystemRegistry to ensure that the file system you want to
use is available. You can then use the FileConnection API to look up content, recursing

Download at WoweBook.Com

CHAPTER 3: Media Playback 72

into subdirectories if necessary. Alternately, if you know the absolute path of the media
file you’re looking for, you can directly test for its existence.

Once you have verified that the media file is present, you can directly create a Player for
it by passing the file’s URL to Manager.createPlayer(). If you prefer, you can also open
the file contents as an InputStream and pass that stream to Manager.createPlayer(). In
the latter case, you should also provide the media’s MIME type, such as "audio/mpeg". If
you omit the MIME type, Manager will attempt to detect it based on the initial contents of
the InputStream, which may or may not be possible.

When to Use
A local filesystem offers several advantages

 Speed. Your media can load and start playing more quickly than it
could when loaded over the network, even on a fast location.

 Reliability. Particularly when using internal device memory, you can
be relatively sure that the media will be available, assuming the user
hasn’t manually deleted it.

There are also some drawbacks.

 Capacity. The device’s internal memory store is limited, and the user
may not want you to take up space on their SD card.

 Authority. Users may choose to grant or deny your app permission to
read files at all, and you will be stuck if they deny it.

An Example
The following code snippet demonstrates how to search for the first available MP3 file.

public String getFirstMP3Path() throws IOException

{
 Enumeration roots = FileSystemRegistry.listRoots();
 while (roots.hasMoreElements())
 {
 String root = (String) roots.nextElement();
 String match = getFirstMP3Path(root);
 if (match != null)
 {
 return match;
 }
 }
 return null;
}

public String getFirstMP3Path(String directoryPath) throws IOException
{
 FileConnection directory = (FileConnection) Connector

Download at WoweBook.Com

CHAPTER 3: Media Playback 73

 .open(directoryPath);
 Enumeration children = directory.list();
 while (children.hasMoreElements())
 {
 String path = (String) children.nextElement();
 if (path.indexOf(".mp3") != -1)
 {
 return directoryPath + path;
 }
 else if (path.indexOf("/") != -1)
 {
 String match = getFirstMP3Path(directoryPath + path);
 if (match != null)
 {
 return match;
 }
 }
 }
 return null;

}

Network Download
The MMAPI is capable of automatically retrieving and playing remote media resources.
Therefore, you might want to place media files on an HTTP server and request them
when necessary. You won’t need to handle the actual network connection and
download yourself, although you should still be prepared to handle errors if the file
cannot be accessed.

How to Use
Pass the media file location to the Manager using a URL that begins with http:// or
https://. If you know at the time you create your application where the file will be
located, you can simply hard-code the string. However, if you are creating a networked
application, it is better to have the server pass the URL down to the client. This gives
you greater flexibility if you later decide that you need to place the files on another
server, change their format, or make other changes.

When to Use
Pros:

 Flexibility. You can update the media file contents without requiring
the user to download a new version of the file. For example, you could
offer new music for a game.

 Size. Because you are loading off the network, you don’t need to
place any additional files in your app or in permanent memory. This
keeps your users happy.

Download at WoweBook.Com

http://or

CHAPTER 3: Media Playback 74

Cons:

 Reliability. You must be prepared to deal with network failures.
Depending on your app, you may offer an offline mode if the file
cannot be reached; otherwise, your app will not run when there is no
connection.

 Speed. The file may take quite some time to download, especially if it
is large or the user has a slow connection.

 Memory. Because the file isn’t streaming, the entire contents must be
buffered in RAM. Large video files will likely cause you to run out of
memory.

An Example
Simply pass a URL to Manager.createPlayer(). The URL should contain the complete
path to the network resource, such as "http://myserver.com/files/sample.mp3".

Network Stream
One of the most impressive capabilities of the MMAPI is its ability to handle streaming
protocols. Streams allow the device to play the media while it is downloading, without
requiring you to acquire the entire file first. Not every manufacturer supports this, but
RIM handsets do, starting with device software version 4.3. Streaming is a fairly
complex process—the player needs to judge how much content to buffer, decide when
to start playing, and react properly when the network connection speeds up, slows
down, or drops out. Fortunately, these details are hidden from you, and you can simply
pass the proper URL and let the Player work its magic.

How to Use
Pass the media file location to the Manager using a URL that begins with rtsp://. As
with media download, you can hard-code the string or obtain it from another resource.
Make sure that the RTSP server you are connecting with is properly configured for
serving up mobile content. A stream designed for a desktop web browser will likely have
far too much data for a mobile device, and trying to access it directly will result in
choppiness or other problems.

When to Use
Pros:

 Speed. Compared with a regular network download, streams allow
you to start playing content much more quickly.

Download at WoweBook.Com

http://myserver.com/files/sample.mp3

CHAPTER 3: Media Playback 75

 Flexibility. As with network downloads, you have control over a
stream’s content and can update it without modifying installed apps.

 Live media. Unlike regular audio files, which must be of a fixed length,
streams can run indefinitely. This allows support for radio stations, live
commentary, or other on-the-fly audio delivery.

Cons:

 Compatibility. Your users must be using a recent version of RIM
device software.

 Reliability. While streams have some ability to recover from temporary
network problems, they will be of no use if the user is not on the
network at all.

 Speed. While faster than a network download, streaming will be
slower than a locally served file.

 Quality. RTSP allows for lossy data transmission—if certain packets
cannot be delivered, the player simply won’t play them. If the device
has a bad connection, the resulting media will seem choppy or worse.

An Example
Create the Player as shown above, but use the rtsp scheme, as in
"rtsp://myserver.com/streams/live.m4a".

Manual Buffering
What should you do if you want to stream, but you are running on an older version of
BlackBerry device software? You could switch to a download, update the phone, or
write your own streaming client implementation. This requires an investment in time and
effort, but it allows you to have streaming capabilities even when the device doesn’t
support it.

How to Use
In the previous chapter, we discussed how DataSource objects handle the data delivery
protocol. When you use a URL that starts with http://, file:///, or rtsp://, the
Manager is automatically creating an appropriate DataSource for that type of protocol.
However, you can implement your own version of DataSource and SourceStream to
provide whatever functionality you wanted, including support for streaming. Define this
DataSource, then pass it to Manager.createPlayer(). The Manager will then obtain the
necessary data from the DataSource’s provided streams, as shown in Figure 3-1. Note
that you will now be responsible for all the complexity of streaming. You will likely need
to experiment and tune your DataSource’s behavior to get the best results on different
devices.

Download at WoweBook.Com

rtsp://myserver.com/streams/live.m4a

CHAPTER 3: Media Playback 76

Figure 3-1. A Player with a user-defined data source

When to Use
Pros:

 Compatibility. Your DataSource can run on any BlackBerry device
that supports media playback and network connections.

 Control. You will gain a far greater level of control over media
playback, beyond what is provided by the standard MMAPI behavior.
For example, you could automatically shut off playback when the
user’s time expires.

Cons:

 Complexity. Creating a DataSource is fairly tricky, and it requires
tuning to get the best performance.

 Coordination. If using a custom protocol, you will need to make sure
that the server is set up to provide data in the format you expect.

Download at WoweBook.Com

CHAPTER 3: Media Playback 77

An Example
This skeleton class shows a DataSource implementation that could be used to create a
streaming Player.

public class StreamingDataSource extends DataSource

{

 public StreamingDataSource(String locator)
 {
 super(locator);
 }

 public void connect() throws IOException
 {
 // Connect to the locator and create the stream(s).
 }

 public void disconnect()
 {
 // Close the stream(s).
 }

 public String getContentType()
 {
 // Return content type of underlying stream.
 return null;
 }

 public SourceStream[] getStreams()
 {
 // Return stream(s) created in connect()
 return null;
 }

 public void start() throws IOException
 {
 // Start acquiring content with the stream(s).
 }

 public void stop() throws IOException
 {
 // Stop acquiring content.
 }

 public Control getControl(String controlType)
 {
 // Can return null unless adding custom controls.
 return null;
 }

 public Control[] getControls()
 {
 // Can return null unless adding custom controls.

Download at WoweBook.Com

CHAPTER 3: Media Playback 78

 return null;
 }

}

The associated SourceStream will do most of the actual work. A skeleton example
follows. An implementing class will generally reuse one or more existing InputStream
objects, adding any extra logic that is necessary.

public class StreamingSourceStream implements SourceStream

{

 public ContentDescriptor getContentDescriptor()
 {
 // Returns descriptor for content being retrieved.
 return null;
 }

 public long getContentLength()
 {
 // Returns total amount of data to read.
 return 0;
 }

 public int getSeekType()
 {
 // Return one of NOT_SEEKABLE, RANDOM_SEEKABLE, or SEEKABLE_TO_START.
 return 0;
 }

 public int getTransferSize()
 {
 // Return size of a logical chunk to read.
 // Useful to influence the size of requested reads.
 return 0;
 }

 public int read(byte[] dataOut, int offset, int length) throws IOException
 {
 // Retrieve actual data. Can block until sufficient data available.
 return 0;
 }

 public long seek(long position) throws IOException
 {
 // Advance stream to desired position, if supported.
 return 0;
 }
 public long tell()
 {
 // Return current position within the stream.
 return 0;
 }

 public Control getControl(String controlType)

Download at WoweBook.Com

CHAPTER 3: Media Playback 79

 {
 // Can return null unless adding custom controls.
 return null;
 }

 public Control[] getControls()
 {
 // Can return null unless adding custom controls.
 return null;
 }

}

COD Resource
The most traditional way to deliver media is packaged with your application. When users
install your COD file, they will receive all the bundled media files along with it. Because
the entire COD is loaded into memory when the application starts, you can be certain
that the media is available.

How to Use
Simply include the media file in your BlackBerry project. In Eclipse, right-click the src
folder, choose Import, General, File System, Next, Browse, then navigate to and add
your resource. It will appear in the src folder, as shown in Figure 3-2, and will be
automatically built into the COD. Note that any type of file can be included as a
resource. In your application, get an InputStream for that resource, then pass that
stream to Manager.createPlayer(). If you know the MIME type, include it here;
otherwise, pass null. The Manager will create an appropriate Player for the file.

Figure 3-2. Adding a resource to the COD

When to Use
Pros:

 Speed. Because the COD is already loaded in RAM, this is the
absolute fastest way to access any media.

 Reliability. You know that the media is always there, no matter what
the user has done.

Download at WoweBook.Com

CHAPTER 3: Media Playback 80

Cons:

 Size. Every byte of media directly increases the size of your app.
Users may not want to even install it if the app seems very large.

 Inflexible. You cannot change the media without creating a new
version of the app.

An Example
Retrieve the stream and create the player as shown below.

InputStream is = getClass().getResourceAsStream("/Lake.wmv");
Player player = Manager.createPlayer(is, "video/wmv");

Other
Do you have another source of media that doesn’t fit into the above choices? Not to
worry! Manager accepts an InputStream, and an InputStream can wrap anything you
want. Your underlying data may be stored in a big byte array, be programmatically
generated, or spliced together from multiple sources. When you want to hand off
arbitrary bytes to the Player, create an InputStream.

How to Use
Java ME defines some useful standard implementations of InputStream. One of the
most popular is ByteArrayInputStream, which wraps a block of bytes. You can also
create your own subclass of InputStream. There are many methods available to override,
but the most important is to provide an implementation of read() that returns the next
bytes.

When to Use
The pros and cons of this approach depend on how the underlying data is obtained—
whether in memory, from a file, over the network, etc. It will generally perform similarly to
one of the above methods. If writing your own InputStream, expect more time required
to implement and debug it.

An Example
A fairly common use case is to store media contents in memory, and then wrap it with a
valid InputStream.

byte[] mediaData;
// Fill in the contents.
InputStream input = new ByteArrayInputStream(mediaData);

Download at WoweBook.Com

CHAPTER 3: Media Playback 81

Playing Audio
After you have identified and prepared the content you want to play, it’s time to bring it
into your app. Once again, MMAPI hides many of the details from you, but this section
will show you what’s happening behind the scenes. You’ll learn how to choose
appropriate formats and encodings and see how to handle problems with playback.

The Player Returns
Playback involves the same classes we saw for capture: Manager, Player, and multiple
Controls. You may want to review Figure 2-2 from the previous chapter to observe the
states that a Player moves through.

Let’s take a look at the particular states a Player might encounter when playing a
particular type of media, such as a streaming audio file:

 UNREALIZED. In this state the Player has been created, so it knows that
it supports the transport protocol (in this case, RTSP).

 REALIZED. The Player has communicated with the server, verified that
the stream exists, and determined that it supports the stream’s media
type.

 PREFETCHED. The Player has downloaded the initial contents of the
stream as an audio buffer. It also has verified that it can direct audio to
the output hardware, acquiring an exclusive lock if necessary.

 STARTED. The Player is actively streaming. The Player will usually be
producing audio during this time, although if rebuffering is necessary,
it will remain in the STARTED state while it fetches more data.

 CLOSED. The Player has finished streaming and released all network
and hardware resources.

You can explicitly move a Player through each state by calling realize(), prefetch(),
and start(). You can also just call start() to automatically move it through all the
states. You should be aware, though, about the underlying operations and what they
involve. If you call start() on a video stream from your main UI thread, and the Player
is still in the UNREALIZED state, then your app will appear to freeze during the seconds (or
minutes!) that it takes to buffer the video. On the other hand, if you call prefetch() in
another thread, calling start() will return almost immediately.

The previous chapter discussed the importance of exclusive locks and how you can use
deallocate() to surrender those locks. deallocate() is still a useful tool when playing
media, but exclusive locks tend not to be as severe of an issue. Only one application
can access the microphone or camera at a given time, but more than one application
may be able to play sound. However, deallocate() is still important for managing
memory. Imagine you are writing a video app with 12 channels, each with its own
Player. If the user switches between channels, the nonplaying streams will still hold

Download at WoweBook.Com

CHAPTER 3: Media Playback 82

expensive buffers. However, if you call deallocate() on each when it goes away, the
overhead for the 11 nonplaying channels will be minimal.

Listening In
As it runs, the Player will deliver information about its current status to all registered
PlayerListener objects. You will almost always want to register at least one
PlayerListener with each Player. At an absolute minimum, this will provide you with
useful debugging information about what is happening. In most cases, you will want to
take some action based on certain important events. For example, you may show a
Loading screen when a stream is buffering, or exit the current screen once a song
finishes playing. Figure 3-3 shows the potential sequence of one media play execution.

Figure 3-3. A PlayerListener responding to Player events

Many events are defined as part of the MMAPI spec, and RIM can send custom events,
as well. Whenever your PlayerListener is called, it will be passed a String with the
event name, and an Object containing more information about the event. The most
common events are shown in Table 3-1.

Download at WoweBook.Com

CHAPTER 3: Media Playback 83

Table 3-1. PlayerListener Events

String Definition Meaning EventData
type

EventData value

bufferingStarted BUFFERING_
STARTED

Player enters buffering
mode.

Long Media time when
buffering starts

bufferingStopped BUFFERING_
STOPPED

Player exits buffering
mode.

Long Media time when
buffering stops

closed CLOSED Player closed; end of
events.

N/A null

deviceAvailable DEVICE_
AVAILABLE

An exclusive device is now
available to this Player in
the REALIZED state.

String Name of device

deviceUnavailable DEVICE_
UNAVAILABLE

This Player has lost access
to an exclusive device and
placed back in the
REALIZED state. The next
event must be
DEVICE_AVAILABLE or ERROR.

String Name of device

durationUpdated DURATION_
UPDATED

The duration for this Player
has changed. This generally
occurs when the duration
cannot be known at start
but becomes available later.

Long Duration of the
media.

endOfMedia END_OF_
MEDIA

The Player has reached the
end of the media.

Long Media time for the
end of media.

error ERROR The Player encountered an
error.

String Detailed error
message (see below).

sizeChanged SIZE_
CHANGED

A playing video’s size has
changed; for example, the
screen may have changed
orientation.

VideoCon-
trol

Object with new
video dimensions.

started STARTED Player has begun to play. Long Media time when
player started

stopped STOPPED Player has received a
stop() call and returned
to the PREFETCHED state.

Long Media time when
player stopped

Download at WoweBook.Com

CHAPTER 3: Media Playback 84

Table 3-1. PlayerListener Events (continued)

String Definition Meaning EventData
type

EventData value

stoppedAtTime STOPPED_
AT_TIME

Player has reached the time
specified by a previous call to
StopTimeControl.setStopTi
me and returned to the
PREFETCHED state.

Long Media time when
player stopped.

volumeChanged VOLUME_
CHANGED

Volume has changed; for
example, user has pressed a
volume key.

VolumeCon-
trol

Object with new
volume level

com.rim.timeUpdate N/A Media has advanced. Called
about once per second.

Long Current media
time in
microseconds.

com.rim.loading N/A Media is loading. N/A N/A

Note: The MMAPI does not specify what units ‘‘media time’’ correspond to. On BlackBerry
devices, each unit of media time is one microsecond. Multiply by 1,000 to convert to
milliseconds (useful when comparing to system time), and by 1,000,000 to convert to seconds
(useful when showing elapsed play time).

No app will need to respond to all the above events, but every app will likely care about
at least a few of them. You should just look for the ones you care about and ignore the
rest. Be aware that certain media operations might generate a slew of events—for
example, you might receive a "com.rim.timeUpdate" every second while a stream is
playing. Because of this, you may want to avoid actions like logging every event that is
passed, because doing so would slow down the operation of your app.

Pay particular attention to errors. There is a fundamental difference between transient
errors and permanent errors. If media will not play because of a network hiccup or
temporary loss of the output device, you may want to retry the operation to save your
user the hassle. On the other hand, if the media itself is corrupt or incompatible, you
cannot do anything about it. To facilitate more deterministic handling of errors, RIM has
decided to use integer values as the ERROR extended message. Table 3-2 shows the
currently defined codes and their meaning.

Table 3-2. RIM Media Error Codes

Code Meaning

1 Player is busy.

2 Bad parameter.

Download at WoweBook.Com

CHAPTER 3: Media Playback 85

Table 3-2. RIM Media Error Codes (continued)

Code Meaning

3 Out of memory.

4 Stream has exhausted available data.

5 Other error.

6 Media file is corrupt.

7 Server is not responding.

8 Connection is unavailable.

9 Invalid URL.

10 File is unseekable.

11 Streaming server is not responding.

12 Missing DRM rights.

13 Streaming server rejected streaming request.

14 Streaming server error.

15 Payment is required.

16 Streaming server forbids client connection.

17 Item to stream not found.

18 Client must authenticate with a proxy prior to streaming.

19 Request URI too large.

20 Insufficient bandwidth for streaming.

21 Session expired.

22 Unsupported UDP or TCP transport streaming.

As you can see, most of the errors relate to streaming content. Having this level of
granularity is extremely helpful when configuring a streaming solution, as it helps you
quickly identify whether the problem is client-side or server-side.

A simple PlayerListener is shown in Listing 3-1. This PlayerListener updates a Screen
with status information and closes it when playback is complete.

Download at WoweBook.Com

CHAPTER 3: Media Playback 86

Listing 3-1. A Custom Listener for Media Playback

import javax.microedition.media.*;
import net.rim.device.api.ui.Screen;
import net.rim.device.api.ui.component.LabelField;

public class WatchdogListener implements PlayerListener
{
 private LabelField status;
 private Screen screen;

 public WatchdogListener(LabelField status, Screen screen)
 {
 this.status = status;
 this.screen = screen;
 }

 public void playerUpdate(Player player, String event, Object data)
 {
 if (event.equals(PlayerListener.BUFFERING_STARTED))
 {
 status.setText("Buffering, please wait.");
 }
 else if (event.equals(PlayerListener.BUFFERING_STOPPED))
 {
 status.setText("Buffer complete.");
 }
 else if (event.equals(PlayerListener.STARTED))
 {
 status.setText("Playing.");
 }
 else if (event.equals(PlayerListener.STOPPED))
 {
 status.setText("Stopped.");
 }
 else if (event.equals(PlayerListener.ERROR))
 {
 status.setText("Encountered error: " + data);
 }
 else if (event.equals(PlayerListener.END_OF_MEDIA))
 {
 screen.close();
 }
 else
 {
 status.setText (event + ":" + data);
 }
 }

}

Download at WoweBook.Com

CHAPTER 3: Media Playback 87

All About Codecs
Imagine you have an app that plays humorous comedy clips. You find a bit on the Web
that you like, add it to the app, and. . .nothing happens! It played just fine on your
desktop—what gives?

Welcome to the wonderful world of media codecs. The options available for playback
can bewilder, and seem to grow more complicated every year. Investing some time up
front in understanding codecs and selecting the appropriate formats for your app can
save hours of last-minute scrambling.

Containers and Content
When you receive a media file, it’s like a box. Depending on the file format, it will contain
various types of things: perhaps the author’s name, some metadata about the contents,
maybe some DRM. It will also contain one or more smaller locked boxes, which hold the
actual audio or video data.

That outer box is a container. Containers have names like MP4 and AVI, and refer to the
way the media pieces are packaged together. The locked boxes are the actual
components. These must be opened with the corresponding key—the codec. Codecs
have names like MPEG4 or AAC+, and refer to how the actual audio or video bytes
should be played. Figure 3-4 shows three of the many possible configurations of codecs
and containers.

Figure 3-4. Containers and codecs

What makes this confusing is that, historically, there often was a 1-1 correspondence
between containers and codecs. An MP3 file always used the MPEG1 audio encoding,
so all MP3 files are more or less compatible. However, an M4A file may be using H.263,
H.264, or MPEG4 encoding, so it isn’t enough to say “I need an M4A file,” you also need
to know what codec it uses. You may have experienced this problem occasionally when
using your desktop computer; the problem is far more widespread on mobile devices.

The moral of the story: If you are producing your own content, select a compatible
format and use it for everything. If you are acquiring content from others, verify that you
support each given piece of content.

Download at WoweBook.Com

CHAPTER 3: Media Playback 88

Codec Support
Once the device has identified what encoding a piece of content uses, it must decide
how to handle playback. Codecs are implemented in one of two ways: in software or in
hardware. A software codec analyzes the byte stream, translates it from the compressed
format into the device’s native format, and then passes the translated bytes to the
output device. This can be very time consuming, and on a limited device like a mobile
phone, the CPU may not be able to translate fast enough to play at an acceptable rate.
A hardware codec is embedded into the graphic or audio chip, and can directly translate
the encoded data into sound or video. This is much faster and frees up the CPU for
other tasks, but it’s also more expensive and therefore rarer.

Software codecs are limited by processor speed. Hardware codecs are limited by
hardware design. With this in mind, you shouldn’t be surprised that codecs are among
the few items in the world of BlackBerry development which are controlled by phone
hardware, not just the version of BlackBerry device software installed. Fortunately, RIM
has documented their codec support well. Please see the Appendix for a list of currently
supported codecs on a range of popular BlackBerry models.

You can also attempt to determine at runtime what types of content are supported on a
given device. This can be a good way to future-proof your app, so if a newer device or
software version becomes available, the same version of your app will automatically
know that it can handle a better codec. Use the method
Manager.getSupportedContentType(null) to obtain an array of all valid MIME types on
this device. You can even pass in a particular protocol to be used for filtering, so
Manager.getSupportedContentType("rtsp") will return only the types that the device can
stream, while Manager.getSupportedContentType("file") will return all types that can
be played from a local file.

Where Does the Sound Go?
Most often, you will be satisfied with the default audio behavior of BlackBerry devices.
Sound will play from the device when you want and automatically move to the
headphones when they are plugged in.

However, in certain circumstances you might want to exercise more control over where
audio goes. If your app is delivering voice messages, you might prefer the sound to be
sent through the earpiece for privacy, rather than through the speakerphone where
anyone can hear. Figure 3-5 shows some of the more common audio outputs for a
BlackBerry.

Download at WoweBook.Com

CHAPTER 3: Media Playback 89

Figure 3-5. Audio connections on a device

A Player with an audio component will offer an AudioPathControl. You may use this to
see where audio is currently being directed, and send it somewhere else if appropriate.
The following options are supported.

AUDIO_PATH_BLUETOOTH. Bluetooth SCO, such as a car kit.

AUDIO_PATH_BLUETOOTH_A2DP. Paired A2DP-compatible device, like a stereo
Bluetooth headset.

AUDIO_PATH_HANDSET. The earpiece.

AUDIO_PATH_HANDSFREE. The speakerphone.

AUDIO_PATH_HEADSET. Hands-free headset.

AUDIO_PATH_HEADSET_HANDSFREE. The speakerphone and the hands-free headset.

Note: AudioPathControl is available starting with software version 4.2.
AUDIO_PATH_BLUETOOTH_A2DP was added in version 4.3.

The following code demonstrates how to force audio to be played through the
speakerphone.

Player player = Manager.createPlayer("file:///SDCard/BlackBerry/Music/Walrus.mp3");

Download at WoweBook.Com

file:///SDCard/BlackBerry/Music/Walrus.mp3

CHAPTER 3: Media Playback 90

player.prefetch();
AudioPathControl control = (AudioPathControl)player.getControl("AudioPathControl");
if (control.getAudioPath() != AudioPathControl.AUDIO_PATH_HANDSFREE)
{
 control.setAudioPath(AudioPathControl.AUDIO_PATH_HANDSFREE);

}

Mixing Music

There may be times when you would like to play more than one audio file at once.
Perhaps you are playing background music for a boxing game, and you also want to
play an audio clip of someone landing a punch. How does this work? Well, it depends
on the device. MMAPI defines a system property called "supports.mixing". If this is
true, the device must support playing at least two audio sources at the same time. If it is
false, then only one can be played at a time. In this case the second attempt to play will
either fail or interrupt the first player.

Currently, most GSM devices support mixing up to two audio sources. Most CDMA
devices do not support any mixing. For the best compatibility, you should check for the
system property.

What should you do if mixing is not supported? Your options will generally be limited. If
it’s two pieces of music, you can try combining them into a single file for playback. If you
want to combine music and effects, you will generally need to stop the first Player
before starting the second, then restart the first once the second is done. Depending on
the application this may sound annoying, and you might prefer to disable either music or
effects entirely.

This example demonstrates making a decision whether to start a second Player based
on the capabilities of the device. All users will hear the song, but only mixing devices will
play the claps.

Player music = Manager.createPlayer("file:///SDCard/BlackBerry/Music/ObLaDi.mp3");
Player sound = Manager.createPlayer("file:///SDCard/BlackBerry/Music/clap.amr");
music.realize();
sound.realize();
music.start();
if (System.getProperty("supports.mixing").equals("true"))
{
 for (int i = 0; i < 5; ++i)
 {
 sound.start();
 Thread.sleep(1000);
 sound.stop();
 }

}

Download at WoweBook.Com

file:///SDCard/BlackBerry/Music/ObLaDi.mp3
file:///SDCard/BlackBerry/Music/clap.amr

CHAPTER 3: Media Playback 91

Bringing It Together
You’ve found your media and you know what the format is. Now you’re ready to create a
Player, set it up, and start it going.

With audio, you can create a Player through any of the three createPlayer methods
offered by Manager.

 One takes a URL, such as "http://myserver.com/files/clip.mp3"

 Another takes an InputStream and a type, such as myByteStream and
"audio/mpeg"

 The last takes a custom DataSource (described earlier in the section
titled “Manual Buffering”).

You can simply call start() to get it going, or queue it up for later playback. You will
likely want to handle media operations in a separate thread for the best performance.
You also might want to control other aspects of playback. By calling
Player.getControl(), you can obtain a VolumeControl and a StopTimeControl. The
VolumeControl allows you to set the volume level (at a value between 0 and 100) and
mute/unmute the audio, while StopTimeControl offers a way to specify when the Player
should stop. You could combine the two to play a softer 5-second preview of a full
audio clip. The code that follows demonstrates how to play audio.

InputStream is = getClass().getResourceAsStream("/crowdNoise.mp3");
Player player = Manager.createPlayer(is, "audio/mpeg");
player.realize();
StopTimeControl time = (StopTimeControl)player.getControl("StopTimeControl");
VolumeControl volume = (VolumeControl)player.getControl("VolumeControl");
if (time != null)
{
 time.setStopTime(5000000); // Microseconds
}
if (volume != null)
{
 volume.setLevel(50);
}

player.start();

Tip: StopTimeControl may not be available on all platforms. As usual, it’s a good idea to
check for a nonnull value returned from getControl. If not available, you can work around
this by creating a separate Timer and manually stopping playback once it expires.

Other Audio Options: MIDI and Tones
MMAPI defines several options for playing programmatically generated audio. This
approach was much more popular when devices were highly limited. As support for

Download at WoweBook.Com

http://myserver.com/files/clip.mp3

CHAPTER 3: Media Playback 92

playing standard audio formats has improved, these alternatives have fallen out of favor
because of their complexity and nonportability. However, they still may be appropriate
when porting legacy software, creating sound effects for games or when working on
specialized apps such as a virtual piano.

If you look through RIM’s documentation, you will notice that it includes references to
MIDIControl. This specialized Control offers methods to program MIDI channels and
send MIDI events to be played. Theoretically, this would offer a standardized way to play
generated music. However, as with much of MMAPI there is no requirement that
vendors implement it, and RIM has chosen not to do so. Attempts to create a
MIDIControl will result in an “unsupported media type” exception. Note that you can still
play existing MIDI files as shown above, just not create low-level MIDI events.

However, RIM does support a similar alternate mechanism, the ToneControl. Unlike
other audio playback, you do not need a file or input stream to gain access to this player
and control. Instead, Manager offers a custom string, TONE_DEVICE_LOCATOR (with the
value "device://tone"), which can be used to retrieve a compatible Player.

Once you have a ToneControl, you can program a monotonic tone sequence. Bytes
define the tempo, note pitch, note duration, and volume, and they control progress
through the song. The following snippet shows how to play the opening of Beethoven’s
Fifth Symphony using a ToneControl.

byte tempo = 30; // 120 bpm
byte eight = 8; // eighth-note
byte whole = 64; // whole note
byte C4 = ToneControl.C4; // Middle C
byte eFlat = (byte)(C4 + 3);
byte gMajor = (byte)(C4 + 7);
byte[] beethoven = {
 ToneControl.VERSION, 1,
 ToneControl.TEMPO, tempo,
 gMajor, eight, gMajor, eight, gMajor, eight, eFlat, whole // Buh-buh-buh BUH!
};
Player player = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR);
player.realize();
ToneControl control = (ToneControl)player.getControl("ToneControl");
control.setSequence(beethoven);
player.start();

If this looks like something you might be interested in, complete documentation is
available for the ToneControl class. In practice, ToneControl has too many limitations to
be useful to the majority of developers. It can only play a single note at a time, and is
cumbersome to program. Unless you need the ability to play arbitrary notes at runtime,
look elsewhere.

If you do want to play arbitrary notes, consider using Manager.playTone(). Unlike other
methods in Manager, this will directly play sound without going through a Player. You
can specify a pitch, length, and volume. As with the ToneControl, it is far too
cumbersome to try and play elaborate music with this interface, but it can be useful
certain circumstances, such as if you want the device to make a loud noise when it
encounters an error condition.

Download at WoweBook.Com

device://tone

CHAPTER 3: Media Playback 93

Playing Video
Video playback is similar to audio playback, with the extra wrinkle that you need to
display the video somewhere. This process is very similar to the camera viewfinder we
created in the last chapter. You will create the Player, obtain a VideoControl, place it
somewhere on the Screen, and then start it playing. The most significant difference from
video capture is the longer time it will take to start playback, especially if playing a video
delivered over the network. The code that follows shows a simple case of playing a
video for about 5 seconds and then stopping.

Player player = Manager.createPlayer("file:///SDCard/BlackBerry/Video/clip.3gp ");
player.realize();
VideoControl control = (VideoControl)player.getControl("VideoControl");
Field cameraView = (Field)control.initDisplayMode
 (VideoControl.USE_GUI_PRIMITIVE, "net.rim.device.api.ui.Field");
screen.add(cameraView);
player.start();
Thread.sleep(5000);
player.close();

The VideoControl offers the following useful options for positioning your playback
window:

 getDisplayWidth and getDisplayHeight return the current dimensions
of space occupied by the video playback window, in pixels.

 getSourceWidth and getSourceHeight return the dimensions of the
actual video file, in pixels.

 getDisplayX and getDisplayY return the coordinates of the upper-left
corner of the playing video, relative to the containing GUI object.

 setDisplayLocation allows you to position the video if the display
mode is USE_DIRECT_VIDEO.

 setVisible controls whether the video is displayed.

 setDisplaySize will adjust the size of the video image. This may scale
the video to fit the requested dimensions, or may just clip the video.
You’ll need to experiment with your particular videos and devices to
determine which happens.

 setDisplayFullScreen attempts to make the video fill the entire
screen.

Displaying Images
While audio and video may impress users more, images are the foundation of most
apps. Images range from simple bitmaps to animated GIF and SVG files. While you’re
probably familiar with the simplest ways to display images, more advanced techniques
may prove useful in certain cases.

Download at WoweBook.Com

file:///SDCard/BlackBerry/Video/clip.3gp

CHAPTER 3: Media Playback 94

Static Image Display in BlackBerry CLDC Applications
Odds are the first or second BlackBerry program you wrote when first learning the
platform included an image. The Bitmap class is the foundation of image creation and
drawing. Note that bitmap refers to any rastered image format, including JPEG and PNG
in addition to BMP files. You have a wide variety of options available for creating
images.

 Reference a resource in the COD file:
Bitmap.getBitmapResource("clip.png");

 Create a blank image that you can later draw into: new Bitmap(300,
300);

 Obtain a built-in system bitmap:
Bitmap.getBitmapResource(Bitmap.HOURGLASS);

 Create from raw image data: Bitmap.createBitmapFromBytes(rawData,
0, -1, 1) or Bitmap.createBitmapFromPNG(rawData, 0, -1);

After you have a Bitmap object, you can adjust the raw pixels if necessary by calling
getARGB() and setARGB(). In most cases, though, you can then proceed to display the
image by creating a BitmapField and then adding it to the screen as you would any
other Field.

screen.add(new BitmapField(bitmap));

As an alternative to the Bitmap class, you can use the EncodedImage class to obtain a
drawable image. EncodedImage has separate subclasses for each of the supported image
types and methods that provide more detail about each than is available for a standard
Bitmap. For example, a PNGEncodedImage offers information about the alpha bit depth for
a particular image. However, unlike Bitmaps, EncodedImages are not mutable: you cannot
alter the images once created. As with Bitmap, there are multiple ways to create an
EncodedImage.

 Reference a resource in the COD file:
EncodedImage.getEncodedImageResource("clip.png");

 Create from bytes: EncodedImage.createEncodedImage(rawData, 0, -1);

You can create a BitmapField for an EncodedImage in order to display it on the screen.

BitmapField imageField = new BitmapField();
imageField.setImage(encodedImage);

As with other Field objects, you can adjust the size and layout to fit your particular
Screen.

Download at WoweBook.Com

CHAPTER 3: Media Playback 95

SVG Image Playback
BlackBerry devices with software version 4.6 or later include support for JSR 226, a
standard approach for control and display of SVG animations. SVG images must
conform to the W3C SVG Tiny 1.1 profile.

SVG animations rely on classes in the javax.microedition.m2g package. If you are just
playing existing animations, rather than creating or manipulating them, you will generally
only need to use two classes: SVGImage and SVGAnimator. SVGImage contains the data,
while SVGAnimator understands how to parse and present it. The following example
shows how to create and start an animation.

InputStream svgSource = getClass().getResourceAsStream("sample.svg");
SVGImage image = (SVGImage)ScalableImage.createImage(svgSource, null);
SVGAnimator animator = SVGAnimator.createAnimator(image, "net.rim.device.api.ui.Field");
Field field = (Field)animator.getTargetComponent();
screen.add(field);
animator.play();

You may notice some similarities between this code and what we did for video capture
and playback. In both cases, we needed to specify the full class name for the
component that will display the content. "net.rim.device.api.ui.Field" indicates that
you wish to display the SVG animation in a CLDC Application. To display animations in a
MIDlet, ask for a "javax.microedition.lcdui.Item" instead.

As usual, you can manipulate the Field to control how the content will be displayed
within your application. SVGAnimator uses a simplified version of the Player life cycle
with only three states: playing, stopped, and paused. Figure 3-6 shows how the
methods play(), pause(), and stop() affect playback.

Figure 3-6. SVG animation states

Download at WoweBook.Com

CHAPTER 3: Media Playback 96

If you are interested in capturing user action on the SVG image and taking some action
in response, register an SVGEventListener with the SVGAnimator by calling
setSVGEventListener(). You will then be called when the user presses a key, touches
the screen, or the visibility of the animation changes.

To learn more about SVG, you can view the official specification online at
http://www.w3.org/Graphics/SVG/. Apress publishes a good book on the topic called
SVG Programming: The Graphical Web by Kurt Cagle.

Getting Plazmic
Long before SVG support became available, RIM offered a semi-custom 2D vector graphics
package of its own. Plazmic, a subsidiary of RIM, offers a content creation tool that
allow Flash-like authoring, but the generated content is compiled down into a compact
binary format that is much more terse than standard SVG. Because of its size, Plazmic
usually loads faster over the network. For several years Plazmic was the only choice for
adding rich media content to BlackBerry devices. That is changing with the introduction
of APIs discussed in this chapter, but because of the compact size and large quantity of
existing content out there, you may wish to add Plazmic content to your own app.

Authoring Plazmic is beyond the scope of this book, but it’s important to understand
how it is created and delivered. An artist creates content using the proprietary Plazmic
Content Developer Kit. The kit offers support for importing some elements of SVG and
Flash format animations, which may allow for quicker porting of content. The artist’s
design is compiled into a binary PME, or Plazmic Media Engine, file. This contains the
information necessary to describe the animation contents and behavior. Many
animations will also include raster graphics or music. Together with the PME, these will
be bundled into a PMB, or Plazmic Media Bundle, as shown in Figure 3-7.

Figure 3-7. A possible PMB configuration

On the client side, Plazmic is often displayed in the browser. It is also the format used to
theme BlackBerry devices and make visual changes to native apps. If you’d like to
include Plazmic content in your own app, RIM has offered APIs since device software

Download at WoweBook.Com

http://www.w3.org/Graphics/SVG

CHAPTER 3: Media Playback 97

version 3.7—ancient by RIM standards. There are just a few classes involved, all in
package net.rim.plazmic.mediaengine and net.rim.plazmic.mediaengine.io.

Caution: Although Plazmic support exists as far back as 3.7, there are many different versions
of the CDK, and not all content will display in all versions. Even if your target phone supports
Plazmic playback, check to ensure that you can author content that will display in it.

One crucial difference between Plazmic and SVG is that Plazmic includes logic for
handling the download of content. If you are loading a PMB over the network, you will
receive regular updates about the status of that operation. This can be useful if you wish
to show a loading message, progress bar, or other feedback to the user while loading.
You can also bundle Plazmic content directly into your COD, which creates the standard
tradeoffs between fast delivery and updateability.

Tip: Due to a limitation in the RIM JDE, you cannot directly include Plazmic PMB files in your
COD. Instead, ask for the PME file and all media files separately, then add them to your project.
If image files are not in PNG format, configure your project to prevent them from being
automatically converted to PNG.

Plazmic’s underlying representation is SVG, so it’s no surprise that Plazmic playback
resembles that of SVG. Plazmic offers three states: UNREALIZED, REALIZED, and STARTED.
You move between the states by invoking methods on a MediaPlayer object, as shown
in Figure 3-8. An UNREALIZED MediaPlayer is “blank,” with no content assigned to it. A
REALIZED player has obtained its content, which can be a time-consuming operation:
even once the content file has been loaded, all media resources within that file must be
initialized and prepared. A STARTED player is actively playing its content.

Figure 3-8. Plazmic player states

Download at WoweBook.Com

CHAPTER 3: Media Playback 98

Plazmic has a single listener interface, MediaListener, which is used by both
MediaManager and MediaPlayer. MediaListener defines a single method, mediaEvent(),
which delivers messages about content download or playback status. Table 3-3 shows
the possible results.

Table 3-3. Plazmic Media Events

Event Data Type Data Contents

MEDIA_REQUESTED String URI of requested content

MEDIA_IO LoadingStatus Current status of the loading
operation

MEDIA_LOADING_FAILED String URI of requested content

MEDIA_REALIZED Object Opaque media data

MEDIA_COMPLETE Object Opaque media data

Unfortunately, Plazmic doesn’t offer many opportunities for interactive content. Unlike
the SVG APIs, there is no mechanism for determining when the user has clicked within
the animation, so it is not appropriate for creating simple games. On the other hand,
MediaPlayer does include these standard mechanisms for controlling playback:

start() starts playback.

setMediaTime() will instruct a realized player to begin at the specified millisecond
time.

getMediaTime() returns the current elapsed media time in milliseconds.

stop() pauses playback.

close() stops playback and releases the Plazmic resources.

Note: Unlike an MMAPI Player, you can reuse a MediaPlayer multiple times after calling
close().

You have several options when retrieving content to play. The simplest is to call
createMedia(), providing the location of the Plazmic content, which may be a file or a
network location. This method blocks until the content is fully retrieved and an Object is
returned, which you can then provide to the MediaPlayer. An alternative method is to
add a MediaListener and call createMediaLater(), which will return immediately.
Sometime later your listener will be invoked with a MEDIA_REALIZED event and the media
object. Finally, in rare circumstances you may want to define your own Connector and
provide it via MediaManager.setConnector(). This allows you to define custom behavior
for retrieving Plazmic content, such as removing encryption.

Download at WoweBook.Com

CHAPTER 3: Media Playback 99

In its simplest form, creating and starting Plazmic content takes only a few lines of code.

MediaManager manager = new MediaManager();
MediaPlayer player = new MediaPlayer();
Object content = manager.createMedia("http://myserver.com/racing.pmb");
player.setMedia(content);
Object ui = player.getUI();
screen.add((Field)ui);

Because Plazmic is so strongly associated with native RIM behavior, it cannot be
embedded into a MIDlet. Consider using Plazmic if you want a compact animation that
will run on a wide number of RIM devices; avoid it if you want to use a more widely
supported format or create interactive content.

GIF Animation
Animated GIFs are probably the most widespread form of animation on the Web, and
they are often the first choice for simple animation creation. Unfortunately, they are
much more complex to deal with on BlackBerry devices. First, if you are including the
GIF as a resource in your COD, the program compiler won’t have a good way of
telling whether a given GIF file will be animated or not. Because PNG files display
more efficiently on the device than GIF files, the default behavior is to translate all non-
PNG images (including GIF and JPEG) into PNG format. Therefore, all animation
information is lost. To avoid this problem, you can either rename the file extension to
something else (like .gxx), or instruct your build environment to leave all images alone. If
you are using the Eclipse plug-in, right-click your project, select Properties, then
modify the BlackBerry Project Properties as shown in Figure 3-9. Note that this last
approach is only a good idea if your program only uses PNG files and animated GIF
images; otherwise, you will miss out on some valuable optimizations. Also note that
this problem is moot if you are loading a GIF file over the network or from a file outside
your COD.

Download at WoweBook.Com

http://myserver.com/racing.pmb

CHAPTER 3: Media Playback 100

Figure 3-9. Eclipse settings to retain all GIF files

Once you actually have a GIF image, you’re faced with another problem. By default, a
BitmapField will only display the first frame of the image. Fortunately, RIM created
BitmapField as an extensible class, so you can override it to add animation support.
Load the image as a GIFEncodedImage, then use the methods exposed by that class to
determine how many frames and animation loops are encoded in the image. Create a
separate thread that walks through the frames, sleeps for an appropriate time at each
frame, then invalidates the BitmapField. The custom BitmapField’s paint() method
should retrieve the current frame position, then draw it to the Graphics context.

MIDP Images
While this book focuses on RIM CLDC UI, some programmers may be using the MIDP
LCDUI for display, so let’s briefly touch on how those apps handle images.

If you are using a Form, you can directly append an Image to your Form, or create an
ImageItem and then add that.

Image image = Image.createImage(getClass().loadResourceAsStream("clip.png"));
pmyForm.append(image);

However, most MIDlets will probably be using a Canvas or GameCanvas to handle their UI. In
these cases, you can draw directly to your graphics context when directed to do so.

Download at WoweBook.Com

CHAPTER 3: Media Playback 101

public class MyCanvas extends Canvas()

{
 public void paint(Graphics g)
 {
 g.drawImage(image, 50, 50, TOP_LEFT);
 }

}

Tip: The standard MIDlet API does not provide any support for animated images. If you try to
draw an animated GIF, only the first frame will display. You can create simple animations
yourself by using a timer to repeatedly call repaint() on the canvas and draw the next frame
with each invocation.

Invoking Native Apps
On occasion, you may need or want to let a built-in application handle media playback
instead of doing it yourself. Perhaps you’re running on an older version of device
software and the desired APIs aren’t available; perhaps you prefer the interface of the
native app; or perhaps you just want to simplify the code in your own app. Whatever the
reason, RIM has made it relatively simple to communicate your desire to the built-in
applications.

Playing Video Through the Browser
Video playback has been supported on BlackBerry devices for a while, but support in
Java is fairly recent. If you want to play a video but can’t or don’t want to do so in your
own app, you can pass the location of the video file to the device browser. Note that this
works even if the video file is present on the local filesystem.

The following sample code shows how to launch media through the browser on RIM
software versions 4.0 and later.

BrowserSession browserSession = Browser.getDefaultSession();
browserSession.displayPage("http://myserver.com/video/awards.3gp");

This invokes the default browser, which will generally be what you want. In some cases,
though, you might need to access a particular browser in order to access the content.
For example, the hosting server might only be configured to deliver content over WAP,
or it may only be reachable through a BES. If this is the case, you will need to search for
the corresponding ServiceBook entry and get a BrowserSession for that type.

On very old devices with software versions prior to 4.0, gaining access to the browser is
trickier. There is no Browser object available, so you will need to manually look up the
application, then invoke it directly, passing in the URL. To avoid an infinite restart loop,

Download at WoweBook.Com

http://myserver.com/video/awards.3gp

CHAPTER 3: Media Playback 102

disable auto-restart when invoking the browser this way. The following code
demonstrates how to do this.

int handle = CodeModuleManager.getModuleHandle("net_rim_bb_browser_daemon");
if (handle > 0)
{
 ApplicationDescriptor[] descriptors =
 CodeModuleManager.getApplicationDescriptors(handle);

 String[] args = {"url", "file:///SDCard/BlackBerry/temp/awards.3gp", null};

 // Turn off auto-restart.
 int flags = descriptors[0].getFlags();
 flags = flags ^ ApplicationDescriptor.FLAG_AUTO_RESTART;
 ApplicationDescriptor newDescriptor = new ApplicationDescriptor (
 descriptors[0], "BrowserPS", args, null, -1, null, -1, flags);
 ApplicationManager.getApplicationManager().runApplication(newDescriptor);

}

Note: This method does not allow you to play a video that was bundled within your COD. To
play this type of video, first save it out to a temporary file and then invoke the browser.

Using CHAPI to Play Audio
A relatively new but exciting JSR is CHAPI, the Content Handler API. CHAPI finally
provides a good generic way of allowing different apps on the same phone to
communicate with one another. Certain apps can register as content handlers for
particular MIME or URL types. When other apps make a request to handle that type of
content, the device AMS (Application Management System) will invoke the registered
app and allow it to service the request. When complete, the results are passed to the
requesting app. Figure 3-10 illustrates the basic sequence that takes place when
requesting content handling through CHAPI.

Figure 3-10. Requesting audio playback through CHAPI

Download at WoweBook.Com

file:///SDCard/BlackBerry/temp/awards.3gp

CHAPTER 3: Media Playback 103

Note: If you have programmed for the Android platform, this may sound familiar. A BlackBerry
CHAPI request is very similar to an Android Intent.

RIM has embraced the CHAPI system for several forms of inter-app communication.
Because the native media application is already registered as a CHAPI handler, all you
need to do is make a request to handle the type of audio, as shown in the code that follows.

Invocation request = new Invocation("file:///SDCard/BlackBerry/temp/train.mp3");
Registry registry = Registry.getRegistry
 ("net.rim.device.api.content.BlackBerryContentHandler");
registry.invoke(request);

You’ll learn more about CHAPI later in this book, including how to register your own
apps to handle special types of content.

App: Media Reviewer
Chapter 2’s exercise created an app that could capture media. There’s a problem,
though: how do you know if it’s any good or not? It would be much more useful if you
could play back what you captured to make sure that your thumb wasn’t over the
camera and you can’t hear the neighbors in the background.

To get started, copy over your current version of MediaGrabber into a new project. Let’s
build on the previous version of the app, adding a media reviewer screen that plays back
captured audio and video content. Listing 3-2 uses a separate class to handle display;
this will allow us to support playing back arbitrary content in the future.

Listing 3-2. A Content Reviewing Screen

package com.apress.king.mediagrabber;

import java.io.InputStream;

import javax.microedition.media.*;
import javax.microedition.media.control.VideoControl;

import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.MenuItem;
import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.MainScreen;

public class PlayingScreen extends MainScreen implements PlayerListener
{

The PlayingScreen uses a state machine similar to what we created in the last chapter
for the RecordingScreen. Many of the same components are present in both screens,
although as we will soon see they are used very differently.

Download at WoweBook.Com

file:///SDCard/BlackBerry/temp/train.mp3

CHAPTER 3: Media Playback 104

 public static final int STATE_WAITING = 1;

 public static final int STATE_LOADING = 2;
 public static final int STATE_LOADED = 3;

 private int state = STATE_WAITING;

 private UiApplication app;
 private LabelField status;

 private InputStream source;
 private String type;
 private String location;

 private Player player;
 private StatusUpdater updater;

 private MenuItem startItem = new MenuItem("Start", 0, 0)
 {
 public void run()
 {
 start();
 }
 };

 private MenuItem playItem = new MenuItem("Resume", 0, 0)
 {
 public void run()
 {
 try
 {
 player.start();
 }
 catch (MediaException e)
 {
 status.setText("Couldn't resume: " + e);
 }
 }
 };

 private MenuItem pauseItem = new MenuItem("Pause", 0, 0)
 {
 public void run()
 {
 try
 {
 player.stop();
 }
 catch (MediaException e)
 {
 status.setText("Couldn't pause: " + e);
 }
 }
 };

 private MenuItem rewindItem = new MenuItem("Rewind", 0, 0)

Download at WoweBook.Com

CHAPTER 3: Media Playback 105

 {
 public void run()
 {
 try
 {
 player.setMediaTime(0);
 }
 catch (MediaException e)
 {
 status.setText("Couldn't rewind: " + e);
 }
 }

 };

Superficially, this appears similar to the earlier RecordingScreen; both make heavy use of
a Player object to get work done. However, PlayingScreen is much more general
purpose. It will accept any type of media, either through a file or an arbitrary stream.
There’s no guarantee it will play, but it will try. While this class will be used to play back
captured local content from a file location, it can also play back networked content or
other remote files accessed through an InputStream. Multiple constructors are available
for these different uses.

 public PlayingScreen(String location, String message)

 {
 this(message);
 this.location = location;
 }
 public PlayingScreen(InputStream in, String type, String message)
 {
 this(message);
 this.source = in;
 this.type = type;
 }

 private PlayingScreen(String message)
 {
 add(new LabelField(message));
 status = new LabelField("Waiting.");
 add(status);
 app = UiApplication.getUiApplication();
 updater = new StatusUpdater();
 }

We override the onClose method to call close() on the Player. This is an important step,
as Player objects are not automatically unloaded when they can no longer be
referenced. If you keep multiple Player instances hanging around, they may still be
holding on to scarce resources, making it impossible to play additional media until the
garbage collector unloads them some time later.

 public boolean onClose()
 {
 if (player != null)
 {

Download at WoweBook.Com

CHAPTER 3: Media Playback 106

 player.close();
 }
 return super.onClose();
 }

 public void makeMenu(Menu menu, int instance)
 {
 if (instance == Menu.INSTANCE_DEFAULT)
 {
 if (state == STATE_WAITING)
 {
 menu.add(startItem);
 }
 else if (state == STATE_LOADED)
 {
 if (player.getState() == Player.STARTED)
 {
 menu.add(pauseItem);
 }
 else
 {
 menu.add(playItem);
 }
 menu.add(rewindItem);
 }
 }
 super.makeMenu(menu, instance);
 }

This class finally introduces extra threads. We could cheat when recording and avoid
them because capture starts so quickly, but there’s no way a user would accept waiting
a minute for an audio file to download over the network. When the user requests the
media to start playing, we defer the work of actually initializing the Player to a separate
Thread. Doing this allows the UI thread to retake control and provide updates while the
media is being retrieved or loaded.

 private void start()

 {
 state = STATE_LOADING;
 status.setText("Loading");
 if (player == null)
 {
 (new Thread()
 {
 public void run()
 {
 try
 {
 if (location != null)
 {
 player = Manager.createPlayer(location);
 }
 else
 {
 player = Manager.createPlayer(source, type);

Download at WoweBook.Com

CHAPTER 3: Media Playback 107

 }
 player.addPlayerListener(PlayingScreen.this);
 player.realize();
 state = STATE_LOADED;
 VideoControl vc = (VideoControl)player.getControl
 ("VideoControl");
 if (vc != null)
 {
 Field video = (Field) vc.initDisplayMode(
 VideoControl.USE_GUI_PRIMITIVE,
 "net.rim.device.api.ui.Field");
 add(video);
 }
 player.start();
 }
 catch (Exception e)
 {
 status.setText("Error: " + e);
 }
 }
 }).start();
 }

 }

As is often the case with threading, adding a thread complicates the picture. We want to
provide updates to the UI about the status of the media, but if we attempt to modify the
Screen from outside the main UI thread, something else may also be attempting to modify
it at the same time, resulting in corruption. To be safe, we take advantage of
UiApplication.invokeLater(), which makes code run on the UI thread. We reuse a
single object, updater, for all of the status updates in order to avoid creating tons of
garbage objects.

 public void playerUpdate(Player player, String event, Object eventData)

 {
 if (event.equals(PlayerListener.END_OF_MEDIA))
 {
 app.invokeLater(new Runnable()
 {
 public void run()
 {
 close();
 }
 });
 }
 else
 {
 updater.setMessage(event);
 app.invokeLater(updater);
 }
 }

 private class StatusUpdater implements Runnable
 {

Download at WoweBook.Com

CHAPTER 3: Media Playback 108

 private String message;
 public void setMessage(String message)
 {
 this.message = message;
 }
 public void run()
 {
 status.setText(message);
 }
 }

}

Now that we have a playback screen available, we can modify the RecordingScreen.
Listing 3-3 shows the modifications made to this file. Unchanged portions have been
replaced with comments; refer to the previous chapter for the original contents, or
download the listing from the Apress web site.

Listing 3-3. A Recording Screen That Automatically Presents Recorded Content

package com.apress.king.mediagrabber;

// Imports go here.

public class RecordingScreen extends MainScreen implements PlayerListener
{
 // Instance variables here.

 // Constructor and initial methods here.

PlayingScreen doesn’t make much sense for the camera, since no Player is necessary
for showing a static image. In the case of the camera, then, we directly create a new
Screen and put the Bitmap on it. This will nicely resize the screen to show the entire
image, as shown in Figure 3-11.

 private void takeSnapShot()
 {
 try
 {
 byte[] imageData = video
 .getSnapshot("encoding=jpeg&width=640&height=480&quality=normal");
 if (imageData != null)
 {
 writeToFile(imageData, location + "/image.jpg");
 status.setText("Image taken");
 Bitmap taken = Bitmap.createBitmapFromBytes(imageData, 0,
 imageData.length, 1);
 Screen reviewer = new MainScreen();
 BitmapField bitmap = new BitmapField(taken);
 reviewer.add(bitmap);
 UiApplication.getUiApplication().pushScreen(reviewer);
 }
 else
 {

Download at WoweBook.Com

CHAPTER 3: Media Playback 109

 status.setText("Please try again later.");
 }
 }
 catch (IOException ioe)
 {
 status.setText(ioe.getMessage());
 }
 catch (MediaException me)
 {
 status.setText(me.getMessage());
 }
 }

 // File output goes here.

stop() largely remains the same, except that we automatically start playing back
captured data once it has been persisted.

 private void stop()
 {
 try
 {
 if (type == RECORD_AUDIO || type == RECORD_VIDEO)
 {
 recorder.commit();
 if (type == RECORD_AUDIO)
 {
 String file = location + "/audio.amr";
 writeToFile(dataOut.toByteArray(), file);
 play(file, "Recorded Audio");
 }
 else
 {
 String file = location + "/video.3gp";
 writeToFile(dataOut.toByteArray(), file);
 play(file, "Recorded Video");
 }
 status.setText("Data saved");
 state = STATE_READY;
 }
 }
 catch (IOException ioe)
 {
 status.setText(ioe.getMessage());
 }
 }

The play() method creates and displays a PlayingScreen for the recorded media.

 private void play(String location, String message)

 {
 Screen playback = new PlayingScreen(location, message);

Download at WoweBook.Com

CHAPTER 3: Media Playback 110

 UiApplication.getUiApplication().pushScreen(playback);
 }

}

Figure 3-11. MediaGrabber displaying a captured image in full-screen mode

To show off the power of the new PlayingScreen, provide a way to directly enter it
without going through RecordingScreen. Listing 3-4 shows how you can convert
RecordingChoicesScreen from the previous chapter into ChoicesScreen. ChoicesScreen
keeps the existing options for starting a record operation, but it also adds the ability to
enter a file location or web URL and then select “Play Media” to launch it directly. Note
that this will only play MMAPI-compatible media, so it will work for most audio and
video, but not SVG, Plazmic, or other unsupported media types.

Download at WoweBook.Com

CHAPTER 3: Media Playback 111

Listing 3-4. A Screen to Start Recording or Playing a Particular File

package com.apress.king.mediagrabber;

import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.MenuItem;
import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.BasicEditField;
import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.component.Menu;
import net.rim.device.api.ui.container.MainScreen;

public class ChoicesScreen extends MainScreen
{
 private BasicEditField location = new BasicEditField("Location:",
 "file:///SDCard/BlackBerry", 100, Field.FIELD_VCENTER
 | BasicEditField.FILTER_URL);
 private MenuItem audioItem = new MenuItem("Record Sound", 0, 0)
 {
 public void run()
 {
 launchRecorder(RecordingScreen.RECORD_AUDIO);
 }
 };
 private MenuItem pictureItem = new MenuItem("Take a Picture", 0, 0)
 {
 public void run()
 {
 launchRecorder(RecordingScreen.RECORD_PICTURE);
 }
 };
 private MenuItem videoItem = new MenuItem("Record Video", 0, 0)
 {
 public void run()
 {
 launchRecorder(RecordingScreen.RECORD_VIDEO);
 }
 };
 private MenuItem launchVideoItem = new MenuItem("Play Media", 0, 0)
 {
 public void run()
 {
 launchPlayer();
 }
 };

 public ChoicesScreen()
 {
 setTitle("MediaGrabber");
 add(new LabelField(
 "Please enter a location, then select a choice from the menu."));
 add(location);
 }

 public void close()
 {

Download at WoweBook.Com

file:///SDCard/BlackBerry

CHAPTER 3: Media Playback 112

 location.setDirty(false);
 super.close();
 }

 public void makeMenu(Menu menu, int instance)
 {
 if (instance == Menu.INSTANCE_DEFAULT)
 {
 String property = System.getProperty("supports.audio.capture");
 if (property != null && property.equals("true"))
 {
 menu.add(audioItem);
 }
 property = System.getProperty("video.snapshot.encodings");
 if (property != null && property.length() > 0)
 {
 menu.add(pictureItem);
 }
 property = System.getProperty("supports.video.capture");
 if (property != null && property.equals("true"))
 {
 menu.add(videoItem);
 }
 menu.add(launchVideoItem);
 }

 super.makeMenu(menu, instance);
 }

 private void launchRecorder(int type)
 {
 String directory = location.getText();
 RecordingScreen screen = new RecordingScreen(type, directory);
 UiApplication.getUiApplication().pushScreen(screen);
 }

 private void launchPlayer()
 {
 String url = location.getText();
 PlayingScreen screen = new PlayingScreen(url, "Playing " + url);
 UiApplication.getUiApplication().pushScreen(screen);
 }

 public boolean onSavePrompt()
 {
 return true;
 }
}

Updating MediaGrabber.java is trivial: simply rename RecordingChoicesScreen to
ChoicesScreen. At this point, you will be able to build and run the latest incarnation of
MediaGrabber. Give it a whirl! You’ll want to run this on an actual device to get the best
impact; the canned images and audio in the simulator leave a lot to be desired. Try
recording whatever media your device supports, and also enter the URL for an external
media file.

Download at WoweBook.Com

CHAPTER 3: Media Playback 113

WANT MORE?

Consider enhancing the app even more by adding these features:

 Save the most recently entered locations to allow quicker access.

 Allow the user to choose what audio device is used to play back sound.

 Write a new Screen that can be used to play back SVG or Plazmic content.

It doesn’t make sense to go overboard with this app—after all, BlackBerry devices have a good Media
application built in. However, these sorts of enhancements help a great deal when determining how
feasible it is to add certain types of content into your own apps.

Excelsior
Phew! You covered a lot of ground in this chapter. As you can see, there’s an incredibly
wide range of options available for adding compelling media content to your BlackBerry
application. Fortunately, no app is expected to use all of them. Depending on your
needs, you will likely just choose one or two types of content, a couple of formats, and
one or two methods of delivery. You might choose the MMAPI Player interface for
maximum compatibility and control, or Plazmic for a high level of integration with
BlackBerry, or some other solution that takes advantage of your existing resources and
interest. After you have made your decision, you can safely ignore the other media
options—at least until it’s time to create your next app.

This chapter covered many ways of delivering content to the phone, including in your
COD, on the filesystem, or over the Internet. However, there’s an entire set of
technologies that exist only for mobile phones and offer unparalleled ways to exchange
information with other people. The next chapter will dive into the sea of wireless
messaging and show you how to create an app that’s unlike what you can create on the
desktop.

Download at WoweBook.Com

Download at WoweBook.Com

4Chapter

Wireless Messaging
Nearly every application written today—whether on the server, desktop, or mobile—
includes some form of networking component. If you’ve been programming for any length
of time, you probably are familiar with TCP/IP, sending HTTP requests, and other standards
of network communication already. When it comes to mobile phones, though, the
available technologies quickly multiply. You can tap into the unique systems available to
wireless devices and achieve features that are impossible to obtain on other platforms.

This chapter introduces several BlackBerry messaging options, looking at both
techniques unique to wireless, such as SMS and MMS messaging, as well as existing
technologies that work slightly differently in this environment, such as email. You will
learn how to evaluate the different options when each technology makes sense to
integrate into your application, and see how to access them from your Java app.

The various techniques share a common characteristic: all are very personal.
Remember, whenever you send someone a wireless message, it is likely ending up in his
or her pocket. When you need that personal touch, wireless messaging provides the
solution.

The Messaging Quiver
BlackBerry devices offer even more messaging options than most other mobile
platforms. In addition to the ubiquitous wireless standard of SMS, and the slightly less
ubiquitous standard of MMS, they offer a unique form of email integration in addition to
a custom form of messaging available only between BlackBerry devices. This section
provides a brief, high-altitude look at the available choices for wireless messaging.

SMS
Short Message Service, more often called SMS or simply text messaging, is the
granddaddy of wireless messaging protocols. It was developed as a lightweight way to
provide non-voice communication between mobile devices while not adding extra
overhead to carrier networks.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 116

Whenever you receive a call, the mobile tower pushes a packet of data to your phone,
notifying it of the incoming call. This packet can be repurposed into a messaging packet,
which means that its transmission is essentially free for the carrier to create. (This does
not stop them from charging you for it, of course.) When your phone receives this
packet, it extracts the content from it and, in most cases, creates a text message that is
shown on the screen or stored in the inbox.

When you send a text, it once again is packaged into a single packet and sent to the
tower. The tower passes it on to a Message Switching Center (MSC), a kind of junction
point for nodes in the carrier’s wireless network. The MSC ordinarily routes voice calls,
but when it recognizes this as a text message, it will forward that message on to the
Short Message Service Center (SMSC). The SMSC will examine the message to
determine where it should go. If the recipient is a member of another wireless network, it
will look up what carrier that number belongs to and then pass the message on to that
network’s SMSC. If the recipient is an email address, the SMSC will send the message
over the Internet.

Once the SMSC has a message intended for a recipient on its network, it will attempt to
find that phone, using the same techniques as it would when placing an incoming call. If
the recipient is available, the message is sent. Otherwise, the SMSC will store the
message and wait for the subscriber to become available. Depending on the requested
configuration of the message, it may be stored for a period of time before it becomes
invalid and is removed from the server.

Figure 4-1 shows two users, Patrick and Andrew, sending text messages to Kathryn.
Patrick sends his from a mobile phone. In SMS jargon, this is a Mobile Originated (MO)
message. When Kathryn receives it, it is a Mobile Terminated (MT) message. Andrew
isn’t using a mobile phone, but instead connecting through an approved web portal to
send his message. Such integration points are common. If you are planning to offer a
service that will generate a large number of SMS messages, you will need permission
from the wireless carriers to inject these messages into their network. Most often,
developers will work with message aggregators who have standing deals with the major
carriers and can provide you with this sort of access.

Figure 4-1. Sending SMS messages to a mobile device

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 117

So what, exactly, is an SMS? The exact representation can vary depending on the
carrier, technology, and message configuration. As shown in Figure 4-2, all SMS
messages contain a section of SMS headers and a 140-octet payload. The headers
control things like the recipient address, delivery confirmation settings, validity intervals,
and so on; other than the recipient, third-party developers usually cannot access these.
The payload, however, is very standard. If it was not, then messages between carriers
would not be compatible. An octet is a collection of 8 bits—most humans would call this
a “byte.” Using the word “octet” emphasizes that these bits can be arranged in
nonstandard configurations. SMS messages are often encoded using US-ASCII or GSM
7-bit character schemes, which allows 160 characters to fit within the 140 octets. If
sending binary data, 140 bytes are available. If recipients use Eastern or Arabic
languages, messages can be sent in 16-bit Unicode, allowing 70 characters.
Sometimes, extra routing or metadata that is not part of the SMS headers must be
added to the SMS payload. For example, if sending to an email address, that address
must be included in the payload, reducing the available number of characters.

Figure 4-2. SMS message structure

Interoperability is usually quite good between different wireless carriers in the same
country. As long as you will be operating primarily within a single region, you can be
fairly confident in sending messages to any wireless number. However, it’s important to
note that SMS does not include any delivery guarantees. The SMSC will make an effort
to send the message, but there are many technical reasons why it may fail to do so. If
you ask for and receive a delivery confirmation, you can be certain it was delivered.
Because of the lack of a strong service guarantee, you should use SMS in ways that
supplement your apps functions and not make it a required component.

SMS tends to be a good choice when you need to send a signal or provide an extremely
short piece of data. Theoretically, you could send or receive multiple SMS messages
and build them up into a larger binary message. Carrier support for such bundled
messages is much less reliable, though, and if you try to implement such a system
yourself, you are multiplying the risks of a lost message and incomplete data.

Pros
 Very quick transmission time.

 Sent and received over carrier networks, so it will be available even if
Internet service is unavailable.

 Strong interoperability between carriers.

Cons
 Most users are charged for each message sent or received, or have a

limited number of free messages.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 118

 Not available over Wi-Fi.

 Extremely limited payload size.

Note: You may occasionally hear references to EMS, the Extended Message Service. EMS is a
standardized extension of SMS that works by concatenating multiple SMS packets together
into a single larger message. EMS was invented to allow sending longer messages, and
especially to send small binary data files such as sounds and images. The technology is widely
available on handsets, but it has never really taken off in popularity. Given the increasing usage
of standard Internet technologies such as email, it seems unlikely that this situation will change
anytime soon.

MMS
SMS has proven extremely popular, but, over time, its architecture has not allowed it to
adapt to more data-intensive applications. Binary data delivery in SMS has always been
a bit of a kludge, and ever-increasing data usage has eliminated it as a feasible delivery
channel for large files. The rise of camera phones caused a corresponding increase in
the desire to share photos with others, and the Multimedia Messaging Service (MMS)
was created in order to provide this kind of data transfer.

MMS was born in the mobile world, but it was born in the Internet age. While SMS uses
existing carrier technologies to deliver messages, MMS operates along an Internet
backbone. Phones send and receive messages over an IP connection, meaning that
MMS is unavailable to phones without a data connection. On the other hand, MMS is a
service controlled by the carriers, and they do not allow just anyone access to their
servers. Mobile subscribers with a data plan can send and receive messages almost
without restriction; as with SMS, carriers require outsiders to be vetted before allowing
them to send messages into their network.

The core of the MMS system is the Multimedia Messaging Service Center, or MMSC.
Each carrier will have one of these centers, which is responsible for routing all MMS
messages to and from their subscribers. The WAP standard for MMS defines a set of
standard interfaces that an MMSC must provide.

MM1: Connection to mobile devices over the carrier’s network.

MM3: Connection to other servers for this carrier, most importantly an SMTP email
gateway.

MM4: Connection to other MMSCs for message routing.

MM7: Connection to Value Added Service Provider (VASP) offered by third parties.

Figure 4-3 illustrates three ways in which an MMS message could be created and sent
to a mobile handset.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 119

Figure 4-3. Generating and delivering MMS messages

You can generally send a few messages to MMS via email, but for large-scale message
distribution, you will need to get an agreement with the carriers or go through a message
aggregator. When this happens, you become a Value Added Service Provider. You can
use MMS messages to communicate directly with your users, or to carry multimedia
data to an application on their phone.

SMS messages were tightly constrained by existing carrier infrastructure and had to
conform to those limits. In contrast, MMS messages were designed to be flexible and
expandable. A single MMS message is transmitted in a Protocol Data Unit, or PDU. The
PDU contains a set of message headers that include data such as the recipients, the
size of the message, delivery confirmation requests, and other factors. After the headers
come one or more attachments. Each carrier can mandate what media formats a phone
must accept, and OEMs can choose to add additional formats, so you should check
with your target carrier to see if they support your desired media on your targeted
devices. However, all major MMSCs include transcoders, which are specialized services
that translate attachments into compatible formats. For example, if you attempt to send
a 640×480 resolution BMP to a device that only supports JPEG format up to 320×240,
the MMSC will automatically convert the message attachment before it reaches the
recipient. An MMSC can even split up a video file into a slideshow of still images. This
can be very useful for ordinary use, but is a fact you should be aware of when sending
messages: you cannot assume that the file you send will be binary equivalent to the file
the phone receives. Again, support varies, but nearly all picture phones support JPEG
and PNG images and MIDI and AMR audio, and nearly all video phones support 3GP
video.

One important, extra piece of information in an MMS message is a Synchronized
Multimedia Integration Language, or SMIL, attachment. This is a special type of
attachment that describes how the other components within the message should be
presented. The SMIL defines a series of slides, each of which will display for a specified
length of time, and it can include some combination of text, image, and video. It’s
possible, therefore, to construct fairly elaborate messages with synchronized sound for
an impressive impact. Figure 4-4 shows one possible configuration of such an MMS
message. In practice, however, MMS messages are rarely used for anything more than

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 120

sending captured images or videos from the phone. The SMIL is almost never of any use
when using MMS outside the phone’s built-in messaging application, and it can be
safely omitted without any repercussions.

Figure 4-4. A user-created MMS message

MMS is an interesting technology with some useful applications, but has never really
taken off in popularity the way SMS has. A variety of factors have played into this.
Carrier interoperability is not as strong for MMS as for SMS, with some carriers
eschewing support altogether or offering different solutions. MMS is usually only
available for camera phones with data plans, which includes most BlackBerry devices
but not a lot of ordinary low-level phones. A user must also explicitly sign up for MMS
messaging, which may or may not be bundled with SMS messaging, and which has the
same sorts of costs associated with it. Finally, the increasing availability of email clients
on smartphones and high-level feature phones has made it easier than ever to attach
and send media off the device, which provides an alternative to the reason for MMS’s
existence.

From an application developer’s viewpoint, MMS can be a compelling choice when you
want to send or receive multimedia content from a compatible phone, and you are sure
the users’ service plans include MMS. If you plan to run on a wide variety of devices
across multiple countries and regions, though, you would be better off finding another
solution. As with SMS, it is generally a good idea to view MMS as a channel to enhance
the value of your app rather than a requirement for the app to function properly.

Pros
 Native support for sending and receiving multimedia content.

 Based on an open standard that allows communication with
nonBlackBerry devices.

 Supports large message payloads.

 Can generate attractive messages when sent directly to other users.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 121

Cons
 Most users are charged for each message sent or received, or have a

limited number of free messages.

 Lower level of interoperability between carriers.

 Requires connection to the carrier network; cannot send over Wi-Fi.

 Many users have devices that do not support MMS or do not include
MMS in their subscription plans.

 Transcoder can modify message contents without your knowledge.

Email
If people know one thing about BlackBerry devices, it’s that they are great for email.
Since their inception people have praised the combination of keyboard and network
connection that, for better and worse, always makes it feasible to stay connected via
email.

Most BlackBerry devices have access to the public Internet, and depending on how the
device is configured, most users will be able to add personal email accounts to the
device. This requires configuring the mail client for the device, a process similar to
configuring a desktop email program such as Outlook.

In the majority of situations, email is configured so outgoing messages are sent through
an SMTP server. When the user composes and sends mail from their private account, it
is routed through the BlackBerry infrastructure and sent to the configured SMTP server.
After it enters the SMTP server, it is treated exactly the same as if you sent from your
desktop computer. Unlike SMS or MMS, there is no carrier-specific step in here; as long
as you can reach the Internet, whether over the mobile network or through a Wi-Fi
access point, you can send email. Figure 4-5 shows how a BlackBerry device can
access email services over the network.

Figure 4-5. A BlackBerry client sends an SMTP message

Similarly, devices are often configured to retrieve email from POP3 or IMAP servers. The
BlackBerry Internet Service will check for new messages periodically or when prompted
by the user, and it can automatically download new messages that it finds. Such
incoming messages will be directed to the user’s inbox. Depending on the device

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 122

software version and user configuration, all email may be dumped into a single inbox, or
each account may have its own separate inbox.

When sending or receiving messages this way, synchronization inconsistencies may
appear. For example, if you send a message from your BlackBerry device, you probably
will not be able to view it on your Outlook client later. Certain web-based email
providers, such as Gmail, do a better job at providing a unified view of all messaging
activity on a given account. In all cases, though, the details will depend on how a given
user has set up their particular accounts.

In the real world, email is ubiquitous. Everyone has at least one address, and most users
will not mind giving you an email address to contact them. In the mobile world, email is
very common on smartphones, but still quite rare on feature phones and low-end
consumer phones. Many users can be expected to have access to email on BlackBerry
devices or similar phones, but do not make this assumption for mobile users in general.

Email is a convenient way to exchange data, and sharing information via attachments is
rather common. In some cases you can attach arbitrary blocks of binary data to a
message and pass it straight through to an application. However, given the constant
threat of email viruses, email providers increasingly block attachments that they do not
recognize, both on incoming and outgoing mail. These filters vary in quality. Sometimes
you can simply rename to a well-known extension type such as .bmp, but most modern
filters will scan the actual content of attachments and reject those that are unknown or
not approved.

Email is almost always free to send and receive, but the data usage and time on the
network may not be. Be sure to warn users if you will be transmitting large messages
over email (or really any type of connection). Otherwise, you will be blamed when their
large monthly service bill arrives. Additionally, individual email providers’ policies vary
widely on the details of maximum message size, attachment size, and total traffic
allowed.

Consider using email when you need a message-based way to transmit data to and
from the device, are mainly targeting BlackBerry and similar platforms, and do not mind
the possibility that your application’s data will end up in the user’s inbox. In most cases
where email is feasible, you should probably first consider using a traditional HTTP
server connection. That architecture is much more traditional, reliable, and controllable.
Email may be a better solution if you’re looking to develop a peer-to-peer application
without a central server infrastructure, or if you intend to generate human-readable
emails.

