
State-Based Scripting in

Jason Gregory
Generalist Programmer

Naughty Dog, Inc.

Monday, April 6, 2009

Game Developers Conference 2009 2

Agenda

• Introduction to game scripting

• Extending the game object model

• State script syntax
• Case studies from

Uncharted 2: Among Thieves
• Implementation discussion

• Summary and some tips

Monday, April 6, 2009

Introduction to State Scripts

3

Monday, April 6, 2009

Game Developers Conference 2009

Brief History of State Scripts

• Script system on Uncharted: Drake’s Fortune originally developed
for in-game cinematics (IGCs)

• Evolved into general gameplay scripting system

4

Monday, April 6, 2009

• UDF IGC system revamped for heavy
use on Uncharted 2: Among Thieves

• Inspirations:
 GOAL language used on Crash and Jak series
 State objects from God of War engine

Game Developers Conference 2009

Brief History of State Scripts

5

TM

Monday, April 6, 2009

Game Developers Conference 2009

Why Script?

• Scripting languages used in games since Quake C
• Primary benefits of script:

 Takes pressure off engineering team
 Code becomes data—rapid iteration
 Empowers content creators
 Key enabler of mod community

6

Monday, April 6, 2009

Game Developers Conference 2009

Why Script?

• Scripting languages used in games since Quake C
• Primary benefits of script:

 Takes pressure off engineering team
 Code becomes data—rapid iteration
 Empowers content creators
 Key enabler of mod community

6

I feel empowered!

Monday, April 6, 2009

Game Developers Conference 2009

Scripting Language Characteristics

• Two kinds of game scripting languages:
 data definition languages
 runtime languages

• Runtime scripting languages typically:
 interpreted by virtual machine (VM)
 simple and small—low overhead
 accessible to designers and other “non-programmers”
 powerful—one line of code = big impact

7

Monday, April 6, 2009

Game Developers Conference 2009

Choice of Language

• At Naughty Dog, we make heavy use of both data definition
and runtime script
 Both based on PLT Scheme (a Lisp variant)

• Key benefits of Lisp-like languages:
 Easy to parse
 Data def and runtime code can be freely intermixed
 Powerful macro system—easy to define custom syntax
 Naughty Dog has a rich Lisp heritage—comfortable

8

Monday, April 6, 2009

Game Developers Conference 2009

Choice of Language

• Of course you don’t have to use Lisp!
• Data definition languages:

 custom text format,
 Excel comma-separated values (.csv),
 XML, ...

• Runtime languages:
 Python, Lua, Pawn (Small C), OCaml, F#, ...

• Many popular engines already provide a scripting language:
 Quake C, UnrealScript, C# (XNA), ...

9

Monday, April 6, 2009

Game Developers Conference 2009

Extending the Game Object Model

10

• Every game engine has some kind of game object model
 Defines all object types in game world
 Often (but not always) written in an object-oriented language

• Scripting language often used to extend the native object model
• Many ways to accomplish this...

Monday, April 6, 2009

Game Developers Conference 2009

Game Object Model References

• Rob Fermier, “Creating a Data Driven Engine,” GDC, 2002

• Scott Bilas, “A Data-Driven Game Object System,” GDC, 2002
(http://www.drizzle.com/~scottb/gdc/game-objects.ppt)

• Alex Duran, “Building Object Systems: Features, Tradeoffs and
Pitfalls,” GDC, 2003

• Doug Church, “Object Systems,” presented at a game development
conference in Seoul, Korea, 2003
(http://chrishecker.com/images/6/6f/ObjSys.ppt)

• Jason Gregory, “Game Engine Architecture,” AK Peters, 2009
(http://gameenginebook.com)

11

Monday, April 6, 2009

http://www.drizzle.com/~scottb/gdc/game-objects.ppt
http://www.drizzle.com/~scottb/gdc/game-objects.ppt
http://chrishecker.com/images/6/6f/ObjSys.ppt
http://chrishecker.com/images/6/6f/ObjSys.ppt
http://gameenginebook.com
http://gameenginebook.com

Game Developers Conference 2009

Unreal’s Approach

• UnrealScript tightly integrated with C++ object model
 Single-root class hierarchy with some add-on components
 Classes defined in UnrealScript (.uc)
 C++ header file (.h) automatically generated
 Implementation in C++ or entirely in UnrealScript

12

Pawn.h

Pawn.cpp

generate

implement

Pawn.uc

implement

Actor

Info Pawn Pickup

Scout Vehicle ...
...

Monday, April 6, 2009

Game Developers Conference 2009

Property-Centric / Componentized Designs

• Property-centric design used on Thief, Dungeon Siege, Age of
Mythology, Deus Ex 2 and others
 Game object just a unique id (UID)
 “Decorated” with various properties

(health, armor, weaponry, etc.)
 Property encapsulates data + behavior

13

Object
(UID)

Health: 200
Armor: Light

AI: PlayerAlly

Weapon: BFG

Weapon: Pistol

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...

Monday, April 6, 2009

Objects 
that update 
over Dme

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...

Objects 
with transform 
and mesh

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...

Base class for 
all characters

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...

Simple 
animaDng 
object

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...Manages a State 
Script instance

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess ProcessGameObject CameraControl

Character SimpleEnOty ...

...DynLightSsTrackGroupProcess

...
Manages a 
chunk of 

running script 
code

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

SsProcess

SsInstance

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted Engine’s Object Model

• Uncharted class hierarchy:
 relatively shallow, single-root
 host of add-on components

14

Process

ProcessGameObject

SsInstance DrawControl AnimControl ...

