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Agenda

• Introduction to game scripting

• Extending the game object model

• State script syntax
• Case studies from

Uncharted 2: Among Thieves
• Implementation discussion

• Summary and some tips
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Introduction to State Scripts
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Brief History of State Scripts

• Script system on Uncharted: Drake’s Fortune originally developed
for in-game cinematics (IGCs)

• Evolved into general gameplay scripting system

4
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• UDF IGC system revamped for heavy
use on Uncharted 2: Among Thieves

• Inspirations:
 GOAL language used on Crash and Jak series
 State objects from God of War engine

Game Developers Conference 2009

Brief History of State Scripts
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Why Script?

• Scripting languages used in games since Quake C
• Primary benefits of script:

 Takes pressure off engineering team
 Code becomes data—rapid iteration
 Empowers content creators
 Key enabler of mod community

6
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 Code becomes data—rapid iteration
 Empowers content creators
 Key enabler of mod community
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I feel empowered!
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Scripting Language Characteristics

• Two kinds of game scripting languages:
 data definition languages
 runtime languages

• Runtime scripting languages typically:
 interpreted by virtual machine (VM)
 simple and small—low overhead
 accessible to designers and other “non-programmers”
 powerful—one line of code = big impact

7
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Choice of Language

• At Naughty Dog, we make heavy use of both data definition
and runtime script
 Both based on PLT Scheme (a Lisp variant)

• Key benefits of Lisp-like languages:
 Easy to parse
 Data def and runtime code can be freely intermixed
 Powerful macro system—easy to define custom syntax
 Naughty Dog has a rich Lisp heritage—comfortable

8
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Choice of Language

• Of course you don’t have to use Lisp!
• Data definition languages:

 custom text format,
 Excel comma-separated values (.csv),
 XML, ...

• Runtime languages:
 Python, Lua, Pawn (Small C), OCaml, F#, ...

• Many popular engines already provide a scripting language:
 Quake C, UnrealScript, C# (XNA), ...

9
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Extending the Game Object Model

10

• Every game engine has some kind of game object model
 Defines all object types in game world
 Often (but not always) written in an object-oriented language

• Scripting language often used to extend the native object model
• Many ways to accomplish this...
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Game Object Model References

• Rob Fermier, “Creating a Data Driven Engine,” GDC, 2002

• Scott Bilas, “A Data-Driven Game Object System,” GDC, 2002
(http://www.drizzle.com/~scottb/gdc/game-objects.ppt)

• Alex Duran, “Building Object Systems: Features, Tradeoffs and 
Pitfalls,” GDC, 2003

• Doug Church, “Object Systems,” presented at a game development 
conference in Seoul, Korea, 2003
(http://chrishecker.com/images/6/6f/ObjSys.ppt)

• Jason Gregory, “Game Engine Architecture,” AK Peters, 2009
(http://gameenginebook.com)
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Unreal’s Approach

• UnrealScript tightly integrated with C++ object model
 Single-root class hierarchy with some add-on components
 Classes defined in UnrealScript (.uc)
 C++ header file (.h) automatically generated
 Implementation in C++ or entirely in UnrealScript

12

Pawn.h

Pawn.cpp

generate

implement

Pawn.uc

implement

Actor

Info Pawn Pickup

Scout Vehicle ...
...
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Property-Centric / Componentized Designs

• Property-centric design used on Thief, Dungeon Siege, Age of 
Mythology, Deus Ex 2 and others
 Game object just a unique id (UID)
 “Decorated” with various properties

(health, armor, weaponry, etc.)
 Property encapsulates data + behavior

13

Object
(UID)

Health: 200
Armor: Light

AI: PlayerAlly

Weapon: BFG

Weapon: Pistol
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...

Objects 
with transform 
and mesh
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...

Base class for 
all characters
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...