Pros
 Available over Wi-Fi and mobile networks.

 Stored delivery: messages will be delivered even if the recipient is not
currently connected to the network.

 Large messages can be sent and received.

 Good support for text and binary attachments.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 123

 Excellent interoperability with all other email addresses and nearly all
other email clients.

Cons
 No guarantee any individual user will have a private email account on

his or her BlackBerry device.

 Inconsistent policies on allowable attachments, message sizes, and so
on.

 Very visible to the user.

 Cannot be applied for many platforms other than BlackBerry.

BES Email
Internet-based email is no longer as rare as it once was on mobile phones, thanks to the
increasing proliferation of well-designed smartphones. However, BlackBerry continues
to hold the edge in email thanks to its BlackBerry Enterprise Server (BES) service. BES,
used by corporate users around the world, allows people immediate access to their
business email accounts, no matter where they are. BES continues to evolve, and its
details can be difficult to pin down, but you can think of it as being a little like a Virtual
Private Network (VPN). When users connect through their BES, they gain access to their
company’s secure infrastructure, including the email accounts.

BES users are almost always corporate users. They likely were given the phone by their
employer, and their service bills may be subsidized, as well. In exchange, they are
expected to play by the company’s rules. Keep this profile in mind when developing
apps that depend on a BES email account. However, it is possible for individual users to
gain access to a personal BES through subscription. This generally involves a monthly
subscription fee in exchange for receiving the benefits of a BES.

A BES has several interesting features. First, enterprise email is synchronized. Unlike
regular email accounts, which may have messages scattered across multiple desktop
and mobile devices, a BES email account resides in a single canonical location, and all
clients accessing it share a unified view into its contents. Changes made at any terminal
will be reflected in all of them, so deleting or reading a message on your phone means
you won’t need to deal with it again at work the next day.

The second, and most striking, feature of BES email is that it is a true push email
service. Unlike other mail programs that require you to push a button to check for mail,
or that check for mail on an interval, your BES will notify you the instant a new message
comes available. In this respect, BES is closer to SMS than to traditional email. This also
helps account for BlackBerry devices’ infamous addictive properties. When people are
instantly notified of new messages, they are more inclined to respond quickly.

Figure 4-6 depicts a simplified view of the BES environment. As shown in this figure, a
BES involves a level of integration between the company network, the wireless carrier
network, and RIM’s own custom infrastructure. All these pieces work together to provide

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 124

a high degree of reliability and access. Recent versions of the BES environment support
providing access to BES email over Wi-Fi even if the wireless carrier network is not
available.

Figure 4-6. Communicating from a remote BlackBerry device to a corporate email account

While the delivery mechanism for a BES is more interesting than that of a regular email
account, the actual message contents themselves are identical. You can still create fairly
large, long messages, and add attachments. However, BES administrators can be quite
strict in how they administer their users’ accounts. This may involve actions such as
blocking certain types of attachments or only allowing communication to certain other
email addresses. In all cases, you should avoid hijacking a user’s BES email account for
a private application. At best you are increasing load on their servers; at worst, you may
be gaining access to confidential information. On the other hand, if you are writing an
app for one or more businesses, a BES can be a great data transport mechanism: all of
your users are guaranteed to have access to it, and you know in advance what the email
policies are. Just be sure to clear your plans with the appropriate administrator before
getting too far, or they may cut you off.

Pros
 Push email offers near-instant delivery, provided the device is

available.

 Stored delivery: messages will be delivered even if the recipient is not
currently connected to the network.

 Large messages can be sent and received.

 Good support for text and binary attachments.

 Available over Wi-Fi and mobile networks.

 Consistent environment for corporate users.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 125

Cons
 Not available to most private users.

 Not available if porting to devices other than BlackBerry.

 May involve restrictive security settings.

 May be inappropriate to mix application messages with business emails.

BlackBerry PIN Messaging
The previous section described how RIM’s custom infrastructure—separate from, but
integrated with, the wireless carrier network and private business network—is used to
provide push email and other useful features to BES users. That infrastructure can be
used even apart from email to provide a truly unique form of messaging.

Any given mobile device will have several numbers attached to it. These include the
Mobile Device Number (MDN), which you dial to ring the device; the Mobile Equipment
Identifier (MEID), which uniquely identifies the physical phone, and possibly others as
well. In addition to these numbers, every BlackBerry device has a BlackBerry Personal
Identification Number (PIN). This number allows RIM’s infrastructure to recognize every
device that connects with it, even if it has been resold or changed wireless carriers.

Any BlackBerry connected to the Internet and the RIM infrastructure can be located, so if
you know another user’s PIN, you can directly message them through the network, as shown
in Figure 4-7. Note that this is possible even if you do not know the other user’s email address
or phone number. PIN messages are sent over the data channel, through the network, and
are available even if the user cannot access the wireless network or is using the voice channel.

Figure 4-7. A BlackBerry PIN-routed message

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 126

Recent BlackBerry devices take advantage of this capability to offer a form of instant
messenger, similar to AOL Instant Messenger or Skype. Once you receive a PIN
message, you can immediately reply to the recipient. If they are in your contacts, you will
be able to see their full name and not just the PIN.

PIN messages are interesting for several reasons. First of all, they are truly peer-to-peer.
You cannot generate them outside a BlackBerry device, and they are not dependent on
any other server to store and forward. They also have an extremely high level of
integration with BlackBerry devices. You cannot assume that every BlackBerry device
uses a BES, and you cannot assume that every user has a text messaging plan, but by
definition every device has a PIN.

Note: In certain cases, such as a device being reported stolen, the PIN may be unavailable for
messaging.

There are limits on the size of a PIN message. They are quite generous for text, but may
be too small for large sections of binary data. Devices with software versions 4.2 or later
currently can send messages with a subject of up to 255 Unicode characters and a body
of up to 30,835 Unicode characters. On software version 4.1, the limit was still 255
characters for the subject, and only 16,385 for the body. These same limits apply to the
text portion of a sent or received email.

If you are planning on targeting only BlackBerry devices and have access to your users’
PIN numbers, this form of messaging may be an appropriate platform. It can certainly
make for a compelling technology demo.

Pros
 Instant push notification.

 Available to virtually all BlackBerry devices.

 No extra cost for usage, other than data used.

Cons
 Restricted to BlackBerry devices only.

 Must obtain the PIN number.

 Not appropriate for large binary messages.

Sending Text Messages
BlackBerry devices support JSR 205, the Wireless Messaging API 2.0. This standard
Java framework allows application developers to create applications that run on a

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 127

variety of platforms and carriers, leveraging well-known techniques to easily integrate
wireless messaging into their apps.

WMA is an extension of the GCF, the Generic Connection Framework that is the basis
for nearly all forms of resource access on mobile Java devices. As with other GCF
interfaces, you obtain a MessageConnection by issuing a request to the general
Connector.open() method. When sending SMS messaging, the protocol is sms://. The
contents after the protocol part should show the address where the messages will be
delivered. One possible address would be "sms://+14155550100". In this case, we are
sending a message to a number in America (+1), in the city of San Francisco (415), with
a seven-digit phone number (5550100). As when sending SMS messages using the
phone’s built-in messaging application, the phone will not know at the time you create
the message whether the recipient can receive texts or even exists.

Note: SMS and MMS classes are located in the javax.wireless.messaging package.
Many classes have generic names like Message that match the names of classes in other RIM
packages. Therefore, you may need to selectively import the classes you use or use fully
qualified class names within your code. From the context of code examples it should generally
be clear what classes to import, but I will point out the package names in cases where it may
seem ambiguous.

Creating Texts
Once you have obtained a MessageConnection, you can create the specific type of
message that you intend to send by calling MessageConnection.newMessage(). You must
provide the type of message to be sent, which can be one of
MessageConnection.TEXT_MESSAGE, MessageConnection.BINARY_MESSAGE, or
MessageConnection.MULTIPART_MESSAGE. You may also specify an address, although this
is superfluous since messages will be sent to the address provided to
Connector.open(). Figure 4-8 shows the interface hierarchy for objects returned from
newMessage().

Figure 4-8. Available message types on BlackBerry devices

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 128

Both TextMessage and BinaryMessage objects will be sent over SMS. As discussed in the
previous section, the size of an SMS message payload is fixed, but it can be encoded in
different ways. A TextMessage can set its body with the setPayloadText() method,
which allows up to 160 ASCII characters in a single message. The following code shows
how to create and send a basic text message from your program.

 MessageConnection smsConnection = (MessageConnection)Connector.open
 ("sms://+14155550100");
 TextMessage bottle = (TextMessage)smsConnection.newMessage
 (MessageConnection.TEXT_MESSAGE);
 bottle.setPayloadText("Sending out an SMS");
 smsConnection.send(bottle);

Note: send() is a blocking synchronous method, so this method will not return until after the
message has finished transmission or an error occurs. As such, you will always want to send
your messages from a separate thread.

Sending Data
WMA provides a powerful tool for application developers by allowing you to specify a
destination port number for your message. Regular messages like the one shown above
will be delivered to the recipient’s built-in inbox, but messages sent to a particular port
will be delivered to applications that are listening on that port. This allows you to easily
use messages to deliver data to and from applications. Note, though, that there are
some complications to this process. First, under the hood, port numbers are included in
the payload of the sent SMS message, and thus take away from the available space.
Second, wireless carriers have only inconsistently implemented SMS ports. Most GSM
(Global System for Mobile) carriers make ports available, but support in CDMA (Code
Division Multiple Access)is rarer. Even when CDMA phones do support text message
ports, they may use custom and incompatible methods for embedding the port number.
This makes interoperability between carriers extremely difficult, particularly if you do not
know what carrier a recipient is using.

WMA 2.0 helps circumvent the problem of port numbers occupying extra space by
mandating that OEMs support message division and reassembly. Since only 160 octets
are available in an SMS, the messaging platform must split the single message into
multiple SMS messages, each containing extra data describing reassembly, if an
application attempts to send a message containing 180 octets. On the receiving end,
phones must detect such split messages and reassemble them into a single message
before delivering them to listening applications. WMA mandates that implementation
support splitting into up to three messages, although they may choose to support more.
This ability is useful, but it is important to carefully consider your audience. If you know
that all users will have BlackBerry devices or similar phones that support WMA 2.0, you
can rely on this behavior; however, if messages are sent to other phones that do not
implement message reassembly, the received messages will appear garbled.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 129

The combination of binary message support and the ability to direct messages to
particular applications can make text messages an attractive data delivery vehicle.
Consider, for example, writing a play-by-SMS chess game. Both players would have a
copy of the app on their phone showing the board. Whenever a move is made, the
game sends the details of that move to the opponent’s phone number. When that phone
receives the move, it notifies the user and updates their local view of the board. This
game takes advantage of the store-and-forward design of existing SMS infrastructure,
so if one player’s phone is turned off, the message will wait until the phone becomes
available. The following code demonstrates how to construct and send such a binary
SMS message.

MessageConnection smsConnection = (MessageConnection)Connector.open
 ("sms://+14155550100:5000");
BinaryMessage chessMove = (BinaryMessage)smsConnection.newMessage
 (MessageConnection.BINARY_MESSAGE);
byte[] move = new byte[]{1, 3, 4, 'k', 3, 5};
chessMove.setPayloadData(move);
smsConnection.send(chessMove);

When Things Go Wrong
The previous code examples omit exception handling for clarity. However, it’s critical for
real applications to recognize and respond to errors. Wireless messaging is fraught with
connectivity issues, and other problems can arise, as well. You should be prepared to
deal with the following exceptions:

 IOException can be thrown in a variety of situations, including when
the network is unreachable or the message is rejected by the carrier.

 A SecurityException occurs if the application has not secured the
necessary permissions.

 ConnectionNotFoundException is thrown if the protocol type is not
known.

 An InterruptedIOException means that the message could not
complete sending or receiving. This happens if a timeout occurs or
another thread shuts the MessageConnection during transmission.

 IllegalArgumentException generally indicates a programming bug and
means that the parameter is invalid.

Whenever exceptions occur, try to recover and continue gracefully. You will generally
want to notify the user with a message such as “Unable to connect. Please confirm that
your device has service and try again.” If you are allowing the user to directly set the
phone number or message payload, then suggest that they check those, as well.

In all cases, be sure to clean up your connections in all exit situations. This is a good
programming practice in general, and is especially important on limited-resource mobile
devices. If you fail to clean up a MessageConnection, future attempts to send messages may
fail. You can usually accomplish this best through use of a finally block, as shown below.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 130

public void sendMessage() throws IOException
{
 MessageConnection conn = null;
 try
 {
 conn = (MessageConnection)Connector.open("sms://+14155550100");
 // Use the connection to create and send a message.
 }
 finally
 {
 if (conn != null)
 {
 conn.close();
 }
 }
}

The finally block ensures that whether or not an exception occurs, the connection is
cleaned up.

Caution: Robust exception handling is usually omitted from the small samples of code within a
chapter. The resulting code is usually easier to read, but certainly not appropriate for
production-quality code. Keep this in mind as you work through a chapter.

System Setup
In order to send messages, your application will need to declare appropriate
permissions within its JAD or manifest. Application permissions are covered in more
detail in Chapter 9. For now, just be aware that in order for your code to run on the
device, you will need to include the following permissions.

javax.microedition.io.Connector.sms: Required to open an SMS connection.

javax.wireless.messaging.sms.send: Required to send the actual SMS message.

The full permissions directive will look like the following, with any other required
permissions also added.

MIDlet-Permissions: javax.microedition.io.Connector.sms,
javax.wireless.messaging.sms.send

If you fail to declare these permissions, users will still be able to install and run your app,
but a SecurityException will be thrown when you try to use SMS.

WMA also defines a system property for the SMSC. As discussed in the first section, the
SMSC is the piece of equipment that handles the actual delivery of SMS messages. You
can retrieve the SMSC by retrieving the wireless.messaging.sms.smsc system property
as follows.

String smscAddress = System.getProperty("wireless.messaging.sms.smsc");

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 131

The SMSC is generally provided as a phone number on the carrier network, such as
+15555550100. You won’t access this number directly, but it is a great way to determine
what SMS provider a given user has. Once you learn the SMSC addresses for carriers in
your desired regions, you can use this information to make decisions about any special
handling that a given carrier may require.

Sending SMS on CDMA
Speaking of special handling, one of the most significant workarounds you’re likely to
face is the difference between GSM and CDMA carriers. WMA was specifically designed
to be carrier-agnostic, and on most other platforms you can happily reuse code for both
GSM and CDMA. On most BlackBerry devices, though, SMS messages will fail to send
from CDMA devices. This is a known issue that affects the 7130, 7250, 8703e, 8830,
Curve 8330, and Pearl 8130 phones. It appears to have been fixed for more recent
CDMA models including the Storm 9530 and beyond.

Note: Code Division Multiple Access (CDMA) and the Global System for Mobile (GSM) are the
two most widely used wireless technologies. They use fundamentally different methods for
wireless communication, so a GSM phone cannot be used on a CDMA carrier or vice versa. For
the vast majority of applications, it makes absolutely no difference which type of phone you are
running on. However, RIM and other OEMs must use different CPUs and architectures for the
different types of devices, so in certain edge cases such as this, discrepancies will crop up.
These can be frustrating, but the issues are generally fairly well documented. To determine
what type of network you are using, call RadioInfo.getNetworkType().

Fortunately, RIM has a work-around available for affected phones. Instead of using the
WMA MessageConnection and Message interfaces, send a UDP packet via a
DatagramConnection. This does make a certain amount of sense—SMS messages do
appear somewhat similar to UDP in structure and purpose. You should still use the
existing SMS protocol when addressing the recipient of the message. A short example
follows.

if (RadioInfo.getNetworkType() == RadioInfo.NETWORK_CDMA)
{
 DatagramConnection backDoor = (DatagramConnection)Connector.open
 ("sms://+14155550100");
 byte[] data = "You cannot stop me".getBytes();
 Datagram dg = backDoor.newDatagram(backDoor.getMaximumLength());
 dg.setData(data, 0, data.length);
 backDoor.send(dg);
 backDoor.close();
}

Note that there is no distinction here between a regular text message and a binary
message; you simply send bytes in both cases. Other BlackBerry devices will detect and
interpret these messages correctly, but other phones may interpret them as binary data

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 132

and not be able to display as regular text. In addition, note that this method generally
does not work for GSM devices. If you plan to run on both types of network and intend
to use SMS messaging, you will need to create separate versions for each network or
detect the current network and use one strategy or the other.

Sending Multimedia Messages
SMS is a good go-to technology for compact messages—either bits of human-readable
text or small custom binary messages. When considering how to move large pieces of
multimedia data on and off the device, think about MMS as an option. MMS messages
can be built using the same WMA framework used by SMS messages, but offer much
more capacity and more flexibility in message construction.

Caution: MMS support in BlackBerry is still relatively new, having only become available with
device software version 4.6. There were several bugs with RIM’s initial implementation of
MMS. These problems have been fixed starting with device software version 5.0, but to be
safe, be sure to test on actual devices early in your development cycle. Also, because carrier
MMSCs are closed to traffic from outside their wireless network, you will not be able to test
MMS messages from the BlackBerry Simulator.

Talk to the World
MMS messages can be addressed to mobile phone numbers, but also to short codes,
email addresses, even IP addresses. This offers a great deal of flexibility when designing
your application architecture. Instead of a peer-to-peer app design, you might choose to
send data over MMS to an email address and have a server component that receives
those messages and acts on them. Therefore, while the general form of constructing a
MessageConnection is similar to that for SMS messages, you have more options
available.

MessageConnection mms = (MessageConnection)Connector.open
 ("mms://+14155550100");
MessageConnection mms = (MessageConnection)Connector.open
 ("mms://sally@email.com");
MessageConnection mms = (MessageConnection)Connector.open
 ("mms://127.66.0.255");

Because MMS messages are more closely aligned with the Internet world than the
telephonic world, you also have the option of directing messages directly to an
application ID. Similar to the port in an SMS message, this allows you to send a
message directly to an application that has registered for to handle those messages. To
avoid conflicts, you should use a unique namespace when selecting an application ID. If
you do not specify an application ID, the message will be delivered to the phone’s
default message client.

Download at WoweBook.Com

mms://sally@email.com
mms://127.66.0.255

CHAPTER 4: Wireless Messaging 133

MessageConnection mms = (MessageConnection)Connector.open
 ("mms://+114155550100:com.apress.king.mms");

Constructing Parts
An MMS message can contain one or more pieces of content. Each piece is represented
as a separate MessagePart. A MessagePart’s primary job is to contain data, such as the
actual sound, image, or text. You can set binary data directly on the MessagePart, or
assign an InputStream to it to make it read in the data. In addition to the data, you can
set the following pieces of metadata on the MessagePart:

 A MIME type describes the format of the data, such as "image/jpeg"
or "audio/amr".

 The Content ID uniquely identifies this message part.

 The Content Location provides a filename.

The following code demonstrates how to create MessageParts. For convenience, the text
data is set directly from bytes and the image data is loaded through an InputStream, but
both could be set in either way.

String captionContent = "It's a boy!";
String captionContentId = "text_boy";
String captionContentLocation = "/boy.txt";
MessagePart textMessagePart = new MessagePart(captionContent.getBytes(), 0,
 captionContent.length(), "text/plain", captionContentId,
 captionContentLocation, null);
InputStream imageContent;
String imageContentId = "img_boy";
String imageContentLocation = "/photo.png";
imageContent = getClass().getResourceAsStream(imageContentLocation);
MessagePart imageMessagePart = new MessagePart(imageContent, "image/png",
 imageContentId, imageContentLocation, null);

If sending to another MMS-capable phone, you might consider adding a SMIL as well.
This is a special type of MessagePart that is used to control the display of other
attachments in the message. It allows you to divide a message into multiple slides,
specify how long each should display, group together audio, image, and text elements,
and set up repeating loops. A full discussion of SMIL is beyond the scope of this book;
for more details, you can view the specification defined by the W3C, available online at
http://www.w3.org/TR/REC-smil/. An example of creating a simple SMIL follows.

String smilContent =
 "<smil>" +
 "<body>" +
 "<par dur='15000ms'>" +
 "" +
 "<text src='boy.txt' />" +
 "</seq>" +
 "</body>" +
 "</smil>";

Download at WoweBook.Com

http://www.w3.org/TR/REC-smil

CHAPTER 4: Wireless Messaging 134

String smilContentId = "start";
String smilContentLocation = "/first.sml";
MessagePart smilMessagePart = new MessagePart(smilContent.getBytes(), 0,
 smilContent.length(), "application/smil", smilContentId,
 smilContentLocation, null);

SMILs will almost always be omitted if your MMS message is intended to transmit data
to an application or a server, as presentation is not generally important.

Making the Message
Apart from the addition of attachments, MMS messages also add additional options to
the message itself. We have already discussed the different addresses an MMS
message can include, such as phone numbers and email addresses. Unlike an SMS,
which is sent to only a single recipient, an MMS message can have multiple recipients.
In addition, MMS messages support the email-style address types of “to” (main
recipients), “cc” (carbon copy, secondary recipients), and “bcc” (blind carbon copy).
“bcc” recipients will receive the message, but their addresses will not appear in the
message, so other recipients will not see those addresses. “bcc” may be a good choice
if you want to send a single message to many recipients while protecting their privacy.

MMS messages offer several other fields that may be useful:

 You can set the subject, which may be presented to the recipient
before they choose to download the message.

 The start content ID refers to the SMIL attachment, if one exists, and
directs the MMS transport to place it appropriately in the final
message.

 You can set message headers. Two are defined and available for
direct use.

 X-Mms-Delivery-Time specifies when the message may be delivered
to the recipient. It may be delivered later than this, but not earlier, and
is appropriate for sending holiday greetings or similar timed messages
in advance. The value should be the number of milliseconds since the
Unix epoch.

 X-Mms-Priority may be set to one of “high”, “normal”, or “low”. This
does not affect message delivery, but it may result in different
presentation to the recipient.

The most important aspect of an MMS message, though, is the assembly of its
attachment parts into the final message. You may add attachments in any order. As
noted earlier, the start content ID should be set to indicate the SMIL if it is present; the
SMIL information will control how the other parts are presented.

MMS messages can be large, but not unlimited. Carriers will generally set message
limits on individual phones within their networks. You can expect to be able to send at
least a few hundred kilobytes in a single MMS, and possibly as much as a megabyte or
above for phones with high-quality cameras. In addition to the carrier limits when

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 135

sending a message, you may run into limits when simply composing your message. If an
attachment causes the message to exceed the size limit, or run out of memory, the
operation will fail with a SizeExceededException.

The following code demonstrates how to create an MMS message, configure it, and
attach the previously created media files.

MessageConnection mms = (MessageConnection)Connector.open
 ("mms://+14155550100");
MultipartMessage birthMessage = (MultipartMessage)mms.newMessage
 (MessageConnection.MULTIPART_MESSAGE);
birthMessage.addAddress("to", "+14155550101");
birthMessage.addAddress("to", "aunt.dotty@server.com");
birthMessage.addAddress("bcc", "my_email@work.com");
birthMessage.setSubject("The moment you've been waiting for...");
birthMessage.setStartContentId("start");
birthMessage.addMessagePart(textMessagePart);
birthMessage.addMessagePart(imageMessagePart);
birthMessage.addMessagePart(smilMessagePart);

Get Out Of Here
Configuring an MMS requires a fair amount of work, but once you are ready, it is sent
using the exact same technique as an SMS. Again, the method will block until the
message is sent or an error occurs. Keep in mind that long messages take even longer
to send than short messages, and handle message sending in a separate thread.

mms.send(birthMessage);

Plugging In to Email
If SMS is the dominant form of messaging on wireless devices, email is certainly the
dominant form in the rest of the world. Everybody has an email address, and people are
increasingly sending and receiving emails while on the go. BlackBerry devices have
always had a strong level of integration with email, and you can take advantage of this
affinity when moving data off the handset. Turn toward email when you want to move a
relatively large amount of data off the device in a standard format.

Taking Account
Email is so popular on BlackBerry devices that a given device may have many accounts
registered. These may range from highly encrypted push email accounts delivered over
a BES to a basic free Gmail or Hotmail account. To support specialized network
behaviors, RIM uses the concept of a service book to describe the configuration of each
given account.

Service books are a unique property of BlackBerry devices that you will not find on other
mobile operating systems. They perform several functions, but most importantly each

Download at WoweBook.Com

mailto:dotty@server.com
mailto:email@work.com

CHAPTER 4: Wireless Messaging 136

book directs how an account connects to BlackBerry infrastructure, uses the mobile
radio, handles encryption, and directs traffic. Even a basic user’s device will contain
multiple service books—perhaps one for handling WAP traffic through the carrier’s
wireless network, another for unencrypted Wi-Fi browsing, two for email accounts, and
several more for essential device functions. Figure 4-9 depicts some possible service
book configuration.

Figure 4-9. Representation of BlackBerry service books

Note: Most documentation uses the term service book to describe these types of accounts.
However, the RIM API uses the term service record to describe each individual account, and
service book to describe the sum collection of all device accounts. I will use the term service
book in this section due to its more common usage.

Any given device will contain many service books, but few of interest when sending
email. Once you have retrieved the appropriate service book, you can create an email
session for that account. The session is used to associate your email activity with the
proper account and ensures that “Sent From” and other information appears correctly in
outgoing messages. You can easily retrieve a session for the default email account as
follows.

Session defaultSession = Session.getDefaultInstance();

Caution: While rare, it’s possible that a user will not have any email account configured on
their phone, in which case attempts to retrieve the default session will return null.
Additionally, service book information may not be available immediately if the device has
recently powered on, in which case you can try again later and retrieve the account.

You may want to send from another email account. For example, a business BlackBerry
device probably has a corporate email address configured as the default, which is not
appropriate for sending messages from a game. You can query the device for all email
service books. Each service book has a content ID describing the general function of the
book. The content ID for email accounts is CMIME (Compressed Multipurpose Internet

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 137

Mail Extension). Once you have access to the accounts, you can select an appropriate
one for your application to use—or, better, present your user with the choice of which to
use. The following code shows how to scan through the available accounts on a device.

ServiceBook book = ServiceBook.getSB();
ServiceRecord[] records = book.findRecordsByCid("CMIME");
if (records != null)
{
 for (int i = 0; i < records.length; ++i)
 {
 ServiceRecord record = records[i];
 String name = record.getName();
 int type = record.getType();
 String description = record.getDescription();
 // Check to see whether to use this account. If so...
 ServiceConfiguration config = new ServiceConfiguration(record);
 Session emailSession = Session.getInstance(config);
 }
}

If you already know the account you wish to use, you can retrieve it via
ServiceBook.getRecordById(), ServiceBook.getRecordByCidAndUserId(), and similar
methods.

Creating the Message
Once you have obtained an email session for the account you wish to use, you can
construct and configure the message. The BlackBerry API exposes a message store that
holds all messages, both incoming and outgoing. The store, in turn, contains multiple
folders. You cannot create a stand-alone message; instead, you must create a message
within an existing folder. Create outgoing messages within the sent folder, as shown
next.

Store msgs = Session.getDefaultInstance().getStore();
Folder[] sentFolders = msgs.list(Folder.SENT);
Folder sentfolder = sentFolders[0];
Message msg = new Message(sentfolder);

Note: The BlackBerry mail classes are located in the net.rim.blackberry.api.mail
package.

Observe that the list() method returns an array of folders. This allows greater flexibility
with different mailbox configurations, but users are very unlikely to ever have more than
one sent folder. You can safely use the first sent folder that is returned.

Once you have constructed a Message, you can invoke appropriate methods on it to
configure the message. These include all the options you would expect in a standard
email client, including choosing recipients, setting priority, and picking a subject. Be
prepared to handle an AddressException if the recipient address is malformed. You also

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 138

have access to fields that are usually not accessible in other clients, such as configuring
the date a message was sent, or requesting a read acknowledgement via a flag. The
following code shows how you can programmatically write a message to a famous
BlackBerry user.

Address to[] = new Address[1];
to[0] = new Address("obama@whitehouse.gov", "Barack Obama");
msg.addRecipients(Message.RecipientType.TO, to);
msg.setPriority(Message.Priority.HIGH);
msg.setSubject("Mission complete");
msg.setContent("The job is done. Awaiting further instructions.");

Once your message has been composed, you can send it using the Transport. A
Transport handles the sending and receiving activities of a given email session. This
operation may fail with a MessagingException, which can occur if the message could not
be sent due to being rejected or encountering other problems.

Transport.send(msg);

Adding Attachments
Making the basic message is straightforward, but what if you want to add attachments?
Most of the message construction will still happen in the same way, but instead of
setting the content directly as shown above, you will need to construct a multipart
message. Much like multipart MMS messages, with email you can combine a series of
BodyPart objects into a Multipart container. Each BodyPart consists of a chunk of
binary data and a content type. For convenience, RIM offers several Part classes to use:

 TextBodyPart provides a simple way to set the text in a message that
also contains attachments. The content can be set with a String, and it
automatically has type text/plain.

 SupportedAttachmentPart is a more generic kind of Part that can
contain any type of content. You are responsible for setting the binary
data and content type appropriately. You should also declare the file
name used by the binary data.

Caution: You will see several more Part subclasses in the Java API. Be aware that some of
these classes are only used for incoming messages and cannot be applied when constructing
an outgoing email.

The following example shows how to construct and add attachments to a message. The
rest of the message can be configured in the same way as in the previous example.

Multipart multipart = new Multipart();
TextBodyPart text = new TextBodyPart(multipart, "The job is done.");
SupportedAttachmentPart image = new SupportedAttachmentPart(multipart,
 "image/jpeg", "plans.jpg", imageData);
byte[] secretKey = new byte[]{17, 33, 0, 127};

Download at WoweBook.Com

mailto:obama@whitehouse.gov

CHAPTER 4: Wireless Messaging 139

SupportedAttachmentPart key = new SupportedAttachmentPart
 (multipart, "application/octet-stream", "key.dat", secretKey);
multipart.addBodyPart(text);
multipart.addBodyPart(image);
multipart.addBodyPart(key);
msg.setContent(multipart);

Testing Sending
If you try to run an app that sends email from your device, the message will be sent
properly (assuming your email account is configured correctly and you have appropriate
permissions). However, if you attempt to send from the device simulator on your
desktop, the message will not be sent. What’s going on?

You cannot configure an email account on the desktop device simulator. This is
sensible, since the simulator connects through a simulated MDS connection that does
not actually connect to the real BlackBerry infrastructure. When you try to send a
message from the default messaging client, it will appear to be sent properly, but no
message is actually generated.

To work around this issue, RIM has developed a separate stand-alone application. Much
like the MDS, which simulates a BlackBerry network connection, the Email Server
Simulator (ESS) simulates a BlackBerry-supported email connection. The ESS provides
a bridge between the MDS and outside email, allowing you to test sending and receiving
email messages. If you plan on spending much time working with email in your app, I
highly recommend configuring the ESS early on. It will save you a great deal of time and
allow you to complete most of your development on the desktop.

Caution: The ESS is a local server, and you may need to modify your development machine to
allow it to run properly. If you run into problems while setting it up, try disabling your firewall,
turning off other local servers such as Apache, and running the ESS as an administrator.

The Email Server Simulator is not currently accessible directly through the BlackBerry
Eclipse plug-in, but you can locate it under your Eclipse plugins folder. The full path should
be something like c:\eclipse\plugins\net.rim.eide.componentpack4.7.0_4.7.0.46\
components\ESS. Run the load.bat file to launch the ESS. ESS is also available as part of
the standard RIM JDE install, which you can find on the BlackBerry web site. Once you
have installed the JDE, you will be able to find the Email Server Simulator in your Start
menu under the Research In Motion folder, as shown in Figure 4-10. Both methods of
installing and launching ESS work equally well. Running from the command line does
give the advantage of displaying debug output from the ESS, which can help when
tracking down issues.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 140

Figure 4-10. Locating the Email Server Simulator

The Email Server Simulator offers two different modes. The Connected mode will
connect to a third-party email account. If using connected mode, outgoing messages
from the BlackBerry simulator will create actual email messages from the configured
account. Unfortunately, Connected mode doesn’t work for several versions of the
MDS/ESS combination. Even when it does work, it is extremely limited: it can only send
through nonauthenticated, nonencrypted SMTP connections. There are very few of
those left today, due to spammers and other abusers.

The best mode to use, then, is Standalone mode. Instead of sending to an external email
account, this mode causes the ESS to behave like a simple POP3/SMTP email server. It
will store outgoing messages, and you can connect a third-party desktop email
application, such as Outlook Express, to retrieve and send messages. Figure 4-11
shows one possible configuration of Standalone mode. You can pick any port numbers
you want, which may be useful if the defaults are already in use on your machine. After
you have set up the simulator, click “Launch” to start running. You won’t see any log
information about what the ESS is doing.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 141

Figure 4-11. Configured Email Server Simulator

Now, download a standalone email client or open an existing one. Create a new account
and set both the POP3 and SMTP server addresses to “localhost”. This directs the email
client to access your local machine instead of an external mail server. Consult your email
client’s documentation to learn how to add an account. Figure 4-12 depicts adding an
account using Windows Live Mail.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 142

Figure 4-12. Adding a dummy localhost email account

Be sure to set the port numbers that you configured in the Email Server Simulator
window on the new account. This will usually be available under the advanced options,
as shown in Figure 4-13. Without the correct port numbers, the client will not be able to
connect with the ESS.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 143

Figure 4-13. Configuring matching port numbers on the email account

Before testing with your app, I highly recommend you send a test message from the
default BlackBerry message application. It doesn’t matter what address you use, as all
outgoing messages will be sent to the ESS. Compose the message like you would on
an actual device, as shown in Figure 4-14.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 144

Figure 4-14. Creating a test email message

After you send, the message should shortly become available in your desktop email
client. Figure 4-15 shows a properly received message. Check your spam folder if you
do not see it right away.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 145

Figure 4-15. A message delivered from the ESS to a desktop email client

Once your ESS is configured, you should be able to test sending messages from your
app when running in the simulator. These will be delivered to the desktop client, where
you can confirm that they contain the settings and attachments you expect to see.

Caution: If the ESS is not running, outgoing email messages will not be sent. This can prevent
other networking operations, such as HTTP connections, from working properly.

Receiving Text Messages
The earlier part of this chapter dealt with sending messages. Now we will look at how to
receive messages. Not every app will need both kinds of functions. You may just send
messages to share information about what your app is doing, or just receive messages
in order to activate functions within your app. Some peer-to-peer apps will do both. The
classes used to receive messages are usually the same as those used to send them, but
they are used in different ways.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 146

Getting the Message
The simplest case to handle is when your app is already running, and you want to be
notified of an incoming message. To do this, you will open a special kind of
MessageConnection that functions as a server instead of a client. In other words, you are
declaring an intention to handle messages that others send to you.

The format of a server connection string resembles that of a client string, but the phone
number portion is omitted, and instead you display only the port number. An example
follows.

MessageConnection receiver = (MessageConnection)Connector.open("sms://:4000");

Tip: On most BlackBerry devices, a connection string of “sms://:0” indicates that this app
wants to receive ALL incoming SMS messages. This should not be abused, as it will prevent
messages from being delivered to other apps.

Tip: As described above, if you wish to send SMS messages to your app from a server, you will
need to make an agreement with the wireless carriers or go through an SMS aggregator. SMS
aggregators are generally more accustomed to sending regular SMS messages and not port-
directed messages. To indicate that a message should be delivered to a particular GSM port,
use the TP-User-Data/User-Data-Header header when sending your server request to generate
the outgoing SMS message.

Once you have a MessageConnection, you have two choices. The method
MessageConnection.receive() blocks until a message is available. If you are running in a
separate message-handling thread, you may choose to just call receive() within a loop
to handle all incoming messages. Alternately, you may choose to register a listener with
the connection. By implementing the MessageListener class and calling
setMessageListener(), your main thread can continue running normally. Your
MessageListener class will later be invoked whenever a message becomes available.
Note that the invocation may run on your app’s main thread, so you should still spawn a
separate thread in this situation. A simple anonymous MessageListener may look like the
following:

receiver.setMessageListener(new javax.wireless.messaging.MessageListener()
{
 public void notifyIncomingMessage(MessageConnection connection)
 {
 Message incoming = connection.receive();
 // Handle the message here.
 }
});

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 147

Notice that we have declared the notifyIncomingMessage method to process the
message. Again, a real application should receive the message on a separate thread.

Waking Up
So far, this all works well as long as our app is running. But what if it isn’t running? If we
expect to receive messages on port 4000, and the phone receives a message for that
port while the app isn’t running, the message is simply discarded. It will not be
presented to the user, and the app will not be notified.

For BlackBerry CLDC applications, the simplest way to handle this is to have your
application automatically start on boot-up. It can then use the above approaches to
open a MessageConnection and either register as a listener or create a thread that calls
receive(). Once a message arrives, you can process it, calling
UiApplication.requestForeground() to bring up your UI if so desired.

MIDlets, however, cannot automatically start on boot-up. If you are writing a MIDlet, you
must register with the push registry. The push registry is a component of the device
AMS that is responsible for starting up apps when certain circumstances occur. In our
particular case, we want to register to handle incoming messages.

Push registry can take one of two forms: dynamic or static. Dynamic registration is done
through application code. Imagine that someone is playing a mobile version of chess.
They will start the game and start playing. The game notifies the push registry that it
wants to handle incoming messages to port 6060. During a particularly long wait, the
player exits the app so they can listen to some music. When the other player finally
moves, their device sends your player a message to port 6060. The AMS notices the
port number and automatically starts your chess game app back up again. At this point
you can retrieve the incoming message and show the latest move.

When registering with the push registry, you provide these three pieces of data:

 The connection URL describes the protocol and address of incoming
connections; this is equivalent to the string that will be passed to
Connector.open().

 The MIDlet class name is the fully qualified MIDlet class that should be
started when the message is received.

 The allowed sender indicates that the app should be started only if the
connection came from this source.

To register for all incoming SMS messages to a particular port, use something like this:

PushRegistry.registerConnection
 ("sms://:4000", "com.apress.king.chess.ChessGame", "*");

If you only want to receive from one specific sender, specify it in the last parameter.

PushRegistry.registerConnection("sms://:4000", "com.apress.king.chess.ChessGame",
 "+14155550133");

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 148

This method will throw a ClassNotFoundException if the class cannot be found, and an
IOException if these is some other problem, such as another application already
reserving the same port. You can call this method from a different class than the one
that will be invoked.

Dynamic registration can be handy. Among other advantages, it allows you to decide on
the fly what port you want to use, perhaps based on what’s available and what a server
wants to use. It’s also tougher for hackers to exploit a known port number and send
your app data it isn’t expecting. On the other hand, you cannot dynamically register an
app until it is already running. That works fine for a chess game, but it means your app
will no longer be started after the user reboots their phone, until they remember to start
the app themselves.

To get around this issue, consider using static registration. A static registration is
declared in your application JAD or MANIFEST.MF file, and is registered with the AMS at
the time the app is first installed. From that time on, your app will always be invoked
whenever a matching message is received, even if it has never run before. As the
example below shows, you provide the same information in static registration that you
would use in dynamic registration, just as a standard name-value pair.

MIDlet-Push-1: sms://:4000, com.apress.king.chess.ChessGame, *

If your app registers for multiple types of incoming messages, or for other types of push
notification, just keep incrementing the number after MIDlet-Push to MIDlet-Push-2, MIDlet-
Push-3, and so on.

Caution: Using static registration carries its own pitfalls. Your app must be guaranteed to start
when an appropriate message is sent, so it can be installed only if the user has not already
installed another app that registers for the same port number. To be as safe as possible, pick a
random number that is high in the available range, and stay away from well-known port
numbers.

We’ve Got Incoming
The push registry doesn’t use any special interfaces when launching your MIDlet for an
incoming message: it uses the same startApp() method that is used when the user
manually launches the app. To determine whether your app was launched by the AMS,
you should query the pending connections from the PushRegistry. If your app has
registered for multiple push types, there may be more than one push pending. Search to
find the proper one. Once you have located it, you can open the MessageConnection and
proceed as usual. The code that follows shows an example of retrieving the message
that launched this MIDlet.

String[] pendingConnections = PushRegistry.listConnections(true);
if (pendingConnections != null && pendingConnections.length > 0)
{
 for (int i=0; i<pendingConnections.length; i++)

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 149

 {
 String url = pendingConnections[i];
 if (url.startsWith("sms"))
 {
 MessageConnection messageConnection =
 (MessageConnection)Connector.open(url);
 Message incoming = messageConnection.receive();
 }
 }
}

Caution: RIM devices generally require a full phone reboot when you install an application with
static push registry. This is because the static push registry is initialized when the phone boots
up. This will be only a minor inconvenience to your users, but it can be frustrating for
developers and testers who may be loading an app hundreds of times. Consider omitting the
push registry entry on debug builds.

What Is It?
You now have a Message. That isn’t the end of the story, though. Remember that there
are two types of SMS messages: TextMessage and BinaryMessage. If you are certain
which kind of message you are expecting, you can cast directly to the form you want.
Otherwise, test for the specific type in order to determine how to access its parts.

Tip: BlackBerry CDMA phones may receive incoming plain text messages as type
BinaryMessage. To reconstruct the original text, just create a String from the byte payload.

TextMessage and BinaryMessage are the same classes used to create and send
messages, and you can retrieve the same type of information from both. In certain cases
the meaning changes. For example, the address in an outgoing message refers to the
recipient address, whereas the address of an incoming message refers to the sender
address. The following code shows how to retrieve information from a retrieved SMS
message.

String sender = incoming.getAddress();
if (incoming instanceof TextMessage)
{
 TextMessage text = (TextMessage)incoming;
 String body = text.getPayloadText();
}
else if (incoming instanceof BinaryMessage)
{
 BinaryMessage binary = (BinaryMessage)incoming;
 byte[] payload = binary.getPayloadData();
}

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 150

Testing SMS in the Simulator
The BlackBerry simulator will cheerfully send outgoing SMS messages. However, it is
quite difficult to receive incoming messages. RIM has released a Java application
named smsdemo that echoes back SMS messages from a specialized client. At present,
there isn’t a convenient way to inject an arbitrary SMS message into the simulator.

One possibility is to configure two simulators to connect with each other. Within Eclipse,
you can set the SMS source port and SMS destination port under the debug
configuration’s Simulator Network tab. When launching from the command line, you can
specify the ports via the /sms-source-port=[value] and /sms-destination-
port=[value] arguments. You should be able to start two simulators at the same time—
one from within Eclipse and the other from the command line—provided both simulators
are not in the same directory. The second simulator will complain about not being able
to open all its ports; you can ignore this message.

In theory, you should now be able to send from one simulator to the other. In practice,
this doesn’t currently work very well. The second simulator to start will be crippled.
Hopefully RIM will soon offer better tooling for SMS messages similar to what they offer
for email messages. Until then, it may be simplest to just run on the device.

Receiving MMS Messages
Once you are comfortable with the process of receiving SMS messages, you’ll find
receiving MMS to be very familiar. It uses the same MessageConnection interface to
retrieve messages, just with the mms protocol instead of the sms one. As with sending,
you can register a class name instead of a port number. You can use the push registry
for MMS in the same way you would for SMS. Once you are ready to receive, simply
retrieve the message as shown below.

MessageConnection receiver = (MessageConnection)Connector.open
 ("mms://:com.apress.king.mms");
MultipartMessage mms = (MultipartMessage)receiver.receive();

Caution: MMS messages can be quite large and take a long time to fully receive. Be sure to
receive in a separate thread from your main app. Consider showing some sort of progress
indicator to let your user know that the app is retrieving data.

Observe that the mms protocol will retrieve only MultipartMessage messages, so unlike
with SMS, there is no need to test for the class type before casting.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 151

Reading MMS
The incoming MMS message will have the same fields available that you could set for
outgoing messages. Simply call the accessors to pull out whatever information you are
interested in, as shown here:

String sender = mms.getAddress();
String subject = mms.getSubject();

Of course, you wouldn’t be using MMS if all you wanted were the sender and the
subject. To get at the attachment data for the message, retrieve the message parts.
Each part will contain a content ID, a content location, a MIME type, and data. If you
control the incoming messages to this app, you may know exactly what you will be
receiving and can directly get the attachments you need; otherwise, you may want to
scan all the attachments, and take appropriate behavior on each. The sample that
follows shows how to look for JPEG image and text attachments.

MessagePart[] parts = mms.getMessageParts();
for (int i = 0; i < parts.length; ++i)
{
 MessagePart part = parts[i];
 String name = part.getContentID();
 String type = part.getMIMEType();
 String file = part.getContentLocation();
 if (type.equals("image/jpeg"))
 {
 InputStream is = part.getContentAsStream();
 // Could set this picture on the UI or save it.
 }
 else if (type.equals("text/plain"))
 {
 byte[] messageBytes = part.getContent();
 String text = new String(messageBytes);
 // Could display this text.
 }
}

Testing MMS
Unfortunately, it is not currently possible to test sending or receiving MMS messages
within the simulator. MMS relies on a combination of SMS message delivery, a
cooperative MMSC, and data delivery to send messages. The simulator cannot easily
recreate this complicated environment.

Your best option will be to test on the actual device. Your phone will need to be able to
send and receive MMS messages through the native Message application in order for it
to be able to send or receive MMS messages within your app. If it can not, contact your
wireless carrier or IT administrator to properly set up your wireless data plan and IT
policy.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 152

If your app uses MMS heavily, deploying to the device every time you make a change
may be too labor-intensive. Consider writing a local test harness for the simulator
instead. Test to see whether or not you are running on the simulator; if you are, you can
omit the outgoing messages and invoke appropriate incoming methods. For example,
you might programmatically construct a MultipartMessage and proceed as if it had been
delivered from the MessageConnection.receive() method.

Reading Email
Email can be a great way to move data off your BlackBerry app. It also might be a good
way to receive data, but there are more complications to deal with. Because email isn’t
exclusively a wireless technology, its policies and standards tend to be more complex. If
you can clear those hurdles, though, email is usually the fattest message-oriented pipe
at your disposal.

Listening
The previous two sections discussed how your app could directly receive incoming SMS
and MMS messages. These capabilities allow an app to use wireless messaging as a
pure data channel, meaning the user will never see the actual messages. However, email
doesn’t have this sort of exclusive relationship. Your app cannot intercept incoming
email—if it could, just imagine the potential for abusive programs to wreak havoc with
business email accounts.

What you can do is listen for messages. After a message has been delivered to the
handset, the BlackBerry device will check to see if anyone has registered to be notified
of changes in a particular folder. You can join this notification list by implementing the
FolderListener interface. The following code shows the skeleton of a listener class.

public class ArrivingListener implements FolderListener
{
 public void messagesAdded(FolderEvent event)
 {
 if (event.getType() == FolderEvent.MESSAGE_ADDED)
 {
 // Handle arrived messages here.
 }
 }
 public void messagesRemoved(FolderEvent event)
 {
 // This method intentionally left blank.
 }
}

You must attach your FolderListener to a particular message store. The previous
section on sending email described how to find and retrieve an appropriate store. The
next example sets a store on the user’s default email account.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 153

Session session = Session.getDefaultInstance();
Store store = session.getStore();
ArrivingListener listener = new ArrivingListener();
store.addFolderListener(listener);

Note: You may want to use a dedicated email folder for your app. Because the user will see
incoming email messages, it will probably annoy them to have a large number of app-directed
messages delivered to their inbox. Depending on the user and the type of email account, you
may need the cooperation of an IT administrator to set up folders correctly.

Reading Messages
Incoming email messages contain all the same fields that you can provide to outgoing
messages. Once you have obtained the message, you can read those fields in directly,
as shown in this example:

net.rim.blackberry.api.mail.Message arrived = event.getMessage();
Address sender = arrived.getFrom();
String senderAddress = sender.getAddr();
String senderName = sender.getName();
String subject = arrived.getSubject();
int size = arrived.getSize();
byte priority = arrived.getPriority();

Note that the Address object contains multiple pieces of information about the sender.
Depending on your app design, you may care about the sending email address, the
associated name, both, or neither. The priority will correspond to one of
Message.Priority.HIGH, Message.Priority.MEDIUM, or Message.Priority.LOW.

For basic email messages with just a text component, you can retrieve the body text
directly as shown below.

String text = arrived.getBodyText();

This will return null if there is no body text in the message.

Reading Attachments
If the message contains attachments, they will be collected in a multipart message part.
Once you retrieve the multipart, you can iterate through the constituent parts and pull
out the individual attachments.

If you are building a general-purpose app that handles messages in a variety of formats,
this will require a fair amount of introspection. Individual parts might contain MIME data,
a downloaded attachment, plain text, and other pieces of content. You may need to
scan all the attachments to find what you are interested in, as shown in the following

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 154

example. On the other hand, if you know exactly what attachments you are expecting,
you can retrieve them directly.

Object contents = arrived.getContent();
if (contents instanceof BodyPart)
{
 // Read body
}
else if (contents instanceof Multipart)
{
 Multipart attachments = (Multipart)contents;
 int num = attachments.getCount();
 for (int i = 0; i < num; ++i)
 {
 Part part = attachments.getBodyPart(i);
 if (part instanceof SupportedAttachmentPart)
 {
 SupportedAttachmentPart attachment =
 (SupportedAttachmentPart)part;
 String type = attachment.getContentType();
 if (type.equals("image/png"))
 {
 InputStream image = attachment.getInputStream();
 }
 }
 else if (part instanceof TextBodyPart)
 {
 TextBodyPart body = (TextBodyPart)part;
 String message = (String)body.getContent();
 }
 else if (part instanceof MimeBodyPart)
 {
 MimeBodyPart attachment = (MimeBodyPart)part;
 String type = attachment.getContentType();
 if (type.equals("image/png"))
 {
 InputStream image = attachment.getInputStream();
 // Could display or save the image here.
 }
 }
 }
}

If a message is large, the device may initially download only the first portion of the
message. The user will be able to view important information like the sender and
subject, and possibly the first few lines of the message. The user can then decide
whether to download the entire message. To detect whether a particular part has been
fully downloaded, call hasMore() on the part. If additional data is available, your app can
request it to be downloaded by calling Transport.more(). Provide the BodyPart and true
if you want the entire part to be downloaded, or false to download the next available
chunk. The following snippet provides an example. Note that this method is not
synchronous. If you want to be notified when the body part has been retrieved, attach a
MessageListener to the message prior to calling Transport.more().

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 155

if (attachment.hasMore())
{
 Transport.more(attachment, true);
}

Caution: It bears repeating that you should use extreme care when listening for email
messages. Don’t put yourself in a position where you could be accused of eavesdropping on
confidential messages. Be sure to clearly state to the user how your app will be accessing
email, and ask for their permission when doing so.

PIN Messaging
All of the messaging technologies described so far exist on multiple platforms. PIN
messaging is the one form truly unique to BlackBerry devices. Each BlackBerry has a
unique PIN, and only BlackBerry devices have PINs. If your app is exclusively aimed at
BlackBerry users, PIN messaging offers an interesting way to exchange information.

Getting Pinned
The PIN number is exclusive to this particular device. You may be interested in using the
PIN even if not using PIN messaging, as it provides a way to uniquely identify each of
your users. You can access the PIN by retrieving it from the device info by calling
DeviceInfo.getDeviceId().

If you know the PIN number for another BlackBerry, you can send it a message. RIM
uses the same interfaces for constructing PIN messages as it does for constructing
emails: you will retrieve a store to an email session, then construct a message within
that store and send it. Once the message hits the network, though, it will be intercepted
by the RIM infrastructure and routed to the corresponding device.

You flag an outgoing message as a PIN message by adding a PIN recipient. PINAddress
takes the same form as a regular Address, but should be populated with the recipient’s
PIN number (represented as a String) and name. The rest of the message can be
configured as you would a regular plain-text email. You cannot add attachments to a
PIN message.

The following code shows how to construct, configure, and send a PIN message.

Store store = Session.getDefaultInstance().getStore();
Folder[] folders = store.list(Folder.SENT);
Folder sentFolder = folders[0];
Message msg = new Message(sentFolder);
PINAddress recipients[] = new PINAddress[1];
recipients[0]= new PINAddress("10000000", "Chris King");
msg.addRecipients(Message.RecipientType.TO, recipients);
msg.setSubject("Poke");

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 156

msg.setContent("You've been pinned!");
Transport.send(msg);

Receiving PINs
Receiving a PIN is also similar to the process for an email. You should add a listener to
the user’s email folder, which will be notified when an incoming message arrives. The
listener will receive all incoming notifications, for both email and PIN messages, so if you
are only interested in PIN messages, you should check the message type as shown in
the example below. Use the standard email access methods to pull out the PIN
message contents you are interested in.

public class PINListener implements FolderListener
{
 public void messagesAdded(FolderEvent event)
 {
 Message message = event.getMessage();
 if (message.getMessageType() == Message.PIN_MESSAGE)
 {
 String pinSubject = message.getSubject();
 String pinContent = message.getBodyText();
 }
 }
}

Caution: The message type functions are broken on several versions of the device software. If
the previous example doesn’t work on your particular platform, print out the value returned by
getMessageType() for an incoming PIN message, and then change the code to test for that
integer instead of for PIN_MESSAGE.

Unfortunately, PIN messaging is not supported on the BlackBerry device simulator. I
recommend using the Email Server Simulator and email messages for development on
the simulator, then switch to PIN messages when running on the actual device. Most of
your app logic should be able to remain the same, you will just switch between sending
to a PINAddress instead of an Address, or switch whether you test for a PIN_MESSAGE
type.

App: Sending and Receiving Media Messages
So far, our MediaGrabber is able to record media, save it to the local filesystem, and
play media back to us. That’s cool, but isn’t it a bit of a shame that we’re the only ones
who can enjoy it? Let’s enhance the app and come up with a way to pass media off the
device so we can share it with friends and family.

First, let’s take care of a little housekeeping. In Chapter 3 we saw how time-consuming
operations should run in a separate thread to keep the UI responsive. We also saw that
we needed to use a separate class to handle updates to our Screen that originated from

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 157

a new thread. We will have the same issue with sending media as we did with playing it,
so rather than reimplementing that special class again, let’s create a general-purpose
stand-alone class that is capable of handling asynchronous UI updates.

Listing 4-1 shows the implementation of StatusUpdater. Feel free to use this in any of
your own projects, as this is a fairly common task. You may also want to adapt it for
other types of Field objects other than simple text labels.

Listing 4-1. A General Class for Updating Label Elements Asynchronously

package com.apress.king.mediagrabber;

import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.LabelField;

public class StatusUpdater implements Runnable
{
 private LabelField status;
 private String message;
 private UiApplication app;

 public StatusUpdater(LabelField status)
 {
 this.status = status;
 app = UiApplication.getUiApplication();
 }

 public void sendDelayedMessage(String message)
 {
 this.message = message;
 app.invokeLater(this);
 }

 public void run()
 {
 status.setText(message);
 }

}

Next, let’s look at the main task of sending an outgoing message. To keep things nice
and organized, we’ll create a new class, SendingScreen. This Screen will allow the user
to enter an email address. Once the user selects send, the screen will compose a new
email message to that user, attach the media data, and then send it out. Listing 4-2
provides all the details.

Listing 4-2. Sending Media from the Device to an Email Address

package com.apress.king.mediagrabber;

import net.rim.blackberry.api.mail.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.MainScreen;

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 158

public class SendingScreen extends MainScreen
{
 private static final int STATE_INPUT = 0;
 private static final int STATE_SENDING = 1;
 private static final int STATE_SENT = 2;

 private int state = STATE_INPUT;

 private String contentType;
 private String filename;
 private String message;
 private byte[] data;

 private BasicEditField receiver;
 private LabelField status;

 private StatusUpdater updater;

 private MenuItem sendItem = new MenuItem("Send", 0, 0)
 {
 public void run()
 {
 send();
 }
 };

 public SendingScreen(String contentType, String filename, String message,
 byte[] data)
 {
 this.contentType = contentType;
 this.filename = filename;
 this.message = message;
 this.data = data;
 status = new LabelField("Please enter an email address.");
 receiver = new BasicEditField("Recipient:", "", 100,
 BasicEditField.FILTER_EMAIL | Field.USE_ALL_WIDTH);
 add(status);
 add(receiver);
 updater = new StatusUpdater(status);
 }

 public void makeMenu(Menu menu, int instance)
 {
 if (instance == Menu.INSTANCE_DEFAULT)
 {
 if (state == STATE_INPUT)
 {
 menu.add(sendItem);
 }
 }
 super.makeMenu(menu, instance);
 }

 private Message createMessage(String recipient, String type,
 String filename, String message) throws MessagingException

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 159

 {
 Store defaultStore = Session.getDefaultInstance().getStore();
 Folder sentFolder = defaultStore.getFolder(Folder.SENT);
 Message outgoing = new Message(sentFolder);
 Address friend = new Address(recipient, "");
 outgoing.addRecipient(Message.RecipientType.TO, friend);
 outgoing.setSubject(message);
 Multipart multipart = new Multipart();
 SupportedAttachmentPart file = new SupportedAttachmentPart(multipart,
 type, filename, data);
 multipart.addBodyPart(file);
 TextBodyPart text = new TextBodyPart(multipart);
 text.setContent("Check this out!");
 multipart.addBodyPart(text);
 outgoing.setContent(multipart);
 return outgoing;
 }

 private void send()
 {
 status.setText("Sending, please wait.");
 state = STATE_SENDING;
 receiver.setEditable(false);
 (new Thread(new MessageSender())).start();
 }

 private class MessageSender implements Runnable
 {
 public void run()
 {
 String address = receiver.getText();
 try
 {
 Message outgoing = createMessage(address, contentType,
 filename, message);
 Transport.send(outgoing);
 updater.sendDelayedMessage("Message sent");
 state = STATE_SENT;
 }
 catch (Exception e)
 {
 updater.sendDelayedMessage("Problem sending: "
 + e.getMessage());
 e.printStackTrace();
 }
 }
 }

 public boolean onSavePrompt()
 {
 return true;
 }
}

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 160

The rest of the changes are minor. We must update the RecordingScreen to use the
SendingScreen once media has been recorded. The code that follows shows a new
method to initiate the send, along with an example of updating the previous code to use
the new functions. Most of the class is identical to the Chapter 3 version; you can
download the complete updated RecordingScreen from the Apress web site.

private void send(String location, String contentType, String message,
 byte[] data)
{
 SendingScreen sending = new SendingScreen(contentType, location,
 message, data);
 UiApplication.getUiApplication().pushScreen(sending);
}
// Within the stop() method, use the following:
if (type == RECORD_AUDIO)
{
 String file = location + "/audio.amr";
 writeToFile(dataOut.toByteArray(), file);
 send("audio.amr", "audio/amr", "Here's some sound!",
 dataOut.toByteArray());
}

Finally, update PlayerScreen to use the new version of StatusUpdater we created. In the
constructor, use the following code.

updater = new StatusUpdater(status);

In PlayerUpdate, substitute the following code for the old updater reference.

updater.sendDelayedMessage(event);

This app is difficult to test on the desktop. First, the simulator configuration puts a low
limit on attachment sizes, meaning that you’ll get an “Attachment too big” error for all
but the smallest captured files. Second, the ESS does not handle attachments well and
will not deliver them to your mail client, so focus on running on the device. If you haven’t
already, test sending email from the built-in Messaging application. Include an
attachment to make sure you can send those files properly. Then launch and run
MediaGrabber. Record as before, enter any email address you like, and select Send.
The outgoing message should shortly arrive in your inbox.

Note: The native Messaging application can automatically resize attachments if they are larger
than the maximum size. Your own application does not automatically get this capability.
Depending on your own app purpose, you can experiment with splitting an attachment into
multiple parts, performing custom resizing, or setting limits on attachment sizes.

Download at WoweBook.Com

CHAPTER 4: Wireless Messaging 161

WANT MORE?

As you’ve seen in this chapter, there’s a bewildering range of technologies available for wireless
messaging. The current version of MediaGrabber works fine, so long as the user has a compatible email
account, but you could expand it to provide even more features to your users.

 Attach a MessageListener to your outgoing email. When the message status
is updated, check to see whether it was sent successfully or if there was an
error. Report the final message status to the user. Be sure to remove the
MessageListener when the SendingScreen is dismissed.

 If your device and plan support it, try sending MMS messages instead of email.

 Listen for incoming email messages. If the message contains one of the strings
our app uses (like “Here’s some sound!”), notify the user that a friend has sent
them a MediaGrabber file.

You can decide whether to add these new capabilities to the existing SendingScreen, or create new
classes to handle those expanded functions. You can also polish the presentation by allowing people to
enter their own custom messages on outgoing media.

Excelsior
This chapter has shown the many wireless messaging choices that you can use when
developing an app. Each option has its own unique profile and advantages, so there is
no one-size-fits-all solution. Depending on your app’s needs, you may be drawn to the
ubiquity of SMS, the presentation options of MMS, the desktop integration and wide
capacity of email, or the unique BlackBerry aspect of PIN messaging. Each has its own
quirks, and now that you are aware of them, you will be able to take full advantage of
each to its fullest.

Many successful BlackBerry apps will stick with conventional networking technologies,
such as HTTP or socket programming. Those are great choices if you want to reuse
existing server components, run on any device with a data connection, or require more
continuous communication. Wireless messaging, on the other hand, is perfect for
connecting with existing platforms of message delivery with very little extra effort on
your part. Decide early in your project which is the best approach.

Your app is now capturing information on the device and sending it over the network.
Wouldn’t it be bad, though, if your boss ended up seeing the pictures you took at that
wild party? Chapter 5 will examine ways to protect the data we send from the device,
keeping it secure and making sure that the intended recipient has access.

Download at WoweBook.Com

Download at WoweBook.Com

5Chapter

Cryptography
Next to their email capabilities, BlackBerry devices are probably most famous for their
security. Corporations love them because data sent over a BlackBerry Enterprise Server
is automatically encrypted, because they can remotely wipe stolen devices, and
because of their integration with corporate security policies. With this strong legacy,
many BlackBerry users are naturally interested in the strength of security offered by
applications they run.

Cryptography is a broad topic that can and does fill many books. This chapter focuses
on some of the tools available to an application developer like you when writing for the
BlackBerry platform. We will look at some of the most common goals when writing
secure apps, and the various APIs you can use to implement those goals. Keep in mind
that security is a serious, multi-faceted issue. You should view this chapter's contents as
a useful starting point that will continue with further education, security audits, and
real-world testing.

Is It Secret? Is It Safe?
Suppose that you write a business expense-tracking app. This app allows users to enter
their receipts onto the BlackBerry, then uploads the data to a server or sends the user
an email. So far, so good. Now, imagine that while the app is transmitting that data, a
hacker uses a packet sniffer to observe the message being sent. Now, someone else
has access to personal financial information from your users, which they may use to
steal their identity or crack bank accounts.

To be sure, not every app will need to worry about this sort of thing. Who cares if a
hacker eavesdrops on a weather-predicting app? Early on in development, you should
consider and discuss the security profile of your app.

1. Does the app have access to sensitive data?

2. Does the app store such data? Transmit it?

3. What are the risks associated with loss or interception of that data?

Download at WoweBook.Com

CHAPTER 5: Cryptography 164

4. What would it take to protect the data?

5. How hard will it be to protect the data? How long will it take? Will it
inconvenience the user?

If, after a thorough analysis, you decide that the app needs to protect its data, you can
proceed to a consideration of the best method to do so.

Data Encryption
When most people hear the word cryptography, they may first think of cipher
encryption—that is, transforming a plaintext, such as “hello,” into seeming gibberish
called a ciphertext, such as “ifmmp.” Ciphers have existed for millennia, and modern
ones have grown to be incredibly sophisticated.

All but the most trivial ciphers rely on use of a key. The key is a secret piece of data that
is used to encrypt a message. For example, consider a cipher that adds the key value to
the plaintext value. We might have a plain text of “hello” and a key of “world.” We can
convert those letters into numeric values, starting with 1 for “A” and 26 for “Z”. Then, for
each letter, we add the value of the plain text to the value of the key. If the total is
greater than 26, we subtract 26 so we end up with a value between 1 and 26. Finally, we
convert the number back to the numeric value. In this example, “h” has a value of 8
since H is the 8th letter in the English alphabet; “w” has a value of 23 since it is the 23rd
letter. 8 + 23 = 31. We subtract 26 to get a value of 5, which corresponds to the letter
“e”. Table 5-1 shows how to apply these steps to the entire words.

Table 5-1. Applying a Simple Cipher

Plaintext
Letter

Key Letter Plaintext
Number

Key Number Sum Cipher Letter

h w 8 23 5 e

e o 5 15 20 t

l r 12 18 4 d

l l 12 12 24 x

o d 15 4 19 n

Without any other context, the word “etdxn” doesn’t seem to mean anything, and any
would-be attackers are left frustrated. Even if they know how the cipher works, without
the extra information supplied by the key, they will be stuck.

What happens if someone figured out your key, though? When this happens, the cipher
becomes useless, and attackers will be able to decrypt any ciphertext that they come
across later. It is imperative to keep your keys secret. Some modern systems generate
keys on the fly based on secret processes, such as the time of day or the motion of a
lava lamp. Apart from the keys, modern ciphers are, of course, far more complex than

Download at WoweBook.Com

CHAPTER 5: Cryptography 165

the example shown above, and often involve scrambling the order of letters in addition
to performing various permutations on each byte of data.

There are many types of ciphers available for use in software applications. Most fall into
one of two major categories. A block-based cipher encrypts data in certain chunk sizes.
In our previous example, since our key is 5 letters long, we would want to process
plaintext in sets of 5 letters. If the incoming plaintext has only 13 letters, then we can
substitute random characters for the last 2 letters and discard them when we decode
the message. Alternately, a stream-based cipher can process plaintexts of arbitrary
length. Neither type is inherently more secure than the other.

Data Decryption
If a server sends your app encrypted data, you will need to write code to decrypt that
data so you can process it. Similarly, if you encrypt your user’s data and store it on the
local filesystem, you’ll decrypt that data when you need to access it. Decryption is the
reverse of encryption, and transforms a ciphertext back into a plaintext, as shown in
Figure 5-1.

Figure 5-1. Using a key to encrypt and decrypt a message

We can easily decrypt the sample cipher from the previous section. For each cipher
letter, convert to a number, then subtract the key’s value. If the result is a negative value,
count back from 26 to arrive at the plaintext. Table 5-2 shows the decryption stage.

Table 5-2. Reversing a Simple Cipher

Ciphertext
Letter

Key Letter Ciphertext
Number

Key Number Sum Plaintext
Letter

e w 5 23 (26–18=)8 h

t o 20 15 5 e

d r 4 18 (26–14=)12 l

x l 24 12 12 l

n d 19 4 15 o

Download at WoweBook.Com

CHAPTER 5: Cryptography 166

The most common ciphers rely on a shared secret, also known as a symmetric key,
when performing decryption. This means that both the encoder and decoder must have
access to the same key, which each uses to perform its operation. The past half-century
has also witnessed the development of public key encryption, also known as an
asymmetric key system. In this crypto system, the encryptor and the decryptor use two
separate keys. This is very useful in applications like internet commerce where you want
many strangers to be able to send you encrypted data, but you do not want to allow any
of those strangers to decrypt each others’ messages. However, the private key for an
asymmetric key system is still a critical secret that must be preserved.

Validation
Encryption and decryption are useful when you want to protect an entire chunk of data
so nobody else can read it. Sometimes, however, that’s more protection than you really
need. Suppose your weather-predicting server sent messages to the BlackBerry telling it
whether or not it will rain tomorrow. You don’t really care if someone else intercepts that
message; however, you still worry about another situation. What if a rival programmer
starts sending messages to your users, claiming that tomorrow will bring a rain of frogs?
Your users will get upset and delete the app.

What you’re really looking for in this situation is some way that you can determine the
authenticity of a message. How can you be sure that this data came from your server
and nobody else has tampered with it? You can best accomplish this goal by using a
checksum, also known as a hash or a digest. A checksum is a formula that looks at all
the data in your message, applies an algorithm over it, and then generates a hash
representing that algorithm’s result, as shown in Figure 5-2. Checksums run over the
plain messages protect against inadvertent errors that may occur during transmission.
To protect against intentional attacks, you can add a secret key to the end of the
message, and then find the hash value generated by the combination of the message
and the key. Using this method, you can pass the entire message through in
unencrypted format, which allows for faster processing, and still protect against
tampering. This process is sometimes referred to as cryptographic signature, or more
informally, signing. The signature is proof of authorship without the overhead and
inconvenience of full encryption.

Figure 5-2. A hash function generates a cryptographic digest for a message

When your app receives the message, it can add the same secret key and then run that
same algorithm and compare the calculated result to the received hash. If the two are
the same, it can be reasonably sure that the message is authentic.

Download at WoweBook.Com

CHAPTER 5: Cryptography 167

A trivial checksum might first convert every letter to a numeric value, as in our examples
before, and then add the values together. It will then divide the sum by 26 and take the
remainder (for a value between 0 and 25) plus 1 (for a value between 1 and 26). This final
letter is then appended to the end of the string prior to submission.

Suppose we want to send the message “hello” and our secret key is “j”. So, the
message “helloj” is transformed to 8 + 5 + 12 + 12 + 15 + 10, which equals 62. Dividing
by 26 yields a remainder of 10, so the hash value is 11, or “k”. We transmit the value
“hellok,” keeping the secret key out of the message. If an attacker tries to send the
message “aloha” to our app, but doesn’t know the key, he may send “alohak”. When the
app receives this message, it will add the secret “j” to the text “aloha”, then transform
“alohaj” to 1 + 12 + 15 + 8 + 1 + 10, which equals 47. We divide by 26, take the
remainder of 21, add 1 to get 22, and end up with “v”. However, we can see that the
checksum value was “k”. Therefore, we know this message is not authentic, and we
discard it.

You may choose to combine a checksum and a cipher for a transmitted message. This
is slower than just cryptographically signing, but helps ensure both that nobody else can
read the message and that the message was not modified in transit. To do this,
calculate a digest for your entire message, combine the two, and then run the entire
result through a cipher before sending.

There are a variety of well-known checksum algorithms available. While on the Web you
have probably encountered MD5 hashes, which are used to verify that a file has not
been tampered with. Some potential weaknesses have been discovered in MD5, and
today most new apps should use SHA or the more secure SHA-1. If you prefer, you can
roll your own checksum algorithm. However, keep in mind that anything you come up
with will likely be far less secure than the more widely used technologies.

SATSA
Java ME has introduced JSR 177, the Security and Trust Services API (also known as
SATSA), to address some common security concerns. Like several other JSRs, SATSA
ended up being a bit of a grab bag with several disparate elements thrown in together. It
defines some standard Java classes to use for cryptography, ported over from the Java
SE versions. It also defines interfaces for interacting with SIM cards and managing
security certificates. Individual manufacturers can decide which components of SATSA
they wish to implement and which they do not.

Thus, even though RIM has technically supported SATSA since device software version
4.2.1, they have adopted only the SIM card–related functions. They have also taken
some, but not all, of the certificate-management classes. None of the cryptography
classes were adopted.

As you will shortly see, there are still plenty of options available. RIM has offered their
own security classes since long before they adopted SATSA, and it makes sense that
they would not have imported the duplicate functionality of the SATSA crypto packages.
The downside, of course, is that you cannot easily port Java ME applications written
using SATSA crypto to run on BlackBerry.

Download at WoweBook.Com

CHAPTER 5: Cryptography 168

Bouncy Castle
While SATSA can be very useful, it implements only a subset of the many available
cryptographic systems. Additionally, RIM and many other manufacturers have not added
SATSA support to their devices. To make up for these deficiencies, an open source
project called Bouncy Castle has gained a lot of attention and support. Bouncy Castle
provides free access to a wide variety of crypto functions.

An Introduction
Most security algorithms are well-documented in academic literature. However, the
actual implementations of those algorithms tend to be written by for-profit companies
who make money by licensing their use. Bouncy Castle started when two programmers
grew tired of needing to reimplement standard security classes every time they switched
projects. There is no great secret behind how each algorithm works—the real secret is
the key—but such ad-hoc rewrites are not only tedious and time-consuming, they also
increases the risk of writing a flaw that may allow the code to be exploited. The
programmers decided to start a new project that would allow them and other developers
to reuse a stable, proven base of cryptographic classes.

Bouncy Castle contains a clean room implementation of major crypto classes, meaning
that they were written based on documentation and not by looking at any pre-existing
code. Therefore, no other company’s patents or copyrights are applied to Bouncy
Castle. The code is open source and made available under a version of the MIT X
Consortium license, which is widely considered quite reasonable. The license is also
quite short, so you should read it and understand it before using the code in your own
project.

Adding Bouncy Castle to Your Project
Because Bouncy Castle is not part of the standard RIM environment, you must manually
add the classes to your project. You can download the entire Bouncy Castle source
from the website at www.bouncycastle.org. Bouncy Castle exists for many different
versions of Java; you will want to download the latest release of the lightweight J2ME
implementation, a .zip file that contains the compiled classes, source code, tests, and
documentation. When you see it, you may gulp—it is several megabytes. Needless to
say, this could have a significant impact on your binary size.

Fortunately, because you have access to the source, you can simply add the classes
you need to your project and ignore the rest. Alternately, you can add everything at
once, and later go back to trim it out. Pulling in all the code except for the tests and
examples will increase the size of your program by about 600 kb; the impact is far less if
you import only the classes you need.

To import the classes in Eclipse, right-click on your projects source folder and select
Import. Expand the General window and select File System, then click Next. Browse to
the location on your hard drive where you unzipped the Bouncy Castle .zip file, and

Download at WoweBook.Com

http://www.bouncycastle.org

CHAPTER 5: Cryptography 169

select the src folder. You can check src to import everything, or expand it and select
only the files you need. When done, click Finish.

Note: If building outside of Eclipse, you might consider using an obfuscator—a third-party
program that can be used to automatically remove unused code from your program. The most
widely used obfuscator for Java ME is Proguard.

When you import the source files, note that some of them are included in the java.*
package tree. Java ME is missing some common Java SE classes that are needed for
Bouncy Castle to function properly, such as BigInteger. The download contains
reimplementations of these classes. On some versions of the RIM software, you may
need to rename the packages because the classloader does not approve of loading
user-created code in the java namespace. The easiest way to rename is to right-click on
a package in the Package Explorer, select Refactor and then Rename…, change the
name to something like xjava.io, and finally click OK. Eclipse will work its magic,
searching for and automatically converting all references to the affected files. Repeat for
any remaining packages.

Using Bouncy Castle in Encryption
Bouncy Castle is too vast to completely cover here. This section focuses on the
essentials for encoding or decoding messages. Consult the API documents to learn
more details on how specific ciphers work.

The two most important types of classes in the package are ciphers and engines. A
cipher describes a generic interface for how encryption or decryption operations
behave. The root cipher classes include BufferedBlockCipher and StreamCipher. Each
defines the core operations of a cipher: initializing with a key, processing blocks of bytes
and returning results. Subclasses of each can define custom behavior, such as how to
pad extra bytes in a block cipher.

Any given cipher class can be initialized with a variety of compatible engines. The engine
takes care of the actual process of converting bytes into ciphertext, while the cipher
takes care of passing around input and output. Engines implement one of two main
interfaces. BlockCipher is used for a variety of symmetric key cipher engines, including
AES. AsymmetricBlockCipher is used for asymmetric key cipher engines, including RSA.
Each individual engine is usually initialized with a CipherParameters object, which
provides the key or other data needed by the engine.

In many cases, your app will be working within an existing crypto system. For example,
you may already have a server that accepts data in Blowfish, in which case you can
simply start using the BlowfishEngine class. If you are responsible for setting up a new
crypto system, then read about each cipher to determine which ones best fit your
needs. Most often you will need to decide between speed and protection. Of course, the
strongest cipher won’t help if you fail to keep your keys secure.