Monday, April 6, 2009

Game Developers Conference 2009

Charter

• World editor for
Uncharted is called
Charter
 Place game objects
 Edit object

properties
 Control level

streaming

15

Monday, April 6, 2009

Game Developers Conference 2009

Uncharted State Scripts

• State scripts similar in many respects to property-centric model...
 adds finite state machine (FSM) support
 not specifically tied to “properties”
 coarser-grained (one script per object)

• More like scripted extension to existing entity type...
 ... or a “director” that orchestrates actions of other entities

16

Monday, April 6, 2009

Game Developers Conference 2009

Anatomy of a State Script

• A state script is comprised of:
 attributes
 states

• States define object’s behavior via runtime script code:
 response to events
 natural behavior over time (update event)
 transitional actions between states (begin/end events)

17

Monday, April 6, 2009

Game Developers Conference 2009 18

Anatomy of a State Script

State Script 1

State A

Variables

State B

State Script 2

State C

VariablesOn Update

On Event1

On Begin On Event4

On Begin

Monday, April 6, 2009

Game Developers Conference 2009 18

Anatomy of a State Script

State Script 1

State A

Variables

State B

Event1

State Script 2

State C

VariablesOn Update

On Event1

On Begin On Event4

On Begin

Monday, April 6, 2009

go to 
State B

Game Developers Conference 2009 18

Anatomy of a State Script

State Script 1

State A

Variables

State B

Event1

State Script 2

State C

VariablesOn Update

On Event1

On Begin On Event4

On Begin

Monday, April 6, 2009

go to 
State B

Game Developers Conference 2009 18

Anatomy of a State Script

State Script 1

State A

Variables

State B

Event1

State Script 2

State C

Variables

Event4

On Update

On Event1

On Begin On Event4

On Begin

Monday, April 6, 2009

Game Developers Conference 2009

Instantiating a State Script

19

Game 
Object

State Script 1

• Attached to a native (C++) game object:
 designers extend or modify native

C++ object type
 define entirely new object types

Monday, April 6, 2009

Game Developers Conference 2009

Instantiating a State Script

• Attached to a trigger region:
 convex volume
 detects enter, exit and occupancy

19

Game 
Object

State Script 1

Trigger Region

State Script 2

• Attached to a native (C++) game object:
 designers extend or modify native

C++ object type
 define entirely new object types

Monday, April 6, 2009

Game Developers Conference 2009

Instantiating State Scripts

• Placed as stand-alone object:
 “director” orchestrates actions of

other objects (e.g. IGC)

20

SsProcess

State Script 3
(stand‐alone)

Monday, April 6, 2009

Game Developers Conference 2009

Instantiating State Scripts

• Placed as stand-alone object:
 “director” orchestrates actions of

other objects (e.g. IGC)

20

Task A

Task B1 Task B2

Task C

Task D

State Script 4

SsProcess

State Script 3
(stand‐alone)

• Associated with a task:
 task = check point
 script manages associated task
 orchestrates AI encounters
 controls player objectives

Monday, April 6, 2009

Game Developers Conference 2009

Instantiating State Scripts

• Placed as stand-alone object:
 “director” orchestrates actions of

other objects (e.g. IGC)

20

Task A

Task B1 Task B2

Task C

Task D

State Script 4

SsProcess

State Script 3
(stand‐alone)

• Associated with a task:
 task = check point
 script manages associated task
 orchestrates AI encounters
 controls player objectives

• Spawned by another state script

Monday, April 6, 2009

State Script Syntax

21

Monday, April 6, 2009

Game Developers Conference 2009 22

Monday, April 6, 2009

Game Developers Conference 2009

State Script Syntax

• State script defined as follows:
 Don’t let Lisp syntax throw you!
 Lisp syntax is all (parentheses)
 Think C/C++ { } blocks

• Parenthesized blocks highly
context-sensitive in Lisp/Scheme

23

(define-state-script ("kickable-gate")
 (state ("locked")
 ...
)
 (state ("opening")
 ...
)
 (state ("open")
 ...
)
)

Monday, April 6, 2009

Game Developers Conference 2009

State Script Syntax

• State script defined as follows:
 Don’t let Lisp syntax throw you!
 Lisp syntax is all (parentheses)
 Think C/C++ { } blocks

• Parenthesized blocks highly
context-sensitive in Lisp/Scheme

23

(define-state-script ("kickable-gate")
 (state ("locked")
 ...
)
 (state ("opening")
 ...
)
 (state ("open")
 ...
)
)

Monday, April 6, 2009

Game Developers Conference 2009

State Script Syntax

• State script defined as follows:
 Don’t let Lisp syntax throw you!
 Lisp syntax is all (parentheses)
 Think C/C++ { } blocks

• Parenthesized blocks highly
context-sensitive in Lisp/Scheme

23

(define-state-script ("kickable-gate")
 (state ("locked")
 ...
)
 (state ("opening")
 ...
)
 (state ("open")
 ...
)
)

Monday, April 6, 2009

Game Developers Conference 2009

State Script Syntax

• State script defined as follows:
 Don’t let Lisp syntax throw you!
 Lisp syntax is all (parentheses)
 Think C/C++ { } blocks

• Parenthesized blocks highly
context-sensitive in Lisp/Scheme

23

(define-state-script ("kickable-gate")
 (state ("locked")
 ...
)
 (state ("opening")
 ...
)
 (state ("open")
 ...
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Event Handler Blocks

• Each state contains zero or more
event handler blocks

24

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (event "kick")
 ... ;; handle "kick" event
)
 (on (begin)
 ... ;; do when state entered
)
 (on (update)
 ... ;; do every frame
)
 (on (end)
 ... ;; do when state exited
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Event Handler Blocks

• Each state contains zero or more
event handler blocks

24

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (event "kick")
 ... ;; handle "kick" event
)
 (on (begin)
 ... ;; do when state entered
)
 (on (update)
 ... ;; do every frame
)
 (on (end)
 ... ;; do when state exited
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Event Handler Blocks

