

00 AllinOne FM 6/24/04 10:59 PM Page i

This page intentionally left blank

Game Programming

All in One,
2nd Edition

Jonathan S. Harbour

© 2004 by Thomson Course Technology PTR. All rights reserved. No
part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, record-
ing, or by any information storage or retrieval system without written
permission from Thomson Course Technology PTR, except for the
inclusion of brief quotations in a review.

The Premier Press and Thomson Course Technology PTR logo and
related trade dress are trademarks of Thomson Course Technology PTR
and may not be used without written permission.

Microsoft, Windows, DirectDraw, DirectMusic, DirectPlay, Direct-
Sound, DirectX, and Xbox are either registered trademarks or trade-
marks of Microsoft Corporation in the U.S. and/or other countries.
Apple, Mac, and Mac OS are trademarks or registered trademarks of
Apple Computer, Inc. in the U.S. and other countries. All other trade-
marks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s techni-
cal support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from descrip-
tive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of
the fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the publisher for quantity
discount information. Training manuals, CD-ROMs, and portions of this
book are also available individually or can be tailored for specific needs.

ISBN: 1-59200-383-4

Library of Congress Catalog Card Number: 2004091915
Printed in the United States of America

04 05 06 07 08 BH 10 9 8 7 6 5 4 3 2 1

Course PTR, a division of Course Technology
25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

SVP, Thomson Course
Technology PTR:
Andy Shafran

Publisher:
Stacy L. Hiquet

Senior Marketing Manager:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Acquisitions Editor:
Mitzi Koontz

Senior Editor:
Mark Garvey

Associate Marketing Managers:
Kristin Eisenzopf and Sarah Dubois

Project Editor/Copy Editor:
Cathleen D. Snyder

Technical Reviewer:
Joshua Smith

Thomson Course Technology
PTR Market Coordinator:
Amanda Weaver

Interior Layout Tech:
Shawn Morningstar

Cover Designer:
Steve Deschene

CD-ROM Producer:
Brandon Penticuff

Indexer:
Kelly Talbot

Proofreader:
Sean Medlock

For Jeremiah

A
book of this size involves a lot of work even after the writing is done. It takes a
while just to read through a programming book once, so you can imagine how dif-
ficult it is to read through it several times, making changes and notes along the

way, refining, correcting, and preparing the book for print. I am indebted to the hard work
of the editors, artists, and layout specialists at Premier Press who do such a fine job. Thank
you Mitzi Koontz, Emi Smith, and Stacy Hiquet for your encouragement and support.

I owe many thanks to Cathleen Snyder, one of the most amazing editors in the business,
who both managed the project and copy edited the manuscript, and to Joshua R. Smith,
who offered his technical expertise and long experience in the game industry to point out
my mistakes and to offer advice. I believe you will find this a true gem of a game pro-
gramming book due to their efforts.

I would also like to thank Bruno Miguel Teixeira de Sousa for writing the first edition of
this book. Some of his original work may still be found in this new edition, in Chapters 6,
18, 19, and 20.

vi

Acknowledgments

JONATHAN S. HARBOUR has been an avid gamer and programmer for 17 years, having
started with a TI-99, a Commodore PET, and a Tandy 1000. In 1994, he earned a bachelor
of science degree in computer information systems. He has since earned the position of
senior programmer with seven years of professional programming experience. Jonathan
is a member of the Starflight III team, working with the original designers and other vol-
unteers on a sequel to the first two Starflight games (using Allegro), originally published
by Electronic Arts in 1985 and 1989, respectively. Jonathan has released two retail Pocket
PC games, Pocket Trivia and Perfect Match, and has authored or coauthored five other
books on the subject of game programming, including Pocket PC Game Programming,
Visual Basic Game Programming with DirectX, Visual Basic .NET Programming for the
Absolute Beginner, Beginner’s Guide to DarkBASIC Game Programming, and Beginning
Game Boy Advance Programming. He maintains a Web site dedicated to game programming
and other topics at http://www.jharbour.com. Jonathan lives in Arizona with his wife,
Jennifer, and children, Jeremiah and Kayleigh.

vii

About the Author

Introduction .xxv

Part I: Introduction to Cross-Platform
Game Programming 1

Chapter 1 Demystifying Game Development .3

Chapter 2 Getting Started with Dev-C++ and Allegro 33

Chapter 3 Basic 2D Graphics Programming with Allegro71

Chapter 4 Writing Your First Allegro Game .119

Chapter 5 Programming the Keyboard, Mouse, and Joystick 145

Part II: 2D Game Theory, Design,
and Programming 185

Chapter 6 Introduction to Game Design .187

Chapter 7 Basic Bitmap Handling and Blitting .215

Chapter 8 Basic Sprite Programming: Drawing Scaled,
Flipped, Rotated, Pivoted, and Translucent Sprites 237

Chapter 9 Advanced Sprite Programming: Animation,
Compiled Sprites, and Collision Detection 279

viii

Contents at a Glance

Chapter 10 Programming Tile-Based Backgrounds with Scrolling 339

Chapter 11 Timers, Interrupt Handlers, and Multi-Threading381

Chapter 12 Creating a Game World: Editing Tiles and Levels429

Chapter 13 Vertical Scrolling Arcade Games .455

Chapter 14 Horizontal Scrolling Platform Games .489

Part III: Taking It to the Next Level 509

Chapter 15 Mastering the Audible Realm: Allegro’s Sound Support511

Chapter 16 Using Datafiles to Store Game Resources539

Chapter 17 Playing FLIC Movies .551

Chapter 18 Introduction to Artificial Intelligence .563

Chapter 19 The Mathematical Side of Games .585

Chapter 20 Publishing Your Game .611

Part IV: Appendixes 631

Appendix A Chapter Quiz Answers .633

Appendix B Useful Tables .651

Appendix C Numbering Systems: Binary and Hexadecimal 657

Appendix D Recommended Books and Web Sites .663

Appendix E Configuring Allegro for Microsoft Visual C++
and Other Compilers .671

Appendix F Compiling the Allegro Source Code .685

Appendix G Using the CD-ROM .691

Index .693

Contents at a Glance ix

Introduction .xxv

Part I: Introduction to Cross-Platform
Game Programming 1

Chapter 1 Demystifying Game Development .3
Introduction .4

Practical Game Programming . 5
Goals Revisited. 6

The High-Level View of Game Development .6
Recognizing Your Personal Motivations .9

Decision Point: College versus Job . 10
Every Situation Is Unique . 10
A Note about Specialization. 12
Game Industry Speculation . 13
Emphasizing 2D . 14
Finding Your Niche . 15

Getting into the Spirit of Gaming .18
Starship Battles: An Inspired Fan Game. 18
Axis & Allies: Hobby Wargaming . 22
Setting Realistic Expectations for Yourself 24

An Introduction to Dev-C++ and Allegro .25
DirectX Is Just Another Game Library . 25

x

Contents

Introducing the Allegro Game Library. 26
Supporting Multiple C/C++ Compilers . 29

Summary .30
Chapter Quiz .31

Chapter 2 Getting Started with Dev-C++ and Allegro 33
Introduction .34
Installing and Configuring Dev-C++ and Allegro 35

Installing Dev-C++ . 36
Updating Dev-C++ . 37
Installing Allegro . 41

Taking Dev-C++ and Allegro for a Spin .43
Testing Dev-C++: The Greetings Program . 44
Testing Allegro: The GetInfo Program . 53

Gaining More Experience with Allegro .63
The Hello World Demo . 63
Allegro Sample Programs . 65

Summary .68
Chapter Quiz .68

Chapter 3 Basic 2D Graphics Programming with Allegro 71
Introduction .72
Graphics Fundamentals .74

The InitGraphics Program . 75
The DrawBitmap Program . 79

Drawing Graphics Primitives .82
Drawing Pixels . 82
Drawing Lines and Rectangles . 84
Drawing Circles and Ellipses . 95
Drawing Splines, Triangles, and Polygons 103
Filling in Regions . 109

Printing Text on the Screen .112
Constant Text Output . 112
Variable Text Output . 113
Testing Text Output. 114

Summary .115
Chapter Quiz .116

Contents xi

Chapter 4 Writing Your First Allegro Game .119
Tank War .119

Creating the Tanks. 120
Firing Weapons . 122
Tank Movement . 125
Collision Detection . 126
The Complete Tank War Source Code . 126

Summary .141
Chapter Quiz .142

Chapter 5 Programming the Keyboard, Mouse, and Joystick 145
Handling Keyboard Input .146

The Keyboard Handler . 146
Detecting Key Presses . 147
The Stargate Program . 148
Buffered Keyboard Input . 152
Simulating Key Presses . 153
The KeyTest Program. 154

Handling Mouse Input .155
The Mouse Handler . 156
Reading the Mouse Position. 156
Detecting Mouse Buttons . 157
Showing and Hiding the Mouse Pointer . 157
The Strategic Defense Game . 158
Setting the Mouse Position. 165
Limiting Mouse Movement and Speed . 167
Relative Mouse Motion . 167
Using a Mouse Wheel . 167

Handling Joystick Input .170
The Joystick Handler . 170
Detecting Controller Stick Movement . 171
Detecting Controller Buttons . 174
Testing the Joystick Routines . 175

Summary .182
Chapter Quiz .182

Contentsxii

Part II: 2D Game Theory, Design,
and Programming 185

Chapter 6 Introduction to Game Design .187
Game Design Basics .188

Inspiration . 188
Game Feasibility. 188
Feature Glut . 189
Back Up Your Work . 189
Game Genres . 190

Game Development Phases .195
Initial Design . 196
Game Engine . 196
Alpha Prototype . 196
Game Development. 197
Quality Control . 197
Beta Testing . 198

Post-Production .198
Official Release . 199
Out the Door or Out the Window? . 199
Managing the Game . 199
A Note about Quality . 200
Empowering the Engine . 200
Quality versus Trends. 201
Innovation versus Inspiration . 202
The Infamous Game Patch . 202
Expanding the Game. 203

Future-Proof Design .203
Game Libraries . 204
Game Engines and SDKs . 204

What Is Game Design? .204
The Dreaded Design Document .205
The Importance of Good Game Design .206
The Two Types of Designs .206

Mini Design . 206
Complete Design . 207

A Sample Design Document Template .207
General Overview . 208
Target System and Requirements . 208

Contents xiii

Story . 208
Theme: Graphics and Sound . 208
Menus . 208
Playing a Game . 208
Characters and NPCs Description . 208
Artificial Intelligence Overview . 208
Conclusion . 209

A Sample Game Design: Space Invaders .209
General Overview . 209
Target System and Requirements . 209
Story . 209
Theme: Graphics and Sound . 210
Menus . 210
Playing a Game . 210
Character and NPC Description . 211
Artificial Intelligence Overview . 211
Conclusion . 211

Game Design Mini-FAQ .212
Summary .212
Chapter Quiz .212

Chapter 7 Basic Bitmap Handling and Blitting 215
Introduction .215
Dealing with Bitmaps .217

Creating Bitmaps . 219
Cleaning House . 221
Bitmap Information. 221
Acquiring and Releasing Bitmaps. 223
Bitmap Clipping . 224
Loading Bitmaps from Disk. 224

Blitting Functions .227
Standard Blitting . 227
Scaled Blitting . 228
Masked Blitting . 229
Masked Scaled Blitting . 229

Enhancing Tank War—From Graphics Primitives to Bitmaps 229
Summary .234
Chapter Quiz .234

Contentsxiv

Chapter 8 Basic Sprite Programming: Drawing Scaled,
Flipped, Rotated, Pivoted, and Translucent Sprites . . .237

Basic Sprite Handling .238
Drawing Regular Sprites . 238
Drawing Scaled Sprites . 242
Drawing Flipped Sprites . 244
Drawing Rotated Sprites . 245
Drawing Pivoted Sprites . 252
Drawing Translucent Sprites . 256

Enhancing Tank War .259
What’s New? . 260
Modifying the Source Code . 262

Summary .276
Chapter Quiz .276

Chapter 9 Advanced Sprite Programming: Animation,
Compiled Sprites, and Collision Detection 279

Animated Sprites .280
Drawing an Animated Sprite . 280
Creating a Sprite Handler . 283
The SpriteHandler Program . 286
Grabbing Sprite Frames from an Image . 291
The SpriteGrabber Program . 293
The Next Step: Multiple Animated Sprites 298
The MultipleSprites Program . 300

Run-Length Encoded Sprites .306
Creating and Destroying RLE Sprites . 307
Drawing RLE Sprites . 307
The RLESprites Program . 307

Compiled Sprites .313
Using Compiled Sprites . 314
Testing Compiled Sprites. 315

Collision Detection .317
The CollisionTest Program .319
Enhancing Tank War .324
Summary .336
Chapter Quiz .337

Contents xv

Chapter 10 Programming Tile-Based Backgrounds with Scrolling339
Introduction to Scrolling .340
A Limited View of the World .341
Introduction to Tile-Based Backgrounds .345

Backgrounds and Scenery . 346
Creating Backgrounds from Tiles . 347
Tile-Based Scrolling . 347
Creating a Tile Map . 351

Enhancing Tank War .355
Exploring the All-New Tank War . 356
The New Tank War Source Code . 359

Summary .378
Chapter Quiz .378

Chapter 11 Timers, Interrupt Handlers, and Multi-Threading 381
Timers .381

Installing and Removing the Timer . 381
Slowing Down the Program . 382
The TimerTest Program . 383

Interrupt Handlers .392
Creating an Interrupt Handler . 392
Removing an Interrupt Handler . 393
The InterruptTest Program . 393

Using Timed Game Loops .395
Slowing Down the Gameplay…Not the Game 395
The TimedLoop Program. 396

Multi-Threading .397
Abstracting the Parallel Processing Problem. 398
The Pthreads-Win32 Library . 399
Programming with Posix Threads. 400
The MultiThread Program. 403

Enhancing Tank War .413
Description of New Improvements. 414
Modifying the Tank War Project . 415
Future Changes to Tank War . 426

Summary .426
Chapter Quiz .426

Contentsxvi

Chapter 12 Creating a Game World: Editing Tiles and Levels 429
Creating the Game World .429

Installing Mappy . 430
Creating a New Map . 430
Importing the Source Tiles . 432
Saving the Map File as FMP . 433
Saving the Map File as Text . 435

Loading and Drawing Mappy Level Files .436
Using a Text Array Map. 437
Using a Mappy Level File . 442

Enhancing Tank War .445
Proposed Changes to Tank War . 446
Modifying Tank War . 447

Summary .453
Chapter Quiz .453

Chapter 13 Vertical Scrolling Arcade Games .455
Building a Vertical Scroller Engine .455

Creating Levels Using Mappy . 457
Filling in the Tiles. 459
Let’s Scroll It . 460

Writing a Vertical Scrolling Shooter .464
Describing the Game. 464
The Game’s Artwork . 466
Writing the Source Code. 468

Summary .487
Chapter Quiz .487

Chapter 14 Horizontal Scrolling Platform Games 489
Understanding Horizontal Scrolling Games .490
Developing a Platform Scroller .490
Creating Horizontal Platform Levels with Mappy 491

Separating the Foreground Tiles . 495
Performing a Range Block Edit. 497

Developing a Scrolling Platform Game .498
Describing the Game. 498
The Game Artwork . 499
Using the Platform Scroller. 500
Writing the Source Code. 501

Contents xvii

Summary .506
Chapter Quiz .507

Part III: Taking It to the Next Level 509

Chapter 15 Mastering the Audible Realm: Allegro’s Sound Support .511
The PlayWave Program .512
Sound Initialization Routines .514

Detecting the Digital Sound Driver . 515
Reserving Voices . 515
Setting an Individual Voice Volume . 515
Initializing the Sound Driver. 516
Removing the Sound Driver . 516
Changing the Volume . 516

Standard Sample Playback Routines .517
Loading a Sample File . 517
Loading a WAV File . 517
Loading a VOC File . 517
Playing a Sample . 517
Altering a Sample’s Properties . 518
Stopping a Sample. 518
Creating a New Sample. 518
Destroying a Sample . 518

Low-Level Sample Playback Routines .518
Allocating a Voice . 519
Removing a Voice . 519
Reallocating a Voice . 519
Releasing a Voice . 519
Activating a Voice . 519
Stopping a Voice . 519
Setting Voice Priority. 520
Checking the Status of a Voice. 520
Returning the Position of a Voice . 520
Setting the Position of a Voice . 520
Altering the Playback Mode of a Voice . 520
Returning the Volume of a Voice. 521
Setting the Volume of a Voice . 521
Ramping the Volume of a Voice. 521
Stopping a Volume Ramp . 521

Contentsxviii

Returning the Pitch of a Voice . 521
Setting the Pitch of a Voice . 521
Performing a Frequency Sweep of a Voice 521
Stopping a Frequency Sweep . 522
Returning the Pan Value of a Voice . 522
Setting the Pan Value of a Voice . 522
Performing a Sweeping Pan on a Voice. 522
Stopping a Sweeping Pan . 522

The SampleMixer Program .522
Enhancing Tank War .525

Modifying the Game . 525
Final Comments about Tank War . 536

Summary .537
Chapter Quiz .537

Chapter 16 Using Datafiles to Store Game Resources 539
Understanding Allegro Datafiles .540
Creating Allegro Datafiles .541
Using Allegro Datafiles .544

Loading a Datafile . 544
Unloading a Datafile . 545
Loading a Datafile Object. 545
Unloading a Datafile Object. 545
Finding a Datafile Object . 545

Testing Allegro Datafiles .545
Summary .547
Chapter Quiz .548

Chapter 17 Playing FLIC Movies .551
Playing FLI Animation Files .551

The FLI Callback Function . 552
The PlayFlick Program . 552
Playing an FLI from a Memory Block . 554

Loading FLIs into Memory .554
Opening and Closing FLI Files. 555
Processing Each Frame of the Animation 555
The LoadFlick Program . 556
The ResizeFlick Program . 558

Summary .561
Chapter Quiz .561

Contents xix

Chapter 18 Introduction to Artificial Intelligence 563
The Fields of Artificial Intelligence .564

Expert Systems . 564
Fuzzy Logic. 565
Genetic Algorithms . 567
Neural Networks . 569

Deterministic Algorithms .570
Random Motion. 571
Tracking . 572
Patterns . 573

Finite State Machines .575
Fuzzy Logic .577

Fuzzy Logic Basics . 577
Fuzzy Matrices . 579

A Simple Method for Memory .580
Artificial Intelligence and Games .581
Summary .581
Chapter Quiz .582

Chapter 19 The Mathematical Side of Games .585
Trigonometry .586

Visual Representation and Laws. 586
Angle Relations . 589

Vectors .590
Addition and Subtraction . 591
Scalar Multiplication and Division . 593
Length . 594
Normalization . 594
Perpendicular Operation. 595
Dot Product . 596
Perp-Dot Product . 597

Matrices .598
Addition and Subtraction . 598
Scalars with Multiplication and Division . 598
Special Matrices . 599
Transposed Matrices . 600
Matrix Concatenation . 601
Vector Transformation . 602

Contentsxx

Probability .603
Sets . 603
Union . 603
Intersection . 604

Functions .605
Integration . 606
Differentiation . 607

Summary .608
Chapter Quiz .608

Chapter 20 Publishing Your Game .611
Is Your Game Worth Publishing? .611
Whose Door to Knock On .612

Learn to Knock Correctly . 613
No Publisher, So Now What? . 613

Contracts .614
Non-Disclosure Agreement . 614
The Actual Publishing Contract . 614

Milestones .615
Bug Report . 615
Release Day . 615

Interviews .616
Paul Urbanus: Urbonix, Inc. 616
Niels Bauer: Niels Bauer Software Design 622
André LaMothe: Xtreme Games LLC . 624

Summary .625
References .626
Chapter Quiz .626

Epilogue .629

Part IV: Appendixes 631

Appendix A Chapter Quiz Answers .633
Chapter 1 .633
Chapter 2 .634
Chapter 3 .635
Chapter 4 .635

Contents xxi

Chapter 5 .636
Chapter 6 .637
Chapter 7 .638
Chapter 8 .639
Chapter 9 .639
Chapter 10 .640
Chapter 11 .641
Chapter 12 .642
Chapter 13 .643
Chapter 14 .643
Chapter 15 .644
Chapter 16 .645
Chapter 17 .646
Chapter 18 .647
Chapter 19 .648
Chapter 20 .648

Appendix B Useful Tables .651
Integral Equations Table .651
Derivative Equations Table .652
Inertia Equations Table .652
ASCII Table .653

Appendix C Numbering Systems: Binary and Hexadecimal 657
Binary .657
Decimal .659
Hexadecimal .659

Appendix D Recommended Books and Web Sites 663
All in One Support on the Web .663
Game Development Web Sites .663
Publishing, Game Reviews, and Download Sites 664
Engines .664
Independent Game Developers .664
Industry .665
Computer Humor .665
Recommended Books .665

Contentsxxii

Appendix E Configuring Allegro for Microsoft Visual C++
and Other Compilers .671

Microsoft Visual C++ .672
Dev-C++ .673
KDevelop for Linux .679
Final Comments .683

Appendix F Compiling the Allegro Source Code 685
Microsoft Visual C++ .685
Borland C++/C++Builder .687
Dev-C++ .688
KDevelop for Linux .689

Appendix G Using the CD-ROM .691

Index .693

Contents xxiii

This page intentionally left blank

G
reetings! This book is the second edition to the best-selling Game Programming All
in One by Bruno Miguel Teixeira de Sousa, to whom I am indebted for the original
work. This new second edition is a complete rewrite of Game Programming All in

One, with a completely new direction, new goals, new assumptions, and new development
tools. All in One 2E, as I have come to call it, has done away with the C++ tutorials,
Windows programming tutorials, and DirectX tutorials. In fact, this book does not cover
Windows or DirectX at all. Instead, this book focuses on the subject of game program-
ming using a cross-platform game library called Allegro. This library is extremely power-
ful and versatile. Allegro opens up a world of possibilities that are ignored when you focus
specifically on Windows and DirectX. A full quarter of the first edition was devoted to a
C++ language primer, while another fourth of the book focused on Windows and DirectX
basics. I decided that for this second edition, we did not need to cover those subjects again;
thus, this book uses the standard C language, and the sample programs will compile on
multiple platforms.

The Windows version of Allegro uses DirectX, as a matter of fact, but it is completely
abstracted and transparent, hidden inside the internals of the Allegro game library.
Instead, you are provided with a basic C program that includes the Allegro library and is
capable of running in full-screen DirectDraw mode using any supported resolution and
color depth. Additionally, Allegro provides a uniform interface for sound effects, music,
and device input, which are implemented on the Windows platform with DirectSound,
DirectMusic, and DirectInput. Specifically, Allegro supports DirectX 8. Imagine writing a
high-speed arcade game using DirectX, and then being able to recompile that program
(without changing a single line of code) under Linux, Mac OS X, Solaris, FreeBSD, IRIX,
and other operating systems! Allegro is a cross-platform game library that will double or
triple the user base for the games you develop with the help of this book, and at no loss
in performance.

xxv

Introduction

Cross-Platform Game Programming
This book will teach you to write complete games that will run on almost any operating
system. Specifically, I focus on three compilers—Visual C++, Dev-C++, and KDevelop—
and the sample programs will be written using both Windows and Linux, with screenshots
taken from both operating systems. In all likelihood, you will have the opportunity to use
your favorite development tool because Allegro supports several C compilers, including
Borland C++, Borland C++Builder, Apple Development Tools 2002, and several other
compilers on various platforms, including the ubiquitous GNU C++ (GCC).

The target audience for this book is beginning to intermediate programmers who already
have some experience with C or C++. Also, those who want to learn to write games using
C or C++ can use this book as an entry-level guide. The material is not for someone new
to programming—just someone new to game programming. I must assume you have
already learned C or C++ because there is too much to cover in the game libraries, inter-
faces, and so on to focus on the basic syntax of the actual language. It was difficult enough
to support three different compilers and integrated development environments without
also explaining every line of code. Intermediate-level programming experience is
assumed, while extreme beginners (newbies) will definitely struggle.

In Appendix D, “Recommended Books and Web Sites,” I recommend introductory books
for those readers. I encourage you to keep a C primer handy while reading through All in
One 2E because this book moves along at a rapid pace. My goal was not to cover a lot of
information, but to quickly get into the important information you’ll need to write good
games. This book is not extremely advanced—the source code is straightforward, with no
difficult libraries to learn per se, but I do not explain every detail. I do cover most of the
function library in Allegro, since that is the focus of this book, but I do not explain any
standard C functions. The goal is to get up and running as quickly as possible with some
game code! In fact, you will be writing your first graphics programs in Chapter 3 and your
first game in Chapter 4. You will, however, quickly ramp up to advanced topics, such as
creating game levels and scrolling the game world on the screen, with sample code, such
as the PlatformScroller program (see Chapter 14).

Yes, it is true, this book focuses entirely and exclusively on 2D games. This is a huge genre
that includes many real-time and turn-based strategy games, such as Civilization III, the
Age of Empires series, Diablo, Starcraft, and so on. If you scoff at 2D games, then I encour-
age you to pick up 3D Game Programming All in One (Premier Press, 2004) instead of (or
in addition to) this volume. I make no apologies for ignoring 3D because these two books
were designed to complement each other in the Game Development series.

Someone who has done some programming in Visual C++, CodeWarrior, Watcom C,
Borland C++, GNU C++, or even Java or C# will understand the programs in this book.

Introductionxxvi

Those with little or no coding experience will benefit from a C primer before delving into
these chapters. I recommend many good C primers and C programming books in Appen-
dix D. The emphasis of this book is on a cross-platform, open-source compiler, integrated
development environment, and game library. You will not need to learn Windows or
DirectX programming, and these subjects are not covered. The primary IDE is an open-
source (freeware) program called Dev-C++, released by Bloodshed Software
(http://www.bloodshed.net), and it is included on the CD-ROM. The game library is
called Allegro; it is also freeware, open-source, and included on CD-ROM that accompa-
nies this book. You have all the free tools you need to run the programs in the book, and
then some! Using these tools, you can write standard Windows and DirectX programs
with or without Allegro, and without the cost of an expensive compiler, such as Visual
C++. This book is highly accessible to all C programmers, regardless of their platform
of choice.

Use Your Favorite Compiler
Dev-C++ is a capable compiler package that includes an editor with source code high-
lighting. It uses the infamous GNU C++ compiler (GCC) to convert your chicken-scratch
code into real programs with targets for Win32 or console programs and full support for
DirectX 9. In other words, you might find Dev-C++ a useful companion for writing
games with or without Allegro, and many of the sample programs in other Premier Press
game development books will compile with Dev-C++ as well. It is a worthy, free, and easy-
to-use alternative to a commercial compiler.

This book’s source code and sample programs will run without modification on all of the
following systems: Windows 9x/2000/Me/XP/2003, Mac OS X, Linux (any version), BeOS,
QNX, and many other UNIX systems (IRIX, Solaris, Darwin, FreeBSD, to name a few)
with X Windows. Believe it or not, these programs will also run under MS-DOS (DJGPP,
Watcom C). That is almost every computer system out there. It’s a sure bet if someone
wants to use an old but mainstream C compiler, it will probably run the code in this book
(with perhaps some limitations on compiling the Allegro library itself, which uses a mod-
ern makefile). I tell you this, not believing that you will need to write a game for MS-DOS,
but just to demonstrate the versatility of Allegro.

Yet, at the same time, the Windows version of Allegro supports DirectX. The programs in
this book will run in full-screen or windowed mode with support for just about any video
card out there. Allegro is not an advanced, next-generation 3D engine; it is a cross-platform
game library with a long history that dates back to the original Atari ST version. You might
not care about cross-platform programming at this point, but imagine the possibilities
if you were able to double the number of people who would play your game, just by
compiling your game for other operating systems—and all without modifying any of your

Introduction xxvii

source code. When is the last time you saw an online multiplayer game with Mac, Linux,
and Windows players? Although I do not cover online multiplayer games in this book,
they are a very real possibility using Allegro and standard TCP/IP socket libraries. As an
example, I cover multi-threading in this book using a Windows port of the Posix Thread
library, and the sample program I wrote to demonstrate multi-threading compiles under
Windows and Linux without modification! The same is true for other libraries that conform
to a standard, such as Berkeley Sockets for TCP/IP network programming.

This book is not entirely about cross-platform programming, though. I do discuss the
subject in the first two chapters, but from that point forward, I simply focus on Allegro
and specific game concepts, such as scrolling and animation. The overall theme and focus
of this book are on writing games. To that end, you will develop a complete game and add
to it in each chapter of the book, starting in Chapter 4.

Is This Book for You?
If you have any experience with the C language, then you will be able to make your way
through this book. If you are new to the C language, I recommend against reading this
book as your first experience with C because it will be confusing due to the extensive use
of Allegro. (Very few standard C functions are used.) The example programs use a simple
C syntax with no complicated interfaces or lists of include files. In fact, most of the pro-
grams will have a simple format like this:

#include “allegro.h”
int main(void)
{

allegro_init();
allegro_message(“Welcome To Allegro!”);
return 0;

}
END_OF_MAIN();

This is a very simple program that is used as a test program for Appendix E, “Configuring
Allegro for Microsoft Visual C++ and Other Compilers,” just as an example. This program
simply verifies that the Allegro library has been linked with the main program and is
working as expected. This particular program outputs to the console and does not run in
graphical mode. Allegro provides comprehensive support for all of the video modes sup-
ported on your PC, including full-screen and windowed DirectX modes used by most
commercial games. On the UNIX side, Allegro supports the X Window system, SVGAlib,
and other libraries (as appropriate to the platform), providing a similar output no matter
which system it is running on. For instance, the allegro_message function is displayed in a
pop-up message box in Windows, but prints a message to a terminal window in Linux.

Introductionxxviii

If you are a Windows user and you don’t care about Linux, that won’t be a problem. The
screenshots presented in this book look exactly the same no matter what operating system
you are using, and my choice of Windows or Linux in each particular case is simply for
variety. Likewise, if you are a Linux user and you care not for Windows, you will not be
limited in any way because every program in this book is tested on both Windows and
Linux. The CD-ROM that accompanies this book includes the complete source code for
the sample programs in this book, with project files for Visual C++ (Windows), Dev-C++
(Windows), and KDevelop (Linux). The tools on the CD-ROM include both Windows
and Linux versions in most cases. If you are using an operating system other than these
two, you should have no problem adapting the source code to your compiler of choice.

Do you like games, and would you like to learn how to create your own professional-quality
games using some of the same tools used by professional game developers? This book will
help you get started in the right direction toward that goal, and you’ll have a lot of fun
learning along the way! This is a very practical programming book, not rife with theory,
so you will find many, many sample programs herein to reinforce each new subject.

System Requirements
The programs in this book will run on many different operating systems, including
Windows, Linux, Mac OS X, and almost any UNIX variant that supports the X Window
system. All that is really required is a decent PC with a video card and sound card.

Here are the recommended minimum hardware requirements:

� Pentium II 300 MHz

� 128 MB memory

� 200 MB free hard disk space

� 8 MB video card

� Sound card

Book Summary
This book is divided into four parts:

� Part I: Introduction to Cross-Platform Game Programming. This first section
provides all the introduction you will need to get started writing cross-platform
games with Allegro and Dev-C++, with screenshots from both Windows and
Linux. By the time you have completed this first set of chapters, you will have a
solid grasp of compiling Allegro programs. This section concludes with a sample
game called Tank War that you will enhance throughout the book.

Introduction xxix

� Part II: 2D Game Theory, Design, and Programming. This section is the meat and
potatoes of the book, providing solid tutorials on the most important functions in
the Allegro game library, including functions for loading images, manipulating
sprites, scrolling the background, double-buffering, and other core features of any
game. This section also provides the groundwork for the primary game developed
in this book.

� Part III: Taking It to the Next Level. This section is comprised of more theoretical
chapters covering basic artificial intelligence, a chapter on basic game physics, and
a chapter about publishing your game.

� Part IV: Appendixes. This final section of the book provides answers to the
chapter quizzes, a tutorial on numbering systems, a set of useful mathematical
tables, tutorials on installing and using Allegro, a list of recommended resources,
and an overview of the CD-ROM.

Introductionxxx

Introduction to
Cross-Platform

Game Programming
Chapter 1

Demystifying Game Development .3

Chapter 2
Getting Started with Dev-C++ and Allegro .33

Chapter 3
Basic 2D Graphics Programming with Allegro .71

Chapter 4
Writing Your First Allegro Game .119

Chapter 5
Programming the Keyboard, Mouse, and Joystick 145

PART I

W
elcome to Part I of Game Programming All in One, 2nd Edition. Part I includes
five chapters that introduce you to the basic concepts of game development
with Allegro. Starting with an overview of game development roots and cover-

ing the subject of motivation, this part goes into detail about how to use the free Dev-C++
compiler/IDE and the Allegro game programming library. Also, this part shows how to
write, compile, and run several Allegro programs.

3

Demystifying Game
Development

chapter 1

T
his chapter provides an overview of the game industry, the complexities of game
development, and the personal motivations that drive members of this field to pro-
duce the games we love to play. Herein you will find discussions of game design and

how your world view and upbringing, as well as individual quirks and talents, have a huge
impact on not only whether you have what it takes to make it big, but also whether it is a
good idea to work on games at all. There is more to writing games than motivation. While
some programmers see game development purely as a monthly salary, some perceive
games at a higher level and are able to tap into that mysterious realm of the unknown to
create a stunning masterpiece. In this chapter, I discuss that vague and intangible (but all
too important) difference.

I also give you a general overview of what it is like to work as a programmer. If you are
interested in game programming purely for fun or as a hobby, I encourage you to absorb
this chapter because it will help you relate to those on the inside and judge your own cre-
ations. When you consider that it takes a team to develop a retail game—and you are an
individual—it is not unreasonable to believe that your own games are high in quality and
worthy of note. What you must consider are total invested project hours and the size of
the team. How does your solo project compare to a team game development project? You
see, your solo (or rather, “indie”) game may be comparable to a retail game, all things
being equal. One goal of this chapter is to help you realize this fact, to encourage you to
continue learning, and to create games from your imagination. Whether you are planning
a career in the game industry or simply partaking in the joy of writing games to entertain
others, this chapter has something beneficial for you. After all, there are employed game
programmers who only make their mark after going solo, and some solo game program-
mers who only make their mark after joining a team. Taking games seriously from the
start is one way to attract attention and encourage others to take your work seriously.

Here is a breakdown of the major topics in this chapter:

� Gaining a high-level view of game development

� Recognizing your personal motivations

� Getting into the spirit of gaming

� Getting an introduction to Dev-C++ and Allegro

Introduction
Before I delve into the complexities of learning to write a game, I want to take a few
moments to discuss the big picture that surrounds this subject. I’d like to think that some
of you reading this book very likely will enter the game industry as junior or entry-level
programmers and make a career of it. I am thrilled by that possibility—that I may have
contributed in some small way to fulfilling a dream. I will speak frequently to both the
aspiring career game programmer and the casual hobbyist because both have the same
goals—first, to learn the tricks and techniques used by professional game programmers,
and then to learn enough so it is no longer difficult and it becomes fun. Programming is
difficult already; game programming is exponentially more difficult. But by breaking
down the daunting task of writing a modern game, you can learn to divide and conquer,
and finish a great game! Thus, my goal in this chapter is to provide some commentary
along those lines while introducing you to the technologies used in this book—namely,
the C language and the Allegro game library.

First, a disclaimer—something that I will repeat several times to nail the point home:
DirectX is not game programming. DirectX is one library that is indisputably the most
popular for Windows PCs. However, consoles such as the Sony PlayStation 2, Nintendo
GameCube, Nintendo Game Boy Advance, and the many other handheld devices do not
use DirectX or anything like it (although Xbox does use DirectX). There are dozens of
DirectX reference books disguised as game programming books, but they often do little
other than expose the interfaces—DirectDraw, Direct3D, DirectInput, DirectSound,
DirectMusic, and DirectPlay. Talk about getting bogged down in the details! In my opin-
ion, DirectX is the means to an end, not the goal itself. Learning DirectX is optional if your
dream is to write console games (although I recommend learning as much as possible
about every subject).

For the newcomer to game development, this misconception about the nature of some so-
called game programming books can be a source of consternation. Beginners can be
impatient (as I have been myself, and will discuss later in this chapter). Let me summarize
the situation: You want to get something going quickly and easily, and then you want to
go back and learn all the deep and complicated details, right? I mean, who wants to read
an 800-page programming book before they actually get to write a game?

Chapter 1 � Demystifying Game Development4

Practical Game Programming
This book focuses on the oft-misused phrase “game programming” and has no prerequi-
sites. I don’t discuss Windows or DirectX programming at all in this book. For some excel-
lent reference books on those subjects (which I like to call logistical subjects), please refer
to Appendix D, “Recommended Books and Web Sites.” If I may nail the point home, allow
me to present a simple analogy—one that I will use as a common theme in this and other
chapters. Writing a game is very similar to writing a book. There are basic tools required
to write a game (such as a compiler, a text editor, and a graphic editor), just as there are
tools required to write a book (such as a word processor, a dictionary, and a thesaurus).
When you are planning a new project, such as a game, do you worry about electricity? As
such, when you are planning a new book, would you worry about the alphabet? These
things are base assumptions that we take for granted.

I take the operating system completely for granted now, and I try to abstract my comput-
ing experience as much as possible. It is a liberating experience when I am able to get the
same work done regardless of the electronics or operating system on my computer.
Therefore, I take those things for granted, whether I am using Windows Explorer or
GNOME, Internet Explorer or Mozilla, Visual C++ or Dev-C++. This is an important
concept that I encourage you to consider because the game industry is in a constant state
of flux that conducts the vibrations of the entire computer industry.

The concept of a “new computer” is important to the general public, but to a computer
industry professional, “new” is a very relative term that only lasts a few weeks or months
at most. Everyone has his or her own way of dealing with constant change, and it is part
of the experience of working with computers. (Those who can’t handle it never last long
in this industry.) Rather than seeing change as a tidal wave and trying to keep ahead of it,
I often let the wave crash over my head, so to speak, and wait for the next wave. It’s an
intriguing experience, allowing high technology to pass you up and zoom ahead. But do
you know why there is some wisdom in skipping a trend now and then? Because technol-
ogy is not only in a constant state of change, but it is also in a constant state of experi-
mentation. Not every new “improvement” is good or accepted. Remember videodiscs?
Probably not! The movie industry had to rethink videodisc technology in part because the
discs resembled vinyl records, which the public perceived as old technology.

For example, the computer hardware industry markets heavily for the need to constantly
upgrade computers. It is logical that these companies would do so because the general pub-
lic really believes that everything is obsolete year by year. In fact, it is the gross inefficiency
of the software that makes this so. Rather than grasping at the latest everything with a
must-have belief system, why not continue to use known, stable systems and stand up to
the frequent tidal waves of technology? What one calls progress, another calls marketing.
Games have single-handedly pushed the personal computer industry to extraordinary new

Introduction 5

heights in the past decade due for the most part to advances in graphics technology. But
that cutting edge leaves a lot of well-meaning and talented folks out in the cold when they
might otherwise be developing well-loved games.

So we come back to the point again: What is the cutting edge of game development, and
what must I do to write great games? For the first part, the cutting edge is gameplay, not
the latest 3D buzzword. Second, to write a great game, you must be passionate and talented.
Studying the subject at hand (game programming) is another factor—although it is the
focus of this book! For my own inspiration, I look at games such as Sid Meier’s Civilization
III and Age of Wonders: Shadow Magic, among other recent 2D titles. You can find your
inspiration in whatever subject interests you, and it need not always be a video game.

Goals Revisited
One of the aspects of this book that I want to emphasize early on is that my goal is to reach
a majority of hobbyists and programmers who are either aspiring to enter the game
industry as career programmers or who are simply writing games for the fun of it. As I
explained in the Introduction, this book won’t hold your hand because there is so much
information to cover. At the same time, it’s my job to make a difficult subject easy to com-
prehend; if you have some fun along the way, that’s even better. I don’t want to simply pre-
sent and discuss how to write 2D graphics code; my goal is for you to master it.

By the time you’re finished with this book, you’ll have the skills to duplicate any game
released up to the late 1990s (before 3D hardware acceleration came along for PCs). That
includes a huge number of games most often not regarded by the “twitch generation”—
that is, those gamers who would describe “strategy” as which direction to circle strafe an
enemy in a first-person shooter, the best kind of car to “jack” to make the most money, or
how to escape via a side alley where the cops never follow you. We can poke fun at the
twitch generation because they wouldn’t know what to do with a keyboard, let alone how
to write game code; therefore, they are not likely to read this book. But if there are any
twitch gamers now reading, I congratulate you!

The High-Level View of Game Development
Game development is far more important to society than most people realize. Strictly from
an economic point of view, the design, funding, development, packaging, delivery, and sale
of video games (both hardware and software) employs millions of workers around the
world. There are electronics engineers building the circuit boards and microprocessors.
Programmers write the operating systems, software development kits, and games. Factory
workers mass-produce the packaging, instructions, discs, controllers, and other peripherals.
Technical support workers help customers over the phone. There are a large number of
investors, business owners, managers, lawyers, accountants, human resource workers, network

Chapter 1 � Demystifying Game Development6

and PC technical support personnel, and other ancillary job positions that support the
game industry in one way or another. What it all amounts to is an extraordinarily complex
system of interrelated industries and jobs, and millions of people who are employed solely
to fill the shelves of your local video game store. The whole point of this is simply to
entertain you. Because we’re talking about high-quality interactive entertainment, we have
a tendency to spend a lot of money for it, which increases demand, which drives everyone
involved to work very hard to produce the next bestseller.

Although this narrative might remind you of the book publishing industry, where there
are many people working very hard to get high-quality books onto store shelves, I submit
that games might be more similar to motion pictures than to books. All three of these sub-
jects are closely related forms of entertainment, with music included. Books are turned
into movies, movies into video games, and both movies and video games into books. All
the while, music soundtracks are available for movies and video games alike. Much of this
has to do with marketing—getting the most income from a particular brand name. One
excellent side effect of this is that many young people grow up surrounded by themes of
popular culture that spawn their imaginations, thus producing a new generation of cre-
ative people every few years to work in these industries.

Consider the effect that science fiction novels and movies have had on visionaries of pop-
ular culture, such as Gene Roddenberry and George Lucas, who each pushed the envelope
of entertainment after being inspired by fantastic stories of their time, such as The Day the
Earth Stood Still and The Twilight Zone, to name just two. Before these types of programs
were produced, Hollywood was enamored with westerns—stories about the old West.
What was the next great frontier, at least for an American audience? Having spread across
the continent of North America, and after fighting in two great and terrible world wars,
popular culture turned outward—not to Earth’s oceans, but to the great interstellar seas
of space. What these early stories did was spurn the imaginations of the young up-and-
coming visionaries who created Star Trek, Lost in Space, Star Wars, and action/adventure
themes such as Indiana Jones, set in a past era (where time is often associated with space).
These are identifiable cultural icons.

The game industry is really the next generation of entertainment, following in the foot-
steps of the great creative powerhouses of the past few decades. Games have been grow-
ing in depth and complexity for many years, and they have come to be so entertaining that
they have eclipsed the motion picture industry as the leading form of entertainment.
But just as movies did not replace books, neither will games replace movies as a dominant
player. Although one might eclipse the others in revenue and profit, all of these industries
are interrelated and interdependent.

Thinking hypothetically, what do you suppose will be the next stage of cutting-edge enter-
tainment, the likes of which will supercede games as the dominant player? In my opinion,
we have not seen it yet and we might never see it. I believe that books, music, movies, and

The High-Level View of Game Development 7

video games will continue unheeded to inspire, challenge, and entertain for decades to
come. But I do hold an opinion that is contrary to my last statement. I believe that west-
ern society will embrace entertainment less and adopt more productive uses for games in
the decades to come. Why do I feel this way, you might ask? Momentum and progress.
Games are already being used for more than just entertainment. They are being used by
governments to train soldiers in the strategy and tactics of a modern battlefield, one in
which military commanders no longer have the luxury of experiencing for real. Without
real long-term engagements like those during World War II (battles since that time have
been skirmishes in comparison), modern militaries must rely on alternative means of
training to give troops a feel for real battle. What better solution than to play games that
are visceral, utterly realistic, shocking in unpredictability, and awe-inspiring to behold?
Who needs a real battlefield when a game looks and feels almost like the real thing?

I have now explored several areas of our society that benefit from the game industry. What
about gamers themselves—you, me, and other video game fanatics? We love to play games
because it is exhilarating to conquer, pillage, destroy, and defeat an opponent (especially
if he or she is a close friend or relative). But there is the converse to this point of view,
regarding those games that allow you to create, imagine, build, enchant, and express your-
self. Some games are so artistic that it feels as if you are interacting with an oil painting or
a symphonic orchestra. To conclude this game brings forth the same set of emotions you
feel upon finishing a good book, an exceptional movie, or an orchestral performance—
exhilaration, joy, pride, fascination, appreciation, and yet a tinge of disappointment.
However, it is that last emotion that draws you back to that book, movie, game, painting,
or symphony again, where it brings you some happiness in life. This experience tran-
scends mere entertainment; it is a joy felt by your soul, not simply a sensual experience in
your mind and through your eyes and ears.

Interactivity has much to do with some of the new lingo used to describe the game industry.
Although insiders won’t mince words, those who are concerned with public consumption
and opinion prefer to call the game industry a form of interactive or electronic entertain-
ment. Game programming has become game development. Outlining the plot of a game
has become game design. Very lengthy scripts are now written for games, and some
designers will even storyboard a game. Do you begin to see similarities to the movie
industry?

Storyboarding is a process in which concept artists are hired to illustrate the entire game
scene by scene. This is a very expensive and time-intensive process, but it is necessary for
complicated productions. Some films (or games, for that matter) are rather simple in plot:
Aliens have invaded Earth, so someone must stop them! Although a storyboard might
help a hack-and-slash type of game, it is often not necessary, particularly when the designer
and developers are intimately familiar with the subject matter. For instance, think about

Chapter 1 � Demystifying Game Development8

a game adaptation of a novel, such as Michael Crichton’s Jurassic Park. The developers of
a game based on a novel do not always have the benefit of a feature film, as was the case
with Jurassic Park and other movies based on Michael Crichton novels. Simply reading the
book and watching the movie is probably enough to come up with a basic idea for what
should happen in the game; you probably don’t need to storyboard.

Why do I feel that this discussion is important? It is absolutely relevant to game develop-
ment! In fact, “game programming” has become such a common phrase in video game
magazines, on Web sites, and in books that it is often taken for granted. What I’m focus-
ing on is the importance of perspective. There is a lot more to consider than just what to
name a program variable or what video resolution to use for your next game. You need to
understand the big picture, to step away from the tree to see the entire forest.

Recognizing Your Personal Motivations
Why do you want to learn game programming? I want you to think hard about that ques-
tion for a moment, because the time investment is great and the rewards are not always
up to par in terms of compensation. You must love it. If you don’t love absolutely every-
thing about video games—if you don’t love to argue about them, review them online, and
play them obsessively—then I have some good but somewhat hard advice. Just treat video
games as an enjoyable hobby, and don’t worry too much about “breaking in” to the game
industry or getting your game published. Really. Because that is a serious source of stress,
and your goal is supposed to be to have fun with games, not get frustrated with them.

n o t e

For a fascinating insider narration of the video game industry’s early years, I highly recommend the
book Hackers by Steven Levy, which puts the early years of the game industry into perspective. For
a historic ride down memory lane, be sure to read High Score! The Illustrated History of Electronic
Games by Rusel DeMaria and Johnny Wilson (former editor of Computer Gaming World), a full-
color book with hundreds of fascinating photos. Browsing the local bulletin board systems in the
late 1980s and early 1990s to download shareware games was also a fun pastime. For an intriguing
look into this era, I recommend Masters of Doom: How Two Guys Created an Empire and Transformed
Pop Culture by David Kushner.

I was inspired by games such as King’s Quest IV: The Perils of Rosella, Space Quest III:
The Pirates of Pestulon, Police Quest, Hero’s Quest: So You Want To Be A Hero?, and other
extraordinarily cool adventure games produced by Sierra. There were other companies,
too, such as Atari, Electronic Arts, Activision, and Origin Systems. I spent many hours
playing Starflight, one of the first games that Electronic Arts published in 1985 (and one
of the greatest games made at the time) and the sequel, Starflight II: Trade Routes of the
Cloud Nebula, which came out in 1989.

Recognizing Your Personal Motivations 9

Decision Point: College versus Job
In the modern era of gaming, a college education is invaluable. What if you grow tired of
the game industry after a few years? Don’t cringe; this is a very real possibility. A lot of
hardcore gamers have moved on to casual gaming or given it up entirely while pursuing
other careers.

Focus every effort on writing complete and polished games, however big or small, and
consider every game as a potential entry on your résumé. If you want to work on games
for a living, go for it full tilt and don’t halfheartedly fool around about it. Be serious! Go
get a job with any game studio and work your way up. On the other hand, if you want to
get involved in high-caliber games, then go to college and focus heavily on your studies.
Let the game industry pass you by for a short time, and when you graduate, you will be
ready and equipped to get a great job. There are some really great high-tech colleges that
are offering game programming degree programs. University of Advancing Technology in
Tempe, Arizona, for instance, has associate’s, bachelor’s, and master’s degree programs
in game development! Take a look at http://www.uat.edu.

Once you have made the decision to go for it, it’s time to build your level of experience
with real games that you will create on your own. Don’t assume that one of your hobby
games isn’t good enough for an employer to see. Most game development managers will
appreciate brimming enthusiasm if you have the technical skills to do the job. Showing off
your previous work and recalling the joy of working on those early games is always enjoy-
able for you and the interviewer. They want to see your personality, your love of games,
and how you spent hundreds of hours working on a particular game, fueled by an uncon-
trollable drive to see it completed. Your emphasis should be on completed games. Most
important, always be genuine.

I would go so far as to say that having a dozen shareware games (of good quality) on your
résumé is better than having worked on a small part of a commercial game. Yes, suppose you
did work on a retail game. That doesn’t guarantee choice employment with another company.
What sort of work did you do on that game—level editors, unit editors, level design, play test-
ing? These are common tasks for entry-level programmers on a professional team where the
“cool” positions (such as 3D engine and network programming) are occupied by the highly
skilled programmers with proven track records who always get the job done quickly.

The best hobbies will often pay for themselves and might even earn a profit. If you have a
full-time job that is otherwise fine, then you might turn the hobby of game programming
into a money-making adventure. Who knows—you might release the next great indie game.

Every Situation Is Unique
There are many factors to consider in your own determination, and there is no best direc-
tion to take in life. We all just try to do the best that we can do, day by day and year by

Chapter 1 � Demystifying Game Development10

year. I recommend that you pursue a career that will bring you the most enjoyment while
still earning the highest possible salary. You might not care about salary at this point in
your life; indeed, you might feel as if you would pay someone to hire you as a game pro-
grammer. I know that feeling all too well! I thought it was a strange feeling, getting paid
to work on a retail game. When that game came out in stores and I saw it on the shelf, then
it was an exhilarating feeling.

However, most of the world does not feel the same way that you do about video games.
Very few people bother to read the credits. The feeling of exhilaration is really an internal
one, not widely shared. You might already feel that this is true, given your own experience
with relatives and friends who don’t understand why you love games so much and why
you wig out over the strangest things.

I remember the first time I discovered Will Wright’s Sim City; it was in the late 1980s. It
was quite an educational game, but extremely fun, too. Traveling with my parents, I would
point out along the road, “Residential zone. Commercial zone. Ah ha! There’s an indus-
trial zone. Sure to be a source of pollution.” I would note traffic jams and point out where
a light rail alongside the road would ease the traffic problems. The fact is, the way you feel
about video games has a strong bearing on whether you will succeed when the going gets
rough, when the hours are piled on and you find yourself with no free time to actually play
games anymore. All you have time to do is write code, and not even the most interesting
code at that. But that spark in your eye remains, knowing that you are helping to complete
this game, and it will go on your résumé as an accomplishment in life, maybe as a step-
ping stone in your career as a programmer.

Another argument that you might consider is the very real possibility that you could
always go to college later and focus on your career now, especially if you have a lead for a
job at a game company. That trend seems to be dwindling because games are now exceed-
ingly complex projects that require highly trained and educated teams to complete them.
Any self-taught programmer might have found corporate employment in the 1970s and
1980s, but the same is no longer the case with game companies. Now it has become an
exceedingly competitive market. As you already know, competition causes quality to rise
and costs to go down. A programmer with no college degree and little or no experience
will have a very difficult time finding employment with a recognizable game company.
Perhaps he can find work with one of the few hundred independent studios, but even pri-
vate developers are in need of highly skilled programmers.

You might find more success by taking the indirect route to a career in game development.
Many developers have gone professional after working on games in their spare time, by
selling games as shareware or publishing them online. And there are as many success sto-
ries for high school graduates as there are for college graduates. As I said, every situation
is unique. During this period of time, you can hone your skills, build your résumé of
games (which is absolutely critical when you are applying for a job in the game industry),

Recognizing Your Personal Motivations 11

develop your own game engines, and so on. Even if you are interested in game program-
ming (which is a safe bet if you are reading this book!) just as a hobby, there is always the
possibility that you will come up with something innovative, and you might be surprised
to receive an unexpected job offer.

A Note about Specialization
As far as specialization goes, there is very little difference between programming a game for
console or PC—all are based on the C or C++ language. These are two distinct languages,
by the way. It is out of ignorance that many refer to C and C++ interchangeably, when in
fact they are very different. C is a structured language invented in the 1970s, while C++ is
an object-oriented language invented in the 1980s. It is a given that you must know both
of these languages (not just one or the other) because that is the assumption in this industry
—you simply must know them both, without exception, and you should not need a pro-
grammer’s reference for most of the standard C or C++ libraries (although there are some
weird functions that are seldom used). If you are a capable programmer (from a Windows,
Linux, Mac, or other background), you know C and C++, and you have some experience
with a game engine or library (such as Allegro), then you should be able to make your way
when working on a console, such as the PlayStation 2, Xbox, or GameCube.

The software development kits for consoles typically include libraries that you must link
into your program when the program is compiled and linked to an executable file. Many
game companies now produce games for all of the console systems and the PC, as well as
some handheld systems (such as the Game Boy Advance). Once all of the artwork, sound
effects, textures, levels, and so on, have been created for a game, it is economically prudent
to reuse all of those game resources for as many platforms as possible. That is why many
games are released simultaneously for multiple consoles. The cost of porting a game is just
a fraction of the original development cost because all of the hard coding work has been
done. The game’s design is already completed. Everything has been done for one platform
already, so the porting team must simply adapt the existing game for a different computer
system (which is essentially what a video game system is). Since all of the code is already
in C or C++ (or both), the porting team must simply replace platform-specific function
calls with those for the new platform.

For instance, suppose a game for the PC is being ported to Xbox—something that is done
all the time. The Xbox is very similar to a Windows PC, with a Windows 2000 core and a
custom version of DirectX. There is no keyboard or mouse, just a controller. Porting a PC
game requires some forethought because there is a lot of input code that must be con-
verted so the game is operated from a controller. As an example, one of the most popular
online PC games of all time, Counter-Strike, was ported to Xbox and features online play
via the Xbox Live! network.

Chapter 1 � Demystifying Game Development12

The usual setup for a PC game includes the use of keyboard in tandem with mouse—usually
the ASDW configuration (A = left, D = right, W = forward, D = backward) while using the
mouse to aim and shoot a weapon. Also, you use the CTRL key to crouch and the space-
bar to jump. If your mouse has a mouse-wheel, you can use that to scroll through your
available weapons (although the usual way is with the < and > keys).

I have always found this to be a terribly geeky way to play a game. Yes, it is faster than a
controller. But it’s like we have been forced to use a data entry device for so long just to
play games that we not only accept it, but we defend it. I’ve heard many elite Counter-
Strike players proclaim, “I’ll never switch to a controller!” The fact of the matter is, when
you get used to controlling your character using dual analog sticks and dual triggers on a
modern console controller (such as the Xbox Controller S, shown in Figure 1.1), it is easy
to give up the old keyboard/mouse combo.

Counter-Strike was originally a Half-Life mod (or rather,
expansion). To play the original Counter-Strike, you had
to already own Half-Life, after which Counter-Strike was
a free (but very large) download. Porting the game to
Xbox must have been a major undertaking if it was truly
rewritten just for the Xbox. Based on the similarity to
the now-aged PC game, I would suspect that it is the
same source code, but very highly modified. There are
no Xbox enhancements that I can see after having
played the game for several years on the PC. It is inter-
esting to see how the developers dealt with the loss of

the keyboard/mouse input system and adapted the game to work with a controller. The
in-game menus use a convenient, intelligent menu system in which you use the eight-way
directional pad to purchase gear at the start of each game round.

Regardless of the differences in input control and hardware, the source code for a console
or a PC game is very similar, and all of it is written in C or C++. (The biggest difference
are the development environment and game libraries, or SDKs.) One common practice at
a game studio is to fabricate a development system in which the SDK of each console is
abstracted behind wrapper code, which is a term used to describe the process of wrapping
an existing library of functions with your own function calls. This not only saves time, but
it also makes it easier to add features and fix bugs.

Game Industry Speculation
According to Jupiter Research (http://www.jupiterresearch.com), the game industry will
continue to grow, having reached an estimated $12 billion revenue during 2003. Although
console sales amount to more than PC game sales, there are many more PC gamers than
console gamers, and the gap will continue to widen.

Recognizing Your Personal Motivations 13

Figure 1.1 Xbox Controller S

Chapter 1 � Demystifying Game Development14

I have a theory about this apparent trend. I have seen the growth of consoles over the last
five years, and I am convinced that console games will be more popular than PC games in
a few years. It is just a simple matter of economics. A $200 console is as capable and as
powerful as a $1,500 PC. Not too long ago I was a frenetic upgrader; I always found an
excuse to spend another $500 on my PC every few months.

When I stopped to look at this situation objectively, I was shocked to learn that I had been
spending thousands annually—on games, essentially. Not just retail games, but the hard-
ware needed to run those games. It seemed to be a conspiracy! The hardware manufac-
turers and software game companies were in league to make money. Every six months or
so, new games would be released that required PC upgrades just to run. One benefit that
the consoles have brought to this industry is some platform stability, which makes it far
easier to develop games. Not only can you (as a game programmer) count on a stable plat-
form, but you can push the boundaries of that platform without worrying about leaving
anyone with an aging computer behind. No newly released PC game will run on a
computer that is five years old (in general), but that is a common practice for the average
five-year lifespan of a game console.

Given this speculation and the trends and sales figures that seem to back it up, it is very
likely that the PC and console game industries—which were once mostly independent of
each other—will continue to grow closer every year. That is why it is important to develop
a cross-platform mindset and not limit yourself to a single platform, such as Windows.
Mastery of C and C++ are the most important things, while your specific platform of
choice comes second. Regardless of your proficiency with Windows and DirectX, I
encourage you to learn another system. The easiest way to gain experience with console
development is to learn how to program the Nintendo Game Boy Advance (GBA) because
open-source tools are available for it.

Emphasizing 2D
There is a misunderstanding among many game players as well as programmers (all of
whom I will simply refer to as “gamers” from this point forward) that 2D games are dead,
gone, obsolete, forever replaced by 3D. I disagree with that opinion. There is still a good
case for working entirely in 2D, and many popular just-released games run entirely under
a 2D game engine that does not require a 3D accelerator at all. Also, numerous games that
can only be described as cult classics have been released in recent years and will continue
to be played for years to come. Want some examples?

� Sid Meier’s Civilization III with Play the World and Conquests expansions

� StarCraft and the Brood War expansion

� Diablo II and the Lord of Destruction expansion

� Command & Conquer: Tiberian Sun and the Firestorm expansion

� Command & Conquer: Red Alert 2 and Yuri’s Revenge

� Age of Empires and the Rise of Rome expansion

� Age of Empires II and The Conquerors

� Age of Mythology and The Titans expansion

� The Sims and a dozen or so expansions and sequels

� Real War and the Rogue States expansion

What do all of these games have in common? First of all, they are all bestsellers. As you
might have noticed, they all have one or more expansion packs available (which is a good
sign that the game is doing well). Second, these are all 2D games. This implies that these
games feature a scrolling game world with a fixed point of view and various fixed and
moving objects on the screen. Fixed objects might be rocks, trees, and mountains (in an
outdoor setting) or doors, walls, and furniture (in an indoor setting). With a few excep-
tions, these are all PC games. There are several-hundred console and handheld games that
all feature 2D graphics to great effect that I could have listed. For instance, here are just a
handful of exceptional games available for the Game Boy Advance:

� Advance Wars

� Advance Wars 2: Black Hole Rising

� Super Mario World: Super Mario Advance 2

� Yoshi’s Island: Super Mario Advance 3

� The Legend of Zelda: A Link to the Past

� Sword of Mana

� Final Fantasy Tactics Advance

� Golden Sun: The Lost Age

What makes these games so compelling, so hot on the sales charts, and so popular among
the fans? It is certainly not due to fancy 3D graphics with multi-layer textures and dynamic
lighting, representative of the latest first-person shooters. What sets these 2D games apart
are the fantastic gameplay and realistic graphics for the characters and objects in the game.

Finding Your Niche
What are your hobbies, interests, and sources of entertainment (aside from your PC)?
Have you considered that what interests you is also of interest to thousands or millions of
other people? Why not capitalize on the fan base for a particular subject and turn that into
a game? Nothing beats experience. When it comes to designing a game, there is no better
source on a particular subject than a diehard fan! If you are a fan of a particular sci-fi show
or movie, perhaps, then turn it into your vision of a game. Not only will you have a lot of

Recognizing Your Personal Motivations 15

fun, but you will create something that others will enjoy as well. I have found that when I
work on a game that I enjoy playing and I create this game for my own enjoyment, there
are people who are willing to pay for it.

Pocket Trivia Takes a Bow

Entirely for my own enjoyment and for nostalgia, I wrote a trivia game about one of my
favorite sci-fi shows (Star Trek). The game featured 1,600 questions, 400 photos, theme-
based sound effects, and a very simple multiple-choice interface (see Figure 1.2).

I decided to put the game up on my Web site and on a
few game sites as a free download. Then I started to
think about that decision for a moment. I had spent
about two years working on that trivia game off and on
during my free time, without setting any deadlines for
myself. (Don’t let the simplistic graphics and user inter-
face fool you; it is very difficult to so fully cover a sub-
ject like this.) So I set a very low price on the game, just
$12.00. The game sold 10 copies in the first week. That’s
$120.00 that I didn’t have a week before, and for
doing…well, nothing really, because I hadn’t written
that game for sale, just for fun. One month and 30 sales
later, I decided to port the game to the Pocket PC plat-
form, running Windows CE. This was about the time
when my book, Pocket PC Game Programming: Using
the Windows CE Game API, came out. (For more infor-
mation about this book, see Appendix D.) I was fully

immersed in Pocket PC programming, so it was not a difficult job. Oddly, I wrote the origi-
nal PC game using Visual Basic 6.0, so the Pocket PC version had to be written from scratch
using eMbedded Visual C++ 3.0.

Long story short, over the next year I made enough money from this little trivia game to
buy myself a new laptop. That is not enough to live on, but it occurred to me that having
10 to 15 similar games in the “trialware” (try before you buy, synonymous with shareware)
market, one could make a good living from game sales. The key is to continue cranking
out new games every month while existing games provide your income. To do this, you
need to hire out the artwork. (A professional artist will not only do far better work than
the typical programmer, but he or she will do so very quickly.) I consider artwork to be at
least as important as programming. Do you see how you could make a living as a game
programmer by filling in niche products? You work for yourself and report to no one. If
you can produce enough games to make a living, then you will be on the heels of many
giants in the business.

Chapter 1 � Demystifying Game Development16

Figure 1.2 Pocket Trivia features
multiple-choice trivia questions.

Perfect Match
for the Fun of It

Another interesting game
that I wrote is called
Perfect Match (see Figure
1.3). It is a good example
of the significant improve-
ments you will see in the
quality of your games
when you collaborate
with a professional artist.
This game was written in
about a month (again,
during my spare time),
and it features seven levels
of play. The artwork in
this game was completely
modeled and rendered in
3D, and each level is a spe-
cific theme. This is another
game that I personally
enjoy playing, especially
with such high-quality
graphics (courtesy of Edgar
Ibarra).

In addition to selling trialware, you can also approach a “budget” game publisher such as
Xtreme Games LLC (http://www.xgames3d.com), operated by André LaMothe. Some
publishers of this kind produce game compilations on CD-ROM, which have a good mar-
ket at superstores, such as Wal-Mart. But the trend is heading more toward online sale and
download. This is a very good way to make money by selling games that aren’t “big
enough” for the large retail game publishers, such as Electronic Arts. Companies such as
Xtreme Games LLC make it possible for individual (“indie”) developers to publish their
games with little or no startup or publishing costs. Simply work on the games in your
spare time and send them in when they’re complete. Thereafter, you can expect to receive
royalties on your games every month. Again, the amount of income depends on the qual-
ity and demand for each game.

17

Figure 1.3 Perfect Match is a tile matching game with
high-quality rendered graphics (four screens shown).

Recognizing Your Personal Motivations

Getting into the Spirit of Gaming
In this section I want to show you a hobby project I worked on when I was just getting
started. This game is meager and the graphics are terrible, but it was a labor of love that
became a learning tool when I was first learning to write code. This is an unusual approach,
I realize, so I hope you will bear with me. My goal is to show you that you can turn any sub-
ject or hobby into a computer game of your own design, and no matter how good or bad
it turns out to be, you will have grown significantly as a programmer from the experience.

I remember my first two-player game, which took a year to complete because there were
no decent game programming books available in the late 1980s (only a handful that
focused on the BASIC language), and I was literally teaching myself while working on this
game. I called the game Starship Battles, and it was an accurate simulation of FASA’s now-
defunct Tactical Starship Combat game, right down to the individual starship specifica-
tions. This was a very popular pen-and-paper role-playing game in the 1980s, and at the
time I had a collection of pewter miniature starships that I hand-painted for the game.
Apparently, Paramount Pictures Corporation reined in many popular licensed products
in the late 1980s, which is why this game is no longer available.

Starship Battles: An Inspired Fan Game
I wrote Starship Battles with Turbo Pascal 6.0 using 16-color EGA graphics mode
640×350. It featured double-buffered graphics, support for dual joysticks, and Sound
Blaster effects. Figure 1.4 shows the game in action.

Figure 1.5 shows the player
selection screen in Starship
Battles. This was a simplistic
front-end for the game.

Overview of the Game

This simple-looking game
took me a year to develop
because I had to teach myself
everything, from loading and
drawing sprites to moving
the computer-controlled ship
to providing dual joystick
support. This game also

made use of the Sound Blaster Developer Kit (shown in Figure 1.6), which was very exciting
at the time. I was able to produce my own sound effects (in VOC format) using the included
tools and play real digital sound effects in the game. For the joystick support, I had a joystick
“Y”adapter and two gamepads, requiring some assembly language programming on my part.

Chapter 1 � Demystifying Game Development18

Figure 1.4 Starship Battles was a game of one-on-one starship
combat set in the Star Trek universe.

The game included a starship
editor (shown in Figure 1.7)
and my own artwork (as you
probably already guessed).
The original hex-based pen-
and-paper game with card-
board pieces was the space
battle module of FASA’s
larger Star Trek: The Role
Playing Game. There were
episodic add-on booklets
available for this role-play-
ing game, as well as ship

recognition manuals and die-cast starship miniatures. The editor included fields for beam
weapon and missile weapon types, which the game used to determine how fast a ship was
able to shoot in the game, as well as how many shots could be fired at a time.

The Andor-class starship was one of my favorites because it was classified as a missile ship,
able to fire eight missiles (or rather, photon torpedoes) before reloading. Some ships fea-
tured more powerful beam weapons (such as phasers or disruptor beams), which dealt
great damage to the enemy ship. Figure 1.8 shows the specification sheet for the Andor,
from FASA’s Federation Ship Recognition Manual (shown in Figure 1.9). It is always inter-
esting to see the inspiration for a particular game, even if that game is not worthy of note.

Getting into the Spirit of Gaming 19

Figure 1.5 The player selection screen in Starship Battles

Figure 1.6 The Sound Blaster Developer Kit by Creative Labs included the libraries and
drivers for multiple programming languages.

Chapter 1 � Demystifying Game Development20

My goal is to help you to find inspiration in your own hobbies and interests.

Creating Game Graphics: The Hard Way

I spent a lot of time on this game and learned a lot from
the experience, all of which had to be learned the hard
way—through trial and error. First of all, I had no idea
how to load a graphic file, such as the then-popular PCX
format, so I started by writing my own graphic editor. I
called this program Sprites; over time I wrote a 16-color
version and a 256-color version. The 16-color version
(shown in Figure 1.10) included limited animation sup-
port for four frames and rudimentary pixel-editing fea-
tures, and was able to store multiple sprites in a data file
(shown in Figure 1.11). Most importantly, I learned to
program the mouse with assembly language. This sprite
editor was very popular on bulletin board systems in the
late 1980s.

t i p

For the curious fan, the best modern implementation of FASA’s tactical starship combat game is Activi-
sion’s Starfleet Command series, excellent Windows PC games that have kept this sub-genre alive.

Figure 1.8 The specification
sheet for the Andor-class starship

Figure 1.9 FASA’s Federation
Ship Recognition Manual
provided the data entered into
the starship editor, and thus
affected how the game played.

Figure 1.7 The starship editor program made it possible
to change the capabilities of each ship.

After completing Starship
Battles, my plan was to con-
vert the game to 256-color
VGA mode 13h, which fea-
tured a resolution of 320×200
and support for double-
buffering the screen inside
the video buffer (which was
very fast) for ultra-smooth,
flicker-free animation. I came
up with Sprites 3.1 (shown in
Figure 1.12) with an entirely
new menu-driven user inter-
face.

Rather than finish the sprite
editor (which was not com-
patible with the previous
version and lacked support
for multiple sprites) and
rather than focus on a new
version of the game, I stopped
using the program. About
that time I became frustrated
with limitations in Turbo
Pascal and I decided to
switch to Turbo C. At the
same time, I switched to
using Deluxe Paint instead
of my sprite editor, storing
game artwork in a PCX file
rather than inside a custom
sprite file. This being such a
huge step, I never did get
around to improving Starship
Battles, which suffered from

its EGA (Enhanced Graphics Adapter) roots. Making the transition from Pascal to C was
not the most difficult part; the hardest part was rethinking my entire self-taught concept
of building a game. During the development of Starship Battles, I had no access to a good
graphic editor, such as Deluxe Paint, so I had no idea how to rotate the sprites. Instead, I
wrote small utility programs to convert a single sprite into a rotated one with 16 frames.

Getting into the Spirit of Gaming 21

Figure 1.10 Sprites v2.1 was a pixel-based graphic editor that
I wrote in the late 1980s while working on Starship Battles.

Figure 1.11 The Sprites graphic editor could load and save
multiple sprites in a single SPR file.

Talk about doing things the
hard way! I actually found
some matrix math functions
in a calculus book and used
that knowledge to write a
sprite rotation program that
generated all of the rotated
frames for each starship in
the game.

Had I known about Deluxe
Paint and Deluxe Animation,
with features for drawing and
animating sprites onscreen, I
might have cried. At any rate,
with new technology comes

new power, so I gave up this game and moved on to another one of my hobbies—war games.

Axis & Allies: Hobby Wargaming
I have been a fan of Milton Bradley’s Axis & Allies board game for 20 years, recently get-
ting into the expanded editions, Axis & Allies: Europe and Axis & Allies: Pacific. This game
is still huge, as evidenced by Web sites such as http://www.axisandallies.org. After com-
pleting Starship Battles, I decided to tackle the subject of Axis & Allies using the “proper”
tools that I had discovered (namely, the C language and PCX files). The result of the effort
is shown in Figure 1.13. What was truly awesome about this game was not the gameplay,
per se, but the time spent with friends. (This is another factor in my belief that console
games will continue to gain popularity—for all the effort, the greatest appeal of console

games is taking on a friend.)
What some would consider
fond memories, I look back on
as additional inspiration.

What made Axis & Allies so
much fun? Winning the game?
Hardly! I rarely beat my archri-
val, Randy Smith (as a matter of
fact, I beat him two times out of
perhaps sixty games!). When
you design your next game,
come to terms with the fact that
winning is not always the most

Chapter 1 � Demystifying Game Development22

Figure 1.12 Sprites 3.1 was a 256-color VGA mode 13h
graphic editor.

Figure 1.13 A solid attempt at an Axis & Allies computer
game

important thing. Having fun should be the primary focus of your games. And when your
game is irresistibly fun, people will continue to play it. This is so contrary to modern game
designs that focus on discrete goals; I feel that this trend coincides with the mechanical feel
of the modern 3D game. Only after several years of refinement have gameplay and enjoy-
ment started to enter the equation again. Gamers don’t want a whiz-bang 3D technical
demo, suitable for the crowds at GDC or E3; they want to have fun.

Overview of the Game

This single screen is packed with information that I believed would be helpful to a fan of the
game. For instance, simply moving the mouse over a territory on the world map displayed
the territory name, country flag, production value, attack strength, defense strength, and
anti-aircraft capability. In addition, the bottom-right displayed global information about

the current player, including
total industrial capacity, num-
ber of territories owned, and
global attack and defensive
capabilities. Clicking on a terri-
tory (such as Eastern USA)
would bring up a unit selection
dialog, in which the player
could select units to move or
attack (see Figure 1.14).

After moving units onto an
enemy territory, the player
would then engage in battle for
that territory against the
defending units. Figure 1.15
shows the battle screen.

Each round of a battle allowed
attacker and defender a chance
to fire with simulated rolls of
the dice (one die for each unit,
according to the board game’s
rules). Figure 1.16 shows the
defender’s counterattack.

Getting into the Spirit of Gaming 23

Figure 1.14 The unit selection dialog was used to move
units from one territory to another.

Figure 1.15 The battle screen automatically calculated all
attack and defense rolls.

Concluding the Game

This was the largest game I had
attempted at that point, and it
was difficult with the constant
desire to return to Turbo Pascal,
the language most familiar to
me. Making strides in a new
direction is difficult when it is
easier to stay where you are,
even if the technology is inferior.
I constantly struggled with
thoughts like, “It would be so
much easier to use my sprite
editor.” But persistence paid off
and I had a working game

inside of a year, along with the experience of learning C and VGA mode 13h (the then-
current game industry standard). This game really pushed me to learn new things and
forced me to think in new ways. After much grumbling, I accepted the new technology
and never looked back, although that was a difficult step. When I look back at the enor-
mous amount of time I spent writing the most ridiculously simple (and cheesy) games, it
really helps me put things into perspective today—there are wonderful software tools
(many of them free) available today for writing games.

Setting Realistic Expectations for Yourself
My goal over the last few pages was not just to traverse memory lane, but to provide some
personal experiences that might help explain how important motivation can be. Had I not
been such a big fan of these subjects, I might have never completed the games that I have
shown you here. Who cares? Touché. Whatever your opinion of reason and motivation,
game development is a personal journey, not simply a skill learned solely to earn money.
I will admit that these games are poor examples. They were labors of love, as I mentioned,
and they suffered from my lack of programming experience. I worked with themes that I
enjoyed and subjects that were my hobbies, and I can’t stress enough how important that
is! However, I will also point out that these game examples got me a job as a game program-
mer back in the day.

t i p

Don’t be ashamed of your work, whatever your opinion of it, because you are your own worst critic,
and your work is probably better than you think. Be humble and ask the opinion of others before
either praising or derailing your work.

Chapter 1 � Demystifying Game Development24

Figure 1.16 The defender makes a counterattack using
remaining units.

My own personal motivations are to have fun, to delve deeper into a subject that I enjoy,
to recreate an event or activity, and to learn as I go. With this motivation, I will share with
you my own opinion of what makes a great game and, in later chapters, explain exactly
how a game is made.

An Introduction to Dev-C++ and Allegro
I want to try to find the best balance of pushing as far into advanced topics as possible in
this book while still covering the basics. It is a difficult balance that doesn’t always please
everyone because while some programmers need help at every step along the way, others
become impatient with handholding and prefer to jump right into it and start. One of the
problems with game development for the hobbyist today is the sheer volume of informa-
tion on this subject, in both printed and online formats. It is very difficult to get started
learning how to write games, even if your goal is just to have some fun or maybe write a
game for your friends (or your own kids, if you have any). I find myself lost in the sheer
magnitude of information on the overall subject of game development. It truly is stagger-
ing just looking into personal compilers, libraries, and tools, let alone the commercial
stuff. If you have ever been to the Game Developers Conference in San Jose, California,
then you’ll know what I mean. This is a huge industry, and it is very intimidating! Getting
started can be difficult. But not only that, even if you have been a programmer for many
years (whether you have worked on games or not), just the level and amount of informa-
tion can be overwhelming.

DirectX Is Just Another Game Library
One subject that is rather universal is DirectX. I have found that the more I talk about
DirectX, the less I enjoy the subject because it is basically a building block and a tool, not
an end in and of itself. Unfortunately, DirectX has been misunderstood, and many talk
about DirectX as if it is game programming. If you learn the DirectX API, then you are a
game programmer. Why doesn’t that make sense to me? If I can drive a car, then am I sud-
denly qualified to be a NASCAR driver? DirectX is just a tool; it is not the end-all and be-all
of game development.

In fact, there are a lot of folks who don’t even like DirectX and prefer to stick with cross-
platform or open-source tools, in which development is not dictated by a company with
a stake in the game industry (as is the case with Microsoft and the Xbox console, in addi-
tion to Microsoft Game Studios). The professionals use a lot of their own custom libraries,
game engines, and tools, but an equal number use off-the-shelf game development tools
such as RenderWare Studio (http://www.renderware.com). This is a very powerful system
for game development teams working on multi-platform games. What this means is that
a single set of source code is written and then compiled for PC, Xbox, PS2, and GameCube
(with support for any new consoles that come out in the future through add-on libraries).

An Introduction to Dev-C++ and Allegro 25

Have you seen any games come out recently for multiple platforms at the same time? (One
example is LucasArts’ Secret Weapons Over Normandy.) It is a sure bet that such games
were developed with RenderWare or a similar cross-platform tool. RenderWare includes
source code management and logistical control in addition to powerful game libraries
that handle advanced 3D graphics, artificial intelligence, a powerful physics system, and
other features. And this is but one of the professional tools available!

I have found that there are so many books on DirectX now that the subject really doesn’t
need to be tackled in every new game development book. My reasoning is logical, I think.
I figure that no single volume should try to be the sole source of information on any sub-
ject, no matter how specific it is. Should every game development book also teach the
underlying programming language to the reader? We must make some assumptions at
some point, or else we’ll end up back at square one, talking about ones and zeroes!

You should consider another very important factor while we’re on the subject of content.
Windows is not the only operating system in the world. It is the most common and the
most dominant in the industry, but it is not the only choice or even necessarily the best
choice for every person (or every computer). Why am I making a big deal about this? I use
Windows most of the time, but I realize that millions of people use other operating sys-
tems, such as Linux, UNIX, BeOS, FreeBSD, Mac OS, and so on—whatever suits their
needs. Why limit my discussion of game development only to Windows users and leave
out all of those eager programmers who have chosen another system?

The computer industry as we know it today was founded on powerful operating systems
such as UNIX, which is still a thriving and viable operating system. UNIX, Linux, and the
others are not more difficult to use, necessarily; they are just different, so they require a
learning curve. The vast majority of consumers use Windows, and thus most program-
mers got started on Windows.

Introducing the Allegro Game Library
I want to support systems other than Windows. Therefore, this book focuses on the C lan-
guage and the Allegro multi-platform game development library (which does use DirectX
on the Windows platform, while supporting many others). Allegro was originally devel-
oped by Shawn Hargreaves for the Atari ST; as a result of open-source contributions, it
has evolved over time to its present state as a powerful game library with many advanced
2D and 3D features also included. The primary support Web site for Allegro is at
http://www.talula.demon.co.uk/allegro. I highly recommend that you visit the site to get
involved in the online Allegro community because Allegro is the focus of this book.

Rather than targeting Xbox, PS2, and GameCube (which would be folly anyway because the
console manufacturers will not grant licenses to unofficial developers), Allegro targets mul-
tiple operating systems for just about any computer system, including those in Table 1.1.

Chapter 1 � Demystifying Game Development26

Table 1.1 presents an impressive and diverse list of operating systems, wouldn’t you agree?
Allegro abstracts the operating system from the source code to your game so the source
code will compile on any of the supported platforms. This is very similar to the way in
which OpenGL works. (OpenGL is another open-source game development library that
focuses primarily on 3D.)

Allegro itself is not a compiler or language; rather, it is a game library that must be linked to
your main C or C++ program. Not only is this practice common, it is smart. Any time you
can reuse some existing source code, do so! It is foolish to reinvent the wheel when it comes
to software, and yet that is exactly what many programmers do. I suspect many programmers
prefer to rewrite everything out of a sense of pride or arrogance—as in, “I can do better.” Let
me tell you, game development is so extraordinarily complicated that if you try to write all
the code yourself without the benefit of a game library or some help from the outside world,
you will quite literally never get anywhere and your hard work will never be appreciated!

Allegro’s 2D and 3D Graphics Features

Allegro features a comprehensive set of 2D and 3D graphics features.

Raster operations Pixels, lines, rectangles, circles, Bezier splines

Filling Pattern and flood fill

2D sprites Masks, run-length encoding, compiled sprites, translucency, lighting

An Introduction to Dev-C++ and Allegro 27

Table 1.1 Allegro and Operating Systems

Operating System Compiler/Tools

Mac OS X Apple Developer Tools 2002
Windows Microsoft Visual C++ 4.0 (or later)
Windows Borland C++ 5.5,

C++Builder 1.0 (or later)
Windows MinGW32/Cygwin
MS-DOS DJGPP 2.01 with GCC 2.91 (or later)
MS-DOS Watcom C++ 10.6 (or later)
IRIX GCC 2.91 (or later)

Linux GCC 2.91 (or later)
Darwin GCC 2.91 (or later)
FreeBSD GCC 2.91 (or later)
BeOS Be Development Tools
QNX QNX Development Tools

Bitmaps Blitting, rotation, scaling, clipping

3D polygons Wireframe, flat-shaded, gouraud-shaded, texture-mapped,
z-buffered

Scrolling Double- or triple-buffers, hardware scrolling (if available)

Animation FLI/FLC playback

Windows drivers DirectX windowed and full-screen, GDI device contexts

DOS drivers VGA, Mode-X, SVGA, VBE/AF, FreeBE/AF

UNIX drivers X, DGA, fbcon, SVGAlib, VBE/AF, Mode-X, VGA

BeOS drivers BWindowScreen (full-screen), BDirectWindow (windowed)

Mac OS X CGDirectDisplay (full-screen), QuickDraw/Cocoa (windowed)

Allegro’s Sound Support Features

Allegro features some excellent support for music playback and sound effects.

Wavetable MIDI Note on, note off, volume, pan, pitch, bend, drum mappings

Digital sound 64 channels, forward, reverse, volume, pan, pitch

Windows drivers WaveOut, DirectSound, Windows Sound System

DOS drivers Adlib, SB, SB Pro, SB16, AWE32, MPU-401, ESS AudioDrive, Ensoniq

UNIX drivers OSS, ESD, ALSA

BeOS drivers BSoundPlayer, BMidiSynth

Mac OS X drivers CoreAudio, Carbon Sound Manager, QuickTime Note Allocator

Additional Allegro Features

Allegro also supports the following hardware and miscellaneous features.

Device input Mouse, keyboard, joystick

Timers High-resolution timers, interrupts, vertical retrace

Compression Read/write LZSS compressed files

Data files Multi-object data files for storing all game resources

Math functions Fixed-point arithmetic, trigonometric lookup tables

3D functions Vector, matrix, quaternion manipulation

Text output Proportional fonts, UTF-8, UTF-16, Unicode

Chapter 1 � Demystifying Game Development28

Supporting Multiple C/C++ Compilers
Not only is this book focusing on a free open-source game library in the form of Allegro,
I will also use an open-source C/C++ compiler and IDE (Integrated Development
Environment) called Dev-C++, which is shown in Figure 1.17.

Dev-C++ includes an open-
source C++ compiler called
GCC (GNU Compiler
Collection) that is the most
widely used C++ compiler
in the world. I used this
compiler to develop the
sample programs for my
Game Boy Advance book,
too! GCC is an excellent and
efficient compiler for multi-
ple platforms. In fact, many
of the world’s operating sys-
tems are compiled with
GCC, including Linux. It is a
sure bet that satellites in
orbit around Earth have pro-
grams running on their

small computers that were compiled with GCC. This is not some small niche compiler—it
is a global phenomenon, so you are not limiting yourself in any way by using GCC. Most of
the console games that you enjoy are compiled with GCC. In contrast, the most common
Windows compilers, such as Microsoft Visual C++ and Borland C++Builder, aren’t used as
widely but are more popular with consumers and businesses.

This brings up yet another important point. The source code in this book will compile on
almost any C/C++ compiler, including Visual C++, C++Builder, Borland C++, Watcom
C++, GCC, CodeWarrior, and so on. Regardless of your compiler and IDE of choice, the
code in this book should work fine, although you might have to create your own project files
for your favorite compiler. I am formally supporting Dev-C++, Visual C++, and KDevelop
(under Linux), so you will find the source code for these compilers on the CD-ROM.
All that means is that I have created the project files for you. The source code is all the
same! Incidentally, Dev-C++ is also included on the CD-ROM. Due to its very small size
(around 12 MB for the installer), you might find it easier to use than Visual C++ or
C++Builder, which have very large installations. Dev-C++ is capable of compiling native
Windows programs and supports a diverse collection of DevPaks—open-source libraries
packaged in an easy-to-use file that Dev-C++ knows how to install.

An Introduction to Dev-C++ and Allegro 29

Figure 1.17 Dev-C++ is the open-source C/C++ compiler and
IDE used in this book.

Allegro is one such example of an existing code library, and it’s just plain smart to use it
rather than starting from scratch (as in learning to program Windows and DirectX). But
what if you are really looking for a DirectX reference? Well, I can suggest several dozen
good books on the subject that provide excellent DirectX references (see Appendix D,
“Recommended Books and Web Sites”). The focus of this book is on practical game pro-
gramming, not on providing a primer for Windows or DirectX programming (which is
quite platform-specific in any event). As I have mentioned and will continue to do, I am
a big fan of Windows and DirectX. However, I am also a big fan of console video game
systems, and programming a console will open your eyes to what’s possible. This is espe-
cially true if you have limited yourself to writing Windows programs and you have not
experienced the development possibilities on any other system.

Dev-C++ is just one of the IDE/compiler tools you can use to compile the code in this
book. Feel free to use any of the compilers listed back in Table 1.1. It might be possible to
use older compilers (such as Turbo C++ or an early version of Microsoft C++) for
MS-DOS, but I wouldn’t recommend it. Who is still using MS-DOS today? I only men-
tion it because Allegro does support MS-DOS and the DJGPP compiler. While GCC is
guaranteed to work with Allegro, the same cannot be said for obsolete compilers, which
very likely do not support modern library file structures. If you insist on using MS-DOS,
then by all means make use of DJGPP because it is based on GCC.

Summary
This chapter presented an overview of game development and explained the reasoning
behind the use of open-source tools such as Dev-C++ and Allegro (the primary benefit
being that these tools are free, although that does not imply that they are inferior in any
way). I explained how Windows and DirectX are the focus of so much that has already
been written, and that this book will delve right into game programming rather than
spending time on logistical things (such as tools). I hope you will embrace the way of
thinking highlighted in this chapter and broaden your horizons by recognizing the poten-
tial for programming systems other than Windows. By reading this book and learning to
write platform-independent code, you will be a far more flexible and versatile program-
mer. If you don’t fully understand these concepts quite yet, the next chapter should help
because you will have an opportunity to see the capabilities of Dev-C++ and Allegro by
writing several complete programs.

Chapter 1 � Demystifying Game Development30

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What programming language is used in this book?

A. C

B. Pascal

C. C++

D. Assembly

2. What is the name of the free multi-platform game library used in this book?

A. Treble

B. Staccato

C. Allegro

D. FreeBSD

3. What compiler can you use to compile the programs in this book?

A. Dev-C++

B. Borland C++Builder

C. Microsoft Visual C++

D. All of the above

4. Which operating system does Allegro support?

A. Windows

B. Linux

C. Mac OS X

D. All of the above

5. Which of the following is a popular strategy game for the PC?

A. Counter-Strike

B. Splinter Cell

C. Real War

D. Advance Wars

6. What is the most important factor to consider when working on a game?

A. Graphics

B. Sound effects

C. Gameplay

D. Level design

Chapter Quiz 31

7. What is the name of the free open-source IDE/compiler included on the CD-ROM?

A. Visual C++

B. Dev-C++

C. Watcom C++

D. C++Builder

8. What is the name of the most popular game development library in the world?

A. OpenGL

B. DJGPP

C. DirectX

D. Allegro

9. Which of the following books discusses the gaming culture of the late 1980s and
early 1990s with strong emphasis on the exploits of id Software?

A. Masters of Doom

B. The Age of Spiritual Machines

C. The Inmates Are Running the Asylum

D. Silicon Snake Oil

10. According to the author, which of the following is one of the best games made in
the 1980s?

A. Civilization III

B. Counter-Strike

C. King’s Quest IV: The Perils of Rosella

D. Starflight

Chapter 1 � Demystifying Game Development32

33

Getting Started with
Dev-C++ and Allegro

chapter 2

T
his chapter introduces the Dev-C++ integrated development environment, the
GNU C++ compiler, and associated tools. You will learn how to install and config-
ure Dev-C++ for game development with the Allegro game library. Because these

programs are all available on the book’s CD-ROM, everything you need to start writing
cutting-edge games was included in the price of this book! However, if you prefer to use
a different compiler, such as Microsoft Visual C++ (any version from 4.0 on will work),
please refer to Appendix E, “Configuring Allegro for Microsoft Visual C++ and Other
Compilers.”

There was a time when installing Allegro involved more than just running a setup utility;
you had to compile Allegro before using it. The extremely talented contributors to Dev-
C++ and Allegro have made things so much easier with the latest versions of these tools.
Dev-C++ now includes an update tool that will install the latest version of Allegro auto-
matically, right off the Web! Although this chapter focuses on setting up Dev-C++ and
Allegro for Windows, I have added an appendix that will explain how to compile Allegro
for systems that might not support the update tool. Please refer to Appendix F,
“Compiling the Allegro Source Code” for details.

Everything you need to know to get up and running with Dev-C++ and Allegro is fully
explained in the following pages. Unlike some programming books that try to offer stand-
alone chapters as a series of independent tutorials, the chapters in this book should be
read sequentially because each chapter builds on the one before it. This chapter in partic-
ular is critical in that respect because it explains how to set up the development tools used
in the rest of the book.

Here is a breakdown of the major topics in this chapter:

� Installing and configuring Dev-C++ and Allegro

� Taking Dev-C++ and Allegro for a spin

� Gaining more experience with Allegro

Introduction
Allow me to go off topic for a moment. I love role-playing games. I am especially fond of the
old-school 2D RPGs that focus on strong character development, exploration, and questing
as a solo adventurer. I am still amazed at the attention to detail in games such as Ultima VII:
The Black Gate, which is now more than 10 years old. This game was absolutely amazing,
and its legacy lives on today in the form of Ultima Online. The music in this game was so
ominous that it actually affected most players on an emotional level, drawing them into the
game with a desire to help the Avatar save Britannia. The open storyline and freedom to
explore the world made it so engaging and engrossing that it completely suspended my sense
of disbelief—that is, while playing, I tended to forget it was merely a game.

Contrast that experience with modern games that are more focused on eye candy than
exploring the imagination! It reminds me of the difference between a movie and a book;
each has a certain appeal, but a book delights at a more personal level, opening the mind
to new possibilities. I am drawn into a good game, such as Ultima VII, just as I am with a
good book; on the other hand, even an all-time favorite movie usually fails to draw me
into the story at a personal level. I am experiencing the imagination and vision of another
person, and those impressions are completely different than my own. Teasing the imagi-
nation is what separates brilliance from idle entertainment, and it is the difference
between a long remembered and beloved memory (found in a good book or a deeply
engaging game) and a quickly forgotten one (such as in a typical movie).

It is a rare game that is able to enchant one’s imagination while also providing eye candy.
One such game is Baldur’s Gate: Dark Alliance (a console implementation of the best-
selling PC game). This game is intelligent, challenging, imaginative, enjoyable, engaging,
and still manages to impress visually as well as audibly. The layout of this game is an over-
head view, although it is rendered in 3D, giving it a 2D feel that resembled the orientation
of Ultima VII and Diablo II. That someone is still building fantastic RPGs like this is a tes-
tament to the power of a good story and the joy of character development and leveling up.
The pizzazz of highly detailed 3D graphics simply satisfies the picky gamers.

As you delve further into this chapter, try to keep in mind what your ideal game would be.
What is your all-time favorite game? What genre does it represent? How would you
improve upon the game, given the opportunity? I will continually encourage you to keep

Chapter 2 � Getting Started with Dev-C++ and Allegro34

your ideal game design in mind while working through this book. I hope you will start to
develop that game as you progress through each chapter. To that end and to form a basis
for building your own game, I will walk you through the creation of a complete game—
not just a sample or demonstration program, but a complete, full-featured game with all
the bells and whistles! Although I would really enjoy building an RPG, that is far too
ambitious for the goals of this book. RPGs are so enormous that even the simplest of
RPGs is a huge undertaking, and there are so many prerequisites just to get started. For
instance, will the hero be able to wield different weapons? Animating a single character
can require more than 100 animation frames for a single sprite—and that is just with one
weapon, one set of armor. What if you want your character to be equipped with different
kinds of weapons and armor in the game (in my opinion, one of the best aspects of an
RPG)? You could design the game with a fixed character image, but you are still looking
at a huge investment in artwork.

My second choice is a strategy game, so that is the approach I have taken in this book.
Strategy games are enormously entertaining while requiring a meager initial investment
in artwork. In fact, in the spirit of the open-source tools used in this book, I will also be
using a public domain sprite library called SpriteLib. This library was produced by Ari
Feldman, a talented artist who was kind enough to allow me to use his fantastic high-qual-
ity artwork in this book. As you will see in the next two chapters, each great game idea
starts with a basic prototype, so you will develop the first prototype version of this strat-
egy game in Chapter 4, “Writing Your First Allegro Game.” Following that, each major
chapter will include a short section on enhancing the game with the new information pre-
sented in each chapter. For instance, the first version of the strategy game will have a fixed
background, but when I cover scrolling backgrounds I’ll show you how to enhance the
game to use that new feature. The same goes for animated sprites, sound effects, music,
special effects, and so on.

Installing and Configuring Dev-C++ and Allegro
I know you are looking forward to jumping into some great source code and working on
some real games. I feel the same way! But before you can do that, I have to explain how to
configure the development tools used in this book. Regardless of whether you are a new-
comer to programming or a seasoned expert looking for an entertaining diversion, you
will find the information in this chapter valuable because it is important to get set up
properly before you delve into the advanced programming chapters to come! I think you
will come to enjoy using Dev-C++ regardless of your experience level. However, if you
don’t like the editor and IDE for any reason, you can configure your favorite IDE to use
Allegro; see Appendix E. This appendix covers several compilers, such as Visual C++,
Borland C++, and KDevelop.

Installing and Configuring Dev-C++ and Allegro 35

Dev-C++ is an open-source integrated development environment (IDE) for the infamous
GCC (GNU Compiler Collection), a multi-platform C/C++ compiler. Dev-C++ and GCC
are both distributed under the GNU General Public License, which means they are freely
redistributable as long as the source code is provided for the tools themselves and any
derivative works. In case you were wondering, GNU stands for “GNU is Not Unix.” This is
something of an inside joke in the open-source community, in that the name is recursive.

n o t e

The GNU General Public License is printed in the back of the book.