Simple 
animaDng 
object
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...Manages a State 
Script instance
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...
Manages a 
chunk of 

running script 
code
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components
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Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

ProcessGameObject

SsInstance DrawControl AnimControl ...
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Charter

• World editor for 
Uncharted is called 
Charter
 Place game objects
 Edit object 

properties
 Control level 

streaming

15
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Uncharted State Scripts

• State scripts similar in many respects to property-centric model...
 adds finite state machine (FSM) support
 not specifically tied to “properties”
 coarser-grained (one script per object)

• More like scripted extension to existing entity type...
 ... or a “director” that orchestrates actions of other entities

16
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Anatomy of a State Script

• A state script is comprised of:
 attributes
 states

• States define object’s behavior via runtime script code:
 response to events
 natural behavior over time (update event)
 transitional actions between states (begin/end events)

17
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Anatomy of a State Script

State Script 1

State A

Variables

State B

State Script 2

State C

VariablesOn Update

On Event1

On Begin On Event4

On Begin
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Anatomy of a State Script

State Script 1

State A
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B

Event1

State Script 2

State 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Variables

Event4

On Update

On Event1

On Begin On Event4
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Instantiating a State Script

19

Game 
Object

State Script 1

• Attached to a native (C++) game object:
 designers extend or modify native

C++ object type
 define entirely new object types
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Instantiating a State Script

• Attached to a trigger region:
 convex volume
 detects enter, exit and occupancy

19

Game 
Object

State Script 1

Trigger Region

State Script 2

• Attached to a native (C++) game object:
 designers extend or modify native

C++ object type
 define entirely new object types
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Instantiating State Scripts

• Placed as stand-alone object:
 “director” orchestrates actions of 

other objects (e.g. IGC)

20

SsProcess

State Script 3
(stand‐alone)
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Instantiating State Scripts

• Placed as stand-alone object:
 “director” orchestrates actions of 

other objects (e.g. IGC)

20

Task A

Task B1 Task B2

Task C

Task D

State Script 4

SsProcess

State Script 3
(stand‐alone)

• Associated with a task:
 task = check point
 script manages associated task
 orchestrates AI encounters
 controls player objectives
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Instantiating State Scripts

• Placed as stand-alone object:
 “director” orchestrates actions of 

other objects (e.g. IGC)

20

Task A

Task B1 Task B2

Task C

Task D

State Script 4

SsProcess

State Script 3
(stand‐alone)

• Associated with a task:
 task = check point
 script manages associated task
 orchestrates AI encounters
 controls player objectives

• Spawned by another state script
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State Script Syntax

• State script defined as follows:
 Don’t let Lisp syntax throw you!
 Lisp syntax is all (parentheses)
 Think C/C++ { } blocks

• Parenthesized blocks highly 
context-sensitive in Lisp/Scheme

23

(define-state-script ("kickable-gate")
    (state ("locked")
        ...
    )
    (state ("opening")
        ...
    )
    (state ("open")
        ...
    )
)
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Event Handler Blocks

• Each state contains zero or more 
event handler blocks

24

(define-state-script ("kickable-gate")
    (state ("locked")
        (on (event "kick")
            ...   ;; handle "kick" event
        )
        (on (begin)
            ...   ;; do when state entered
        )
        (on (update)
            ...   ;; do every frame
        )
       (on (end)
            ...   ;; do when state exited
        )
)
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Runtime Script Code

• Runtime script code inside (on ...) 
blocks

• Simplified Scheme/Lisp
 Most “commands” are native calls 

into C++ code
 Conditional expressions
 Simple looping via label/goto

25

(state ("locked")
    (on (begin)
        [print-string "Starting idle!"]
        [animate "self" "locked-idle"]
    )
    (on (event "kicked")
        [when [lock-broken?]
            [print-string "BAM!"]
        ]
        [if [task-complete? "wave2"]
            [print-string "Complete!"]
            [print-string "NOT!!!"]
        ]
    )
)
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User-Defined Functions

• Script functions can be defined 
and called by script programmer

26

(defun verbose-anim ((anim string))
    [print-string "Starting " anim]
    [animate "self" anim]
)

(define-state-script ("kickable-gate")
    (state ("locked")
        (on (begin)
             [verbose-anim "locked-idle"]
        )
    )
    ...
)
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The “Self” Argument

• Any command operating on a game object takes its unique id 
(UID) as its first argument

• Magic UID "self" refers to the object to which script is attached

27

Game 
Object

State Script 1

gate‐17
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Script 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    (on (begin)
        [animate "self" "locked-idle"]
    )

self

gate‐17
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The “Self” Argument

• Any command operating on a game object takes its unique id 
(UID) as its first argument

• Magic UID "self" refers to the object to which script is attached

27

Game 
Object

State Script 1

gate‐17     (on (begin)
        [animate "gate-17" "locked-idle"]
    )
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• Any command operating on a game object takes its unique id 
(UID) as its first argument

• Magic UID "self" refers to the object to which script is attached

27

Game 
Object

State Script 1

gate‐17

Game 
Object

lock‐6

    (on (begin)
        [animate "lock-6" "fall-off"]
    )
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Changing States