Download at WoweBook.Com

CHAPTER 5: Cryptography 170

Once you have set up your cipher appropriately, you just need to feed it data. All ciphers
work on arrays of bytes, so if your input is some other format, like a String or an
InputStream, you will need to access the underlying bytes first. After encryption is
complete, you will have access to the encoded byte stream. The following code
example demonstrates a sample encryption from a plaintext string into an encoded
version. This sample uses the Twofish cipher, a very secure algorithm with pretty good
performance. The cipher is initialized with a preshared secret string, and true to indicate
that the cipher should perform encryption. Next, the input bytes are encoded. Note that
the doFinal() method call is necessary for a block-based cipher like Twofish in order to
fill out the remainder of the last block. At the end of the process we have the raw bytes.
Here we construct a string to display, but this step often doesn’t make sense, since the
encrypted ciphertext contains many nonprintable characters.

String plaintextString = "Five Tons of Flax";
byte[] plaintextBytes = plaintextString.getBytes();
String keyString = "illuminati";
byte[] keyBytes = keyString.getBytes();
KeyParameter key = new KeyParameter(keyBytes);

TwofishEngine twofish = new TwofishEngine();
BufferedBlockCipher cipher = new PaddedBufferedBlockCipher(twofish);
cipher.init(true, key);

byte[] cipherBytes = new byte[cipher.getOutputSize(plaintextBytes.length)];

int cipherLength = cipher.processBytes(plaintextBytes, 0,
 plaintextBytes.length, cipherBytes, 0);
cipher.doFinal(cipherBytes, cipherLength);
String cipherString = new String(cipherBytes);
System.out.println("Encrypted cipher is [" + cipherString + "]");

Tip: Notice that we allocate a byte buffer large enough to hold the entire ciphertext. This is fine
for short messages like this one, but if we were encrypting a 10 MB data file, we might not be
able to allocate that much contiguous memory. Later in this chapter you’ll see an example of
how to allocate a smaller buffer that can be reused to progressively encrypt or decrypt a larger
message.

You should prepare to catch a CryptoException, which will occur if any problems
happen during the process. When you run the code, you should see the encrypted
message.

Caution: In an actual application, you should use a randomly generated binary key for
maximum security. Using a dictionary word, or even a combination of printable characters,
makes your key easier to guess.

Download at WoweBook.Com

CHAPTER 5: Cryptography 171

Using Bouncy Castle in Decryption
The exact same classes can be used for decryption as for encryption. Typically, all you
need to do is substitute false for true in your cipher’s init() method. The overall
process is the same: after initialization, you feed the ciphertext bytes into the cipher,
finalize if necessary, and then use the output decoded bytes. The following example
continues the previous one, taking the encrypted cipherBytes and restoring them to
their original state. Note that we can reuse the existing crypto classes here.

cipher.init(false, key);
byte[] decryptedBytes = new byte[cipher.getOutputSize(cipherBytes.length)];
int decryptedLength = cipher.processBytes(cipherBytes, 0,
 cipherBytes.length, decryptedBytes, 0);
cipher.doFinal(decryptedBytes, decryptedLength);
String decryptedString = new String(decryptedBytes);
System.out.println("Decrypted message is [" + decryptedString + "]");

Using Bouncy Castle to Create Digests
You can find classes for the most popular message digest algorithms in Bouncy Castle,
including SHA1Digest and MD5Digest. Unlike ciphers, no initialization is necessary for
digests, and you only interact with one class to make the digest. If you just wish to
create a simple checksum to ensure that the message was not corrupted, you can feed
bytes directly to the digest. To cryptographically sign the message as discussed earlier,
you should add a secret key to the beginning or the end of your message, generate the
digest, and then attach the digest to the message. Digests typically follow the message
body. The following code generates an SHA-1 hash for a message/key combination.

String message = "Yond Cassius has a lean and hungry look";
String postfix = "caesar";
byte[] messageBytes = message.getBytes();
byte[] postfixBytes = postfix.getBytes();
SHA1Digest digest = new SHA1Digest();
digest.update(messageBytes, 0, messageBytes.length);
digest.update(postfixBytes, 0, postfixBytes.length);
byte[] hash = new byte[digest.getDigestSize()];
digest.doFinal(hash, 0);

As with ciphers, digests generate their output as raw byte data. This poses a problem if
your app transmits plain text, such as XML or JSON, because it cannot transmit the
non-printable characters. The customary solution to this problem is to encode hash
values in Base64. Base64 converts raw byte values to a 64-character alphabet of
printable characters, including A–Z, a–z, 0–9, “+” and “/”. This will slightly expand the
number of characters, but ensures that they can be transmitted. Bouncy Castle includes
a useful Base64Encoder class that converts between binary and Base64. Despite the
name, the class can be used for both encoding and decoding. The next example uses
this class to convert the previous hash into a regular String, and then attaches it to the
message for transmission. Depending on your message format, the final hash may be
placed in an XML tag or similar element.

Download at WoweBook.Com

CHAPTER 5: Cryptography 172

Base64Encoder base64 = new Base64Encoder();
ByteArrayOutputStream out = new ByteArrayOutputStream();
base64.encode(hash, 0, hash.length, out);
byte[] base64Bytes = out.toByteArray();
String hashString = new String(base64Bytes);
String transmitted = message + "\n" + hashString;
System.out.println("Transmitted message is [" + transmitted + "]");

Using Bouncy Castle to Verify Digests
As you would expect, verification of a digest is the reverse of creating one. Once you
receive the complete message, separate the digest from the message body. If the
message is cryptographically signed, attach the key to the body. Use the same digest
algorithm to calculate a hash. If the received hash used Base64 encoding, either decode
the received hash or encode your calculated one. Finally, confirm whether the two
hashes are identical. If they are, you know that the message sender possessed the
proper key. The next example shows how to verify the message generated by the
previous example.

String received;
int separation = received.indexOf('\n');
String receivedHash = received.substring(separation + 1);
String message = received.substring(0, separation);
byte[] messageBytes = message.getBytes();
String postfix = "caesar";
byte[] postfixBytes = postfix.getBytes();
SHA1Digest digest = new SHA1Digest();
digest.update(messageBytes, 0, messageBytes.length);
digest.update(postfixBytes, 0, postfixBytes.length);
byte[] calculatedHash = new byte[digest.getDigestSize()];
digest.doFinal(calculatedHash, 0);
ByteArrayOutputStream output = new ByteArrayOutputStream();
Base64Encoder base64 = new Base64Encoder();
base64.decode(receivedHash, output);
byte[] receivedHashBytes = output.toByteArray();
if (Arrays.equals(calculatedHash, receivedHashBytes))
{
 System.out.println("Message is valid.");
}
else
{
 System.out.println("Et tu, Internet?");
}

Bouncy Castle Analysis
Bouncy Castle offers several advantages that make it worth serious consideration:

 You can easily port your code to Java ME devices.

 Because it is widely used, it has received a lot of scrutiny and is widely
considered to be quite secure.

Download at WoweBook.Com

CHAPTER 5: Cryptography 173

 It provides classes for most major cryptographic algorithms.

You should look elsewhere if any of the following issues concern you:

 You must follow the terms of the open-source license.

 No commercial support is available.

 Using Bouncy Castle will increase your application size.

RIM Crypto Classes
BlackBerry devices use a host of security options as part of their ordinary operations,
and many of those algorithms are available for you to use as a developer. Most of these
algorithms are the same as those available in Bouncy Castle, but these have been
implemented specifically for Research In Motion and are available exclusively for
development on BlackBerry devices.

Caution: Depending on your geographic location, agreement with RIM, and other factors, you
may not have access to the RIM Crypto API code signing keys required for these classes. If this
is the case, consider using Bouncy Castle or another crypto solution.

An Introduction
While the RIM crypto classes are not quite as complete as those in Bouncy Castle, they
do contain a wide range of available algorithms. You can start using them immediately
as you would any other RIM-specific classes. The available items are located in the
net.rim.device.api.crypto package. Encryption and decryption are handled through a
set of standard elements:

 A key, implementing the Key interface, is used to initialize a cipher with
the secret or public key. The major types are PublicKey, PrivateKey,
and SymmetricKey. Each cipher has its own particular implementing
key class.

 Stream-based ciphers are provided as subclasses of StreamEncryptor
or SteamDecryptor. Note that, unlike Bouncy Castle, the RIM API uses
separate classes to handle decryption than are used for encryption.

 Block-based ciphers implement BlockEncryptorEngine or
BlockDecryptorEngine. Subinterfaces define the type of key used,
such as PublicKeyEncryptorEngine and
SymmetricKeyEncryptorEngine.

 Block-based ciphers can use implementations of the
BlockFormatterEngine interface to provide padding to their crypto
tasks.

Download at WoweBook.Com

CHAPTER 5: Cryptography 174

Tip: Make use of Eclipse’s auto-complete feature by typing the start of a class name, then
holding down Ctrl while pressing Space. A list of valid selections will display. As a bonus,
Eclipse automatically adds the required import statements to your java class. For example, if
you wish to use RC5 encryption, you can type RC5 and press auto-complete, and you will see
RC5Key, RC5EncryptorEngine, and RC5DecryptorEngine.

The actual classes are very well named, with all relevant classes sharing a common
prefix. RIM divides their classes into a set of libraries. For space considerations, only a
limited subset may be available on a given device. All devices are guaranteed to, at a
minimum, include classes for SHA-1 checksums. Devices may optionally also include
classes for WTLS, Wireless Transport Layer Security. This will be delivered in the file
net_rim_crypto_1.cod, and includes support for additional digest and encryption
algorithms, as shown in Table 5-3.

Table 5-3. Crypto Resources in net_rim_crypto_1

Digests Encryptions

SHA256 AES

SHA384 ARC4

SHA512 DES

MD5 TripleDES

 RC4

 RC5

 RSA PKCS v1.5

To see if your device includes crypto1, select Options from the main menu, click
Advanced Options and then Applications. Press the menu key and select Modules. This
will bring up the list of every COD file loaded on the device. Scroll down and see if
net_rim_crypto_1 is included. Most modern devices appear to include this library, along
with its companions net_rim_crypto_2 and net_rim_crypto_3.

net_rim_crypto_2 will only be present if the first one is. This library adds support for
SSL/TLS (Secure Sockets Layer/Transport Layer Security), which introduces support for
RSA PKCS (Public Key Cryptography Standard) version 2.0.

Finally, net_rim_crypto_3 may also be present if the first two are. It adds a somewhat
random assortment of additional, less commonly used crypto resources, as shown in
Table 5-4.

Download at WoweBook.Com

CHAPTER 5: Cryptography 175

Table 5-4. Crypto Resources in net_rim_crypto_3

Digests Encryptions

MD2 CAST-128(CAST5)

MD4 RC2

RIPEMD-128 Skipjack

RIPEMD-160 ECIES

 ElGamal

 RSA-PSS

 RSA ANSI X9.31

In practice, unless you know that your users are likely to be on limited devices, it is
reasonable to write your app assuming all these algorithms are available, and to instruct
users to acquire them if they happen to not be installed.

Encryption with the RIM Crypto Classes
While the general process of encryption proceeds similarly whether you are using
Bouncy Castle or the RIM libraries, the actual details vary. You start by creating the
secret key for the operation. Next, create either a stream encryptor or a block encryptor
engine. If using a block cipher and your messages are not already padded, create a
formatter engine. The RIM BlockEncryptor class plays a similar role to the Bouncy
Castle Cipher classes: it manages the details of passing around the input plaintext,
running the engine appropriately, and generating the output ciphertext. Unlike Bouncy
Castle, which outputs directly to a byte array, RIM will write the ciphertext into an
OutputStream. This can be convenient if you wish to direct the encoded message to a
file or network connection, without managing the actual bytes. The code that follows
shows how to encrypt a message using the RIM RC5 classes.

String messageString = "The falcon cannot hear the falconer.";
byte[] messageBytes = messageString.getBytes();
String keyString = "beast";
byte[] keyBytes = keyString.getBytes();
RC5Key key = new RC5Key(keyBytes);
RC5EncryptorEngine engine = new RC5EncryptorEngine(key);
PKCS5FormatterEngine padder = new PKCS5FormatterEngine(engine);
ByteArrayOutputStream output = new ByteArrayOutputStream();
BlockEncryptor encryptor = new BlockEncryptor(padder, output);
encryptor.write(messageBytes);
encryptor.close();
output.flush();
byte[] cipherBytes = output.toByteArray();
String cipherString = new String(cipherBytes);

Download at WoweBook.Com

CHAPTER 5: Cryptography 176

System.out.println("Encoded message is [" + cipherString + "]");

You can adapt this example for any other type of block cipher. For stream encryption,
you will provide the OutputStream directly to the StreamEncryptor subclass’s constructor
and omit the padder.

Several exceptions may occur during encryption and decryption operations.
CryptoUnsupportedOperationException indicates that this particular algorithm is not
supported. CryptoTokenException occurs when the operation is associated with a
physical token, such as a smart card, that is not present or has a problem. Finally, a
generic IOException may occur due to problems writing to the requested OutputStream.

Decryption with the RIM Crypto Classes
As mentioned before, the RIM libraries include separate classes to handle the decryption
step. For example, the RC5DecryptorEngine is the counterpart of RC5EncryptorEngine,
and a BlockUnformatterEngine matches a BlockFormatterEngine. The most significant
difference between encryption and decryption is that decryption writes its output into a
provided byte array, not an OutputStream. If you do not know in advance how large a
message will be, you will need to progressively build up the decrypted message
yourself. The example below illustrates how to do this, decrypting the ciphertext that
was generated above. You’ll notice the loop that repeatedly reads data in small chunks.
This is a common pattern that is used in many I/O operations other than crypto.

byte[] cipherBytes;
String keyString = "beast";
byte[] keyBytes = keyString.getBytes();
RC5Key key = new RC5Key(keyBytes);
RC5DecryptorEngine engine = new RC5DecryptorEngine(key);
PKCS5UnformatterEngine unpadder = new PKCS5UnformatterEngine(engine);
ByteArrayInputStream input = new ByteArrayInputStream(cipherBytes);
BlockDecryptor decryptor = new BlockDecryptor(unpadder, input);
ByteArrayOutputStream decryptedStream = new ByteArrayOutputStream();
byte[] buffer = new byte[1024];
int bytesRead = 0;
do
{
 bytesRead = decryptor.read(buffer);
 if (bytesRead != -1)
 {

Download at WoweBook.Com

CHAPTER 5: Cryptography 177

 decryptedStream.write(buffer, 0, bytesRead);
 }
} while (bytesRead != -1);
byte[] decryptedBytes = decryptedStream.toByteArray();
String decodedMessage = new String(decryptedBytes);
System.out.println("Original message was [" + decodedMessage + "]");

Using RIM Crypto with Digests
The RIM crypto packages include several popular hash algorithms, including multiple
versions of SHA and MD. As when creating digests for Bouncy Castle, you may run a
digest over an entire message and obtain a hash. For this section’s examples, we’ll
create unsigned digests to simply verify message integrity, but you can apply the exact
same principles as before to cryptographically sign your messages.

RIM does add some convenient classes to use in digest operations. Unlike Bouncy
Castle digests, which are more focused on byte arrays for operations, RIM digests can
work with streams. You may choose to wrap several streams together to obtain a
desired result. The following code example demonstrates how to use two useful utility
stream, Base64OutputStream and DigestOutputStream, to automatically Base64 encode
the digest value. Data flows from the input bytes, through the digest algorithm, out to
the digest stream, then through Base64 encoding, and finally to the destination bytes.

String message = "Not all who wander are lost.";
byte[] messageBytes = message.getBytes();
MD5Digest digest = new MD5Digest();
ByteArrayOutputStream bytesOut = new ByteArrayOutputStream();
Base64OutputStream base64 = new Base64OutputStream(bytesOut);
DigestOutputStream digestOut = new DigestOutputStream(digest, base64);
digest.update(messageBytes);
digestOut.flush();
byte[] base64Checksum = bytesOut.toByteArray();
String base64String = new String(base64Checksum);

If you wish to verify the checksum for data you have received, follow the exact same
code as before, comparing the calculated base64Checksum with the version you received.
If they are identical, the message was not corrupted since it was sent. You may also use
a cryptographic signing strategy if you wish to verify the authenticity of the sender.

RIM Crypto Analysis
Turn to the built-in RIM solution in the following situations:

 You want to minimize the size of your application.

 You cannot accept the conditions of an open-source library.

 You expect to only run on BlackBerry devices.

 You control the BlackBerry devices that will be running your app.

Download at WoweBook.Com

CHAPTER 5: Cryptography 178

Consider another solution if the following are high priorities for you:

 There is a chance that users have removed support for advanced
crypto from their devices.

 Certain crypto algorithms are not supported.

Using the Certicom Classes
Several classes in the net.rim.device.api.crypto package are not available for use in
most applications. However, if you are developing commercial applications with needs
such as secure electronic commerce, you may find them very useful.

An Introduction
You can safely write all RIM crypto classes into your code and even run with them in the
simulator, but when you try to run your app on the device, you may face an error
message like Uncaught exception: Missing RCC signature. Not allowed to access
Certicom functionality. To access these classes, you must contact Certicom, a
subsidiary of Research In Motion that owns the rights to these functions. You can do
this by accessing their website at http://certicom.com/rim, where you can contact a
member of their sales team. Once you receive approval, you will receive additional code
signing keys that permit access to these restricted APIs. Certicom classes will be of
greatest interest to “serious” applications with strong business aspects, particularly
mobile commerce. Most applications can consider using other forms of encryption
instead, including the RSA classes included in Bouncy Castle.

You can determine which classes require the use of a Certicom license by consulting the
API javadocs. The most interesting ones are the public-key systems, including the
Elliptic Curve Integrated Encryption Scheme (ECIES), the Digital Signature Algorithm
(DSA), Diffie-Hellman (DH), Key Exchange Algorithm (KEA), and RSA.

Public key encryption tackles the difficult problem of how to establish secure
communication with another party if you have not previously agreed upon a secret key
to use. Our previous encryption example required both the sender and the receiver to
use the same key, which is reasonable if we are writing the code for both parties, but
would not work in situations where we expect to receive messages from other
applications or senders. Public Key Infrastructure (PKI) is based upon some interesting
modern mathematics that shows how you can create a system with multiple keys that
allows for one-way encryption. In other words, everyone can know a public key that
allows them to encrypt a message, but only one person knows the secret private key.
Public key encryption is most often thought of as encoding and decoding messages, but
it also plays a useful role in determining another party’s authenticity. If you receive a
message from someone else, and can decrypt it using their public key, then you know
that it was signed by the actual sender’s private key. RSA, the most famous and widely
used public key system, relies on modulus operations and the difficulty of finding very
large prime numbers. If you’re interested in learning more about the history and
mathematics behind public key encryption, I highly recommend The Code Book by

Download at WoweBook.Com

http://certicom.com/rim

CHAPTER 5: Cryptography 179

Simon Singh (Anchor), the most intelligent and approachable book I’ve found yet on the
topic of cryptography.

Encryption with Certicom Public Keys
RIM’s asymmetric ciphers are based around the CryptoSystem interface. Each also
includes a PublicKey, a PrivateKey, and several other classes relating to that crypto
system’s operation. The issue of key distribution is outside the scope of this chapter. If
your app only needs to encrypt outgoing messages, it can be configured with the
recipient’s public key, but if the app needs to decrypt incoming messages, you must
decide how best to give senders access to the client’s public key. With that in mind, the
following code demonstrates how you can use Certicom’s implementation of RSA
cryptography to encrypt a message. Here, we construct a random pair of public and
private keys; in real applications, these would likely be generated from known key
values. Because the underlying cipher is a block cipher, we wrap and pad it as before,
then run the input through the cipher to generate the encrypted message.

String message = "Purple monkey dishwasher";
byte[] messageBytes = message.getBytes();
RSACryptoSystem rsa = new RSACryptoSystem(1024);
RSAKeyPair keyPair = new RSAKeyPair(rsa);
RSAEncryptorEngine rsaEncryption = new RSAEncryptorEngine(
 keyPair.getRSAPublicKey());
PKCS5FormatterEngine padder = new PKCS5FormatterEngine(rsaEncryption);
ByteArrayOutputStream output = new ByteArrayOutputStream();
BlockEncryptor encryptor = new BlockEncryptor(padder, output);
encryptor.write(messageBytes);
encryptor.close();
output.flush();
byte[] ciphertextBytes = output.toByteArray();

Decryption with Certicom Public Keys
To decrypt this message, the receiver will use a private key part of the pair, and then run
the received message through the decrypting system. The BlockDecryptor class
operates on a byte array, so the following example builds up a total output array through
repeated operations on a byte buffer.

RSADecryptorEngine rsaDecryption = new RSADecryptorEngine(
 keyPair.getRSAPrivateKey());
PKCS5UnformatterEngine unpadder = new PKCS5UnformatterEngine(rsaDecryption);
ByteArrayInputStream input = new ByteArrayInputStream(ciphertextBytes);
BlockDecryptor decryptor = new BlockDecryptor(unpadder, input);
byte[] buffer = new byte[1024];
ByteArrayOutputStream out = new ByteArrayOutputStream();
int bytesRead = 0;
do
{
 bytesRead = decryptor.read(buffer);
 if (bytesRead != -1)

Download at WoweBook.Com

CHAPTER 5: Cryptography 180

 {
 out.write(buffer, 0, bytesRead);
 }
} while (bytesRead != -1);
byte[] decryptedBytes = out.toByteArray();
String decryptedMessage = new String(decryptedBytes);
System.out.println("Decrypted message is " + decryptedMessage);

As with the regular RIM crypto package, you will need to catch CryptoException and
IOException. Even if your application has received Certicom signatures, there’s still a
small chance that the required crypto libraries will not be loaded on the device, in which
case your app may choose to present an error message.

Caution: Several class names in the RIM crypto package clash with those found in the
standard Java libraries and other packages. For example, RSAPrivateKey is used both in
net.rim.device.api.crypto and in java.security.interfaces. Double-check the
package names of your imports.

If you wish to store keys for crypto operations, consider using the keystore classes
located in the net.device.api.crypto.keystore package. You can choose from a
variety of keystore types, including stores that only persist until the device is reset and
stores that can be synced to the user’s computer via the desktop manager. Also
available under the crypto package are classes for certificate management, useful to
help control and determine the authority that backs keys you receive.

Certicom Analysis
For the most part, use of Certicom requires the same choices considered for RIM
Crypto. Specifically, you keep your code size small and avoid potential licensing issues,
but are restricted to a particular set of ciphers and locked in to RIM’s API. The
significant extra detriment for Certicom is the extra cost involved in acquiring the keys.
Balanced against this is the confidence many institutions and individuals have in dealing
with a business as a provider of strong encryption.

Other Encryption Choices
So far, this chapter has examined how to implement cryptographic systems within your
app. You have seen how this requires making appropriate choices about the specific
crypto algorithm you will use, how to create and distribute keys, and other issues.
However, it is possible to get cryptographic security through existing systems without
inventing your own. Consider the options covered in this section if you want more
passive protection.

Download at WoweBook.Com

CHAPTER 5: Cryptography 181

HTTPS Encryption
If your app communicates with a server that already supports HTTPS, you can omit
additional encryption in your messages. BlackBerry devices support HTTPS out of the
box, and a connection between your app and an HTTPS server will be as secure as the
connection between your web browser and an HTTPS website. You can create an
HTTPS connection by using the proper protocol string, as in the example that follows:

HttpsConnection https = (HttpsConnection) Connector
 .open("https://www.amazon.com");

HTTPS encryption is applied through the use of public key encryption. When your app
first issues a request to a server using the https:// protocol, the TLS/SSL will take over.
A handshake begins between the client and the server. The client will notify the server
what types of encryption it supports (DES, DSA, etc.) and provide a random string to the
server. The server will respond with its own random string, along with a certificate and
its public key. The client will inspect the certificate to see whether or not it is valid; if it is,
it can trust that it is dealing with the actual server. The client then creates a random
premaster secret that will be used as the basis for an encryption key, encrypts that
premaster secret with the server’s public key, and then transmits it to the server.

Even if an attacker intercepts this transmission, he will not be able to decrypt the
premaster secret without the server’s private key. The server can decrypt the premaster
secret. Both the client and the server then use that premaster secret to generate a
master secret, and finally create session keys from the master secret. The session key is
a symmetric key that will be used to encrypt all future traffic between the client and the
server during this session (that is, until it times out).

The initial handshake can be a little slow. Once the symmetric key is determined and
encrypted traffic begins, transmission will be a little slower and take a little more space
than it would be in regular HTTP communication due to the overhead of encryption. The
difference tends not to be very noticeable.

If your application uses lower-level socket programming instead of higher-level HTTP
communication, you can use the ssl:// or tls:// protocols, which will generate an SSL
or TLS session. These perform handshakes similarly to HTTPS, but subsequent traffic is
carried over a low-level socket instead of higher-level HTTP. The following code
demonstrates how to create each type of connection.

SecureConnection ssl = (SecureConnection) Connector
 .open("ssl://myserver.com:5555");
SecureConnection tls = (SecureConnection) Connector
 .open("tls://myserver.com:5556");

After the connection is established, you can use each SecureConnection as you would
an ordinary SocketConnection. You can also call getSecurityInfo() to obtain additional
details about the negotiated security, such as the server’s certificate and the cipher
being used for crypto.

Download at WoweBook.Com

https://www.amazon.com
https://protocol
ssl://or
tls://protocols
ssl://myserver.com:5555
tls://myserver.com:5556

CHAPTER 5: Cryptography 182

Note: After establishing a secure connection, encryption is applied in both directions, on both
outgoing and incoming data.

MDS Encryption
All traffic between the BlackBerry device and the Mobile Data System is automatically
encrypted. As a result, if you make sure that outgoing traffic is sent to a server on your
corporate BES environment and travels over the BES network, no extra encryption is
necessary. However, traffic sent between the MDS and the ultimate destination server is
not encrypted. You still may need to use encryption if the receiving server expects
encrypted traffic, or if you are concerned about eavesdropping from other entities within
the corporate network.

File Encryption
In addition to manual file encryption using Bouncy Castle or the RIM Crypto APIs, you
may also choose to apply built-in support for file encryption. RIM offers a custom
interface called ExtendedFileConnection that extends the standard FileConnection
interface. Any FileConnection can be cast to an ExtendedFileConnection and provides
access to several additional features for encryption.

 enableDRMForwardLock() will allow other applications on the device to
read this file, but prevents it from being read when transferred off the
device. If the user copies the file to their computer, it will be copied in
an encrypted format. This method works on both the /store and the
/SDCard roots.

 setControlledAccess() controls access to this file so that only your
application can read or write it. You must obtain a CodeSigningKey for
your module and then set it on the ExtendedFileConnection. When the
file is accessed in the future, the OS will verify that the request comes
from the module that signed it. This method works on the SD card but
not on the internal memory store.

In both cases, you must set any protection before you create the file. You can access
standard file encryption as shown in the following example.

ExtendedFileConnection file = (ExtendedFileConnection)Connector.open
 ("file:///SDCard/BlackBerry/purchase.mp3");
file.enableDRMForwardLock();
file.create();

Once the file has been created, you can open streams to read and write data as you
normally would. The encryption is automatically applied and removed by the operating
system, with no extra intervention needed.

Download at WoweBook.Com

file:///SDCard/BlackBerry/purchase.mp3

CHAPTER 5: Cryptography 183

App: Securing MediaGrabber
MediaGrabber provides a convenient way to record your thoughts, take pictures of your
surroundings, and send such info off to a place where you can review it later.
Occasionally, though, you might be a little nervous about what happens to your media
once it leaves your phone. Perhaps your musings about pursuing another job will be
overheard by a bored IT worker monitoring your business email account. Or maybe you
don’t want your father or son to accidentally open pictures from your Vegas trip sent to
your shared home computer. Let’s add an extra layer of security by providing the ability
to encrypt the media we sent out.

Adding Encryption
We will be using the DES encryption algorithm for this enhancement, using the version
provided in the RIM crypto packages. DES actually is not a great algorithm; modern
computers can use brute force to crack it. I chose it here because the key size is nice
and short. You may choose to use AES-128 or a similar block cipher for added security
at the cost of greater complexity.

To add an extra layer of security, we will also be using an initialization vector. The vector,
known as IV, is a bit of random information that is combined with the key in the
encryption. This helps protect the secrecy of the key. If you encrypt two messages with
the same key, then attackers can more easily decrypt the messages; using a random IV
is one of several ways to help avoid this problem. The IV protects the key but is not itself
secret, so we will send it along with the message so the recipient can decrypt it.

The actual changes to add encryption are rather brief. We will add the following two new
instance variables to the SendingScreen to manage the crypto operations.

private boolean encrypt;
private String iv;

The constructor will be updated to accept encryption as an additional parameter. Then
we can write a new method encryptData() that applies our secret DES key to binary
data. I find it’s easiest to represent key values in hexadecimal strings. Each character in
a hex string can represent 16 characters, and so it holds 4 bits of data. We can write
simple utility functions that will translate hex string values to and from the byte arrays
that the crypto classes prefer to work with.

The only other piece to update is the createMessage() method, which will check to see
whether encryption was requested. If so, it will call our new method to encrypt the
attachment data and include the initialization vector information in the plaintext of the
message. The rest of the send operation runs the same as before. The modified
methods are shown in Listing 5-1.

Listing 5-1. Optionally Encrypting Attachments Prior to Sending

private byte[] bytesFromHexString(String input)
{
 int length = input.length();

Download at WoweBook.Com

CHAPTER 5: Cryptography 184

 // Each hex character represents 4 bits, so 1
 // byte is 2 characters.
 byte[] bytes = new byte[length / 2];
 for (int i = 0; i < length; i += 2)
 {
 bytes[i / 2] = (byte) Integer.parseInt(input.substring(i, i + 2),
 16);
 }
 return bytes;
}

private String hexFromBytes(byte[] input)
{
 int length = input.length;
 StringBuffer builder = new StringBuffer(length * 2);
 for (int i = 0; i < length; ++i)
 {
 byte value = (byte) input[i];
 String hex = Integer.toHexString(value);
 if (hex.length() == 8)
 {
 // Integer.toHexString assumes "negative" 4-byte inputs yield an
 // 8-character string, so trim off all but the last 2
 // characters.
 hex = hex.substring(6);
 }
 builder.append(hex);
 }
 return builder.toString();
}

private byte[] encryptData(byte[] in) throws CryptoException, IOException
{
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 String hexKey = "2BEAFABBABE4AFAD";
 byte[] binaryKey = bytesFromHexString(hexKey);
 DESKey key = new DESKey(binaryKey);
 DESEncryptorEngine encryptor = new DESEncryptorEngine(key);
 InitializationVector vector = new InitializationVector(8);
 byte[] ivValue = vector.getData();
 iv = hexFromBytes(ivValue);
 CFBEncryptor cfb = new CFBEncryptor(encryptor, vector, out, true);
 cfb.write(in);
 out.flush();
 return out.toByteArray();
}
private Message createMessage(String recipient, String type,
 String filename, String message) throws MessagingException,
 CryptoException, IOException
{
 if (encrypt)
 data = encryptData(data);
 Store defaultStore = Session.getDefaultInstance().getStore();
 Folder sentFolder = defaultStore.getFolder(Folder.SENT);
 Message outgoing = new Message(sentFolder);

Download at WoweBook.Com

CHAPTER 5: Cryptography 185

 Address friend = new Address(recipient, "");
 outgoing.addRecipient(Message.RecipientType.TO, friend);
 outgoing.setSubject(message);
 Multipart multipart = new Multipart();
 SupportedAttachmentPart file = new SupportedAttachmentPart(multipart,
 type, filename, data);
 multipart.addBodyPart(file);
 TextBodyPart text = new TextBodyPart(multipart);
 if (encrypt)
 {
 text.setContent("The attached file is encrypted, the vector is "
 + iv);
 }
 else
 {
 text.setContent("Check this out!");
 }
 multipart.addBodyPart(text);
 outgoing.setContent(multipart);
 return outgoing;
}

Better Choices
Our little app is getting quite feature-rich. Let’s allow our users to easily decide what
operation they want to take on each piece of media they record. We can easily do this
by adding additional menu items in the recording screen: rather than automatically
perform a particular operation once they have acquired the media, we will allow them to
make a selection from a menu. We will add two new states, STATE_RECORDED and
STATE_RECORDED_IMAGE, to represent the condition where the user has finished media
capture. We also will store information about the captured media. Based on these
states, additional options will be presented in the menu. Best of all, the user can now
perform multiple operations on the same media; for example, she can first view it, and
then send two encrypted copies. Listing 5-2 shows the modifications to our improved
recording screen.

Listing 5-2. A Better Recording Screen

package com.apress.king.mediagrabber;
// Imports here

public class RecordingScreen extends MainScreen implements PlayerListener
{
 public static final int STATE_WAITING = 1;
 public static final int STATE_READY = 2;
 public static final int STATE_RECORDING = 3;
 public static final int STATE_RECORDED = 4;
 public static final int STATE_RECORDED_IMAGE = 5;

 // Additional member variables
 private String filename;
 private String contentType;
 private String message;

Download at WoweBook.Com

CHAPTER 5: Cryptography 186

 private byte[] data;

 // New menu items
 private MenuItem playItem = new MenuItem("Play", 0, 0)
 {
 public void run()
 {
 play();
 }
 };
 private MenuItem showItem = new MenuItem("Show", 0, 0)
 {
 public void run()
 {
 showPicture();
 }
 };
 private MenuItem sendItem = new MenuItem("Send", 0, 0)
 {
 public void run()
 {
 send(false);
 }
 };
 private MenuItem sendEncryptedItem = new MenuItem("Send Encrypted", 0, 0)
 {
 public void run()
 {
 send(true);
 }
 };

 // New menu options
 public void makeMenu(Menu menu, int instance)
 {
 if (instance == Menu.INSTANCE_DEFAULT)
 {
 if (state == STATE_READY)
 {
 menu.add(goItem);
 }
 else if (state == STATE_RECORDING)
 {
 menu.add(stopItem);
 }
 else if (state == STATE_RECORDED)
 {
 menu.add(playItem);
 menu.add(sendItem);
 menu.add(sendEncryptedItem);
 }
 else if (state == STATE_RECORDED_IMAGE)
 {
 menu.add(showItem);
 menu.add(sendItem);

Download at WoweBook.Com

CHAPTER 5: Cryptography 187

 menu.add(sendEncryptedItem);
 }
 menu.add(doneItem);
 }
 super.makeMenu(menu, instance);
 }

 // Modified capture
 private void takeSnapShot()
 {
 try
 {
 data = video
 .getSnapshot("encoding=jpeg&width=640&height=480&quality=normal");
 if (data != null)
 {
 String file = location + "/image.jpg";
 writeToFile(data, file);
 status.setText("Image taken");
 filename = "image.jpg";
 contentType = "image/jpeg";
 message = "Here's a picture!";
 state = STATE_RECORDED_IMAGE;
 }
 else
 {
 status.setText("Please try again later.");
 }
 }
 catch (IOException ioe)
 {
 status.setText(ioe.getMessage());
 }
 catch (MediaException me)
 {
 status.setText(me.getMessage());
 }
 }

 private void stop()
 {
 try
 {
 if (type == RECORD_AUDIO || type == RECORD_VIDEO)
 {
 recorder.commit();
 data = dataOut.toByteArray();
 if (type == RECORD_AUDIO)
 {
 String file = location + "/audio.amr";
 writeToFile(data, file);
 contentType = "audio/amr";
 message = "Here's some sound!";
 filename = "audio.amr";
 }

Download at WoweBook.Com

CHAPTER 5: Cryptography 188

 else
 {
 String file = location + "/video.3gp";
 writeToFile(data, file);
 contentType = "video/3gp";
 message = "Here's a video!";
 filename = "video.3gp";
 }
 status.setText("Data saved");
 state = STATE_RECORDED;
 }
 }
 catch (IOException ioe)
 {
 status.setText(ioe.getMessage());
 }
 finally
 {
 if (dataOut != null)
 {
 try
 {
 dataOut.close();
 }
 catch (Exception e)
 {

 }
 }
 dataOut = new ByteArrayOutputStream();
 }
 }

 // New option implementations
 private void play()
 {
 Screen playback = new PlayingScreen(location + "/" + filename, message);
 UiApplication.getUiApplication().pushScreen(playback);
 }

 private void send(boolean encrypt)
 {
 SendingScreen sending = new SendingScreen(contentType, filename,
 message, data, encrypt);
 UiApplication.getUiApplication().pushScreen(sending);
 }

 private void showPicture()
 {
 Bitmap taken = Bitmap.createBitmapFromBytes(data, 0, data.length, 1);
 Screen reviewer = new MainScreen();
 BitmapField bitmap = new BitmapField(taken);
 reviewer.add(bitmap);
 UiApplication.getUiApplication().pushScreen(reviewer);
 }
}

Download at WoweBook.Com

CHAPTER 5: Cryptography 189

Decryption
Run the app in the simulator first. You should be able to send both encrypted and
decrypted versions. Now, load it on the phone and send yourself an encrypted
message.

When you try to open the attached file, at best you’ll get an error message. In the worst
case, you may crash your player application. Looks like the encryption works—now,
how to reverse it? Unless you already have a tool in place, I recommend using the
popular openssl program. openssl is installed by default on modern Linux and OS X
machines, and is also included as part of the Cygwin package for Windows, available at
http://www.cygwin.com/. openssl is mainly used for secure connections, but also
contains a very useful and powerful set of tools for encryption and decryption.

Save your encrypted file to your local disk, then navigate there in a command line. You
can perform the decryption with a single step that should look like the following:

openssl enc -d -des-cfb8 -K 2BEAFABBABE4AFAD -iv 36bd3018c8116220
 -in audio.amr -out decrypted.amr

Breaking this apart:

 enc tells openssl to run in crypto mode.

 -d is used for decryption; use -e to encrypt instead.

 -des-cfb8 corresponds to the encryption we used, a DES key and a
CFB encryptor with an 8-byte IV. You can type openssl enc --help to
see a complete list of supported ciphers.

 -K provides the secret key.

 -iv is the random initialization vector. You should substitute the value
received in the email.

 -in and -out control input and output respectively. Substitute the
actual file names here.

The operation should run without any errors. If it doesn’t, please double-check your
encryption code and the arguments to openssl. Now, open your attachment again.
Huzzah! It should now be safe to view. Congratulations on creating a secure application.

Paranoia
Or is it secure? At a minimum, you’ll want to change the key value; otherwise, anyone
reading this book will be able to easily crack your security. Even that may not be
enough, though. Let’s perform a quick audit of the app.

In the same directory as your .project and MediaGrabber.alx file, you will see a
MediaGrabber.cod file. This contains the code that is actually loaded onto the BlackBerry
device. Open this file with a hex editor. On Windows, I prefer XVI32, a freeware hex
editor that you can find with a simple web search. You will see the program data, much

Download at WoweBook.Com

http://www.cygwin.com

CHAPTER 5: Cryptography 190

of which is unreadable. Now, search in this file for our secret key, 2BEAFABBABE4AFAD or
whatever you have substituted for it. Eep! There it is, plain as day.

This is a habitual problem in computer security. In order to perform crypto, the program
must contain crypto keys. It must keep those keys secret. And yet, those keys must be
distributed within, generated by, or sent to the app. How can you keep attackers from
discovering these keys?

There are several strategies available. The more obfuscation you use, the more casual
attackers you will deter. You can split up the key into multiple parts and then recombine
the pieces. You can generate the key in memory—for example, by shifting every letter
one position down the alphabet. You can encrypt a key with another key, although this
leads to a chicken-and-egg problem. Ultimately, a sufficiently determined hacker with
unlimited time and resources can theoretically decompile and reverse engineer your
program to discover your keys. Depending on your app design, you may be able to use
public key encryption where it does not matter if an attacker discovers the public key.

WANT MORE?

Cryptography is a fascinating area, and, if it interests you, you can easily spend hours, days, or years
reading about different options and experimenting with them. There are a few extra items you can pursue
in MediaGrabber to make it more secure for your users.

 Allow the user to enter her own key that will be used for encryption instead of using a
hard-coded one. Extra credit: Generate a strong key based on text that she enters
(e.g., generate a value like 0x42FAAB783C10CE77 from the password tristero.)
Super extra credit: Securely store the user’s key so she doesn’t need to type it in every
time she sends an encrypted message.

 Add support for multiple ciphers to the app, such as AES, TripleDES, and RC5. Allow
the user to select which encryption method to use when sending. Keep in mind that
this also will require support for multiple key sizes.

 Make your app as secure against hackers as you can. Conceal your key within the
.cod file. Experiment with ways to generate key values that also allow the receiver to
figure out the key.

Program security requires constant vigilance, so completing these exercises will help you develop the
mindset of constant paranoia and inquisitiveness that will help you discover flaws before they can be
exploited.

Excelsior
Choices abound in the world of security. The rich resources of the built-in RIM crypto
libraries and the free offerings of Bouncy Castle make it very unlikely that you will ever
find yourself lacking crypto options. The bigger challenge is to make sense of what’s out
there and pick what makes the most sense for your app. If your app is for personal use
or you just want to discourage potential hackers, very little is needed. Applying even the

Download at WoweBook.Com

CHAPTER 5: Cryptography 191

simplest cipher will deter the vast majority of abusers, who will move on to easier
targets. However, if you are responsible for crafting a system that manages people’s
money, personal information, or sensitive data, you must fulfill the mission of protecting
that trust. Involve others, consult experts, and make sure your app is reviewed and
tested.

Please keep in mind that the examples in this chapter included hard-coded keys for
maximum readability, but this will rarely be used in true applications. Consider whether
each user will need their own key, and if so, how to distribute them. Think about whether
you can algorithmically generate a key, and if you can, how to ensure both parties stay
in sync.

“Security through obscurity” is a persistent enemy of good design. Too many people
convince themselves that, by not talking about how their app works, they are protecting
against intrusion. You will know your app is secure if you can tell someone every detail
about how it works and still know that they will not be able to crack it.

Fortunately, simply by thinking about these issues, you already have a head start on
many other developers. Not to mention, you have more than a head start on using
advanced BlackBerry APIs—you have completed the race!

Part 1 of this book has provided you with the tools for creating feature-rich applications
that exploit the best built-in capabilities of BlackBerry devices. Up until this point, our
apps have been growing upward, gaining new functionality. Next, we will turn out focus
inward and start exploring ways to more tightly integrate with other systems on the
device.

Download at WoweBook.Com

Download at WoweBook.Com

2Part

Device Integration
You now have the tools to make a useful and interesting mobile BlackBerry app. If

you’re lucky, lots of people will get it… and it will sit in the Downloads folder or at the

bottom of their home screen. It may be great while people are using it, but even the

best app becomes forgettable if people don’t see it often.

This next section focuses on integration, the process of connecting your app with other

powerful apps and features on the device. You will gain access to the user’s personal

address book, calendar, and more, so that you can access information and provide

new updates. You will learn how to use the BlackBerry web browser in your app, and

use your app in the BlackBerry web browser. Finally, you will learn how to elevate

your app to the level of a first-class application, capable of providing services to other

apps on the phone and displaying custom icons from the BlackBerry menus.

By the end of this part, your apps won’t just have more features: they’ll also be

irresistible. Obtaining this level of polish and mutual cooperation with built-in device

applications can turn your app from something you download into a part of your

daily routine.

Download at WoweBook.Com

Download at WoweBook.Com

6Chapter

Personal Information
If you work for a large company, your boss probably has a large Rolodex with all his
business contacts’ information in it. The boss may have a secretary who manages
scheduling and appointment reminders. If you’re like most programmers, you likely don’t
have either of those. What you do have is a computer in your pocket that has the
capability of storing all sorts of personal information: your friends’ names, their phone
numbers and email addresses, your plans for the weekend, a grocery list, and more. Our
mobile phones have become intensely personal devices, one of the few things that are
with us almost all day long. We trust the phone with a great deal of information, and, if
users are willing to share that information, your apps can become far more useful,
immediate, and personal.

This chapter looks at the various options offered by the BlackBerry API for integrating
with the user’s personal information. Their friends will be your friends, their calendar an
open book, their notes a reminder to you. Of course, not every app will need to connect
in these ways, but almost everything can benefit from a little personal touch.

Address Book
It’s easy to overlook the fact that mobile phones are ultimately about communication.
Specifically, communication with other people through voice calls or messaging. The
built-in address book app (sometimes labeled Contacts) is usually one of the first items
a user will see when they turn on their BlackBerry, and even the most die-hard luddites
take the time to enter their friends’ information for easier calls. RIM exposes every piece
of information about those contacts through the Personal Information Management
(PIM) interface, which also forms the basis for other types of information.

An Overview of PIM
The PIM API was first deployed as part of JSR 75, the same standard that brought us
the FileConnection API. It has proven extremely successful, and is now present on the
vast majority of Java ME phones as well as all BlackBerry devices with software version

Download at WoweBook.Com

CHAPTER 6: Personal Information

196

4.0 or higher. This common basis makes it much easier to port applications between
BlackBerry and other types of devices.

PIM and Lists
PIM took a different approach from FileConnection, eschewing the GCF in favor of a
more specialized interface. Rather than allowing for arbitrary types of personal
information stores, it defined a particular set of the most common. These stores include
a user’s address-book, calendar, and to-do list. Each type of store is presented as a
list—conceptually, an ordered sequence of records, whether those records are contacts
or appointments. Because the lists were predefined, RIM was not able to add specialized
classes directly; however, because the lists are presented as interfaces, RIM was able to
derive from those interfaces to add their own specialized behavior. Figure 6-1 illustrates
the current class hierarchy for list management on BlackBerry devices.

Figure 6-1. PIM access to information lists

Download at WoweBook.Com

CHAPTER 6: Personal Information

197

PIM and BlackBerryPIM are factory classes that provide access to the lists, as well as
methods for serializing or deserializing individual list items. These two classes actually
refer to the same singleton object, and can safely be cast back and forth. BlackBerryPIM
defines access to RIM-exclusive lists and capabilities. Each PIMList comes in both a
standard and a BlackBerry-specific flavor. The BlackBerry versions of these classes
offer additional useful features that were not included in the original JSR specification.
For example, a ContactList presents ways to look up contacts by searching for certain
criteria, while a BlackBerryContactList adds the ability to search for contact groups, or
to directly retrieve a contact by their unique ID. As with PIM and BlackBerryPIM, each
PIMList and BlackBerryPIMList are singleton objects, so each can be cast into the other
version.

Tip: If you need the extra abilities offered by the BlackBerry version of a list, go ahead and use
it. Otherwise, stick with the plain version to ease porting to other platforms.

A special type of list, BlackBerryMemoList, was created for BlackBerry devices and does
not have a standard counterpart. As you might expect, this provides access to the
Memos application.

You cannot add your own type of list to the PIM structure. For example, if your
application provides voice memos, you cannot use PIM to store or look up that data
because voice memos are not one of the existing PIMList implementations. However,
among the existing lists, your app has complete control. Any changes you make will
appear in other PIM-related apps and vice versa. So, if you add a ToDo list item within
your app, it will appear the next time the user opens their Tasks application.

You open a list by providing the enumerated type to the PIM singleton and casting to the
appropriate type. The returned lists share many characteristics with I/O connections:
lists can be opened in read-only, write-only, or read-write modes, and should be closed
when finished, as shown below. Keeping PIMList instances open may block others from
being able to access the associated data.

PIM pim = PIM.getInstance();
ContactList contacts = (ContactList)pim.openPIMList(
 PIM.CONTACT_LIST, PIM.READ_ONLY);
// Use the contacts here.
contacts.close();

Note: The PIM classes can be located in the javax.microedition.pim package.

Almost every PIM-related operation can fail with a PIMException. The exact reason for
the exception will vary from operation to operation; when opening a PIMList, it may fail if
the requested list isn’t available. SecurityException can also be thrown on a variety of
methods, usually because the user hasn’t authorized the app to read or modify personal
data.

Download at WoweBook.Com

CHAPTER 6: Personal Information

198

Certain device configurations may support multiple lists of each type. One ContactList
may be provided for contacts stored on a SIM card, while another ContactList
represents the contacts on a Microsoft Exchange server. The PIM class provides
methods to determine what list names are available and to grab those particular lists, as
shown in the example below.

PIM pim = PIM.getInstance();
String[] listNames = pim.listPIMLists(PIM.EVENT_LIST);
for (int i = 0; i < listNames.length; ++i)
{
 EventList contacts = (EventList)pim.openPIMList(
 PIM.EVENT_LIST, PIM.READ_WRITE, listNames[i]);
 // Use the list
 contacts.close();
}

Each list is maintained separately from other lists. It is not possible to combine all lists of
one type into one master list.

Categories
Each type of PIMList can contain an arbitrary number of categories. Categories logically
group together groups of items. In a ToDo list, you might have separate categories for
Sales, Research, Projects, and Personal. Then, when adding a new ToDo item, you
could choose to assign it to an appropriate category.

Note: Preloaded BlackBerry applications sometimes refer to a category as a Filter.

Categories are entirely optional. PIMList includes a special type of category called
UNCATEGORIZED that is associated with every item in the list that does not belong to any
category. If you do choose to assign a category to an item, that category must already
exist. You can determine this by querying the associated list as shown below.

String[] categories = contacts.getCategories();

Categories in PIM are more like tags than folders. Each individual item might belong to
zero, one, or many categories. If you need to pick up flowers for a co-worker’s birthday
party, you might file that in your ToDo list under both Projects and Personal. Later, when
you filter by Projects, Personal, or all, you will see that reminder. Figure 6-2 shows a
theoretical user’s address book as organized by categories.

Download at WoweBook.Com

CHAPTER 6: Personal Information

199

Figure 6-2. Contacts shown by category

Items
Up until now, all the classes in this chapter have offered organization and access.
However, items are the heart of PIM. They provide the actual data that users care about:
a person’s name, the time of an appointment, and the priority of a task.

Each PIMList provides access to a set of PIMItem objects. Every item in a PIMList has
the same class type: an EventList will only contain Event objects, a ContactList
contains Contact objects, and so on. As with the PIMList class, each PIMItem subclass
has an associated BlackBerry version as well. Figure 6-3 shows the complete hierarchy
for Contact items; the same structure applies to all other types of items as well. Once
again, you can always downcast from a PIMItem to its BlackBerry counterpart, such as
from a Contact to a BlackBerryContact.

Download at WoweBook.Com

CHAPTER 6: Personal Information

200

Figure 6-3. Items contained in a ContactList

Each list contains methods for creating and removing items, as discussed later in this
chapter. You can also search lists to find and edit existing items.

To manage an item’s categories, call addToCategory(), providing the name of the
desired category. Conversely, call removeFromCategory() to detach a category from this
item. The method maxCategories() indicates how many categories an item can belong
to, with -1 indicating that there is no limit.

Fields
If you have completely filled out a contact’s information in the address book, you have
seen the wide variety of data types that are included. Some things, such as the name
and phone number, are simply text. Others are collections of text items; for example, an
address contains separate entries for the street, city, and so on. You can enter the
birthday or anniversary through a special date control. All of these pieces of information
are referred to as fields, and together they tell you everything there is to know about a
particular item.

To support the many different kinds of information that items require, fields are fairly
complex. They can theoretically support many data types, so each individual field must
declare what particular type it provides. Examples include strings, arrays of strings, Date
objects, and binary data. Each field may have zero or more values with that data type.
For example, if you enter three email addresses for the same contact, all three entries
will be provided by one field. Certain fields support attributes. An attribute provides
more detailed information about the data it contains, such as distinguishing between a
home and a work phone number. Finally, the field also has a human-readable label that
describes what information it provides.

Download at WoweBook.Com

CHAPTER 6: Personal Information

201

Caution: Depending on your application’s internationalization language needs, the human-
readable label may not be in the language you wish to display.

Contacts usually have the most complex data structure, and are the only type of item
that uses attributes. Use PIMItem.ATTR_NONE whenever you work with fields that do not
support attributes.

At runtime, you can query a PIMList about the fields it supports. getSupportedFields()
returns an array of integers, with each integer corresponding to an enumerated field
value, such as Event.START or ToDo.PRIORITY. You can use this to determine whether to
provide or display values for particular fields. BlackBerry offers consistent support for
particular sets of fields, so it is less important to check for fields if your app will only run
on BlackBerry devices. However, you should do this if you plan to run it on other devices
as well. You can also look up the data type, label, maximum number of values, and
attributes for a field, as shown in the following code.

int[] supportedFields = contacts.getSupportedFields();
for (int i = 0; i < supportedFields.length; ++i)
{
 int field = supportedFields[i];
 String label = contacts.getFieldLabel(field);
 int type = contacts.getFieldDataType(field);
 int[] attributes = contacts.getSupportedAttributes(field);
 for (int j = 0; j < attributes.length; ++j)
 {
 int attribute = attributes[j];
 String attrLabel = contacts.getAttributeLabel(attribute);
 }
}

Support for fields is consistent across all the items in a given list. You will never have
one Contact that supports a birthday and another that doesn't. However, not every field
will necessarily have a value. In some cases, a field may be mandatory, meaning it
cannot be stored without having some value. When this happens, an initial default is
usually provided that your app can choose to overwrite.

Contacts
Contacts are probably the most complex item in the PIM database. They certainly have
the greatest number of fields, and are the only items that support field attributes.
Contacts are also likely to be the most widely used piece of personal information.
Access to contacts can greatly enhance the usefulness of your app, so understanding
their structure is important.

Download at WoweBook.Com

CHAPTER 6: Personal Information

202

Hello, Stranger
A contact is an entity with whom you can communicate. Contacts are most often
people, but may also include companies, automated response lines, or other things. At a
minimum, we are likely to assign a name to each contact, whether it is “Bob” or
“Apress” or “That one weird guy who’s always in the coffee shop.” Around that name,
we attach a lot of associations and information.

In the world of PIM, we can quantify a lot of that information into data. People have
phone numbers, so we enter that into the contact record. We further distinguish
between a person’s fax number, their work number, and their mobile number. Any
individual contact may have multiple versions of the same type of data, and be missing
other types of data entirely. Figure 6-4 shows the set of fields included for a hypothetical
item in the address book.

Figure 6-4. Data fields provided by a contact

This data is extremely malleable. People might change their address when they move,
change their name when they marry, and change their photo when they grow a beard.
The contact record remains the same, because it refers to the same entity, but the fields
within it may change entirely.

Representing a Contact
Prior to the creation of the PIM API, a consortium of technology companies defined a
standard format for contact data. This standard is called vCard, and you might have
seen them attached to emails or included in web pages. A vCard stores information
about a particular entity in a well-structured format that can be parsed by any

Download at WoweBook.Com

CHAPTER 6: Personal Information

203

application. The most widely used format is vCard 2.1, created in 1996, while the most
advanced version is vCard 3.0. A sample vCard is shown below.

BEGIN:VCARD
VERSION:2.1
N:Maas;Oedipa
FN: Oedipa Maas
ORG:Inverarity Estate
TITLE:Executor
TEL;WORK;VOICE:(818) 555-0144
TEL;HOME;VOICE:(707) 555-0135
ADR;WORK:;;400 Inverarity Drive;San Narciso;CA; 91340;United States of America
LABEL;WORK;ENCODING=QUOTED-PRINTABLE: 400 Inverarity Drive =0D= San Narciso,
 CA 91340=0D=0AUnited States of America
ADR;HOME:;;303 Palm Avenue; Kinneret;CA; 95418;United States of America
LABEL;HOME;ENCODING=QUOTED-PRINTABLE: 303 Palm Avenue =0D= Kinneret, CA 95418
 =0D=0AUnited States of AmericaStates of America
EMAIL;PREF;INTERNET:oedipa@waste.example.net
END:VCARD

Although a vCard is a useful standard for data interchange, the actual storage will
hopefully not look anything like this. Each contact will most likely be broken apart and
stored in a compact database. The vCard specification includes a large number of fields
that are highly unlikely to actually be used on a mobile device, such as LOGO and AGENT
fields. The standard also allows anyone to create additional fields by prefixing them with
an X-. Some nonstandard fields that have gained widespread adoption include X-
ANNIVERSARY and X-SKYPE-USERNAME. Some of these fields might be useful on a mobile
phone, while others won’t. The PIM Contact API was derived from vCard 3, and selected
a subset of fields from the standard that were believed to be the most useful. However,
each individual manufacturer could decide which of those fields to implement. There is
usually a 1–1 correlation between the fields exposed in the Java PIM API and what is
shown by a device’s native contacts app. If there is no Assistant entry in the address
book, the API doesn’t need to bother supporting Contact.ASSISTANT. This allows for far
better efficiency in storing contact information in the device’s native format.

A BlackBerry Contact
Fortunately, RIM has standardized the fields they make available. Besides selecting a
subset of the standard PIM fields listed in the Contact class, they have added several
additional fields as well in BlackBerryContact. Table 6-1 shows the available fields along
with their supported attributes and the total allowed quantity.

Download at WoweBook.Com

mailto:oedipa@waste.example.net

CHAPTER 6: Personal Information

204

Table 6-1. Supported BlackBerryContact Fields

Name Field Type Attributes Total Allowed

Address Contact.ADDR PIMItem.STRING_
ARRAY

Contact.ATTR_WORK
Contact.ATTR_HOME

1

Anniversary BlackBerryContact.
ANNIVERSARY

PIMItem.DATE 1

Birthday Contact.BIRTHDAY PIMItem.DATE 1

Direct
Connect ID

BlackBerryContact.DCID PIMItem.STRING 1

Email Contact.EMAIL PIMItem.STRING 3

Notes Contact.NOTE PIMItem.STRING 1

Organization Contact.ORG PIMItem.STRING 1

Photo Contact.PHOTO PIMItem.BINARY 1

PIN BlackBerryContact.PIN PIMItem.STRING 1

Telephone Contact.TEL PIMItem.STRING Contact.ATTR_FAX,
Contact.ATTR_HOME,
BlackBerryContact.ATTR_
HOME2, Contact.ATTR_
MOBILE, Contact.ATTR_
OTHER, Contact.ATTR_
PAGER, Contact.ATTR_
WORK, BlackBerryContact.
ATTR_WORK2

8

Title Contact.TITLE PIMItem.STRING 1

Unique ID Contact.UID PIMItem.STRING 1

User 1 BlackBerryContact.USER1 PIMItem.STRING 1

User 2 BlackBerryContact.USER2 PIMItem.STRING 1

User 3 BlackBerryContact.USER3 PIMItem.STRING 1

User 4 BlackBerryContact.USER4 PIMItem.STRING 1

Download at WoweBook.Com

CHAPTER 6: Personal Information

205

Note: The Direct Connect ID is only supported on iDEN devices. (iDEN is most often used for
push-to-talk mobile phones.) BlackBerryContact.PIN must be a hex number represented
as a string.

As Figure 6-5 shows, this list precisely corresponds to the native BlackBerry address
book app. Any changes you make to a contact within your app will be reflected when
the user next views their address book.

Figure 6-5. A native BlackBerry contact

Download at WoweBook.Com

CHAPTER 6: Personal Information

206

Adding Contacts
There might be some occasions when you want your app to introduce the user to
someone new. You might include contact information for technical support, or perhaps
allow them to import friends from a social networking app into their address book. PIM
allows two options for adding new items: creating a blank item from scratch, or
importing an existing item from an outside source.

Creating Blank Contacts
Each PIMList subinterface includes a factory method for creating a new, blank item
within that list. For a new contact you would use ContactList.createContact(), as
shown here.

PIM pim = PIM.getInstance();
ContactList contacts = (ContactList) pim.openPIMList(PIM.CONTACT_LIST,
 PIM.READ_WRITE);
Contact contact = contacts.createContact();

When your blank contact is initialized, it actually comes with some preliminary default
values. This is a minimal set on BlackBerry devices. Each contact must have a name, so
by default this will be “Empty Contact.” Additionally, four entries for telephone numbers
will be created, two for work and two for home; however, these do not have any values
set by default.

If you create multiple contacts, each of them will have the name “Empty Contact.” It is
perfectly valid to have two separate contacts with the exact same name—otherwise, it
wouldn’t be possible to have two friends named “John Smith.” If your app is going to
create contacts, such as a tech-support contact for your product, it should check first to
make sure that those contacts do not already exist in the address book in order to avoid
duplicates. Later in the chapter, you’ll see how to search for existing contacts.

Importing a Contact
The PIM class provides the method fromSerialFormat() for importing an item from a
stream. The following code demonstrates how to do this from an array of UTF-8 bytes.
You can just as easily load a vCard over the network, from a file, or through any other
type of input stream source. However, keep in mind that fromSerialFormat() expects to
receive plain characters; if the data has been received over an HTTP or email
connection, any encoding should be removed prior to deserializing.

ByteArrayInputStream input = new ByteArrayInputStream(cardData);
PIM pim = PIM.getInstance();
PIMItem[] items = pim.fromSerialFormat(input, "UTF-8");
if (items.length > 0 && items[0] instanceof Contact)
{
 Contact imported = (Contact) items[0];
}

Download at WoweBook.Com

CHAPTER 6: Personal Information

207

When importing a contact, the first byte in the input stream should be the “B” character
of the "BEGIN:VCARD" or "begin:vcard" tag. (vCard tags are not case-sensitive.) The
vCard must be in the 2.1 or 3.0 format. PIM will continue processing all characters until it
reaches the "end:vcard" tag or an error occurs. As it reads in tags, it will import any
compatible tags (such as name, email, mobile, etc.) into the Contact object’s data fields.
If it comes across any incompatible tags (such as nickname, public key, or photo URL),
those fields are silently dropped. If the card is missing the mandatory name field, “Empty
Contact” is provided as a default.

Even though this method returns an array of PIMItem objects, it will only read in a single
Contact. The method returns an array because sometimes a single data entry can result
in multiple PIMItem instances. For example, a calendar appointment can be represented
as both a ToDo and an Event. If multiple vCards are located within this stream, you must
call fromSerialFormat() multiple times.

Caution: Versions of BlackBerry device software prior to 4.6.1 have flawed implementations of
fromSerialFormat() that may result in exceptions when you try to import vCards. In some
cases, you might be able to avoid this by restricting the set of fields in the vCard; be sure to
test it on your target devices if you plan on using this method.

Editing Contacts
After you have created, imported, or looked up an existing Contact, you can start
making changes to it. This might involve adding new fields, editing existing fields, or
removing fields. Keep in mind that you can only edit items from a list that was opened
with WRITE_ONLY or READ_WRITE access.

Modifying Basic Fields
Most of the fields in the Contact class have only a single value associated with them. To
edit them, provide a new value of the appropriate type, as previously shown in Table 6-1.

Editing Strings
Strings can be directly added to a contact record, as shown here.

contact.addString(Contact.ORG, PIMItem.ATTR_NONE, "Engineering");

You can modify an existing string value by calling the setString() method with an
appropriate index.

contact.setString(Contact.TITLE, 0, PIMItem.ATTR_NONE, "Senior Engineer");

Download at WoweBook.Com

CHAPTER 6: Personal Information

208

How can you know which version to call? Most string fields can only accept a single
entry. If you try to add a new entry when one already exists, a FieldFullException will
be thrown. Conversely, if you try to set a field and no value is currently set, you’ll get an
IndexOutOfBoundsException. If you have just created a blank new contact, you can
safely call addString() since no fields currently exist. Otherwise, you should check to
see whether the field already has any values, and then set or update it appropriately as
in the following example.

if (contact.countValues(Contact.NOTE) > 0)
{
 contact.setString(Contact.NOTE, 0, PIMItem.ATTR_NONE, "Next victim");
}
else
{
 contact.addString(Contact.NOTE, PIMItem.ATTR_NONE, "Next victim");
}

If you have previously added a string, and then later call setString() with an index of 0,
the previously added value will be overwritten. This occurs even if the Field supports
multiple entries.

Finally, for maximum portability, you can check to see whether a field is supported
before you attempt to access it. This will protect you if you ever run on devices that do
not support the given field.

if (contacts.isSupportedField(BlackBerryContact.USER1))
{
 contact.addString(BlackBerryContact.USER1, PIMItem.ATTR_NONE, "BB user");
}

Editing Dates
A date in a Contact item is provided as a long 64-bit integer in Unix epoch time—that is,
the number of milliseconds since midnight on January 1, 1970 GMT. If you wish to use
the current time, you can call System.currentTimeMillis(). You can also calculate the
time value yourself. However, I find it easiest to use the Calendar class, which provides
useful methods for converting a calendar date and time into a suitable long value. The
following example assigns an anniversary value to a contact.

Calendar calendar = Calendar.getInstance();
calendar.set(Calendar.YEAR, 2008);
calendar.set(Calendar.MONTH, Calendar.JULY);
calendar.set(Calendar.DATE, 21);
long time = calendar.getTime().getTime();
contact.addDate(BlackBerryContact.ANNIVERSARY, PIMItem.ATTR_NONE, time);

Download at WoweBook.Com

CHAPTER 6: Personal Information

209

Note: The getTime().getTime() call is not a typo. The first method converts a Calendar
into a Date, the second from a Date into a primitive time value. The BlackBerry version of
java.util.Calendar is missing some useful functions from the Java SE version, including
getTimeInMillis() and overloaded set() functions that specify multiple fields at once.

Editing Binary
A BlackBerry contact supports a single binary field, the photo. You can use any image
type supported by EncodedImage, including PNG, BMP, WBMP, GIF, JPEG, and TIFF.
However, there are some quirks. First, not all specific images will be supported. I’ve
noticed that most PNG files can be added successfully, while others generate an “Image
type is not supported” error. Second, the binary data may either be Base64 encoded or
provided in raw byte format; however, the length of the data must be given as the
number of bytes in the unencoded format. On recent devices, you may directly set
image bytes for the photo as shown here.

EncodedImage image = EncodedImage.getEncodedImageResource("silhouette.png");
byte[] data = image.getData();
contact.addBinary(Contact.PHOTO, PIMItem.ATTR_NONE, data, 0, data.length);

On devices with older software versions, you may need to Base64 encode the data first.
Fortunately, a convenient class provides a quick way to do this, as shown in the
following code.

EncodedImage image = EncodedImage.getEncodedImageResource("silhouette.png");
byte[] data = image.getData();
byte[] encoded = Base64OutputStream.encode(data, 0, data.length, false, false);
contact.addBinary(Contact.PHOTO, PIMItem.ATTR_NONE, encoded, 0, data.length);

Of course, you can obtain the image bytes any way you like. This example shows how to
use a resource in your application, but you can also download an image from the
Internet or select something from the local filesystem.

Modifying Email Addresses
The basic fields shown in the previous section all support a single entry. An email
address is a String, but any given user may have multiple addresses. BlackBerry
devices support up to three addresses for any given contact. You may simply call
addField() multiple times, as in the following example.

contact.addString(Contact.EMAIL, PIMItem.ATTR_NONE, "westley@example.com");
contact.addString(Contact.EMAIL, PIMItem.ATTR_NONE, "farmboy@example.com");
contact.addString(Contact.EMAIL, PIMItem.ATTR_NONE, "dread.pirate@example.com");

Should you ever need to add another address once the maximum has been reached,
you must remove one of the existing ones first. You can remove any field, not just email

Download at WoweBook.Com

mailto:westley@example.com
mailto:farmboy@example.com
mailto:pirate@example.com

CHAPTER 6: Personal Information

210

addresses, by calling the removeValue() method. The example below will remove the
second item; if run after the preceding code, the two remaining addresses will be
westley@example.com at index 0 and dread.pirate@example.com at index 1.

contact.removeValue(Contact.EMAIL, 1);

New email addresses will always be added to the end of the list. You can call
setString() with the appropriate index to modify an existing email address slot.

Modifying Names
Contact.NAME has the type PIMItem.STRING_ARRAY. It is helpful to be able to access
individual components of a name; for example, “John Smith” can be easily sorted by
first name, but you’d like individual access to the “Smith” part in order to sort by the last
name. PIM defines five potential elements that make up the name array. BlackBerry
supports a subset of these, as shown in Table 6-2.

Table 6-2. Elements in the Name Array

Name Meaning Example Supported?

Contact.NAME_FAMILY Last name House Yes

Contact.NAME_GIVEN First name Gregory Yes

Contact.NAME_OTHER Middle name, nick name, etc. Greg No

Contact.NAME_PREFIX Honorific or title placed before name Dr. Yes

Contact.NAME_SUFFIX Honors, offices, or generational information M.D. No

You cannot directly set an individual name element; instead, you must add or remove
the entire string array at once. You can build up and apply the array as shown in the
following example.

int nameCount = contacts.stringArraySize(Contact.NAME);
String[] names = new String[nameCount];
names[Contact.NAME_PREFIX] = "Dr.";
names[Contact.NAME_GIVEN] = "Nick";
names[Contact.NAME_FAMILY] = "Riviera";
names[Contact.NAME_SUFFIX] = "M.D.";
contact.addStringArray(Contact.NAME, PIMItem.ATTR_NONE, names);

You can include as few name parts as you like, although, if neither a given nor a family
name is included, BlackBerry will apply a default of “Empty” and “Contact” respectively.
It is safe to include unsupported name parts such as NAME_SUFFIX. These will be silently
discarded. If you’d prefer to check at runtime whether a name is supported, use the
method isSupportedArrayElement().

Download at WoweBook.Com

mailto:westley@example.com
mailto:pirate@example.com

CHAPTER 6: Personal Information

211

if (contacts.isSupportedArrayElement(Contact.NAME, Contact.NAME_SUFFIX))
 names[Contact.NAME_SUFFIX] = "M.D.";

Modifying Phone Numbers
The phone number field is the first that supports attributes. As described previously, an
attribute provides more detailed information about the data it contains. When you add
multiple email addresses, there is no way to distinguish whether one email address will
be more appropriate than another to use. For phone numbers, however, you can attach
an attribute to each number describing its purpose, as the following code demonstrates.

contact.addString(Contact.TEL, Contact.ATTR_HOME, "5555550100");
contact.addString(Contact.TEL, Contact.ATTR_WORK, "5555550103");
contact.addString(Contact.TEL, BlackBerryContact.ATTR_WORK2, "5555550104");

As long as you stick to the defined attributes and don’t repeat yourself, everything will
work as expected. However, BlackBerry follows some unusual rules in other cases. If
you try to add an attribute that isn’t supported (such as Contact.AUTO), or one that
already has a value assigned to it, then, rather than discarding the value or throwing an
error, the number will be assigned to the next available slot. Therefore, it is possible for
your code to add a mobile number to a contact, and have that number stored as a pager
number. There is a limit of eight numbers per contact, and adding any more after that
will result in a FieldFullException.

To avoid this problem, you can use the countValues() method to determine how many
entries are already stored in a field, and then a getAttributes() call to retrieve the attributes.
Attributes are bit flags, so you can use a bitwise “AND” operator to determine whether a
given attribute is set, as shown in the next example. This code will scan through all the
telephone numbers already set on a contact and, if it finds a mobile number, update it.

int telCount = contact.countValues(Contact.TEL);
for (int i = 0; i < telCount; ++i)
{
 int telAttrs = contact.getAttributes(Contact.TEL, i);
 if ((telAttrs & Contact.ATTR_MOBILE) != 0)
 {
 contact.setString(Contact.TEL, i, Contact.ATTR_MOBILE, "5555550109");
 break;
 }
}

Modifying Addresses
The address field is the most complex field in a Contact, as it combines both the array
elements we saw in the name field and the attributes found in telephone numbers. Now
that you have mastered both of these concepts, addresses should be relatively
straightforward. First you will build up an array of address elements, and then assign
that array to a specific address attribute. The address array elements are shown in
table 6-3.

Download at WoweBook.Com

CHAPTER 6: Personal Information

212

Table 6-3. Elements in the Address Array

Name Meaning Example Supported?

Contact.ADDR_COUNTRY Country Canada Yes

Contact.ADDR_EXTRA Any other information Head office Yes

Contact.ADDR_LOCALITY City, town, rural area Waterloo Yes

Contact.ADDR_POBOX Post office box 54321 No

Contact.ADDR_POSTALCODE ZIP or other postal code N2L 3W8 Yes

Contact.ADDR_REGION Province, territory, or state Ontario Yes

Contact.ADDR_STREET Street number and name 295 Philip Street Yes

As with phone numbers, if you try to add an address that isn’t supported or that already
has a value, it will be assigned to the next available slot. However, with just two
supported attributes, this is less of a problem. You may reuse an existing array to add
multiple addresses, as the next example shows.

int addrCount = contacts.stringArraySize(Contact.ADDR);
String[] address = new String[addrCount];
address[Contact.ADDR_STREET] = "1600 Pennsylvania Ave NW";
address[Contact.ADDR_LOCALITY] = "Washington";
address[Contact.ADDR_REGION] = "D.C.";
address[Contact.ADDR_POSTALCODE] = "20500-0004";
address[Contact.ADDR_COUNTRY] = "USA";
contact.addStringArray(Contact.ADDR, Contact.ATTR_HOME, address);
address[Contact.ADDR_STREET] = "One First Street N.E.";
address[Contact.ADDR_LOCALITY] = "Washington";
address[Contact.ADDR_REGION] = "D.C.";
address[Contact.ADDR_POSTALCODE] = "20543";
address[Contact.ADDR_COUNTRY] = "USA";
contact.addStringArray(Contact.ADDR, Contact.ATTR_WORK, address);

You may remove or update individual address entries as discussed previously.

Saving Contacts
All modifications to a contact happen entirely in memory. In order to persist those
changes to the device’s long-term storage, you must commit them by calling
Contact.commit(). Even if no errors have occurred when you add and modify fields, an
exception still may be thrown on the call to commit(). For example, if you try to add an
invalid image to a contact via the Contact.PHOTO field, the problem may not be detected
until you try to save the contact.

Download at WoweBook.Com

CHAPTER 6: Personal Information

213

After you call commit(), you can continue using this Contact object, but additional
changes won’t be saved unless you call commit() again.

Besides a local save, you might be interested in exporting contact data so you can send
it to a server or other application. You can do this yourself by iterating through a
contact’s fields and writing the information to a custom format, but it’s much easier to
use PIM’s built-in vCard support, assuming the receiving party is capable of reading that
format.

You can serialize a Contact by calling PIM.toSerialFormat(). You provide the Contact
and the output stream. Additionally, you must specify a character encoding; UTF-8 is
assumed if this is null. Finally, you must specify the data format. BlackBerry devices
offer two: VCARD/2.1 and VCARD/3.0. If you’d like to dynamically check what formats are
supported, you can call PIM.supportedSerialFormats(PIM.CONTACT_LIST). This returns
an array of all supported formats. The following is an example of exporting a contact to
an in-memory array.

ByteArrayOutputStream out = new ByteArrayOutputStream();
String[] formats = pim.supportedSerialFormats(PIM.CONTACT_LIST);
pim.toSerialFormat(contact, out, "UTF-8", formats[0]);
byte[] vCardData = out.toByteArray();

Searching for Contacts
A few users might never get around to creating any contacts in their address book, while
others might have hundreds or thousands. The number of contacts is limited only by the
available memory on the device. How do you go about finding the contacts you want?
There are a variety of tools at your disposal, including both standard PIM APIs and
special searches that are only available for BlackBerry devices.

I Want It All
If you need the entire haystack and not just the needle, ContactList.items() is the
method for you. This method returns an Enumeration filled with Contact items. Why
would you want to use this? It would be handy if you wanted to present the user with a
list of all available contacts to pick one, or for a spam app that sent emails to everyone
you know.

Caution: Remember that some users will have a lot of contacts. You should never write an app
that does something like create a new LabelField for every contact they have; this will
thrash the memory and be unrunnable on certain power users’ devices. It’s safe to call
items(), just be cautious about when and how you allocate new objects based on what it
returns. Similarly, don’t do a linear search through the enumeration, since it will take a long
time if there are many contacts.

Download at WoweBook.Com

CHAPTER 6: Personal Information

214

BlackBerryContactList offers an extra method and two more fields that provide a little
more refinement to the raw items() call. BlackBerryContactList.SEARCH_CONTACTS will
return only Contact entries, while BlackBerryContactList.SEARCH_GROUPS will return only
BlackBerryContactGroup objects. The default behavior is to return both. Most of the
other lookup methods described later in this chapter also have alternate versions that
accept these two search types. The following code will first process all of the contacts in
a user’s address book, and then operate on all the groups.