Dev-C++ was developed by Bloodshed Software (http://www.bloodshed.net), and the
primary Web site for Dev-C++ is located at http://www.bloodshed.net/devcpp.html. The
version of Dev-C++ included on the book’s CD-ROM includes an updating tool that will
download updates to the compiler or tools, although I still recommend visiting Bloodshed
Software’s site to get up-to-date news and information.

Although I am not going to cover it in this book, Bloodshed Software also has a very inter-
esting product called Dev-Pascal that uses the same IDE as Dev-C++ but features syntax
highlighting for the Pascal language (including support for Delphi) and makes use of the
GNU Pascal compiler. I sure would have enjoyed this product back in the day, when I was
a Turbo Pascal fan!

Installing Dev-C++
The installation process for Dev-C++ is so simple that I’m not even going to go over it
here. If you have any problems installing it, refer to the Bloodshed Software Web site.
Simply run the executable file containing the Dev-C++ files; the version included on the
CD-ROM is called devcpp4980.exe. I do want to make a recommendation on the install
location: I recommend installing Dev-C++ on the same hard drive as Allegro (and your
game projects). It just makes things easier when everything is readily available, especially
when you consider that browsing for files on multiple drives can be a nuisance. I have sev-
eral drives in my PC and I choose to install game development software on one of the par-
titions that I have set aside exclusively for that purpose. I also recommend installing things
on the root (such as C:\Dev-Cpp). The installer for Dev-C++ is provided on the CD-
ROM in the \dev-cpp folder; it is called devcpp4980.exe. Feel free to use your favorite IDE
and compiler as long as it’s capable of compiling standard C/C++ code for Windows,
Linux, Mac OS X, or one of the other supported systems. If you are living in Antarctica
and are stuck with an old PC running MS-DOS, then you can use DJGPP or Watcom.

When is the last time you came across a retail game box in a store that listed MS-DOS,
Windows, Linux, and Mac OS X support? Yep, Allegro (the library that makes this possible)
is awesome.

Chapter 2 � Getting Started with Dev-C++ and Allegro36

n o t e

Dev-C++ was created by Bloodshed Software using Borland’s Delphi compiler.

Updating Dev-C++
The easiest way to update Dev-C++ is to use the built-in update tool. I have also provided
the latest update (at the time of this writing) of 4.9.8.5; it is located in \dev-cpp and it is
called devcpp4985.zip. You can simply unzip this file inside your C:\Dev-Cpp folder to
perform a manual update. I highly recommend this simple manual update because it
supercedes the process involving the old update tool, providing you with WebUpdate right
from the start. If you prefer to use the update tool, I’ll explain how it works. Once you have
installed Dev-C++, open the Tools menu and select Check for Updates/Packages (see
Figure 2.1). This will open the update program for Dev-C++.

Dev-C++ includes an update tool to automatically download and install updates. The
update program connects to an online server to download packages for Dev-C++, and it
is wonderfully easy to use. (In contrast, how often have you ever updated Visual C++ or

Installing and Configuring Dev-C++ and Allegro 37

Figure 2.1 The Tools menu in Dev-C++

Borland C++Builder over the Net? The typical Microsoft service pack is hundreds of
megabytes in size.) The update program is shown in Figure 2.2. This default updater has
been replaced with a more useful WebUpdate program, but first you must get an update
to Dev-C++ to take advantage of this great new updater. Referring to Figure 2.2 again, you
will see four buttons on the right. Click on the top button (the one with the purple check-
mark on it). This will bring up a dialog box asking you to shut down Dev-C++, which you
should do; then click on the Retry button to continue.

The list of updates might
change by the time you read
this, but at this time there
are two updates available
(see Figure 2.3). Check both
files and click on the Start
button to proceed with the
download.

t i p

It is very likely that Dev-C++ will be updated at regular intervals, at which point the screenshots and
tutorials in this section might not apply. If you are using at least version 4.9.8.5 of Dev-C++, that is
all you really need while working through this book. The advantage of updating is that you receive
bug fixes and new features. For instance, the 8.5 revision includes the newer WebUpdate tool.

Chapter 2 � Getting Started with Dev-C++ and Allegro38

Figure 2.2 Dev-C++ comes with an update tool that will
download updates and packages.

Figure 2.3 The update program displays the available
downloads for updating Dev-C++.

After you have completed this initial update process and installed the new version of Dev-
C++ (which is done automatically by the update program), your copy of Dev-C++ will
be ready to use the more advanced WebUpdate feature. If the Package Manager opens at
this point, you can just close it. Once again, start Dev-C++, and you will notice that the
version displayed in the caption bar is Dev-C++ 4.9.8.5. Open the Tools menu and select
Check for Updates/Packages again. Now you should see the WebUpdate tool, as shown in
Figure 2.4.

At the bottom-left corner
is a button called Check
for Updates. Click on this
button to retrieve a list of
updates for Dev-C++ (see
Figures 2.4 and 2.5).

n o t e

Several Dev-C++ DevPaks have been included on the CD-ROM that accompanies this book so you
can install the critical packages you need to compile the source code in this book. The most impor-
tant DevPak is Allegro! To install a DevPak from Dev-C++, go to Tools, Package Manager and click
on the Install icon to browse for a DevPak file (such as Allegro.Devpak). I recommend compiling and
installing Allegro yourself; see Appendixes E and F.

I recommend that you not download all of the DevPaks right away, although the tempta-
tion is great. Although you can browse the installed DevPaks using the Package Manager,
it makes more sense to download only what you need. This not only saves bandwidth for
others trying to download files from the update site, but it also gives you time to learn

Installing and Configuring Dev-C++ and Allegro 39

Figure 2.4 Dev-C++ is now equipped with the WebUpdate tool,
making it very easy to install new DevPaks.

about the packages one at a time. And there are many—just take a look at the list! You will
find everything from a MySQL database library to a CD audio extraction library to
a DirectX 9 package for Dev-C++. In addition, you will see a Windows API reference, a
GNU C library reference, and many more.

Definitely grab all of the Dev-C++ update packages (the first five or six files), such as Dev-
C++ Update, PackMan, and so on. You also must get the Allegro package to run the pro-
grams in this book. While you are at it, also select whatever DirectX library is available.
(The current package as of this writing is DirectX 9, but you really only need DirectX 8.)
Most importantly, I recommend installing the packages one at a time! The Package
Manager opens every time an update is installed, so it is much easier to get the updates
one at a time.

t i p

The DevPaks available on the update site for Dev-C++ are not always up to date because they are
maintained by volunteer contributions. If you want to install only the minimum tools needed for this
book, they are all provided on the CD-ROM. In particular, the Dev-C++ packages are located in the
\DevPaks folder. It might be a good idea to ensure consistency by simply installing everything off
the book’s CD-ROM rather than relying on WebUpdate.

Chapter 2 � Getting Started with Dev-C++ and Allegro40

Figure 2.5 Selecting some of the available packages to be
installed by WebUpdate

Installing Allegro
If you followed the steps in the previous section, you should now have Allegro installed
from the WebUpdate tool in Dev-C++. If you do not have online access, you can install
the Allegro.Devpak off the CD-ROM that accompanies this book (look in \DevPaks). You
do not need any of the other DevPaks to compile the code in this book, but you absolutely
must have Allegro installed. As was the case with Dev-C++, the version of Allegro pro-
vided by default is out of date and must be updated. It is entirely possible to install Allegro
manually (see Appendix F). But one benefit that comes with the Allegro package is the
convenience of the project templates added to Dev-C++. So what you should do is install
the Allegro.DevPak and then copy the Allegro update files.

I have already compiled Allegro 4.0.3 (using the processes covered in Appendix F) and
placed the updated library files on the CD-ROM in \allegro. If you are lost at this point,
don’t worry—I’m just providing an overview of what will be explained in more detail over
the next few pages. Installing Allegro is just as easy as installing Dev-C++, but there is an
added level of complexity because this software is never set in stone. As is the case with
almost every open-source program, Dev-C++ and Allegro both undergo changes fre-
quently to improve functionality and correct bugs. Understanding this and the fact that no
single corporation is responsible for the software is a big step toward understanding how
open-source works. Indeed, the major difference between commercial and open-source
software is the matter of support. The high cost of commercial software pays for not just
the development costs, but also the support costs (for those users who need to call the tech-
nical support line for assistance). Open-source software basically has no formal support at
all, although there are hundreds of other users on the Web who are willing to help.

Just as an aside, there are several logos
available for Allegro, including the one
shown in Figure 2.6. Is it ironic that even
the logos for this software were donated?

The Package Manager comes up to install
each DevPak after download. Make sure
that you have correctly downloaded and
installed Allegro by looking at the pack-
ages listed in the Package Manager (see
Figure 2.7).

t i p

If you want to double-check the installation of a particular library (such as Allegro), you can browse
to the Dev-Cpp folder and look inside lib. The Allegro library’s main file is called liballeg.a; this is spec-
ified in the linker options with -lalleg (note the “lib” and “.a” parts of the filename are assumed).

Installing and Configuring Dev-C++ and Allegro 41

Figure 2.6 Allegro is an open-source, multi-
platform game programming library.

I encourage you to
read Appendix F to
learn how to compile
Allegro for yourself.

The Allegro DevPak and Source Code

There are two versions of Allegro that you can use—the prepackaged version or the source
code version. The prepackaged version (Allegro.DevPak) for Windows includes a DLL
that you must distribute with any program you compile. This isn’t a big deal because you
can simply install this DLL with any game or other program that you produce and
distribute. The DLL is also useful if you have a Windows compiler that has a hard time
compiling the Allegro library and is otherwise not compatible with the Allegro LIB files
produced by GCC. Most Windows compilers produce code that is compatible with a stan-
dard DLL (not the ActiveX/COM variety, just a standard library). On most systems other
than Windows, you will want to use the static library. However, the DevPak also includes
a static library that you can have linked right into your programs, nullifying the need for
the DLL. I will primarily use the dynamic version of Allegro for the sample projects in the
book, but I will lean more toward the static library in later chapters. It’s a little more dif-
ficult to configure a static project; it is extremely simple to create a new Allegro project
using the dynamic library.

The second option is to compile the Allegro source code yourself, creating both the
dynamic and static libraries. Rather than get sidetracked setting up GCC to compile the
Allegro source code at this point, I refer you to Appendix F for detailed instructions on
how to compile the Allegro source code with GCC. This would also be advisable if you are
running an operating system other than Windows because the appendix explains how to

Chapter 2 � Getting Started with Dev-C++ and Allegro42

Figure 2.7 The Package Manager displays the packages that have
been installed for Dev-C++.

compile Allegro under both Windows and Linux (which should be enough to get you
going with any other OS). To make things simple while you’re just getting started, I will
use the Allegro (DLL) version and the projects provided by the DevPak.

n o t e

Are you confused yet? I realize this is a lot of information to absorb all at once, but it is basically
how I present information. I prefer to provide an overview of any process (or program, for that mat-
ter) to give a bird’s-eye view, and then go over that subject in detail. I believe it helps to understand
the big picture when you are learning something new.

Allegro’s Versatility

Allegro is useful for more than just games. It is a full-featured multimedia library as well,
and it can be used to create any type of graphical program. I can imagine dozens of uses
for Allegro outside the realm of games (such as graphing mathematical functions). You
could also use Dev-C++ and Allegro to port classic games (for which the source code is
available) to other computer systems. I have had a lot of fun porting old graphics pro-
grams and games to Allegro because it is so easy to use and yet so powerful at run time.

For instance, Relic Entertainment released the source code to Homeworld in September,
2003, to great acclaim in the game development community. You can download the
Homeworld source code by going to http://www.relic.com/rdn. You will need to sign up
for an account with the Relic Developer’s Network (which is free) to download the source
code, an 18-MB zip file. Although Homeworld was written for DirectX and OpenGL, it
could be adapted to Allegro with a little effort—if you are interested in a challenge, that
is! The source code for many other commercial games has been released in the last few
years, such as the code for Quake III. John Carmack from id Software seems to have started
this trend by originally releasing the Doom source code a few years after the game’s release,
and following that with the code for most of id’s games through the years. Why? Because
he shares the opinion of many in the game industry that software should not be patent-
ed, that education and lifelong learning should be encouraged. Carmack is also a cross-
platform developer.

Taking Dev-C++ and Allegro for a Spin
It’s time to start writing some actual programs with Dev-C++ and Allegro. In this section
I will walk you through several short programs. In the process, you will learn how to cre-
ate a new C project and write the initialization code for Allegro before calling on the
Allegro-specific functions. First you need to make sure that Allegro was installed properly,
so you’ll start by writing a short program to verify that Allegro is available for use. Then
I’ll go over some more interesting programs with you.

Taking Dev-C++ and Allegro for a Spin 43

Testing Dev-C++: The Greetings Program
The first step in testing the installation is to write a short program in Dev-C++ to verify
that GCC is working as expected because Dev-C++ is just the IDE/editor, and it calls
gcc.exe to compile programs. Start Dev-C++. In Windows, it is located in the Start menu
under Programs, Bloodshed Dev-C++. Because this is a small, tight IDE, it comes up
immediately and presents you with a blank project workspace, as shown in Figure 2.8.

n o t e

For the sake of brevity, I will often refer to both the compiler and IDE collectively as “the compiler.”
This applies to Dev-C++, Visual C++, or any other compiler system where the IDE actually runs the
command-line compiler and presents the programmer with the results returned by the compiler
(such as error messages).

Becoming Familiar with the Compiler

I understand that working with an open-source compiler can be a little unsettling. Not only
is it very different than the compiler you might be used to, but it can be a little surprising
to learn that the ultra-expensive commercial compiler that you (or your employer)

Chapter 2 � Getting Started with Dev-C++ and Allegro44

Figure 2.8 The Dev-C++ IDE works with GCC to compile programs.

purchased works exactly the same way that the free compiler does. Even more surprising
is the fact that GCC is an optimizing compiler capable of compiling code with every bit
as much efficiency and speed as Visual C++ or Borland C++Builder. I think there is a false
impression (furthered by marketing forces) that open-source software is inferior to com-
mercial software and that proponents have simply gotten used to it. Although there is a
small margin of truth in that, the fact remains that Dev-C++ works just as well as Visual
C++ for constructing Windows programs. What you will not find is a dialog editor, a
resource editor, a toll-free customer support number, or case-sensitive help (depending
on the IDE).

Case-sensitive help is a very convenient feature if you are used to a commercial compiler
package, such as Visual C++. Being able to hit F1 with the cursor over a key word to bring
up syntax help is a difficult feature to do without. As an alternative, I like to keep a C ref-
erence book handy (such as C Programming Language (Prentice Hall PTR, 1988) by Brian
Kernighan and Dennis Ritchie or C: A Reference Manual (Prentice Hall, 2002) by Samuel
Harbison and Guy Steele) as well as an online Web site, such as http://www-ccs.ucsd.edu/c.
I also keep the Allegro reference Web site open; the site is located at http://www.talula.
demon.co.uk/allegro/onlinedocs/en. After you have programmed for a while without an
online help feature, your coding skill will improve dramatically. It is amazing how very lit-
tle some programmers really know about their choice programming language because they
rely so heavily upon case-sensitive help! I don’t suggest that you memorize the standard C
and C++ libraries (although that wouldn’t hurt). This might sound ridiculous at first, but
it makes sense: When you have to make a little extra effort to look up some information,
you are more likely to remember it and not need to look it up again.

In addition, open-source tools, such as Dev-C++, are not suited for .NET development—
which, I might add, is not relevant because .NET is a framework for building business
applications, not games, and it is not well suited for games. (In all fairness, Visual Basic
.NET and Visual C# .NET are very good languages that do work well with DirectX, but
they are not the ideal choice for game development.) You can treat my opinion on this
matter as unbiased and objective because I use these tools on a daily basis, both commer-
cial and open-source, and I appreciate the benefits that each tool brings with it. In general,
commercial software is just more convenient. To an expert programmer, items of conve-
nience usually only get in the way.

n o t e

You might be using Visual C++ 7.0 in conjunction with this book. That is perfectly fine! Visual C++
is capable of compiling standard C/C++ code (this is called unmanaged code by Microsoft) as well
as code that is reliant upon the .NET Framework (this is called managed code). Many commercial
PC games are developed with Visual C++ 7.0 and DirectX, and this version will work with Allegro.

Taking Dev-C++ and Allegro for a Spin 45

Creating the Greetings Project

Now then, back to Dev-C++. Open the File menu and select New, Project, as shown in
Figure 2.9. This will bring up the New Project dialog box showing the types of projects
that are available (see Figure 2.10). If you look at the tabs at the top of the dialog box, you
will see Basic, Introduction, MultiMedia. These are the three different categories of project
templates built into Dev-C++. Click on the Introduction tab to see a Hello World
project (see Figure 2.11). The MultiMedia tab (shown in Figure 2.12) includes a sample project
template for an OpenGL program. Note that if you have already installed Allegro.DevPak,
you should see two Allegro project templates in the MultiMedia section.

Chapter 2 � Getting Started with Dev-C++ and Allegro46

Figure 2.9 Creating a new project in Dev-C++

Figure 2.10 The New Project dialog
box in Dev-C++ includes numerous
project templates.

Feel free to create a new project using any of these project templates and run it to see what
the program looks like. After you are finished experimenting (which I highly recommend
you do to become more familiar with Dev-C++), bring up the New Project dialog box
again and select the Basic tab. At this point, allow me to provide you with a disclaimer, or
rather, a look ahead. Allegro abstracts the operating system from your source code.
Therefore, you need not create a Windows Application project (one of the options in the
New Project dialog box). Allegro includes the code needed to handle Windows messages
through WndProc, WinMain, and so on, just as the versions of Allegro for Linux, Mac OS X,
and so on include the specific functions needed for those operating systems.

t i p

For more information about the specifics of Windows programming, please refer to Charles
Petzold’s book Programming Windows (listed in Appendix D). Any edition will do, including the fifth
edition or some of his newer books. I like the fifth edition because it covers Visual C++ 6.0, which
is very similar to Dev-C++ and is easily configurable.

Taking Dev-C++ and Allegro for a Spin 47

Figure 2.11 The Introduction tab includes a Hello World
project template.

Figure 2.12 The MultiMedia tab includes an OpenGL
project template.

Referring to Figure 2.13, you want to select the Empty Project icon, and for the language
choose C Project. For the project name, type Greetings, and then click on OK.

The Project Save dialog box will
then appear, allowing you to
select a folder for the project. The
default folder is inside the main
Dev-Cpp folder. I recommend
creating a folder off the root of
your drive for storing projects.

t i p

For future reference, the sample programs in this book are being developed simultaneously under
Windows 2000 and Mandrake Linux, and the screenshots reflect this. If you are using another OS,
such as Mac OS X or FreeBSD, your user interface will obviously look different.

After you save the new project, Dev-C++ will show the new empty project (see Figure
2.14). Note that Dev-C++ didn’t even bother to create a default source file for you to use.
That is because you selected Empty Project. Had you chosen Windows Application or
another type of project, then a populated source code file would have been added for you.
To keep things simple and to fully explain what’s going on, I want to go over each step.

Now you need to add a new source code file to the project. Open the File menu and select
New, Source File, as shown in Figure 2.15. Alternatively (and this is my preference) you
can right-click on the project name to bring up a pop-up menu from which you can select
New File (see Figure 2.16). Either method will add a new empty file called Untitled1 to
your project.

Now right-click on the new file and select Rename File, and then type in main.c for the
filename. After you do that, your project should look like the one shown in Figure 2.17.

n o t e

If you are an experienced developer with Visual C++, Borland C++, Dev-C++, or another tool, these
steps will be all too familiar to you. I am covering as much introductory information as possible now
so it is not necessary to do so in later chapters.

Chapter 2 � Getting Started with Dev-C++ and Allegro48

Figure 2.13 Choosing Empty Project from the New Project
dialog box

Taking Dev-C++ and Allegro for a Spin 49

Figure 2.14 The new Greetings project has been created and is now ready to go.

Figure 2.15 Adding a new source code file to the project using the File menu.

Chapter 2 � Getting Started with Dev-C++ and Allegro50

Figure 2.16 Adding a new source code file to the project using the right-click menu.

Figure 2.17 The Greetings project now has a source code file.

The Greetings Source Code

Now that you have a source code file, type in some source code to make sure Dev-C++ is
configured properly. Here is a short program that you can type in:

#include <conio.h>
#include <stdio.h>
int main()
{

printf(“Greetings Earthlings.\n”);
printf(“All your base are belong to us!\n”);
getch();

}

You can compile and run the program using several methods. Note that this program
doesn’t require Allegro to run at this point. (I’ll stick to basic C right now.) The easiest way
to compile and run the program is by pressing F9. You can also click on the Compile & Run
(F9) icon on the toolbar or you can open the Execute menu and select Compile & Run. While
you are browsing the toolbar and menus, note some of the other options available, such
as Compile, Run, and Rebuild All. These options are occasionally helpful, although the
compiler is so fast that I typically just hit F9. Because this is not an introductory book on
C programming and I assume you have some experience writing C programs, I won’t get
into the basics of debugging and correcting syntax errors.

However, there is one thing that might prevent this program from running. If you look at
the code listing, you’ll notice that it doesn’t include any header files and it is about as sim-
ple as things can get for a C program. This program assumes that it will be run on a con-
sole (such as a DOS prompt or shell prompt). Therefore, the project must be configured
as a console project. The terminology will differ based on your OS, but for Windows the

two most common project types are
Windows Application and Console
Application. Open the Project menu
and select Project Options. The
Project Options dialog box will
appear, as shown in Figure 2.18.

Taking Dev-C++ and Allegro for a Spin 51

Figure 2.18 The Project Options dialog box is where
you can change the project settings.

Pay special attention to the list of project types and make sure that Win32 Console is selected.
(This should have been the default when you created a new blank project; however, future
versions of Dev-C++ may change the default option or any other feature deemed necessary
to improve the IDE.) If Win32 Console is selected, then you are ready to run the program.
Close the dialog box, and then press F9 to compile and run the program.

n o t e

Feel free to open multiple instances of Dev-C++ if you are working on several C or C++ projects at
the same time or if you would like to copy code from one source listing to another. Dev-C++ has a
small footprint of only around 12 MB of memory, and multiple instances of it run off the first memory
instance.

Running the Greetings Program

If all goes well you should see the program run as in Figure 2.19, which shows the console
window superimposed over Dev-C++. As the source code indicates (note the getch()
function), press a key to end the program.

If the compile process failed, first check to make sure there are no typos in the source code
you entered. If the code looks good, you might want to refer back to the “Installing and
Configuring Dev-C++ and Allegro” section to see whether you might have missed a step

Chapter 2 � Getting Started with Dev-C++ and Allegro52

Figure 2.19 The Greetings program is running in a console window.

that is preventing the compiler from running as it should. The install process is fairly simple
and straightforward (ignoring the update process, at any rate), so if you continue to have
problems, you might seek help at the Dev-C++ Web site at http://www.bloodshed.net/
devcpp.html. A program this simple should compile and run without any problem, so any
error at this point is an installation problem if anything.

Testing Allegro: The GetInfo Program
Now you should give Allegro a spin and make sure it was compiled and installed correctly.
The next program you’ll write will be similar to the last one because it will be a console
program. The difference is that this program will include the Allegro library. Go ahead
and open a new instance of Dev-C++ (or close the current project). Open the File menu
and select New, Project as before. This time, however, instead of creating an empty project,
select Console Application (see Figure 2.20). For the project name, type GetInfo.

When the new project is created,
Dev-C++ will add a main.c file
for you and fill it with some basic
code. Delete the template code
because you’ll be typing in your
own code.

Introducing Some of Allegro’s Features

The first function that you need to know is allegro_init, which has this syntax:

int allegro_init();

This function is required because it initializes the Allegro library. If you do not call this
function, the program will probably crash (at worst) or simply not work (at best). In addi-
tion to initializing the library, allegro_init also fills a number of global string and num-
ber variables that you can use to display information about Allegro. One such variable is
a string called allegro_id; it is declared like this:

extern char allegro_id[];

Taking Dev-C++ and Allegro for a Spin 53

Figure 2.20 Creating a new console application in Dev-C++

Chapter 2 � Getting Started with Dev-C++ and Allegro54

You can use allegro_id to display the version number for the Allegro library you have
installed. That is a good way to check whether Allegro has been installed correctly, so you
should write some code to display allegro_id. Referring to the GetInfo project you just cre-
ated, type in the following code:

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

int main()
{

allegro_init();
printf(“Allegro version = %s\n”, allegro_id);
printf(“\nPress any key...\n”);
getch();
return 0;

}
END_OF_MAIN();

You are probably wondering what the heck that END_OF_MAIN function at the bottom of the
source listing is. This is actually a macro that is used by Allegro and helps with the multi-
platform nature of the library. This is odd, but the macro simply must follow the main
function in every program that uses Allegro. You’ll get used to it (and quickly begin to
ignore it after a while).

Including the Allegro Library File

One more thing. Before you can run the program, you must add the Allegro library file to
the GetInfo project. The library file is called liballeg.a and can be found in the \allegro\lib
folder. (Depending on where you installed it, that might be C:\allegro\lib.) To add the
library file, open the Project menu and select Project Options. There are a number of tabs
in the Project Options dialog box. Locate the Parameters tab, which is shown in Figure 2.21.

You now want to add an entry into the third column (labeled Linker) so the Allegro
library file will be linked into the executable program. You can type in the path and file-
name directly or you can click on the Add Library or Object button to search for the file.
Navigate to your root Allegro folder and look inside a folder called lib.

If you installed Allegro using the Dev-C++ WebUpdate or by installing the DevPak off the
CD-ROM, then Allegro will be installed to C:\Dev-Cpp\Allegro by default. If you are at all
confused about this issue, then I recommend you visit Appendix F to get a better feel for
how Allegro and Dev-C++ work together.

You should see eight compiler-specific folders inside lib:

� bcc32

� beos

� djgpp

� mingw32

� msvc

� qnx

� unix

� watcom

As you might recall from the
“Installing and Configuring
Dev-C++ and Allegro” sec-
tion, the version you want to
use for Windows is mingw32,
so go ahead and open that
folder. If you have compiled
Allegro for mingw32 you
should see two files inside—
libaldat.a and liballeg.a (see
Figure 2.22).

Taking Dev-C++ and Allegro for a Spin 55

Figure 2.21 The Parameters tab in the Project
Options dialog box

Figure 2.22 Locating the liballeg.a library file for Allegro

Chapter 2 � Getting Started with Dev-C++ and Allegro56

Select the liballeg.a file and click on Open to load the path name for the file into the Linker
list. If you look at the path name that was inserted, you’ll notice that it includes a lot of
folder redirection (../../../../allegro/lib/mingw32/liballeg.a). This will probably look differ-
ent on your system due to where you saved the project file. (Mine is stored several folders
deep in the source code folder.) For future reference, note that you only need to refer to
the absolute path name for liballeg.a (or any other library file). Therefore, you can edit the
Linker text so it looks like this:

/allegro/lib/mingw32/liballeg.a

The result should look like Figure 2.23.

Before you get too comfortable with
this plan, let me give you a heads up
on an even easier way to include the
Allegro library! Regardless of whether
you installed Allegro.DevPak or com-
piled the Allegro source code, the
liballeg.a file will be installed at
\Dev-Cpp\lib. So you really don’t need
to reference the file in \allegro\lib
directly. Referring back to Figure
2.23, you can substitute the path to
liballeg.a with a simple linker com-
mand (-lalleg) and that will suffice!
I will remind you how to set up the
projects as we go along, using both

methods. This chapter is really thorough in these explanations because future chapters
will skim over these details. If you ever have trouble configuring a new project for Allegro,
this is the chapter you will want to refer back to as a reference.

t i p

If you are using Visual C++, you will want to reference alleg.lib (and no other library files) in the
linker options field. See Appendix E for details.

Running the GetInfo Program

If you haven’t already, press F9 to compile and run the program. If all goes well, you should
be rewarded with a console window that looks like the one in Figure 2.24. If you have
problems running the program, aside from syntax errors due to typos you might want to
double-check that you have the correct path to the liballeg.a library file.

Figure 2.23 You can also type the path name to a
library file directly into the Linker list.

Adding to the GetInfo Program

Now you can add some more functionality to the GetInfo program to explore more of the
functions available with Allegro. First, let me introduce you to a variable called os_type,
which has this declaration:

extern int os_type;

This variable returns a value for the operating system that Allegro detected, and may be
one of the values listed in Table 2.1.

To display the operating system name, you’ll need to use the switch statement to determine
which OS it is. This would be easier using a string array, but unfortunately the list might
not be in consecutive order within Allegro, so it is safer to use a switch. Add the following
function above the int main() line:

Taking Dev-C++ and Allegro for a Spin 57

Figure 2.24 The GetInfo program displays information about the Allegro library.

char *OSName(int number)
{

switch (number)
{

case OSTYPE_UNKNOWN: return “Unknown or MS-DOS”;
case OSTYPE_WIN3: return “Windows”;
case OSTYPE_WIN95: return “Windows 95”;
case OSTYPE_WIN98: return “Windows 98”;
case OSTYPE_WINME: return “Windows ME”;
case OSTYPE_WINNT: return “Windows NT”;
case OSTYPE_WIN2000: return “Windows 2000”;
case OSTYPE_WINXP: return “Windows XP”;
case OSTYPE_OS2: return “OS/2”;
case OSTYPE_WARP: return “OS/2 Warp 3”;
case OSTYPE_DOSEMU: return “Linux DOSEMU”;
case OSTYPE_OPENDOS: return “Caldera OpenDOS”;
case OSTYPE_LINUX: return “Linux”;
case OSTYPE_FREEBSD: return “FreeBSD”;

Chapter 2 � Getting Started with Dev-C++ and Allegro58

Table 2.1 Operating Systems Recognized by Allegro

Identifier Description

OSTYPE_UNKNOWN Unknown (may be MS-DOS)
OSTYPE_WIN3 Windows 3.1 or earlier
OSTYPE_WIN95 Windows 95
OSTYPE_WIN98 Windows 98
OSTYPE_WINME Windows Me
OSTYPE_WINNT Windows NT
OSTYPE_WIN2000 Windows 2000
OSTYPE_WINXP Windows XP
OSTYPE_OS2 OS/2
OSTYPE_WARP OS/2 Warp 3
OSTYPE_DOSEMU Linux DOSEMU
OSTYPE_OPENDOS Caldera OpenDOS
OSTYPE_LINUX Linux
OSTYPE_FREEBSD FreeBSD
OSTYPE_QNX QNX
OSTYPE_UNIX UNIX variant
OSTYPE_BEOS BeOS
OSTYPE_MACOS Mac OS

Taking Dev-C++ and Allegro for a Spin 59

case OSTYPE_QNX: return “QNX”;
case OSTYPE_UNIX: return “Unix variant”;
case OSTYPE_BEOS: return “BeOS”;
case OSTYPE_MACOS: return “MacOS”;

}
}

Now you can modify the main routine to display the name of the operating system. Add
the following line of code following the first printf line:

printf(“Operating system = %s\n”, OSName(os_type));

When you run the program (F9), you should see a console window with output that looks
like the following lines. (Note that your operating system should be displayed if you are
not running Windows 2000.)

Allegro version = Allegro 4.0.3, MinGW32
Operating system = Windows 2000

Press any key...

Now you can use a few more of Allegro’s very useful global variables to retrieve the operating
system version, desktop resolution, multitasking flag, color depth, and some details about the
processor. Since you are already raring to go, I’ll just list the definitions for these functions
and variables, and then you can add them to the GetInfo program. (Remember that none of
these variables and functions will work unless you have called allegro_init() first.)

extern int os_version;
extern int os_revision;
extern int os_multitasking;
int desktop_color_depth();
int get_desktop_resolution(int *width, int *height);
extern char cpu_vendor[];
extern int cpu_family;
extern int cpu_model;
extern int cpu_capabilities;

The first three variables provide information about the operating system version, revision,
and whether it is multitasking. The following lines of code will display those values:

printf(“OS version = %i.%i\n”, os_version, os_revision);
printf(“Multitasking = %s\n”, YesNo(os_multitasking));

I wrote a short function called YesNo() to display the appropriate word (yes = 1, no = 0);
this function should be typed in above int main():

char *YesNo(int number)
{

if (number==0)
return “No”;

else
return “Yes”;

}

Next are the desktop resolution and color depth values, which you can add to the program
with the following lines:

int width, height;
get_desktop_resolution(&width, &height);
printf(“Desktop resolution = %i x %i\n”, width, height);
printf(“Color depth = %i bits\n”, desktop_color_depth());

Notice how you must pass the width and height variables to get_desktop_resolution()? The
variables are passed by reference to this function so you can then use the variables to dis-
play the desktop resolution. Color depth is a direct function call.

Next come the functions associated with the processor. I don’t know about you, but I per-
sonally find this information very interesting. You could use these values to directly affect
how a game runs by enabling or disabling certain features based on system specifications.
When it comes to a multi-platform library, this can be essential because there are many
older PCs running Linux and other OSs that perform well on older hardware (whereas
Windows typically puts a high demand on resources). Here are the processor-specific
variables and functions:

extern char cpu_vendor[];
extern int cpu_family;
extern int cpu_model;
extern int cpu_capabilities;

The first three variables are easy enough to read, although they are manufacturer-specific
values. For instance, a cpu_family value of 6 indicates a Pentium Pro for the Intel platform,
while it refers to an Athlon for the AMD platform. The cpu_capabilities variable is a little
more complicated because it contains packed values specifying the special features of the
processor. Table 2.2 presents a rundown of those capabilities.

I have always enjoyed system decoding programs like this one, so it is great that this is built
into Allegro. To decode the cpu_capabilities variable, you can AND one of the identifiers
with cpu_capabilities to see whether it is available. If the AND operation equals the identi-
fier value, then you know that identifier has been bit-packed into cpu_capabilities. Here is
the code to display these capabilities. (Note that spacing is not critical—I just wanted all
of the equal signs to line up.)

Chapter 2 � Getting Started with Dev-C++ and Allegro60

int caps = cpu_capabilities;
printf(“Processor ID = %s\n”,

YesNo((caps & CPU_ID)==CPU_ID));
printf(“x87 FPU = %s\n”,

YesNo((caps & CPU_FPU)==CPU_FPU));
printf(“MMX = %s\n”,

YesNo((caps & CPU_MMX)==CPU_MMX));
printf(“MMX+ = %s\n”,

YesNo((caps & CPU_MMXPLUS)==CPU_MMXPLUS));
printf(“SSE = %s\n”,

YesNo((caps & CPU_SSE)==CPU_SSE));
printf(“SSE2 = %s\n”,

YesNo((caps & CPU_SSE2)==CPU_SSE2));
printf(“3DNOW = %s\n”,

YesNo((caps & CPU_3DNOW)==CPU_3DNOW));
printf(“Enhanced 3DNOW = %s\n”,

YesNo((caps & CPU_ENH3DNOW)==CPU_ENH3DNOW));

For reference, here is the complete listing for the main function of GetInfo, with some addi-
tional comments to clarify what each section of code is doing.

int main() {
//initialize Allegro
allegro_init();

//display version info
printf(“Allegro version = %s\n”, allegro_id);
printf(“Operating system = %s\n”, OSName(os_type));

Taking Dev-C++ and Allegro for a Spin 61

Table 2.2 Processor Features Identified by Allegro

Identifier Description

CPU_ID cpuid is available.
CPU_FPU x87 FPU is available.
CPU_MMX MMX is available.
CPU_MMXPLUS MMX+ is available.
CPU_SSE SSE is available.
CPU_SSE2 SSE2 is available.
CPU_3DNOW 3DNow! is available.
CPU_ENH3DNOW Enhanced 3DNow! is available.

printf(“OS version = %i.%i\n”, os_version, os_revision);
printf(“Multitasking = %s\n”, YesNo(os_multitasking));

//display system info
int width, height;
get_desktop_resolution(&width, &height);
printf(“Desktop resolution = %i x %i\n”, width, height);
printf(“Color depth = %i bits\n”, desktop_color_depth());
printf(“Processor vendor = %s\n”, cpu_vendor);
printf(“Processor family = %i\n”, cpu_family);
printf(“Processor model = %i\n”, cpu_model);

//display processor capabilities
int caps = cpu_capabilities;
printf(“Processor ID = %s\n”,

YesNo((caps & CPU_ID)==CPU_ID));
printf(“x87 FPU = %s\n”,

YesNo((caps & CPU_FPU)==CPU_FPU));
printf(“MMX = %s\n”,

YesNo((caps & CPU_MMX)==CPU_MMX));
printf(“MMX+ = %s\n”,

YesNo((caps & CPU_MMXPLUS)==CPU_MMXPLUS));
printf(“SSE = %s\n”,

YesNo((caps & CPU_SSE)==CPU_SSE));
printf(“SSE2 = %s\n”,

YesNo((caps & CPU_SSE2)==CPU_SSE2));
printf(“3DNOW = %s\n”,

YesNo((caps & CPU_3DNOW)==CPU_3DNOW));
printf(“Enhanced 3DNOW = %s\n”,

YesNo((caps & CPU_ENH3DNOW)==CPU_ENH3DNOW));

printf(“\nPress any key...\n”);
getch();
return 0;

}

Running the program now produces the following results. (Note that it will reflect the
hardware in your own system.)

Allegro version = Allegro 4.0.3, MinGW32
Operating system = Windows 2000
OS version = 5.0

Chapter 2 � Getting Started with Dev-C++ and Allegro62

Multitasking = Yes
Desktop resolution = 1280 x 1024
Color depth = 32 bits
Processor vendor = AuthenticAMD
Processor family = 6
Processor model = 4
Processor ID = Yes
x87 FPU = Yes
MMX = Yes
MMX+ = Yes
SSE = No
SSE2 = No
3DNOW = Yes
Enhanced 3DNOW = Yes

Press any key...

Gaining More Experience with Allegro
Now that you have learned how to set up the compiler to use Allegro by manually adding
the library file to the project, I will show you the easy way to do it! I believe it’s always best
to know how to set up a project first, but the Allegro.DevPak includes two project tem-
plates you can use, so it’s a cinch to create a new Allegro project and get started writing
code without having to go into the Project Options at all.

I mention this after the fact because a default installation of Dev-C++ and Allegro does not
include these Allegro project templates. Only after you install Allegro via WebUpdate will
you find these templates installed (which is one good reason for using the WebUpdate
tool).

The only drawback to using these Allegro project templates is that they are specifically
limited to C++ code, not C (which is mainly what this book focuses on). That is not a lim-
itation really, because you can still write straight C code and it won’t make any difference
(due to the way C++ headers are handled in the project template). However, you can feel
free to write C or C++ code as you wish, so this might be a better solution than limiting
the project to C by default.

The Hello World Demo
Now let’s see how easy it is to create a new Allegro project. Fire up Dev-C++ and open the
File menu. Select New, Project and click on the MultiMedia tab, and you should see three
project types—Allegro (DLL), Allegro (Static), and OpenGL—as shown in Figure 2.25.

Gaining More Experience with Allegro 63

Select the Allegro (DLL) project
template, type a new name for the
project, and click on OK. A new
project will be created in Dev-
C++, and you will be asked to
choose a location for the project
file. After the project has been cre-
ated, you should see the sample
source code shown in Figure 2.26.

If you run the program by pressing F9, you should see the program run full-screen with
the message “Hello World” displayed (see Figure 2.27).

Chapter 2 � Getting Started with Dev-C++ and Allegro64

Figure 2.25 Creating a new Allegro (DLL) project in Dev-C++

Figure 2.26 The new Allegro (DLL) project has been created from the template.

This is a fully-functional Allegro program that didn’t require any configuration. If you are
using a Windows system, Allegro automatically supports DirectX and takes advantage of
hardware acceleration with DirectDraw. On other platforms (such as Linux), Allegro will
use whatever library has been compiled with it to make the most out of that platform (in
other words, the DirectX equivalent on each system).

If for any reason you are not able to run the program as shown, go back to the “Installing
Allegro” section to make sure it is installed correctly.

Allegro Sample Programs
Allegro comes with a large number of sample programs that demonstrate all of the vari-
ous features of the library. If you installed Allegro as described in this chapter using the
DevPak, you will find these sample programs in the main Dev-Cpp folder on your hard
drive. Assuming you have installed it at C:\Dev-Cpp, the example programs are located in
C:\Dev-Cpp\Examples\Allegro.

Before you can run an individual C source program in Dev-C++, you need to copy it into
an existing project that has been configured with the Allegro library. Otherwise, the com-
piler will complain that one or more Allegro functions could not be found. The easiest
way to do this is to create a new Allegro (DLL) project, as you did with HelloWorld a few
minutes ago. Then you can open one of the sample programs in Dev-C++ and paste the

Gaining More Experience with Allegro 65

Figure 2.27 The HelloWorld program runs in full-screen 640×480 mode.

new code into main.c to run it. That way the project template is configured for Allegro
and you can repeatedly paste sample code into main.c to see the sample programs run.
The alternative is to create a separate project for each program or compile them all using
a make file or by running GCC from the command line (which is probably easier than
using Dev-C++, but not as convenient).

n o t e

The Allegro sample programs are contributions from many Allegro developers and fans. They are
not all guaranteed to work, especially considering that new versions of Allegro are released fre-
quently and the examples are not always kept up to date.

For an example, take a look at the ex3buf.c example program. You can load this program
from \Dev-Cpp\Examples\Allegro (assuming you have installed Dev-C++ to this folder),
as shown in Figure 2.28. This program is a triple-buffer demonstration written by Shawn
Hargreaves. Although it was primarily written for MS-DOS (as evidenced by the 320×200
video resolution), you can still run the program in Windows or any other system in full-
screen mode.

This is actually a very inter-
esting program because it
uses an early polygon ren-
dering routine that was writ-
ten before the 3D features
were added to Allegro. You
could adapt this code to pro-
duce a shaded 3D game, but
that would be hard work—
better to wait until I cover
the 3D functionality built
into Allegro first! Figure 2.29
shows the program running.

Another interesting program is called exblend.c; it is also found in \Dev-Cpp\
Examples\Allegro. This was also written by Shawn Hargreaves, and it shows an interesting
alpha-blend effect that I will cover in the next chapter (see Figure 2.30).

There are many more sample programs just like these in \Dev-Cpp\Examples\Allegro that
I encourage you to load and run to see some of the things that Allegro is capable of doing.

Chapter 2 � Getting Started with Dev-C++ and Allegro66

Figure 2.28 Opening one of the sample programs installed
with Allegro

These aren’t full programs or games per se, but they do a good job of demonstrating simple
concepts.

Gaining More Experience with Allegro 67

Figure 2.29 The ex3buf.c program (written by Shawn Hargreaves) is one
of the many sample programs included with Allegro.

Figure 2.30 The exblend.c program shows how two bitmaps can be
displayed with translucency.

Summary
That sums up the introduction to Dev-C++ and Allegro. I hope that by this time you are
at least familiar with the IDE and have a good understanding of how the compiler works,
as well as what Allegro is capable of (with a little effort on your part). This chapter has
given you few tools for building a game as of yet, but it was necessary along that path.
Installing and configuring the dev tools is always a daunting task for those who are new
to programming, and even experienced programmers get lost when trying to get up and
running with a new IDE, compiler, and game library. Not only did you learn to configure
a new IDE and open-source compiler, you also got started writing programs using an
open-source game library. But now that the logistics are out of the way, you can focus on
learning Allegro and writing a few sample programs in the following chapters.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What game features an Avatar and takes place in the land of Brittania?

A. Baldur’s Gate: Dark Alliance

B. Ultima VII: The Black Gate

C. The Elder Scrolls III: Morrowind

D. Wizardry 8

2. GNU is an acronym for which of the following phrases?

A. GNU is Not UNIX

B. Great Northern University

C. Central Processing Unit

D. None of the above

3. What is the primary Web site for Dev-C++?

A. http://www.microsoft.com

B. http://www.bloodshed.net

C. http://www.borland.com

D. http://www.fsf.org

4. What is the name of the compiler used by Dev-Pascal?

A. GNU Pascal

B. Turbo Pascal

C. Object Pascal

D. Microsoft Pascal

Chapter 2 � Getting Started with Dev-C++ and Allegro68

5. What is the name of the powerful automated update utility for Dev-C++?

A. DevUpdate

B. AutoUpdate

C. Windows Update

D. WebUpdate

6. What are the Dev-C++ update packages called?

A. DevPacks

B. DevPaks

C. DevPackages

D. DevSpanks

7. What distinctive feature of Dev-C++ sets it apart from commercial development
tools?

A. Dev-C++ is open-source

B. Dev-C++ is free

C. Dev-C++ is multi-platform

D. All of the above

8. What is the name of the game programming library featured in this chapter?

A. DirectX

B. Gnome

C. GTK+

D. Allegro

9. What function must be called before you use the Allegro library?

A. main()

B. byte_me()

C. allegro_init()

D. lets_get_started()

10. What statement must be included at the end of main() in an Allegro program?

A. END_OF_THE_WORLD()

B. END_OF_MAIN()

C. END_OF_FREEDOM()

D. AH_DONUTS()

Chapter Quiz 69

This page intentionally left blank

71

Basic 2D Graphics
Programming with Allegro

chapter 3

T
his hands-on chapter introduces you to the powerful graphics features built into
Allegro. In the early years of personal computers, at a time when 3D accelerators
with 256 MB of DDR memory were inconceivable, vector graphics provided a solid

solution to the underpowered PC. For most games, a scrolling background was not even
remotely possible due to the painfully slow performance of the early IBM PC. While com-
peting systems from Atari, Amiga, Commodore, Apple, and others provided some of the
best gaming available at the time with performance that would not be matched in consoles
for many years, these PCs fell to the wayside as the IBM PC (and its many clone manu-
facturers) gained market dominance—not without the help of Microsoft and Intel. It is a
shame that Apple is really the only contender that survived the personal computer revo-
lution of the 1980s and 1990s, but it was mainly that crucible that launched gaming forward
with such force.

This chapter is somewhat a lesson in progressive programming, starting with basic con-
cepts that grow in complexity over time. Because we are pushing the 2D envelope to the
limit throughout this book, it is fitting that we should start at the beginning and cover vec-
tor graphics. The term vector describes the CRT (Cathode Ray Tube) monitors of the past
and the vector graphics hardware built into the computers that used this early technology.

A more descriptive term for the subject of this chapter would be “programming graphics
primitives.” A graphics primitive is a function that draws a simple geometric shape, such
as a point, line, rectangle, or circle. This chapter covers the graphics primitives built into
Allegro with complete sample programs for each function so you will have a solid under-
standing of how these functions work. I should point out also that these graphics primi-
tives form the basis of all 3D graphics, past and present; after all, the mantra of the 3D
card is the holy polygon. But above all, I want you to have some fun with this chapter.

Whether you are a skilled programmer or a beginner, try to have some fun in everything
you do. I believe even an old hand will find something of interest in this chapter.

Here is a breakdown of the major topics in this chapter:

� Understanding graphics fundamentals

� Drawing graphics primitives

� Printing text on the screen

Introduction
I don’t know about you, but I was drawn to graphics programming before I became inter-
ested in actually writing games. The subject of computer graphics is absolutely fascinating
and is at the forefront of computer technology. The high-end graphics accelerator cards
featuring graphics processors with high-speed video memory, such as the NVIDIA
GeForce FX and ATI Radeon 9800, are built specifically to render graphics insanely fast.
The silicon is not designed merely to satisfy a marketing initiative or to best the competi-
tion (although that would seem to be the case). The graphics chips are designed to render
graphics with great efficiency using hardware-accelerated functions that were once calcu-
lated in software. I emphasize the word “graphics” because we often take it for granted after
hearing it used so often. Figure 3.1 shows a typical monitor.

The fact of the matter is that video cards are not designed to render games; they are
designed to render geometric primitives with special effects. As far as the video card is con-
cerned, there is only one triangle on the screen. It is the programmer who tells the video

card to move from one triangle to the next.
The video card does this so quickly (on the
order of 100 million or more polygons per
second) that it fools the viewer into believing
that the video card is rendering an entire scene
on its own. The triangles are hidden away in
the matrix of the scene (so to speak), and it is
becoming more and more difficult to discern
reality from virtual reality due to the advanced
features built into the latest graphics chips
(see Figure 3.2).

Chapter 3 � Basic 2D Graphics Programming with Allegro72

Figure 3.1 A typical monitor displays
whatever it is sent by the video card.

Taken a step closer, one would notice that
each triangle is made up of three points,
or vertices, which is really all the graphics
chip cares about. Filling pixels between
the three points and applying varying
effects (such as lighting) are tasks that the
graphics chip has been designed to do
quickly and efficiently.

Years ago, when a new video card was
produced, the manufacturer would hire a
programmer to write the device driver
software for the new hardware, usually for
Windows and Linux. That device driver
was required to provide a specific set of
common functions to the operating system

for the new video card to work correctly. The early graphics chips were very immature (so
to speak); they were only willing to switch video modes and provide access to the video
memory (or frame buffer), usually in banks—another issue of immaturity. As graphics
chips improved, silicon designers began to incorporate some of the software’s functional-
ity right into the silicon, resulting in huge speed increases (orders of greater magnitude)
over functions that had previously existed only in software.

The earliest Windows accelerators, as they were known, produced for Windows 3.1 and
Windows 95 provided hardware blitting. Blit is a term that means bit-block transfer, a
method of transferring a chunk of memory from one place to another. In the case of a
graphical blit, the process involves copying a chunk of data from system memory through
the bus to the memory present on the video card. In the early years of
the PC, video cards were lucky to have 1 MB of memory. My first VGA card had 256 KB
(see Figure 3.3)!

Contrast this with the latest 3D
cards that have 256 MB of DDR
(Double Data Rate) memory and
are enhanced with direct access to
the AGP bus! The latest DDR mem-
ory at the time of this writing is PC-
4000, also called DDR-500. This
type of memory comes on a 184-pin
socket with a throughput of 4 giga-
bytes per second. Although the lat-
est video cards don’t use this type of
high-speed memory yet, they are

Introduction 73

Figure 3.2 A typical 3D accelerator card sees
only one triangle at a time.

Figure 3.3 The modern video card has taken over the
duties of the software driver.

close, using DDR-333. The point is, this is insanely fast memory! It simply must be as fast
as possible to keep feeding the ravenous graphics chip, which eats textures in video mem-
ory and spews them out into the frame buffer, which is sent directly to the screen (see
Figure 3.4).

In a very real sense, the
graphics card is a small
computer on its own.
When you consider that
the typical high-end PC
also has a high-perfor-
mance sound processing
card (such as the Sound
Blaster Audigy 2 by
Creative Labs) capable of
Dolby DTS and Dolby
Digital 5.1 surround sound,
what we are really talking
about here is a multi-
processor system. If your

first impression is to scoff at the idea or shrug it off like an old joke, think about it again.
The typical $200 graphics card or sound card has more processing power than a Cray
supercomputer had in the mid-1980s. Considering that a gaming rig has these two major
subsystems in addition to an insanely fast central processor, is it unfounded to say that
such a PC is a three-processor system? All three chips are sharing the bus and main memory
and are running in parallel. The difference between this setup and a symmetric multipro-
cessing system (SMP) is that an SMP divides a single task between two or more proces-
sors, while the CPU, graphics chip, and sound chip work on different sets of data. The case
made in this respect is valid, I think. If you want to put forth the argument that the mother-
board chipset and memory controller are also processors, I would point out that these are
logistical chips with a single task of providing low-level system communication. But
consider a high-speed 3D game featuring multiplayer networking, advanced 3D rendering,
and surround sound. This is a piece of software that uses multiple processors unlike any
business application or Web browser.

This short overview of computer graphics was interesting, but how does the information
translate to writing a game? Read on….

Graphics Fundamentals
The basis of this entire chapter can be summarized in a single word: pixel. The word pixel
is short for “picture element,” sort of the atomic element of the screen. The pixel is the

Chapter 3 � Basic 2D Graphics Programming with Allegro74

Figure 3.4 The frame buffer, located in video memory, is
transferred directly to the screen.

smallest unit of measurement in a video system. But like the atom you know from physics,
even the smallest building block is comprised of yet smaller things. In the case of a pixel,
those quantum elements of the pixel are red, green, and blue electron streams that give each
pixel a specific color. This is not mere theory or analogy; each pixel is comprised of three
small streams of electrons of varying shades of red, green, and blue (see Figure 3.5).

Starting with this most basic building block, you can construct an entire game one pixel
at a time (something you will do in the next chapter). Allegro creates a global screen
pointer when you call allegro_init. This simple pointer is called screen, and you can pass
it to all of the drawing functions in this chapter. A technique called double-buffering
(which uses offscreen rendering for speed) works like this: Drawing routines must draw
out to a memory bitmap, which is then blitted to the screen in a single function call. Until
you start using a double-buffer, you’ll just work with the global screen object.

The InitGraphics Program
As you saw in the last chapter, Allegro is useful even in a text-based console, such as the
command prompt in Windows (or a shell in Linux). But there is only so much you can do
with a character-based video mode. You could fire up one of the two dozen or so text
adventure games from the 1970s and 1980s. (Zork comes to mind.) But let’s get started on
the really useful stuff and stop fooling around with text mode, shall we? I have written a
program called InitGraphics that simply shows how to initialize a full-screen video mode
or window of a particular resolution. Figure 3.6 shows the program running.

The first function you’ll learn about in this chapter is set_gfx_mode, which sets the graph-
ics mode (or what I prefer to call “video mode”). This function is really loaded, although
you would not know that just from calling it. What I mean is that set_gfx_mode does a lot
of work when called—detecting the graphics card, identifying and initializing the graphics

Graphics Fundamentals 75

Figure 3.5 The pixel is the smallest unit of measurement in a video system.

system, verifying or setting the color depth, entering full-screen or windowed mode, and
setting the resolution. As you can see, it does a lot of work for you! A comparable DirectX
initialization is 20 to 30 lines of code. This function has the following declaration:

int set_gfx_mode(int card, int w, int h, int v_w, int v_h);

If an error occurs setting a particular video mode, set_gfx_mode will return a non-zero
value (where a return value of zero means success) and store an error message in
allegro_error, which you can then print out. For an example, try using an invalid resolution
for a full-screen display, like this:

ret = set_gfx_mode(GFX_AUTODETECT_FULLSCREEN, 645, 485, 0, 0);

However, if you specify GFX_AUTODETECT and send an invalid width and height to
set_gfx_mode, it will actually run in a window with the resolution you wanted! Running in
windowed mode is a good idea when you are testing a game and you don’t want it to jump
into and out of full-screen mode every time you run the program.

The first parameter, int card, specifies the display mode (or the video card in a dual-card
configuration) and will usually be GFX_AUTODETECT. If you want a full-screen display, you
can use GFX_AUTODETECT_FULLSCREEN, while you can invoke a windowed display using
GFX_AUTODETECT _WINDOWED. Both modes work equally well, but I find it easier to use win-
dowed mode for demonstration purposes. A window is easier to handle when you are
editing code, and some video cards really don’t handle mode changes well. Depending on
the quality of a video card, it can take several seconds to switch from full-screen back to
the Windows desktop, but a windowed program does not have this problem.

Chapter 3 � Basic 2D Graphics Programming with Allegro76

Figure 3.6 The InitGraphics program

The next two parameters, int w and int h, specify the desired resolution, such as 640×480,
800×600, or 1024×768. To maintain compatibility with as many systems as possible, I am
using 640×480 for most of the sample programs in this book (with a few exceptions where
demonstration is needed).

The final two parameters, int v_w and int v_h, specify the virtual resolution and are used
to create a large virtual screen for hardware scrolling or page flipping.

After you have called set_gfx_mode to change the video mode, Allegro populates the vari-
ables SCREEN_W, SCREEN_H, VIRTUAL_W, and VIRTUAL_H with the appropriate values, which come
in handy when you prefer not to hard-code the screen resolution in your programs.

The InitGraphics program source code listing follows. Several new functions in this program
are included for convenience; I will go over them shortly.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

void main(void)
{

//initialize Allegro
allegro_init();

//initialize the keyboard
install_keyboard();

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, makecol(255, 255, 255),

“%dx%d”, SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC]);

//end program
allegro_exit();

}

END_OF_MAIN();

Graphics Fundamentals 77

Chapter 3 � Basic 2D Graphics Programming with Allegro78

In addition to the set_gfx_mode function, there are several more Allegro functions in this
program that you probably noticed. Although they are self-explanatory, I will give you a
brief overview of them.

The allegro_message function is handy when you want to display an error message in a
pop-up dialog box (also called a message box). Usually you will not want to use this func-
tion in production code, although it is helpful when you are debugging (when you will
want to run your program in windowed mode rather than full-screen mode). Note that
some operating systems will simply output an allegro_message response to the console. It
is fairly common to get stuck debugging a part of any game, especially when it has grown
to a fair size and the source code has gotten rather long, so this function might prove
handy.

You might also have noticed a variable called allegro_error in this program. This is one of
the global variables created by Allegro when allegro_init is called, and it is populated with
a string whenever an error occurs within Allegro. As a case in point for not using pop-ups,
Allegro will not display any error messages. It’s your job to deal with errors the way you
see fit.

Another interesting function is textprintf, which, as you might have guessed, displays a
message in any video mode. I will be going over all of the text output functions later in
this chapter, but for now it is helpful to note how this one is called. Because this is one of
the more complex functions, here is the declaration:

void textprintf(BITMAP *bmp, const FONT *f, int x, y, color,
const char *fmt, ...);

The first parameter specifies the destination, which can be the physical display screen or
a memory bitmap. The next parameter specifies the font to be used for output. The x and
y parameters specify where the text should be drawn on the screen, while color denotes the
color used for the text. The last parameter is a string containing the text to display along
with formatting information that is comparable to the formatting in the standard printf
function (for instance, %s for string, %i for integer, and so on).

You might have noticed a function called makecol within the textprintf code line. This
function creates an RGB color using the component colors passed to it. However, Allegro
also specifies 16 default colors you can use, which is a real convenience for simple text out-
put needs. If you want to define custom colors beyond these mere 16 default colors, you
can create your own colors like this:

#define COLOR_BROWN makecol(174,123,0)

This is but one out of 16 million possible colors in a 32-bit graphics system. Table 3.1 dis-
plays the colors pre-defined for your use.

Graphics Fundamentals 79

The last function that you should
be aware of is allegro_exit, which
shuts down the graphics system and
destroys the memory used by Allegro.
In theory, the destructors will take
care of removing everything from
memory, but it’s a good idea to call
this function explicitly. One very
important reason why is for the
benefit of restoring the video dis-
play. (Failure to call allegro_exit
might leave the desktop in an
altered resolution or color depth
depending on the graphics card
being used.)

All of the functions and variables
presented in this program will
become familiar to you in time
because they are frequently used in
the example programs in this book.

The DrawBitmap Program
Now that you have an idea of how to initialize one of the graphics modes available in
Allegro, you have the ability to draw on the screen (or in the main window of your pro-
gram). But before I delve into some of the graphics primitives built into Allegro, I want to
show you a simple program that loads a bitmap file (the supported formats are BMP,
PCX, TGA, and LBM) and draws it to the screen using a method called bit-block transfer
(or blit, for short). This program will be a helpful introduction to the functions for ini-
tializing the graphics system—setting the video mode, color depth, and so on.

While I’m holding off on bitmap and sprite programming for the next two chapters, I
believe you will appreciate the simplicity of this program, shown in Figure 3.7. It is always
a significant first step to writing a game when you are able to load and display a bitmap
image on the screen because that is the basis for sprite-based games. First, create a new
project so you can get started on the first of many exciting projects in the graphical realm.

Fire up Dev-C++, open the File menu, and select New, Project. Click on the MultiMedia tab.
If you have installed the Allegro DevPak as described in Chapter 2, you should see two
Allegro project templates—Allegro (DLL) and Allegro (Static). Hold off on the static pro-
jects for now; you’ll have plenty of time to delve into that later. For now, stick to the simple

Table 3.1 Standard Colors for Allegro
Graphics (8-Bit Only)

Color # Color Name

0 Black
1 Dark Blue
2 Dark Green
3 Dark Cyan
4 Dark Red
5 Dark Magenta
6 Orange
7 Gray
8 Dark Gray
9 Blue
10 Green
11 Cyan
12 Red
13 Magenta
14 Yellow
15 White

DLL-type projects. Name this project DrawBitmap (see Figure 3.8). If you prefer, you can
load the project from \sources\chapter03\DrawBitmap on the CD-ROM. After you have
created the new project, you’ll have a sample code listing in main.c. Delete most of that code
and enter the following code in its place.

#include “allegro.h”

void main(void)
{

Chapter 3 � Basic 2D Graphics Programming with Allegro80

Figure 3.8 The New Project dialog box in Dev-C++

Figure 3.7 The DrawBitmap program

char *filename = “allegro.pcx”;
int colordepth = 32;
BITMAP *image;
int ret;

allegro_init();
install_keyboard();

set_color_depth(colordepth);
ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//load the image file
image = load_bitmap(filename, NULL);
if (!image) {

allegro_message(“Error loading %s”, filename);
return;

}

//display the image
blit(image, screen, 0, 0, 0, 0, SCREEN_W, SCREEN_H);

//done drawing—delete bitmap from memory
destroy_bitmap(image);

//draw font with transparency
text_mode(-1);

//display video mode information
textprintf(screen, font, 0, 0, makecol(255, 255, 255),

“%dx%d %ibpp”, SCREEN_W, SCREEN_H, colordepth);

//wait for keypress
while (!key[KEY_ESC]);

//exit program
allegro_exit();

}

END_OF_MAIN();

Graphics Fundamentals 81

As you can see from the source code for DrawBitmap, the program loads a file called
allegro.pcx. Obviously you’ll need a PCX file to run this program. However, you can just
as easily use a BMP, PNG, GIF, or JPG for the graphics file if you want because Allegro
supports all of these formats! That alone is reason enough to use a game library like
Allegro! Do you know what a pain it is to write loaders for these file formats yourself?
Even if you find code on the Web somewhere, it is never quite satisfactory. Not only does
Allegro support these file formats, it allows you to use them for storing sprites—and you
can load different file formats all in the same program because Allegro does all the work
for you. Feel free to substitute allegro.pcx with a file of your choosing; just be sure it has
a resolution of 640×480! Allegro determines the file type from the extension and header
information within the file. (Yeah, it’s a pretty smart library.)

Drawing Graphics Primitives
While the first two programs in this chapter might have only whetted your appetite for
graphics, this section will satisfy your hunger for more! Vector graphics are always fun, in
my opinion, because you are able to see every pixel or line in a vector-based program. The
term “vector” goes back to the early days of computer graphics, when primitive monitors
were only able to display lines of varying sizes (where a vector represents a line segment
from one point to another).

All of the graphics in a vector system are comprised of lines (including circles, rectangles,
and arcs, which are made up of small lines). Vector displays are contrasted with
bitmapped displays, in which the screen is a bitmap array (the video buffer). On the con-
trary, a vector system does not have a linear video buffer.

At any rate, that is what a vector system is as a useful comparison, but you have far more
capabilities with Allegro. I always prefer to start at the beginning and work my way up into
a subject of interest, and Allegro is definitely interesting. So I’m going to start with the
vector-based graphics primitives built into Allegro and work up from there into bitmap-
and sprite-based games in the next few chapters.

Drawing Pixels
The simplest graphics primitive is obviously the pixel-drawing function, and Allegro
provides one:

void putpixel(BITMAP *bmp, int x, int y, int color);

Figure 3.9 shows the output of the Pixels program, which draws random pixels on the
screen using whatever video mode and resolution you prefer.

#include <conio.h>
#include <stdlib.h>

Chapter 3 � Basic 2D Graphics Programming with Allegro82

#include “allegro.h”

void main(void)
{

int x,y,x1,y1,x2,y2;
int red, green, blue, color;

//initialize Allegro
allegro_init();

//initialize the keyboard
install_keyboard();

//initialize the random number seed
srand(time(NULL));

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

Drawing Graphics Primitives 83

Figure 3.9 The Pixels program fills the screen with dots. (The Linux
version is shown.)

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Pixels Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x = 10 + rand() % (SCREEN_W-20);
y = 10 + rand() % (SCREEN_H-20);

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the pixel
putpixel(screen, x, y, color);

}

//end program
allegro_exit();

}
END_OF_MAIN();

This program should be clear to you, although it uses a C function called srand to initial-
ize the random-number seed. This program performs a while loop continually until the
ESC key is pressed, during which time a pixel of random color and location is drawn using
the putpixel function.

Drawing Lines and Rectangles
The next step up from the lowly pixel is the line, and Allegro provides several line-drawing
functions. To keep things as efficient as possible, Allegro divides line drawing among three
functions—one for horizontal lines, one for vertical lines, and a third for every other type
of line. Drawing horizontal and vertical lines can be an extremely optimized process using
a simple high-speed memory copy, but non-aligned lines must be drawn using an algo-
rithm to fill in the pixels between two points specified for the line (see Figure 3.10).

Chapter 3 � Basic 2D Graphics Programming with Allegro84

Horizontal Lines

The horizontal line-drawing function is called hline:

void hline(BITMAP *bmp, int x1, int y, int x2, int color);

Because this is your first function for drawing lines, allow me to elaborate. The first para-
meter, BITMAP *bmp, is the destination bitmap for the line, which can be screen if you want
to draw directly to the screen. The next three paramters, int x1, int y, and int x2, specify
the two points on the single horizontal Y-axis where the line should be drawn. The HLines
program (shown in Figure 3.11) demonstrates how to use this function.

Drawing Graphics Primitives 85

Figure 3.10 A line is comprised of pixels filled in between
point A and point B.

Figure 3.11 The HLines program draws horizontal lines.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

void main(void)
{

int x,y,x1,y1,x2,y2;
int red,green,blue,color;

//initialize Allegro
allegro_init();

//initialize the keyboard
install_keyboard();

//initialize random seed
srand(time(NULL));

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“HLines Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x1 = 10 + rand() % (SCREEN_W-20);
y = 10 + rand() % (SCREEN_H-20);
x2 = 10 + rand() % (SCREEN_W-20);

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;

Chapter 3 � Basic 2D Graphics Programming with Allegro86

color = makecol(red,green,blue);

//draw the horizontal line
hline(screen, x1,y,x2,color);

}

//end program
allegro_exit();

}

END_OF_MAIN();

You have probably noticed that the HLines program is very similar to the Pixels program,
with only a few lines that differ inside the while loop. I’ll just show the differences from
this point forward, rather than listing the entire source code for each program, because in
most cases you simply need to replace a few lines inside main. It is pretty obvious that just
a few lines inside the while loop need to be changed. The programs are available on the
CD-ROM in complete form, but I will provide only partial listings where such changes are
needed to demonstrate each of these graphics primitives.

Vertical Lines

Vertical lines are drawn with the vline function:

void vline(BITMAP *bmp, int x, int y1, int y2, int color);

Drawing Graphics Primitives 87

Figure 3.12 The VLines program draws vertical lines.

Chapter 3 � Basic 2D Graphics Programming with Allegro88

The VLines program (see Figure 3.12) is the same as the HLines program except for a sin-
gle function call inside the while loop. Also note that this program uses a single X variable
and two Y variables, y1 and y2. Here is the listing:

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“VLines Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x = 10 + rand() % (SCREEN_W-20);
y1 = 10 + rand() % (SCREEN_H-20);
y2 = 10 + rand() % (SCREEN_H-20);

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the vertical line
vline(screen,x,y1,y2,color);

}

Regular Lines

The special-case lines functions for drawing horizontal and vertical lines are not used
often. The following line function will simply call hline or vline if the slope of the line is
perfectly horizontal or vertical:

void line(BITMAP *bmp, int x1, int y1, int x2, int y2, int color);

The Lines program uses two complete sets of points—(x1,y1) and (x2,y2)—to draw an
arbitrary line on the screen (see Figure 3.13).

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Lines Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])

{
//set a random location
x1 = 10 + rand() % (SCREEN_W-20);
y1 = 10 + rand() % (SCREEN_H-20);
x2 = 10 + rand() % (SCREEN_W-20);
y2 = 10 + rand() % (SCREEN_H-20);

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the line
line(screen, x1,y1,x2,y2,color);

}

Rectangles

Yet again there is another logical step forward in geometry that is mimicked by a primi-
tive graphics function. While a single pixel might be thought of as a geometric point with
no mass, a line is a one-dimensional object that theoretically goes off in two directions

Drawing Graphics Primitives 89

Figure 3.13 The Lines program draws random lines on the screen.

toward infinity. Fortunately for us, computer graphics engineers are not as abstract as
mathematicians. The next logical step is a two-dimensional object containing points in
both the X-axis and the Y-axis. Although a triangle would be the next best thing, I believe
the rectangle is easier to deal with at this stage because triangles carry with them the con-
notation of the mighty polygon, and we aren’t quite there yet. Here is the rect function:

void rect(BITMAP *bmp, int x1, int y1, int x2, int y2, int color);

As you might have guessed, a rectangle is comprised strictly of two horizontal and two
vertical lines; therefore, the rect function simply calls hline and vline to render its shape
(see Figure 3.14).

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Rect Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x1 = 10 + rand() % (SCREEN_W-20);
y1 = 10 + rand() % (SCREEN_H-20);

Chapter 3 � Basic 2D Graphics Programming with Allegro90

Figure 3.14 The Rect program draws random rectangles.

x2 = 10 + rand() % (SCREEN_W-20);
y2 = 10 + rand() % (SCREEN_H-20);

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the rectangle
rect(screen,x1,y1,x2,y2,color);

}

Filled Rectangles

Outlined rectangles are boring, if you ask me. They are almost too thin to be noticed when
drawn. On the other hand, a true rectangle is filled in with a specific color! That is where
the rectfill function comes in handy:

void rectfill(BITMAP *bmp, int x1, int y1, int x2, int y2, int color);

This function draws a filled rectangle, but one that otherwise has the exact same parameters
as rect. Figure 3.15 shows the output from the RectFill program.

Drawing Graphics Primitives 91

Figure 3.15 The RectFill program draws filled rectangles.

Chapter 3 � Basic 2D Graphics Programming with Allegro92

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Rect Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x1 = 10 + rand() % (SCREEN_W-20);
y1 = 10 + rand() % (SCREEN_H-20);
x2 = 10 + rand() % (SCREEN_W-20);
y2 = 10 + rand() % (SCREEN_H-20);

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the filled rectangle
rectfill(screen,x1,y1,x2,y2,color);

}

The Line-Drawing Callback Function

Allegro provides a really fascinating feature in that it will draw an abstract line by firing off
a call to a callback function of your making (in which, presumably, you would want to draw
a pixel at the specified (x,y) location, although it’s up to you to do what you will with the
coordinate). To use the callback, you must call the do_line function, which looks like this:

void do_line(BITMAP *bmp, int x1, y1, x2, y2, int d, void (*proc))

The callback function has this format:

void doline_callback(BITMAP *bmp, int x, int y, int d)

To use the callback, you want to call the do_line function as you would call the normal line
function, with the addition of the callback pointer as the last parameter. To fully demonstrate
how useful this can be, I wrote a short program that draws random lines on the screen. But
before drawing each pixel of the line, a check is performed on the new position to deter-
mine whether a pixel is already present. This indicates an intersection or collision. When
this occurs, the line is ended and a small circle is drawn to indicate the intersection. The
result is shown in Figure 3.16.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

int stop = 0;

//doline is the callback function for do_line
void doline(BITMAP *bmp, int x, int y, int color)
{

if (!stop)
{

if (getpixel(bmp,x,y) == 0)
{

putpixel(bmp, x, y, color);
rest(5);

}
else
{

stop = 1;
circle(bmp, x, y, 5, 7);

Drawing Graphics Primitives 93

Figure 3.16 The DoLines program shows how to use the line-drawing
callback function.

}
}

}

void main(void)
{

int x1,y1,x2,y2;
int red,green,blue,color;
long n;

//initialize Allegro
allegro_init();

install_timer();
srand(time(NULL));

//initialize the keyboard
install_keyboard();

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“DoLines Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x1 = 10 + rand() % (SCREEN_W-20);
y1 = 10 + rand() % (SCREEN_H-20);
x2 = 10 + rand() % (SCREEN_W-20);
y2 = 10 + rand() % (SCREEN_H-20);

//set a random color
red = rand() % 255;

Chapter 3 � Basic 2D Graphics Programming with Allegro94

green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the line using the callback function
stop = 0;
do_line(screen,x1,y1,x2,y2,color,*doline);

rest(200);
}

//end program
allegro_exit();

}
END_OF_MAIN();

Drawing Circles and Ellipses
Allegro also provides functions for drawing circles and ellipses, as you will see. The circle-
drawing function is called circle, surprisingly enough. This function takes a set of
parameters very similar to those you have seen already—the destination bitmap, x, y, the
radius, and the color.

Circles

The circle function has this declaration:

void circle(BITMAP *bmp, int x, int y, int radius, int color);

To demonstrate, the Circles program draws random circles on the screen, as shown in
Figure 3.17.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

void main(void)
{

int x,y,radius;
int red,green,blue,color;

//initialize some stuff
allegro_init();
install_keyboard();

Drawing Graphics Primitives 95

install_timer();
srand(time(NULL));

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Circles Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x = 30 + rand() % (SCREEN_W-60);
y = 30 + rand() % (SCREEN_H-60);
radius = rand() % 30;

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the pixel
circle(screen, x, y, radius, color);

rest(25);
}

//end program
allegro_exit();

}
END_OF_MAIN();

Chapter 3 � Basic 2D Graphics Programming with Allegro96

Filled Circles

The hollow circle function is interesting, but really seeing the full effect of circles requires
the circlefill function:

void circlefill(BITMAP *bmp, int x, int y, int radius, int color);

The following program (shown in Figure 3.18) demonstrates the solid-filled circle function.

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“CircleFill Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x = 30 + rand() % (SCREEN_W-60);
y = 30 + rand() % (SCREEN_H-60);
radius = rand() % 30;

Drawing Graphics Primitives 97

Figure 3.17 The Circles program draws random circles on the screen.

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the filled circle
circlefill(screen, x, y, radius, color);

rest(25);
}

Ellipses

The ellipse function is similar to the circle function, although the radius is divided into
two parameters—one for the horizontal and another for the vertical—as indicated:

void ellipse(BITMAP *bmp, int x, int y, int rx, int ry, int color);

The Ellipses program draws random ellipses on the screen using two parameters—radiusx
and radiusy.

Chapter 3 � Basic 2D Graphics Programming with Allegro98

Figure 3.18 The CircleFill program draws filled circles.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

void main(void)
{

int x,y,radiusx,radiusy;
int red,green,blue,color;

//initialize everything
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Ellipses Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x = 30 + rand() % (SCREEN_W-60);
y = 30 + rand() % (SCREEN_H-60);
radiusx = rand() % 30;
radiusy = rand() % 30;

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

Drawing Graphics Primitives 99

Chapter 3 � Basic 2D Graphics Programming with Allegro100

//draw the ellipse
ellipse(screen, x, y, radiusx, radiusy, color);

rest(25);
}

//end program
allegro_exit();

}
END_OF_MAIN();

Filled Ellipses

You can draw filled ellipses using the ellipsefill function, which takes the same parame-
ters as the ellipse function but simply renders each ellipse with a solid fill color:

void ellipsefill(BITMAP *bmp, int x, int y, int rx, int ry, int color);

Figure 3.19 shows the output from the EllipseFill program.

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“EllipseFill Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

Figure 3.19 The EllipseFill program draws filled ellipses. (The Linux version is shown.)

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x = 30 + rand() % (SCREEN_W-60);
y = 30 + rand() % (SCREEN_H-60);
radiusx = rand() % 30;
radiusy = rand() % 30;

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the ellipse
ellipsefill(screen, x, y, radiusx, radiusy, color);

sleep(25);
}

Circle Drawing Callback Function

Surprisingly enough, Allegro provides a circle-drawing callback function just as it did
with the line callback function. The only difference is, this one uses the do_circle function:

void do_circle(BITMAP *bmp, int x, int y, int radius, int d);

To use do_circle, you must declare a callback function with the format void
docircle(BITMAP *bmp, int x, int y, int d) and pass a pointer to this function to do_circle,
as the following sample program demonstrates.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

void docircle(BITMAP *bmp, int x, int y, int color)
{

putpixel(bmp, x, y, color);
putpixel(bmp, x+1, y+1, color);
rest(1);

}

void main(void)
{

Drawing Graphics Primitives 101

int x,y,radius;
int red,green,blue,color;

//initialize Allegro
allegro_init();

//initialize the keyboard
install_keyboard();
install_timer();

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“DoCircles Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x = 40 + rand() % (SCREEN_W-80);
y = 40 + rand() % (SCREEN_H-80);
radius = rand() % 40;

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the circle
do_circle(screen, x, y, radius, color, *docircle);

}

//end program
allegro_exit();

}
END_OF_MAIN();

Chapter 3 � Basic 2D Graphics Programming with Allegro102

Drawing Graphics Primitives 103

Drawing Splines, Triangles, and Polygons
I have now covered all of the basic graphics primitives built into Allegro except for three,
which might be thought of as the most important ones, at least where a game is involved.
The spline function is valuable for creating dynamic trajectories for objects in a game that
needs various curving paths. Triangles and other types of polygons are the basis for 3D
graphics, so I will show you how to draw them.

Splines

The spline function draws a set of curves based on a set of four input points stored in an
array. The function calculates a smooth curve from the first set of points, through the sec-
ond and third, toward the fourth point:

void spline(BITMAP *bmp, const int points[8], int color);

The Splines program draws an animated spline based on shifting points, as shown in
Figure 3.20.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

Figure 3.20 The Splines program draws an animated spline curve. (The Linux
version is shown.)

void main(void)
{

int red,green,blue,color;

//initialize Allegro
allegro_init();
install_keyboard();
install_timer();

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Splines Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

int points[8] = {0,240,300,0,200,0,639,240};
int y1 = 0;
int y2 = SCREEN_H;
int dir1 = 10;
int dir2 = -10;

//wait for keypress
while(!key[KEY_ESC])
{

//modify the first spline point
y1 += dir1;
if (y1 > SCREEN_H)
{

dir1 = -10;
}
if (y1 < 0)

dir1 = 10;
points[3] = y1;

Chapter 3 � Basic 2D Graphics Programming with Allegro104

//modify the second spline point
y2 += dir2;
if (y2++ > SCREEN_H)
{

dir2 = -10;
}
if (y2 < 0)

dir2 = 10;
points[5] = y2;

//draw the spline, pause, then erase it
spline(screen, points, 15);
rest(30);
spline(screen, points, 0);

}

//end program
allegro_exit();

}
END_OF_MAIN();

Triangles

You can draw triangles using the triangle function, which takes three (x,y) points and a
color parameter:

void triangle(BITMAP *bmp, int x1, y1, x2, y2, x3, y3, int color);

The Triangles program (shown in Figure 3.21) draws random triangles on the screen.

#include “allegro.h”

void main(void)
{

int x1,y1,x2,y2,x3,y3;
int red,green,blue,color;

//initialize Allegro
allegro_init();

//initialize the keyboard
install_keyboard();
install_timer();

Drawing Graphics Primitives 105

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Triangles Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
x1 = 10 + rand() % (SCREEN_W-20);
y1 = 10 + rand() % (SCREEN_H-20);
x2 = 10 + rand() % (SCREEN_W-20);
y2 = 10 + rand() % (SCREEN_H-20);
x3 = 10 + rand() % (SCREEN_W-20);
y3 = 10 + rand() % (SCREEN_H-20);

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the triangle
triangle(screen,x1,y1,x2,y2,x3,y3,color);

rest(100);
}

//end program
allegro_exit();

}

END_OF_MAIN();

Chapter 3 � Basic 2D Graphics Programming with Allegro106

Polygons

You have already seen polygons in action with the Triangles program, because any geo-
metric shape with three or more points comprises a polygon. To draw polygons in Allegro,
you use the polygon function with a pointer to an array of points:

void polygon(BITMAP *bmp, int vertices, const int *points, int color);

In most cases you will want to simply use the triangle function, but in unusual cases when
you need to draw polygons with more than three points, this function can be helpful
(although it is more difficult to set up because the points array must be set up prior to
calling the polygon function). The best way to demonstrate this function is with a sample
program that sets up the points array and calls the polygon function (see Figure 3.22).

There is more to the subject of polygon rendering than I have time for in this chapter. Rest
assured, you will have several more opportunities in later chapters to exercise the polygon
functions built into Allegro.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

Drawing Graphics Primitives 107

Figure 3.21 The Triangles program draws random triangles on the screen.
(The Linux version is shown.)

void main(void)
{

int vertices[8];
int red,green,blue,color;

//initialize everything
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“Polygons Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//set a random location
vertices[0] = 10 + rand() % (SCREEN_W-20);
vertices[1] = 10 + rand() % (SCREEN_H-20);
vertices[2] = vertices[0] + (rand() % 30)+50;
vertices[3] = vertices[1] + (rand() % 30)+50;
vertices[4] = vertices[2] + (rand() % 30)-100;
vertices[5] = vertices[3] + (rand() % 30)+50;
vertices[6] = vertices[4] + (rand() % 30);
vertices[7] = vertices[5] + (rand() % 30)-100;

//set a random color
red = rand() % 255;
green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

Chapter 3 � Basic 2D Graphics Programming with Allegro108

//draw the polygon
polygon(screen,4,vertices,color);

rest(50);
}
//end program
allegro_exit();

}
END_OF_MAIN();

Filling in Regions
The last function I want to introduce to you in this chapter is floodfill, which fills in a
region on the destination bitmap (which can be the screen) with the color of your choice:

void floodfill(BITMAP *bmp, int x, int y, int color);

To demonstrate, the FloodFill program draws a circle on the screen and fills it in using the
floodfill function while the “ball” is moving around on the screen. I will be the first to
admit that this program could have simply called the circlefill function (which is very
likely faster, too), but the object of this program is to demonstrate floodfill with a basic
circle shape that has historically been difficult to fill efficiently (see Figure 3.23).

Drawing Graphics Primitives 109

Figure 3.22 The Polygons program draws random polygons on the screen.
(The Linux version is shown.)

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

void main(void)
{

int x = 100, y = 100;
int xdir = 10, ydir = 10;
int red,green,blue,color;
int radius = 50;

//initialize some things
allegro_init();
install_keyboard();
install_timer();

//initialize video mode to 640x480
int ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

Chapter 3 � Basic 2D Graphics Programming with Allegro110

Figure 3.23 The FloodFill program moves a filled circle around on the screen.
(The Linux version is shown.)

}

//display screen resolution
textprintf(screen, font, 0, 0, 15,

“FloodFill Program - %dx%d - Press ESC to quit”,
SCREEN_W, SCREEN_H);

//wait for keypress
while(!key[KEY_ESC])
{

//update the x position, keep within screen
x += xdir;
if (x > SCREEN_W-radius)
{

xdir = -10;
radius = 10 + rand() % 40;
x = SCREEN_W-radius;

}
if (x < radius)
{

xdir = 10;
radius = 10 + rand() % 40;
x = radius;

}

//update the y position, keep within screen
y += ydir;
if (y > SCREEN_H-radius)
{

ydir = -10;
radius = 10 + rand() % 40;
y = SCREEN_H-radius;

}
if (y < radius+20)
{

ydir = 10;
radius = 10 + rand() % 40;
y = radius+20;

}

//set a random color
red = rand() % 255;

Drawing Graphics Primitives 111

green = rand() % 255;
blue = rand() % 255;
color = makecol(red,green,blue);

//draw the circle, pause, then erase it
circle(screen, x, y, radius, color);
floodfill(screen, x, y, color);
rest(20);
rectfill(screen, x-radius, y-radius, x+radius, y+radius, 0);

}

//end program
allegro_exit();

}
END_OF_MAIN();

Printing Text on the Screen
Allegro provides numerous useful text output functions for drawing on a console or
graphical display. Allegro’s text functions support plug-in fonts that you can create with a
utility bundled with Allegro, but I’ll reserve that discussion for later. For now I just want
to give you a heads-up on the basic text output functions included with Allegro (some of
which you have already used).

Constant Text Output
There are four primary text output functions in Allegro. The text_mode function sets text
output to draw with an opaque or transparent background. Passing a value of –1 will set
the background to transparent, while passing any other value will set the background to a
specific color. Here is what the function looks like:

int text_mode(int mode);

The textout function is the basic text output function for Allegro. It has the syntax:

void textout(BITMAP *bmp, const FONT *f, const char *s, int x, y, int color);

The BITMAP *bmp parameter specifies the destination bitmap. (You can use screen to output
directly to the screen.) FONT *f specifies the font, which is just font if you are using the
default font. const char *s is the text to display, int x, y is the position on the screen, and
int color specifies the color of the font to use. (Passing –1 will use the colors built into any
custom font.) Here is an example usage for textout:

textout(screen, font, “Hello World!”, 1, 1, 10);

Chapter 3 � Basic 2D Graphics Programming with Allegro112

This line draws directly on the screen using the default font at the position (1,1), using the
color 10 (which can also be a custom color with makecol).

The other three text output functions are based on textout but provide justification. The
textout_centre function has the same parameter list as textout, but the position is based on
the center of the text rather than at the left.

void textout_centre(BITMAP *bmp, const FONT *f, const char *s,
int x, y, color);

The textout_right function is also similar to textout, but the text position (x,y) specifies
the right edge of the text rather than the left or center.

void textout_right(BITMAP *bmp, const FONT *f, const char *s,
int x, y, color);

A slightly different take on the matter of text output is textout_justify, which includes two
X coordinates—one for the left edge of the text and one for the right edge—along with
the Y position. In effect, this function tries to draw the text between the two points. You
want to set the diff parameter to a fairly high value for justification to work; otherwise, it
is automatically left-justified. This really is more useful when you are using custom fonts.

void textout_justify(BITMAP *bmp, const FONT *f, const char *s,
int x1, int x2, int y, int diff, int color);

Variable Text Output
Allegro provides several very useful text output functions that mimic the standard C
printf function, providing the capability of formatting the text and displaying variables.
The base function is textprintf, and it looks like this:

void textprintf(BITMAP *bmp, const FONT *f, int x, y, color,
const char *fmt, ...);

The syntax for textprintf is slightly different than the syntax for the textout functions. As
you can see, textprintf has the character string passed as the last parameter, with support
for numerous additional parameters. If you are familiar with printf (and you certainly
should be if you call yourself a C programmer!), then you should feel right at home with
textprintf because it supports the usual %i (integer), %f (float), %s (string), and other for-
matting elements. Here is an example:

float ver = 4.9;
textprintf(screen, font, 0, 100, 12, “Version %.2f”, ver);

This code displays:

Version 4.90

Printing Text on the Screen 113

There are three additional functions that share functionality with textprintf. The
textprintf_centre produces the same output as textprintf, but the (x,y) position is based
on the center of the text output (comparable to textout_centre). Here is the syntax:

void textprintf_centre(BITMAP *bmp, const FONT *f, int x, y, color,
const char *fmt, ...);

As you might have guessed, there is also a textprintf_right, which looks like this:

void textprintf_right(BITMAP *bmp, const FONT *f, int x, y, color,
const char *fmt, ...);

Likewise, textprintf_justify mimics the functionality of textout_justify but adds the for-
matting capabilities. Here is the function:

void textprintf_justify(BITMAP *bmp, const FONT *f, int x1, int x2,
int y, int diff, int color, const char *fmt, ...);

Testing Text Output
To put these functions to use, let’s write a short demonstration program (see Figure 3.24).
Open your favorite IDE (I am using Dev-C++ in Windows and KDevelop in Linux) and
create a new project called TextOutput. In Dev-C++, you can click on the MultiMedia tab
in the New Project dialog box and choose Allegro (DLL) to configure the project auto-
matically. In KDevelop and other IDEs, you’ll want to add a reference “-lalleg” to the linker
options to incorporate the Allegro library file.

Chapter 3 � Basic 2D Graphics Programming with Allegro114

Figure 3.24 The TextOutput program demonstrates the text output functions of Allegro.

#include <allegro.h>

int main()
{

//initialize Allegro
allegro_init();
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();
text_mode(-1);

//test the text output functions
textout(screen, font, “This was displayed by textout”, 0, 10, 15);

textout_centre(screen, font, “Sample of textout_centre function”,
SCREEN_W/2, 50, 14);

textout_justify(screen, font, “Sample output by textout_justify”,
SCREEN_W/2 - 200, SCREEN_W/2 + 200, 100, 200, 13);

textprintf(screen, font, 0, 150, 12, “Screen resolution = %i x %i”,
SCREEN_W, SCREEN_H);

textprintf_centre(screen, font, SCREEN_W/2, 200, 10,
“%s, %s!”, “Hello”, “World”);

textprintf_justify(screen, font, SCREEN_W/2 - 200,
SCREEN_W/2 + 200, 250, 400, 7, “A L L E G R O !”);

//main loop
while(! key[KEY_ESC]) { }

allegro_exit();
return 0;

}
END_OF_MAIN();

Summary
This chapter has been a romp through the basic graphics functions built into Allegro. You
learned to draw pixels, lines, circles, ellipses, and other geometric shapes in various colors,
with wireframe and solid filled color. I also covered text output in Allegro, and you learned
about the different text functions and how to use them. This chapter included many sam-
ple programs to demonstrate all of the new functionality presented.

Summary 115

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What is the term used to describe line-based graphics?

A. Vector

B. Bitmap

C. Polygon

D. Pixel

2. What does CRT stand for?

A. Captain Ron Teague

B. Corporate Resource Training

C. Cathode Ray Tube

D. Common Relativistic Torch

3. What describes a function that draws a simple geometric shape, such as a point,
line, rectangle, or circle?

A. putpixel

B. Graphics Primitive

C. triangle

D. polygon

4. How many polygons does the typical 3D accelerator chip process at a time?

A. 16

B. 8

C. 1

D. 256

5. What is comprised of three small streams of electrons of varying shades of red,
green, and blue?

A. Superstring

B. Quantum particle

C. Electron gun

D. Pixel

Chapter 3 � Basic 2D Graphics Programming with Allegro116

6. What function is used to create a custom 24- or 32-bit color?

A. makecol

B. rgb

C. color

D. truecolor

7. What function is used to draw filled rectangles?

A. fill_rect

B. fillrect

C. filledrectangle

D. rectfill

8. Which of the following is the correct definition of the circle function?

A. void circle(BITMAP *bmp, int x, int y, int radius, int color);

B. void draw_circle(BITMAP *bmp, int x, int y, int radius);

C. int circle(BITMAP *bmp, int y, int x, int radius, int color);

D. bool circle(BITMAP *bmp, int x, int y, int color);

9. What function draws a set of curves based on a set of four input points stored
in an array?

A. jagged

B. draw_curves

C. spline

D. polygon

10. Which text output function draws a formatted string with justification?

A. textout_justify

B. textprintf_right

C. textout_centre

D. textprintf_justify

Chapter Quiz 117

This page intentionally left blank

119

Writing Your First
Allegro Game

chapter 4

T
his chapter forges ahead with a lot of things I haven’t discussed yet, such as colli-
sion detection and keyboard input, but the Tank War game that is created in this
chapter will help you absorb all the information presented thus far. You’ll see how

you can use the graphics primitives you learned in Chapter 3 to create a complete game
with support for two players. You will learn how to draw and move a tank around on the
screen using nothing but simple pixel and rectangle drawing functions. You will learn how
to look at the video screen to determine when a projectile strikes a tank or another object,
how to read the keyboard, and how to process a game loop. The goal of this chapter is to
show you that you can create an entire game using the meager resources provided thus far
(in the form of the Allegro functions you have already learned) and to introduce some
new functionality that will be covered in more detail in later chapters.

Here is a breakdown of the major topics in this chapter:

� Creating the tanks

� Firing weapons

� Moving the tanks

� Detecting collisions

� Understanding the complete source code

Tank War
If this is your first foray into game programming, then Tank War is likely your very first
game! There is always a lot of joy involved in seeing your first game running on the screen.
In the mid-1980s I subscribed to several of the popular computer magazines, such as
Family Computing and Compute!, which provided small program listings in the BASIC

language, most often games. I can still remember some of the games I painstakingly typed
in from the magazine using Microsoft GW-BASIC on my old Tandy 1000. The games
never ran on the first try! I would often miss entire lines of code, even with the benefit of
line numbers in the old style of BASIC.

Today there are fantastic development tools that quite often cost nothing and yet incor-
porate some of the most advanced compiler technology available. The Free Software
Foundation (http://www.fsf.org) has done the world a wonderful service by inspiring and
funding the development of free software. Perhaps the most significant contribution by
the FSF is the GNU Compiler Collection, fondly known as GCC. Oddly enough, this very
same compiler is used on both Windows and Linux platforms by the Dev-C++ and
KDevelop tools, respectively. The format of structured and object-oriented code is much
easier to read and follow than in the numbered lines of the past.

Tank War is a two-player game that is played on a single screen using a shared keyboard.
The first player uses the W, A, S, and D keys to move his tank, and the Spacebar to fire the main
cannon on the tank. The second player uses the arrow keys for movement and the Enter
key to fire. The game is shown in Figure 4.1.

Creating the Tanks
The graphics in Tank War are created entirely with the drawing functions included in
Allegro. Figure 4.2 shows the four angles of the tank that are drawn based on the tank’s
direction of travel.

Chapter 4 � Writing Your First Allegro Game120

Figure 4.1 Tank War is a two-player game in the classic style.

The drawtank function is called from the main loop to draw each tank according to its
current direction. The drawtank function looks like this:

void drawtank(int num)
{

int x = tanks[num].x;
int y = tanks[num].y;
int dir = tanks[num].dir;

//draw tank body and turret
rectfill(screen, x-11, y-11, x+11, y+11, tanks[num].color);
rectfill(screen, x-6, y-6, x+6, y+6, 7);

//draw the treads based on orientation
if (dir == 0 || dir == 2)
{

rectfill(screen, x-16, y-16, x-11, y+16, 8);
rectfill(screen, x+11, y-16, x+16, y+16, 8);

}
else
if (dir == 1 || dir == 3)
{

rectfill(screen, x-16, y-16, x+16, y-11, 8);
rectfill(screen, x-16, y+16, x+16, y+11, 8);

}

//draw the turret based on direction
switch (dir)
{

case 0:
rectfill(screen, x-1, y, x+1, y-16, 8);
break;

case 1:
rectfill(screen, x, y-1, x+16, y+1, 8);

Tank War 121

Figure 4.2 The tanks are rendered on the screen using a series of filled rectangles.

break;
case 2:

rectfill(screen, x-1, y, x+1, y+16, 8);
break;

case 3:
rectfill(screen, x, y-1, x-16, y+1, 8);
break;

}
}

Did you notice how the entire tank is constructed with rectfill statements? This is one
example of improvisation where better technology is not available. For instance, bitmaps
and sprites are not yet available because I haven’t covered that subject yet, so this game
actually draws the tank sprite used in the game. Don’t underestimate the usefulness of
rendered graphics to enhance a sprite-based game or to create a game entirely. To erase
the tank, you simply call the erasetank function, which looks like this:

void erasetank(int num)
{

//calculate box to encompass the tank
int left = tanks[num].x - 17;
int top = tanks[num].y - 17;
int right = tanks[num].x + 17;
int bottom = tanks[num].y + 17;

//erase the tank
rectfill(screen, left, top, right, bottom, 0);

}

The erasetank function is calculated based on the center of the tank (which is how the tank
is drawn as well, from the center). Because the tank is 32×32 pixels in size, the erasetank
function draws a black filled rectangle a distance of 17 pixels in each direction from the
center (for a total of 34×34 pixels, to include a small border around the tank, which helps
to keep the tank from getting stuck in obstacles).

Firing Weapons
The projectiles fired from each tank are drawn as small rectangles (four pixels total) that
move in the current direction the tank is facing until they strike the other tank, an object,
or the edge of the screen. You can increase the size of the projectile by increasing the size
in the updatebullet function (coming up next). To determine whether a hit has occurred,
you use the getpixel function to “look” at the pixel on the screen right in front of the bul-
let. If that pixel is black (color 0 or RGB 0,0,0), then the bullet is moved another space.