• Transitions to other states via
(go "state-name") command

• State transitions cause current 
state’s (on ...) blocks to be
aborted

• Use (on (exit) ...) block for 
clean-up

28

(define-state-script ("kickable-gate")
    (state ("locked")
        ...
        (on (event "kicked")
            [when [lock-broken?]
                [go "opening"]
            ]
        )
    )
    (state ("opening")
        (on (begin)
            ...
        )
        ...
    )
)
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Tracks

• (on ...) blocks contain one or more tracks
• A track is a bit like a thread or fiber
• Tracks can be put to sleep

 Wait for duration
• e.g., wait 5 seconds,
• wait until frame 23, ...

 Wait for an action to be done
• duration-agnostic

• Tracks can be synchronized via signals

29
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On Begin
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Tracks

30

Track
P

Track
S

s‐a‐w

p‐a‐w

(state ("shake-hands")
    (on (begin)
        (track ("player"))
            [wait-move-to "player" "waypoint7"]
            [signal "player-at-waypoint"]
            [wait-for-signal "sully-at-waypoint"]
            [wait-animate "player" "shake-sullys-hand"]
        )
       (track ("sullivan"))
            [wait-move-to "sullivan" "waypoint7"]
            [signal "sully-at-waypoint"]
            [wait-for-signal "player-at-waypoint"]
            [wait-animate "sullivan" "shake-drakes-hand"]
        )
    )
)

Monday, April 6, 2009



State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

Track
P

Track
S

s‐a‐w

p‐a‐w

(state ("shake-hands")
    (on (begin)
        (track ("player"))
            [wait-move-to "player" "waypoint7"]
            [signal "player-at-waypoint"]
            [wait-for-signal "sully-at-waypoint"]
            [wait-animate "player" "shake-sullys-hand"]
        )
       (track ("sullivan"))
            [wait-move-to "sullivan" "waypoint7"]
            [signal "sully-at-waypoint"]
            [wait-for-signal "player-at-waypoint"]
            [wait-animate "sullivan" "shake-drakes-hand"]
        )
    )
)

Track
P

Track
S

Monday, April 6, 2009



State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

Track
P

Track
S

s‐a‐w

p‐a‐w

(state ("shake-hands")
    (on (begin)
        (track ("player"))
            [wait-move-to "player" "waypoint7"]
            [signal "player-at-waypoint"]
            [wait-for-signal "sully-at-waypoint"]
            [wait-animate "player" "shake-sullys-hand"]
        )
       (track ("sullivan"))
            [wait-move-to "sullivan" "waypoint7"]
            [signal "sully-at-waypoint"]
            [wait-for-signal "player-at-waypoint"]
            [wait-animate "sullivan" "shake-drakes-hand"]
        )
    )
)

Monday, April 6, 2009



State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

Track
P

Track
S

s‐a‐w

p‐a‐w

(state ("shake-hands")
    (on (begin)
        (track ("player"))
            [wait-move-to "player" "waypoint7"]
            [signal "player-at-waypoint"]
            [wait-for-signal "sully-at-waypoint"]
            [wait-animate "player" "shake-sullys-hand"]
        )
       (track ("sullivan"))
            [wait-move-to "sullivan" "waypoint7"]
            [signal "sully-at-waypoint"]
            [wait-for-signal "player-at-waypoint"]
            [wait-animate "sullivan" "shake-drakes-hand"]
        )
    )
)

Monday, April 6, 2009



State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

(state ("shake-hands")
    (on (begin)
        (track ("player"))
            [wait-move-to "player" "waypoint7"]
            [signal "player-at-waypoint"]
            [wait-for-signal "sully-at-waypoint"]
            [wait-animate "player" "shake-sullys-hand"]
        )
       (track ("sullivan"))
            [wait-move-to "sullivan" "waypoint7"]
            [signal "sully-at-waypoint"]
            [wait-for-signal "player-at-waypoint"]
            [wait-animate "sullivan" "shake-drakes-hand"]
        )
    )
)

Track
P

Track
S

p‐a‐w

s‐a‐w

Monday, April 6, 2009



Game Developers Conference 2009

Track Execution Over Time

31

• Rules for execution of code within a track:
 Greedily consume instructions sequentially...
 ... until a [wait* ...] command encountered...
 ... then relinquish control until the action is complete