• Each state contains zero or more
event handler blocks

24

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (event "kick")
 ... ;; handle "kick" event
)
 (on (begin)
 ... ;; do when state entered
)
 (on (update)
 ... ;; do every frame
)
 (on (end)
 ... ;; do when state exited
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Event Handler Blocks

• Each state contains zero or more
event handler blocks

24

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (event "kick")
 ... ;; handle "kick" event
)
 (on (begin)
 ... ;; do when state entered
)
 (on (update)
 ... ;; do every frame
)
 (on (end)
 ... ;; do when state exited
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Event Handler Blocks

• Each state contains zero or more
event handler blocks

24

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (event "kick")
 ... ;; handle "kick" event
)
 (on (begin)
 ... ;; do when state entered
)
 (on (update)
 ... ;; do every frame
)
 (on (end)
 ... ;; do when state exited
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Runtime Script Code

• Runtime script code inside (on ...)
blocks

• Simplified Scheme/Lisp
 Most “commands” are native calls

into C++ code
 Conditional expressions
 Simple looping via label/goto

25

(state ("locked")
 (on (begin)
 [print-string "Starting idle!"]
 [animate "self" "locked-idle"]
)
 (on (event "kicked")
 [when [lock-broken?]
 [print-string "BAM!"]
]
 [if [task-complete? "wave2"]
 [print-string "Complete!"]
 [print-string "NOT!!!"]
]
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Runtime Script Code

• Runtime script code inside (on ...)
blocks

• Simplified Scheme/Lisp
 Most “commands” are native calls

into C++ code
 Conditional expressions
 Simple looping via label/goto

25

(state ("locked")
 (on (begin)
 [print-string "Starting idle!"]
 [animate "self" "locked-idle"]
)
 (on (event "kicked")
 [when [lock-broken?]
 [print-string "BAM!"]
]
 [if [task-complete? "wave2"]
 [print-string "Complete!"]
 [print-string "NOT!!!"]
]
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Runtime Script Code

• Runtime script code inside (on ...)
blocks

• Simplified Scheme/Lisp
 Most “commands” are native calls

into C++ code
 Conditional expressions
 Simple looping via label/goto

25

(state ("locked")
 (on (begin)
 [print-string "Starting idle!"]
 [animate "self" "locked-idle"]
)
 (on (event "kicked")
 [when [lock-broken?]
 [print-string "BAM!"]
]
 [if [task-complete? "wave2"]
 [print-string "Complete!"]
 [print-string "NOT!!!"]
]
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Runtime Script Code

• Runtime script code inside (on ...)
blocks

• Simplified Scheme/Lisp
 Most “commands” are native calls

into C++ code
 Conditional expressions
 Simple looping via label/goto

25

(state ("locked")
 (on (begin)
 [print-string "Starting idle!"]
 [animate "self" "locked-idle"]
)
 (on (event "kicked")
 [when [lock-broken?]
 [print-string "BAM!"]
]
 [if [task-complete? "wave2"]
 [print-string "Complete!"]
 [print-string "NOT!!!"]
]
)
)

Monday, April 6, 2009

Game Developers Conference 2009

User-Defined Functions

• Script functions can be defined
and called by script programmer

26

(defun verbose-anim ((anim string))
 [print-string "Starting " anim]
 [animate "self" anim]
)

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 [verbose-anim "locked-idle"]
)
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

User-Defined Functions

• Script functions can be defined
and called by script programmer

26

(defun verbose-anim ((anim string))
 [print-string "Starting " anim]
 [animate "self" anim]
)

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 [verbose-anim "locked-idle"]
)
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

User-Defined Functions

• Script functions can be defined
and called by script programmer

26

(defun verbose-anim ((anim string))
 [print-string "Starting " anim]
 [animate "self" anim]
)

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 [verbose-anim "locked-idle"]
)
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

User-Defined Functions

• Script functions can be defined
and called by script programmer

26

(defun verbose-anim ((anim string))
 [print-string "Starting " anim]
 [animate "self" anim]
)

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 [verbose-anim "locked-idle"]
)
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

User-Defined Functions

• Script functions can be defined
and called by script programmer

26

(defun verbose-anim ((anim string))
 [print-string "Starting " anim]
 [animate "self" anim]
)

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 [verbose-anim "locked-idle"]
)
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

The “Self” Argument

• Any command operating on a game object takes its unique id
(UID) as its first argument

• Magic UID "self" refers to the object to which script is attached

27

Game 
Object

State Script 1

gate‐17

Monday, April 6, 2009

Game Developers Conference 2009

The “Self” Argument

• Any command operating on a game object takes its unique id
(UID) as its first argument

• Magic UID "self" refers to the object to which script is attached

27

Game 
Object

State Script 1

 (on (begin)
 [animate "self" "locked-idle"]
)

self

gate‐17

Monday, April 6, 2009

Game Developers Conference 2009

The “Self” Argument

• Any command operating on a game object takes its unique id
(UID) as its first argument

• Magic UID "self" refers to the object to which script is attached

27

Game 
Object

State Script 1

gate‐17 (on (begin)
 [animate "gate-17" "locked-idle"]
)

Monday, April 6, 2009

Game Developers Conference 2009

The “Self” Argument

• Any command operating on a game object takes its unique id
(UID) as its first argument

• Magic UID "self" refers to the object to which script is attached

27

Game 
Object

State Script 1

gate‐17

Game 
Object

lock‐6

 (on (begin)
 [animate "lock-6" "fall-off"]
)

Monday, April 6, 2009

Game Developers Conference 2009

Changing States

• Transitions to other states via
(go "state-name") command

• State transitions cause current
state’s (on ...) blocks to be
aborted

• Use (on (exit) ...) block for
clean-up

28

(define-state-script ("kickable-gate")
 (state ("locked")
 ...
 (on (event "kicked")
 [when [lock-broken?]
 [go "opening"]
]
)
)
 (state ("opening")
 (on (begin)
 ...
)
 ...
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Changing States