Chapter 4 � Writing Your First Allegro Game122

If that color is anything other than black, then it is a sure hit! The fireweapon function gets
the bullet started in the right direction.

void fireweapon(int num)
{

int x = tanks[num].x;
int y = tanks[num].y;

//ready to fire again?
if (!bullets[num].alive)
{

bullets[num].alive = 1;

//fire bullet in direction tank is facing
switch (tanks[num].dir)
{

//north
case 0:

bullets[num].x = x;
bullets[num].y = y-22;
bullets[num].xspd = 0;
bullets[num].yspd = -BULLETSPEED;
break;

//east
case 1:

bullets[num].x = x+22;
bullets[num].y = y;
bullets[num].xspd = BULLETSPEED;
bullets[num].yspd = 0;
break;

//south
case 2:

bullets[num].x = x;
bullets[num].y = y+22;
bullets[num].xspd = 0;
bullets[num].yspd = BULLETSPEED;
break;

//west
case 3:

bullets[num].x = x-22;
bullets[num].y = y;
bullets[num].xspd = -BULLETSPEED;
bullets[num].yspd = 0;

Tank War 123

}
}

}

The fireweapon function looks at the direction of the current tank to set the X and Y move-
ment values for the bullet. Once it is set up, the bullet will move in that direction until it
strikes something or reaches the edge of the screen. The important variable here is alive,
which determines whether the bullet is moved accordingly using this updatebullet function:

void updatebullet(int num)
{

int x = bullets[num].x;
int y = bullets[num].y;

if (bullets[num].alive)
{

//erase bullet
rect(screen, x-1, y-1, x+1, y+1, 0);

//move bullet
bullets[num].x += bullets[num].xspd;
bullets[num].y += bullets[num].yspd;
x = bullets[num].x;
y = bullets[num].y;

//stay within the screen
if (x < 5 || x > SCREEN_W-5 || y < 20 || y > SCREEN_H-5)
{

bullets[num].alive = 0;
return;

}

//draw bullet
x = bullets[num].x;
y = bullets[num].y;
rect(screen, x-1, y-1, x+1, y+1, 14);

//look for a hit
if (getpixel(screen, bullets[num].x, bullets[num].y))
{

bullets[num].alive = 0;
explode(num, x, y);

}

Chapter 4 � Writing Your First Allegro Game124

//print the bullet’s position
textprintf(screen, font, SCREEN_W/2-50, 1, 2,

“B1 %-3dx%-3d B2 %-3dx%-3d”,
bullets[0].x, bullets[0].y,
bullets[1].x, bullets[1].y);

}
}

Tank Movement
To move the tank, each player uses the appropriate keys to move forward, backward, left,
right, and to fire the weapon. The first player uses W, A, S, and D to move and the Spacebar
to fire, while player two uses the arrow keys to move and Enter to fire. The main loop
looks for a key press and calls on the getinput function to see which key has been pressed.
I will discuss keyboard input in a later chapter; for now all you need to be aware of is an
array called key that stores the values of each key press.

void getinput()
{

//hit ESC to quit
if (key[KEY_ESC])

gameover = 1;

//WASD / SPACE keys control tank 1
if (key[KEY_W])

forward(0);
if (key[KEY_D])

turnright(0);
if (key[KEY_A])

turnleft(0);
if (key[KEY_S])

backward(0);
if (key[KEY_SPACE])

fireweapon(0);

//arrow / ENTER keys control tank 2
if (key[KEY_UP])

forward(1);
if (key[KEY_RIGHT])

turnright(1);
if (key[KEY_DOWN])

backward(1);
if (key[KEY_LEFT])

Tank War 125

turnleft(1);
if (key[KEY_ENTER])

fireweapon(1);

//short delay after keypress
rest(10);

}

Collision Detection
I have already explained how the bullets use getpixel to determine when a collision has
occurred (when the bullet hits a tank or obstacle). But what about collision detection when
you are moving the tanks themselves? There are several obstacles on the battlefield to add
a little strategy to the game; they offer a place to hide or maneuver around (or straight
through if you blow up the obstacles). The clearpath function is used to determine whether
the ship can move. The function checks the screen boundaries and obstacles on the screen
to clear a path for the tank or prevent it from moving any further in that direction. The
function also takes into account reverse motion because the tanks can move forward or
backward. clearpath is a bit lengthy, so I’ll leave it for the main code listing later in the chap-
ter. The clearpath function calls the checkpath function to actually see whether the tank’s
pathway is clear for movement. (checkpath is called multiple times for each tank.)

int checkpath(int x1,int y1,int x2,int y2,int x3,int y3)
{

if (getpixel(screen, x1, y1) ||
getpixel(screen, x2, y2) ||
getpixel(screen, x3, y3))
return 1;

else
return 0;

}

All that remains of the program are the logistical functions for setting up the screen, mod-
ifying the speed and direction of each tank, displaying the score, placing the random
debris, and so on.

The Complete Tank War Source Code
The code listing for Tank War is included here in its entirety. Despite having already
shown you many of the functions in this program, I think it’s important at this point to
show you the entire listing in one fell swoop so there is no confusion. Of course, you can
open the Tank War project that is located on the CD-ROM that accompanies this book;
look inside a folder called chapter04 for the complete project for Visual C++, Dev-C++,
or KDevelop. If you are using some other operating system, you can still compile this code

Chapter 4 � Writing Your First Allegro Game126

for your favorite compiler by typing it into your text editor and including the Allegro
library. (If you need some pointers, refer to Appendix E,“Configuring Allegro for Microsoft
Visual C++ and Other Compilers.”)

The Tank War Header File

The first code listing is for the header file, which includes the variables, structures, con-
stants, and function prototypes for the game. You will want to add a new file to the pro-
ject called tankwar.h. The main source code file (main.c) will try to include the header file
by this filename. If you need help configuring your compiler to link to the Allegro game
library, refer to Appendix E. If you have not yet installed Allegro, you might want to go
back and read Chapter 2 and refer to Appendix F, “Compiling the Allegro Source Code.”

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Chapter 4 - Tank War Game
///

#ifndef _TANKWAR_H
#define _TANKWAR_H

#include “allegro.h”

//define some game constants
#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480
#define BLOCKS 5
#define BLOCKSIZE 100
#define MAXSPEED 2
#define BULLETSPEED 10
#define TAN makecol(255,242,169)
#define CAMO makecol(64,142,66)
#define BURST makecol(255,189,73)

//define tank structure
struct tagTank
{

int x,y;
int dir,speed;
int color;
int score;

Tank War 127

} tanks[2];

//define bullet structure
struct tagBullet
{

int x,y;
int alive;
int xspd,yspd;

} bullets[2];

int gameover = 0;

//function prototypes
void drawtank(int num);
void erasetank(int num);
void movetank(int num);
void explode(int num, int x, int y);
void updatebullet(int num);
int checkpath(int x1,int y1,int x2,int y2,int x3,int y3);
void clearpath(int num);
void fireweapon(int num);
void forward(int num);
void backward(int num);
void turnleft(int num);
void turnright(int num);
void getinput();
void setuptanks();
void score(int);
void print(const char *s, int c);
void setupdebris();
void setupscreen();

#endif

The Tank War Source File

The primary source code file for Tank War includes the tankwar.h header file (which in
turn includes allegro.h). Included in this code listing are all of the functions needed by the
game in addition to the main function (containing the game loop). You can type this code
in as-is for whatever OS and IDE you are using; if you have included the Allegro library,
it will run without issue. This game is wonderfully easy to get to work because it requires
no bitmap files, uses no backgrounds, and simply draws directly to the primary screen
buffer (which can be full-screen or windowed).

Chapter 4 � Writing Your First Allegro Game128

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Chapter 4 - Tank War Game
///

#include “tankwar.h”

///
// drawtank function
// construct the tank using drawing functions
///
void drawtank(int num)
{

int x = tanks[num].x;
int y = tanks[num].y;
int dir = tanks[num].dir;

//draw tank body and turret
rectfill(screen, x-11, y-11, x+11, y+11, tanks[num].color);
rectfill(screen, x-6, y-6, x+6, y+6, 7);

//draw the treads based on orientation
if (dir == 0 || dir == 2)
{

rectfill(screen, x-16, y-16, x-11, y+16, 8);
rectfill(screen, x+11, y-16, x+16, y+16, 8);

}
else
if (dir == 1 || dir == 3)
{

rectfill(screen, x-16, y-16, x+16, y-11, 8);
rectfill(screen, x-16, y+16, x+16, y+11, 8);

}

//draw the turret based on direction
switch (dir)
{

case 0:
rectfill(screen, x-1, y, x+1, y-16, 8);
break;

case 1:
rectfill(screen, x, y-1, x+16, y+1, 8);

Tank War 129

break;
case 2:

rectfill(screen, x-1, y, x+1, y+16, 8);
break;

case 3:
rectfill(screen, x, y-1, x-16, y+1, 8);
break;

}
}

///
// erasetank function
// erase the tank using rectfill
///
void erasetank(int num)
{

//calculate box to encompass the tank
int left = tanks[num].x - 17;
int top = tanks[num].y - 17;
int right = tanks[num].x + 17;
int bottom = tanks[num].y + 17;

//erase the tank
rectfill(screen, left, top, right, bottom, 0);

}

///
// movetank function
// move the tank in the current direction
///
void movetank(int num)
{

int dir = tanks[num].dir;
int speed = tanks[num].speed;

//update tank position based on direction
switch(dir)
{

case 0:
tanks[num].y -= speed;
break;

case 1:
tanks[num].x += speed;

Chapter 4 � Writing Your First Allegro Game130

break;
case 2:

tanks[num].y += speed;
break;

case 3:
tanks[num].x -= speed;

}

//keep tank inside the screen
if (tanks[num].x > SCREEN_W-22)
{

tanks[num].x = SCREEN_W-22;
tanks[num].speed = 0;

}
if (tanks[num].x < 22)
{

tanks[num].x = 22;
tanks[num].speed = 0;

}
if (tanks[num].y > SCREEN_H-22)
{

tanks[num].y = SCREEN_H-22;
tanks[num].speed = 0;

}
if (tanks[num].y < 22)
{

tanks[num].y = 22;
tanks[num].speed = 0;

}
}

///
// explode function
// display random boxes to simulate an explosion
///
void explode(int num, int x, int y)
{

int n;

//retrieve location of enemy tank
int tx = tanks[!num].x;
int ty = tanks[!num].y;

Tank War 131

//is bullet inside the boundary of the enemy tank?
if (x > tx-16 && x < tx+16 && y > ty-16 && y < ty+16)

score(num);

//draw some random circles for the “explosion”
for (n = 0; n < 10; n++)
{

rectfill(screen, x-16, y-16, x+16, y+16, rand() % 16);
rest(1);

}

//clear the area of debris
rectfill(screen, x-16, y-16, x+16, y+16, 0);

}

///
// updatebullet function
// update the position of a bullet
///
void updatebullet(int num)
{

int x = bullets[num].x;
int y = bullets[num].y;

if (bullets[num].alive)
{

//erase bullet
rect(screen, x-1, y-1, x+1, y+1, 0);

//move bullet
bullets[num].x += bullets[num].xspd;
bullets[num].y += bullets[num].yspd;
x = bullets[num].x;
y = bullets[num].y;

//stay within the screen
if (x < 5 || x > SCREEN_W-5 || y < 20 || y > SCREEN_H-5)
{

bullets[num].alive = 0;
return;

}

Chapter 4 � Writing Your First Allegro Game132

//draw bullet
x = bullets[num].x;
y = bullets[num].y;
rect(screen, x-1, y-1, x+1, y+1, 14);

//look for a hit
if (getpixel(screen, bullets[num].x, bullets[num].y))
{

bullets[num].alive = 0;
explode(num, x, y);

}

//print the bullet’s position
textprintf(screen, font, SCREEN_W/2-50, 1, 2,

“B1 %-3dx%-3d B2 %-3dx%-3d”,
bullets[0].x, bullets[0].y,
bullets[1].x, bullets[1].y);

}
}

///
// checkpath function
// check to see if a point on the screen is black
///
int checkpath(int x1,int y1,int x2,int y2,int x3,int y3)
{

if (getpixel(screen, x1, y1) ||
getpixel(screen, x2, y2) ||
getpixel(screen, x3, y3))
return 1;

else
return 0;

}

///
// clearpath function
// verify that the tank can move in the current direction
///
void clearpath(int num)
{

//shortcut vars
int dir = tanks[num].dir;

Tank War 133

int speed = tanks[num].speed;
int x = tanks[num].x;
int y = tanks[num].y;

switch(dir)
{

//check pixels north
case 0:

if (speed > 0)
{

if (checkpath(x-16, y-20, x, y-20, x+16, y-20))
tanks[num].speed = 0;

}
else

//if reverse dir, check south
if (checkpath(x-16, y+20, x, y+20, x+16, y+20))

tanks[num].speed = 0;
break;

//check pixels east
case 1:

if (speed > 0)
{

if (checkpath(x+20, y-16, x+20, y, x+20, y+16))
tanks[num].speed = 0;

}
else

//if reverse dir, check west
if (checkpath(x-20, y-16, x-20, y, x-20, y+16))

tanks[num].speed = 0;
break;

//check pixels south
case 2:

if (speed > 0)
{

if (checkpath(x-16, y+20, x, y+20, x+16, y+20))
tanks[num].speed = 0;

}
else

//if reverse dir, check north
if (checkpath(x-16, y-20, x, y-20, x+16, y-20))

tanks[num].speed = 0;

Chapter 4 � Writing Your First Allegro Game134

break;

//check pixels west
case 3:

if (speed > 0)
{

if (checkpath(x-20, y-16, x-20, y, x-20, y+16))
tanks[num].speed = 0;

}
else

//if reverse dir, check east
if (checkpath(x+20, y-16, x+20, y, x+20, y+16))

tanks[num].speed = 0;
break;

}
}

///
// fireweapon function
// configure a bullet’s direction and speed and activate it
///
void fireweapon(int num)
{

int x = tanks[num].x;
int y = tanks[num].y;

//ready to fire again?
if (!bullets[num].alive)
{

bullets[num].alive = 1;

//fire bullet in direction tank is facing
switch (tanks[num].dir)
{

//north
case 0:

bullets[num].x = x;
bullets[num].y = y-22;
bullets[num].xspd = 0;
bullets[num].yspd = -BULLETSPEED;
break;

//east
case 1:

Tank War 135

bullets[num].x = x+22;
bullets[num].y = y;
bullets[num].xspd = BULLETSPEED;
bullets[num].yspd = 0;
break;

//south
case 2:

bullets[num].x = x;
bullets[num].y = y+22;
bullets[num].xspd = 0;
bullets[num].yspd = BULLETSPEED;
break;

//west
case 3:

bullets[num].x = x-22;
bullets[num].y = y;
bullets[num].xspd = -BULLETSPEED;
bullets[num].yspd = 0;

}
}

}

///
// forward function
// increase the tank’s speed
///
void forward(int num)
{

tanks[num].speed++;
if (tanks[num].speed > MAXSPEED)

tanks[num].speed = MAXSPEED;
}

///
// backward function
// decrease the tank’s speed
///
void backward(int num)
{

tanks[num].speed—;
if (tanks[num].speed < -MAXSPEED)

tanks[num].speed = -MAXSPEED;
}

Chapter 4 � Writing Your First Allegro Game136

///
// turnleft function
// rotate the tank counter-clockwise
///
void turnleft(int num)
{

tanks[num].dir—;
if (tanks[num].dir < 0)

tanks[num].dir = 3;
}

///
// turnright function
// rotate the tank clockwise
///
void turnright(int num)
{

tanks[num].dir++;
if (tanks[num].dir > 3)

tanks[num].dir = 0;
}

///
// getinput function
// check for player input keys (2 player support)
///
void getinput()
{

//hit ESC to quit
if (key[KEY_ESC])

gameover = 1;

//WASD / SPACE keys control tank 1
if (key[KEY_W])

forward(0);
if (key[KEY_D])

turnright(0);
if (key[KEY_A])

turnleft(0);
if (key[KEY_S])

backward(0);
if (key[KEY_SPACE])

fireweapon(0);

Tank War 137

//arrow / ENTER keys control tank 2
if (key[KEY_UP])

forward(1);
if (key[KEY_RIGHT])

turnright(1);
if (key[KEY_DOWN])

backward(1);
if (key[KEY_LEFT])

turnleft(1);
if (key[KEY_ENTER])

fireweapon(1);

//short delay after keypress
rest(10);

}

///
// score function
// add a point to the specified player’s score
///
void score(int player)
{

//update score
int points = ++tanks[player].score;

//display score
textprintf(screen, font, SCREEN_W-70*(player+1), 1, BURST,

“P%d: %d”, player+1, points);
}

///
// setuptanks function
// set up the starting condition of each tank
///
void setuptanks()
{

//player 1
tanks[0].x = 30;
tanks[0].y = 40;
tanks[0].dir = 1;
tanks[0].speed = 0;
tanks[0].color = 9;
tanks[0].score = 0;

Chapter 4 � Writing Your First Allegro Game138

//player 2
tanks[1].x = SCREEN_W-30;
tanks[1].y = SCREEN_H-30;
tanks[1].dir = 3;
tanks[1].speed = 0;
tanks[1].color = 12;
tanks[1].score = 0;

}

///
// setupdebris function
// set up the debris on the battlefield
///
void setupdebris()
{

int n,x,y,size,color;

//fill the battlefield with random debris
for (n = 0; n < BLOCKS; n++)
{

x = BLOCKSIZE + rand() % (SCREEN_W-BLOCKSIZE*2);
y = BLOCKSIZE + rand() % (SCREEN_H-BLOCKSIZE*2);
size = (10 + rand() % BLOCKSIZE)/2;
color = makecol(rand()%255, rand()%255, rand()%255);
rectfill(screen, x-size, y-size, x+size, y+size, color);

}

}

///
// setupscreen function
// set up the graphics mode and game screen
///
void setupscreen()
{

//set video mode
int ret = set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

Tank War 139

//print title
textprintf(screen, font, 1, 1, BURST,

“Tank War - %dx%d”, SCREEN_W, SCREEN_H);

//draw screen border
rect(screen, 0, 12, SCREEN_W-1, SCREEN_H-1, TAN);
rect(screen, 1, 13, SCREEN_W-2, SCREEN_H-2, TAN);

}

///
// main function
// start point of the program
///
void main(void)
{

//initialize everything
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));
setupscreen();
setupdebris();
setuptanks();

//game loop
while(!gameover)
{

//erase the tanks
erasetank(0);
erasetank(1);

//check for collisions
clearpath(0);
clearpath(1);

//move the tanks
movetank(0);
movetank(1);

//draw the tanks
drawtank(0);
drawtank(1);

Chapter 4 � Writing Your First Allegro Game140

//update the bullets
updatebullet(0);
updatebullet(1);

//check for keypresses
if (keypressed())

getinput();

//slow the game down (adjust as necessary)
rest(30);

}

//end program
allegro_exit();

}
END_OF_MAIN();

Summary
Congratulations on completing your first game with Allegro! It has been a short journey
thus far—we’re only in the fourth chapter of the book. Contrast this with the enormous
amount of information that would have been required in advance to compile even a simple
game, such as Tank War, using standard graphics libraries, such as DirectX or SVGAlib!
It would have taken this amount of source code just to set up the screen and prepare the
program for the actual game. That is where Allegro truly shines—by abstracting the logis-
tical issues into a common set of library functions that work regardless of the underlying
operating system.

This also concludes Part I of the book and sends you venturing into Part II, which covers
the core functionality of Allegro in much more detail. You will learn how to use animated
sprites and create scrolling backgrounds, and we’ll discuss the next upgrade to Tank War.
That’s right, this isn’t the end of Tank War! From this point forward, we’ll be improving
the game with each new chapter. For starters, this game really needs some design and
direction (the focus of Chapter 5). By the time you’re finished, the game will feature a
scrolling background, a tile-based battlefield, sound effects…the whole works!

Tank War 141

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What is the primary graphics drawing function used to draw the tanks in Tank War?

A. rectfill

B. fillrect

C. drawrect

D. rectangle

2. What function in Tank War sets up a bullet to fire it in the direction of the tank?

A. pulltrigger

B. launchprojectile

C. fireweapon

D. firecannon

3. What function in Tank War updates the position and draws each projectile?

A. updatecannon

B. movebullet

C. moveprojectile

D. updatebullet

4. What is the name of the organization that produced GCC?

A. Free Software Foundation

B. GNU

C. Freeware

D. Open Source

5. How many players are supported in Tank War at the same time?

A. 1

B. 2

C. 3

D. 4

6. What is the technical terminology for handling two objects that crash in the game?

A. Crash override

B. Sprite insurance

C. Collision detection

D. Handling the crash

Chapter 4 � Writing Your First Allegro Game142

7. What function in Tank War keeps the tanks from colliding with other objects?

A. makepath

B. clearpath

C. buildpath

D. dontcollide

8. Which function in Tank War helps to find out whether a point on the screen is
black?

A. getpixel

B. findcolor

C. getcolor

D. checkpixel

9. What is the standard constant used to run Allegro in windowed mode?

A. GFX_RUNINA_WINDOW

B. GFX_DETECT_WINDOWED

C. GFX_AUTODETECT_WINDOWS

D. GFX_AUTODETECT_WINDOWED

10. What function in Allegro is used to slow the game down?

A. pause

B. slow

C. rest

D. stop

Chapter Quiz 143

This page intentionally left blank

145

Programming the
Keyboard, Mouse,
and Joystick

chapter 5

W
elcome to the input chapter, focusing on programming the keyboard, mouse,
and joystick! This chapter is a lot of fun, and I know you will enjoy learning
about these three input devices because there are some great example programs

here to demonstrate how to get a handle on this subject. By the time you have finished this
chapter, you will be able to scan for individual keys, read their scan codes, and detect mul-
tiple button presses. You will learn about Allegro’s buffered keyboard input routines and
discover ASCII. (See Appendix B, “Useful Tables,” for a table of ASCII values.) You will
learn how to read the mouse position, create a custom graphical mouse pointer, check up
on the mouse wheel, and discover something called mickeys. You will also learn how to
read the joystick, find out what features the currently installed joystick provides (such as
analog/digital sticks, buttons, hats, sliders, and so on), and read the joystick values to pro-
vide input for a game. As you go through this chapter, you will discover several sample
programs that make the subjects easy to understand, including a stargate program, a mis-
sile defense system, a hyperspace teleportation program, and a joystick program that
involves bouncing balls. Are you ready to dig into the fun subject of device input?
I thought so! Let’s do it.

Here is a breakdown of the major topics in this chapter:

� Handling keyboard input

� Detecting key presses

� Dealing with buffered keyboard input

� Handling mouse input

� Reading the mouse position

� Working with relative mouse motion

� Handling joystick input

� Handling joystick controller movement

� Handling joystick button presses

Handling Keyboard Input
Allegro provides functions for handling buffered input and individual key states.
Keyboard input might seem strange to gamers who have dedicated their lives to console
games, but the keyboard has been the mainstay of PC gaming for two dozen years and
counting, and it is not likely to be replaced anytime soon. The joystick has had only lim-
ited acceptance on the PC, but the mouse has had a larger influence on games, primarily
due to modern operating systems. Allegro supports both ANSI (one-byte) and Unicode
(two-byte) character systems. (By the way, ANSI stands for American National Standards
Institute and ASCII stands for American Standard Code for Information Interchange.)

The Keyboard Handler
Allegro abstracts the keyboard from the operating system so the generic keyboard routines
will work on any computer system you have targeted for your game (Windows, Linux, Mac,
and so on). However, that abstraction does not take anything away from the inherent capa-
bilities of any system because the library is custom-written for each platform. The
Windows version of Allegro utilizes DirectInput for the keyboard handler. Since there really
is no magic to the subject, let’s just jump right in and work with the keyboard.

Before you can start using the keyboard routines in Allegro, you must initialize the key-
board handler with the install_keyboard function.

int install_keyboard();

If you try to use the keyboard routines before initializing, the program will likely crash (or
at best, it won’t respond to the keyboard). Once you have initialized the keyboard handler,
there is no need to uninitialize it—that is handled by Allegro via the allegro_exit function
(which is called automatically before Allegro stops running). But if you do find a need to
remove the keyboard handler, you can use remove_keyboard.

void remove_keyboard();

Some operating systems, such as those with preemptive multitasking, do not support the
keyboard interrupt handler that Allegro uses. You can use the poll_keyboard function to
poll the keyboard if your program will need to be run on systems that don’t support the
keyboard interrupt service routine. Why would this be the case? Allegro is a multi-threaded
library. When you call allegro_init and functions such as install_keyboard, Allegro creates
several threads to handle events, scroll the screen, draw sprites, and so on.

int poll_keyboard();

Chapter 5 � Programming the Keyboard, Mouse, and Joystick146

When you first call poll_keyboard, Allegro switches to polled mode, after which the key-
board must be polled even if an interrupt or a thread is available. To determine when
polling mode is active, use the keyboard_needs_poll function.

int keyboard_needs_poll();

Detecting Key Presses
Allegro makes it very easy to detect key presses. To check for an individual key, you can
use the key array that is populated with values when the keyboard is polled (or during reg-
ular intervals, when run as a thread).

extern volatile char key[KEY_MAX];

Most of the keys on computer systems are supported by name using constant key values
defined in the Allegro library header files. If you want to see all of the key definitions your-
self, look in the Allegro library folder for a header file called keyboard.h, in which all the

keys are defined. Note also that
Allegro defines individual keys,
not ASCII codes, so the main
numeric keys are not the same as
the numeric keypad keys, and the
Ctrl, Alt, and Shift keys are treated
individually. Pressing Shift+A
results in two key presses, not just
the “A” key. The buffered keyboard
routines (covered next) will dif-
ferentiate lowercase “a” from
uppercase “A.” Table 5.1 lists a few
of the most common key codes.

Handling Keyboard Input 147

Table 5.1 Common Key Codes

Key Description

KEY_A…KEY_Z Standard alphabetic keys
KEY_0…KEY_9 Standard numeric keys
KEY_0_PAD…KEY_9_PAD Numeric keypad keys
KEY_F1…KEY_F12 Function keys
KEY_ESC Esc key
KEY_BACKSPACE Backspace key
KEY_TAB Tab key
KEY_ENTER Enter key
KEY_SPACE Space key
KEY_INSERT Insert key
KEY_DEL Delete key
KEY_HOME Home key
KEY_END End key
KEY_PGUP Page Up key
KEY_PGDN Page Down key
KEY_LEFT Left arrow key
KEY_RIGHT Right arrow key
KEY_UP Up arrow key
KEY_DOWN Down arrow key
KEY_LSHIFT Left Shift key
KEY_RSHIFT Right Shift key

The sample programs in the chapters thus far have used the keyboard handler without
fully explaining it because it’s difficult to demonstrate anything without some form of
keyboard input. The typical game loop looks like this:

while (!key[KEY_ESC])
{

//do some stuff
}

This loop continues to run until the Esc key is pressed, at which point the loop is exited.
Direct access to the key codes means the program does not use the keyboard buffer;
rather, it checks each key individually, bypassing the keyboard buffer entirely. You can still
check the key codes while also processing key presses in the keyboard buffer using the
buffered input functions, such as readkey.

The Stargate Program
The Stargate program demonstrates how to use the keyboard scan codes to detect when
specific keys have been pressed. You will use this technology to decipher the ancient hiero-
glyphs on the gate and attempt to open a wormhole to Abydos. If all scholarly attempts
fail, you can resort to trying random dialing sequences using the keys on the keyboard.
Our scientists have thus far failed in their attempt to decipher the gate symbols, as you can
see in Figure 5.1. What this program really needs are some sound effects, but that will have
to wait for Chapter 15, “Mastering the Audible Realm: Allegro’s Sound Support.”

Should you successfully
crack the gate codes, the
result will look like Figure
5.2.

Chapter 5 � Programming the Keyboard, Mouse, and Joystick148

Figure 5.1 The gate symbols have yet to be deciphered. Are you
up to the challenge?

#include “allegro.h”

#define WHITE makecol(255,255,255)
#define BLUE makecol(64,64,255)
#define RED makecol(255,64,64)

typedef struct POINT
{

int x, y;
} POINT;

POINT coords[] = {{25,235},
{15,130},
{60,50},
{165,10},
{270,50},
{325,135},
{315,235}};

BITMAP *stargate;
BITMAP *water;

Handling Keyboard Input 149

Figure 5.2 Opening a gateway to another world—speculative fantasy or a
real possibility?

BITMAP *symbols[7];
int count = 0;

//helper function to highlight each shevron
void shevron(int num)
{

floodfill(screen, 20+coords[num].x, 50+coords[num].y, RED);

if (++count > 6)
{

masked_blit(water,screen,0,0,67,98,water->w,water->h);
textout_centre(screen,font,”WORMHOLE ESTABLISHED!”,

SCREEN_W/2, SCREEN_H-30, RED);
}

}

//main function
void main(void)
{

int n;

//initialize program
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_FULLSCREEN, 640, 480, 0, 0);
install_keyboard();

//load the stargate image
stargate = load_bitmap(“stargate.bmp”, NULL);
blit(stargate,screen,0,0,20,50,stargate->w,stargate->h);

//load the water image
water = load_bitmap(“water.bmp”, NULL);

//load the symbol images
symbols[0] = load_bitmap(“symbol1.bmp”, NULL);
symbols[1] = load_bitmap(“symbol2.bmp”, NULL);
symbols[2] = load_bitmap(“symbol3.bmp”, NULL);
symbols[3] = load_bitmap(“symbol4.bmp”, NULL);
symbols[4] = load_bitmap(“symbol5.bmp”, NULL);
symbols[5] = load_bitmap(“symbol6.bmp”, NULL);
symbols[6] = load_bitmap(“symbol7.bmp”, NULL);

Chapter 5 � Programming the Keyboard, Mouse, and Joystick150

//display the symbols
textout(screen,font,”DIALING SEQUENCE”, 480, 50, WHITE);
for (n=0; n<7; n++)
{

textprintf(screen,font,480,70+n*40,BLUE,”%d”, n+1);
blit(symbols[n],screen,0,0,530,70+n*40,32,32);

}

//display title
textout(screen,font,”STARGATE PROGRAM (ESC to quit)”, 0, 0, RED);
textout(screen,font,”PRESS THE CORRECT KEYS (A-Z) “\

“TO DIAL THE STARGATE”, 0, 10, RED);

//main loop
while (!key[KEY_ESC])
{

//check for proper sequence
switch (count)
{

case 0:
if (key[KEY_A]) shevron(0);
break;

case 1:
if (key[KEY_Y]) shevron(1);
break;

case 2:
if (key[KEY_B]) shevron(2);
break;

case 3:
if (key[KEY_A]) shevron(3);
break;

case 4:
if (key[KEY_B]) shevron(4);
break;

case 5:
if (key[KEY_T]) shevron(5);
break;

case 6:
if (key[KEY_U]) shevron(6);
break;

}
}

Handling Keyboard Input 151

//clean up
destroy_bitmap(stargate);
destroy_bitmap(water);
for (n=0; n<7; n++)

destroy_bitmap(symbols[n]);

allegro_exit();
}
END_OF_MAIN();

Buffered Keyboard Input
Buffered keyboard input is a less direct way of reading keyboard input in which individ-
ual key codes are not scanned; instead, the ASCII code is returned by one of the buffered
keyboard input functions, such as readkey.

int readkey();

The readkey function returns the ASCII code of the next character in the keyboard buffer.
If no key has been pressed, then readkey waits for the next key press. There is a similar
function for handling Unicode keys called ureadkey, which returns the Unicode value (a
two-byte value similar to ASCII) while returning the scan code as a pointer. (I have often
wondered why Allegro doesn’t simply return these values as a four-byte long.)

int ureadkey(int *scancode);

The readkey function actually returns two values using a two-byte integer value. The low
byte of the return value contains the ASCII code (which changes based on Ctrl, Alt, and
Shift keys), while the high byte contains the scan code (which is always the same regard-
less of the control keys). Because the scan code is included in the upper byte, you can use
the predefined key array to detect buffered key presses by shifting the bits. Shifting the
value returned by readkey by eight results in the scan code. For instance:

if ((readkey() >> 8) == KEY_TAB)
printf(“You pressed Tab\n”);

Of course, it is easier to use just the key array unless you need to read both the scan code
and the ASCII code at the same time, which is where readkey comes in handy.

As an alternative, you can also check the ASCII code and detect control key sequences at
the same time using the key_shifts value.

extern volatile int key_shifts;

Chapter 5 � Programming the Keyboard, Mouse, and Joystick152

This integer contains a bitmask with the following possible values:

KB_SHIFT_FLAGKB_CTRL_FLAGKB_ALT_FLAG
KB_LWIN_FLAG
KB_RWIN_FLAG
KB_MENU_FLAG
KB_SCROLOCK_FLAG
KB_NUMLOCK_FLAG
KB_CAPSLOCK_FLAG
KB_INALTSEQ_FLAG
KB_ACCENT1_FLAG
KB_ACCENT2_FLAG
KB_ACCENT3_FLAG
KB_ACCENT4_FLAG

For instance:

if ((key_shifts & KB_CTRL_FLAG) && (readkey() == 13))
printf(“You pressed CTRL+Enter\n”);

Of course, I personally find it easier to simply write the code this way:

if ((key[KEY_CTRL] && key[KEY_ENTER])
printf(“You pressed CTRL+Enter\n”);

You can also use a support function provided by Allegro to convert the scan code to an
ASCII value with the scancode_to_ascii function.

int scancode_to_ascii(int scancode);

One more support function that you might want to use is set_keyboard_rate, which
changes the key repeat rate of the keyboard (in milliseconds). You can disable the key
repeat by passing zeros to this function.

void set_keyboard_rate(int delay, int repeat);

Simulating Key Presses
Suppose you have written a game and you want to create a game demo, but you don’t want
to write a complicated program just to demonstrate a “proof of concept.” There is an elegant
solution to the problem—simulating key presses. Allegro provides two functions you can use
to insert keys into the keyboard buffer so it will appear as if those keys were actually pressed.

The function is called simulate_keypress, and it has a similar support function for Unicode
called simulate_ukeypress. Here are the definitions:

void simulate_keypress(int key);
void simulate_ukeypress(int key, int scancode);

Handling Keyboard Input 153

Chapter 5 � Programming the Keyboard, Mouse, and Joystick154

In addition to inserting keys into the keyboard buffer, you can also clear the keyboard
buffer entirely using the clear_keybuf function.

void clear_keybuf();

The KeyTest Program
I would be remiss if I didn’t provide a sample program to demonstrate buffered keyboard
input, although this small sample program is not as interesting as the last one.
Nevertheless, it always helps to see the theory of a particular subject in action. Figure 5.3
shows the KeyTest program. This is a convenient program to keep handy because you’ll
frequently need keyboard scan codes, and this program makes it easy to look them up
(knowing that you are free to use Allegro’s predefined keys or the scan codes directly).

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)

void main(void)
{

Figure 5.3 The KeyTest program shows the key value, scan code,
ASCII code, and character.

int k, x, y;
int scancode, ascii;

//initialize program
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();

//display title
textout(screen,font,”KeyTest Program”, 0, 0, WHITE);
textout(screen,font,”Press a key (ESC to quit)...”, 0, 20, WHITE);

//set starting position for text
x = SCREEN_W/2 - 60;
y = SCREEN_H/2 - 20;

while (!key[KEY_ESC])
{

//get and convert scan code
k = readkey();
scancode = (k >> 8);
ascii = scancode_to_ascii(scancode);

//display key values
textprintf(screen, font, x, y, WHITE,

“Key value = %-6d”, k);
textprintf(screen, font, x, y+15, WHITE,

“Scan code = %-6d”, scancode);
textprintf(screen, font, x, y+30, WHITE,

“ASCII code = %-6d”, ascii);
textprintf(screen, font, x, y+45, WHITE,

“Character = %-6c”, (char)ascii);
}
allegro_exit();

}
END_OF_MAIN();

Handling Mouse Input
Mouse input is probably even more vital to a modern game than keyboard input, so sup-
port for the mouse is not just an option, it is an assumption, a requirement (unless you
are planning to develop a text game).

Handling Mouse Input 155

The Mouse Handler
Allegro is consistent with the input routines, so it is fairly easy to explain how to enable
the mouse handler. The one thing you must remember is that the mouse routines (which
I’ll go over shortly) must only be used after the mouse handler has been installed with the
install_mouse function.

int install_mouse();

Although it is not required because allegro_exit handles this aspect for you, you can use
the remove_mouse function to remove the mouse handler.

void remove_mouse();

Another similarity between the mouse and keyboard handlers is the ability to poll the
mouse rather than using the asynchronous interrupt handler to feed values to the mouse
variables and functions at your disposal.

int poll_mouse();

When you have forced mouse polling by calling this function, or when your program is
running under an operating system that doesn’t support asynchronous interrupt han-
dlers, you can check the polled state using mouse_needs_poll. If you suspect that polling
might be necessary (based on the operating system you are targeting for the game), it’s a
good idea to call this function to determine whether polling is indeed needed.

int mouse_needs_poll();

Reading the Mouse Position
After you install the mouse handler, you automatically have access to the mouse values
and functions without much ado (or any more effort). The mouse_x and mouse_y variables
are defined and populated with the mouse position by Allegro.

extern volatile int mouse_x;
extern volatile int mouse_y;

The mouse_z variable contains the current value of the mouse wheel (if supported by the
mouse driver and the operating system). I think it’s a great idea to support the mouse
wheel in a game whenever possible because it’s a frequent and popular option, and most
new mice have mouse wheels.

extern volatile int mouse_z;

Chapter 5 � Programming the Keyboard, Mouse, and Joystick156

Detecting Mouse Buttons
Obviously you can’t do much with just the mouse position, so wouldn’t it be helpful to
also have the ability to detect mouse button clicks? You can do just that by using the
mouse_b variable.

extern volatile int mouse_b;

This single integer variable contains the button values in packed bit format, where the first
bit is button one, the second bit is button two, and the third bit is button three. If you want
to check for a specific button, you can just use the & (logical and) operator to compare a
bit inside mouse_b.

if (mouse_b & 1)
printf(“Left button was pressed”);

if (mouse_b & 2)
printf(“Right button was pressed”);

if (mouse_b & 4)
printf(“Center button was pressed”);

Showing and Hiding the Mouse Pointer
Since an Allegro game will usually run in full-screen mode (or at least take over the entire
window in windowed mode), you need a way to display a graphical mouse pointer.
Anything other than the default operating system pointer is needed to really personalize
a game. To facilitate this, Allegro provides the set_mouse_sprite function.

void set_mouse_sprite(BITMAP *sprite);

As you can see from the function definition, show_mouse needs a bitmap to display as the
mouse pointer. Although I won’t cover bitmaps and sprites until later (see Chapter 7,
“Basic Bitmap Handling and Blitting,” and Chapter 8, “Basic Sprite Programming”), you’ll
have to make some assumptions at this point and just go with the code. I will show you
how to load a bitmap image and display it as the mouse pointer shortly, in the Strategic
Defense game.

You can use a helper function after you call set_mouse_sprite to draw a graphical mouse
pointer. The set_mouse_sprite_focus function adjusts the center point of the mouse cursor,
with a default at the upper-left corner. If you are using a mouse pointer with another focal
point, you can use this function to set that point within the mouse pointer.

void set_mouse_sprite_focus(int x, int y);

Of course, you are free to continue using the system mouse in windowed mode. Even in
full-screen mode the mouse position is polled, but no mouse pointer is displayed.

Handling Mouse Input 157

Chapter 5 � Programming the Keyboard, Mouse, and Joystick158

When you are using a graphical mouse, you must tell the mouse handler where the mouse
should be displayed. Remember that the pointer is just an image treated as a transparent
sprite, so you have the option to draw the mouse directly to the screen or to any other
bitmap (such as a secondary image used for double-buffering the screen). Use the
show_mouse function to tell the mouse handler where you want the mouse pointer drawn.

void show_mouse(BITMAP *bmp);

Now what about hiding a graphical mouse once it’s been drawn? This is actually a very
important consideration because the mouse is basically treated as a transparent sprite, so
it will interfere with the objects being drawn on the screen. Therefore, the mouse pointer
needs to be hidden during screen updates, and then enabled again after drawing is com-
pleted. It’s a bit of a pun that the function to hide the mouse pointer is called scare_mouse,
and the function to show the mouse again is called unscare_mouse.

void scare_mouse();
void unscare_mouse();

There is also a version of this function that hides the mouse only if the mouse is within a
certain part of the screen. If you know what part of the screen is being updated, you can
use scare_mouse_area instead of scare_mouse, in which case the mouse simply will be frozen
until you call unscare_mouse to re-enable it.

void scare_mouse_area(int x, int y, int w, int h);

The Strategic Defense
Game
I have written a short game to
demonstrate how to use the basic
mouse handler functions covered
so far. This game is a derivation
of the classic Missile Command
and it is called Strategic Defense.
The game uses the mouse posi-
tion and the left mouse button to
control a defense weapon to
destroy incoming enemy missiles.
Figure 5.4 shows a missile being
destroyed.

The game features a graphical
mouse pointer that is used as a
targeting reticule, as shown in
Figure 5.5.

Figure 5.4 Strategic Defense demonstrates the mouse
handler.

When enemy missiles reach the
ground (represented by the bot-
tom of the screen) they will
explode, taking out any nearby
enemy cities.

One interesting thing about the
game is how it uses a secondary
screen buffer. Rather than writing
extensive code to erase explosions
and restore the mouse cursor, the
game simply draws explosions
directly on the screen rather than
to the buffer (which contains the
background image, including the
game title and the cities). Thus,
when the player fires directly on a
city (as shown in Figure 5.6), that
city remains intact because the
explosion was drawn to the
screen, while the buffer image
remained intact. Perhaps it’s not
as realistic, but we don’t want to
destroy our own cities!

You might also notice in the
figures that the game keeps track
of the score in the upper-right
corner of the screen. You gain a
point for every enemy missile you
destroy. Unfortunately, there is
no ending to this game; it will
keep running with an endless
barrage of enemy missiles until
you hit Esc to quit.

Type in the game’s source code, and then have some fun! If you’d like to load the project
off the CD-ROM, it is in the chapter08 folder and the file is called defense. This game
might be overkill just to demonstrate the mouse, but it has some features that are helpful
for the learning process, such as a real-time game loop, the use of bitmaps and sprites, and
basic game logic. This game is far more complex than Tank War, but it is not without
flaws. For one thing, the original Missile Command had multiple incoming enemy missiles

Handling Mouse Input 159

Figure 5.5 A graphical mouse pointer is used for
targeting enemy missiles.

Figure 5.6 Firing on one’s cities is generally frowned
upon, but it is not destructive in this game.

and allowed the player to target them, after which a missile would fire from turrets on the
ground to take out the enemy missiles. These features would really make the game a lot
more fun, so I encourage you to add them if you are so inclined.

Want a hint? You can add a dimension to the points array to support many “lines” for
incoming missiles. How would you fire anti-ballistic missiles from the ground up to the
mouse-click spot? Reverse-engineer the enemy missile code, add another array (perhaps
something like mypoints), add another line callback function that doesn’t interfere with the
existing one, and reverse the direction (with the starting position at the bottom, moving
upward toward the mouse click). When the friendly missile reaches the end of its line, it
will explode. It’s like adding an intermediate step between the time you press the mouse
button and when the explosion occurs.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

//create some colors
#define WHITE makecol(255,255,255)
#define BLACK makecol(0,0,0)
#define RED makecol(255,0,0)
#define GREEN makecol(0,255,0)
#define BLUE makecol(0,0,255)
#define SMOKE makecol(140,130,120)

//point structure used to draw lines
typedef struct POINT
{

int x,y;
}POINT;

//points array holds do_line points for drawing a line
POINT points[2000];
int curpoint,totalpoints;

//bitmap images
BITMAP *buffer;
BITMAP *crosshair;
BITMAP *city;

//misc variables
int x1,y1,x2,y2;
int done=0;

Chapter 5 � Programming the Keyboard, Mouse, and Joystick160

int destroyed=1;
int n;
int mx,my,mb;
int score = -1;

void updatescore()
{

//update and display the score
score++;
textprintf_right(buffer,font,SCREEN_W-5,1,WHITE,

“SCORE: %d “, score);
}

void explosion(BITMAP *bmp, int x,int y,int finalcolor)
{

int color,size;

for (n=0; n<20; n++)
{

//generate a random color
color = makecol(rand()%255,rand()%255,rand()%255);
//random explosion size
size = 20+rand()%20;
//draw the random filled circle
circlefill(bmp, x, y, size, color);
//short pause
rest(2);

}
//missile tracker looks for this explosion color
circlefill(bmp, x, y, 40, finalcolor);

}

void doline(BITMAP *bmp, int x, int y, int d)
{

//line callback function...fills the points array
points[totalpoints].x = x;
points[totalpoints].y = y;
totalpoints++;

}

void firenewmissile()
{

Handling Mouse Input 161

//activate the new missile
destroyed=0;
totalpoints = 0;
curpoint = 0;

//random starting location
x1 = rand() % (SCREEN_W-1);
y1 = 20;

//random ending location
x2 = rand() % (SCREEN_W-1);
y2 = SCREEN_H-50;

//construct the line point-by-point
do_line(buffer,x1,y1,x2,y2,0,&doline);

}

void movemissile()
{

//grab a local copy of the current point
int x = points[curpoint].x;
int y = points[curpoint].y;

//hide mouse pointer
scare_mouse();

//erase missile
rectfill(buffer,x-6,y-3,x+6,y+1,BLACK);

//see if missile was hit by defense weapon
if (getpixel(screen,x,y) == GREEN)
{

//missile destroyed! score a point
destroyed++;
updatescore();

}
else
//no hit, just draw the missile and smoke trail
{

//draw the smoke trail
putpixel(buffer,x,y-3,SMOKE);
//draw the missile
circlefill(buffer,x,y,2,BLUE);

Chapter 5 � Programming the Keyboard, Mouse, and Joystick162

}

//show mouse pointer
unscare_mouse();

//did the missile hit a city?
curpoint++;
if (curpoint >= totalpoints)
{

//destroy the missile
destroyed++;
//animate explosion directly on screen
explosion(screen, x, y, BLACK);
//show the damage on the backbuffer
circlefill(buffer, x, y, 40, BLACK);

}
}

void main(void)
{

//initialize program
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();
install_mouse();
install_timer();
srand(time(NULL));

//create a secondary screen buffer
buffer = create_bitmap(640,480);

//display title
textout(buffer,font,”Strategic Defense (ESC to quit)”,0,1,WHITE);

//display score
updatescore();

//draw border around screen
rect(buffer, 0, 12, SCREEN_W-2, SCREEN_H-2, RED);

//load and draw the city images
city = load_bitmap(“city.bmp”, NULL);

Handling Mouse Input 163

for (n = 0; n < 5; n++)
masked_blit(city, buffer, 0, 0, 50+n*120,

SCREEN_H-city->h-2, city->w, city->h);

//load the mouse cursor
crosshair = load_bitmap(“crosshair.bmp”, NULL);
set_mouse_sprite(crosshair);
set_mouse_sprite_focus(15,15);
show_mouse(buffer);

//main loop
while (!key[KEY_ESC])
{

//grab the current mouse values
mx = mouse_x;
my = mouse_y;
mb = (mouse_b & 1);

//fire another missile if needed
if (destroyed)

firenewmissile();

//left mouse button, fire the defense weapon
if (mb)

explosion(screen,mx,my,GREEN);

//update enemy missile position
movemissile();

//update screen
blit(buffer,screen,0,0,0,0,640,480);

//pause
rest(10);

}

set_mouse_sprite(NULL);
destroy_bitmap(city);
destroy_bitmap(crosshair);
allegro_exit();

}
END_OF_MAIN();

Chapter 5 � Programming the Keyboard, Mouse, and Joystick164

Setting the Mouse Position
You can set the mouse position to any point on the screen explicitly using the
position_mouse function.

void position_mouse(int x, int y);

This could be useful if you have a dialog on the screen and you want to move the mouse
there automatically. You could also use position_mouse to create a tutorial for your game.
(Show the player what to click by sliding the mouse around the screen using an array of
coordinates, which could be captured by repeatedly grabbing the mouse position and
storing the values.)

The PositionMouse program demonstrates how to use this function for an interesting
effect. Moving the mouse over one location on the screen transports the mouse to another

location. Figure 5.7 shows
the program running. There
are two wormholes, with a
spaceship representing the
mouse cursor. The only
potentially confusing part
of the program is the
mouseinside function, so I’ll
give you a quick overview.
This function checks to see
whether the mouse is within
the boundary of a rectangle
passed to the function (x1,
y1,x2,y2); it returns 1 (true)
if the mouse is inside the
rectangular area.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)

int mouseinside(int x1,int y1,int x2,int y2)
{

if (mouse_x > x1 && mouse_x < x2 && mouse_y > y1 && mouse_y < y2)

Handling Mouse Input 165

Figure 5.7 The PositionMouse program demonstrates the pros
and cons of hyperspace travel. Ship image courtesy of Ari Feldman.

return 1;
else

return 0;
}

void main(void)
{

int n, x, y;

//initialize program
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();
install_mouse();
textout(screen,font,”PositionMouse Program (ESC to quit)”,0,0,WHITE);

//load the custom mouse pointer
BITMAP *ship = load_bitmap(“spaceship.bmp”, NULL);
set_mouse_sprite(ship);
set_mouse_sprite_focus(ship->w/2,ship->h/2);
show_mouse(screen);

//draw the wormholes
for (n=0;n<20;n++)
{

circle(screen,150-3*n,150-3*n,n*2,makecol(10*n,10*n,10*n));
circle(screen,480+3*n,330+3*n,n*2,makecol(10*n,10*n,10*n));

}

while (!key[KEY_ESC])
{

if (mouseinside(90,90,150,150))
position_mouse(550,400);

if (mouseinside(480,330,540,390))
position_mouse(80,80);

}
set_mouse_sprite(NULL);
destroy_bitmap(ship);
allegro_exit();

}
END_OF_MAIN();

Chapter 5 � Programming the Keyboard, Mouse, and Joystick166

Limiting Mouse Movement and Speed
There are two helper functions that you will likely never use, but which are available
nonetheless. The set_mouse_range function limits the mouse pointer to a specified rectan-
gular region on the screen. Obviously, the default range is the entire screen, but you can
limit the range if you want.

void set_mouse_range(int x1, int y1, int x2, int y2);

The second helper function is set_mouse_speed, which overrides the default mouse pointer
speed set by the operating system. (Note that the mouse speed is not affected outside your
program.) Greater values for the xspeed and yspeed parameters result in slower mouse
movement. The default is 2 for each.

void set_mouse_speed(int xspeed, int yspeed);

Relative Mouse Motion
When it comes to game programming, relative mouse motion can be a very important fea-
ture at your disposal. Often, games will need to track the mouse movement without regard
to the position of a pointer on the screen. Indeed, many games (especially first-person
shooters) don’t even have a mouse pointer; rather, they use the mouse to adjust the view-
point of the player in the game world. This is called relative mouse motion because you can
continue to move the mouse to the left (lifting the mouse and dragging it to the left again)
over and over again, resulting in the game world spinning around the player continuously.
Keep this in mind as you design your own games. The mouse need not be limited to the
boundaries of the screen; it can return an infinite range of mouse movement.

void get_mouse_mickeys(int *mickeyx, int *mickeyy);

To use the mickeys returned by this function, you will want to create two integer variables
to keep track of the last values, and then compare them to the new values returned by
get_mouse_mickeys. You can then determine whether the mouse has moved up, down, left,
or right, with the result having some effect in the game.

Using a Mouse Wheel
The mouse wheel is another great feature to support in your games. Although I would not
assign any critical gameplay controls to the mouse wheel (because it might not be pre-
sent), it is definitely a nice accessory of which you should take advantage when available.
The mouse wheel is abstracted by Allegro into a simple variable that you can check at your
leisure.

extern volatile int mouse_z;

Handling Mouse Input 167

Chapter 5 � Programming the Keyboard, Mouse, and Joystick168

Allegro provides a mouse wheel support function that seems rather odd at first glance, but
it allows you to set the mouse wheel variable to a specific starting value, after which suc-
cessive “reads” will result in values to and from that central value. In effect, position_mouse_z
sets the current mouse wheel position as the starting position. Technically, the mouse wheel
doesn’t have starting and ending points because it is freewheeling.

void position_mouse_z(int z);

I have written a short program that demonstrates how to use the mouse wheel. The
MouseWheel program doesn’t really do anything; it displays a fictional throttle ramp (or
any other lever, for that matter) and displays a small image that moves up or down based
on the mouse wheel value. The program is shown in Figure 5.8. What was I thinking about
when I wrote this program? I have no idea, and it makes no sense at all, does it? I think
the idea is that this represents a reactor core temperature gauge, and if it goes critical, the

reactor will explode. But
you have your mouse wheel
handy to prevent that. Your
mouse does have a wheel,
right? Perhaps you can turn
this into a real game. I find
it convenient to have one of
those Microsoft Office key-
boards with the big spin-
ning wheel—yeah, you can
spin that sucker like a top!
Hey, why don’t you turn this
into an interesting game?

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)
#define BLACK makecol(0,0,0)
#define AQUA makecol(0,200,255)

void main(void)

Figure 5.8 The MouseWheel program demonstrates how to use
the mouse wheel. (Duh!)

{
int n, color, value;

//initialize program
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();
install_mouse();
textout(screen,font,”MouseWheel Program (ESC to quit)”,0,0,WHITE);
textout(screen,font,”USE MOUSE WHEEL TO MOVE THE LEVER”,0,10,WHITE);

//load the control lever image
BITMAP *lever = load_bitmap(“lever.bmp”, NULL);

//draw the throttle control
for (n=0; n<200; n++)
{

color = makecol(255-n,10,10);
rectfill(screen, 200, 40 + n * 2, 400, 42 + n * 2, color);

}

value=200;
position_mouse_z(value);

while (!key[KEY_ESC])
{

//erase the lever
rectfill(screen, 450, 29 + value, 550, value + 65, BLACK);

//update lever position
value = mouse_z;
if (value < 0)

value = 0;
if (value > 390)

value = 390;

//draw the lever
blit(lever, screen, 0, 0, 450, 30 + value, lever->w, lever->h);

//display value
textprintf(screen, font, 520, 30 + value + lever->h / 2,

AQUA,”%d”, value);

Handling Mouse Input 169

rest(30);
}

allegro_exit();
}
END_OF_MAIN();

Handling Joystick Input
Joysticks are not as common on the PC as they used to be, and the accessory controller
market has fallen significantly since the late 1990s—to such a degree that Microsoft has
dropped its Sidewinder line of gamepads and flight sticks (although at least one stick is
still available from Microsoft to support its legendary Flight Simulator and Combat Flight
Simulator products). I have personally been a Logitech fan for many years, and I appreci-
ate the high quality of their mouse and joystick peripherals. The Logitech WingMan
RumblePad is still my favorite gamepad because it has two analog sticks that make it use-
ful for flight and space sims. In this section, I’ll show you how to add joystick support to
your bevy of new game development skills made possible with the Allegro library.

The Joystick Handler
At this point, it’s becoming redundant, but we still have to initialize the joystick handler like
we did for the keyboard and mouse. At least Allegro is consistent, which is not something
that can be said about all libraries. The first function you need to learn is install_joystick.

int install_joystick(int type);

What is the type parameter, you might wonder? Actually, I have no idea, so I just plug ran-
dom values into it to see what happens—so far with no result.

Just kidding! The type parameter specifies the type of joystick being used, while
JOY_TYPE_AUTODETECT is currently the only supported value. Because Allegro abstracts the
DirectInput library to provide a generic joystick controller interface, it provides function-
ality for supporting digital and analog buttons and sticks. If you ever need to remove the
joystick handler, you can call remove_joystick.

void remove_joystick();

Allegro’s joystick handler can handle at most four joysticks, which is more than I have ever
seen in a single game. If you have written a game that needs more than four joysticks, let
me know because I’d like to help you redesign the game! Seriously, what this really means
is that you can use a driving wheel with foot pedals, which are usually treated as two joy-
stick devices. To find out how many joysticks have been detected by Allegro, you can use
num_joysticks.

Chapter 5 � Programming the Keyboard, Mouse, and Joystick170

extern int num_joysticks;

As was the case with the two previous hardware handlers, some systems do not support
asynchronous interrupt handlers. However, this point is moot when it comes to joysticks,
which must be polled. Here is the function:

int poll_joystick();

Remember, most (if not all) systems require you to poll the joystick because there is no
automatic joystick interrupt handler running like there is for the keyboard and mouse
handlers. Keep this in mind! If your joystick routine is not responding, it could be that you
forgot to poll the joystick during the game loop!

t i p

The joystick handler has no interrupt routine, so you must poll the joystick inside your game loop
or the joystick values will not be updated. The keyboard and mouse usually do not need to be
polled, but the joystick does need it!

This function fills the JOYSTICK_INFO struct, which has this definition:

typedef struct JOYSTICK_INFO
{

int flags;
int num_sticks;
int num_buttons;
JOYSTICK_STICK_INFO stick[n];
JOYSTICK_BUTTON_INFO button[n];

} JOYSTICK_INFO;

Allegro defines an array to handle any joysticks plugged into the system based on this struct.

extern JOYSTICK_INFO joy[n];

The default joystick should therefore be joy[0], which is what you will use most of the
time if you are writing a game with joystick support.

Detecting Controller Stick Movement
The JOYSTICK_INFO struct contains two sub-structs, as you can see, and these sub-structs
contain all of the actual joystick status information (analog/digital values). The
JOYSTICK_STICK_INFO struct contains information about the sticks, which may be digital
(such as an eight-way directional pad) or analog (with a range of values for position).
Here is what that struct looks like:

typedef struct JOYSTICK_STICK_INFO
{

Handling Joystick Input 171

int flags;
int num_axis;
JOYSTICK_AXIS_INFO axis[n];
char *name;

} JOYSTICK_STICK_INFO;

I’ll explain the flags element in a moment. For now, you need to know about num_axis and
the axis[n] elements. char *name contains the name of the stick (if supported by your oper-
ating system’s joystick driver). num_axis will tell you how many axes are provided by that
stick. (Remember, there could be more than one stick on a joystick.) A normal stick will
have two axes: X and Y. Therefore, most of the time num_axis will equal 2, and you will be
able to read those axis values by looking at axis[0] and axis[1]. Some sticks are special
types (such as a throttle control) that may only have one axis. If you are writing a large
and complex game and you want to support as many joystick options as possible, you will
want to look at all of these structs and their values to come up with a list of features available.
For instance, if there are two sticks, and the first has two axes, while the second has one
axis, it’s a sure bet that this represents a flight-style joystick with a single stick and a throttle
control. Obviously, for a large game it will be worth the time investment to create a joystick
configuration option screen.

A single joystick might provide several different stick inputs (such as the two analog sticks
on the Logitech WingMan RumblePad), but it is safe to assume that the first element in
the stick array will always be the main directional stick. (Most joysticks have a single stick;
the duals are the exception most of the time.)

Allegro really doesn’t provide many support functions for decoding these structs—some-
thing that I found disappointing. However, the structs contain everything you need to
read the joystick in real time, so there’s no room for complaint as long as all the data is
available. Besides, it’s a far cry from programming a joystick using assembly language, as
I did way back when—during the development of Starship Battles, which I talked about in
Chapter 1.

Reading the Axes

To read the stick positions, you must take a look at the JOYSTICK_AXIS_INFO struct.

typedef struct JOYSTICK_AXIS_INFO
{

int pos;
int d1, d2;
char *name;

} JOYSTICK_AXIS_INFO;

This struct provides one analog input (pos) and two digital inputs (d1, d2) that describe the
same axis. While pos may contain a value of –128 to 128 (or 0 to 255, depending on the

Chapter 5 � Programming the Keyboard, Mouse, and Joystick172

type of axis), the d1 and d2 values will be 0 or 1, based on whether the axis was moved left
or right. A digital stick will provide just a single yes or no type result using d1 and d2, but
the analog values are more common.

Reading the Joystick Flags

I want to digress for a moment to talk about the joystick flags defined as flags in the
JOYSTICK_STICK_INFO struct. Table 5.2 shows the possible values stored in flags as a bit mask.

Thus, if you want to know whether the specified stick is analog or digital, you can check
the flags member variable.

if (flags & JOYFLAG_DIGITAL)
printf(“This is a digital stick”);

Allegro provides a series of functions for calibrating a joystick; these are useful for older
operating systems (such as MS-DOS) where calibration was necessary. Most modern joy-
sticks are calibrated at the driver level. In Windows, go to Start, Settings, Control Panel
and look for Gaming Options or Game Controllers to find the joystick dialog. Windows
2000 uses the Gaming Options dialog box, as shown in Figure 5.9.

Clicking on the Properties button opens the calibration and test dialog box, as shown in
Figure 5.10.

Handling Joystick Input 173

Table 5.2 Joystick Bit Mask Values

Flag Description

JOYFLAG_DIGITAL This control is currently providing digital input.
JOYFLAG_ANALOG This control is currently providing analog input.
JOYFLAG_CALIB_DIGITAL This control will be capable of providing digital input once it has

been calibrated, but it is not doing this at the moment.
JOYFLAG_CALIB_ANALOG This control will be capable of providing analog input once it has

been calibrated, but it is not doing this at the moment.
JOYFLAG_CALIBRATE This control needs to be calibrated. Many devices require multiple

calibration steps, so you should call the calibrate_joystick()
function from a loop until this flag is cleared.

JOYFLAG_SIGNED The analog axis position is in signed format, ranging from –128 to
128. This is the case for all 2D directional controls.

JOYFLAG_UNSIGNED The analog axis position is in unsigned format, ranging from 0 to
255. This is the case for all 1D throttle controls.

Using the Properties dialog box, you can ver-
ify that the joystick is operating (first and
foremost) and that all the buttons and sticks
are functioning.

Under Windows XP, the control panel applet
for configuring your joystick seems to be
about 12 levels deep inside the operating sys-
tem, like an epithermal vein in the earth. For
this reason, I recommend switching the
Control Panel to Classic View so you can see
exactly what you want without wading
through Microsoft’s patronizing interface. As
a follower of the philosophies of Alan
Cooper, my personal opinion is that too
much interface is condescending. (“Hello sir.
I believe you are too stupid to figure this out,
so let me bury it for you.”) However, I do
appreciate and enjoy most of Microsoft’s lat-
est products—this company does get it right
after eight or nine versions. It’s all a matter of
personal preference, though. Wouldn’t you
agree?

I digress again. Windows XP provides a simi-
lar applet called Game Controllers, with a sim-
ilar joystick properties dialog box you can use
to test your joystick. (In most cases, calibration
is not needed with modern USB joysticks.)

Detecting Controller Buttons
Referring back to the primary joystick struct,
JOYSTICK_INFO, you’ll recall that the second
sub-struct is called JOYSTICK_BUTTON_INFO.

JOYSTICK_BUTTON_INFO button[n];

This struct can be read with the help of
num_buttons to determine the size of the button
array.

int num_buttons;

Chapter 5 � Programming the Keyboard, Mouse, and Joystick174

Figure 5.9 The Gaming Options dialog box
in Windows 2000

Figure 5.10 The Gaming Options properties
dialog box for my WingMan RumblePad
joystick

The final struct you need to see to deal with joystick buttons has this definition:

typedef struct JOYSTICK_BUTTON_INFO
{

int b;
char *name;

} JOYSTICK_BUTTON_INFO;

The b element will simply be 0 or 1, based on whether the button is being pushed or not,
while char *name describes that button.

Testing the Joystick Routines
I could call it a wrap at this point, but what I’d like to do now is provide two sample pro-
grams that demonstrate how to use the joystick routines. The first sample program,
ScanJoystick, iterates through these structs to print out information about the joystick.
The second program, TestJoystick, is a simple example of how to use the joystick in a real-
time program.

The ScanJoystick Program

The ScanJoystick program goes through the joystick structs and prints out logistical infor-
mation, including number of sticks, stick names, number of buttons, and button names.
The output from the program is shown in Figure 5.11.

Handling Joystick Input 175

Figure 5.11 The ScanJoystick program prints out the vital information about
the first joystick device.

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)
#define LTGREEN makecol(192,255,192)
#define LTRED makecol(255,192,192)
#define LTBLUE makecol(192,192,255)
int curline = 1;

void print(char *s, int color)
{

//print text with automatic linefeed
textout(screen, font, s, 10, (curline++) * 12, color);

}

void printjoyinfo()
{

char *s;
int n, ax;

//display joystick information
sprintf(s, “Number of Joysticks: %d”, num_joysticks);
print(s, WHITE);
print(“”,0);

//display stick information
sprintf(s, “Number of Sticks: %d”, joy[0].num_sticks);
print(s, LTGREEN);
for (n=0; n<joy[0].num_sticks; n++)
{

sprintf(s, “Stick %d: %s”, n, joy[0].stick[n].name);
print(s, LTGREEN);
sprintf(s, “ Number of Axes: %d”, joy[0].stick[n].num_axis);
print(s, LTBLUE);
for (ax=0; ax<joy[0].stick[n].num_axis; ax++)
{

sprintf(s,” Axis %d: %s”, ax,
joy[0].stick[n].axis[ax].name);

print(s, LTRED);
}

}

Chapter 5 � Programming the Keyboard, Mouse, and Joystick176

//display button information
print(“”,0);
sprintf(s, “Number of Buttons: %d”, joy[0].num_buttons);
print(s, LTGREEN);
for (n=0; n<joy[0].num_buttons; n++)
{

sprintf(s,” Button %d: %s”, n, joy[0].button[n].name);
print(s, LTBLUE);

}
}

void main(void)
{

int n, color, value;

//initialize program
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();

//install the joystick handler
install_joystick(JOY_TYPE_AUTODETECT);
poll_joystick();

//display title
print(“ScanJoystick Program”, WHITE);
print(“———————————————————-”, WHITE);

//look for a joystick
if (num_joysticks > 0)

printjoyinfo();
else

print(“No joystick could be found”, WHITE);

//pause and exit
print(“”,0);
print(“Press any key...”, WHITE);
while (!keypressed()) { }
allegro_exit();

}

END_OF_MAIN();

Handling Joystick Input 177

The TestJoystick Program

To really see what Allegro’s joystick routines can do would require a full-blown game
using the sticks for movement and the buttons for perhaps firing weapons. Hey, it sounds
like Tank War would be a great candidate for just that! But for the time being, it is pru-
dent to focus on a simple joystick demonstration that simply makes clear what you must
do to get basic joystick support into your games. Thus, I have written a quick-and-dirty
game with a functional name; it’s just a ball bouncing around on the screen, with a pad-
dle that is controlled by the joystick. Stop the ball from hitting the floor and gain a point;
fail to stop the ball and lose a point. It’s a very simple game in that respect. However, this
game does use several bitmaps and blitting routines (including masked_blit to draw trans-
parently). Unfortunately, these routines have not been explained yet, and I’m loath to do
so now, when an entire chapter is dedicated to this subject! (See Chapter 7 for a complete
explanation of how to use the bitmap loading and blitting functions.) For now, I would
like to leave that discussion for Chapter 7 and just use this functionality to make the game
more interesting.

Figure 5.12 shows this very simple and limited Arkanoid/Breakout style game in action.
Again, I am indebted to Ari Feldman for the artwork (http://www.arifeldman.com), which
comes from his free SpriteLib collection. The source code is only a few pages long, so I’ll
leave it to you to read my code comments and see how it works. I hope the game is simple
enough that you will find it very easy to read the code and learn some new tricks from it.

Chapter 5 � Programming the Keyboard, Mouse, and Joystick178

Figure 5.12 The TestJoystick program demonstrates how to use the
joystick in a simple game.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)
#define BLACK makecol(0,0,0)

BITMAP *back;
BITMAP *paddle;
BITMAP *ball;

int score = 0, paddlex, paddley = 430;
int ballx = 100, bally = 100;
int dirx = 1, diry = 2;

void updateball()
{

//update ball x
ballx += dirx;

//hit left?
if (ballx < 0)
{

ballx = 1;
dirx = rand() % 2 + 4;

}

//hit right?
if (ballx > SCREEN_W - ball->w - 1)
{

ballx = SCREEN_W - ball->w - 1;
dirx = rand() % 2 - 6;

}

//update ball y
bally += diry;

//hit top?
if (bally < 0)
{

bally = 1;
diry = rand() % 2 + 4;

}

Handling Joystick Input 179

//hit bottom?
if (bally > SCREEN_H - ball->h - 1)
{

score—;
bally = SCREEN_H - ball->h - 1;
diry = rand() % 2 - 6;

}

//hit the paddle?
if (ballx > paddlex && ballx < paddlex+paddle->w &&

bally > paddley && bally < paddley+paddle->h)
{

score++;
bally = paddley - ball->h - 1;
diry = rand() % 2 - 6;

}

//draw ball
masked_blit(ball, screen, 0, 0, ballx, bally, ball->w, ball->h);

}

void main(void)
{

int d1, d2, pos, startpos;

//initialize program
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
srand(time(NULL));
install_keyboard();

//install the joystick handler
install_joystick(JOY_TYPE_AUTODETECT);
poll_joystick();

//look for a joystick
if (num_joysticks == 0)
{

textout(screen,font,”No joystick could be found”,0,20,WHITE);
while(!keypressed());
return;

}

Chapter 5 � Programming the Keyboard, Mouse, and Joystick180

//store starting stick position
startpos = joy[0].stick[0].axis[0].pos;

//load the background image
back = load_bitmap(“background.bmp”, NULL);

//load the paddle image and position it
paddle = load_bitmap(“paddle.bmp”, NULL);
paddlex = SCREEN_W/2 - paddle->w/2;

//load the ball image
ball = load_bitmap(“ball.bmp”, NULL);

//set text output to transparent
text_mode(-1);

//main loop
while (!key[KEY_ESC])
{

//clear screen the slow way (redraw background)
blit(back, screen, 0, 0, 0, 0, back->w, back->h);

//update ball position
updateball();

//read the joystick
poll_joystick();
d1 = joy[0].stick[0].axis[0].d1;
d2 = joy[0].stick[0].axis[0].d2;
pos = joy[0].stick[0].axis[0].pos;

//see if stick moved left
if (d1 || pos < startpos+10) paddlex -= 4;
if (paddlex < 2) paddlex = 2;

//see if stick moved right
if (d2 || pos > startpos-10) paddlex += 4;
if (paddlex > SCREEN_W - paddle->w - 2)

paddlex = SCREEN_W - paddle->w - 2;

//display text messages
textout(screen, font, “TestJoystick Program (ESC to quit)”,

2, 2, BLACK);

Handling Joystick Input 181

textprintf(screen, font, 2, 20, BLACK,
“Stick d1,d2,pos: %d,%d,%d”, d1, d2, pos);

textprintf_right(screen, font, SCREEN_W - 2, 2, BLACK,
“SCORE: %d”, score);

//draw the paddle
blit(paddle,screen,0,0,paddlex,paddley,paddle->w,paddle->h);

rest(20);
}

destroy_bitmap(back);
destroy_bitmap(paddle);
destroy_bitmap(ball);
return;

}

END_OF_MAIN();

Summary
I don’t know about you, but I got more from this chapter than I had intended! There were
many new functions presented in this chapter, with absolutely no explanation for some of
them! I’m talking about load_bitmap, blit, masked_blit, and so on. That is breaking a rule I
had intended to follow about only using what I have covered thus far; however, I think it’s
a helpful learning experience to see some of what is to come.

This chapter presented Allegro’s input routines and explained how to read the keyboard,
mouse, and joystick—which, it turns out, is not difficult at all thanks to the way in which
Allegro abstracted these hardware input devices.

The big question you might have is, why didn’t we update Tank War to support a joystick?
That’s a good question. As a matter of fact, I wanted to plug in the joystick support at this
point, but I felt that it would make the game too complicated this early along in the book,
when the goal is really to demonstrate each chapter’s new graphics features in the game.
In a nutshell, the game is just too primitive and underdeveloped at this point to warrant
joystick support. Therefore, I make this vow: We will add joystick support to Tank War in
a future chapter. I guarantee it!

Chapter 5 � Programming the Keyboard, Mouse, and Joystick182

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. Which function is used to initialize the keyboard handler?

A. initialize_keyboard

B. install_keyboard

C. init_keyboard

D. install_keyboard_handler

2. What does ANSI stand for?

A. American Negligible Situation Imperative

B. American Nutritional Studies Institute

C. American National Standards Institute

D. American National Scuba Institute

3. What is the name of the array containing keyboard scan codes?

A. key

B. keyboard

C. scancodes

D. keys

4. Where is the real stargate located?

A. Salt Lake City, Utah

B. San Antonio, Texas

C. Colorado Springs, Colorado

D. Cairo, Egypt

5. Which function provides buffered keyboard input?

A. scankey

B. getkey

C. readkey

D. buffered_input

6. Which function is used to initialize the mouse handler?

A. install_mouse

B. instantiate_mouse

C. initialize_mouse

D. ingratiate_mouse

Chapter Quiz 183

7. Which values or functions are used to read the mouse position?

A. mouse_x and mouse_y

B. get_mouse_x and get_mouse_y

C. mousex and mousey

D. mouse_position_x and mouse_position_y

8. Which function is used to read the mouse x and y mickeys for relative motion?

A. mickey_mouse

B. read_mouse_mickeys

C. mouse_mickeys

D. get_mouse_mickeys

9. What is the name of the main JOYSTICK_INFO array?

A. joysticks

B. joy

C. sticks

D. joystick

10. Which struct contains joystick button data?

A. JOYSTICK_BUTTONS

B. JOYSTICK_BUTTON

C. JOYSTICK_BUTTON_INFO

D. JOYSTICK_BUTTON_DATA

Chapter 5 � Programming the Keyboard, Mouse, and Joystick184

2D Game Theory, Design,
and Programming

Chapter 6
Introduction to Game Design .187

Chapter 7
Basic Bitmap Handling and Blitting .215

Chapter 8
Basic Sprite Programming .237

Chapter 9
Advanced Sprite Programming .279

Chapter 10
Programming Tile-Based Backgrounds with Scrolling .339

Chapter 11
Timers, Interrupt Handlers, and Multi-Threading .381

Chapter 12
Creating a Game World .429

Chapter 13
Vertical Scrolling Arcade Games .455

Chapter 14
Horizontal Scrolling Platform Games .489

PART II

W
elcome to Part II of Game Programming All in One, 2nd Edition. Part II includes
nine chapters that form the bulk of the crucial game programming subjects of
the book. In this section, you will learn about game design, bitmaps, blitting,

basic sprite handling, advanced sprite programming, tile-based backgrounds, background
scrolling, timers, interrupt handling, multi-threading, and map editors. This section also
includes chapters on vertical and horizontal scrolling games!

187

Introduction to
Game Design

chapter 6

M
any years have passed since the days when games were designed in a couple of
hours at the family barbeque. Today, games are required to be fun and addictive,
but at the same time meaningful and intuitive. The latest games released by the

big companies take months to design—and that is with the help of various designers.
Contrary to popular belief, a game designer’s sole purpose isn’t to think of an idea, and
then give it to the programmers so they can make a game. A designer must think of the
game idea, elaborate it, illustrate it, define it, and describe just about everything from the
time the CD is inserted into the CD-ROM drive to the time when the player quits the
game. This chapter will help you understand a little more about game design, as well as
give you some tips about it, and in the end show you a small game design document for
a very popular game.

This chapter goes over the software development process for game development, describ-
ing the main steps involved in taking a game from inspiration to completion. This is not
about creating a hundred-page document with all the screens, menus, characters, settings,
and storyline of the game. Rather, this chapter is geared toward the programmer, with tips
for following a design process that keeps a game in development until it is completed.
Without a simple plan, most game programmers will become bored with a game that only
weeks before had them up all night with earnest fervor.

Here is a breakdown of the major topics in this chapter:

� Understanding game design basics

� Understanding game development phases

� Recognizing post-production woes

� Future-proofing your design

� Understanding the dreaded design document

� Recognizing the importance of good game design

� Recognizing the two types of designs

� Looking at a sample design document

� Looking at a sample game design: Space Invaders

Game Design Basics
Creating a computer game without at least a minimal design document or a collection of
notes is like building a plastic model of a car or airplane from a kit without the instruc-
tions. More than likely, a game that is created without the instructions will end up with
missing pieces and loose ends. The tendency is always to jump right in and get some code
working, and there is room for that step in the development of a new game! However, the
initial coding session should be used to build enthusiasm for yourself and any others in the
project, and should be nothing more than a proof of concept or an incomplete prototype.

Like most creative individuals, game programmers must have the discipline to stick to
something before moving on, or they will fall into the trap of half-completing a dozen or
so games without much to show for the effort. The real difference between a hobbyist and
a professional is simply that a professional game programmer will see the game through
to completion no matter how long it takes.

Inspiration
Take a look at classic console games for inspiration, and you will have no trouble coming
up with an idea for a cool new game. Any time I am bug-eyed and brain-dead from a long
coding session, I take a walk outside and then return for a gaming session (preferably with
a friend). Consoles are great because they are usually fast paced and they are often based
on arcade machines.

PC games, on the other hand, can be quite slow and even boring in comparison because
they have so much more depth. If you are in a hurry and just want to have a little fun, go
with a console. Video games are full of creativity and interesting technology that PC
gamers usually fail to notice.

Game Feasibility
The feasibility of a game is difficult to judge because so much is possible once you get
started, and it is easy to underestimate your own capabilities (especially if you have a few
people helping you). One thing that you must be careful about when designing a new
game is scope. How big will the game be? You also don’t want to bite off more than you
can chew, to use the familiar expression.

Chapter 6 � Introduction to Game Design188

Feasibility is the process of deciding how far you will go with the game and at what point
you will stop adding new features. But at the very least, feasibility is a study of whether the
game can be created in the first place. Once you are certain that you have the capability to
create a certain type of game and you have narrowed the scope of the game to a manage-
able level, work can begin.

Feature Glut
As a general rule, you should get the game up and running before you work on new features
(the bells and whistles). Never spend more than a day working on code without testing it!
This is critical. Any time you change a major part of the game, you must completely recom-
pile the game and run it to make sure you haven’t broken any part of it in the process.

I can’t tell you how many times I have thought up a new way to do something and gone
through all the source code for a game, making changes here and there, with the result
being that the game won’t compile or won’t run. Every change you make during the devel-
opment of the game should be small and easy to undo if it doesn’t work.

My personal preference is to keep the game running throughout the day. Every time I
make even a minor change, I test the game to make sure it works before I move on to a
new section of code. This is really where object-oriented coding pays off. By moving tried-
and-tested code into a class, it is relatively safe to assume the code works as expected
because you are not modifying it as often.

It really helps to eliminate bugs when you have put the startup and shutdown code inside
a class (or within the Allegro library, where the library handles these routines automati-
cally). There is also another tremendous benefit to wrapping code inside a library—infor-
mation overload.

There is a point at which we humans simply can’t handle any more information, and our
memory starts to fail. If you try to keep track of too many loose ends in a game, you are
bound to make a mistake! By putting common code in classes (or in a separate library file
altogether), you reduce the amount of information that you must remember. It is such a
relief when you need to do something quickly and you realize that all the code is ready to
do your bidding at a moment’s notice. The alternative (and old-school) method of copy-
ing sections of code and pasting them into your project is error-prone and will introduce
bugs into your game.

Back Up Your Work
Follow this simple advice or learn the hard way: Back up your work several times a day! If
you don’t, you are going to make a significant change to the game code that completely
breaks it and you will not be able to figure out how to get the game back up and running.

Game Design Basics 189

This is the point at which you return to a backup and start again. Even if the backup is a
few hours old, it is better than spending half a day figuring out the problem with the
changes you made.

I have an informal method of backing up my work. I use an archive program to zip the
entire project directory for a game—including all the graphics, sounds, and source
code—into a file with the date and time stamped into the filename, such as
Game_070204_1030.zip.

The backup file might be huge, but what is disk space today? You don’t always need to back
up the entire project directory if you haven’t made any changes to the graphics or sound
files for the game (which can be quite large). If you are working on source code for days
at a time without making any changes to media files, you might just make a complete
backup once a day, and then make smaller backups during the day for code changes. As a
general rule, I don’t use the incremental backup feature available with many compression
programs because I prefer to create an entirely new backup file each time.

If you get into the habit of backing up your files every hour or two, you will not be faced
with the nightmare of losing a whole day’s work if you mess up the source code or if some-
thing happens to your hard drive. For this reason, I recommend that you copy all backup
files directly to CD (using packet-writing technology, which provides drag-and-drop
capability from Windows Explorer). CD-RW drives are very affordable and indispensable
when it comes to saving your work, giving you the ability to quickly erase and save your
work repeatedly. DVD burners are also very affordable now, and they offer enough storage
space to easily back up everything in an entire game project.

In the end, how much is your time worth? Making regular backups is the smart thing to do.

Game Genres
The gaming press seems to differentiate between console and PC games, but the line that
separates the two is diminishing as games are ported back and forth. I tend to group con-
sole and PC games together in shared genres, although some genres do not work well on
both platforms. The following sections detail a number of game genres; they contain a
description of each genre and a list of sample games within that genre. It is important to
consider the target genre for your game because this affects your target audience. Some
gamers are absolutely fanatical about first-person shooters, while others prefer real-time
strategy, and so on. It is a good idea to at least identify the type of game you are working
on, even if it is a unique game.

Fighting Games

2D and 3D fighting games are almost entirely bound to the console market due to the way
these games are played. A PC equipped with a gamepad is a fine platform, but fighting
games really shine on console systems with multiple controllers.

Chapter 6 � Introduction to Game Design190

Game Design Basics 191

One of my favorite Dreamcast fighting games is called Power Stone 2. This game is hilari-
ous! Four players can participate on varied levels in hand-to-hand combat, with numerous
obstacles and miscellaneous items strewn about on each level, and the action is fast paced.

Here is a list of my favorite fighting game series:

� Dead or Alive

� Mortal Kombat

� Power Stone

� Ready 2 Rumble

� Soul Calibur

� Street Fighter

� Tekken

� Virtua Fighter

Action/Arcade Games

Action/arcade games turned the fledgling video game industry into a worldwide phe-
nomenon in the 1980s and 1990s, but started to drop off in popularity in arcades in the
2000s. The action/arcade genre encompasses a huge list of games, and here are some of
my favorites:

� Akari Warriors

� Blasteroids

� Elevator Action

� Rolling Thunder

� Spy Hunter

� Star Control

� Super R-Type

� Teenage Mutant Ninja Turtles

Adventure Games

The adventure game genre was once comprised of the largest collection of games in the
computer game industry, with blockbuster hits like King’s Quest and Space Quest.
Adventure games have fallen out of style in recent years, but there is still an occasional new
adventure game that inspires the genre to new heights. For instance, Starflight III:
Mysteries of the Universe is an official sequel to the original Starflight games, with a fan-
tastic galaxy-spanning adventure story with the engaging mystery of space exploration. I
am a member of the development team for this game, so I am naturally biased to appreciate

the game. For more information, visit http://www.starflight3.net. My definition of adven-
ture game might differ from someone else’s, but most of the following games may be cat-
egorized as adventure games:

� King’s Quest

� Mean Streets

� Myst

� Space Quest

� Starflight

First-Person Shooters

The first-person shooter genre is the dominant factor in the gaming industry today, with
so many new titles coming out every year that it is easy to overlook some extremely cool
games while playing some others. This list is by no means complete, but it includes the
most common first-person shooters:

� Doom

� Half-Life

� Jedi Knight

� Max Payne

� Quake

� Unreal

� Wolfenstein 3-D

Flight Simulators

Flight simulators (flight sims) are probably the most important type of game in the indus-
try, although they are not always recognized as such. When you think about it, the tech-
nology required to render the world is quite a challenge. The best of the best in flight sims
usually push the envelope of realism (pun intended) and graphical wizardry. Here is my
list of favorites, old and new:

� Aces of the Pacific

� B-17

� Battlehawks 1942

� Falcon 4.0

� Jane’s WWII Fighters

� Red Baron

Chapter 6 � Introduction to Game Design192

Galactic Conquest Games

Galactic conquest games have seen mixed success at various times, with a popular title
about once a year. One early success was a game called Stellar Crusade, which focused
heavily on the economics of running a galactic empire. This may be debatable, but I
believe that Master of Orion popularized the genre, while Master of Orion II perfected it.
Even today, MOO2 (as it is fondly referred to) still holds its own against modern wonders,
such as Imperium Galactica II.

� Imperium Galactica

� Master of Orion

� Stellar Crusade

Real-Time Strategy Games

Real-time strategy (RTS) games are second only to first-person shooters in popularity and
success, with blockbuster titles selling in the millions. Westwood is generally given kudos
for inventing the genre with Dune II, although the Command & Conquer series gave the
genre a lot of mileage. Warcraft and Starcraft (both by Blizzard) were huge in their time
and are still popular today. My personal favorites are Age of Empires and the follow-up
games in the series. Here are the best RTS games on the market today:

� Age of Empires

� Command & Conquer

� Dark Reign

� MechCommander

� Real War

� Starcraft

� Total Annihilation

� Warcraft

Role-Playing Games

What would the computer industry be without role-playing games? RPGs go back as far
as most gamers can remember, with early games such as Ultima and Might and Magic
appearing on some of the earliest PCs. Ultima Online followed in the tradition of
Meridian 59 as a massively multiplayer online role-playing game (MMORPG), along with
EverQuest and Asheron’s Call. Here are some classic favorites:

� Baldur’s Gate: Dark Alliance

� Darkstone

� Diablo

Game Design Basics 193

� Fallout

� Forgotten Realms

� Might and Magic

� The Bard’s Tale

� Ultima

Sports Simulation Games

Sports sims have long held a strong position in the computer game industry as a mainstay
group of products covering all the major sports themes—baseball, football, soccer, bas-
ketball, and hockey. Here are some of my favorites:

� Earl Weaver Baseball

� Madden 2004

� Wayne Gretzky and the NHLPA All-Stars

� World Series Baseball 2K3

Third-Person Shooters

The third-person shooter genre was spawned by first-person shooters, but it sports an
“over the shoulder” viewpoint. Tomb Raider is largely responsible for the popularity of
this genre. Here are some favorite third-person shooters:

� Delta Force

� Tom Clancy’s Rainbow Six

� Resident Evil

� Tomb Raider

Turn-Based Strategy Games

Turn-based strategy (TBS) games have a huge fan following because this genre allows for
highly detailed games based on classic board games, such as Axis & Allies. Because TBS
games do not run in real time, each player is allowed time to think about his next move,
providing for some highly competitive and long-running games. Here is a list of the most
popular games in the genre:

� Axis & Allies

� Panzer General

� Shogun: Total War

� Steel Panthers

� The Operational Art of War

Chapter 6 � Introduction to Game Design194

Space Simulation Games

Space sims are usually grand in scope and provide a compelling story to follow. Based
loosely on movies such as Star Wars, space sims usually feature a first-person perspective
inside the cockpit of a spaceship. Gameplay is similar to that of a flight sim, but with sci-
ence fiction themes. Here is a list of popular space sims:

� Tachyon: The Fringe

� Wing Commander

Real-Life Games

Real-life sims are affectionately referred to as God games, although the analogy is not per-
fect. How do you categorize a game like Dungeon Keeper ? Peter Molyneux seems to rou-
tinely create his own genres. These games usually involve some sort of realistic theme,
although it may be based on fictional characters or incidents. Here are some of the most
popular real-life games:

� Black & White

� Dungeon Keeper

� Populous

� SimCity

� The Sims

� Tropico

Massively Multiplayer Online Games

I consider this a genre of its own, although the games herein may be categorized else-
where. The most popular online games are called MMORPGs—massively multiplayer
online role-playing games. This convoluted phrase describes an RPG that you can play
online with hundreds or thousands of players—at least in theory.

� Anarchy Online

� Asheron’s Call

� Conquest: Frontier Wars

� EverQuest

� Ultima Online

� Final Fantasy Online

Game Development Phases
Although there are entire volumes dedicated to software development life cycles and soft-
ware design, I am going to cover only the basics that you will need to design a game. You

Game Development Phases 195

might want to go into finer detail with your game designs, or you might want to skip a few
steps. It is all a matter of preference. But the important thing is that you at least attempt
to document your ideas before you get started on a new game.

Initial Design
The initial design for a game is usually a hand-drawn figure showing what the game
screen will look like, with the game’s user interface or game elements shown in roughly
the right places on the sketched screen. You can also use a program such as Visio to create
your initial design screens.

The initial design should also include a few pages with an overview of the components needed
by the game, such as the DirectX components or any third-party software libraries. You
should include a description of how the game will be played and what forms of user input
will be supported, and you should describe how the graphics will be rendered (in 2D or 3D).

Game Engine
Once you have an initial design for the game down on paper, you can get started on the
game engine. This will usually be the most complicated core component of the game, such
as the graphics renderer.

In the case of a 2D sprite-based game, the game engine will be a simple game loop with a
double-buffer, a static or rendered background, and a few sprites moving around for good
measure. If the game runs in real time, you will want to develop the collision detection
routine and start working on the physics for the game.

By the end of this phase in development—before you get started on a real prototype—you
should try to anticipate (based on the initial design) some of the possible graphics and mis-
cellaneous routines you will need later. Obviously, you will not know in advance all of the
functionality the game will need, but you should at least code the core routines up front.

Alpha Prototype
After you have developed the engine that will power your game, the next natural step in
development is to create a prototype of the game. This phase is really a natural result of
testing the game engine, so the two phases are often seamless. But if you treat the proto-
type as a single complete program without the need for modification, then you will have
recognized this phase of the game.

Once you have finished the prototype, I recommend you compile and save it as an indi-
vidual program or demo. At this point, you might want to send it to a few friends to get
some feedback on general gameplay. This version of the game will not even remotely look
as if it is complete. Bitmaps will be incomplete, and there might not even be any sound or
music in the prototype.

Chapter 6 � Introduction to Game Design196

However, one thing that the multiplayer prototype must have from the start is network
capabilities. If you are developing a multiplayer game, you must code the networking
along with the graphics and the game engine early in development. It is a mistake to start
adding multiplayer code to the game after it is half finished, because most likely you will
have written routines that are not suited for multiple players and you will have to rewrite
a lot of code.

Game Development
The game development phase is clearly the longest phase of work done on a game. It con-
sists of taking the prototype code base—along with feedback received by those who ran the
demo—and building the game. Since this phase is the most important one, there are many
different ways that you can accomplish it. First, you will most likely be building on the proto-
type that you developed in the previous phase because it usually does not make sense to
start over from scratch unless there are some serious design flaws in the prototype.

You might want to stub out all of the functionality needed to complete the game so there is
at least some sort of minimal response from the game when certain things happen or when
a chain of events occurs. For instance, if you plan to support a high-score server on the
Internet, you might code the high-score server with a simple response message so you can
send a request to the server and then display the reply. This way, there is at least some sort
of response from this part of the game, even if you do not intend to complete it until later.

Another positive note for stubbing out functionality is that you get to see the entire game
as it will eventually appear when completed. This allows you to go back to the initial design
phase and make some changes before you are half finished with the game. Stubbing out
nonessential functionality lets you see an overview of the entire game. You can then freeze
the design and complete each piece of the game individually until the game is finished.

Quality Control
Individuals like you who are working on a game alone might be tempted to skip some of
the phases of development, since the formality of it might seem humorous. But even if
you are working on a game by yourself, it is a good practice to get into the habit of going
through the motions of the formal game development life cycle as if you have a team of
people working with you on the game. Someday, you might find yourself working on a
professional game with others, and the professionalism that you learned early on will pay
off later.

Quality control is the formal testing process that is required to correct bugs in a game.
Because the lead developers of a game have been staring at the code and the game screens
for months or years, a fresh set of eyes is needed to properly test a game. If you are work-
ing solo, you need to recruit one or more friends to help you test the game. I guarantee
that they will be able to find problems that you have overlooked or missed completely.

Game Development Phases 197

Because this is your pet project, you are very likely to develop habits when playing the
game, while anyone else might find your machinations rather strange. Goofy keyboard
shortcuts or strange user interface decisions might seem like the greatest thing since
ketchup to you, but to someone else the game might not even be fun to play.

Consider quality control as an audit of your game. You need an objective person to point
out flaws and gameplay issues that might not have been present in the prototype. It is a
critical step when you think about it. After all the work you have put into a game, you cer-
tainly don’t want a simple and easily correctable bug to tarnish the impression you want
your game to have on others.

Beta Testing
Beta testing is a phase that follows the completion of the game’s development phase, and
it should be recognized as significantly separate from the previous quality control phase.
The beta version of a game absolutely should not be released if the game has known bugs.
Any time you send out a game for beta testing and you know there are bugs, you should
recognize that you are really still in the quality control phase. Only when you have
expunged every conceivable bug in the game should you release it to a wider audience for
beta testing.

At this point in the game’s life cycle, the game is complete and 100 percent functional, and
you are only looking for a larger group of users to identify bugs that might have slipped
past quality control. Before you release a game to beta testers, make absolutely certain that
all of the graphics, sound effects, and music are completely ready to go, as if the game is
ready to be sent out to stores. If you do not feel confident that the game is ready to sit on
a retail shelf, then that is a sure sign that it is not yet out of the quality control phase. When
you identify bugs during the beta test phase, you should collect them at regular time inter-
vals and send out new releases—whether your schedule is daily or weekly.

When users stop thinking of the game as a beta version and they actually start to play it
to have fun (with general trust in the game’s stability), and when no new bugs have been
identified for a length of time (such as a couple weeks or a month), then you can consider
the game complete.

Post-Production
Post-production work on a game includes creating the install program that installs the
game onto a computer system and writing the game manual. If you will be distributing
the game via the Internet, you will definitely want to create a Web site for your game, with
a bunch of screenshots and a list of the key features of the game.

Chapter 6 � Introduction to Game Design198

Official Release
Once you have a complete package ready to go, burn the complete game installer with
everything you need to play the game to a CD and give it to a few people who were not
involved in the beta testing process. If you feel that the game is ready for prime time, you
might send out copies of it to online- and printed-magazine editors for review.

Out the Door or Out the Window?
One thing is for certain: When you work on a game project for an employer who knows
nothing about software development, you can count on having marketing run the show,
which is not always good. Some of the best studios in the world are run by a small group
of individuals who actually work on games but know very little about how to run a busi-
ness or advertise a game to the general public. Far too often, those award-winning game
designers and developers will turn over the reins of their small company to a fulltime
manager (or president) because the pressure of running the business becomes too much
for developers (who would rather write code than balance the accounts).

Managing the Game
The manager of a game studio might have learned the strategies to make a retail or whole-
sale company succeed. These strategies include concepts such as just-in-time inventory,
employee management, cost control, and customer relationship management—all very
good things to know when running a grocery store or sales department. The problem is,
many managers fail to realize that software development is not a business, and program-
mers should not be treated like factory workers; rather, they should be treated like mem-
bers of a research and development team.

Consider the infamous Bell Laboratories (or Bell Labs), an R&D center that has come up
with hundreds of patents and innovations that have directly affected the computer indus-
try (not the least of which was the transistor). A couple of intelligent guys might have
invented the microprocessor, but the transistor was a revolutionary step that made the
microprocessor possible. Now imagine if someone had treated Bell Labs like a factory,
demanding results on a regular basis. Is that how human creativity works, through sched-
ules and deadlines?

The case might be made that true genius is both creative and timely. Along that same train
of thought, it might be said that genius is nothing but an extraordinary amount of hard
work with a dash of inspiration here and there.

There are some really terrific game publishers that give development teams the leeway to
add every last bell and whistle to a game, and those publishers should be applauded!

Post-Production 199

But—you knew that was coming, didn’t you?—far too often, publishers simply want
results without regard for the quality of a game. When shareholders become more impor-
tant than developers in a game company, it’s time to find a new job.

A Note about Quality
What is the best way to work with game developers or the best way to work with man-
agement? The goal, after all, is to produce a successful game. Learn the meaning behind
the buzzwords. If you are a developer, try to explain the technology behind your game
throughout the development life cycle and provide options to managers. By offering sev-
eral technical solutions to any given problem, and then allowing the decision makers to
decide which path to follow, you will succeed in completing the game on time and within
budget.