PIM pim = PIM.getInstance();
BlackBerryContactList contacts = (BlackBerryContactList) pim
 .openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);
Enumeration items = contacts.items(BlackBerryContactList.SEARCH_CONTACTS);
while (items.hasMoreElements())
{
 BlackBerryContact contact = (BlackBerryContact) items.nextElement();
 // Process contact here.
}
items = contacts.items(BlackBerryContactList.SEARCH_GROUPS);
while (items.hasMoreElements())
{
 BlackBerryContactGroup group = (BlackBerryContactGroup) items.nextElement();
 // Process group here.
}

Note: A BlackBerryContactGroup is a special type of address-book entry that represents
an address list, such as an email distribution or a working group. These can be read by your
application but cannot be modified or removed. A BlackBerryContactGroup is not
compatible with a Contact, so do not attempt to cast between the two.

BlackBerryContactList provides a useful method, getSortOrder(), that tells you how
returned items will be sorted. Depending on the device configuration, this can be
BlackBerryContactList.SORT_ORDER_FIRST_NAME, BlackBerryContactList.SORT_ORDER_
LAST_NAME, or BlackBerryContactList.SORT_ORDER_COMPANY. Unfortunately, there is no
way to modify the sort order yourself, but this can be helpful for displaying a message to
the user or to determine whether you need to sort the results yourself.

Particular Retrieval
If you’re fortunate enough to know the unique ID for a contact, you can look up your
contact directly by calling BlackBerryContactList.getByUID(). This presumes that you
have previously stored the UID in RMS or another suitable medium. The UID is a String
only available to developers; it is not visible when users view their address book. Each
Contact has its own unique ID, but IDs may be reused if a contact is deleted, so you
may want to check for validity after retrieving a Contact through this method.

If you happen to know the name of a contact, you can try to retrieve it by using the
itemsByName() method. This comes in several versions, including one where you provide

Download at WoweBook.Com

CHAPTER 6: Personal Information

215

a simple search string, like “Jon,” and another version where you provide a Contact
object. If using the string, PIM will run a case-insensitive search of the list for a contact
whose first name or last name starts with that string. So “Jon” will match “Jonathan Myers”
and “Ben Jonson” but not “Longjon Silver.” If you provide a Contact, the family and
given names will be searched, and contacts will only be returned if both names start
with the provided strings.

Keep in mind that these methods can return multiple results. You might hope that
searching for “Horatio Xavier” will only return one result, but someone might know two
people of that name. A search for “A” will almost certainly return multiple results. The
next example demonstrates how to search for a particular name, and then act on the
first result.

Contact nameTemplate = contacts.createContact();
String[] name = new String[contacts.stringArraySize(Contact.NAME)];
name[Contact.NAME_GIVEN] = "Daniel";
name[Contact.NAME_FAMILY] = "Waterhouse";
nameTemplate.addStringArray(Contact.NAME, PIMItem.ATTR_NONE, name);
Enumeration matches = contacts.itemsByName(nameTemplate);
if (matches.hasMoreElements())
{
 Contact daniel = (Contact)matches.nextElement();
}

Note: Even though a new Contact is created here, commit() is never called, so it will not be
saved to the address book.

Broader Searches
Another version of items() accepts a String. This behaves somewhat similarly to
itemsByName(), except that all fields in an item are checked, and the matching string can
occur anywhere within them. Searching for “stan” would match “Stanley,” “Pakistan,”
and “instant@example.com”. As with itemsByName(), this method returns an
Enumeration of all matches. This method tends to be slow, because it must search every
character of every field, and of limited use, because rarely would you want all possible
matches.

You might also choose to call itemsByCategory() to retrieve all contacts belonging to a
particular category. As mentioned previously, some items might belong to multiple categories
while others don’t belong to any. You can pass the field PIMList.UNCATEGORIZED to this
method to retrieve all items without any associated categories.

Once you have retrieved an Enumeration by either method, you can walk it and
downcast to Contact objects as shown previously.

Download at WoweBook.Com

mailto:instant@example.com%E2%80%9D

CHAPTER 6: Personal Information

216

Template Matching
The most powerful type of search available is the use of a Contact object as a template.
This performs similarly to the specialized version of itemsByName() used previously, but
this time all fields are matched. You can use this to narrow in on a particular Contact,
such as the entry with a particular email address, or to find a set of related items, such
as all your contacts who belong to a given organization.

Template matching follows several well-defined rules.

 Two STRING fields match if the template item’s string is contained
anywhere within the item’s string value. So, “key” would match “Turkey.”

 If the template item uses the empty string “” for a field, all items with
any value for that field match.

 For items with multiple values in a field, the position of the value is not
important. So, if your template has an email address of
“bob@example.com”, it will match “bob@example.com” whether it is
in slot 0, 1, or 2.

 If PIMItem.ATTR_NONE is supplied, any matching item will be accepted
regardless of attribute type.

 Otherwise, the attribute type in the item must match the attribute in the
template.

 Any type other than a STRING must match exactly. Keep in mind that
DATE fields may not share the exact same millisecond value, even if
they fall on the same calendar date.

Your templates can be as broad or as focused as you need. The following example
shows how to locate all of your contacts who belong to the Guild of Calamitous Intent
and have a San Francisco area code.

Contact template = contacts.createContact();
template.addString(Contact.ORG, PIMItem.ATTR_NONE, "Guild of Calamitous Intent");
template.addString(Contact.TEL, Contact.ATTR_WORK, "415");
Enumeration henchmen = contacts.items(template);

Remote Lookup
Corporate BlackBerry users usually access a BES that is attached to a large enterprise
database with access to extended contact information, such as a Microsoft Exchange
server. Even though an individual user may only have 100 contacts saved on their SIM
card, they might be able to access thousands more through the remote address server.

Since device software version 4.0.0, developers have been able to access this data
through the BlackBerryContactList.lookup() method. Two versions are provided: one
takes a String, the other takes a Contact. These perform searches in the same way as
ContactList.items(). However, because the data is not immediately accessible, the

Download at WoweBook.Com

mailto:bob@example.com%E2%80%9D
mailto:bob@example.com%E2%80%9D

CHAPTER 6: Personal Information

217

interface behaves differently. Instead of blocking until the search is complete, calling
lookup() will start an asynchronous search through the network for contacts. You must
pass in an instance of RemoteLookupListener. The provided object will be notified
through its items() callback function once the search is complete.

lookup() can safely be called even on devices that are not on a BES; they will simply
never receive the callback. Once the items are available, you can access them as you
would items returned through the other searches. Because the items reside on an
external server, you cannot update them. However, you can import the items into your
own local contact list by calling ContactList.importContact(). The following code
demonstrates how to kick off a remote search for root email addresses, and then import
the results into your address book.

final BlackBerryContactList localContacts = (BlackBerryContactList) pim
 .openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);
Contact remoteSearch = contacts.createContact();
remoteSearch.addString(Contact.EMAIL, PIMItem.ATTR_NONE, "root");
contacts.lookup(template, new RemoteLookupListener() {
 public void items(Enumeration results)
 {
 while (results.hasMoreElements())
 {
 Contact contact = (Contact)results.nextElement();
 Contact imported = localContacts.importContact(contact);
 try
 {
 imported.commit();
 }
 catch (PIMException pime) {}
 }
 }
});

Reading Contact Data
Once you have found a contact, you can access its information through the defined
fields. If you are confident that the certain fields have assigned values, such as if you
have done a search for those fields, you can access them directly. Otherwise, you
should use Contact.countValues() first to ensure that there is something there to read.
For maximum portability, you can initially call ContactList.isSupportedField() to check
that the field is safe to access.

The following code shows how to unpack certain information from a retrieved contact.
We retrieve the contact’s organization, create a readable version of their birthday, and
then grab all email addresses. Finally, we look through all the addresses in the record
and, if we find a work address, pull out some relevant fields from it.

String org = contact.getString(Contact.ORG, 0);
long birthdayTime = contact.getDate(Contact.BIRTHDAY, 0);
Calendar birthday = Calendar.getInstance();
birthday.setTime(new Date(birthdayTime));

Download at WoweBook.Com

CHAPTER 6: Personal Information

218

int emailCount = contact.countValues(Contact.EMAIL);
for (int i = 0; i < emailCount; ++i)
{
 String email = contact.getString(Contact.EMAIL, i);
}
int addrCount = contact.countValues(Contact.ADDR);
for (int i = 0; i < addrCount; ++i)
{
 String[] address = contact.getStringArray(Contact.ADDR, i);
 int attribute = contact.getAttributes(Contact.ADDR, i);
 if ((attribute & contact.ATTR_WORK) != 0)
 {
 String street = address[Contact.ADDR_STREET];
 String city = address[Contact.ADDR_LOCALITY];
 String state = address[Contact.ADDR_REGION];
 }
}

This technique works well when you want to find specific fields. Sometimes you might
want to show all of a contact’s fields that have data, or look for a set of fields. Rather
than call countValues() for every single field you are interested in, you can use the
method getFields(), which tells you what fields have data. Fields are returned as an
array of integers, which you can then use to directly access the data. The following
debugging code looks at every field defined on a particular contact and writes the
information to standard out.

int[] fields = contact.getFields();
for (int i = 0; i < fields.length; ++i)
{
 int field = fields[i];
 String fieldLabel = contacts.getFieldLabel(field);
 int dataType = contacts.getFieldDataType(field);
 if (dataType == PIMItem.STRING)
 {
 int dataCount = contact.countValues(field);
 for (int j = 0; j < dataCount; ++j)
 {
 String fieldValue = contact.getString(field, j);
 System.out.println(fieldLabel + ":" + j + ":" + fieldValue);
 }
 }
 else
 {
 System.out.println(fieldLabel);
 }
}

Deleting Contacts
PIM has the ability to delete contact entries. Obviously, this should be used with great
caution. You will infuriate people if you eliminate their friends. However, it is entirely
appropriate to remove a contact that your app created itself, or to perform a deletion at

Download at WoweBook.Com

CHAPTER 6: Personal Information

219

the request of your user. You can only delete a contact from a list that was opened with
WRITE_ONLY or READ_WRITE permissions.

To perform a deletion, first locate a Contact using one of the techniques described
above. Then you can call ContactList.removeContact(). As with other PIM operations,
be prepared to deal with PIMException and possibly SecurityException as well if the
user refuses to allow you to delete the contact.

Invoking the Native Address Book
Probably the most common use of PIM in third-party apps is allowing the user to select
one or more contacts from her address book and then extracting some information from
those selections. On most platforms, developers need to write custom screens using the
PIM APIs that read in all of the user’s contacts and then present a list of options.
Fortunately, RIM has a better solution: BlackBerryContactList.choose() allows your
app to directly launch into a customized version of the built-in address book. As shown
in Figure 6-6, this option displays a familiar UI that lets the user scroll to find a contact,
or type to narrow down the available field.

Figure 6-6. Choosing a contact from the native address book

Download at WoweBook.Com

CHAPTER 6: Personal Information

220

The choose() method will block until the user has finished with the address book. One of
three outcomes may result.

 The user might have selected an existing entry that will be provided as
the return value.

 The user might have created a new Contact, also provided as the
return value.

 The user might have dismissed the address book without making any
selection, in which case null is returned.

The choose() method is very useful, but you should keep a few caveats in mind.

 You cannot control the sort order that is used to display the choices.

 You cannot filter the contacts. For example, if you wish to select an
email address, contacts without email will also be displayed, and may
be chosen.

 There is no option to select multiple contacts. If you wish to pick more
than one, you must call choose() multiple times, and handle cases
where the same contact is selected more than once.

 Only local contacts may be selected this way, not contacts stored on a
remote server.

 Both Contact and BlackBerryContactGroup items are shown, and
either may be returned. If you are looking for contacts only, you should
check to see that you are getting one.

The next example shows how to launch the native address book and check that the user
selected a contact with an email address. In a full application, you can repeatedly invoke
this code, displaying “Please select an email contact” until one is provided.

PIM pim = PIM.getInstance();
BlackBerryContactList contacts = (BlackBerryContactList) pim
 .openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);
PIMItem selected = contacts.choose();
if (selected != null)
{
 if (selected instanceof Contact)
 {
 Contact selectedContact = (Contact)selected;
 if (selectedContact.countValues(Contact.EMAIL) > 0)
 {
 // Process the selection here.
 }
 }
}

Download at WoweBook.Com

CHAPTER 6: Personal Information

221

The BlackBerry Calendar
Some users go for years without ever opening the calendar app on their mobile phone.
Others depend on it to drive their day. Your app can integrate with the calendar to
provide your users with reminders, set up appointments, or perform other tasks to help
schedule their time.

BlackBerry allows you to access calendar information through the EventList class. This
class behaves similarly to the ContactList class, except that it provides Event items in
place of Contact items. You can obtain an instance as shown below.

PIM pim = PIM.getInstance();
EventList events = (EventList)pim.openPIMList(PIM.EVENT_LIST, PIM.READ_WRITE);

For the most part, events behave like contacts. An event list contains multiple events,
and each event supports a certain collection of fields, any one of which may have no,
one, or more items. The following sections focus on the unique aspects of events.

Calendar Syncing
Users with a full-featured desktop email client such as Microsoft Outlook can set up
their BlackBerry Desktop Manager program to automatically sync between their desktop
and mobile calendars. This means that, when a user accepts a meeting invitation on
Outlook and then leaves the office, his BlackBerry can vibrate to remind him that the
meeting time is approaching. Keep in mind that events you create or manipulate on the
phone might be propagated to other devices. Conversely, even if no events are modified
on the phone, the calendar may change the next time the device connects to the
desktop.

In order to support this kind of syncing, a standard interchange format is necessary. The
original PIM Event implementation was derived from vCalendar 1.0, also known as vCal. This
is a standardized format created by the Internet Mail Consortium, the same organization
responsible for vCard. vCalendar has since been supplanted by the newer iCalendar
standard, developed by the Internet Engineering Task Force. BlackBerry PIM supports
import from and export to both formats. The following shows a simple iCalendar event.

BEGIN:VCALENDAR
VERSION:2.0
BEGIN:VEVENT
SUMMARY:Mom’s Birthday Breakfast
DTSTART:20100610T060000Z
DTEND:20100610T070000Z
END:VEVENT
END:VCALENDAR

Different calendaring programs have long had trouble with importing and exporting each
other’s calendar events, although the situation has improved in recent years. Despite the
existence of a standard, different programs have added their own quirks, and some are
better at dealing with those quirks than others. If your app is going to share calendar

Download at WoweBook.Com

CHAPTER 6: Personal Information

222

data with a server or another program, you should check to make sure both parties can
share data successfully.

Repeat After Me
For the most part, Event objects are simpler than Contact. There are no string arrays,
attributes, or binary data. However, events do add one significant new characteristic: the
idea of repetition. Imagine that you have a daily appointment to walk your dog at 7pm.
You’d like to create an appointment so you don’t forget this duty. If your calendar
program created an event for every single day, that would be 365 events in a single
year—quite a lot of data, and far too much space to take up on a mobile device.

Repeating events offer a way for you to create a single event within your calendar, and then
specify rules about how often it repeats. Repeating events can be defined very flexibly; you
can specify repetition on calendar days (such as every June 10), weekdays (every Tuesday),
or more complex constructions (the first and fourth Saturday of every month). You can
even specify exceptions—for example, if you’re going on vacation next week, you can
hire a dog-walker and remove those pesky reminders during the time you’ll be gone.
Figure 6-7 shows how a single repeating event can be virtually represented multiple
times within an event list.

Figure 6-7. A repeating calendar event

PIM events support four fundamental types of repetition: RepeatRule.DAILY,
RepeatRule.WEEKLY, RepeatRule.MONTHLY, and RepeatRule.YEARLY. Each of these can be
set alone on a RepeatRule to create a simple repetition. For example, to have an event
repeat at the same time each week, you would define the FREQUENCY as shown below.

RepeatRule repeat = new RepeatRule();
repeat.setInt(RepeatRule.FREQUENCY, RepeatRule.WEEKLY);

You can control when an event stops repeating by also applying a COUNT or an END
value. The former states that the event will recur a certain number of times at the
provided frequency and then stop. The latter means that the event will keep recurring
until a certain calendar time, at which point it will cease. COUNT must be provided as an
int, while END is a date. To make this event repeat for the next eight weeks, we would
use the COUNT as shown below.

repeat.setInt(RepeatRule.COUNT, 8);

You can also specify multiple times at which an event will fire. To repeat an event on
Monday, Wednesday, and Friday, you specify the DAY_IN_WEEK rule and provide a
bitwise OR for those dates.

repeat.setInt(RepeatRule.DAY_IN_WEEK, RepeatRule.MONDAY | RepeatRule.WEDNESDAY
 | RepeatRule.FRIDAY);

Download at WoweBook.Com

CHAPTER 6: Personal Information

223

The available repetition modifiers are shown in Table 6-4. All the constants are defined in
the RepeatRule class.

Table 6-4. Repetition Modifiers

Field Values Allowed

DAY_IN_WEEK SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY

DAY_IN_MONTH 1-31

DAY_IN_YEAR 1-365

WEEK_IN_MONTH FIRST, SECOND, THIRD, FOURTH, FIFTH, LAST, SECONDLAST, THIRDLAST,
FOURTHLAST, FIFTHLAST

MONTH_IN_YEAR JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST,
SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER

For certain frequencies, you can combine multiple modifiers to create a more fine-
grained event time. If you want to celebrate American Thanksgiving, create a yearly
event that occurs the fourth Thursday of every November.

repeat.setInt(RepeatRule.FREQUENCY, RepeatRule.YEARLY);
repeat.setInt(RepeatRule.MONTH_IN_YEAR, RepeatRule.NOVEMBER);
repeat.setInt(RepeatRule.WEEK_IN_MONTH, RepeatRule.FOURTH);

Not every modifier is available for every frequency; for instance, DAY_IN_YEAR doesn’t
make sense when applied to a WEEKLY recurrence. Frequencies can be controlled on a
handset-by-handset basis depending on what the underlying calendar supports. To
determine whether a certain modifier or set of modifiers is supported, you can query
EventList.getSupportedRepeatRuleFields(). If a combination of modifiers is accepted,
the set will be returned in a bitwise AND. The next example checks to see how yearly
recurring events are supported.

int[] supported = events.getSupportedRepeatRuleFields(RepeatRule.YEARLY);
for (int i = 0; i < supported.length; ++i)
{
 int rules = supported[i];
 if (rules == (RepeatRule.DAY_IN_MONTH & RepeatRule.MONTH_IN_YEAR))
 System.out.println("Can specify by month.");
 else if (rules == RepeatRule.DAY_IN_YEAR)
 System.out.println("Can specify by absolute date.");
}

Finally, you can specify exceptions to a repetition. You would add one exception for
each time that the event should not occur. Exceptions are implemented as long time
values. If you decide to cancel next month’s appointment but keep all future
appointments, you could use the following code.

Download at WoweBook.Com

CHAPTER 6: Personal Information

224

Calendar exceptionTime = Calendar.getInstance();
exceptionTime.set(Calendar.MONTH, 1);
repeat.addExceptDate(exceptionTime.getTime().getTime ());

You can check to see what exceptions have already been added by calling
getExceptDates() and remove an existing exception by calling removeExceptDate(long
date).

To query a previously created repeat rule, use the following methods.

 getFields() returns an array of all the fields that have been set.

 getInt(int field) retrieves a previously set field, such as the
FREQUENCY or the DAY_IN_YEAR.

 getDate(RepeatRule.END) retrieves the specified end time.

 dates(long startdate, long subsetBeginning, long subsetEnding)
allows you to provide a time window, and will return all of the
repetitions that would occur within that window, excluding any
exceptions.

Once you have a RepeatRule configured the way you want it, call
Event.setRepeat(RepeatRule repeat). This will replace any previously configured repeat
rule. You can query an event’s current repetition by calling Event.getRepeat(); this will
return null if no repetition has been provided.

Eventful Data
As with contacts, there are a variety of fields at your disposal when editing or reading
event data. Table 6-5 displays all the fields supported on BlackBerry. Most of these are
very simple, with a single nonarray nonattribute value provided. LOCATION is a single
string, which is easier than providing a structured address but also makes it more difficult
to parse an event’s location. The special ATTENDEES field can have multiple values, one for
each attendee. ALLDAY is a special convenience field that will convert the event into an
all-day event, running from midnight GMT of the start date through midnight GMT of the
end date.

Table 6-5. Supported BlackBerry Event Fields

Field Meaning Type Example

Event.SUMMARY Title of this event PIMItem.STRING “Quarterly food strategy
meeting”

Event.START Date and time that this
event begins

PIMItem.DATE 1207042400000

Event.END Date and time that this
event ends

PIMItem.DATE 1207042500000

Download at WoweBook.Com

CHAPTER 6: Personal Information

225

Table 6-5. Supported BlackBerry Event Fields (continued)

Field Meaning Type Example

BlackBerryEvent.
ALLDAY

All day event PIMItem.BOOLEAN true

Event.ALARM Time to display or
sound a reminder,
given in seconds
before the time
specified in START

PIMItem.INT 900 for an alarm 15 minutes
before the event

BlackBerryEvent.
FREE_BUSY

Status of the event PIMItem.INT BlackBerryEvent.FB_FREE,
BlackBerryEvent.TENTATIVE,
BlackBerryEvent.FB_BUSY, or
BlackBerryEvent.OUT_OF_OFFICE

BlackBerryEvent.
ATTENDEES

Email addresses of
event attendees

PIMItem.STRING bob@example.com

Event.LOCATION Place where the
event occurs

PIMItem.STRING “Floor 13 Kitchen”

Event.CLASS Visibility of this
event

PIMItem.INT Event.CLASS_PUBLIC,
Event.CLASS_PRIVATE,
Event.CLASS_CONFIDENTIAL

Event.NOTE Additional
information about
this event

PIMItem.STRING “Donuts will be served”

Event.UID Unique identifier
of this Event

PIMItem.STRING “1234567890”

As with contact fields, the fields on an event correspond to what is available in the
BlackBerry Calendar app. The ALARM field corresponds to the “Reminder” in an
appointment. Both PRIVATE and CONFIDENTIAL classes will display as “Private.”

The BlackBerry applies a few special rules for the standard event fields.

 Events have a minimum duration of one minute. If the END is less than
one minute later than START, its duration will automatically be
extended.

 Setting a NOTE to a value of “” will remove it from the event.

The Event and BlackBerryEvent interfaces both apply to the same objects; similarly,
EventList and BlackBerryEventList can be interchangeably cast. Unlike with contacts,
there are no special methods available in the specialized subinterfaces; they are
primarily used to define additional fields like those shown in Table 6-5.

Download at WoweBook.Com

mailto:bob@example.com

CHAPTER 6: Personal Information

226

Using BlackBerry Calendar Events
Once you have gotten the hang of the Contact class, you are probably ready to work
with Event objects. The specific data values you will work with are different, but the
overall structure of building and accessing fields remains the same.

Creating and Editing Events
You can construct, import, and modify Event objects in the same way that you would
Contact objects. The next example demonstrates how to create an Event from scratch.
Here we assume that the app will be running on a BlackBerry device, so we freely use
BlackBerry-specific event fields and do not check for supported fields. This code will
create a new five-hour-long event, set a reminder for 30 minutes before, include 3
attendees, and specify a location and a busy status before saving the event.

PIM pim = PIM.getInstance();
EventList events = (EventList) pim.openPIMList(PIM.EVENT_LIST, PIM.READ_WRITE);
Event event = events.createEvent();
event.addString(Event.SUMMARY, PIMItem.ATTR_NONE, "Radiohead Concert");
Calendar cal = Calendar.getInstance();
cal.set(Calendar.YEAR, 2001);
cal.set(Calendar.MONTH, Calendar.AUGUST);
cal.set(Calendar.DATE, 2);
cal.set(Calendar.HOUR_OF_DAY, 18);
event.addDate(Event.START, PIMItem.ATTR_NONE, cal.getTime().getTime());
cal.set(Calendar.HOUR_OF_DAY, 23);
event.addDate(Event.END, PIMItem.ATTR_NONE, cal.getTime().getTime());
event.addInt(Event.ALARM, PIMItem.ATTR_NONE, 1800);
event.addString(BlackBerryEvent.ATTENDEES, PIMItem.ATTR_NONE,
 "pat@example.com");
event.addString(BlackBerryEvent.ATTENDEES, PIMItem.ATTR_NONE,
 "chris@example.com");
event.addString(BlackBerryEvent.ATTENDEES, PIMItem.ATTR_NONE,
 "scott@example.com");
event.addString(BlackBerryEvent.LOCATION, PIMItem.ATTR_NONE, "Grant Park");
event.addInt(BlackBerryEvent.FREE_BUSY, PIMItem.ATTR_NONE,
 BlackBerryEvent.FB_OUT_OF_OFFICE);
event.commit();

Later, we might check to see if a repeat rule has already been set on the event. If not,
we can say that this is a biennial event that will recur on the first Wednesday of every
other August for the next decade.

if (event.getRepeat() == null)
{
 RepeatRule repeat = new RepeatRule();
 repeat.setInt(RepeatRule.FREQUENCY, RepeatRule.YEARLY);
 repeat.setDate(RepeatRule.MONTH_IN_YEAR, RepeatRule.AUGUST);
 repeat.setInt(RepeatRule.WEEK_IN_MONTH, RepeatRule.FIRST);
 repeat.setInt(RepeatRule.DAY_IN_WEEK, RepeatRule.WEDNESDAY);
 repeat.setInt(RepeatRule.INTERVAL, 2);

Download at WoweBook.Com

mailto:pat@example.com
mailto:chris@example.com
mailto:scott@example.com

CHAPTER 6: Personal Information

227

 repeat.setInt(RepeatRule.COUNT, 5);
 event.setRepeat(repeat);
}

And, as a reminder, you can check for existing fields before setting or adding them. You
also can remove values from previously set fields. The following code does both.

if (event.countValues(Event.NOTE) == 0)
 event.addString(Event.NOTE, PIMItem.ATTR_NONE, "Bring a sweater");
else
 event.setString(Event.NOTE, 0, PIMItem.ATTR_NONE, "Bring a sweater");
event.removeValue(BlackBerryEvent.ATTENDEES, 1);
event.commit();

Searching and Reading Events
EventList offers the same set of items() methods as found in ContactList for retrieving
all or a subset of items. You can also look up an event by its UID. The next example
shows how you can use a template to discover all of a user’s public busy events.

Event template = events.createEvent();
template.addInt(Event.CLASS, PIMItem.ATTR_NONE, Event.CLASS_PUBLIC);
template.addInt(BlackBerryEvent.FREE_BUSY, PIMItem.ATTR_NONE, BlackBerryEvent.FB_BUSY);
Enumeration matches = events.items();

EventList also defines a new items() method that searches for all events that occur
within a given timeframe. You can specify whether to look for events beginning, ending,
or occurring at any point during that time. You also can control whether all occurrences
of a repeating event are returned or just the initial instance. The next example retrieves
all events occurring in November, counts them, and writes their names to standard out.
The events will be returned from oldest start date to newest start date; you can resort if
you like.

Calendar calendar = Calendar.getInstance();
calendar.set(Calendar.YEAR, 2010);
calendar.set(Calendar.MONTH, Calendar.NOVEMBER);
calendar.set(Calendar.DAY_OF_MONTH, 1);
long startTime = calendar.getTime().getTime();
calendar.set(Calendar.DAY_OF_MONTH, 30);
long endTime = calendar.getTime().getTime();
int eventCount = 0;
Enumeration matches = events.items(EventList.OCCURRING, startTime, endTime, true);
while (matches.hasMoreElements())
{
 ++eventCount;
 Event match = (Event)matches.nextElement();
 if (match.countValues(Event.SUMMARY) > 0)
 {
 String summary = match.getString(Event.SUMMARY, 0);
 System.out.println(summary);
 }
}

Download at WoweBook.Com

CHAPTER 6: Personal Information

228

Exporting and Deleting Events
Events can be written out in a standard vCal or iCal format using PIM, as in the following
example.

FileConnection saveCal = (FileConnection)Connector.open(
 "file:///store/home/user/app/schedule.ical");
OutputStream out = saveCal.openOutputStream();
PIM.getInstance().toSerialFormat(event, out, "UTF-8", "VCALENDAR/2.0");

This will write the iCal data to the specified file, where it can later be opened from this or
another app, or copied to another device.

Once you have finished with an event, or wish to cancel one, you can delete it from the
list by calling removeEvent.

Showing Calendars
While there is no EventList equivalent of BlackBerryContactList.choose(), you do have
some options for accessing nice built-in views of the calendar without needing a lot of
extra work.

Invoking the Native Calendar
If you want to display a particular event or a period of time within the built-in Calendar
app, you can do so using the Invoke class. You specify that you wish to open
APP_TYPE_CALENDAR and then provide suitable CalendarArguments. You can choose one
of the following time arguments.

 Provide a Calendar to open to a specific date and time.

 Open on a particular Event.

 If neither is specified, open to the default calendar.

You can also specify one of several view arguments.

 ARG_NEW brings up the “New Appointment” screen, where the user can
create an event. If an Event was provided, the initial fields will be set
accordingly.

 ARG_VIEW_AGENDA will open in the agenda view, with upcoming events
stacked vertically on top of one another.

 ARG_VIEW_DAY brings up the daily view, divided by hours.

 ARG_VIEW_WEEK brings up the weekly view, with dates as rows and
hours as columns.

 ARG_VIEW_MONTH displays a month grid.

 ARG_VIEW_DEFAULT displays the calendar in the current default format.

Download at WoweBook.Com

file:///store/home/user/app/schedule.ical

CHAPTER 6: Personal Information

229

Unlike with choose(), no return value is provided from the Invoke call. You can check to
see if the user has added or modified an event by adding a PIMListListener, as
discussed later in this chapter.

Using Invoke is useful when you want to display event information to your user or show
him a chunk of his schedule without writing your own user interface. The following
example searches for a particular event and then shows the entire week in which it
occurs, which may be handy for planning purposes.

PIM pim = PIM.getInstance();
EventList events = (EventList)pim.openPIMList(PIM.EVENT_LIST, PIM.READ_ONLY);
Enumeration matches = events.items("Hootenanny");
if (matches.hasMoreElements())
{
 Event event = (Event)matches.nextElement();
 CalendarArguments args = new CalendarArguments(
 CalendarArguments.ARG_VIEW_WEEK, event);
 Invoke.invokeApplication(Invoke.APP_TYPE_CALENDAR, args);
}

Although your app can create events directly, you might prefer to give your user a
chance to review and approve the event before saving it to the address book herself.
The next example does just that, setting up an event but presenting it in the native
calendar instead of committing it.

Event proposed = events.createEvent();
Calendar time = Calendar.getInstance();
time.set(Calendar.YEAR, 2010);
time.set(Calendar.MONTH, Calendar.SEPTEMBER);
time.set(Calendar.DATE, 19);
proposed.addDate(Event.START, PIMItem.ATTR_NONE, time.getTime().getTime());
proposed.addString(Event.SUMMARY, PIMItem.ATTR_NONE, "Talk Like A Pirate Day");
proposed.addString(Event.NOTE, PIMItem.ATTR_NONE, "Arrrr...");
CalendarArguments view = new CalendarArguments(
 CalendarArguments.ARG_NEW, proposed);
Invoke.invokeApplication(Invoke.APP_TYPE_CALENDAR, view);

Picking a Date
You can use built-in UI components for date and time selection instead of creating them
yourself. If building a BlackBerry CLDC app, use the DateField class in the
net.rim.device.api.ui.component package. You can style this as you would any other
Field, and can also specify one of DateField’s special style constants to indicate
whether to show the DATE, TIME, or both with DATE_TIME. You can optionally provide a
DateFormat to give suggestions about how to display the date prompt; these may or
may not be honored. You can construct the field and add it from within a Screen by
using the following code.

Calendar initial = Calendar.getInstance();
initial.set(Calendar.MONTH, Calendar.JANUARY);
initial.set(Calendar.DATE, 1);
initial.set(Calendar.YEAR, 1980);

Download at WoweBook.Com

CHAPTER 6: Personal Information

230

DateField birthday = new DateField(
 "Birthday", initial.getTime().getTime(),DateField.DATE);
add(birthday);

A representation of the currently selected time will display on the screen. When the user
accesses the control, a special view that allows fairly easy modifications will be
displayed, as shown in Figure 6-8.

Figure 6-8. Activating a BlackBerry DateField control

Assuming you save the DateField in an instance variable, you can query it later to
discover what time the user has selected. If you’d like to immediately update your UI
when a change is made, you can call setChangeListener() to receive notifications of
updates. The following code shows how you can read the selected Unix time into a
more accessible Calendar object.

Download at WoweBook.Com

CHAPTER 6: Personal Information

231

long selectedTime = birthday.getDate();
Calendar selected = Calendar.getInstance();
selected.setTime(new Date(selectedTime));

If you are building a MIDP MIDlet, you have access to another class called DateField,
this version in the javax.microedition.lcdui package. Its interface is simpler than the
CLDC version, and not quite as customizable, but it is very simple to use: it is an Item
that can be inserted into a Form. You can provide the label and specify whether the user
can select the date, the time, or both. Time is provided up to a granularity of one minute.
You can set an initial default time to suggest via setDate() and read the final result via
getDate(). The actual display of the MIDlet DateField is identical to that of the CLDC
DateField. You can set up a DateField with no initial time as follows.

Form form = new Form("Date Selection");
DateField wedding = new DateField("Wedding", DateField.DATE_TIME);
form.insert(0, wedding);
Display.getDisplay(this).setCurrent(form);

I Have A ToDo List?
The PIM concept of ToDo corresponds to the BlackBerry Tasks application. This is an
area where you can provide yourself with lists of things to be done. With access to the
ToDoList interface, your app can chime in on what’s important.

Each ToDo encapsulates a specific task. ToDo is based on the VTODO spec that is
included as a subset of the vCalendar specification. There is a close relationship
between calendar events and todo tasks, but they are not the same. An Event should
have a time associated; ToDos may have due dates, but can also simply be reminders of
outstanding tasks. The following is an example of a simple VTODO.

BEGIN:VCALENDAR
VERSION:2.0
BEGIN:VTODO
DUE:20100401T235959
STATUS:NEEDS-ACTION
SUMMARY:Research practical jokes
END:VTODO
END:VCALENDAR

ToDo shares many of the same features as Event, as shown in Table 6-6. They are not
interchangeable, so do not attempt to cast one to the other or use a field locator like
Event.SUMMARY to read a ToDo summary.

Download at WoweBook.Com

CHAPTER 6: Personal Information

232

Table 6-6. ToDo Fields

Field Meaning Type Example Supported

ToDo.SUMMARY Title for this task STRING “Bring Goodies” Yes

ToDo.NOTE Complete details
on this task

STRING “Bring in enough cookies for 30
people”

Yes

ToDo.PRIORITY Importance of
this task

INT 0 for unspecified, 1 for highest, 9 for
lowest

Yes

ToDo.CLASS Visibility of this
ToDo

INT ToDo.CLASS_PUBLIC,
ToDo.CLASS_PRIVATE,
ToDo.CLASS_CONFIDENTIAL

No

BlackBerryToDo.
STATUS

Current
completion of
this task

INT BlackBerryToDo.STATUS_NOT_STARTED,
BlackBerryToDo.STATUS_IN_PROGRESS,
BlackBerryToDo.STATUS_DEFERRED,
BlackBerryToDo.STATUS_WAITING,
BlackBerryToDo.STATUS_COMPLETED

Yes

BlackBerryToDo.
REMINDER

Day and time to
sound or display
a reminder alarm

DATE 1207042400000 Yes

ToDo.DUE When this task
should be done

DATE 1207050400000 Yes

ToDo.COMPLETED Whether the task
is finished

BOOLEAN true Yes

ToDo.COMPLETION_
DATE

When this task
was finished

DATE 1207045400000 No

ToDo.REVISION Last time this
task was modified

DATE 1207032700000 No

ToDo.UID Unique identifier STRING “5678901234” Yes

Note: Although PRIORITY can be provided in a range from 0 to 9, BlackBerry devices only
support 3 levels of task priority. 1-3 will be stored as 1 and displayed as “High,” 7-9 will be stored
as 9 and displayed as “Low,” and everything else is stored as 5 and displayed as “Normal.”

Other than the different fields, ToDo objects behave like Event objects. You access fields
in the same way, and have access to the same kind of time-ranged search. You can use
the extended BlackBerryToDo to access custom fields. The following sample
demonstrates creating a new task for the user.

Download at WoweBook.Com

CHAPTER 6: Personal Information

233

PIM pim = PIM.getInstance();
ToDoList todos = (ToDoList)pim.openPIMList(PIM.TODO_LIST, PIM.READ_WRITE);
ToDo todo = todos.createToDo();
todo.addString(ToDo.SUMMARY, PIMItem.ATTR_NONE, "Buy a new BlackBerry");
if (todos.isSupportedField(ToDo.CLASS))
{
 if (todo.countValues(ToDo.CLASS) == 0)
 {
 todo.addInt(ToDo.CLASS, PIMItem.ATTR_NONE, ToDo.CLASS_PUBLIC);
 }
}
todo.addInt(BlackBerryToDo.STATUS,
 PIMItem.ATTR_NONE, BlackBerryToDo.STATUS_IN_PROGRESS);
Calendar time = Calendar.getInstance();
time.set(Calendar.YEAR, 2010);
time.set(Calendar.MONTH, Calendar.NOVEMBER);
time.set(Calendar.DATE, 15);
time.set(Calendar.HOUR, 8);
todo.addDate(ToDo.DUE, PIMItem.ATTR_NONE, time.getTime().getTime());
time.set(Calendar.DATE, 8);
todo.addDate(
 BlackBerryToDo.REMINDER, PIMItem.ATTR_NONE, time.getTime().getTime());
todo.commit();

Take a Memo
The BlackBerryMemoList and its contained BlackBerryMemo objects are the easiest
PIMItem classes to work with. These allow you to access the user’s saved memos or
add memos of your own. A BlackBerryMemo contains only three fields, all of which have
the STRING data type.

 TITLE provides the name of the memo, which will be viewable from a
list perspective.

 NOTE is the memo’s contained text.

 UID is the standard unique identifier.

You can create, edit, search, read, and delete memo objects just as you would other
PIMItem objects. The next example shows a grocery list app that will look for a shopping
list memo in the user’s existing memos. If it finds one, it will add items to the list;
otherwise, it will create a new memo. This is a way for your app to integrate with other
parts of the phone that the user can interact with even when your app is not running.

String ingredients = "Butter\nEggs\nChocolate Chips\nFlour";
PIM pim = PIM.getInstance();
BlackBerryMemoList memos = (BlackBerryMemoList)pim.openPIMList(
 BlackBerryPIM.MEMO_LIST, PIM.READ_WRITE);
BlackBerryMemo template = memos.createMemo();
template.addString(BlackBerryMemo.TITLE, PIMItem.ATTR_NONE, "Shopping List");
Enumeration matches = memos.items(template);
if (matches.hasMoreElements())
{

Download at WoweBook.Com

CHAPTER 6: Personal Information

234

 BlackBerryMemo existing = (BlackBerryMemo)matches.nextElement();
 if (existing.countValues(BlackBerryMemo.NOTE) > 0)
 {
 String text = existing.getString(BlackBerryMemo.NOTE, 0);
 ingredients = text + "\n" + ingredients;
 existing.setString(
 BlackBerryMemo.NOTE, 0, PIMItem.ATTR_NONE, ingredients);
 }
 else
 {
 existing.addString(BlackBerryMemo.NOTE, PIMItem.ATTR_NONE, ingredients);
 }
 existing.commit();
}
else
{
 template.addString(BlackBerryMemo.NOTE, PIMItem.ATTR_NONE, ingredients);
 template.commit();
}

It is very important to set the TITLE before saving a note; if you fail to specify one, a
PIMException will be thrown. This is different from required fields in other PIMItem
objects, which provide a default value if none is specified.

Personal Changes
Every BlackBerryPIMList allows you to add and remove listeners. The listener will inform
you when a change has come to the list: an item has been created, modified, or
removed. You only need to respond to the events that interest you, and will continue to
receive notifications until you remove the listener.

Listing 6-1 shows how to write a simple screen that instructs the user to delete a
contact. It does not directly offer a UI for the deletion, but, if the user switches to the
address book application and makes the deletion, this screen will be notified, and will
update some text using the same StatusUpdater we created for the MediaGrabber app.
You can apply the same type of listener to any of the PIMList implementations.

Listing 6-1. Listening for Contact Deletion

import javax.microedition.pim.Contact;
import javax.microedition.pim.PIM;
import javax.microedition.pim.PIMItem;

import net.rim.blackberry.api.pdap.BlackBerryContactList;
import net.rim.blackberry.api.pdap.PIMListListener;
import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.container.MainScreen;

public class RemoveContactListener extends MainScreen implements PIMListListener
{

Download at WoweBook.Com

CHAPTER 6: Personal Information

235

 LabelField instructions;
 StatusUpdater status;

 public RemoveContactListener()
 {
 instructions = new LabelField();
 instructions.setText("It's time to vote someone off the island!");
 add(instructions);
 status = new StatusUpdater(instructions);
 try
 {
 BlackBerryContactList contacts = (BlackBerryContactList)PIM.
 getInstance().openPIMList(PIM.CONTACT_LIST, PIM.READ_ONLY);
 contacts.addListener(this);
 contacts.close();
 }
 catch (Exception e)
 {
 System.err.println(e);
 e.printStackTrace();
 }
 }

 public void itemAdded(PIMItem added)
 {
 status.sendDelayedMessage("No! You're supposed to get RID of people!");
 }

 public void itemRemoved(PIMItem removed)
 {
 if (removed instanceof Contact)
 {
 if (removed.countValues(Contact.NAME) > 0)
 {
 String[] name = removed.getStringArray(Contact.NAME, 0);
 String message = "Goodbye, " + name[Contact.NAME_GIVEN] + "!";
 status.sendDelayedMessage(message);
 }
 }
 }

 public void itemUpdated(PIMItem oldContent, PIMItem newContent)
 {
 status.sendDelayedMessage("Something changed, but they're still here.");
 }
}

After you start the app and view the message, press the red end key on your BlackBerry
to background the app. Open the address book and delete a contact. When you switch
back to the app, you’ll see the updated farewell message.

Download at WoweBook.Com

CHAPTER 6: Personal Information

236

App: Selecting Recipients
BlackBerry devices have great keyboards, but it can still be cumbersome to enter a long
email address. If you know a lot of people, the odds of remembering everyone’s address
is fairly small. The rest of the world has had access to integrated contacts for a long
while, so your users should be able to do so as well.

The next iteration of MediaGrabber will allow you to select your recipient directly from
the address book. For fun, after you send the message, use one of the extended
BlackBerry user fields to keep track of how many messages you’ve sent. This could
form the basis for later enhancements, like automatically suggesting the most frequently
emailed contacts. All of your changes will occur within the SendingScreen class. Two
new methods, selectRecipient() and updateContact(), do the bulk of the work.
Listing 6-2 shows the sections of SendingScreen that have been modified to support
your new features.

Listing 6-2. Integrating Media Sending with a User’s Contacts

package com.apress.king.mediagrabber;

// Newly imported packages.
import javax.microedition.pim.*;
import net.rim.blackberry.api.pdap.*;

public class SendingScreen extends MainScreen
{
 private MenuItem selectItem = new MenuItem("Select Recipient", 0, 0)
 {
 public void run()
 {
 selectRecipient();
 }
 };
 private void selectRecipient()
 {
 BlackBerryContactList contacts = null;
 try
 {
 PIM pim = PIM.getInstance();
 contacts = (BlackBerryContactList) pim.openPIMList(
 PIM.CONTACT_LIST, PIM.READ_ONLY);
 PIMItem item = contacts.choose();
 if (item == null || !(item instanceof Contact))
 return;
 Contact contact = (Contact) item;
 if (contact.countValues(Contact.EMAIL) > 0)
 {
 String email = contact.getString(Contact.EMAIL, 0);
 receiver.setText(email);
 }
 }
 catch (Throwable t)
 {

Download at WoweBook.Com

CHAPTER 6: Personal Information

237

 updater.sendDelayedMessage(t.getMessage());
 }
 finally
 {
 if (contacts != null)
 {
 try
 {
 contacts.close();
 }
 catch (PIMException pime)
 {
 // Empty
 }
 }
 }
 }

 private void updateContact(String address)
 {
 BlackBerryContactList contacts = null;
 try
 {
 PIM pim = PIM.getInstance();
 contacts = (BlackBerryContactList) pim.openPIMList(
 PIM.CONTACT_LIST, PIM.READ_WRITE);
 Contact template = contacts.createContact();
 template.addString(Contact.EMAIL, PIMItem.ATTR_NONE, address);
 Enumeration matches = contacts.items(template);
 while (matches.hasMoreElements())
 {
 Contact match = (Contact) matches.nextElement();
 if (match.countValues(BlackBerryContact.USER4) == 0)
 {
 // First time sending to them.
 match.addString(BlackBerryContact.USER4, PIMItem.ATTR_NONE,
 "1");
 }
 else
 {
 // Increment our counter.
 String oldString = match.getString(BlackBerryContact.USER4,
 0);
 // If this isn't a number, will fall into the catch below.
 int oldNumber = Integer.parseInt(oldString);
 String newString = Integer.toString(oldNumber + 1);
 match.setString(BlackBerryContact.USER4, 0,
 PIMItem.ATTR_NONE, newString);
 }
 match.commit();
 }
 }
 catch (Throwable t)
 {
 updater.sendDelayedMessage(t.getMessage());

Download at WoweBook.Com

CHAPTER 6: Personal Information

238

 }
 finally
 {
 if (contacts != null)
 {
 try
 {
 contacts.close();
 }
 catch (PIMException pime)
 {
 // Empty
 }
 }
 }
 }

 private class MessageSender implements Runnable
 {
 public void run()
 {
 String address = receiver.getText();
 try
 {
 Message outgoing = createMessage(address, contentType,
 filename, message);
 Transport.send(outgoing);
 updateContact(address);
 updater.sendDelayedMessage("Message sent");
 state = STATE_SENT;
 }
 catch (Exception e)
 {
 updater
 .sendDelayedMessage("Problem sending: "
 + e.getMessage());
 e.printStackTrace();
 }
 }
 }
}

WANT MORE?

PIM is one of the more entertaining areas of the BlackBerry API to play with, and there are several ways
you can enhance almost any application with a little extra integration. Here are a few other things you
might consider adding to MediaGrabber.

 Allow the user to select multiple recipients so they can send one file to many people at
once.

 Show the recipients’ names instead of their email addresses. Note that you will still
need to store the addresses somewhere.

Download at WoweBook.Com

CHAPTER 6: Personal Information

239

 Create a rolling ToDo that provides a random challenge for the user. For example,
“Take 10 pictures in the next 5 days.” Update their progress in the task, and provide a
new one once it is complete.

While it’s easy to go overboard, it’s also a great way to learn things. You can always remove features later
if they seem cumbersome or aren’t popular… and who knows, you may stumble across a really interesting
combination.

Excelsior
You might know more about your users now than their own mothers do. With access to
their daily schedule, circle of friends and business associates, and lists of what’s
important to them, your app has a great shot at making itself more useful and
interesting. With this level of trust comes an enormous responsibility. Many users are
leery of sharing their private information, and you will quickly lose their trust if you start
mining that data for your own purposes.

With that warning in mind, users are more amenable than ever before to sharing
information about themselves so long as they are rewarded for doing so, whether it’s in
the form of entertainment, convenience, or winning achievements. Most successful apps
that use PIM will fall into one of two categories. Either they are fundamentally about
personal information, or they use PIM to supplement their main purpose. If your app falls
into the first category, you can use the information with confidence, so long as you
disclose it; simply by installing your app, a user has indicated her interest in sharing data
with you. In the latter case, in order for your app to be popular it’s important that it
degrades gracefully in the absence of permission. If your app provides a carpooling
service, and lets users upload their address books to find other carpoolers, it should
continue to run even if the users don’t feel comfortable sharing that data; people can still
search and see who else wants to carpool. Once you have established a sufficient level
of trust, most users will eventually choose to share their data for their own convenience.
The key is to be forthright in what data you collect, how you will use that data, and what
will happen if the data isn’t shared.

In Chapter 7, you’ll continue your tour through the powerful set of built-in applications
by examining the browser. The few BlackBerry users who don’t use the device’s PIM
features will almost certainly pop open a browser from time to time, and you will soon
learn how to take advantage of it.

Download at WoweBook.Com

Download at WoweBook.Com

7Chapter

Browser
BlackBerry devices have long offered the benefit of putting the Internet in your pocket.
With strong data features, access to corporate intranets, a relatively large screen and
high-quality keyboard, it’s little surprise that the browser gets so much use. As we
continue our tour through ways to integrate more deeply with BlackBerry devices, we
will look at how to effectively tap the browser as a portal to rich content on the Web.

Browser Types
Even though there might only be a single Browser icon on your BlackBerry, behind the
scenes there are several different browsing standards and technologies supported.
Before digging into code, it will be helpful to consider the various options available for
mobile web sites.

WAP
When web browsing first came to mobile devices, it did not look anything like the
desktop browsing experience. Screens were small, resolution was low, and data transfer
rates abysmal. Even if you wanted to, loading a full-featured web page would take
minutes and be unreadable once complete.

That said, there has been a steady demand for web access ever since mobile phones
gained data capabilities. In order to support the extremely limited capabilities on a
handheld, the Wireless Application Protocol (WAP) Forum developed a set of
specifications in the late 1990s describing how to deliver mobile web content and how
that content should be displayed.

The first crack at the mobile Web was the development of the Wireless Markup
Language (WML). It assumed that most phones could not display images, and made
other assumptions about device capabilities in an effort to guide design and improve
performance. WML used the metaphor of a deck of cards, with each WML document
defining a single deck and each viewable screen a single card. A sample WML
document is shown here.

Download at WoweBook.Com

CHAPTER 7: Browser 242

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml" >
<wml>
 <card id="index" title="Welcome">
 <p mode="wrap">Movie tickets on sale this weekend</p>
 <p>
 Call Our Operators

 415-555-0188
 </p>
 </card>
</wml>

Note: You can find the entire specification for WML online at www.wapforum.org/what/
technical/wml-30-apr-98.pdf. However, be aware that no mobile browser completely
implements the spec. Look on the BlackBerry web site for the BlackBerry Browser
Development Guide for a complete list of supported WML tags.

Aside from the oddness of the "card" element, this probably looks familiar if you’ve
worked with HTML before. The most interesting innovation of WML comes in that href
link. Instead of a standard web-style "http://" reference, it uses the protocol
"wtai://", Wireless Telephone Application Interface, which provides a powerful way for
mobile web content to gain access to phone hardware features: select a link in your
browser, and the phone automatically makes a call without your needing to remember
and dial the number yourself.

So how is WML created? You can write and serve it up yourself as a document with the
MIME type text/vnd.wap.wml. More often, though, WML documents are created by a
WAP gateway. As Figure 7-1 illustrates, a WAP gateway handles traffic from a mobile
web browser, retrieves the requested content (which may be full HTML), and then
transcodes that content into WML. In other words, the WAP gateway rewrites the
document into a format appropriate for the browser. This may include stripping out large
images, removing styling information, flattening frames, and otherwise making the content
more accessible.

Download at WoweBook.Com

http://www.wapforum.org/DTD/wml_1.1.xml
wtai://wp/mc
http://www.wapforum.org/what

CHAPTER 7: Browser 243

Figure 7-1. A WAP gateway generates WML content from a regular web site

WML is on the way out for multiple reasons. Modern mobile phones have far greater
capabilities, larger and more detailed screens, access to faster wireless networks, and
often unlimited data plans. Even lower-capability phones are increasingly migrating
towards WML’s successor languages. Still, there are a large number of legacy WAP
sites available, and these will continue to exist for a long time. The oldest BlackBerry
phones with device software version older than 4.0 may only be able to browse WAP
sites without using a third-party browsing application, and newer BlackBerry phones are
capable of rendering WAP content well.

Figure 7-2 shows a sample mobile web page. You’ll notice the numbered links; these
would be unusual in a regular desktop web browser, but they allow very easy navigation
for people using basic 12-key phone keyboards.

Download at WoweBook.Com

CHAPTER 7: Browser 244

Figure 7-2. Accessing a web site formatted for mobile content

HTML and XHTML
The BlackBerry browser started adding support for full HTML with software version 4.0,
and support has gradually improved with every new release. HTML is by far the most
popular markup language on the Web, and you can use your BlackBerry to visit any site
you would on your desktop computer. Still, the handheld HTML browsing experience on
a mobile device is not as pleasant. While data speeds have gotten better, browsing can
still be painfully slow, especially if on an older non-Wi-Fi connection. If pages are not
specifically designed for mobile devices, they can be hard to navigate and view. The
BlackBerry browser is infamous for having trouble rendering certain common HTML
elements such as tables. Additionally, a lot of content that requires special Plug-ins
simply will not display. As a result, while you can open just about any web page in your
BlackBerry browser, only some of them will look good and be usable. If you choose to
use HTML when deploying a mobile web site, you should view the pages with every
version of the BlackBerry that you wish to support. If you have an existing page that
looks good, no extra work may be necessary. Figure 7-3 shows a full-featured HTML
web page displaying within the BlackBerry browser.

Download at WoweBook.Com

CHAPTER 7: Browser 245

Figure 7-3. Full web content in a mobile browser

The current best practice for deploying mobile web sites is to use XHTML mobile profile.
This is a fully conforming document that contains a specialized set of XHTML page
elements, selected with a mobile browsing experience in mind. The most recent version
is XHTML-MP2, and pages written in this language may load faster and render better
than ordinary HTML. Best of all, XHTML-MP2 is very close in design to HTML, making it
much easier to support both mobile and desktop views of the same type of content.
XHTML-MP2 should be provided with a MIME type of application/xhtml+xml or
application/vnd.wap.xhtml+xml. The following is a sample of a XHTML-MP2 document.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN"
 "http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Progressive Dinner</title>

Download at WoweBook.Com

http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd
http://www.w3.org/1999/xhtml

CHAPTER 7: Browser 246

 </head>
 <body>
 <p>Details on our next dinner.</p>
 </body>
</html>

Note: You can see a specification for XHTML-MP at http://www.openmobilealliance.org/
tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf. The document is short and
mainly references other resources.

You will occasionally run across the term WAP2. Mobile carriers and developers have
realized that today’s phones are far more capable than those that motivated the original
WAP system, and WAP2 removes many of the limitations present in WAP. When your
phone uses a WAP2 connection, it is still connecting through a gateway, but in the case
of WAP2 no special transcoding or transformation is done. The gateway may add some
extra identifiers to your outgoing request that help identify the device or the mobile
network, which can help your web server determine the appropriate content to provide.

BlackBerry devices do a good job at rendering this type of content. When dealing with
full-featured pages like HTML or XHTML-MP, you should be aware that the user has a
great deal of control over the behavior of her browser. People may enable or disable
Javascript, HTML tables, even images. Your application won’t know how the browser is
configured, so, if your app uses the browser and relies on certain features being
enabled, it should provide instructions on how to configure the browser properly.

Embedding Content
HTML and XHTML documents support embedded content. You often see examples of
this on the Web for special items such as Java applets or Flash video. BlackBerry
devices have had supported embedding since device software version 4.0, and their
support is considered complete as of version 4.6. You can embed a variety of content
including midi files, Plazmic animations, and other HTML documents.

Note: If serving Plazmic content, your server must be configured to associate the .pme file
extension with MIME type application/x-vnd.rim.pme and .pmb with application/
x-vnd.rim.pme.b.

You can embed content by using the <object> tag, as in the following example. Use
embedded objects when you want to present something within a larger context, or if you
want to show something else if the browser cannot display the main content.

<OBJECT border=0 type="application/x-vnd.rim.pme" width="50" height="50"
data="spinner.pme">

Download at WoweBook.Com

http://example.net/may
http://www.openmobilealliance.org

CHAPTER 7: Browser 247

Other Browser Options
Third-party installable browsers have been popular on BlackBerry devices for years.
They started making inroads when the official browser lagged behind in capabilities; a
smaller portion of users install them now, but thanks to the increase in BlackBerry
owners a growing number are turning to these alternative options. One of the most
popular is Opera Mini, available at http://www.opera.com/mini/.

Unfortunately, you cannot integrate your app with third-party browser apps as you can
with the native browser. You can’t be sure that all your users will have a particular
browser, and, even if they do, they do not offer as rich a set of APIs for interaction as
you can find with the built-in browser. Still, it helps to be aware of the possibility for
other browsers, especially if you are building a mobile web site and want to make sure
all your visitors can view it properly.

BES administrators and users may be interested in BlackBerry push content. This is a
very specialized application of the browser that allows corporations to send web content
directly to their users’ BlackBerry devices, where they can later view and use it. Pushing
content requires some specialized server coding but no special support from the client.
If you are interested in learning more, you can find a useful document on the BlackBerry
web site called the “BlackBerry Browser Content Developer’s Guide.” This includes
sample code, information on the necessary headers, and how to configure your MDS
environment.

Web Development or App Development?
Since you’ve read this far into the book, you have probably already decided to write a
“real” client app. Still, it’s good to periodically take stock of the situation and see
whether that is still the best way to deliver your app. You also might need to justify your
decision to someone else, or provide advice on future projects. Therefore, consider the
following tradeoffs before proceeding too far in BlackBerry development.

Lightweight Web
Browsers and browser-like applications are sometimes described as thin clients. Their
only job is to send data, receive data, and format the results. They do not come with
code describing how to play a game, read a patient’s medical chart, or draw a map.
They might seem to do all those things, but only because the content delivered to the
client can do so.

Thin clients can have many advantages over their thicker counterparts.

 Easy Updates: Assuming you have access to the web server, making
changes is almost unbelievably easy. Whether you have one user or
one million, everyone will see the change the next time their browser
launches.

Download at WoweBook.Com

http://www.opera.com/mini

CHAPTER 7: Browser 248

 Familiarity: People are very comfortable using their browsers, and may
trust a browser more than a random app they have installed.

 Cost: You don’t need to pay RIM for signature keys.

 Security: The user won’t see security prompts or other warnings when
they visit your site.

 Consistency across Apps: Users appreciate how pressing Back will
always take them back one page, pressing the BlackBerry Menu key
will always bring up options for bookmarking and entering a URL, etc.

 Potentially Faster Startup Time: If your app contains a lot of content, it
will take a while to load it all into memory. On the Web with a fast data
connection, users can start using the app as soon as the first page
loads.

You should keep some caveats in mind, especially if you are new to mobile web
development.

 Browser Differences: If you develop a web site for the desktop, you’ll
probably be in good shape if it runs well in Firefox and Internet
Explorer. If you’re developing a general mobile web site, you need to
be prepared to support dozens of different browsers, each with
different versions and problems. Supporting all this can be a
nightmare, especially if you use unusual features or want a good-
looking site.

 Lack of Control: The user drives the browser configuration, and many
do choose to speed things up by disabling images or otherwise
lowering their capabilities.

 Limited Capabilities: Web sites simply don’t have access to many of a
phone’s capabilities, such as the microphone or the file system.

 Slow Connections: Many users are still using slower data networks,
and others may be stuck with a weak signal. Don’t assume that
everyone is connecting over a fat pipe. Make the pages as small as
possible, and consider offering a link to an even more limited version
for very slow connections.

 No Connections: If the phone goes into a tunnel, deep into an office
building, or out in the woods, the user will be totally cut off from your
web site. Consider when and how people will want to use your app to
determine if this is acceptable. Note that users can choose to make
certain bookmarked pages available in offline mode; this is a good
solution if you just present text or use Javascript on a single page, but
not if you use multiple pages or AJAX-style dynamic content loading.

Heavy-duty Apps
Besides being a lot of fun to write, applications bring many improvements to the table.
Often referred to as rich clients, apps arrive with knowledge about how to perform their

Download at WoweBook.Com

CHAPTER 7: Browser 249

tasks. An app actually understands how to play a game or read a medical chart, and
doesn’t need to include information on tasks it will never perform. Apps are specialized,
and because of that they can deliver a much more satisfying experience to the user.

Rich clients offer quite a few improvements over the flatter web browser.

 Faster Performance: If your app is written well, it will run circles around
a web site doing the same task.

 Full Capabilities: A signed app with the proper permissions can do
practically anything at all on the phone.

 Offline Support: If your app doesn’t contain networking components, it
will be fully functional even if the phone’s radio is turned off or the user
doesn’t subscribe to a data plan. Even if it does use networking, you
have more options than on the browser: you can cache old data, offer
a reduced-functionality mode, and so on.

 Monetization: You can use existing storefronts to distribute and get
paid for your app. With mobile web sites, you’ll need to manage billing
and charges on your own.

 Consistency across Devices: Although it takes effort, you can
construct a consistent look and feel that runs the same on a variety of
mobile devices, both BlackBerry and others.

Do consider the following caveats before embarking on a mobile app, especially if you
are new to mobile development.

 Testing: The process of signing and loading your app is much slower
than simply hitting refresh, and can significantly slow down your
development speed.

 Porting: A web page will at least render on most phones, even if it
doesn’t look good. A BlackBerry-compiled app won’t even run on
other phones.

 Distribution: You must work with a mobile storefront (and share your
revenue) or be prepared to manage updates and distributions yourself.

Launching the Browser
In many circumstances, you will want to offload some of your app’s functions to a
separate web browser. Perhaps you have a privacy policy that might be updated; rather
than needing to release a new client every time it changes, you can instruct them to
check it out and then direct the browser to a page with the updated policy. Or you might
connect them to enhanced content, like leader boards or photo galleries, which can be
quickly developed and deployed over the Web. Whatever the reason, opening the
browser is a perfectly reasonable portal into online content.

Download at WoweBook.Com

CHAPTER 7: Browser 250

Starting the Browser
In Chapter 3, we saw how easy it can be to open the web browser, requiring only two
lines of code on device software version 4 and later.

BrowserSession browserSession = Browser.getDefaultSession();
browserSession.displayPage("http://www.sfgate.com");

Note: See the section in Chapter 3 for information on launching a web browser on very old
devices with software versions prior to 4.0.

However, this is only part of the story. While most users perceive a single “browser”
application on their phone, the reality is that most commercial BlackBerry devices
contain multiple browsers. This is because of the different underlying radio technologies
that may be used (such as cellular or Wi-Fi antennae), the different gateways that can be
accessed (such as a BES gateway to corporate content or a WAP gateway to a carrier’s
subscriber page), and different rules configured on each account (the user may be
charged for the mobile network but not for Wi-Fi).

In many cases, this need not concern you. If you are writing an app for your personal
use, and know that the site is accessible from every gateway, then you can use the
above code. However, if you need to open the browser content over a particular channel
or wish to let the user decide, then you will have to dig a little deeper.

Service Options
You may remember service books from previous chapters. A service book describes a
particular set of network configuration settings. By inspecting the available service
books, you can find what connection types are available, and get the information
necessary to open the correct browser.

Service books can be freely examined by signed apps, but aren’t terribly well
documented in the API. Records contain a set of application data, which is a raw array
of bytes that provide connection information. These bytes are in a format that allows the
device to exchange information with the BlackBerry Desktop Manager over a serial or
USB interface. The information is a sequence of tagged fields: each starts with a 2-byte
size, followed by a 1-byte type indicator, followed by the actual data payload.

Fortunately, RIM has provided a couple of classes to help in extracting the necessary
information from this opaque block. ConverterUtilities lets you scan through the types in
the service book data to locate a particular type. ConverterUtilities in turn uses a
DataBuffer, a general-purpose utility class that wraps a byte array and allows you to
read and write basic types from that array, similar to the functions provided by
DataInputStream and DataOutputStream.

Next comes the deep voodoo—the specific configuration type of the service book is
stored in a record field with type 12. Once you retrieve that value, you must match it
against the proper browser configuration, as shown in Table 7-1. You should also check

Download at WoweBook.Com

http://www.sfgate.com

CHAPTER 7: Browser 251

to make sure that the record is active and valid; there’s no sense in launching a browser
that is disabled.

Table 7-1. Browser Configuration Types

Number Browser

0 WAP

1 BES

3 Wi-Fi

4 BIS

7 WAP2

Listing 7-1 shows a general-purpose class you can use to retrieve a desired type of
browser session. You can call this repeatedly with different parameters in order to find
your most preferred available browser. For convenience, the browser config types are
provided as constants.

Listing 7-1. A Convenient Wrapper Class for Retrieving a Specific Type of Browser

import java.io.EOFException;
import net.rim.blackberry.api.browser.*;
import net.rim.device.api.servicebook.*;
import net.rim.device.api.synchronization.ConverterUtilities;
import net.rim.device.api.util.DataBuffer;

public class BrowserLocator
{
 public static final int BROWSER_TYPE_WAP = 0;
 public static final int BROWSER_TYPE_BES = 1;
 public static final int BROWSER_TYPE_WIFI = 3;
 public static final int BROWSER_TYPE_BIS = 4;
 public static final int BROWSER_TYPE_WAP2 = 7;

 public static BrowserSession createBrowserSession(int browserType)
 {
 ServiceBook book = ServiceBook.getSB();
 ServiceRecord[] records = book.findRecordsByCid("BrowserConfig");
 int recordCount = records.length;
 for (int i = 0; i < recordCount; i++)
 {
 ServiceRecord record = records[i];
 if (record.isValid() && !record.isDisabled()
 && getConfigurationType(record) == browserType)
 {
 return Browser.getSession(record.getUid());
 }
 }
 return null;
 }

Download at WoweBook.Com

CHAPTER 7: Browser 252

 private static int getConfigurationType(ServiceRecord record)
 {
 try
 {
 byte[] appData = record.getApplicationData();
 if (appData != null)
 {
 DataBuffer buffer = new DataBuffer(appData, 0, appData.length,
 true);
 // Skip past the first entry.
 buffer.readByte();
 // 12 is the magic field that holds the service
 // record's configuration type.
 if (ConverterUtilities.findType(buffer, 12))
 {
 // Buffer is now pointing at the value.
 return ConverterUtilities.readInt(buffer);
 }
 }
 }
 catch (EOFException eofe)
 {
 }
 return -1;
 }
}

Tip: Just because a browser is available doesn’t necessarily mean that it is usable; poor signal
or other problems may prevent you from connecting. In the case of the Wi-Fi browser, you can
at least check to see if the user has a valid access point by checking whether
WLANInfo.getWLANState() returns WLANInfo.WLAN_STATE_CONNECTED. Otherwise,
Wi-Fi may be on but disconnected.

With this class, you can retrieve an appropriate browser and display a page with very
little code. The example below shows how to open a browser through a BES connection
to view an online comic.

BrowserSession session = BrowserLocator.createBrowserSession(
 BrowserLocator.BROWSER_TYPE_BES);
if (session != null)
{
 session.displayPage("http://www.xkcd.com");
}

Launching with HTML
So far, we have focused on using the browser as a portal to dynamic, regularly updated
external content. However, sometimes the browser can be helpful purely as a

Download at WoweBook.Com

http://www.xkcd.com

CHAPTER 7: Browser 253

presentation tool. If your app is capable of generating HTML, and running on a device
with software version 4.2 or later, it can use the browser to display it. This may be more
efficient than developing a custom UI framework within your own app. This is also a
great option for applications that ordinarily do not contain any UI, such as libraries, but
that occasionally want to show an error screen or other visual element.

To show your own HTML you use the same BrowserSession.displayPage() method
that’s used to show web sites, but, instead of prefixing with a protocol like "http:", use
the protocol "data:". This instructs the browser that it should load the remaining
content as its own page. Because there is no web server to provide the MIME type of
the following content, you must supply it yourself with a string such as "text/html" or
"application/xhtml+xml".

Note: Because BrowserSession.displayPage() takes a regular String, it cannot handle
binary data or other special characters. If your document will contain these, you should first
Base64-encode the data using Base64OutputStream. Append ";base64" to the end of your
MIME type to indicate that the remaining content is Base64-encoded.

The next code sample demonstrates how to create a simple HTML document in memory
and then display it using the default browser.

String content = "data:text/html,";
content += "<html>" +
 "<head><title>Party Alert</title></head>" +
 "<body>" +
 "<p>Only 243 days left until National Hangover Awareness Day!</p>" +
 "</body></html>";
Browser.getDefaultSession().displayPage(content);

This technique clearly has some limitations. You can’t easily link to other local content,
and handling images is also hard. Some users may be confused when they see the
browser and not realize that it is connected to your app; you should clearly
communicate where the content is coming from. Still, it is another handy tool to have in
your toolbox, and can be the perfect solution to certain problems.

Embedding a Browser in Your App
After you’ve gone to the bother of writing an app and getting people to run it, it seems
like a shame to send them packing when you want to display some Web content. You
are implicitly admitting that your app can’t handle displaying that sort of content, and
once they hit the browser you have no idea what they are doing. They may pop open
their bookmarks and forget what they were doing before.

There is an alternative: instead of going into a separate app, bring the browser into your
own. This is a somewhat involved process, but it can pay big dividends. You get to keep
the user’s attention within your app longer, and you get a great deal of insight into their

Download at WoweBook.Com

CHAPTER 7: Browser 254

actions: where they go, what they see, what they do. You can make the embedded
browser as simple or as complex as you like.

An Overview
Bringing browser content into your app requires a fair amount of coordination. It isn’t like
displaying a simple image; the content needs to be loaded over the network, translated
into a format that the RIM browser can display, and then positioned appropriately on the
screen. And that’s just the beginning: the process grows more complicated if the page
includes embedded content, or if you want to allow navigation within the browser.

Ultimately, the content will be rendered out to a Field like other visual elements in the
CLDC UI, but be prepared for more interaction with this Field than with others we have
worked with before.

The Major Players
Four classes provide most of the important interaction when populating an embedded
browser field.

RenderingSession
This is your entrance point to browser content. A rendering session can create multiple
page views, each based at a particular URL or similar content source. The session also
maintains information about what types of media and data formats are supported.
Additionally, it provides access to the RenderingOptions, another class that controls the
display behavior of browser content.

BrowserContent
BrowserContent handles the bulk of the heavy lifting. It contains the logic for retrieving
data over the input connection, translating that retrieved data, parsing
HTML/XHTML/WML/etc., keeping track of additional resources that need to be fetched,
and so on. It owns, provides, and updates the Field that contains all the rendered
content.

RenderingApplication
While BrowserContent is very capable, it is not a full-fledged application. Because of
this, it requires occasional assistance from your program to do things like start new
threads, open additional network connections, and so on. RenderingApplication is an
interface that defines all the things BrowserContent might need from you. You do not
need to fulfill every request it makes unless you want to make a fully featured browsing
field. Table 7-2 displays the various contracts available in this interface.

Download at WoweBook.Com

CHAPTER 7: Browser 255

Table 7-2. RenderingApplication Methods

Method name Description Required?

eventOccurred Can respond to a variety of status No, can return null
 events or user actions

getAvailableHeight Determine browser height in pixels for Yes
 layout purposes

getAvailableWidth Determine browser width in pixels for Yes
 layout purposes

getHistoryPosition Find position in the history state stack No, can return 0

getHTTPCookie Provide JavaScript with a cookie No, can return null

getResource Open an HTTP connection to No, can return null
 retrieve the requested resource

invokeRunnable Start a new thread Yes

Event
The most interesting RenderingApplication method is eventOccurred(). This is called
frequently as the BrowserContent proceeds to fetch, process, and lay out content. By
examining the Event passed to this method, you can determine what is happening and
whether you need to take any action. Certain user-initiated actions will be reported
within this method, so it is helpful to recognize them. Table 7-3 introduces the various
types of events that can occur.

Table 7-3. Browser Field Events

Event identifier Class Description

EVENT_BROWSER_CONTENT_CHANGED BrowserContentChangedEvent The content within the
 browser field has changed

EVENT_CANCEL_REQUEST_RESOURCE Event Previously requested
 resource is no longer
 needed; can cancel the
 resource fetch

EVENT_CLOSE CloseEvent Browser requested to
 close

Download at WoweBook.Com

CHAPTER 7: Browser 256

Table 7-3. Browser Field Events (continued)

Event identifier Class Description

EVENT_ERROR_DISPLAY ErrorEvent Display error message to user

EVENT_EXECUTING_SCRIPT ExecutingScriptEvent Javascript or WMLscript is
 running

EVENT_FULL_WINDOW FullWindowEvent Browser requested full window

EVENT_HISTORY HistoryEvent Request to add, remove, or
 navigate to a point in the browser
 history state stack

EVENT_REDIRECT RedirectEvent Request to move to another URL

EVENT_SET_HEADER SetHeaderEvent Header request

EVENT_SET_HTTP_COOKIE SetHttpCookieEvent JavaScript requested to set an
 HTTP cookie

EVENT_STOP StopEvent No longer need to load; can
 cancel previous URL request

EVENT_TICK_CONTENT_READ ContentReadEvent Progress of content loading

EVENT_UI_DIRECTION_REQUEST Event UI direction was set and
 scrollbars should be updated

EVENT_URL_REQUESTED UrlRequestedEvent Initialize a new BrowserContent for
 the requested URL

Fortunately, most apps will only need to handle a few of these, and some can ignore
them altogether. It can be helpful to log these to help track down errors.

Flow of Events
As you have seen, properly rendering embedded browser content requires a high degree
of cooperation between your app and the rendering engine. Figure 7-4 illustrates one
possible sequence of events when you request a page to display. Note that most of the
communication occurs between the application and the BrowserContent. Once the
initial connection is provided, the remaining events largely occur asynchronously: you do
not know exactly when they will occur, and should respond as you can. The
BrowserContent drives most of the operations, issuing requests when it needs
additional network or processing resources.

Download at WoweBook.Com

CHAPTER 7: Browser 257

Figure 7-4. Communicating with embedded browser components

A Simple Example
In the most stripped-down form, all that you need to display an embedded browser field
is to create the BrowserContent, hand it a connection to your web site, and minimally
implement the RenderingApplication interface. Listing 7-2 shows a basic class that
does just this by displaying the Google home page in the middle of your own screen. By
default, the browser Field will fill the entire screen; since this is not what we want, we
create a custom Manager that forces the browser to be only half as tall as the screen and
slightly narrower. The StatusUpdater class is borrowed from the MediaGrabber app
examples, and allows us to watch what is happening behind the scenes as the browser
loads.

Download at WoweBook.Com

CHAPTER 7: Browser 258

Listing 7-2. Embedding a Browser in a MainScreen

import java.io.IOException;
import java.util.*;

import javax.microedition.io.*;

import net.rim.device.api.browser.field.*;
import net.rim.device.api.io.http.HttpHeaders;
import net.rim.device.api.system.Application;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.container.*;

public class BrowserScreen extends MainScreen implements Runnable,
 RenderingApplication
{
 private RenderingSession renderSession;
 private LabelField status;
 private StatusUpdater updater;
 private String url;

 public BrowserScreen()
 {
 renderSession = RenderingSession.getNewInstance();
 status = new LabelField("Loading...");
 add(status);
 updater = new StatusUpdater(status);
 url = "http://www.google.com";
 (new Thread(this)).start();
 }

 private class BrowserFieldContainer extends VerticalFieldManager
 {
 public BrowserFieldContainer()
 {
 super(Manager.VERTICAL_SCROLL | Manager.VERTICAL_SCROLLBAR
 | Manager.FIELD_HCENTER);
 }

 public void sublayout(int maxWidth, int maxHeight)
 {
 int width = BrowserScreen.this.getWidth();
 int height = BrowserScreen.this.getHeight();
 super.sublayout((int) (width * .9), height / 2);
 }
 }

 public void run()
 {
 HttpConnection conn = null;
 try
 {
 conn = (HttpConnection) Connector.open(url);
 updater.sendDelayedMessage("Connection opened");

Download at WoweBook.Com

http://www.google.com

CHAPTER 7: Browser 259

 BrowserContent browserContent = renderSession.getBrowserContent(
 conn, this, null);
 if (browserContent != null)
 {
 Field field = browserContent.getDisplayableContent();
 if (field != null)
 {
 synchronized (Application.getEventLock())
 {
 deleteAll();
 add(status);
 add(new LabelField("Your search starts here."));
 BrowserFieldContainer container =
 new BrowserFieldContainer();
 container.add(field);
 add(container);
 add(new LabelField("Don't forget to tip the service!"));
 }
 }
 browserContent.finishLoading();
 }
 }
 catch (Exception e)
 {
 updater.sendDelayedMessage(e.getMessage());
 }
 finally
 {
 try
 {
 if (conn != null)
 {
 conn.close();
 }
 }
 catch (Exception e)
 {
 }
 }
 }

 public Object eventOccurred(Event event)
 {
 updater.sendDelayedMessage("Handle event " + event.getUID() + " for "
 + event.getSourceURL());
 return null;
 }

 public int getAvailableHeight(BrowserContent browserContent)
 {
 return getHeight() / 2;
 }

 public int getAvailableWidth(BrowserContent browserContent)
 {

Download at WoweBook.Com

CHAPTER 7: Browser 260

 return (int) (getWidth() * .9);
 }

 public String getHTTPCookie(String url)
 {
 return null;
 }

 public int getHistoryPosition(BrowserContent browserContent)
 {
 return 0;
 }

 public HttpConnection getResource(RequestedResource resource,
 BrowserContent referrer)
 {
 return null;
 }

 public void invokeRunnable(Runnable runnable)
 {
 (new Thread(runnable)).start();
 }

}

Tip: Application.getEventLock() is a static method useful in situations when you
are working in a non-UI thread and want to update some UI elements before continuing
to process in your separate thread. It is more compact and efficient than using
Application.invokeLater() followed by creating and starting a new Thread.