• NOTE: A [wait* ...] command doesn’t have to wait; for example:
 [wait-seconds 0]
 [wait-npc-move-to "pos-4"] when she’s already there
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Options and Variable Declarations

• Options declared at top of 
script:
 initial state
 variable declarations
 debugging options

32

(define-state-script ("kickable-gate")
    :initial-state "closed"
    :declarations (decl-list
        (var "num-attempts" :type int32)
        (var "is-locked" :type boolean :default #t)
    )
    (state ("kicked")
        ...
    )
    ...
)
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(define-state-script ("kickable-gate")
    :initial-state "closed"
    :declarations (decl-list
        (var "num-attempts" :type int32)
        (var "is-locked" :type boolean :default #t)
    )
    (state ("kicked")
        (on (begin)
            [when [get-boolean "is-locked"]
                [set-int32 "num-attempts"
                    [+ 1 [get-int32 "num-attempts"]]
                ]
                [wait-animate "self" "kick-failure"]
                [go "closed"]
            ]
            ;; else...
            [wait-animate "self" "kick-success"]
            [go "open"]
        )
    )
    ...

Manipulating Variables

• Simple commands for reading 
and writing variables

• Lisp/Scheme uses prefix notation 
(a.k.a. Polish notation)
 [+ a b] calculates (a + b)
 [set "x" [+ 1 [get "x"]]] 

increments variable “x”
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• All game objects have 
properties (key-value pairs)
 Property values edited in 

Charter

Game Developers Conference 2009

Configuration Parameters

34
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• Designers can create their 
own free-form properties, 
called tags
 Simply type “key = value” 

in Tags field

Game Developers Conference 2009

Configuration Parameters

34

meaning-of-life = 42
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Configuration Parameters

• State scripts have read-only access to game object properties...
 ... and free-form tags

35
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• State scripts have read-only access to game object properties...
 ... and free-form tags

35

(define-state-script ("kickable-gate")
    (state ("kicked")
        (on (begin)
            [wait-animate "self"
                [tag-string "kick-anim"]
            ]
    )
    ...
)
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Configuration Parameters

• State scripts have read-only access to game object properties...
 ... and free-form tags
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Data Definition and Runtime

• Offline data-definition language 
(Scheme) is intermingled with 
runtime code

36

(define-state-script ("kickable-gate")
    (state ("locked")
        (on (begin)
            [print-string "Starting idle!"]
            [animate "self" "locked-idle"]
        )
        (on (event "kicked")
            [when [lock-broken?]
                [print-string "BAM!"]
            ]
            [if [task-complete? "wave2"]
                [print-string "Complete!"]
                [print-string "NOT!!!"]
            ]
        )
    )
    ...
)
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Data Definition and Runtime

36

• Really no different than the 
distinction between declarations 
and definitions in C++

class Vector3
{
private:
    float x, y, z;
public:
    float Dot(const Vector3& b)
    {
        return (x * b.x
                     + y * b.y
                     + z * b.z);
    }
    ...
};
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(define-state-script ("falling-sign")
    (state ("untouched")
        (on (update)
            [when [task-complete? "wz-post-combat"]
                [go "fallen"]
            ]
        )
       (on (event "hanging-from")
            [go "breaking"]
        )
    )
    ...

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39
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    (state ("breaking")
        (on (begin)
            [spawn-particles-at-joint "self"
                "hinge"
                "sign-break-dust"]
            [wait-animate "self" "sign-break"]
            [go "fallen"]
       )
    )
    (state ("fallen")
        (on (begin)
            [animate "self" "sign-broken"] ;; looping
        )
    )
)
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2009
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Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
    (state ("initial")
        (on (update)
            [when [task-complete?
                                        [tag-string "done-task"]]
                [go "done"]
            ]
        )
       (on (event "hanging-from")
            [go "animating"]
        )
    )
    ...