The accusations and jibes actually go both ways! Management is often faced with devel-
opers who are competing with other developers in the industry. The goal might be a
sound one; high-end game engines are often so difficult to develop that many companies
would rather license an existing engine than build their own. Quite often a game is noth-
ing more than a technology demo for the engine, because licensing might provide even
more income than actual game sales (especially if royalties are involved). When a game is
nearing completion and a competitor’s game comes out with some fancy new feature,
such as a software renderer with full anisotropic filtering (okay, that is impossible, but you
get the point), the tendency is to cram a similar new feature into the game at the last
minute for bragging rights. However, the new feature will have absolutely no bearing on
the playability or fun factor of the game, and it might even reduce game stability.

This tendency is something that managers must deal with on a daily basis in a struggle to
keep developers from modifying the game’s design (resulting in a game that is never fin-
ished). Rather than constantly modify the design, developers should be promised work on
a sequel or a new game so they can use all the new things they learned while working on
the current game.

Empowering the Engine
Consider the game Unreal, by Epic Games. (As an aside, Epic Games was once called Epic
Megagames, and they produced some very cool shareware games.) The Unreal engine was
touted as a Quake II killer, with unbelievable graphics all rendered in software. Of course,
3D acceleration made Unreal even more impressive. But the problem with Unreal was not
the technology behind the mesmerizing graphics in the game, but rather the gameplay.
Gamers were playing tournament-style games, a trend that was somewhat missed by the
developers, publishers, and gaming media at the time. In contrast, Quake II had a large
and engaging single-player game in addition to multiplayer support that spawned a cult
following and put the game at the top of the charts.

Chapter 6 � Introduction to Game Design200

Unreal was developed from the start as a multiplayer game, since the game was in devel-
opment for several years. Epic Games released Unreal Tournament about two years later,
and it was simply awesome—a perfect example of putting additional efforts into a second
game, rather than delaying the first. The only single-player component of Unreal
Tournament is a game mode in which you can play against computer-controlled bots; it is
undeniably a multiplayer game throughout.

Quality versus Trends
Blizzard was once a company that set the industry standard for creating extremely high-
quality games, such as Warcraft II, Starcraft, and Diablo. These games alone have outsold
the entire lineup from some publishers, with multiple millions of copies sold worldwide.
Why was Blizzard so successful with these early games? In a word: quality. From the
installer to the end of the game, Blizzard exuded quality in every respect. Then something
happened. The company announced a new game, and then cancelled it. A new installment
of Warcraft was announced (Warcraft Adventures: Lord of the Clans, a cartoon-style game
that had the potential to supercede the coming “cell shading” trend pioneered by Jet Set
Radio for the Dreamcast—not to mention that Blizzard missed out on the resurgence of
the adventure game genre), and then forgotten for several years. Diablo II came out in
2001, and many scratched their heads, wondering why it took three years to develop a
sequel that looked so much like the original.

Consider Future Trends

The problem is often not related to the quality of a game as much as it is related to trends.
When it takes several years to develop an extremely complicated game, design decisions
must be made in advance, and the designers have to do a little guesswork to try to deter-
mine where gaming trends are headed, and then take advantage of those trends in a game.
A blockbuster game does not necessarily need to follow every new trend; on the contrary,
the trends are set by the blockbuster games. An otherwise fantastic game that was revolu-
tionary and ambitious at one point might find itself outdated by the time it is released.

Take Out the Guesswork

Age of Empires was released for the holiday season in 1997, at the dawn of the real-time
strategy revolution in the gaming industry. This game was in development for perhaps
two years before its release. That means work started on Age of Empires as early as 1995!
Now, imagine the trends of the time and the average hardware on a PC, and it is obvious
that the designer of the game had a good grasp of future trends in gaming.

Those RTS games that were developed with complete 3D environments still haven’t
seemed to catch on. In many ways, Dark Reign II is far superior to Age of Empires II, with
gorgeous graphics and stunning 3D particle effects. Yet Age of Empires II has become more

Post-Production 201

of a LAN party favorite, along with Quake III Arena, Unreal Tournament, and Counter-
Strike. Perhaps RTS fans are not interested in complete 3D environments. My personal
suspicion is that the 3D element is distracting to a gamer who would prefer to focus on
his strategy rather than navigating the 3D terrain.

Innovation versus Inspiration
As an aspiring game designer, what is the solution to the technology/trend problem? My
advice is to play every game you can get your hands on (if you are not already an avid
gamer). Play games that don’t interest you to get a feel for a variety of games. Download
and play every demo that comes out, regardless of the type of game. Demos are a great
way for marketing departments to promote a game before it is finished, but they are also
a great way for competitors to see what you have planned. As with most things in business
or leisure, there is a tradeoff. It is great to have some fun while you play games, but try to
determine how the game works and what is under the hood. If the game is based on a
licensed engine rather than custom code, you might try to identify which engine powers
the game.

Half-Life is probably one of the oldest games in the industry that is still being improved
upon and packaged for sale on retail shelves. One of the most significant reasons for the
success of Half-Life (along with the compelling story and gameplay) is the Half-Life SDK.
This software development kit for the Half-Life engine is available for free download.
While hundreds of third-party modifications (MODs) have been created for Half-Life, by
far the most popular is Counter-Strike (which was finally packaged for retail sale after
more than a year in beta, and then ported to Xbox).

The Infamous Game Patch
Regardless of the good intentions of developers, many games are rushed and sent out to
stores before they are 100-percent complete. This is a result of a game that went over bud-
get, a publisher that decided to drop the game but was convinced to complete it, or a pub-
lisher that is interested only in a first run of sales, without regard to quality.

A common trap that publishers have fallen into is the belief that they can rush a game,
and then release a downloadable patch for it. The reasoning is that customers are already
used to downloading new versions and updates to software, so there is nothing wrong
with getting a game out the door a week before Christmas to make it for the holiday sea-
son. The flaw behind this reasoning is that games are largely advertised by word of mouth,
not by marketing schemes. Due to the huge number of newsgroups and discussion lists
(such as Yahoo! Groups) that allow millions of members to share information, ideas, and
stories, it is impossible for a killer new game to be released without a few hundred thousand
gamers knowing about it.

Chapter 6 � Introduction to Game Design202

But now you see the trap. The same gamers who swap war stories online about their
favorite games will rip apart a shoddy game that was released prematurely. This is a sign
of sure death for a game. Only rarely will a downloadable patch be acceptable for a game
that is released before it is complete.

Expanding the Game
Most successful games are followed by an expansion pack of some sort, whether it is a map
pack or a complete conversion to a new theme. One of my favorite games of all time is
Homeworld, which was created by Relic and published by Sierra. Homeworld is an extra-
ordinary game of epic proportions, and it is possibly the most engaging and realistic game
I have ever played. (The same applies to Homeworld 2, the excellent sequel.)

When the expansion game Homeworld: Cataclysm was released, I found that not only was
there a new theme to the game (in fact, it takes place a number of years after the events in
the original game), but the developers had actually added some significant new features
to the game engine. The new technologies and ships in Cataclysm were enough to warrant
buying the game, but Cataclysm is also a standalone expansion game that does not require
the original to run.

Expansion packs and enhanced sequels allow developers to complete a game on schedule
while still exercising their creative and technical skill on an additional product based on
the same game. This is a great idea from a marketing perspective because the original
game has already been completed, so the amount of work required to create an expansion
game is significantly less and allows for some fine-tuning of the game.

Future-Proof Design
Developing a game with code reuse is one thing, but what about designing a game to make
it future-proof? That is quite a challenge given that computer technology improves at such
a rapid pace. The ironic thing about computer games is that developers usually target
high-end systems when building the game, even though they can’t fully estimate where
mainstream computer hardware will be a year in the future. Yet, when a new high-end
game is released, many gamers will go out and purchase upgrades for their computers to
play the new game. You can see the circular cause-and-effect that results.

Overall, designing a game for the highest end of the hardware spectrum is not a wise deci-
sion because there are thousands of gamers in the world who do not have access to the lat-
est hardware innovations—such as striped hard drives attached to RAID (Redundant
Array of Independent Disks) controllers or a 64-MB DDR (Double-Data Rate memory)
GeForce 3 video card. While hardware improvements are increasing as rapidly as prices
seem to be dropping, the average gaming rig is still light-years beyond the average con-
sumer PC, and that should be taken into account when you are targeting system hardware.

Future-Proof Design 203

Game Libraries
A solid understanding of game development usually precedes work on a game library for
a particular platform, and this usually takes place during the initial design and prototype
phases of game development. It is becoming more common for publishers to contract
with developers for multiple platforms. Whether the developers build an entirely new
game library for each platform or develop a multi-platform game library is usually irrel-
evant to the publisher, who is only interested in a finished product. You can see now why
Allegro is such a powerful ally and why I selected it for this book!

A development studio is likely to reap incredible rewards by developing a multi-platform
game library that can be easily recompiled for any of the supported computer platforms.
It is not unheard of to develop a library that supports PC, PlayStation 2, GameCube, and
Xbox, all with the same code base. In the case of this book, you are able to write games
directly for Windows or Linux without much effort, and for Mac and a few other systems
with a little work. Allegro takes care of the details within the library.

Game Engines and SDKs
Game engines are far overrated in the media and online discussion groups as complete
solutions to a developer’s needs. Not true! Game engines are based on game libraries for
one or more platforms, and the game engine is likely optimized to an incredible degree
for a particular game. Common engines today include the Half-Life SDK, the Unreal
engine, and the Quake III engine. These game engines can be used to create a completely
new game, but that game is really just a total conversion for the existing engine. Some stu-
dios are up to the challenge of modifying the existing engine for their own needs, but far
more often, developers will use the existing engine as is and simply customize it for their
own game projects.

Examples of games based on an existing engine include Star Trek Voyager: Elite Force II,
Counter-Strike, and even Quake IV (which is based on the Doom III engine). Half-Life 2 is
promising to be a strong contender in the engine business, pushing the envelope of real-
ism to an even higher level than has been seen to date.

What Is Game Design?
Now that you have some background on the theory of game design and a good overview
of the various game genres your game might fit into, I’ll go over some real-world exam-
ples and cover information you might need when you want to take your game into the
retail market.

So what exactly is game design? It is the ancient art of creating and defining games. Well,
that’s at least the short definition. Game design is the entire process of creating a game

Chapter 6 � Introduction to Game Design204

idea, from research, to the graphical interface, to the unit’s capabilities. Having an idea for
a game is easy; making a game from that idea is the hard part—and that is just the design
part! When creating a game, some of the jobs of a designer are to:

� Define the game idea

� Define all the screens and how they relate to each other and to the menus

� Explain how and why the interaction with the game is done

� Create a story that makes sense

� Define the game goals

� Write dialogues and other specific game texts

� Analyze the balance of the game and modify it accordingly

� And much, much more…

The Dreaded Design Document
Now that you finally have decided what kind of game you are making and you have almost
everything planned out, it’s time to prepare a design document. For a better understand-
ing of what a design document should be, think of the movie industry.

When a movie is shot, the story isn’t in anyone’s head; it is completely described in the
movie script. Actually, the movie script is usually written long before shooting starts. The
author writes the script and then needs to take it to a big Hollywood company to get
the necessary means to produce the movie, but this is a long process. After a company
picks the movie, each team (actors, camera people, director, and so on) will get the copies
of the script to do their job. When the wardrobe is done, the actors know the lines and
emotion, and the director is ready, they start shooting the movie.

When dealing with game design, the process is sort of the same, in that the designers do
the design document, and then they pitch to the company they work for to see whether
the company has any interest in the idea. (No, trying to sell game designs to companies
isn’t a very nice future.) When the company gives the go for a game—probably after revis-
ing the design and for sure messing it up—each team (artists, programmers, musicians,
and so on) gets the design document and starts doing its job. When some progress is made
by all the teams, the actual production starts (such as testing the code with the art and
including the music).

One more thing before I proceed: Just because some feature or menu is written in the
design document, it doesn’t mean it has to be that way no matter what. This is also simi-
lar to the movies, in that the actors follow the script, but sometimes they improvise, which
makes the movie even more captivating.

The Dreaded Design Document 205

The Importance of Good Game Design
Many young and beginning game programmers defend the idea that the game is in their
head, and thus they refuse to do any kind of formal design. This is a bad approach for sev-
eral reasons. The first one is probably the most important if you are working with a team.
If you are working with other people on the game and you have the idea in your head,
there are two possibilities: Your team members are psychic or you spend 90 percent of the
time you should be developing your game explaining why the heck the player can’t use the
item picked in the first level to defeat the second boss. The second option is in no way fun.

Another valid reason to keep a formal design document is to keep focus. When you have
the idea in your head, you will be working on it and modifying it even when you are fin-
ishing the programming part. This is bad because it will eventually force you to change
code and lose time. I’m not saying that when you write something down, it is written in
stone. All the aspects of the design document can and should change during development.
The difference is that when you have a formal design, it’s easy to keep focus and progress,
whereas if you keep it in your head, it will be hard to progress because you won’t settle
with something and you will always be thinking of other stuff.

The last reason why you shouldn’t keep the designs in your head is because you are
human. We tend to forget stuff. Suppose you have the design in your head and you are
about 50 percent done programming the game, but for some reason you have to stop
developing the game for three weeks (due to vacation, exams month, aliens invading, or
whatever the reason). When you get back to developing the game, most of the stuff that
was previously so clear will not be as obvious, thus causing you lose to time rethinking it.

The Two Types of Designs
Even if there isn’t an official distinction between design types, separating the design
process into two types makes it easier to understand which techniques are more advanta-
geous to the games you are developing.

Mini Design
You can do the mini design in about a week or so. It features a complete but general descrip-
tion of the game. A mini design document should be enough that any team member can pick
it up, read it, and get the same idea of the game as the designer—but be allowed to include a
little bit of his own ideas for the game (such as the artist designing the main character or the
programmer adding a couple of features, such as cloud movement or parallax scrolling). Mini
designs are useful when you are creating a small game or one that is heavily based on another
game or a very well-known genre. Some distinctive aspects of a mini design document are

� General overview of the game

� Game goals

Chapter 6 � Introduction to Game Design206

� Interaction of player and game

� Basic menu layout and game options

� Story

� Overview of enemies

� Image theme

Complete Design
The complete design document looks like the script from Titanic. It features every possi-
ble aspect of the game, from the menu button color to the number of hit points the bar-
barian can have. It is usually designed by various people, with help from external people,
such as lead programmers or lead artists.

The complete design document takes too much time to make to be ignored or misinter-
preted. Anyone reading it should see exactly the same game, colors, and backgrounds as
the designer(s). This kind of design is reserved for big companies that have much money
to spare. Small teams or lone developers should stay away from this type of design because
most of the time they don’t have the resources to do it. Some of the aspects a complete
design should have are

� General overview of the game

� Game goals

� Game story

� Characters’ stories and attributes

� NPC (Non-Player Character) attributes

� Player/NPC/other rule charts

� All the rules defined

� Interaction of the player and the game

� Menu layout and style and all game options

� Music description

� Sound description

� Description of the levels and their themes and goals

A Sample Design Document Template
The following sections describe a sample design document you can use for your own
designs, but remember—these are just guidelines that you don’t have to follow exactly.
If you don’t think a section applies to your game or if you think it is missing something,
don’t think twice about changing it.

A Sample Design Document Template 207

General Overview
This is usually a paragraph or two describing the game very generally. It should briefly
describe the game genre and basic theme, as well as the objectives of the player. It is a sum-
mary of the game.

Target System and Requirements
This should include the target system—Windows, Macintosh, or any other system, such
as consoles—and a list of requirements for the game.

Story
Come on, this isn’t any mind breaker—it is the game story. This covers what happened in
the past (before the game started), what is happening when the player starts the game, and
possibly what will happen while the game progresses.

Theme: Graphics and Sound
This section describes the overall theme of the game, whether it is set in ancient times in
a land of fantasy or two thousand years in the future on planet Neptune. It should also
contain descriptions or at least hints of the scenery and sound to be used.

Menus
This section should contain a short description and the objectives of the main menus,
such as Start Game or the Options menu.

Playing a Game
This is probably the trickiest section. It should describe what happens from the time the
user starts the game to when he starts to play—what usually happens, and how it ends.
This should be set up as if you were describing what you would see on the screen if you
were playing the game yourself.

Characters and NPCs Description
This section should describe the characters and the NPCs as well as possible. This descrip-
tion should include their names, backgrounds, attributes, special attacks, and so on.

Artificial Intelligence Overview
There are two options for this section. You can give an all-around general description of the
game AI (Artificial Intelligence) and let the programmers pick that and develop their own
set of rules, or you can describe almost every possible reaction and action an NPC can have.

Chapter 6 � Introduction to Game Design208

A Sample Game Design: Space Invaders 209

Conclusion
The conclusion is usually a short paragraph covering—obviously—a conclusion to the
game. It might feature your motivation in creating the game or some explanation of why
the game is the way it is. They basically say the same thing, so just pick the one you prefer.

A Sample Game Design: Space Invaders
This section presents a sample mini design document for a Space Invaders type of game.
Space Invaders is a relatively old game that you are probably familiar with. After reading
this design document, you should be able to develop it on your own using the Mirus
framework you developed earlier. Figure 16.1 shows a sample sketch of the game screen.

General Overview
Space Invaders is a typical arcade shooter
game. The objective of the game is to
destroy all the enemy ships in each
level. The player controls a ship that
can move horizontally at the bottom of
the screen while it tries to avoid the
bullets from the alien ships.

Target System and Requirements
Space Invaders is targeted for Windows 32-bit machines with DirectX 8.0 installed. Being
such a low-end game, the basic requirements are minimal:

� Pentium 200 MHz

� 32 MB of memory

� 10 MB of free disk space

� SVGA DirectX-compatible video card

Story
Around 2049 A.D., aliens arrived on our planet, and they were not peaceful. They have
destroyed two of the major cities in the world and are now threatening to destroy more.

Figure 6.1 Space Invaders prototype

The United Defense Force has decided to send their special agent, Gui Piskounov (don’t
ask), to destroy the alien force with the new experimental ship: ZS 3020 Airborne. You
play the role of Piskounov. Your mission: To destroy all the alien scum.

Theme: Graphics and Sound
The whole game has a futuristic feeling to it. The main menus are heavily based on metal-
lic walls and wire. The game itself is played in space, and as such, most of the backgrounds
are stars or small planets. The ships have a very futuristic look to them. The game is full
of heavy trance techno music with a very fast beat. Sounds are generally based on metal
beating, explosions, and firing-bullet effects.

Menus
When the game starts, the user is presented with the main menu, in which he has five options.

Start New Game

This option starts a new game. The player is sent to the new game menu, where he can
enter his name and chose the game difficulty.

Continue Previously Saved Game

This option starts a game that was previously saved. The player is sent to the load game
menu, where he can choose a game from a list of previous saved games.

See Table of High Scores

This option shows the high scores table.

Options

This option shows the options menu. The player is sent to the options menu, where he can
change the graphics, sound, and control settings.

Exit

This option exits the game.

Playing a Game
When the game starts, a company splash screen is shown for three seconds. After the three
seconds, the screen fades to black and a splash screen starts to fade in. After four seconds,
the screen fades to black again, and the player is sent to the main menu. When the player
starts a new game, he is presented with a new menu screen, where he can enter his name
and choose the game difficulty. After this is done, the user is sent to the game itself.

Chapter 6 � Introduction to Game Design210

When each level starts, there is a three-second countdown for the game to start. The player
can move his ship to the left or right and shoot using the controls defined in the options
menu. When all the enemies are destroyed, the player advances a level. When the player is
shot by an alien, he loses a life. If the player loses all the lives, the game ends. If the aliens
reach the bottom of the screen, the game is also over.

If the player presses the Esc key while playing, the game is paused and a dialog box
appears, asking what the user wants to do. He can choose from the following options:

� Save game. This option saves the game.

� Options. This option shows the options menu.

� Quit game. This option returns the player to the main menu.

Character and NPC Description
In this version of Space Invaders, there are two versions of alien ships. The first version
consists of the normal ships that are constantly on the screen trying to destroy the player;
the second version consists of ships that randomly appear and, if shot, give bonus points
to the player.

Normal Ships

Normal ships are the typical enemies of the player. They can have various images, but
their functionality is the same. They move left and right and randomly shoot bullets at the
player vertically. When the ships reach a vertical margin, they move down a bit. These
ships are destroyed with a single shot, and each ship destroyed gives 100 points to the player.
As the levels progress, the ships move faster.

Bonus Ships

Bonus ships appear randomly at the top of the screen. They move horizontally and very
quickly. These ships exist only to give bonus points to the player; they don’t affect the
gameplay because they don’t shoot at the player and they don’t have to be destroyed.
When a bonus ship is destroyed, the game awards 500 points to the player.

Artificial Intelligence Overview
This game is very simple and requires almost no artificial intelligence. The ships move
horizontally only until they reach one of the vertical margins, where they move down.
They also randomly shoot bullets in a vertical-only direction.

Conclusion
The decision to keep this game simple but addictive was made to appeal to younger players,
but also to almost any age genre, especially hardcore arcade gamers.

A Sample Game Design: Space Invaders 211

Game Design Mini-FAQ
Q: Why should I care about designing if I want to be a programmer?

A: Tough question. The first reason is because you will probably start developing your
small games before you move to a big company and have to follow 200-page design doc-
uments in which you don’t have any say. Next, being able to at least understand the con-
cept of designing games will make your life a lot easier. If and when you are called for a
meeting with the lead designer, you will at least understand what is happening.

Q: What is the best way to get a position as a fulltime game designer in some big game
company?

A: First, chances of doing that are very slim, really. But the best way to try would be to start
low and eventually climb the ladder. Start by working on the beta testing team, then
maybe try to move to quality assurance or programming, and eventually try to give a
game design to your boss. Please be aware that there are many steps from beta testing
to even being a guest designer for a section of a game; time, patience, and perseverance
are very important.

Summary
This chapter covered the subject of game design and discussed the phases of the game
development life cycle. You learned how to classify your games by genre, how to manage
development and testing, how to release and market your game, how to improve quality
while meeting deadlines, and how to recognize some of the pitfalls of releasing an incom-
plete product. You then learned how to follow trends, how to expand and enhance a game
with expansion packs, and how game libraries and game engines work together.

This was a rather short chapter for such an important topic, but this is a book mostly
about programming, not design. If you have been paying attention, by now you should
have a vague idea why designs are important and you should be able to pick up some of
the topics covered here and design your own games. If you are having trouble, just use the
fill-in template design document provided in this chapter and start designing.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What is the best way to get started creating a new game?

A. Write the source code for a prototype.

B. Create a game design document.

C. Hire the cast and crew.

D. Play other games to engender some inspiration.

Chapter 6 � Introduction to Game Design212

2. What types of games are full of creativity and interesting technology that PC
gamers often fail to notice?

A. Console games

B. Arcade games

C. PC games

D. Board games

3. What phrase best describes the additional features and extras in a game?

A. Bonus levels

B. Easter eggs

C. Bells and whistles

D. Updates and patches

4. What is usually the most complicated core component of a game, also called the
graphics renderer?

A. The DirectX library

B. The Allegro library

C. The double-buffer

D. The game engine

5. What is the name of an initial demonstration of a game that presents the basic
gameplay elements before the actual game has been completed?

A. Beta

B. Prototype

C. Demo

D. Release

6. What is the name of the document that contains the blueprints for a game?

A. Game document

B. Blueprint document

C. Design document

D. Construction document

7. What are the two types of game designs presented in this chapter?

A. Mini and complete

B. Partial and full

C. Prototype and final

D. Typical and sarcastic

Chapter Quiz 213

8. What does NPC stand for?

A. Non-Pertinent Character

B. Non-Practical Condition

C. Non-Perfect Caricature

D. Non-Player Character

9. What are the chances of a newcomer finding a job as a fulltime game
programmer or designer?

A. Guaranteed

B. Pretty good

C. Questionable

D. Negligible

10. What is the most important aspect of game development?

A. Design

B. Artwork

C. Programming

D. Implementation

Chapter 6 � Introduction to Game Design214

215

Basic Bitmap
Handling and Blitting

chapter 7

T
he time has come to move into the core of the subject of this book on 2D game pro-
gramming. Bitmaps are that core, and they are also at the very core of the Allegro
game library. This chapter is not only an overview of bitmaps, but also of the core

subject of blitting—two subjects that are closely related. In fact, because blitting is the
process of displaying a bitmap, it might just be considered the workhorse for working
with bitmaps. By the end of this chapter, you will have a solid understanding of how to
create, load, draw, erase, and delete bitmaps, and you will use this new information to
enhance the Tank War game that you started back in Chapter 4 by converting it to a
bitmap-based game.

Here is a breakdown of the major topics in this chapter:

� Creating and deleting bitmaps

� Drawing and clipping bitmaps

� Reading a bitmap from disk

� Saving a screenshot to disk

� Enhancing Tank War

Introduction
The infamous sprite is at the very core of 2D game programming, representing an object
that moves around on the screen. That object might be a solid object or it might be trans-
parent, meaning that you can see through some parts of the object, revealing the back-
ground. These are called transparent sprites. Another special effect called translucency, also
known as alpha blending, causes an object on the screen to blend into the background by
a variable degree, from opaque to totally transparent (and various values in between).

Sprite programming is one of the most enjoyable aspects of 2D game programming, and
it is essential if you want to master the subject.

Before you can actually draw a sprite on the screen, you must find a way to create that
sprite. Sprites can be created in memory at run time, although that is not usually a good
way to do it. The usual method is to draw a small graphic figure using a graphic editing
tool, such as Paint Shop Pro, and then save the image in a graphic file (such as .bmp, .lbm,
.pcx, or .tga). Your program can then load that image and use it as a sprite. Of course, you
can create precisely the sort of image your sprite needs and load one file per sprite, but
that is a time-consuming task that can get really confusing and difficult when the sprites
start to add up! Imagine instead that you have many sprites stored in a single bitmap file,
gathered in an arrangement so you can “grab” a sprite out of the image when you need it.
This way you have to load only one bitmap image into memory, and that image serves as
the “home” for all of your sprites. This is a much faster method, and it works better, too!

But how do you grab the sprites out of the bitmap image? That will be the focus of the
next chapter. For now, I’ll focus on how to create a bitmap in memory and then draw it
to the screen. You can actually use this method to create an entire game (maybe one like
Tank War from Chapter 4?) by drawing graphics right onto a small bitmap when the pro-
gram starts, and then displaying that bitmap as often as needed. It makes sense that this
would be a lot faster than doing all the drawing at every step along the way. This is how
Tank War handled the graphics—by drawing every time the tanks needed to be displayed.
As you might imagine, it is much faster to render the tanks beforehand and then quickly
display that bitmap on the screen. Take a look at this code:

BITMAP *tank = create_bitmap(32, 32);
clear_bitmap(tank);
putpixel(tank, 16, 16, 15);
blit(tank, screen, 0, 0, 0, 0, 32, 32);

n o t e

Render is a graphical term that can apply to any act of drawing.

There are some new functions here that you haven’t seen before, so I’ll explain what they do.
The first function, called create_bitmap, does exactly what it appears to do—it creates a new
bitmap of the specified size. The clear_bitmap function zeroes out the new bitmap, which is
necessary because memory allocation does not imply a clean slate, just the space—sort of
like buying a piece of property that contains trees, bushes, and shrubbery that must be
cleared before you build a house. Now take notice of the third line, with a call to putpixel.
Look at the first parameter, tank. If you’ll recall the putpixel function from Chapter 3, you
might remember that the first parameter was always screen, which caused drawing to go
directly to the screen. In this instance, you want the pixel to be drawn on the new bitmap!

Chapter 7 � Basic Bitmap Handling and Blitting216

The blit function is something entirely new and a little bit strange, won’t you agree? If you
have heard of sprites, you have probably also heard of blitting—but just in case you
haven’t, I’ll go over it. Blit is shorthand for the process called “bit-block transfer.” This is a
fancy way of describing the process of quickly copying memory (a bit block) from one
location to another. I have never quite agreed with the phrase because it’s not possible to
copy individual bits haphazardly; only entire bytes can be copied. To access bits, you can
peer into a byte, but there’s no way to copy individual bits using the blit function.
Semantics aside, this is a powerful function that you will use often when you are writing
games with Allegro.

Isn’t it surprising that you’re able to draw a pixel onto the tank bitmap rather than to the
screen? Allegro takes care of all the complicated details and provides a nice clean interface
to the graphics system. On the Windows platform, this means that Allegro is doing all the
DirectX record-keeping behind the scenes, and other platforms are similar with their
respective graphics libraries. Now it starts to make sense why all of those graphics func-
tions you learned back in Chapter 3 required the use of screen as the first parameter. I
don’t know about you, but I think it’s kind of amazing how just a few short lines of code
(such as those shown previously) can have such a huge impact. To validate the point,
you’ll open the Tank War game project at the end of this chapter and tweak it a little, giv-
ing it a technological upgrade using bitmaps. In the context of role playing, the game will
go up a level.

There is so much information to cover regarding bitmaps and blitting that I’ll get into the
specifics of sprites and animation in the next chapter.

Dealing with Bitmaps
Now what I’d like to do is introduce you to all of the bitmap-related functions in Allegro
so you’ll have a complete toolbox before you get into sprites—because sprites depend
entirely on bitmaps to work. There are many aspects of Allegro that I don’t get into in this
book because the library has support for functionality (such as audio recording) that is
not directly applicable to a game—unless you want to add voice recognition, perhaps?

You are already familiar with the screen bitmap. Essentially, this is a very advanced and
complicated mapping of the video display into a linear buffer—in other words, it’s easy to
draw pixels on the screen without worrying about the video mode or the type of com-
puter on which it’s running. The screen buffer is also called the frame buffer, which is a
term borrowed from reel-to-reel projectors in theaters. In computing, you don’t already
have a reel of film waiting to be displayed; instead, you have conditional logic that actually
constructs each frame of the reel as it is being displayed. The computer is fast enough to
usually do this at a very high frame rate. Although films are only displayed at 24 frames
per second (fps) and television is displayed at 30 fps, it is generally agreed that 60 fps is
the minimum for computer games. Why do you suppose movies and TV run at such low

Dealing with Bitmaps 217

frame rates? Actually, the human eye is only capable of discerning about 30 fps. But it’s a
little different on the computer screen, where refresh rates and contrast ratios play a part,
since quality is not always a constant thing as it is on a theater screen. Although a video
card is capable of displaying more than 60 fps, if the monitor is only set to 60 Hertz (Hz),
then a discernable flicker will be apparent, which is annoying at best and painful at worst.
Very low vertical refresh rates can easily give you a headache after only a few minutes.

Although we deal with the screen in two dimensions (X and Y), it is actually just a single-
dimensional array. You can figure out how big that array is by using the screen width and
height.

Array_Size = Screen_Width * Screen_Height

A resolution of 800×600 therefore results in:

Array_Size = 800 * 600
Array_Size = 480,000

That’s a pretty large number of pixels, wouldn’t you agree? Just imagine that a game run-
ning 60 fps is blasting 480,000 pixels onto the screen 60 times per second! That comes to
(480,000 * 60 =) 28,800,000 pixels per second. I’m not even talking about bytes here, just
pixels. Most video modes use 3 bytes per pixel (bpp) in 24-bit color mode, or 2 bpp in 16-
bit color mode. Therefore, what I’m really talking about is on the order of 90 million bytes
per second in a typical game. And when was the last time you played a game at the lowly
resolution of 800×600? I usually set my games to run at 1280×960. If you were to use
1600×1200, your poor video card would be tasked with pushing 180 million bytes per sec-
ond. Now you can start to see what all the fuss is about regarding high-speed memory,
with all the acronyms such as RDRAM, SDRAM, DDR, and so on. Your PC doesn’t need
180 MB of video memory in this case—just very, very fast memory to keep the display
going at 60 fps. The latest video cards with 256-MB DDR really use most of that awesome
video memory for storing textures used in 3D games. The actual video buffer only
requires 32 MB of memory at most.

That’s quite a lot of new information (or maybe it’s not so new if you are a videophile),
and I’ve only talked about the screen itself. For reference, here is how the screen buffer is
declared:

extern BITMAP *screen;

The real subject here is how to work with bitmaps, so take a look inside that bitmap structure:

typedef struct BITMAP // a bitmap structure
{

int w, h; // width and height in pixels
int clip; // flag if clipping is turned on
int cl, cr, ct, cb; // clip left, right, top and bottom values

Chapter 7 � Basic Bitmap Handling and Blitting218

GFX_VTABLE *vtable; // drawing functions
void *write_bank; // C func on some machines, asm on i386
void *read_bank; // C func on some machines, asm on i386
void *dat; // the memory we allocated for the bitmap
unsigned long id // for identifying sub-bitmaps
void *extra; // points to a structure with more info
int x_ofs; // horizontal offset (for sub-bitmaps)
int y_ofs; // vertical offset (for sub-bitmaps)
int seg; // bitmap segment
ZERO_SIZE_ARRAY(unsigned char *, line);

} BITMAP;

The information in the BITMAP structure is not really useful to you as a programmer
because it is almost entirely used by Allegro internally. Some of the values are useful, such
as w and h (width and height) and perhaps the clipping variables.

Creating Bitmaps
The first thing you should know when learning about bitmaps is that they are not stored
in video memory; they are stored in main system memory. Video memory is primarily
reserved for the screen buffer, but it can also store textures. However, video memory is not
available for storing run-of-the-mill bitmaps. Allegro supports a special type of bitmap
called a video bitmap, but it is reserved for page flipping and double-buffering—something
I’ll get into in the next chapter.

As you have already seen, you use the create_bitmap function to create a memory bitmap.

BITMAP *create_bitmap(int width, int height);

By default, this function creates a bitmap using the current color depth. If you want your
game to run at a specific color depth because all of your artwork is at that color depth, it’s
a good idea to call set_color_depth after set_gfx_mode when your program starts. The
bitmap created with create_bitmap has clipping enabled by default, so if you draw outside
the boundary of the bitmap, no memory will be corrupted. There is actually a related ver-
sion of this function you can use if you want to use a specific color depth.

BITMAP *create_bitmap_ex(int color_depth, int width, int height);

If you do use create_bitmap_ex in lieu of create_bitmap with the assumed default color
depth, you can always retrieve the color depth of a bitmap using this function:

int bitmap_color_depth(BITMAP *bmp);

After you create a new bitmap, if you plan to draw on it and blit it to the screen or to
another bitmap, you must clear it first. The reason is because a new bitmap has random
pixels on it based on the contents of memory at the space where the bitmap is now located.

Dealing with Bitmaps 219

To clear out a bitmap quickly, call this function:

void clear_bitmap(BITMAP *bitmap);

There is also an alternative version called clear_to_color that fills the bitmap with a spec-
ified color (while clear_bitmap fills in with 0, which equates to black).

void clear_to_color(BITMAP *bitmap, int color);

Possibly my absolute favorite function in Allegro is create_sub_bitmap because there is so
much opportunity for mischief with this awesome function! Take a look:

BITMAP *create_sub_bitmap(BITMAP *parent, int x, y, width, height);

This function creates a sub-bitmap of an existing bitmap that actually shares the memory
of the parent bitmap. Any changes you make to the sub-bitmap will be instantly visible on
the parent and vice versa (if the sub-bitmap is within the portion of the parent that was
drawn to). The sub-bitmap is clipped, so drawing beyond the edges will not cause changes
to take place on the parent beyond that border. Now, about that little mention of mischief?
You can create a sub-bitmap of the screen!

I’ll wait a minute for that to sink in.

Do you have an evil grin yet? That’s right, you can use sub-bitmaps to update or display
portions of the screen, which you can use to create a windowing effect. This is absolutely
awesome for building a scrolling background—something I’ll spend a lot of time talking
about in future chapters. Another point is, you can create a sub-bitmap of a sub-bitmap
of a bitmap, but I wouldn’t recommend creating a feedback loop by creating a bitmap of
a sub-bitmap of a bitmap because that could cause your video card or monitor to explode.
(Well, maybe not, but you get the picture.)

Okay, not really, but to be honest, that’s the first thing I worry about when the idea of a
feedback loop comes to mind. Feedback is generally good when you’re talking about
movies, books, video games, and so on, but feedback is very, very, very bad in electronics,
as well as in software. Have you ever hooked up a video camera to a television and then
pointed the camera at the screen? What you end up with is a view into eternity. Well, it
would be infinite if the camera were centered perfectly, so the lens and TV screen are per-
fectly parallel, but you get the idea. If you try this, I recommend turning the volume down.
Then again, leaving the volume on might help to drive the point home—feedback is dan-
gerous, so naturally, let’s try it.

BITMAP *hole = create_sub_bitmap(screen, 0, 0, 400, 300);
blit(hole, screen, 0, 0, 0, 0, 400, 300);

This snippet of code creates a sub-bitmap of the screen, and then blits that region onto
itself. You can get some really weird effects by blitting only a portion of the sub-bitmap

Chapter 7 � Basic Bitmap Handling and Blitting220

and by moving the sub-bitmap while drawing onto the screen. The point is, this is just the
sort of reason you’re involved in computer science in the first place—to try new things, to
test new hypotheses, and to boldly go where no…let’s leave it at that.

Cleaning House
It’s important to throw away your hamburger wrapper after you’re finished eating, just as
it is important to destroy your bitmaps after you’re finished using them. To leave a bitmap
in memory after you’re finished is akin to tossing a wrapper on the ground. You might get
away with it without complaint if no one else is around, but you might feel a tinge of guilt
later (unless you’re completely dissociated from your conscience and society in general).
This is a great analogy, which is why I’ve used it to nail the point home. Leaving a bitmap
in memory after your program has ended might not affect anything or anyone right now.
After all, it’s just one bitmap, and your PC has tons of memory, right? But eventually the
trash is going to pile up, and pretty soon the roads, sidewalks, and parks in your once-
happy little town will be filled with trash and you’ll have to reboot the town…er, the com-
puter. destroy_bitmap is your friend.

void destroy_bitmap(BITMAP *bitmap);

By the way, stop littering. You can’t really reboot your town, but that would be convenient,
wouldn’t it? If Microsoft Windows was the mayor, we wouldn’t have to worry about litter.

Bitmap Information
You probably won’t need to use the bitmap information functions often, but they can be
very useful in some cases. For starters, the most useful function is bitmap_mask_color, which
returns the transparency color of a bitmap.

int bitmap_mask_color(BITMAP *bmp);

Allegro defines the transparency for you so there is really no confusion (or choice in the
matter). For an 8-bit (256-color) bitmap, the mask/transparent color is 0, the first entry
in the palette. All other color depths use pink as the transparent color (255, 0, 255). That’s
fine by me because I use these colors for transparency anyway, and I’m sure you would too
if given the choice. I have occasionally used black (0, 0, 0) for transparency in the past, but
I’ve found pink to be far easier to use. For one thing, the source images are much easier to
edit with a pink background because dark-shaded pixels stand out clearly when they are
superimposed over pink. Actually, Allegro assumes that transparency is always on. This
surprised me at first because I always made use of a transparency flag with my own sprite
engines in the past. But this assumption really does make sense when the transparent
color is assumed to be the mask color, which implies hardware support. On the Windows
platform, Allegro tells DirectDraw that pink (255, 0, 255) is the mask color, and
DirectDraw handles the rest. What if you don’t want transparency? Don’t use pink! For

Dealing with Bitmaps 221

example, in later chapters I’ll get into backgrounds and scrolling using tiles, and you cer-
tainly won’t need transparency. Although you will use the same blit function to draw
background tiles and foreground sprites, there is no speed penalty for doing so because
drawing background tiles is handled at a lower level (within DirectX, SVGAlib, or what-
ever library Allegro uses on your platform of choice).

An American president brought the simple word “is” into the forefront of attention a few
years back, and that’s what you’re going to do now—focus on several definitions using the
word “is.” The first is called is_same_bitmap.

int is_same_bitmap(BITMAP *bmp1, BITMAP *bmp2);

This function returns true if the two bitmaps share the same region of memory, with one
being a sub-bitmap of another or both being sub-bitmaps of the same parent.

The is_linear_bitmap function returns true if the layout of video memory is natively lin-
ear, in which case you would have an opportunity to write optimized graphics code. This
is not often the case, but it is available nonetheless.

int is_linear_bitmap(BITMAP *bmp);

A related function, is_planar_bitmap, returns true if the parameter is an extended-mode or
mode-x bitmap. Given the cross-platform nature of Allegro, this might be true in some
cases because the source code for your game might run if compiled for MS-DOS or con-
sole Linux.

int is_planar_bitmap(BITMAP *bmp);

The is_memory_bitmap function returns true if the parameter points to a bitmap that was
created with create_bitmap, loaded from a data file or an image file. Memory bitmaps dif-
fer from screen and video bitmaps in that they can be manipulated as an array (such as
bitmap[y][x] = color).

int is_memory_bitmap(BITMAP *bmp);

The related functions is_screen_bitmap and is_video_bitmap return true if their respective
parameters point to screen or video bitmaps or sub-bitmaps of either.

int is_screen_bitmap(BITMAP *bmp);
int is_video_bitmap(BITMAP *bmp);

So if you create a sub-bitmap of the screen, such as:

BITMAP *scrn = screen;

then calling the function like this:

if (is_screen_bitmap(scrn))

Chapter 7 � Basic Bitmap Handling and Blitting222

will return true. Along that same line of thinking, is_sub_bitmap returns true if the para-
meter points to a sub-bitmap.

int is_sub_bitmap(BITMAP *bmp);

Acquiring and Releasing Bitmaps
Most modern operating systems use bitmaps as the basis for their entire GUI (Graphical
User Interface), and Windows is at the forefront. There is an advanced technique for
speeding up your program’s drawing and blitting functions called “locking the bitmap.”
This means that a bitmap (including the screen buffer) can be locked so that only your
code is able to modify it at a given moment. Allegro automatically locks and unlocks the
screen whenever you draw onto it.

That is the bottleneck! Do you recall how many drawing functions were needed in Tank
War to draw the tanks on the screen? Well, converting those drawing functions into
bitmaps not only sped up the game thanks to blitting, but it also sped it up because each
call to rectfill caused a lock and unlock of the screen, which was very, very time con-
suming (as far as clock cycles are concerned). But even a well-designed game with a
scrolling background, transparent sprites, and so on will suffer if the screen or destination
bitmap is not locked first. This process involves locking the bitmap, performing all draw-
ing, and then unlocking it.

To lock a bitmap, you call the acquire_bitmap function.

void acquire_bitmap(BITMAP *bmp);

A shortcut function called acquire_screen is also available and simply calls
acquire_bitmap(screen) for you.

void acquire_screen();

There is a danger to this situation, however, if you fail to release a bitmap after you have
acquired (or locked) it. So always be sure to release any bitmaps that you have locked! More
than likely you’ll notice the mistake because your program will likely crash from repeated
acquires and no releases (in which case the screen might never get updated). This situation
is akin to falling into a black hole—the closer you get, the faster you fall! Note also that
there is another function called lock_bitmap that is similar but only used by Allegro pro-
grams running under MS-DOS (which likely will never be the case—even the lowliest PC
is capable of running at least Windows 95 or Linux, so I see no reason to support DOS).

After you update a locked bitmap, you want to release the bitmap with this function:

void release_bitmap(BITMAP *bmp);

Dealing with Bitmaps 223

and the related shortcut for the screen:

void release_screen();

Bitmap Clipping
Clipping is the process of ensuring that drawing to a bitmap or the screen does not occur
beyond the boundary of that object. In most cases this is handled by the underlying archi-
tecture (DirectDraw, SVGAlib, and so on), but it is also possible to set a portion of the
screen or a bitmap with clipping in order to limit drawing to a smaller region using the
set_clip function.

void set_clip(BITMAP *bitmap, int x1, int y1, int x2, int y2);

The screen object in Allegro and all bitmaps that are created or loaded will automatically
have clipping turned on by default and set to the boundary of the bitmap. However, you
might want to change the default clip region using this function. If you want to turn clip-
ping off, then you can pass zeros to the x1, y1, x2, and y2 parameters, like this:

set_clip(bmp, 0, 0, 0, 0);

Why would you ever want to turn off clipping? It is a very real possibility. For one thing,
if you are very careful how you update the screen in your own code, you might want to
turn off automatic clipping of the screen to gain a slight improvement in the drawing
speed. If you are very careful with your own created bitmaps, you can also turn off clip-
ping of those objects if you are certain that clipping is not necessary. If you only read from
a bitmap and you do not draw onto it, then clipping is irrelevant and not a performance
factor at all. Clipping is only an issue with drawing to a bitmap. I highly recommend that
you leave clipping alone at the default setting. More than likely, you will not need the
slight increase in speed that comes from a lack of clipping, and you are more than likely
to crash your program without it.

Loading Bitmaps from Disk
Not too long ago, video memory was scarce and a video palette was needed to allow low-end
video cards to support more than a measly 256 colors. Even an 8-bit display is capable of
supporting more colors, but they must be palettized, meaning that a custom selection
of 256 colors may be active out of a palette of many thousands of available colors. I once
had an 8-bit video card, and at one time I used to work with an 8-bit video mode. (If you
must know, VGA mode 13h was extremely popular in the DOS days.) Today you can
assume that anyone who will play your games will have at least a 16-bit display. Even that
is up for discussion, and it can be argued that 24- and 32-bit color will always be available
on any computer system likely to run your games.

Chapter 7 � Basic Bitmap Handling and Blitting224

I think 24-bit color (also called true color) is the best mode to settle on, as far as a stan-
dard for my own games, and I feel pretty confident about it. If anyone is still stuck with a
16-bit video card, then perhaps it’s time for an upgrade. After all, even an old GeForce 2
or Radeon 7500 card can be had for about 30 dollars. Of course, as often happens, some-
one with a 15-year-old laptop will want to run your game and will complain that it doesn’t
support 16-bit color. In the world we live in today, it’s not always safe to walk the streets,
but it is safe to assume that 24-bit color is available. For one thing, 16-bit modes are slower
than 24-bit modes, even if they are supported in the GPU. Video drivers get around the
problem of packing 24 bits into 16 bits by prepacking them when a game first starts (in
other words, when the bitmaps are first loaded), after which time all blitting (or 3D tex-
ture drawing) is as fast as any other color depth. If you want to target the widest possible
audience for your game, 16-bit is a better choice. The decision is up to you because Allegro
doesn’t care which mode you choose; it will work no matter what.

You were given a glimpse at how to load a bitmap file way back in Chapter 3, but now I’m
going to go over all the intricate details of Allegro’s graphics file support. Allegro supports
several formats, which is really convenient. If I were discussing only DirectX in this book,
I would be limited to just .bmp files (or I could write the code to load other types of files).
Windows .bmp files are fine in most cases, but some programmers prefer other formats—
not for any real technical reason, but sometimes artwork is delivered in another format.

Allegro natively supports the graphics file formats in Table 7.1.

Reading a Bitmap File

The easiest way to load a bitmap file from disk is to call the load_bitmap function.

BITMAP *load_bitmap(const char *filename, RGB *pal);

This function will load the specified file by looking at the file extension (.bmp, .tga, .pcx,
or .lbm) and returning a pointer to the bitmap data loaded into memory. If there is an
error, such as if the file is not found, then the function returns NULL. The first parame-
ter is the filename, and the second parameter is a pointer to a palette that you have already

Dealing with Bitmaps 225

Table 7.1 Natively Supported Graphics File Formats

Graphics Format Extension Color Depths

Windows / OS/2 Bitmap BMP 8, 24
Truevision Targa TGA 8, 16, 24, 32
Z-Soft’s PC Paintbrush PCX 8, 24
Deluxe Paint / Amiga LBM 8

defined. In most cases this will simply be NULL because there is no need for a palette
unless you are using an 8-bit video mode. Just for the sake of discussion, if you are using
an 8-bit video mode and you load a true color image, passing a pointer to the palette para-
meter will cause an optimized palette to be generated when the image is loaded. If you
want to use the current palette in an 8-bit display, simply pass NULL, and the current
palette will be used.

As I mentioned, load_bitmap will read any of the four supported graphics formats based on
the extension. If you want to specifically load only one particular format from a file, there
are functions for doing so. First, you have load_bmp.

BITMAP *load_bmp(const char *filename, RGB *pal);

As was the case with load_bitmap, you can simply pass NULL to the second parameter
unless you are in need of a palette. Note that in addition to these loading functions,
Allegro also provides functions for saving to any of the supported formats. This means
you can write your own graphics file converter using Allegro if you have any special need
(such as doing batch conversions).

To load a Deluxe Paint/Amiga LBM file, you can call load_lbm:

BITMAP *load_lbm(const char *filename, RGB *pal);

which does pretty much the same thing as load_bmp, only with a different format. The really
nice thing about these loaders is that they provide a common bitmap format in memory
that can be used by any Allegro drawing or blitting function. Here are the other two loaders:

BITMAP *load_pcx(const char *filename, RGB *pal);
BITMAP *load_tga(const char *filename, RGB *pal);

Saving Images to Disk

What if you want to add a feature to your game so that when a certain button is pressed,
a screenshot of the game is written to disk? This is a very useful feature you might want
to add to any game you work on. Allegro provides the functionality to save to BMP, PCX,
and TGA files, but not LBM files. Here’s the save_bitmap function:

int save_bitmap(const char *filename, BITMAP *bmp, const RGB *pal);

This couldn’t be any easier to use. You just pass the filename, source bitmap, and optional
palette to save_bitmap, and it creates the image file. Here are the individual versions of the
function:

int save_bmp(const char *filename, BITMAP *bmp, const RGB *pal);
int save_pcx(const char *filename, BITMAP *bmp, const RGB *pal);
int save_tga (const char *filename, BITMAP *bmp, const RGB *pal);

Chapter 7 � Basic Bitmap Handling and Blitting226

Saving a Screenshot to Disk

Now how about that screen-save feature? Here’s a short example of how you might do that
(assuming you have already initialized graphics mode and the game is running):

BITMAP *bmp;
bmp = create_sub_bitmap(screen, 0, 0, SCREEN_W, SCREEN_H);
save_bitmap(“screenshot.pcx”, bmp, NULL);
destroy_bitmap(bmp);

Whew, that’s a lot of functions to remember! But don’t worry, I don’t expect you to mem-
orize them. Just use this chapter as a flip-to reference whenever you need to use these
functions. It’s also helpful to see them and get a little experience with the various bitmap
functions that you will be using frequently in later chapters.

Blitting Functions
Blitting is the process of copying one bit block to another location in memory, with the
goal of doing this as quickly as possible. Most blitters are implemented in assembly lan-
guage on each specific platform for optimum performance. The inherent low-level libraries
(such as DirectDraw) will handle the details, with Allegro passing it on to the blitter in
DirectDraw.

Standard Blitting
You have already seen the blit function several times, so here’s the definition:

void blit(BITMAP *source, BITMAP *dest, int source_x, int source_y,
int dest_x, int dest_y, int width, int height);

Table 7.2 provides a rundown of the parameters for the blit function.

Blitting Functions 227

Table 7.2 Parameters for the blit Function

Parameter Description

BITMAP *source The source bitmap (copy from)
BITMAP *dest The destination bitmap (copy to)
int source_x The x location on the source bitmap to copy from
int source_y The y location on the source bitmap to copy from
int dest_x The x location on the destination bitmap to copy to
int dest_y The y location on the destination bitmap to copy to
int width The width of the source rectangle to be copied
int height The height of the source rectangle to be copied

Chapter 7 � Basic Bitmap Handling and Blitting228

Don’t be intimidated by this function; blit is always this messy on any platform and with
every game library I have ever used. But trust me, this is the bare minimum information
you need to blit a bitmap (in fact, one of the simplest I have seen), and once you’ve used
it a few times, it’ll be old nature to you. The important thing to remember is how the
source rectangle is copied into the destination bitmap. The rectangle’s upper-left corner
starts at (source_x, source_y) and extends right by width pixels and down by height pixels.
In addition to raw blitting, you can use the blit function to convert images from one pixel
format to another if the source and destination bitmaps have different color depths.

Scaled Blitting
There are several more blitters provided by Allegro, including the very useful stretch_blit
function.

void stretch_blit(BITMAP *source, BITMAP *dest, int source_x, source_y,
source_width, source_height, int dest_x, dest_y, dest_width, dest_height);

The stretch_blit function performs a scaling process to squeeze the source rectangle into
the destination bitmap. Table 7.3 presents a rundown of the parameters.

The stretch_blit function is really useful and can be extremely handy at times for doing
special effects, such as scaling the sprites in a game to simulate zooming in and out.
However, take care when you use stretch_blit because it’s not as hardy as blit. For one
thing, the source and destination bitmaps must have the same color depth, and the source
must be a memory bitmap. (In other words, the source can’t be the screen.) You should
also take care that you don’t try to specify a rectangle outside the boundary of either the
source or the destination. This means if you are copying the entire screen into a smaller

Table 7.3 Parameters for the stretch_blit Function

Parameter Description

BITMAP *source The source bitmap
BITMAP *dest The destination bitmap
int source_x The x location on the source bitmap to copy from
int source_y The y location on the source bitmap to copy from
int source_width The width of the source rectangle
int source_height The height of the source rectangle
int dest_x The x location on the destination bitmap to copy to
int dest_y The y location on the destination bitmap to copy to
int dest_width The width of the destination rectangle (scaled into)
int dest_height The height of the destination rectangle (scaled into)

bitmap, be sure to specify (0,0) for the upper-left corner, (SCREEN_W - 1) for the width, and
(SCREEN_H - 1) for the height. The screen width and height values are counts of pixels, not
screen positions. If you specify a source rectangle of (0, 0, 1024, 768), it could crash the
program. What you want instead is (0, 0, 1023, 767) and likewise for other resolutions.
The same rule applies to memory bitmaps—stay within the boundary or it could cause
the program to crash.

Masked Blitting
A masked blit involves copying only the solid pixels and ignoring the transparent pixels,
which are defined by the color pink (255, 0, 255) on high color and true color displays or
by the color at palette index 0 in 8-bit video modes (which I will not discuss anymore
beyond this point). Here is the definition for the masked_blit function:

void masked_blit(BITMAP *source, BITMAP *dest, int source_x, int source_y,
int dest_x, int dest_y, int width, int height);

This function has the exact same list of parameters as blit, so to learn one is to understand
both, but masked_blit ignores transparent pixels while blit draws everything! This func-
tion is the basis for sprite-based games, as you will see later in this chapter. Although there
are custom sprite-drawing functions provided by Allegro, they essentially call upon
masked_blit to do the real work of drawing sprites. However, unlike blit, the source and
destination bitmaps must have the same color depth.

Masked Scaled Blitting
One of the rather odd but potentially very useful alternative blitters in Allegro is
masked_stretch_blit, which does both masking of transparent pixels and scaling.

void masked_stretch_blit(BITMAP *source, BITMAP *dest, int source_x,
source_y, source_w, source_h, int dest_x, dest_y, dest_w, dest_h);

The parameters for this function are identical to those for stretch_blit, so I won’t go over
them again. Just know that this combines the functionality of masking and scaling.
However, you should be aware that scaling often mangles the transparent pixels in an
image, so this function can’t guarantee perfect results, especially you are when dealing
with non-aligned rectangles. In other words, for best results, make sure the destination
rectangle is a multiple of the source so that scaling is more effective.

Enhancing Tank War—From Graphics Primitives to Bitmaps
Well, are you ready to start making enhancements to Tank War, as promised back in
Chapter 4? The last two chapters have not been very forthcoming with this sort of infor-
mation, so now that you have more knowledge, let’s put it to good use.

Enhancing Tank War—From Graphics Primitives to Bitmaps 229

Tank War was developed in Chapter 4 to demonstrate all of the vector graphics support
in Allegro, and also to provide a short break from all the theory. If I had my way, each new
subject would be followed by a short game to demonstrate how a new feature works, but
that would take too much time (and paper). Instead of going the creative route and cre-
ating a fun new game in every chapter, I think it’s helpful to enhance an existing game
with the new technology you learn as you go along. It has a parallel in real life, and it
demonstrates the life cycle of game development from early concept through the proto-
type stage and on to completion. One benefit to enhancing the game with new tricks and
techniques you learn as you go along is that changes only affect a few lines of code here
and there, while entirely new games take up pages of code. Besides, this is not a “101
games” type of book, like those that were popular years ago; instead, you are learning both
high- and low-level game programming techniques that will work across different oper-
ating systems.

I have huge plans for Tank War, and you will snicker at these early versions later because
you will be making all kinds of improvements to the game in the coming chapters—a
scrolling background, animated sprites, joystick control, sound effects, and other great
things. Who knows, maybe the game will eventually be playable over the Internet!

Now, returning to the new code you just learned (which I will explain completely in the
next section), what you need to do is create a bitmap surface for both of the tanks so that
blitting will work. Create two tank bitmaps.

BITMAP *tank_bmp1 = create_bitmap(32, 32);
BITMAP *tank_bmp2 = create_bitmap(32, 32);

That will do nicely in theory, but the tank variables will be put in tankwar.h so the decla-
ration will have to be separated from the initialization. (You can’t use create_bitmap on the
same line—more on that in a moment.) There’s also the problem that each tank requires
four directions, so each one will actually need four bitmaps. Now you need to clear out
the bitmap memory so it’s a nice clean slate.

clear_bitmap(tank_bmp1);
clear_bitmap(tank_bmp2);

Great! Now what? Now all you have to do is modify Tank War so it draws the tanks using
blit instead of calling drawtank every time. Here is that blitting code:

blit(tank1, screen, 0, 0, X, Y, 32, 32);
blit(tank2, screen, 0, 0, X, Y, 32, 32);

Of course, this pseudo-code doesn’t take into account the need for a separate bitmap for
each direction the tank can travel (north, south, east, and west). But in theory, this is how
it will work. On the CD-ROM, there is a project in the chapter07 folder for Tank War with
the completed changes. But I encourage you to load up the initial Chapter 4 version of
Tank War and make these minor changes yourself so you can get the full effect of this lesson.

Chapter 7 � Basic Bitmap Handling and Blitting230

When you open the tankwar project, you’ll see the two files that comprise the source code:
main.c and tankwar.h. Open the tankwar.h header file and add the following line after the
gameover variable line:

//declare some variables
int gameover = 0;
BITMAP *tank_bmp[2][4];

This will take care of four bitmaps for each tank, and it’s all wrapped nicely into a single
array so it will be easy to use. Based on how the game uses tanks[0] and tanks[1] structures
to keep track of the tanks, it will be easier if the bitmaps are stored in this array. Now open
the main.c source code file. The goal here is to make as few changes as possible, keeping
to the core of the original game at this point and just making those changes necessary to
convert the game from vector-based graphics to bitmap-based graphics.

You can’t really create the bitmaps in the header file, so this line just created the bitmap
variables; you’ll actually create the bitmaps in main.c. Do you remember how the tanks
were set up back in Chapter 4? It was actually done by a function called setuptanks. All that
needs to be done here is to create the two bitmaps, so put that code inside setuptanks. Look
in main.c for the function and modify it as shown. (The changes are in bold.)

void setuptanks()
{

int n;

//player 1
tanks[0].x = 30;
tanks[0].y = 40;
tanks[0].speed = 0;
tanks[0].color = 9;
tanks[0].score = 0;
for (n=0; n<4; n++)
{

tank_bmp[0][n] = create_bitmap(32, 32);
clear_bitmap(tank_bmp[0][n]);
tanks[0].dir = n;
drawtank(0);

}
tanks[0].dir = 1;

//player 2
tanks[1].x = SCREEN_W-30;
tanks[1].y = SCREEN_H-30;
tanks[1].dir = 3;

Enhancing Tank War—From Graphics Primitives to Bitmaps 231

tanks[1].speed = 0;
tanks[1].color = 12;
tanks[1].score = 0;
for (n=0; n<4; n++)
{

tank_bmp[1][n] = create_bitmap(32, 32);
clear_bitmap(tank_bmp[1][n]);
tanks[1].dir = n;
drawtank(1);

}
}

It has required a lot of jumping around in the code, but so far you’ve only added a few
lines of code. Not bad for starters! But now you’re going to make some major changes to
the drawtank function. This is where all those rectfill function calls will be pointed to the
new tank bitmaps instead of directly to the screen. The actual logic hasn’t changed, just
the destination bitmap. I realize there are better and easier ways to rewrite this game to
use bitmaps, but again, the goal is not to rewrite half the game, it is to make the fewest
changes to get the job done. Note the changes in bold and make these changes in the
drawtank function so it looks like this:

void drawtank(int num)
{

int x = 15; //tanks[num].x;
int y = 15; //tanks[num].y;
int dir = tanks[num].dir;

//draw tank body and turret
rectfill(tank_bmp[num][dir], x-11, y-11, x+11, y+11, tanks[num].color);
rectfill(tank_bmp[num][dir], x-6, y-6, x+6, y+6, 7);

//draw the treads based on orientation
if (dir == 0 || dir == 2)
{

rectfill(tank_bmp[num][dir], x-16, y-16, x-11, y+16, 8);
rectfill(tank_bmp[num][dir], x+11, y-16, x+16, y+16, 8);

}
else
if (dir == 1 || dir == 3)
{

rectfill(tank_bmp[num][dir], x-16, y-16, x+16, y-11, 8);
rectfill(tank_bmp[num][dir], x-16, y+16, x+16, y+11, 8);

}

Chapter 7 � Basic Bitmap Handling and Blitting232

//draw the turret based on direction
switch (dir)
{

case 0:
rectfill(tank_bmp[num][dir], x-1, y, x+1, y-16, 8);
break;

case 1:
rectfill(tank_bmp[num][dir], x, y-1, x+16, y+1, 8);
break;

case 2:
rectfill(tank_bmp[num][dir], x-1, y, x+1, y+16, 8);
break;

case 3:
rectfill(tank_bmp[num][dir], x, y-1, x-16, y+1, 8);
break;

}
}

Now that wasn’t difficult at all, was it? Just a single parameter on all the rectfill function
calls to point the drawing onto the tank bitmaps instead of onto the screen, and a minor
change to the x and y variables. The original Tank War would draw the tanks directly on
the screen using the x and y values for each tank, so I just modified it here to base the x and
y on the center of the tank bitmap instead. So let’s summarize what has been done so far.

1. Define the tank bitmap variables.

2. Create the tank bitmaps in memory.

3. Draw the tank images onto the tank bitmaps.

What is left to do? Just one more thing! Instead of calling drawtank in the main game loop,
this has to be changed to blit! Let’s do it. Scroll down to the end of the main.c file, look for
the two drawtank lines of code, and replace them with the blit functions as the following list-
ing shows:

//game loop
while(!gameover)
{

//erase the tanks
erasetank(0);
erasetank(1);

//check for collisions
clearpath(0);
clearpath(1);

Enhancing Tank War—From Graphics Primitives to Bitmaps 233

//move the tanks
movetank(0);
movetank(1);

//draw the tanks
blit(tank_bmp[0][tanks[0].dir], screen, 0, 0,

tanks[0].x-16, tanks[0].y-16, 32, 32);
blit(tank_bmp[1][tanks[1].dir], screen, 0, 0,

tanks[1].x-16, tanks[1].y-16, 32, 32);

//update the bullets
updatebullet(0);
updatebullet(1);

//check for keypresses
if (keypressed())

getinput();

//slow the game down (adjust as necessary)
rest(30);

}

The blit function really is only complicated by the multi-dimensional tank_bmp array, but
this array results in far fewer lines of code than would otherwise be necessary using a
switch or an if statement to draw the appropriate bitmap.

Summary
This chapter was an essential step in the path to writing great 2D games. Bitmaps are the
core of 2D games and of Allegro, and in this chapter you learned to create, draw, erase,
load, and delete bitmaps using a variety of Allegro functions. You also learned quite a bit
about blitting, the process of drawing a bitmap to the screen really quickly.

Chapter Quiz
1. What does “blit” stand for?

A. Blitzkrieg

B. Bit-block transfer

C. Bit-wise transparency

D. Basic logarithmic infrared transmitter

Chapter 7 � Basic Bitmap Handling and Blitting234

2. What is a DHD?

A. Dynamic hard drive

B. Destructive hyperactivity disorder

C. Dial home device

D. That wasn’t in the chapter!

3. How many pixels are there in an 800×600 screen?

A. 480,000

B. 28,800,000

C. 65,538

D. 47

4. What is the name of the object used to hold a bitmap in memory?

A. hold_bitmap

B. create_bitmap

C. OBJECT

D. BITMAP

5. Allegorically speaking, why is it important to destroy bitmaps after you’re done
using them?

A. Because bitmaps are evil and must be destroyed.

B. Because Microsoft Windows is the mayor.

C. Because the trash will pile up over time.

D. Because you can’t reboot your hometown.

6. Which Allegro function has the potential to create a black hole if used improperly?

A. acquire_bitmap

B. create_supernova

C. do_feedback

D. release_bitmap

7. What types of graphics files are supported by Allegro?

A. PCX, LBM, BMP, and GIF

B. BMP, PCX, LBM, and TGA

C. GIF, JPG, PNG, and BMP

D. TGA, TIF, JPG, and BMP

Chapter Quiz 235

8. What function is used to draw a scaled bitmap?

A. draw_scaled_bitmap

B. stretch_blit

C. scaled_blit

D. masked_scaled_blit

9. Why would you want to lock the screen while drawing on it?

A. If it’s not locked, Allegro will lock and unlock the screen for every draw.

B. To prevent anyone else from drawing on your screen.

C. To keep the screen from getting away while you’re using it.

D. To prevent a feedback loop that could destroy your monitor.

10. What is the name of the game you’ve been developing in this book?

A. Super Allegro Bros.

B. Barbie’s Motorhome Adventure

C. Teenage Neutered Midget Poodles

D. Tank War

Chapter 7 � Basic Bitmap Handling and Blitting236

237

Basic Sprite Programming:
Drawing Scaled, Flipped,
Rotated, Pivoted, and
Translucent Sprites

chapter 8

I
t is amazing to me that in the year 2004, we are still talking about, writing about, and
developing games with sprites. There are just some ideas that are so great that no
amount of new technology truly replaces them entirely. A sprite is a small image that

is moved around on the screen. Many programmers misuse the term to describe any small
graphic image in a game. Static, unmoving objects on the screen are not sprites because
by very definition a sprite is something that moves around and does something on the
screen, usually in direct relation to something the player is doing within the game. The
analogy is to a mythical sprite—a tiny, mischievous, flying creature that quickly flits
about, looking something like a classical fairy, but smaller. Of course the definition of a
sprite has grown to include any onscreen game object, regardless of size or speed.

While the previous chapter provided all the prerequisites for working with sprites, this
chapter delves right into the subject at full speed. Technically, a sprite is no different than
a bitmap as far as Allegro is concerned. In fact, the sprite-handling functions in this chapter
define sprites using the BITMAP * pointer. You can also draw a sprite directly using any of
the bitmap drawing functions. However, Allegro provided a number of custom sprite
functions that help to make your life as a 2D game programmer a little easier, in addition
to some special effects that will knock your socks off! What I’m talking about is the ability
to add dynamic lighting effects to one or more sprites on the screen! That’s right—in this
chapter you will learn to not only load, create, and draw sprites, but also how to apply
lighting effects to those sprites. Combine this with alpha blending and transparency, and
you’ll learn to do some really amazing things in this chapter.

This chapter uses the word “basic” in the title because, although this is a complete
overview of Allegro’s sprite support, the upcoming chapters will feature a lot of the more
advanced coverage. At this point, I believe it’s more important to provide you with some
exposure to all of the sprite routines available so you can see how they’ll be used as you
go along. If you don’t see the big picture yet, that’s understandable, but it’s very helpful to
grasp the key topics in this chapter because they’re vital to the rest of the book. To help
solidify the new information in your mind, you’ll dig into Tank War a little more at the
end of the chapter and enhance it with some sprites!

Here is a breakdown of the major topics in this chapter:

� Drawing regular and scaled sprites

� Drawing flipped sprites

� Drawing rotated and pivoted sprites

� Enhancing Tank War

Basic Sprite Handling
Now that you’ve had a thorough introduction to bitmaps in the last chapter—how to create
them, load them from disk, make copies, and blit them—you have the prerequisite infor-
mation for working with sprites. A sprite image is simply a bitmap image. What you do
with a sprite image (and the sprite functionality built into Allegro) differentiates sprites
from mere bitmaps.

Drawing Regular Sprites
The first and most important function to learn is draw_sprite.

void draw_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y);

This function is similar to masked_blit in that it draws the sprite image using transparency.
As you’ll recall from the previous chapter, the transparent color in Allegro is defined as
pink (255, 0, 255). Therefore, if your source bitmap uses pink to outline the image, then
that image will be drawn transparently by draw_sprite. Did you notice that there are no
source_x, source_y, width, or height parameters in this function call? That is one conve-
nience provided by this function. It is assumed that you intend to draw the whole sprite,
so those values are provided automatically by draw_sprite and you don’t need to worry
about them. This assumes that the entire bitmap is comprised of a single sprite. Of course,
you can use this technique if you want, but a far better method is to store multiple sprites
in a single bitmap and then draw the sprites by “grabbing” them out of the bitmap (some-
thing I’ll cover later in this chapter).

Chapter 8 � Basic Sprite Programming238

The most important factor to consider up front when you are dealing with sprites is the
color depth of your game. Until now, you have used the default color depth and simply
called set_gfx_mode before drawing to the screen. Allegro does not automatically use a high-
color or true-color color depth even if your desktop is running in those modes. By default,
Allegro runs in 8-bit color mode (the mode that has been used automatically in all the
sample programs thus far). Figure 8.1 shows a sprite drawn to the screen with the default
color depth.

Drawing that same sprite using a 16-bit high-color mode results in the screen shown in
Figure 8.2. Notice how the sprite is now drawn with the correct transparency, whereas the
pink transparent color was incorrectly drawn on the 8-bit display shown in Figure 8.1.

The program to produce these sprites is provided in the following listing and included on
the CD-ROM under the name drawsprite.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)

int main()

Basic Sprite Handling 239

Figure 8.1 A high-color sprite drawn to the screen with a default 8-bit
color depth. Sprite image courtesy of Ari Feldman.

{
BITMAP *dragon;
int x, y;

//initialize the program
allegro_init();
install_keyboard();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_FULLSCREEN, 640, 480, 0, 0);

//print some status information
textprintf(screen,font,0,0,WHITE,”Resolution = %ix%i”,

SCREEN_W, SCREEN_H);
textprintf(screen, font, 0, 10, WHITE, “Color depth = %i”,

bitmap_color_depth(screen));

//load the bitmap
dragon = load_bitmap(“spacedragon1.bmp”, NULL);
x = SCREEN_W/2 - dragon->w/2;
y = SCREEN_H/2 - dragon->h/2;

//main loop
while (!key[KEY_ESC])

{
//erase the sprite
rectfill(screen, x, y, x+dragon->w, y+dragon->h, 0);

//move the sprite
if (x— < 2)

x = SCREEN_W - dragon->w;

//draw the sprite
draw_sprite(screen, dragon, x, y);

textprintf(screen,font,0,20,WHITE, “Location = %ix%i”, x, y);
rest(1);

}

//delete the bitmap
destroy_bitmap(dragon);

return 0;
}
END_OF_MAIN();

Chapter 8 � Basic Sprite Programming240

Transparency is an impor-
tant subject when you are
working with sprites, so it is
helpful to gain an under-
standing of it right from the
start. Figure 8.3 shows an
example of a sprite drawn
with and without trans-
parency, as you saw in the
sample drawsprite program
when an 8-bit color depth
was used.

When a sprite is drawn
transparently, all but the
transparent pixels are copied
to the destination bitmap
(or screen). This is necessary
because the sprite has to be

stored in a bitmap image of one type or another (.bmp, .pcx, and so on), and the com-
puter can only deal with rectangular bitmaps in memory. In reality, the computer only
deals with chunks of memory anyway, so it cannot draw images in any other shape but
rectangular (see Figure 8.4).

In the next chapter, I’ll show you
a technique you can use to draw
only the actual pixels of a sprite
and completely ignore the trans-
parent pixels during the drawing
process. This is a special feature
built into Allegro called compiled
sprites. Compiled sprites, as well
as run-length encoded (com-
pressed) sprites, can be drawn
much faster than regular sprites
drawn with draw_sprite, so the
next chapter will be very inter-
esting indeed!

Basic Sprite Handling 241

Figure 8.2 The high-color sprite is drawn to the screen with
16-bit color. Sprite image courtesy of Ari Feldman.

Figure 8.3 The difference between a sprite drawn with and
without transparency. Sprite image courtesy of Ari Feldman.

Drawing Scaled Sprites
Scaling is the process of zooming in or out of an
image, or in another context, shrinking or enlarging
an image. Allegro provides a function for drawing a
sprite within a specified rectangle on the destination
bitmap; it is similar to stretched_blit. The function is
called stretch_sprite and it looks like this:

void stretch_sprite(BITMAP *bmp, BITMAP *sprite,
int x, int y, int w, int h);

The first parameter is the destination, and the second
is the sprite image. The next two parameters specify
the location of the sprite on the destination bitmap,
while the last two parameters specify the width and
height of the resulting sprite. You can only truly
appreciate this function by seeing it in action. Figure
8.5 shows the ScaledSprite program, which displays a
sprite at various resolutions.

Chapter 8 � Basic Sprite Programming242

Figure 8.4 The actual sprite is
contained inside a rectangular image
with transparent pixels. Sprite image
courtesy of Ari Feldman.

Figure 8.5 A high-resolution sprite image scales quite well. Sprite image
courtesy of Ari Feldman.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)

int main()
{

BITMAP *cowboy;
int x, y, n;

float size = 8;

//initialize the program
allegro_init();

install_keyboard();
set_color_depth(16);

set_gfx_mode(GFX_AUTODETECT_FULLSCREEN, 640, 480, 0, 0);

//print some status information
textprintf(screen,font,0,0,WHITE,”Resolution = %ix%i”,

SCREEN_W, SCREEN_H);
textprintf(screen, font, 0, 10, WHITE, “Color depth = %i”,

bitmap_color_depth(screen));

//load the bitmap
cowboy = load_bitmap(“spacecowboy1.bmp”, NULL);

//draw the sprite
for (n = 0; n < 11; n++)
{

y = 30 + size;
stretch_sprite(screen, cowboy, size, y, size, size);
textprintf(screen,font,size+size+10,y,WHITE,”%ix%i”,

(int)size,(int)size);
size *= 1.4;

}

//delete the bitmap
destroy_bitmap(cowboy);

while(!key[KEY_ESC]);
return 0;

}
END_OF_MAIN();

Basic Sprite Handling 243

Drawing Flipped Sprites
Suppose you are writing a game called Tank War that features tanks able to move in four
directions (north, south, east, and west), much like the game we have been building in the
last few chapters. As you might recall, the last enhancement to the game in the last chap-
ter added the ability to blit each tank image as a bitmap, which sped up the game signifi-
cantly. Now imagine eliminating the east-, west-, and south-facing bitmaps from the game
by simply drawing the north-facing bitmap in one of the four directions using a special
version of draw_sprite for each one. In addition to the standard draw_sprite, you now have
the use of three more functions to flip the sprite three ways:

void draw_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y);
void draw_sprite_h_flip(BITMAP *bmp, BITMAP *sprite, int x, int y);
void draw_sprite_vh_flip(BITMAP *bmp, BITMAP *sprite, int x, int y);

Take a look at Figure 8.6, a shot from the FlipSprite program.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

int main()
{

int x, y;

//initialize the program
allegro_init();
install_keyboard();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);

//load the bitmap
BITMAP *panel = load_bitmap(“panel.bmp”, NULL);

//draw the sprite
draw_sprite(screen, panel, 200, 100);
draw_sprite_h_flip(screen, panel, 200+128, 100);
draw_sprite_v_flip(screen, panel, 200, 100+128);
draw_sprite_vh_flip(screen, panel, 200+128, 100+128);

//delete the bitmap
destroy_bitmap(panel);

while(!key[KEY_ESC]);
return 0;

}
END_OF_MAIN();

Chapter 8 � Basic Sprite Programming244

Basic Sprite Handling 245

Drawing Rotated Sprites
Allegro has some very cool sprite manipulation functions that I’m sure you will have fun
exploring. I have had to curtail my goofing off with all these functions in order to finish
writing this chapter; otherwise, there might have been 90 sample programs to go over
here! It really is incredibly fun to see all of the possibilities of these functions, which some
might describe as “simple” or “2D.”

Perhaps the most impressive (and incredibly useful) sprite manipulation function is
rotate_sprite.

void rotate_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y,
fixed angle);

This function rotates a sprite using an advanced algorithm that retains a high level of
quality in the resulting sprite image. Most sprite rotation is done in a graphic editor by an
artist because this is a time-consuming procedure in the middle of a high-speed game.
The last thing you want slowing your game down is a sprite rotation occurring while you
are rendering your sprites.

However, what about rotating and rendering your sprites at game startup, and then using
the resulting bitmaps as a sprite array? That way, sprite rotation is provided at run time,
and you only need to draw the first image of a sprite (such as a tank) facing north, and then
rotate all of the angles you need for the game. For some programmers, this is a wonderful

Figure 8.6 A single sprite is flipped both vertically and horizontally.

Chapter 8 � Basic Sprite Programming246

and welcome feature because many of us are terrible artists. Chances are, if you are a good
artist, you aren’t a game programmer, and vice versa. Why would an artistically creative
person be interested in writing code? Likewise, why would a programmer be interested in
fooling with pixels? Naturally, there are exceptions (maybe you?), but in general, this is the
way of things.

Who cares? Oh, right. Okay, let’s try it out then. But first, here are the details. The
rotate_sprite function draws the sprite image onto the destination bitmap with the top-left
corner at the specified x and y position, rotated by the specified angle around its center. The
tricky part is understanding that the angle does not represent a usual 360-degree circle;
rather, it represents a set of floating-point angles from 0 to 256. If you would like to rotate
a sprite at each of the usual 360 degrees of a circle, you can rotate it by (256 / 360 =) 0.711
for each angle.

Eight-Way Rotations

In reality, you will probably want a rotation scheme that generates eight, 16, or 32 rota-
tion frames for each sprite. I’ve never seen a game that needed more than 32 frames for a
full rotation. A highly spatial 2D shooter such as Atari’s classic Blasteroids probably used
16 frames at most. Take a look at Figure 8.7 for an example of a tank sprite comprised of
eight rotation frames.

When you want to generate eight frames, rotate
each frame by 45 degrees more than the last one.
This presumes that you are talking about a graphic
editor, such as Paint Shop Pro, that is able to rotate
images by any angle. Table 8.1 provides a rundown
of the eight-frame rotation angles and the equiva-
lent Allegro angles (based on 256). In the Allegro
system, each frame is incremented by 32 degrees,
which is actually easier to use from a programming
perspective.

n o t e

Even an eight-way sprite is a lot better than what we have
done so far in Tank War, with only four pathetic sprite
frames! What a travesty! Now that you’ve seen what is pos-
sible, I’m sure you have lost any ounce of respect you had
for the game. Just hold on for a little while because you’ll
give the Tank War game a facelift at the end of this chapter
with some proper sprites. It’s almost time to do away with
those ugly vector-based graphics once and for all!

Figure 8.7 The tank sprite (courtesy
of Ari Feldman) rotated in eight
directions

Sixteen-Way Rotations

A 16-way sprite is comprised of frames that are each incremented 22.5 degrees from the
previous frame. Using this value, you can calculate the angles for an entire 16-way sprite,
as shown in Figure 8.8.

One glance at the column of Allegro angles in
Table 8.2, and you can see why Allegro uses the
256-degree circle system instead of the 360-
degree system; it is far easier to calculate the
common angles used in games! Again, to
determine what each angle should be, just
divide the maximum angle (360 or 256, in
either case) by the maximum number of frames
to come up with a value for each frame.

Thirty-Two-Way Rotations

Although it’s certainly a great goal to try for
24 or 32 frames of rotation in a 2D game,
such as Tank War, each new set of frames
added to the previous dimension of rotation
adds a whole new complexity to the game.
Remember, you need to calculate how the gun

will fire in all of these directions! If your tank (or other sprite) needs to shoot in 32 direc-
tions, then you will have to calculate how that projectile will travel for each of those direc-
tions, too! To put it mildly, this is not easy to do. Combine that with the fact that the whole
point of using higher rotations is simply to improve the quality of the game, and you
might want to scale back to 16 if it becomes too difficult. I would suggest working from

Basic Sprite Handling 247

Table 8.1 Eight-Frame Rotation Angles

Frame Standard Angle (360) Allegro Angle (256)

1 0 0
2 45 32
3 90 64
4 135 96
5 180 128
6 225 160
7 270 192
8 315 224

Figure 8.8 The tank sprite (courtesy of
Ari Feldman) rotated in 16 directions

that common rotation count and adding more later if you have time, but don’t delay the
game just to get in all those frames so the game will be even better. My first rule is always
to make the game work first, and then add cool factors (the bells and whistles).

Take a look at Figure 8.9 for an example of what a pre-rendered 32-frame sprite looks like.
Each rotation frame is 11.25 degrees. In Allegro’s 256-degree math, that’s just a simple
eight degrees per frame. You could write a simple loop to pre-rotate all of the images for
Tank War using eight degrees, assuming you wanted to use a 32-frame tank.

That’s a lot of sprites. In addition, they must all be perfectly situated in the bitmap image
so that when it is drawn, the tank doesn’t behave erratically with small jumps due to incor-
rect pixel alignment on each frame. What’s a good solution? It probably would be a good
idea to simply use a single tank image and rotate it through all 32 frames when the game
starts up, and then store the rotation frames in a sprite array. Allegro makes it easy to do
this. This is also a terrific solution when you are working on smaller platforms that have
limited memory. Don’t be surprised by the possibility that if you are serious about game
programming, you might end up writing games for cell phones, Nokia N-Gage, and other
small platforms where memory is a premium. Of course, Allegro isn’t available for those
platforms, but speaking in general terms, rotating a sprite based on a single image is very

Chapter 8 � Basic Sprite Programming248

Table 8.2 Sixteen-Frame Rotation Angles

Frame Standard Angle (360) Allegro Angle (256)

1 0.0 0
2 22.5 16
3 45.0 32
4 67.5 48
5 90.0 64
6 112.5 80
7 135.0 96
8 157.5 112
9 180.0 128
10 202.5 144
11 225.0 160
12 247.5 176
13 270.0 192
14 292.5 208
15 315.0 224
16 337.5 240

efficient and a smart way to develop under limited resources. You can get away with a lot
of sloppy code under a large operating system, when it is assumed that the player must
have a minimum amount of memory. (512 MB and 1 GB are common on Windows
machines nowadays.)

The RotateSprite Program

Now it’s time to put some of this newfound knowledge to use in an example program.
This program is called RotateSprite, and it simply demonstrates the rotate_sprite func-
tion. You can use the left and right arrow keys to rotate the sprite in either direction. There
is no fixed angle used in this sample program, but the angle is adjusted by 0.1 degree in
either direction, giving it a nice steady rotation rate that shouldn’t be too fast. If you are
using a slower PC, you can increase the angle. Note that a whole number angle will go so
fast that you’ll have to slow down the program the hard way, using the rest function. Take
a look at Figure 8.10, which shows the RotateSprite program running.

The only aspect of the code listing for the RotateSprite program that I want you to keep an
eye out for is the actual call to rotate_sprite. I have set the two lines that use rotate_sprite
in bold so you will be able to identify them easily. Note the last parameter, itofix(angle).
This extremely important function converts the angle to Allegro’s fixed 16.16 numeric for-
mat used by rotate_sprite. You will want to pass your floating-point value (float, double)
to itofix to convert it to a fixed-point value.

Basic Sprite Handling 249

Figure 8.9 The tank sprite (courtesy of Ari Feldman) rotated in 32 directions

t i p

Fixed-point is much faster than floating-point—or so says the theory, which I do not subscribe to
due to the modern floating-point power of processors. Remember that you must use itofix with
all of the rotation functions.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)

void main(void)
{

int x, y;
float angle = 0;

//initialize program
allegro_init();
install_keyboard();
set_color_depth(32);

Chapter 8 � Basic Sprite Programming250

Figure 8.10 The tank sprite (courtesy of Ari Feldman) is rotated with the
arrow keys.

set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
textout(screen, font, “Rotate: LEFT / RIGHT arrow keys”,

0, 0, WHITE);

//load tank sprite
BITMAP *tank = load_bitmap(“tank.bmp”, NULL);

//calculate center of screen
x = SCREEN_W/2 - tank->w/2;
y = SCREEN_H/2 - tank->h/2;

//draw tank at starting location
rotate_sprite(screen, tank, x, y, 0);

//main loop
while(!key[KEY_ESC])
{

//wait for keypress
if (keypressed())
{

//left arrow rotates left
if (key[KEY_LEFT])
{

angle -= 0.1;
if (angle < 0) angle = 256;
rotate_sprite(screen, tank, x, y, itofix(angle));

}

//right arrow rotates right
if (key[KEY_RIGHT])
{

angle += 0.1;
if (angle > 256) angle = 0;
rotate_sprite(screen, tank, x, y, itofix(angle));

}

//display angle
textprintf(screen, font, 0, 10, WHITE, “Angle = %f”, angle);

}
}

}
END_OF_MAIN()

Basic Sprite Handling 251

Additional Rotation Functions

Allegro is generous with so many great functions, and that includes alternative forms of
the rotate_sprite function. Here you have a rotation function that includes vertical flip,
another rotation function that includes scaling, and a third function that does both scal-
ing and vertical flip while rotating. Whew! You can see from these functions that the cre-
ators of Allegro were not artists, so they incorporated all of these wonderful functions to
make it easier to conjure artwork for a game! These functions are similar to rotate_sprite
so I won’t bother with a sample program. You already understand how it works, right?

void rotate_sprite_v_flip(BITMAP *bmp, BITMAP *sprite,
int x, int y, fixed angle)

The preceding function rotates and also flips the image vertically. To flip horizontally, add
itofix(128) to the angle. To flip in both directions, use rotate_sprite() and add itofix(128)
to its angle.

void rotate_scaled_sprite(BITMAP *bmp, BITMAP *sprite,
int x, int y, fixed angle, fixed scale)

The preceding function rotates an image and scales (stretches to fit) the image at the same
time.

void rotate_scaled_sprite_v_flip(BITMAP *bmp, BITMAP *sprite,
int x, int y, fixed angle, fixed scale)

The preceding function rotates the image while also scaling and flipping it vertically, sim-
ply combining the functionality of the previous two functions.

Drawing Pivoted Sprites
Allegro provides the functionality to pivot sprites and images. What does pivot mean? The
pivot point is the location on the image where rotation occurs. If a sprite is 64×64 pixels,
then the default pivot point is at 31×31 (accounting for zero); a sprite sized at 32×32
would have a default pivot point at 15×15. The pivot functions allow you to change the
position of the pivot where rotation takes place.

void pivot_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y,
int cx, int cy, fixed angle)

The x and y values specify where the sprite is drawn, while cx and cy specify the pivot within
the sprite (not globally to the screen). Therefore, if you have a 32×32 sprite, you can draw
it anywhere on the screen, but the pivot points cx and cy should be values of 0 to 31.

The PivotSprite Program

The PivotSprite program demonstrates how to use the pivot_sprite function by drawing
two blue lines on the screen, showing the pivot point on the sprite. You can use the arrow

Chapter 8 � Basic Sprite Programming252

keys to adjust the pivot point and see how the sprite reacts while it is rotating in real time
(see Figure 8.11).

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)
#define BLUE makecol(64,64,255)

void main(void)
{

int x, y;
int pivotx, pivoty;
float angle = 0;

//initialize program
allegro_init();
install_keyboard();
set_color_depth(32);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);

Basic Sprite Handling 253

Figure 8.11 The PivotSprite program demonstrates how to adjust the
pivot point. Image courtesy of Ari Feldman.

//load tank sprite
BITMAP *tank = load_bitmap(“tank.bmp”, NULL);

//calculate center of screen
x = SCREEN_W/2;
y = SCREEN_H/2;
pivotx = tank->w/2;
pivoty = tank->h/2;

//main loop
while(!key[KEY_ESC])
{

//wait for keypress
if (keypressed())
{

//left arrow moves pivot left
if (key[KEY_LEFT])
{

pivotx -= 2;
if (pivotx < 0)

pivotx = 0;
}

//right arrow moves pivot right
if (key[KEY_RIGHT])
{

pivotx += 2;
if (pivotx > tank->w-1)

pivotx = tank->w-1;
}

//up arrow moves pivot up
if (key[KEY_UP])
{

pivoty -= 2;
if (pivoty < 0)

pivoty = 0;
}

//down arrow moves pivot down
if (key[KEY_DOWN])
{

pivoty += 2;

Chapter 8 � Basic Sprite Programming254

if (pivoty > tank->h-1)
pivoty = tank->h-1;

}
}

//pivot/rotate the sprite
angle += 0.5;
if (angle > 256) angle = 0;
pivot_sprite(screen, tank, x, y, pivotx, pivoty, itofix(angle));

//draw the pivot lines
hline(screen, 0, y, SCREEN_W-1, BLUE);
vline(screen, x, 0, SCREEN_H-1, BLUE);

//display information
textout(screen, font, “Pivot Location: LEFT / RIGHT arrow keys”,

0, 0, WHITE);
textprintf(screen, font, 0, 10, WHITE, “Pivot = %3d,%3d “,

pivotx, pivoty);
rest(1);

}
}
END_OF_MAIN()

Additional Pivot Functions

As usual, Allegro provides everything including the clichéd kitchen sink. Here are the
additional pivot functions that you might have already expected to see, given the consis-
tency of Allegro in this matter. Here you have three functions—pivot with vertical flip,
pivot with scaling, and pivot with scaling and vertical flip. It’s nice to know that Allegro is
so consistent, so any time you are in need of a special sprite manipulation within your
game, you are certain to be able to accomplish it using a combination of rotation, pivot,
scaling, and flipping functions that have been provided.

void pivot_sprite_v_flip(BITMAP *bmp, BITMAP *sprite, int x, int y,
int cx, int cy, fixed angle);

void pivot_scaled_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y,
int cx, int cy, fixed angle, fixed scale));

void pivot_scaled_sprite_v_flip(BITMAP *bmp, BITMAP *sprite,
int x, int y, fixed angle, fixed scale)

Basic Sprite Handling 255

Chapter 8 � Basic Sprite Programming256

Drawing Translucent Sprites
Allegro provides many special effects that you can apply to sprites, as you saw in the pre-
vious sections. The next technique is unusual enough to warrant a separate discussion.
This section explains how to draw sprites with translucent alpha blending. Two more spe-
cial effects (sprite lighting and Gouraud shading) are covered in the next chapter.

Translucency is a degree of “see-through” that differs from transparency, which is entirely
see-through. Think of the glass in a window as being translucent, while an open window
is transparent. There is quite a bit of work involved in making a sprite translucent, and I’m
not entirely sure it’s necessary for a game to use this feature, which is most definitely a
drain on the graphics hardware. Although a late-model video card can handle translu-
cency, or alpha blending, with ease, there is still the issue of supporting older computers
or those with non-standard video cards. As such, many 2D games have steered clear of
using this feature. One of the problems with translucency in a software implementation is
that you must prepare both bitmaps before they will render with translucency. Some
hardware solutions are likely available, but they are not provided for in Allegro.

Translucency is provided by the draw_trans_sprite function.

void draw_trans_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y);

Unfortunately, it’s not quite as cut-and-dried as this simple function makes it appear. To
use translucency, you have to use an alpha channel blender, and even the Allegro docu-
mentation is elusive in describing how this works. Suffice it to say, translucency is not
something you would probably want to use in a game because it was really designed to
work between just two bitmaps. You could use the same background image with multiple
foreground sprites that are blended with the background using the alpha channel, but each
sprite must be adjusted pixel by pixel when the program starts. This is a special effect that
you might find a use for, but I would advise against using it in the main loop of a game.

Here is the source code for the TransSprite program, shown in Figure 8.12. I will explain
how it works after the listing.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

int main()
{

int x, y, c, a;

//initialize
allegro_init();
install_keyboard();

install_mouse();
set_color_depth(32);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);

//load the background bitmap
BITMAP *background = load_bitmap(“mustang.bmp”, NULL);

//load the translucent foreground image
BITMAP *alpha = load_bitmap(“alpha.bmp”, NULL);
BITMAP *sprite = create_bitmap(alpha->w, alpha->h);

//set the alpha channel blend values
drawing_mode(DRAW_MODE_TRANS, NULL, 0, 0);
set_write_alpha_blender();
//blend the two bitmap alpha channels
for (y=0; y<alpha->h; y++) {

for (x=0; x<alpha->w; x++) {
//grab the pixel color
c = getpixel(alpha, x, y);
a = getr(c) + getg(c) + getb(c);
//find the middle alpha value
a = MID(0, a/2-128, 255);
//copy the alpha-enabled pixel to the sprite
putpixel(sprite, x, y, a);

}

Basic Sprite Handling 257

Figure 8.12 The TransSprite program demonstrates
how to draw a translucent sprite.

}

//create a double buffer bitmap
BITMAP *buffer = create_bitmap(SCREEN_W, SCREEN_H);

//draw the background image
blit(background, buffer, 0, 0, 0, 0, SCREEN_W, SCREEN_H);

while (!key[KEY_ESC])
{

//get the mouse coordinates
x = mouse_x - sprite->w/2;
y = mouse_y - sprite->h/2;

//draw the translucent image
set_alpha_blender();
draw_trans_sprite(buffer, sprite, x, y);

//draw memory buffer to the screen
blit(buffer, screen, 0, 0, 0, 0, SCREEN_W, SCREEN_H);

//restore the background
blit(background, buffer, x, y, x, y, sprite->w, sprite->h);

}

destroy_bitmap(background);
destroy_bitmap(sprite);
destroy_bitmap(buffer);
destroy_bitmap(alpha);

return 0;
}
END_OF_MAIN();

Now for some explanation. First, the program loads the background image (called “back-
ground”), followed by the foreground sprite (called “alpha”). A new image called “sprite”
is created with the same resolution as the background; it receives the alpha-channel infor-
mation. The drawing mode is set to DRAW_MODE_TRANS to enable translucent drawing with the
graphics functions (putpixel, line, and so on). The pixels are then copied from the alpha
image into the sprite image.

After that, another new image called “buffer” is created and the background is blitted to
it. At this point, the main loop starts. Within the loop, the mouse is polled to move the

Chapter 8 � Basic Sprite Programming258

sprite around on the screen, demonstrating the alpha blending. The actual translucency is
accomplished by two functions.

set_alpha_blender();
draw_trans_sprite(buffer, sprite, x, y);

The alpha blender is enabled before draw_trans_sprite is called, copying the “sprite” image
onto the buffer. The memory buffer is blitted to the screen, and then the background is
restored for the next iteration through the loop.

blit(buffer, screen, 0, 0, 0, 0, SCREEN_W, SCREEN_H);

Enhancing Tank War
Now it’s time to use the new knowledge you have gained in this chapter to enhance Tank
War. First, how about a quick recap on the state of the game? Take a look at Figure 8.13,
showing Tank War as it appeared in the last chapter.

Not very attractive, is it? It looks like something that would run on an Atari 2600. I have
been skirting the issue of using true bitmaps and sprites in Tank War since it was first con-
ceived several chapters ago. Now it’s time to give this pathetic game a serious upgrade!

259Enhancing Tank War

Figure 8.13 The last version of Tank War

What’s New?
First, to upgrade the game, I made a design decision to strip out the pixel collision code
and leave the battlefield blank for this enhancement. The game will look better overall
with the eight-way tank sprites, but the obstacles will no longer be present. Take a look at
Figure 8.14, showing a tank engulfed in an explosion.

It’s really time to move out of the vector theme entirely. Because I haven’t covered sprite-
based collision detection yet to determine when a tank or bullet hits an actual sprite
(rather than just checking the color of the pixel at the bullet’s location), I’ll leave that for
the next chapter, in which I’ll get into sprite collision as well as animation and other essen-
tial sprite behaviors. What that means right now is that Tank War is getting smaller and
less complicated, at least for the time being! By stripping the pixel collision code, the
source code is shortened considerably. You will lose checkpath, clearpath, and setupdebris,
three key functions from the first version of the game. (Although they are useful as
designed, they are not very practical.) In fact, that first version had a lot of promise and
could have been improved with just the vector graphics upon which it was based. If you
are still intrigued by the old-school game technology that used vector graphics, I encour-
age you to enhance the game and see what can be done with vectors alone. I am forging
ahead because the topics of each chapter demand it, but we have not fully explored all the
possibilities by any means.