If you create a simple app that pushes this screen and run the example, you will notice
that the Google page partially loads, but, as Figure 7-5 shows, no images are displayed.
Furthermore, if you try to click any links or type in a search, nothing will happen. Clearly,
there is more to be done. On the positive side, everything just works from a UI
perspective. If you are using a trackball-based device, you’ll see that links automatically
take focus as you scroll across them, and you can type in the embedded search field by
highlighting it. On a touch-based device, links highlight as you touch them, and you can
scroll the field by dragging your finger around.

Download at WoweBook.Com

CHAPTER 7: Browser 261

Figure 7-5. A very simple browser field

A Fuller Example
The previous code shows the very bottom end of browser integration: useful for a static
web page with no images or links, but not much else. On the other extreme, you could
create a fully functioning web browser app by fully implementing all
RenderingApplication methods. Most apps will fall somewhere between these two
extremes, based on what features they want to provide. In this particular case, Google
would be much more useful if it showed images and allowed you to follow links.

The first enhancement to look at is getResource(). The browser will invoke this method
when it wants to obtain something else in the process of rendering a page, typically
something like an image. You fulfill this request by providing an HttpConnection to the
requested content. The interface allows you to do this in one of two ways. If a

Download at WoweBook.Com

CHAPTER 7: Browser 262

BrowserContent referrer isn’t provided, you must synchronously create this
HttpConnection and return it. Otherwise, you may return null from this method (as we
are doing) and kick off an asynchronous resource fetch (which we are not). You notify
the referrer once the resource is available. You have seen something like this when
viewing a web page on your browser: the initial page will display first, and then images
will pop in as they become available.

First, let’s write a helper method that creates an HttpConnection for a given URL and set
of HTTP headers. The headers will be helpful as they contain information that the web
server may require, such as what types of content we can accept. We open the
requested URL in the default read/write state, then scan through all the current headers
and add them to the new connection. If any problems occur, we simply return null,
which the BrowserContent will interpret as being unavailable. The helper method is
shown below.

protected HttpConnection getResourceConnection(String url,
 HttpHeaders requestHeaders)
{
 HttpConnection connection = null;
 try
 {
 connection = (HttpConnection) Connector.open(url);
 if (requestHeaders != null)
 {
 Hashtable headers = requestHeaders.toHashtable();
 if (headers != null)
 {
 Enumeration names = headers.keys();
 while (names.hasMoreElements())
 {
 String name = (String) names.nextElement();
 String value = (String) headers.get(name);
 connection.setRequestProperty(name, value);
 }
 }
 }
 }
 catch (IOException ioe)
 {
 updater.sendDelayedMessage(ioe.getMessage());
 }
 return connection;
}

With this in place, we can properly implement getResource(), as shown in the next
example. We first need to check to make sure that the request is valid; because we
don’t implement any caching in the app, we return null if the browser asks for cached
content. We then retrieve the requested content from the current thread or a new thread,
honoring the requirements for this method.

public HttpConnection getResource(final RequestedResource resource,
 final BrowserContent referrer)
{

Download at WoweBook.Com

CHAPTER 7: Browser 263

 if (resource == null || resource.isCacheOnly())
 {
 return null;
 }

 String url = resource.getUrl();

 if (url == null)
 {
 return null;
 }

 if (referrer == null)
 {
 return getResourceConnection(resource.getUrl(), resource
 .getRequestHeaders());
 }
 else
 {
 (new Thread()
 {
 public void run()
 {
 HttpConnection connection = getResourceConnection(resource
 .getUrl(), resource.getRequestHeaders());
 resource.setHttpConnection(connection);
 referrer.resourceReady(resource);
 }
 }).start();
 }
 return null;
}

If you run the screen again, you will see that the Google image appears. Much better,
but search still doesn’t work. Fortunately, that is just a matter of handling the request for
a new URL, as shown in the following code. When we receive that event, we rerun this
screen’s main thread entry point, which will replace whatever is currently showing with
the newly requested URL.

public Object eventOccurred(Event event)
{
 if (event.getUID() == Event.EVENT_URL_REQUESTED)
 {
 UrlRequestedEvent urlRequestedEvent = (UrlRequestedEvent) event;
 url = urlRequestedEvent.getURL();
 (new Thread(this)).start();
 }
 updater.sendDelayedMessage("Handle event " + event.getUID() + " for "
 + event.getSourceURL());
 return null;
}

Download at WoweBook.Com

CHAPTER 7: Browser 264

When you run this example, you will see that you can finally search, as shown in
Figure 7-6. Depending on what site you are using and what kind of user experience you
want, you can make many more enhancements. Consider the following.

 Support for posting form data.

 Only follow URLs to specific sites.

 Maintain history and allow back navigation.

 Support running scripts.

Figure 7-6. An embedded browser field that supports images and navigation

Embedding Your App in a Browser
So far, we’ve looked at how to make your app call out to a browser, and how to pull the
browser into your app. Both of these cases require the user to be running your app in
order to show web content. But wouldn’t it be cool if you could control what was shown
in the browser whenever the user opened it?

Download at WoweBook.Com

CHAPTER 7: Browser 265

MIME Type Providers
The BlackBerry browser identifies all pieces of content it finds on the Web by their
content MIME types. Some of these it knows how to handle itself, like text/html. For
other pieces, like music, it must call out to other pieces of software in order to handle
them. And, for some, it just doesn’t know what to do with them.

This is where we come in. The BlackBerry browser is designed with a pluggable
architecture. Any piece of software can register itself as a provider for a particular type
of content. When the browser finds something it doesn’t recognize, it will query the
providers to see if they want to take it. If they say yes, the browser will give them the
content data and a space in which to render it.

Note: You are not allowed to hijack the browser by registering as a handler for built-in content
types, only for new types. You should check to make sure that your desired type is available on
your target platforms. When you open that piece of content without a Plug-in, you should see a
message such as ‘‘The item you selected cannot be displayed. Do you wish to save the item?’’

Any given provider can register however many MIME types it wants. However, for
simplicity, it is usually best to write a separate provider for each content type, unless
there is considerable overlap between them.

Writing a Plug-in
All browser Plug-ins must extend the BrowserContentProvider class. They must declare
what MIME types they can accept by implementing two methods.
getSupportedMimeTypes() indicates all the MIME types that this Plug-in can ever render,
and controls whether the browser will consider it for a given piece of content.
getAccept() indicates what MIME types this Plug-in can render right now, given the
current configuration of the browser. This may be a smaller returned set than
getSupportedMimeTypes(); for example, if the Plug-in requires JavaScript support, it can
decline to handle content if JavaScript is disabled.

The bulk of the Plug-in is contained in the method getBrowserContent(). This is the
other side of the BrowserContent that we saw in the previous section: here, we create a
BrowserContent of our own that handles the rendering of provided content. We have
access to the requesting capabilities that we previously saw in RenderingApplication if
we need them to complete the rendering task. BrowserContentBaseImpl is a useful base
class that defines most of the necessary behaviors of a BrowserContent. This class can
be configured or subclassed as appropriate to show your content.

Browser content is fairly flexible: your Plug-in may be called to fill the entire screen if
showing a single piece of content, or just a small region if embedded within a larger web
page. The default behavior is usually acceptable, but you can exert more control over
the visual behavior of the Plug-in by implementing the BrowserPageContext interface.
The rendering process will invoke these methods to find out what the rendering

Download at WoweBook.Com

CHAPTER 7: Browser 266

requirements are. Most of these are currently unused; you should return the provided
default values for future compatibility. If queried for DISPLAY_STYLE, you can return one
or more of the style enumerations included in BrowserPageContext as a bit field.

Listing 7-3 shows how to create a custom browser Plug-in for viewing Java source files.
To make it more interesting, you can compact the source files for easier viewing on a
mobile phone. When you open a class file, you will see the fields and methods but not
the definitions. You can handle two of the more common Java MIME types, text/x-java
and text/x-java-source. When invoked to show one of these, open the input stream
that contains the Java source, and then read it in byte-by-byte, determining whether to
show or hide each part. To make the source more obvious, place the scrollbar on the left
and fill the whole screen if it is available.

Listing 7-3. A Browser Plug-in for Displaying Java Source Files in Compact Format

import java.io.*;

import javax.microedition.io.HttpConnection;

import net.rim.device.api.browser.field.*;
import net.rim.device.api.browser.plugin.*;
import net.rim.device.api.ui.component.RichTextField;

public class JavaViewer extends BrowserContentProvider implements
 BrowserPageContext
{
 String[] MIME_TYPES = new String[]
 { "text/x-java", "text/x-java-source" };

 public String[] getAccept(RenderingOptions context)
 {
 return MIME_TYPES;
 }

 public BrowserContent getBrowserContent(
 BrowserContentProviderContext context) throws RenderingException
 {
 if (context == null)
 throw new RenderingException("No context");
 BrowserContentBaseImpl browserContent = new BrowserContentBaseImpl(
 context.getHttpConnection().getURL(), null, context
 .getRenderingApplication(), context
 .getRenderingSession().getRenderingOptions(), context
 .getFlags());
 RichTextField contentField = new RichTextField();
 String fileName = "";
 try
 {
 HttpConnection conn = context.getHttpConnection();
 InputStream in = conn.openInputStream();
 fileName = conn.getFile();
 int numBytes = in.available();
 StringBuffer builder = new StringBuffer(numBytes);
 int depth = 0;

Download at WoweBook.Com

CHAPTER 7: Browser 267

 int read = 0;
 do
 {
 read = in.read();
 if (read != -1)
 {
 if (read == '}')
 --depth;
 if (depth < 2)
 builder.append((char) read);
 if (read == '{')
 ++depth;
 }
 } while (read != -1);
 String compressed = builder.toString();
 contentField.setText(compressed);
 }
 catch (IOException ioe)
 {
 throw new RenderingException("I/O Error: " + ioe.getMessage());
 }
 browserContent.setContent(contentField);
 browserContent.setTitle(fileName);
 browserContent.setBrowserPageContext(this);
 return browserContent;
 }

 public String[] getSupportedMimeTypes()
 {
 return MIME_TYPES;
 }

 public boolean getPropertyWithBooleanValue(int id, boolean defaultValue)
 {
 return defaultValue;
 }

 public int getPropertyWithIntValue(int id, int defaultValue)
 {
 if (id == BrowserPageContext.DISPLAY_STYLE)
 return BrowserPageContext.STYLE_VERTICAL_SCROLL_ON_LEFT
 | BrowserPageContext.STYLE_SHOW_IN_FULL_SCREEN;
 return defaultValue;
 }

 public Object getPropertyWithObjectValue(int id, Object defaultValue)
 {
 return defaultValue;
 }
 public String getPropertyWithStringValue(int id, String defaultValue)
 {
 return defaultValue;
 }

}

Download at WoweBook.Com

CHAPTER 7: Browser 268

Registering the Plug-in
One crucial step is still missing: registering the Plug-in with the browser. Use
BrowserContentProviderRegistry as shown in the following example in order to do the
registration.

BrowserContentProviderRegistry providerRegistry = BrowserContentProviderRegistry
 .getInstance();
if (providerRegistry != null)
{
 providerRegistry.register(new JavaViewer());
}

After this executes, any time you view a Java source file with the proper MIME type,
your Plug-in will automatically run and display the compressed source, as shown in
Figure 7-7. This is true even if your application is no longer running.

Figure 7-7. A custom browser Plug-in displays a Java source file

Download at WoweBook.Com

CHAPTER 7: Browser 269

Tip: To test this, you will need to find a web server that attaches the correct MIME type to .java
source files. Most online examples will serve these in "text/plain" for easier viewing. If you
have access to a Linux box, you can easily install Apache 2, which has appropriate MIME
defaults. Publish the Java file on your server, then visit the file from a desktop web browser. If
your server is properly configured, you will probably be prompted to download the file, which
will be identified as having a Java file type.

If you are running a web server on your local machine, remember that you cannot use the IP
address "127.0.0.1" or "localhost" within the BlackBerry simulator; these addresses are
assumed to refer to the simulator itself, not your machine. Instead, use an appropriate network
address like "192.168.0.1" or "10.10.10.1". Also, make sure you are using a BlackBerry
browser that can view pages within your local network. Try pressing the Menu key, then
Options, then Browser Configuration. The Browser should be set to Wi-Fi, or a branded Wi-Fi
name such as Hotspot Browser. Using the Internet Browser or other browser communicates
with a gateway outside your local network, making those network IP addresses inaccessible.

However, there is a significant catch: you can only register a Plug-in once. If you try to
register it again, an exception will be thrown and you may see an error such as “A
browser content provider for text/x-java MIME type has already been registered with the
browser.” BrowserContentProviderRegistry doesn’t provide any methods to remove a
loaded Plug-in, or to determine what Plug-ins are already registered, so you cannot
make your registration conditional. How can you safely register the Plug-in within your
app? The answer is that you don’t. In Chapter 1, you saw that it is possible to write a
library that automatically runs on startup. You can stick the registration code in there
and be confident that it will only execute once. As a bonus, the Plug-in will be ready to
go from the moment the phone boots, even if the user never runs your app.

App: Friend Tracker
In Chapter 6, you saw how to piggyback on the existing contacts database in order to
keep track of how many times you have shared media with each contact. It’s an
interesting piece of data, but currently there isn’t any way to view it without opening up
the address book. You can write a browser Plug-in that will run whenever the user views
an appropriate piece of content in the Browser.

MIME Configuration
Before you start writing code, you’ll need to decide how to deliver contact information
that will integrate with your media-player app. Names starting with x- are available for
use, and it makes sense to take advantage of existing VCard content, so define the new
type text/x-vcard-media to hold this content. Because you invented this content type,
there will not be a clash with any built-in types on the browser. If you have access to a

Download at WoweBook.Com

CHAPTER 7: Browser 270

web server, configure it to serve this MIME type. In Apache2, you can do this by adding
the following to mime.conf, which instructs the web server to send .vcf2 files with the
proper type and a content encoding of UTF-8. You will need to restart the web server
after making any changes.

AddType text/x-vcard-media .vcf2
AddCharset UTF-8 .vcf2

Now you can create a sample vCard or two and upload them to the server. Many mail
programs will allow you to export a contact’s information in a .vcf or .vCard file. If you
open it in a text editor, you should see something like the following. Change the file
extension to .vcf2 and upload to your server.

BEGIN:VCARD
VERSION:2.1
N:Norton;Joshua
TITLE:Emperor
TEL;WORK;VOICE:(415) 555-0133
TEL;HOME;VOICE:(415) 555-0144
EMAIL;PREF;INTERNET:emperor.norton@sf.example.com
END:VCARD

If you access the .vcf2 file from within the BlackBerry browser, you will see an error
message stating that the item cannot be displayed. The path is clear, and now you can
write your Plug-in.

Creating the Plug-in Library
Open your existing MediaGrabber Eclipse workspace, or create a new one and import
the current version of MediaGrabber. You won’t actually be touching the MediaGrabber
code, but you will want to ensure that MediaGrabber and the Plug-in are deployed
together.

Create a new BlackBerry project. Name it “Friend Tracker,” give it the Library type, set it
to run on startup, and make sure it’s always activated. The “Always make project active”
option can be found on the General tab in BlackBerry Project Properties.

The actual Plug-in looks similar to the compressed Java source viewer you wrote
previously. Create a new Java source file called FriendViewer that extends the
BrowserContentProvider class. Formatting for the friend tracker is not important, so you
can omit the BrowserPageContext methods. You can make free use of the PIM interfaces
you learned in Chapter 6 to import vCard data, search for matching contacts, and
extract interesting fields. For simplicity’s sake, display text describing the user’s level of
interaction with the provided contact; a more elaborate Plug-in might also include
graphical elements like a check mark, highlighted text, and so on. Listing 7-4 contains
the entire Plug-in.

Download at WoweBook.Com

mailto:norton@sf.example.com

CHAPTER 7: Browser 271

Listing 7-4. A Plug-in to Display a Web Contact’s MediaGrabber Metadata

package com.apress.king.mediagrabber;

import java.io.*;
import java.util.Enumeration;

import javax.microedition.io.HttpConnection;
import javax.microedition.pim.*;

import net.rim.blackberry.api.pdap.BlackBerryContact;
import net.rim.device.api.browser.field.*;
import net.rim.device.api.browser.plugin.*;
import net.rim.device.api.ui.component.RichTextField;
import net.rim.device.api.ui.container.VerticalFieldManager;

public class FriendViewer extends BrowserContentProvider
{
 String[] MIME_TYPE = new String[]
 { "text/x-vcard-media" };

 public String[] getAccept(RenderingOptions context)
 {
 return MIME_TYPE;
 }

 public BrowserContent getBrowserContent(
 BrowserContentProviderContext context) throws RenderingException
 {
 if (context == null)
 throw new RenderingException("No context");
 BrowserContentBaseImpl browserContent = new BrowserContentBaseImpl(
 context.getHttpConnection().getURL(), null, context
 .getRenderingApplication(), context
 .getRenderingSession().getRenderingOptions(), context
 .getFlags());
 VerticalFieldManager manager = new VerticalFieldManager();
 RichTextField contentField = new RichTextField(
 RichTextField.USE_TEXT_WIDTH);
 manager.add(contentField);
 browserContent.setContent(manager);
 String email = "";
 try
 {
 HttpConnection conn = context.getHttpConnection();
 InputStream in = conn.openInputStream();
 // Remove network encoding by reading in to a memory stream.
 byte[] bytes = new byte[in.available()];
 in.read(bytes);
 ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
 PIM pim = PIM.getInstance();
 PIMItem[] items = pim.fromSerialFormat(bais, "UTF-8");
 if (items == null || items.length == 0)
 {

Download at WoweBook.Com

CHAPTER 7: Browser 272

 contentField.setText("No contact found.");
 }
 else
 {
 Contact friend = (Contact) items[0];
 ContactList contacts = (ContactList) pim.openPIMList(
 PIM.CONTACT_LIST, PIM.READ_ONLY);
 // See if we know this person, based on their email address.
 if (friend.countValues(Contact.EMAIL) == 0)
 {
 contentField.setText("No email found.");
 }
 else
 {
 email = friend.getString(Contact.EMAIL, 0);
 Contact template = contacts.createContact();
 template.addString(Contact.EMAIL, PIMItem.ATTR_NONE, email);
 Enumeration matches = contacts.items(template);
 if (!matches.hasMoreElements())
 {
 contentField.setText(email
 + " isn't in your address book.");
 }
 else
 {
 Contact match = (Contact) matches.nextElement();
 if (match.countValues(BlackBerryContact.USER4) == 0)
 {
 contentField.setText("You haven't sent " + email
 + " any media yet!");
 }
 else
 {
 String sentString = match.getString(
 BlackBerryContact.USER4, 0);
 contentField.setText("You have sent " + email + " "
 + sentString + " media files so far.");
 }
 }
 }
 }
 }
 catch (Exception e)
 {
 throw new RenderingException("Error: " + e.getMessage());
 }
 browserContent.setTitle(email);
 return browserContent;
 }

 public String[] getSupportedMimeTypes()
 {
 return MIME_TYPE;
 }
}

Download at WoweBook.Com

CHAPTER 7: Browser 273

The last piece to write is the Plug-in loader, shown in Listing 7-5. Because the
FriendTracker project is a library set to run on start-up, the libMain method will be called
every time the phone boots. Claim the MIME type right away so it is immediately
available.

Listing 7-5. Plug-in Registration

package com.apress.king.mediagrabber;

import net.rim.device.api.browser.plugin.BrowserContentProviderRegistry;

public class FriendTrackerLoader
{
 public static void libMain(String[] args)
 {
 BrowserContentProviderRegistry registry = BrowserContentProviderRegistry
 .getInstance();
 registry.register(new FriendViewer());
 }
}

Running the App
Run in the simulator first. You should be able to open the .vcf2 file you uploaded
previously and view the appropriate text, as shown in Figure 7-8. If the browser still
complains that it cannot display the file, double-check that the MIME types are correctly
set on both the Plug-in and the web server, and that the Plug-in was activated and
loaded on the simulator. You should be able to set a breakpoint within the libMain()
method and see it hit as the simulator starts.

Download at WoweBook.Com

CHAPTER 7: Browser 274

Figure 7-8. Web content intercepted an interpreted with MediaGrabber data

When loading the app on your BlackBerry device, first make sure that you generate an
ALX file for the FriendTracker project, and sign both of them. You will need to load both
ALX files in the Desktop Manager. (Since the MediaTracker project hasn’t changed, if it
is already loaded on your device, you can just load the FriendTracker.) When you visit
the .vcf2 file in the device browser, you should once again see an appropriate message.

This seems to be working well so long as FriendTracker is installed, but, if a new user
who did not have MediaGrabber visited that file, they would just see the unfriendly
browser error message, with no instructions on how to solve the problem. Because of
this, you should put custom content behind appropriate web page interfaces. You might
write a simple HTML page with instructions such as “Click here to view Joshua Norton’s
public profile. If it doesn’t load, you need to install FriendTracker: click here to get it
today!” Another option is to embed the .vcf2 file within an iframe or other partitioned
area. In these cases, the content will still render within the frame if the user has the Plug-

Download at WoweBook.Com

CHAPTER 7: Browser 275

in installed, and a blank space will appear if they do not. This allows you to attach
appropriate messaging—“If you don’t see the public profile, install FriendTracker
here”—without requiring an extra click for the users who already have the proper
content installed.

Caution: Unfortunately, the BlackBerry browser does not update its HTTP accept headers with
Plug-in content MIME types. If it did, your web server could easily determine whether the Plug-
in was installed and serve up appropriate content depending on whether it was present or not.

WANT MORE?

There’s a lot that you can do in a web browser window. So far, the app is presenting a proof of concept
that demonstrates how to hook in to other sources of data to render custom content. You can do a lot more
with this idea, including the following.

 Display the vCard’s name, address, and other PIM fields.

 Automatically import vCards for contacts not already in the user’s address book.

 Keep track of how many times a vCard has been viewed in another of the extended
BlackBerry user fields. Update the MediaGrabber app so every time you send it to a
contact it displays how often you have viewed them in FriendTracker and how many
pieces of media you have sent them.

Of course, you aren’t constrained to using a vCard. Many apps will define their own custom data types; you
might also want to experiment with options for exporting and viewing other friends’ online media files.

Excelsior
The Web is still the killer app. This is as true for mobile devices today as it was for
desktop computers a decade ago. More and more people are turning to the Internet
while on the go to find out information, connect with people, and entertain themselves.
That’s where the users are, and that’s where you want to be too.

You have learned the relative merits of browser development vs. app development, and
seen that, while both have their uses, app development offers much more power. You
don’t need to choose one or the other, though. BlackBerry has a very flexible system
that allows you to launch a browser from within your app, embed browser content within
an app screen, or even allow your app to run when the user views certain web pages. All
of these techniques help bring your app closer to where users place their time and
attention, making it yet more accessible and irresistible.

We have seen many options for integrating with the device’s major built-in applications.
BlackBerry devices also offer frameworks that allow apps to define custom behaviors,
making them more accessible to other developers and more attractive to users.
Chapter 8 will examine ways to complete your integration with the device.

Download at WoweBook.Com

Download at WoweBook.Com

8Chapter

Digging in Deep
This chapter completes the tour of device integration by looking at various ways to tie
into the device at a deeper level. These range from simple tasks, such as assigning
attractive icons to your app, to more complex ones, such as providing a programming
interface that other developers can use to invoke your app. When complete, you will
have mastered most of the significant interfaces available for advanced BlackBerry
development.

A Content Handling System
In Chapter 3, we briefly looked at the Content Handler API as a tool for launching media
files in the native media player. However, the content handler system is far more
versatile and powerful than just a media player. This complex yet extremely useful set of
interfaces allows the creation and use of almost any functionality imaginable.

The Content Handling Philosophy
Back when Java ME was first developed, mobile devices could barely handle running a
single app at a time, let alone multiple apps. The early promoters championed the
advantages of bringing the Java virtual machine sandbox to the mobile space: rogue
apps could not infect users’ phones with viruses, and buggy apps could not crash and
prevent you from placing calls. The entire purpose of Java ME was to enable simple,
compact applications that could run with minimal resources in an isolated environment.

As the capabilities of mobile phones grow ever closer to those of desktop computers,
this architecture has grown increasingly antiquated. Java ME phones now struggle
against the richer multitasking operating systems found in smart phones. One major
shortcoming of the original Java ME design is the inability to launch one application from
another application. Again, this was sensible back in the 1990s when multitasking was
beyond the physical capabilities of the device. However, there are many situations
where one would like to take advantage of existing app functionality. If a photo-viewing
application already exists on the device, it would be far better to launch that app to

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 278

show your photos rather than reimplementing the capability within a new app and
significantly increasing the app binary size.

Allowing the invocation of external apps is not as simple as it would first seem, though.
How would you know whether the user has the other app installed? What would you do
if they later deleted the other app? How can you handle upgrades, where one version
behaves slightly differently from the other? And how do you avoid a proliferation of
incompatible APIs for every new app?

Enter JSR 211. The Content Handler API (CHAPI) seeks to resolve all these tensions by
establishing a framework for communication between apps. CHAPI’s philosophy
encompasses several desires.

 Request/Response Framework: Requesting apps should be able to
ask for resources or for tasks, and receive information when the
request is complete.

 Loose Coupling: Apps should not need to know exactly which app is
servicing their request so long as it is capable of handling it.

 Seamless Transition: The device should automatically pass control
between requesting and servicing apps, bringing each to the
foreground or background as needed. The user should never need to
manually exit one app and start another in order to complete a
request.

 Enable Discovery: Apps should be able to learn which handlers are
available to service desired requests and obtain basic information
about them, such as their names.

 Expandable: New apps should be installable to provide additional
capabilities, and apps should be able to initiate such installation.

 Support Delegation: An app servicing a request should be able to
enlist the assistance of other apps to complete its task.

RIM has embraced this platform, using it to allow communication with built-in
BlackBerry applications and between third-party apps. It is available on all devices with
software version 4.3 or higher.

The Content Handling Architecture
Think of content handling as a client-server application. The client wants to accomplish
a task, such as purchasing extra credits for a game, or acquire a resource, such as
searching for a file. The client expresses its desire with a class called Invocation. The
invocation combines several elements.

 A verb, such as “Edit”, “Open”, or “Print”

 A target, such as "http://example.com/credits.do" or
"file:///SDCard/BlackBerry/Music/NationalAnthem.mp3"

 Optional extra parameters or data

Download at WoweBook.Com

http://example.com/credits.do
file:///SDCard/BlackBerry/Music/NationalAnthem.mp3

CHAPTER 8: Digging in Deep 279

Note: The terms client and server strictly refer to the request/response system of
communication. Unlike a typical client/server application, no network communication is
involved. In this chapter, I use the terms server and handler interchangeably.

The Registry class is used by the client to find whether any content handlers are
available to service the request and to actually issue the request. Once the Registry
receives the Invocation, it checks to see what appropriate content handlers exist to
handle it. The Registry then instructs the device AMS to deliver the Invocation.
Because the client and the server are separate applications running in different
processes, the AMS will first need to create a new Java process if the app is not already
running, then serialize the Invocation and copy it into the server app’s memory. Figure
8-1 illustrates how this system works at a high level; note that the client and the server
do not directly interact with one another, nor do they technically share the same
Invocation instance.

Figure 8-1. A client/server view of CHAPI

Server apps use the Registry to express their interest in handling certain types of
content. Apps can register by content type, such as "audio/mpeg", by extension, such
as ".mp3", or both. In some circumstances one app can specify which particular app
should service the request. We will see examples covering all these invocations later in
the chapter.

When a server receives a request, it will be started if it is not already running, and then it
has the opportunity to dequeue the Invocation. If multiple invocations are pending, it
can handle them one at a time, or spawn multiple threads to process them
simultaneously. The server app has its own copy of the Invocation to work with;
typically, it will examine the details of the request, try to fulfill the request, store any
return information that might be available, and then notify the device about the success
or failure of the operation.

After processing is complete, the device AMS will copy the modified Invocation
instance back across the address space boundary into the client application. The client
can choose to receive a notification that the request was executed, and can retrieve any

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 280

information that was retrieved. Figure 8-2 shows one potential flow between client and
server CHAPI applications.

Figure 8-2. The life of a CHAPI request

The Major Players
Many classes are involved in smoothly fulfilling a content handling request. Some are
only used by the client, others only by the server, and some by both. However, it is
helpful to have a rough understanding of what each component does so you can
anticipate what other apps might do.

Invocation
The data for a particular request is embedded within the Invocation. An Invocation’s
primary responsibility is to hold information that can be used to locate an appropriate
handler. The Invocation is serialized to communicate between the client and the server
app.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 281

Locating Hints

Because multiple content handlers may be present on the device, the Invocation can
provide multiple levels of hints and information to help locate the best candidate.

Each content handler must have a unique ID. These IDs are guaranteed to be unique:
the BlackBerry will refuse to install or register a new application if it tries to claim a
content handler ID that is already in use. Typically, developers name their IDs as they
would fully qualified Java class names in order to distinguish between different authors;
for example, if I were to write an image database, I might provide the content handler ID
com.apress.king.imagestore. If you know the ID for a particular content handler you
want to use, you can provide it to the Invocation. This takes priority over the other
locating hints, and instructs the AMS to use this particular provider.

Ideally, a client application shouldn’t actually care what server component is servicing
the request. As with the “Software as a Service” model, components should be
swappable after deployment without any client changes necessary. Therefore, the MIME
content type determines most CHAPI handling. Any string is valid here; a component
may register for a well-known content type, such as "text/html", or an invented one,
such as "application/vnd.king.mediagrabber". The content type is the preferred
method for finding providers if the handler ID is not provided, and all content handlers
that have registered for that type will be considered.

In some cases, a client app may know that it needs to handle a particular piece of
content, but not know exactly what type the content is. For example, a browsing
application may locate a link for "http://example.com/card.vcf2". Absent any other
information, a content handler will be selected by searching for components that can
handle the .vcf2 suffix. Alternately, after the client app sets the URL of a piece of
content on the Invocation, it can call Invocation.findType(). This causes the platform
to locate the provided content and try to determine its type; this may be provided by the
web server if the content is at an http:// link, or by the device if it is on the filesystem.
After retrieving the type, this method automatically sets it on the Invocation, as if you
had called Invocation.setType().

Actions

The various hints described so far are all nouns, describing the type, the target, or the
desired handler. An Invocation can also specify a verb, the action to take. Content
handlers can define actions using any string they want, such as “purchase”. However,
several standard actions are defined within the ContentHandler class, and their use is
preferred over creating new actions. The defined actions are listed in Table 8-1.

Table 8-1. Content Handler Actions

Action Value Definition

ACTION_EDIT "edit" Modify the content

ACTION_EXECUTE "execute" Run the content

Download at WoweBook.Com

http://example.com/card.vcf2
http://link

CHAPTER 8: Digging in Deep 282

Table 8-1. Content Handler Actions (continued)

Action Value Definition

ACTION_INSTALL "install" Install the content onto this
device

ACTION_NEW "new" Create new content

ACTION_OPEN "open" Open the content

ACTION_PRINT "print" Print the content

ACTION_SAVE "save" Save the content

ACTION_SELECT "select" Select from this content and
return the value. This usually
involves the user making an
on-screen choice.

ACTION_SEND "send" Send the content off the
device

ACTION_STOP "stop" Cease processing a previously
provided piece of content

Content handlers must be able to provide the requested action. If an action is provided
in the Invocation, only handlers that have registered for that action will be invoked. If the
action is null, only the hints are considered, and the action will be ignored.

Parameters

Some content requests may only need a hint and an action to execute. If you provide a
type of "audio/amr" and an action of "new", that may be enough information to
communicate that you want the user to record a new audio file. In other cases, you may
need to provide additional information. If you provide a URL of
"file:///SDCard/BlackBerry/game.dat" and a type of "edit", the handling application
will probably need more data to edit the file properly.

Invocation supports two methods of providing extra data. First, you can use
Invocation.setArgs() to provide a String array. This allows the handler to receive
arbitrary parameters on startup, similar to the traditional Java entry point’s "public
static void main(String[] args)" parameters. Different BlackBerry devices and
software versions may have different limitations on the arguments; however, all devices
are guaranteed to support at least 10 arguments with a total of at least 8192 characters.
None of the arguments can be null.

Download at WoweBook.Com

file:///SDCard/BlackBerry/game.dat

CHAPTER 8: Digging in Deep 283

The second option is to pass binary data. Invocation.setData() accepts a byte array,
which can be interpreted however the handling application wants. Binary data might
include a custom form of compact parameters, some extra data necessary to complete
the request, etc.

Both arguments and data may be provided in the same Invocation. However, the
device is only required to support a total of 16384 bytes of parameters. For every
character that is included in the arguments, 2 bytes fewer space is available for binary
data. Keep in mind that all parameters must be serialized and processed by the server
application, so passing long chunks of data will slow down processing. If you have large
pieces of data that need to be provided, such as large images or sound files, it will
generally be more efficient for the client application to store that data to a temporary
location on the file system and then pass the location in the Invocation, rather than try
to stuff all the data within the Invocation itself.

Invocation Life Cycle

An Invocation always exists within a particular state. All states are listed as static fields
within the Invocation class.

 INIT: The Invocation has been created.

 WAITING: It has been dispatched to an appropriate handler.

 ACTIVE: The handler has dequeued the request.

 HOLD: The handler must chain the request forward to another handler.

 ERROR: The handler exited without finishing service of the request.

 INITIATED: The handler cannot complete processing the request, but
has started doing so.

 CANCELLED: The handler has ceased processing the request, possibly
due to a second “stop” request.

 OK: The handler has successfully completed the request.

As noted previously, every logical Invocation will occupy two instances, one in the client
application and one in the server application. Each follows a slightly different life cycle.
Figure 8-3 shows an Invocation initially being created with the status INIT. It remains in
this state while the client populates it. Once the Registry receives an Invocation and
dispatches it, the status is changed to WAITING. After the server application has finished
processing, the status will be one of INITIATED, OK, CANCELLED, or ERROR.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 284

Figure 8-3. Client Invocation life cycle

The server application first sees the Invocation after it has been delivered, with an initial
status of ACTIVE. The server retains ownership of the Invocation and can keep it in the
ACTIVE state as long as it takes to process. Most apps will continue processing until they
complete the request, in which case they set an OK value. Certain apps may support
cancellation, which is indicated by going into the CANCELLED state. INITIATED should
generally be avoided. After a request has entered the INITIATED state, it cannot later be
set to OK, so out-of-band communication would be necessary to communicate the final
disposition back to the invoking app.

If a server app needs to invoke another app to continue the request, it becomes a client
itself. The original request will be set to the HOLD state while the new request is being
handled. After the response comes back, the original request re-enters the ACTIVE state.

Note that the server app cannot place an Invocation into the ERROR state; this state is
reserved for use by the AMS. However, you can easily imagine many reasons why a
request might fail to complete: bad arguments from the client, a network error, running
out of filesystem space. How, then, does the server communicate the error back to the
client? The simplest way is for the server app to exit without providing a response; this
sends the ERROR state back to the client, but provides no additional information about
the cause of the error. A better way is to set the state to OK, but provide additional data
that the client can read to determine whether the request succeeded or failed. In this
sense, "OK" means “I’m done” rather than “Everything went fine.” Figure 8-4 shows the
complete Invocation life cycle within the server app.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 285

Figure 8-4. Server Invocation life cycle

In the same way that the client could set arguments or data in its request, the server can
do the same. When it first receives the Invocation, it will see the arguments and data
that were included in the request. It can set its own arguments and data using the same
methods. After the request is finished, those values are copied back over to the client
app, which can pull them out for examination. Of course, any changes made to
arguments or data after a request is invoked or finished will not be updated in the other
app.

There are no standards in place for formatting arguments and data. If you are writing a
content handling app for other developers, you should clearly document any return
parameters. If you are writing a client app, inspect the documentation to make sure you
are handling all possible return values; if no documentation is available, print out the
responses you get back so you can see what they are, and update your code to handle
them appropriately. You might see extended status information, such as "Status:ERROR
file not found"; returned content, such as "file:///SDCard/BlackBerry/tmp/output.
amr"; or tracking data, such as "RequestID=7238497".

Examples

The simplest type of Invocation that can still be handled only has a URL.

Invocation request = new Invocation("http://www.eff.org/");

If you want to make sure that one particular content handler processes your request,
specify it in the ID, along with any other information necessary for it to service the
request.

Invocation request2 = new Invocation();
request2.setID("com.apress.king.imagestore");
request2.setType("image/tif");
request2.setAction(ContentHandler.ACTION_PRINT);

You can provide extended parameters to the server app by setting arguments, data, or
both. The following example updates a high score with a new name and player icon. The

Download at WoweBook.Com

file:///SDCard/BlackBerry/tmp/output.amr
file:///SDCard/BlackBerry/tmp/output.amr
http://www.eff.org

CHAPTER 8: Digging in Deep 286

icon is presumed to be tiny; if not, it would be better to place the icon on the disk and
only pass the file location in the Invocation.

Invocation request3 = new Invocation("file:///SDCard/BlackBerry/game1.dat");
String[] args = new String[]{"UpdateHighScore", "Chris", "500"};
request3.setArgs(args);
InputStream iconStream = getClass().getResourceAsStream("player.png");
byte[] iconData = null;
try
{
 iconData = new byte[iconStream.available()];
 iconStream.read(iconData);
}
catch (Exception e) {}
request3.setData(iconData);

ActionNameMap
If a handler provides a very narrow function, like updating a high-score counter, then
choice is not very important: the app only does one thing, and can do it without user
intervention. Sometimes, though, you may have multiple apps that can all handle the
same type of request, such as playing a music file. In other cases, you might have a
single handler that provides multiple actions, such as a high-score manager that can
update, delete, display, or upload the current high scores. In both situations, the client
app may not know exactly which handler or action to use.

The best solution is to present the available options to the user and allow them to select
which one to use. Fortunately, CHAPI includes support for internationalization within its
framework, and the most successful content handlers will support multiple languages.
When apps register as handlers, they can provide locale-specific strings that describe
the handler and all their actions.

These locale-specific strings are contained within an ActionNameMap instance. This
essentially provides a two-way hashtable that allows you to map between actions (such
as “open”) and locale-specific action names (such as “Abra”), and between the locale-
specific name and the corresponding action. Each ActionNameMap contains the
mappings for one particular locale.

You can construct an ActionNameMap by providing matching arrays of actions and their
associated names for a particular locale, as shown in the next example.

String[] actions = new String[]{"upload", ContentHandler.ACTION_EDIT};
String[] names = new String[]{"Upload to Server", "Update Data"};
ActionNameMap map = new ActionNameMap(actions, names, "en-US");

Later, when a program is looking for appropriate names to display, it will pass in a
desired locale string, such as “en-GB” for Great Britain English. CHAPI will check to see
if names have been defined for that locale; if not, it will strip off the characters after and
including the last “-” and search again—in this case, for “en”. The process repeats until
a match is found or all options are exhausted. Because of this, it is a good idea to

Download at WoweBook.Com

file:///SDCard/BlackBerry/game1.dat

CHAPTER 8: Digging in Deep 287

provide a basic language code, such as “en”, that can be used as a default if a client
app wants a country code that is not available.

Server applications may create ActionNameMap objects to advertise their capabilities.
Client applications may obtain them to display available capabilities. Once a client has
an ActionNameMap, it can look up the corresponding match for each name or action.

String localizedName = map.getActionName("upload");
String uploadAction = map.getAction("Update Data");

Alternately, an app may choose to iterate through all available actions and expose them
all. The next example demonstrates how you could create a set of BlackBerry menu
items for all available actions. Each will display a locale-appropriate name in the menu,
but use the correct action when selected.

int size = map.size();
for (int i = 0; i < size; ++i)
{
 String name = map.getActionName(i);
 final String action = map.getAction(i);
 MenuItem item = new MenuItem(name, 0, 0){
 public void run()
 {
 // Process "action" here.
 }
 };
}

ContentHandler
As discussed in the previous section, client apps will sometimes want to obtain more
information about their available options for processing a particular request. If they
aren’t satisfied with simply firing it off and trusting it will be done, they can obtain more
information about available handler apps by querying available ContentHandler classes.
The ContentHandler isn’t actually an instance of the servicing application; rather, it holds
descriptive information about the app.

 getAppName() retrieves the displayable name of the app.

 getAuthority() is supposed to report what authority has verified the
identity of this application. On other MIDP Java ME devices, it will
report the subject of the certificate used to sign the app, or null if the
app is unsigned. For BlackBerry, however, this always returns null,
even for the built-in media handler.

 getID() retrieves the handler’s unique ID.

 getVersion() reports the handler’s installed app version number. This
can be useful if future versions of the app include more functionality.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 288

More detailed information can be acquired about this handler’s capabilities. Actions
(such as "open"), suffixes (such as ".mp3"), and types (such as "audio/mpeg") can all be
retrieved in two ways.

 By index. You can first find the count, as in
handler.getSuffixCount(), and then loop through the items, as in
handler.getSuffix(i).

 By name. You can quickly determine whether a particular item is
supported with a call such as handler.hasSuffix(".mp3").

Finally, each ContentHandler contains actions and action names. You have multiple
options for looking up this information.

 Use getActionNameMap() to get the ActionNameMap for the current
device locale. As noted above, this will search for the best locale
match.

 Use getActionNameMap(String locale) to retrieve a particular locale’s
information. This is useful if you allow switching languages within the
app. Again, the best match will be retrieved.

 All mappings can be retrieved by calling getActionNameMapCount() and
then iterating through the index with getActionNameMap(int).

 If you only care about the actions and not the displayable names, use
getActionCount() and getAction().

Note: You can obtain a ContentHandler instance from the Registry, as described later in
this chapter.

The following snippet of code retrieves the name of a handler and then checks whether
it supports executing content. If it does, the app will check for all the content types it
handles, adding each one as a viewable element on a screen.

String appName = handler.getAppName();
if (handler.hasAction(ContentHandler.ACTION_EXECUTE))
{
 int typeCount = handler.getTypeCount();
 for (int i = 0; i < typeCount; ++i)
 {
 screen.add(new LabelField(appName + ":" + handler.getType(i)));
 }
}

ContentHandlerServer
ContentHandler is a client-facing description of handler capabilities.
ContentHandlerServer is the server-facing class that can be used to retrieve pending

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 289

requests, mark the status of completed requests, and query for information about its
own capabilities and access.

A handler app can retrieve pending requests in one of two ways. By calling
ContentHandlerServer.getRequest(), the handler app can directly receive an
Invocation. This is useful if you know that a request is waiting, or if you
prefer to process incoming requests serially within a separate thread. The method
takes a boolean: if true, the method will block until an Invocation is received; if
false, the method can return null if no Invocation is immediately available. The
following example shows a handler application first checking to see if an Invocation
is present. If not, it will spawn a thread that will continually loop and process all
future incoming Invocation objects.

public void checkForRequest(final ContentHandlerServer server)
{
 Invocation pendingRequest = server.getRequest(false);
 if (pendingRequest != null)
 {
 // Process this request immediately.
 }
 else
 {
 (new Thread()
 {
 public void run()
 {
 while (true)
 {
 Invocation incoming = server.getRequest(true);
 if (incoming != null)
 {
 // Process invocation here.
 }
 }
 }
 }).start();
 }
}

If a thread is blocking on getRequest(), another thread can call cancelGetRequest().
This forces the first thread to exit the method with a return value of null, even if it was
waiting until an Invocation became available.

CHAPI also offers a non-blocking callback method.
ContentHandlerServer.setListener() allows the handler app to register a listener that
will be asynchronously notified of any future available requests. Each
ContentHandlerServer can only support a single listener at a time. The registered
listener will receive all notifications until setListener() is called again with a value of
null. This system is useful when you want to handle all incoming requests as they
become available. The next example shows how to define and register a simple listener.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 290

private class PrintRequestListener implements RequestListener
{
 public void invocationRequestNotify(ContentHandlerServer queue)
 {
 Invocation incoming = queue.getRequest(true);
 // Process request here.
 }
}
public void registerForRequests(ContentHandlerServer server)
{
 server.setListener(new PrintRequestListener());
}

A handler might want to restrict access to only a particular set of invoking apps or
certain other handlers. ContentHandlerServer provides methods to check whether a
particular app ID is allowed access to this app, and to check all supported IDs. Access
checks are performed by searching for matching prefixes. For example, if I write a
handler that grants access to the ID "com.apress.king", then access is also granted to
"com.apress.king.mediagrabber" and "com.apress.king.imagestore". If no access IDs
are defined, all access is allowed. The next example shows how to verify whether a
particular incoming Invocation has appropriate access; if not, we print out debugging
information showing what does have access.

public void invocationRequestNotify(ContentHandlerServer queue)
{
 Invocation incoming = queue.getRequest(true);
 String source = incoming.getInvokingID();
 if (queue.isAccessAllowed(source))
 {
 // Process the request
 }
 else
 {
 int count = queue.accessAllowedCount();
 System.out.println("Only the following IDs are allowed:");
 for (int i = 0; i < count; ++i)
 {
 System.out.println(queue.getAccessAllowed(i));
 }
 }
}

When a handler has completed all processing, it should first update the Invocation
object it received with any return arguments or data, and then call
ContentHandlerServer.finish(). The completed Invocation should be provided, along
with a final status of OK, CANCELLED, or INITIATED. This method prompts CHAPI to
reserialize the Invocation and return it to the requesting app.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 291

Note: ContentHandlerServer extends from ContentHandler, so all ContentHandler
methods can be called on it as well. This helps a server app introspect itself to check what
capabilities it had declared.

Registry
The final and most complex major component in the CHAPI system is the Registry.
Registry provides many capabilities to both the client and the server app, including
registering handlers, searching for available handlers, and processing requests.

Client Use of Registry

The most important method is Registry.invoke(). This method accepts an Invocation
and dispatches it to an appropriate content handler. It can throw a host of errors,
including ContentHandlerException if no suitable handler is found; SecurityException if
this app is not allowed to access that content; IOException if the content provided in the
URL cannot be found, and so on. The method may take a relatively long time to
complete; for example, if only an http URL was provided in the Invocation, the Registry
will need to open a web connection to determine the content type before it can select an
appropriate handler.

This method returns true if the calling app needs to exit in order for the handler to start,
and false if it can continue running. All BlackBerry devices are good enough at multi-
tasking that false is always returned here; however, if you plan to port your app to non-
BlackBerry platforms in the future, you should check the return value and exit if
requested.

The Registry is also where client apps can query for ContentHandler objects and
otherwise query for available capabilities. Table 8-2 shows the available methods.

Table 8-2. Client-facing Registry Queries

Method name Return type Description

findHandler(Invocation
invocation)

ContentHandler[] Handlers that would be considered for
this Invocation

forAction(String action) ContentHandler[] All handlers that support this action

forID(String ID, boolean
exact)

ContentHandler The handler with the requested ID. If
“exact” is false, prefixes are allowed to be
returned; for example, if
"com.apress.king.mediagrabber" is
requested, the handler for
"com.apress.king" may be returned.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 292

Table 8-2. Client-facing Registry Queries (continued)

Method name Return type Description

forSuffix(String suffix) ContentHandler[] All handlers that support this suffix

forType(String type) ContentHandler[] All handlers that support this type

getActions() String[] All actions from all registered handlers

getIDs() String[] All IDs from all registered handlers

getSuffixes() String[] All suffixes registered by all handlers

getTypes() String[] All types registered by all handlers

Once an Invocation is initiated, the client is permitted to simply let it run. If it wishes to
learn the result, it can call Registry.setListener() and pass in a ResponseListener.
This object will be notified whenever an Invocation has completed, whether
successfully or with an error. It will receive notifications of all invocations until
setListener() is called again with null.

At any point, the client can call Registry.getResponse() to receive a completed
Invocation. Like ContentHandlerServer.getRequest(), you can pass true or false to this
method depending on whether you wish to wait until an Invocation is available or not.

A Registry instance can be obtained by calling the static method
Registry.getRegistry() and passing in the classname. The provided classname must
be the name of a class in the currently running package.

The next example shows a potential helper method that processes a file selection
request. It first checks the Registry to see whether a preferred handler is installed. If so,
it will specify that handler’s ID in the Invocation to ensure that it is used; otherwise, it will
accept whatever default the Registry chooses. The app registers a listener that will be
notified when the request succeeds or fails. In a real app, it would continue processing
from this point, perhaps by reading in data from the selected file.

private void chooseHandler(Invocation toSend) throws ContentHandlerException,
 IOException
{
 Registry registry = Registry.getRegistry(getClass().getName());
 ContentHandler[] candidates = registry.findHandler(toSend);
 for (int i = 0; i < candidates.length; ++i)
 {
 String id = candidates[i].getID();
 if (id.startsWith("com.apress.king"))
 {
 toSend.setID(id);
 break;
 }
 }

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 293

 registry.setListener(new FileSelectionListener());
 registry.invoke(toSend);
}
private class FileSelectionListener implements ResponseListener
{
 public void invocationResponseNotify(Registry registry)
 {
 Invocation response = registry.getResponse(true);
 if (response.getStatus() == Invocation.ERROR)
 {
 System.err.println("Invocation failed");
 }
 else if (response.getStatus() == Invocation.OK)
 {
 String fileName = response.getArgs()[0];
 System.out.println("Selected file " + fileName);
 }
 }
}

Server Use of Registry

A handler app has access to all the same Registry methods that a client has. It will
generally ignore these, except in the special case of request chaining. If a handler needs
to invoke another handler in order to complete an initial request, it will behave like a
client to configure an Invocation and optionally select a specific ContentHandler ID. The
server will then call a special version of invoke() that takes two Invocation arguments.
The first is the new Invocation to be dispatched forward; the second is the original
Invocation, which will be set to a status of HOLD until the new Invocation has
completed. Alternately, if a handler decides that it doesn’t want to handle the provided
Invocation, it can call reinvoke(). This tells the Registry to pick another handler to
process the request.

In most cases, however, server apps will ignore much of the Registry, and focus on a
few particular methods. The static method Registry.getServer() returns an appropriate
ContentHandlerServer for the caller. The handler must have previously registered with
CHAPI, and the provided classname must be in the current application package.

Finally, the Registry offers a pair of methods to dynamically register and unregister a
handler. Registration includes all of the various pieces of information previously listed for
a ContentHandler.

 A classname: this must be in the current application package and a
main application entry point, such as a MIDlet for a MIDP application,
a UiApplication for CLDC UI, or a library class that defines libMain().

 An array of String types, such as "audio/amr".

 An array of String suffixes, such as ".amr".

 An array of String actions, such as "play" or ContentHandler.
ACTION_OPEN.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 294

 An array of ActionNameMap objects for locale-specific action name
display.

 An application ID, such as "com.apress.king.imagestore".

 An array of Strings containing application IDs that are allowed access
to this handler, such as "com.apress.king.mediagrabber".

Other than the classname, all arguments are optional; you may pass null for any of them,
or an empty array for arrays. A class can choose to register the type
ContentHandler.UNIVERSAL_TYPE, which indicates that it can consume any type of
content.

If the ID is not specified, the Registry must provide a unique ID that is guaranteed not to
collide with any other IDs. A MIDlet will receive an ID such as "Chris_King-
Image_Provider-com.apress.king.imageprovider.ImageProvider"; a BlackBerry CLDC
handler will receive an ID such as "null-null-ImageProvider"—not quite as useful, but,
if you aren’t specifying an ID, you probably don’t care what it’s called.

Once an ID has been registered, no other app can register with it. Furthermore, no IDs
can be registered that match a prefix of that ID. For example, if you register
"com.example.food.lunch", no one can register "com.example.food" or
"com.example.food.lunch.pizza". Such attempts will fail with a
ContentHandlerException.

After an app has been registered, the registration continues to be valid even after the
app exits. If an Invocation is issued for the app, it will automatically be started by the
BlackBerry if it is not already running. Therefore, apps that can register for content
requests should check their ContentHandlerServer soon after starting up to see whether
they were started specifically to handle a request.

The next example demonstrates a potential server use of the Registry class. This will
attempt to register an application called SigningApp with CHAPI. If this succeeds and no
exceptions are thrown, it then retrieves its own ContentHandlerServer, and spends the
rest of this thread’s life servicing incoming requests. Note that most of the parameters
passed to the register() method are null; very few handlers will need to specify all
parameters .

private void register() throws ContentHandlerException, ClassNotFoundException
{
 String className = SigningApp.class.getName();
 Registry registry = Registry.getRegistry(className);
 String[] types = new String[]{"text/plain", "text/html"};
 String[] actions = new String[]{ContentHandler.ACTION_SAVE, "sign"};
 registry.register(className, types, null, actions, null, null, null);
 ContentHandlerServer handler = registry.getServer(className);
 Invocation next = null;
 do
 {
 next = handler.getRequest(true);
 // Process next request here
 } while (next != null);
}

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 295

Static Registration
The previous example carries a certain risk with it: what happens if this code is never
executed? If the user installs but doesn’t launch the signing app, the next time someone
tries to issue a CHAPI request to sign text/plain, nothing will happen. Similarly, if an
application wants to register with a particular ID but finds that another application has
registered first, it may be installed but in an unusable state.

Static registration solves both of these problems. When an application statically
registers, it reserves its place in the CHAPI registry at install time, not when its code is
executed. BlackBerry will refuse to install applications that statically register for
unavailable IDs. Therefore, you can be guaranteed that, if your app is installed on a
device, it has been properly registered.

Caution: Static registration only applies if the user is installing the application over the air
(OTA). It will not take effect when directly installed to a device or simulator, which is likely how
you will be debugging. You can combine static and dynamic registration to ensure you are
registered no matter how the app is loaded. However, it is up to you to keep both registration
methods in sync if you make any changes.

You statically register an app by modifying the JAD file, which will be located in the
same folder as your .project, .alx, and .cod files. I find it’s easiest to modify this file
using a text editor outside Eclipse. Static registration takes the form of a series of lines
inserted into the JAD that duplicate the information you would pass to the register()
method. You can register multiple handlers in the same JAD file by providing each with a
unique number; the numbers start at 1 and go up as high as you like.

You can list up to four types of information for each handler you wish to register.

 MicroEdition-Handler-<n>: This is the only required registration entry.
It defines the entry point and capabilities of this handler, and requires
five additional pieces of information.

 The name of the class that should be created to handle incoming
requests.

 Content types handled. This can be empty if none is provided,
"*" to provide all, or a series of types separated by spaces.

 Suffixes handled, using the same formatting rules as for content
types.

 Actions performed, using the same formatting rules as for
content types.

 Locale displays supported. Note that the handler will be available
in all locales; this just advertises whether locale-specific action
names are provided.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 296

 MicroEdition-Handler-<n>-ID: The unique ID used to identify this
content handler. If specified, the app can only be installed if no other
app has previously registered this ID or a prefix or suffix of it. If not
specified, the BlackBerry will generate a unique ID, guaranteed not to
clash.

 MicroEdition-Handler-<n>-Access: A space-separated list of all
application and handler IDs that are permitted to access this handler. If
not specified, all are permitted.

 MicroEdition-Handler-<n>-<locale>: Each locale specified in
MicroEdition-Handler-<n> should have a corresponding locale entry.
Each locale entry should contain one displayable text for every action
defined. Texts should be separated by commas.

A sample static registration is shown below. This application provides two content
handlers at two separate entry points. The first one is most complex: it can save any of
several image formats, but only accepts requests from two package IDs. It supports
displaying in English or German. The second handler is much simpler: it will edit the
image store with a watermark provided in a plain text file. This second handler can be
invoked by anyone, and apparently should not be presented to the user because no
displayable text is provided.

MicroEdition-Handler-1: com.apress.king.imagestore.ImageStore, image/png
 image/jpeg image/bmp, .png .jpg .jpeg .bmp, save, en-US de
MicroEdition-Handler-1-ID: com.apress.king.imagestore
MicroEdition-Handler-1-Access: com.apress.king com.apress.rischpater
MicroEdition-Handler-1-en-US: Save Picture
MicroEdition-Handler-1-de: Bild Speichern
MicroEdition-Handler-2: com.apress.king.imagestore.Watermarker, text/plain, ,
 edit,

In most cases, you should statically register your application. That said, dynamic
registration is sometimes easier during development, especially if you expect to
frequently modify your handler settings.

Installing Handlers
In the course of issuing a request, you may realize that no handlers are available to
service the request, but, so long as you know where at least one handler is located on
the Internet, you can bring it down to the device. Simply create a fresh Invocation with
the URL of the JAD file to install, and then execute the invocation, as in the following
example.

Invocation install = new Invocation("http://example.com/ImageStore.jad");
Registry.getRegistry(getClass().getName()).invoke(install);

Even though you initiate the install, the user will still need to confirm it. Figure 8-5 shows
the prompt screen, which is the same form that is used when installing an application
from the browser.

Download at WoweBook.Com

http://example.com/ImageStore.jad

CHAPTER 8: Digging in Deep 297

Figure 8-5. Installing a new content handler via CHAPI

Built-in Handlers
Every BlackBerry device with software version 4.3.0 or higher will have at least one
content handler available. BlackBerry provides a built-in content handler that can open a
huge variety of media types. The specific set will vary depending on the device and
software version, but it generally can handle more than 50 content types and nearly 100
content suffixes. It includes support for all types of media, pictures, and even HTML
documents.

To directly reference this built-in handler, you can use the ID defined in
BlackBerryContentHandler.ID_MEDIA_CONTENT_HANDLER. By providing this ID with no
other parameters, the Invocation will open the native Media application.

Starting with device software version 4.7.0, you can also use one of the following
arguments to control the initial landing screen when the Invocation is handled. All are
defined in BlackBerryContentHandler.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 298

 MEDIA_ARGUMENT_VIEW_MEDIA: Opens top-level media screen.

 MEDIA_ARGUMENT_VIEW_MUSIC: View music library.

 MEDIA_ARGUMENT_VIEW_PICTURES: View the photo library.

 MEDIA_ARGUMENT_VIEW_PLAYLISTS: Display the set of playlists.

 MEDIA_ARGUMENT_VIEW_RINGTONES: View all installed ringtones.

 MEDIA_ARGUMENT_VIEW_VIDEOS: View video library.

 MEDIA_ARGUMENT_VIEW_VOICENOTES: View voice notes.

The next example will cause the voice notes application to display.

Invocation media = new Invocation();
media.setID(BlackBerryContentHandler.ID_MEDIA_CONTENT_HANDLER);
media.setArgs(new String[]{BlackBerryContentHandler.
MEDIA_ARGUMENT_VIEW_VOICENOTES});
Registry.getRegistry(getClass().getName()).invoke(media);

Iconic
Up until now, no matter how cool MediaGrabber has become, the icon still looks dull.
The default icon varies depending on your BlackBerry model, but generally looks like a
simple blank terminal. The icon is the first thing any user will see of your app, and
making a good first impression is important—you should pick something that makes
people want to check out your app.

Design Notes
What makes a good icon is a subjective decision, but you should try to think of
something that fulfills most of the following criteria.

 Legible: People should instantly recognize the icon.

 Relevant: A racecar is a great icon for a racing game, not so great for a
word-processing app.

 Attractive: BlackBerry devices tend to have high resolutions, so your
icon should be as detailed as other icons on the device.

 Transparent: In almost all cases, you will want to use a transparent
background for a nicer look.

Ultimately, of course, the decision is yours. If you are a great artist, or know someone
who is, try coming up with a variety of designs and see which one looks the best.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 299

Technical Notes
For the best look, your icon size should exactly match the maximum icon size for that
device. Unfortunately, icon size is dependent on the user’s current theme, so, even if
you know what device you are installed on, there may be multiple available sizes. Table
8-3 shows the supported icon sizes for the default themes on some of the most popular
BlackBerry models.

Table 8-3. Default Icon Sizes

Device Model Icon Width Icon Height

7100 60 55

Pearl 8100 60 55

Pearl Flip 46 46

Curve 8300 53 48

8350i 52 52

Curve 8520 52 52

8700 53 48

8800 53 48

Curve 8900 80 80

Bold 80 80

Storm 73 73

Tour 9630 80 80

Providing an icon larger than the theme’s supported size will have different effects
depending on the device software version. If the software is older than 4.2, the icon will
be cropped—that is, only the upper left part of the icon will display. On higher software
versions, the image will be scaled down to fit, without maintaining the aspect ratio. For
example, on a Curve 8300 with software version 4.5, if your provided icon is 106 pixels
wide by 48 pixels tall, the icon will be horizontally squashed to make it fit within the
53×48 size. On the other hand, if you provide an icon whose size is smaller than the
maximum, it will be left alone on device software versions before 4.6. For example, if you
provide a 25×25 icon for an 8800 running software version 4.5, it will display as 25×25
pixels. On software versions 4.6 or later, if the provided icon is less than 25% smaller
than the preferred size, it will be left as is; otherwise, it will be scaled to fit. So, on the
Bold, a 75×75 icon will display as 75×75 pixels, while a 40×40 icon will be scaled up to
80×80.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 300

Why should you care? Frankly, because scaled icons generally look really bad. There
isn’t a lot of detail available in an icon anyway, and any sort of distortion can quickly
make an icon unattractive or illegible. This isn’t a large problem for a personal
application, but can have a serious impact on the perceived quality of a commercial
app.

Icons can be provided in GIF, JPEG, or PNG format; PNG is usually the best choice.
Color icons may be used for monochrome BlackBerry devices; however, monochrome
icons may look better than those converted from color by the BlackBerry. Icons have a
limited file size; if they exceed the limit, your application will fail to build.

Caution: Excessive icon sizes are one of several cases where a deep error may be reported
within the BlackBerry Builder Console but does not stop the deployment of the application. If
your changes don’t seem to be available in the simulator or the device, carefully check the
builder output to make sure that everything is building properly.

Providing an Icon
In the simplest case, you will just provide a basic default icon to display on the home
screen or the Downloads/Applications folder. Follow these steps to assign an icon.

1. Right-click the project name in Eclipse and select Properties.

2. Open BlackBerry Project Properties.

3. Select the Resources tab.

4. Click Add under the Icon files section.

5. Navigate to the image you wish to add and select it.

Note: Even though you can add multiple icons here, only the first one will be used for your
application.

Rollover Icons
You may notice that some icons change their appearance when you highlight them. This
is especially pronounced on devices like the BlackBerry Curve: folders pop open, notes
spring out, and browsers change colors. Why should only native apps get this cool
effect? Fortunately, you can add your own rollover icon.

This process is easiest if you are using device software version 4.7 or later. Simply
follow the instructions in “Providing an Icon” above, but update Focus icon files instead
of Icon files.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 301

Caution: This option displays for all software versions, but will only be used by versions 4.7 or
later. It has no effect on earlier versions.

For software versions 4.1 through 4.6, you can use the method
HomeScreen.setRolloverIcon(). This comes in three flavors: one to set the current
application’s icon, another to set the icon for another entry point in the same
application, and a final one (added in software version 4.7) that lets you set the rollover
icon for any application. All three take a Bitmap that provides the rollover image to
display. The actual code, shown below, is quite simple.

Bitmap icon = Bitmap.getBitmapResource("rollover.png");
HomeScreen.setRolloverIcon(icon);

However, there’s a catch: the code needs to execute first. By the time your app
executes, the user must have already rolled over the icon, which rather defeats the point
of a rollover icon.

You can solve this problem by setting your application to automatically run at start-up.
You will then have two application entry points: one that automatically executes on
start-up with no arguments, and another that executes with an argument when the user
selects your icon. Follow these steps to set up your project appropriately.

1. Right-click your main project (such as MediaGrabber) in Eclipse and
select Properties.

2. Open BlackBerry Project Properties.

3. Select the Application tab.

4. Check “Auto-run on startup” (to make the app run on boot) and “System
module” (to keep this entry point from displaying in the main menu), and
then click OK.

5. In Eclipse, click File, New, then Other. . .

6. Select BlackBerry Project and click Next.

7. Provide an application name (such as “MediaGrabberAlternate”) and
click Finish.

8. Open the new project’s BlackBerry Project Properties and select the
Application tab.

9. Change the Project type to “Alternate CLDC Application Entry Point”.

10. If your workspace contains multiple BlackBerry projects, select the main
project from the drop-down menu under the Project type.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 302

11. Provide a simple but unique string in the box labeled “Argument passed
to static public void main(String[] args)”, such as “launch”.

12. Leave the rest of the options at their default and press OK to exit.

Now your application’s main method will be called twice: once when the phone boots,
and again when the user selects it from the main menu. The following code shows how
to set a rollover icon for a crossword puzzle app. Note that we specify an index of 1; this
is because the default of index 0 refers to the auto-start entry point, which no longer has
an icon to display.

public static void main(String[] args)
{
 if (args != null && args.length > 0 && args[0].equals("launch"))
 {
 CrosswordPuzzler puzzler = new CrosswordPuzzler();
 puzzler.enterEventDispatcher();
 }
 else
 {
 Bitmap rollover = Bitmap.getBitmapResource("explodingPuzzle.png");
 HomeScreen.setRolloverIcon(rollover, 1);
 }
}

Caution: Device software version 4.1 contains a bug that can cause an IllegalArgumentException
when calling setRolloverIcon(). If you need to support this version, you can work around
the problem by waiting until the device has finished starting up (by checking
ApplicationManager.inStartup()) and only setting the icon once it is complete.

You must define a main application icon before you can set a rollover icon; otherwise
the default icons will continue to show for both the focused and the nonfocused states.

Changing Icons
Sooner or later, you will need to wrestle with a troubling issue: how do you support
multiple versions of your app that run on different devices? As you’ll see, there are two
major schools of thought on this: some people prefer to write a single version of the app
that is capable of running on any BlackBerry, while others prefer to create a slightly
different version of it for each device. Assume for the moment that you follow the first
path. You would want to have a single application that displays the best icon, no matter
whether it is running on a Curve, a Pearl, or a Bold.

Even if you create a custom version of your application for each of these devices, you
still need to deal with the situation where the user has selected a new theme that has a
different icon size from the default. Ideally, you would like to update your icon to
minimize the effects of scaling.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 303

The HomeScreen class offers additional methods that help with this problem.
updateIcon() behaves like setRolloverIcon(), but it updates the main nonselected
version of your icon instead of the rollover version. Additionally, etPreferredIconWidth()
and getPreferredIconHeight() inform you of the best sizes for the current theme. You
can even call getActiveThemeName() if you would like to show different icons depending
on the selected theme—for example, you might prefer to use different colors to achieve
the best contrast with the background.

The following code examines the current preferred icon width, then selects the best
matching icon based on that. This example could be expanded to deal with any
supported size. As with the previous rollover example, it would be best to place this
within the application’s main function.

Bitmap icon = null;
Bitmap rollover = null;
int width = HomeScreen.getPreferredIconWidth();
if (width <= 46)
{
 icon = Bitmap.getBitmapResource("icon_46×46");
 rollover = Bitmap.getBitmapResource("rollover_46×46");
}
else if (width <= 53)
{
 icon = Bitmap.getBitmapResource("icon_53×48");
 rollover = Bitmap.getBitmapResource("rollover_53×48");
}
else if (width <= 80)
{
 icon = Bitmap.getBitmapResource("icon_80×80");
 rollover = Bitmap.getBitmapResource("rollover_80×80");
}
HomeScreen.setRolloverIcon(rollover);
HomeScreen.updateIcon(icon);

Setting Icon Position
BlackBerry devices have a pretty major shortcoming: they do not provide any real
organization for installed apps. Everything gets dumped onto the Home screen or a
particular folder, without separation between Games, Tools, Productivity, etc. There are
currently no settings to change this. However, you can control the relative position of an
icon by following these steps.

1. Right-click your main project (such as MediaGrabber) in Eclipse and
select Properties.

2. Open BlackBerry Project Properties.

3. Select the Application tab.

4. Enter a value for the “Home screen position” box.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 304

Value 1 is the highest position in the list, 255 is the lowest, and all numbers in between
are placed in descending order; 0 indicates no particular preference. In practice, most
developers set 1 here in an attempt to increase the visibility of their app; less often, they
will pick 255 to avoid having it lost in the middle.

Users can always manually adjust the position of an icon. When this happens, it
permanently overrides the application’s requested position.

Icon positions are most likely to be useful if you wish to group a suite of applications
together. For example, if you are releasing a set of office applications (document editing,
spreadsheets, presentations, etc.), you might assign positions 126, 127, and 128. This
should ensure that, without any user intervention, all of your applications will be grouped
together on the screen.

Native Menus
You already know how to define a custom menu for your application. What’s really cool,
though, is adding a new item to an existing BlackBerry menu. Virtually every menu on
the device can be customized, including the browser, phone, and address book menus.

Defining Native Menu Options
Instead of a standard MenuItem, define these native menu entries with the special
ApplicationMenuItem class. To do this, you must provide three pieces of information.

 In the constructor, an integer value indicating where this menu item
should be located. As with the MenuItem class, lower values indicate
higher placement; unlike MenuItem, there are not separate numbers for
ordinal and priority.

 A toString() method that provides text to display for this menu item.
If you wish to internationalize this string, you must do so yourself.

 A run() method that will execute when the user selects this menu
item. Depending on the type of menu, it may receive an Object
describing the context. For example, a TextMessage would be provided
from the SMS editor’s menu. You can do whatever you want within the
run() method, whether it’s starting another application, doing file or
network operations, or displaying simple UI.

The next example shows a custom menu item that could be added to the Calendar
application. When you create, edit, or view a meeting within the native Calendar, you
can select from the menu to order pizza for that meeting. This example sets a ToDo
reminder for yourself; it could also send an email request to your caterer, or start up the
phone to call your favorite delivery place.

private class PizzaMenuItem extends ApplicationMenuItem
{
 public PizzaMenuItem()

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 305

 {
 // Pizza is the most important thing.
 super(0);
 }
 public Object run(Object context)
 {
 if (context == null || !(context instanceof Event))
 return null;
 try
 {
 Event event = (Event) context;
 if (event.countValues(Event.SUMMARY) > 0)
 {
 String name = event.getString(Event.SUMMARY, 0);
 ToDoList todos = (ToDoList) PIM.getInstance().openPIMList(
 PIM.TODO_LIST, PIM.WRITE_ONLY);
 ToDo task = todos.createToDo();
 task.addString(ToDo.SUMMARY, PIMItem.ATTR_NONE,
 "Order pizza for " + name);
 task.commit();
 Dialog.alert("Pizza Reminder Created");
 return null;
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 Dialog.alert("Couldn't create pizza reminder");
 return null;
 }
 public String toString()
 {
 return "Order Pizza";
 }
}

Inserting into the Native Menu
BlackBerry offers an almost absurd number of menus that can be modified. Table 8-4 shows
everything that is supported, along with the object that is provided as a context when
the item executes. All names are defined in the ApplicationMenuItemRepository class.

Table 8-4. Native Application Menu Items

Name Displays In Context Parameter Type

MENUITEM_ADDRESSBOOK_LIST Address book in list mode Contact

MENUITEM_ADDRESSCARD_EDIT Open address book contact in edit mode Contact

MENUITEM_ADDRESSCARD_VIEW Open address book contact in view mode Contact

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 306

Table 8-4. Native Application Menu Items (continued)

Name Displays In Context Parameter Type

MENUITEM_ALARM Alarm app N/A

MENUITEM_BROWSER Browser N/A

MENUITEM_CALENDAR Calendar in view mode Event

MENUITEM_CALENDAR_EVENT Calendar event in view or
edit modes

Event

MENUITEM_CAMERA_PREVIEW Camera preview String (contains image file
location)

MENUITEM_EMAIL_EDIT Email open in edit mode Message

MENUITEM_EMAIL_VIEW Email open in view mode Message

MENUITEM_FILE_EXPLORER File explorer running String (contains file location)

MENUITEM_FILE_EXPLORER_BROWSE File explorer open in
browse mode

String (contains file location)

MENUITEM_FILE_EXPLORER_ITEM Open item in file explorer String (contains file location)

MENUITEM_GROUPADDRESS_EDIT Group address entry in
Contacts app open for edit

N/A

MENUITEM_GROUPADDRESS_VIEW Group address entry in
Contacts app open for
viewing

N/A

MENUITEM_MAPS Maps app MapView

MENUITEM_MEMO_EDIT Individual memo open for
editing

BlackBerryMemo

MENUITEM_MEMO_LIST List of memos BlackBerryMemo

MENUITEM_MEMO_VIEW Individual memo open for
viewing

BlackBerryMemo

MENUITEM_MESSAGE_LIST List of messages Message, TextMessage, or
MultipartMessage

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 307

Table 8-4. Native Application Menu Items (continued)

Name Displays In Context Parameter Type

MENUITEM_MMS_EDIT MMS open for edit MultipartMessage

MENUITEM_MMS_VIEW MMS open for viewing MultipartMessage

MENUITEM_MUSIC_SERVICE_ITEM Music section of Media app N/A

MENUITEM_PHONE Phone (dialer) app N/A

MENUITEM_PHONELOG_VIEW Call log PhoneLog

MENUITEM_SEARCH Search window N/A

MENUITEM_SMS_EDIT SMS open for edit TextMessage

MENUITEM_SMS_VIEW SMS open for view TextMessage

MENUITEM_SYSTEM Any menu Parameter type for this
particular menu

MENUITEM_TASK_EDIT Individual task open for
editing

ToDo

MENUITEM_TASK_LIST List of tasks ToDo

MENUITEM_VIDEO_RECORDER Video recorder String (contains file location)

MENUITEM_VIDEO_SERVICE_ITEM Video section of Media app N/A

You may optionally add your app’s ApplicationDescriptor when adding a custom menu
item. This will cause your app to start when the item is selected. The filesystem and
maps items require you to provide the ApplicationDescriptor. In the case of filesystem
menu items, you can optionally pass a String context item that defines the MIME type
that this menu item handles. For example, if you provide "text/plain", your menu will
display if a .txt file is selected, but not for any other type of file.

Use ApplicationMenuItemRepository.addMenuItem() to insert new items into a native
menu, and ApplicationMenuItemRepository.removeMenuItem() to remove a previously
added item. The following snippet adds our previously defined pizza menu to the
Calendar app.

ApplicationMenuItemRepository repo =
 ApplicationMenuItemRepository.getInstance();
repo.addMenuItem(ApplicationMenuItemRepository.MENUITEM_CALENDAR_EVENT,
 new PizzaMenuItem());

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 308

As you learned when looking at rollover icons, the main problem with this system is that
you cannot insert this code into a menu until your app executes, whereas what you
really want is to add the menu item before it executes. As with icons, the solution is to
add the custom menu items within an auto-start application or library so you have a
chance to run your code when the device powers on.