• Transitions to other states via
(go "state-name") command

• State transitions cause current
state’s (on ...) blocks to be
aborted

• Use (on (exit) ...) block for
clean-up

28

(define-state-script ("kickable-gate")
 (state ("locked")
 ...
 (on (event "kicked")
 [when [lock-broken?]
 [go "opening"]
]
)
)
 (state ("opening")
 (on (begin)
 ...
)
 ...
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Changing States

• Transitions to other states via
(go "state-name") command

• State transitions cause current
state’s (on ...) blocks to be
aborted

• Use (on (exit) ...) block for
clean-up

28

(define-state-script ("kickable-gate")
 (state ("locked")
 ...
 (on (event "kicked")
 [when [lock-broken?]
 [go "opening"]
]
)
)
 (state ("opening")
 (on (begin)
 ...
)
 ...
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Tracks

• (on ...) blocks contain one or more tracks
• A track is a bit like a thread or fiber
• Tracks can be put to sleep

 Wait for duration
• e.g., wait 5 seconds,
• wait until frame 23, ...

 Wait for an action to be done
• duration-agnostic

• Tracks can be synchronized via signals

29

Monday, April 6, 2009

State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

Track
P

Track
S

s‐a‐w

p‐a‐w

(state ("shake-hands")
 (on (begin)
 (track ("player"))
 [wait-move-to "player" "waypoint7"]
 [signal "player-at-waypoint"]
 [wait-for-signal "sully-at-waypoint"]
 [wait-animate "player" "shake-sullys-hand"]
)
 (track ("sullivan"))
 [wait-move-to "sullivan" "waypoint7"]
 [signal "sully-at-waypoint"]
 [wait-for-signal "player-at-waypoint"]
 [wait-animate "sullivan" "shake-drakes-hand"]
)
)
)

Monday, April 6, 2009

State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

Track
P

Track
S

s‐a‐w

p‐a‐w

(state ("shake-hands")
 (on (begin)
 (track ("player"))
 [wait-move-to "player" "waypoint7"]
 [signal "player-at-waypoint"]
 [wait-for-signal "sully-at-waypoint"]
 [wait-animate "player" "shake-sullys-hand"]
)
 (track ("sullivan"))
 [wait-move-to "sullivan" "waypoint7"]
 [signal "sully-at-waypoint"]
 [wait-for-signal "player-at-waypoint"]
 [wait-animate "sullivan" "shake-drakes-hand"]
)
)
)

Track
P

Track
S

Monday, April 6, 2009

State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

Track
P

Track
S

s‐a‐w

p‐a‐w

(state ("shake-hands")
 (on (begin)
 (track ("player"))
 [wait-move-to "player" "waypoint7"]
 [signal "player-at-waypoint"]
 [wait-for-signal "sully-at-waypoint"]
 [wait-animate "player" "shake-sullys-hand"]
)
 (track ("sullivan"))
 [wait-move-to "sullivan" "waypoint7"]
 [signal "sully-at-waypoint"]
 [wait-for-signal "player-at-waypoint"]
 [wait-animate "sullivan" "shake-drakes-hand"]
)
)
)

Monday, April 6, 2009

State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

Track
P

Track
S

s‐a‐w

p‐a‐w

(state ("shake-hands")
 (on (begin)
 (track ("player"))
 [wait-move-to "player" "waypoint7"]
 [signal "player-at-waypoint"]
 [wait-for-signal "sully-at-waypoint"]
 [wait-animate "player" "shake-sullys-hand"]
)
 (track ("sullivan"))
 [wait-move-to "sullivan" "waypoint7"]
 [signal "sully-at-waypoint"]
 [wait-for-signal "player-at-waypoint"]
 [wait-animate "sullivan" "shake-drakes-hand"]
)
)
)

Monday, April 6, 2009

State "shake‐hands"

On Begin

Game Developers Conference 2009

Tracks

30

(state ("shake-hands")
 (on (begin)
 (track ("player"))
 [wait-move-to "player" "waypoint7"]
 [signal "player-at-waypoint"]
 [wait-for-signal "sully-at-waypoint"]
 [wait-animate "player" "shake-sullys-hand"]
)
 (track ("sullivan"))
 [wait-move-to "sullivan" "waypoint7"]
 [signal "sully-at-waypoint"]
 [wait-for-signal "player-at-waypoint"]
 [wait-animate "sullivan" "shake-drakes-hand"]
)
)
)

Track
P

Track
S

p‐a‐w

s‐a‐w

Monday, April 6, 2009

Game Developers Conference 2009

Track Execution Over Time

31

• Rules for execution of code within a track:
 Greedily consume instructions sequentially...
 ... until a [wait* ...] command encountered...
 ... then relinquish control until the action is complete

• NOTE: A [wait* ...] command doesn’t have to wait; for example:
 [wait-seconds 0]
 [wait-npc-move-to "pos-4"] when she’s already there

Monday, April 6, 2009

Game Developers Conference 2009

Options and Variable Declarations

• Options declared at top of
script:
 initial state
 variable declarations
 debugging options

32

(define-state-script ("kickable-gate")
 :initial-state "closed"
 :declarations (decl-list
 (var "num-attempts" :type int32)
 (var "is-locked" :type boolean :default #t)
)
 (state ("kicked")
 ...
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

Options and Variable Declarations

• Options declared at top of
script:
 initial state
 variable declarations
 debugging options

32

(define-state-script ("kickable-gate")
 :initial-state "closed"
 :declarations (decl-list
 (var "num-attempts" :type int32)
 (var "is-locked" :type boolean :default #t)
)
 (state ("kicked")
 ...
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

Options and Variable Declarations

• Options declared at top of
script:
 initial state
 variable declarations
 debugging options

32

(define-state-script ("kickable-gate")
 :initial-state "closed"
 :declarations (decl-list
 (var "num-attempts" :type int32)
 (var "is-locked" :type boolean :default #t)
)
 (state ("kicked")
 ...
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009 33

(define-state-script ("kickable-gate")
 :initial-state "closed"
 :declarations (decl-list
 (var "num-attempts" :type int32)
 (var "is-locked" :type boolean :default #t)
)
 (state ("kicked")
 (on (begin)
 [when [get-boolean "is-locked"]
 [set-int32 "num-attempts"
 [+ 1 [get-int32 "num-attempts"]]
]
 [wait-animate "self" "kick-failure"]
 [go "closed"]
]
 ;; else...
 [wait-animate "self" "kick-success"]
 [go "open"]
)
)
 ...