Chapter 8 � Basic Sprite Programming260

Figure 8.14 Tank War now features bitmap-based sprites.

New Tanks

Now what about the new changes for Tank War? This will be the third enhancement to the
game, but it is somewhat of a backward step in gameplay because there are no longer any
obstacles on the battlefield. However, the tanks are no longer rendered with vector graph-
ics functions; rather, they are loaded from a bitmap file. This enhancement also includes
a new bitmap for the bullets and explosions. The source code for the game is much shorter
than it was before, but due to all the changes, I will provide the entire listing here, rather
than just highlighting the changes (as was the case with the previous two enhancements).
Much of the original source code is the same, but many seemingly untouched functions
have had minor changes to parameters and lines of code that are too numerous to point
out. Figure 8.15 shows both tanks firing their newly upgraded weapons.

If you’ll take a closer look at Figure 8.15, you might notice that the same information is
displayed at the top of the screen (name, resolution, bullet locations, and score). I have
added a small debug message to the bottom-left corner of the game screen, showing the
direction each tank is facing. Since the game now features eight-way directional movement
rather than just four-way, I found it useful to display the direction each tank is facing
because the new directions required modifications to the movetank and updatebullet
functions.

Enhancing Tank War 261

Figure 8.15 The tanks now fire bitmap-based projectiles.

New Sprites

Figure 8.16 shows the new projectile sprite, and Figure 8.17 shows the new explosion sprite.
These might not look like much zoomed in close like this, but they look great in the game.

Modifying the Source Code
Here is the new version of tankwar.h, the
header file used by the game. You should be
able to simply modify your last version to
make it look like this. You might notice the
new bullet and explosion bitmaps in addi-
tion to the changes to tank_bmp, which now
supports eight bitmaps, one for each direc-
tion. Now that color no longer plays a part in
drawing the tanks, the color variable has been
removed from the tank structure, tagTank.

The three function prototypes for collision detection are included: clearpath, checkpath,
and setupdebris. Since the game loop has been sped up, I have also modified BULLETSPEED
so that it is now six instead of 10 (which was too jumpy).

The Tank War Header File
///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Chapter 8 - Tank War Header (Enhancement 3)
///

#ifndef _TANKWAR_H
#define _TANKWAR_H

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

//define some game constants
#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480
#define MAXSPEED 2
#define BULLETSPEED 6

Chapter 8 � Basic Sprite Programming262

Figure 8.16
The new projectile
(bullet) sprite

Figure 8.17
The new explosion
sprite

//define some colors
#define TAN makecol(255,242,169)
#define BURST makecol(255,189,73)
#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)

//define tank structure
struct tagTank
{

int x,y;
int dir,speed;
int score;

} tanks[2];

//define bullet structure
struct tagBullet
{

int x,y;
int alive;
int xspd,yspd;

} bullets[2];

//declare some variables
int gameover = 0;

//sprite bitmaps
BITMAP *tank_bmp[2][8];
BITMAP *bullet_bmp;
BITMAP *explode_bmp;

//function prototypes
void drawtank(int num);
void erasetank(int num);
void movetank(int num);
void explode(int num, int x, int y);
void updatebullet(int num);
void fireweapon(int num);
void forward(int num);
void backward(int num);
void turnleft(int num);

Enhancing Tank War 263

void turnright(int num);
void getinput();
void setuptanks();
void score(int);
void setupscreen();

#endif

The Tank War Source Code File

Now I want to focus on the new source code for Tank War. As I mentioned previously,
nearly every function has been modified for this new version, so if you have any problems
running it after you modify your last copy of the game, you have likely missed some
change in the following listing. As a last resort, you can load the project off the CD-ROM,
located in \chapter08\tankwar for your favorite compiler (devcpp, kdevelop, or msvc).

I’ll walk you through each major change in the game, starting with the first part. Here you
have a new drawtank, erasetank, and movetank that support sprites and eight directions.

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Chapter 8 - Tank War Game (Enhancement 3)
///

#include “tankwar.h”

///
// drawtank function
// display the tank bitmap in the current direction
///
void drawtank(int num)
{

int dir = tanks[num].dir;
int x = tanks[num].x-15;
int y = tanks[num].y-15;
draw_sprite(screen, tank_bmp[num][dir], x, y);

}

///
// erasetank function
// erase the tank using rectfill
///
void erasetank(int num)

Chapter 8 � Basic Sprite Programming264

{
int x = tanks[num].x-17;
int y = tanks[num].y-17;
rectfill(screen, x, y, x+33, y+33, BLACK);

}

///
// movetank function
// move the tank in the current direction
///
void movetank(int num){

int dir = tanks[num].dir;
int speed = tanks[num].speed;

//update tank position based on direction
switch(dir)
{

case 0:
tanks[num].y -= speed;
break;

case 1:
tanks[num].x += speed;
tanks[num].y -= speed;
break;

case 2:
tanks[num].x += speed;
break;

case 3:
tanks[num].x += speed;
tanks[num].y += speed;
break;

case 4:
tanks[num].y += speed;
break;

case 5:
tanks[num].x -= speed;
tanks[num].y += speed;
break;

case 6:
tanks[num].x -= speed;
break;

case 7:
tanks[num].x -= speed;

Enhancing Tank War 265

tanks[num].y -= speed;
break;

}

//keep tank inside the screen
if (tanks[num].x > SCREEN_W-22)
{

tanks[num].x = SCREEN_W-22;
tanks[num].speed = 0;

}
if (tanks[num].x < 22)
{

tanks[num].x = 22;
tanks[num].speed = 0;

}
if (tanks[num].y > SCREEN_H-22)
{

tanks[num].y = SCREEN_H-22;
tanks[num].speed = 0;

}
if (tanks[num].y < 22)
{

tanks[num].y = 22;
tanks[num].speed = 0;

}
}

The next section of code includes highly modified versions of explode, updatebullet, and
fireweapon, which, again, must support all eight directions. One significant change is that
explode no longer includes the code that checks for a tank hit—that code has been moved
to updatebullet. You might also notice in explode that the explosion is now a bitmap rather
than a random-colored rectangle. This small effect alone dramatically improves the game.

///
// explode function
// display an explosion image
///
void explode(int num, int x, int y)
{

int n;

//load explode image
if (explode_bmp == NULL)
{

Chapter 8 � Basic Sprite Programming266

explode_bmp = load_bitmap(“explode.bmp”, NULL);
}

//draw the explosion bitmap several times
for (n = 0; n < 5; n++)
{

rotate_sprite(screen, explode_bmp,
x + rand()%10 - 20, y + rand()%10 - 20,
itofix(rand()%255));

rest(30);
}

//clear the explosion
circlefill(screen, x, y, 50, BLACK);

}

///
// updatebullet function
// update the position of a bullet
///
void updatebullet(int num)
{

int x = bullets[num].x;
int y = bullets[num].y;

//is the bullet active?
if (!bullets[num].alive) return;

//erase bullet
rectfill(screen, x, y, x+10, y+10, BLACK);

//move bullet
bullets[num].x += bullets[num].xspd;
bullets[num].y += bullets[num].yspd;
x = bullets[num].x;
y = bullets[num].y;

//stay within the screen
if (x < 6 || x > SCREEN_W-6 || y < 20 || y > SCREEN_H-6)
{

bullets[num].alive = 0;

Enhancing Tank War 267

return;
}

//look for a direct hit using basic collision
//tank is either 0 or 1, so negative num = other tank
int tx = tanks[!num].x;
int ty = tanks[!num].y;
if (x > tx-16 && x < tx+16 && y > ty-16 && y < ty+16)
{

//kill the bullet
bullets[num].alive = 0;

//blow up the tank
explode(num, x, y);
score(num);

}
else
//if no hit then draw the bullet
{

//draw bullet sprite
draw_sprite(screen, bullet_bmp, x, y);

//update the bullet positions (for debugging)
textprintf(screen, font, SCREEN_W/2-50, 1, TAN,

“B1 %-3dx%-3d B2 %-3dx%-3d”,
bullets[0].x, bullets[0].y,
bullets[1].x, bullets[1].y);

}
}

///
// fireweapon function
// set bullet direction and speed and activate it
///
void fireweapon(int num)
{

int x = tanks[num].x;
int y = tanks[num].y;

//load bullet image if necessary
if (bullet_bmp == NULL)
{

Chapter 8 � Basic Sprite Programming268

bullet_bmp = load_bitmap(“bullet.bmp”, NULL);
}

//ready to fire again?
if (!bullets[num].alive)
{

bullets[num].alive = 1;

//fire bullet in direction tank is facing
switch (tanks[num].dir)
{

//north
case 0:

bullets[num].x = x-2;
bullets[num].y = y-22;
bullets[num].xspd = 0;
bullets[num].yspd = -BULLETSPEED;
break;

//NE
case 1:

bullets[num].x = x+18;
bullets[num].y = y-18;
bullets[num].xspd = BULLETSPEED;
bullets[num].yspd = -BULLETSPEED;
break;

//east
case 2:

bullets[num].x = x+22;
bullets[num].y = y-2;
bullets[num].xspd = BULLETSPEED;
bullets[num].yspd = 0;
break;

//SE
case 3:

bullets[num].x = x+18;
bullets[num].y = y+18;
bullets[num].xspd = BULLETSPEED;
bullets[num].yspd = BULLETSPEED;
break;

//south
case 4:

bullets[num].x = x-2;
bullets[num].y = y+22;

Enhancing Tank War 269

bullets[num].xspd = 0;
bullets[num].yspd = BULLETSPEED;
break;

//SW
case 5:

bullets[num].x = x-18;
bullets[num].y = y+18;
bullets[num].xspd = -BULLETSPEED;
bullets[num].yspd = BULLETSPEED;
break;

//west
case 6:

bullets[num].x = x-22;
bullets[num].y = y-2;
bullets[num].xspd = -BULLETSPEED;
bullets[num].yspd = 0;
break;

//NW
case 7:

bullets[num].x = x-18;
bullets[num].y = y-18;
bullets[num].xspd = -BULLETSPEED;
bullets[num].yspd = -BULLETSPEED;
break;

}
}

}

The next section of code covers the keyboard input code, including forward, backward, turnleft,
turnright, and getinput. These functions are largely the same as before, but they now must
support eight directions (evident in the if statement within turnleft and turnright).

///
// forward function
// increase the tank’s speed
///
void forward(int num)
{

tanks[num].speed++;
if (tanks[num].speed > MAXSPEED)

tanks[num].speed = MAXSPEED;
}

Chapter 8 � Basic Sprite Programming270

///
// backward function
// decrease the tank’s speed
///
void backward(int num)
{

tanks[num].speed—;
if (tanks[num].speed < -MAXSPEED)

tanks[num].speed = -MAXSPEED;
}

///
// turnleft function
// rotate the tank counter-clockwise
///
void turnleft(int num)
{
//***

tanks[num].dir—;
if (tanks[num].dir < 0)

tanks[num].dir = 7;
}

///
// turnright function
// rotate the tank clockwise
///
void turnright(int num)
{

tanks[num].dir++;
if (tanks[num].dir > 7)

tanks[num].dir = 0;
}

///
// getinput function
// check for player input keys (2 player support)
///
void getinput()
{

//hit ESC to quit
if (key[KEY_ESC]) gameover = 1;

Enhancing Tank War 271

//WASD - SPACE keys control tank 1
if (key[KEY_W]) forward(0);
if (key[KEY_D]) turnright(0);
if (key[KEY_A]) turnleft(0);
if (key[KEY_S]) backward(0);
if (key[KEY_SPACE]) fireweapon(0);

//arrow - ENTER keys control tank 2
if (key[KEY_UP]) forward(1);
if (key[KEY_RIGHT]) turnright(1);
if (key[KEY_DOWN]) backward(1);
if (key[KEY_LEFT]) turnleft(1);
if (key[KEY_ENTER]) fireweapon(1);

//short delay after keypress
rest(20);

}

The next short code section includes the score function that is used to update the score for
each player.

///
// score function
// add a point to a player’s score
///
void score(int player)
{

//update score
int points = ++tanks[player].score;

//display score
textprintf(screen, font, SCREEN_W-70*(player+1), 1,

BURST, “P%d: %d”, player+1, points);
}

The setuptanks function has changed dramatically from the last version because that is
where the new tank bitmaps are loaded. Since this game uses the rotate_sprite function to
generate the sprite images for all eight directions, this function takes care of that by first
creating each image and then blitting the source tank image into each new image with a
specified rotation angle. The end result is two tanks fully rotated in eight directions.

///
// setuptanks function
// load tank bitmaps and position the tank
///

Chapter 8 � Basic Sprite Programming272

void setuptanks()
{

int n;

//configure player 1’s tank
tanks[0].x = 30;
tanks[0].y = 40;
tanks[0].speed = 0;
tanks[0].score = 0;
tanks[0].dir = 3;

//load first tank bitmap
tank_bmp[0][0] = load_bitmap(“tank1.bmp”, NULL);

//rotate image to generate all 8 directions
for (n=1; n<8; n++)
{

tank_bmp[0][n] = create_bitmap(32, 32);
clear_bitmap(tank_bmp[0][n]);
rotate_sprite(tank_bmp[0][n], tank_bmp[0][0],

0, 0, itofix(n*32));
}

//configure player 2’s tank
tanks[1].x = SCREEN_W-30;
tanks[1].y = SCREEN_H-30;
tanks[1].speed = 0;
tanks[1].score = 0;
tanks[1].dir = 7;

//load second tank bitmap
tank_bmp[1][0] = load_bitmap(“tank2.bmp”, NULL);

//rotate image to generate all 8 directions
for (n=1; n<8; n++)
{

tank_bmp[1][n] = create_bitmap(32, 32);
clear_bitmap(tank_bmp[1][n]);
rotate_sprite(tank_bmp[1][n], tank_bmp[1][0],

0, 0, itofix(n*32));
}

}

Enhancing Tank War 273

The next section of the code includes the setupscreen function. The most important
change to this function is the inclusion of a single line calling set_color_depth(32), which
causes the game to run in 32-bit color mode. Note that if you don’t have a 32-bit video
card, you might want to change this to 16 (which will still work).

///
// setupscreen function
// set up the graphics mode and draw the game screen
///
void setupscreen()
{

//set video mode
set_color_depth(32);
int ret = set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//print title
textprintf(screen, font, 1, 1, BURST,

“Tank War - %dx%d”, SCREEN_W, SCREEN_H);

//draw screen border
rect(screen, 0, 12, SCREEN_W-1, SCREEN_H-1, TAN);
rect(screen, 1, 13, SCREEN_W-2, SCREEN_H-2, TAN);

}

Finally, the last section of code in the third enhancement to Tank War includes the all-
important main function. Several changes have been made in main, notably the removal of
the calls to clearpath (which checked for bullet hits by looking directly at pixel color). The
call to rest now has a value of 10 to speed up the game a bit in order to have smoother
bullet trajectories. There is also a line of code that displays the direction of each tank, as I
explained previously.

///
// main function
// start point of the program
///
void main(void)
{

//initialize the game

Chapter 8 � Basic Sprite Programming274

allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));
setupscreen();
setuptanks();

//game loop
while(!gameover)
{

textprintf(screen, font, 0, SCREEN_H-10, WHITE,
“DIRS %d , %d”, tanks[0].dir, tanks[1].dir);

//erase the tanks
erasetank(0);
erasetank(1);

//move the tanks
movetank(0);
movetank(1);

//draw the tanks
drawtank(0);
drawtank(1);

//update the bullets
updatebullet(0);
updatebullet(1);

//check for keypresses
if (keypressed())

getinput();

//slow the game down
rest(10);

}

//end program
allegro_exit();

}
END_OF_MAIN();

Enhancing Tank War 275

Summary
This marks the end of perhaps the most interesting chapter so far, at least in my opinion.
The introduction to sprites that you have received in this chapter provided the basics
without delving too deeply into sprite programming theory. The next chapter covers some
advanced sprite programming topics, including the sorely needed collision detection.
I will also get into sprite animation in the next chapter. There are many more changes on
the way for Tank War as well. The next several chapters will provide a huge amount of new
functionality that you can use to greatly enhance Tank War, making it into a truly top-
notch game with a scrolling background, animated tanks, a radar screen, and many more
new features!

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What is the term given to a small image that is moved around on the screen?

A. Bitmap

B. Sprite

C. Fairy

D. Mouse cursor

2. Which function draws a sprite?

A. draw_sprite

B. show_sprite

C. display_sprite

D. blit_sprite

3. What is the term for drawing all but a certain color of pixel from one bitmap to
another?

A. Alpha blending

B. Translucency

C. Transparency

D. Telekinesis

4. Which function draws a scaled sprite?

A. stretch_sprite

B. draw_scaled_sprite

C. draw_stretched_sprite

D. scale_sprite

Chapter 8 � Basic Sprite Programming276

5. Which function draws a vertically-flipped sprite?

A. draw_vertical_flip

B. draw_sprite_v_flip

C. flip_v_sprite

D. draw_flipped_sprite

6. Which function draws a rotated sprite?

A. rotate_angle

B. draw_rotated_sprite

C. draw_rotation

D. rotate_sprite

7. Which function draws a sprite with both rotation and scaling?

A. draw_sprite_rotation_scaled

B. rotate_scaled_sprite

C. draw_rotated_scaled_sprite

D. scale_rotate_sprite

8. What function draws a pivoted sprite?

A. draw_pivoted_sprite

B. draw_pivot_sprite

C. pivot_sprite

D. draw_sprite_pivot

9. Which function draws a pivoted sprite with scaling and vertical flip?

A. pivot_scaled_sprite_v_flip

B. pivot_stretch_v_flip_sprite

C. draw_scaled_pivoted_flipped_sprite

D. scale_pivot_v_flip_sprite

10. Which function draws a sprite with translucency (alpha blending)?

A. alpha_blend_sprite

B. draw_trans_sprite

C. draw_alpha

D. trans_sprite

Chapter Quiz 277

This page intentionally left blank

279

Advanced Sprite
Programming: Animation,
Compiled Sprites, and
Collision Detection

chapter 9

I
f Chapter 7 provided the foundation for developing bitmap-based games, then
Chapter 8 provided the frame, walls, plumbing, and wiring. (House analogies are
frequently used to describe software development, so they may be used to describe

game programming as well.) Therefore, what you need from this chapter are the sheetrock,
finishing, painting, stucco, roof tiles, appliances, and all the cosmetic accessories that com-
plete a new house—yes, including the kitchen sink.

The other sections of this chapter (on RLE sprites, compiled sprites, and collision detec-
tion) are helpful, but might be considered the Italian tile of floors, whereas linoleum will
work fine for most people. But the segment on animated sprites is absolutely crucial in
your quest to master the subject of 2D game programming. So what is an animated sprite?
You already learned a great deal about sprites in the last chapter, and you have at your dis-
posal a good tool set for loading and blitting sprites (which are just based on common
bitmaps). An animated sprite, then, is an array of sprites drawn using new properties, such
as timing, direction, and velocity.

Here is a breakdown of the major topics in this chapter:

� Working with animated sprites

� Using run-length encoded sprites

� Working with compiled sprites

� Understanding collision detection

Chapter 9 � Advanced Sprite Programming280

Animated Sprites
The sprites you have seen thus far were handled somewhat haphazardly, in that no real
structure was available for keeping track of these sprites. They have simply been loaded
using load_bitmap and then drawn using draw_sprite, with little else in the way of control
or handling. To really be able to work with animated sprites in a highly complex game
(such as a high-speed scrolling shooter like R-Type or Mars Matrix), you need a frame-
work for drawing, erasing, and moving these sprites, and for detecting collisions. For all
of its abstraction, Allegro leaves this entirely up to you—and for good reason. No single
person can foresee the needs of another game programmer because every game has a
unique set of requirements (more or less). Limiting another programmer (who may be far
more talented than you) to using your concept of a sprite handler only encourages that
person to ignore your handler and write his own. That is exactly why Allegro has no sprite
handler; rather, it simply has a great set of low-level sprite routines, the likes of which you
have already seen.

What should you do next, then? The real challenge is not designing a handler for working
with animated sprites; rather, it is designing a game that will need these animated sprites,
and then writing the code to fulfill the needs of the game. In this case, the game I am tar-
geting for the sprite handler is Tank War, which you have improved in each new chapter—
and this one will be no exception. In Chapter 8, you modified Tank War extensively to
convert it from a vector- and bitmap-based game into a sprite-based game, losing some
gameplay along the way. (The battlefield obstacles were removed.) At the end of this chapter,
you’ll add the sprite handler and collision detection—finally!

Drawing an Animated Sprite
To get started, you need a simple example followed by an explanation of how it works. I
have written a quick little program that loads six images (of an animated cat) and draws
them on the screen. The cat runs across the screen from left to right, using the sprite
frames shown in Figure 9.1.

The AnimSprite program loads these six image files, each containing a single frame of the
animated cat, and draws them in sequence, one frame after another, as the sprite is moved
across the screen (see Figure 9.2).

Figure 9.1 The animated cat sprite, courtesy of Ari Feldman

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)
#define BLACK makecol(0,0,0)

BITMAP *kitty[7];
char s[20];
int curframe=0, framedelay=5, framecount=0;
int x=100, y=200, n;

int main(void)
{

//initialize the program
allegro_init();
install_keyboard();
install_timer();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);

Animated Sprites 281

Figure 9.2 The AnimSprite program shows how you can do basic sprite
animation.

textout(screen, font, “AnimSprite Program (ESC to quit)”,
0, 0, WHITE);

//load the animated sprite
for (n=0; n<6; n++)
{

sprintf(s,”cat%d.bmp”,n+1);
kitty[n] = load_bitmap(s, NULL);

}

//main loop
while(!key[KEY_ESC])
{

//erase the sprite
rectfill(screen, x, y, x+kitty[0]->w, y+kitty[0]->h, BLACK);

//update the position
x += 5;
if (x > SCREEN_W - kitty[0]->w)

x = 0;

//update the frame
if (framecount++ > framedelay)
{

framecount = 0;
curframe++;
if (curframe > 5)

curframe = 0;
}

acquire_screen();

//draw the sprite
draw_sprite(screen, kitty[curframe], x, y);

//display logistics
textprintf(screen, font, 0, 20, WHITE,

“Sprite X,Y: %3d,%3d”, x, y);
textprintf(screen, font, 0, 40, WHITE,

“Frame,Count,Delay: %2d,%2d,%2d”,
curframe, framecount, framedelay);

release_screen();

Chapter 9 � Advanced Sprite Programming282

rest(10);
}

return 0;
}
END_OF_MAIN();

Now for that explanation, as promised. The difference between AnimSprite and DrawSprite
(from the previous chapter) is multifaceted. The key variables, curframe, framecount, and
framedelay, make realistic animation possible. You don’t want to simply change the frame
every time through the loop, or the animation will be too fast. The frame delay is a static
value that really needs to be adjusted depending on the speed of your computer (at least
until I cover timers in Chapter 11, “Timers, Interrupt Handlers, and Multi-Threading”).
The frame counter, then, works with the frame delay to increment the current frame of
the sprite. The actual movement of the sprite is a simple horizontal motion using the x
variable.

//update the frame
if (framecount++ > framedelay)
{

framecount = 0;
curframe++;
if (curframe > 5)

curframe = 0;
}

A really well thought-out sprite handler will have variables for both the velocity (x, y) and
velocity (x speed, y speed), along with a velocity delay to allow some sprites to move quite
slowly compared to others. If there is no velocity delay, each sprite will move at least one
pixel during each iteration of the game loop (unless velocity is zero, which means that
sprite is motionless).

//update the position
x += 5;
if (x > SCREEN_W - kitty[0]->w)

x = 0;

This concept is something I’ll explain shortly.

Creating a Sprite Handler
Now that you have a basic—if a bit rushed—concept of sprite animation, I’d like to walk
you through the creation of a sprite handler and a sample program with which to test it.
Now you’ll take the animation code from the last few pages and encapsulate it into a
struct. If you were using the object-oriented C++ language instead of C, you’d no doubt

Animated Sprites 283

“class it.” That’s all well and good, but I don’t care what C++ programmers claim—it’s
more difficult to understand, which is the key reason why this book focuses on C. That
Allegro itself is written in C only supports this decision. The actual bitmap images for the
sprite are stored separately from the sprite struct because it is more flexible that way.

In addition to those few animation variables seen in AnimSprite, a full-blown animated
sprite handler needs to track several more variables. Here is the struct:

typedef struct SPRITE
{

int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

The variables inside a struct are called struct elements, so I will refer to them as such (see
Figure 9.3).

The first two elements (x, y)
track the sprite’s position. The
next two (width, height) are set
to the size of the sprite image
(stored outside the struct). The
velocity elements (xspeed, yspeed)
determine how many pixels the
sprite will move in conjunction
with the velocity delay (xdelay,
xcount and ydelay, ycount). The
velocity delay allows some
sprites to move much slower
than other sprites on the
screen—even more slowly than
one pixel per frame. This gives

you a far greater degree of control over how a sprite behaves. The animation elements
(curframe, maxframe, animdir) help the sprite animation, and the animation delay elements
(framecount, framedelay) help slow down the animation rate. The animdir element is of par-
ticular interest because it allows you to reverse the direction that the sprite frames are
drawn (from 0 to maxframe or from maxframe to 0, with looping in either direction). The main
reason why the BITMAP array containing the sprite images is not stored inside the struct is
because that is wasteful—there might be many sprites sharing the same animation images.

Chapter 9 � Advanced Sprite Programming284

Figure 9.3 The SPRITE struct and its elements help abstract
sprite movement into reusable code.

Now that we have a sprite struct, the actual handler is contained in a function that I will
call updatesprite:

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

spr->framecount = 0;
if (spr->animdir == -1)
{

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

As you can see, updatesprite accepts a pointer to a SPRITE variable. A pointer is necessary
because elements of the struct are updated inside this function. This function would be called
at every iteration through the game loop because the sprite elements should be closely tied
to the game loop and timing of the game. The delay elements in particular should rely
upon regular updates using a timed game loop. The animation section checks animdir to
increment or decrement the framecount element.

Animated Sprites 285

However, updatesprite was not designed to affect sprite behavior, only to manage the logis-
tics of sprite movement. After updatesprite has been called, you want to deal with that
sprite’s behavior within the game. For instance, if you are writing a space-based shooter
featuring a spaceship and objects (such as asteroids) that the ship must shoot, then you
might assign a simple warping behavior to the asteroids so that when they exit one side of
the screen, they will appear at the opposite side. Or, in a more realistic game featuring a
larger scrolling background, the asteroids might warp or bounce at the edges of the uni-
verse rather than just the screen. In that case, you would call updatesprite followed by
another function that affects the behavior of all asteroids in the game and rely on custom
or random values for each asteroid’s struct elements to cause it to behave slightly differently
than the other asteroids, but basically follow the same behavioral rules. Too many pro-
grammers ignore the concept of behavior and simply hard-code behaviors into a game.

I love the idea of constructing many behavior functions, and then using them in a game
at random times to keep the player guessing what will happen next. For instance, a simple
behavior that I often use in example programs is to have a sprite bounce off the edges of
the screen. This could be abstracted into a bounce behavior if you go that one extra step
in thinking and design it as a reusable function.

One thing that must be obvious when you are working with a real sprite handler is that it
seems to have a lot of overhead, in that the struct elements must all be set at startup.
There’s no getting around that unless you want total chaos instead of a working game! You
have to give all your sprites their starting values to make the game function as planned.
Stuffing those variables into a struct helps to keep the game manageable when the source
code starts to grow out of control (which frequently happens when you have a truly great
game idea and you follow through with building it).

The SpriteHandler Program
I have written a program called SpriteHandler that demonstrates how to put all this
together into a workable program that you can study. This program uses a ball sprite with
16 frames of animation, each stored in a file (ball1.bmp, ball2.bmp, and so on to ball16.bmp).
One thing that you must do is learn how to store an animation sequence inside a single
bitmap image and grab the frames out of it at run time. I’ll show you how to do that shortly.
Figure 9.4 shows the SpriteHandler program running. Each time the ball hits the edge, it
changes direction and speed.

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include “allegro.h”

#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)

Chapter 9 � Advanced Sprite Programming286

//define the sprite structure
typedef struct SPRITE
{

int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

//sprite variables
BITMAP *ballimg[16];
SPRITE theball;
SPRITE *ball = &theball;

//support variables
char s[20];
int n;

Animated Sprites 287

Figure 9.4 The SpriteHandler program demonstrates a full-featured
animated sprite handler.

void erasesprite(BITMAP *dest, SPRITE *spr)
{

//erase the sprite using BLACK color fill
rectfill(dest, spr->x, spr->y, spr->x + spr->width,

spr->y + spr->height, BLACK);
}

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

spr->framecount = 0;
if (spr->animdir == -1)
{

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

void bouncesprite(SPRITE *spr)
{

Chapter 9 � Advanced Sprite Programming288

//simple screen bouncing behavior
if (spr->x < 0)
{

spr->x = 0;
spr->xspeed = rand() % 2 + 4;
spr->animdir *= -1;

}

else if (spr->x > SCREEN_W - spr->width)
{

spr->x = SCREEN_W - spr->width;
spr->xspeed = rand() % 2 - 6;
spr->animdir *= -1;

}

if (spr->y < 40)
{

spr->y = 40;
spr->yspeed = rand() % 2 + 4;
spr->animdir *= -1;

}

else if (spr->y > SCREEN_H - spr->height)
{

spr->y = SCREEN_H - spr->height;
spr->yspeed = rand() % 2 - 6;
spr->animdir *= -1;

}
}

void main(void)
{

//initialize
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();
install_timer();
srand(time(NULL));
textout(screen, font, “SpriteHandler Program (ESC to quit)”,

0, 0, WHITE);

Animated Sprites 289

//load sprite images
for (n=0; n<16; n++)
{

sprintf(s,”ball%d.bmp”,n+1);
ballimg[n] = load_bitmap(s, NULL);

}

//initialize the sprite with lots of randomness
ball->x = rand() % (SCREEN_W - ballimg[0]->w);
ball->y = rand() % (SCREEN_H - ballimg[0]->h);
ball->width = ballimg[0]->w;
ball->height = ballimg[0]->h;
ball->xdelay = rand() % 2 + 1;
ball->ydelay = rand() % 2 + 1;
ball->xcount = 0;
ball->ycount = 0;
ball->xspeed = rand() % 2 + 4;
ball->yspeed = rand() % 2 + 4;
ball->curframe = 0;
ball->maxframe = 15;
ball->framecount = 0;
ball->framedelay = rand() % 3 + 1;
ball->animdir = 1;

//game loop
while (!key[KEY_ESC])
{

erasesprite(screen, ball);

//perform standard position/frame update
updatesprite(ball);

//now do something with the sprite—a basic screen bouncer
bouncesprite(ball);

//lock the screen
acquire_screen();

//draw the ball sprite
draw_sprite(screen, ballimg[ball->curframe], ball->x, ball->y);

//display some logistics
textprintf(screen, font, 0, 20, WHITE,

“x,y,xspeed,yspeed: %2d,%2d,%2d,%2d”,

Chapter 9 � Advanced Sprite Programming290

Animated Sprites 291

ball->x, ball->y, ball->xspeed, ball->yspeed);
textprintf(screen, font, 0, 30, WHITE,

“xcount,ycount,framecount,animdir: %2d,%2d,%2d,%2d”,
ball->xcount, ball->ycount, ball->framecount,
ball->animdir);

//unlock the screen
release_screen();
rest(10);

}
for (n=0; n<15; n++)

destroy_bitmap(ballimg[n]);
return;

}
END_OF_MAIN();

Grabbing Sprite Frames from an Image
In case you haven’t yet noticed, the idea behind the sprite handler that you’re building in
this chapter is not to encapsulate Allegro’s already excellent sprite functions (which were
covered in the previous chapter). The temptation of nearly every C++ programmer would
be to drool in anticipation over encapsulating Allegro into a series of classes. What a
shame and what a waste of time! I can understand classing up an operating system ser-
vice, which is vague and obscure, to make it easier to use. In my opinion, a class should be
used to simplify very complex code, not to make simple code more complex just to satisfy
an obsessive-compulsive need to do so.

On the contrary, you want to use the existing functionality of Allegro, not replace it with
something else. By “something else” I mean not necessarily better, just different. The
wrapping of one thing and turning it into another thing should arise out of use, not com-
pulsion. Add new functions (or in the case of C++, new classes, properties, and methods)
as you need them, not from some grandiose scheme of designing a library before using it.

Thus, you have a basic sprite handler and now you need a function to grab an animation
sequence out of a tiled image. So you can get an idea of what I’m talking about, Figure 9.5
shows a 32-frame tiled animation sequence in a file called sphere.bmp.

Figure 9.5 This bitmap image contains
32 frames of an animated sphere used as
a sprite. Courtesy of Edgar Ibarra.

Chapter 9 � Advanced Sprite Programming292

The frames would be easy to capture if they were lined up in a single row, so how would
you grab them out of this file with eight columns and four rows? It’s easy if you have the
sprite tile algorithm. I’m sure someone described this in some mathematics or computer
graphics book at one time or another in the past; I derived it on my own years ago. I sug-
gest you print this simple algorithm in a giant font and paste it on the wall above your
computer—or better yet, have a T-shirt made with it pasted across the front.

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

Using this algorithm, you can grab an animation sequence that is stored in a bitmap file,
even if it contains more than one animation. (For instance, some simpler games might
store all the images in a single bitmap file and grab each sprite at run time.) Now that you
have the basic algorithm, here’s a full function for grabbing a single frame out of an image
by passing the width, height, column, and frame number:

BITMAP *grabframe(BITMAP *source,
int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

return temp;
}

Note that grabframe doesn’t destroy the temp bitmap after blitting the frame image to it.
That is because the smaller temp bitmap is the return value for the function. It is up to the
caller (usually main) to destroy the bitmap after it is no longer needed—or just before the
game ends.

n o t e

The grabframe function really should have some error detection code built in, such as a check for
whether the bitmap is NULL after blitting it. As a matter of fact, all the code in this book is inten-
tionally simplistic—with no error detection code—to make it easier to study. In an actual game,
you would absolutely want to add checks in your code.

The SpriteGrabber Program
The SpriteGrabber program demonstrates how to use grabframe by modifying the
SpriteHandler program and using a more impressive animated sprite that was rendered
(courtesy of Edgar Ibarra). See Figure 9.6 for a glimpse of the program.

I’m going to list the entire source code for SpriteGrabber and set in boldface the lines that
have changed (or been added) so you can note the differences. I believe it would be too
confusing to list only the changes to the program. There is a significant learning experience
to be had by observing the changes or improvements to a program from one revision to
the next.

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include “allegro.h”

#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)

Animated Sprites 293

Figure 9.6 The SpriteGrabber program demonstrates how to grab sprite
images (or animation frames) from a tiled source image.

//define the sprite structure
typedef struct SPRITE
{

int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

//sprite variables
BITMAP *ballimg[32];
SPRITE theball;
SPRITE *ball = &theball;

int n;

void erasesprite(BITMAP *dest, SPRITE *spr)
{

//erase the sprite using BLACK color fill
rectfill(dest, spr->x, spr->y, spr->x + spr->width,

spr->y + spr->height, BLACK);
}

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

Chapter 9 � Advanced Sprite Programming294

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

spr->framecount = 0;
if (spr->animdir == -1)
{

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

void bouncesprite(SPRITE *spr)
{

//simple screen bouncing behavior
if (spr->x < 0)
{

spr->x = 0;
spr->xspeed = rand() % 2 + 4;
spr->animdir *= -1;

}

else if (spr->x > SCREEN_W - spr->width)
{

spr->x = SCREEN_W - spr->width;
spr->xspeed = rand() % 2 - 6;
spr->animdir *= -1;

}

if (spr->y < 40)
{

spr->y = 40;
spr->yspeed = rand() % 2 + 4;
spr->animdir *= -1;

}

else if (spr->y > SCREEN_H - spr->height)
{

Animated Sprites 295

spr->y = SCREEN_H - spr->height;
spr->yspeed = rand() % 2 - 6;
spr->animdir *= -1;

}

}

BITMAP *grabframe(BITMAP *source,
int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

return temp;
}

void main(void)
{

BITMAP *temp;

//initialize
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();
install_timer();
srand(time(NULL));
textout(screen, font, “SpriteGrabber Program (ESC to quit)”,

0, 0, WHITE);

//load 32-frame tiled sprite image
temp = load_bitmap(“sphere.bmp”, NULL);
for (n=0; n<32; n++)
{

ballimg[n] = grabframe(temp,64,64,0,0,8,n);
}
destroy_bitmap(temp);

Chapter 9 � Advanced Sprite Programming296

//initialize the sprite with lots of randomness
ball->x = rand() % (SCREEN_W - ballimg[0]->w);
ball->y = rand() % (SCREEN_H - ballimg[0]->h);
ball->width = ballimg[0]->w;
ball->height = ballimg[0]->h;
ball->xdelay = rand() % 2 + 1;
ball->ydelay = rand() % 2 + 1;
ball->xcount = 0;
ball->ycount = 0;
ball->xspeed = rand() % 2 + 4;
ball->yspeed = rand() % 2 + 4;
ball->curframe = 0;
ball->maxframe = 31;
ball->framecount = 0;
ball->framedelay = 1;
ball->animdir = 1;

//game loop
while (!key[KEY_ESC])
{

erasesprite(screen, ball);

//perform standard position/frame update
updatesprite(ball);

//now do something with the sprite—a basic screen bouncer
bouncesprite(ball);

//lock the screen
acquire_screen();

//draw the ball sprite
draw_sprite(screen, ballimg[ball->curframe], ball->x, ball->y);

//display some logistics
textprintf(screen, font, 0, 20, WHITE,

“x,y,xspeed,yspeed: %2d,%2d,%2d,%2d”,
ball->x, ball->y, ball->xspeed, ball->yspeed);

textprintf(screen, font, 0, 30, WHITE,
“xcount,ycount,framecount,animdir: %2d,%2d,%2d,%2d”,
ball->xcount, ball->ycount, ball->framecount, ball->animdir);

//unlock the screen

Animated Sprites 297

release_screen();

rest(10);
}

for (n=0; n<31; n++)
destroy_bitmap(ballimg[n]);

return;
}
END_OF_MAIN();

The Next Step: Multiple Animated Sprites
You might think of a single sprite as a single-dimensional point in space (thinking in
terms of geometry). An animated sprite containing multiple images for a single sprite is a
two-dimensional entity. The next step, creating multiple copies of the sprite, might be
compared to the third dimension. So far you have only dealt with and explored the con-
cepts around a single sprite being drawn on the screen either with a static image or with
an animation sequence. But how many games feature only a single sprite? It is really a test
of the sprite handler to see how well it performs when it must contend with many sprites
at the same time.

Because performance will be a huge issue with multiple sprites, I will use a double-buffer
in the upcoming program for a nice, clean screen without flicker. I will add another level
of complexity to make this even more interesting—dealing with a bitmapped background
image instead of a blank background. rectfill will no longer suffice to erase the sprites
during each refresh; instead, the background will have to be restored under the sprites as
they move around.

Instead of a single sprite struct there is an array of sprite structs, and the code throughout
the program has been modified to use the array. To initialize all of these sprites, you need
to use a loop and make sure each pointer is pointing to each of the sprite structs.

//initialize the sprite
for (n=0; n<MAX; n++)
{

sprites[n] = &thesprites[n];
sprites[n]->x = rand() % (SCREEN_W - spriteimg[0]->w);
sprites[n]->y = rand() % (SCREEN_H - spriteimg[0]->h);
sprites[n]->width = spriteimg[0]->w;
sprites[n]->height = spriteimg[0]->h;
sprites[n]->xdelay = rand() % 3 + 1;

Chapter 9 � Advanced Sprite Programming298

Animated Sprites 299

sprites[n]->ydelay = rand() % 3 + 1;
sprites[n]->xcount = 0;
sprites[n]->ycount = 0;
sprites[n]->xspeed = rand() % 8 - 5;
sprites[n]->yspeed = rand() % 8 - 5;
sprites[n]->curframe = rand() % 64;
sprites[n]->maxframe = 63;
sprites[n]->framecount = 0;
sprites[n]->framedelay = rand() % 5 + 1;
sprites[n]->animdir = rand() % 3 - 1;

}

This time I’m using a much larger animation sequence containing 64 frames, as shown in
Figure 9.7. The source frames are laid out in an 8×8 grid of tiles.

To load these frames into the sprite handler, a loop is used to grab each frame individually.

//load 64-frame tiled sprite image
temp = load_bitmap(“asteroid.bmp”, NULL);
for (n=0; n<64; n++)
{

spriteimg[n] = grabframe(temp,64,64,0,0,8,n);
}
destroy_bitmap(temp);

Figure 9.7 The source image for the animated
asteroid contains 64 frames.

Chapter 9 � Advanced Sprite Programming300

The MultipleSprites Program
The MultipleSprites program animates 100 sprites on the screen, each of which has 64
frames of animation! Had this program tried to store the actual images with every single
sprite instead of sharing the sprite images, it would have taken a huge amount of system
memory to run—so now you see the wisdom in storing the images separately from the
structs. Figure 9.8 shows the MultipleSprites program running at 1024×768. This program
differs from SpriteGrabber because it uses a screen warp rather than a screen bounce
behavior.

This program uses a second
buffer to improve perfor-
mance. Could you imagine
the speed hit after erasing
and drawing 100 sprites
directly on the screen? Even
locking and unlocking the
screen wouldn’t help much
with so many writes taking
place on the screen. That is
why this program uses dou-
ble-buffering—so all blit-
ting is done on the second
buffer, which is then quickly
blitted to the screen with a
single function call.

//update the screen
acquire_screen();
blit(buffer,screen,0,0,0,0,buffer->w,buffer->h);
release_screen();

The game loop in MultipleSprites might look inefficient at first glance because there are
four identical for loops for each operation—erasing, updating, warping, and drawing
each of the sprites.

//erase the sprites
for (n=0; n<MAX; n++)

erasesprite(buffer, sprites[n]);

//perform standard position/frame update
for (n=0; n<MAX; n++)

Figure 9.8 The MultipleSprites program animates 100 sprites
on the screen.

updatesprite(sprites[n]);

//apply screen warping behavior
for (n=0; n<MAX; n++)

warpsprite(sprites[n]);

//draw the sprites
for (n=0; n<MAX; n++)

draw_sprite(buffer, spriteimg[sprites[n]->curframe],
sprites[n]->x, sprites[n]->y);

It might seem more logical to use a single for loop with these functions inside that loop
instead, right? Unfortunately, that is not the best way to handle sprites. First, all of the
sprites must be erased before anything else happens. Second, all of the sprites must be
moved before any are drawn or erased. Finally, all of the sprites must be drawn at the same
time, or else artifacts will be left on the screen. Had I simply blasted the entire background
onto the buffer to erase the sprites, this would have been a moot point. The program
might even run faster than erasing 100 sprites individually. However, this is a learning
experience. It’s not always practical to clear the entire background, and this is just a
demonstration—you won’t likely have 100 sprites on the screen at once unless you are
building a very complex scrolling arcade shooter or strategy game.

Following is the complete listing for the MultipleSprites program. If you are typing in the
code directly from the book, you will want to grab the asteroids.bmp and ngc604.bmp
files from the CD-ROM. (They are located in \chapter09\multiplesprites.)

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include “allegro.h”

#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)

#define MAX 100
#define WIDTH 640
#define HEIGHT 480
#define MODE GFX_AUTODETECT_WINDOWED

//define the sprite structure
typedef struct SPRITE
{

int x,y;
int width,height;

Animated Sprites 301

int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

//variables
BITMAP *spriteimg[64];
SPRITE thesprites[MAX];
SPRITE *sprites[MAX];
BITMAP *back;

void erasesprite(BITMAP *dest, SPRITE *spr)
{

//erase the sprite
blit(back, dest, spr->x, spr->y, spr->x, spr->y,

spr->width, spr->height);
}

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

spr->framecount = 0;
if (spr->animdir == -1)
{

Chapter 9 � Advanced Sprite Programming302

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

void warpsprite(SPRITE *spr)
{

//simple screen warping behavior
if (spr->x < 0)
{

spr->x = SCREEN_W - spr->width;
}

else if (spr->x > SCREEN_W - spr->width)
{

spr->x = 0;
}

if (spr->y < 40)
{

spr->y = SCREEN_H - spr->height;
}

else if (spr->y > SCREEN_H - spr->height)
{

spr->y = 40;
}

}

BITMAP *grabframe(BITMAP *source,
int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);

Animated Sprites 303

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

return temp;
}

void main(void)
{

BITMAP *temp, *buffer;
int n;

//initialize
allegro_init();
set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
install_keyboard();
install_timer();
srand(time(NULL));

//create second buffer
buffer = create_bitmap(SCREEN_W, SCREEN_H);

//load & draw the background
back = load_bitmap(“ngc604.bmp”, NULL);
stretch_blit(back, buffer, 0, 0, back->w, back->h, 0, 0,

SCREEN_W, SCREEN_H);

//resize background to fit the variable-size screen
destroy_bitmap(back);
back = create_bitmap(SCREEN_W,SCREEN_H);
blit(buffer,back,0,0,0,0,buffer->w,buffer->h);

text_mode(-1);
textout(buffer, font, “MultipleSprites Program (ESC to quit)”,

0, 0, WHITE);

//load 64-frame tiled sprite image
temp = load_bitmap(“asteroid.bmp”, NULL);
for (n=0; n<64; n++)
{

spriteimg[n] = grabframe(temp,64,64,0,0,8,n);

Chapter 9 � Advanced Sprite Programming304

}
destroy_bitmap(temp);

//initialize the sprite
for (n=0; n<MAX; n++)
{

sprites[n] = &thesprites[n];
sprites[n]->x = rand() % (SCREEN_W - spriteimg[0]->w);
sprites[n]->y = rand() % (SCREEN_H - spriteimg[0]->h);
sprites[n]->width = spriteimg[0]->w;
sprites[n]->height = spriteimg[0]->h;
sprites[n]->xdelay = rand() % 3 + 1;
sprites[n]->ydelay = rand() % 3 + 1;
sprites[n]->xcount = 0;
sprites[n]->ycount = 0;
sprites[n]->xspeed = rand() % 8 - 5;
sprites[n]->yspeed = rand() % 8 - 5;
sprites[n]->curframe = rand() % 64;
sprites[n]->maxframe = 63;
sprites[n]->framecount = 0;
sprites[n]->framedelay = rand() % 5 + 1;
sprites[n]->animdir = rand() % 3 - 1;

}

//game loop
while (!key[KEY_ESC])
{

//erase the sprites
for (n=0; n<MAX; n++)

erasesprite(buffer, sprites[n]);

//perform standard position/frame update
for (n=0; n<MAX; n++)

updatesprite(sprites[n]);

//apply screen warping behavior
for (n=0; n<MAX; n++)

warpsprite(sprites[n]);

//draw the sprites
for (n=0; n<MAX; n++)

draw_sprite(buffer, spriteimg[sprites[n]->curframe],

Animated Sprites 305

sprites[n]->x, sprites[n]->y);

//update the screen
acquire_screen();
blit(buffer,screen,0,0,0,0,buffer->w,buffer->h);
release_screen();

rest(10);
}

for (n=0; n<63; n++)
destroy_bitmap(spriteimg[n]);

return;
}
END_OF_MAIN();

I think that wraps up the material for animated sprites. You have more than enough infor-
mation to completely enhance Tank War at this point. But hang on for a few more pages
so I can go over some more important topics related to sprites.

Run-Length Encoded Sprites
Allegro provides a custom type of sprite that is compressed to save memory. Run-length
encoded (RLE) sprite images can have significantly smaller memory footprints than stan-
dard bitmaps. In addition, there is some overhead in the header for each bitmap that also
consumes memory. If you have an image that is not modified but only copied from, then
it is a good candidate for RLE compression. (In this case they should be called RLE
bitmaps instead of sprites because the image doesn’t necessarily need to be small to be
RLE compressed.)

There are several drawbacks to using RLE sprites, so some flexibility is sacrificed to save
memory (and perhaps increase speed at the same time). RLE sprites can’t be flipped,
rotated, stretched, or copied into. All you can do is copy an RLE sprite to a destination
bitmap using one of the custom RLE sprite-drawing functions.

RLE sprite images are stored in a simple run-length encoded format, where repeated zero
pixels are replaced by a single length value and strings of normal pixels start with a
counter that gives the length of the solid run. RLE sprites are usually much smaller than
normal bitmaps because of the compression and because they avoid most of the overhead
of the standard bitmap structure (which must support flipping, scaling, and so on). RLE
sprites are often faster than normal bitmaps because rather than having to compare every
single pixel with zero to determine whether it should be drawn, you can skip over a whole
series of transparent pixels with a single instruction.

Chapter 9 � Advanced Sprite Programming306

Creating and Destroying RLE Sprites
You can convert a normal memory bitmap (loaded with load_bitmap or created at run
time) into an RLE sprite using the get_rle_sprite function.

RLE_SPRITE *get_rle_sprite(BITMAP *bitmap);

When you are using RLE sprites, you must be sure to destroy the sprites just as you destroy
regular bitmaps. To destroy an RLE sprite, you will use a custom function created just for
this purpose, called destroy_rle_sprite.

void destroy_rle_sprite(RLE_SPRITE *sprite);

Drawing RLE Sprites
Drawing an RLE sprite is very similar to drawing a normal sprite, and the parameters are
similar in draw_rle_sprite.

void draw_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite, int x, int y);

Note that the only difference between draw_rle_sprite and draw_sprite is the second para-
meter, which refers directly to an RLE_SPRITE instead of a BITMAP. Otherwise, it is quite easy
to convert an existing game to support RLE sprites.

Allegro provides two additional blitting functions for RLE sprites. The first one,
draw_trans_rle_sprite, draws a sprite using translucent alpha-channel information and is
comparable to draw_trans_sprite (only for RLE sprites, of course). This involves the use of
blenders, as described in the previous chapter.

void draw_trans_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite,
int x, int y);

Another variation of the RLE sprite blitter is draw_lit_rle_sprite, which uses lighting
information to adjust a sprite’s brightness when it is blitted to a destination bitmap. These
functions are next to useless for any real game, so I am not planning to cover them here
in any more detail. However, you can adapt the TransSprite program from the previous
chapter with a little effort to use draw_trans_rle_sprite.

void draw_lit_rle_sprite(BITMAP *bmp, const RLE_SPRITE *sprite,
int x, y, color);

The RLESprites Program
To assist with loading an image file into an RLE sprite, I have modified the grabframe
function to return an RLE_SPRITE directly so conversion from a normal BITMAP is not necessary.
As you can see from the short listing for this function, it creates a temporary BITMAP as a
scratch buffer for the sprite frame, which is then converted to an RLE sprite, after which
the scratch bitmap is destroyed and the RLE_SPRITE is returned by the function.

Run-Length Encoded Sprites 307

Chapter 9 � Advanced Sprite Programming308

RLE_SPRITE *rle_grabframe(BITMAP *source,
int width, int height,
int startx, int starty,
int columns, int frame)

{
RLE_SPRITE *sprite;
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);
sprite = get_rle_sprite(temp);
destroy_bitmap(temp);

return sprite;
}

The RLESprites program is unique in that it is the first program to really start using back-
ground tiling—something that is covered in the next chapter. As you can see in Figure 9.9,
a grass and stone tile is used to fill the bottom portion of the screen, while the dragon
sprite flies over the ground. This is a little more realistic and interesting than the sprite
being drawn to an otherwise barren, black background (although background scenery
and a sky would help a lot).

Figure 9.9 The RLESprites program demonstrates how to use
run-length encoded sprites to save memory and speed up sprite
blitting.

The actual dragon sprite is comprised of six frames of animation, as shown in Figure 9.10.
This sprite was created by Ari Feldman, as were the ground tiles.

Using the previous SpriteGrabber program
as a basis, you should be able to adapt the
code for the RLE sprite demo. I will high-
light the differences in bold.

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include “allegro.h”

#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)

//define the sprite structure
typedef struct SPRITE
{

int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

//sprite variables
RLE_SPRITE *dragonimg[6];
SPRITE thedragon;
SPRITE *dragon = &thedragon;

void erasesprite(BITMAP *dest, SPRITE *spr)
{

Run-Length Encoded Sprites 309

Figure 9.10 The animated dragon sprite used
by the RLESprites program. Images courtesy of
Ari Feldman.

//erase the sprite using BLACK color fill
rectfill(dest, spr->x, spr->y, spr->x + spr->width,

spr->y + spr->height, BLACK);
}

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

spr->framecount = 0;
if (spr->animdir == -1)
{

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

void warpsprite(SPRITE *spr)
{

//simple screen warping behavior
if (spr->x < 0)
{

Chapter 9 � Advanced Sprite Programming310

spr->x = SCREEN_W - spr->width;
}

else if (spr->x > SCREEN_W - spr->width)
{

spr->x = 0;
}

if (spr->y < 40)
{

spr->y = SCREEN_H - spr->height;
}

else if (spr->y > SCREEN_H - spr->height)
{

spr->y = 40;
}

}

RLE_SPRITE *rle_grabframe(BITMAP *source,
int width, int height,
int startx, int starty,
int columns, int frame)

{
RLE_SPRITE *sprite;
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);
sprite = get_rle_sprite(temp);
destroy_bitmap(temp);

return sprite;
}

void main(void)
{

BITMAP *temp;
int n, x, y;

Run-Length Encoded Sprites 311

//initialize
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_keyboard();
install_timer();
srand(time(NULL));
textout(screen, font, “RLE Sprites Program (ESC to quit)”,

0, 0, WHITE);

//load and draw the blocks
temp = load_bitmap(“block1.bmp”, NULL);
for (y=0; y < SCREEN_H/2/temp->h+temp->h; y++)

for (x=0; x < SCREEN_W/temp->w; x++)
draw_sprite(screen, temp, x*temp->w, SCREEN_H/2+y*temp->h);

destroy_bitmap(temp);

temp = load_bitmap(“block2.bmp”, NULL);
for (x=0; x < SCREEN_W/temp->w; x++)

draw_sprite(screen, temp, x*temp->w, SCREEN_H/2);
destroy_bitmap(temp);

//load rle sprite
temp = load_bitmap(“dragon.bmp”, NULL);
for (n=0; n<6; n++)

dragonimg[n] = rle_grabframe(temp,128,64,0,0,3,n);
destroy_bitmap(temp);

//initialize the sprite
dragon->x = 500;
dragon->y = 150;
dragon->width = dragonimg[0]->w;
dragon->height = dragonimg[0]->h;
dragon->xdelay = 1;
dragon->ydelay = 0;
dragon->xcount = 0;
dragon->ycount = 0;
dragon->xspeed = -4;
dragon->yspeed = 0;
dragon->curframe = 0;
dragon->maxframe = 5;
dragon->framecount = 0;
dragon->framedelay = 10;

Chapter 9 � Advanced Sprite Programming312

dragon->animdir = 1;

//game loop
while (!key[KEY_ESC])
{

//erase the dragon
erasesprite(screen, dragon);

//move/animate the dragon
updatesprite(dragon);
warpsprite(dragon);

//draw the dragon
acquire_screen();
draw_rle_sprite(screen, dragonimg[dragon->curframe],

dragon->x, dragon->y);
release_screen();

rest(10);
}

for (n=0; n<6; n++)
destroy_rle_sprite(dragonimg[n]);

return;
}
END_OF_MAIN();

Compiled Sprites
RLE sprites are interesting because they are rendered with a custom function called
draw_rle_sprite that actually decompresses the bitmap as it is being drawn to the destina-
tion bitmap (or screen). To truly speed up the blitting of these sprites, they would need to
contain many repeated pixels. Therefore, a complex sprite with many colors and different
pixels will not benefit at all from run-length encoding—don’t always assume that just
because an RLE sprite sounds cool, it is necessarily better than a regular sprite. Sometimes
the good old-fashioned brute-force method works best.

However, if you are using sprites with many pixel runs of the same color in a row, then
RLE sprites will draw faster. But isn’t there yet another method that would draw them
even faster? Given that you will choose the method to use for certain sprites while writing
the code, it is up to you to decide whether a sprite contains long runs of pixels (good for
packed blitting) or a diversity of pixels (good for brute-force blitting). Why not take RLE

Compiled Sprites 313

sprites to the next step and actually pre-compile the sprite itself? After all, a blitter is noth-
ing more than a function that copies a source bitmap to a destination bitmap one line at
a time (often using fast assembly language copy instructions). How about coding those
assembly language instructions directly into the sprites instead of storing pixels?

Intriguing idea? Personally, I love it, for no other reason than that it sounds cool! But what
about performance? I’ll leave that up to you to decide. Each game is different and each
sprite is different, so it’s largely up to you. Will standard, RLE, or compiled sprites work
best with certain images but not with others? Suppose you are developing a role-playing
game. These games typically have beautiful game worlds filled with plants, animals, houses,
rivers, forests, and so on. An RLE or compiled sprite would just slow down this type of
game compared to a standard sprite. But take a game like Breakout or Tetris that uses solid
blocks for game pieces…now these blocks are absolutely perfect candidates for com-
pressed or compiled sprites!

Using Compiled Sprites
What’s the scoop with compiled sprites? They store the actual machine code instructions
that draw a specific image onto a bitmap, using assembly language copy instructions with
the colors of each pixel directly plugged into these instructions. Depending on the source
image, a compiled sprite can render up to five times faster than a regular sprite using
draw_sprite!

However, one of the drawbacks is that compiled sprites take up much more memory than
either standard or RLE sprites, so you might not be able to use them for all the sprites in
a game without causing the game to use up a lot of memory. By their very nature, com-
piled sprites are also quite constricted. Obviously, if you’re talking about assembly instruc-
tions, a compiled sprite isn’t really a bitmap any longer, but a miniature program that
knows how to draw the image. Knowing this, one point is fairly evident, but I will enun-
ciate it anyway: If you draw a compiled sprite outside the boundary of a bitmap (or the
screen), bad things will happen because parts of program memory will be overwritten!
The memory could contain anything—instructions, images, even the Allegro library itself.
You must be very careful to keep track of compiled sprites so they are never drawn out-
side the edge of a bitmap or the screen, or the program will probably crash.

Now, how about another positive point? You can convert regular bitmaps into compiled
sprites at run time, just like you could with RLE sprites. There is no need to convert your
game artwork to any special format before use—you can do that when the program starts.

From this point, compiled sprites are functionally similar to RLE sprites. The first function
you might recognize from the previous section—get_compiled_sprite. That’s right, this func-
tion is almost exactly the same as get_rle_sprite, but it returns a pointer to a COMPILED_SPRITE.

COMPILED_SPRITE *get_compiled_sprite(BITMAP *bitmap, int planar);

Chapter 9 � Advanced Sprite Programming314

The bitmap in the first parameter must be a memory bitmap (not a video bitmap or the
screen). The second parameter is obsolete and should always be set to FALSE, specifying
that the bitmap is a memory bitmap and not a multi-plane video mode (a holdover from
a time when mode-x was popular with MS-DOS games).

In similar fashion, Allegro provides a custom function for destroying a compiled sprite in
the destroy_compiled_sprite function.

void destroy_compiled_sprite(COMPILED_SPRITE *sprite);

What remains to be seen? Ah yes, the blitter. There is a single function for drawing a com-
piled sprite, and that concludes the discussion. (See, I told you compiled sprites were lim-
ited, if powerful.)

void draw_compiled_sprite(BITMAP *bmp, const COMPILED_SPRITE *sprite,
int x, int y);

The first parameter is the destination bitmap, then comes the actual COMPILED_SPRITE to be
blitted, followed by the x and y location for the sprite. Remember that draw_compiled_sprite
does not do any clipping at the edges of the screen, so you could hose your program (and
perhaps the entire operating system) if you aren’t careful!

What if you are used to allowing sprites to go just beyond the boundaries of the screen so
that they will warp to the other side more realistically? It certainly looks better than sim-
ply popping them to the other side when they near the edge (something that the
SpriteHandler program did). There is a trick you can try if this will be a problem in your
games. Create a memory bitmap (such as the second buffer) that is slightly larger than the
actual screen, taking care to adjust the blitter when you are drawing it to the screen. Then
you have some room with which to work when you are drawing sprites, so you won’t have
to be afraid that they will blow up your program.

Testing Compiled Sprites
To save some paper I’ve simply modified the RLESprites program for this section on com-
piled sprites; I will point out the differences between the programs. You can open the
RLESprites program and make the few changes needed to test compiled sprites. Also, on
the CD-ROM there is a complete CompiledSprites program that is already finished; you
can load it up if you want. I liked the dragon so much that I’ve used it again in this pro-
gram (giving credit again where it is due—thanks to Ari Feldman for the sprites).

Up near the top of the program where the variables are declared, there is a single line that
changed from RLE_SPRITE to COMPILED_SPRITE.

//sprite variables
COMPILED_SPRITE *dragonimg[6];

Compiled Sprites 315

Then skip down past erasesprite, updatesprite, and warpsprite, and you’ll see the
rle_grabframe function. I have converted it to compiled_grabframe, and it looks like the fol-
lowing. (The changes are in bold.)

COMPILED_SPRITE *compiled_grabframe(BITMAP *source,
int width, int height,
int startx, int starty,
int columns, int frame)

{
COMPILED_SPRITE *sprite;
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

//remember FALSE is always used in second parameter
sprite = get_compiled_sprite(temp, FALSE);

destroy_bitmap(temp);
return sprite;

}

Moving along to the main function, you change the title.

textout(screen, font, “CompiledSprites Program (ESC to quit)”,
0, 0, WHITE);

Cruising further into the main function, make a change to the code that loads the dragon
sprite images.

//load compiled sprite of dragon
temp = load_bitmap(“dragon.bmp”, NULL);
for (n=0; n<6; n++)

dragonimg[n] = compiled_grabframe(temp,128,64,0,0,3,n);
destroy_bitmap(temp);

Down in the game loop where the dragon sprite is drawn to the screen, you need to
change the code to use draw_compiled_sprite.

//draw the dragon
acquire_screen();
draw_compiled_sprite(screen, dragonimg[dragon->curframe],

dragon->x, dragon->y);
release_screen();

Chapter 9 � Advanced Sprite Programming316

Collision Detection 317

There is one last change where the compiled sprite images are destroyed.

for (n=0; n<6; n++)
destroy_compiled_sprite(dragonimg[n]);

That’s it! Now try out the program and gain some experience with compiled sprites. You
might not notice any speed improvement; then again, you might notice a huge improve-
ment. It really depends on the source image, so experiment a little and make use of this
new type of sprite whenever the need arises.

Collision Detection
Collision detection is the process of detecting when one sprite intersects (or collides with)
another sprite. Although this is treated as a one-to-one interaction, the truth is that any
one sprite can collide with many other sprites on the screen while a game is running.
Collision detection is much easier once you have a basic sprite handler (which I have
already gone over) because it is necessary to abstract the animation and movement so that
any sprite can be accommodated (whether it’s a space ship or an asteroid or an enemy
ship—in other words, controlled versus behavioral sprites).

The easiest (and most efficient) way to detect when two sprites have collided is to compare
their bounding rectangles. Figure 9.11 shows the bounding rectangles for two sprites, a jet
airplane and a missile. As you can see in the figure, the missile will strike the plane when it
contacts the wings, but it has not collided with the plane yet. However, a simple bounding-
rectangle collision detection routine would mark this as a true collision because the bound-
ing rectangle of the missile intersects with the bounding rectangle of the plane.

One way to increase the accuracy of bounding-rectangle collision detection is to make the
source rectangle closely follow the boundaries of the actual sprite so there is less empty

space around the sprite. For instance, suppose you
were using a 64×64 image containing a bullet sprite
that only uses 8×8 pixels in the center of the
image—that’s 56 pixels of empty space in each
direction around the sprite that will foul up colli-
sion detection. There’s no reason why you can’t use
different sizes for each sprite—make each one as
small as possible to contain the image. The
load_bitmap function certainly doesn’t care how big
the sprite is, and the blitting and collision routines
don’t care either. But you will speed up the game
and make collision detection far more accurate by
eliminating any unneeded empty space around a
sprite. Keep them lean! Figure 9.11 Sprite collision using

bounding rectangles

Another way to increase collision detection accuracy is by reducing the virtual bounding
rectangle used to determine collisions; that is, not by reducing the size of the image, but
just the rectangular area used for collision detection. By reducing the bounding rectangle
by some value, you can make the collisions behave in a manner that is more believable for
the player. In the case of Figure 9.11 again, do you see the shaded rectangle inside the
plane image? That represents a virtual bounding rectangle that is slightly smaller than the
actual image. It might fail in some cases (look at the rear wings, which are outside the vir-
tual rectangle), but in general this will improve the game. When sprites are quickly mov-
ing around the screen, small errors are not noticeable anyway.

Take a look at Figure 9.12, which shows three missiles (A, B, and C) intersecting with the
jet airplane sprite. Right away you might notice a problem—the missiles have a lot of
empty space. It would improve matters if the missile images were reduced to a smaller
image containing only the missile’s pixels, without all the blank space above and below the
missile. Why? Missile A is clearly missing the plane sprite, but a “dumb” collision routine
would see this is a collision using simple intersection. A smarter collision routine using a
virtual rectangle would improve the situation, but the bounding rectangles for these mis-
siles are so large that clear misses are likely to be treated as collisions more often than not.

Now take a look at Missile B in Figure 9.12. In this
situation, the missile is intersecting the plane sprite’s
bounding rectangle, resulting in a true collision in
most cases, but you can clearly see that it is not a
collision. However, a virtual bounding rectangle
would have compensated for the position of Missile
B and recognized this as a miss. Missile C is clearly
intersecting the plane’s bounding rectangle, and the
actual pixels in each image are intersecting so this is
a definite collision. Any collision routine would
have no problem with C, but it might have a prob-
lem with B and it would definitely have a problem
with A. So you should design your collision routine
to accommodate each situation and make sure your
game’s art resources are efficient and use the least
amount of blank space necessary.

Following is a generic collision routine. This function accepts two SPRITE pointers as para-
meters, comparing their bounding rectangles for an intersection. A more useful collision
routine might have included parameters for the virtual bounding rectangle compensators,
but this function uses a hard-coded value of five pixels (bx and by), which you can modify
as needed.

Chapter 9 � Advanced Sprite Programming318

Figure 9.12 Sprite collision is more
accurate using a virtual bounding
rectangle with very little blank space.

I have included the first glob of code only to simplify the collision code because so many
variables are in use. This function works by comparing the four corners of the first sprite
with the bounding rectangle of the second sprite, using a virtual rectangle that is five pix-
els smaller than the actual size of each sprite (which really should be passed as a parame-
ter or calculated as a percentage of the size for the best results).

int collided(SPRITE *a, SPRITE *b)
{

int wa = a->x + a->width;
int ha =a->y + a->height;
int wb = b->x + b->width;
int hb = b->y + b->height;
int bx = 5;
int by = 5;

if (inside(a->x, a->y, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(a->x, ha, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(wa, a->y, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(wa, ha, b->x+bx, b->y+by, wb-bx, hb-by))
return 1;

else
return 0;

}

The second part of the function uses the shortcut variables to perform the collision detec-
tion based on the four corners of the first sprite. If any one of the points at each corner is
inside the virtual bounding rectangle of the second sprite, then a collision has occurred
and the result is returned to the calling routine.

The CollisionTest Program
I’ve made some changes to the SpriteGrabber program to demonstrate collision detection
(rather than writing an entirely new program from scratch). Figure 9.13 shows the
CollisionTest program in action. By changing a few lines and adding the collision routines,
you can adapt SpriteGrabber and turn it into the CollisionTest program.

The first thing you need to add are some defines for the graphics mode and a define to
specify the number of sprites used in the program. Note the additions in bold.

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include “allegro.h”

The CollisionTest Program 319

#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)

#define NUM 10
#define WIDTH 640
#define HEIGHT 480
#define MODE GFX_AUTODETECT_FULLSCREEN

The next section of code declares the sprite variables below the SPRITE struct. All you need
to do here is make these variables plural because this program uses many sprites instead
of just the one sprite in the original SpriteGrabber program. The array of pointers will
point to the struct array inside main because it is not possible to set the pointers in the dec-
laration. (Each element of the array must be set individually.)

//sprite variables
BITMAP *ballimg[32];
SPRITE theballs[NUM];
SPRITE *balls[NUM];

After these minor changes, skip down a couple pages in the source code listing (ignoring
the functions erasesprite, updatesprite, bouncesprite, and grabframe) and add the following
functions after grabframe:

Chapter 9 � Advanced Sprite Programming320

Figure 9.13 The CollisionTest program demonstrates how sprites can
interact. Sprite image courtesy of Edgar Ibarra.

int inside(int x,int y,int left,int top,int right,int bottom)
{

if (x > left && x < right && y > top && y < bottom)
return 1;

else
return 0;

}

int collided(SPRITE *a, SPRITE *b)
{

int wa = a->x + a->width;
int ha =a->y + a->height;
int wb = b->x + b->width;
int hb = b->y + b->height;
int bx = 5;
int by = 5;

if (inside(a->x, a->y, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(a->x, ha, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(wa, a->y, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(wa, ha, b->x+bx, b->y+by, wb-bx, hb-by))
return 1;

else
return 0;

}

void checkcollisions(int num)
{

int n,cx1,cy1,cx2,cy2;

for (n=0; n<NUM; n++)
{

if (n != num && collided(balls[n], balls[num]))
{

//calculate center of primary sprite
cx1 = balls[n]->x + balls[n]->width / 2;
cy1 = balls[n]->y + balls[n]->height / 2;

//calculate center of secondary sprite
cx2 = balls[num]->x + balls[num]->width / 2;
cy2 = balls[num]->y + balls[num]->height / 2;

The CollisionTest Program 321

//figure out which way the sprites collided
if (cx1 <= cx2)
{

balls[n]->xspeed = -1 * rand() % 6 + 1;
balls[num]->xspeed = rand() % 6 + 1;
if (cy1 <= cy2)
{

balls[n]->yspeed = -1 * rand() % 6 + 1;
balls[num]->yspeed = rand() % 6 + 1;

}
else
{

balls[n]->yspeed = rand() % 6 + 1;
balls[num]->yspeed = -1 * rand() % 6 + 1;

}
}
else
{

//cx1 is > cx2
balls[n]->xspeed = rand() % 6 + 1;
balls[num]->xspeed = -1 * rand() % 6 + 1;
if (cy1 <= cy2)
{

balls[n]->yspeed = rand() % 6 + 1;
balls[num]->yspeed = -1 * rand() % 6 + 1;

}
else
{

balls[n]->yspeed = -1 * rand() % 6 + 1;
balls[num]->yspeed = rand() % 6 + 1;

}
}

}
}

}

The main function has been modified extensively from the original version in
SpriteGrabber to accommodate multiple sprites and calls to the collision functions, so I’ll
provide the complete main function here. This is similar to the previous version but now
includes for loops to handle the multiple sprites on the screen, in addition to calling the
collision routine.

Chapter 9 � Advanced Sprite Programming322

void main(void)
{

BITMAP *temp;
BITMAP *buffer;
int n;

//initialize
allegro_init();
set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
install_keyboard();
install_timer();
srand(time(NULL));

//create second buffer
buffer = create_bitmap(SCREEN_W, SCREEN_H);

text_mode(-1);
textout(buffer, font, “CollisionTest Program (ESC to quit)”,

0, 0, WHITE);

//load sprite images
temp = load_bitmap(“sphere.bmp”, NULL);
for (n=0; n<32; n++)

ballimg[n] = grabframe(temp,64,64,0,0,8,n);
destroy_bitmap(temp);

//initialize the sprite
for (n=0; n<NUM; n++)
{

balls[n] = &theballs[n];
balls[n]->x = rand() % (SCREEN_W - ballimg[0]->w);
balls[n]->y = rand() % (SCREEN_H - ballimg[0]->h);
balls[n]->width = ballimg[0]->w;
balls[n]->height = ballimg[0]->h;
balls[n]->xdelay = 0;
balls[n]->ydelay = 0;
balls[n]->xcount = 0;
balls[n]->ycount = 0;
balls[n]->xspeed = rand() % 5 + 1;
balls[n]->yspeed = rand() % 5 + 1;
balls[n]->curframe = rand() % 32;
balls[n]->maxframe = 31;
balls[n]->framecount = 0;
balls[n]->framedelay = 0;

The CollisionTest Program 323

balls[n]->animdir = 1;
}

//game loop
while (!key[KEY_ESC])
{

//erase the sprites
for (n=0; n<NUM; n++)

erasesprite(buffer, balls[n]);

for (n=0; n<NUM; n++)
{

updatesprite(balls[n]);
bouncesprite(balls[n]);
checkcollisions(n);

}

//draw the sprites
for (n=0; n<NUM; n++)

draw_sprite(buffer, ballimg[balls[n]->curframe],
balls[n]->x, balls[n]->y);

//update the screen
acquire_screen();
blit(buffer,screen,0,0,0,0,buffer->w,buffer->h);
release_screen();

rest(10);
}

for (n=0; n<32; n++)
destroy_bitmap(ballimg[n]);

return;
}
END_OF_MAIN();

Enhancing Tank War
The next enhancement to Tank War will incorporate the new features you learned in this
chapter, such as the use of a sprite handler and collision detection. For this modification,

Chapter 9 � Advanced Sprite Programming324

you’ll follow the same strategy used in previous chapters and only modify the latest version
of the game, adding new features.

You need to add the SPRITE struct to the tankwar.h header file. But the struct needs two
more variables before it will accommodate Tank War because the tanks and bullets included
variables that are not yet part of the sprite handler. The SPRITE struct must also contain an
int called dir and another called alive. Open the tankwar.h file and add the struct to this
file just below the color definitions. After declaring the struct, you should also add the
sprite arrays. At the same time, you no longer need the tagTank or tagBullet structs, so
delete them! Also, you need to fill in a replacement for the “score” variables for each tank,
so declare this as a new standalone int array.

//define the sprite structure
typedef struct SPRITE
{

//new elements
int dir, alive;

//current elements
int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

SPRITE mytanks[2];
SPRITE *tanks[2];
SPRITE mybullets[2];
SPRITE *bullets[2];

//replacement for the “score” variable in tank struct
int scores[2];

Replacing the two structs with the new SPRITE struct will have repercussions throughout
the entire game source code because the new code uses pointers rather than struct variables
directly. Therefore, you will need to modify most of the functions to use the -> symbol in
place of the period (.) to access elements of the struct when it is referenced with a pointer.
The impact of converting the game to use sprite pointers won’t be truly apparent until the
next chapter, when you add a background to the game (finally!).

Enhancing Tank War 325

Now I want to go over the changes to the main source code file for Tank War with the
changes in place.

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Chapter 9 - Tank War Game (Enhancement 4)
///

#include “tankwar.h”

int inside(int x,int y,int left,int top,int right,int bottom)
{

if (x > left && x < right && y > top && y < bottom)
return 1;

else
return 0;

}

int collided(SPRITE *a, SPRITE *b)
{

int wa = a->x + a->width;
int ha =a->y + a->height;
int wb = b->x + b->width;
int hb = b->y + b->height;
int bx = 5;
int by = 5;

if (inside(a->x, a->y, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(a->x, ha, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(wa, a->y, b->x+bx, b->y+by, wb-bx, hb-by) ||
inside(wa, ha, b->x+bx, b->y+by, wb-bx, hb-by))
return 1;

else
return 0;

}

void drawtank(int num)
{

int dir = tanks[num]->dir;
int x = tanks[num]->x-15;
int y = tanks[num]->y-15;
draw_sprite(screen, tank_bmp[num][dir], x, y);

Chapter 9 � Advanced Sprite Programming326

}

void erasetank(int num)
{

int x = tanks[num]->x-17;
int y = tanks[num]->y-17;
rectfill(screen, x, y, x+33, y+33, BLACK);

}

void movetank(int num){
int dir = tanks[num]->dir;
int speed = tanks[num]->xspeed;

//update tank position based on direction
switch(dir)
{

case 0:
tanks[num]->y -= speed;
break;

case 1:
tanks[num]->x += speed;
tanks[num]->y -= speed;
break;

case 2:
tanks[num]->x += speed;
break;

case 3:
tanks[num]->x += speed;
tanks[num]->y += speed;
break;

case 4:
tanks[num]->y += speed;
break;

case 5:
tanks[num]->x -= speed;
tanks[num]->y += speed;
break;

case 6:
tanks[num]->x -= speed;
break;

case 7:
tanks[num]->x -= speed;
tanks[num]->y -= speed;

Enhancing Tank War 327

break;
}

//keep tank inside the screen
//use xspeed as a generic “speed” variable
if (tanks[num]->x > SCREEN_W-22)
{

tanks[num]->x = SCREEN_W-22;
tanks[num]->xspeed = 0;

}
if (tanks[num]->x < 22)
{

tanks[num]->x = 22;
tanks[num]->xspeed = 0;

}
if (tanks[num]->y > SCREEN_H-22)
{

tanks[num]->y = SCREEN_H-22;
tanks[num]->xspeed = 0;

}
if (tanks[num]->y < 22)
{

tanks[num]->y = 22;
tanks[num]->xspeed = 0;

}

//see if tanks collided
/* if (collided(tanks[0], tanks[1]))

{
textout(screen,font,”HIT”,tanks[0]->x, tanks[0]->y,WHITE);
tanks[0]->xspeed = 0;
tanks[1]->xspeed = 0;

}
*/

}

void explode(int num, int x, int y)
{

int n;

//load explode image
if (explode_bmp == NULL)
{

Chapter 9 � Advanced Sprite Programming328

explode_bmp = load_bitmap(“explode.bmp”, NULL);
}

//draw the explosion bitmap several times
for (n = 0; n < 5; n++)
{

rotate_sprite(screen, explode_bmp,
x + rand()%10 - 20, y + rand()%10 - 20,
itofix(rand()%255));

rest(30);
}

//clear the explosion
circlefill(screen, x, y, 50, BLACK);

}

void updatebullet(int num)
{

int x, y, tx, ty;
int othertank;

x = bullets[num]->x;
y = bullets[num]->y;

if (num == 1)
othertank = 0;

else
othertank = 1;

//is the bullet active?
if (!bullets[num]->alive) return;

//erase bullet
rectfill(screen, x, y, x+10, y+10, BLACK);

//move bullet
bullets[num]->x += bullets[num]->xspeed;
bullets[num]->y += bullets[num]->yspeed;
x = bullets[num]->x;
y = bullets[num]->y;

Enhancing Tank War 329

//stay within the screen
if (x < 6 || x > SCREEN_W-6 || y < 20 || y > SCREEN_H-6)
{

bullets[num]->alive = 0;
return;

}

//look for a direct hit using basic collision
tx = tanks[!num]->x;
ty = tanks[!num]->y;
//if (collided(bullets[num], tanks[!num]))
if (inside(x,y,tx,ty,tx+16,ty+16))
{

//kill the bullet
bullets[num]->alive = 0;

//blow up the tank
explode(num, x, y);
score(num);

}
else
//if no hit then draw the bullet
{

//draw bullet sprite
draw_sprite(screen, bullet_bmp, x, y);

//update the bullet positions (for debugging)
textprintf(screen, font, SCREEN_W/2-50, 1, TAN,

“B1 %-3dx%-3d B2 %-3dx%-3d”,
bullets[0]->x, bullets[0]->y,
bullets[1]->x, bullets[1]->y);

}
}

void fireweapon(int num)
{

int x = tanks[num]->x;
int y = tanks[num]->y;

//ready to fire again?
if (!bullets[num]->alive)
{

bullets[num]->alive = 1;

Chapter 9 � Advanced Sprite Programming330

//fire bullet in direction tank is facing
switch (tanks[num]->dir)
{

//north
case 0:

bullets[num]->x = x-2;
bullets[num]->y = y-22;
bullets[num]->xspeed = 0;
bullets[num]->yspeed = -BULLETSPEED;
break;

//NE
case 1:

bullets[num]->x = x+18;
bullets[num]->y = y-18;
bullets[num]->xspeed = BULLETSPEED;
bullets[num]->yspeed = -BULLETSPEED;
break;

//east
case 2:

bullets[num]->x = x+22;
bullets[num]->y = y-2;
bullets[num]->xspeed = BULLETSPEED;
bullets[num]->yspeed = 0;
break;

//SE
case 3:

bullets[num]->x = x+18;
bullets[num]->y = y+18;
bullets[num]->xspeed = BULLETSPEED;
bullets[num]->yspeed = BULLETSPEED;
break;

//south
case 4:

bullets[num]->x = x-2;
bullets[num]->y = y+22;
bullets[num]->xspeed = 0;
bullets[num]->yspeed = BULLETSPEED;
break;

//SW
case 5:

bullets[num]->x = x-18;
bullets[num]->y = y+18;
bullets[num]->xspeed = -BULLETSPEED;

Enhancing Tank War 331

bullets[num]->yspeed = BULLETSPEED;
break;

//west
case 6:

bullets[num]->x = x-22;
bullets[num]->y = y-2;
bullets[num]->xspeed = -BULLETSPEED;
bullets[num]->yspeed = 0;
break;

//NW
case 7:

bullets[num]->x = x-18;
bullets[num]->y = y-18;
bullets[num]->xspeed = -BULLETSPEED;
bullets[num]->yspeed = -BULLETSPEED;
break;

}
}

}

void forward(int num)
{

//use xspeed as a generic “speed” variable
tanks[num]->xspeed++;
if (tanks[num]->xspeed > MAXSPEED)

tanks[num]->xspeed = MAXSPEED;
}

void backward(int num)
{

tanks[num]->xspeed—;
if (tanks[num]->xspeed < -MAXSPEED)

tanks[num]->xspeed = -MAXSPEED;
}

void turnleft(int num)
{

tanks[num]->dir—;
if (tanks[num]->dir < 0)

tanks[num]->dir = 7;
}

Chapter 9 � Advanced Sprite Programming332

void turnright(int num)
{

tanks[num]->dir++;
if (tanks[num]->dir > 7)

tanks[num]->dir = 0;
}

void getinput()
{

//hit ESC to quit
if (key[KEY_ESC]) gameover = 1;

//WASD - SPACE keys control tank 1
if (key[KEY_W]) forward(0);
if (key[KEY_D]) turnright(0);
if (key[KEY_A]) turnleft(0);
if (key[KEY_S]) backward(0);
if (key[KEY_SPACE]) fireweapon(0);

//arrow - ENTER keys control tank 2
if (key[KEY_UP]) forward(1);
if (key[KEY_RIGHT]) turnright(1);
if (key[KEY_DOWN]) backward(1);
if (key[KEY_LEFT]) turnleft(1);
if (key[KEY_ENTER]) fireweapon(1);

//short delay after keypress
rest(20);

}

void score(int player)
{

//update score
int points = ++scores[player];

//display score
textprintf(screen, font, SCREEN_W-70*(player+1), 1,

BURST, “P%d: %d”, player+1, points);
}

void setuptanks()
{

Enhancing Tank War 333

int n;

//configure player 1’s tank
tanks[0] = &mytanks[0];
tanks[0]->x = 30;
tanks[0]->y = 40;
tanks[0]->xspeed = 0;
scores[0] = 0;
tanks[0]->dir = 3;

//load first tank bitmap
tank_bmp[0][0] = load_bitmap(“tank1.bmp”, NULL);

//rotate image to generate all 8 directions
for (n=1; n<8; n++)
{

tank_bmp[0][n] = create_bitmap(32, 32);
clear_bitmap(tank_bmp[0][n]);
rotate_sprite(tank_bmp[0][n], tank_bmp[0][0],

0, 0, itofix(n*32));
}

//configure player 2’s tank
tanks[1] = &mytanks[1];
tanks[1]->x = SCREEN_W-30;
tanks[1]->y = SCREEN_H-30;
tanks[1]->xspeed = 0;
scores[1] = 0;
tanks[1]->dir = 7;

//load second tank bitmap
tank_bmp[1][0] = load_bitmap(“tank2.bmp”, NULL);

//rotate image to generate all 8 directions
for (n=1; n<8; n++)
{

tank_bmp[1][n] = create_bitmap(32, 32);
clear_bitmap(tank_bmp[1][n]);
rotate_sprite(tank_bmp[1][n], tank_bmp[1][0],

0, 0, itofix(n*32));
}

Chapter 9 � Advanced Sprite Programming334

//load bullet image
if (bullet_bmp == NULL)

bullet_bmp = load_bitmap(“bullet.bmp”, NULL);

//initialize bullets
for (n=0; n<2; n++)
{

bullets[n] = &mybullets[n];
bullets[n]->x = 0;
bullets[n]->y = 0;
bullets[n]->width = bullet_bmp->w;
bullets[n]->height = bullet_bmp->h;

}
}

void setupscreen()
{

int ret;

//set video mode
set_color_depth(32);
ret = set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

//print title
textprintf(screen, font, 1, 1, BURST,

“Tank War - %dx%d”, SCREEN_W, SCREEN_H);

//draw screen border
rect(screen, 0, 12, SCREEN_W-1, SCREEN_H-1, TAN);
rect(screen, 1, 13, SCREEN_W-2, SCREEN_H-2, TAN);

}

void main(void)
{

//initialize the game
allegro_init();
install_keyboard();
install_timer();

Enhancing Tank War 335

srand(time(NULL));
setupscreen();
setuptanks();

//game loop
while(!gameover)
{

//erase the tanks
erasetank(0);
erasetank(1);

//move the tanks
movetank(0);
movetank(1);

//draw the tanks
drawtank(0);
drawtank(1);

//update the bullets
updatebullet(0);
updatebullet(1);

//check for keypresses
if (keypressed())

getinput();

//slow the game down
rest(20);

}

//end program
allegro_exit();

}
END_OF_MAIN();

Summary
This chapter was absolutely packed with advanced sprite code! You learned about animation,
a subject that could take up an entire book of its own. (For instance, see Ari Feldman’s
book Designing Arcade Computer Game Graphics—http://www.arifeldman.com/reference.)
Indeed, there is much to animation that I didn’t get into in this chapter, but the most

Chapter 9 � Advanced Sprite Programming336

important points were covered here and as a result, you have some great code that will be
used in the rest of the book (especially that grabframe function) and perhaps many of your
own Allegro game projects. You also learned about a couple subjects that are seldom dis-
cussed in game programming books—compiled and compressed sprite images. Using
run-length encoded sprites, your game will use less memory, and by using compiled
sprites, your game will run much faster. But possibly the most important subject in this
chapter is the discussion of collision detection and how to implement it.

What comes next? We aren’t done with sprites yet, not by a long shot! The next chapter
delves into scrolling backgrounds. Get ready for some huge changes to Tank War because
I’ve got some huge plans for the battlefield!

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. Which function draws a standard sprite?

A. draw_standard_sprite

B. standard_sprite

C. draw_sprite

D. blit_sprite

2. What is a frame in the context of sprite animation?

A. A single image in the animation sequence

B. The bounding rectangle of a sprite

C. The source image for the animation sequence

D. A buffer image used to store temporary copies of the sprite

3. What is the purpose of a sprite handler?

A. To provide a consistent way to animate and manipulate many sprites
on the screen

B. To prevent sprites from moving beyond the edges of the screen

C. To provide a reusable sprite drawing function

D. To keep track of the sprite position

4. What is a struct element?

A. A property of a struct

B. A sprite behavior

C. The underlying Allegro sprite handler

D. A variable in a structure

Chapter Quiz 337

5. Which term describes a single frame of an animation sequence stored
in an image file?

A. Snapshot

B. Tile

C. Piece

D. Take

6. Which Allegro function is used frequently to erase a sprite?

A. rectfill

B. erase_sprite

C. destroy_sprite

D. blit

7. Which term describes a reusable activity for a sprite that is important in a game?

A. Collision

B. Animation

C. Bounding

D. Behavior

8. Which function converts a normal sprite into a run-length encoded sprite?

A. convert_sprite

B. get_rle_sprite

C. convert_to_rle

D. load_rle_sprite

9. Which function draws a compiled sprite to a destination bitmap?

A. draw_compiled

B. draw_comp_sprite

C. draw_compiled_sprite

D. compiled_sprite

10. What is the easiest (and most efficient) way to detect sprite collisions?

A. Bounding rectangle intersection

B. Pixel comparison

C. Bilinear quadratic evaluation

D. Union of two spheres

Chapter 9 � Advanced Sprite Programming338

339

Programming
Tile-Based Backgrounds
with Scrolling

chapter 10

A
llegro has a history that goes way back to the 1980s, when it was originally devel-
oped for the Atari ST computer, which was a game programmer’s dream machine
(as were the Atari 800 that preceded it and the Commodore Amiga that was in a

similar performance class). While IBM PC users were stuck playing text adventures and
ASCII role-playing games (in which your player was represented by @ or P), Atari and
Amiga programmers were playing with tile-based scrolling, hardware-accelerated sprites,
and digital sound. If you revel in nostalgia as I do, I recommend you pick up High Score!
The Illustrated History of Electronic Games by DeMaria and Wilson (McGraw-Hill Osborne
Media, 2003). Given such roots, it is no surprise that Allegro has such terrific support for
scrolling and sprites.

However, there is a drawback to the scrolling functionality—it is very platform depen-
dent. Modern games simply don’t use video memory for scrolling any longer. Back in the
old days, it was a necessity because system memory was so limited. We take for granted a
gigabyte of memory today, but that figure was as unbelievable in the 1980s as a manned
trip to Mars is today. Allegro’s scrolling functionality works with console-based operating
systems such as MS-DOS and console Linux, where video memory is not a graphical han-
dle provided by the operating system as it is today. Even so, the virtual screen buffers were
very limited because they were designed for video cards with 256 to 1024 KB of video
memory. You were lucky to have two 320×240 screens, let alone enough for a large scrolling
world. Therefore, this chapter will focus on creating tile-based backgrounds with
scrolling using secondary buffers. As you will discover, this is far easier than trying to
wrangle memory out of a video card as programmers were forced to do years ago. A mem-
ory buffer will work well with either full-screen or windowed mode.

Here is a breakdown of the major topics in this chapter:

� Scrolling

� Working with tile-based backgrounds

� Enhancing Tank War

Introduction to Scrolling
What is scrolling? In today’s gaming world, where 3D is the focus of everyone’s attention,
it’s not surprising to find gamers and programmers who have never heard of scrolling.
What a shame! The heritage of modern games is a long and fascinating one that is still rel-
evant today, even if it is not understood or appreciated. The console industry puts great
effort and value into scrolling, particularly on handheld systems, such as the Game Boy
Advance. Given the extraordinary sales market for the GBA, would you be surprised to
learn that more 2D games may be sold in a given day than 3D games? Oh, you’re already
sold on 2D games? Right; I digress. Figure 10.1 illustrates the concept of scrolling.

n o t e

Scrolling is the process of displaying a small window of a larger virtual game world.

The key to scrolling is actually having something in the virtual game world to display in
the scroll window. Also, I should point out that the entire screen need not be used as the

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling340

Figure 10.1 The scroll window shows a small part of a larger game world.

scroll window. It is common to use the entire screen in scrolling-shooter games, but role-
playing games often use a smaller window on the screen for scrolling, using the rest of the
screen for gameplay (combat, inventory, and so on) and player/party information (see
Figure 10.2).

You could display one huge bitmap image in the virtual game world representing the cur-
rent level of the game, and then copy (blit) a portion of that virtual world onto the screen.
This is the simplest form of scrolling. Another method uses tiles to create the game world,
which I’ll cover shortly. First, you’ll write a short program to demonstrate how to use
bitmap scrolling.

A Limited View of the World
I have written a program called ScrollScreen that I will show you. The \chapter10\ScrollScreen
folder on the CD-ROM contains the bigbg.bmp file used in this program. Although I
encourage you to write the program yourself, feel free to load the project in either
KDevelop, Dev-C++, or Visual C++. Figure 10.3 shows the bigbg.bmp file.

When you run the program, the program will load the bigbg.bmp image into the virtual
buffer and display the upper-left corner in the 640×480 screen. (You can change the reso-
lution if you want, and I also encourage you to try running the program in full-screen
mode using GFX_AUTODETECT_FULLSCREEN for the best effect.) The program detects when the

A Limited View of the World 341

Figure 10.2 Some games use a smaller scroll window on the game screen.

arrow keys have been pressed and adjusts the x and y variables accordingly. Displaying the
correct view is then a simple matter of blitting with the x and y variables (see Figure 10.4).

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling342

Figure 10.3 The bigbg.bmp file is loaded into the virtual memory buffer
for scrolling.

Figure 10.4 The
ScrollScreen program
demonstrates how to
perform virtual buffer
scrolling.

n o t e

You could just as easily create a large virtual memory bitmap at run time and draw on that
bitmap using the Allegro drawing functions you have learned thus far. I have chosen to create
the bitmap image beforehand and load it into the program to keep the code listing shorter. Either
method works the same way.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

//define some convenient constants
#define MODE GFX_AUTODETECT_FULLSCREEN
#define WIDTH 640
#define HEIGHT 480
#define STEP 8

//virtual buffer variable
BITMAP *scroll;

//position variables
int x=0, y=0;

//main function
void main(void)
{

//initialize allegro
allegro_init();
install_keyboard();
install_timer();
set_color_depth(16);
if (set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0) != 0)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(allegro_error);
return;

}

//load the large bitmap image from disk
scroll = load_bitmap(“bigbg.bmp”, NULL);
if (scroll == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);

A Limited View of the World 343

allegro_message(“Error loading bigbg.bmp file”);
return;

}

//main loop
while (!key[KEY_ESC])
{

//check right arrow
if (key[KEY_RIGHT])
{

x += STEP;
if (x > scroll->w - WIDTH)

x = scroll->w - WIDTH;
}

//check left arrow
if (key[KEY_LEFT])
{

x -= STEP;
if (x < 0)

x = 0;
}

//check down arrow
if (key[KEY_DOWN])
{

y += STEP;
if (y > scroll->h - HEIGHT)

y = scroll->h - HEIGHT;
}

//check up arrow
if (key[KEY_UP])
{

y -= STEP;
if (y < 0)

y = 0;
}

//draw the scroll window portion of the virtual buffer
blit(scroll, screen, x, y, 0, 0, WIDTH-1, HEIGHT-1);

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling344

Introduction to Tile-Based Backgrounds 345

//slow it down
rest(20);

}
destroy_bitmap(scroll);
return;

}
END_OF_MAIN();

The first thing I would do to enhance this program is create two variables, lastx and lasty,
and set them to equal x and y, respectively, at the end of the main loop. Then, before blit-
ting the window, check to see whether x or y has changed since the last frame and skip the
blit function. There is no need to keep blitting the same portion of the virtual back-
ground if it hasn’t moved.

Introduction to Tile-Based Backgrounds
You have seen what a simple scroller looks like, even though it relied on keyboard input
to scroll. A high-speed scrolling arcade game would automatically scroll horizontally or
vertically, displaying a ground-, air-, or space-based terrain below the player (usually rep-
resented by an airplane or a spaceship). The point of these games is to keep the action
moving so fast that the player doesn’t have a chance to rest from one wave of enemies to
the next. Two upcoming chapters have been dedicated to these very subjects! For the time
being, I want to keep things simple to cover the basics of scrolling before you delve into
these advanced chapters.

If you have gotten the ScrollScreen program to work, then you have taken the first step to
creating a scrolling arcade-style game (or one of the hundred-thousand or so games released
in the past 20 years). In the old days, getting the scroller working was usually the first step to
creating a sports game. In fact, that was my first assignment at Semi-Logic Entertainments back
in 1994, during the prototype phase of Wayne Gretzky and the NHLPA All-Stars—to get a
hockey rink to scroll as fast as possible.

Back then, I was using Borland C++ 4.5, and it just wasn’t fast enough. First of all, this was a 16-bit
compiler, while the 80×86- and Pentium-class PCs of the day were capable of 32-bit memory copies
(mov instruction) that could effectively draw four pixels at a time in 8-bit color mode or two pixels at
a time in 16-bit mode. Fortunately, Allegro already uses high-speed assembly instructions for blitting,
as the low-level functions are optimized for each operating system using assembly language.

t i p

For an in-depth look at vertical scrolling, see Chapter 13, “Vertical Scrolling Arcade Games.” If you
prefer to go horizontal, you can look forward to Chapter 14, “Horizontal Scrolling Platform Games.”