App: Enter from Anywhere
Up until now, every time you have run MediaGrabber you have needed to locate the icon
first and select it. We will use the tools discussed in this chapter to enable launching
MediaGrabber from native device menus or any third-party application. We’ll also take
this opportunity to add some custom icons for the app.

Adding CHAPI Handling
MediaGrabber mainly focuses on capturing and sending media. For now, let us look at
exposing the sending functions to other applications.

Static Registration
Find the MediaGrabber.jad file, which will be located in the same directory as your
.project file. Open it with your preferred text editor and insert the following lines
anywhere in the file:

MicroEdition-Handler-1: com.apress.king.mediagrabber.MediaGrabber, image/png
 image/jpeg audio/amr audio/pcm audio/mpeg, .png .jpg .jpeg .amr .pcm .mp3,
 send, en
MicroEdition-Handler-1-ID: com.apress.king.mediagrabber
MicroEdition-Handler-1-en: Send Encrypted Via MediaGrabber

The first line says which class should be started when a request is received, lists the
MIME types and suffixes that it can handle, describes the action it provides, and
declares support for English language display. The second line provides a unique ID so
other apps can specify whether they wish to invoke us directly. The final line shows a
human-readable description of what our action does.

Note: The JAD file automatically gets rebuilt every time you modify the project. Fortunately, the
builder is smart enough to leave your modifications in place even when it changes other things.
If you are using source control, you probably do want to check in the JAD file if you make
modifications, but be prepared for frequent changes.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 309

Listening for and Handling Requests
We use CHAPI to add new access to MediaGrabber, not to modify its behavior.
Therefore, we only need to change MediaGrabber.java, the main application entry point.
We will do the following:

 Add dynamic registration so we can use CHAPI when debugging in the
simulator or cable-loading MediaGrabber.

 Add an alternate entry point to ensure that we register on app boot.

 As long as we’re creating an alternate entry point, use it to set a
rollover icon as well.

 When we receive a request, grab information about the file to send
from the Invocation, and then move directly to the SendingScreen,
skipping past the standard media capture prompts.

To get started, follow the instructions in the Rollover Icons section to change
MediaGrabber into an auto-start system application and add a new alternate entry point
called MediaGrabberAlternate. Find an icon that you like and set it as the application
icon file in MediaGrabberAlternate. Find another icon, preferably of the same size and
quality, and add it to MediaGrabber’s "src" folder.

Now you are ready to update the main MediaGrabber file. Listing 8-1 contains the new
file. Substitute your rollover icon name for rollover.png, or remove this line if you don’t
wish to use a rollover.

Listing 8-1. Adding CHAPI and Rollover Icon Support to MediaGrabber

package com.apress.king.mediagrabber;

import java.io.InputStream;

import javax.microedition.content.*;
import javax.microedition.io.Connector;
import javax.microedition.io.file.FileConnection;
import javax.microedition.pim.Contact;

import net.rim.blackberry.api.homescreen.HomeScreen;
import net.rim.blackberry.api.menuitem.*;
import net.rim.blackberry.api.pdap.BlackBerryContact;
import net.rim.device.api.system.Bitmap;
import net.rim.device.api.system.RuntimeStore;
import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.Dialog;

public class MediaGrabber extends UiApplication implements RequestListener
{
 private Invocation pending;
 private ContentHandlerServer server;

 private static final String CHAPI_ID = "com.apress.king.mediagrabber";
 private static final String[] MIME_TYPES = new String[]
 { "image/png", "image/jpeg", "audio/amr-wb", "audio/amr", "audio/pcm",

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 310

 "audio/mpeg" };
 private static final String[] SUFFIXES = new String[]
 { ".png", ".jpg", ".jpeg", ".amr", ".pcm", ".mp3" };

 public MediaGrabber()
 {
 String className = MediaGrabber.class.getName();
 try
 {
 verifyRegistration();
 server = Registry.getServer(className);
 pending = server.getRequest(false);
 server.setListener(this);
 }
 catch (Exception e)
 {
 System.err.println("Error checking CHAPI: " + e.getMessage());
 e.printStackTrace();
 }
 }

 public static void main(String[] args)
 {
 MediaGrabber grabber = new MediaGrabber();
 if (args != null && args.length > 0 && args[0].equals("launch"))
 {
 grabber.pushScreen(new ChoicesScreen());
 grabber.enterEventDispatcher();
 }
 else if (grabber.pending != null)
 {
 // Started via CHAPI. Show our UI.
 grabber.processRequest();
 grabber.requestForeground();
 grabber.enterEventDispatcher();
 }
 else
 {
 // Startup execution.
 try
 {
 Bitmap rollover = Bitmap.getBitmapResource("rollover.png");
 HomeScreen.setRolloverIcon(rollover, 1);
 }
 catch (Throwable t)
 {
 t.printStackTrace();
 }
 }
 }

 private void verifyRegistration()
 {
 String className = MediaGrabber.class.getName();
 Registry registry = Registry.getRegistry(className);

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 311

 ContentHandler registered = registry.forID(CHAPI_ID, true);
 if (registered != null)
 {
 return;
 }
 // Wasn't registered before, so do it now.
 String[] actions = new String[]
 { ContentHandler.ACTION_SEND };
 String[] actionNames = new String[]
 { "Send Encrypted Via MediaGrabber" };
 ActionNameMap[] maps = new ActionNameMap[]
 { new ActionNameMap(actions, actionNames, "en") };
 try
 {
 registry.register(className, MIME_TYPES, SUFFIXES, actions, maps,
 CHAPI_ID, null);
 }
 catch (Exception e)
 {
 System.err.println("Could not register for " + CHAPI_ID + ": "
 + e.getMessage());
 e.printStackTrace();
 }
 }

 private void processRequest()
 {
 FileConnection file = null;
 InputStream is = null;
 try
 {
 String filename = null;
 String type = null;
 synchronized (this)
 {
 filename = pending.getURL();
 type = pending.getType();
 }
 if (filename != null && type != null)
 {
 file = (FileConnection) Connector.open(filename);
 is = file.openInputStream();
 byte[] data = new byte[is.available()];
 is.read(data);
 SendingScreen sending = new SendingScreen(type, filename
 .substring(filename.lastIndexOf('/') + 1),
 "Sent to you by CHAPI", data, true);
 pushScreen(sending);
 }
 else
 {
 pushScreen(new ChoicesScreen());
 }
 server.finish(pending, Invocation.OK);
 }

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 312

 catch (Exception e)
 {
 System.out.println("Could not send file: " + e.getMessage());
 e.printStackTrace();
 }
 finally
 {
 try
 {
 if (file != null)
 file.close();
 if (is != null)
 is.close();
 }
 catch (Exception e)
 {
 }
 }
 }

 public synchronized void invocationRequestNotify(
 ContentHandlerServer handler)
 {
 pending = handler.getRequest(false);
 if (pending != null)
 {
 processRequest();
 }
 }
}

As you can see, there are now three situations in which the MediaGrabber may be
launched. The standard case is when the user selects it directly, which you can
recognize by the "launch" parameter. The second case is when it is launched via
CHAPI, in which case a CHAPI Invocation will be waiting when you start up. Here, the
application starts, but does so in the already-configured SendingScreen if provided with
a file to send. Finally, it can be started on device boot, in which case you simply register
for CHAPI, set the rollover icon, and then exit. You need only register for CHAPI if you
don’t already have a CHAPI entry.

Note that you do register for incoming CHAPI messages. This allows the application to
deal with requests if it is already running when a new request comes in. This would
occur if, for example, the user backgrounded this app and then issued a request from
another app. Some basic synchronization is used to make sure that the Invocation
doesn’t change while you are reading values from it.

Running with CHAPI
Believe it or not, just by making these changes within MediaGrabber, you may already
have modified the capabilities of native applications. If you have access to a simulator or
device with software version 4.7 or later, try taking a picture or navigating to a media file.
Press the Menu key. Scroll around. There’s the new command! RIM has rewritten most

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 313

of its native apps to check for CHAPI registration and add all matches it finds. Figure 8-6
shows what this looks like on the Storm.

Figure 8-6. Native apps exposing third-party CHAPI apps

Tip: The simplest way to explore the filesystem is to open the Media app, press the BlackBerry
Menu key, and then select Explore.

Once you select the link, MediaGrabber will launch into the sending screen, where you
can enter a recipient and send as normal.

More Native Menu Integration
On older device software versions, you don’t automatically see CHAPI items listed, but
you can still add your own items. You are not restricted to CHAPI operations, either: you
can run any sort of arbitrary code that you like.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 314

To make something useful for both older and newer phones, add a new option to the
Address Book app labeled “Verify Media Shared.” This will check the contact to see if it
has previously received any media from the MediaGrabber app. If not, it will offer to
open MediaGrabber in its normal mode to send some media. Listing 8-2 shows the
complete menu option class, which can be included within MediaGrabber as an inner
class.

Listing 8-2. A Custom Menu Item to Display in the Contacts Menu

private static class CheckContactMenuItem extends ApplicationMenuItem
{
 private Registry registry;

 public CheckContactMenuItem()
 {
 super(0);
 registry = Registry.getRegistry(getClass().getName());
 }

 public Object run(Object context)
 {
 if (context == null || !(context instanceof Contact))
 return null;
 try
 {
 Contact contact = (Contact) context;
 if (contact.countValues(BlackBerryContact.USER4) > 0)
 {
 // We've sent them media before.
 Dialog.inform("You have shared media with them.");
 }
 else
 {
 // Give a chance to select some media.
 int choice = Dialog.ask(Dialog.D_YES_NO,
 "No sharing yet. Would you like to send media?");
 if (choice == Dialog.YES)
 {
 Invocation request = new Invocation();
 request.setID(CHAPI_ID);
 registry.invoke(request);
 }
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 return null;
 }

 public String toString()
 {

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 315

 return "Verify Media Shared";
 }
}

The logical place to add a custom menu item is in the same startup code that we
created for the rollover icon. However, the BlackBerry will occasionally start
MediaGrabber even after boot, which could result in the same menu item being added
multiple times. To guard against this situation, we use the RuntimeStore to check if the
item has previously been added to the native menu, and only insert it if it has not. The
device clears out the RuntimeStore every time the device reboots, which is also when it
removes all custom menu items. The following code can be inserted below the rollover
icon assignment in order to register the custom menu item.

RuntimeStore store = RuntimeStore.getRuntimeStore();
long menuItemID = 0×65fad834642a5345L;
if (store.get(menuItemID) == null)
{
 CheckContactMenuItem item = new CheckContactMenuItem();
 ApplicationMenuItemRepository repo =
 ApplicationMenuItemRepository.getInstance();
 repo.addMenuItem(ApplicationMenuItemRepository.
 MENUITEM_ADDRESSBOOK_LIST, item);
 store.put(menuItemID, item);
}

The next time you run the app, you will see the “Verify Media Shared” option within the
address book app. Selecting this item will show the appropriate dialog, and allow you to
enter the main MediaGrabber screen if you haven’t previously shared media.

WANT MORE?

CHAPI offers plenty of possibilities, both as a producer and as a consumer. Consider these options to
further enhance MediaGrabber’s inter-process cooperation.

 Create multiple entry points into MediaGrabber, such as one for sending unencrypted
files.

 Experiment with adding support for multiple languages. Try switching the active
language on your device and see if the menu item labels change.

 If using a recent device, use CHAPI to call out from MediaGrabber into other native
applications using the BlackBerryContentHandler arguments.

 Create a new, stand-alone application in a new workspace that uses CHAPI to start
MediaGrabber. For example, it could download a media file from the Internet, and then
use MediaGrabber to send it to your friends.

If you know someone else who is learning BlackBerry development, try splitting these tasks between you.
It is great practice to create and expose APIs to other developers, and a more realistic look at how real
applications are designed, developed, released, and used.

Download at WoweBook.Com

CHAPTER 8: Digging in Deep 316

Excelsior
When two applications share responsibilities and features, the result is more than the
sum of its parts. Imagine a world where you couldn’t print images you found on the
Internet, or where you couldn’t attach files to your email. The more applications that can
touch and share data with one another, the more useful and compelling they become.

In this chapter, you have learned how to take advantage of multiplicative utility in your
own apps. You can tap a wealth of features already designed by RIM when you use their
hooks to add features to your app. And, in the other direction, you can make your app
far more useful to your users if you create an API that allows other developers to use
you. If five other apps all use your app, you have just become even more indispensable,
without even needing to write those five new apps.

This level of deep integration blurs the lines between a built-in app and an installed app.
When your app is displaying as an option in the Contacts menu, and showing a custom
rollover icon, and getting opened from other apps, it becomes almost indistinguishable
from the apps that came pre-installed on the BlackBerry.

You have now mastered the critical aspects of making powerful, useful, integrated apps.
The next goal is to get those apps onto as many devices as possible, operating as
smoothly as you can. Part 3 will show you how to make sure your apps can be used by
as many people as possible.

Download at WoweBook.Com

3
Going Pro
Don’t be selfish. Now that you can write an interesting and powerful BlackBerry app,

you should share it with as many people as you can. Whether you send it to a few

friends for fun, or sell it to hordes of eager consumers, people will appreciate your

effort and achievement.

However, there can be a world of difference between writing an app that runs well on

your personal phone and one that runs smoothly on everyone’s phone. You don’t

want to deal with frustrated customers, confused managers, or sniping competitors.

You especially don’t want to take ten times as long making your app run on ten

devices as you did on the first one. This final section of the book tackles the tricky

problem of scaling up. Anticipate security problems before they arise, port your app to

a variety of languages and devices, and make building multiple versions easier than

before. These techniques won’t just improve your work; they will also let you be more

generous with the results.

Part

Download at WoweBook.Com

Download at WoweBook.Com

9Chapter

RIM Security
Few topics trip up BlackBerry developers more than the RIM security model. It can be
extremely frustrating to take an app that works perfectly in the simulator and find that it
won’t even start on a handset; or, worse, one that passes all your internal testing, but
exhibits strange behavior in the field. Such problems are often the result of occasionally
arcane security rules. Some of them you can bend, some you can break, and others you
must live with: in all cases, though, just understanding them will allow you to make
better decisions. This chapter examines the most important features of BlackBerry
device security and how they affect your applications.

The Ownership Question
Who owns your BlackBerry?

At first, that may seem like a foolish question: “I do, of course.” After all, you carry it with
you, it’s got your phone number, and it shows your name on it.

However, actual possession is not quite as straightforward as it may seem at first. If you
got your BlackBerry from an employer, then, despite the fact that you carry the device,
they are the ones who really own it: they paid for it, they run the network it connects
with, and they are responsible for the behavior of the devices. A business has an interest
in the ongoing use of BlackBerry devices. They may not want you to upload 3 gigabytes
of video files onto the corporate intranet, make phone calls to 1-900 numbers, or install
virus-ridden software. When people do these things, they don’t only affect their own
devices, but they also create financial and administrative headaches for their employers.

Even if you got your BlackBerry for a personal mobile phone account, the ownership
question might not be quite as simple as you might think. If, like most Americans, you
got your BlackBerry as part of a two-year contract, you might have only paid $100 or so
instead of a list price of $700 or higher. Your mobile carrier will have subsidized the
remaining cost to Research in Motion (RIM) to entice you as a customer. In return, you
are expected to continue with them as a loyal customer for multiple years. What
happens if you renege on your contract after a month and walk away with your new
BlackBerry? You could argue that, having violated the contract, the phone company is
the one who really “owns” it: they paid for the majority of it, and set the terms under

Download at WoweBook.Com

CHAPTER 9: RIM Security

320

which you could have it. The company might not want you to switch to another
company and continue using the BlackBerry.

Understanding the intricacies of BlackBerry ownership helps to illuminate many of the
topics addressed later in this chapter. As consumers, we tend to feel a certain right to
things we own. Once we have paid for something, we expect to continue using it without
interference: we should be able to install the software we want, run it when we want for
as long as we want, browse to the web sites we want to visit, and so on. Because
BlackBerry devices often have complicated ownership, though, your desires might clash
with those of other stakeholders. Where there is a dispute, the “real” owner of the device
usually comes out on top.

Security Policies: ‘‘You Can’t Do That!’’
The 900lb-gorilla of the security model is the security policy. Inviolate and determined,
the policy acts as the ultimate enforcer, providing the final word on what is and is not
allowed on a particular device.

Background
BlackBerry devices started life as corporate connectivity devices, only available to
businesspeople who needed them to keep in contact when away from their offices. As
discussed in “The Ownership Question” section, despite the fact that each individual
person carries a particular BlackBerry, the devices are actually owned by the company,
and the company has a strong interest in ensuring that the devices behave appropriately
on the network.

Strong, secure IT policies provide one of RIM’s strongest selling points. Unlike other
smart-phone platforms such as Windows Mobile, RIM devices can be securely locked
down with particular rules about their behavior. These rules are contained within a
particular file called the security policy, often named policy.bin. This file is loaded into
the BlackBerry at a very low level: you cannot find it by browsing the filesystem, and you
cannot copy over or remove it. The device reads in this policy when first starting up,
and, once it is loaded, nothing can change the rules.

Actual policies will vary tremendously. If you buy a phone through a wireless carrier, it
will likely come with a very permissive policy that allows you to do almost anything. After
all, the carrier wants you to use your device and be a satisfied customer. Some
companies similarly run an open system. Most corporations, however, will place at least
some restrictions on the use of their devices, and others will be locked down so tightly
that they are completely unusable other than for a few specifically allowed actions.

IT Policy Examples
Administrators have access to a wealth of different IT policy settings. These can be
configured differently to apply to individuals, to groups of users, or to an entire
organization. For instance, an administrator may grant herself and a handful of power

Download at WoweBook.Com

CHAPTER 9: RIM Security

321

users very open IT policies, provide developers with policies that will not limit their
network usage, and send a standard restrictive policy to everyone else. A few of the
many available policy settings are listed below, focusing on the settings most likely to
interfere with your applications or your development. Many disable or enable particular
features, while others allow administrators to configure particular settings such as visible
text or URLs.

Device Security Policy Examples
Disable BlackBerry Messenger

Disable Forwarding Contacts

Control Bluetooth Power Range

Allow Outgoing Calls on Bluetooth

Allow Application Download via Browser

Allow Wi-Fi Browser

Disable JavaScript in Browser

Enable HTML Tables in Browser

Enable Style Sheets

Disable Photo Camera

Disable Video Camera

Public-Private Key Generation Algorithm

Users Must Confirm Before Sending SMS, MMS, email, or PIN Message

Disable MMS

Set Owner Information

Enable PIN Messaging

Allow SMS Messaging

Default Browser

Browser Home Page Address

Home Page Address is Read-Only

Automatically Download Email Attachments

Display Prompt when Downloading Images

Disable Rich Text/HTML Email

Duration to Keep Received Messages

Prepend Disclaimer to Outgoing Email Messages

Download at WoweBook.Com

CHAPTER 9: RIM Security

322

Restrict Incoming Calls

Restrict Outgoing Calls

Allow Browser

Allow Phone

Disable BlackBerry Maps

Report GPS Location to Enterprise Server

Force Memory Cleaner

Disable Wireless Synchronization for Calendar, Memos, etc.

Allow External Non-Enterprise Connections

Allow Internal Enterprise Connections

Allow Resetting Idle Timer

Allow Screen Shot Capture

Allow Split Pipe Connections

Allow Apps to Use Persistent Store

Allow Apps to Use Serial, USB, and IrDA Ports

Disable Cut/Copy/Paste

Disable External Memory Media Card

Disable Photo Sharing Apps

Disable Social Networking Apps

Disable USB Mass Storage

Disable Installing Unsigned Apps

External File System Encryption Level

Firewall Block Incoming Messages

Firewall Whitelist Addresses

Password Required for Application Download

Allow Other Browser Services

Allow Other Calendar Services

Allow Public IM Services

Set Local Area Code

TCP APN/Username/Password

TLS Support

Allow VOIP

Download at WoweBook.Com

CHAPTER 9: RIM Security

323

Enable VPN

VPN Username/Password/DNS

Disallow Rollback to Previous Software Version

Disable Wi-Fi

Caution: Split Pipe can be a particularly frustrating setting. Most applications will either
attempt to connect through an enterprise MDS connection or through a device-side TCP
connection. If an application attempts to open both types of connections, it is said to have a
split-pipe. This can cause security concerns: for example, a malicious app might open a
connection to the corporate network, collect data from internal servers, and then open a
connection to a hacker’s web server and upload sensitive data. The split-pipe IT policy forbids
this happening: if an app has ever attempted to open an MDS connection before (even if it
failed), it is forbidden from attempting to open a public connection. If this happens, you should
first change your app to make sure that it only attempts to open either MDS (deviceside=false)
or public (deviceside=true) connections. Wipe the affected device by removing all software via
the BlackBerry Desktop Manager and then reload all software.

In addition to these general settings, administrators can also configure a set of
application control policy rules. These provide more fine-grained controls that
specifically apply to third-party applications that are installed by users. Some of the
more important ones are listed below.

Application Control Policy Examples
Allow Internal Network Connections

Allow External Network Connections

Allow Local Connections

Modify Device Settings

Reset Security Timer

Set Applications as Mandatory, Optional, or Forbidden

Access to Browser Filter API

Access to Email API

Access to Event Injection

Access to File API

Access to GPS API

Access to Local Key Store (Crypto)

Download at WoweBook.Com

CHAPTER 9: RIM Security

324

Access to Interprocess Communication API

Access to Media API

Access to Phone API

Access to Module Management API

Access to Media Recording APIs (Microphone, Video, and Screen)

Access to Serial Port/Bluetooth API

Access to Wi-Fi API

List of Domains with Browser Filter Support

List of Permitted External Domains

List of Permitted Internal Domains

Pushing Policies
So how do policies get loaded? A default policy will be in place when you first obtain
your device. For most people, this will stay the same for as long as they continue to own
the BlackBerry.

If a BlackBerry device connects to a corporate BES network, though, the administrator
has the option of pushing down a new IT policy. This will replace whatever policy was
previously loaded on the device. Even if the policy was somehow changed since the last
time it connected to the network, that change will be undone the next time it connects.

Policies can be loaded via the BlackBerry Desktop Manager. This is not an option you
will see in the menu when you connect your device; rather, the policy will be
automatically and silently sent to the phone. There is no indication provided when this
occurs, but you may notice different behavior later on.

Beware of eBay
This is a good place to comment on one of the common traps that new developers fall
into. BlackBerry devices can be expensive, and there is a strong temptation to purchase
them second-hand at a substantial discount. Sometimes this leads to good results, but
be aware of what you might be getting into.

Many of the devices for sale online, especially those sold by individuals through sites
like Craigslist and eBay, were once corporate devices that connected to company
networks. The devices might have been replaced with newer models, or an employee
might have been allowed to keep her BlackBerry when leaving, or decided to just keep
the BlackBerry anyway. These models might be fully functioning and able to make calls,
send and receive text messages, and perhaps even be compatible with multiple carriers.
However, if they ever were part of a company network, odds are very high that they still
have an IT policy installed.

Download at WoweBook.Com

CHAPTER 9: RIM Security

325

If you get one of these devices, everything might seem fine at first: you will be allowed to
use it as you would any other device, and hopefully also load applications. However, you
might notice mysterious problems as you use it more. Certain Java API calls might
simply fail. You might see annoying security prompts that you are not allowed to
permanently dismiss. Maybe the application simply will stop running.

In one sense, this can actually be considered a useful problem to have. After all, there
are plenty of real users out there with IT policies on their devices, and if you know how
their devices will behave you can better anticipate the problems they might encounter.
Still, having a device with a restrictive security policy can kill your productivity and
massively slow down development.

What’s the solution? If you can afford it, it’s safest to buy your BlackBerry devices new.
Otherwise, try to contact the seller and get a clearer picture of what this particular
device did before. If it was bought new by an individual for a personal wireless account,
it will probably be fine. If it has been bought and sold multiple times and was most
recently on a corporate network, you might want to avoid it, or at least ask for a return if
it proves to carry a policy.

Replacing an Old Policy
If you get stuck with a restrictive IT policy, you might have a couple of options. If you are
on a corporate BES network, or have access to one, you can ask the administrator to
create an open IT policy for your device to use. This might or might not be successful.
Administrators have much larger responsibilities than your individual development, and
might not want to have loose policies floating around.

There are also some online tools available that claim to remove IT policies. In reality,
nothing actually removes a policy; the best that can happen is that it replaces the
existing policy with a more permissive one. Use such tools at your own risk. The
updated policy you receive might not be much better than the one you got rid of.

Finally, keep in mind that, even if you do replace an old policy, updated policies will still
be pushed to the device every time you connect to a corporate network. Because of
this, you might want to avoid using an individual BlackBerry as both a development
device and as part of a secure company network. It’s more expensive to get two
devices, but over the long run you will more than make up for the cost with your
increased productivity.

What Can You Do?
Your development device aside, you must decide if and how you want to handle devices
with security policies that interfere with the running of your app.

In one sense, there’s nothing you can do. Applications execute in a sandbox, and the
security policy is far beyond the reach of that sandbox. Your app cannot replace the IT
policy, cannot disable it, and cannot even pre-emptively determine whether or not a
restrictive policy is installed.

Download at WoweBook.Com

CHAPTER 9: RIM Security

326

You should first consider the potential audience for your app, the likelihood that users
will have restrictive IT policies, and the impact of those policies on your app. If you are
writing an app for yourself or a small group of people, and know that nobody has special
IT policies, you’re done—nothing to worry about.

If you are writing an app for your company’s use, or that will be used in one particular
corporation, you should coordinate with the BlackBerry administrator. Early on define
what your app will need to do, focusing on aspects like network usage and data access,
and communicate those needs to the administrator. If a policy needs to change, she will
have the authority to get it done. If the policy cannot change, you need to find out as
soon as possible so you can change the scope of your app or get authority from higher
levels of management to make the change.

If you are writing an app for general public consumption, you’re in a relatively tricky spot.
Most commercial apps are sold through BlackBerry App World, carrier stores, or
independent smartphone stores. The majority of these buyers will have clean devices
and no issues. A minority will be using secondhand phones or devices they got from
work, and a subsection of those users will be unable to run all but the simplest apps.
You can consider several possible responses.

 Buyer Beware: If possible, warn users ahead of time about what your
app does, and clearly state that, if their device cannot function
properly, it’s their problem, not yours.

 Good Neighbor: If users complain that your app is unusable, appease
them by offering a refund. This works best if your app contains a
server component so you can track individual users. You won’t need
to advertise this method, and complaints should be rare enough that
this will be the exception.

 Graceful Degradation: Depending on your app design and features,
you may be able to continue operating even if the security policy
blocks some functions. For example, if an offline game connects to a
server for a shared high-score counter, your users should still be able
to play even if the app cannot connect to the server.

 Over-communicate: Include plenty of warnings and help within your
application advising the user about what your app is doing and what
their options are if stuff isn’t working.

Again, at the end of the day, you are powerless to fix any problems that your users
encounter that stem from strong IT policies. The best you can do is be aware of the
problem, realize how it may affect your app, evaluate the severity of impact on your
users, and plan ahead of time how you wish to handle the problem.

User Permissions: ‘‘May I Do This?’’
Let’s assume that a user’s company is fine with everything your app does, or that the
user does not belong to a company with an IT policy. This removes one significant
barrier from your application’s proper functioning, but is not the end of the story. In

Download at WoweBook.Com

CHAPTER 9: RIM Security

327

addition to IT policies, which protect the interests of the corporation, BlackBerry devices
also support user permissions, which protect the interests of the individual.

Many users share concerns similar to those faced by large corporations. If a user is on a
data plan that bills them per kilobyte sent or received, she will get quite unhappy if an
application uploads several megabytes of data without her knowledge. If a user is
concerned about her privacy, she won’t want an application to take photos and record
her GPS location, and email that information to someone.

Therefore, within the confines of the IT policy, each BlackBerry device also offers a
flexible set of user permissions that are applied to installed applications. These are
initially set to certain default values, which can be defined by the organization or the
manufacturer. Users can later fine-tune them in a variety of situations.

Setting User Permissions on OTA Installs
When someone installs an application over the air by loading a JAD file in his browser,
he will be given the choice to set individual application permissions as part of the
download. If he selects this option, he will be greeted with a prompt similar to that
shown in Figure 9-1. You cannot control the text in this prompt, nor can you control
what permissions are shown on the following screen. However, you can include
instructions about what the user should do on an HTML landing page before directing
them to the JAD. For example, you could include a statement such as, “This app must
access the Internet in order to function properly. On the following screen, please set
application permissions and verify that the Internet permission is set to Allow.”

Download at WoweBook.Com

CHAPTER 9: RIM Security

328

Figure 9-1. Setting individual permissions

When the user starts setting application permissions, she will see a variety of settings.
The specific choices will vary depending on the device model and the software version
loaded. Choices are organized into three broad groups.

1. Connections: These concern data entering or leaving the device.

2. Interactions: These control the app’s access to low-level device
functions.

3. User Data: These describe the ability to read or write persistent data.

Each group should be set to “Allow”, “Custom”, or “Deny”. If you’d like to modify a
group’s settings for this app, click the current setting and select a new value from the
drop-down menu. This allows you to quickly grant an app all permissions, or to turn off
broad areas of concern.

In many cases you will want to exert more fine-grained control. Press the BlackBerry
Menu key and select “Expand” to view all the sub-options under a particular group. This
allows you to make more detailed decisions. For instance, you might want to allow an
app access to the USB port and Wi-Fi, but forbid access to GPS. Each individual
permission can be assigned one of three settings.

1. Allow: Always permit the app to do this.

Download at WoweBook.Com

CHAPTER 9: RIM Security

329

2. Prompt: Display a message each time the app attempts to do this. (You
can later permanently dismiss this prompt.)

3. Deny: Never allow the app to do this.

Note: Certain low-level permissions, such as Interprocess Communication and Keystroke
Injection, only offer the ‘‘Allow’’ and ‘‘Deny’’ settings. This is because these actions are usually
initiated by libraries, background threads, or other components without a user interface, and so
it is awkward to display a prompt when they run.

Figure 9-2 shows a user modifying the default permissions for the MediaGrabber app.
This device was configured to disallow recording, which will seriously hinder the
usefulness of the app. If changed to “Allow”, recording will always work; if “Prompt”, the
user will still need to click through a message the next time they try to start recording.

Figure 9-2. Changing a specific permission

Default Permissions
Every phone comes with a default set of permissions. These are applied to applications
that you install through a cable, and are also set as the permissions for OTA installed
apps if the user doesn’t choose to set the application permissions.

Download at WoweBook.Com

CHAPTER 9: RIM Security

330

To set the global user permissions on your device, follow these steps.

1. Open Options.

2. Open Advanced Options.

3. Open Applications.

4. Press the BlackBerry Menu Key.

5. Select Edit Default Permissions.

Within this next screen, you can select and modify permissions as you would for an OTA
download. The changes that you make will be applied to all applications installed in the
future. If you’d like to apply them to all previously installed applications, press the
BlackBerry menu key and then select “Apply Defaults to All”.

Specific Application Settings
If you cable-load or download an application and later realize that it does not have the
proper permissions, you can modify the permissions to what you want.

1. Open Options.

2. Open Advanced Options.

3. Open Applications.

4. Highlight the application name.

5. Press the BlackBerry Menu Key.

6. Select Edit Permissions.

Once again, you can customize the individual permissions here. Don’t forget to save the
changes once you are done. You may need to exit and restart the app for the changes
to take effect.

Programmatic Control
So far, we have been looking at user permissions from the user’s perspective. As you
have seen, the person who installs your app can exert a great deal of control over the
app’s behavior. This can lead to serious problems within your app, though. If you require
an Internet connection to run, and cannot open that connection, then the app is
effectively broken.

In older versions of BlackBerry device software, there is no good solution to this
problem. The best you can do is detect when a problem has occurred and display an
error screen to the user describing what they must do to solve the problem. Some
people will be reluctant to modify their device settings, and others might get lost while
navigating the menus, and as a result your app stays broken.

Download at WoweBook.Com

CHAPTER 9: RIM Security

331

ApplicationPermissions
Fortunately, starting with device software version 4.2.1, RIM has offered developers an
API that allows insight into the user’s current permissions settings. Since you know what
resources your app needs to function, you can inspect the current settings and display a
message if they are wrong. Even better, you can ask the user to change them.

RIM does not allow an app to force its permissions preferences upon the user. This
would defeat the whole point of user-controlled permissions, and allow malicious apps a
clear shot at whatever they wanted. RIM’s solution is fairly elegant: your app can
describe the specific permissions it wants, and then the BlackBerry will ask the user to
confirm the changes.

Of course, the user may decide that she does not want to give you all the permissions
you ask for. Your app can examine the permissions again and decide how it wants to
proceed. If you simply cannot function, you may exit the app or continue asking for
permissions. Otherwise, continue running normally, perhaps warning the user about
what degradation she will see.

9-1 shows the permissions that are available to query and change. All are defined in the
ApplicationPermissions class.

Table 9-1. Application Permissions

Name Allows Added Deprecated

PERMISSION_APPLICATION_MANAGEMENT Install or delete other
applications

4.6

PERMISSION_BLUETOOTH Send and receive data via
Bluetooth and access
Bluetooth profiles

4.2.1

PERMISSION_BROWSER_FILTER Register a filter with the
web browser

4.2.1

PERMISSION_CHANGE_DEVICE_SETTINGS Change configuration and
user settings

4.2.1 4.6, use
PERMISSION_DEVICE_
SETTINGS

PERMISSION_CODE_MODULE_MANAGEMENT Install or delete other
applications

4.2.1 4.6, use
PERMISSION_APPLICAT
ION_MANAGEMENT

PERMISSION_CROSS_APPLICATION_
COMMUNICATION

Share data and messages
with other apps

4.6

PERMISSION_DEVICE_SETTINGS Change configuration and
user settings

4.6

Download at WoweBook.Com

CHAPTER 9: RIM Security

332

Table 9-1. Application Permissions (continued)

Name Allows Added Deprecated

PERMISSION_DISPLAY_LOCKED Draw on top of the
device lock screen

5.0

PERMISSION_EMAIL Send and read email 4.2.1

PERMISSION_EVENT_INJECTOR Simulate user events 4.2.1 4.6, use PERMISSION_INPUT_
SIMULATION

PERMISSION_EXTERNAL_CONNECTIONS Connect to the
Internet

4.2.1 4.6, use
PERMISSION_INTERNET

PERMISSION_FILE_API Read and write files 4.2.1

PERMISSION_HANDHELD_KEYSTORE Access locally stored
crypto keys

4.2.1 4.6, use
PERMISSION_SECURITY_
DATA

PERMISSION_IDLE_TIMER Reset security timer
to prevent the device
from locking

4.2.1

PERMISSION_INPUT_SIMULATION Simulate user events 4.6

PERMISSION_INTER_PROCESS_
COMMUNICATION

Share data and
messages with other
apps

4.3 4.6, use PERMISSION_
CROSS_APPLICATION_
COMMUNICATION

PERMISSION_INTERNAL_CONNECTIONS Connect to corporate
MDS network

4.2.1 4.6, use
PERMISSION_SERVER_
NETWORK

PERMISSION_INTERNET Connect to the
Internet

4.6

PERMISSION_KEYSTORE_MEDIUM_
SECURITY

Access locally stored
medium-strength
crypto keys

4.2.1 4.6, no replacement

PERMISSION_LOCAL_CONNECTIONS Connect through USB
or the serial port

4.2.1 4.6, use PERMISSION_USB

PERMISSION_LOCATION_API Access GPS and other
LBS resources

4.2.1 4.6, use
PERMISSION_LOCATION_
DATA

Download at WoweBook.Com

CHAPTER 9: RIM Security

333

Table 9-1. Application Permissions (continued)

Name Allows Added Deprecated

PERMISSION_LOCATION_DATA Access GPS and
other LBS resources

4.6

PERMISSION_MEDIA Access and modify
media files

4.3

PERMISSION_ORGANIZER_DATA Access data from
calendar, contacts,
tasks, and memos

4.6

PERMISSION_PHONE Make voice calls,
receive voice calls,
read phone logs

4.2.1

PERMISSION_PIM Access data from
calendar, contacts,
tasks, and memos

4.2.1 4.6, use
PERMISSION_ORGANIZER_
DATA

PERMISSION_RECORDING Access microphone,
camera, or screen
capture

4.6

PERMISSION_SCREEN_CAPTURE Capture screenshots 4.3 4.6, use
PERMISSION_RECORDING

PERMISSION_SECURITY_DATA Access locally stored
crypto keys

4.6

PERMISSION_SERVER_NETWORK Connect to
corporate MDS
network

4.6

PERMISSION_THEME_DATA Provide themes 4.2.1 4.6, use
PERMISSION_THEMES

PERMISSION_THEMES Provide themes 4.6

PERMISSION_USB Connect through
USB

4.6

PERMISSION_WIFI Make Wi-Fi
connections and
collect data about
Wi-Fi configuration

4.3

Download at WoweBook.Com

CHAPTER 9: RIM Security

334

ApplicationPermissionsManager
ApplicationPermissions contains information about the permissions set on an
application. ApplicationPermissionsManager allows you to retrieve the current
permissions, query the setting of a particular permission, or ask for more permissions.

Checking Permissions

If you want to find out whether a particular permission is set, use one of the versions of
ApplicationPermissionsManager.getPermission(). You must provide one of the
permissions from
Table 9-1. You will get back the current setting.

 ApplicationPermissions.VALUE_ALLOW means access is granted.

 ApplicationPermissions.VALUE_PROMPT means access will be
permitted if the user confirms.

 ApplicationPermissions.VALUE_DENY means access is forbidden.

The following snippet demonstrates how you can check to see whether a permission is
properly set before starting a potentially restricted operation.

ApplicationPermissionsManager permissions =
 ApplicationPermissionsManager.getInstance();
int currentSetting = permissions.getPermission(
 ApplicationPermissions.PERMISSION_FILE_API);
if (currentSetting == ApplicationPermissions.VALUE_ALLOW)
{
 // We can access the file here.
}

You can optionally provide two extra arguments to getPermission(). If the permission
deals with accessing a network, like ApplicationPermissions.PERMISSION_INTERNET, it’s
possible that a domain-specific permission may be in effect. For example, a user might
ordinarily set connections to “Prompt”, but allow all connections to www.google.com.
You can pass in the domain you plan to connect to learn what its setting is, as shown in
the following example.

int domainSpecificSetting = permissions.getPermission(
 ApplicationPermissions.PERMISSION_SERVER_NETWORK, "securesite.example.com");

Starting with device software version 4.7, you can also provide a boolean indicating
whether to ignore the current setting of the firewall. Firewalls are discussed in more
detail later in this chapter; for now, be aware that unless you specify true here,
ApplicationPermissionsManager will allow the firewall setting to override the actual
permission that the user has set. You generally do want to take the firewall into account,
since you likely care most about the actual behavior for a request you would make and
not just what is shown on the permissions screen. Only set true here if you need to
know the actual underlying setting.

Download at WoweBook.Com

http://www.google.com

CHAPTER 9: RIM Security

335

To retrieve all the permissions set for an app, use getApplicationPermissions(). This
allows you to more compactly check multiple permissions settings at once, as the
following example shows.

ApplicationPermissions current = permissions.getApplicationPermissions();
if (current.getPermission(ApplicationPermissions.PERMISSION_INPUT_SIMULATION)
 != ApplicationPermissions.VALUE_ALLOW || current.getPermission(
 ApplicationPermissions.PERMISSION_IDLE_TIMER) !=
 ApplicationPermissions.VALUE_ALLOW)
{
 // Deal with lack of permissions.
}

Changing Permissions

To request greater permissions, first construct an ApplicationPermissions object that
contains your desired settings. Everything you include will be displayed to the user as a
prompt, regardless of the current setting; you can include all of your required
permissions to communicate all your app needs, or only those permissions which are
not currently granted so the user doesn’t have to review as many. All requested
permissions will be requested as VALUE_ALLOW; you cannot request the user to grant you
VALUE_PROMPT or VALUE_DENY permissions.

After your ApplicationPermissions are configured, issue a request to
ApplicationPermissionsManager.invokePermissionsRequest(). This is a synchronous
blocking call: your app will suspend while the user reviews your request. By the time it
returns, the user has completed his selections. You can inspect the return value to see
what he chose: true means all your requests were granted, false means at least one
was set to “Prompt” or ”Deny”. The next example requests a set of permissions that are
necessary to run a particular app.

ApplicationPermissions requested = new ApplicationPermissions();
requested.addPermission(ApplicationPermissions.PERMISSION_LOCATION_DATA);
requested.addPermission(ApplicationPermissions.PERMISSION_INTERNET);
requested.addPermission(ApplicationPermissions.PERMISSION_FILE_API);
if (permissions.invokePermissionsRequest(requested))
{
 // Granted, continue running the app.
}
else
{
 // Denied, show an error and exit.
}

Note: The permissions dialog is generated by the operating system, not your app, and so you
can invoke a permissions request from a library or other invisible component.

Keep in mind that, even when your app really wants certain permissions, the user may
not be able to grant them if his IT policy forbids it. Avoid haranguing users for things

Download at WoweBook.Com

CHAPTER 9: RIM Security

336

beyond their control. If you like, you can check ApplicationPermissionsManager.
getMaxAllowable() to find the most permissive possible setting for a particular
permission. It might be that the IT policy demands a setting of at least “Prompt” for
Internet connections, so, if it’s already set to “Prompt”, you can’t get anything better.

Give Me a Reason
As a strange sort of parallel to application permissions, a particular set of APIs generate
their own warning when accessed. Starting with device software version 4.2.1, if you call
one of the following methods and the “Device Settings Modification” permission is set to
“Prompt”, the user will see a message such as, “The application MyFlashlight is
attempting to change device settings.”

APIs with Customized Prompts
ApplicationDescriptor.setPowerOnBehavior

ApplicationManager.lockSystem

ApplicationManager.requestForeground

ApplicationManager.requestForegroundForConsole

ApplicationManager.setCurrentPowerOnBehavior

ApplicationManager.unlockSystem

Backlight.enable

Backlight.setBrightness

Backlight.setTimeout

Device.requestPowerOff

Device.requestStorageMode

Display.setContrast

Device.setDateTime

EventLogger.clearLog

EventLogger.setMinimumLevel

Keypad.setMode

Locale.setDefaultInputForSystem

MIMETypeAssociations.registerMIMETypeMapping

MIMETypeAssociations.registerType

Radio.activateWAFs

Radio.deactivateWAFs

Download at WoweBook.Com

CHAPTER 9: RIM Security

337

The user can allow or deny this access, and also has the option of suppressing future
requests. What’s especially unusual about this set of APIs is that you can provide some
custom text that will display as part of the permissions prompt. You do this by
implementing the ReasonProvider method and invoking ApplicationPermissionsManager.
addReasonProvider(), as shown in the next example.

ApplicationPermissionsManager mgr = ApplicationPermissionsManager.getInstance();
mgr.addReasonProvider(ApplicationDescriptor.currentApplicationDescriptor(),
 new ReasonProvider(){
 public String getMessage(int permissionID)
 {
 if (permissionID ==
 ApplicationPermissions.PERMISSION_CHANGE_DEVICE_SETTINGS)
 {
 return "I need to change device settings to keep the screen on.";
 }
 return "Please allow this access for full app functionality";
 }});
Backlight.setTimeout(255);

After you set a reason provider and invoke one of the restricted methods, the user will
see a link labeled “Details from the vendor. . .” as part of the application permissions
window. If she clicks this link, she will see your custom message.

As you can see, the specific permission ID is passed as a parameter to your
ReasonProvider, and you can select an appropriate message depending on the
permission. This would make much more sense if ReasonProvider was invoked for other
permissions requests. As it is, this class has very limited utility. In practice, it is much
better to simply ask for permissions to be granted prior to invoking sensitive APIs rather
than to display some custom text buried within a prompt. If you’d like to communicate
with the user, do it before invoking the permissions request.

Firewall: ‘‘Don’t Go There’’
You are probably already familiar with the concept of a firewall from your own personal
computer or company network. A firewall is a piece of software, typically integrated with
the operating system, which applies a set of rules to all incoming and outgoing
connections. Figure 9-3 illustrates some typical behavior from an active BlackBerry
firewall.

Download at WoweBook.Com

CHAPTER 9: RIM Security

338

Figure 9-3. A BlackBerry firewall

Firewall Actions
Any time the device receives an incoming request, it checks to see whether that request
is permitted. The rules might call for blocking certain ports, or only permitting
connections from certain approved IP addresses, ranges, or domains. If the request is
approved, and an application is listening on that port, it will receive the incoming data. If
the request is denied, the data will not be provided. In both cases, the firewall is invisible
to the application: if you get data, it looks just the same whether it passed through a
firewall or not; if you don’t get data, it’s as though it was never sent.

Similar rules apply on outgoing connections, although here your app does get a little
more visibility into the presence of a firewall. At the moment the app tries to open a
connection, the firewall will check to see whether to permit the connection. This decision
will be made based on a combination of factors: the permissions granted to the
requesting app, the domain being accessed, the port number used, and the transport
protocol type. The request will either succeed or fail.

On BlackBerry devices, the firewall can have more subtle effects as well. The firewall
might prevent certain file operations, prevent certain dialogs from displaying, or interfere
with app installation.

Download at WoweBook.Com

CHAPTER 9: RIM Security

339

Firewall Settings
To view and modify your firewall, follow these steps.

1. Open Options.

2. Select Security Options.

3. Select Firewall.

The firewall can be enabled or disabled from this screen. If your IT policy mandates use
of a firewall, you may see a lock icon here, which indicates that it cannot be modified.
Otherwise, simply tab the current Status setting to switch between Enabled and
Disabled.

The firewall also allows you to block certain types of incoming messages, such as SMS
text messages or PIN messages. You can choose to allow messages from everyone in
your contacts or only specific addresses. If you select specific addresses, you can press
the BlackBerry Menu key to configure the exceptions; this takes you to a new screen
where you can enter the approved senders.

Firewall Effects
Many users aren’t aware that they have a firewall. The firewall silently grants or denies
permissions. If the firewall is disabled, it doesn’t even interfere with any operations.

However, one common use of the firewall is to warn users about app actions. The
standard firewall prompt will show a message such as, “The application SearchCrawler
has requested a http connection to www.google.com.” Users can allow or deny the
request. They also can check options like “Do not ask for http” or “Do not ask for http to
www.google.com.”

While the prompt displays, app execution will be frozen. Once the user has dealt with
the prompt, the operation will return or an exception will be thrown. You cannot
influence the text that is displayed in this firewall prompt or provide a default setting.

If the user selects an option like “Do not ask again,” they will never again see the prompt
in this app unless they later reinstall the application or modify the firewall settings. If the
prompt is for accessing a particular domain, they may need to reapprove accesses to
later domains.

Tip: If the firewall is set to prompt, your app’s execution will cease at the moment it attempts
to open a connection. This allows the BlackBerry to display a modal security prompt that allows
the user to grant or deny permission. However, if the connection was made from the app’s
main UI thread, the BlackBerry might not be able to draw the modal dialog and the app will
freeze. To avoid this problem, follow the best practice of always making connections from
another thread.

Download at WoweBook.Com

http://www.google.com.%E2%80%9D
http://www.google.com.%E2%80%9D

CHAPTER 9: RIM Security

340

Even if the firewall is disabled, firewall-style prompts will still display for unsigned
applications. Such applications are presumed to be less trusted than signed apps, so
they are held to a higher level of scrutiny.

Dealing with the Firewall
Unfortunately, the BlackBerry API does not offer developers a good way to deal with the
firewall. You cannot query it to determine whether it is enabled, and you cannot request
it to be disabled for your app or globally. If you wish to influence the firewall setting, your
best option is to provide the user with instructions on how to manually modify the
firewall.

Tip: If your app will be running in a corporate network, you can ask a new firewall setting to be
pushed to your app’s users.

As discussed in the “User Permissions” section, ApplicationPermissionsManager.
getPermission() takes the firewall settings into effect. This does provide a useful way to
determine ahead of time whether a network operation will succeed or fail. You can use
an alternate version of getPermission() that lets you ignore the firewall setting. If you
learn that an Internet connection to a particular domain is set to deny, but ignoring the
firewall is set to allow, then you know that the firewall is responsible for the narrower
permissions.

Firewalls can be frustrating for users and developers, as they require extra clicking that
interrupts the flow of the app. There isn’t much that you can do about this, so just advise
your users of the situation and describe what steps they can take to mitigate it. On the
plus side, most BlackBerry users who do have firewalls are very accustomed to seeing
these prompts, and after a while become used to automatically granting new apps safe
passage through the firewall.

MIDlet Permissions: ‘‘I Will Do These Things’’
If you write MIDlets, you are used to requesting permissions in your JAD and
MANIFEST.MF files. The Java ME MIDlet security model requires applications to pre-
emptively declare what sensitive APIs they will be using. Users can view these
permissions before they choose to download and install an app.

Adding MIDlet Permissions
Permissions are provided on a single line with the name MIDlet-Permissions. The
following example shows an app requesting permissions to open secure and unsecure
web URLs.

MIDlet-Permissions: javax.microedition.io.Connector.http,
 javax.microedition.io.Connector.https

Download at WoweBook.Com

CHAPTER 9: RIM Security

341

Alternately, you can specify some or all of your permissions with MIDlet-Permissions-
Opt. These are optional permissions that your application requests but does not require.
If the user does not grant these permissions, the application will still install, but the
affected operations will fail at runtime. This is useful if optional program features require
MIDlet permissions, such as a recipe app with options to email recipes to yourself.

A variety of permissions are available for use; some of the most common are shown in
Table 9-2. There is no limit on the number of permissions you can request.

Table 9-2. MIDlet Permissions

Name Description

javax.microedition.content.ContentHandler Use CHAPI

javax.microedition.io.Connector.datagram Send UDP datagrams

javax.microedition.io.Connector.datagramreceive Receive UDP datagrams

javax.microedition.io.Connector.file.read Read filesystem

javax.microedition.io.Connector.file.write Create and write files

javax.microedition.io.Connector.http Open HTTP connections

javax.microedition.io.Connector.https Open secure HTTPS
connections

javax.microedition.io.Connector.mms Open MMS connections for
sending or receiving

javax.microedition.io.Connector.sms Open SMS connections for
sending or receiving

javax.microedition.io.Connector.socket Open socket connection

javax.microedition.io.Connector.ssl Open secure (SSL or TLS)
socket connection

javax.microedition.io.PushRegistry Automatically start
application when push events
are received

javax.microedition.location.Location Access GPS/LBS location

javax.microedition.media.control.RecordControl Record audio

javax.microedition.media.control.VideoControl.getSnapshot Record snapshots

javax.microedition.pim.ContactList.read Read contacts

javax.microedition.pim.ContactList.write Create or modify contacts

Download at WoweBook.Com

CHAPTER 9: RIM Security

342

Table 9-2. MIDlet Permissions (continued)

Name Description

javax.microedition.pim.EventList.read Read calendar

javax.microedition.pim.EventList.write Create or edit calendar events

javax.microedition.pim.ToDoList.read Read tasks

javax.microedition.pim.ToDoList.write Create or edit tasks

javax.wireless.messaging.mms.receive Receive MMS messages

javax.wireless.messaging.mms.send Send MMS messages

javax.wireless.messaging.sms.receive Receive SMS messages

javax.wireless.messaging.sms.send Send SMS messages

Add MIDlet permissions by editing your application’s JAD file. RIM’s application
compiler automatically modifies this file each time the app builds, but it recognizes the
permissions setting and will leave it alone.

MIDlet Permissions and BlackBerry
RIM did not invent MIDlet permissions, but rather it inherited them from the existing Java
ME standard. As such, they behave a little strangely, and do not exactly fit the
expectations of either Java ME or BlackBerry developers.

Recognize that these permissions are just one piece of the security puzzle, and a tiny
piece at that. Veteran Java ME developers who are new to BlackBerry are sometimes
confused why a file connection operation would fail with a security exception when they
had explicitly declared that their app requires the file connection API. As you have seen,
this is because BlackBerry devices first and foremost look to the security policy settings,
and after that to the user permissions, before allowing any sensitive API access. When
you request MIDlet permissions, you are asking for permissions from the Java ME
environment, but the lower-level BlackBerry environment still has the authority to deny
your request. As such, MIDlet permissions are entirely superseded by application
permissions: setting them has no effect, and, even if you do not set them, the operations
will still be permitted so long as the proper application permissions are set.

The bottom line: If you are making MIDlets and intend to run them on nonBlackBerry
devices, include permissions. If not, don’t bother.

Download at WoweBook.Com

CHAPTER 9: RIM Security

343

Application Signing: ‘‘Do I Know You?’’
What’s the deal with signing? Unlike several other phone platforms, signing a BlackBerry
application is quite cheap, and you are permitted to sign an effectively limitless number
of apps. You might wonder what the usefulness is.

Identity Establishment
The most important factor in application signing is to establish authorship. Every set of
code signing keys is unique, and every code signing request verifies that you are the
person who originally ordered the keys.

Unlike some other certificate-style operations, RIM doesn’t actually perform a
background check or physically verify your identity. Still, it does recognize you as an
individual entity, and, because your apps are signed with your keys, it knows who wrote
a given app.

Code Signing Impacts
Almost nobody will ever have a serious problem with application signing. Still, by setting
up the system the way they have, RIM has gained certain abilities.

 They can monitor the APIs used by individuals. This allows them to, for
example, deny cryptographic API use to people in certain geographic
regions.

 Because signatures are provided by a remote server, in extreme
cases, RIM could revoke a set of code signing keys, for example, if a
developer was discovered writing virus software.

If an app is not signed, it is missing this audit trail. As a result, the application is less
trusted and will be treated differently from signed apps.

 All restricted APIs will fail to execute. This includes items like the
application manager, email messages, the persistent object store, and
many more.

 Certain operations will always result in a user prompt requiring their
approval before proceeding. These operations include network I/O and
filesystem access.

Signing only has an impact when running on an actual BlackBerry device; the simulator
does not need signatures and will not behave any differently if an app has been signed.

App: Ask for Permissions
MediaGrabber exercises a wide range of functions. This also means it crosses a lot of
boundaries and requires a large set of permissions to function properly. You won’t

Download at WoweBook.Com

CHAPTER 9: RIM Security

344

notice any problems while running in the emulator, but, once you start running it on
devices, you may run across some things that don’t work properly: maybe the audio
recording doesn’t start, or the file isn’t saved, or you can’t invoke it via CHAPI.

Fortunately, by using knowledge from this chapter, you can help mitigate these
problems. When the app starts up, check if you have the permissions necessary to run.
If so, proceed as normal. If not, ask the user to grant you the proper permissions, and
refuse to start unless you get them.

The Version Problem
When studying Table 9-1, you probably noticed that a host of new permissions were
added in device software version 4.6, and many old ones were deprecated. Therefore,
the permissions to ask for will vary depending on what version of the software you plan
on using.

You will shortly be shown strategies to deal with these kinds of versioning problems. In
the meantime, let’s divide the targets into two groups: one for software after 4.3 but
before 4.6, and another for everything from 4.6 onward.

Checking and Requesting Permissions: The Old Way
Listing 9-1 shows a helper method that checks the current application permissions. If it
sees that any of them are not set to “Allow”, it will ask the user to grant those
permissions. This method uses only APIs and fields that are defined in software versions
4.3 and later.

Listing 9-1. Checking and Requesting Required MediaGrabber Permissions

private boolean checkPermissions_4_3()
{
 ApplicationPermissionsManager manager = ApplicationPermissionsManager
 .getInstance();
 ApplicationPermissions current = manager.getApplicationPermissions();

 int email = ApplicationPermissions.PERMISSION_EMAIL;
 int interProcess =
 ApplicationPermissions.PERMISSION_INTER_PROCESS_COMMUNICATION;
 int file = ApplicationPermissions.PERMISSION_FILE_API;
 int media = ApplicationPermissions.PERMISSION_MEDIA;
 int pim = ApplicationPermissions.PERMISSION_PIM;
 int screenCapture = ApplicationPermissions.PERMISSION_SCREEN_CAPTURE;
 int allow = ApplicationPermissions.VALUE_ALLOW;

 if (current.getPermission(email) != allow
 || current.getPermission(interProcess) != allow
 || current.getPermission(file) != allow
 || current.getPermission(media) != allow
 || current.getPermission(pim) != allow
 || current.getPermission(screenCapture) != allow)
 {

Download at WoweBook.Com

CHAPTER 9: RIM Security

345

 ApplicationPermissions updated = new ApplicationPermissions();
 updated.addPermission(email);
 updated.addPermission(interProcess);
 updated.addPermission(file);
 updated.addPermission(media);
 updated.addPermission(pim);
 updated.addPermission(screenCapture);
 return manager.invokePermissionsRequest(updated);
 }
 return true;
}

Note: I assigned the permission names to local variables simply to make the code more legible on
the printed page. In a real app, you would likely just refer to the ApplicationPermissions
fields directly.

This just shows one of a few potential ways to make the request. You could check for
and request each permission individually; this would be annoying, but possibly more
elegant to code. An even better solution would be to check all permissions, but only ask
for the permissions that are not already granted. This is less likely to intimidate the user,
who may be more likely to accept the change if he sees that you’re only asking for
permission to record than he would be if you ask for a half-dozen permissions at once.

Checking and Requesting Permissions: The New Way
You can use the previous method in more recent devices because the APIs are still
available. However, if you’re like me, you won’t like looking at those deprecation
warnings. You can easily convert this method to use only nondeprecated APIs by
making the following substitutions.

int email = ApplicationPermissions.PERMISSION_EMAIL;
int interProcess =
 ApplicationPermissions.PERMISSION_CROSS_APPLICATION_COMMUNICATION;
int file = ApplicationPermissions.PERMISSION_FILE_API;
int media = ApplicationPermissions.PERMISSION_MEDIA;
int pim = ApplicationPermissions.PERMISSION_ORGANIZER_DATA;
int screenCapture = ApplicationPermissions.PERMISSION_RECORDING;
int allow = ApplicationPermissions.VALUE_ALLOW;

You might find even more fine-grained differences between versions. Some permissions
were added in device software version 4.2.1, others in 4.3, others in 4.6, and more will
surely be added in future versions. To make sure you can compile for each version, you
may need to make slightly different versions of the class. Fortunately, permissions tend
to be added along with the corresponding functions: if a permission is not defined, it
probably means the associated feature is not available on that device.

Download at WoweBook.Com

CHAPTER 9: RIM Security

346

Plugging In
Where do you want to invoke your checkPermissions() method? This is a tough call.
The best place to locate it is within your constructor: because MediaGrabber checks for
CHAPI registration right away, and CHAPI is guarded by an application permission, it
would be nice to check that you have permissions before doing anything else. However,
because MediaGrabber is an auto-start application, it will start running automatically on
boot-up, as well as whenever it receives CHAPI requests. Users may get confused or
annoyed if they see permissions windows popping up, seemingly without any cause.

As a compromise, I have decided to call the method after the user directly launches
MediaGrabber from the icon, as shown in the following code. At this point, the user
knows what app is running and is more likely to grant permissions. In practice, most
users will run the app directly shortly after installing it. And, once we get the permissions
we want, they will still be set the way we want even after the device reboots.

public static void main(String[] args)
{
 MediaGrabber grabber = new MediaGrabber();
 if (args != null && args.length > 0 && args[0].equals("launch"))
 {
 if (grabber.checkPermissions_4_3())
 {
 grabber.pushScreen(new ChoicesScreen());
 grabber.enterEventDispatcher();
 }
 }
 // Remaining startup cases handled below.
}

Because MediaGrabber is ultimately an entertainment application, this approach makes
sense. If your app is designed to provide more low-level capabilities or doesn’t contain a
UI component, you’ll probably want to ask for permissions almost immediately.

Running the App
Adding permissions checks won’t have any impact at all on the simulator, where
everything is always permitted. The impact on the device may be different based on the
particular handset you are using. If you have previously always been able to run
MediaGrabber with no problems or annoyances, odds are high that you already had all
the permissions you need, and so the permissions request will never display. For most
developers, though, you will see the prompt display the first time you launch the new
version of MediaGrabber on the device.

Experiment with granting or denying permissions to see how it affects the app’s
behavior. If you have previously set all permissions, you can continue testing by
changing some back to Deny or Prompt, as previously described in the “Application
Permissions” section of this chapter.

Download at WoweBook.Com

CHAPTER 9: RIM Security

347

WANT MORE?

As you have seen, there is only a limited amount of code available to control security features. However,
your use of that code and accurate information about application and device security will make your app
look truly professional. Consider making these additional enhancements.

 Delay permissions requests until they are necessary. You may never need to ask for
email permission if the user never sends the media they record.

 Check the highest level of permission that a user can grant instead of always requiring
“Allow”. If corporate users install MediaGrabber and have a restrictive IT policy, they
may not be able to change permissions no matter how often you ask.

 Consider allowing the user to continue running even without the requested
permissions. This may cause problems later on, so display a warning.

Requesting permissions is a little like a dance between yourself, the user, and BlackBerry. Like any dance
with three partners, it is a little awkward. Applications that handle themselves with grace stand out from
the field.

Excelsior
You probably know more than you ever wanted to know about how application security
works on RIM. Although the details occasionally seem arcane, they are absolutely
critical to creating smoothly functioning apps and developing an app distribution
strategy. You wouldn’t want to embarrass yourself with a huge release, only to find out
that the app doesn’t even run for many of your users.

The fundamental point to keep in mind when thinking about device security is that your
needs as an application developer are subordinate to other stakeholders’ needs. The
carrier wants the network to function smoothly, the company wants their information to
remain secure, the user wants their privacy protected, governments want to control the
export of security software, and so on. Navigating these often conflicting desires can
feel like a negotiation. Simply recognizing the complexity of the situation places you
ahead of the curve.

Fortunately, there’s more to do than just complain about tight security. APIs do exist
that allow you to query most permissions settings, and you can use these to try to free
your app from some of its constraints. Even when the app is on a device that simply
refuses to run, at least you can communicate the reason to the user and describe what
they could do to fix it, even if that solution involves buying a new phone.

Toward the end of this chapter, we took our first close look at the problems that crop up
when you try to use an API that has changed across different software versions. This is
only the tip of the iceberg: if you are a successful developer who wants to release your
app across the widest possible range of devices, software versions, countries, and
languages, you will need to come to grips with the challenges of porting. The next
chapter will introduce you to these challenges and discuss ways to help resolve them.

Download at WoweBook.Com

Download at WoweBook.Com

10Chapter

Porting Your App
It’s easy to make assumptions when you start programming for BlackBerry. You
probably have a single device that you’re looking at, and any time you have questions
about how BlackBerry devices handle something, you can simply check to see what the
device does. The picture grows far more complicated after you have written your app
and start making it available to other devices. Suddenly, you must deal with different
keyboards, varying screen sizes, unavailable APIs, different carrier Internet settings, and
more. Navigating this can be a nightmare. Or it can be exhilarating. This chapter will
discuss the major items to keep in mind as you write and port your app, and, by
considering them from early on, you can cut down on the grindwork of rewrites and
focus on the joy of bringing your app to everyone.

Understanding Hardware Differences
It’s sometimes hard to believe that BlackBerry smartphones were first released in 2002.
Since that time, the sheer number of devices has exploded, along with the set of
capabilities they offer. To a large degree, this has been driven by RIM’s increasing push
from the business market into the consumer market. For the most part companies are
happy giving everyone the same device, but when it comes to private wireless
subscribers, everyone seems to want a phone that is uniquely theirs.

Processors
Mobile phones have more detailed CPU requirements than computers or other devices.
In order to minimize costs and power consumption, modern phones usually combine
general-purpose computing and cellular operations onto a single chip. RIM uses
specialized chips from a variety of manufacturers to achieve their goals for performance
and costs. Depending on the device model, the chip may come from Intel, ARM, or
Qualcomm. Qualcomm chips are most common on CDMA devices such as those used
on the Verizon and Sprint networks.

Each chip will have its own MHz clock speed. The latest devices are capable of over
600MHz, while older devices operate at far slower speeds. As with PC chips, though,

Download at WoweBook.Com

CHAPTER 10: Porting Your App 350

the megahertz tell only part of the story. Your app’s speed will vary a great deal
depending on how it uses the display, the filesystem, and the network, and a processor
that is efficient at doing these things may run your app more quickly even if it has a
lower MHz rating.

Caution: Don’t assume that MHz always refers to clock speed. MHz is also used to describe
wireless frequency ranges. A ‘‘800/1900 MHz’’ device describes the radio frequencies at which
it can operate, not two different processor speeds.

Processor speeds are most important for games and for computationally complex
applications, particularly scientific and graphical apps. Because apps are written in Java,
you do not have access to as many tricks as you might have when compiling native
code such as C. It’s a good idea to create an early, rough version of your app and then
try to run it on all the devices you are considering to judge whether the processor
speeds will cause an issue. If an app runs a little slowly, you can probably find ways to
make it acceptable. If it runs unbearably slowly, you may need to skip that device,
drastically rewrite the app, or consider profiling and dropping features that slow it down.

Radios
Different BlackBerry devices are designed to work with different wireless technologies.
These technologies restrict the carriers that a phone can use, and also can create subtle
differences in seemingly unrelated behavior.

GSM
Worldwide, Global System for Mobile (GSM) is a dominant technology. GSM phones are
distinctive for including Subscriber Identity Module (SIM) cards. A SIM card carries your
information as a wireless subscriber, independent of the phone you are using. You can
freely move a SIM card between multiple GSM devices and continue to make calls on
your wireless account.

In the US, many GSM devices are locked by the carrier. A locked device will only
connect to that particular carrier; you can give it to another subscriber, but not to the
customer of a competing carrier.

GSM devices generally have very good battery life.

GSM generally describes the voice-calling features of a mobile network. Data networks
are also available to GSM users.

 GPRS offers fairly slow speeds of roughly 50–100 kilobits per second.

 EDGE is a superset of GPRS and has been fairly deployed. Many
different versions of EDGE are available with widely varying speeds,
including more than 200 kbit/s.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 351

 UMTS is the newest and fastest data network with theoretical speeds
above 20 megabits per second. Like EDGE, there are many flavors of
UMTS, and ongoing work will continue improving it. UMTS requires
different radio and tower technologies than standard GSM. It is
available in most major cities to 3G subscribers, and will likely
continue spreading.

CDMA
Code Division Multiple Access (CDMA) is common in North America. CDMA describes
an alternate algorithm for supporting a large number of simultaneous conversations
within a relatively narrow frequency spectrum. CDMA was developed by Qualcomm,
who has continued advancing it through multiple iterations.

Unlike GSM devices, CDMA devices are usually tied to a particular subscriber. If you
wish to trade devices, you will need to contact your wireless carrier to do so.

CDMA devices often offer slightly better voice quality and fewer dropped calls, at a cost
of lower battery life.

As with GSM, several data networks have evolved in parallel with CDMA as the
technology matures.

 1xRTT usually has a maximum transfer speed of about 144 kbit/s.

 Evolution Data Optimized (EV-DO) offers faster speeds with maximums
above 3 mbit/s.

A related technology, WCDMA, also shares some characteristics with GSM and is most
common in Japan.

CDMA devices run on top of different chipsets from GSM devices, and so they actually
require a different operating system. This can lead to some nonintuitive situations; for
example, a Curve 8320 and Curve 8330 look identical, but they will run at different
speeds, and they handle SMS messages differently.

Dual Band
In recent years, interest in so-called world phones has increased. These phones tackle
the challenges met by people who travel overseas and find that they are no longer able
to make calls.

As a solution, these BlackBerry devices actually contain multiple radios: one that
operates along the GSM networks, and another that uses CDMA. Each radio will have
the characteristics that you would expect from a phone that only supported that radio.

In the United States, BlackBerry world phones are sometimes locked so they will only
connect to CDMA networks in the United States and to GSM elsewhere.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 352

iDEN
iDEN was developed by Motorola and is best known in the United States for its use by
Sprint/Nextel. iDEN supports the Push-to-Talk feature, which makes mobile phones
behave more like walkie-talkies. It has borrowed several features from GSM, including
the use of SIM cards.

Again, iDEN phones use a different chipset with different capabilities, and so they
behave differently from similar GSM or CDMA models. The most striking difference is
their different treatment of BES networks. As you may know, you can specify that a
connection should be made using the client-side TCP stack by appending
";deviceside=true" to the end of a URL, and specify an MDS network connection by
appending ";deviceside=false". On most models, if you do not specify either option,
the BlackBerry will first try to make the connection with MDS, and, if MDS is unavailable,
it will fall back to TCP. However, on iDEN devices, the device will attempt to open a TCP
connection by default.

Wi-Fi
Many modern BlackBerry devices include a Wi-Fi antenna in addition to a standard
mobile antenna. This allows users to connect to a Wi-Fi access point instead of or in
addition to a cellular tower.

Wi-Fi is most common on GSM devices; even many recent CDMA devices do not
include Wi-Fi.
Wi-Fi is a completely separate interface from the mobile interface, so if you wish to
make a connection over Wi-Fi you must explicitly do so by specifying “;interface=wifi”
in a URL connection string. You can use APIs to determine whether a particular device
has Wi-Fi and is connected to a network.

External Memory Storage
All recent BlackBerry models include support for MicroSD cards, and some of the very
newest support MicroSDHC. By inserting these cards, users can drastically expand the
amount of storage available on the device. If your application will be storing large files, it
should definitely place them on the SD card if available.

Most newly purchased devices come with a card, and users can later purchase
replacements with larger capacity if desired. The maximum capacity varies depending
on the device model and the operating system version.

Memory storage should have a minimal effect on your porting efforts, but do be aware
that very old devices do not have external storage available, and users might have
removed their cards from newer devices. Try to avoid blindly writing out to the SD card:
a more polished app will first check if the card is available by checking
FileSystemRegistry.listRoots(). If unavailable, the app should fall back on writing to
internal storage or display a friendly error message asking the user to run the app again
with a valid card inserted.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 353

Keyboard
In order to support different form factors, RIM has created several different types of
keyboards for use in its phones.

Keyboard Profiles
BlackBerry devices made their reputation by offering full QWERTY keyboards, similar to
those found in Figure 10-1, at a time when other phones almost universally used
awkward 12-key multi-tap text entry. The QWERTY keyboard lets you directly enter
every letter of the alphabet by pressing a single key, and allows access to common
special characters through use of an ALT key. A hardware SYM key offers more unusual
characters. Slightly different QWERTY keyboards can be found on different models,
adding or removing particular nonletter keys.

Figure 10-1. A BlackBerry with a QWERTY keyboard

Later, RIM released a new keyboard technology dubbed SureType. A SureType
keyboard is more compressed than a full QWERTY keyboard, and displays multiple
letters on each key, as shown in Figure 10-2. The SureType software examines the

Download at WoweBook.Com

CHAPTER 10: Porting Your App 354

letters you have pressed and tries to guess what word you meant to enter. For example,
if you type 112318, it will assume you mean to type “return”, since that is the only
English word that can be constructed out of the possible letters. SureType will enter the
text “return” and also display a pop-up window that lists other possible words; you can
select one of these by scrolling and clicking the one you want. This technology is similar
to those found on more traditional phone designs, such as iTap and T9.

Figure 10-2. A BlackBerry with a SureType keyboard

When using a SureType keyboard, you can also enable Multitap mode. This makes the
keyboard behave more like a traditional multi-tap phone keypad that cycles through the
available letters when you press each key. To enter an “e” you would press 1 once; to
enter “r” press 1 twice. To type “return” in Multitap mode, you would type “11 (pause)
1231188”.

Touch-screen BlackBerry devices such as the Storm do not have a physical keyboard at
all. Instead, they can display one of several virtual “soft” keyboards. This can allow more
flexibility and comfort to a user. For example, a full QWERTY keyboard might display
when the phone is in landscape mode (held horizontally), but a SureType keyboard
might display when the phone is in portrait mode (held vertically). A number-only version

Download at WoweBook.Com

CHAPTER 10: Porting Your App 355

can display when dialing a phone number or entering a PIN. Users generally have the
option to show or hide the keyboard in order to manage the amount of visible space
shown.

Detecting Keyboards
The Keypad API allows you to detect at runtime what keyboard is present on the device.
Call Keypad.getHardwareLayout() to return one of the enumerations found in Table 10-1.

Table 10-1. BlackBerry Keyboards

Name Description Mode Hardware
Series

OS
availability

Physical?

HW_LAYOUT_32 38-key
keyboard

QWERTY 87xx 4.1 Yes

HW_LAYOUT_39 39-key
keyboard

QWERTY 88xx 4.3 Yes

HW_LAYOUT_LEGACY 30-key
keyboard

QWERTY 57xx, 58xx 4.1 Yes

HW_LAYOUT_PHONE 34 keys with
phone
keyboard
layout

QWERTY 65xx, 67xx,
72xx, 75xx,
and 77xx

4.1 Yes

HW_LAYOUT_REDUCED 23-key
keyboard

SureType 71xx 4.1 Yes

HW_LAYOUT_REDUCED_24 24-key
keyboard

SureType 81xx 4.2 Yes

HW_LAYOUT_TOUCHSCREEN_12 12-key
phone-style
keyboard

Dial pad 95xx 4.7 No

HW_LAYOUT_TOUCHSCREEN_24 24-key
keyboard

SureType 95xx 4.7 No

HW_LAYOUT_
TOUCHSCREEN_29

29-key
keyboard

QWERTY 95xx 4.7 No

Download at WoweBook.Com

CHAPTER 10: Porting Your App 356

Note: Starting with device software version 5.0, many of the HW_LAYOUT_TOUCHSCREEN
keyboards also have special versions for particular languages, such as
HW_LAYOUT_TOUCHSCREEN_12A for 12-key Arabic and HW_LAYOUT_TOUCHSCREEN_35J for
Kana Kapanese.

For most physical keyboards, the hardware layout directly corresponds to the physical
device. On touch-screen devices, this allows you to determine which virtual keyboard is
currently displaying.

In some cases, you won’t care about the specific keyboard that is being used, but rather
whether a specific key is available. You can use the following static Keypad methods to
make this determination.

 hasCurrencyKey() shows whether there is a dedicated key for entering
currency symbols.

 hasSendEndKeys() indicates whether the device has dedicated keys for
starting and ending phone calls.

 isOnKeypad(char ch) allows you to check whether a specific character
is available on this keyboard.

 isValidKeyCode(int code) checks if the provided key code exists for
this keyboard.

Changing Keyboards
On touch-screen devices, you can use the VirtualKeyboard class to determine whether
the keyboard is displaying, and also to force it to hide or show.

isSupported() returns a boolean that describes whether the device supports virtual
keyboards. If not, the other methods will have no effect.

setVisibility() allows you to specify whether the keyboard should display when this
application’s context has focus. VirtualKeyboard supports the following modes.

 HIDE: The keyboard should be hidden at the next opportunity.
Afterward, it will automatically be shown or hidden as normal.

 HIDE_FORCE: The keyboard should always be hidden.

 IGNORE: Keep track of keyboard visibility, but do not automatically
show or hide it.

 RESTORE: Return keyboard to its previously saved state.

 SHOW: Display the keyboard at the next opportunity. Afterward, it will
automatically be shown or hidden as normal.

 SHOW_FORCE: Always show the keyboard.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 357

getVisibility() will return the currently set keyboard visibility state.

VirtualKeyboard can only be used by BlackBerry CLDC applications. If developing a
MIDlet, you have access to VirtualKeyboardControl, which provides similar methods for
querying, showing, and hiding the virtual keyboard. You can obtain a
VirtualKeyboardControl by creating a BlackBerryCanvas or BlackBerryGameCanvas and
retrieving the virtual keyboard from getControl() or getControls().

Porting Impact
If you are developing business or productivity apps that mainly involve text entry, you
may be able to ignore the keyboard issue altogether. The native BlackBerry text entry
fields are well integrated with keyboard behavior, automatically handling QWERTY or
SureType keys, so no extra effort is necessary on your part.