Manipulating Variables

• Simple commands for reading
and writing variables

• Lisp/Scheme uses prefix notation
(a.k.a. Polish notation)
 [+ a b] calculates (a + b)
 [set "x" [+ 1 [get "x"]]]

increments variable “x”

Monday, April 6, 2009

Game Developers Conference 2009 33

(define-state-script ("kickable-gate")
 :initial-state "closed"
 :declarations (decl-list
 (var "num-attempts" :type int32)
 (var "is-locked" :type boolean :default #t)
)
 (state ("kicked")
 (on (begin)
 [when [get-boolean "is-locked"]
 [set-int32 "num-attempts"
 [+ 1 [get-int32 "num-attempts"]]
]
 [wait-animate "self" "kick-failure"]
 [go "closed"]
]
 ;; else...
 [wait-animate "self" "kick-success"]
 [go "open"]
)
)
 ...

Manipulating Variables

• Simple commands for reading
and writing variables

• Lisp/Scheme uses prefix notation
(a.k.a. Polish notation)
 [+ a b] calculates (a + b)
 [set "x" [+ 1 [get "x"]]]

increments variable “x”

Monday, April 6, 2009

Game Developers Conference 2009 33

(define-state-script ("kickable-gate")
 :initial-state "closed"
 :declarations (decl-list
 (var "num-attempts" :type int32)
 (var "is-locked" :type boolean :default #t)
)
 (state ("kicked")
 (on (begin)
 [when [get-boolean "is-locked"]
 [set-int32 "num-attempts"
 [+ 1 [get-int32 "num-attempts"]]
]
 [wait-animate "self" "kick-failure"]
 [go "closed"]
]
 ;; else...
 [wait-animate "self" "kick-success"]
 [go "open"]
)
)
 ...

Manipulating Variables

• Simple commands for reading
and writing variables

• Lisp/Scheme uses prefix notation
(a.k.a. Polish notation)
 [+ a b] calculates (a + b)
 [set "x" [+ 1 [get "x"]]]

increments variable “x”

Monday, April 6, 2009

Game Developers Conference 2009 33

(define-state-script ("kickable-gate")
 :initial-state "closed"
 :declarations (decl-list
 (var "num-attempts" :type int32)
 (var "is-locked" :type boolean :default #t)
)
 (state ("kicked")
 (on (begin)
 [when [get-boolean "is-locked"]
 [set-int32 "num-attempts"
 [+ 1 [get-int32 "num-attempts"]]
]
 [wait-animate "self" "kick-failure"]
 [go "closed"]
]
 ;; else...
 [wait-animate "self" "kick-success"]
 [go "open"]
)
)
 ...

Manipulating Variables

• Simple commands for reading
and writing variables

• Lisp/Scheme uses prefix notation
(a.k.a. Polish notation)
 [+ a b] calculates (a + b)
 [set "x" [+ 1 [get "x"]]]

increments variable “x”

˘

Monday, April 6, 2009

Game Developers Conference 2009 33

(define-state-script ("kickable-gate")
 :initial-state "closed"
 :declarations (decl-list
 (var "num-attempts" :type int32)
 (var "is-locked" :type boolean :default #t)
)
 (state ("kicked")
 (on (begin)
 [when [get-boolean "is-locked"]
 [set-int32 "num-attempts"
 [+ 1 [get-int32 "num-attempts"]]
]
 [wait-animate "self" "kick-failure"]
 [go "closed"]
]
 ;; else...
 [wait-animate "self" "kick-success"]
 [go "open"]
)
)
 ...

Manipulating Variables

• Simple commands for reading
and writing variables

• Lisp/Scheme uses prefix notation
(a.k.a. Polish notation)
 [+ a b] calculates (a + b)
 [set "x" [+ 1 [get "x"]]]

increments variable “x”

Monday, April 6, 2009

• All game objects have
properties (key-value pairs)
 Property values edited in

Charter

Game Developers Conference 2009

Configuration Parameters

34

Monday, April 6, 2009

• All game objects have
properties (key-value pairs)
 Property values edited in

Charter

Game Developers Conference 2009

Configuration Parameters

34

Monday, April 6, 2009

• Designers can create their
own free-form properties,
called tags
 Simply type “key = value”

in Tags field

Game Developers Conference 2009

Configuration Parameters

34

meaning-of-life = 42

Monday, April 6, 2009

Game Developers Conference 2009

Configuration Parameters

• State scripts have read-only access to game object properties...
 ... and free-form tags

35

Monday, April 6, 2009

Game Developers Conference 2009

Configuration Parameters

• State scripts have read-only access to game object properties...
 ... and free-form tags

35

(define-state-script ("kickable-gate")
 (state ("kicked")
 (on (begin)
 [wait-animate "self"
 [tag-string "kick-anim"]
]
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

Configuration Parameters

• State scripts have read-only access to game object properties...
 ... and free-form tags

35

(define-state-script ("kickable-gate")
 (state ("kicked")
 (on (begin)
 [wait-animate "self"
 [tag-string "kick-anim"]
]
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