Backgrounds and Scenery
A background is comprised of imagery or terrain in one form or another, upon which the
sprites are drawn. The background might be nothing more than a pretty picture behind
the action in a game, or it might take an active part, as in a scroller. When you are talking
about scrollers, they need not be relegated only to the high-speed arcade games. Role-
playing games are usually scrollers too, as are most sports games.

You should design the background around the goals of your game, not the other way
around. You should not come up with some cool background and then try to build the
game around it. (However, I admit that this is often how games are started.) You never
want to rely on a single cool technology as the basis for an entire game, or the game will
be forever remembered as a trendy game that tried to cash in on the latest fad. Instead of
following and imitating, set your own precedents and make your own standards!

What am I talking about, you might ask? You might have the impression that anything and
everything that could possibly have been done with a scrolling game has already been
done ten times over. Not true. Not true! Remember when Doom first came out? Everyone
had been imitating Wolfenstein 3-D when Carmack and Romero bumped up the notch a
few hundred points and raised everyone’s expectations so high that shockwaves reverber-
ated throughout the entire game industry—console and PC alike.

Do you really think it has all been done before and there is no more room for innovation,
that the game industry is saturated and it’s impossible to make a successful “indie” game?
That didn’t stop Bungie from going for broke on their first game project. Halo has made
its mark in gaming history by upping everyone’s expectations for superior physics and
intelligent opponents. Now, a few years hence, what kinds of games are coming out? What
is the biggest industry buzzword? Physics. Design a game today without it, and suddenly
your game is so 1990s in the gaming press. It’s all about physics and AI now, and that started
with Halo. Rather, it was perfected with Halo—I can’t personally recall a game with that
level of interaction before Halo came along. There is absolutely no reason why you can’t
invent the next innovation or revolution in gaming, even in a 2D game.

t i p

Eh…all this philosophizing is giving me a headache. Time for some Strong Bad. Check out
http://www.homestarrunner.com/sbemail94.html for one of my favorites. Okay, back to business.

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling346

Creating Backgrounds from Tiles
The real power of a scrolling background comes from a technique called tiling. Tiling is a
process in which there really is no background, just an array of tiles that make up the
background as it is displayed. In other words, it is a virtual virtual background and it takes
up very little memory compared to a full bitmapped background (such as the one in
ScrollScreen). Take a look at Figure 10.5 for an example.

Can you count the number of tiles used to construct the background in Figure 10.5?
Eighteen tiles make up this image, actually. Imagine that—an entire game screen built
using a handful of tiles, and the result is pretty good! Obviously a real game would have
more than just grass, roads, rivers, and bridges; a real game would have sprites moving on
top of the background. How about an example? I thought you’d like that idea.

Tile-Based Scrolling
The TileScroll program uses tiles to fill the large background bitmap when the program
starts. Other than that initial change, the program functions exactly like the ScrollScreen
program. Take a look at Figure 10.6.

You might wonder why the screen looks like such a mess. That was intentional, not a mistake.
The tiles are drawn to the background randomly, so they’re all jumbled incoherently—
which is, after all, the nature of randomness. After this, I’ll show you how to place the tiles
in an actual order that makes sense. Also, you can look forward to an entire chapter ded-
icated to this subject in Chapter 12, “Creating a Game World: Editing Tiles and Levels.”

Introduction to Tile-Based Backgrounds 347

Figure 10.5 A bitmap image constructed of tiles

Why an entire chapter just
for this subject? Because it’s
huge! You’re just getting
into the basics here, but
Chapter 12 will explore
map editors, creating game
worlds, and other higher-
level concepts. The actual
bitmap containing the tiles
is shown in Figure 10.7.

Here’s the source code for the TileScroll program:

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

//define some convenient constants
#define MODE GFX_AUTODETECT_FULLSCREEN
#define WIDTH 640
#define HEIGHT 480

#define STEP 8
#define TILEW 32
#define TILEH 32
#define TILES 39
#define COLS 10

//temp bitmap
BITMAP *tiles;

//virtual background buffer
BITMAP *scroll;

//position variables
int x=0, y=0, n;

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling348

Figure 10.6 The TileScroll program demonstrates how to
perform tile-based background scrolling.

Figure 10.7 The source file
containing the tiles used in the
TileScroll program

int tilex, tiley;

//reuse our friendly tile grabber from chapter 9
BITMAP *grabframe(BITMAP *source,

int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

return temp;
}

//main function
void main(void)
{

//initialize allegro
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));
set_color_depth(16);

//set video mode
if (set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0) != 0)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(allegro_error);
return;

}

//create the virtual background
scroll = create_bitmap(1600, 1200);
if (scroll == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating virtual background”);
return;

Introduction to Tile-Based Backgrounds 349

}

//load the tile bitmap
tiles = load_bitmap(“tiles.bmp”, NULL);
if (tiles == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error loading tiles.bmp file”);
return;

}

//now draw tiles randomly on virtual background
for (tiley=0; tiley < scroll->h; tiley+=TILEH)
{

for (tilex=0; tilex < scroll->w; tilex+=TILEW)
{

//pick a random tile
n = rand() % TILES;
//use the result of grabframe directly in blitter
blit(grabframe(tiles, TILEW+1, TILEH+1, 0, 0, COLS, n),

scroll, 0, 0, tilex, tiley, TILEW, TILEH);
}

}

//main loop
while (!key[KEY_ESC])
{

//check right arrow
if (key[KEY_RIGHT])
{

x += STEP;
if (x > scroll->w - WIDTH)

x = scroll->w - WIDTH;
}

//check left arrow
if (key[KEY_LEFT])
{

x -= STEP;
if (x < 0)

x = 0;
}

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling350

//check down arrow
if (key[KEY_DOWN])
{

y += STEP;
if (y > scroll->h - HEIGHT)

y = scroll->h - HEIGHT;
}

//check up arrow
if (key[KEY_UP])
{

y -= STEP;
if (y < 0)

y = 0;
}

//draw the scroll window portion of the virtual buffer
blit(scroll, screen, x, y, 0, 0, WIDTH-1, HEIGHT-1);

//slow it down
rest(20);

}

destroy_bitmap(scroll);
destroy_bitmap(tiles);
return;

}
END_OF_MAIN();

Creating a Tile Map
Displaying random tiles just to make a proof-of-concept is one thing, but it is not very
useful. True, you have some code to create a virtual background, load tiles onto it, and
then scroll the game world. What you really need won’t be covered until Chapter 12, so as
a compromise, you can create game levels using an array to represent the game world. In
the past, I have generated a realistic-looking game map with source code, using an algo-
rithm that matched terrain curves and straights (such as the road, bridge, and river) so
that I created an awesome map from scratch, all by myself. The result, I’m sure you’ll
agree, is one of the best maps ever made. Some errors in the tile matching occurred,
though, and a random map doesn’t have much point in general. I mean, building a ran-
dom landscape is one thing, but constructing it at run time is not a great solution—even
if your map-generating routine is very good. For instance, many games, such as Warcraft III,

Introduction to Tile-Based Backgrounds 351

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling352

Age of Mythology, and Civilization III, can generate the game world on the fly. Obviously,
the programmers spent a lot of time perfecting the world-generating routines. If your
game would benefit by featuring a randomly generated game world, then your work is cut
out for you but the results will be worth it. This is simply one of those design considera-
tions that you must make, given that you have time to develop it.

Assuming you don’t have the means to generate a random map at this time, you can sim-
ply create one within an array. Then you can modify the TileScroll program so it uses the
array. Where do you start? First of all, you should realize that the tiles are numbered and
should be referenced this way in the map array.

Here is what the array looks like, as defined in the GameWorld program:

int map[MAPW*MAPH] = {
0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,2,0,
0,

};

It’s not complicated—simply a bunch of twos (grass) bordered by zeroes (stone). The
trick here is that this is really only a single-dimensional array, but the listing makes it obvi-
ous how the map will look because there are 25 numbers in each row—the same number

of tiles in each row. I did this intentionally so you can use this as a template for creating
your own maps. And you can create more than one map if you want. Simply change the
name of each map and reference the map you want in the blit function so that your new
map will show up. You are not limited in adding more tiles to each row. One interesting
thing you can try is making map a two-dimensional array containing many maps, and then
changing the map at run time! How about looking for the keys 1–9 (KEY_1, KEY_2,…KEY_9),
and then changing the map number to correspond to the key that was pressed? It would
be interesting to see the map change right before your eyes without re-running the program
(sort of like warping). Now are you starting to see the potential? You could use this simple
scrolling code as the basis for any of a hundred different games if you have the creative
gumption to do so.

I have prepared a legend of the tiles and the value for each in Figure 10.8. You can use the
legend while building your own maps.

n o t e

All of the tiles used in this chapter were created by Ari
Feldman, and I also owe him a debt of gratitude for
creating most of the artwork used in this book. If you
would like to contact Ari to ask him about custom art-
work for your own game, you can reach him at
http://www.arifeldman.com.

Call the new program GameWorld. This new
demo will be similar to TileScroll, but it will
use a map array instead of placing the tiles ran-
domly. This program will also use a smaller
virtual background to cut down on the size of
the map array. Why? Not to save memory, but
to make the program more manageable.
Because the virtual background was

1600×1200 in the previous program, it would require 50 columns of tiles across and 37
rows of tiles down to fill it! That is no problem at all for a map editor program, but it’s too
much data to type in manually. To make it more manageable, the new virtual background
will be 800 pixels across. I know, I know—that’s not much bigger than the 640×480 screen.
The point is to demonstrate how it will work, not to build a game engine, so don’t worry
about it. If you want to type in the values to create a bigger map, by all means, go for it!
That would be a great learning experience, as a matter of fact. For your purposes here (and
with my primary goal of being able to print an entire row of numbers in a single source
code line in the book), I’ll stick to 25 tiles across and 25 tiles down. You can work with a
map that is deeper than it is wide, which will allow you to test scrolling up and down fairly
well. Figure 10.9 shows the output from the GameWorld program.

Introduction to Tile-Based Backgrounds 353

Figure 10.8 A legend of the tiles and their
reference numbers used to create a map in
the GameWorld program

How about that source code? Let’s just add a few lines to the TileScroll program to come
up with this new version. I recommend creating a new project called GameWorld, setting
up the linker options for Allegro’s library file, and then pasting the source code from
TileScroll into the new main.c file in the GameWorld program. If you don’t feel like doing
all that, fine; go ahead and mess up the TileScroll program!

First, up near the top with the other defines, add these lines:

#define MAP_ACROSS 25
#define MAP_DOWN 25
#define MAPW MAP_ACROSS * TILEW
#define MAPH MAP_DOWN * TILEH

Then, of course, add the map array definition below the defines. (Refer back a few pages for
the listing.) Only one more change and you’re finished. You need to make a slight change
to the section of code that draws the tiles onto the virtual background bitmap. You can
remove the line that sets n to a random number; simply change the blit line, noting the
change in bold. Note the last parameter of grabframe, which was changed from n to
map[n++]. That’s the only change you need to make. Now go ahead and build this puppy,
and take it for a spin.

//now draw tiles randomly on virtual background
for (tiley=0; tiley < scroll->h; tiley+=TILEH)

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling354

Figure 10.9 The GameWorld program scrolls a map that was defined in
the map array.

{
for (tilex=0; tilex < scroll->w; tilex+=TILEW)
{

//use the result of grabframe directly in blitter
blit(grabframe(tiles, TILEW+1, TILEH+1, 0, 0, COLS, map[n++]),

scroll, 0, 0, tilex, tiley, TILEW, TILEH);
}

}

It’s a lot more interesting with a real map to scroll instead of jumbled tiles randomly
thrown about. I encourage you to modify and experiment with the GameWorld program
to see what it can do. Before you start making a lot of modifications, you’ll likely need the
help of some status information printed on the screen. If you want, here is an addition
you can make to the main loop, just following the blit. Again, this is optional.

//display status info
text_mode(-1);
textprintf(screen,font,0,0,makecol(0,0,0),

“Position = (%d,%d)”, x, y);

Enlarge the map to see how big you can make it. Try having the program scroll the map
(with wrapping) without requiring user input. This is actually a fairly advanced topic that
will be covered in future chapters on scrolling. You should definitely play around with the
map array to come up with your own map, and you can even try a different set of tiles. If
you have found any free game tiles on the Web (or if you have hired an artist to draw some
custom tiles for your game), note the layout and size of each tile, and then you can mod-
ify the constants in the GameWorld program to accommodate the new tile set. See what
you can come up with; experimentation is what puts the “science” in computer science.

Enhancing Tank War
I have been looking forward to this edition of Tank War since the first chapter in which
the program was introduced (Chapter 4). If you thought the previous chapter introduced
many changes to Tank War, you will be pleasantly surprised by all that will be put into the
game in this chapter! The only drawback is that at least half of the game has been revised,
but the result is well worth the effort. The game now features two (that’s right, two!)
scrolling game windows on the screen—one for each player. Shall I count the improve-
ments? There’s a new bitmap to replace the border and title; the game now uses scrolling
backgrounds that you can edit to create your own custom battlefields (one for each player);
the game is now double-buffered; debug messages have been removed; and the interface
has been spruced up. Take a look at Figure 10.10 for a glimpse of the new game.

Terrific, isn’t it? This game could seriously use some new levels with more creativity.
Remember, this is a tech demo at best, something to be used as a learning experience, so

Enhancing Tank War 355

it has to be easy to understand, not necessarily as awesome as it could be. I leave that to
you! After I’ve done the hard work and walked you through each step of the game, it’s your
job to create awesome new levels for the game. Of course, the game would also greatly
benefit from some sound effects, but that will have to wait for Chapter 15, “Mastering the
Audible Realm: Allegro’s Sound Support.”

Exploring the All-New Tank War
Since you’ll be spending so much time playing this great game with your friends (unless
you suffer from multiple personality disorder and are able to control both tanks at the same
time), let me give you a quick tour of the game, and then we’ll get started on the source
code. Figure 10.11 shows what the game looks like when player 2 hits player 1. The explo-
sion should occur on both windows at the same time, but herein lies a problem: We haven’t
covered timers yet! Soon enough; the next chapter covers this very important (and sorely
needed) subject.

Figure 10.12 shows both tanks engulfed in explosions. D’oh! Talk about mutually assured
destruction. You might be wondering where these ultra-cool explosions came from. Again,
thanks to Ari Feldman’s wonderful talent, we have an explosion sprite that can be rotated,
tweaked, and blitted to make those gnarly boom-booms. Imagine what this game will be
like with sound effects. I’m tempted to jump to that chapter right now so I can find out!

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling356

Figure 10.10 Tank War now features two scrolling windows, one for
each player.

The next two figures show a sequence that is sad but true: Someone is going to die. Figure
10.13 shows player 1 having fired a bullet.

Referring to Figure 10.14—ooooh, direct hit; he’s toast.

Enhancing Tank War 357

Figure 10.11 Both of the scrolling windows in Tank War display
the bullets and explosions.

Figure 10.12 Mutually assured destruction: It’s what total war is all about.

The last image shows something interesting that I want to bring to your attention when you
are designing levels. Take a look at Figure 10.15.

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling358

Figure 10.13 Player 1 has fired. Bullet trajectory looks good….

Figure 10.14 Player 1 would like to thank his parents, his commander, and
all his new fans.

See how the border of the game world is black? That’s not just empty space; it’s a blank
tile from the tiles.bmp image. It is necessary to insert blanks around the edges of the map
so the tanks will seem to actually move up to the edge of the map. If you omit a border
like this, the tanks will not be able to reach the true border of the map. Just a little trick
for you at no cost, although I’m fairly certain someone has written a book about this.

The New Tank War Source Code
It’s time to get down and dirty with the new source code for Tank War. Let me paint the
picture this way and explain things straight up. Almost everything about the source has
been changed. I’m afraid a line-by-line change list isn’t possible this time because more
than half the game has been modified. I mean, come on—it’s got dual scrolling. What do
you expect, a couple of line changes? Er, sorry about that—been watching too much
Strong Bad. Let’s get started.

The first significant change to the game is that it is now spread across several source code
files. I decided this was easier to maintain and would be easier for you to understand, so
you don’t have to wade through the 10-page source code listing in a single main.c file. I’ll
go over this with you, but you feel free to load the project from \chapter10\tankwar on the
CD-ROM if you are in a hurry. I heartily recommend you follow along because there’s a
lot of real-world experience to be gained by watching how this game is built. Don’t be
a copy-paster!

Enhancing Tank War 359

Figure 10.15 The border around the game world is filled with a blank tile.

Header Definitions

First up is the tankwar.h file containing all the definitions for the game.

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Tank War Enhancement 5 - tankwar.h
///

#ifndef _TANKWAR_H
#define _TANKWAR_H

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”

//define some game constants
#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480
#define MAXSPEED 4
#define BULLETSPEED 10
#define TILEW 32
#define TILEH 32
#define TILES 39
#define COLS 10
#define MAP_ACROSS 31
#define MAP_DOWN 33
#define MAPW MAP_ACROSS * TILEW
#define MAPH MAP_DOWN * TILEH
#define SCROLLW 310
#define SCROLLH 375

//define some colors
#define TAN makecol(255,242,169)
#define BURST makecol(255,189,73)
#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)
#define GRAY makecol(128,128,128)
#define GREEN makecol(0,255,0)

//define the sprite structure
typedef struct SPRITE

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling360

{
//new elements

int dir, alive;

int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

SPRITE mytanks[2];
SPRITE *tanks[2];
SPRITE mybullets[2];
SPRITE *bullets[2];

//declare some variables
int gameover;
int scores[2];
int scrollx[2], scrolly[2];
int startx[2], starty[2];
int tilex, tiley, n;
int radarx, radary;

//sprite bitmaps
BITMAP *tank_bmp[2][8];
BITMAP *bullet_bmp;
BITMAP *explode_bmp;

//the game map
extern int map[];

//double buffer
BITMAP *buffer;

//bitmap containing source tiles
BITMAP *tiles;

//virtual background buffer
BITMAP *scroll;

Enhancing Tank War 361

//screen background
BITMAP *back;

//function prototypes
void drawtank(int num);
void erasetank(int num);
void movetank(int num);
void explode(int num, int x, int y);
void movebullet(int num);
void drawbullet(int num);
void fireweapon(int num);
void forward(int num);
void backward(int num);
void turnleft(int num);
void turnright(int num);
void getinput();
void setuptanks();
void setupscreen();
int inside(int,int,int,int,int,int);
BITMAP *grabframe(BITMAP *, int, int, int, int, int, int);

#endif

Bullet Functions

I have transplanted all of the routines related to handling bullets and firing the weapons
into a file called bullet.c. Isolating the bullet code in this file makes it easy to locate these
functions without wading through a huge single listing. If you haven’t already, add a new
file to your Tank War project named bullet.c and type the code into this new file.

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Tank War Enhancement 5 - bullet.c
///

#include “tankwar.h”

void explode(int num, int x, int y)
{

int n;

//load explode image
if (explode_bmp == NULL)

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling362

{
explode_bmp = load_bitmap(“explode.bmp”, NULL);

}

//draw the explosion bitmap several times
for (n = 0; n < 5; n++)
{

rotate_sprite(screen, explode_bmp,
x + rand()%10 - 20, y + rand()%10 - 20,
itofix(rand()%255));

rest(30);
}

}

void drawbullet(int num)
{

int n;
int x, y;

x = bullets[num]->x;
y = bullets[num]->y;

//is the bullet active?
if (!bullets[num]->alive) return;

//draw bullet sprite
for (n=0; n<2; n++)
{

if (inside(x, y, scrollx[n], scrolly[n],
scrollx[n] + SCROLLW - bullet_bmp->w,
scrolly[n] + SCROLLH - bullet_bmp->h))

//draw bullet, adjust for scroll
draw_sprite(buffer, bullet_bmp, startx[n] + x-scrollx[n],

starty[n] + y-scrolly[n]);
}

//draw bullet on radar
putpixel(buffer, radarx + x/10, radary + y/12, WHITE);

}

void movebullet(int num)

Enhancing Tank War 363

{
int x, y, tx, ty;

x = bullets[num]->x;
y = bullets[num]->y;

//is the bullet active?
if (!bullets[num]->alive) return;

//move bullet
bullets[num]->x += bullets[num]->xspeed;
bullets[num]->y += bullets[num]->yspeed;
x = bullets[num]->x;
y = bullets[num]->y;

//stay within the virtual screen
if (x < 0 || x > MAPW-6 || y < 0 || y > MAPH-6)
{

bullets[num]->alive = 0;
return;

}

//look for a direct hit using basic collision
tx = scrollx[!num] + SCROLLW/2;
ty = scrolly[!num] + SCROLLH/2;
if (inside(x,y,tx-15,ty-15,tx+15,ty+15))
{

//kill the bullet
bullets[num]->alive = 0;

//blow up the tank
x = scrollx[!num] + SCROLLW/2;
y = scrolly[!num] + SCROLLH/2;

if (inside(x, y,
scrollx[num], scrolly[num],
scrollx[num] + SCROLLW, scrolly[num] + SCROLLH))

{
//draw explosion in my window
explode(num, startx[num]+x-scrollx[num],

starty[num]+y-scrolly[num]);
}

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling364

//draw explosion in enemy window
explode(num, tanks[!num]->x, tanks[!num]->y);
scores[num]++;

}
}

void fireweapon(int num)
{

int x = scrollx[num] + SCROLLW/2;
int y = scrolly[num] + SCROLLH/2;

//ready to fire again?
if (!bullets[num]->alive)
{

bullets[num]->alive = 1;

//fire bullet in direction tank is facing
switch (tanks[num]->dir)
{

//north
case 0:

bullets[num]->x = x-2;
bullets[num]->y = y-22;
bullets[num]->xspeed = 0;
bullets[num]->yspeed = -BULLETSPEED;
break;

//NE
case 1:

bullets[num]->x = x+18;
bullets[num]->y = y-18;
bullets[num]->xspeed = BULLETSPEED;
bullets[num]->yspeed = -BULLETSPEED;
break;

//east
case 2:

bullets[num]->x = x+22;
bullets[num]->y = y-2;
bullets[num]->xspeed = BULLETSPEED;
bullets[num]->yspeed = 0;
break;

//SE
case 3:

bullets[num]->x = x+18;

Enhancing Tank War 365

bullets[num]->y = y+18;
bullets[num]->xspeed = BULLETSPEED;
bullets[num]->yspeed = BULLETSPEED;
break;

//south
case 4:

bullets[num]->x = x-2;
bullets[num]->y = y+22;
bullets[num]->xspeed = 0;
bullets[num]->yspeed = BULLETSPEED;
break;

//SW
case 5:

bullets[num]->x = x-18;
bullets[num]->y = y+18;
bullets[num]->xspeed = -BULLETSPEED;
bullets[num]->yspeed = BULLETSPEED;
break;

//west
case 6:

bullets[num]->x = x-22;
bullets[num]->y = y-2;
bullets[num]->xspeed = -BULLETSPEED;
bullets[num]->yspeed = 0;
break;

//NW
case 7:

bullets[num]->x = x-18;
bullets[num]->y = y-18;
bullets[num]->xspeed = -BULLETSPEED;
bullets[num]->yspeed = -BULLETSPEED;
break;

}
}

}

Tank Functions

Next up is a listing containing the code for managing the tanks in the game. This includes
the drawtank and movetank functions. Note that erasetank has been erased from this version
of the game. As a matter of fact, you might have noticed that there is no more erase code
in the game. The scrolling windows erase everything, so there’s no need to erase sprites.
Add a new file to your Tank War project named tank.c and type this code into the new file.

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling366

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Tank War Enhancement 5 - tank.c
///

#include “tankwar.h”

void drawtank(int num)
{

int dir = tanks[num]->dir;
int x = tanks[num]->x-15;
int y = tanks[num]->y-15;
draw_sprite(buffer, tank_bmp[num][dir], x, y);

//what about the enemy tank?
x = scrollx[!num] + SCROLLW/2;
y = scrolly[!num] + SCROLLH/2;
if (inside(x, y,

scrollx[num], scrolly[num],
scrollx[num] + SCROLLW, scrolly[num] + SCROLLH))

{
//draw enemy tank, adjust for scroll
draw_sprite(buffer, tank_bmp[!num][tanks[!num]->dir],

startx[num]+x-scrollx[num]-15, starty[num]+y-scrolly[num]-15);
}

}

void movetank(int num){
int dir = tanks[num]->dir;
int speed = tanks[num]->xspeed;

//update tank position
switch(dir)
{

case 0:
scrolly[num] -= speed;
break;

case 1:
scrolly[num] -= speed;
scrollx[num] += speed;
break;

case 2:
scrollx[num] += speed;
break;

Enhancing Tank War 367

case 3:
scrollx[num] += speed;
scrolly[num] += speed;
break;

case 4:
scrolly[num] += speed;
break;

case 5:
scrolly[num] += speed;
scrollx[num] -= speed;
break;

case 6:
scrollx[num] -= speed;
break;

case 7:
scrollx[num] -= speed;
scrolly[num] -= speed;
break;

}

//keep tank inside bounds
if (scrollx[num] < 0)

scrollx[num] = 0;
if (scrollx[num] > scroll->w - SCROLLW)

scrollx[num] = scroll->w - SCROLLW;
if (scrolly[num] < 0)

scrolly[num] = 0;
if (scrolly[num] > scroll->h - SCROLLH)

scrolly[num] = scroll->h - SCROLLH;
}

Keyboard Input Functions

The next listing encapsulates (I just love that word!) the keyboard input functionality of
the game in a single file named input.c. Herein you will find the forward, backward, turnleft,
turnright, and getinput functions. Add a new file to your Tank War project named input.c
and type the code into this new file.

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Tank War Enhancement 5 - input.c
///

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling368

#include “tankwar.h”

void forward(int num)
{

//use xspeed as a generic “speed” variable
tanks[num]->xspeed++;
if (tanks[num]->xspeed > MAXSPEED)

tanks[num]->xspeed = MAXSPEED;
}

void backward(int num)
{

tanks[num]->xspeed—;
if (tanks[num]->xspeed < -MAXSPEED)

tanks[num]->xspeed = -MAXSPEED;
}

void turnleft(int num)
{

tanks[num]->dir—;
if (tanks[num]->dir < 0)

tanks[num]->dir = 7;
}

void turnright(int num)
{

tanks[num]->dir++;
if (tanks[num]->dir > 7)

tanks[num]->dir = 0;
}

void getinput()
{

//hit ESC to quit
if (key[KEY_ESC]) gameover = 1;

//WASD - SPACE keys control tank 1
if (key[KEY_W]) forward(0);
if (key[KEY_D]) turnright(0);
if (key[KEY_A]) turnleft(0);
if (key[KEY_S]) backward(0);
if (key[KEY_SPACE]) fireweapon(0);

Enhancing Tank War 369

//arrow - ENTER keys control tank 2
if (key[KEY_UP]) forward(1);
if (key[KEY_RIGHT]) turnright(1);
if (key[KEY_DOWN]) backward(1);
if (key[KEY_LEFT]) turnleft(1);
if (key[KEY_ENTER]) fireweapon(1);

//short delay after keypress
rest(20);

}

Game Setup Functions

The game setup functions are easily the most complicated functions of the entire game,
so it is a good thing that they are run only once when the game starts. Here you will find
the setupscreen and setuptanks functions. Add a new file to your Tank War project named
setup.c and type the following code into this new file.

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Tank War Enhancement 5 - setup.c
///

#include “tankwar.h”

void setuptanks()
{

int n;

//configure player 1’s tank
tanks[0] = &mytanks[0];
tanks[0]->x = 30;
tanks[0]->y = 40;
tanks[0]->xspeed = 0;
scores[0] = 0;
tanks[0]->dir = 3;

//load first tank bitmap
tank_bmp[0][0] = load_bitmap(“tank1.bmp”, NULL);

//rotate image to generate all 8 directions
for (n=1; n<8; n++)

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling370

{
tank_bmp[0][n] = create_bitmap(32, 32);
clear_to_color(tank_bmp[0][n], makecol(255,0,255));
rotate_sprite(tank_bmp[0][n], tank_bmp[0][0],

0, 0, itofix(n*32));
}

//configure player 2’s tank
tanks[1] = &mytanks[1];
tanks[1]->x = SCREEN_W-30;
tanks[1]->y = SCREEN_H-30;
tanks[1]->xspeed = 0;
scores[1] = 0;
tanks[1]->dir = 7;

//load second tank bitmap
tank_bmp[1][0] = load_bitmap(“tank2.bmp”, NULL);

//rotate image to generate all 8 directions
for (n=1; n<8; n++)
{

tank_bmp[1][n] = create_bitmap(32, 32);
clear_to_color(tank_bmp[1][n], makecol(255,0,255));
rotate_sprite(tank_bmp[1][n], tank_bmp[1][0],

0, 0, itofix(n*32));
}

//load bullet image
if (bullet_bmp == NULL)

bullet_bmp = load_bitmap(“bullet.bmp”, NULL);

//initialize bullets
for (n=0; n<2; n++)
{

bullets[n] = &mybullets[n];
bullets[n]->x = 0;
bullets[n]->y = 0;
bullets[n]->width = bullet_bmp->w;
bullets[n]->height = bullet_bmp->h;

}

//center tanks inside scroll windows
tanks[0]->x = 5 + SCROLLW/2;

Enhancing Tank War 371

tanks[0]->y = 90 + SCROLLH/2;
tanks[1]->x = 325 + SCROLLW/2;
tanks[1]->y = 90 + SCROLLH/2;

}

void setupscreen()
{

int ret;

//set video mode
set_color_depth(16);
ret = set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

text_mode(-1);

//create the virtual background
scroll = create_bitmap(MAPW, MAPH);
if (scroll == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating virtual background”);
return;

}

//load the tile bitmap
tiles = load_bitmap(“tiles.bmp”, NULL);
if (tiles == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error loading tiles.bmp file”);
return;

}

//now draw tiles on virtual background
for (tiley=0; tiley < scroll->h; tiley+=TILEH)
{

for (tilex=0; tilex < scroll->w; tilex+=TILEW)
{

//use the result of grabframe directly in blitter

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling372

blit(grabframe(tiles, TILEW+1, TILEH+1, 0, 0, COLS,
map[n++]), scroll, 0, 0, tilex, tiley, TILEW, TILEH);

}
}

//done with tiles
destroy_bitmap(tiles);

//load screen background
back = load_bitmap(“background.bmp”, NULL);
if (back == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error loading background.bmp file”);
return;

}

//create the double buffer
buffer = create_bitmap(WIDTH, HEIGHT);
if (buffer == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating double buffer”);
return;

}

//position the radar
radarx = 270;
radary = 1;

//position each player
scrollx[0] = 100;
scrolly[0] = 100;
scrollx[1] = MAPW - 400;
scrolly[1] = MAPH - 500;

//position the scroll windows
startx[0] = 5;
starty[0] = 93;
startx[1] = 325;
starty[1] = 93;

}

Enhancing Tank War 373

Main Function

You have greatly simplified the main.c source code file for Tank War by moving so much
code into separate source files. Now in main.c, you have a declaration for the map array.
Why? Because it was not possible to include the declaration inside the tankwar.h header
file, only an extern reference to the array definition inside a source file. As with the previ-
ous code listings, this one is heavily commented so you can examine it line by line. Take
particular note of the map array definition. To simplify and beautify the listing, I have
defined B equal to 39; as you can see, this refers to the blank space tile around the edges of
the map.

The game also features a new background image to improve the appearance of the game.
Figure 10.16 shows the image, which acts as a template for displaying game graphics.

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Tank War Enhancement 5 - main.c
///

#include “tankwar.h”

#define B 39

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling374

Figure 10.16 The background image of the new Tank War

int map[MAPW*MAPH] = {
B,
B,
B,
B,
B,B,B,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,2,0,B,B,B,
B,B,B,0,B,B,B,
B,
B,
B,
B,B

};

//perform basic collision detection
int inside(int x,int y,int left,int top,int right,int bottom)
{

if (x > left && x < right && y > top && y < bottom)
return 1;

else
return 0;

Enhancing Tank War 375

}

//reuse our friendly tile grabber from chapter 9
BITMAP *grabframe(BITMAP *source,

int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

return temp;
}

//main function
void main(void)
{

//initialize the game
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));
setupscreen();
setuptanks();

//game loop
while(!gameover)
{

//move the tanks and bullets
for (n=0; n<2; n++)
{

movetank(n);
movebullet(n);

}

//draw background bitmap
blit(back, buffer, 0, 0, 0, 0, back->w, back->h);

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling376

//draw scrolling windows
for (n=0; n<2; n++)

blit(scroll, buffer, scrollx[n], scrolly[n],
startx[n], starty[n], SCROLLW, SCROLLH);

//update the radar
rectfill(buffer,radarx+1,radary+1,radarx+99,radary+88,BLACK);
rect(buffer,radarx,radary,radarx+100,radary+89,WHITE);

//draw mini tanks on radar
for (n=0; n<2; n++)

stretch_sprite(buffer, tank_bmp[n][tanks[n]->dir],
radarx + scrollx[n]/10 + (SCROLLW/10)/2-4,
radary + scrolly[n]/12 + (SCROLLH/12)/2-4,
8, 8);

//draw player viewport on radar
for (n=0; n<2; n++)

rect(buffer,radarx+scrollx[n]/10, radary+scrolly[n]/12,
radarx+scrollx[n]/10+SCROLLW/10,
radary+scrolly[n]/12+SCROLLH/12, GRAY);

//display score
for (n=0; n<2; n++)

textprintf(buffer, font, startx[n], HEIGHT-10,
BURST, “Score: %d”, scores[n]);

//draw the tanks and bullets
for (n=0; n<2; n++)
{

drawtank(n);
drawbullet(n);

}

//refresh the screen
acquire_screen();
blit(buffer, screen, 0, 0, 0, 0, WIDTH, HEIGHT);
release_screen();

//check for keypresses
if (keypressed())

getinput();

377Enhancing Tank War

//slow the game down
rest(20);

}

//destroy bitmaps
destroy_bitmap(explode_bmp);
destroy_bitmap(back);
destroy_bitmap(scroll);
destroy_bitmap(buffer);
for (n=0; n<8; n++)
{

destroy_bitmap(tank_bmp[0][n]);
destroy_bitmap(tank_bmp[1][n]);

}
return;

}
END_OF_MAIN();

Summary
This marks the end of yet another graphically intense chapter. In it, I talked about
scrolling backgrounds and spent most of the time discussing tile-based backgrounds—
how they are created and how to use them in a game. Working with tiles to create a
scrolling game world is by no means an easy subject! If you skimmed over any part of this
chapter, be sure to read through it again before you move on because the next three chapters
dig even deeper into scrolling. You also opened up the Tank War project and made some
huge changes to the game, not the least of which was creating dual scrolling windows—
one for each player! This is the last major change to the game. From this point forward,
you will make only minor additions (such as sound effects, music, and timing) in upcoming
chapters. So, be happy in the knowledge that you have completed the vast majority of the
work on Tank War.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. Does Allegro provide support for background scrolling?

A. Yes, but the functionality is obsolete.

B. Yes, and it works great!

C. Yes, but it needs some work.

D. Not even.

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling378

2. What does a scroll window show?

A. A small part of a larger game world.

B. A window filled with sprites.

C. A scroll that explains the rules of the game.

D. A portion of the double-buffer.

3. Which of the programs in this chapter demonstrated bitmap scrolling
for the first time?

A. Tank War

B. TileScroll

C. ScrollScreen

D. GameWorld

4. Why should a scrolling background be designed?

A. To sell it as a marketable game engine.

B. To devise a new programming technique.

C. To mesmerize the gaming public.

D. To achieve the goals of the game.

5. Which process uses an array of images to construct the background as
it is displayed?

A. Iterating

B. Blitting

C. Tiling

D. Constructing

6. What is the best way to create a tile map of the game world?

A. By using a map editor.

B. By randomly generating the map at run time.

C. By using an array.

D. By stealing maps off the Internet.

7. What type of object comprises a typical tile map?

A. Variables

B. Arrays

C. Numbers

D. Breakpoints

Chapter Quiz 379

8. What was the size of the virtual background in the GameWorld program?

A. 800×800

B. 16384×65536

C. 640×480

D. 1600×1200

9. How many virtual backgrounds are used in the new version of Tank War?

A. 0

B. 1

C. 2

D. 3

10. How many scrolling windows are used in the new Tank War?

A. 0

B. 1

C. 2

D. 3

Chapter 10 � Programming Tile-Based Backgrounds with Scrolling380

381

Timers, Interrupt
Handlers, and
Multi-Threading

chapter 11

T
his chapter covers the extremely critical subject of timing as it relates to game pro-
gramming. Until now, you have used the primitive rest function to slow down your
example programs in the past 10 chapters, and it has been hit or miss as far as how

well it worked. In this chapter, I’ll go over Allegro’s support for timers and interrupt
handlers to calculate the frame rate and slow down a program to a fixed rate. This chapter
also delves into the compelling subject of multi-threading with an explanation of how to
use threads to enhance a game. It also contains a demonstration program.

Here is a breakdown of the major topics in this chapter:

� Understanding timers

� Working with interrupt handlers

� Using timed game loops

� Understanding multi-threading

Timers
Timing is critical in a game. Without an accurate means to slow down a game to a fixed
rate, the game will be influenced by the speed of the computer running it, adversely affect-
ing gameplay. (This usually renders the game unplayable.) Allegro has support for timing
a game using rest, but a far more powerful feature is the interrupt handler, which you can
use to great effect.

Installing and Removing the Timer
You have already used Allegro’s timer functions without much explanation in prior chapters
because it’s almost impossible to write even a simple demonstration program without

some kind of timing involved. To install the primary timer in Allegro that makes it possible
to use the timer functions and interrupt handlers, you use the install_timer function.

int install_timer();

You must be sure to call install_timer before you create any timer routines and also before
you display a mouse pointer or play FLI animations or MIDI music because these features
all rely on the timer. So it’s up to you! This function returns zero on success, although it
is so unlikely to error out that I never check it.

Allegro will automatically remove the timer when the program ends (or when
allegro_exit is called), but you can call the remove_timer function if you want to remove the
timer before the program ends.

void remove_timer();

Slowing Down the Program
You have seen the rest function used frequently in the sample programs in prior chapters,
so it should be familiar to you. For reference, here is the declaration:

void rest(long time);

You can pass any number of milliseconds to rest and the program will pause for that
duration, after which control will pass to the next line in the program. This is very effective
for slowing down a game, of course, but it can also be used to pause for a short time when
you are waiting for threads to terminate (as you’ll learn about later in this chapter). Once
Allegro has taken over the timer, the standard delay function will no longer work,
although you haven’t been using delay so that should not come as a surprise.

One feature that I haven’t gone over yet is the rest_callback function. Have you noticed
that Allegro provides a callback for almost everything it does? This is a fine degree of con-
trol seldom found in game development libraries; obviously, Allegro was developed by
individuals with a great deal of experience, who had the foresight to include some very
useful callback functions. Here is the declaration:

void rest_callback(long time, void (*callback)())

This function works like rest, but instead of doing nothing, a callback function is called
during the delay period so your program can continue working even while timing is in
effect to slow the game down.

Here’s an example of how you would call the function:

//slow the game down
rest_callback(8, rest1);

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading382

Timers 383

The rest1 callback function is very simple; it contains no parameters.

void rest1(void)
{

//time to rest, or do some work?
}

This is a good time to update some values, such as the frame rate, but I would not rec-
ommend doing any time-intensive processing during the rest callback because it must
return quickly to avoid messing up the game’s timing. The TimedLoop program later in
this chapter will demonstrate how to use the rest_callback function.

The TimerTest Program
Because none of the sample programs in the book up to this point have used effective tim-
ing techniques, I’ve written a program to calculate the frame rate and display this value
along with a count of seconds passing. The TimerTest program will be used in the next two
segments of the chapter, so its listing is somewhat extensive at this point. However, the next
two segments will provide simple code changes to this program to save time and space.

Figure 11.1 shows the TimerTest program running. As you can see, it is very graphical,
with a background and many sprites moving across the screen. I owe a debt of thanks to
Ari Feldman (http://www.arifeldman.com) again for allowing me to use his excellent
SpriteLib to populate this chapter with such interesting, high-quality sprites.

Figure 11.1 The TimerTest program animates many sprites over a
background scene. Sprites courtesy of Ari Feldman.

The first section of code includes the defines, structs, and variables.

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include “allegro.h”

#define MODE GFX_AUTODETECT_FULLSCREEN
#define WIDTH 640
#define HEIGHT 480
#define MAX 6
#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)

//define the sprite structure
typedef struct SPRITE
{

int dir, alive;
int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

//variables
BITMAP *back;
BITMAP *temp;
BITMAP *sprite_images[10][10];
SPRITE *sprites[10];
BITMAP *buffer;
int n, f;

//timer variables
int start;
int counter;
int ticks;
int framerate;

The next section of code for the TimerTest program includes the sprite-handling functions
updatesprite, warpsprite, grabframe, and loadsprites. These functions should be familiar
from previous chapters.

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading384

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

spr->framecount = 0;
if (spr->animdir == -1)
{

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

void warpsprite(SPRITE *spr)
{

//simple screen warping behavior
//Allegro takes care of clipping
if (spr->x < 0 - spr->width)
{

spr->x = SCREEN_W;
}

Timers 385

else if (spr->x > SCREEN_W)
{

spr->x = 0 - spr->width;
}

if (spr->y < 0)
{

spr->y = SCREEN_H - spr->height-1;
}

else if (spr->y > SCREEN_H - spr->height)
{

spr->y = 0;
}

}

//reuse our friendly tile grabber from chapter 9
BITMAP *grabframe(BITMAP *source,

int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

return temp;
}

void loadsprites(void)
{

//load dragon sprite
temp = load_bitmap(“dragon.bmp”, NULL);
for (n=0; n<6; n++)

sprite_images[0][n] = grabframe(temp,128,64,0,0,3,n);
destroy_bitmap(temp);

//initialize the dragon (sprite 0)
sprites[0] = malloc(sizeof(SPRITE));

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading386

sprites[0]->x = 500;
sprites[0]->y = 0;
sprites[0]->width = sprite_images[0][0]->w;
sprites[0]->height = sprite_images[0][0]->h;
sprites[0]->xdelay = 1;
sprites[0]->ydelay = 0;
sprites[0]->xcount = 0;
sprites[0]->ycount = 0;
sprites[0]->xspeed = -5;
sprites[0]->yspeed = 0;
sprites[0]->curframe = 0;
sprites[0]->maxframe = 5;
sprites[0]->framecount = 0;
sprites[0]->framedelay = 5;
sprites[0]->animdir = 1;

//load fish sprite
temp = load_bitmap(“fish.bmp”, NULL);
for (n=0; n<3; n++)

sprite_images[1][n] = grabframe(temp,64,32,0,0,3,n);
destroy_bitmap(temp);

//initialize the fish (sprite 1)
sprites[1] = malloc(sizeof(SPRITE));
sprites[1]->x = 300;
sprites[1]->y = 400;
sprites[1]->width = sprite_images[1][0]->w;
sprites[1]->height = sprite_images[1][0]->h;
sprites[1]->xdelay = 1;
sprites[1]->ydelay = 0;
sprites[1]->xcount = 0;
sprites[1]->ycount = 0;
sprites[1]->xspeed = 3;
sprites[1]->yspeed = 0;
sprites[1]->curframe = 0;
sprites[1]->maxframe = 2;
sprites[1]->framecount = 0;
sprites[1]->framedelay = 8;
sprites[1]->animdir = 1;

//load crab sprite
temp = load_bitmap(“crab.bmp”, NULL);
for (n=0; n<4; n++)

Timers 387

sprite_images[2][n] = grabframe(temp,64,32,0,0,4,n);
destroy_bitmap(temp);

//initialize the crab (sprite 2)
sprites[2] = malloc(sizeof(SPRITE));
sprites[2]->x = 300;
sprites[2]->y = 212;
sprites[2]->width = sprite_images[2][0]->w;
sprites[2]->height = sprite_images[2][0]->h;
sprites[2]->xdelay = 6;
sprites[2]->ydelay = 0;
sprites[2]->xcount = 0;
sprites[2]->ycount = 0;
sprites[2]->xspeed = 2;
sprites[2]->yspeed = 0;
sprites[2]->curframe = 0;
sprites[2]->maxframe = 3;
sprites[2]->framecount = 0;
sprites[2]->framedelay = 20;
sprites[2]->animdir = 1;

//load bee sprite
temp = load_bitmap(“bee.bmp”, NULL);
for (n=0; n<6; n++)

sprite_images[3][n] = grabframe(temp,50,40,0,0,6,n);
destroy_bitmap(temp);

//initialize the bee (sprite 3)
sprites[3] = malloc(sizeof(SPRITE));
sprites[3]->x = 100;
sprites[3]->y = 120;
sprites[3]->width = sprite_images[3][0]->w;
sprites[3]->height = sprite_images[3][0]->h;
sprites[3]->xdelay = 1;
sprites[3]->ydelay = 0;
sprites[3]->xcount = 0;
sprites[3]->ycount = 0;
sprites[3]->xspeed = -3;
sprites[3]->yspeed = 0;
sprites[3]->curframe = 0;
sprites[3]->maxframe = 5;
sprites[3]->framecount = 0;
sprites[3]->framedelay = 8;

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading388

sprites[3]->animdir = 1;

//load skeeter sprite
temp = load_bitmap(“skeeter.bmp”, NULL);
for (n=0; n<6; n++)

sprite_images[4][n] = grabframe(temp,50,40,0,0,6,n);
destroy_bitmap(temp);

//initialize the skeeter (sprite 4)
sprites[4] = malloc(sizeof(SPRITE));
sprites[4]->x = 500;
sprites[4]->y = 70;
sprites[4]->width = sprite_images[4][0]->w;
sprites[4]->height = sprite_images[4][0]->h;
sprites[4]->xdelay = 1;
sprites[4]->ydelay = 0;
sprites[4]->xcount = 0;
sprites[4]->ycount = 0;
sprites[4]->xspeed = 4;
sprites[4]->yspeed = 0;
sprites[4]->curframe = 0;
sprites[4]->maxframe = 4;
sprites[4]->framecount = 0;
sprites[4]->framedelay = 2;
sprites[4]->animdir = 1;

//load snake sprite
temp = load_bitmap(“snake.bmp”, NULL);
for (n=0; n<8; n++)

sprite_images[5][n] = grabframe(temp,100,50,0,0,4,n);
destroy_bitmap(temp);

//initialize the snake (sprite 5)
sprites[5] = malloc(sizeof(SPRITE));
sprites[5]->x = 350;
sprites[5]->y = 200;
sprites[5]->width = sprite_images[5][0]->w;
sprites[5]->height = sprite_images[5][0]->h;
sprites[5]->xdelay = 1;
sprites[5]->ydelay = 0;
sprites[5]->xcount = 0;
sprites[5]->ycount = 0;
sprites[5]->xspeed = -2;

Timers 389

sprites[5]->yspeed = 0;
sprites[5]->curframe = 0;
sprites[5]->maxframe = 4;
sprites[5]->framecount = 0;
sprites[5]->framedelay = 6;
sprites[5]->animdir = 1;

}

The last section of code for the TimerTest program includes the main function, which initial-
izes the program and includes the main loop. This program is lengthy in setup but efficient
in operation because all the sprites are contained within arrays that can be updated as a
group within a for loop. I have highlighted timer-related code in bold.

void main(void)
{

//initialize
allegro_init();
set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
srand(time(NULL));
text_mode(-1);
install_keyboard();
install_timer();

//create double buffer
buffer = create_bitmap(SCREEN_W,SCREEN_H);

//load and draw the blocks
back = load_bitmap(“background.bmp”, NULL);
blit(back,buffer,0,0,0,0,back->w,back->h);

//load and set up sprites
loadsprites();

//game loop
while (!key[KEY_ESC])
{

//restore the background
for (n=0; n<MAX; n++)

blit(back, buffer, sprites[n]->x, sprites[n]->y,
sprites[n]->x, sprites[n]->y,
sprites[n]->width, sprites[n]->height);

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading390

//update the sprites
for (n=0; n<MAX; n++)
{

updatesprite(sprites[n]);
warpsprite(sprites[n]);
draw_sprite(buffer, sprite_images[n][sprites[n]->curframe],

sprites[n]->x, sprites[n]->y);
}

//update ticks
ticks++;

//calculate framerate once per second
if (clock() > start + 1000)
{

counter++;
start = clock();
framerate = ticks;
ticks = 0;

}

//display framerate
blit(back, buffer, 320-70, 330, 320-70, 330, 140, 20);
textprintf_centre(buffer,font,320,330,WHITE,”COUNTER %d”,

counter);
textprintf_centre(buffer,font,320,340,WHITE,”FRAMERATE %d”,

framerate);

//update the screen
acquire_screen();
blit(buffer,screen,0,0,0,0,SCREEN_W-1,SCREEN_H-1);
release_screen();

}

//remove objects from memory
destroy_bitmap(back);
destroy_bitmap(buffer);

for (n=0; n<MAX; n++)
{

for (f=0; f<sprites[n]->maxframe+1; f++)
destroy_bitmap(sprite_images[n][f]);

Timers 391

free(sprites[n]);
}

return;
}

END_OF_MAIN();

Interrupt Handlers
The rest and rest_callback functions are useful for slowing down a game, but Allegro’s
support for interrupt handlers is the real power of the timer functionality. Allegro allows
you to easily create an interrupt handler routine that will execute at a specified interval.
This is a limited form of multi-threading in concept, although interrupt handlers do not
run in parallel, but sequentially and based on the interval. Because no two interrupt han-
dlers will ever be running at the same time, you don’t need to worry about corrupted data
as you do with threading.

Creating an Interrupt Handler
After you have installed the timer using install_timer, you can create one or more inter-
rupt handlers using the install_int function.

int install_int(void (*proc)(), int speed);

This function accepts the name of an interrupt handler callback function and the dura-
tion by which that function should be called. After you install the interrupt handler, you
don’t need to call it because the handler function is called automatically at the interval
specified (in milliseconds).

t i p

If you forget to call install_timer before you create an interrupt handler, don’t worry; Allegro is
smart enough to call install_timer automatically if it is not already running.

There are a limited number of interrupt handlers available for your program’s use, so if the
function fails to create a new handler it will return a non-zero, with a zero on success.
The interrupt callback function is called by Allegro, not the operating system, so it doesn’t
need any special wrapper code (as with traditional interrupt handlers); it can be a regular
C function. Because timing is crucial, I recommend that you don’t use an interrupt call-
back function for any real processing; use it to set flags, increment a frame rate counter,
and that sort of thing, and then do any real work in the main function using these flags or
counters. Try not to take too much time in an interrupt callback, in other words.

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading392

Not all operating systems require it, but Allegro provides a means to secure variables and
functions that are used by an interrupt. You can use LOCK_VARIABLE and LOCK_FUNCTION to
identify them to Allegro. You will also want to declare any global variables used by the
interrupt as volatile.

Removing an Interrupt Handler
It is not absolutely necessary to remove an interrupt handler from your program because
allegro_exit will remove the handler for you, but it is nevertheless a good idea to have
your programs clean up after themselves to eliminate even the possibility of a difficult-to-
find bug. You can use the remove_int function to remove an interrupt handler.

void remove_int(void (*proc)());

Simply pass the name of the interrupt callback function to remove_int and that will stop
the interrupt from calling the function.

The InterruptTest Program
The real power of an interrupt handler is obvious in practice, when you do something
essential (such as calculate the frame rate) inside the interrupt callback function. I have
made some changes to the TimerTest program you saw in the last section. Instead of using
a ticks variable and the clock function to determine when to mark each second, this new
program uses an interrupt handler that is set to 1,000 milliseconds to automatically tick
off a second. To make things easier, I have modified the TimerTest program (which was
quite lengthy) to use an interrupt instead of a simple timer; only a few lines of code need
to be changed. Figure 11.2
shows the output of the new
version of the program, which
is now called InterruptTest.

Interrupt Handlers 393

Figure 11.2 The InterruptTest program demonstrates how you
can use an interrupt callback function to calculate the frame rate.

If you look back a few pages to Figure 11.1, you might notice that it had a slightly higher
frame rate than this new InterruptTest program (from 351 fps to 346 fps). The difference
is negligible and would not be noticed in a timed game loop in which the frame rate is
fixed. However, this does demonstrate that the interrupt handler adds some overhead to
the program; it is further proof that the callback function should run as quickly as possi-
ble to avoid adding to that overhead.

Let’s get started on the changes, few that they are. The first change is up near the top of
the program, where the counter, ticks, and framerate variables are declared. Add volatile
to their definitions.

//timer variables
volatile int counter;
volatile int ticks;
volatile int framerate;

Next, you need to add the interrupt handler callback function, timer1, to the program. You
can add this function right above main or up at the top of the program, as long as it’s vis-
ible to main. Note how simple this function is; it increments counter (for seconds), sets the
framerate variable, and resets the ticks variable.

//calculate framerate once per second
void timer1(void)
{

counter++;
framerate = ticks;
ticks=0;

}
END_OF_FUNCTION(timer1)

The next change takes place in main, where the variables and callback function are identi-
fied to Allegro as interrupt-aware and the interrupt handler is created. You can add this
code right above the while loop inside main.

//lock interrupt variables
LOCK_VARIABLE(counter);
LOCK_VARIABLE(framerate);
LOCK_VARIABLE(ticks);
LOCK_FUNCTION(timer1);
//create the interrupt handler
install_int(timer1, 1000);

Okay, now for the last change, which is really only a deletion. Because the timer code was
moved into the interrupt callback function, you need to delete it from main. Look for the
code highlighted in bold in the following listing (and commented out), and remove those
lines from the program.

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading394

//update ticks
ticks++;

//calculate framerate once per second
//if (clock() > start + 1000)
//{
// counter++;
// start = clock();
// framerate = ticks;
// ticks = 0;
//}

//display framerate
blit(back, buffer, 320-70, 330, 320-70, 330, 140, 20);
textprintf_centre(buffer,font,320,330,WHITE,”COUNTER %d”, counter);
textprintf_centre(buffer,font,320,340,WHITE,”FRAMERATE %d”, framerate);

Using Timed Game Loops
You have now learned how to use a timer to calculate the frame rate of the program with
a simple timer and also an interrupt handler. But so what if you know the frame rate; how
does that keep the game running at a stable rate regardless of the computer hardware run-
ning it? You need to use this new functionality to actually limit the speed of the game so
it will look the same on any computer.

Slowing Down the Gameplay…Not the Game
The key point here is not to slow down the gameplay, but the graphics rendering on the
screen. Any blitting going on will (and should) be as fast as possible, but the pace of the
game must be maintained or it will be unplayable. You have already seen what a high-
speed game loop looks like by running the TimerTest and InterruptTest programs. What
you need now is a way to slow down the program to a predictable rate.

Now you return to the rest_callback function introduced at the start of this chapter to
help create a timed game loop. There is no new functionality in this section, just an exam-
ple of how to use what you’ve learned so far to improve gameplay. You are free to use any
target frame rate you want for your game, but as a general rule a value between 30 and 60
fps is a good target to shoot for. Why? Any slower than 30 fps and the game will seem slug-
gish; any faster than 60 and the game will feel too frenetic. You do want to blit all the
graphics as quickly as possible, and then if there are cycles left over after that is done, you
need to slow down the game so one frame of the game is displayed at a fixed interval.

Using Timed Game Loops 395

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading396

The TimedLoop Program
Now you can modify the program again to give it a timed loop that will keep the program
running fluidly and predictably whether it’s running on a Pentium II 450 or an Athlon XP
3700+ CPU. First, open up the InterruptTest program as a basis, so the program will still
include the interrupt handler to calculate the frame rate. The new program, which will be
called TimedLoop, is simply a modification of that previous program, so only a few line
changes are needed. Figure 11.3 shows the program running. Take note of the new status
message that displays the resting value.

First, up near the top of the program, add another volatile variable.

//timer variables
volatile int counter;
volatile int ticks;
volatile int framerate;
volatile int resting, rested;

Scroll down to the timer1 interrupt callback function and add a line to it.

//calculate framerate every second
void timer1(void)
{

counter++;

Figure 11.3 The TimedLoop program demonstrates how to slow a
program down to a consistent frame rate.

framerate = ticks;
ticks=0;
rested=resting;

}
END_OF_FUNCTION(timer1)

Now you create the function that is called by rest_callback. You can add this function
below timer1.

//do something while resting (?)
void rest1(void)
{

resting++;
}

The next change takes place in main, adding the code to call the rest_callback function,
which is a call to rest1, just added. Note also the changes to the section of code that dis-
plays the counter and frame rate. I have changed the last parameter of blit from 20 to 30
to erase the new line, which is also listed below, highlighted in bold. This displays the
number of ticks that transpired while the program was waiting inside the rest1 callback
function.

//update ticks
ticks++;

//slow the game down
resting=0;
rest_callback(8, rest1);

//display framerate
blit(back, buffer, 320-70, 330, 320-70, 330, 140, 30);
textprintf_centre(buffer,font,320,330,WHITE,”COUNTER %d”, counter);
textprintf_centre(buffer,font,320,340,WHITE,”FRAMERATE %d”, framerate);
textprintf_centre(buffer,font,320,350,WHITE,”RESTING %d”, rested);

Multi-Threading
Every modern operating system uses threads for essential and basic operation and would
not be nearly as versatile without threads. A thread is a process that runs within the mem-
ory space of a single program but is executed separately from that program. This section
will provide a short overview of multi-threading and how it can be used (fairly easily) to
enhance a game. I will not go into the vast details of threaded programming because the
topic is too huge and unwieldy to fully explain in only a few pages. Instead, I will provide
you with enough information and example code that you will be able to start using threads.

Multi-Threading 397

To be multi-threaded, a program will create at least one thread that will run in addition
to that program’s main loop. Any time a program uses more than one thread, you must
take extreme caution when working with data that is potentially shared between threads.
It is generally safe for a program to share data with a single thread (although it is not rec-
ommended), but when more than one thread is in use, you must use a protection scheme
to protect the data from being manipulated by two threads at the same time.

To protect data, you can make use of mutexes that will lock data inside a single thread
until it is safe to unlock the data for use in the main program or in another thread. The
locking and unlocking must be done inside a loop that runs continuously inside the thread
callback function. Note that if you do not have a loop inside your thread function, it will
run once and terminate. The idea is to keep the thread running—doing something—
while the main program is doing the delegating work. You should think of a thread as a
new employee who has been hired to alleviate the amount of work done by the program
(or rather, by the main thread). To demonstrate, at the end of this section I’ll walk you
through a multi-threaded example in which two distinct threads control two identical
sprites on the screen, with one thread running faster than the other, while the program’s
main loop does nothing more than blit the double-buffer to the screen.

Abstracting the Parallel Processing Problem
We disseminate the subject as if it’s just another C function, but threads were at one time
an extraordinary achievement that was every bit as exciting as the first connection of
ARPAnet in 1969 or the first working version of UNIX. In the 1980s, parallel program-
ming was as hip as virtual reality, but like the latter term, it was not to be a true reality
until the early 1990s. Multi-threaded programming is the engineer’s term for parallel pro-
cessing and is a solution that has been proven to work. The key to parallel processing came
when software engineers realized that the processor is not the focus; rather, software
design is. In the words of Agent Smith from The Matrix, “We lacked a programming lan-
guage with which to construct your world.”

A single-processor system should be able to run multiple threads. Once that goal was real-
ized, adding two or more processors to a system provided the ability to delegate those
threads, and this was a job for the operating system. No longer tasked with designing a
parallel-processing architecture, engineers in both the electronics and software fields
abstracted the problem so the two were not reliant upon each other. A single program can
run on a motherboard with four CPUs and push all of those processors to the limit, if that
single program invokes multiple threads. As such, the programs themselves were treated
as single threads. And yet, there can be many non-threaded programs running on our fic-
tional quad-processor system, and it might not be taxed at all. It depends on what each
program is doing.

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading398

Math-intensive processes, such as 3D rendering, can eat a CPU for breakfast. But with the
advent of threading in modern operating systems, programs such as 3D Studio Max,
Maya, Lightwave, and Photoshop can invoke threads to handle intense processes, such as
scene rendering and image manipulation. Suddenly, that dual-G5 Mac is able to process a
Photoshop image in four seconds, whereas it took 45 seconds on your G3 Mac! Why?
Threads.

However, just because a single program is able to share four CPUs, that doesn’t mean each
thread is an independent entity. Any global variables in the program (main thread) can be
used by the invoked threads as long as care is taken that data is not damaged. Imagine 10
children grasping for an ice cream cone at the same time and you get the picture. What
your threaded program must do is isolate the ice cream cone for each child, and only make
the ice cream cone available to the others after that child has released it. Get the picture?

How does this concept of threading relate to processes? As you know, modern operating sys-
tems treat each program as a separate process, allocating a certain number of milliseconds
to each process. This is where you get the term multi-tasking; many processes can be run at
the same time using a time-slicing mechanism. A process has its own separate heap and
stack and can contain many threads. A thread, on the other hand, has its own stack but
shares the heap with other threads within the process. This is called a thread group.

The Pthreads-Win32 Library
The vast majority of Linux and UNIX operating system flavors will already have the
pthread library installed because it is a core feature of the kernel. Other systems might not
be so lucky. Windows uses its own multi-threading library. Of course, a primary goal of
this book is to keep this code 100-percent portable. So what you need is a pthread library
that is compatible with the POSIX systems. After all, that is what the “p” in pthreads stands
for—POSIX threads.

An important thing you should know about the Windows implementation of pthread is
that it abstracts the Windows threading functionality, molding it to conform to pthread
standards.

There is one excellent open-source pthreads library for Windows systems, distributed by
Red Hat, that I have chosen for this chapter because it includes makefiles for Visual C++
and Dev-C++. I have included the compiled version of pthread for Visual C++ and Dev-
C++ on the CD-ROM in the \pthread folder, as Table 11.1 shows. These files are also pro-
vided in the MultiThread project folder on the CD-ROM. I recommend copying the lib
file to your compiler’s lib folder (for Visual C++ 6, this will usually be C:\Program
Files\Microsoft Visual Studio\VC98\Lib) and the header files (pthread.h and sched.h) to
your compiler’s include folder (for Visual C++ 6, this will usually be C:\Program
Files\Microsoft Visual Studio\VC98\Include). The dll can reside with the executable.

Multi-Threading 399

Although Red Hat’s pthread library is open source, I have chosen not to distribute it with the
book and have only included the libs, dlls, and key headers. You can download the pthread
library and find extensive documentation at http://sources.redhat.com/pthreads-win32.
I encourage you to browse the site and get the latest version of Pthreads-Win32 from Red
Hat. Makefiles are provided so it is easy to make the pthread library using whatever recent
version of the sources you have downloaded. If you are intimidated by the prospect of
having to compile sources, I encourage you to try. I, too, was once intimidated by down-
loading open source projects; I wasn’t sure what to do with all the files. These packages
were designed to be easy to make using GCC or Visual C++. All you really need to do is
open a command prompt, change to the folder where the source code files are located, and
set the path to your compiler. If you are using Dev-C++, for instance, you can type the
following command to bring the GCC compiler online.

path=C:\Dev-Cpp\bin;%path%

What next? Simply type make GC and presto, the sources will be compiled. You’ll have the
libpthreadGC.a and pthreadGC.dll files after it’s finished. The GC option is a parameter
used by the makefile. If you want to see the available options, simply type make and the
options will be displayed.

If you are really interested in this subject and you want more in-depth information, look
for Butenhof ’s Programming with POSIX Threads (Addison-Wesley, 1997). Because the
Pthreads-Win32 library is functionally compatible with Posix threads, the information in
this book can be applied to pthread programming under Windows.

Programming with Posix Threads
I am going to cover the key functions in this section and let you pursue the full extent of
multi-threaded programming on your own using the references I have suggested. For the
purposes of this chapter, I want you to be able to control sprites using threads outside the
main loop. Incidentally, the main function in any Allegro program is a thread too, although
it is only a single thread. If you create an additional thread, then your program will be
using two threads.

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading400

Table 11.1 pthread Library Files

Compiler Lib DLL

Visual C++ pthreadVC.lib pthreadVC.dll
Dev-C++ libpthreadGC.a pthreadGC.dll

Creating a New Thread

First of all, how do you create a new thread? New threads are created with the pthread_create
function.

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*start) (void *),
void *arg);

Yeah! That’s what I thought at first, but it’s not a problem. Here, let me explain. The first
parameter is a pthread_t struct variable. This struct is large and complex, and you really
don’t need to know about the internals to use it. If you want more details, I encourage you
to pick up Butenhof ’s book as a reference.

The second parameter is a pthread_attr_t struct variable that usually contains attributes
for the new thread. This is usually not used, so you can pass NULL to it.

The third parameter is a pointer to the thread function used by this thread for processing.
This function should contain its own loop, but should have exit logic for the loop when
it’s time to kill the thread. (I used a done variable.)

The fourth parameter is a pointer to a numeric value for this thread to uniquely identify it.
You can just create an int variable and set it to a value before passing it to pthread_create.

Here’s an example of how to create a new thread:

int id;
pthread_t pthread0;
int threadid0 = 0;
id = pthread_create(&pthread0, NULL, thread0, (void*)&threadid0);

So you’ve created this thread, but what about the callback function? Oh, right. Here’s a
minimal example:

void* thread0(void* data)
{

int my_thread_id = *((int*)data);
while(!done)
{

//do something!
}
pthread_exit(NULL);
return NULL;

}

Multi-Threading 401

Killing a Thread

This brings us to the pthread_exit function, which terminates the thread. Normally you’ll
want to call this function at the end of the function after the loop has exited. Here’s the
definition for the function:

void pthread_exit (void *value_ptr);

You can get away with just passing NULL to this function because value_ptr is an advanced
topic for gaining more control over the thread.

Mutexes: Protecting Data from Threads

At this point you can write a multi-threaded program with only the pthread_create and
pthread_exit functions, knowing how to create the callback function and use it. That is
enough if you only want to create a single thread to run inside the process with your pro-
gram’s main thread. But more often than not, you will want to use two or more threads in
a game to delegate some of the workload. Therefore, it’s a good idea to use a mutex for all
your threads. Recall the ice cream cone analogy. Are you sure that new thread won’t inter-
fere with any globals? Have you considered timing? When you call rest to slow down the
main loop, it has absolutely no effect on other threads. Each thread can call rest for tim-
ing independently of the others. What if you are using a thread to blit the double-buffer
to the screen while another thread is writing to the buffer? Most memory chips cannot
read and write data at the same time. It is very likely is that you’ll update a small portion
of the buffer (by drawing a sprite, for instance) while the buffer is being blitted to the
screen. The result is some unwanted flicker—yes, even when using a double-buffer. What
you have here is a situation that is similar to a vertical refresh conflict, only it is occurring
in memory rather than directly on the screen. Do you need a dbsync type of function that
is similar to vsync? I wouldn’t go that far. What I am trying to point out is that threads can
step on each other’s toes, so to speak, if you aren’t careful to use a mutex.

A mutex is a block used in a thread function to prevent other threads from running until
that block is released. Assuming, of course, that all threads use the same mutex, it is pos-
sible to use more than one mutex in your program. The easiest way is to create a single
mutex, and then block the mutex at the start of each thread’s loop, unblocking at the end
of the loop.

Creating a mutex doesn’t require a function; rather, it requires a struct variable.

//create a new thread mutex to protect variables
pthread_mutex_t threadsafe = PTHREAD_MUTEX_INITIALIZER;

This line of code will create a new mutex called threadsafe that, when used by all the
thread functions, will prevent data read/write conflicts.

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading402

You must destroy the mutex before your program ends; you can do so using the
pthread_ mutex_destroy function.

int pthread_mutex_destroy (pthread_mutex_t *mutex);

Here is an example of how it would be used:

pthread_mutex_destroy(&threadsafe);

Next, you need to know how to lock and unlock a mutex inside a thread function. The
pthread_mutex_lock function is used to lock a mutex.

int pthread_mutex_lock (pthread_mutex_t * mutex);

This has the effect of preventing any other threads from locking the same mutex, so any
variables or functions you use or call (respectively) while the mutex is locked will be safe
from manipulation by any other threads. Basically, when a thread encounters a locked
mutex, it waits until the mutex is available before proceeding. (It uses no processor time;
it simply waits.)

Here is the unlock function:

int pthread_mutex_unlock (pthread_mutex_t * mutex);

The two functions just shown will normally return zero if the lock or unlock succeeded
immediately; otherwise, a non-zero value will be returned to indicate that the thread is
waiting for the mutex. This should not happen for unlocking, only for locking. If you have
a problem with pthread_mutex_unlock returning non-zero, it means the mutex was locked
while that thread was supposedly in control over the mutex—a bad situation that should
never happen. But when it comes to game programming, bad things do often happen
while you are developing a new game, so it’s helpful to print an error message for any non-
zero return.

The MultiThread Program
At this point, you have all the information you need to use multi-threading in your own
games and other programs. To test this program in a true parallel environment, I used my
dual Athlon MP 1.2-GHz system under Windows 2000 and also under Windows XP. I like
how XP is more thread-friendly (the Task Manager shows the number of threads used by
each program), but any single-processor system will run this program just fine. Most dual
systems should blow away even high-end single systems with this simple sprite demo
because each sprite has its own thread. I have seen rates on my dual Athlon MP system
that far exceed a much faster Pentium 4 system, but all that has changed with Intel’s
Hyper-Threading technology built into their high-end CPUs. This essentially means that
Intel CPUs are thread-friendly and able to handle multiple threads in a single CPU.

Multi-Threading 403

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading404

Processors have boasted multiple pipelines for a decade, but now those pipelines are opti-
mized to handle multiple threads.

The MultiThread program (shown in Figure 11.4) creates two threads (thread0 and
thread1) with similar functionality. Each thread moves a sprite on the screen with a bounce
behavior, with full control over erasing, moving, and drawing the sprite on the double-
buffer. This leaves the program’s main loop with just a single task of blitting the buffer to
the screen.

If you are using Visual C++, you’ll want to create a new Win32 Application project, add a
new source code file called main.c to the project, and then open the Project Settings dialog
box, as shown in Figure 11.5.

On the Link tab, you’ll want to type in alleg.lib and pthreadVC.lib separated by a space
in the Object/Library Modules field, like this:

alleg.lib pthreadVC.lib

If you are using Dev-C++, you’ll want to create a new Windows Application C-language
project. Open the Project Options dialog box, go to the Parameters tab, and add the fol-
lowing two options:

-lalleg -lpthreadGC

Figure 11.4 The MultiThread program uses threads to control sprite
animation on the screen.

Now you are ready to type in the source code for the MultiThread program. This project
uses the sphere.bmp image containing the 32-frame animated ball from the CollisionTest
project in Chapter 9. The project is located in completed form in the \chapter11\multi-
thread directory on the CD-ROM. Here is the first section of code for the program:

#include <pthread.h>
#include “allegro.h”

#define MODE GFX_AUTODETECT_FULLSCREEN
#define WIDTH 640
#define HEIGHT 480
#define BLACK makecol(0,0,0)
#define WHITE makecol(255,255,255)

//define the sprite structure
typedef struct SPRITE
{

int dir, alive;
int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

Multi-Threading 405

Figure 11.5 Adding pthreadVC.lib as a library file required by
MultiThread program

//variables
BITMAP *buffer;
BITMAP *ballimg[32];
SPRITE theballs[2];
SPRITE *balls[2];
int done;
int n;

//create a new thread mutex to protect variables
pthread_mutex_t threadsafe = PTHREAD_MUTEX_INITIALIZER;

As you can see, you just created the new mutex as a struct variable. Really, there is no pro-
cessing done on a mutex at the time of creation; it is just a value that threads recognize
when you pass &threadsafe to the pthread_mutex_lock and pthread_mutex_unlock functions.

The next section of code in the MultiThread program includes the usual sprite-handling
functions that you should recognize.

void erasesprite(BITMAP *dest, SPRITE *spr)
{

//erase the sprite
rectfill(dest, spr->x, spr->y, spr->x + spr->width,

spr->y + spr->height, BLACK);
}

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading406

spr->framecount = 0;
if (spr->animdir == -1)
{

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

//this version doesn’t change speed, just direction
void bouncesprite(SPRITE *spr)
{

//simple screen bouncing behavior
if (spr->x < 0)
{

spr->x = 0;
spr->xspeed = -spr->xspeed;
spr->animdir *= -1;

}

else if (spr->x > SCREEN_W - spr->width)
{

spr->x = SCREEN_W - spr->width;
spr->xspeed = -spr->xspeed;
spr->animdir *= -1;

}

if (spr->y < 0)
{

spr->y = 0;
spr->yspeed = -spr->yspeed;
spr->animdir *= -1;

}

else if (spr->y > SCREEN_H - spr->height)
{

spr->y = SCREEN_H - spr->height;
spr->yspeed = -spr->yspeed;

Multi-Threading 407

spr->animdir *= -1;
}

}

BITMAP *grabframe(BITMAP *source,
int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);
int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;
blit(source,temp,x,y,0,0,width,height);
return temp;

}

void loadsprites()
{

BITMAP *temp;

//load sprite images
temp = load_bitmap(“sphere.bmp”, NULL);
for (n=0; n<32; n++)

ballimg[n] = grabframe(temp,64,64,0,0,8,n);
destroy_bitmap(temp);

//initialize the sprite
for (n=0; n<2; n++)
{

balls[n] = &theballs[n];
balls[n]->x = rand() % (SCREEN_W - ballimg[0]->w);
balls[n]->y = rand() % (SCREEN_H - ballimg[0]->h);
balls[n]->width = ballimg[0]->w;
balls[n]->height = ballimg[0]->h;
balls[n]->xdelay = 0;
balls[n]->ydelay = 0;
balls[n]->xcount = 0;
balls[n]->ycount = 0;
balls[n]->xspeed = 5;
balls[n]->yspeed = 5;
balls[n]->curframe = rand() % 32;
balls[n]->maxframe = 31;

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading408

balls[n]->framecount = 0;
balls[n]->framedelay = 0;
balls[n]->animdir = 1;

}
}

Now you come to the first thread callback function, thread0. I should point out that you
can use a single callback function for all of your threads if you want. You can identify the
thread by the parameter passed to it, which is retrieved into my_thread_id in the function
listing that follows. You will want to pay particular attention to the calls to
pthread_mutex_lock and pthread_mutex_unlock to see how they work. Note that these func-
tions are called in pairs above and below the main piece of code inside the loop. Note also
that pthread_exit is called after the loop. You should always provide a way to exit the loop,
so this function can be called before the program ends. More than likely, all threads will
terminate with the main process, but it is good programming practice to free memory
before exiting.

//this thread updates sprite 0
void* thread0(void* data)
{

//get this thread id
int my_thread_id = *((int*)data);

//thread’s main loop
while(!done)
{

//lock the mutex to protect variables
if (pthread_mutex_lock(&threadsafe))

textout(buffer,font,”ERROR: thread mutex was locked”,
0,0,WHITE);

//erase sprite 0
erasesprite(buffer, balls[0]);

//update sprite 0
updatesprite(balls[0]);

//bounce sprite 0
bouncesprite(balls[0]);

//draw sprite 0
draw_sprite(buffer, ballimg[balls[0]->curframe],

balls[0]->x, balls[0]->y);

Multi-Threading 409

//print sprite number
textout(buffer, font, “0”, balls[0]->x, balls[0]->y,WHITE);

//display sprite position
textprintf(buffer,font,0,10,WHITE,

“THREAD ID %d, SPRITE (%3d,%3d)”,
my_thread_id, balls[0]->x, balls[0]->y);

//unlock the mutex
if (pthread_mutex_unlock(&threadsafe))

textout(buffer,font,”ERROR: thread mutex unlock error”,
0,0,WHITE);

//slow down (this thread only!)
rest(10);

}

// terminate the thread
pthread_exit(NULL);

return NULL;
}

The second thread callback function, thread1, is functionally equivalent to the previous
thread function. In fact, these two functions could have been combined and could have
used my_thread_id to determine which sprite to update. This is something you should keep
in mind if you want to add more sprites to the program to see what it can do. I separated
the functions in this way to better illustrate what is happening. Just remember that many
threads can share a single callback function, and that function is executed inside each
thread separately.

//this thread updates sprite 1
void* thread1(void* data)
{

//get this thread id
int my_thread_id = *((int*)data);

//thread’s main loop
while(!done)
{

//lock the mutex to protect variables
if (pthread_mutex_lock(&threadsafe))

textout(buffer,font,”ERROR: thread mutex was locked”,
0,0,WHITE);

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading410

//erase sprite 1
erasesprite(buffer, balls[1]);

//update sprite 1
updatesprite(balls[1]);

//bounce sprite 1
bouncesprite(balls[1]);

//draw sprite 1
draw_sprite(buffer, ballimg[balls[1]->curframe],

balls[1]->x, balls[1]->y);

//print sprite number
textout(buffer, font, “1”, balls[1]->x, balls[1]->y,WHITE);

//display sprite position
textprintf(buffer,font,0,20,WHITE,

“THREAD ID %d, SPRITE (%3d,%3d)”,
my_thread_id, balls[1]->x, balls[1]->y);

//unlock the mutex
if (pthread_mutex_unlock(&threadsafe))

textout(buffer,font,”ERROR: thread mutex unlock error”,
0,0,WHITE);

//slow down (this thread only!)
rest(20);

}

// terminate the thread
pthread_exit(NULL);

return NULL;
}

The final section of code for the MultiThread program contains the main function of the
program, which creates the threads and processes the main loop to update the screen.
Note that I have used the mutex in the main loop as well, just to be safe. You wouldn’t want
the double-buffer to get hit by multiple threads at the same time, which is what would
happen without the mutex being called. Of course, that doesn’t stop the main loop from
impacting the buffer while a thread is using it. That is a situation you would want to take
into account in a real game.

Multi-Threading 411

//program’s primary thread
void main(void)
{

int id;
pthread_t pthread0;
pthread_t pthread1;
int threadid0 = 0;
int threadid1 = 1;

//initialize
allegro_init();
set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
srand(time(NULL));
install_keyboard();
install_timer();

//create double buffer
buffer = create_bitmap(SCREEN_W,SCREEN_H);

//load ball sprite
loadsprites();

//create the thread for sprite 0
id = pthread_create(&pthread0, NULL, thread0, (void*)&threadid0);

//create the thread for sprite 1
id = pthread_create(&pthread1, NULL, thread1, (void*)&threadid1);

//main loop
while (!key[KEY_ESC])
{

//lock the mutex to protect double buffer
pthread_mutex_lock(&threadsafe);

//display title
textout(buffer, font, “MultiThread Program (ESC to quit)”,

0, 0, WHITE);

//update the screen
acquire_screen();
blit(buffer,screen,0,0,0,0,SCREEN_W-1,SCREEN_H-1);
release_screen();

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading412

Enhancing Tank War 413

//unlock the mutex
pthread_mutex_unlock(&threadsafe);

//note there is no delay
}

//tell threads it’s time to quit
done++;
rest(100);

//kill the mutex (thread protection)
pthread_mutex_destroy(&threadsafe);

//remove objects from memory
destroy_bitmap(buffer);

//delete sprites
for (n=0; n<32; n++)

destroy_bitmap(ballimg[n]);

return;
}

END_OF_MAIN();

Enhancing Tank War
The current version of Tank War (from Chapter 10) includes two scrolling windows (one
for each player), a radar screen, tank sprites, bullet sprites, and scorekeeping. The game
needs a few more things to make it complete. First of all, it needs better timing, particu-
larly for explosions (which momentarily pause the game), and it could use a little more
animation. In Chapter 15, “Mastering the Audible Realm: Allegro’s Sound Support,” you’ll
add sound support to the game.

For the time being, you can work on adding some better animation, as well as on that ter-
rible explosion code that pauses the game. I’d like the explosions to be drawn on the screen
without affecting the timing of the game. As for the new animation, I’d like the tank treads
to move with respect to the speed that the tank is moving. So let’s work on the sixth
enhancement to the game now!

Description of New Improvements
To draw animated treads, I have modified the tank1.bmp and tank2.bmp files, adding
seven additional frames to each tank from Ari Feldman’s SpriteLib (from which the tanks
were originally derived). Figure 11.6 shows the updated tank bitmaps.

To plug these new animated tanks
into the game, you’ll need to make
some modifications to the routines
that load, move, and draw the tanks,
and you’ll need to add a new function
to animate the tanks. Figure 11.7
shows the game running with the
animated tanks.

The next enhancement to Tank War that I’ll show you is an update to the explode function
and addition of some new explosion sprites to handle the explosions so the game won’t
pause to render them. Figure 11.8 shows an explosion drawn over one of the tanks with-
out pausing gameplay. Now both explosions can occur at the same time (instead of one
after the other).

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading414

Figure 11.6 Tank War now features animated tanks.

Figure 11.7 The tanks are now equipped with new military
technology—animated treads.

Modifying the Tank War Project
The complete new version of Tank War is available in \chapter11\tankwar on the CD-ROM;
you can load up the project or simply run the game from that location if you want. I
recommend you follow along and make the changes yourself because it is a valuable learn-
ing experience. To do so, you’ll want to open the Tank War project from Chapter 10 to
make the following changes. Be sure to copy the tank1.bmp and tank2.bmp files off the
CD-ROM so the new version of the game will work, because these bitmap files contain
the new animated tanks.

Updating tankwar.h

First, you need to make a few minor changes to the tankwar.h header file. Look for the sec-
tion of code that defines the sprites and add the new line of code shown in bold.

SPRITE mytanks[2];
SPRITE *tanks[2];
SPRITE mybullets[2];
SPRITE *bullets[2];
SPRITE *explosions[2];

Next, modify the tank_bmp array, which contains the bitmap images for the tanks. Scroll
down in tankwar.h a little further to find the sprite bitmap definitions and make the
change noted in bold. (It’s a small change to the tank_bmp array—just add another dimension
to the array as shown.)

Enhancing Tank War 415

Figure 11.8 Tank War now draws animated explosions in the
game loop without pausing the game.

//sprite bitmaps
BITMAP *tank_bmp[2][8][8];
BITMAP *bullet_bmp;
BITMAP *explode_bmp;

Now scroll down a little further in tankwar.h to the function prototypes and add the fol-
lowing three function definitions noted in bold:

//function prototypes
void animatetank(int num);
void updateexplosion(int num);
void loadsprites();
void drawtank(int num);
void erasetank(int num);
void movetank(int num);

Updating tank.c

Now you can make some changes to the tank.c source code file, which contains all the
code for loading, moving, and drawing the tanks. Add a new function to the top of tank.c
to accommodate the new animated tanks.

//new function added in chapter 11
void animatetank(int num)
{

if (++tanks[num]->framecount > tanks[num]->framedelay)
{

tanks[num]->framecount = 0;
tanks[num]->curframe += tanks[num]->animdir;
if (tanks[num]->curframe > tanks[num]->maxframe)

tanks[num]->curframe = 0;
else if (tanks[num]->curframe < 0)

tanks[num]->curframe = tanks[num]->maxframe;
}

}

Now you have to make some changes to drawtank, the most important function in tank.c,
because it is responsible for actually drawing the tanks. You need to add support for the
new animated frames in the tank_bmp array. Make the changes noted in bold. (You’ll notice
that the only changes are made to draw_sprite function calls.)

void drawtank(int num)
{

int dir = tanks[num]->dir;
int x = tanks[num]->x-15;
int y = tanks[num]->y-15;

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading416

draw_sprite(buffer, tank_bmp[num][tanks[num]->curframe][dir], x, y);

//what about the enemy tank?
x = scrollx[!num] + SCROLLW/2;
y = scrolly[!num] + SCROLLH/2;
if (inside(x, y,

scrollx[num], scrolly[num],
scrollx[num] + SCROLLW, scrolly[num] + SCROLLH))

{
//draw enemy tank, adjust for scroll
draw_sprite(buffer, tank_bmp[!num][tanks[!num]->curframe][tanks[!num]->dir],

startx[num]+x-scrollx[num]-15, starty[num]+y-scrolly[num]-15);

}
}

Next, you need to make some changes to the movetank function to accommodate the new
animated tanks. The way this works now is that the tank is animated only when it is mov-
ing. You need to determine when the tank is moving by looking at the speed of the tank,
and then update the sprite frame accordingly. You also need to make some changes to the
code that keeps the tanks inside the bounds of the map so that when a tank reaches the
edge, it will stop animating. Make the changes noted in bold.

void movetank(int num)
{

int dir = tanks[num]->dir;
int speed = tanks[num]->xspeed;

//animate tank when moving
if (speed > 0)
{

tanks[num]->animdir = 1;
tanks[num]->framedelay = MAXSPEED - speed;

}
else if (speed < 0)
{

tanks[num]->animdir = -1;
tanks[num]->framedelay = MAXSPEED - abs(speed);

}
else

tanks[num]->animdir = 0;

//update tank position
switch(dir)

Enhancing Tank War 417

{
case 0:

scrolly[num] -= speed;
break;

case 1:
scrolly[num] -= speed;
scrollx[num] += speed;
break;

case 2:
scrollx[num] += speed;
break;

case 3:
scrollx[num] += speed;
scrolly[num] += speed;
break;

case 4:
scrolly[num] += speed;
break;

case 5:
scrolly[num] += speed;
scrollx[num] -= speed;
break;

case 6:
scrollx[num] -= speed;
break;

case 7:
scrollx[num] -= speed;
scrolly[num] -= speed;
break;

}

//keep tank inside bounds
if (scrollx[num] < 0)
{

scrollx[num] = 0;
tanks[num]->xspeed = 0;

}
else if (scrollx[num] > scroll->w - SCROLLW)
{

scrollx[num] = scroll->w - SCROLLW;
tanks[num]->xspeed = 0;

}
if (scrolly[num] < 0)

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading418

{
scrolly[num] = 0;
tanks[num]->xspeed = 0;

}
else if (scrolly[num] > scroll->h - SCROLLH)
{

scrolly[num] = scroll->h - SCROLLH;
tanks[num]->xspeed = 0;

}
}

That is the last change to tank.c. Now you can move on to the setup.c file.

Updating setup.c

You must make extensive changes to setup.c to load the new animation frames for the tanks
and initialize the new explosion sprites. You’ll end up with a new loadsprites function and
a lot of changes to setuptanks. First, add the new loadsprites function to the top of the
setup.c file. I won’t use bold because you need to add the whole function to the program.

void loadsprites()
{

//load explosion image
if (explode_bmp == NULL)
{

explode_bmp = load_bitmap(“explode.bmp”, NULL);
}

//initialize explosion sprites
explosions[0] = malloc(sizeof(SPRITE));
explosions[1] = malloc(sizeof(SPRITE));

}

Next up, the changes to setuptanks. There are a lot of changes to be made in this function
to load the new tank1.bmp and tank2.bmp files, and then extract the individual anima-
tion frames. Make all changes noted in bold.

void setuptanks()
{

BITMAP *temp;
int anim;
int n;

//configure player 1’s tank
tanks[0] = &mytanks[0];

Enhancing Tank War 419

tanks[0]->x = 30;
tanks[0]->y = 40;
tanks[0]->xspeed = 0;
tanks[0]->dir = 3;
tanks[0]->curframe = 0;
tanks[0]->maxframe = 7;
tanks[0]->framecount = 0;
tanks[0]->framedelay = 10;
tanks[0]->animdir = 0;
scores[0] = 0;

//load first tank
temp = load_bitmap(“tank1.bmp”, NULL);
for (anim=0; anim<8; anim++)
{

//grab animation frame
tank_bmp[0][anim][0] = grabframe(temp, 32, 32, 0, 0, 8, anim);

//rotate image to generate all 8 directions
for (n=1; n<8; n++)
{

tank_bmp[0][anim][n] = create_bitmap(32, 32);
clear_to_color(tank_bmp[0][anim][n], makecol(255,0,255));
rotate_sprite(tank_bmp[0][anim][n], tank_bmp[0][anim][0],

0, 0, itofix(n*32));
}

}
destroy_bitmap(temp);

//configure player 2’s tank
tanks[1] = &mytanks[1];
tanks[1]->x = SCREEN_W-30;
tanks[1]->y = SCREEN_H-30;
tanks[1]->xspeed = 0;
tanks[1]->dir = 7;
tanks[1]->curframe = 0;
tanks[1]->maxframe = 7;
tanks[1]->framecount = 0;
tanks[1]->framedelay = 10;
tanks[1]->animdir = 0;
scores[1] = 0;

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading420

//load second tank
temp = load_bitmap(“tank2.bmp”, NULL);
for (anim=0; anim<8; anim++)
{

//grab animation frame
tank_bmp[1][anim][0] = grabframe(temp, 32, 32, 0, 0, 8, anim);

//rotate image to generate all 8 directions
for (n=1; n<8; n++)
{

tank_bmp[1][anim][n] = create_bitmap(32, 32);
clear_to_color(tank_bmp[1][anim][n], makecol(255,0,255));
rotate_sprite(tank_bmp[1][anim][n], tank_bmp[1][anim][0],

0, 0, itofix(n*32));
}

}
destroy_bitmap(temp);

//load bullet image
if (bullet_bmp == NULL)

bullet_bmp = load_bitmap(“bullet.bmp”, NULL);

//initialize bullets
for (n=0; n<2; n++)
{

bullets[n] = &mybullets[n];
bullets[n]->x = 0;
bullets[n]->y = 0;
bullets[n]->width = bullet_bmp->w;
bullets[n]->height = bullet_bmp->h;

}

//center tanks inside scroll windows
tanks[0]->x = 5 + SCROLLW/2;
tanks[0]->y = 90 + SCROLLH/2;
tanks[1]->x = 325 + SCROLLW/2;
tanks[1]->y = 90 + SCROLLH/2;

}

That wasn’t so bad because the game was designed well and the new code added in
Chapter 10 was highly modifiable. It always pays to write clean, tight code right from the
start.

Enhancing Tank War 421

Updating bullet.c

Now you can make the necessary changes to the bullet.c source file to accommodate the
new friendly explosions. (How’s that for a contradiction of terms?) What I mean by
friendly is that the explosions will no longer use the rest function to draw. This is really
bad because it causes the whole game to hiccup every time there is an explosion to be
drawn. There weren’t many bullets flying around in this game, or I never would have got-
ten away with this quick solution. Now let’s correct the problem.

Open the bullet.c file. You’ll be adding a new function called updateexplosion and modify-
ing the existing explode function. Here is the new updateexplosion you should add to the
top of the bullet.c file.

//new function added in chapter 11
void updateexplosion(int num)
{

int x, y;

if (!explosions[num]->alive) return;

//draw explosion (maxframe) times
if (explosions[num]->curframe++ < explosions[num]->maxframe)
{

x = explosions[num]->x;
y = explosions[num]->y;

//draw explosion in enemy window
rotate_sprite(buffer, explode_bmp,

x + rand()%10 - 20, y + rand()%10 - 20,
itofix(rand()%255));

//draw explosion in “my” window if enemy is visible
x = scrollx[!num] + SCROLLW/2;
y = scrolly[!num] + SCROLLH/2;
if (inside(x, y,

scrollx[num], scrolly[num],
scrollx[num] + SCROLLW, scrolly[num] + SCROLLH))

{
//but only draw if explosion is active
if (explosions[num]->alive)

rotate_sprite(buffer, explode_bmp,
startx[num]+x-scrollx[num] + rand()%10 - 20,
starty[num]+y-scrolly[num] + rand()%10 - 20,
itofix(rand()%255));

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading422

}
}
else
{

explosions[num]->alive = 0;
explosions[num]->curframe = 0;

}
}

Now modify explode so it will properly set up the explosion, which is actually drawn by
updateexplosion later on in the animation process of the game loop. Make the changes
noted in bold. The entire function has been rewritten, so simply delete existing code and
add the new lines to explode.

void explode(int num, int x, int y)
{

//initialize the explosion sprite
explosions[num]->alive = 1;
explosions[num]->x = x;
explosions[num]->y = y;
explosions[num]->curframe = 0;
explosions[num]->maxframe = 20;

}

That’s the end of the changes to bullet.c. Now you can make the last few changes needed
to update the game. Next you’ll turn to the main.c file.

Updating main.c

The last changes will be made to main.c to call the new functions (such as animatetank and
updateexplosion). The only changes to be made will be to the main function. You need to
add a line that creates a new variable and calls loadsprites and animatetank, and finally, you
need a call to updateexplosion. Be careful to catch the changes to tank_bmp and note the
cleanup code at the end. Make the changes noted in bold.

//main function
void main(void)
{

int anim;

//initialize the game
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));

Enhancing Tank War 423

setupscreen();
setuptanks();
loadsprites();

//game loop
while(!gameover)
{

//move the tanks and bullets
for (n=0; n<2; n++)
{

movetank(n);
animatetank(n);
movebullet(n);

}

//draw background bitmap
blit(back, buffer, 0, 0, 0, 0, back->w, back->h);

//draw scrolling windows
for (n=0; n<2; n++)

blit(scroll, buffer, scrollx[n], scrolly[n],
startx[n], starty[n], SCROLLW, SCROLLH);

//update the radar
rectfill(buffer,radarx+1,radary+1,radarx+99,radary+88,BLACK);
rect(buffer,radarx,radary,radarx+100,radary+89,WHITE);

//draw mini tanks on radar
for (n=0; n<2; n++)

stretch_sprite(buffer, tank_bmp[n][tanks[n]->curframe][tanks[n]->dir],
radarx + scrollx[n]/10 + (SCROLLW/10)/2-4,
radary + scrolly[n]/12 + (SCROLLH/12)/2-4,
8, 8);

//draw player viewport on radar
for (n=0; n<2; n++)

rect(buffer,radarx+scrollx[n]/10, radary+scrolly[n]/12,
radarx+scrollx[n]/10+SCROLLW/10,
radary+scrolly[n]/12+SCROLLH/12, GRAY);

//display score
for (n=0; n<2; n++)

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading424

textprintf(buffer, font, startx[n], HEIGHT-10,
BURST, “Score: %d”, scores[n]);

//draw the tanks and bullets
for (n=0; n<2; n++)
{

drawtank(n);
drawbullet(n);

}

//explosions come last (so they draw over tanks)
for (n=0; n<2; n++)

updateexplosion(n);

//refresh the screen
acquire_screen();
blit(buffer, screen, 0, 0, 0, 0, WIDTH-1, HEIGHT-1);
release_screen();

//check for keypresses
if (keypressed())

getinput();

//slow the game down
rest(20);

}

//destroy bitmaps
destroy_bitmap(explode_bmp);
destroy_bitmap(back);
destroy_bitmap(scroll);
destroy_bitmap(buffer);

//free tank bitmaps
for (anim=0; anim<8; anim++)

for (n=0; n<8; n++)
{

destroy_bitmap(tank_bmp[0][anim][n]);
destroy_bitmap(tank_bmp[1][anim][n]);

}

Enhancing Tank War 425

//free explosion sprites
for (n=0; n<2; n++)

free(explosions[n]);

return;
}
END_OF_MAIN();

Future Changes to Tank War
I must admit that this game is really starting to become fun, not only as a very playable
game, but also as an Allegro game project. It is true that if you design and program a game
that you find interesting and fun, others will be attracted to the game as well. I did just
that, and I have enjoyed sharing the vision of this game with you. What do you think of
the result so far? It needs a little bit more work (such as sound effects), but otherwise it is
very playable. If you have any great ideas to make the game even better, by all means, go
ahead and try them!

You can use this example game as a basis for your own games. Are you interested in RPGs?
Go ahead and convert it to a single scrolling window and replace the tank with your own
character sprite, and you almost have an RPG framework right there. As for future
changes, the next chapter adds customizable levels to the game with a level-editing pro-
gram called Mappy.