    (state ("animating")
        (on (begin)
            [spawn-particles-at-joint "self"
                [tag-string "particle-joint"]
                [tag-string "particle-name"]]
            [wait-animate "self"
                [tag-string "anim-name"]]
            [go "done"]
       )
    )
    (state ("done")
        (on (begin)
            [animate "self"
                [tag-string "done-anim-name"]]
        )
    )
)
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In-Game Cinematic: Bus Crash

42
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    (state ("crash")
        (on (begin)
            (track ("bus")
                [wait-animate "bus-1" "bus-crash"
                    [get-locator "ref-bus-crash-1"]]
                [signal "bus-done"]
            )
            (track ("player")
                [animate "player" "player-watch-crash"
                   [get-locator "ref-bus-crash-1"]]
                [wait-until-frame 250]
                [say "player" "vox-wz-drk-01-what-the"]
                [signal "drake-done"]
            )
            ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
    (state ("spawn-soldiers")
        (on (begin)
            [player-disable-controls
                (controls all-but-right-stick)]
            [spawn-npc-in-combat "npc-wz-52"]
            [spawn-npc-in-combat "npc-wz-53"]
            ...
            [go "crash"]
       )
    )
    ...
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    (state ("crash")
            ...
            (track ("guy-hit-by-bus")
                [wait-animate "npc-wz-52" "npc-hit-by-bus"
                    [get-locator "ref-bus-crash-1"]]
                [npc-die "npc-wz-52"]
                [signal "npc-dead"]
            )
            (track ("wait-for-all-done")
                [wait-for-signal "bus-done"]
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                [wait-for-signal "npc-dead"]
                [go "done"]
            )
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    (state ("done")
        ...
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• Scheme-like runtime language implemented by a simple VM
 Each track compiled into block of byte code called a lambda
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(define-state-script ("kickable-gate")
    (state ("locked")
        (on (begin)
            (track ("gate")
                ...
            )
            (track ("lock")
                ...
            )
        )
    )
)
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(define-state-script ("kickable-gate")
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            (track ("gate")
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                ...
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)

opcode1 operand1 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opcode3 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opcode4 operand4
   opcode5 operand5
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Virtual Machine

• Internal state of VM consists of:
 Pointer to current lambda

(byte code program)
 Index to current instruction
 Bank of registers for temporary 

and immediate data

• Registers are of type variant

46

cur instr
lambda
___
___
___

reg0

reg1

reg2

reg4
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• Hence requires call stack
 Stack frame = bank of 

registers + program counter
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• State script code can wait (sleep)
• Implemented via something 

known as a continuation
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Native C++ Functions

• The “meat” of an (on ...) block is its command sequence
 Some commands are user-defined: (defun func1 (...))
 Most commands are C++ hooks into the engine

• Simple hash table maps function names to C++ code

49

(define-c-function wait-animate
    (object-name string)
    (anim-name string)
)

Variant ScriptWaitAnimate(int argc, Variant* argv)
{
    ...
}
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Variant ScriptWaitAnimate(int argc, Variant* argv)
{
    StringId objName      = SC_ARG(0, StringId, NULL);
    StringId animName  = SC_ARG(1, StringId, NULL);
    if (!objName)
        return ScriptError("wait-animate: expected object name (arg1)\n");
    if (!animName)
        return ScriptError("wait-animate: expected animation name (arg2)\n");
    // find the object
    ProcessGameObject* pObj = g_processMgr.Lookup(objName);
    if (!pObj)
        return ScriptError("wait-animate: could not find %s\n",
                                              StringIdToString(objName));
    // instruct object to play animation, and wake up this script when done
    pObj->WaitAnimate(animName, g_scriptContext);
    g_scriptContext.Suspend(); // go to sleep until anim is done
    return Variant(true);
}
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Key Features

• Key features of a successful scripting system:
 Virtual machine integrated into game engine
 Ability to run code every frame (update)
 Ability to respond to events, and send events
 Ability to reference game objects (by handle, unique id, etc.)
 Ability to manipulate game objects
 Designers can define new object types in script

53
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Architectural Styles

• Many different engine-script architectures:
 script drives engine (engine just a library called by script)
 engine drives script...
• simple scripted event handlers
• scripted properties or components
• scripted game object classes

54
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Some Advice...

• Good debugging tools are crucial
 Understandable error messages from compiler
 In-game display of running scripts, or some kind of debugger
 Simple logging to TTY/console (e.g. [print-string "message"])

• Watch for race conditions
 Event arrives too early or too late—missed
 Object you’re trying to control hasn’t spawned yet, or has died
 Tracks not synchronized properly
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With Great Power...

• ... comes great responsibility
• Your designers can now:

 break the build
 introduce progression stoppers
 crash the game

• Take the leap of faith, but...
 PLAN FOR IT!
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Thanks For Listening!

• Free free to send questions to me at:
jason_gregory@naughtydog.com

• Naughty Dog is hiring! Send resumes to Candace Walker at:
candace_walker@naughtydog.com

57

Monday, April 6, 2009

mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com