Configuration Parameters

• State scripts have read-only access to game object properties...
 ... and free-form tags

35

(define-state-script ("kickable-gate")
 (state ("kicked")
 (on (begin)
 [wait-animate "self"
 [tag-string "kick-anim"]
]
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

Data Definition and Runtime

• Offline data-definition language
(Scheme) is intermingled with
runtime code

36

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 [print-string "Starting idle!"]
 [animate "self" "locked-idle"]
)
 (on (event "kicked")
 [when [lock-broken?]
 [print-string "BAM!"]
]
 [if [task-complete? "wave2"]
 [print-string "Complete!"]
 [print-string "NOT!!!"]
]
)
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

Data Definition and Runtime

• Offline data-definition language
(Scheme) is intermingled with
runtime code

36

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 [print-string "Starting idle!"]
 [animate "self" "locked-idle"]
)
 (on (event "kicked")
 [when [lock-broken?]
 [print-string "BAM!"]
]
 [if [task-complete? "wave2"]
 [print-string "Complete!"]
 [print-string "NOT!!!"]
]
)
)
 ...
)

Monday, April 6, 2009

Game Developers Conference 2009

Data Definition and Runtime

36

• Really no different than the
distinction between declarations
and definitions in C++

class Vector3
{
private:
 float x, y, z;
public:
 float Dot(const Vector3& b)
 {
 return (x * b.x
 + y * b.y
 + z * b.z);
 }
 ...
};

Monday, April 6, 2009

Game Developers Conference 2009

Data Definition and Runtime

36

• Really no different than the
distinction between declarations
and definitions in C++

class Vector3
{
private:
 float x, y, z;
public:
 float Dot(const Vector3& b)
 {
 return (x * b.x
 + y * b.y
 + z * b.z);
 }
 ...
};

Monday, April 6, 2009

Case Studies

37

Monday, April 6, 2009

Game Developers Conference 2009

Custom Object Type: Breakable Sign

38

Monday, April 6, 2009

Game Developers Conference 2009

Custom Object Type: Breakable Sign

38

Monday, April 6, 2009

(define-state-script ("falling-sign")
 (state ("untouched")
 (on (update)
 [when [task-complete? "wz-post-combat"]
 [go "fallen"]
]
)
 (on (event "hanging-from")
 [go "breaking"]
)
)
 ...

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

(define-state-script ("falling-sign")
 (state ("untouched")
 (on (update)
 [when [task-complete? "wz-post-combat"]
 [go "fallen"]
]
)
 (on (event "hanging-from")
 [go "breaking"]
)
)
 ...

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

(define-state-script ("falling-sign")
 (state ("untouched")
 (on (update)
 [when [task-complete? "wz-post-combat"]
 [go "fallen"]
]
)
 (on (event "hanging-from")
 [go "breaking"]
)
)
 ...

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

(define-state-script ("falling-sign")
 (state ("untouched")
 (on (update)
 [when [task-complete? "wz-post-combat"]
 [go "fallen"]
]
)
 (on (event "hanging-from")
 [go "breaking"]
)
)
 ...

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

(define-state-script ("falling-sign")
 (state ("untouched")
 (on (update)
 [when [task-complete? "wz-post-combat"]
 [go "fallen"]
]
)
 (on (event "hanging-from")
 [go "breaking"]
)
)
 ...

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

(define-state-script ("falling-sign")
 (state ("untouched")
 (on (update)
 [when [task-complete? "wz-post-combat"]
 [go "fallen"]
]
)
 (on (event "hanging-from")
 [go "breaking"]
)
)
 ...

 (state ("breaking")
 (on (begin)
 [spawn-particles-at-joint "self"
 "hinge"
 "sign-break-dust"]
 [wait-animate "self" "sign-break"]
 [go "fallen"]
)
)
 (state ("fallen")
 (on (begin)
 [animate "self" "sign-broken"] ;; looping
)
)
)

Game Developers Conference 2009

Custom Object Type: Breakable Sign

39

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Making the Sign Script Generic

40

(define-state-script ("simple-animating-obj")
 (state ("initial")
 (on (update)
 [when [task-complete?
 [tag-string "done-task"]]
 [go "done"]
]
)
 (on (event "hanging-from")
 [go "animating"]
)
)
 ...

 (state ("animating")
 (on (begin)
 [spawn-particles-at-joint "self"
 [tag-string "particle-joint"]
 [tag-string "particle-name"]]
 [wait-animate "self"
 [tag-string "anim-name"]]
 [go "done"]
)
)
 (state ("done")
 (on (begin)
 [animate "self"
 [tag-string "done-anim-name"]]
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