Summary
This was an advanced chapter that dealt with the intriguing subjects of timers, interrupts,
and threads. I started with a TimerTest program that animated several sprites on the
screen to demonstrate how to calculate and display the frame rate. You then modified the
program to use an interrupt handler to keep track of the frame rate outside of the main
loop (InterruptTest). This was followed by another revision that demonstrated how to set
a specific frame rate for the program (TimedLoop). The last section of the chapter was
devoted to multi-threading, with a tutorial on the Posix Threads library and Red Hat’s
Pthreads-Win32 project. The result was an interesting program called MultiThread that
demonstrated how to use threads for sprite control. The potential for increased frame-rate
performance in a game is greatly encouraged with the use of threads to delegate func-
tionality from a single loop because this provides support for multiple-processor systems.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading426

1. Why is it important to use a timer in a game?

A. To maintain a consistent frame rate

B. To include support for interrupts

C. To make the program thread-safe

D. To delegate code to multiple threads

2. Which Allegro timer function slows down the program using a callback function?

A. callback_rest

B. sleep_callback

C. rest

D. rest_callback

3. What is the name of the function used to initialize the Allegro timer?

A. init_timer

B. install_timer

C. timer_reset

D. start_timer

4. What is the name of the function that creates a new interrupt handler?

A. create_handler

B. create_interrupt

C. int_callback

D. install_int

5. What variable declaration keyword should be used with interrupt variables?

A. danger

B. cautious

C. volatile

D. corruptible

6. What is a process that runs within the memory space of a single program but is
executed separately from that program?

A. Mutex

B. Process

C. Thread

D. Interrupt

Chapter Quiz 427

7. What helps protect data by locking it inside a single thread, preventing that data
from being used by another thread until it is unlocked?

A. Mutex

B. Process

C. Thread

D. Interrupt

8. What does pthread stand for?

A. Protected Thread

B. Public Thread

C. Posix Thread

D. Purple Thread

9. What is the name of the function used to create a new thread?

A. create_posix_thread

B. pthread_create

C. install_thread

D. thread_callback

10. What is the name of the function that locks a mutex?

A. lock_pthread_mutex

B. lock_mutex

C. pthread_lock_mutex

D. pthread_mutex_lock

Chapter 11 � Timers, Interrupt Handlers, and Multi-Threading428

429

Creating a Game
World: Editing
Tiles and Levels

chapter 12

T
he game world defines the rules of the game and presents the player with all of the
obstacles he must overcome to complete the game. Although the game world is the
most important aspect of a game, it is not always given proper attention when a

game is being designed. This chapter provides an introduction to world building—or
more specifically, map editing. Using the skills you learn in this chapter, you will be able
to enhance Tank War and learn to create levels for your own games. This chapter provides
the prerequisite information you’ll need in the next two chapters, which discuss horizon-
tal and vertical scrolling games.

Here is a breakdown of the major topics in this chapter:

� Creating the game world

� Loading and drawing Mappy level files

Creating the Game World
Mappy is an awesome map editing program, and it’s freeware so you can download and
use it to create maps for your games at no cost. If you find Mappy to be as useful as I have,
I encourage you to send the author a small donation to express your appreciation for his
hard work. The home page for Mappy is http://www.tilemap.co.uk.

Why is Mappy so great, you might ask? First of all, it’s easy to use. In fact, it couldn’t be
any easier to use without sacrificing features. Mappy allows you to edit maps made up of
the standard rectangular tiles, as well as isometric and hexagonal tiles! Have you ever
played hexagonal games, such as Panzer General, or isometric games, such as Age of
Empires ? Mappy lets you create levels that are similar to the ones used in these games.
Mappy has been used to create many retail (commercial) games, some of which you might

have played. I personally know of several developers who have used Mappy to create lev-
els for retail games for Pocket PC, Game Boy Advance, Nokia N-Gage, and wireless (cell
phones). MonkeyStone’s Hyperspace Delivery Boy (created by Tom Hall, John Romero,
and Stevie Case) for Pocket PC and Game Boy Advance is one example.

Suffice it to say, Mappy is an unusually great map editor released as freeware, and I will
explain how to use it in this chapter. You’ll also have an opportunity to add Mappy sup-
port to Tank War at the end of the chapter.

Installing Mappy
Mappy is included in the \mappy folder on the CD-ROM that accompanies this book. You
can run Mappy directly without installing it, although I would recommend copying the
mapwin.exe file to your hard drive. Mappy is so small (514 KB) that it’s not unreasonable
to copy it to any folder where you might need it. If you want to check for a newer version
of Mappy, the home page is located at http://www.tilemap.co.uk. In addition to Mappy,
there are sample games available for download and the Allegro support sources for
Mappy. (See the “Loading and Drawing Mappy Level Files” section later in this chapter for
more information.) If you do copy the executable without the subfolders, INI file, and so
on, you’ll miss out on the Lua scripts and settings, so you might want to copy the whole
folder containing the executable file.

Creating a New Map
Now it’s time to fire up Mappy and create a new map. Locate mapwin.exe and run it. The
first time it is run, Mappy displays two blank child windows (see Figure 12.1).

Now open the File menu and select New Map to bring up the New Map dialog box, shown
in Figure 12.2.

As the New Map dialog box shows, you must enter the size of each tile in your tile image
file. The tiles used in Tank War (and in most of the chapters of this book) are 32×32 pix-
els, so I have typed 32 in the width box and 32 in the height box. Next you must enter the
size of the map. The default 100×100 map probably is too large to be useful as a good
example at this point. If you recall from Chapter 10, the GameWorld program used a map
that had an area of 31×33 tiles. You should use that program as a basis for testing Mappy.
Of course, you can use any values you want, but be sure to modify the source code (in the
next section) to accommodate the dimensions of the map you have created.

t i p

Mappy allows you to change the size of the map after it has been created, so if you need more tiles
in your map later, it’s easy to enlarge the map. Likewise, you can shrink the map; Mappy has an
option that lets you choose the part of the map you want to resize.

Chapter 12 � Creating a Game World: Editing Tiles and Levels430

Figure 12.3 shows the dimensions that I
have chosen for this new map. Note also
the option for color depth. This refers to
the source image containing the tiles; in
most cases you will want to choose the
Truecolour option because most source
artwork will be 16-bit, 24-bit, or 32-bit.
(Any of these will work with Mappy if you
select this option.)

If you click on the Advanced button in the
New Map dialog box, you’ll see the addi-
tional options shown in Figure 12.4. These
additional options allow you to select the
exact color depth of the source tiles (8-bit
through 32-bit), the map file version to use,
and dimensions for non-rectangular map
tiles (such as hexagonal and isometric).

Creating the Game World 431

Figure 12.1 Mappy is a simple and unassuming map editor.

Figure 12.2 You can use the New Map dialog
box to configure a new game level.

Figure 12.3 Changing the size of the new map

When you click on the OK
button, a new map will be
created and filled with the
default black tile (tile #0). At
this point, you must import
the tile images to be used to
create this map. This is where
things really get interesting
because you can use multiple
image files containing source
artwork, and Mappy will
combine all the source tiles

into a new image source with correctly positioned tiles. (Saving the tile bitmap file is an
option in the Save As dialog box.)

Importing the Source Tiles
Now open the File menu and select Import. The Open File dialog box will appear, allow-
ing you to browse for an image file, which can be of type BMP, PCX, PNG, or MAR/P (map
array file—something that can be exported by Mappy). I have created a larger tile image
file containing numerous tiles from Ari Feldman’s SpriteLib (http://www.arifeldman.com).
The maptiles.bmp file is located in the \chapter12\ArrayMapTest folder on the CD-ROM.
After you choose this file, Mappy will import the tiles into the tile palette, as shown in
Figure 12.5. Recall that you specified the tile size when you created the map file; Mappy
used the dimensions provided to automatically read in all of the tiles. You must make the
image resolution reasonably close to the edges of the tiles, but it doesn’t need to be perfect
—Mappy is smart enough to account for a few pixels off the right or bottom edges and
move to the next row.

Now I’d like to show you a convenient feature that I use often. I like to see most of the level
on the screen at once to get an overview of the game level. Mappy lets you change the
zoom level of the map editor display. Open the MapTools menu and select one of the
zoom levels to change the zoom. Then, select a tile from the tile palette and use the mouse
to draw that tile on the map edit window to see how the chosen zoom level appears. I fre-
quently use 0.5 (1/2 zoom). Until you have added some tiles to the map window, you
won’t see anything happen after you change the zoom.

Now let me show you a quick shortcut for filling the entire map with a certain tile. Select
a neutral tile that is good as a backdrop, such as the grass, dirt, or stone tile. Open the
Custom menu. This menu contains scripts that you can run to manipulate a map. (You
can write your own scripts if you learn the Lua language—visit http://www.lua.org for
more information.) Select the script called Solid Rectangle, which brings up the dialog
box shown in Figure 12.6.

Chapter 12 � Creating a Game World: Editing Tiles and Levels432

Figure 12.4 The advanced options in the New Map dialog box

Modify the width and height parameters for the rectangle,
using one less than the value you entered for the map when it
was created (31–1 = 30 and 33–1 = 32). Click on OK, and the
map will be filled with the currently selected tile, as shown in
Figure 12.7.

Play around with Mappy to gain familiarity with it. You can
erase tiles using the right mouse button and select tiles in the
palette using the left button. You can use the keyboard arrow
keys to scroll the map in any direction, which is very handy
when you want to keep your other hand on the mouse for

quick editing. Try to create an interesting map, and then I’ll show you how to save the map
in two different formats you’ll use in the sample programs that follow.

Saving the Map File as FMP
Have you created an interesting map that can be saved? If not, go ahead and create a map,
even if it’s just a hodgepodge of tiles, because I want to show you how to save and use the
map file in an Allegro program. Are you ready yet? Good! As a reference for the figures
that follow in this chapter, the map I created is shown in Figure 12.8.

Creating the Game World 433

Figure 12.5 The SpriteLib tiles have been imported into Mappy’s tile palette
for use in creating game levels.

Figure 12.6 Mappy
includes scripts that can
manipulate a map, and you
can create new scripts.

Chapter 12 � Creating a Game World: Editing Tiles and Levels434

Figure 12.7 The Solid Rectangle script fills a region of the map with a tile.

Figure 12.8 The sample map file used in this chapter

I’ll show you how to save the map file first, and then you’ll export the map to a text file
and try to use it in sample programs later. For now, open the File menu and select Save As
to bring up the Save As dialog box shown in Figure 12.9.

Type a map filename, such
as map1.fmp, and click on
Save. The interesting thing
about the FMP file format is
that the tile images are
stored along with the map
data, so you don’t need to
load the tiles and the map
file to create your game
world. You might not like
losing control over the tile
images, but in a way it’s a
blessing—one less thing to
worry about when you’d
rather focus your time on
gameplay.

Saving the Map File as Text
Now that you have saved the new level in the standard
Mappy file format, I’d like to show you how to export the
map to a simple text file that you can paste into a program.
The result will be similar to the GameWorld program from
Chapter 10, in which the map tile data was stored in an
array in the program’s source code.

Open the File menu and select Export. Do not select Export
As Text. That is an entirely different option used to export a
map to a binary array used for the Game Boy Advance and
other systems. Just select Export to bring up the Export dia-
log box shown in Figure 12.10.

You can explore the uses for the various formats in the
Export dialog box when you have an opportunity; I will
only explain the one option you need to export the map
data as text. You want to select the third check box from the
top, labeled Map Array as Comma Values Only (?.CSV).

435Creating the Game World

Figure 12.9 The Save As dialog box in Mappy is used to save a
map file.

Figure 12.10 The Export
dialog in Mappy lets you
choose options for exporting
the map.

If you want to build an image containing the tiles in the proper order, as they were in
Mappy, you can also select the check box labeled Graphics Blocks as Picture (?.BMP). I
strongly recommend exporting the image. For one thing, Mappy adds the blank tile that
you might have used in some parts of the map; it also numbers the tiles consecutively
starting with this blank tile unless you check the option Skip Block 0. Normally, you
should be able to leave the default of 20 in the Blocks a Row input field. Click on OK to
export the map.

Mappy outputs the map with the name provided in the Export dialog box as two files—
map1.BMP and map1.CSV. (Your map name might differ.) The CSV format is recognized
by Microsoft Excel, but there is no point loading it into Excel (even if you have Microsoft
Office installed). Instead, rename the file map1.txt and open it in Notepad or another text
editor. You can now copy the map data text and paste it into a source code file, and you
have the bitmap image handy as well.

Loading and Drawing Mappy Level Files
Mappy is far more powerful than you need for Tank War (or the rest of this book, for that
matter). Mappy supports eight-layer maps with animated tiles and has many helpful fea-
tures for creating game worlds. You can create a map, for instance, with a background
layer, a parallax scrolling layer with transparent tiles, and a surface layer that is drawn over
sprites (such as bridges and tunnels). I’m sure you will become proficient with Mappy in
a very short time after you use it to create a few games, and you will find some of these
features useful in your own games. For the purposes of this chapter and the needs of your
Tank War game, Mappy will be used to create a single-layer map.

There are two basic methods of using map files in your own games. The first method is to
export the map from Mappy as a text file. You can then paste the comma-separated map
tile numbers into an array in your game. (Recall the GameWorld program from Chapter
10, which used a hard-coded map array.) There are drawbacks to this method, of course.
Any time you need to make changes to a map file, you’ll need to export the map again and
paste the lines of numbers into the map array definition in your game’s source code.
However, storing game levels (once completed) inside an array means that you don’t need
to load the map files into your game—and further, this prevents players from editing your
map files. I’ll explain how to store game resources (such as map files) inside an encrypted/
compressed data file in Chapter 16, “Using Datafiles to Store Game Resources.”

The other method, of course, is to load a Mappy level file into your game. This is a more
versatile solution, which makes sense if your game has a lot of levels and/or is expandable.
(Will players be able to add their own levels to the game and make them available for
download, and will you release expansion packs for your game?)

Chapter 12 � Creating a Game World: Editing Tiles and Levels436

The choice is obvious for large, complex games, such as StarCraft, but for smaller games
like Arkanoid, my personal preference is to store game levels inside the source code. Given
the advanced features in Mappy, it is really only practical to export map files if your game
is using a single layer with no animation. When your game needs multiple layers and ani-
mated tiles, it is better to load the Mappy level file. Why? Because source code is available
to load and draw complex Mappy files. (See the “Using a Mappy Level File” section later
in this chapter.). Another consideration you should keep in mind is that Mappy files
include both the map data and the artwork! That’s right; the Mappy file includes the tiles
as well as the data, so you don’t need to load the tiles separately when you’re using a
Mappy file directly. This is a great feature, particularly when you are dealing with huge,
complex game world maps.

Next, I’ll demonstrate how to load a map that has been exported to a text file, and then
I’ll follow that explanation with another sample program that demonstrates how to load
a Mappy file directly.

Using a Text Array Map
I want to write a short program to demonstrate how to load a Mappy level that has been
exported to a text file. You’ll recall from the previous section that you exported a map to
a text file with a bitmap file filled with the source tiles that correspond to the values in the
text data. I’m going to open the GameWorld program from Chapter 10 and modify it to
demonstrate the text map data that was exported. Create a new project and add a refer-
ence to the Allegro library as usual. Then, type the following code into the main.c file.
Figure 12.11 shows the program running.

437Loading and Drawing Mappy Level Files

Figure 12.11 The ArrayMapTest program demonstrates how to
use an exported Mappy level.

If you are using GameWorld as a basis, just take note of the differences. On the CD-ROM,
this project is called ArrayMapTest, and it is located in the \chapter12\ArrayMapTest folder.

#include “allegro.h”

//define some convenient constants
#define MODE GFX_AUTODETECT_FULLSCREEN
#define WIDTH 640
#define HEIGHT 480
#define STEP 8

//very important! double check these values!
#define TILEW 32
#define TILEH 32

//20 columns across is the default for a bitmap
//file exported by Mappy
#define COLS 20

//make sure this exactly describes your map data
#define MAP_ACROSS 31
#define MAP_DOWN 33

#define MAPW MAP_ACROSS * TILEW
#define MAPH MAP_DOWN * TILEH

int map[] = {
//
//PASTE MAPPY EXPORTED TEXT DATA HERE!!!
//

};

//temp bitmap
BITMAP *tiles;

//virtual background buffer
BITMAP *scroll;

//position variables
int x=0, y=0, n;
int tilex, tiley;

Chapter 12 � Creating a Game World: Editing Tiles and Levels438

//reuse our friendly tile grabber from chapter 9
BITMAP *grabframe(BITMAP *source,

int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);
int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;
blit(source,temp,x,y,0,0,width,height);
return temp;

}

//main function
void main(void)
{

//initialize allegro
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));
set_color_depth(16);

//set video mode
if (set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0) != 0)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(allegro_error);
return;

}

//create the virtual background
scroll = create_bitmap(MAPW, MAPH);
if (scroll == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating virtual background”);
return;

}

//load the tile bitmap
//note that it was renamed from chapter 10

Loading and Drawing Mappy Level Files 439

tiles = load_bitmap(“maptiles.bmp”, NULL);
if (tiles == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error loading maptiles.bmp file”);
return;

}

//now draw tiles on virtual background
for (tiley=0; tiley < scroll->h; tiley+=TILEH)
{

for (tilex=0; tilex < scroll->w; tilex+=TILEW)
{

//use the result of grabframe directly in blitter
//change: TILEW-1, TILEH-1 are just TILEW,TILEH now
blit(grabframe(tiles, TILEW, TILEH, 0, 0, COLS, map[n++]),

scroll, 0, 0, tilex, tiley, TILEW, TILEH);
}

}

//main loop
while (!key[KEY_ESC])
{

//check right arrow
if (key[KEY_RIGHT])
{

x += STEP;
if (x > scroll->w - WIDTH)

x = scroll->w - WIDTH;
}

//check left arrow
if (key[KEY_LEFT])
{

x -= STEP;
if (x < 0)

x = 0;
}

//check down arrow
if (key[KEY_DOWN])
{

Chapter 12 � Creating a Game World: Editing Tiles and Levels440

y += STEP;
if (y > scroll->h - HEIGHT)

y = scroll->h - HEIGHT;
}

//check up arrow
if (key[KEY_UP])
{

y -= STEP;
if (y < 0)

y = 0;
}

//draw the scroll window portion of the virtual buffer
blit(scroll, screen, x, y, 0, 0, WIDTH-1, HEIGHT-1);

//display status info
text_mode(-1);
textprintf(screen,font,0,0,makecol(0,0,0),

“Position = (%d,%d)”, x, y);

//slow it down
rest(20);

}

destroy_bitmap(scroll);
destroy_bitmap(tiles);
return;

}

END_OF_MAIN();

In case you didn’t catch the warning (with sirens, red alerts, and beseechings), you must
paste your own map data into the source code in the location specified. The map data was
exported to a map1.CSV file in the previous section of the chapter, and you should have
renamed the file map1.txt to open it in Notepad. Simply copy that data and paste it into
the map array.

This is the easiest way to use the maps created by Mappy for your game levels, and I
encourage you to gain a working knowledge of this method because it is probably the best
option for most games. When you have progressed to the point where you’d like to add
some advanced features (such as blocking walls and obstacles on the level), you can move
on to loading and drawing Mappy files directly.

Loading and Drawing Mappy Level Files 441

Chapter 12 � Creating a Game World: Editing Tiles and Levels442

Using a Mappy Level File
The Mappy file structure is binary and includes not only the data, but also the tiles. A
library has been created to support Mappy within Allegro programs and is available for
download on the Mappy Web site at http://www.tilemap.co.uk. The library is called
MappyAL, and the current release at the time of this writing is 11D. For distribution and
licensing reasons, I have chosen not to include this library on the book’s CD-ROM
(although the author offers it for free on the Web site). When you download MappyAL
(which is currently called mapalr11.zip, but that is likely to change), extract the zip file to
find some source code files therein.

All you need are the mappyal.c and mappyal.h files from the zip archive to use Mappy
map files in your own programs. Because I will not be going into the advanced features of
Mappy or the MappyAL library, I encourage you to browse the Mappy home page, view
the tutorials, and download the many source code examples (including many complete
games) to learn about the more advanced features of Allegro.

The MappyAL library is very easy to use. Basically, you call MapLoad to open a Mappy file.
MapDrawBG is used to draw a background of tiles, and MapDrawFG draws foreground tiles (spec-
ified by layer number). There is one drawback to the MappyAL library—it was written
quite a long time ago, back in the days when VGA mode 13h (320×200) was popular.
Unfortunately, the MappyAL library only renders 8-bit (256 color) maps correctly.

You can convert a true color map to 8-bit color. Simply open the MapTools menu and
select Useful Functions, Change Block Size/Depth. This will change the color depth of the
map file; you can then import 8-bit tiles and the map will be restored. Paint Shop Pro can
easily convert the tiles used in this chapter to 8-bit without too much loss of quality.
Ideally, I recommend using the simple text map data due to this drawback.

Now it’s time to write a short test program to see how to load a native Mappy file contain-
ing map data and tiles, and then display the map on the screen with the ability to scroll the
map. Create a new project, add a reference to the Allegro library, and add the mappyal.c
and mappyal.h files to the project. (These source code files provide support for Mappy in
your Allegro programs.) Then, type the following code into the main.c file. You can use
the map1.FMP file you saved earlier in this chapter—or you can use any Mappy file you
want to test, because this program can render any Mappy file regardless of dimensions
(which are stored inside the map file rather than in the source code). Figure 12.12 shows
the TestMappy program running.

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”
#include “mappyal.h”

#define MODE GFX_AUTODETECT_FULLSCREEN
#define WIDTH 640
#define HEIGHT 480
#define WHITE makecol(255,255,255)

//x, y offset in pixels
int xoffset = 0;
int yoffset = 0;

//double buffer
BITMAP *buffer;

void main (void)
{

//initialize program
allegro_init();
install_timer();
install_keyboard();
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
text_mode(-1);

Loading and Drawing Mappy Level Files 443

Figure 12.12 The TestMappy program demonstrates how to load a native
Mappy file.

//create the double buffer and clear it
buffer = create_bitmap(SCREEN_W, SCREEN_H);
if (buffer==NULL)
{

allegro_message(“Error creating double buffer”);
return;

}
clear(buffer);

//load the Mappy file
if (MapLoad(“map1.fmp”))
{

allegro_message (“Can’t find map1.fmp”);
return;

}

//set palette
MapSetPal8();

//main loop
while (!key[KEY_ESC])
{

//draw map with single layer
MapDrawBG(buffer, xoffset, yoffset, 0, 0, SCREEN_W-1, SCREEN_H-1);

//blit the double buffer
blit (buffer, screen, 0, 0, 0, 0, SCREEN_W-1, SCREEN_H-1);

//check for keyboard input
if (key[KEY_RIGHT])
{

xoffset+=4;
//make sure it doesn’t scroll beyond map edge
if (xoffset > 31*32) xoffset = 31*32;

}
if (key[KEY_LEFT])
{

xoffset-=4;
if (xoffset < 0) xoffset = 0;

}
if (key[KEY_UP])
{

Chapter 12 � Creating a Game World: Editing Tiles and Levels444

yoffset-=4;
if (yoffset < 0) yoffset = 0;

}
if (key[KEY_DOWN])
{

yoffset+=4;
//make sure it doesn’t scroll beyond map edge
if (yoffset > 33*32) yoffset = 33*32;

}

}

//delete double buffer
destroy_bitmap(buffer);

//delete the Mappy level
MapFreeMem();

allegro_exit();
return;

}

END_OF_MAIN()

Enhancing Tank War
Now it’s time for an update to Tank War—the seventh revision to the game. Chapter 11
provided some great fixes and new additions to the game, including animated tanks and
non-interrupting explosions. As you might have guessed, this chapter brings Mappy sup-
port to Tank War. It should be a lot of fun, so let’s get started! This is going to be an easy
modification (only a few lines of code) because Tank War was designed from the start to
be flexible. However, a lot of code that will be removed from Tank War because MappyAL
takes care of all the scrolling for you.

Do you remember the dimensions of the map1.fmp file that was used in this chapter?
They were 100 tiles across by 100 tiles down. However, the actual map only uses 30 tiles
across and 32 tiles down. This is a bit of a problem for Tank War because MappyAL will
render the entire map, not just the visible portion. The reason the map was set to 100×100
was to make the Mappy tutorial easier to explain, and at the time it did not matter. Now
you’re dealing with a map that is 3,200×3,200 pixels, which won’t work in Tank War.
(Actually, it will run just fine, but the tanks won’t be bounded by the edge of the map.)

To remedy this situation, I have created a new version of the map file used in this chapter.

Enhancing Tank War 445

Chapter 12 � Creating a Game World: Editing Tiles and Levels446

It is called map3.fmp, and it is located in \chapter12\tankwar along with the project files
for this new revision of Tank War.

What’s great about this situation? You can create a gigantic battlefield map for Tank War!
There’s no reason why you should limit the game to a mere 30×32 tiles. Go ahead and cre-
ate a huge map with lots of different terrain so that it isn’t so easy to find the other player.
Of course, if you create a truly magnificent level, you’ll need to modify the bullet code. It
wasn’t designed for large maps, so you can’t fire again until the bullet reaches the edge of
the map. Just put in a timer so the bullet will expire if it doesn’t hit anything after a few
seconds.

Proposed Changes to Tank War
The first thing to do is add mappyal.c and mappyal.h to the project to give Tank War
support for the MappyAL library. I could show you how to render the tiles directly in Tank
War, which is how the game works now, but it’s far easier to use the functions in MappyAL
to draw the two scrolling game windows. You can open the completed project from
\chapter12\tankwar, or open the Chapter 11 version of the game and make the following
changes.

How about a quick overview? Figure 12.13 shows Tank War using the map file from the
TestMappy program! In Figure 12.14, player two is invading the base of player one!

Figure 12.13 Tank War now supports the use of Mappy files instead of a
hard-coded map.

Modifying Tank War
Now you can make the necessary changes to Tank War to replace the hard-coded back-
ground with support for Mappy levels.

Modifying tankwar.h

First up is the tankwar.h header file. Add a new #define line to include the mappyal.h file
in the project. Note the change in bold.

///
// Game Programming All In One, Second Edition
// Source Code Copyright (C)2004 by Jonathan S. Harbour
// Tank War Enhancement 7 - tankwar.h
///

#ifndef _TANKWAR_H
#define _TANKWAR_H

#include <conio.h>
#include <stdlib.h>
#include “allegro.h”
#include “mappyal.h”

Enhancing Tank War 447

Figure 12.14 Support for Mappy levels gives Tank War a lot of new
potential because anyone can create a custom battlefield for the game.

Next, remove the reference to the hard-coded map array. (I have commented out the line
so you will see what to remove.) This line follows the bitmap definitions.

//the game map
//extern int map[];

Next, delete the definition for the tiles bitmap pointer. Because Mappy levels contain the
tiles, your program doesn’t need to load them; it only needs to load the map file. (Isn’t that
great?)

//bitmap containing source tiles
//BITMAP *tiles;

Finally, delete the reference to the scroll bitmap, which is also no longer needed.

//virtual background buffer
//BITMAP *scroll;

You’ve ripped out quite a bit of the game with only this first file! That is one fringe bene-
fit to using MappyAL—a lot of source code formerly required to do scrolling is now built
into MappyAL.

Modifying setup.c

Next up is the setup.c source code file. Scroll down to the setupscreen function and slash
the code that loads the tiles and draws them on the virtual background image. You can
also delete the section of code that created the virtual background. I’ll list the entire func-
tion here with the code commented out that you should delete. Note the changes in bold.

void setupscreen()
{

int ret;

//set video mode
set_color_depth(16);
ret = set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
if (ret != 0) {

allegro_message(allegro_error);
return;

}

text_mode(-1);

/* REMOVE THIS ENTIRE SECTION OF COMMENTED CODE
//create the virtual background
scroll = create_bitmap(MAPW, MAPH);

Chapter 12 � Creating a Game World: Editing Tiles and Levels448

if (scroll == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating virtual background”);
return;

}

//load the tile bitmap
tiles = load_bitmap(“tiles.bmp”, NULL);
if (tiles == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error loading tiles.bmp file”);
return;

}

//now draw tiles on virtual background
for (tiley=0; tiley < scroll->h; tiley+=TILEH)
{

for (tilex=0; tilex < scroll->w; tilex+=TILEW)
{

//use the result of grabframe directly in blitter
blit(grabframe(tiles, TILEW+1, TILEH+1, 0, 0, COLS, map[n++]),

scroll, 0, 0, tilex, tiley, TILEW, TILEH);
}

}

//done with tiles
destroy_bitmap(tiles);

END OF THE CHOPPING BLOCK
*/

//load screen background
back = load_bitmap(“background.bmp”, NULL);
if (back == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error loading background.bmp file”);
return;

}

Enhancing Tank War 449

//create the double buffer
buffer = create_bitmap(WIDTH, HEIGHT);
if (buffer == NULL)
{

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating double buffer”);
return;

}

//position the radar
radarx = 270;
radary = 1;

//position each player
scrollx[0] = 100;
scrolly[0] = 100;
scrollx[1] = MAPW - 400;
scrolly[1] = MAPH - 500;

//position the scroll windows
startx[0] = 5;
starty[0] = 93;
startx[1] = 325;
starty[1] = 93;

}

Modifying tank.c

Now open up the tank.c file and scroll down to the movetank function. Down at the bottom
of the function, you’ll see the section of code that keeps the tank inside the boundary of the
map. This was based on the virtual background bitmap’s width and height, but now it
needs to be based on the Mappy level size instead. The mapwidth, mapblockwidth, mapheight,
and mapblockheight variables are global and found inside mappyal.h. Make the changes
noted in bold.

//keep tank inside bounds
if (scrollx[num] < 0)
{

scrollx[num] = 0;
tanks[num]->xspeed = 0;

}

else if (scrollx[num] > mapwidth*mapblockwidth - SCROLLW)

Chapter 12 � Creating a Game World: Editing Tiles and Levels450

{
scrollx[num] = mapwidth*mapblockwidth - SCROLLW;
tanks[num]->xspeed = 0;

}

if (scrolly[num] < 0)
{

scrolly[num] = 0;
tanks[num]->xspeed = 0;

}
else if (scrolly[num] > mapheight*mapblockheight - SCROLLH)
{

scrolly[num] = mapheight*mapblockheight - SCROLLH;
tanks[num]->xspeed = 0;

}
}

Modifying main.c

Now open up the main.c file. The first thing you need to do in main.c is remove the huge
map[] array definition (with included map tile values). Just delete the whole array, including
the #define B 39 line. I won’t list the commented-out code here because the map defini-
tion was quite large, but here are the first three lines (for the speed readers out there who
tend to miss entire pages at a time):

//#define B 39
//int map[MAPW*MAPH] = {
// B,

Don’t forget to delete the rest of the map array definition that follows these lines.

Next, scroll down to the main function and add the code that loads the Mappy file, as
shown in the bold lines that follow.

//main function
void main(void)
{

int anim;

//initialize the game
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));
setupscreen();

Enhancing Tank War 451

setuptanks();
loadsprites();

//load the Mappy file
if (MapLoad(“map3.fmp”))
{

allegro_message (“Can’t find map3.fmp”);
return;

}

//set palette
MapSetPal8();

Next, you need to modify the lines that used to draw the scrolling background and replace
them with a call to MapDrawBG, which is all you need to draw the background. You can use
the same variables as before.

//game loop
while(!gameover)
{

//move the tanks and bullets
for (n=0; n<2; n++)
{

movetank(n);
animatetank(n);
movebullet(n);

}

//draw background bitmap
blit(back, buffer, 0, 0, 0, 0, back->w, back->h);

//draw scrolling windows (now using Mappy)
for (n=0; n<2; n++)

MapDrawBG(buffer, scrollx[n], scrolly[n],
startx[n], starty[n], SCROLLW, SCROLLH);

Remove the line of code near the end of main that destroys the scroll bitmap, which is no
longer used.

//destroy bitmaps
destroy_bitmap(explode_bmp);
destroy_bitmap(back);
//destroy_bitmap(scroll);
destroy_bitmap(buffer);

Chapter 12 � Creating a Game World: Editing Tiles and Levels452

Only one more change to main, and you’ll be finished. Add the following line of code at the
bottom of main to free the MappyAL tile map:

//free the MappyAL memory
MapFreeMem();

return;
}
END_OF_MAIN();

Summary
This chapter provided the information you need to create maps, levels, and worlds for
your games. This very important subject is often glossed over until one finds that a game
simply doesn’t work without some way to store data to represent the game world. Mappy
is an excellent tool for creating game levels. You also gained some experience using Mappy to
create some sample maps, along with the source code to load and display those maps. You
then added Mappy support to Tank War, giving the game a huge boost in playability. Now
anyone can create battlefield maps for Tank War and fight it out with friends.

Chapter Quiz
1. What is the home site for Mappy?

A. http://www.mappy.com

B. http://www.maptiles.com

C. http://www.tilemap.co.uk

D. http://www.mappy.co.uk

2. What kind of information is stored in a map file?

A. Data that represent the tiles comprising a game world

B. Data that specify the game environment

C. Data that describe the characters in a game

D. Data that identify the background images of a game

3. What name is given to the graphic images that make up a Mappy level?

A. Sprites

B. Levels

C. Maps

D. Tiles

Chapter Quiz 453

4. What is the default extension of a Mappy file?
A. SMF

B. MAP

C. FMP

D. BMP

5. Where does Mappy store the saved tile images?
A. Inside a new bitmap file

B. Inside the map file

C. In individual bitmap files

D. At a location specified by the user

6. What is one example of a retail game that uses Mappy levels?
A. Hot Wheels: Stunt Track Driver 2

B. Hyperspace Delivery Boy

C. Real War: Rogue States

D. Wayne Gretzky and the NHLPA All-Stars

7. What is the recommended format for an exported Mappy level?
A. Binary

B. Hexadecimal

C. C binary array

D. Text map data

8. Which macro in Mappy fills a map with a specified tile?
A. Solid Rectangle

B. Filled Rectangle

C. Flood Fill Tile

D. Paste Tiles

9. How much does a licensed copy of Mappy cost?
A. $10

B. $20

C. $50

D. It’s free!

10. Which MappyAL library function loads a Mappy file?
A. MapLoad

B. LoadMap

C. MappyLoad

D. OpenMap

Chapter 12 � Creating a Game World: Editing Tiles and Levels454

455

Vertical Scrolling
Arcade Games

chapter 13

M
ost arcade games created and distributed to video arcades in the 1980s and
1990s were scrolling shoot-em-up games (also called simply shooters). About an
equal number of vertical and horizontal shooters were released. This chapter

focuses on vertical shooters (such as Mars Matrix) and the next chapter deals with the
horizontal variety (although it focuses on platform “jumping” games, not shooters). Why
focus two whole chapters on the subject of scrolling games? Because this subject is too
often ignored. Most aspiring game programmers know what a shooter is but have no real
idea how to develop one. That’s where this chapter comes in! This chapter discusses the
features and difficulties associated with vertical shooters and explains how to develop a
vertical scroller engine, which is used to create a sample game called Warbirds Pacifica,
a 1942-style arcade game with huge levels and professionally-drawn artwork.

Here is a breakdown of the major topics in this chapter:

� Building a vertical scroller engine

� Writing a vertical scrolling shooter

Building a Vertical Scroller Engine
Scrolling shooters are interesting programming problems for anyone who has never created
one before (and who has benefited from an experienced mentor). In the past, you have cre-
ated a large memory bitmap and blitted the tiles into their appropriate places on that
bitmap, which could then be used as a large game world (for instance, in an earlier revision
of Tank War). A scrolling shooter, on the other hand, has a game world that is far too large
for a single bitmap. For that matter, most games have a world that is too large for a single
bitmap, and using such a bitmap goes against good design practices. The world is comprised
of tiles, after all, so it would make sense to draw only the tiles needed by the current view.

But for the sake of argument, how big of a world bitmap would you have to use? Mappy
(the map editor tool covered in the previous chapter) supports a map of around 30,000
tiles. If you are using a standard 640-pixels-wide screen for a game, that is 20 tiles across,
assuming each tile is 32×32. Thirty-thousand tiles divided by 20 tiles across gives
you…how many? Fifteen-hundred tiles spread vertically. At 32 pixels each, that is a
bitmap image of 640×48,000. That is ridiculously large—so large that I do not need to
argue the point any further. Of course, the game world can be much smaller than this, but
a good scrolling shooter will have nice, large levels to conquer.

What you need is a vertical scrolling game engine capable of blitting only those tiles needed
by the current display. I once wrote a game called Warbirds for another book titled Visual
Basic Game Programming with DirectX (Premier Press, 2002). The game featured a ran-
domly generated vertical scrolling level with warping. This meant that when the scrolling
reached the end of the level, it wrapped around to the start of the level and continued
scrolling the level without interruption (see Figure 13.1).

Given that the levels were generated ran-
domly, the game could go on forever with-
out the need for new levels. Unfortunately,
as you might have guessed, the levels were
quite boring and repetitive. Even with a
fairly good warping technique and ran-
dom map generator, the levels were not
very attractive. See Figure 13.2 for a screen-
shot of Warbirds.

If you don’t want to use wraparound, or
warping, then what happens when the
scroller reaches the end? Of course, that’s
the end of the level. At this point, you
want to display the score, congratulate the
player, add bonus points, and then pro-
ceed to load the next level of the game.

The vertical scroller engine that you’ll put together shortly will just sort of stop when it
reaches the end of the level; this is a design decision, because I want you to take it from
there (load the next level). Then, you can add the custom artwork for a new scrolling
shooter, and I’ll provide a template by having you build a sample game at the end of this
chapter: Warbirds Pacifica.

Chapter 13 � Vertical Scrolling Arcade Games456

Figure 13.1 Level warping occurs when the end
of the level is reached in a scrolling game.

Building a Vertical Scroller Engine 457

Creating Levels Using Mappy
The Warbirds Pacifica game developed later in this chapter will use high-quality custom
levels created with Mappy (which was covered in the previous chapter). Although I sug-
gested using a data array for the maps in simple games, that is not suitable for a game like
a scrolling shooter—this game needs variety! To maximize the potential for this game, I’m
going to create a huge map file that is 20 tiles wide and 1,500 tiles high! That’s equivalent
to an image that is 640×48,000 pixels in size. This game will be fun; oh yes, it will be!

If you read the previous chapter, then you should have Mappy handy. If not, I recommend
you go back and read Chapter 12 because familiarity with Mappy is crucial for getting the
most out of this chapter and the one that follows.

Assuming you have Mappy fired up, open the File menu and select New Map. First, be sure
to select the Paletted (8bit) option. You want to use simple 8-bit tiles when possible to
lighten the memory load with MappyAL, although you may use hi-color or true color tiles
if you want. (I wouldn’t recommend it generally.) You might recall from the last chapter
that MappyAL is a public domain source code library for reading and displaying a Mappy
level, and that is what you’ll use in this chapter to avoid having to create a tile engine from
scratch. Next, for the width and height of each tile, enter 32 and 32, respectively. Next, for
the map size, enter 20 for the width and 1500 for the height, as shown in Figure 13.3.

t i p

Be sure to select Paletted (8bit) for the color depth of a new map in Mappy if you intend to use the
MappyAL library in your Allegro games.

Figure 13.2 Warbirds featured a randomly-generated scrolling map.

Mappy will create a new map based on
your specifications, and then will wait for
you to import some tiles (see Figure 13.4).

Now open the File menu and select Import to bring up the File Open dialog box. This is
the part where you have some options. You can use the large collection of tiles I have put
together for this chapter or you can create your own tiles and use them. Your results will
certainly look different, but if you have your own tiles, by all means use them. Otherwise,
I recommend that you copy the maptiles8.bmp file from the CD-ROM to a folder on your
hard drive. The tile image is located in \chapter13\VerticalScroller on the CD-ROM under
the sources folder for the environment you are using (Visual C++, KDevelop, or Dev-
C++). Select this file using the File Open dialog box, and the 32×32 tiles will be added to
the tile palette in Mappy (see Figure 13.5).

Chapter 13 � Vertical Scrolling Arcade Games458

Figure 13.3 Creating a new map in Mappy for
the vertical scroller demo

Figure 13.4 Mappy has created the new map and is now waiting for tiles.

If the tiles look familiar, it’s because most of them were used in the last chapter. I added
new tiles to the maptiles.bmp file while working on the Warbirds Europa game. Note that
when you add new tiles, you must add them to the bottom row of tiles, not to a column
on the right. Mappy reads the tiles from left to right, top to bottom. You can add new tiles
to the bottom of the maptiles.bmp file (which I have called maptiles8.bmp to reflect that
it is an 8-bit image with 256 colors), and then import the file again into your Mappy map
to start using new tiles. Simply select the first tile in the tile palette before you import
again, and the existing tiles will be replaced with the new tiles.

Filling in the Tiles
Now that you have a big blank slate for the level, I want to show you how to create a tem-
plate map file. Because the sample game in this chapter is a World War II shooter based
on the arcade game 1942, you can fill the entire level with a neutral water tile and then
save it as a template. At that point, it will be relatively easy to use this template to create a
number of levels for the actual game.

Building a Vertical Scroller Engine 459

Figure 13.5 The tile palette has been filled with tiles imported from a bitmap file.

Chapter 13 � Vertical Scrolling Arcade Games460

t i p

All of the graphics in this game are available in the free SpriteLib GPL at http://www.arifeldman.
com. Thanks to Ari Feldman for allowing me to use his tiles and sprites in this chapter.

Locate a water tile that is appealing to you. I have added two new water tiles just for this
chapter, again from SpriteLib. Again, this was created by Ari Feldman and released into the
public domain with his blessing. However, I encourage you to visit Ari’s Web site at
http://www.arifeldman.com to contact him about commissioning custom artwork for
your own games. These are high-quality sprite tiles, and I am grateful to Ari for allowing
me to use them.

Because this map is so big, it would take a very long time to fill in all the tiles manually.
Thankfully, Mappy suports the Lua scripting language. Although it’s beyond the scope of
this chapter, you can edit Lua scripts and use them in Mappy. One such script is called
Solid Rectangle, and it fills a region of the map with the selected tile. Unfortunately, there’s
a bug in this Lua script so it leaves out the last row and column of tiles. On a map this big,
it takes a long time just to fill in a single column or row. I fixed the bug and have included
the script on the CD-ROM. If you have just copied Mappy off the CD-ROM, then you
should have the fix. If you have downloaded a new version of Mappy, then you’ll have to
fill in the unfilled tiles manually.

Having selected an appropriate water tile, open the Custom menu and select Solid
Rectangle. A dialog box will appear, asking you to enter four numbers separated by com-
mas. Type in these values:

0,0,20,1500

If you have the buggy version of this script, then type in:

0,0,19,1499

Now save the map as template.fmp so it can be reused to create each level of the game. By
the way, while you have one large ocean level available, why not have some fun playing
with Mappy? See what kind of interesting ocean level you can create using the available
tiles. The map should look interesting, but it won’t be critical to the game because all the
action will take place in the skies.

Let’s Scroll It
Now that you have a map ready to use, you can write a short program to demonstrate the
feasibility of a very large scrolling level. Figure 13.6 shows the output from the
VerticalScroller program. As was the case in the last chapter, you will need the MappyAL
files to run this program. The mappyal.c and mappyal.h files are located on the CD-ROM
under \chapter13\VerticalScroller.

#include “allegro.h”
#include “mappyal.h”

//this must run at 640x480
#define MODE GFX_AUTODETECT_FULLSCREEN
//#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480
#define WHITE makecol(255,255,255)

#define BOTTOM 48000 - HEIGHT
//y offset in pixels
int yoffset = BOTTOM;

//timer variables
volatile int counter;
volatile int ticks;
volatile int framerate;

//double buffer
BITMAP *buffer;

Building a Vertical Scroller Engine 461

Figure 13.6 The VerticalScroller program contains the code for a basic
vertical scroller engine.

//calculate framerate every second
void timer1(void)
{

counter++;
framerate = ticks;
ticks=0;

}
END_OF_FUNCTION(timer1)

void main (void)
{

//initialize program
allegro_init();
install_timer();
install_keyboard();

// set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);

text_mode(-1);

//create the double buffer and clear it
buffer = create_bitmap(SCREEN_W, SCREEN_H);
if (buffer==NULL)

{
set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating double buffer”);
return;

}
clear(buffer);

//load the Mappy file
if (MapLoad(“level1.fmp”))

{
set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);

allegro_message (“Can’t find level1.fmp”);
return;

}

//set palette
MapSetPal8();

//identify variables used by interrupt function
LOCK_VARIABLE(counter);

Chapter 13 � Vertical Scrolling Arcade Games462

LOCK_VARIABLE(framerate);
LOCK_VARIABLE(ticks);
LOCK_FUNCTION(timer1);

//create new interrupt handler
install_int(timer1, 1000);

//main loop
while (!key[KEY_ESC])

{
//check for keyboard input

if (key[KEY_PGUP]) yoffset-=4;
if (key[KEY_PGDN]) yoffset+=4;

if (key[KEY_UP]) yoffset-=1;
if (key[KEY_DOWN]) yoffset+=1;

//make sure it doesn’t scroll beyond map edge
if (yoffset < 0) yoffset = 0;
if (yoffset > BOTTOM) yoffset = BOTTOM;

//draw map with single layer
MapDrawBG(buffer, 0, yoffset, 0, 0, SCREEN_W-1, SCREEN_H-1);

//update ticks
ticks++;

//display some status information
textprintf(buffer,font,0,440,WHITE,”yoffset %d”,yoffset);
textprintf(buffer,font,0,450,WHITE,”counter %d”, counter);
textprintf(buffer,font,0,460,WHITE,”framerate %d”, framerate);

//blit the double buffer
acquire_screen();

blit (buffer, screen, 0, 0, 0, 0, SCREEN_W-1, SCREEN_H-1);
release_screen();

}

//delete double buffer
destroy_bitmap(buffer);

//delete the Mappy level
MapFreeMem();

Building a Vertical Scroller Engine 463

Chapter 13 � Vertical Scrolling Arcade Games464

allegro_exit();
return;

}

END_OF_MAIN()

Writing a Vertical Scrolling Shooter
To best demonstrate a vertical scroller, I have created a simple scrolling shooter as a sam-
ple game that you can use as a template for your own games of this genre. Simply replace
the map file with one of your own design and replace the basic sprites used in the game,
and you can adapt this game for any theme—water, land, undersea, or outer space.

Whereas the player’s airplane uses local coordinates reflecting the display screen, the enemy
planes use world coordinates that range from 0–639 in the horizontal and 0–47,999 in the
vertical. Hey, I told you these maps were huge! The key to making this game work is that a
test is performed after each sprite is drawn to determine whether it is within the visible
range of the screen. Keep in mind that while the enemy fighters are moving toward the
player, the map itself is scrolling downward to simulate forward movement.

Describing the Game
I have called this game Warbirds Pacifica because it was based on my earlier Warbirds game
but set in the Pacific campaign of World War II. The game is set over ocean tiles with fre-
quent islands to help improve the sense of motion (see Figure 13.7).

Figure 13.7 Warbirds Pacifica is a vertical scrolling shooter.

Writing a Vertical Scrolling Shooter 465

This is a fast-paced game and even with numerous sprites on the screen, the scrolling
engine (provided by MappyAL) doesn’t hiccup at all. Take a look at Figure 13.8. The player
has a variable firing rate that is improved by picking up power-ups.

Another cool aspect of the game, thanks to Allegro’s awesome sprite handling, is that explo-
sions can overlap power-ups and other bullet sprites due to internal transparency within
the sprites (see Figure 13.9).
Note also the numerous
debug-style messages in the
bottom-left corner of the
screen. While developing a
game, it is extremely helpful
to see status values that
describe what is going on in
order to tweak gameplay. I
have modified many aspects
of the game thanks to these
messages.

Figure 13.8 The firing rate of the player’s P-38 fighter plane is
improved with power-ups.

Figure 13.9 Destroying enemy planes releases power-ups that
will improve the player’s P-38 fighter.

Of course, what would the game be like without any challenge? Although this very early
alpha version of Warbirds Pacifica does not have the code to allow enemy planes to fire at
the player, it does detect collisions with enemy planes, which cause the player’s P-38 to
explode. (Although gameplay continues, the life meter at the top drops.) One of the first
things you will want to do to enhance the game is add enemy firepower (see Figure 13.10).

The Game’s Artwork
This game is absolutely loaded with potential! There is so much that could be done with
it that I really had to hold myself back when putting the game together as a technology
demo for this chapter. It was so much fun adding just a single power-up that I came very
close to adding all the rest of the power-ups to the game, including multi-shots! Why such
enthusiasm? Because the artwork is already available for building an entire game, thanks
to the generosity of Ari Feldman. The artwork featured in this game is a significant part
of Ari’s SpriteLib.

Let me show you some examples of the additional sprites available that you could use to
quickly enhance this game. Figure 13.11 shows a set of enemy bomber sprites. The next
image, Figure 13.12, shows a collection of enemy fighter planes that could be used in the
game. Notice the different angles. Most shooters will launch squadrons of enemies at the
player in formation, which is how these sprites might be used.

Chapter 13 � Vertical Scrolling Arcade Games466

Figure 13.10 The enemy planes might not have much firepower, but
they are still capable of Kamikaze attacks!

The next image, Figure 13.13, is an animated enemy submarine that comes up out of the
water to shoot at the player. This would be a great addition to the game!

Yet another source of sprites for this game is
shown in Figure 13.14—an enemy battleship
with rotating gun turrets! The next image,
Figure 13.15, shows a number of high-quality
power-up sprites and bullet sprites. I used the
shot power-up in the game as an example so
that you can add more power-ups to the game.

Of course, a high-quality arcade game needs a
high-quality font that looks really great on
the screen. The default font with Allegro
looks terrible and should not be used in a
game like Warbirds Pacifica. Take a look at
Figure 13.16 for a sample of the font available
for the game with SpriteLib. You can use the
existing menus and messages or construct
your own using the provided alphabet.

Writing a Vertical Scrolling Shooter 467

Figure 13.11 A set of enemy bomber sprites. Courtesy of Ari Feldman.

Figure 13.12 A collection of enemy fighter planes. Courtesy of Ari Feldman.

Figure 13.13 An enemy submarine sprite.
Courtesy of Ari Feldman.

Figure 13.14 An enemy battleship with
rotating gun turrets. Courtesy of Ari Feldman.

Writing the Source Code
The source code for Warbirds Pacifica is designed to be easy to enhance because my intent
was to provide you with a template, something to which you can apply your imagination
to complete. The game has all the basic functionality and just needs to be well-rounded
and, well, finished.

I recommend you use the VerticalScroller program as a basis because it already includes
the two support files from the MappyAL library (mappyal.c and mappyal.h). If you are
creating a new project from scratch, simply copy these two files to your new project folder
and add them to the project by right-clicking on the project name and selecting Add Files
to Project.

All the artwork for this game is located on the CD-ROM under \chapter13\Warbirds. You
can open the project directly if you are not inclined to type in the source code; however,
the more code you type in, the better programmer you will become. In my experience, just
the act of typing in a game from a source code listing is a great learning experience. I see
aspects of the game—and how it was coded—that are not apparent from simply paging

Chapter 13 � Vertical Scrolling Arcade Games468

Figure 13.15 A collection of high-quality power-ups and
bullets. Courtesy of Ari Feldman.

Figure 13.16 A high-quality font suitable for a scrolling shooter, such as
Warbirds Pacifica. Courtesy of Ari Feldman.

through the code listing. It helps you to become more intimate and familiar with the
source code. This is an absolute must if you intend to learn how the game works in order
to enhance or finish it.

warbirds.h

All of the struct and variable definitions are located in the warbirds.h file. You should add
a new file to the project (File, New, C/C++ Header File) and give it this name.

#ifndef _WARBIRDS_H
#define _WARBIRDS_H

#include “allegro.h”
#include “mappyal.h”

//this must run at 640x480
//#define MODE GFX_AUTODETECT_FULLSCREEN
#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480

#define WHITE makecol(255,255,255)
#define GRAY makecol(60,60,60)
#define RED makecol(200,0,0)

#define MAX_ENEMIES 20
#define MAX_BULLETS 20
#define MAX_EXPLOSIONS 10
#define BOTTOM 48000 - HEIGHT

//define the sprite structure
typedef struct SPRITE
{

int dir, alive;
int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

//y offset in pixels

Writing a Vertical Scrolling Shooter 469

int yoffset = BOTTOM;

//player variables
int firecount = 0;
int firedelay = 60;
int health = 25;
int score = 0;

//timer variables
volatile int counter;
volatile int ticks;
volatile int framerate;

//bitmaps and sprites
BITMAP *buffer;
BITMAP *temp;
BITMAP *explosion_images[6];
SPRITE *explosions[MAX_EXPLOSIONS];
BITMAP *bigexp_images[7];
SPRITE *bigexp;
BITMAP *player_images[3];
SPRITE *player;
BITMAP *bullet_images[2];
SPRITE *bullets[MAX_BULLETS];
BITMAP *enemy_plane_images[3];
SPRITE *enemy_planes[MAX_ENEMIES];
BITMAP *progress, *bar;
BITMAP *bonus_shot_image;
SPRITE *bonus_shot;

#endif

main.c

Now for the main source code file. The main.c file will contain all of the source code for
the Warbirds Pacifica template game. Remember, this game is not 100-percent functional
for a reason—it was not designed to be a polished, complete game; rather, it was designed
to be a template. To make this a complete game, you will want to create additional levels
with Mappy; add some code to handle the loading of a new level when the player reaches
the end of the first level; and add the additional enemy planes, ships, and so on, as
described earlier. Then this game will rock! Furthermore, you will learn how to add sound
effects to the game in Chapter 15, “Mastering the Audible Realm: Allegro’s Sound
Support,” which will truly round out this game!

Chapter 13 � Vertical Scrolling Arcade Games470

#include “warbirds.h”

//reuse our friendly tile grabber from chapter 9
BITMAP *grabframe(BITMAP *source,

int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

return temp;
}

void loadsprites(void)
{

int n;

//load progress bar
temp = load_bitmap(“progress.bmp”, NULL);
progress = grabframe(temp,130,14,0,0,1,0);
bar = grabframe(temp,6,10,130,2,1,0);
destroy_bitmap(temp);

//load bonus shot
bonus_shot_image = load_bitmap(“bonusshot.bmp”, NULL);
bonus_shot = malloc(sizeof(SPRITE));
bonus_shot->alive=0;
bonus_shot->x = 0;
bonus_shot->y = 0;
bonus_shot->width = bonus_shot_image->w;
bonus_shot->height = bonus_shot_image->h;
bonus_shot->xdelay = 0;
bonus_shot->ydelay = 2;
bonus_shot->xcount = 0;
bonus_shot->ycount = 0;
bonus_shot->xspeed = 0;
bonus_shot->yspeed = 1;
bonus_shot->curframe = 0;

Writing a Vertical Scrolling Shooter 471

bonus_shot->maxframe = 0;
bonus_shot->framecount = 0;
bonus_shot->framedelay = 0;

//load player airplane sprite
temp = load_bitmap(“p38.bmp”, NULL);
for (n=0; n<3; n++)

player_images[n] = grabframe(temp,64,64,0,0,3,n);
destroy_bitmap(temp);

//initialize the player’s sprite
player = malloc(sizeof(SPRITE));
player->x = 320-32;
player->y = 400;
player->width = player_images[0]->w;
player->height = player_images[0]->h;
player->xdelay = 1;
player->ydelay = 0;
player->xcount = 0;
player->ycount = 0;
player->xspeed = 0;
player->yspeed = 0;
player->curframe = 0;
player->maxframe = 2;
player->framecount = 0;
player->framedelay = 10;
player->animdir = 1;

//load bullet images
bullet_images[0] = load_bitmap(“bullets.bmp”, NULL);

//initialize the bullet sprites
for (n=0; n<MAX_BULLETS; n++)
{

bullets[n] = malloc(sizeof(SPRITE));
bullets[n]->alive = 0;
bullets[n]->x = 0;
bullets[n]->y = 0;
bullets[n]->width = bullet_images[0]->w;
bullets[n]->height = bullet_images[0]->h;
bullets[n]->xdelay = 0;
bullets[n]->ydelay = 0;

Chapter 13 � Vertical Scrolling Arcade Games472

bullets[n]->xcount = 0;
bullets[n]->ycount = 0;
bullets[n]->xspeed = 0;
bullets[n]->yspeed = -2;
bullets[n]->curframe = 0;
bullets[n]->maxframe = 0;
bullets[n]->framecount = 0;
bullets[n]->framedelay = 0;
bullets[n]->animdir = 0;

}

//load enemy plane sprites
temp = load_bitmap(“enemyplane1.bmp”, NULL);
for (n=0; n<3; n++)

enemy_plane_images[n] = grabframe(temp,32,32,0,0,3,n);
destroy_bitmap(temp);

//initialize the enemy planes
for (n=0; n<MAX_ENEMIES; n++)
{

enemy_planes[n] = malloc(sizeof(SPRITE));
enemy_planes[n]->alive = 0;
enemy_planes[n]->x = rand() % 100 + 50;
enemy_planes[n]->y = 0;
enemy_planes[n]->width = enemy_plane_images[0]->w;
enemy_planes[n]->height = enemy_plane_images[0]->h;
enemy_planes[n]->xdelay = 4;
enemy_planes[n]->ydelay = 4;
enemy_planes[n]->xcount = 0;
enemy_planes[n]->ycount = 0;
enemy_planes[n]->xspeed = (rand() % 2 - 3);
enemy_planes[n]->yspeed = 1;
enemy_planes[n]->curframe = 0;
enemy_planes[n]->maxframe = 2;
enemy_planes[n]->framecount = 0;
enemy_planes[n]->framedelay = 10;
enemy_planes[n]->animdir = 1;

}

//load explosion sprites
temp = load_bitmap(“explosion.bmp”, NULL);
for (n=0; n<6; n++)

explosion_images[n] = grabframe(temp,32,32,0,0,6,n);

Writing a Vertical Scrolling Shooter 473

destroy_bitmap(temp);

//initialize the sprites
for (n=0; n<MAX_EXPLOSIONS; n++)
{

explosions[n] = malloc(sizeof(SPRITE));
explosions[n]->alive = 0;
explosions[n]->x = 0;
explosions[n]->y = 0;
explosions[n]->width = explosion_images[0]->w;
explosions[n]->height = explosion_images[0]->h;
explosions[n]->xdelay = 0;
explosions[n]->ydelay = 8;
explosions[n]->xcount = 0;
explosions[n]->ycount = 0;
explosions[n]->xspeed = 0;
explosions[n]->yspeed = -1;
explosions[n]->curframe = 0;
explosions[n]->maxframe = 5;
explosions[n]->framecount = 0;
explosions[n]->framedelay = 15;
explosions[n]->animdir = 1;

}

//load explosion sprites
temp = load_bitmap(“bigexplosion.bmp”, NULL);
for (n=0; n<8; n++)

bigexp_images[n] = grabframe(temp,64,64,0,0,7,n);
destroy_bitmap(temp);

//initialize the sprites
bigexp = malloc(sizeof(SPRITE));
bigexp->alive = 0;
bigexp->x = 0;
bigexp->y = 0;
bigexp->width = bigexp_images[0]->w;
bigexp->height = bigexp_images[0]->h;
bigexp->xdelay = 0;
bigexp->ydelay = 8;
bigexp->xcount = 0;
bigexp->ycount = 0;
bigexp->xspeed = 0;
bigexp->yspeed = -1;

Chapter 13 � Vertical Scrolling Arcade Games474

bigexp->curframe = 0;
bigexp->maxframe = 6;
bigexp->framecount = 0;
bigexp->framedelay = 10;
bigexp->animdir = 1;

}

int inside(int x,int y,int left,int top,int right,int bottom)
{

if (x > left && x < right && y > top && y < bottom)
return 1;

else
return 0;

}

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

spr->framecount = 0;
if (spr->animdir == -1)
{

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

Writing a Vertical Scrolling Shooter 475

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

void startexplosion(int x, int y)
{

int n;
for (n=0; n<MAX_EXPLOSIONS; n++)
{

if (!explosions[n]->alive)
{

explosions[n]->alive++;
explosions[n]->x = x;
explosions[n]->y = y;
break;

}
}

//launch bonus shot if ready
if (!bonus_shot->alive)
{

bonus_shot->alive++;
bonus_shot->x = x;
bonus_shot->y = y;

}
}

void updateexplosions()
{

int n, c=0;

for (n=0; n<MAX_EXPLOSIONS; n++)
{

if (explosions[n]->alive)
{

c++;
updatesprite(explosions[n]);
draw_sprite(buffer, explosion_images[explosions[n]->curframe],

explosions[n]->x, explosions[n]->y);

Chapter 13 � Vertical Scrolling Arcade Games476

if (explosions[n]->curframe >= explosions[n]->maxframe)
{

explosions[n]->curframe=0;
explosions[n]->alive=0;

}
}

}
textprintf(buffer,font,0,430,WHITE,”explosions %d”, c);

//update the big “player” explosion if needed
if (bigexp->alive)
{

updatesprite(bigexp);
draw_sprite(buffer, bigexp_images[bigexp->curframe],

bigexp->x, bigexp->y);
if (bigexp->curframe >= bigexp->maxframe)
{

bigexp->curframe=0;
bigexp->alive=0;

}
}

}

void updatebonuses()
{

int x,y,x1,y1,x2,y2;

//add more bonuses here

//update bonus shot if alive
if (bonus_shot->alive)
{

updatesprite(bonus_shot);
draw_sprite(buffer, bonus_shot_image, bonus_shot->x, bonus_shot->y);
if (bonus_shot->y > HEIGHT)

bonus_shot->alive=0;

//see if player got the bonus
x = bonus_shot->x + bonus_shot->width/2;
y = bonus_shot->y + bonus_shot->height/2;
x1 = player->x;
y1 = player->y;

Writing a Vertical Scrolling Shooter 477

x2 = x1 + player->width;
y2 = y1 + player->height;

if (inside(x,y,x1,y1,x2,y2))
{

//increase firing rate
if (firedelay>20) firedelay-=2;

bonus_shot->alive=0;
}

}

}

void updatebullet(SPRITE *spr)
{

int n,x,y;
int x1,y1,x2,y2;

//move the bullet
updatesprite(spr);

//check bounds
if (spr->y < 0)
{

spr->alive = 0;
return;

}

for (n=0; n<MAX_ENEMIES; n++)
{

if (enemy_planes[n]->alive)
{

//find center of bullet
x = spr->x + spr->width/2;
y = spr->y + spr->height/2;

//get enemy plane bounding rectangle
x1 = enemy_planes[n]->x;
y1 = enemy_planes[n]->y - yoffset;
x2 = x1 + enemy_planes[n]->width;
y2 = y1 + enemy_planes[n]->height;

Chapter 13 � Vertical Scrolling Arcade Games478

//check for collisions
if (inside(x, y, x1, y1, x2, y2))
{

enemy_planes[n]->alive=0;
spr->alive=0;
startexplosion(spr->x+16, spr->y);
score+=2;
break;

}
}

}
}

void updatebullets()
{

int n;
//update/draw bullets
for (n=0; n<MAX_BULLETS; n++)

if (bullets[n]->alive)
{

updatebullet(bullets[n]);
draw_sprite(buffer,bullet_images[0], bullets[n]->x, bullets[n]->y);

}
}

void bouncex_warpy(SPRITE *spr)
{

//bounces x off bounds
if (spr->x < 0 - spr->width)
{

spr->x = 0 - spr->width + 1;
spr->xspeed *= -1;

}

else if (spr->x > SCREEN_W)
{

spr->x = SCREEN_W - spr->xspeed;
spr->xspeed *= -1;

}

//warps y if plane has passed the player
if (spr->y > yoffset + 2000)

Writing a Vertical Scrolling Shooter 479

{
//respawn enemy plane
spr->y = yoffset - 1000 - rand() % 1000;
spr->alive++;
spr->x = rand() % WIDTH;

}

//warps y from bottom to top of level
if (spr->y < 0)
{

spr->y = 0;
}

else if (spr->y > 48000)
{

spr->y = 0;
}

}

void fireatenemy()
{

int n;
for (n=0; n<MAX_BULLETS; n++)
{

if (!bullets[n]->alive)
{

bullets[n]->alive++;
bullets[n]->x = player->x;
bullets[n]->y = player->y;
return;

}
}

}

void displayprogress(int life)
{

int n;
draw_sprite(buffer,progress,490,15);

for (n=0; n<life; n++)
draw_sprite(buffer,bar,492+n*5,17);

}

Chapter 13 � Vertical Scrolling Arcade Games480

void updateenemyplanes()
{

int n, c=0;

//update/draw enemy planes
for (n=0; n<MAX_ENEMIES; n++)
{

if (enemy_planes[n]->alive)
{

c++;
updatesprite(enemy_planes[n]);
bouncex_warpy(enemy_planes[n]);

//is plane visible on screen?
if (enemy_planes[n]->y > yoffset-32 && enemy_planes[n]->y <

yoffset + HEIGHT+32)
{

//draw enemy plane
draw_sprite(buffer, enemy_plane_images[enemy_planes[n]->curframe],

enemy_planes[n]->x, enemy_planes[n]->y - yoffset);
}

}
//reset plane
else
{

enemy_planes[n]->alive++;
enemy_planes[n]->x = rand() % 100 + 50;
enemy_planes[n]->y = yoffset - 2000 + rand() % 2000;

}
}
textprintf(buffer,font,0,470,WHITE,”enemies %d”, c);

}

void updatescroller()
{

//make sure it doesn’t scroll beyond map edge
if (yoffset < 5)
{

//level is over
yoffset = 5;
textout_centre(buffer, font, “END OF LEVEL”, SCREEN_W/2,

SCREEN_H/2, WHITE);
}

Writing a Vertical Scrolling Shooter 481

if (yoffset > BOTTOM) yoffset = BOTTOM;

//scroll map up 1 pixel
yoffset-=1;

//draw map with single layer
MapDrawBG(buffer, 0, yoffset, 0, 0, SCREEN_W-1, SCREEN_H-1);

}

void updateplayer()
{

int n,x,y,x1,y1,x2,y2;

//update/draw player sprite
updatesprite(player);
draw_sprite(buffer, player_images[player->curframe],

player->x, player->y);

//check for collision with enemy planes
x = player->x + player->width/2;
y = player->y + player->height/2;
for (n=0; n<MAX_ENEMIES; n++)
{

if (enemy_planes[n]->alive)
{

x1 = enemy_planes[n]->x;
y1 = enemy_planes[n]->y - yoffset;
x2 = x1 + enemy_planes[n]->width;
y2 = y1 + enemy_planes[n]->height;
if (inside(x,y,x1,y1,x2,y2))
{

enemy_planes[n]->alive=0;
if (health > 0) health—;
bigexp->alive++;
bigexp->x = player->x;
bigexp->y = player->y;
score++;

}
}

}
}

Chapter 13 � Vertical Scrolling Arcade Games482

void displaystats()
{

//display some status information
textprintf(buffer,font,0,420,WHITE,”firing rate %d”, firedelay);
textprintf(buffer,font,0,440,WHITE,”yoffset %d”,yoffset);
textprintf(buffer,font,0,450,WHITE,”counter %d”, counter);
textprintf(buffer,font,0,460,WHITE,”framerate %d”, framerate);

//display score
textprintf(buffer,font,22,22,GRAY,”SCORE: %d”, score);
textprintf(buffer,font,20,20,RED,”SCORE: %d”, score);

}

void checkinput()
{

//check for keyboard input
if (key[KEY_UP])
{

player->y -= 1;
if (player->y < 100)

player->y = 100;
}
if (key[KEY_DOWN])
{

player->y += 1;
if (player->y > HEIGHT-65)

player->y = HEIGHT-65;
}
if (key[KEY_LEFT])
{

player->x -= 1;
if (player->x < 0)

player->x = 0;
}
if (key[KEY_RIGHT])
{

player->x += 1;
if (player->x > WIDTH-65)

player->x = WIDTH-65;
}

if (key[KEY_SPACE])
{

Writing a Vertical Scrolling Shooter 483

if (firecount > firedelay)
{

firecount = 0;
fireatenemy();

}
}

}

//calculate framerate every second
void timer1(void)
{

counter++;
framerate = ticks;
ticks=0;
rest(2);

}
END_OF_FUNCTION(timer1)

void initialize()
{

//initialize program
allegro_init();
install_timer();
install_keyboard();

set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);

text_mode(-1);
srand(time(NULL));

//create the double buffer and clear it
buffer = create_bitmap(SCREEN_W, SCREEN_H);
if (buffer==NULL)

{
set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating double buffer”);
return;

}
clear(buffer);

//load the Mappy file
if (MapLoad(“level1.fmp”))

{

Chapter 13 � Vertical Scrolling Arcade Games484

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message (“Can’t find level1.fmp”);
return;

}

//set palette
MapSetPal8();

//identify variables used by interrupt function
LOCK_VARIABLE(counter);
LOCK_VARIABLE(framerate);
LOCK_VARIABLE(ticks);
LOCK_FUNCTION(timer1);

//create new interrupt handler
install_int(timer1, 1000);

}

void main (void)
{

int n;

//init game
initialize();
loadsprites();

//main loop
while (!key[KEY_ESC])

{
checkinput();

updatescroller();

updateplayer();
updateenemyplanes();

updatebullets();
updateexplosions();
updatebonuses();

displayprogress(health);
displaystats();

Writing a Vertical Scrolling Shooter 485

//blit the double buffer
acquire_screen();

blit (buffer, screen, 0, 0, 0, 0, SCREEN_W-1, SCREEN_H-1);
release_screen();

ticks++;
firecount++;

}

//delete the Mappy level
MapFreeMem();

//delete bitmaps
destroy_bitmap(buffer);
destroy_bitmap(progress);
destroy_bitmap(bar);

for (n=0; n<6; n++)
destroy_bitmap(explosion_images[n]);

for (n=0; n<3; n++)
{

destroy_bitmap(player_images[n]);
destroy_bitmap(bullet_images[n]);
destroy_bitmap(enemy_plane_images[n]);

}

//delete sprites
free(player);
for (n=0; n<MAX_EXPLOSIONS; n++)

free(explosions[n]);
for (n=0; n<MAX_BULLETS; n++)

free(bullets[n]);
for (n=0; n<MAX_ENEMIES; n++)

free(enemy_planes[n]);

allegro_exit();
return;

}

END_OF_MAIN()

Chapter 13 � Vertical Scrolling Arcade Games486

Summary
Vertical scrolling shooters were once the mainstay of the 1980s and 1990s video arcade,
but have not been as prevalent in recent years due to the invasion of 3D, so to speak. Still,
the scrolling shooter as a genre has a large and loyal fan following, so it will continue to
be popular for years to come. This chapter explored the techniques involved in creating
vertical scrollers and produced a sample template game called Warbirds Pacifica using
the vertical scroller engine (which is really powered by the MappyAL library). I hope you
enjoyed this chapter because this is not the end of the scroller! The next chapter takes a
turn—a 90-degree turn, as a matter of fact—and covers the horizontal scroller.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. In which game genre does the vertical shooter belong?

A. Shoot-em-up

B. Platform

C. Fighting

D. Real-time strategy

2. What is the name of the support library used as the vertical scroller engine?

A. ScrollerEngine

B. VerticalScroller

C. MappyAL

D. AllegroScroller

3. What are the virtual pixel dimensions of the levels in Warbirds Pacifica?

A. 640×480

B. 48,000×640

C. 20×1500

D. 640×48,000

4. What is the name of the level-editing program used to create the first level
of Warbirds Pacifica?

A. Happy

B. Mappy

C. Snappy

D. Frappy

Chapter Quiz 487

5. How many tiles comprise a level in Warbirds Pacifica?

A. 30,000

B. 1,500

C. 48,000

D. 32,768

6. Which of the following games is a vertical scrolling shooter?

A. R-Type

B. Mars Matrix

C. Contra

D. Castlevania

7. Who created the artwork featured in this chapter?

A. Ray Kurzweil

B. Clifford Stoll

C. Ari Feldman

D. Nicholas Negroponte

8. Which MappyAL function loads a map file?

A. LoadMap

B. MapLoad

C. LoadMappy

D. ReadLevel

9. Which MappyAL function removes a map from memory?

A. destroy_map

B. free_mappy

C. DeleteMap

D. MapFreeMem

10. Which classic arcade game inspired Warbirds Pacifica?

A. Pac-Man

B. Mars Matrix

C. 1942

D. Street Fighter II

Chapter 13 � Vertical Scrolling Arcade Games488

489

Horizontal Scrolling
Platform Games

chapter 14

E
veryone has his own opinion of the greatest games ever made. Many games are found
on bestseller lists or gamer polls, but there are only a few games that stand the test of
time, capable of drawing you in again from a mere glance. One such game is Super

Mario World, originally released as the launch title for the SNES and now available for the
Game Boy Advance. This game is considered by many to be the greatest platformer ever
made—if not the best game of all time in any genre. What is it about Super Mario World
that is so appealing? Aside from the beautiful 2D graphics, charming soundtrack, and lik-
able characters, this game features perhaps the best gameplay ever devised, with levels that
are strikingly creative and challenging. The blend of difficulty and reward along with boss
characters that go from tough to tougher only scratch the surface of this game’s appeal.

Super Mario World is a horizontal scrolling platform game that takes place entirely from
the side view (with the exception of the world view). That is the focus of this chapter; it is
an introduction to platform games with an emphasis on how to handle tile collisions.
Strictly speaking, platform games do not make up the entirety of the horizontal scroller
genre; there are perhaps more shoot-em-ups (such as R-Type and Gradius) in this orien-
tation than there are platformers. I am as big a fan of shooters as I am of platformers;
however, because the last chapter focused on a shooter, this chapter will take on the sub-
ject of platform game programming.

Using a special feature of Mappy, I’ll show you how to design a platform game level that
requires very little source code to implement. By the time you have finished this chapter,
you will know what it takes to create a platform game and you will have written a sample
game that you can tweak and modify to suit your own platform game creations. Here is a
list of the major topics in this chapter:

� Understanding horizontal scrolling games

� Developing a scrolling platform game

Chapter 14 � Horizontal Scrolling Platform Games490

Understanding Horizontal Scrolling Games
I’m sure you have played many shoot-em-up and platform games in your life, but I will
provide you with a brief overview anyway. Although it’s tough to beat the gameplay of a
vertical scrolling shooter, there is an equal amount of fun to be had with a horizontal
scrolling game. The traditional shooters in this genre (R-Type, Gradius, and so on) have
had long and successful runs, with new versions of these classic games released regularly.
R-Type for Game Boy Color was followed a few years later by R-Type Advance, and this is
a regular occurrence for a popular game series such as this one.

The other sub-genre of the horizontal scrolling game is the platformer—games such as
Super Mario World and a vast number of other games of this type. Kien is a recent Game
Boy Advance platform game with RPG elements. Another old favorite is Ghosts ‘n Goblins.
Have you ever wondered how these games are developed? Such games differ greatly from
their horizontal shoot-em-up cousins because platformers by their very nature have the
simulated effect of gravity that draws the player down. The goal of the game is to navigate
a series of levels comprised of block tiles of various shapes and sizes, such as the game
shown in Figure 14.1.

Developing a Platform Scroller
Although it would seem logical to modify the vertical scroller engine from the last chap-
ter to adapt it to the horizontal direction, that only solves the simple problem of how to
get tiles on the screen, which is relatively easy to do. The majority of the source code for
Warbirds Pacifica in the last chapter handled animating the airplanes, bullets, and explo-
sions. Likewise, the real challenge to a platform game is not getting the level to scroll hor-

izontally, but designing the level so
that solid tiles can be used as obsta-
cles by the player without requiring
a lot of custom code (or worse, a
separate data file describing the
tiles stored in the map file). In
other words, you really want to do
most of the work in Mappy, and
then perform a few simple function
calls in the game to determine
when a collision has occurred.

Figure 14.1 Platform games feature a character who
walks and jumps.

Creating Horizontal Platform Levels with Mappy 491

Some code is required to cause a sprite to interact with tiles in a level, such as when you are
blocking the player’s movement, allowing the player to jump up on a solid tile, and so on.
As you will soon see, the logic for accomplishing this key ingredient of platform gameplay
is relatively easy to understand because it uses a simple collision detection routine that is
based on the properties of the tiles stored in the Mappy-generated level file.

Creating Horizontal Platform Levels with Mappy
There are many ways to write a platform game. You might store map values in an array in
your source code, containing the tile numbers for the map as well as solid block informa-
tion used for collision detection. This is definitely an option, especially if you are writing
a simple platform game. However, why do something the hard way when there is a better
way to do it? As you saw in the last two chapters, Mappy is a powerful level-editing pro-
gram used to create map files (with the .fmp extension). These map files can contain mul-
tiple layers for each map and can include animated tiles as well.

In Chapter 10, I explained how to develop a simple scrolling engine using a single large
bitmap. (This engine was put to use to enhance the Tank War game.) Later, in Chapter 12,
I introduced you to Mappy and explained how to walk the level (or preview it with source
code). Now that you are using the MappyAL library, introduced in the previous chapter
on vertical scrolling, there is no longer any need to work with the map directly. You have
seen and experienced a logical progression from simple to advanced, while the difficulty
has been reduced in each new chapter. This chapter is even simpler than the last one, and
I will demonstrate with a sample program shortly.

Before you can delve into the source code for a platform game, I need to show you some
new tricks in Mappy because you need to create a level with two types of blocks—

background and foreground. Try
not to confuse block type with lay-
ering. Mappy supports multiple
layers, but I am not using layers to
accomplish platform-style gameplay.
Instead, the background tiles are
static and repeated across the entire
level, whereas the foreground tiles
are used basically to support the
player. Take a look at Figure 14.2 for
an example. You can see the player
standing on a ledge, which is how
this template game looks at startup.

Figure 14.2 The solid tile blocks keep the player from
falling through the bottom of the screen.

In the background you see a colorful image containing various shapes, while the fore-
ground contains solid tiles. However, as far as Mappy is concerned, this map is made up
of a single layer of tiles.

Allow me to explain. There are basically two ways to add a background to a Mappy level.
You can simply insert generic neutral tiles in the empty spaces or you can insert a bitmap
image. You might be wondering how to do that. Mappy includes a feature that can divide
a solid bitmap into tiles and then construct a map out of it. The key is making sure your
starting level size has the same dimensions as the source bitmap.

Run Mappy, open the File menu, and select New Map. Set each tile to 32×32 and set the map
size to 20×15 tiles. The result of these dimensions is a 640×480-pixel map. Also, you will be
working with true color (16-bit or higher color depth) in this chapter (see Figure 14.3).

Now, use your favorite graphic editor to
create a 640×480 bitmap image or use one
of your favorite bitmaps resized to these
dimensions. Normally at this point, you
would use Import to load a tile map into
Mappy, but the process for converting a
solid image into tiles is a little different.
Open the MapTools menu. Select the
Useful Functions menu item and select
Create Map from Big Picture, as shown in
Figure 14.4.

Chapter 14 � Horizontal Scrolling Platform Games492

Figure 14.3 The New Map dialog box in Mappy

Figure 14.4 Creating a map from a large bitmap image

To demonstrate, I created a colorful bitmap image and used it as the basis for a new map
in Mappy using this special feature. But before you create a new map, let me give you a lit-
tle pointer. The background tiles must be stored with the foreground tiles. You’ll want to
create a new source bitmap that has room for your background image and the tiles used
in the game. Paste your background image into the new bitmap at the top, with the game
tiles located underneath. Also be sure to leave some extra space at the bottom so it is eas-
ier to add new tiles as you are developing the game (see Figure 14.5).

Using this combined source bitmap, go into Mappy and, after having created the 640×480
map (20 tiles across, 15 tiles down, 32×32 pixels per tile), select Useful Functions, Create
Map from Big Picture. The resulting map should look similar to the one shown in Figure
14.6. If you scroll down in the tile palette, you should see the foreground tiles below the
background image tiles. See how Mappy has divided the image into a set of tiles?
Naturally, you could do this sort of thing with source code by blitting a transparent tile
map over a background image, but doing this in Mappy is more interesting (and saves you
time writing source code).

You might be wondering, “What next? Am I creating a scrolling game out of a 640×480
tile map?” Not at all; this is only the first step. You must use a tile map that is exactly the
same size as the background image in your source bitmap, or the background tiles will be
tweaked. Once the background has been generated, you can resize the map.

Open the MapTools menu and select Resize Map to bring up the Resize Map Array dialog
box shown in Figure 14.7.

Creating Horizontal Platform Levels with Mappy 493

Figure 14.5 The background image and game tiles are stored in
the same bitmap image and imported into Mappy.

Press the button labeled 4 to instruct the resize routine to
preserve the existing tiles during the resize. The new map
can be any size you want, but I normally choose the largest
map size possible until I’ve designed the level, to provide a
lot of work space. Besides, it’s more fun to include large
levels in your games than smaller ones. Just keep in mind
that Mappy supports a maximum of 30,000 tiles. If you
want your game to scroll upward (as the player is jumping
on tiles), keep that in mind. Fifteen tiles deep equates to
480 pixels. You can enter 20 for the height if you want. That
is probably a better idea after all, to allow some room for
jumping.

Next, you can experiment with the Brush menu to duplicate the background tiles across
the entire level, unless you intend to vary the background. I created a background that
meshes well from either side to provide a seamless image when scrolling left or right.
Basically, you can choose Grab New Brush, then use the mouse to select a rectangular set
of tiles with which to create the brush, and then give the new brush a name. From then
on, anywhere you click will duplicate that section of tiles. I used this method to fill the
entire level with the same small background tiles. The beautiful thing about this is you end
up with a very small memory footprint for such an apparently huge background image.

Chapter 14 � Horizontal Scrolling Platform Games494

Figure 14.6 A new tile map has been generated based on the source bitmap image.

Figure 14.7 The Resize Map
Array dialog box

After resizing and filling the map with the background tiles, the result might look some-
thing like Figure 14.8.

Separating the Foreground Tiles
After you have filled the level with the background tiles, it’s time to get started designing
the level. But first, you need to make a change to the underlying structure of the fore-
ground tiles, setting them to the FG1 property to differentiate them from the background
tiles. This will allow you to identify these tiles in the game to facilitate collision detection
on the edges of the tiles.

If you decided to skip over the step earlier in which I suggested adding tiles below the
bitmap image, you will need to complete it at this time because the background tiles are
not suitable for creating a game level.

The tiles provided on the CD-ROM in the \chapter14\PlatformScroller project folder will
suffice if you want to simply copy the file off the CD-ROM. I have called the original tile
image blocks1.bmp and the combined image blocks2.bmp. (This second one will be used
in the PlatformScroller demo shortly.)

Throughout this discussion, I want to encourage you to use your own artwork in the
game. Create your own funky background image as I have done for the PlatformScroller
program that is coming up. As for the tiles, that is a more difficult matter because there is
no easy way to draw attractive tiles. As expected, I am using a tileset from Ari Feldman’s
SpriteLib in this chapter as well. (See http://www.arifeldman.com for more information.)

Creating Horizontal Platform Levels with Mappy 495

Figure 14.8 A very large horizontally oriented level in Mappy with a bitmap background image

SpriteLib is a good place to start when you need sprites and tiles with which to develop
your game, although it is not a replacement for your own commissioned artwork. Contact
Ari to find out how to order a custom sprite set.

Assuming you are using the blocks2.bmp file I created and stored in the project folder for
this chapter, you’ll want to scroll down in the tile palette to tile 156, the first foreground
tile in the tile set (see Figure 14.9).

After you have identified the first foreground tile, you can use this number in the next step.
What you are going to do is change the property of the tiles. Double-click on tile #156 to
bring up the tile editor. By default, tiles that have been added to the map are assigned to the
background, which is the standard level used in
simple games (see Figure 14.10).

Do you see the four small boxes on the bottom-
left of the Block Properties dialog box? These rep-
resent the tile image used for each level (BG, FG1,
FG2, FG3). Click on the BG box to bring up the
Pick Block Graphic dialog box. Scroll up to the
very first tile, which is blank, and select it, and
then close the dialog box (see Figure 14.11).

Chapter 14 � Horizontal Scrolling Platform Games496

Figure 14.9 Highlighting the first foreground tile in Mappy (right side of the screen)

Figure 14.10 The Block Properties
dialog box provides an interface for
changing the properties of the tiles.

Next, click on the FG1 map layer box and locate the tile image
you just removed from BG. If you have a hard time locating
tiles, I recommend first selecting FG1 before you remove the
BG tile. After you have selected the correct tile, you have
essentially moved the tile from BG to FG1. In a moment, I
will show you a method to quickly make this change on a
range of tiles.

The next property to change on the foreground tiles is the col-
lision. If you look for the Collision boxes near the middle of
the Block Properties dialog box, you’ll see four check boxes.
Check all of them so the tile properties look like Figure 14.12.

Have you noticed that the Block Properties dialog
box has many options that don’t immediately
seem useful? Mappy is actually capable of storing
quite a bit of information for each tile. Imagine
being able to set the collision property while also
having access to seven numeric values and three
Booleans. This is more than enough information
for even a highly complex RPG, which typically
has more complicated maps than other games. You can set these values in Mappy for use
in the game, and you can also read or set the values in your program using the various
properties and arrays in MappyAL. For reference, open the mappyal.h file, which contains
all the definitions. You can also examine some of the sample programs that come with
MappyAL (included on the CD-ROM under \mappy\mappyal).

For the purpose of creating a simple platform game, you only need to set the four colli-
sion boxes. (Note that you can fine-tune the collision results in your game by setting only
certain collision boxes here.)

Performing a Range Block Edit
Open the MapEdit menu and select Range Edit Blocks to bring up the Range Alter Block
Properties dialog box shown in Figure 14.13.

In the From field, enter the number of the first foreground tile. If you are using the
blocks2.bmp file for this chapter project, the tile number is 156.

Creating Horizontal Platform Levels with Mappy 497

Figure 14.11 The Pick
Block Graphic dialog box is
used to select a tile for each
of the four scroll layers.

Figure 14.12 Changing the collision
properties of the tile

In the To field, enter the number of the last tile in
the foreground tile set, which is 337 in this case.

You now have an opportunity to set any of the
property values for the range of blocks. Make sure
all four collision boxes are fully checked.

The most important thing to do with this range
edit is swap the BG for the FG1 layer. This will
have the same effect as the manual edit you per-
formed earlier, and it will affect all of the tiles in
one fell swoop.

After clicking on OK to perform the action, you can save the map file and move on to the
next section. You might want to double-click on one of the tiles to ensure that the change
from BG to FG1 has been made.

If you have not added any tiles to your map, you must do that before you continue. As a
general rule, the edges of the map should be walled, and a floor should be across the bot-
tom, or at least insert a platform for the start position if your level design does not include
a floor. You might want to let the player “fall” as part of the challenge for a level, in which
case you’ll need to check the Y position of the player’s sprite to determine when the player
has dropped below the floor. Just be careful to design your level so that there is room for
the player to fall. The PlatformScroller program to follow does not account for sprites
going out of range, but normally when the player falls below the bottom edge of the
screen, he has lost a life and must restart the level.

Developing a Scrolling Platform Game
The PlatformScroller program included on the CD-ROM is all ready to run, but I will go over
the construction of this program and the artwork used by it. You already created the map in
the last section, but you can also use the provided map file (sample.fmp) if you want.

Describing the Game
The PlatformScroller demo features an animated player character who can run left or right
(controlled by the arrow keys) and jump (controlled by the spacebar). The map is quite
large, 1,500 tiles across (48,000 pixels) by 15 tiles down (480 pixels). The PlatformScroller
engine is capable of handling up and down scroll directions, so you can design maps that
go up, for instance, by allowing the player to jump from ledge to ledge, by flying, or by
some other means. Figure 14.14 shows the player jumping. It is up to the level designer to
ensure that the player has a path on which to walk, and it is up to the programmer to han-
dle cases in which the player falls off the screen (and usually dies).

Chapter 14 � Horizontal Scrolling Platform Games498

Figure 14.13 The Range Alter Block
Properties dialog box

The background image is an exam-
ple; you should design your own
background imagery, as described
earlier in this chapter. Although I
have not gotten into the subject in
this book, you can also feature par-
allax scrolling using MappyAL by
creating additional layers in the
map file. MappyAL has the code to
draw parallax layers. Of course, you
can draw multiple layers yourself
using the standard Allegro blit
function.

The Game Artwork
The artwork for the PlatformScroller demo is primarily comprised of the background
image and foreground tiles you have already seen. For reference, the tiles are shown in
Figure 14.15.

The only animated artwork
in the game is the player
character that moves around
the level, running and jump-
ing (see Figure 14.16). This
character is represented by a
sprite with eight frames of
animation. Four additional
animation frames are pro-
vided in the guy.bmp file that
you can use for a jumping
animation. I have not used
these frames to keep the
source code listing relatively
short (in contrast to the long
listing for Warbirds Pacifica
in the previous chapter).

499Developing a Scrolling Platform Game

Figure 14.14 The PlatformScroller program
demonstrates how the player’s sprite can interact with
tiles using the collision properties set within Mappy.

Figure 14.15 The source tiles used in PlatformScroller
(which you may use to modify the level)

Using the Platform Scroller
Most of the source code for the PlatformScroller demo is familiar from previous chapters,
including the SPRITE struct and so on. The new information that might need clarification
has to do with tile collision.

You might recall from the Block Properties dialog box in Mappy that you set four colli-
sion boxes. These values are stored in a struct called BLKSTR.

//structure for data blocks
typedef struct {
long int bgoff, fgoff; //offsets from start of graphic blocks
long int fgoff2, fgoff3; //more overlay blocks
unsigned long int user1, user2; //user long data
unsigned short int user3, user4; //user short data
unsigned char user5, user6, user7; //user byte data
unsigned char tl : 1; //bits for collision detection
unsigned char tr : 1;
unsigned char bl : 1;
unsigned char br : 1;
unsigned char trigger : 1; //bits to trigger an event
unsigned char unused1 : 1;
unsigned char unused2 : 1;
unsigned char unused3 : 1;
} BLKSTR;

You might be able to identify the members of the struct after seeing them represented in
the Block Properties dialog box. You might notice the seven integer values (user1 to user7)
and the three values (unused1, unused2, unused3).

The values you need for collision detection with tiles are called tl and tr (for top-left and top-
right) and bl and br (you guessed it, for bottom-left and bottom-right). What is needed to

Chapter 14 � Horizontal Scrolling Platform Games500

Figure 14.16 The source image containing the animated player character in
the PlatformScroller demo

determine when a collision takes place? It’s remarkably easy thanks to MappyAL. You can
retrieve the block number from an (x,y) position (presumably, the player’s sprite loca-
tion), and then simply return a value specifying whether that tile has one or more of the
collision values (tl, tr, bl, br) set to 1 or 0. Simply returning the result is enough to pass a
true or false response from a collision function. So here you have it:

int collided(int x, int y)
{

BLKSTR *blockdata;
blockdata = MapGetBlock(x/mapblockwidth, y/mapblockheight);
return blockdata->tl;

}

The MapGetBlock function accepts a (row,column) value pair and simply returns a pointer
to the block located in that position of the map. This is extremely handy, isn’t it?

Writing the Source Code
Because the collision and ability to retrieve a specific tile from the map are so easy to han-
dle, the source code for the PlatformScroller program is equally manageable. There is some
code to manage the player’s position, but a small amount of study reveals the simplicity
of this code. The player’s position is tracked as player->x and player->y and is compared
to the collision values to determine when the sprite should stop moving (left, right, or
down). There is currently no facility for handling the bottom edge of tiles; the sprite can
jump through a tile from below, but not from above (see Figure 14.17). This might be a
feature you will need, depending on the requirements of your own games.

The source code for the Platform
Scroller demo follows. As was the
case with the projects in the last
chapter, you will need to include
the mappyal.h and mappyal.c files
(which make up the MappyAL
library) and include a linker refer-
ence to alleg.lib as usual (or -lalleg,
depending on your compiler). I have
highlighted in bold significant sec-
tions of new code that contribute
to the logic of the game or require
special attention.

Developing a Scrolling Platform Game 501

Figure 14.17 The player can jump through tiles from
below, but will stop when landing on top of a tile.

#include <stdio.h>
#include <allegro.h>
#include “mappyal.h”

#define MODE GFX_AUTODETECT_FULLSCREEN
#define WIDTH 640
#define HEIGHT 480
#define JUMPIT 1600

//define the sprite structure
typedef struct SPRITE
{

int dir, alive;
int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

//declare the bitmaps and sprites
BITMAP *player_image[8];
SPRITE *player;
BITMAP *buffer;
BITMAP *temp;

//tile grabber
BITMAP *grabframe(BITMAP *source,

int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);
int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;
blit(source,temp,x,y,0,0,width,height);
return temp;

}

int collided(int x, int y)
{

Chapter 14 � Horizontal Scrolling Platform Games502

BLKSTR *blockdata;
blockdata = MapGetBlock(x/mapblockwidth, y/mapblockheight);
return blockdata->tl;

}

int main (void)
{

int mapxoff, mapyoff;
int oldpy, oldpx;
int facing = 0;
int jump = JUMPIT;
int n;

allegro_init();
install_timer();
install_keyboard();
set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);

//load the player sprite
temp = load_bitmap(“guy.bmp”, NULL);
for (n=0; n<8; n++)

player_image[n] = grabframe(temp,50,64,0,0,8,n);
destroy_bitmap(temp);

//initialize the sprite
player = malloc(sizeof(SPRITE));
player->x = 80;
player->y = 100;
player->curframe=0;
player->framecount=0;
player->framedelay=6;
player->maxframe=7;
player->width=player_image[0]->w;
player->height=player_image[0]->h;

//load the map
if (MapLoad(“sample.fmp”)) exit(0);

//create the double buffer
buffer = create_bitmap (WIDTH, HEIGHT);
clear(buffer);

Developing a Scrolling Platform Game 503

//main loop
while (!key[KEY_ESC])
{

oldpy = player->y;
oldpx = player->x;

if (key[KEY_RIGHT])
{

facing = 1;
player->x+=2;
if (++player->framecount > player->framedelay)
{

player->framecount=0;
if (++player->curframe > player->maxframe)

player->curframe=1;
}

}
else if (key[KEY_LEFT])
{

facing = 0;
player->x-=2;
if (++player->framecount > player->framedelay)
{

player->framecount=0;
if (++player->curframe > player->maxframe)

player->curframe=1;
}

}
else player->curframe=0;

//handle jumping
if (jump==JUMPIT)
{

if (!collided(player->x + player->width/2,
player->y + player->height + 5))
jump = 0;

if (key[KEY_SPACE])
jump = 30;

}
else
{

Chapter 14 � Horizontal Scrolling Platform Games504

player->y -= jump/3;
jump—;

}

if (jump<0)
{

if (collided(player->x + player->width/2,
player->y + player->height))

{
jump = JUMPIT;
while (collided(player->x + player->width/2,

player->y + player->height))
player->y -= 2;

}
}

//check for collision with foreground tiles
if (!facing)
{

if (collided(player->x, player->y + player->height))
player->x = oldpx;

}
else
{

if (collided(player->x + player->width,
player->y + player->height))
player->x = oldpx;

}

//update the map scroll position
mapxoff = player->x + player->width/2 - WIDTH/2 + 10;
mapyoff = player->y + player->height/2 - HEIGHT/2 + 10;

//avoid moving beyond the map edge
if (mapxoff < 0) mapxoff = 0;
if (mapxoff > (mapwidth * mapblockwidth - WIDTH))

mapxoff = mapwidth * mapblockwidth - WIDTH;
if (mapyoff < 0)

mapyoff = 0;
if (mapyoff > (mapheight * mapblockheight - HEIGHT))

mapyoff = mapheight * mapblockheight - HEIGHT;

Developing a Scrolling Platform Game 505

//draw the background tiles
MapDrawBG(buffer, mapxoff, mapyoff, 0, 0, WIDTH-1, HEIGHT-1);

//draw foreground tiles
MapDrawFG(buffer, mapxoff, mapyoff, 0, 0, WIDTH-1, HEIGHT-1, 0);

//draw the player’s sprite
if (facing)

draw_sprite(buffer, player_image[player->curframe],
(player->x-mapxoff), (player->y-mapyoff));

else
draw_sprite_h_flip(buffer, player_image[player->curframe],

(player->x-mapxoff), (player->y-mapyoff));

//blit the double buffer
vsync();
acquire_screen();
blit(buffer, screen, 0, 0, 0, 0, WIDTH-1, HEIGHT-1);
release_screen();

} //while

//clean up
for (n=0; n<9; n++)

destroy_bitmap(player_image[n]);
free(player);
destroy_bitmap(buffer);
MapFreeMem();
allegro_exit();

}
END_OF_MAIN();

Summary
This chapter provided an introduction to horizontal scrolling platform games, explained
how to create platform levels with Mappy, and demonstrated how to put platforming into
practice with a sample demonstration program that you could use as a template for any
number of platform games. This subject might seem dated to some, but when does great
gameplay ever get old? If you take a look at the many Game Boy Advance titles being
released this year, you’ll notice that most of them are scrolling arcade-style games or plat-
formers! The market for such games has not waned in the two decades since the inception
of this genre and it does not look like it will let up any time soon. So have fun and create
the next Super Mario World, and I guarantee you, someone will publish your game.