However, if you are developing a game or have a highly customized nonBlackBerry user
interface, keyboards are much more likely to be an issue. For example, you might
control a game by pressing four buttons, but those four buttons might not exist on all
devices.

You can use the methods described in this section to dynamically query the phone and
determine what the keyboard layout is like, and then make an appropriate decision
about how to handle incoming key events. Setting up such a system can take some
effort, but in the long run it will be much more efficient than creating a new version of
your app for every keyboard type.

If you support touch-screen devices, carefully consider the user experience. If you write
a game that is entirely touch-based, you might want to forcibly hide the keyboard so the
full screen is always available for play. If your game supports a high-score name entry,
you might want to show the keyboard on that screen while hiding it everywhere else.

Hardware Features
Every device has some sort of CPU, radio, and keyboard. However, only some devices
have cameras, and only some have GPS. If your app requires these features, or
optionally supports them, you will need to determine whether they are present on the
device.

Determining by Model Number
Even before you install the app, you should be able to determine the phone’s
capabilities by looking at the device model number. This can be very useful if you have a
web page that allows users to click through their phone before they download your app.

BlackBerry devices have four-digit model numbers, such as 8120 or 9530. The first two
digits are the series number. These identify broad families of devices, which often share
a similar marketing name. For example, the 8300, 8310, 8320, 8330, and 8350i are all
part of the 8300 series and are known as BlackBerry Curve. All devices in a particular

Download at WoweBook.Com

CHAPTER 10: Porting Your App 358

series share the same form factor and physical characteristics. For example, all
BlackBerry Curve devices have a QWERTY keyboard, a trackball, and a 2-megapixel
camera.

The final two digits for modern BlackBerry devices complete the model number, and
identify what radio technologies are available on the device. Radios include both the
cellular technology and also Wi-Fi and GPS.

 xx00: GSM

 xx10: GSM with GPS

 xx20: GSM with Wi-Fi

 xx30: CDMA

 xx50: CDMA with Wi-Fi

 xx50i: iDEN

For example, the 8120, 8320, and 8820 all look different, but each is a GSM-compatible
device with Wi-Fi capabilities.

The model-number naming scheme can be inconsistent at times, particularly on older
models, so you should verify with your particular device early in a project if you are
depending on the presence of certain capabilities.

Determining by API
Several methods can be used to determine a device’s identity or capabilities at runtime.

 DeviceInfo.getDeviceName() reports the model number of the device,
with an optional suffix describing the radio type.

 DeviceInfo.hasCamera() reports whether a camera is physically
present on the device. This does not necessarily mean that your app
will have access to it.

 DeviceInfo.getTotalFlashSize() reports the maximum storage
capacity of the flash filesystem.

 WLANInfo.getWLANState() reports whether the device is connected to
Wi-Fi.

 RadioInfo.getNetworkType() reports the cellular network technology,
which may be NETWORK_802_11, NETWORK_CDMA, NETWORK_GPRS,
NETWORK_IDEN, or NETWORK_UMTS.

 LocationProvider.getState() reports the GPS state, which will be
OUT_OF_SERVICE if GPS is not present, and either AVAILABLE or
TEMPORARILY_UNAVAILABLE if the phone has GPS.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 359

Porting Impact
If your app requires certain hardware capabilities to function, you should start
communicating this fact well before the user downloads the app. It’s frustrating to find
that something doesn’t work, and even worse if someone has paid for it.

You might consider releasing different versions of your app for different devices, based
on whether or not they support particular features. For example, you might make a
version of MediaGrabber that omits camera support for devices like the 8800 that do not
include a camera. This would slightly decrease the size of the app, and could prevent
confusion if you clearly state that the app does not support taking pictures.

To some extent, though, MediaGrabber already does a good job of examining device
capabilities by checking the presence of recording options when building its options
menu. Many developers will prefer to go this route. In such cases, the best strategy is
usually to check for supported device statistics when the app first starts. Depending on
what you find, you can enable or disable particular app features, and also display
messages to users if you want to advise them of what they may be missing out on.

Screen Sizes
Possibly the most important difference between BlackBerry devices, the screen
resolution will determine what art assets are available for use, what size of sprites to
create, how much text you can fit on a screen without wrapping, and so on.

You can generally reuse an application’s design between two different BlackBerry
devices that share the same screen resolution. If the resolutions are different, you should
decide whether a redesign is necessary. The BlackBerry CLDC UI components generally
adjust well to multiple screen sizes so long as you stick to simple organizations like the
VerticalFieldManager. However, elaborate user interfaces that look great on one screen
size may be illegible on another.

In addition, touch-screen devices can be rotated into either portrait or landscape mode.
Here too, so long as you stick to common UI designs, your app will probably function
well in both orientations. Otherwise, you have a few options.

 Lock the screen into a particular orientation. You can do this by calling
Ui.getUiEngineInstance().setAcceptableDirections(), passing in
one of the direction orientations from the net.rim.device.api.system.
Display class, such as Display.DIRECTION_LANDSCAPE or
Display.DIRECTION_PORTRAIT.

 Detect the device orientation by calling Display.getOrientation().
This will return one of the enumerated direction values listed above.
Then, display an appropriate UI for that orientation. You might need to
switch to another UI if the user rotates while on the same screen.

Some common BlackBerry devices and their screen resolutions are shown in Table 10-2.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 360

Table 10-2. Screen resolutions

Device Series Horizontal Pixels Vertical Pixels Rotates?

71xx/81xx 240 260 No

82xx 240 320 No

83xx/87xx/88xx 320 240 No

89xx/96xx 480 360 No

90xx 480 320 No

95xx 360 480 Yes

Understanding OS Differences
Hardware capabilities are locked in stone. If your device doesn’t have a camera, it won’t
ever have a camera. The OS, though, is much more fluid, and can evolve over time.
Because your software runs on top of the OS, you must carefully note the OS availability
and features as you port to different phones.

OS Availability and Updates
BlackBerry can be the gift that keeps on giving. RIM has traditionally released updated
versions for every BlackBerry device. Sometimes these are patches that fix bugs and
improve performances; other times, they add significant new features.

Updates are released by RIM, but will be approved by the wireless carrier or enterprise
prior to being made available to end-users. Updates from wireless carriers are optional,
and can either be installed through the BlackBerry Desktop Manager or over the air.
Enterprises have the option of pushing out forced updates to newer software versions.

BlackBerry has a far higher proportion of power users than most phones, and it is not
uncommon for people to seek out and install unapproved device updates in hopes of
getting better features or performance. The BlackBerry toolset allows a user to later
downgrade to a previous software version, so there is little risk in doing so.

Determining the Version
You can find a device’s current software version by clicking Options and then About.
The current OS software version will display towards the top, followed by the Platform
version. Both these versions can change as part of an update.

At runtime, you can find the version by calling DeviceInfo.getSoftwareVersion(). When
parsing this string, remember the four-part format of the version number; you cannot

Download at WoweBook.Com

CHAPTER 10: Porting Your App 361

simply cast it to a double and compare to a desired version. Instead, examine each
numbered section individually to find what the version is.

If you are hosting application downloads or help on your own web server, you can
inspect the HTTP headers to see what version a phone is using. This is typically
contained in the User-Agent header, which generally will have a value similar to
"BlackBerry9530/4.7.0.148 Profile/MIDP-2.0 Configuration/CLDC-1.1
VendorID/105".

Caution: The BlackBerry browser includes options to masquerade as Firefox or Internet
Explorer. If the user has selected one of these options, the User-Agent string will be replaced
with a fake version. Also, users may be using a third-party browser such as Opera Mini.

Version Effects
OS versions are listed in a four-part version number. The first two parts describe the
major feature set, the third number is the minor feature set, and the final number
describes the patch version. For example, an upgrade from 4.7.0.122 to 4.7.0.148 will fix
bugs but not change behavior. However, an upgrade from 4.2.1.130 to 4.5.0.110 will
significantly affect the device’s capabilities.

The OS version has a direct correlation to API availability. Throughout this book, I have
occasionally made note of certain features becoming available in particular OS versions.
The terms operating system and device software are often used interchangeably. Patch
numbers have no impact on API behavior.

As described in Chapter 9, the OS version can also impact the default permissions.
Certain operations that used to work in prior versions of the OS may not initially function
due to more restrictive permissions settings.

Porting Impact
From your perspective, the single most important impact of the OS version is program
compatibility. RIM devices are backwards compatible; that is, a program that runs on
the 4.2 version of software will also run on the 4.5 version. However, they are not
forwards compatible. You cannot run a program designed for newer software on older
software.

Note: Compatibility is generally determined by API usage, not the actual compiler. If you
compile an app using the 4.5 version of the BlackBerry JDE, but only use APIs from version 4.2,
the app can run on a 4.2 handset.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 362

This leads to a quandary in writing portable software. You cannot write something like
the following pseudocode; the mere existence of an API is what makes a program
incompatible, not the moment you call it.

if (softwareVersion >= requiredVersion)
{
 callFutureAPI();
}

You have a few strategies available to deal with this problem.

The Lowest Common Denominator
Early on, determine the oldest BlackBerry software version that you must support. Write
the app using this version of the BlackBerry JDE, only using APIs from this version or
earlier.

You will still need to test your app on multiple versions; even though your app will run on
all future devices, certain aspects may behave differently. If you find discrepancies, you
can test the device software version at run-time and behave appropriately depending on
the version.

 Pros: This is the simplest approach. At the end of the project, you will
have a single version of the app that runs on everything you want.

 Cons: Your app may be missing out on useful features from future
versions. This could lead to a disadvantage if your app has
competitors.

Multiple Builds
Suppose you have an app that uses the network a lot. It would be really nice to use the
Wi-Fi connection if it is available. Coding good Wi-Fi support is very difficult in OS
versions prior to 4.3. However, many of your users never upgraded to 4.3.

In this scenario, you might consider making two different versions of your app, one with
Wi-Fi support and one without. This will ensure that your app gets the widest possible
usage, and that each user can get the most out of their app.

If you take this approach, I highly recommend putting all OS-specific code in a few
particular files or packages, rather than scattering them throughout your app. This will
make it much easier to maintain two versions of the software in parallel, since you can
share the majority of the code between both versions.

 Pros: This offers a high reach and a high level of performance.

 Cons: This is the most complicated approach. If you support multiple
OS levels, the complexity of your source control and build systems
can rapidly explode.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 363

Mandate Change
Your app simply might not make sense if a particular API feature is not available. Or
perhaps the app would run on a previous OS version, but would offer a very poor
experience. As long as you are willing to accept the consequences, it’s perfectly
acceptable for you to mandate a particular OS version and require users to have at least
that version installed in order to use your app.

As mentioned previously, BlackBerry users have a far easier job than most phone
owners when it comes to upgrading their operating system. If a newer version of device
software is available, odds are that many users have already upgraded to it, and, if your
app is sufficiently compelling, you may convince the remainder to take the plunge.

 Pros: You only need to maintain a single version of your app. It offers a
superior product.

 Cons: Provides the smallest potential user base. It may alienate users
who cannot upgrade their devices or do not wish to do so. The latest
operating systems are not available for older devices.

Understanding Language Differences
Once you write a great app, you can get a large audience. In order to get the largest
audience, though, you cannot confine yourself to one particular language or one
particular country. BlackBerry has a significant global presence, and only a fraction of
those users live in your nation.

If you try to add multi-language support to multi-device and multi-OS support, you can
enter a nightmare where any little change needs to be copied and tested on dozens or
even hundreds of possible combinations. Fortunately, RIM offers a decent set of tools to
support localizing your app for different markets.

Localization Overview
The terms localization, internationalization, and i18n are often used interchangeably to
describe the process of translating a product into a different form for different markets.
Translation is an important part of this process; you probably would not choose to use a
Greek-language app if you could not read Greek, and likewise a Greek speaker would
probably not choose to use an English-language app if they couldn’t read English.

Localization goes deeper than simple translation. Different cultural groups have different
associations with images and sounds that you should keep in mind as you develop your
app. For example, many Americans would look at a red octagon and assume that it
means “Stop.” However, many Chinese users would not have that same association,
which could lead to confusion and frustration. Part of localization is to make appropriate
substitutions, or, even better, to avoid ambiguity in the first place.

As noted previously in this book, a locale is described as a two-character language code
combined with an optional country code. English words can be spelled differently in the

Download at WoweBook.Com

CHAPTER 10: Porting Your App 364

United States than they are in Great Britain, so you can choose to provide different
words for the “en-US” locale than you would for “en-GB”. In some cases, you might only
offer a single “en” locale that would be applied to all English-speaking users. Similarly,
English and French are both official languages in Canada, so a Canadian user might
select between “en-CA” and “fr-CA”.

Adding Multi-Language Support
A fair amount of effort is required to internationalize your app, but it will save you far
more time and grief later on.

Defining Resource Files
Follow these steps to add support for internationalized text to your app.

1. Click “File”, “New”, “Other…”, “BlackBerry Projects”, “BlackBerry
Resource File”.

2. Navigate to the package where your app is located. If your app uses
multiple packages, I recommend selecting the highest-level common
package.

3. Give the file the same name as your app, with an extension of .rrh. For
example, if your app is named BonjourWorld, name it BonjourWorld.rrh.

Note: rrh stands for Resource Header. This ‘‘header’’ file is similar to a header file in C or C++.

4. Observe that two files were created in your selected package with
extensions .rrh and .rrc. rrc stands for Resource Content.

5. If you’d like to add support for other languages now, repeat steps 1–3,
but this time append the language code to the app name and add the
.rrc extension. For example, to create a US English language file, create
BonjourWorld_en_US.rrc; to create a generic English language file,
create BonjourWorld_en.rrc.

6. Double-click the .rrh file to open it. You should see a grid similar to that
shown in Figure 10-3.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 365

Figure 10-3. Localizing an application

7. Click “Add Key”. Enter the name of your localized resource.

Tip: I prefer to prefix my keys with the string "I18N_" to make them easier to find with
Eclipse’s auto-complete feature. Try to pick descriptive key names that indicate the meaning or
role of the text instead of its default value. For example, use I18N_INITIAL_GREETING
rather than I18N_WELCOME_TO_MY_APP.

8. Repeat step 7 for all the text you wish to internationalize in your app.

9. Provide a default translation for every key listed. You will probably use
your native language for this, or text provided by a designer.

10. For each language that you added previously, a tab will display at the
bottom of your translation window. You can provide translations for all
of these now, or leave them alone until later on.

11. Save the resource file. If you have not configured Eclipse to build
automatically, right-click on your BlackBerry application project and
select “Build Project”.

Behind the scenes, the BlackBerry Plug-in will generate a Java interface file that
contains all the keys you defined. You can now add this text into your source files
instead of using hard-coded literal strings.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 366

Understanding Bundles
A set of resource files define a resource bundle. The bundle collects together a set of
localizable resources. The bundle contains all possible values to be translated, identified
by their key, and all of the supplied translations.

The locales within a bundle are hierarchical, as shown in Figure 10-4. At the root level
are the default translations that will be shown for any unknown locale or for locales that
do not override the key. In the Figure 10-4 example, “Goodbye!” would be provided as
the “Exit” translation for “fr”, “en”, and “en_GB”. If a user’s locale is not present or does
not contain a desired key, Java will search up the hierarchy until it finds a match.
Therefore, the “Title” for “en_US” will translate as “Airplane for Me”. Likewise, the “Exit”
for “cs_CZ” will translate as “Sbohem!” since “cs” is above where “cs_CZ” would be.

Figure 10-4. A hierarchical resource bundle

This system has the advantage of reducing the total amount of data required for
complete translations. For example, most US and UK translations will probably be the
same. Rather than duplicate the same texts for both locales, you can define all the
common elements in “en”, and only override the cases where you need to use a variant
spelling.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 367

Adding Resources to Java Classes
Modify your class declaration to implement the generated resource file. The file will have
the same name as your app with the word Resource added to the end, as in the
following example.

public class BonjourWorld extends UiApplication implements BonjourWorldResource

To make it more convenient to access translated text, include a static ResourceBundle
member in your class that loads the bundle. By implementing the resource file, you gain
access to the BUNDLE_ID and the BUNDLE_NAME that uniquely identify this resource bundle.
I like to use a short name here, as shown below, since it cuts down on typing if a lot of
text must be translated.

static ResourceBundle r = ResourceBundle.getBundle(BUNDLE_ID, BUNDLE_NAME);

Now, all that’s left is the actual translation. Any place where you would ordinarily use a
String, you can look up the proper translation from the ResourceBundle. Your resource
interface provides all the keys you added as integer enumerations. If you follow a
consistent naming scheme, you can type the prefix (like “I18N”) and then select the
proper key from the drop-down selection box. A sample localization is shown below.

add(new LabelField(r.getString(I18N_PROMPT)));

When this line executes, Java will check to see what the current locale is. It will then
check the bundle for a match, walking up the hierarchy tree if necessary. Once it finds
the best match, it returns the String, which is then handled by the program as though
you entered it literally.

Testing Languages
The BlackBerry device simulators tend to be a little skimpy in language support.
Depending on your device, you may only have access to US English and UK English.
You can still use these languages to verify the correct functioning of your localization
effort.

To switch your language, open Options and then the Language menu. Of course, these
may have different names depending on the current language setting of the device. UK
English uses “Localisation” instead of “Language.” In the Language screen, you can
select the language or dialect you wish to use from the drop-down menu.

Note: You may need to close and restart your application in order to test a new language
setting. You can completely close the application by pressing Menu and then Close.

Many more languages are usually available for the device, although it requires a little
effort to get them. Each language has its own dictionary, menus, and other resources,
so unnecessary languages are typically removed as part of the initial Setup Wizard. You

Download at WoweBook.Com

CHAPTER 10: Porting Your App 368

can check for available languages following the same steps you took on the simulator.
To load additional languages, follow these steps.

1. Download a recent version of BlackBerry device software from your
wireless provider or your enterprise and install it on your PC.

2. Open the BlackBerry Desktop Manager.

3. Select Application Loader and then Add/Remove Applications.

4. Select the checkboxes for languages you wish to load. You may also
choose to remove languages here.

5. Select “Next” and follow the prompts to load the languages.

After your phone reboots, the new languages will be available for testing.

Managing Resource Bundles
Using a single resource bundle is a no-brainer for a simple app with a single class file.
Most real-world apps, though, will contain substantially more. Depending on your needs,
there are several strategies you can consider.

One Bundle, Many Implementors
You can follow the steps given above, changing all your class files that contain
localizable resources so that they each implement the same generated bundle interface.

 Pros: This approach simplifies translation efforts; because all your
strings are located in a single .rrc file, none will be overlooked. This
approach also requires the smallest amount of typing, since you can
directly reference all the resource keys within each class.

 Cons: If you have a large number of resource keys, it can become
confusing to keep them all straight. This approach will slightly increase
the size of your final executable, especially if you have a large number
of class files.

One Bundle, Single Implementor
You can follow the steps given above to implement the generated bundle in a single
class. Give the ResourceBundle member public, protected, or package visibility. Other
classes can then access translations through the implementing class, as in the example
below.

String translated = BonjourWorld.r.getString(BonjourWorld.I18N_HELP);

This approach has the same pros and cons listed above, except that the size of the final
executable will be slightly smaller, and a bit more typing is required.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 369

Multiple Bundles
If you prefer, you can create multiple .rrh files, each of which will generate its own
bundle. Each class can then choose which bundle class to implement, or even
implement multiple bundles.

 Pros: You can easily group together the localizable resources for a
particular screen or area of the program. Implementation is usually
easy, as you have only a small set of key options for each class and
little extra typing.

 Cons: It can be difficult to track the resource files, making it easier to
overlook particular translations. This approach will generally create
larger executables than the previous two.

Other Localization Concerns
Once you understand the basics of translation, you will be well prepared to handle other
localization needs that your app may require.

Dealing with Images
Although the resource files are oriented toward text translation of words and phrases,
you can also use them for images and other nontext resources. Imagine creating a key
called I18N_IMAGE_ALERT_ICON. The default English value for this key might be
"/YellowExclamation.png", while the Chinese value might be "/ChAlert.png". You can
then use code like that shown below to display the proper image for the user’s locale.

String alertPath = r.getString(I18N_IMAGE_ALERT_ICON);
Bitmap alert = Bitmap.getBitmapResource(alertPath);

This approach works best if your app only has a few images, all relatively small.
Otherwise, supporting multiple images for many locales can quickly increase your app’s
size. In those cases, you might consider the following options.

 Place the resources in separate library COD files for each language.
Users can choose to load the languages that they need, and not take
up space for unnecessary languages.

 Do not place images in your app at all. Instead, store them on a server,
and have the app download them as needed. This will make the app a
bit slower and use more network resources, but also gives you more
flexibility if you later decide to change images.

Locale-aware Formatting
Different languages and countries have more differences than just their words. They also
use different conventions for displaying dates (such as 5/30/10 or 30/5/10), numbers

Download at WoweBook.Com

CHAPTER 10: Porting Your App 370

(such as 13,500.42 or 13.500,42), plural forms, and subject-verb-object placement. If
your app programmatically generates such text, translating words will not suffice when
localizing to a new country.

Java ME has traditionally lacked good support for such localization, forcing developers
to create their own solutions or build custom versions of their apps for each locale. More
recently, JSR 238 with the javax.microedition.global package has begun to offer a
more standard way to treat some of these tasks. However, BlackBerry has included
many familiar classes from Java SE and Java EE that provide powerful and fairly simple
tools for flexible localization. These classes, which were originally located in java.text
or java.util, can all be found in net.rim.device.api.i18n. Some of the most useful are
listed below.

 SimpleDateFormat lets you format and parse an abstract time
representation, provided by Calendar, into a natural style for a given
locale. Despite the name, it is very flexible, offering strings of varying
length (such as “6/10/10” as opposed to “June 10th, 2010”) and
structure (such as “15:00” as opposed to “3 o’clock PM”).

 MessageFormat allows you to define flexible string constructions that
can be dynamically built with varying data at a later time. For example,
a MessageFormat for a particular locale might have the pattern “Only {0}
more shopping {1} until Guy Fawkes Day!” You could then format this
pattern with the variables 1 and “day”, or with 10 and “days”. In
another language, the order of the words would likely change, but the
appropriate variables would be inserted into the {0} and {1} fields.

Dynamic Localization
In almost all cases, your app should use the current device locale setting. However,
certain apps might allow the user to choose their own locale. For example, a city travel
guide might include an option to switch languages so you could hand your phone to a
native speaker and have them pick out a restaurant for you. Switching locales within the
app can also make it easier to test the display of different languages without needing to
exit the app and switch device languages. To change the locale, retrieve the Locale you
want to use, and then pass it to setDefault(). Locales can be retrieved by name or from
an enumeration. The two examples below are equivalent.

Locale.setDefault(Locale.get("cs"));
Locale.setDefault(Locale.get(Locale.LOCALE_cs));

Porting Impact
You should think early on about whether your app will require localization. If you’re
confident that its use will be so narrow that localization is unnecessary, ignore it.
Otherwise, the earlier you start addressing localization, the more easily it will go.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 371

If you are working from a specification, you might know before you start coding exactly
what text will be used by the app. This is the best situation to be in: you can define all
your strings even before you start writing code, inserting the keys in the app as you write
it.

If you don’t know the text up front, create a blank resource bundle at the start of your
project. As you write your app, create keys for any user-visible text you create. Provide a
default translation in your native language; don’t worry about other languages for now.
Once the app is done, you can pass off the keys to a translator to get the necessary
translations. More likely, your app will initially be released with only your native language
supported, but, once you have demand from other countries or languages, you’ll be able
to meet their needs almost instantly.

In practice, most programs (including MediaGrabber) start off with hard-coded String
literals. Towards the end of the project, or even after release, someone will go through
the source code to find all visible text and convert it to using resource bundles. This
approach requires the greatest total effort, but it does mean that the initial stages of the
project can be more legible than they would be with resource keys.

While designing the visual look of your app, keep localization needs in mind. The length
of text will probably change drastically depending on the language used; going from
English to German will greatly increase the text length, while going from English to
Japanese may shrink it. As such, text might flow to multiple lines or be cut off. Design
your UI flexibly so you can accommodate these changes.

Avoid including text within your images: for example, don’t include the word “Stop” in a
stop-sign graphic. Doing this would force you to create a new image for every language,
which takes up much more space than creating new text. Instead, consider creating
blank versions of your images, and then drawing text on top of the images at run-time.
Even better, pick images that are self-explanatory, or place labels outside the image.

Try to be culturally sensitive. Images, sounds, and phrases that are innocent or funny in
one culture might be very offensive in another. Avoid using casual speech, idiomatic
phrases, and dialect. This doesn’t mean that your app shouldn’t have personality, but, if
your app uses language too narrowly, it won’t make a good impression on foreign users.

Understanding Platform Differences
Apps used to be a sideshow; now they can take center stage. Consumers and
businesses increasingly base their phone purchase decisions on what applications are
available. If you write a great app, people will hear about it, and you may soon hear a
clamor from other users to support them. Other smartphone platforms such as Android,
Windows Mobile, and iPhone should have the power to run any app that would run on
BlackBerry; feature phone platforms like Java ME and BREW may need to be evaluated
to determine whether they can handle your app.

Porting to another platform is an order of magnitude more difficult than porting to
another BlackBerry. However, by following some basic tips, you can make this process
less painful.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 372

Forget Porting the UI
Each phone platform has its own UI toolkit, and each is incompatible with everything
else. Good programmers have learned the importance of reusing code, and will try to
take advantage of the UI code they have already written. Don’t. The effort involved in
translating between platforms is usually greater than that required to rewrite the UI from
scratch. Additionally, by using a phone’s native UI, your application is more likely to look
and feel like the native apps that the phone’s users are accustomed to.

Functionally Divide the App
Taking a chunk of code and translating it to a new platform can be an overwhelming,
frustrating process. Instead, follow good object-oriented design techniques. Divide your
application into components. Where possible, cleanly separate concerns through
strategies like the Model-View-Controller paradigm. Diagram your app’s structure, and
ensure it makes sense.

You will then be able to translate individual components, a far simpler task. You should
be able to test each individual component prior to finishing the entire app. For example,
if your app contains networking operations, pull those operations into a separate
networking component and write unit tests to verify that you receive the same data on
each platform.

Some components, like those that contain pure business logic, should be fairly
straightforward to port; you will just need to translate them into a new programming
language. On the other hand, components that contain a lot of platform-specific
functionality such as user interface or persistent storage will require more substantial
changes. Be prepared to spend extra time making these changes and testing to ensure
they work.

Identify Language Reuse Opportunities
Java ME and Android both use versions of Java. You may be able to reuse nonUI code
between these platforms. If so, consider creating a separate JAR project that contains
your application engine, business logic, or other generic Java code.

Be aware, though, that many Java APIs are not shared between these platforms. For
example, none of the javax.microedition packages is available on Android. Conversely,
Android is based on a later version of Java, so many of its basic Java APIs are not
available for BlackBerry.

Back to the Drawing Board
Many apps that are ported to multiple platforms fall into the trap of the lowest common
denominator. If you only support the features present on every platform, you miss out on
many opportunities for taking advantage of the unique advantages each phone has to
offer.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 373

You shouldn’t re-create your app for every individual phone—that would take far too
much effort for far too little return. But do take a fresh look whenever you are
considering moving to a new platform. It may be an opportunity to do something new,
fun, and interesting, instead of the drudgery of a boring port.

App: Localized Text
MediaGrabber’s simple UI can be run on a wide variety of devices without requiring
changes to the code. By using the CLDC UI framework, the same code works fine on
touch-screen and QWERTY devices. Throughout the book, I have been careful to test
for feature support within the app, so no extra work is required to support the presence
or absence of a camera or other piece of hardware.

MediaGrabber does make use of APIs from version 4.5, but none from later OS versions.
It seems reasonable to require 4.5 as a minimum version as most of the consumer-
oriented BlackBerry devices have at least this version available.

Throughout this book, I have been happily putting hard-coded strings into the
MediaGrabber source. This makes the samples easier to read and understand
(assuming English is your native language), but, as you have seen in this chapter, it also
limits the potential audience for the app.

Fortunately, there are still a manageable number of classes to work with. While a fair
amount of code is required to internationalize the app, it’s a very simple process.

Create the Resource Files
Following the steps given in the section “Adding Multi-Language Support,” create a
new resource header file called MediaGrabber.rrh. Provide .rrc files for each language
you would like to support. I have chosen to use “_en”, “_en_US”, “_en_GB”, and “_cs”,
but you can include any other language you would like to see.

Create keys for all visible strings in MediaGrabber and copy the existing string values
into the default MediaGrabber.rrc file. You can either do this in the Eclipse grid editing
window, or directly edit the .rrc file by hand if you prefer. If you edit the .rrc file outside of
Eclipse, you might need to refresh or restart Eclipse for the changes to be recognized.

A partial set of the English translations are shown in Listing 10-1, covering the main
MediaGrabber class file as well as the initial UI from ChoicesScreen.

Listing 10-1. Initial Default Translations for MediaGrabber

I18N_CHAPI_EMAIL_TEXT#0="Sent to you by CHAPI";
I18N_CHOICE_PLAY_MEDIA#0="Play Media";
I18N_CHOICE_RECORD_SOUND#0="Record Sound";
I18N_CHOICE_RECORD_VIDEO#0="Record Video";
I18N_CHOICE_TAKE_PICTURE#0="Take a Picture";
I18N_CONTACT_SHARED_MEDIA#0="You have shared media with them.";
I18N_CONTACT_SHARE_MEDIA_PROMPT#0="No sharing yet.
Would you like to send media?";

Download at WoweBook.Com

CHAPTER 10: Porting Your App 374

I18N_CONTACT_VERIFY_SHARED#0="Verify Media Shared";
I18N_INSTRUCTIONS#0="Please enter a location,
then select a choice from the menu.";
I18N_PLAY_MEDIA_TITLE#0="Playing {0}";
I18N_PROMPT_LOCATION#0="Location:";

Notice the {0} at the bottom. This indicates a place where we will want to dynamically
construct the final displayable string based on other variables.

Provide any translations you like at this point. The initial Czech translations are shown in
Listing 10-2. Notice that Unicode characters are supported by simply entering "\uXXXX".
You can also copy and paste Unicode characters directly into the Eclipse editing
window. Unicode support allows you to port to any locale, including traditionally difficult
ones like Chinese and Arabic.

Listing 10-2. Initial Czech Translations for MediaGrabber

I18N_CHAPI_EMAIL_TEXT#0="Zasláno na Vá\u0161 CHAPI";
I18N_CHOICE_RECORD_SOUND#0="Záznam zvuku";
I18N_CHOICE_RECORD_VIDEO#0="Video záznam";
I18N_CHOICE_TAKE_PICTURE#0="Vyfotografovat";
I18N_CONTACT_SHARED_MEDIA#0="Máte sdílená média.";
I18N_CONTACT_SHARE_MEDIA_PROMPT#0="Dosud \u017Eádné sdílení. Chcete poslat média?";
I18N_CONTACT_VERIFY_SHARED#0="Ov\u011B\u0159te Media Sdílená";
I18N_INSTRUCTIONS#0="Prosím, zadejte umíst\u011Bní, vyberte volbu z menu.";
I18N_PLAY_MEDIA_TITLE#0="Hra {0}";
I18N_PROMPT_LOCATION#0="Poloha:";

Tip: Most of the above translations come from Google Translate. However, translations by
native speakers are always superior to those generated by a machine, which can have a
difficult time capturing nuances or determining different parts of speech. If you are creating a
commercial app, hire a professional translator. If you are releasing a free or open-source app,
you can often find volunteers who will do a good job. When using volunteers, it’s a good idea to
get input from multiple sources so you can determine the best and most common translations.

Modify Source
For the most part, the changes to MediaGrabber are very straightforward. Simply follow
the instructions in “Adding Multi-Language Support” to make each file implement
MediaGrabberResource, obtain a ResourceBundle, and look up strings dynamically.

One wrinkle occurs when it comes to building up strings that include variables. Here,
you want to define a pattern in your translation file, with placeholders defined with a
numbered sequence like {0}, {1}, and so on. Then, instead of manually concatenating
strings, use the MessageFormat class to apply the variables to your translated pattern.
Listing 10-3 contains the complete internationalized class for ChoicesScreen. Note the
new code in LaunchPlayer near the bottom, which will create a string like "Playing
file:///SDCard/BlackBerry/Music/captured.amr" that is localized for the user’s language.

Download at WoweBook.Com

file:///SDCard/BlackBerry/Music/captured.amr

CHAPTER 10: Porting Your App 375

Listing 10-3. Localized Version of ChoicesScreen

package com.apress.king.mediagrabber;

import net.rim.device.api.i18n.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.MainScreen;

public class ChoicesScreen extends MainScreen implements MediaGrabberResource
{
 private static ResourceBundle r = ResourceBundle.getBundle(BUNDLE_ID,
 BUNDLE_NAME);

 private BasicEditField location = new BasicEditField(r
 .getString(I18N_PROMPT_LOCATION), "file:///SDCard/BlackBerry", 100,
 Field.FIELD_VCENTER | BasicEditField.FILTER_URL);
 private MenuItem audioItem = new MenuItem(r
 .getString(MediaGrabber.I18N_CHOICE_RECORD_SOUND), 0, 0)
 {
 public void run()
 {
 launchRecorder(RecordingScreen.RECORD_AUDIO);
 }
 };
 private MenuItem pictureItem = new MenuItem(r
 .getString(MediaGrabber.I18N_CHOICE_TAKE_PICTURE), 0, 0)
 {
 public void run()
 {
 launchRecorder(RecordingScreen.RECORD_PICTURE);
 }
 };
 private MenuItem videoItem = new MenuItem(r
 .getString(MediaGrabber.I18N_CHOICE_RECORD_VIDEO), 0, 0)
 {
 public void run()
 {
 launchRecorder(RecordingScreen.RECORD_VIDEO);
 }
 };
 private MenuItem launchVideoItem = new MenuItem(r
 .getString(MediaGrabber.I18N_CHOICE_PLAY_MEDIA), 0, 0)
 {
 public void run()
 {
 launchPlayer();
 }
 };

 public ChoicesScreen()
 {
 setTitle("MediaGrabber");
 add(new LabelField(r.getString(MediaGrabber.I18N_INSTRUCTIONS)));
 add(location);

Download at WoweBook.Com

file:///SDCard/BlackBerry

CHAPTER 10: Porting Your App 376

 }

 public void close()
 {
 location.setDirty(false);
 super.close();
 }

 public void makeMenu(Menu menu, int instance)
 {
 if (instance == Menu.INSTANCE_DEFAULT)
 {
 String property = System.getProperty("supports.audio.capture");
 if (property != null && property.equals("true"))
 {
 menu.add(audioItem);
 }
 property = System.getProperty("video.snapshot.encodings");
 if (property != null && property.length() > 0)
 {
 menu.add(pictureItem);
 }
 property = System.getProperty("supports.video.capture");
 if (property != null && property.equals("true"))
 {
 menu.add(videoItem);
 }
 menu.add(launchVideoItem);
 }

 super.makeMenu(menu, instance);
 }

 private void launchRecorder(int type)
 {
 String directory = location.getText();
 RecordingScreen screen = new RecordingScreen(type, directory);
 UiApplication.getUiApplication().pushScreen(screen);
 }

 private void launchPlayer()
 {
 String url = location.getText();
 String pattern = r.getString(MediaGrabber.I18N_PLAY_MEDIA_TITLE);
 MessageFormat format = new MessageFormat("");
 format.setLocale(Locale.getDefaultForSystem());
 Object[] arguments = new String[] { url };
 format.applyPattern(pattern);
 String formatted = format.format(arguments);
 PlayingScreen screen = new PlayingScreen(url, formatted);
 UiApplication.getUiApplication().pushScreen(screen);
 }

Download at WoweBook.Com

CHAPTER 10: Porting Your App 377

 public boolean onSavePrompt()
 {
 return true;
 }
}

The other localized classes can be found online. They follow the same technique shown
here. If your app includes a large number of dynamically constructed strings, you should
create a helper method that manages the MessageFormat operations to cut down on
repeated code.

Testing Localization
Depending on your simulator, you can probably switch between US English and UK
English, or two other language variants. As such, it’s good to define at least these
languages so you can verify that you are localizing correctly in the simulator.

When you are ready to test on the device, load MediaGrabber and start changing
languages. Try to keep track of what the Language menu is called in each new language
so you can find it again. Navigating the native BlackBerry menus can be tricky—for
example, the permissions prompt will display in the new language, so you may need to
hunt a bit for the “Save” option. You should see your localized text display in the new
languages you have defined.

If possible, you will want to send the translated version to a native speaker. They will be able
to let you know if any of the text needs to change. They can also quickly identify problems
that might not be obvious to you, such as text being truncated or diacritical marks missing.

WANT MORE?

Porting can be a pain, but it’s a good pain. If you’re interested in porting it means that you have made a
good impression on your initial target market and are looking to expand. Here are some other things you
can try with MediaGrabber to get more practice.

 Include still more languages. If you know a native speaker for a language you do not speak,
work with them to translate the app. This is very valuable experience and will help you learn
how to manage translation efforts.

 Include menu options on the Choices screen for switching between supported languages
within the app.

 If you have a BlackBerry with older software on it, try creating a new version of MediaGrabber
that will run on it.

 Try running MediaGrabber on a variety of BlackBerry form factors, including QWERTY devices,
touch-screen devices, and SureType devices. Are you happy with the experience? If not, think
about ways you could change the app so it performs better on those devices.

The good news is, after your first couple of experiences with porting, you will start automatically thinking about it
when you start a new project. Making smart decisions about your program’s structure early on will ease
the development process and turn the porting process into a pleasant afterthought rather than a chaotic scramble.

Download at WoweBook.Com

CHAPTER 10: Porting Your App 378

Excelsior
Porting gets too little respect. Without porting, each app would only run on a tiny
fraction of phones. Without efficient porting, the amount of time spent getting an app to
run on a new phone can approach the amount of time writing the app in the first place.

As you have seen in this chapter, the secret is to start thinking about porting before you
write your first line of code. Early decisions can make an app far more difficult to port
later on. Spend some time with a sheet of paper or a whiteboard and ask some
fundamental questions. On what devices does the app need to run? Will it need to run
on more later on? Can I force people to use a particular phone or OS version? Do I only
want English-speaking Americans to use my app? Get input from your management or
users if possible.

Then, as you construct your app, always keep the future in mind. Even if you are just
writing for a particular device and language now, write flexibly so that the same code
can be used to support other types of users. If you can, test with different configurations
as you develop so you can verify that your code does adapt as planned.

If all goes well, your app will be a roaring success. Then you can spend an afternoon
translating text and dropping in new image files, rather than weeks or months struggling
with a labyrinth of hard-coded values. You will reach every market while your
competitors are still lacing up their boots.

Once you’re reaching a market this big, it’s time to make sure you can handle it. Sooner
or later, you’ll want to consider how to best run your engineering process, including
generating builds, delivering updates, and managing multiple versions. The next chapter
will look at how to best build apps.

Download at WoweBook.Com

11Chapter

Advanced Build
Techniques
Whether you’re running a one-person programming shop or belong to a multinational
corporation, building and maintaining software will be an integral part of your BlackBerry
experience. You saw in Chapter 10 how applications can grow more complicated as you
increase the number and variety of users you target. This chapter looks at the other side
of the problem: how you can manage your project and keep it under control.

Things that worked very well when you first started, such as using Eclipse to build an
app and the Desktop Manager to load it onto a phone, become unfeasible once your
app is running on a dozen different phone models. You will learn the techniques to scale
up your development so you can handle the trials that come with success.

Moving Beyond Eclipse
I love Eclipse. I’ve used every major IDE, as well as old-school Unix editors and tools,
and I feel more productive in Eclipse than I do anywhere else. That said, while Eclipse is
a great resource for development, it’s not a great tool for managing a large number of
builds. For that, you will need to look elsewhere.

The Command Line
Behind the scenes, the BlackBerry Plug-in for Eclipse wraps some existing tools that
have been around for much longer. Like RIM’s proprietary JDE stand-alone IDE, the
Plug-in calls out to these tools to handle the real work of building your app.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 380

rapc
rapc is the core compiler that transforms your Java source files and other resources into
a BlackBerry executable. rapc has an executable, rapc.exe, that mainly controls access
to the JAR, rapc.jar.

Operations

You can study the use of rapc by examining the Eclipse build output window. Typically,
it will run on all source files under a particular tree. This process runs through several
operations.

 Initialization: Check to make sure that the passed arguments are
correct and all required files have been provided.

 Compilation: All source files are run through a compatible Java
compiler. If a compiled JAR file is provided, this stage is skipped.

 Verification: Inspect the resulting bytecode. Report any warnings or
errors.

 Obfuscation: Remove any unused classes or methods.

 Create CODs: BlackBerry phones actually deal with small sections of
code, referred to as sibling COD modules, which are typically 64kb or
smaller in size. rapc will divide the application among all the sibling
CODs (such as “MyApp.cod”, “MyApp-1.cod”, “MyApp-2.cod”, etc.)
and then zip them up into MyApp.cod.

 Modify JAD: BlackBerry-specific fields will be added to the JAD file.
These include descriptions of the sibling COD modules, SHA1
checksums, and other fields.

Arguments

You can directly call rapc.exe yourself. The command has the following form.

rapc.exe {parameters} {Source files, compiled .class files, or compiled JAR file}

Note: Unfortunately, rapc does not support wildcards. If you wish to supply multiple files, you
must list each one.

rapc isn’t very well documented. The most important parameters are shown below.

 import={paths}: Specifies the location of net_rim_api.jar and any
other required libraries.

 codename={name}: Provides the application name.

 -midlet: Indicates that this application is a MIDlet.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 381

 -quiet: Suppress some messages.

 -verbose: Show all messages.

 jad={file}: Provides the input JAD file to use. This same file will be
modified with the final JAD contents.

A typical use of rapc may look like the following.

C:\dev\ide\eclipse_34\plugins\net.rim.eide.componentpack4.7.0_4.7.0.46\
 components\bin\rapc.exe -import="C:\dev\ide\eclipse_34\plugins\
 net.rim.eide.componentpack4.7.0_4.7.0.46\components\lib\net_rim_api.jar"
 BonjourWorld.java BonjourWorld.rrh BonjourWorld.rrc

SignatureTool
Eclipse also wraps the important SignatureTool program, which contacts the BlackBerry
signing servers and applies signatures to your compiled program. As with rapc, you can
directly interact with SignatureTool through the command line.

Note: Refer to Chapter 1 for more information on using SignatureTool with multiple software
versions, as well as how to install signing keys.

You can run SignatureTool on a compiled BlackBerry program with the following
command line.

{Path to JDE installation directory}\bin\SignatureTool.jar {Cod Name}.cod

The parameters include the following options.

 -r {Directory}: Recursively search a directory for COD files to sign.

 -f {File}: Read the COD files to sign from the provided file.

 -d: Delete the file passed with the –f command.

 -a: Automatically request signatures.

 -p {Password}: Password for code signing requests.

 -s: Show statistics about signatures requested and received.

 -c: Close the window after successfully requesting signatures.

 -C: Always close window after requesting signatures.

Build Environments
Armed with knowledge of how the BlackBerry toolchain works, you can set up
automated builds. These will greatly increase your productivity. Rather than needing to
open Eclipse, navigate to a particular project workspace, switch to the proper version of

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 382

the BlackBerry Plug-in, then click on the options to build and sign, you can simply
double-click a build file, or wait for an automated build server to incorporate your
changes.

Build Options
You can use any tool that is capable of running a command-line argument and passing
parameters: that is to say, pretty much any build tool ever. If you belong to an
organization that already has a build system in place, it will be worth the effort to adapt
the BlackBerry build process to fit that system. If you are working from a blank slate, you
can consider the following.

Batch Files

Really, a build script is just a couple of executable commands. You could simply type
those commands into a .bat file, place it in the folder with your source code, then
double-click it any time you wanted to do a build. The batch file might look like the
following.

set FILES=BonjourWorld.java BonjourWorld.rrh BonjourWorld.rrc
set JDE_PATH=C:\dev\ide\eclipse_34\plugins\
 net.rim.eide.componentpack4.7.0_4.7.0.46\components\
%JDE_PATH%\bin\rapc.exe -import="%JDE_PATH%\lib\net_rim_api.jar" %FILES%
%JDE_PATH%\bin\SignatureTool.jar MediaGrabber.cod

Caution: Whenever you are dealing with automated builds, be careful about what JDE version
you reference. Remember Chapter 10’s rules about forwards and backwards compatibility.

Ant Scripts

Ant is the most popular build scripting option for Java programmers today. A full
description of Ant is beyond the scope of this book; essentially, it divides a build into a
set of targets and tasks, each with parameters that can control their behavior. Therefore,
you can write a generic Ant build file to compile any of your projects, and use different
parameters to control the specific project to build.

You can directly call out to the rapc tool by using Ant’s <exec> task. However, consider
looking at the useful and free BlackBerry Ant Tools package, also known as bb-ant-
tools. This useful set of Ant tasks is not officially sanctioned by RIM, but has been widely
adopted by developers. Prior to the release of the BlackBerry Plug-in for Eclipse, many
people used bb-ant-tools to develop BlackBerry programs within Eclipse.

bb-ant-tools contains tasks for nearly every BlackBerry-specific task you can imagine.

 <rapc> will run rapc to generate your executable. It has a large number
of options, including choices for setting the application location, icon,
etc.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 383

 <sigtool> will start the signature request process. All command line
arguments are supported here, including the option to automatically
supply a password.

 <alx> packages together a release with a valid ALX file and all the
associated COD files. This is useful when preparing a cable-load
version.

 <jadtool> will patch up a JAD file by adding information for all the
COD files. This is useful when preparing an OTA version.

One of the best things about bb-ant-tools is its cross-platform support. You will still
need a Windows machine to install the tools, but you can copy the JDE installation to a
Linux or Mac machine and then use bb-ant-tools to perform the actual builds.

Makefiles

Many in-house build systems rely on makefiles. While not as elegant as Ant, make has a
long history and supports powerful command-line expressions.

If you plan to use makefiles, consider defining a BlackBerry rule to build the .cod target.
This rule can then in turn use other rules for running rapc, signing, and performing any
other required build steps. Your BlackBerry rule can be invoked as part of the standard
build cycle, which may include steps for documentation, publishing, or other important
tasks.

Versioning Strategies
One of the most important BlackBerry properties you can define is the version number
of the app. The BlackBerry uses the version number to determine whether a user needs
an upgrade. However, versioning goes far beyond picking a unique version number.
Before you decide your app needs a new version, you will need to decide how to make
that version available to your users.

Version Numbers
Like Java MIDlets, BlackBerry applications come with a three-part version number: you
can define two or three version numbers, each separated by a dot, each with a value
between 0 and 99. So 1.0.3, 4.2, and 0.99.0 are all valid numbers; 2, 1.125, and 4.1.3.2
are not.

The first two numbers are known as the major and the minor version numbers. The
optional third number is called the patch version. By convention, a version with a
different patch number will contain bug fixes but no new features; a minor version
change means that new features are available; and a major version number change
indicates significant changes that include a break in program compatibility.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 384

For example, imagine that you release an app that lets college students register for their
courses. Your first version might be 1.0. Later, you let students add their reviews of
professors and classes. This change would be released as version 1.1. You might find
that some reviews aren’t formatted properly; you fix this bug and issue an update as
version 1.1.1. Then the college changes its course scheduling software, meaning your
app no longer works with the new system. You could then make the necessary changes
and release version 2.0.

A switch from a lower version to a higher version number is called an upgrade.
BlackBerry also supports switching from a higher version to a lower version, which is a
downgrade. You may also choose to install a new copy with the same version number.
This is useful during development, because it may not be practical to create a new
version number with every build change, but it could be confusing to your users. Any
time you release a new version of your app, it should have a higher version number.

Note: If you change the application name or the vendor name, it will be considered a different
application and won’t replace the previous version. So, if the name changes from CollegeBuddy
to MyRegistrar, a user who upgraded to MyRegistrar will actually have both apps. As long as
the name and vendor remain the same, installing a new version will replace the older version.

Distribution Options
Once you have built a new version of the app with a new version number, you must
decide how to make it available to your users. You can choose between several options.

 Cable load: Send the updated app to the user’s PC. You can do this
through any mechanism you like: send them an email with the new
version attached, instruct them to visit a web site where they can
download it, and so on. If the downloaded .alx file is placed in the
same location as the original .alx, the user will automatically be
prompted to install the updated version the next time they view the
applications within BlackBerry Desktop Manager. Otherwise, they can
browse to the updated file within the desktop manager and select it. In
general, you must use a higher version number or the Desktop
Manager will resist installing the update.

 OTA: Place the JAD file and the sibling COD modules on a web server.
Configure the JAD files to have a MIME type of text/vnd.sun.j2me.
app-descriptor and the COD files to a MIME type of application/
vnd.rim.cod. Direct the user to visit the JAD file with their BlackBerry
web browser. They will be prompted to download and install the new
app.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 385

 Store: Recent versions of BlackBerry App World will notify users within
the store if a previously purchased application has a new version
available. Other stores may offer this feature as well; check to see if
they support it.

 In-app updates: BlackBerry’s CodeModuleManager API allows one
application to install another application. If you have a suite of
applications, you could have one app check for updates for another
application, then download and install them. This approach allows you
to provide your own user interface on the device to manage updates,
rather than relying on the BlackBerry browser.

 Push: If your app is running in a BES environment, the administrator
can forcibly send a new version of the app to all affected phones.

You also must decide how to let users know when a new version is available. Even if you
are using an application store to deliver your updates, keep in mind that some people
may frequently use your app but only rarely launch the store, so otherwise they may not
be aware of updates.

 Poll: Your app can connect to a server you control to check for the
latest version number. If it finds an update, alert the user within the
app. This works best when the user can complete the update on the
device, either OTA through the browser or within the app.

 Push: If you have access to the user’s email address or similar
information, you can send him notifications when new versions are
available. This approach works best if the update must be completed
on the desktop.

You will generally have the most successful upgrades if you deliver updates through the
same channel that originally installed the app. If you initially distributed the app OTA, use
OTA for updates; if you used a PC-based application to download the app, use that
same app to download the latest versions.

Where’s My Data?
Nearly every interesting app will make some use of persistent storage. Whether saving
games, user preferences, or downloaded art, persistent storage enhances apps by
providing more convenient and increasing speed.

Persistence also leads to potential problems, though. Different versions of the app may
store data in different formats, leading to potential problems if the user updates.

Files
BlackBerry does not have any logic that associates files to applications. Your app can
write to any directory and read from any directory that it wants. When the app is deleted
or upgraded, all existing files will remain in place.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 386

This has a few ramifications. First, if you store actual program data in files, you will be
responsible for maintaining your own versioning system. For example, you might tag the
start of each file with the version number of the file format. This way, when future
versions of the app try to read those files, they can quickly determine whether the files
are compatible, and either translate or delete them if the file format has changed.
Second, if you store media files like images or sounds, you can keep them in place and
safely reuse on newer app versions. However, if you have a larger number of media files,
they will still be taking up space after the user deletes your app; this may annoy some
people. To be a good citizen on the phone, offer a choice within your app to clean up
any such files. Users can run this option before deleting your app and return to a blank
slate.

RMS
BlackBerry borrows the Record Management System from Java ME. This provides a
very convenient way to store sets of records, such as recent news headlines or
restaurant details. Records are stored as raw byte streams, without any version number
or ordering.

Unlike files, RMS records are tied to a particular application. If you delete an app, all its
RMS records will automatically be removed. When you install an upgraded version, the
RMS records will remain in place and the new version will be able to read the old data. If
a user updates OTA through the web browser, she will be able to choose whether or not
to retain the old RMS data.

Few applications actually want to deal with raw bytes, so typically an app will serialize
and deserialize to translate between the RMS record data and some sort of object. For
example, you might define plain Java classes like NewsStory or RestaurantInfo and
define methods to create these objects from byte arrays. So long as the class structure
remains exactly the same, you can reuse the data across different app versions.
However, odds are high that the record format will need to change at some point to
support later application features. In order to future-proof your record storage, you
should always tag the beginning of an RMS record with the version number. Future
versions of the app can inspect this value first and decide how to handle the data that
follows.

Tip: The version number of your record can be different from the version of your app. Maybe
app versions 1.0, 1.3, and 2.0 all use the same record structure; if so, the records can share
version number 1. If you later change the structure, such as adding a ‘‘Byline’’ field to the
NewsStory class as part of your changes to app version 2.1, you would increase the RMS
record version number to 2.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 387

BlackBerry Persistent Storage
The PersistentStore and PersistentObject classes provide the capability to save
application data. Unlike RMS, BlackBerry persistent storage is object-based rather than
byte-based. This allows for more flexible and elegant coding.

You store persistent objects based on a provided key. However, BlackBerry also tracks
persisted objects by the application that created them. If an application is later removed,
BlackBerry automatically deletes all persistent objects that are no longer accessible on
the device.

BlackBerry tries to detect the compatibility of persisted objects. If you load a new
version of the application that has the exact same class structure for the persisted
objects, the previous data will probably be maintained. On the other hand, if the data in
a class changes or its structure is significantly altered (for example, by adding,
removing, or reordering many methods), the old data will be automatically removed
when the new version is installed. Therefore, you should avoid relying on BlackBerry
persistent storage for data that you will need to access in future versions of the app.
Look at this as a convenience to speed program operation, not as a reliable storage
system.

Debugging and Logging
Applications have bugs. It’s a fact of life. Pretending that your app is perfect won’t make
the problem go away, but only makes its bugs more difficult to squash. In order to
quickly detect bugs and determine the root cause, developers often rely upon logging
and debug information placed within their apps.

This leads to a quandary. Ideally, you would like to place debugging features in your app
so you can quickly and conveniently debug any problems that come up. However, you
probably don’t want end-users to have access to the program’s inner workings. This
often leads developers to create separate “debug” and “release” versions of their
application. This in turn has problems, as it means that the version a developer uses for
testing isn’t exactly the same as the version that people are actually using. Few things
are more frustrating than finding a bug in the release version, which you cannot debug,
which does not appear in the debug version.

Capturing Logging
The most primitive method of debugging is to make your program print out information
about what it’s doing. While low-tech, it can also be perfect. If the phone is not able to
connect to the network, and when you hook it up to the logger you see the message
“ERROR: Permission not set to open connection,” you have cut an hour-long debugging
session down to a few minutes.

BlackBerry makes it easy to get logging information. Simply connect the device to your
PC with a USB cable, start Eclipse, and start debugging the BlackBerry device. Even if
you do not have access to the source code or .debug files, you will be able to watch the

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 388

output window to view all the messages that are generated by the BlackBerry. These
include messages from the running application, as well as more inscrutable messages
from the BlackBerry operating system.

So, what gets written to the BlackBerry logger? Anything that you send to System.out or
System.err. It can be a good idea to include plenty of logging information as your write
your app, particularly for areas that you suspect might fail at some point.

Tip: Stack trace information also gets printed to the log. However, most exceptions will not
produce a useful stack trace. If you want to see the full trace information in the log, you must
catch the Throwable instead of an Exception subclass. Don’t blame me, I didn’t create this
system.

Visual Logging
Sometimes it’s nice to actually see what’s happening on the device itself, without
needing to hook it up to a PC. This is especially useful if someone else is testing the app
and you want more information about a problem that occurred. You can capture
relevant information yourself, and then direct that information to an onscreen element.
We have used this approach with StatusUpdater in MediaGrabber to get more detailed
information about exceptions that occurred.

You can even take this idea one step further and create a full-blown logging screen
within your app. Rather than directing logging information to System.out, store it within
your app or in a log file. Your debugging screen can then read through this information
on demand and display a detailed log of everything the app has done.

On or Off?
You can follow several strategies to address the problem of providing a useful
debugging environment without giving users or competitors overly detailed looks into
the app’s functions.

 Bifurcate: Create two versions of the application, one with debugging
compiled in and another without. If you use a preprocessor as part of
your build process, you can use it to automatically strip out logging
calls. Alternately, you could create a proxy logging method like
Log.writeLog(), then provide different versions of the Log class for
debug and release builds. The debug build would write to standard out
or your internal log, while the release build does nothing.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 389

 App property: You can include a special JAD property in your
application that controls whether or not to display the log. If this
property is set, Log.writeLog() would create logging information; if the
property is unset, it would do nothing. The advantage of this approach
is that you only need to build the application binary once, and the
same code is loaded on both testing and user devices; the only
difference is the run-time check for whether logging is enabled.

 Secret code: Similar to the previous strategy, you can have a flag
within your application that controls whether or not to display
debugging information. You can toggle this flag by entering a secret
code, following a particular sequence, or otherwise performing some
unusual action within the app. What is really nice about this approach
is that, even if a bug occurs on an actual released version, you can ask
the affected user to enter the code and report the logging information
to you. The disadvantage is that the secret code will eventually leak
out, and once it does your logging information will no longer be safe
from competitors.

Data Collection
Even if you can look at logging information, it may be awkward and difficult to parse. It’s
much easier to deal with detailed log files on the PC than it is on a handset.

Therefore, consider including some error reporting capabilities within your app. For
example, you might include a menu option that reads “Send report to developer.” If a
user selects this item, the app will collect all the current logging information that it has
collected, place it in an email, and send it to you. This way, if a user runs into a problem
with their application, they can help you solve it by providing more insight into what the
app is doing.

Consider combining this approach with the “Secret code” strategy. You might not want
to receive reports from thousands of curious users, but it’s nice to have the option for
cases where things have gone seriously wrong.

Other Build Issues
No two people or organizations will settle on the exact same process for building and
releasing their applications. You may encounter several other issues and ideas when
preparing your builds.

Obfuscation
Java ME developers often rely on obfuscators such as Proguard to optimize their code.
Obfuscators have several effects. First, true to their name, they conceal the workings of
an application by renaming classes, variables, and method names; therefore, even if
someone decompiles an application, he will find it difficult to understand. More

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 390

importantly than the decompilation part, though, obfuscators also remove unused
sections of code. If an obfuscator determines that a method can never be called, or a
class will never be instantiated, it will strip out the affected code. For mobile platforms
that have a limited amount of space available for applications, such savings can prove
crucial.

As noted above, rapc includes an obfuscation stage that will strip out unused code. In
addition, because the COD file format is proprietary and unique to RIM devices, it
cannot be reverse-engineered with the same ease that Java ME JAR files can. We have
previously seen that you can open a COD file in a hex editor to view program
information, but, currently, no true decompiler exists for the COD format.

Because of these aspects, you can generally omit obfuscation from your build process.
However, there are times when Proguard offers more aggressive obfuscation settings or
more fine-tuning than the automatic behavior you get from rapc. If you feel that your
application is still too large, you may choose to add a third-party obfuscator to your
process. In this case, you would probably follow these steps.

1. Compile your source using the RIM tools; a JAR file will be produced as
part of this process.

2. Extract the JAR contents to another directory.

3. Run an obfuscator on the resulting files.

4. Run RIM’s preverify.exe command (found in the bin directory) on the
obfuscated files.

5. Pass the preverified files to rapc for the final transformation into a COD.

Caution: If you do not use rapc to preverify and compile your source files, you can encounter
unusual and frustrating errors such as the dreaded Stack Map message when launching your
app. Pay careful attention to your Java compiler version, obfuscation settings, and especially
any messages generated by rapc. You may need to tweak your settings to get the right
results.

Packaging OTA Installs
You have already seen how to configure a web server to deliver BlackBerry applications
directly to a phone via its web browser. This approach works great for simple
applications with a single module. However, if an application contains multiple parts,
such as related applications in a suite or a set of libraries, the user must individually
download and install each module. This is a tedious and error-prone approach.

Fortunately, you can short-circuit this problem by referencing all required COD modules
within the JAD file. The user then sees a single application that he is downloading, but
behind the scenes all other required apps will be installed as well.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 391

If you are using bb-ant-tools to generate OTA deployments, you can easily get this
behavior by using the <jadtool> task with multiple COD files. Otherwise, you might need
to collate the JAD information yourself. First, build each project separately. Open the
JAD files. You’ll notice that the COD information inside includes text like the following.

RIM-COD-Module-Dependencies: net_rim_cldc,net_rim_os,net_rim_bb_framework_api,
 net_rim_bbapi_menuitem,net_rim_pdap,net_rim_crypto_1,net_rim_crypto_3,
 net_rim_bbapi_mailv2
RIM-MIDlet-Flags-1: 1
RIM-MIDlet-Flags-2: 0
RIM-COD-URL-9: MediaGrabber-9.cod
RIM-COD-Size-9: 49972
RIM-COD-SHA1-9: a4 75 3d 10 c9 93 e6 49 b0 05 80 96 39 03 42 0f 12 ff 69 9d
RIM-COD-URL-10: MediaGrabber-10.cod
RIM-COD-Size-10: 49976
RIM-COD-SHA1-10: 87 b5 20 cb c5 7e 29 10 4c 8e c6 2a 4d fa 90 11 8f 1d 70 87

You can take all the RIM-COD-* lines in the other JAD files and merge them into the first
JAD file. You will need to increment the COD file numbers. For example, if the first JAD
file goes up to RIM-COD-URL-13, then you would import the next JAD file’s RIM-COD-URL-1
as RIM-COD-URL-14. You might also need to edit the RIM-COD-Module-Dependencies so it
contains the dependencies of each individual project. Finally, any RIM-MIDlet-Flags or
RIM-Library-Flags must be moved over into the main JAD file. Again, you should
renumber so that the imported modules start one number higher than the highest
number.

You can edit a JAD file by hand, and this approach will be fine if you create OTA
releases very infrequently. Otherwise, look into creating a basic script to handle the JAD
file collation process. Python, perl, and sed are all good candidates. If you don’t know
any text processing scripting languages, this is a great excuse to learn.

Packaging ALX Installs
As with OTA installation, a cable load install is more likely to succeed if all the required
code modules can be sent as part of a single operation. You can use bb-ant-tools to
easily generate an ALX file that contains multiple COD components. Or you can simply
edit the ALX file yourself. The following code shows a simple ALX file that includes both
an application and a library as part of the install.

<loader version="1.0">
 <application id="MediaGrabber">
 <name>MediaGrabber</name>
 <description>All media everywhere</description>
 <version>1.0.0</version>
 <vendor>Apress</vendor>
 <copyright>Copyright (c) 2009 Apress</copyright>
 <fileset Java="1.39">
 <directory ></directory>
 <files >
 MediaGrabber.cod
 FriendTracker.cod

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 392

 </files>
 </fileset>
 </application>
</loader>

App: Logging, Building, and Updating
You will make a trio of changes to MediaGrabber: two for your own convenience, and
one for your users’ convenience. None of these uses advanced APIs or esoteric
techniques, but all are very practical and lead to smoother development and use.

Adding a Logger
You already collect information about almost everything interesting that occurs in your
app within the StatusUpdater class. You can easily extend this class to hold that logging
information in memory, and provide a way to get access to it. This can be useful if you
see that something has gone wrong but the onscreen messages have already been
replaced.

Listing 11-1 shows the changes to StatusUpdater. To maintain a single unified log that
captures the use of all individual instances, use a single static instance of a Vector that
holds the old log messages.

Listing 11-1. StatusUpdater with Stored Logging

package com.apress.king.mediagrabber;

import java.util.*;

import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.LabelField;

public class StatusUpdater implements Runnable
{
 private LabelField status;
 private String message;
 private UiApplication app;
 private static Vector messages = new Vector();

 public StatusUpdater(LabelField status)
 {
 this.status = status;
 app = UiApplication.getUiApplication();
 }

 public void sendDelayedMessage(String message)
 {
 messages.addElement(message);
 this.message = message;
 app.invokeLater(this);
 }

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 393

 public static String getLog()
 {
 StringBuffer result = new StringBuffer();
 Enumeration lines = messages.elements();
 while (lines.hasMoreElements())
 {
 String line = (String) lines.nextElement();
 result.append(line);
 result.append("\n");
 }
 return result.toString();
 }

 public void run()
 {
 status.setText(message);
 }
}

You’ll invoke this code soon. For now, recognize that this captures almost every
Throwable that can occur within the program because of the way you have already set
up your error handling. On a successful run of the application, very little logging
information will be generated. Failures will be retained until the application is unloaded.
Of course, this could be enhanced to support multiple log severity levels and other
useful items.

Build Script
Even if you don’t have GNU make or Apache Ant installed, you can whip together a
quick and dirty build script using Notepad or another basic text editing program. Use the
build script in Listing 11-2 to generate a new application without requiring Eclipse to be
open. You can modify the variables at the top of the script with the location of your
BlackBerry component package, signing password, and so on.

Listing 11-2. Build Batch File

set JDE_PATH=C:\dev\ide\eclipse_34\plugins\
 net.rim.eide.componentpack4.7.0_4.7.0.46\components\
set PASSWORD=swordfish
set FILES=MediaGrabber.java ChoicesScreen.java PlayingScreen.java
 RecordingScreen.java SendingScreen.java StatusUpdater.java MediaGrabber.rrh
 MediaGrabber.rrc MediaGrabber_cs.rrc MediaGrabber_en.rrc
 MediaGrabber_en_GB.rrc MediaGrabber_en_US.rrc
set SOURCEPATH=src\com\apress\king\mediagrabber
set STARTDIR="%CD%"
cd %SOURCEPATH%
%JDE_PATH%\bin\rapc.exe -import="%JDE_PATH%\lib\net_rim_api.jar" %FILES%
%JDE_PATH%\bin\SignatureTool.jar -a -p %PASSWORD% -c MediaGrabber.cod
copy MediaGrabber.cod %STARTDIR%
cd %STARTDIR%

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques 394

Updates
If you have access to a web server, you can place the MediaGrabber JAD file and the
unzipped sibling COD files on a publicly accessible directory. Then, direct MediaGrabber
to open a browser to the JAD location to check for an update. You can do this using the
Browser. Listing 11-3 shows the changes to ChoicesScreen that add a new menu item to
perform the update. You can also create a menu item that captures information from the
logger, and then sends it via email using our existing SendingScreen class.

Listing 11-3. Adding Logging and Updates to MediaGrabber Choices

public class ChoicesScreen extends MainScreen implements MediaGrabberResource
{
// ...
 private MenuItem sendLogItem = new MenuItem("Send Log", 0x10000, 0)
 {
 public void run()
 {
 String message = StatusUpdater.getLog();
 SendingScreen sending = new SendingScreen("text/plain", "log.txt",
 "Log attached", message.getBytes(), false);
 UiApplication.getUiApplication().pushScreen(sending);
 }
 };
 private MenuItem updateItem = new MenuItem("Get Latest Version", 0x20000, 0)
 {
 public void run()
 {
 String url = "http://www.example.com/MediaGrabber.jad";
 Browser.getDefaultSession().displayPage(url);
 }
 };
// ...
 public void makeMenu(Menu menu, int instance)
 {
 if (instance == Menu.INSTANCE_DEFAULT)
 {
 String property = System.getProperty("supports.audio.capture");
 if (property != null && property.equals("true"))
 {
 menu.add(audioItem);
 }
 property = System.getProperty("video.snapshot.encodings");
 if (property != null && property.length() > 0)
 {
 menu.add(pictureItem);
 }
 property = System.getProperty("supports.video.capture");
 if (property != null && property.equals("true"))
 {
 menu.add(videoItem);
 }
 menu.add(launchVideoItem);
 menu.add(sendLogItem);

Download at WoweBook.Com

http://www.example.com/MediaGrabber.jad

CHAPTER 11: Advanced Build Techniques 395

 menu.add(updateItem);
 }

 super.makeMenu(menu, instance);
 }
// ...
}

WANT MORE?

Build decisions are endlessly customizable; any time you find yourself doing something repetitive or
inefficient, consider what you could do to reduce the monotony. Here are a few things you could try in
MediaGrabber.

 When your application starts, check the web server’s JAD file and extract the version
number. Only show the update option if this number is more recent than the current
version.

 Modify StatusUpdater to persist information to a log file or other persistent storage.
Include an option to clear the log information as well as upload it.

 Download a recent version of Ant and the bb-ant-tools add-on. Create a build script
that allows you to create versions of MediaGrabber for different versions of the JDE.

Creating new build options doesn’t let you add new bullet points to your app’s feature list, but it helps
every aspect of development become easier and faster. Time you invest here will be well spent.

Excelsior
Even though the build chapter comes at the end of the book, it holds great importance.
Even the smallest developer will appreciate the convenience of a powerful build system
when she starts releasing multiple versions of her application. You will probably spend
some time tweaking your builds to find a process that works well for you. Once you
understand how the tools work and the implications of upgrading, you can mix and
match techniques until you find the best possible fit.

You have now encountered the tools and strategies that you can use to elevate your app
from a good idea up to a professional piece of software. This has been a great journey,
but it does not need to be the end. A truly successful developer will always be learning
more, staying ahead of the curve and learning to look down the road at what comes
next. The conclusion will describe some of the best resources available to maintain a
top-notch grasp of BlackBerry software development.

Download at WoweBook.Com

CHAPTER 11: Advanced Build Techniques

2

Download at WoweBook.Com

12Chapter

Conclusion
You’ve reached the top! Congratulations—by learning the advanced BlackBerry APIs,
discovering how to integrate with the phone’s built-in applications, and discovering the
tools to create polished and efficient professional apps, you have earned the right to call
yourself an advanced BlackBerry developer.

That said, there is still plenty to learn and even more to do out there. While this book has
laid a broad foundation, it’s up to you to build something on top of it. This section
shares a few final thoughts on how to maintain an eager, up-to-date mindset towards
BlackBerry development.

Parting Shots
During my time writing BlackBerry apps, I have stumbled across several useful tips. I
have tried to work most of them into the text of this book; here are a few final ones that
did not fit anywhere else.

 Older simulators: The strength of the BlackBerry simulator also serves
as its curse: because it accurately reproduces the entire operating
system, the simulator takes a long time to launch and “boot up.”
Different versions of the simulator can have noticeably different launch
times. If you use an older version of the simulator that is still
compatible with your app, you can save a great deal of time over the
hundreds of times that you launch the simulator.

 WTK: As a more extreme version of the above, if you are developing
MIDlets, consider using Sun’s Wireless Toolkit (WTK) for the bulk of
your development. This emulator is much more lightweight than the
RIM emulator, albeit less representative of the actual device. If your
app uses BlackBerry APIs, you can develop the bulk of your
application with the WTK, and then switch to the BlackBerry simulator
when you need to test RIM-specific code.

Download at WoweBook.Com

CHAPTER 12: Conclusion 398

 Clean slate: The simulator folder contains a file called clean.bat.
Whenever the simulator seems to be behaving strangely, try running
this file. It will place the simulator back into its original state, removing
any changes you have made.

 Not clean enough: The Eclipse Plug-in includes options for erasing
simulator files. At the time of writing, these are pretty unreliable,
particularly for extra simulators you have downloaded. It might be
necessary to navigate to the simulator directory yourself and manually
delete the modules you have loaded.

 Too many changes: Any time you switch the JDE Component Package
you are using, be sure to also change the MDS simulator version and
clean the simulators. Otherwise, even if your application runs, you may
encounter strange networking errors or other problems. Also, clean
and rebuild your project until no errors occur.

 Source control: RIM’s Eclipse tools do not always work well with
source control metadata files; in particular, it can get confused with
Subversion files that look similar to resource files. These are often
transient errors, and a fresh build will fix the problem. If it grows too
annoying, consider exporting your source control files to a clean
directory, running Eclipse with those files, and then copying back
when you are ready to check back in.

Resources
The single most valuable skill you can learn is how to find additional information. I’ve
found the following resources to be especially useful. When you’re facing an unusual
BlackBerry bug or want to learn how to do something new, check these first.

 The BlackBerry Technical Solution Center at
www.blackberry.com/btsc/. The Developer Knowledge Base articles
are particularly useful. They tend to be very specific, describing how
something works or how to accomplish a particular task. Articles are
updated as new versions of software are released, so check back
periodically for more information.

 The official BlackBerry Java developer forums are a sub-forum found
at supportforums.blackberry.com/rim/. RIM runs one of the best
forums of any mobile software platform; I really wish other companies
would follow their lead. RIM employees frequent the boards and offer
authoritative answers on particular issues and questions. There are
many talented private contributors who gain kudos with their helpful
input. If you run across a problem, odds are high that someone else
has already stumbled across it and solved it on these forums.

Download at WoweBook.Com

http://www.blackberry.com/btsc

CHAPTER 12: Conclusion 399

 Unofficial BlackBerry developer forum at www.blackberryforums.com/
developer-forum/. Prior to the launch of the official RIM forums, this
was the main go-to place for technical questions. They have grown
much quieter since the official forums launched, but a good amount of
historical information about prior software versions can be found here.

 Sample code: Unfortunately, the BlackBerry Plug-in for Eclipse does
not come with any program samples. However, the RIM JDE and the
JDE Component Package both include samples along with the
development tools. You can download and install these from RIM’s
web site. Look for the samples folder under the installation directory.
The samples are very comprehensive, well organized, and provide
good insight into how to successfully use particular APIs.

 BlackBerry Developer Newsletter: You can sign up for this newsletter
at any time. While the technical information is not very dense, it’s a
great way to keep abreast of ongoing changes within RIM.

Note: URLs can change frequently, but the names tend to stay constant, so a quick search on
RIM’s web site or your favorite search engine is the best way to locate these.

Summit
Have fun! Write code! The more you practice and the more you build stuff, the more you
will learn. Every new project brings new opportunities with it, and there’s no substitute
for hands-on experience.

Feel free to continue tweaking MediaGrabber; you may have some new ideas about how
to make it more powerful or useful to you. If so, go for it! Or, while reading this book, you
might have come up with a cool app idea on your own. Great! The wonderful thing about
BlackBerry development is its combination of a powerful platform, low barrier to entry,
and immediate impact. If you write a good app and put it out where everyone can see it,
you will be noticed.

Keep in mind that everything changes. Future versions of the platform will come along,
offering still more features and capabilities. Keep your eyes open, find out what’s new,
and calculate what would be useful. At the same time, hold on to the essentials. Now
that you have mastered the key aspects of BlackBerry software development, you
should be able to incorporate new information without losing sight of the critical
elements of an application.

The journey never stops. Keep climbing a little higher—you never know what sight
awaits you over the crest.

Download at WoweBook.Com

http://www.blackberryforums.com

CHAPTER 12: Conclusion

2

Download at WoweBook.Com

Appendix

Codec Support
Chapter 3 discussed how BlackBerry devices offer a range of codecs to play back audio
and video content. This appendix provides some more details on codec support for a
range of popular BlackBerry devices. Please see Table A-1 for this information. Notes
applying to each device/codec combination follow the table.