In-Game Debugging

41

Monday, April 6, 2009

Game Developers Conference 2009

In-Game Debugging

41

Monday, April 6, 2009

Game Developers Conference 2009

In-Game Debugging

41

Monday, April 6, 2009

Game Developers Conference 2009

In-Game Debugging

41

Monday, April 6, 2009

Game Developers Conference 2009

In-Game Debugging

41

Monday, April 6, 2009

Game Developers Conference 2009

In-Game Debugging

41

Monday, April 6, 2009

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

42

Monday, April 6, 2009

 (state ("crash")
 (on (begin)
 (track ("bus")
 [wait-animate "bus-1" "bus-crash"
 [get-locator "ref-bus-crash-1"]]
 [signal "bus-done"]
)
 (track ("player")
 [animate "player" "player-watch-crash"
 [get-locator "ref-bus-crash-1"]]
 [wait-until-frame 250]
 [say "player" "vox-wz-drk-01-what-the"]
 [signal "drake-done"]
)
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 (on (begin)
 (track ("bus")
 [wait-animate "bus-1" "bus-crash"
 [get-locator "ref-bus-crash-1"]]
 [signal "bus-done"]
)
 (track ("player")
 [animate "player" "player-watch-crash"
 [get-locator "ref-bus-crash-1"]]
 [wait-until-frame 250]
 [say "player" "vox-wz-drk-01-what-the"]
 [signal "drake-done"]
)
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 (on (begin)
 (track ("bus")
 [wait-animate "bus-1" "bus-crash"
 [get-locator "ref-bus-crash-1"]]
 [signal "bus-done"]
)
 (track ("player")
 [animate "player" "player-watch-crash"
 [get-locator "ref-bus-crash-1"]]
 [wait-until-frame 250]
 [say "player" "vox-wz-drk-01-what-the"]
 [signal "drake-done"]
)
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 (on (begin)
 (track ("bus")
 [wait-animate "bus-1" "bus-crash"
 [get-locator "ref-bus-crash-1"]]
 [signal "bus-done"]
)
 (track ("player")
 [animate "player" "player-watch-crash"
 [get-locator "ref-bus-crash-1"]]
 [wait-until-frame 250]
 [say "player" "vox-wz-drk-01-what-the"]
 [signal "drake-done"]
)
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 (on (begin)
 (track ("bus")
 [wait-animate "bus-1" "bus-crash"
 [get-locator "ref-bus-crash-1"]]
 [signal "bus-done"]
)
 (track ("player")
 [animate "player" "player-watch-crash"
 [get-locator "ref-bus-crash-1"]]
 [wait-until-frame 250]
 [say "player" "vox-wz-drk-01-what-the"]
 [signal "drake-done"]
)
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 (on (begin)
 (track ("bus")
 [wait-animate "bus-1" "bus-crash"
 [get-locator "ref-bus-crash-1"]]
 [signal "bus-done"]
)
 (track ("player")
 [animate "player" "player-watch-crash"
 [get-locator "ref-bus-crash-1"]]
 [wait-until-frame 250]
 [say "player" "vox-wz-drk-01-what-the"]
 [signal "drake-done"]
)
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 (on (begin)
 (track ("bus")
 [wait-animate "bus-1" "bus-crash"
 [get-locator "ref-bus-crash-1"]]
 [signal "bus-done"]
)
 (track ("player")
 [animate "player" "player-watch-crash"
 [get-locator "ref-bus-crash-1"]]
 [wait-until-frame 250]
 [say "player" "vox-wz-drk-01-what-the"]
 [signal "drake-done"]
)
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 ...
 (track ("guy-hit-by-bus")
 [wait-animate "npc-wz-52" "npc-hit-by-bus"
 [get-locator "ref-bus-crash-1"]]
 [npc-die "npc-wz-52"]
 [signal "npc-dead"]
)
 (track ("wait-for-all-done")
 [wait-for-signal "bus-done"]
 [wait-for-signal "drake-done"]
 [wait-for-signal "npc-dead"]
 [go "done"]
)
)
)
 (state ("done")
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 ...
 (track ("guy-hit-by-bus")
 [wait-animate "npc-wz-52" "npc-hit-by-bus"
 [get-locator "ref-bus-crash-1"]]
 [npc-die "npc-wz-52"]
 [signal "npc-dead"]
)
 (track ("wait-for-all-done")
 [wait-for-signal "bus-done"]
 [wait-for-signal "drake-done"]
 [wait-for-signal "npc-dead"]
 [go "done"]
)
)
)
 (state ("done")
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 ...
 (track ("guy-hit-by-bus")
 [wait-animate "npc-wz-52" "npc-hit-by-bus"
 [get-locator "ref-bus-crash-1"]]
 [npc-die "npc-wz-52"]
 [signal "npc-dead"]
)
 (track ("wait-for-all-done")
 [wait-for-signal "bus-done"]
 [wait-for-signal "drake-done"]
 [wait-for-signal "npc-dead"]
 [go "done"]
)
)
)
 (state ("done")
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 ...
 (track ("guy-hit-by-bus")
 [wait-animate "npc-wz-52" "npc-hit-by-bus"
 [get-locator "ref-bus-crash-1"]]
 [npc-die "npc-wz-52"]
 [signal "npc-dead"]
)
 (track ("wait-for-all-done")
 [wait-for-signal "bus-done"]
 [wait-for-signal "drake-done"]
 [wait-for-signal "npc-dead"]
 [go "done"]
)
)
)
 (state ("done")
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

 (state ("crash")
 ...
 (track ("guy-hit-by-bus")
 [wait-animate "npc-wz-52" "npc-hit-by-bus"
 [get-locator "ref-bus-crash-1"]]
 [npc-die "npc-wz-52"]
 [signal "npc-dead"]
)
 (track ("wait-for-all-done")
 [wait-for-signal "bus-done"]
 [wait-for-signal "drake-done"]
 [wait-for-signal "npc-dead"]
 [go "done"]
)
)
)
 (state ("done")
 ...

Game Developers Conference 2009

In-Game Cinematic: Bus Crash

43

(define-state-script ("wz-bus-crash")
 (state ("spawn-soldiers")
 (on (begin)
 [player-disable-controls
 (controls all-but-right-stick)]
 [spawn-npc-in-combat "npc-wz-52"]
 [spawn-npc-in-combat "npc-wz-53"]
 ...
 [go "crash"]
)
)
 ...

Monday, April 6, 2009

Implementation

44

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Scheme-like runtime language implemented by a simple VM
 Each track compiled into block of byte code called a lambda

45

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 (track ("gate")
 ...
)
 (track ("lock")
 ...
)
)
)
)

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Scheme-like runtime language implemented by a simple VM
 Each track compiled into block of byte code called a lambda

45

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 (track ("gate")
 ...
)
 (track ("lock")
 ...
)
)
)
)

opcode1 operand1 operand2
   opcode2
   opcode3 operand3

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Scheme-like runtime language implemented by a simple VM
 Each track compiled into block of byte code called a lambda

45

(define-state-script ("kickable-gate")
 (state ("locked")
 (on (begin)
 (track ("gate")
 ...
)
 (track ("lock")
 ...
)
)
)
)

opcode1 operand1 operand2
   opcode2
   opcode3 operand3

opcode4 operand4
   opcode5 operand5
   opcode6

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Internal state of VM consists of:
 Pointer to current lambda

(byte code program)
 Index to current instruction
 Bank of registers for temporary

and immediate data

• Registers are of type variant

46

cur instr
lambda

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Internal state of VM consists of:
 Pointer to current lambda

(byte code program)
 Index to current instruction
 Bank of registers for temporary

and immediate data

• Registers are of type variant

46

cur instr
lambda

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Internal state of VM consists of:
 Pointer to current lambda

(byte code program)
 Index to current instruction
 Bank of registers for temporary

and immediate data

• Registers are of type variant

46

cur instr
lambda

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Language supports nested
function calls

• Hence requires call stack
 Stack frame = bank of

registers + program counter

47

lambda

cur instr

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Language supports nested
function calls

• Hence requires call stack
 Stack frame = bank of

registers + program counter

47

lambda

cur instr

reg0

reg1

reg2

reg4

cur instr

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Language supports nested
function calls

• Hence requires call stack
 Stack frame = bank of

registers + program counter

47

cur instr
lambda

reg0

reg1

reg2

reg4

cur instr

reg0

reg1

reg2

reg4

cur instr

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Virtual Machine

• Language supports nested
function calls

• Hence requires call stack
 Stack frame = bank of

registers + program counter

47

lambda

cur instr

reg0

reg1

reg2

reg4

cur instr

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Continuations

• State script code can wait (sleep)
• Implemented via something

known as a continuation

48

lambda

cur instr

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Continuations

• State script code can wait (sleep)
• Implemented via something

known as a continuation

48

lambda

cur instr

reg0

reg1

reg2

reg4

cur instr

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Continuations

• State script code can wait (sleep)
• Implemented via something

known as a continuation

48

lambda

conOnuaOon

Monday, April 6, 2009

Game Developers Conference 2009

Continuations

• State script code can wait (sleep)
• Implemented via something

known as a continuation

48

lambda

cur instr

reg0

reg1

reg2

reg4

cur instr

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Continuations

• State script code can wait (sleep)
• Implemented via something

known as a continuation

48

cur instr
lambda

reg0

reg1

reg2

reg4

cur instr

reg0

reg1

reg2

reg4

cur instr

reg0

reg1

reg2

reg4

Monday, April 6, 2009

Game Developers Conference 2009

Native C++ Functions

• The “meat” of an (on ...) block is its command sequence
 Some commands are user-defined: (defun func1 (...))
 Most commands are C++ hooks into the engine

• Simple hash table maps function names to C++ code

49

(define-c-function wait-animate
 (object-name string)
 (anim-name string)
)

Variant ScriptWaitAnimate(int argc, Variant* argv)
{
 ...
}

Monday, April 6, 2009

Game Developers Conference 2009 50

Variant ScriptWaitAnimate(int argc, Variant* argv)
{
 StringId objName = SC_ARG(0, StringId, NULL);
 StringId animName = SC_ARG(1, StringId, NULL);
 if (!objName)
 return ScriptError("wait-animate: expected object name (arg1)\n");
 if (!animName)
 return ScriptError("wait-animate: expected animation name (arg2)\n");
 // find the object
 ProcessGameObject* pObj = g_processMgr.Lookup(objName);
 if (!pObj)
 return ScriptError("wait-animate: could not find %s\n",
 StringIdToString(objName));
 // instruct object to play animation, and wake up this script when done
 pObj->WaitAnimate(animName, g_scriptContext);
 g_scriptContext.Suspend(); // go to sleep until anim is done
 return Variant(true);
}

Monday, April 6, 2009

Game Developers Conference 2009 51

Monday, April 6, 2009

Conclusion

52

Monday, April 6, 2009

Game Developers Conference 2009

Key Features

• Key features of a successful scripting system:
 Virtual machine integrated into game engine
 Ability to run code every frame (update)
 Ability to respond to events, and send events
 Ability to reference game objects (by handle, unique id, etc.)
 Ability to manipulate game objects
 Designers can define new object types in script

53

Monday, April 6, 2009

Game Developers Conference 2009

Architectural Styles

• Many different engine-script architectures:
 script drives engine (engine just a library called by script)
 engine drives script...
• simple scripted event handlers
• scripted properties or components
• scripted game object classes

54

Monday, April 6, 2009

Game Developers Conference 2009

Some Advice...

• Good debugging tools are crucial
 Understandable error messages from compiler
 In-game display of running scripts, or some kind of debugger
 Simple logging to TTY/console (e.g. [print-string "message"])

• Watch for race conditions
 Event arrives too early or too late—missed
 Object you’re trying to control hasn’t spawned yet, or has died
 Tracks not synchronized properly

55

Monday, April 6, 2009

Game Developers Conference 2009

With Great Power...

• ... comes great responsibility
• Your designers can now:

 break the build
 introduce progression stoppers
 crash the game

• Take the leap of faith, but...
 PLAN FOR IT!

56

Monday, April 6, 2009

Game Developers Conference 2009

With Great Power...

• ... comes great responsibility
• Your designers can now:

 break the build
 introduce progression stoppers
 crash the game

• Take the leap of faith, but...
 PLAN FOR IT!

56

Monday, April 6, 2009

Game Developers Conference 2009

Thanks For Listening!

• Free free to send questions to me at:
jason_gregory@naughtydog.com

• Naughty Dog is hiring! Send resumes to Candace Walker at:
candace_walker@naughtydog.com

57

Monday, April 6, 2009

mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com