Table A-1. Devices and Their Supported Codecs

Device Model Container Codecs Notes

Bold 9700 MP4/M4A/3GP/MOV H.264 (1)(2)

 H.263 (2)(8)

 MPEG4 (2)(6)(22)

 AAC-LC/AAC+/eAAC+ (2)(6)

 AMR-NB (2)

 AVI MPEG4 (2)(22)

 MP3

 ASF/WMA/WMV Windows Media Video 9 (5)

 Windows Media Audio 9
Standard/Professional

(2)

 Windows Media 10
Standard/Professional

(2)

Download at WoweBook.Com

APPENDIX: Codec Support 402

Table A-1. Devices and Their Supported Codecs (continued)

Device Model Container Codecs Notes

 MP3 MP3

Tour 9630, Storm 2
9520, Storm 2 9550

MP4/M4A/3GP/3GP2 H.264 (1)(2)(6)

 H.263 (2)(3)

 MPEG4 (2)(4)

 AAC-LC/AAC+/eAAC+ (2)(6)

 AMR-NB (2)

 QCELP EVRC

 AVI MPEG4 (2)(4)

 MP3

 ASF/WMA/WMV Windows Media Video 9 (5)

 Windows Media Audio 9 (2)

 Windows Media 10
Standard/Professional

(2)

 MP3 MP3

Storm 9500/9530 MP4/M4A/3GP/3GP2 H.264 (1)(2)(6)

 H.263 (2)(3)

 MPEG4 (2)(4)

 AAC-LC/AAC+/eAAC+ (2)(6)

 AMR-NB (2)

 QCELP EVRC

Download at WoweBook.Com

APPENDIX: Codec Support 403

Table A-1. Devices and Their Supported Codecs (continued)

Device Model Container Codecs Notes

 AVI MPEG4 (2)(4)

 MP3

 ASF/WMA/WMV Windows Media Video 9 (5)

 Windows Media Audio 9 (2)

 Windows Media 10
Standard/Professional

(2)

 MP3 MP3

Bold 9000 MP4/M4A/3GP/MOV H.264 (2) (11)

 H.263 (2)(8)

 MPEG4 (2)(6)(12)

 AAC-LC/AAC+/eAAC+ (2)(6)

 AMR-NB (2)

 AVI MPEG4 (2)(11)

 MP3

 ASF/WMA/WMV Windows Media Video 9 (13)

 Windows Media Audio 9
Standard/Professional

 Windows Media 10
Standard/Professional

 MP3 MP3

Curve 8900, 8520 MP4/M4A/3GP/MOV H.264 (2) (7)

Download at WoweBook.Com

APPENDIX: Codec Support 404

Table A-1. Devices and Their Supported Codecs (continued)

Device Model Container Codecs Notes

 H.263 (2)(8)

 MPEG4 (2)(6)(9)

 AAC-LC/AAC+/eAAC+ (2)(6)

 AMR-NB (2)

 AVI MPEG4 (2)(9)

 MP3

 ASF/WMA/WMV Windows Media Video 9 (10)

 Windows Media Audio 9

 Windows Media 10
Standard/Professional

 MP3 MP3

Curve 8330, 8830 MP4/M4A/3GP/MOV H.263 (2) (8)

 MPEG4 (2) (6) (19)

 AAC-LC/AAC+/eAAC+ (2)(6)

 AMR-NB (2)

 ASF/WMA/WMV Windows Media Video 9 (21)

 Windows Media Audio 9
Standard/Professional

 Windows Media 10
Standard/Professional

 MP3 MP3

Download at WoweBook.Com

APPENDIX: Codec Support 405

Table A-1. Devices and Their Supported Codecs (continued)

Device Model Container Codecs Notes

Curve 8300, 8310,
8320, 8350i, 8800,
8820

MP4/M4A/3GP/MOV H.263 (2) (8)

 MPEG4 (2) (15) (19)

 AAC-LC/AAC+/eAAC+ (2)(15)

 AMR-NB (2)

 AVI MPEG4 (2)(18)(20)

 MP3 (16)(18)

 ASF/WMA/WMV Windows Media Video 9 (21)

 Windows Media Audio 9
Standard/Professional

 Windows Media 10
Standard/Professional

 MP3 MP3

Pearl 8130 MP4/3GP H.263 (2) (8)

 MPEG4 (2) (6) (14)

 AAC-LC/AAC+/eAAC+ (2)(6)

 AMR-NB (2)

 ASF/WMA/WMV Windows Media Video 9 (17)

 Windows Media Audio 9
Standard/Professional

 Windows Media 10
Standard/Professional

Download at WoweBook.Com

APPENDIX: Codec Support 406

Table A-1. Devices and Their Supported Codecs (continued)

Device Model Container Codecs Notes

 MP3 MP3

Pearl 8100, 8110,
8120, 8220

MP4/M4A/3GP/MOV H.263 (2) (8)

 MPEG4 (2)(14)(15)

 AAC-LC/AAC+/eAAC+ (2)(15)

 AMR-NB (2)

 AVI MPEG4 (2)(16)(18)

 MP3 (18)

 ASF/WMA/WMV Windows Media Video 9 (17)

 Windows Media Audio 9
Standard/Professional

 Windows Media 10
Standard/Professional

 MP3 MP3

Notes
(1) Baseline Profile. 480×360 resolution. Up to 2Mbps, 30fps.

(2) Supports RTSP streaming with device software 4.3 or later.

(3) Profile 0 and 3, Level 30. 480×360 resolution. Up to 2Mbps, 30fps.

(4) Simple Profile, Level 3. 480×360 resolution. Up to 2Mbps, 30fps.

(5) WMV3 Simple Profile. 480×360 resolution. 30fps.

(6) Recommended format for local playback.

(7) Baseline Profile. 480×360 resolution. Up to 1.5Mbps, 24fps.

(8) Profile 0 and 3, Level 45.

(9) Simple/Advance Simple Profiles. 480×360 resolution. Up to 1.5Mbps, 24fps.

(10) WMV3 Simple Profile, Main Profile. 480×360 resolution. 24fps.

(11) Baseline Profile. 480×320 resolution. Up to 1.5Mbps, 24fps.

Download at WoweBook.Com

APPENDIX: Codec Support 407

(12) Simple/Advance Simple Profiles. 480×320 resolution. Up to 1.5Mbps, 24fps.

(13) WMV3 Simple Profile, Main Profile. 480×320 resolution. 24fps.

(14) Simple Profile. 240x320 resolution. Up to 768kbps, 24fps.

(15) Recommended format for local playback for device software version 4.5 or higher.

(16) Simple/Advance Simple Profiles. 240×320 resolution. Up to 768kbps, 24fps.

(17) WMV3 Simple Profile. 240×320 resolution. 24fps.

(18) Recommended format for local playback for device software version 4.2 or 4.3.

(19) Simple Profile. 320×240 resolution. Up to 768kbps, 24fps.

(20) Simple/Advance Simple Profiles. 320×240 resolution. Up to 768kbps, 24fps.

(21) WMV3 Simple Profile. 320×240 resolution. 24fps.

(22) Simple/Advance Simple Profiles. 480×360 resolution. Up to 2Mbps, 30fps.

Download at WoweBook.Com

APPENDIX: Codec Support

402

Download at WoweBook.Com

 365

Index

■A
accessing data, 47
ActionNameMap class, 286, 287
actions

firewall, 338
invocation, 281, 282

ACTIVE state
Invocation class, 283, 284

addField() method, 209
address book, 195

contacts, 201
BlackBerry, 203, 205
creating, 206
deleting, 218, 219
editing, 207, 212
importing, 206, 207
overview, 201, 202
saving, 212, 213
searching for, 213, 217
standards for, 202, 203

invoking native, 219, 220
overview, 195
Personal Information Management (PIM), 195,

201
categories, 198
fields, 200, 201
items, 199, 200
lists, 196, 198
overview, 195, 196

reading data, 217, 218
selecting recipients from, 236, 239

addresses
editing in contacts, 211, 212

AddressException exception, 137
addToCategory() method, 200
Advanced Multimedia Supplements (AMMS), 53
Allow permission, 328
ALT key, 353
.alx file, 384
ALX files, 274

%(alx%) task, bb-ant-tools, 383
AMR files, 51
Android platform, 372
Ant scripts, 382, 383
API (application programming interface)

and compatibility, 361
determining features by, 358
monitoring, 343
restricted, 9

application control policies, 323, 324
ApplicationDescriptor

adding custom menu item, 307
Application.getEventLock() method, 260
Application.invokeLater() method, 260
ApplicationMenuItemRepository.addMenuItem()

method, 307
ApplicationMenuItemRepository class, 305
ApplicationMenuItemRepository.removeMenuItem()

method, 307
application over the air (OTA), 295
ApplicationPermissions, 331
ApplicationPermissionsManager, 334, 336

changing permissions, 335, 336
checking permissions, 334, 335
overview, 334

ApplicationPermissionsManager.addReasonProvider()
method, 337

ApplicationPermissionsManager.getMaxAllowable()
method, 336

ApplicationPermissionsManager.getPermission()
method, 334

firewall settings, 340
ApplicationPermissionsManager.invokePermissions

Request() method, 335
applications. See also porting applications

speed of, 350
application signing, 343

code signing impacts, 343
identity establishment, 343
overview, 343

application types, 10, 23
CLDC applications, 17, 21

Download at WoweBook.Com

Index 410

behavior, 17
evaluation, 20, 21
example, 18, 20
overview, 17
UI, 18

libraries, 21, 23
library functions, 21
overview, 21

MIDlets, 11, 17
behavior, 11
evaluation, 16, 17
example, 12, 14
overview, 11
running, 15
UI, 11, 12

overview, 10
apps

development, 247, 249
heavy-duty apps, 248, 249
lightweight Web, 247, 248
overview, 247

embedding browser in, 253, 264
BrowserContent class, 254
Event class, 255, 256
examples, 257, 264
flow of events, 256
overview, 253, 254
RenderingApplication class, 254
RenderingSession class, 254

embedding in browser, 264, 269
MIME type providers, 265
overview, 264
registering Plug-in, 268, 269
writing Plug-in, 265, 267

APP_TYPE_CALENDAR element, 228
APP_TYPE_CAMERA, 59
Arabic, keyboard layout for, 356
ARG_NEW argument, 228
ARG_VIDEO_RECORDER, 59
ARG_VIEW_AGENDA argument, 228
ARG_VIEW_DAY argument, 228
ARG_VIEW_DEFAULT argument, 228
ARG_VIEW_MONTH argument, 228
ARG_VIEW_WEEK argument, 228
AsymmetricBlockCipher class, 169
asymmetric key system, 166
attachments

email, 138, 153, 154
MMS, 134

attributes, 200, 211
audio encoding, 51
audio.encodings system property, 48
AUDIO_PATH_BLUETOOTH_A2DP option, 89
AUDIO_PATH_BLUETOOTH option, 89

AudioPathControl, 89
AUDIO_PATH_HANDSET option, 89
AUDIO_PATH_HANDSFREE option, 89
AUDIO_PATH_HEADSET_HANDSFREE option, 89
AUDIO_PATH_HEADSET option, 89
audio playback, 81, 92

CHAPI, 102, 103
codecs, 87, 88

containers, 87
overview, 87
support for, 88

MIDI, 91, 92
mixing, 90
outputs, 88, 89
overview, 81
Player class, 81, 82
PlayerListener, 82, 86
ToneControl class, 91, 92

audio recording, 51, 52
authenticity, message, 166
auto-complete feature, Eclipse, 174
automated builds, 381, 382
AVAILABLE state, 358

■B
backwards compatibility, 361
Base64, 171, 177
Base64Encoder class, 171
Base64 encoding, 172
batch files, 382
bcc (blind carbon copy), 134
behavior

CLDC applications, 17
MIDlets, 11

BES, 135
BES administrators, 247
BES networks

treatment of by iDEN phones, 352
bifurcation, 388
binary data, 283
BinaryMessage class, 149
Bitmap class, 94
BitmapField, 100
BlackBerry Ant Tools package (bb-ant-tools), 382
BlackBerry App World, 385
BlackBerryCanvas class, 357
BlackBerry CLDC applications

image display in, 94
BlackBerryContact.ANNIVERSARY field, 204
BlackBerryContact class, 203
BlackBerryContact.DCID field, 204

Download at WoweBook.Com

Index 411

BlackBerryContactGroup class, 214
BlackBerryContactList class, 197, 214
BlackBerryContact.PIN field, 204
BlackBerryContact.USER1 field, 204
BlackBerryContact.USER2 field, 204
BlackBerryContact.USER3 field, 204
BlackBerryContact.USER4 field, 204
BlackBerry Desktop Manager, 7, 37

loading pushing policies, 324
service options, 250

BlackBerry Desktop Software, 8
BlackBerry Developer Newsletter, 399
BlackBerry Device Manager, 7
BlackBerry Enterprise Server (BES) email, 123, 125

advantages of, 124
disadvantages of, 125

BlackBerry Enterprise Server (BES) service, 123
BlackBerryEvent.ALLDAY field, 225
BlackBerryEvent.ATTENDEES field, 225
BlackBerryEvent.FREE_BUSY field, 225
BlackBerryGameCanvas class, 357
BlackBerry Java developer forums, 398
BlackBerryMemo class, 233
BlackBerryMemoList class, 197, 233
BlackBerry MMAPI, 41, 48

accessing data, 47
data content handling, 43
data delivery, 43
overview, 41
Player instance lifecycle, 43, 45
PlayerListener interface, 45, 47

BlackBerryPIM class, 197
BlackBerry programs

setup, 7
BlackBerry Project Properties dialog box, Eclipse, 99,

100
BlackBerry Storm

keyboard of, 354
BlackBerry Technical Solution Center, 398
BlackBerryToDo.REMINDER field, 232
BlackBerryToDo.STATUS field, 232
block-based cipher, 165
block-based ciphers, 173
BlockCipher interface, 169
BlockDecryptor class, 179
blocking operation

on streams, 26
BlowfishEngine class, 169
Bluetooth

audio output, 89
BodyPart class, 138
boilerplate code

MIDlets, 14
Bouncy Castle, 168, 173

adding to project, 168, 169
analysis, 172, 173
creating digests, 171
decryption, 171
encryption, 169, 170
overview, 168
verifying digests, 172

browser, 241, 275
app development, 247, 249

heavy-duty apps, 248, 249
lightweight Web, 247, 248
overview, 247

embedding app in, 264, 269
MIME type providers, 265
overview, 264
registering Plug-in, 268, 269
writing Plug-in, 265, 267

embedding in app, 253, 264
BrowserContent class, 254
Event class, 255, 256
examples, 257, 264
flow of events, 256
overview, 253, 254
RenderingApplication class, 254
RenderingSession class, 254

Friend Tracker app, 269, 275
creating Plug-in Library, 270, 273
MIME configuration, 269, 270
overview, 269
running, 273, 275

launching browser, 249, 253
launching with HTML, 252, 253
overview, 249
service options, 250, 252
starting browser, 250

overview, 241
types of, 241, 247

additional options, 247
embedding content, 246
HTML, 244, 246
overview, 241
WAP, 241, 243
XHTML, 244, 246

Web development, 247, 249
heavy-duty apps, 248, 249
lightweight Web, 247, 248
overview, 247

BrowserContentChangedEvent class, 255
BrowserContent class, 254
BrowserContentProvider class, 265
BrowserContentProviderRegistry, 268, 269
browsers

video playback through, 101, 102
BrowserSession.displayPage() method, 253

Download at WoweBook.Com

Index 412

BufferedBlockCipher class, 169
BufferedInputStream class, 26
bufferingStarted event, 83
bufferingStopped event, 83
build techniques, 379, 395

Ant scripts, 382, 383
batch files, 382
command line, 379, 381

rapc compiler, 380, 381
SignatureTool program, 381

debugging and logging, 387, 389
makefiles, 383
MediaGrabber application, 392, 395

adding logger, 392, 393
build script, 393
updates, 394, 395

obfuscation, 389, 390
packaging ALX installs, 391
packaging OTA installs, 390, 391
versioning strategies, 383, 387

distribution options, 384, 385
persistent data storage, 385, 387
version numbers, 383, 384

built-in handlers, 297, 298
bundles, 366
ByteArrayInputStream, 80

■C
cable load distribution, 384
Calendar class, 208
calendars, 221

events
creating, 226, 227
deleting, 228
editing, 226, 227
exporting, 228
reading, 227
reading data, 224, 225
repeating, 222, 224
searching for, 227

overview, 221
syncing, 221, 222
viewing, 228, 231

invoking native calendar, 228, 229
overview, 228
selecting dates, 229, 231

camera, 53, 55
CameraArguments class, 48
cancelGetRequest() method

threads, 289
CANCELLED state

Invocation class, 283
Canvas-based app, 12
Canvas-based apps, 16
categories, PIM, 198
cc (carbon copy), 134
CDMA

SMS on, 131, 132
CDMA (Code Division Multiple Access) carriers, 128
Certicom classes, 178, 180

analysis of, 180
decryption, 179, 180
encryption, 179
overview, 178, 179

Certicom cryptography keys, 10
Certicom website, 178
CHAPI, 312, 313

audio playback, 102, 103
checkpermissions () method, 346

CHAPI (Content Handler API), 102
CHAPI handling

adding, 308, 312
listening for and handling requests, 309, 312
overview, 308
static registration, 308

checkPermissions() method, 346
checksums, 166, 167, 177
chips, 349
ChoicesScreen class, 110, 112, 394
choose() method, 219, 220, 228
cipher encryption, 164
CipherParameters class, 169
ciphers, 165, 167, 169
ciphertext, 164
class, 199
ClassNotFoundException exception, 148
CLDC Field, 18
clean.bat file, 398
clean room implementation, 168
client/server view

of CHAPI, 279
clock speed, 349
closed event, 83
CLOSED state, 44, 81
CloseEvent class, 255
close() method, 24, 44, 98, 105

writing to stream, 27
CMIME (Compressed Multipurpose Internet Mail

Extension), 136
codecs, 87, 88

containers, 87
overview, 87
support for, 88

codec support, 401, 407
Code Division Multiple Access (CDMA) devices, 351

Download at WoweBook.Com

Index 413

CodeModuleManager API, 385
codename=?CB1?name?CB2, ?380
code signing, 9
code signing impacts, 343
code signing keys, 37

Media Grabber app, 37, 39
revoking, 343

COD files, 79, 80
COD modules, sibling, 380
command line, 379, 381

rapc compiler, 380, 381
SignatureTool program, 381

Command objects
MIDlet programming and, 12

command prompt, Java, 3
commit() method, 50, 212, 215
compatibility, 361. See also porting applications

media playback, 75, 76
compilation process, rapc compiler, 380
complexity

media playback, 76
Component Pack, 6
com.rim.loading event, 84
com.rim.timeUpdate event, 84
Connected Limited Device Configuration (CLDC)

applications, 17, 21
behavior, 17
evaluation, 20, 21
example, 18, 20
overview, 17
UI, 18

Connected mode
ESS, 140

connecting to files and networks, 23, 30
file access, 25, 27

access, 25
other operations, 27
overview, 25
paths, 25
streams, 26, 27

GCF connector, 23, 24
networking, 28, 30

HTTP requests, 29, 30
overview, 28
types of connections, 28

overview, 23
ConnectionNotFoundException exception

messaging, 129
connections

thin clients, 248
Connections group, 328
Connector class

GCF, 23
Connector.open() factory method, 28

Connector.open() method, 127
network connection, 29

Connector.READ mode, 25
Connector.READ_WRITE mode, 25
Connector.WRITE mode, 25
Contact.ADDR_COUNTRY field, 212
Contact.ADDR_EXTRA field, 212
Contact.ADDR field, 204
Contact.ADDR_LOCALITY field, 212
Contact.ADDR_POBOX field, 212
Contact.ADDR_POSTALCODE field, 212
Contact.ADDR_REGION field, 212
Contact.ADDR_STREET field, 212
Contact.BIRTHDAY field, 204
Contact class, 203
Contact.EMAIL field, 204
ContactList class, 197, 200
ContactList.createContact() method, 206
Contact.NAME_FAMILY field, 210
Contact.NAME_GIVEN field, 210
Contact.NAME_OTHER field, 210
Contact.NAME_PREFIX field, 210
Contact.NAME_SUFFIX field, 210
Contact.NOTE field, 204
Contact.ORG field, 204
Contact.PHOTO field, 204
Contacts. See address book
contacts, 201

BlackBerry, 203, 205
creating, 206
deleting, 218, 219
editing, 207, 212

addresses, 211, 212
binary, 209
dates, 208, 209
email addresses, 209, 210
modifying basic fields, 207
names, 210
overview, 207
phone numbers, 211
strings, 207, 208

importing, 206, 207
overview, 201, 202
saving, 212, 213
searching for, 213, 217

broader searches, 215
direct retrieval, 214, 215
overview, 213
remote lookup, 216, 217
returning all, 213, 214
template matching, 216

standards for, 202, 203
Contact.TEL field, 204
Contact.TITLE field, 204

Download at WoweBook.Com

Index 414

Contact.UID field, 204
containers, 87
content, embedding, 246
Content Handler Actions, 281
Content Handler API (CHAPI), 278
ContentHandler class, 281, 287, 288
ContentHandlerException error, 291
content handler ID, 281
ContentHandlerServer class, 288, 290
ContentHandlerServer.finish() method, 290
ContentHandlerServer.getRequest() method, 289
content handling system, 277, 298

ActionNameMap class, 286, 287
architecture, 278, 280
built-in handlers, 297, 298
ContentHandler class, 287, 288
ContentHandlerServer class, 288, 290
installing handlers, 296
invocation, 280, 286

actions, 281, 282
examples, 285
life cycle, 283, 285
locating hints, 281
overview, 280
parameters, 282, 283

overview, 277
philosophy, 277, 278
Registry, 291, 294

client use of, 291, 292
overview, 291
server use of, 293, 294

static registration, 295, 296
ContentReadEvent class, 256
control

media playback, 76
controlling output, 49, 50
ConverterUtilities class, 250
coordination

media playback, 76
countValues() method, 211, 217
createMediaLater() method, 98
createMedia() method, 98
createMessage() method, 183
create() method, 27

directories, 27
CryptoException exception, 170, 180
cryptographic signature, 166
cryptography, 163, 191

Bouncy Castle, 168, 173
adding to project, 168, 169
analysis of, 172, 173
creating digests, 171
decryption, 171
encryption, 169, 170

overview, 168
verifying digests, 172

Certicom classes, 178, 180
analysis of, 180
decryption, 179, 180
encryption, 179
overview, 178, 179

decryption
overview, 165, 166

encryption
overview, 164, 165

file encryption, 182
HTTPS encryption, 181
MDS encryption, 182
MediaGrabber application, 183, 190

decryption, 189
encryption, 183, 185
overview, 183

overview, 163, 164
RIM Crypto classes, 173, 178

analysis of, 177, 178
decryption, 176
digests, 177
encryption, 175, 176
overview, 173, 175

Security and Trust Services API (SATSA), 167
validation

overview, 166, 167
CryptoSystem interface, 179
CryptoTokenException exception, 176
CryptoUnsupportedOperationException exception, 176

■D
DAILY element, 222
?D?a parameter, 381
DataBuffer class, 250
data content handling, 43
data delivery, 43
DatagramConnection class, 131
DataInputStream class, 250
DataOutputStream class, 250
data packets

SMS, 116
DataSource, 43

manual buffering, 75–77
DataSource interface, 43
data storage, 385, 387

files, 385, 386
Record Management System (RMS), 386

DATE element, 229
DateField class, 229–231

Download at WoweBook.Com

Index 415

dates
editing in contacts, 208, 209

dates() method, 224
DATE_TIME element, 229
DAY_IN_MONTH modifier', 223
DAY_IN_WEEK modifier, 223
DAY_IN_YEAR modifier, 223
?D?C parameter, 381
?D?c parameter, 381
?D?d parameter, 381
deallocate() method, 44, 81
debug breakpoint

setting in Eclipse, 35
debugging

on BlackBerry device, 35, 36
and logging, 387, 389
on Simulator, 32, 35

decryption. See also cryptography
Bouncy Castle, 171
Certicom classes, 179, 180
MediaGrabber application, 189
overview, 165, 166
RIM Crypto classes, 176

Default Icon Sizes, 299
default permissions, 329, 330
delete() method, 27
deleting

contacts, 218, 219
events, 228

Deny permission, 329
DES encryption algorithm, 183
design notes

icons, 298
Developer Knowledge Base, 398
Developer Newsletter, BlackBerry, 399
Developers page, 8
development, keys to

setup, 9, 10
deviceAvailable event, 83
DeviceInfo.getDeviceId() method, 155
DeviceInfo.getDeviceName() method, 358
DeviceInfo.getSoftwareVersion() method, 360
DeviceInfo.getTotalFlashSize() method, 358
DeviceInfo.hasCamera() method, 358
devices

rich clients and, 249
supported codecs, 401–406

device security policies, 321, 323
deviceside parameter

HTTP connection, 29
deviceUnavailable event, 83
?D?f ?CB1?File?CB2? parameter, 381
digests, 166, 177

creating with Bouncy Castle, 171

RIM Crypto classes, 177
verifying with Bouncy Castle, 172

Digital Rights Management (DRM), 25
displaying

images, 93, 101
in BlackBerry CLDC applications, 94
GIF animation, 99, 100
MIDP images, 100, 101
overview, 93
Plazmic, 96, 99
SVG animation, 95, 96

distribution options, 384, 385
dividing application

functionally, 372
?D?midlet, 380
doFinal() method, 170
downgrade

defined, 384
Downloads folder, 15
?D?p ?CB1?Password?CB2? parameter, 381
?DQ?javax.microedition.lcdui.Item?DQ, ?95
?DQ?net.rim.device.api.ui.Field?DQ, ?95
?DQ?supports.mixing?DQ? system property, 90
?D?quiet, 381
?D?r ?CB1?Directory?CB2? parameter, 381
?D?s parameter, 381
dual band devices, 351
durationUpdated event, 83
?D?verbose, 381
dynamic localization, 370
dynamic push registration, 147, 148
dynamic registration, 296

combining with static registration, 295

■E
earpieces, 89
eBay, 324, 325
Eclipse

configuring to launch MDS, 33
setting debug breakpoint, 35
Signature Tool window, 38

Eclipse debug view, 35
Eclipse EE, 4
Eclipse IDE, 3, 4
EDGE technology, 350
editing

contacts, 207, 212
addresses, 211, 212
binary, 209
dates, 208, 209
email addresses, 209, 210

Download at WoweBook.Com

Index 416

names, 210
overview, 207
phone numbers, 211
strings, 207, 208

events, 226, 227
email, 121, 123

advantages of, 122, 123
BES, 123, 125

advantages of, 124
disadvantages of, 125

disadvantages of, 123
receiving messages, 152, 154

attachments, 153, 154
listening for, 152

sending messages, 135, 145
attachments, 138
creating, 137, 138
locating accounts, 135, 137
testing sending, 139, 145

email addresses
editing in contacts, 209, 210

Email Server Simulator (ESS), 139–143, 145, 156
embedded browser

communicating with, 257
embedding

app in browser, 264, 269
MIME type providers, 265
overview, 264
registering Plug-in, 268, 269
writing Plug-in, 265, 267

browser in app, 253, 264
BrowserContent class, 254
Event class, 255, 256
examples, 257, 264
flow of events, 256
overview, 253, 254
RenderingApplication class, 254
RenderingSession class, 254

content, 246
enableDRMForwardLock() method, 182
EncodedImage class, 94
encryptData() method, 183
encryption. See also cryptography

Bouncy Castle, 169, 170
Certicom classes, 179
MediaGrabber application, 183, 185
overview, 164, 165
RIM Crypto classes, 175, 176

endOfMedia event, 83
engines, 169, 175
English

in U.S. vs. Great Britain or Canada, 363
Enter from anywhere app, 308, 315

adding CHAPI handling, 308, 312

listening for and handling requests, 309, 312
overview, 308
static registration, 308

native menu integration, 313, 315
overview, 308
running with CHAPI, 312, 313

enterprise email, 123, 125
Erase Simulator File option, 20
error event, 83
ErrorEvent class, 256
ERROR state

Invocation class, 283, 284
Event.ALARM field, 225
EVENT_BROWSER_CONTENT_CHANGED identifier,

255
EVENT_CANCEL_REQUEST_RESOURCE identifier, 255
Event class, 224, 225, 255–256
Event.CLASS field, 225
EVENT_CLOSE identifier, 255
event dispatcher, 17
Event.END field, 224
EVENT_ERROR_DISPLAY identifier, 256
EVENT_EXECUTING_SCRIPT identifier, 256
EVENT_FULL_WINDOW identifier, 256
EVENT_HISTORY identifier, 256
EventList class, 227
Event.LOCATION field, 225
Event.NOTE field, 225
eventOccurred method

RenderingApplication class, 255
EVENT_REDIRECT identifier, 256
events, 228

creating, 226, 227
deleting, 228
editing, 226, 227
exporting, 228
reading, 227
reading data, 224, 225
repeating, 222, 224
searching for, 227

EVENT_SET_HEADER identifier, 256
EVENT_SET_HTTP_COOKIE identifier, 256
Event.START field, 224
EVENT_STOP identifier, 256
Event.SUMMARY field, 224
EVENT_TICK_CONTENT_READ identifier, 256
Event.UID field, 225
EVENT_UI_DIRECTION_REQUEST identifier, 256
EVENT_URL_REQUESTED identifier, 256
Evolution Data Optimized (EV-DO) data network, 351
Exception class, 388
exception handling

messaging, 129, 130
%(exec%) task, Ant, 382

Download at WoweBook.Com

Index 417

ExecutingScriptEvent class, 256
EXE file

downloading Plug-in as, 5
exists() method, 27
exporting

events, 228
ExtendedFileConnection interface, 182
Extended Message Service (EMS), 118
external memory storage, 352

■F
factory class, 23
features, 357, 359

determining by API, 358
determining by model number, 357, 358
porting impact, 359

FieldFullException exception, 208, 211
fields, PIM, 200, 201
file access, 25, 27

access, 25
additional operations, 27
overview, 25
paths, 25
streams, 26, 27

file?C??FS??FS??FS? prefix, 75
FileConnection, 63
FileConnection API

finding and loading content, 71
file encryption, 182
fileJournalChanged() method, 58
files

using for data storage, 385, 386
fileSize() method, 27
filesystem

exploring, 313
FileSystemJournalListener class, 56
FileSystemRegistry.listRoots() method, 352
filters

email, 122
finally block, 129, 130
firewall, 337, 340

actions, 338
dealing with, 340
effects, 339, 340
overview, 337
settings, 339

flexibility
media playback, 73, 75, 80

flush() method
writing to streams, 27

FolderListener interface, 152

formatting
locale-aware, 369, 370

Friend Tracker app, 269, 275
MIME configuration, 269, 270
overview, 269
Plug-in Library, 270, 273
running, 273, 275

fromSerialFormat() method, 206, 207
full path

to local files, 25
full web content

mobile browser, 245
FullWindowEvent class, 256

■G
GameCanvas

for MIDlets, 16
GameCanvas app, 12
Generic Connection Framework (GCF), 23, 42, 127
Generic Connection Framework (GCF) connector, 23,

24
getAccept() method, 265
getActionNameMapCount() method, 288
getActionNameMap() method, 288
getActionNameMap(String locale) method, 288
getActiveThemeName() method, 303
getApplicationPermissions() method, 335
getAppName()

ContentHandler classes, 287
getARGB() method, 94
getAttributes() method, 211
getAuthority() method

ContentHandler classes, 287
getAvailableHeight method

Rendering Application class, 255
getAvailableWidth method

Rendering Application class, 255
getBrowserContent(). method, 265
getByUID() method, 214
getContentType() method, 50
getControl() method, 91, 357
getControls() method, 357
getDate(RepeatRule.END) method, 224
getDeviceName() method, DeviceInfo class, 358
getDisplayHeight option, 93
getDisplayWidth option, 93
getDisplayX option, 93
getDisplayY option, 93
getFields() method, 218, 224
getHardwareLayout() method, Keypad class, 355
getHistoryPosition method

Download at WoweBook.Com

Index 418

Rendering Application class, 255
getHTTPCookie

Rendering Application class, 255
getInt(int field) method, 224
getMediaTime() method, 98
getMessageType() method, 156
getOrientation() method, Display class, 359
getPermission() method, 334
getPreferredIconHeight() method, 303
getPreferredIconWidth() method, 303
getProperty() method, 48
getRequest() method

thread blocking, 289
getResource method

Rendering Application class, 255
getResource() method, 261
getSnapShot() method, 53, 55
getSoftwareVersion() method, DeviceInfo class, 360
getSortOrder() method, 214
getSourceHeight option, 93
getSourceWidth option, 93
getSupportedFields() method, 201
getSupportedMimeTypes() method, 265
getSupportedRepeatRuleFields() method, 223
getVisibility() method, 357
GIF animation, 99, 100
GIF format

icons, 300
Global System for Mobile (GSM) carriers, 131
Global System for Mobile (GSM) devices, 350, 351
GSM carriers, 131
GSM (Global System for Mobile) carriers, 128

■H
handler.getSuffixCount() method, 288
handlers

built-in, 297, 298
installing, 296

handling requests, 309, 312
hands-free headsets, 89
hardware codecs, 88
hardware differences, 349, 359

external memory storage, 352
features, 357, 359

determining by API, 358
determining by model number, 357, 358
porting impact, 359

keyboard, 353, 357
changing, 356, 357
detecting, 355, 356
porting impact, 357

profiles, 353, 355
processors, 349, 350
radios, 350, 352

Code Division Multiple Access (CDMA), 351
dual band, 351
Global System for Mobile (GSM), 350, 351
iDEN, 352
Wi-Fi, 352

screen sizes, 359
hasCurrencyKey() method, 356
hashes, 166, 177
hasMore() method, 154
hasSendEndKeys() method, 356
headers

MMS, 134
SMS, 117

heavy-duty apps, 248, 249
HIDE_FORCE mode, 356
HistoryEvent class, 256
HOLD state

Invocation class, 283, 284
HomeScreen class, 303
HomeScreen.setRolloverIcon() method, 301
HTML

browser, 244, 246
HttpConnection

writing helper method to create, 262
HTTP requests, 29, 30
HTTPS encryption, 181
HW_LAYOUT_32 keyboard layout, 355
HW_LAYOUT_39 keyboard layout, 355
HW_LAYOUT_LEGACY keyboard layout, 355
HW_LAYOUT_PHONE keyboard layout, 355
HW_LAYOUT_REDUCED keyboard layout, 355
HW_LAYOUT_REDUCED_24 keyboard layout, 355
HW_LAYOUT_TOUCHSCREEN_12A keyboard layout,

356
HW_LAYOUT_TOUCHSCREEN_35J keyboard layout,

356
HW_LAYOUT_TOUCHSCREEN_12 keyboard layout,

355
HW_LAYOUT_TOUCHSCREEN_24 keyboard layout,

355
HW_LAYOUT_TOUCHSCREEN_29 keyboard layout,

355

■I
iCalendar standard, 221
icons, 298, 304

changing, 302, 303
design notes, 298

Download at WoweBook.Com

Index 419

overview, 298
providing, 300
rollover, 300, 302
setting position, 303, 304
technical notes, 299, 300

iDEN devices, 205
iDEN (ntegrated Digital Enhanced Network) devices,

352
identity establishment

application signing, 343
IDEs

setup, 4, 5
IGNORE mode, 356
IllegalArgumentException, 302
IllegalArgumentException exception

messaging, 129
image display, 93, 101

in BlackBerry CLDC applications, 94
GIF animation, 99, 100
MIDP images, 100, 101
overview, 93
Plazmic, 96, 99
SVG animation, 95, 96

images
camera, 53, 55
displaying based on user's locale, 369

IMAP servers, 121
import=?CB1?paths?CB2, ?380
importContact() method, 217
importing

contacts, 206, 207
i18n. See localization
in-app updates, 385
inbox

email, 121
IndexOutOfBoundsException exception, 208
initDisplayMode() method, 55
initialization process, rapc compiler, 380
initialization vector (IV), 183
INITIATED state

Invocation class, 283
init() method, 171
INIT state

Invocation class, 283
InputStream

COD resources, 80
installing handlers, 296
instant messaging, 126
Interactions group, 328
interface parameter

HTTP connection, 29
internationalization, 201. See also localization
interoperability

messaging, 117

Interprocess Communication permission, 329
InterruptedIOException exception

messaging, 129
invocation, 280, 286

actions, 281, 282
examples, 285, 286
life cycle, 283, 285
locating hints, 281
overview, 280
parameters, 282, 283

Invocation class, 278
Invocation.findType() method, 281
Invocation.setArgs() method, 282
Invocation.setData() method, 283
Invocation.setType() method, 281
Invoke class, 47, 228, 229
invokeLater() method, 107
invoke() method, 293
invokeRunnable method

Rendering Application class, 255
invoking

native address book, 219, 220
native calendar, 228, 229

IOException error, 291
IOException exception, 49, 148, 180

messaging, 129
isOnKeypad(char ch) method, 356
isSupportedField() method, 217
isSupported() method, 356
isValidKeyCode(int code) method, 356
Item objects

MIDlet programming and, 11
items, PIM, 199, 200
itemsByCategory() method, 215
itemsByName() method method, 214
items() method, 213, 227
IT policies, 320, 324

application control, 323, 324
device security, 321, 323
overview, 320, 321

■J
jad=?CB1?file?CB2, ?381
JAD file

modifying, 380
modifying project, 308
registering multiple handlers in, 295
setting individual application permissions, 327

JAD files
MIDlet permissions, 340

%(jadtool%) task, bb-ant-tools, 383, 391

Download at WoweBook.Com

Index 420

Japanese, Kana, keyboard layout for, 356
Java

setup, 3, 4
Java classes

adding resources to, 367
Java developer forums, 398
Java Development Kit (JDK), 4
Java ME

purpose of, 277
Java ME application, 11
Java ME platform, 372
Java Runtime Environment (JRE), 4
Java Specification Request (JSR), 11
javax.microedition.content.ContentHandler

permission, 341
javax.microedition.global package, 370
javax.microedition.io.Connector.datagram permission,

341
javax.microedition.io.Connector.datagramreceive

permission, 341
javax.microedition.io.Connector.file.read permission,

341
javax.microedition.io.Connector.file.write permission,

341
javax.microedition.io.Connector.http permission, 341
javax.microedition.io.Connector.https permission, 341
javax.microedition.io.Connector.mms permission, 341
javax.microedition.io.Connector.sms permission, 341
javax.microedition.io.Connector.socket permission,

341
javax.microedition.io.Connector.ssl permission, 341
javax.microedition.io.PushRegistry permission, 341
javax.microedition.lcdui package, 18
javax.microedition.location.Location permission, 341
javax.microedition.media.control.RecordControl

permission, 341
javax.microedition.media.control.VideoControl.getSna

pshot permission, 341
javax.microedition.pim.ContactList.read permission,

341
javax.microedition.pim.ContactList.write permission,

341
javax.microedition.pim.EventList.read permission,

342
javax.microedition.pim.EventList.write permission,

342
javax.microedition.pim.ToDoList.read, 342
javax.microedition.pim.ToDoList.write permission,

342
javax.wireless.messaging.mms.receive permission,

342
javax.wireless.messaging.mms.send permission, 342
javax.wireless.messaging.sms.receive permission,

342

journaled filesystems, 58
JPEG format

icons, 300
JPEG images, 53
JSR 75, 195
JSR 177, 167
JSR 205, 126
JSR 238 mobile internationalization API, 370
JSR 226 support, 95

■K
Kana Japanese, keyboard layout for, 356
key, cipher, 166, 190
12-key Arabic, keyboard layout for, 356
keyboard, 353, 357

changing, 356, 357
detecting, 355, 356
porting impact, 357
profiles, 353, 355

Keypad API, 355
Keypad.getHardwareLayout() method, 355
Keypad methods, 356
keys

naming, 365
keys, cipher, 164, 170
keystore classes, 180
Keystroke Injection permission, 329
King_AppAindexed, 401
King_ch1indexed, 3
King_ch2indexed, 41
King_ch3indexed, 71
King_ch4indexed, 115
King_ch5indexed, 163
King_ch6indexed, 195
King_ch7indexed, 241
King_ch8indexed, 277
King_ch9indexed, 319
King_ch10indexed, 349
King_ch11indexed, 379
King_ch12indexed, 397

■L
language differences. See localization
legacy WAP sites, 243
libMain() function, 22
libMain() method, 273, 293
libraries, 21, 23

library functions, 21

Download at WoweBook.Com

Index 421

overview, 21
life cycle, invocation, 283, 285
lightweight Web, 247, 248
listeners, 234, 235
listening for requests, 309, 312
list() method, 27, 137
listRoots() method, FileSystemRegistry class, 352
lists, PIM, 196, 198
live media playback, 75
locale-specific strings

ActionNameMap instance, 286
local filesystem

finding content on, 71, 73
localhost email account, 141, 142
localization, 363, 371

adding multi-language support, 364, 368
adding resources to Java classes, 367
bundles, 366
defining resource files, 364, 365
testing languages, 367, 368

dynamic, 370
images, 369
locale-aware formatting, 369, 370
managing resource bundles, 368, 369
overview, 363, 364
porting impact, 370, 371
of text, 373, 377

creating resource files, 373, 374
modifying source, 374, 377
testing localization, 377

LocationProvider.getState() method, 358
Log class, 388
logging

and debugging, 387, 389
Log.writeLog() method, 388, 389
lookup() method, 216, 217
low-level permissions, 329

■M
M4A files

codecs, 87
main() function, 17
major version number, 383
makefiles, 383
managed applications, 11
Manager class, 42, 48
Manager.createPlayer() method, 72
Manager Field, 18
Manager.getSupportedContentType() method, 88
MANIFEST.MF files

MIDlet permissions, 340

manual buffering, 75, 79
maxCategories() method, 200
MD5 hashes, 167
MDS encryption, 182
MDS network connection

specifying, 352
MDS simulator

changing version, 398
MEDIA_ARGUMENT_VIEW_MEDIA, 298
MEDIA_ARGUMENT_VIEW_MUSIC, 298
MEDIA_ARGUMENT_VIEW_PICTURES, 298
MEDIA_ARGUMENT_VIEW_PLAYLISTS, 298
MEDIA_ARGUMENT_VIEW_RINGTONES, 298
MEDIA_ARGUMENT_VIEW_VIDEOS, 298
MEDIA_ARGUMENT_VIEW_VOICENOTES, 298
media capture, 41, 69

audio recording, 51, 52
BlackBerry versus Sun MMAPIs, 41, 48

accessing data, 47
data content handling, 43
data delivery, 43
overview, 41
Player instance lifecycle, 43, 45
PlayerListener interface, 45, 47
Sun standard, 42

camera, 53, 55
controlling output, 49, 50
creating MediaPlayer, 48, 49
Media Grabber application, 59, 68
overview, 41
RIM alternative, 56, 59
video capture, 55, 56

MEDIA_COMPLETE event, 98
1 media error code, 84
2 media error code, 84
3 media error code, 85
4 media error code, 85
5 media error code, 85
6 media error code, 85
7 media error code, 85
8 media error code, 85
9 media error code, 85
10 media error code, 85
11 media error code, 85
12 media error code, 85
13 media error code, 85
14 media error code, 85
15 media error code, 85
16 media error code, 85
17 media error code, 85
18 media error code, 85
19 media error code, 85
20 media error code, 85
21 media error code, 85

Download at WoweBook.Com

Index 422

22 media error code, 85
media error codes, 84, 85
mediaEvent() method, 98
MediaException exception, 49
MediaGrabber

default icon, 298
Plug-in to display metadata, 271

Media Grabber app, 30, 39
code signing keys, 37, 39
debugging on BlackBerry device, 35, 36
debugging on Simulator, 32, 35
overview, 30

MediaGrabber app
security, 343, 347

checking and requesting permissions, 344,
345

overview, 343, 344
plugging in, 346
running app, 346, 347
version problem, 344

Media Grabber app
working with devices, 36, 37
writing, 30, 32

Media Grabber application, 59, 68
MediaGrabber application, 392, 395

adding logger, 392, 393
build script, 393
securing, 183, 190

decryption, 189
encryption, 183, 185
overview, 183

selecting recipients from address book, 236, 239
sending and receiving media messages, 156,

161
updates, 394, 395

MediaGrabber class, 30
MediaGrabber program, 359

localizing text for
creating resource files, 373, 374
modifying source, 375, 378
overview, 373
testing, 377

MEDIA_IO event, 98
MediaListener, 98
MEDIA_LOADING_FAILED event, 98
media playback, 71, 113

audio, 81, 92
bringing it together, 91
CHAPI, 102, 103
codecs, 87, 88
MIDI, 91, 92
mixing, 90
outputs, 88, 89
overview, 81

Player class, 81, 82
PlayerListener, 82, 86
ToneControl class, 91, 92

finding content, 71, 80
COD resource, 79, 80
local filesystem, 71, 73
manual buffering, 75, 79
miscellaneous, 80
network download, 73, 74
network stream, 74, 75
overview, 71

image display, 93, 101
in BlackBerry CLDC applications, 94
GIF animation, 99, 100
MIDP images, 100, 101
overview, 93
Plazmic, 96, 99
SVG animation, 95, 96

Media Reviewer application, 103, 112
overview, 71
video

overview, 93
through browser, 101, 102

MediaPlayer, 42, 48, 49, 98
MEDIA_REALIZED event, 98
MEDIA_REQUESTED event, 98
media time, 84
memory

external storage of, 352
media playback, 72–74, 80

memos, 233, 234
menu, native

integration, 313, 315
MENUITEM_ADDRESSBOOK_LIST menu item, 305
MENUITEM_ADDRESSCARD_EDIT menu item, 305
MENUITEM_ADDRESSCARD_VIEW menu item, 305
MENUITEM_ALARM menu item, 306
MENUITEM_BROWSER menu item, 306
MENUITEM_CALENDAR_EVENT menu item, 306
MENUITEM_CALENDAR menu item, 306
MENUITEM_CAMERA_PREVIEW menu item, 306
MENUITEM_EMAIL_EDIT menu item, 306
MENUITEM_EMAIL_VIEW menu item, 306
MENUITEM_FILE_EXPLORER_BROWSE menu item,

306
MENUITEM_FILE_EXPLORER_ITEM menu item, 306
MENUITEM_FILE_EXPLORER menu item, 306
MENUITEM_GROUPADDRESS_EDIT menu item, 306
MENUITEM_GROUPADDRESS_VIEW menu item, 306
MENUITEM_MAPS menu item, 306
MENUITEM_MEMO_EDIT menu item, 306
MENUITEM_MEMO_LIST menu item, 306
MENUITEM_MEMO_VIEW menu item, 306
MENUITEM_MESSAGE_LIST menu item, 306

Download at WoweBook.Com

Index 423

MENUITEM_MMS_EDIT menu item, 307
MENUITEM_MMS_VIEW menu item, 307
MENUITEM_MUSIC_SERVICE_ITEM menu item, 307
MENUITEM_PHONELOG_VIEW menu item, 307
MENUITEM_PHONE menu item, 307
MENUITEM_SEARCH menu item, 307
MENUITEM_SMS_EDIT menu item, 307
MENUITEM_SMS_VIEW menu item, 307
MENUITEM_SYSTEM menu item, 307
MENUITEM_TASK_EDIT menu item, 307
MENUITEM_TASK_LIST menu item, 307
MENUITEM_VIDEO_RECORDER menu item, 307
MENUITEM_VIDEO_SERVICE_ITEM menu item, 307
menus, native, 304, 308

defining options, 304, 305
inserting into, 305, 308
overview, 304

message aggregators, 116, 119, 146
MessageConnection

exception handling, 129
MessageConnection class, 127, 132, 146
MessageConnection.newMessage() method, 127
MessageConnection.receive() method, 146
MessageFormat class, 370, 374
MessageListener class, 146
MessagePart class, 133
Message Switching Center (MSC), 116
method

ContentHandler classes, 287
MHz (megahertz), 349, 350
MicroEdition-Handler-%(n%)-Access registration

entry, 296
MicroEdition-Handler-%(n%)-ID registration entry,

296
MicroEdition-Handler-%(n%)-locale registration entry,

296
MicroEdition-Handler-n registration entry, 295
MicroSD cards, 352
MicroSDHC cards, 352
MIDI, 91, 92
MIDIControl, 92
midi files, 246
MIDlet Item, 18
MIDlet permissions, 340, 342

adding, 340, 342
BlackBerry and, 342
overview, 340

MIDlets, 11, 17
behavior, 11
evaluation, 16, 17
example, 12, 14
overview, 11
running, 15
UI, 11, 12

MIDP images, 100, 101
MIME configuration

Friend Tracker app, 269, 270
MIME content

CHAPI, 281
MIME type providers, 265
minor version number, 383
mixing audio, 90
mkdir() method, 27
MM1 interface, 118
MM3 interface, 118
MM4 interface, 118
MM7 interface, 118
MMSC, 132
Mobile Data System (MDS) terminal, 33
Mobile Device Number (MDN), 125
Mobile Equipment Identifier (MEID), 125
Mobile Information Device Profile (MIDP), 17
Mobile Originated (MO) messages, 116
Mobile Terminated (MT) messages, 116
model number

determining features by, 357, 358
MONTH_IN_YEAR modifier, 223
MONTHLY element, 222
MP3 files

codecs, 87
recording, 51

Multimedia Messaging Service Center (MMSC), 118,
119

Multimedia Messaging Service (MMS), 118, 121
advantages of, 120
disadvantages of, 121
receiving messages, 150, 152

MediaGrabber application, 156, 161
reading, 151
testing, 151, 152

sending messages, 132, 135
addressing, 132
constructing parts, 133, 134
creating, 134, 135
MediaGrabber application, 156, 161

MultipartMessage class, 150
Multitap mode, 354
multitasking

Jave Me phones, 277

■N
names

editing in contacts, 210
NAME_SUFFIX element, 210
native menus, 304, 308

Download at WoweBook.Com

Index 424

defining options, 304, 305
inserting into, 305, 308
integration, 313, 315
overview, 304

.NET Framework runtime, 7
net.rim.device.api.system.Display class, 359
net.rim.device.api.ui package, 18
net.rim.device.internal.media.recordCommitted event,

46
network downloads, 73, 74
networking, 28, 30

HTTP requests, 29, 30
overview, 28
types of connections, 28

network streaming, 74, 75
NOTE field, 233

■O
obfuscation, 389, 390
obfuscation process, rapc compiler, 380
obfuscators, 169
octets

defined, 117
OK state

Invocation class, 283
onClose() method, 105
onSavePrompt() method, 66
On-target debugging, 36
openDataInputStream() method, 26
openDataOutputStream() method, 26
openInputStream() method, 26
openOutputStream() method, 26
openssl program, 189
operating system (OS) differences, 360, 363

availability and updates, 360, 361
porting impact, 361, 363

OTA distribution, 384
OTA installs

setting user permissions on, 327, 329
OUT_OF_SERVICE state, 358
outputs audio, 88, 89
OutputStream, 63
OutputStream class, 50

■P
packaging ALX installs, 391
packaging OTA installs, 390, 391
packet sniffer, 163

paint() method, 100
for Screen or Field, 18

parameters
invocation, 282, 283

patch version number, 383
paths

file access, 25
pause() method, 95
payload

SMS, 117
PCM files, 52
performance

rich clients, 249
permission

media playback, 72
PERMISSION_APPLICATION_MANAGEMENT

permission, 331
PERMISSION_BLUETOOTH permission, 331
PERMISSION_BROWSER_FILTER permission, 331
PERMISSION_CHANGE_DEVICE_SETTINGS

permission, 331
PERMISSION_CODE_MODULE_MANAGEMENT

permission, 331
PERMISSION_CROSS_APPLICATION_COMMUNICATIO

N permission, 331
PERMISSION_DEVICE_SETTINGS permission, 331
PERMISSION_DISPLAY_LOCKED permission, 332
PERMISSION_EMAIL permission, 332
PERMISSION_EVENT_INJECTOR permission, 332
PERMISSION_EXTERNAL_CONNECTIONS permission,

332
PERMISSION_FILE_API permission, 332
PERMISSION_HANDHELD_KEYSTORE permission, 332
PERMISSION_IDLE_TIMER permission, 332
PERMISSION_INPUT_SIMULATION permission, 332
PERMISSION_INTERNAL_CONNECTIONS permission,

332
PERMISSION_INTERNET permission, 332
PERMISSION_INTER_PROCESS_COMMUNICATION

permission, 332
PERMISSION_KEYSTORE_MEDIUM_SECURITY

permission, 332
PERMISSION_LOCAL_CONNECTIONS permission, 332
PERMISSION_LOCATION_API permission, 332
PERMISSION_LOCATION_DATA permission, 333
PERMISSION_MEDIA permission, 333
PERMISSION_ORGANIZER_DATA permission, 333
PERMISSION_PHONE permission, 333
PERMISSION_PIM permission, 333
PERMISSION_RECORDING permission, 333
permissions

messaging, 130, 131
PERMISSION_SCREEN_CAPTURE permission, 333
permissions dialog, 335

Download at WoweBook.Com

Index 425

PERMISSION_SECURITY_DATA permission, 333
PERMISSION_SERVER_NETWORK permission, 333
permissions requests, 347
PERMISSION_THEME_DATA permission, 333
PERMISSION_THEMES permission, 333
PERMISSION_USB permission, 333
persistent data storage, 385, 387

files, 385, 386
Record Management System (RMS), 386

PersistentObject class, 387
PersistentStore class, 387
Personal Identification Number (PIN), 125
Personal Identification Number (PIN) messaging, 125,

126, 155, 156
advantages of, 126
disadvantages of, 126
receiving messages, 156
sending messages, 155

personal information, 195, 239
address book, 195

contacts, 201, 217–219
invoking native, 219, 220
overview, 195
Personal Information Management (PIM),

195, 201
reading data, 217, 218

calendars, 221
events, 222, 228
overview, 221
syncing, 221, 222
viewing, 228, 231

MediaGrabber application, 236, 239
memos, 233, 234
overview, 195
personal changes, 234, 235
ToDo lists, 231

Personal Information Management (PIM), 195, 201
categories, 198
fields, 200, 201
items, 199, 200
lists, 196, 198
overview, 195, 196

phone numbers
editing in contacts, 211

photo field, 209
photos

editing in contacts, 209
PIM class, 197
PIMException exception, 197, 234
PIMItem.ATTR_NONE, 201
PIMItem class, 199
PIMList class, 197, 198, 201, 206
PINAddress class, 155
PIN messages

blocking, 339
platform differences, 371, 373

functionally dividing application, 372
identifying language reuse opportunities, 372
not porting UI, 372

playback
audio

CHAPI, 102, 103
codecs, 87, 88
MIDI, 91, 92
mixing, 90
outputs, 88, 89
overview, 81
Player class, 81, 82
PlayerListener, 82, 86
ToneControl class, 91, 92

video
overview, 93
through browser, 101, 102

Player class, 42, 81, 82
creating, 91
events, 45
lifecycle, 43, 45
states, 44, 81

PlayerListener, 82, 86
custom, 85, 86
events, 82, 84

PlayerListener class, 45
PlayerListener interface, 45, 47
playerUpdate() method, 45
PlayingScreen class, 103, 105, 108, 110
play() method, 95
playTone() method, 43, 92
Plazmic, 96, 99
Plazmic animations, 246
Plazmic Content Developer Kit, 96, 97
pluggable architecture, 265
Plug-in

registering, 268, 269
writing, 265, 267

Plug-in Library
Friend Tracker app, 270, 273

Plug-in Registration, 273
plug-ins

setup, 5, 6
PMB (Plazmic Media Bundle) files, 96, 97
PME (Plazmic Media Engine) files, 96
PNG format

icons, 300
policy.bin, 320
poll

distribution via, 385
POP3 servers, 121
porting applications, 349, 362, 378

Download at WoweBook.Com

Index 426

hardware differences, 349, 359
external memory storage, 352
features, 357, 359
keyboard, 353, 357
processors, 349, 350
radios, 350, 352
screen sizes, 359

language differences, 363, 371
adding multi-language support, 364, 368
localization, 363, 370
managing resource bundles, 368, 369
porting impact, 370, 371

localized text, 373, 377
creating resource files, 373, 374
modifying source, 374, 377
testing localization, 377

OS differences, 360, 363
availability and updates, 360, 361
porting impact, 361, 363

platform differences, 371, 373
back to drawing board, 372, 373
forget porting UI, 372
functionally divide app, 372
identify language reuse opportunities, 372

port numbers
email, 142, 143
messaging, 128

PREFETCHED state, 44, 81
prefetch() method, 61, 81
premaster secrets, 181
preverify.exe command, 390
processors, 349, 350

speed of, 349, 350
types of, 349

profiles
keyboard, 353, 355

programmatic control, permissions, 330, 336
ApplicationPermissions, 331
ApplicationPermissionsManager, 334, 336

changing permissions, 335, 336
checking permissions, 334, 335
overview, 334

overview, 330
Proguard obfuscator, 390
Prompt permission, 329
Protocol Data Unit (PDU), 119
protocols, 28
public key encryption, 166, 181
Public Key Infrastructure (PKI), 178
public-key systems, 178
push email service, 123
pushing content, 247
pushing policies, 324
push registry, 147, 148

SMS, 148, 149
push technology

distribution via, 385
notification via, 385

Push-to-Talk feature, 352

■Q
?Q??SC?deviceside=false?Q? setting, 352
?Q??SC?interface=wifi?Q? setting, 352
quality

media playback, 75
QWERTY keyboards, 353

■R
RadioInfo.getNetworkType() method, 358
radios, 350, 352

Code Division Multiple Access (CDMA), 351
dual band, 351
Global System for Mobile (GSM), 350, 351
iDEN, 352
Wi-Fi, 352

rapc compiler, 380, 381
obfuscation stage, 390

%(rapc%) task, bb-ant-tools, 383
RC5 encryption, 174
reading data

address book, 217, 218
events, 224, 225, 227

REALIZED state, 44, 81, 97
realize() method, 61
ReasonProvider method, 337
receiving messages

email, 152, 154
attachments, 153, 154
listening for, 152

MediaGrabber application, 156, 161
MMS, 150, 152

reading, 151
testing, 151, 152

PIN messaging, 156
SMS, 145, 150

overview, 146, 147
push registry, 148, 149
testing, 150
types of, 149
waking up applications, 147, 148

RecordControl class, 47, 49, 52
recordError event, 46

Download at WoweBook.Com

Index 427

recording
audio, 51, 52
video, 55, 56

RecordingChoiceScreen class, 64, 66
Record Management System (RMS), 386
recordStarted event, 46
recordStopped event, 46
RedirectEvent class, 256
registering Plug-in, 268, 269
register() method, 294
Registry, 291, 294

client use of, 291, 292
overview, 291
server use of, 293, 294

Registry class, 279
Registry.getRegistry() method, 292
Registry.getResponse() method, 292
Registry.getServer() method, 293
Registry.invoke() method, 291
Registry.setListener() method, 292
reinvoke() method, 293
reliability

media playback, 72, 74, 75, 79
remote lookup

for contacts, 216, 217
removeContact() method, 219
removeFromCategory() method, 200
removeValue() method method, 210
RenderingApplication class, 254
RenderingSession class, 254
repaint() method, 101
repeating

events, 222, 224
RepeatRule class, 222
requests

listening for and handling, 309, 312
Research in Motion (RIM), 319
reset() method, 50
resolution, 359
resource bundles, 366
resource files

defining, 364, 365
resources, 398, 399
RESTORE mode, 356
RGB565, 53
rich clients, 248
RIM-COD-Module-Dependencies, 391
RIM Crypto classes, 173, 178

analysis of, 177, 178
decryption, 176
digests, 177
encryption, 175, 176
overview, 173, 175

RIM-Library-Flags, 391

RIM-MIDlet-Flags, 391
RIM security. See security
Rischpater, Ray, 17
Rizk, Anthony, 21
rollover icons, 300, 302
.rrc (Resource Content) files, 364, 368, 373
.rrh (Resource Header) files, 364
rtsp?C??FS??FS? prefix, 74, 75
run() method

menu items, 304
RuntimeStore, 315

■S
saving

contacts, 212, 213
Screen classes

for MIDlets, 16
Screen objects

MIDlet programming and, 11
screen resolution, 359
screen sizes, 359
screen stack, 17
SD card

virtual, 67, 68
SD cards, 352
SEARCH_CONTACTS element, 214
SEARCH_GROUPS element, 214
searching

for contacts, 213, 217
broader searches, 215
direct retrieval, 214, 215
overview, 213
remote lookup, 216, 217
returning all, 213, 214
template matching, 216

for events, 227
secret code, to hide?FS?display debugging

information, 389
Secure Digital (SD) card, 25
security, 319, 347

application signing, 343
code signing impacts, 343
identity establishment, 343
overview, 343

Ask for permissions app, 343, 347
checking and requesting permissions, 344,

345
overview, 343, 344
plugging in, 346
running app, 346, 347
version problem, 344

Download at WoweBook.Com

Index 428

firewall, 337, 340
actions, 338
dealing with, 340
effects, 339, 340
overview, 337
settings, 339

MediaGrabber app, 343, 347
checking and requesting permissions, 344,

345
overview, 343, 344
plugging in, 346
running app, 346, 347
version problem, 344

MIDlet permissions, 340, 342
adding, 340, 342
BlackBerry and, 342
overview, 340

overview, 319
ownership question, 319, 320
security policies, 320, 326

background, 320
eBay, 324, 325
IT policy examples, 320, 324
overview, 320
pushing policies, 324
replacing old policy, 325

user permissions, 326, 337
APIs with customized prompts, 336, 337
default permissions, 329, 330
overview, 326, 327
programmatic control, 330, 336
setting on OTA installs, 327, 329
specific application settings, 330

Security and Trust Services API (SATSA), 167
SecurityException error, 291
SecurityException exception, 197

messaging, 129
selectRecipient() method, 236
sending messages

email, 135, 145
attachments, 138
creating, 137, 138
locating accounts, 135, 137
testing, 139, 145

MediaGrabber application, 156, 161
MMS, 132, 135

addressing, 132
constructing parts, 133, 134
creating, 134, 135

PIN messaging, 155
SMS, 126, 132

on CDMA, 131, 132
creating, 127, 128
sending data, 128, 129

system setup, 130, 131
troubleshooting, 129, 130

SendingScreen class, 157, 160, 394
send() method, 128
series number, 357
ServiceBook.getRecordByCidAndUserId() method, 137
ServiceBook.getRecordById() method, 137
service books, 135, 136, 250
service records, 136
session keys, 181
setARGB() method, 94
setChangeListener() method, 230
setConnector() method, 98
setControlledAccess() method, 182
setDate() method, 231
setDefault() method, 370
setDisplayFullScreen option, 93
setDisplayLocation option, 93
setDisplaySize option, 93
SetHeaderEvent class, 256
SetHttpCookieEvent class, 256
setListener() method, 289
setMediaTime() method, 98
setMessageListener() method, 146
setPayloadText() method, 128
setRecordLocation event, 46
setRecordLocation() method, 50
setRecordSizeLimit() method, 50
setRecordStream event, 46
setRecordStream() method, 50, 52
setRepeat(RepeatRule repeat) method, 224
setRequestMethod(), 30
setRequestProperty(), 30
setString() method, 207, 208, 210
setSVGEventListener() method, 96
setup, 3, 10

BlackBerry programs, 7
IDEs, 4, 5
Java, 3, 4
keys to development, 9, 10
overview, 3
plugged in, 5, 6
simulator files, 8, 9

setVisibility() method, 356
setVisible option, 93
SHA, 167
SHA-1, 167
SHA-1 hash, 171
shared secrets, 166
Short Message Service Center (SMSC), 116, 117
Short Message Service (SMS), 115, 118

advantages of, 117
disadvantages of, 117, 118
receiving messages, 145, 150

Download at WoweBook.Com

Index 429

overview, 146, 147
push registry, 148, 149
testing, 150
types of, 149
waking up applications, 147, 148

sending messages, 126, 132
on CDMA, 131, 132
creating, 127, 128
sending data, 128, 129
system setup, 130, 131
troubleshooting, 129, 130

SHOW_FORCE mode, 356
SHOW mode, 356
sibling COD modules, 380
signatures, 37

requesting, 38
SignatureTool

location of, 10
SignatureTool program, 381
Signature Tool window

Eclipse, 38
signing, 166
signing keys, 10
%(sigtool%) task, bb-ant-tools, 383
SimpleDateFormat class, 370
simulator files

setup, 8, 9
simulators

older, 397
sizeChanged event, 83
slides

MMS, 119
SMIL, 133, 134
SMSC, 130
sms?C??FS??FS? prefix, 127
smsdemo application, 150
SMS text

blocking, 339
SMTP servers, 121
software codecs, 88
source control metadata files, 398
SourceStream

media buffering, 78
speakerphones, 89
special characters, 353
specific application settings, 330
speed

of applications, 350
media playback, 72, 74, 75, 79
of processors, 350

Split Pipe setting, 323
Split-pipe setting, 323
Stack Map message, 390
Standalone mode

ESS, 140
startApp() method, 148
started event, 83
STARTED state, 44, 81, 97
start() method, 45, 81, 98
startRecord() method, 50
Startup Time

thin clients, 248
STATE_RECORDED_IMAGE state, 185
STATE_RECORDED state, 185
static main() function, 11
static push registration, 148
static push registry, 149
static registration, 295, 296

CHAPI handling, 308
StatusUpdater class, 157, 234, 257, 392
StopEvent class, 256
stop() method, 95, 98, 109
stoppedAtTime event, 84
stopped event, 83
stopRecord() method, 50
StopTimeControl class, 91
store, distribution via, 385
stores, message, 137
Storm. See Blackberry Storm
stream-based ciphers, 165, 173
StreamCipher class, 169
streams

file access, 26, 27
strings

editing in contacts, 207, 208
Subscriber Identity Module (SIM) cards, 350
Sun MMAPI, 41, 48

accessing data, 47
data content handling, 43
data delivery, 43
overview, 41, 42
Player instance lifecycle, 43, 45
PlayerListener interface, 45, 47

SupportedAttachmentPart class, 138
supports.audio.capture system property, 48
supports.recording system property, 48
supports.video.capture system property, 48
SureType keyboard, 353, 354
SVG animation, 95, 96
SVGAnimator class, 95
SVGEventListener, 96
SVGImage class, 95
symbols, 353
SYM key, 353
symmetric keys, 166
Synchronized Multimedia Integration Language (SMIL)

attachments, 119
synchronous operation

Download at WoweBook.Com

Index 430

on streams, 26
syncing

calendars, 221, 222
System.currentTimeMillis() method, 208
System.exit() function, 11
system setup

SMS, 130, 131

■T
Tasks application, 231
TCP connection

specifying, 352
technical notes

icons, 299, 300
Technical Solution Center, BlackBerry, 398
template matching

for contacts, 216
TEMPORARILY_UNAVAILABLE state, 358
testing

email, 139, 145
languages, 367, 368
MMS, 151, 152
SMS, 150

text
localized, 373, 377

creating resource files, 373, 374
modifying source, 374, 377
testing localization, 377

TextBodyPart class, 138
text entry fields, 357
TextMessage class, 149
text messaging. See SMS
thin clients, 247
Throwable class, 388, 393
TIME element, 229
TITLE field, 233
ToDo class, 231
ToDo.CLASS field, 232
ToDo.COMPLETED field, 232
ToDo.COMPLETION_DATE field, 232
ToDo.DUE field, 232
ToDoList interface, 231
ToDo lists, 231
ToDo.PRIORITY field, 232
ToDo.REVISION field, 232
ToDo.SUMMARY field, 232
ToDo.UID field, 232
ToneControl class, 91–92
TONE_DEVICE_LOCATOR string, 92
toolchain, Java, 3
toSerialFormat() method, 213

toString() method, 304
touch-screen devices

virtual keyboard on, 354
transcoders

defined, 119
transcoding

into WML, 242
translation, 363, 374, 377. See also localization
Transport class, 138
Transport.more() method, 154
troubleshooting

SMS, 129, 130
TunnelAuthPassword parameter

HTTP connection, 29
TunnelAuthUsername parameter

HTTP connection, 29
Twofish cipher, 170

■U
UI

CLDC applications, 18
MIDlets, 11, 12

UI classes
apps and, 17

UID field, 233
Ui.getUiEngineInstance().setAcceptableDirections()

method, 359
UMTS (Universal Mobile Telecommunications System

) data network, 351
Unofficial BlackBerry developer forum, 399
UNREALIZED state, 44, 81, 97
updateContact() method, 236
updateIcon() method

HomeScreen class, 303
updates

operating system, 360, 361
thin clients, 247

upgrade
defined, 384

UrlRequestedEvent class, 256
User-Agent string, 361
user-controlled permissions, 331
User Data group, 328
user permissions, 326, 337

APIs with customized prompts, 336, 337
default permissions, 329, 330
overview, 326, 327
programmatic control, 330, 336

ApplicationPermissions, 331
ApplicationPermissionsManager, 334, 336
overview, 330

Download at WoweBook.Com

Index 431

setting on OTA installs, 327, 329
specific application settings, 330

Use this as the default and do not ask me again
option, 5

■V
validation

overview, 166, 167
Value Added Service Provider (VASP), 118, 119
vCalendar standard, 221
VCard content, 269
vCard standard, 202, 203, 207
verification

of digests with Bouncy Castle, 172
verification process, rapc compiler, 380
versioning strategies, 383, 387

distribution options, 384, 385
persistent data storage, 385, 387

files, 385, 386
Record Management System (RMS), 386

version numbers, 383, 384
video capture, 55, 56
VideoControl class, 47, 93
video.encodings system property, 49
video playback

overview, 93
through browser, 101, 102

video.snapshot.encodings system property, 49
viewing

calendars, 228, 231
invoking native calendar, 228, 229
overview, 228
selecting dates, 229, 231

VirtualKeyboard class, 356, 357
VirtualKeyboardControl, 357
virtual (soft) keyboards, 354
volumeChanged event, 84
VolumeControl class, 91

■W
WAITING state

Invocation class, 283
waking up applications

SMS, 147, 148
WAP2 connection, 246
WapEnableWTLS parameter

HTTP connection, 29
WAP gateway

creating WML documents, 242
WapGatewayAPN parameter

HTTP connection, 29
WapGatewayIP parameter

HTTP connection, 29
WapSourceIP parameter

HTTP connection, 29
WapSourcePort parameter

HTTP connection, 29
WayGatewayPort parameter

HTTP connection, 29
WCDMA (Wideband Code Division Multiple Access)

technology, 351
Web, lightweight, 247, 248
Web development, 247, 249

heavy-duty apps, 248, 249
lightweight Web, 247, 248
overview, 247

WEEK_IN_MONTH modifier, 223
WEEKLY element, 222
Wi-Fi

coding support for, 362
Wi-Fi connection, 29
Wi-Fi devices, 352
Wireless Application Protocol (WAP), 241, 243
Wireless Markup Language (WML), 241
wireless messaging, 115, 161

app?C? sending and receiving media messages,
156, 161

BES email, 123, 125
advantages of, 124
disadvantages of, 125

email, 121, 123
advantages of, 122, 123
disadvantages of, 123
receiving messages, 152, 154
sending messages, 135, 145

MMS, 118, 121
advantages of, 120
disadvantages of, 121
receiving messages, 150, 152
sending messages, 132, 135

PIN messaging, 125, 126, 155, 156
advantages of, 126
disadvantages of, 126
receiving messages, 156
sending messages, 155

SMS, 115, 118
advantages of, 117
disadvantages of, 117, 118
receiving messages, 145, 150
sending messages, 126, 132

Wireless Messaging API 2.0 (WMA), 126
wireless technologies, 350, 352

Download at WoweBook.Com

Index 432

Wireless Toolkit (WTK), 397
WLANInfo.getWLANState() method, 252, 358
WMA, 128, 130, 132
workspaces, 5
world phones, 351
writeLog() method, Log class, 388, 389
WTLS (Wireless Transport Layer Security), 174

■X
XHTML

browser, 244, 246
X-Mms-Delivery-Time header, 134
X-Mms-Priority header, 134
1xRTT data network, 351
XVI32 hex editor, 189

■Y
YEARLY element, 222

Download at WoweBook.Com

	Prelim
	Contents at a Glance
	Contents
	About the Author
	Introduction
	The Book’s Anatomy
	Part 2, “Device Integration”
	Part 3, “Going Pro”

	How to Read This Book
	Novice
	Journeyman
	Master

	Your Media App
	The Trailhead

	Advanced APIs
	Getting Started
	Initial Setup
	Application Types
	MIDlet Behavior
	MIDlet UI
	A MIDlet Example
	Running a MIDlet
	MIDlet Evaluation
	CLDC Behavior
	CLDC UI
	A CLDC Example
	CLDC Evaluation
	Library Functions

	Connecting to Files and Networks
	Paths
	Access
	Streams
	Other Operations
	Types of Connections
	HTTP Requests

	App: Media Grabber
	Excelsior

	Media Capture
	BlackBerry vs. Sun APIs
	Creating a MediaPlayer
	Controlling Output
	Recording Audio
	Using the Camera
	Video Capture
	Invoking the RIM Alternative
	App: Media Grabber
	Excelsior

	Media Playback
	Finding Content
	How to Use
	When to Use
	An Example
	How to Use
	When to Use
	An Example
	How to Use
	When to Use
	An Example
	How to Use
	When to Use
	An Example
	How to Use
	When to Use
	An Example
	How to Use
	When to Use
	An Example

	Playing Audio
	Containers and Content
	Codec Support

	Playing Video
	Displaying Images
	Invoking Native Apps
	App: Media Reviewer
	Excelsior

	Wireless Messaging
	The Messaging Quiver
	Pros
	Cons
	Pros
	Cons
	Pros
	Cons
	Pros
	Cons
	Pros
	Cons

	Sending Text Messages
	Sending Multimedia Messages
	Plugging In to Email
	Receiving Text Messages
	Receiving MMS Messages
	Reading Email
	PIN Messaging
	App: Sending and Receiving Media Messages
	Excelsior

	Cryptography
	Is It Secret? Is It Safe?
	SATSA
	Bouncy Castle
	RIM Crypto Classes
	Using the Certicom Classes
	Other Encryption Choices
	App: Securing MediaGrabber
	Excelsior

	Device Integration
	Personal Information
	Address Book
	PIM and Lists
	Categories
	Items
	Fields
	Hello, Stranger
	Representing a Contact
	A BlackBerry Contact

	Adding Contacts
	Editing Contacts
	Editing Strings
	Editing Dates
	Editing Binary

	Saving Contacts
	Searching for Contacts
	Reading Contact Data
	Deleting Contacts
	Invoking the Native Address Book
	The BlackBerry Calendar
	Using BlackBerry Calendar Events
	Showing Calendars
	I Have A ToDo List?
	Take a Memo
	Personal Changes
	App: Selecting Recipients
	Excelsior

	Browser
	Browser Types
	Web Development or App Development?
	Launching the Browser
	Embedding a Browser in Your App
	RenderingSession
	BrowserContent
	RenderingApplication
	Event

	Embedding Your App in a Browser
	App: Friend Tracker
	Excelsior

	Digging in Deep
	A Content Handling System
	Invocation
	ActionNameMap
	ContentHandler
	ContentHandlerServer
	Registry

	Iconic
	Native Menus
	App: Enter from Anywhere
	Static Registration
	Listening for and Handling Requests

	Excelsior

	Going Pro
	RIM Security
	The Ownership Question
	Security Policies: ‘‘You Can’t Do That!’’
	Device Security Policy Examples
	Application Control Policy Examples

	User Permissions: ‘‘May I Do This?’’
	ApplicationPermissions
	ApplicationPermissionsManager
	APIs with Customized Prompts

	Firewall: ‘‘Don’t Go There’’
	MIDlet Permissions: ‘‘I Will Do These Things’’
	Application Signing: ‘‘Do I Know You?’’
	App: Ask for Permissions
	Excelsior

	Porting Your App
	Understanding Hardware Differences
	GSM
	CDMA
	Dual Band
	iDEN
	Wi-Fi
	Keyboard Profiles
	Detecting Keyboards
	Changing Keyboards
	Porting Impact
	Determining by Model Number
	Determining by API
	Porting Impact

	Understanding OS Differences
	Determining the Version
	Version Effects
	The Lowest Common Denominator
	Multiple Builds
	Mandate Change

	Understanding Language Differences
	Defining Resource Files
	Understanding Bundles
	Adding Resources to Java Classes
	Testing Languages
	One Bundle, Many Implementors
	One Bundle, Single Implementor
	Multiple Bundles
	Dealing with Images
	Locale-aware Formatting
	Dynamic Localization

	Understanding Platform Differences
	App: Localized Text
	Excelsior

	Advanced Build Techniques
	Moving Beyond Eclipse
	rapc
	SignatureTool
	Build Options

	Versioning Strategies
	Files
	RMS
	BlackBerry Persistent Storage

	Debugging and Logging
	Other Build Issues
	App: Logging, Building, and Updating
	Excelsior

	Conclusion
	Parting Shots
	Resources
	Summit

	Codec Support
	Notes

	Index
	¦A
	¦B
	¦C
	¦D
	¦E
	¦F
	G
	¦
	¦H
	I
	¦
	¦J
	¦K
	¦L
	¦M
	¦N
	¦O
	¦P
	¦Q
	¦R
	¦S
	¦T
	U
	¦
	¦V
	¦W
	¦Y ¦X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