Chapter 14 � Horizontal Scrolling Platform Games506

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. Which term is often used to describe a horizontal-scrolling game with a walking
character?

A. Shooter

B. Platform

C. RPG

D. Walker

2. What is the name of the map-editing tool you have used in the last several chapters?

A. Mappy

B. Map Editor

C. Mapper

D. Tile Editor

3. What is the identifier for the Mappy block property representing the background?

A. BG1

B. BACK

C. BG

D. BGND

4. What is the identifier for the Mappy block property representing the first
foreground layer?

A. FG1

B. FORE1

C. FG

D. LV1

5. Which dialog box allows the editing of tile properties in Mappy?

A. Tile Properties

B. Map Tile Editor

C. Map Block Editor

D. Block Properties

Chapter Quiz 507

6. Which menu item brings up the Range Alter Block Properties dialog?

A. Range Alter Block Properties

B. Range Edit Blocks

C. Range Edit Tile Properties

D. Range Block Edit

7. What is the name of the MappyAL struct that contains information about tile
blocks?

A. BLOCKS

B. TILEBLOCK

C. BLKSTR

D. BLKINFO

8. What MappyAL function returns a pointer to a block specified by the (x,y)
parameters?

A. MapGetBlock

B. GetDataBlock

C. GetTileAt

D. MapGetTile

9. What is the name of the function that draws the map’s background?

A. MapDrawBG

B. DrawBackground

C. DrawMapBack

D. DrawMapBG

10. Which MappyAL block struct member was used to detect collisions in the
sample program?

A. bl

B. br

C. tl

D. tr

Chapter 14 � Horizontal Scrolling Platform Games508

Taking it to the
Next Level

Chapter 15
Mastering the Audible Realm: Allegro’s Sound Support 511

Chapter 16
Using Datafiles to Store Game Resources .539

Chapter 17
Playing FLIC Movies .551

Chapter 18
Introduction to Artificial Intelligence .563

Chapter 19
The Mathematical Side of Games .585

Chapter 20
Publishing Your Game .611

PART III

W
elcome to Part III of Game Programming All in One, 2nd Edition. Part III
includes six chapters that push the boundaries of your game development skills
to the limit. You will find coverage of sound mixing and sample playback, storing

game resources in datafiles, and playing FLIC movies before you delve into the complex
subjects of artificial intelligence and mathematics. The book ends with a chapter about
how to get your games published.

511

Mastering the Audible
Realm: Allegro’s Sound
Support

chapter 15

M
ost game programmers are interested in pushing graphics to the limit, first and
foremost, and few of us really get enthusiastic about the sound effects and music
in a game. That is natural, since the graphics system is the most critical aspect

of the game. Sound can be an equal partner with the graphics to provide a memorable,
challenging, and satisfying game experience far beyond pretty graphics alone. Indeed, the
sound effects and music are often what gamers love most about a game.

This chapter provides an introduction to the sound support that comes with Allegro, and
Allegro is significantly loaded with features! Allegro provides an interface to the underlying
sound system available on any particular computer system first, and if some features are
not available, Allegro will emulate them if necessary. For instance, a basic digital sound
mixer is often the first request of a game designer considering the sound support for a
game because this is the core of a sound engine. Allegro will interface with DirectSound
on Windows systems to provide the mixer and many more features and will take advan-
tage of any similar standardized library support in other operating systems to provide a
consistent level of performance and function in a game on any system.

Here is a breakdown of the major topics in this chapter:

� Understanding sound initialization routines

� Working with standard sample playback routines

� Using low-level sample playback routines

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support512

The PlayWave Program
I want to get started right away with a sample program to demonstrate how to load and
play a WAV file through the sound system because this is the usual beginning of a more
complex sound system in a game. Figure 15.1 shows the output from the PlayWave pro-
gram. As with all the other support functions in Allegro, you only need to link to the
Allegro library file (alleg.lib or liballeg.a) and include allegro.h in your program—no
other special requirements are needed. Essentially, you have a built-in sound system along
with everything else in Allegro. Go ahead and try out this program; I will explain how it
works later in this chapter. All you need to run it is a sample WAV file, which you can usu-
ally find in abundance on the Web in public domain sound libraries. I have included a
sample clapping.wav file in the project folder for this program on the CD-ROM; it is in
\chapter15\PlayWave.

#include <allegro.h>

#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480
#define WHITE makecol(255,255,255)

void main(void)
{

SAMPLE *sample;
int panning = 128;
int pitch = 1000;
int volume = 128;

Figure 15.1 The PlayWave program demonstrates how to initialize the
sound system and play a WAV file.

//initialize the program
allegro_init();
install_keyboard();
install_timer();
set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
text_mode(0);

//install a digital sound driver
if (install_sound(DIGI_AUTODETECT, MIDI_NONE, “”) != 0)
{

allegro_message(“Error initializing sound system”);
return;

}

//display program information
textout(screen,font,”PlayWave Program (ESC to quit)”,0,0,WHITE);
textprintf(screen,font,0,10,WHITE,”Sound Driver: %s”,digi_driver->name);
textout(screen,font,”Playing clapping.wav...”,0,20,WHITE);
textout(screen,font,”Left,Right - Pan Left,Right”,0,50,WHITE);
textout(screen,font,”Up,Down - Pitch Raise,Lower”,0,60,WHITE);
textout(screen,font,”-,+ - Volume Down,Up”,0,70,WHITE);

//load the wave file
sample = load_sample(“clapping.wav”);
if (!sample)
{

allegro_message(“Error reading wave file”);
return;

}

//play the sample with looping
play_sample(sample, volume, pan, pitch, TRUE);

//main loop
while (!key[KEY_ESC])
{

//change the panning
if ((key[KEY_LEFT]) && (panning > 0))

panning—;
else if ((key[KEY_RIGHT]) && (panning < 255))

panning++;

The PlayWave Program 513

//change the pitch (rounding at 512)
if ((key[KEY_UP]) && (pitch < 16384))

pitch = ((pitch * 513) / 512) + 1;
else if ((key[KEY_DOWN]) && (pitch > 64))

pitch = ((pitch * 511) / 512) - 1;

//change the volume
if (key[KEY_EQUALS] && volume < 255)

volume++;
else if (key[KEY_MINUS] && volume > 0)

volume—;

//adjust the sample
adjust_sample(sample, volume, pan, pitch, TRUE);

//pause
rest(5);

//display status
textprintf(screen,font,0,100,WHITE,”PITCH: %5d”, pitch);
textprintf(screen,font,0,110,WHITE,”PAN: %5d”, panning);
textprintf(screen,font,0,120,WHITE,”VOLUME:%5d”, volume);

}

//destroy the sample
destroy_sample(sample);

//remove the sound driver
remove_sound();

return;
}

END_OF_MAIN();

Now I want go over some of the functions in the PlayWave program and more Allegro
sound routines that you’ll need. This gives you a preview of what is possible with Allegro,
but don’t limit your imagination to this meager example because much more is possible.

Sound Initialization Routines
As with the graphics system, you must initialize the sound system before you use the
sound routines. Why is that? Allegro runs as lean as possible and only allocates memory

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support514

Sound Initialization Routines 515

when it is needed. It would be a shame if every Allegro feature were allocated and initial-
ized automatically with even the smallest of programs (such as a command-line utility).

Now I’ll go over some of the sound initialization routines you’ll be using most often. If you
require more advanced features, you can refer to the Allegro documentation, header files,
and online sources for information on topics such as sound recording, MIDI, and stream-
ing. I will not cover those features here because they are not normally needed in a game.

Detecting the Digital Sound Driver
The detect_digi_driver function determines whether the specified digital sound device is
available. It returns the maximum number of voices that the driver can provide or zero if
the device is not available. This function must be called before install_sound.

int detect_digi_driver(int driver_id);

Reserving Voices
The reserve_voices function is used to specify the number of voices that are to be used by
the digital and MIDI sound drivers, respectively. This must be called before install_sound.
If you reserve too many voices, subsequent calls to install_sound will fail. The actual number
of voices available depends on the driver, and in some cases you will actually get more
than you reserve. To restore the voice setting to the default, you can pass –1 to the function.
Be aware that sound quality might drop if too many voices are in use.

void reserve_voices(int digi_voices, int midi_voices);

Setting an Individual Voice Volume
The set_volume_per_voice function is used to adjust the volume of each voice to compen-
sate for mixer output being too loud or too quiet, depending on the number of samples
being mixed (because Allegro lowers the volume each time a voice is added to help reduce
distortion). This must be called before calling install_sound. To play a sample at the max-
imum volume without distortion, use 0; otherwise, you should call this function with 1
when panning will be used. It is important to understand that each time you increase the
parameter by one, the volume of each voice will be halved. So if you pass 2, you can play
up to eight samples at maximum volume without distortion (as long as panning is not
used). If all else fails, you can pass –1 to restore the volumes to the default levels. Table 15.1
provides a guide.

Here is the definition of the function:

void set_volume_per_voice(int scale);

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support516

Table 15.1 Channel Volume Parameters

Number of Voices Recommended Parameters

1–8 voices set_volume_per_voice(2)
16 voices set_volume_per_voice(3)
32 voices set_volume_per_voice(4)
64 voices set_volume_per_voice(5)

Initializing the Sound Driver
After you have configured the sound system to meet your needs with the functions just
covered, you can call install_sound to initialize the sound driver. The default parameters
are DIGI_AUTODETECT and MIDI_AUTODETECT, which instruct Allegro to read hardware settings
from a configuration file (which was a significant issue under MS-DOS and is no longer
needed with the sound drivers of modern operating systems).

int install_sound(int digi, int midi, const char *cfg_path);

t i p

The third parameter of install_sound generally is not needed any longer with modern operating
systems that use a sound card device driver model.

Removing the Sound Driver
The remove_sound function removes the sound driver and can be called when you no longer
need to use the sound routines.

void remove_sound();

Changing the Volume
The set_volume function is used to change the overall volume of the sound system (both
digital and MIDI), with a range of 0 to 255. To leave one parameter unchanged while
updating the other, pass –1. Most systems with sound cards will have hardware mixers, but
Allegro will create a software sound mixer if necessary.

void set_volume(int digi_volume, int midi_volume);

Standard Sample Playback Routines
The digital sample playback routines can be rather daunting because there are so many of
them, but many of these routines are holdovers from when Allegro was developed for MS-
DOS. I will cover the most important and useful sample playback routines. Because sound
mixers are common in the sound card now, many of the support functions are no longer
needed; it is usually enough for any game that a sound mixer is working and sound effects
can be played simultaneously.

If some of this listing seems like a header file dump, it is because there are so many sound
routines provided by Allegro to manipulate samples and voice channels that a code example
for each one would be too difficult (and time consuming). Suffice it to say, many of the
seldom-used functions are included here for your reference.

Loading a Sample File
The load_sample function will load a .wav or .voc file. The .voc file format was created by
Creative Labs for the first Sound Blaster sound card, and this format was very popular
with MS-DOS games. It is nice to have the ability to load either file format with this rou-
tine because .voc might still be a better format for some older systems.

SAMPLE *load_sample(const char *filename);

Loading a WAV File
The load_wav function will load a standard Windows or OS/2 RIFF WAV file. This function
is called by load_sample based on the file extension.

SAMPLE *load_wav(const char *filename);

Loading a VOC File
The load_voc function will load a Creative Labs VOC file. This function is called by
load_sample based on the file extension.

SAMPLE *load_voc(const char *filename);

Playing a Sample
The play_sample function starts playback of a sample using the provided parameters to set
the properties of the sample prior to playback. The available parameters are volume, pan-
ning, frequency (pitch), and a Boolean value for looping the sample.

The volume and pan range from 0 to 255. Frequency is relative rather than absolute—
1000 represents the frequency at which the sample was recorded, 2000 is twice this, and so

Standard Sample Playback Routines 517

on. If the loop flag is set, the sample will repeat until you call stop_sample and can be
manipulated during playback with adjust_sample. This function returns the voice number
that was allocated for the sample (or –1 if it failed).

int play_sample(const SAMPLE *spl, int vol, int pan, int freq, int loop);

Altering a Sample’s Properties
The adjust_sample function alters the properties of a sample during playback. (This is usu-
ally only useful for looping samples.) The parameters are volume, panning, frequency, and
looping. If there is more than one copy of the same sample playing (as in a repeatable
sound, such as an explosion), this will adjust the first one. If the sample is not playing it
has no effect.

void adjust_sample(const SAMPLE *spl, int vol, int pan, int freq, int loop);

Stopping a Sample
The stop_sample function stops playback and is often needed for samples that are looping
in playback. If more than one copy of the sample is playing (such as an explosion sound),
this function will stop all of them.

void stop_sample(const SAMPLE *spl);

Creating a New Sample
The create_sample function creates a new sample with the specified bits (sampling rate), stereo
flag, frequency, and length. The returned SAMPLE pointer is then treated like any other sample.

SAMPLE *create_sample(int bits, int stereo, int freq, int len);

Destroying a Sample
The destroy_sample function is used to remove a sample from memory. You can call this
function even when the sample is playing because Allegro will first stop playback.

void destroy_sample(SAMPLE *spl);

Low-Level Sample Playback Routines
If you need more detailed control over how samples are played, you can use the lower-
level voice functions as an option rather than using the sample routines. The voice rou-
tines require more work because you must allocate and free voice data in memory rather
than letting Allegro handle such details, but you do gain more control over the mixer and
playback functionality.

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support518

Allocating a Voice
The allocate_voice function allocates memory for a sample in the mixer with default para-
meters for volume, centered pan, standard frequency, and no looping. After voice playback
has finished, it must be removed using deallocate_voice. This function returns the voice
number or –1 on error.

int allocate_voice(const SAMPLE *spl);

Removing a Voice
The deallocate_voice function removes a voice from the mixer after stopping playback and
releases any resources it was using.

void deallocate_voice(int voice);

Reallocating a Voice
The reallocate_voice function changes the sample for an existing voice, which is equiva-
lent to deallocating the voice and then reallocating it again using the new sample.

void reallocate_voice(int voice, const SAMPLE *spl);

Releasing a Voice
The release_voice function releases a voice and allows it to play through to completion
without any further manipulation. After playback has finished, the voice is automatically
removed. This is equivalent to deallocating the voice at the end of playback.

void release_voice(int voice);

Activating a Voice
The voice_start function activates a voice using the properties configured for the voice.

void voice_start(int voice);

Stopping a Voice
The voice_stop function stops (or rather, pauses) a voice at the current playback position,
after which playback can be resumed with a call to voice_start.

void voice_stop(int voice);

Low-Level Sample Playback Routines 519

Setting Voice Priority
The voice_set_priority function sets the priority of the sample in the mixer with a priority
range of 0 to 255. Lower-priority voices are cropped when the mixer becomes filled.

void voice_set_priority(int voice, int priority);

Checking the Status of a Voice
The voice_check function determines whether a voice has been allocated, returning a copy
of the sample if it is allocated or NULL if the sample is not present.

SAMPLE *voice_check(int voice);

Returning the Position of a Voice
The voice_get_position function returns the current position of playback for that voice or
–1 if playback has finished.

int voice_get_position(int voice);

Setting the Position of a Voice
The voice_set_position function sets the playback position of a voice in sample units.

void voice_set_position(int voice, int position);

Altering the Playback Mode of a Voice
The voice_set_playmode function adjusts the loop status of a voice and can be called even
while a voice is engaged in playback.

void voice_set_playmode(int voice, int playmode);

The playmode parameters listed in Table 15.2 can be passed to this function.

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support520

Table 15.2 Play Mode Parameters

Play Mode Parameter Description

PLAYMODE_PLAY Plays the sample once; this is the default without looping.

PLAYMODE_LOOP Loops repeatedly through the sample.

PLAYMODE_FORWARD Plays the sample from start to end; supports looping.

PLAYMODE_BACKWARD Plays the sample in reverse from end to start; supports looping.

PLAYMODE_BIDIR Plays the sample forward and backward, reversing direction each
time the start or end position is reached during playback.

Returning the Volume of a Voice
The voice_get_volume function returns the current volume of a voice in the range of 0 to 255.

int voice_get_volume(int voice);

Setting the Volume of a Voice
The voice_set_volume function sets the volume of a voice in the range of 0 to 255.

void voice_set_volume(int voice, int volume);

Ramping the Volume of a Voice
The voice_ramp_volume functions starts a volume ramp up (crescendo) or down (diminuendo)
from the current volume to the specified volume for a specified number of milliseconds.

void voice_ramp_volume(int voice, int time, int endvol);

Stopping a Volume Ramp
The voice_stop_volumeramp function interrupts a volume ramp that was previously started
with voice_ramp_volume.

void voice_stop_volumeramp(int voice);

Returning the Pitch of a Voice
The voice_get_frequency function returns the current pitch of the voice in Hertz (Hz).

int voice_get_frequency(int voice);

Setting the Pitch of a Voice
The voice_set_frequency function sets the pitch of a voice in Hertz (Hz).

void voice_set_frequency(int voice, int frequency);

Performing a Frequency Sweep of a Voice
The voice_sweep_frequency function performs a frequency sweep (glissando) from the current
frequency (or pitch) to the specified ending frequency, lasting for the specified number of
milliseconds.

void voice_sweep_frequency(int voice, int time, int endfreq);

Low-Level Sample Playback Routines 521

Stopping a Frequency Sweep
The voice_stop_frequency_sweep function interrupts a frequency sweep that was previously
started with voice_sweep_frequency.

void voice_stop_frequency_sweep(int voice);

Returning the Pan Value of a Voice
The voice_get_pan function returns the current panning value from 0 (left speaker) to 255
(right speaker).

int voice_get_pan(int voice);

Setting the Pan Value of a Voice
The voice_set_pan function sets the panning position of a voice with a range of 0 (left
speaker) to 255 (right speaker).

void voice_set_pan(int voice, int pan);

Performing a Sweeping Pan on a Voice
The voice_sweep_pan function performs a sweeping pan from left to right (or vice versa) from
the current panning value to the specified ending value with a duration in milliseconds.

void voice_sweep_pan(int voice, int time, int endpan);

Stopping a Sweeping Pan
The voice_stop_pan_sweep function interrupts a panning sweep operation that was previ-
ously started with the voice_sweep_pan function.

void voice_stop_pan_sweep(int voice);

The SampleMixer Program
I think you will be pleasantly surprised by the simplicity of the next demonstration program
in this chapter. SampleMixer is a short program that shows you how easy it is to feature
multi-channel digital sample playback in your own games (and any other programs) using
Allegro’s digital sound mixer. Figure 15.2 shows the output from the program. As you can
see, there is only a simple interface with no bells or whistles.

The WAV files used in this sample program are included on the CD-ROM in the \chapter15\
SampleMixer folder.

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support522

#include <allegro.h>

#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480
#define WHITE makecol(255,255,255)

void main(void)
{

SAMPLE *samples[5];
int volume = 128;
int pan = 128;
int pitch = 1000;
int n;

//initialize the program
allegro_init();
install_keyboard();
install_timer();
set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
text_mode(0);

//install a digital sound driver
if (install_sound(DIGI_AUTODETECT, MIDI_NONE, “”) != 0)
{

The SampleMixer Program 523

Figure 15.2 The SampleMixer program demonstrates the sound mixer provided
by Allegro.

allegro_message(“Error initializing the sound system”);
return;

}

//display program information
textout(screen,font,”SampleMixer Program (ESC to quit)”,0,0,WHITE);
textprintf(screen,font,0,10,WHITE,”Sound Driver: %s”, digi_driver->name);

//display simple menu
textout(screen,font,”1 - Clapping Sound”,0,50,WHITE);
textout(screen,font,”2 - Bee Sound”,0,60,WHITE);
textout(screen,font,”3 - Ambulance Sound”,0,70,WHITE);
textout(screen,font,”4 - Splash Sound”,0,80,WHITE);
textout(screen,font,”5 - Explosion Sound”,0,90,WHITE);

//load the wave file
//normally you would want to include error checking here
samples[0] = load_sample(“clapping.wav”);
samples[1] = load_sample(“bee.wav”);
samples[2] = load_sample(“ambulance.wav”);
samples[3] = load_sample(“splash.wav”);
samples[4] = load_sample(“explode.wav”);

//main loop
while (!key[KEY_ESC])
{

if (key[KEY_1])
play_sample(samples[0], volume, pan, pitch, FALSE);

if (key[KEY_2])
play_sample(samples[1], volume, pan, pitch, FALSE);

if (key[KEY_3])
play_sample(samples[2], volume, pan, pitch, FALSE);

if (key[KEY_4])
play_sample(samples[3], volume, pan, pitch, FALSE);

if (key[KEY_5])
play_sample(samples[4], volume, pan, pitch, FALSE);

//block fast key repeats
rest(50);

}

//destroy the samples
for (n=0; n<5; n++)

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support524

destroy_sample(samples[n]);

//remove the sound driver
remove_sound();

return;
}
END_OF_MAIN();

Enhancing Tank War
This chapter will see the final enhancement to Tank War ! It’s been a long journey for this
game, from a meager vector-based demo, through the various stages to bitmaps, sprites,
scrolling backgrounds, and animation. The final revision to the game (the ninth) will add
sound effects. In addition, since this is the last update that will be made to Tank War, I have
decided to throw in a few extras for good measure. Back in Chapter 5, it was premature to
add joystick support to Tank War. But much time has passed, and you have learned a great
deal in the intervening 10 chapters, so now you’ll finally have the opportunity to add joy-
stick support to the game. Along the way, I’ll show you how to limit the input routines a
little to make the tanks move more realistically.

By the time you have finished this section, Tank War will have sound effects, joystick sup-
port, and improved gameplay. All that will remain is for you to create some new map files
using Mappy to see how far you can take the game! I also suggest you play with the tech-
niques from Chapter 14 for testing collisions with Mappy tiles to add solid blocks to Tank
War. Because that is beyond the scope of this chapter, I leave the challenge to you. Now
let’s get started on the changes to the game.

Modifying the Game
The last revision to the game was back in Chapter 12, when you added Mappy support to
it. Now you can work on adding sound effects and joystick support, and tweaking the
gameplay a little. If you haven’t already, open the Tank War project from Chapter 12 to
make the proposed changes. You can also open the completed project in \chapter15
\tankwar if you want. At the very least, you need to copy the wave files out of the folder
and into the project folder on your hard drive. Here is a list of the files you need for this
enhancement:

� ammo.wav

� fire.wav

� goopy.wav

� harp.wav

525Enhancing Tank War

� hit1.wav

� hit2.wav

� ohhh.wav

� scream.wav

Modifying tankwar.h

The first change occurs in tankwar.h because there are some variables needed for this
enhancement, as well as a new function prototype. Scroll down in tankwar.h to the vari-
ables section and add the lines noted in bold.

//variables used for sound effects
#define PAN 128
#define PITCH 1000
#define VOLUME 128
#define NUM_SOUNDS 8
#define AMMO 0
#define HIT1 1
#define HIT2 2
#define FIRE 3
#define GOOPY 4
#define HARP 5
#define SCREAM 6
#define OHHH 7
SAMPLE *sounds[NUM_SOUNDS];

//some variables used to slow down keyboard input
int key_count[2];
int key_delay[2];

//function prototypes
void loadsounds();
void readjoysticks();
void animatetank(int num);
void updateexplosion(int num);

Modifying setup.c

Now open the setup.c source code file. Add the new loadsounds function to the top of the
file. This function loads all the new sound effects that will be used in Tank War.

void loadsounds()
{

//install a digital sound driver

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support526

if (install_sound(DIGI_AUTODETECT, MIDI_NONE, “”) != 0)
{

allegro_message(“Error initializing sound system”);
return;

}

//load the ammo sound
sounds[AMMO] = load_sample(“ammo.wav”);
if (!sounds[AMMO])
{

allegro_message(“Error reading ammo.wav”);
return;

}

//load the hit1 sound
sounds[HIT1] = load_sample(“hit1.wav”);
if (!sounds[HIT1])
{

allegro_message(“Error reading hit1.wav”);
return;

}
//load the hit2 sound
sounds[HIT2] = load_sample(“hit2.wav”);
if (!sounds[HIT2])
{

allegro_message(“Error reading hit2.wav”);
return;

}
//load the fire sound
sounds[FIRE] = load_sample(“fire.wav”);
if (!sounds[FIRE])
{

allegro_message(“Error reading fire.wav”);
return;

}
//load the goopy sound
sounds[GOOPY] = load_sample(“goopy.wav”);
if (!sounds[GOOPY])
{

allegro_message(“Error reading goopy.wav”);
return;

}

Enhancing Tank War 527

//load the harp sound
sounds[HARP] = load_sample(“harp.wav”);
if (!sounds[HARP])
{

allegro_message(“Error reading harp.wav”);
return;

}
//load the scream sound
sounds[SCREAM] = load_sample(“scream.wav”);
if (!sounds[SCREAM])
{

allegro_message(“Error reading scream.wav”);
return;

}
//load the ohhh sound
sounds[OHHH] = load_sample(“ohhh.wav”);
if (!sounds[OHHH])
{

allegro_message(“Error reading ohhh.wav”);
return;

}

//cannons are reloading
play_sample(sounds[0], VOLUME, PAN, PITCH, FALSE);

}

Modifying bullet.c

Now open the bullet.c file to add some function calls to play sounds at various points in the
game (for instance, during an explosion). The first function in this file is updateexplosion.
Down at the bottom of this function is an else statement. Add the play_sample line as shown.

}
else
{

//play “end of explosion” sound
play_sample(sounds[HARP], VOLUME, PAN, PITCH, FALSE);

explosions[num]->alive = 0;
explosions[num]->curframe = 0;

}
}

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support528

Now scroll down a little to the explosion function. Add the new lines of code as shown. You
might be wondering why there are three sounds being played at the start of an explosion.
It’s for variety! The three sounds together add a distinctive explosion sound, along with a
light comical twist. Remember that Allegro mixes sounds, so these are all played at basi-
cally the same time.

void explode(int num, int x, int y)
{

//initialize the explosion sprite
explosions[num]->alive = 1;
explosions[num]->x = x;
explosions[num]->y = y;
explosions[num]->curframe = 0;
explosions[num]->maxframe = 20;

//play explosion sounds
play_sample(sounds[GOOPY], VOLUME, PAN, PITCH, FALSE);
play_sample(sounds[HIT1], VOLUME, PAN, PITCH, FALSE);
play_sample(sounds[HIT2], VOLUME, PAN, PITCH, FALSE);

}

Now scroll down to the movebullet function. You’ll make a ton of changes to this function,
basically to add more humorous elements to the game. Whenever a bullet hits the edge of
the map, a reload sound is played (ammo.wav), which tells the player that he can fire
again. Remember that bullets will keep going until they strike the enemy tank or the edge
of the map. The next change to this function is quite funny, in my opinion. Whenever there
is a near miss of a bullet close to your tank, one of two samples is played. If it’s player 1, the
scream.wav sample is played, while ohhh.wav is played for a near miss with player 2. This
really adds a nice touch to the game, as you’ll see when you play it. Now, just make all the
changes noted in bold.

void movebullet(int num)
{

int x, y, tx, ty;

x = bullets[num]->x;
y = bullets[num]->y;

//is the bullet active?
if (!bullets[num]->alive) return;

//move bullet
bullets[num]->x += bullets[num]->xspeed;
bullets[num]->y += bullets[num]->yspeed;

Enhancing Tank War 529

x = bullets[num]->x;
y = bullets[num]->y;

//stay within the virtual screen
if (x < 0 || x > MAPW-6 || y < 0 || y > MAPH-6)
{

//play the ammo sound
play_sample(sounds[AMMO], VOLUME, PAN, PITCH, FALSE);

bullets[num]->alive = 0;
return;

}

//look for a direct hit using basic collision
tx = scrollx[!num] + SCROLLW/2;
ty = scrolly[!num] + SCROLLH/2;
if (inside(x,y,tx-15,ty-15,tx+15,ty+15))
{

//kill the bullet
bullets[num]->alive = 0;

//blow up the tank
x = scrollx[!num] + SCROLLW/2;
y = scrolly[!num] + SCROLLH/2;

//draw explosion in enemy window
explode(num, tanks[!num]->x, tanks[!num]->y);
scores[num]++;

//kill any “near miss” sounds
if (num)

stop_sample(sounds[SCREAM]);
else

stop_sample(sounds[OHHH]);
}

else if (inside(x,y,tx-30,ty-30,tx+30,ty+30))
{

//it’s a near miss!
if (num)

//player 1 screams
play_sample(sounds[SCREAM], VOLUME, PAN, PITCH, FALSE);

else

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support530

//player 2 ohhhs
play_sample(sounds[OHHH], VOLUME, PAN, PITCH, FALSE);

}
}

Now, scroll down a little more to the fireweapon function. I have added a single play_sample
function call that plays a sound whenever a player fires a bullet. This is the basic fire
sound. Add the line shown in bold.

void fireweapon(int num)
{

int x = scrollx[num] + SCROLLW/2;
int y = scrolly[num] + SCROLLH/2;

//ready to fire again?
if (!bullets[num]->alive)
{

//play fire sound
play_sample(sounds[FIRE], VOLUME, PAN, PITCH, FALSE);

bullets[num]->alive = 1;

Modifying input.c

Next, open the input.c file. The first thing you must do is add a new function called
readjoysticks. This function first verifies that a joystick is connected, and then tries to scan
the input of one or two joysticks, if present. If you have two joysticks or gamepads, try
plugging them into your PC to see how much fun Tank War can be when played like a
console game! Add the new readjoysticks function to the top of input.c.

void readjoysticks()
{

int b, n;

if (num_joysticks)
{

//read the joystick
poll_joystick();

for (n=0; n<2; n++)
{

//left stick
if (joy[n].stick[0].axis[0].d1)

turnleft(n);

Enhancing Tank War 531

//right stick
if (joy[n].stick[0].axis[0].d2)

turnright(n);

//forward stick
if (joy[n].stick[0].axis[1].d1)

forward(n);

//backward stick
if (joy[n].stick[0].axis[1].d2)

backward(n);

//any button will do
for (b=0; b<joy[n].num_buttons; b++)

if (joy[n].button[b].b)
{

fireweapon(n);
break;

}
}

}
}

Next, you need to make some modifications to the forward, backward, turnleft, and turnright
functions. These changes help slow down the device input so it’s easier to control the
tanks. (Previously, you might recall, the tanks would turn far too fast.) This also makes the
tank movement feel more realistic because you must speed up gradually, rather than going
from 0 to 60 in 0.5 seconds, as the game was played before. Note the changes in bold.

void forward(int num)
{

if (key_count[num]++ > key_delay[num])
{

key_count[num] = 0;

tanks[num]->xspeed++;
if (tanks[num]->xspeed > MAXSPEED)

tanks[num]->xspeed = MAXSPEED;
}

}

void backward(int num)
{

if (key_count[num]++ > key_delay[num])

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support532

{
key_count[num] = 0;

tanks[num]->xspeed—;
if (tanks[num]->xspeed < -MAXSPEED)

tanks[num]->xspeed = -MAXSPEED;
}

}

void turnleft(int num)
{

if (key_count[num]++ > key_delay[num])
{

key_count[num] = 0;

tanks[num]->dir—;
if (tanks[num]->dir < 0)

tanks[num]->dir = 7;
}

}

void turnright(int num)
{

if (key_count[num]++ > key_delay[num])
{

key_count[num] = 0;

tanks[num]->dir++;
if (tanks[num]->dir > 7)

tanks[num]->dir = 0;
}

}

The last change you’ll make is to the getinput function. There has been a rest function call
in here since the first version of the game, while the timing of the game belongs in the
main loop. Simply delete the line indicated in bold (and commented out).

void getinput()
{

//hit ESC to quit
if (key[KEY_ESC]) gameover = 1;

//WASD - SPACE keys control tank 1
if (key[KEY_W]) forward(0);

Enhancing Tank War 533

if (key[KEY_D]) turnright(0);
if (key[KEY_A]) turnleft(0);
if (key[KEY_S]) backward(0);
if (key[KEY_SPACE]) fireweapon(0);

//arrow - ENTER keys control tank 2
if (key[KEY_UP]) forward(1);
if (key[KEY_RIGHT]) turnright(1);
if (key[KEY_DOWN]) backward(1);
if (key[KEY_LEFT]) turnleft(1);
if (key[KEY_ENTER]) fireweapon(1);

//short delay after keypress
//rest(20);

}

Modifying main.c

Next up is the main.c file, the primary source code file for Tank War, which contains
(among other things) that game loop. Scroll down to main and add the call to loadsounds,
as indicated in bold.

//main function
void main(void)
{

int anim;

//initialize the game
allegro_init();
install_keyboard();
install_timer();
srand(time(NULL));
setupscreen();
setuptanks();
loadsprites();
loadsounds();

Next, scroll down a little bit past the section of code that loads the Mappy file and add
the new code shown in bold. This code initializes the joystick(s) and sets the input delay
variables.

//load the Mappy file
if (MapLoad(“map3.fmp”))
{

allegro_message (“Can’t find map3.fmp”);

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support534

Enhancing Tank War 535

return;
}

//set palette
MapSetPal8();

//install the joystick handler
install_joystick(JOY_TYPE_AUTODETECT);
poll_joystick();

//setup input delays
key_count[0] = 0;
key_delay[0] = 2;
key_count[1] = 0;
key_delay[1] = 2;

Now, scroll down to the end of the game loop and insert or change the following lines of
code after the call to getinput, as shown in bold. You’ll insert a call to readjoysticks and
modify the rest function call to increase the delay a bit (because the delay in getinput was
removed).

//check for keypresses
if (keypressed())

getinput();

readjoysticks();

//slow the game down
rest(30);

}

Now let’s clean up the memory that was used by these new changes. Scroll down a little
bit more and insert the following code after the call to MapFreeMem, as shown in bold.

//free the MappyAL memory
MapFreeMem();

//free the samples
for (n=0; n<NUM_SOUNDS; n++)

destroy_sample(sounds[n]);

//remove the sound driver
remove_sound();

//remove the joystick driver

remove_joystick();

return;
}
END_OF_MAIN();

Final Comments about Tank War
Figure 15.3 shows the final version of Tank War. It’s been a long haul, and you’ve seen the
game grow from a meager vector game to the current incarnation with animated sprites
and scrolling backgrounds. Here’s a list of the features of the final version of the game:

� Two-player split-screen gameplay

� A scrolling battlefield

� Support for new maps created with Mappy

� Advanced update code to show all the action in both windows

� Keyboard and dual joystick support

� Sixty-four animated frames for each tank

� Support for stereo sound cards

� Numerous sound effects to enhance gameplay

� Support for maps with up to 30,000 tiles

� A battlefield that can be up to 5,500×5,500 pixels in size

� Ability to run on Windows, Linux, Mac OS X, and many other systems

Well, what are you waiting
for? Go ahead and get started
on the tenth revision to Tank
War!

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support536

Figure 15.3 The final version of Tank War

Summary
This chapter provided an introduction to the sound support routines provided by Allegro for
including sound effects in a game. Allegro provides an interface to the underlying operating
system (with support for DirectSound) that, along with a software sound mixer, provides a
consistent level of functionality and performance from one computer system to another. In
this chapter, you learned how to initialize the sound system, load a WAV file, and play back
the WAV file with or without looping. You were also provided with an example that demon-
strated Allegro’s automatic mixing of samples that are played. In a nutshell, it requires very
little effort to play a sound effect, and mixing is handled automatically, allowing you to focus
on gameplay rather than the mechanics of an advanced sound system.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What is the name of the function that initializes the Allegro sound system?

A. install_sound

B. init_sound

C. initialize_sound_system

D. init_snd

2. Which function can you use to play a sound effect in your own games?

A. start_playback

B. play_sound

C. play_sample

D. digi_snd_play

3. What is the name of the function that specifically loads a RIFF WAV file?

A. load_riff

B. load_wav

C. load_wave

D. load_riff_wav

4. Which function can be used to change the frequency, volume, panning, and
looping properties of a sample?

A. modify_sample

B. change_sample

C. alter_sample

D. adjust_sample

Chapter Quiz 537

5. What function would you use to shut down the Allegro sound system?

A. uninstall_sound

B. remove_sound

C. close_sound

D. close_sound_system

6. Which function provides the ability to change the overall volume of sound output?

A. set_volume

B. change_volume

C. fix_volume

D. set_vol

7. What is the name of the function used to stop playback of a sample?

A. stop_playback

B. stop_playing

C. halt_playback

D. stop_sample

8. Within what range must a panning value remain?

A. –32,768 to 32,767

B. 0 to 65,536

C. 1 to 100

D. 0 to 255

9. What parameter should you pass to install_sound to initialize the standard digital
sound driver?

A. SND_AUTODETECT

B. SND_AUTODETECT_DIGITAL

C. DIGI_AUTODETECT

D. DIGI_AUTODETECT_SOUND

10. What is the name of the function that plays a sample through the sound mixer?

A. start_playback

B. play_sample

C. play_sample_mix

D. start_mix_playback

Chapter 15 � Mastering the Audible Realm: Allegro’s Sound Support538

539

Using Datafiles to
Store Game Resources

chapter 16

S
uppose you have written one of the greatest new games to come out of the indie mar-
ket in years, and you are chomping at the bit to get the game out into the world. You
poured your blood, sweat, and tears into the game and it has cost you every moment

of your free time for three years. Your friends and relatives have abandoned you, and you
haven’t emerged from your room in months, focused on and dedicated to one goal—making
this the most unbelievable game ever. You have come up with a new gaming technology
that you think will create a whole new genre. It’s the next Doom or Warcraft.

There’s just one problem. You have spent so much time getting the game running and pol-
ished that you have paid no attention to the game’s resources. Now, faced with distribu-
tion, you are struggling to come up with a plan for protecting your game’s resources—all
the amazing artwork (that you had commissioned from a professional artist), sound
effects and music (commissioned from a sound studio), and professional voice acting at
various parts throughout the game. You have valuable assets to protect. You have thought
about finding a ZIP decompression library, but are not looking forward to the problems
associated with temp files.

Luckily for you, you planned ahead and developed your new cutting-edge game with
Allegro. And it just so happens that Allegro has support for data files to store all of your
game resources with encryption and compression. Best of all, it’s extremely easy to use,
and you don’t need to deal with temp files. Ready to learn how to do this?

Here is a breakdown of the major topics in this chapter:

� Understanding Allegro datafiles

� Creating Allegro datafiles

� Using Allegro datafiles

� Testing Allegro datafiles

Understanding Allegro Datafiles
Allegro data files (datafiles) are similar to ZIP archive files in that they can contain multi-
ple files of different types and sizes, with support for encryption and compression.
However, Allegro datafiles differ from the files of general-purpose archival programs in
that Allegro is geared entirely to store game resources. Allegro datafiles use the LZSS com-
pression algorithm when compression is used.

Datafiles are created by the Allegro Datafile archiving utility and have a .dat extension.
They can contain bitmaps, sounds, FLI animations, Mappy levels, text files, and any other
type of file or binary data that your game will need. You can distribute your game with a
single executable and a single datafile.

One of the best things about datafiles is that, because they are so easy to create and use, you
can use a datafile for any program you write, not just games. This really adds a strong
degree of appeal to Allegro even for general-purpose programming, developing command-
line utilities and support programs in addition to full-blown game editors and similar
programs. Instead of distributing a background image, sprite image, and sound file in a
small game, simply bundle it all together in a datafile and send it off to your friends with
the program file. In other words, you don’t have to reserve datafile use only for big projects;
you can feel free to use datafiles frequently even on non-game projects.

Datafiles use a struct to keep track of their resources. The struct looks like this:

typedef struct DATAFILE
{

void *dat; //pointer to the actual data
int type; //type of the data
long size; //size of the data in bytes
void *prop; //list of object properties

} DATAFILE;

When you refer to an object in a datafile, you must use a DATAFILE struct to get at the
resource. Usually you will not need to be concerned with anything other than the dat
member variable, which is a void pointer to the object in the file (or in memory after the
datafile has been loaded).

Would you like a quick example? Although I haven’t covered the load_datafile function
yet, here is an example of how you might load a datafile into memory and then grab a
sprite directly out of the datafile:

DATAFILE *data = load_datafile(“game.dat”);
draw_sprite(screen, data[PLAYER_SPRITE].dat, x, y);

Chapter 16 � Using Datafiles to Store Game Resources540

If you want to identify a resource by type (for instance, to verify that the resource is a valid
type), you can use the type member variable of the DATAFILE struct. Table 16.1 provides a
list of the various types of objects that can be stored in a datafile.

Creating Allegro Datafiles
Before you can practice using datafiles, you need to learn how to create and manage them.
This will also give you a heads-up on extracting the game resources from other people’s
games that use Allegro datafiles! Not that I would condone the theft of artwork…but it is
interesting to see how some people develop their artwork.

Allegro comes with a command-line utility program called dat.exe that you will use to
create and manage your datafiles. The Allegro utilities are located in the tools folder inside
the root Allegro folder, wherever you installed it (based on the sources). If you have
extracted Allegro to your root drive folder, then the dat.exe program is likely to be found
in \allegro\tools. You will need to open a command prompt or shell and change to that
folder to run the program. Alternatively, you might want to just add \allegro\tools to your
system path. In Windows, you would do that by typing

path=C:\allegro\tools;%path%

After you do this, you will be able to maintain your datafiles from any folder on the hard
drive because dat.exe will be included in the path. Here is the output from dat.exe if you
run it with no parameters:

Creating Allegro Datafiles 541

Table 16.1 Datafile Object Types and Formats

Data Type Format Description

DAT_FILE “FILE” Nested data file
DAT_DATA “DATA” Block of binary data (miscellaneous)
DAT_FONT “FONT” Font object
DAT_SAMPLE “SAMP” Sound sample structure
DAT_MIDI “MIDI” MIDI file
DAT_PATCH “PAT” GUS patch file
DAT_FLI “FLIC” FLI animation
DAT_BITMAP “BMP” BITMAP structure
DAT_RLE_SPRITE “RLE” RLE_SPRITE structure
DAT_C_SPRITE “CMP” Linear compiled sprite
DAT_XC_SPRITE “XCMP” Mode-X compiled sprite
DAT_PALETTE “PAL” Array of 256 RGB structures
DAT_END N/A Special flag to mark the end of the data list

Datafile archiving utility for Allegro 4.0.3, MSVC.s
By Shawn Hargreaves, 2003

Usage: dat [options] filename.dat [names]

Options:
‘-a’ adds the named files to the datafile
‘-bpp colordepth’ grabs bitmaps in the specified format
‘-c0’ no compression
‘-c1’ compress objects individually
‘-c2’ global compression on the entire datafile
‘-d’ deletes the named objects from the datafile
‘-dither’ dithers when reducing color depths
‘-e’ extracts the named objects from the datafile
‘-g x y w h’ grabs bitmap data from a specific grid location
‘-h outputfile.h’ sets the output header file
‘-k’ keeps the original file names when grabbing objects
‘-l’ lists the contents of the datafile
‘-m dependencyfile’ outputs makefile dependencies
‘-o output’ sets the output file or directory when extracting data
‘-p prefixstring’ sets the prefix for the output header file
‘-pal objectname’ specifies which palette to use
‘-s0’ no strip: save everything
‘-s1’ strip grabber specific information from the file
‘-s2’ strip all object properties and names from the file
‘-t type’ sets the object type when adding files
‘-transparency’ preserves transparency through color conversion
‘-u’ updates the contents of the datafile
‘-v’ selects verbose mode
‘-w’ always updates the entire contents of the datafile
‘-007 password’ sets the file encryption key
‘PROP=value’ sets object properties

I’m not going over all these options; consider it your homework for the day. The really
important thing to know about the dat.exe syntax is the usage.

Usage: dat [options] filename.dat [names]

When you run dat.exe, first you must include any options, then the name of the datafile,
followed by the files you want to add to (or extract from) the datafile. Looking through
the options, I see that –a is the parameter that adds files to a datafile. But you must also
use the –t option to tell dat what kind of file you are adding. Go ahead and try it. Locate
a bitmap file, change to that directory from the command prompt (or shell), and adapt
the following command to suit the bitmap file you intend to add to the datafile.

Chapter 16 � Using Datafiles to Store Game Resources542

dat -a -t BMP -bpp 16 test.dat back.bmp

Do you see the -bpp 16 parameter? You must specify the color depth of the bitmaps you
are adding to the datafile or it will treat them as 8-bit images (one byte per pixel). I have
used the -bpp 16 parameter to instruct the dat program to store the file as a 16-bit bitmap.
The output from dat should look something like this:

test.dat not found: creating new datafile
Inserting back.bmp -> BACK_BMP
Writing test.dat

Now you can find out whether the bitmap image is actually stored inside the test.dat file.

dat -l test.dat

You should see a result that looks something like this:

Reading test.dat
- BMP - BACK_BMP - bitmap (640x480, 16 bit)

Great, it worked! Now there’s just one problem. I see from the options list that I can add
compression to the datafile using the -c2 option, so I’d like to reduce the size of the file.
Here is the command to do that:

dat -c2 test.dat

The output looks like this:

Reading test.dat
Writing test.dat

I see that the file has been reduced from 900 KB to about 100 KB. Perfect!

Now I want to another file (a sprite), and then I’ll demonstrate how to get to these objects
from an Allegro program.

dat -a -t BMP -bpp 16 test.dat ship.bmp

results in this output, so I know it’s good:

Reading test.dat
Inserting ship.bmp -> SHIP_BMP
Writing test.dat

Now that you have added two files to the datafile, take a peek inside:

dat -l test.dat

produces this output:

Reading test.dat

Creating Allegro Datafiles 543

- BMP - BACK_BMP - bitmap (640x480, 16 bit)
- BMP - SHIP_BMP - bitmap (111x96, 16 bit)

If you take a look at the file size, you’ll see that it is still compressed. Trying to compress
it again results in the same file size, so it’s apparent that once -c2 has been applied to a
datafile, compression is then applied to any new files added to it.

I should also point out that you should reference the objects in the file in the order they are
displayed using dat -l test.dat. You can reference the back.bmp file using array index 0,
explode.wav using array index 1, and so on.

The dat tool is able to generate a header file containing the datafile definition of values
using the -h option.

dat test.dat -h defines.h

produces a file that looks like this:

/* Allegro datafile object indexes, produced by dat v4.0.3, MSVC.s */
/* Datafile: test.dat */
/* Date: Thu Apr 15 20:49:59 2004 */
/* Do not hand edit! */

#define BACK_BMP 0 /* BMP */
#define SHIP_BMP 1 /* BMP */

It is best to include this header file directly in your project and not edit it manually
(although for the simple demonstration program later in the chapter, I have simply pasted
the defines into the program).

Using Allegro Datafiles
You have learned some details about what datafiles are made of and how to create and
update them. Now it’s time to put them to the test in a real Allegro program that will load
the datafile and retrieve game objects directly out of the datafile. First you need to go over
the datafile functions to learn how to manipulate a datafile with source code.

Loading a Datafile
The load_datafile function loads a datafile into memory and returns a pointer to it or
NULL. If the datafile has been encrypted, you must first use the packfile_password func-
tion to set the appropriate key. See grabber.txt for more information. If the datafile con-
tains true color graphics, you must set the video mode or call set_color_conversion()
before loading the datafile.

DATAFILE *load_datafile(const char *filename);

Chapter 16 � Using Datafiles to Store Game Resources544

n o t e

If you are programming in C++, you will get an error unless you include a cast for the type of
object being referenced in the datafile. Here is an example:
draw_sprite(screen, (BITMAP *)data[SPRITE].dat, x, y);

Unloading a Datafile
The unload_datafile function frees all the objects in a datafile and removes the datafile
from memory.

void unload_datafile(DATAFILE *dat);

Loading a Datafile Object
The load_datafile_object will load a specific object from a datafile, returning the object as
a single DATAFILE * pointer (instead of the usual array).

DATAFILE *load_datafile_object(const char *filename, const char *objectname);

Here is an example:

sprite = load_datafile_object(“datafile.dat”, “SPRITE_BMP”);

Unloading a Datafile Object
The unload_datafile_object function will free an object that was loaded with the
load_datafile_object function.

void unload_datafile_object(DATAFILE *dat);

Finding a Datafile Object
The find_datafile_object function searches an opened datafile for an object with the spec-
ified name, returning a pointer to the object or NULL.

DATAFILE *find_datafile_object(const DATAFILE *dat, const char *objectname);

Testing Allegro Datafiles
Now that you have a basic understanding of how datafiles are created and what the data
inside a datafile looks like, it’s time to learn how to read a datafile in an Allegro program.
I have written a short program that loads the test.dat file you created earlier in this chap-
ter and displays the back.bmp and ship.bmp files stored in the datafile. You should be able

Testing Allegro Datafiles 545

to use this basic example (along with the list of data file object types) to use any other type
of file in your programs (such as samples or Mappy files). Figure 16.1 shows the output of
the TestDat program.

#include <allegro.h>

#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480
#define WHITE makecol(255,255,255)

//define objects in datafile
#define BACK_BMP 0
#define SHIP_BMP 1

void main(void)
{

DATAFILE *data;
BITMAP *sprite;

Chapter 16 � Using Datafiles to Store Game Resources546

Figure 16.1 The TestDat program demonstrates how to read
bitmaps from an Allegro datafile.

//initialize the program
allegro_init();
install_keyboard();
install_timer();
set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);
text_mode(-1);

//load the datafile
data = load_datafile(“test.dat”);

//blit the background image using datafile directly
blit(data[BACK_BMP].dat, screen, 0, 0, 0, 0, WIDTH-1, HEIGHT-1);

//grab sprite and store in separate BITMAP
sprite = (BITMAP *)data[SHIP_BMP].dat;
draw_sprite(screen, sprite, WIDTH/2-sprite->w/2,

HEIGHT/2-sprite->h/2);

//display title
textout(screen,font,”TestDat Program (ESC to quit)”,0,0,WHITE);

//pause
while(!key[KEY_ESC]) { }

//remove datafile from memory
unload_datafile(data);

allegro_exit();
}
END_OF_MAIN();

Summary
This chapter provided an introduction to Allegro datafiles and showed you how to create
them, modify them, and read them into an Allegro program or game. Datafiles make it
much easier to distribute your games to others because you need only include the datafile
and executable program file. Datafiles can contain any type of file, but some items are pre-
defined so they are recognized and handled properly by Allegro.

Testing Allegro Datafiles 547

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What is the shorthand term for an Allegro data file?

A. datafile

B. datfile

C. data file

D. ADF

2. What compression algorithm does Allegro use for compressed datafiles?

A. LZSS

B. LZH

C. ZIP

D. RAR

3. What is the command-line program that is used to manage Allegro datafiles?

A. data.exe

B. datafile.exe

C. datafile.exe

D. dat.exe

4. What is the Allegro datafile object struct called?

A. DATA_FILE

B. DATAFILE

C. DAT_FILE

D. AL_DATFILE

5. What function is used to load a datafile into memory?

A. open_data_file

B. load_dat

C. load_datfile

D. load_datafile

6. What is the data type format shortcut string for bitmap files?

A. BITMAP_IMAGE

B. BITMAP

C. BMP

D. DATA_BITMAP

Chapter 16 � Using Datafiles to Store Game Resources548

7. What is the data type constant for wave files, defined by Allegro for use
in reading datafiles?

A. DAT_RIFF_WAV

B. DAT_WAVE

C. DAT_SAMPLE

D. DAT_SOUND

8. What is the dat option to specify the type of file being added to the datafile?

A. -t <type>

B. -a <type>

C. -d <type>

D. -s <type>

9. What is the dat option to specify the color depth of a bitmap file being
added to the datafile?

A. -c <depth>

B. -d <depth>

C. -bpp <depth>

D. -color <depth>

10. Which function loads an individual object from a datafile?

A. load_data_object

B. load_object_file

C. load_datafile

D. load_datafile_object

Chapter Quiz 549

This page intentionally left blank

551

Playing FLIC Movies

chapter 17

F
LI is an animation format developed by Autodesk for creating and playing computer-
generated animations at high resolutions using Autodesk Animator, while the FLC
format was the standard format used in Autodesk Animator Pro. These two formats

(FLI and FLC) are both referred to as the FLIC format. The original FLI format was limited
to a resolution of 320×200, while FLC provided higher resolutions and file compression.
This chapter focuses on the functions built into Allegro for reading and playing FLIC
movies, which are especially useful as cut-scenes within a game or as the opening video
often presented as a game begins.

Here is a breakdown of the major topics in this chapter:

� Playing FLI animation files

� Loading FLIs into memory

Playing FLI Animation Files
Animated or rendered movies are often used in games to fill in a cut-scene at a specified
point in the game or to tell a story as the game starts. Of course, you can use an anima-
tion for any purpose within a game using Allegro’s built-in support for FLI loading and
playback (both from memory and from disk file). The only limitation is that you can only
play one FLI at a time. If you need multiple animations to run at the same time, I recom-
mend converting the FLI file to one or more bitmap images and treating the movie as an
animated sprite—although I’ll leave implementation of that concept up to you. (First you
would need to convert the FLI to individual bitmap images.)

Chapter 17 � Playing FLIC Movies552

The easiest way to play an FLI animation file with Allegro is by using the play_fli function,
which simply plays an FLI or FLC file directly to the screen or to another destination bitmap.

int play_fli(const char *filename, BITMAP *bmp, int loop,
int (*callback)());

The first parameter is the FLI/FLC file to play; the second parameter is the destination
bitmap where you would like the animation to play; and the third parameter, loop, deter-
mines whether the animation is looped at the end (1 is looped, 0 is not). In practice, how-
ever, you will want to intercept playback in the callback function and pass a return value
of 1 from the callback to stop playback.

As you can see from the function definition, play_fli supports a callback function. The
purpose for this is so that your game can continue running while the FLI is played; other-
wise, playback would run without interruption. The callback function is very simple—it
returns an int but accepts no parameters.

When you are playing back an animation file, keep in mind that play_fli draws each frame
at the upper-left corner of the destination bitmap (which is usually the screen). If you
want more control over the playback of an FLI, you have two options. First, you can tell
play_fli to draw the frames on a memory bitmap and then draw that bitmap to the screen
yourself. (See the following section on using the callback function.)

The FLI Callback Function
The callback function makes it possible to do other things inside your program after each
frame of the animation is displayed. Note that you should return from the callback function
as quickly as possible or the playback timing will be off. When you want to use a callback
function, simply declare a function like this:

int fli_callback(void)
{
}

You can then use play_fli to start playback of an FLI file, including the fli_callback function.

play_fli(“particles.fli”, screen, 1, fli_callback);

The PlayFlick Program
The play_fli function is not really very useful if you don’t also use the callback function.
I have written a test program called PlayFlick that demonstrates how to use play_fli along
with the callback to play an animation with logistical information printed after each
frame of the FLI is displayed on the screen. Figure 17.1 shows the output from the
PlayFlick program.

If you are writing this program from scratch (as follows), you will of course need an FLI
file to use for testing. You can copy one of the FLI files off the CD-ROM from the folder
for this chapter and project, \chapter17\playflick. The sample file is called particles.fli, and
there are several other sample FLI files in other project folders for this chapter.

#include <stdio.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)

int ret;

int fli_callback(void)
{

//display some info after each frame
textprintf(screen, font, 0, 0, WHITE,

“FLI resolution: %d x %d”, fli_bitmap->w, fli_bitmap->h);
textprintf(screen, font, 0, 10, WHITE,

“Current frame: %2d”, fli_frame);

Playing FLI Animation Files 553

Figure 17.1 The PlayFlick program demonstrates how to play an
Autodesk Animator FLI/FLC file.

//ESC key stops animation
if (key[KEY_ESC])

return 1;
else

return 0;
}

void main(void)
{

//initialize Allegro
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_timer();
install_keyboard();

//play fli with callback
play_fli(“particles.fli”, screen, 1, fli_callback);

//time to leave
allegro_exit();

}
END_OF_MAIN();

Playing an FLI from a Memory Block
Allegro provides you with a way to play a raw FLI file that has been mass copied from disk
into memory with header and all. The play_memory_fli function will play a memory FLI as
if it were a disk file. The FLI routines must still work with only one file at a time, even if
that file was loaded into a memory block (which you must create with malloc and read into
memory using your own file input code). You would also use this function when you have
stored an FLI inside a datafile. (For more information about datafiles, refer to Chapter 16.)

int play_memory_fli(const void *fli_data, BITMAP *bmp,
int loop, int (*callback)());

Loading FLIs into Memory
The two functions covered thus far were designed for simple FLI playback with little to no
control over the frames inside the animation. Fortunately, Allegro provides a low-level
interface for FLI playback, allowing you to read an FLI file and manipulate it frame by
frame, adjusting the palette and blitting the frame to the screen manually.

Chapter 17 � Playing FLIC Movies554

Opening and Closing FLI Files
To open an FLI file for low-level playback, you’ll use the open_fli function.

int open_fli(const char *filename);

If you are using a datafile (or you have loaded an entire FLI file into memory byte for
byte), you’ll use the open_memory_fli function to open it for low-level access.

int open_memory_fli(const void *fli_data);

If the file was opened successfully, a value of FLI_OK will be returned; otherwise, FLI_ERROR
will be returned by these functions. Information about the current FLI is held in global
variables, so you can only have one animation open at a time.

n o t e

The FLI routines make use of interrupts, so you must install the timer by calling install_timer at
the start of the program.

After you have finished playing an FLI animation, you can close the file by calling close_fli.

void close_fli();

Processing Each Frame of the Animation
After you have opened the FLI file, you are ready to begin handling the low-level process-
ing of the animation playback. Allegro provides a number of functions and global variables
for dealing with each animation frame; you’ll see that they are easy to use in practice.

For starters, take a look at the next_fli_frame function.

int next_fli_frame(int loop);

This function reads the next frame of the current animation file. If loop is set, the player
will cycle when playback reaches the end of the file; otherwise, the function will return
FLI_EOF. If no error occurs, this function will return FLI_OK, but if an error has occurred, it
will return FLI_ERROR or FLI_NOT_OPEN. One useful return value is FLI_EOF, which tells you
that the playback has reached the last frame of the file.

What about drawing each frame image? The frame is read into the global variables
fli_bitmap (which contains the current frame image) and fli_palette (which contains the
current frame’s palette).

extern BITMAP *fli_bitmap;
extern PALETTE fli_palette;

Loading FLIs into Memory 555

Chapter 17 � Playing FLIC Movies556

Even if you are running a program in a high-color or true-color video mode, you will need
to set the current palette to render the animation frames properly. (This at least applies to
8-bit FLI files; FLC files might not need a palette.)

After each call to next_fli_frame, Allegro sets a global variable indicating the current frame
in the animation sequence of the FLI file, called fli_frame.

extern int fli_frame;

The current frame is helpful to know, but it doesn’t help with timing, which will differ
from one FLI file to another. Allegro takes care of the problem by automatically incre-
menting a global variable called fli_timer whenever a new frame should be displayed. This
works regardless of the computer’s speed because it is handled by an interrupt. It is impor-
tant to pay attention to timing unless you are only concerned with the image of each
frame and not playback speed.

extern volatile int fli_timer;

Each time you call next_fli_frame, the fli_timer variable is decremented, so if playback is
in sync with timing, this variable will always be 0 unless a new frame is ready to be dis-
played. This makes it easy to determine when each frame should be drawn.

The LoadFlick Program
To demonstrate the low-level FLI animation routines, I’ve written a short program called
LoadFlick. The output from this program is shown in Figure 17.2. LoadFlick pretty much
demonstrates everything you need to know about the low-level FLI routines, including how
to load an FLI file, keep track of each frame, manage timing, and blit the image to the screen.

#include <stdio.h>
#include “allegro.h”

#define WHITE makecol(255,255,255)

int ret;

void main(void)
{

//initialize Allegro
allegro_init();
set_color_depth(16);
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);
install_timer();
install_keyboard();

//load the fli movie file
ret = open_fli(“octahedron.fli”);
if (ret != FLI_OK)
{

textout(screen, font, “Error loading octahedron.fli”,
0, 30, WHITE);

readkey();
return;

}

//display movie resolution
textprintf(screen, font, 0, 0, WHITE,

“FLI resolution: %d x %d”, fli_bitmap->w, fli_bitmap->h);

//main loop
while (!key[KEY_ESC])
{

//is it time for the next frame?
if (fli_timer)
{

Loading FLIs into Memory 557

Figure 17.2 The LoadFlick program handles each frame of the FLI
animation individually.

Chapter 17 � Playing FLIC Movies558

//open the next frame
next_fli_frame(1);

//adjust the palette
set_palette(fli_palette);

//copy the FLI frame to the screen
blit(fli_bitmap, screen, 0, 0, 0, 30,

fli_bitmap->w, fli_bitmap->h);

//display current frame
textprintf(screen, font, 0, 10, WHITE,

“Current frame: %4d”, fli_frame);
}

}

//remove fli from memory
close_fli();

//time to leave
allegro_exit();

}
END_OF_MAIN();

The ResizeFlick Program
Let’s do something fun just to see how useful the low-level FLI routines can be when you
want full control over each frame in the animation. The ResizeFlick program is similar to
LoadFlick in that it opens an FLI into memory before playback. The difference in this new
program is that the resulting FLI frames are resized to fill the screen (using a proper ratio
for the height). Note that the FLI file must be in landscape orientation—wider than it is
tall—or the bottom of each frame image might be cropped. It’s best to use FLI files with
a resolution that is similar to one of the common screen resolutions, such as 320×240,
640×480, and so on.

Figure 17.3 shows the ResizeFlick program running with a short animation of a jet aircraft
(the U.S. Air Force SR-71 Blackbird). Note the black area at the bottom of the screen—
this is due to the fact that the original FLI animation was 320×200, so when it was scaled
there were pixels left blank on the bottom. If you want to truly fill the entire screen, you
can do away with the width and height variables and simply pass SCREEN_W-1 and SCREEN_H-1
as the last two parameters of stretch_blit, which will cause the FLI to be played back in
true full-screen mode (although with image artifacts if the scaling is not a multiple of the
original resolution).

#include “allegro.h”

#define WHITE makecol(255,255,255)
#define BLACK makecol(0,0,0)

int ret,width,height;

void main(void)
{

//initialize Allegro
allegro_init();
install_timer();
install_keyboard();
text_mode(-1);

//set video mode—color depth defaults to 8-bit
set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);

//load the fli movie file
ret = open_fli(“sr-71.fli”);
if (ret != FLI_OK)
{

textout(screen, font, “Error loading sr-71.fli”,

Loading FLIs into Memory 559

Figure 17.3 The ResizeFlick program shows how to play an FLI
at any scaled resolution.

0, 30, WHITE);
readkey();
return;

}

//main loop
while (!key[KEY_ESC])
{

//is it time for the next frame?
if (fli_timer)
{

//open the next frame
next_fli_frame(1);

//adjust the palette
set_palette(fli_palette);

//calculate scale
width = SCREEN_W;
height = fli_bitmap->h * (SCREEN_W / fli_bitmap->w);

//draw scaled FLI (note: screen must be in 8-bit mode)
stretch_blit(fli_bitmap, screen, 0, 0, fli_bitmap->w,

fli_bitmap->h, 0, 0, width, height);

//display movie resolution
textprintf(screen, font, 0, 0, BLACK,

“FLI resolution: %d x %d”, fli_bitmap->w, fli_bitmap->h);

//display current frame
textprintf(screen, font, 0, 10, BLACK,

“Current frame: %4d”, fli_frame);

}
}

//remove fli from memory
close_fli();

//time to leave
allegro_exit();

}
END_OF_MAIN();

Chapter 17 � Playing FLIC Movies560

Summary
This chapter provided an overview of the FLIC animation routines available with Allegro.
You learned how to play an FLI/FLC file directly from disk as well as how to load an
FLI/FLC file into memory and manipulate the animation frame by frame. There were
three sample programs in this chapter to demonstrate the routines available for playback
of an FLIC file, including a program at the end of the chapter that displayed a movie
scaled to the entire screen.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. Which company developed the FLI/FLC file format?

A. Autodesk

B. Borland

C. Microsoft

D. Bungie

2. Which product first used the FLI format?

A. 3D Studio Max

B. WordPerfect

C. Animator

D. PC Paintbrush

3. Which product premiered the more advanced FLC format?

A. Animator Pro

B. PC Animation

C. Dr. Halo

D. CorelDRAW

4. What is the common acronym used to describe both FLI and FLC files?

A. FLICK

B. FLICKS

C. FLI/C

D. FLIC

Chapter Quiz 561

5. Which function plays an FLIC file directly?

A. play_fli

B. direct_play

C. play_animation

D. play_flic

6. How many FLIC files can be played back at a time by Allegro?

A. 1

B. 2

C. 3

D. 4

7. Which function loads an FLIC file for low-level playback?

A. load_fli

B. read_fli

C. open_fli

D. shoo_fli

8. Which function moves the animation to the next frame in an FLIC file?

A. next_fli_frame

B. get_next_frame

C. move_frame

D. next_fli

9. What is the name of the variables used to set the timing of FLIC playback?

A. flic_frames

B. playback_timer

C. fli_playback

D. fli_timer

10. What is the name of the variable that contains the bitmap of the current
FLIC frame?

A. fli_frame

B. fli_bitmap

C. fli_image

D. current_fli

Chapter 17 � Playing FLIC Movies562

563

Introduction to
Artificial Intelligence

chapter 18

P
robably the thing I dislike most about some games is how the computer cheats. I’m
playing my strategy game and I have to spend 10 minutes finding their units while
they automatically know where mine are, which type they are, their energies, and so

on. It’s not the fact that they cheat to make the game harder, it’s the fact that they cheat
because the artificial intelligence is very weak. The computer adversary should know just
about the same information as the player. If you look at a unit, you don’t see their health,
their weapons, and their bullets. You just see a unit and, depending on your units, you
respond to it. That’s what the computer should do; that’s what artificial intelligence is all
about.

In this chapter I will first give you a quick overview of several types of artificial intelli-
gence, and then you will see how you can apply one or two to games. In this chapter, I’m
going to go against the norm for this book and explain the concepts with little snippets of
code instead of complete programs. The reason I’m doing this is because the implemen-
tation of each field of artificial intelligence is very specific, and where is the fun in watching
a graph give you the percentage of the decisions if you can’t actually see the bad guy
hiding and cornering you? Complete examples would basically require a complete game!
For this reason, I will go over several concrete artificial intelligence examples, giving only
the theory and some basic code for the implementation, and it will be up to you to choose
the best implementation for what you want to do.

Here is a breakdown of the major topics in this chapter:

� Understanding the various fields of artificial intelligence

� Using deterministic algorithms

� Recognizing finite state machines

� Identifying fuzzy logic

� Understanding a simple method for memory

� Using artificial intelligence in games

The Fields of Artificial Intelligence
There are many fields of artificial intelligence; some are more game-oriented and others
are more academic. Although it is possible to use almost any of them in games, there are
a few that stand out, and they will be introduced and explained in this section.

Expert Systems
Expert systems solve problems that are usually solved by specialized humans. For example,
if you go to a doctor, he will analyze you (either by asking you a set of questions or doing
some analysis himself), and according to his knowledge, he will give you a diagnosis.

An expert system could be the doctor if it had a broad enough knowledge base. It would
ask you a set of questions, and depending on your answers, it would consult its knowledge
base and give you a diagnosis. The system checks each of your answers with the possible
answers in its knowledge base, and depending on your answer, it asks you other questions
until it can easily give you a diagnosis.

For a sample knowledge tree, take a look at Figure 18.1. As you can see, a few questions
would be asked, and according to the answers, the system would follow the appropriate
tree branch until it reached a leaf.

A very simple expert system for a doc-
tor could be something like the fol-
lowing code. Note that this is all just
pseudo-code, based on a fictional
scripting language, and it will not
compile in a compiler, such as Dev-C++
or Visual C++. This is not intended to
be a functional example, just a
glimpse at what an expert system’s
scripting language might look like.

Answer = AskQuestion (“Do you have a fever?”);
if (Answer == YES)

Answer = AskQuestion (“Is it a high fever (more than 105.8 F)?”);

Chapter 18 � Introduction to Artificial Intelligence564

Figure 18.1 An expert system’s knowledge tree

if (Answer == YES)
Solution = “Go to a hospital now!”;

end if
Is Sick?
NO YES
Has a fever?
NO YES
Has problems breathing?
NO YES
High fever?
NO YES
Send home
. . . Lung Infection Do more analysis . . .

else
Answer = AskQuestion (“Do you feel tired?”);
if (Answer == YES)

Solution = “You probably have a virus, rest a few days!”;
else

Solution = “Knowledge base insufficient. Further diagnosis needed.”;
end if

else
Answer = AskQuestion (“Do you have problems breathing?”);
if (Answer == YES)

Solution = “Probably a lung infection, need to do exams.”
else

Solution = “Knowledge base insufficient. Further diagnosis needed.”;
end if

end if

As you can see, the system follows a set of questions, and depending on the answers, either
asks more questions or gives a solution.

n o t e

For the rest of this chapter, you can assume that the strings work exactly like other variables, and
you can use operators such as = and == to the same effect as in normal types of variables.

Fuzzy Logic
Fuzzy logic expands on the concept of an expert system. While an expert system can give
values of either true (1) or false (0) for the solution, a fuzzy logic system can give values
in between. For example, to know whether a person is tall, an expert system would do the
following (again, this is fictional script):

The Fields of Artificial Intelligence 565

Answer = AskQuestion (“Is the person’s height more than 5’ 7”?”);
if (Answer == YES)

Solution = “The person is tall.”;
else

Solution = “The person is not tall.”;
end if

A fuzzy set would appear like so:

Answer = AskQuestion (“What is the person’s height?”);
if (Answer >= 5’ 7”)

Solution = “The person is tall.”;
end if
if ((Answer < 5’ 7”) && (Answer < 5’ 3”))

Solution = “The person is almost tall.”;
end if
if ((Answer < 5’ 3”) && (Answer < 4’ 11”))

Solution = “The person isn’t very tall.”;
else

Solution = “The person isn’t tall.”;
end if

The result would be fuzzy. Usually a fuzzy set returns values from 0 (false) to 1 (true),
representing the membership of the problem. In the last example, a more realistic fuzzy
system would use the graph shown in Figure 18.2 to return a result.

As you can see from the graph, for heights greater than 5' 7", the function returns 1; for
heights less than 4' 11", the function returns 0; and for values in between, it returns the
corresponding value between 5' 7" and 4' 11". You could get this value by subtracting
the height from 5' 7" (the true statement) and dividing by 20 (5' 7"–4' 11", which is the
variance in the graph). In code, this would be something like the following:

Chapter 18 � Introduction to Artificial Intelligence566

Figure 18.2 Fuzzy membership

Answer = AskQuestion (“What is the person’s height?”);
if (Answer >= 5’ 7”)

Solution = 1
end if
if (Answer <= 4’ 11”)

Solution = 0
else

Solution = (Answer - 5’ 7”) / (5’ 7” - 4’ 11”)
end if

You might be wondering why you don’t simply use the equation only and discard the if
clauses. The problem with doing so is that if the answer is more than 5' 7" or less than 4'
11", it will give values outside the 0 to 1 range, thus making the result invalid.

Fuzzy logic is extremely useful when you need reasoning in your game.

Genetic Algorithms
Using genetic algorithms is a method of computing solutions that relies on the concepts
of real genetic concepts (such as evolution and hereditary logic). You might have had a
biology class in high school that explained heredity, but in case you didn’t, the field of
biology studies the evolution of subjects when they reproduce. (Okay, maybe there is a lit-
tle more to it than that, but you are only interested in this much.)

As you know, everyone has a blood type, with the possible types being A, B, AB, and O,
and each of these types can be either positive or negative. When two people have a child,
their types of blood will influence the type of blood the child has. All that you are is writ-
ten in your DNA. Although the DNA is nothing more than a collection of bridges between
four elements, it holds all the information about you, such as blood type, eye color, skin
type, and so on. The little “creatures” that hold this information are called genes.

What you might not know is that although you have only one type of blood, you have two
genes specifying which blood type you have. How can that be? If you have two genes
describing two types of blood, how can you have only one type of blood?

Predominance! Certain genes’ information is stronger (or more influential) than that of
others, thus dictating the type of blood you have. What if the two genes’ information is
equally strong? You get a hybrid of the two. For the blood type example, both type A and
type B are equally strong, which makes the subject have a blood type AB. Figure 18.3
shows all the possible combinations of the blood types. From this table, you can see that
both the A and B types are predominant, and the O type isn’t. You can also see that posi-
tive is the predominant type.

So, how does this apply to the computer? There are various implementations that range
from solving mathematical equations to fully generating artificial creatures for scientific

The Fields of Artificial Intelligence 567

research. Implementing a simple genetics algorithm in the computer isn’t difficult. The
necessary steps are described here:

1. Pick up a population and set up initial information values.

2. Order each of the information values to a flat bit vector.

3. Calculate the fitness of each member of the population.

4. Keep only the two with the highest fitness.

5. Mate the two to form a child.

And thus you will have a child that is the product of
the two best subjects in the population. Of course, to
make a nice simulator you wouldn’t use only two of
the subjects—you would group various subjects in
groups of two and mate them to form various chil-
dren, or offspring. Now I’ll explain each of the steps.

You first need to use the initial population (all the sub-
jects, including creatures, structures, or mathematical
variables) and set them up with their initial values.
(These initial values can be universally known infor-
mation, previous experiences of the subject, or com-
pletely random values.) Then you need to order the
information to a bit vector, as shown in Figure 18.4.

Although some researchers say that an
implementation of a genetic algorithm
must be done with bit vectors, others say
that the bit vectors can be replaced by a
function or equation that will analyze
each gene of the progenitors and generate
the best one out of the two. To be consis-
tent with the DNA discussion earlier,
I will use bit vectors (see Figure 18.4).

You now have to calculate the fitness of each subject. The fitness value indicates whether
you have a good subject (for a creature, this could be whether the creature was strong,
smart, or fast, for example) or a bad subject. Calculating the fitness is completely depen-
dent on the application, so you need to find some equation that will work for what you
want to do.

After you calculate the fitness, get the two subjects with the highest fitness and mate them.
You can do this by randomly selecting which gene comes from which progenitor or by
intelligently selecting the best genes of each to form an even more perfect child. If you

Chapter 18 � Introduction to Artificial Intelligence568

Figure 18.3 Gene blood type table

Figure 18.4 Bit vectors (or binary encoding) of
information—the virtual DNA

want to bring mutation to the game, you can switch a bit here and there after you get the
final offspring. That’s it—you have your artificial offspring ready to use. This entire
process is shown in Figure 18.5.

A good use of this technology in games is to simulate artificial environments. Instead of
keeping the same elements of the environment over and over, you could make elements
(such as small programs) evolve to stronger, smarter, and faster elements (or objects) that
can interact with the environment and you.

Neural Networks
Neural networks attempt to solve problems by imitating the workings of a brain.
Researchers started trying to mimic animal learning by using a collection of idealized neu-
rons and applying stimuli to them to change their behavior. Neural networks have evolved
much in the past few years, mostly due to the discovery of various new learning algo-
rithms, which made it possible to implement the idea of neural networks with success.
Unfortunately, there still aren’t major discoveries in this field that make it possible to sim-
ulate the human brain efficiently.

The human brain is made of around 50 billion neurons (give or take a few billion). Each neu-
ron can compute or process information and send this information to other neurons. Trying
to simulate 50 billion neurons in a computer would be disastrous. Each neuron takes various
calculations to be simulated, which would lead to around 200 billion calculations. You can
forget about modeling the brain fully, but you can use a limited set of neurons (the human
brain only uses around 5 to 10 percent of its capacity) to mimic basic actions of humans.

The Fields of Artificial Intelligence 569

Figure 18.5 Mating and mutation of an offspring

Chapter 18 � Introduction to Artificial Intelligence570

In 1962, Rosenblatt created something called a perceptron, one of the earliest neural net-
work models. A perceptron is an attempt to simulate a neuron by using a series of inputs,
weighted by some factor, which will output a value of 1 if the sum of all the weighted
inputs is greater than a threshold, or 0 if it isn’t. Figure 18.6 shows the idea of a percep-
tron and its resemblance to a neuron.

While a perceptron is just a simple way to model a neuron, many other ideas evolved from
this, such as using the same values for various inputs, adding a bias or memory term, and
mixing various perceptrons using the output of one as input for others. All of this together
formed the current neural networks used in research today.

There are several ways to apply neural networks to games, but probably the most predomi-
nant is by using neural networks to simulate memory and learning. This field of artificial
intelligence is probably one of its most interesting parts, but unfortunately, the topic is too
vast to give a proper explanation of it here. Fortunately, neural networks are becoming more
and more popular these days, and numerous publications are available about the subject.

Deterministic Algorithms
Deterministic algorithms are more of a game technique than an artificial intelligence concept.
Deterministic algorithms are predetermined behaviors of objects in relation to the universe
problem. You will consider three deterministic algorithms in this section—random
motion, tracking, and patterns. While some say that patterns aren’t a deterministic algorithm,
I’ve included them in this section because they are predefined behaviors.

n o t e

The universe (or universe problem) is the current state of the game that influences the subject, and
it can range from the subject’s health to the terrain slope, number of bullets, number of adversaries,
and so on.

Figure 18.6 A perceptron and a neuron

Random Motion
The first, and probably simplest, deterministic algorithm is random motion. Although
random motion can’t really be considered intelligence (because it’s random), there are a
few things you can make to simulate some simple intelligence.

As an example, suppose you are driving on a road, you reach a fork, and you really don’t
know your way home. You would usually take a random direction (unless you are super-
stitious and always take the right road). This isn’t very intelligent, but you can simulate it
in your games like so:

NewDirection = rand() % 2;

This will give a random value that is either 0 or 1, which would be exactly the same thing
as if you were driving. You can use this kind of algorithm in your games, but it isn’t very
much fun. However, there are things to improve here. Another example? Okay. Suppose
you are watching some guard patrolling an area. Two things might happen: The guard
could move in a logical way, perhaps a circle or straight line, but most of the time he will
move randomly. He will move from point A to B, then to C, then go to B, then C again,
then D, then back to A, and repeat this in a totally different form. Take a look at Figure
18.7 to see this idea in action.

His movement can be described in code something like this:

Vector2D kGuardVelocity;
Vector2D kGuardPosition;
int kGuardCycles;
/* Initialize random velocity and cycles */
kGuardVelocity[0] = rand () % 10 – 5;

Deterministic Algorithms 571

Figure 18.7 A very bad guard

kGuardVelocity[1] = rand () % 10 – 5;
kGuardCycles = rand () % 20;
while (GameIsRunning)
{

// If we still have some cycles with the current movement
while (kGuardCycles— > 0)
{

A
D
C
B
kGuardPosition += kGuardVelocity;

}
// Change velocity and cycles
kGuardVelocity [0] = rand () % 10 – 5;
kGuardVelocity [1] = rand () % 10 – 5;
kGuardCycles = rand () % 20;

}

And you have your guard. You might think this isn’t very intelligent, but if you were only
playing the game, you would simply see that the guard was patrolling the place, and you
would think that he was being intelligent.

n o t e

Some of the psuedo-code in this chapter is based on the code developed to represent vectors in
Chapter 19, “The Mathematical Side of Games.”

Tracking
When you are trying to catch someone, there are a few things you must do. First, move
faster than him, or else you will never catch him, and move in the direction he is from you.
There is no logic in running south if he is north of you.

To solve this problem and add a little more intelligence to your games, you can use a track-
ing algorithm. Suppose the guard spots an intruder. He would probably start running
toward him. If you wanted to do this in your game, you would use the following code:

Vector2D kGuardVelocity;
Vector2D kGuardPosition;
Vector2D kIntruderPosition;
int iGuardSpeed;
// Intruder was spotted, run to him
Vector2D kDistance;

Chapter 18 � Introduction to Artificial Intelligence572

kDistance = kIntruderPosition – kGuardPosition;
kGuardVelocity = kDistance.Normalize();
kGuardVelocity *= iGuardSpeed;
kGuardPosition += kGuardVelocity;

This code gets the direction from the intruder to the guard (the normalized distance) and
moves the guard to that direction by a speed factor. Of course, there are several improve-
ments you could make to this algorithm, such as taking into account the intruder’s veloc-
ity and maybe doing some reasoning about the best route to take.

The last thing to learn with regard to tracking algorithms is about anti-tracking algo-
rithms. An anti-tracking algorithm uses the same concepts as the tracking algorithm, but
instead of moving toward the target, it runs away from the target. In the previous guard
example, if you wanted the intruder to run away from the guard, you could do something
like this:

mrVector2D kGuardVelocity;
mrVector2D kGuardPosition;
mrVector2D kIntruderPosition;
mrUInt32 iGuardSpeed;
// Guard has spotted the intruder, intruder run away from him
mrVector2D kDistance;
kDistance = kGuardPosition - kIntruderPosition;
kGuardVelocity = -kDistance.Normalize();
kGuardVelocity *= iGuardSpeed;
kGuardPosition += kGuardVelocity;

As you can see, the only thing you need to do is negate the distance to the target (the dis-
tance from the guard to the intruder). You could also use the distance from the intruder
to the guard and not negate it, because it would produce the same final direction.

Patterns
A pattern, as the name indicates, is a collection of actions. When those actions are per-
formed in a determined sequence, a pattern (repetition) can be found. Take a look at my
rice-cooking pattern, for example. There are several steps I take when I’m cooking rice:

1. Take the ingredients out of the cabinet.

2. Get the cooking pan from under the counter.

3. Add about two quarts of water to the pan.

4. Boil the water.

5. Add 250 grams of rice, a pinch of salt, and a little lemon juice.

6. Let the rice cook for 15 minutes.

573Deterministic Algorithms

And presto, I have rice ready to be eaten. (You don’t mind if I eat while I write, do you?)
Whenever I want to cook rice, I follow these steps or this pattern. In games, a pattern can
be as simple as making an object move in a circle or as complicated as executing orders,
such as attacking, defending, harvesting food, and so on. How is it possible to implement
a pattern in a game? First you need to decide how a pattern is defined. For your small
implementation, you can use a simple combination of two values—the action description
and the action operator. The action description defines what the action does, and the
action operator defines how it does it. The action operator can express the time to execute
the action, how to execute it, or the target for the action, depending on what the action is.

Of course, your game might need a few more arguments to an action than only these two;
you can simply add the necessary parameters. Take another look at the guard example.
Remember that there were two things the guard might be doing if he was patrolling the
area—moving randomly (as you saw before) or in a logical way. For this example, assume
the guard is moving in a logical way—that he is performing a square-styled movement, as
shown in Figure 18.8.

As you can see, the guard moves around the area in a square-like
pattern, which is more realistic than moving randomly. Now,
doing this in code isn’t difficult, but you first need to define how
an action is represented. For simple systems like yours, you can
define an action with a description and an operator. The descrip-
tion field describes the action (well, duh!), but the operator can
have various meanings. It can be the time the action should be
performed, the number of shots that should be fired, or anything
else that relates to the action. For the guard example, the operator
would be the number of feet to move. Although this system works
for many actions, you might want to introduce more data to the
pattern. Doing so is easy; you simply need to include more operators
in the action definition. A simple example could be:

class Action
{
public:
string Description;
string Operator;
};

To make your guard pattern, you could do something like this:

Action GuardPattern [4];
GuardPattern[0].Description = “MoveUp”;
GuardPattern[0].Operator = “10”;
GuardPattern[1].Description = “MoveRight”;

Chapter 18 � Introduction to Artificial Intelligence574

Figure 18.8 A good
guard patrolling the
area

GuardPattern[1].Operator = “10”;
GuardPattern[2].Description = “MoveDown”;
GuardPattern[2].Operator = “10”;
GuardPattern[3].Description = “MoveLeft”;
GuardPattern[3].Operator = “10”;

And your guard pattern would be defined. The last thing you need to do is the pattern
processor. This isn’t hard; you simply need to check the actual pattern description and,
depending on the pattern description, perform the action like so:

mrUInt32 iNumberOfActions = 4;
mrUInt32 iCurrentAction;
for (iCurrentAction = 0; iCurrentAction < iNumberOfActions;
iCurrentAction++)
{

if (GuardPattern [iCurrentAction].Description == “MoveUp”;
{

kGuardPosition [1] += GuardPattern [iCurrentAction].Operator;
}
if (GuardPattern [iCurrentAction].Description == “MoveRight’;
{

kGuardPosition [0] += GuardPattern [iCurrentAction].Operator;
}
if (GuardPattern [iCurrentAction].Description == “MoveDown”;
{

kGuardPosition [1] -= GuardPattern [iCurrentAction].Operator;
}
if (GuardPattern [iCurrentAction].Description == “MoveUp”;
{

kGuardPosition [0] -= GuardPattern [iCurrentAction].Operator;
}

}

This would execute the pattern to make the guard move in a square. Of course, you might
want to change this to only execute one action per frame or execute only part of the action
per frame, but that’s another story.

Finite State Machines
Random logic, tracking, and patterns should be enough to enable you to create some
intelligent characters for your game, but they don’t depend on the actual state of the prob-
lem to decide what to do. If for some reason a pattern tells the subject to fire the weapon,
and there isn’t any enemy near, then the pattern doesn’t seem very intelligent, does it?
That’s where finite state machines (or software) enter.

Finite State Machines 575

A finite state machine has a finite number of states that can be as simple as a light switch
(either on or off) or as complicated as a VCR (idle, playing, pausing, recording, and more,
depending on how much you spend on it).

A finite state software application has a finite number of states. These states can be repre-
sented as the state of the playing world. Of course, you won’t create a state for each dif-
ference in an object’s health. (If the object had a health ranging from 0 to 1,000, and you
had 10 objects, that would mean 100,010 different states, and I don’t even want to think
about that case!) However, you can use ranges, such as whether an object’s health is below
a number, and only use the object’s health for objects that are near the problem you are
considering. This would reduce the states from 100,010 to about four or five.

Let’s resume the guard example. If an intruder were approaching the area, until now you
would only make your guard run to him. But what if the intruder is too far? Or too near?
And what if the guard had no bullets in his gun? You might want to make the guard act
differently. For example, consider the following cases:

1. Intruder is in a range of 1000 feet: Just pay attention to the intruder.

2. Intruder is in a range of 500 feet: Run to him.

3. Intruder is in a range of 250 feet: Tell him to stop.

4. Intruder is in a range of 100 feet and has bullets: Shoot first, ask questions later.

5. Intruder is in a range of 100 feet and doesn’t have bullets: Sound the alarm.

You have five scenarios, or more accurately, states. You could include more factors in the
decision, such as whether there are any other guards in the vicinity, or you could get more
complicated and use the guard’s personality to decide. If the guard is too much of a cow-
ard, you probably never shoot, but just run away. The previous steps can be described in
code like this:

// State 1
if ((DistanceToIntruder () > 500) && (DistanceToIntruder () < 1000))
{

Guard.TakeAttention ();
}
// State 2
if ((DistanceToIntruder () > 250) && (DistanceToIntruder () < 500))
{

Guard.RunToIntruder ();
}
// State 3
if ((DistanceToIntruder () > 100) && (DistanceToIntruder () < 250))
{

Guard.WarnIntruder ();

Chapter 18 � Introduction to Artificial Intelligence576

Fuzzy Logic 577

}
// State 4
if (DistanceToIntruder () < 100)
{

if (Guard.HasBullets ())
{

Guard.ShootIntruder();
}

// State 5
else
{

Guard.SoundAlarm();
}

}

Not hard, was it? If you combine this with the deterministic algorithms you saw previ-
ously, you can make a very robust artificial intelligence system for your games.

Fuzzy Logic
I have already covered the basics of fuzzy logic, but this time I will go into several of the
fuzzy logic techniques more deeply, and explain how to apply them to games.

Fuzzy Logic Basics
Fuzzy logic uses some mathematical sets theory, called fuzzy set theory, to work. If you’re
rusty with sets, check the mathematics chapter (Chapter 19, “The Mathematical Side of
Games”) before you continue. Fuzzy logic is based on the membership property of things.
For example, while all drinks are included in the liquids group, they aren’t the only things
in the group; some detergents are liquids too, and you don’t want to drink them, do you?
The same way that drinks are a subgroup—or more accurately, a subset—of the liquids
group, some drinks can also be subsets of other groups, such as wine and soft drinks. In
the wine group, there are red and white varieties. In the soft drink group, there are car-
bonated and non-carbonated varieties.

All this talk about alcoholic and non-alcoholic drinks was for demonstration purposes
only, so don’t go out and drink alcohol just to see whether I’m right. Alcohol damages
your brain and your capacity to code, so stay away from it (and drugs, too).

Okay, I’ll stop being so paternal and get back to fuzzy logic. Grab a glass and fill it with
some water (as much as you want). The glass can have various states—it can be empty,
half full, or full (or anywhere in between). How do you know which state the glass is in?
Take a look at Figure 18.9.

As you can see, when the glass has 0 percent water, it is totally empty; when it has 50 per-
cent water, it is half full (or half empty, if you prefer). When it has 100 percent of its size
in water, then it is full. What if you only poured 30 percent of the water? Or 10 percent?
Or 99 percent? As you can see from the graph, the glass will have a membership value for
each group. If you want to know the membership values of whatever percentage of water
you have, you will have to see where the input (the percentage) meets the membership’s
graphs to get the degree of membership of each, as shown in Figure 18.10.

Memberships graphs can be as simple as the ones in Figure 18.10, or they can be trape-
zoids, exponentials, or other equation-derived functions. For the rest of this section, you
will only use normal triangle shapes to define memberships. As in Figure 18.10, you can
see that the same percentage of water can be part of two or more groups, where the greater

membership value will
determine the value’s
final membership.

Chapter 18 � Introduction to Artificial Intelligence578

Figure 18.9 Group membership for a glass of water

Figure 18.10 Group membership for a glass of water for various values

You can also see that the final group memberships will range from zero to one. This is one
of the requirements for a consistent system. To calculate the membership value on a tri-
angle membership function, assuming that the value is inside the membership value (if it
isn’t, the membership is just zero), you can use the following code:

float fCenterOfTriangle = (fMaximumRange – fMinimumRange) / 2;
/* Value is in the center of the range */
if (fValue == fCenterTriangle)
{

fDegreeOfMembership = 1.0;
}
/* Value is in the first half of the range */
if (fValue < fCenterTriangle)
{

fDegreeOfMembership = (fValue – fMinimumRange) /
(fCenterTriangle – fMinimumRange);

}
/* Value is in the second half of the range */
if (fValue > fCenterTriangle)
{

fDegreeOfMembership = ((fMaximumRange - fCenterTriangle) - (fValue –
fCenterTriangle)) / (fMaximumRange - fCenterTriangle);

}

And you have the degree of membership. If you played close attention, what you did was use
the appropriate line slope to check for the vertical intersection of fValue with the triangle.

Fuzzy Matrices
The last topic about fuzzy logic I want to cover is fuzzy matrices. This is what really makes
you add intelligence to your games. First, I need to pick a game example to demonstrate
this concept. Anyone like soccer?

You will be defining three states of the game.

1. The player has the ball.

2. The player’s team has the ball.

3. The opposite team has the ball.

Although there are many other states, you will only be focusing on these three. For each of
these states, there is a problem state for the player. You will be considering the following:

1. The player is clear.

2. The player is near an adversary.

3. The player is open for a goal.

Fuzzy Logic 579

Using these three states, as well as the previous three, you can define a matrix that will let
you know which action the player should take when the two states overlap. Figure 18.11
shows the action matrix.

Using this matrix would make the player react like a normal player would. If he is clear
and doesn’t have the ball, he will try to get in a favorable position for a goal. If he has the
ball at a shooting position, he will try to score. You get the idea.

But how do you calculate which state is active? It’s easy—you use the group membership
of each state for both inputs, and multiply the input row by the column row to get the
final result for each cell. (It’s not matrix multiplication; you simply multiply each row
position by the column position to get the row column value.) This will give you the best
values from which to choose. For example, if one cell has a value of 0.34 and the other cell
has a value of 0.50, then the best choice is probably to do what the cell with 0.50 says.
Although this isn’t an exact action, it is the best you can take. There are several ways to
improve this matrix, such as using randomness, evaluating the matrix with another
matrix (such as the personality of the player), and many more.

A Simple Method for Memory
Although programming a realistic model for memory and learning is hard, there is a
method that I personally think is pretty simple to implement—you can store game states
as memory patterns. This method will save the game state for each decision it makes (or
for each few, depending on the complexity of the game) and the outcome of that decision;
it will store the decision result in a value from zero to one (with zero being a very bad
result and one being a very good result).

For example, consider a fighting game. After every move the subject makes, the game logs
the result (for example, whether the subject hit the target, missed the target, caused much
damage, or was hurt after the attack). Calculate the result and adjust the memory result
for that attack. This will make the computer learn what is good (or not) against a certain
player, especially if the player likes to follow the same techniques over and over again.

Chapter 18 � Introduction to Artificial Intelligence580

Figure 18.11 The action matrix for a soccer player

You can use this method for almost any game, from Tic-Tac-Toe, for which you would
store the player’s moves and decide which would be the best counter-play using the cur-
rent state of the game and the memory, to racing games, for which you would store the
movement of the cars from point to point and, depending on the result, choose a new way
to get to the path. The possibilities are infinite, of course. This only simulates memory,
and using only memory isn’t the best thing to do—but it is usually best to act based on
memory instead of only pure logic.

Artificial Intelligence and Games
There are various fields of artificial intelligence, and some are getting more advanced each
day. The use of neural networks and genetic algorithms for learning is pretty normal in
today’s games. Even if all these techniques are being applied to games nowadays and all
the hype is out, it doesn’t mean you need to use it in your own games. If you need to
model a fly, just make it move randomly. There is no need to apply the latest techniques
in genetic algorithms to make the fly sound like a fly; random movement will do just as
well (or better) than any other algorithm. There are a few rules I like to follow when I’m
developing the artificial intelligence for a game.

1. If it looks intelligent, then your job is done.

2. Put yourself in the subject’s place and code what you think you would do.

3. Sometimes the simpler technique is the needed one.

4. Always pre-design the artificial intelligence.

5. When nothing else works, use random logic.

Summary
This chapter has provided a small introduction to artificial intelligence. Such a broad
topic could easily take a few sets of books to explain—and even then, many details would
have to be left out. The use of artificial intelligence depends much on the type of game
you are developing, so it is usually also very application-specific. While 3D engines can be
used repeatedly, it is less likely that artificial intelligence code can. Although this chapter
covered some of the basics of artificial intelligence, it was just a small subset of what you
might use, so don’t be afraid to experiment!

Summary 581

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. Which of the following is not one of the three deterministic algorithms covered
in this chapter?

A. Random logic

B. Tracking

C. Conditions

D. Patterns

2. Can fuzzy matrices be used without multiplying the input memberships?
Why or why not?

A. No, it is absolutely necessary to multiply the input memberships.

B. Yes, but only after negating the matrix.

C. Yes, it is possible using AND and OR operators, and then randomly
selecting action for the active cell.

D. Yes, it is possible using XOR and NOT operators after multiplying the matrix.

3. Which type of system solves problems that are usually solved by specialized
humans?

A. Expert system

B. Deterministic algorithm

C. Conditional algorithm

D. If-then-else

4. Which type of intelligence system is based on an expert system, but is capable
of determining fractions of complete answers?

A. Genetic algorithm

B. Fuzzy logic

C. Deterministic algorithm

D. Expert system

5. Which type of intelligence system uses a method of computing solutions for a
hereditary logic problem?

A. Expert system

B. Fuzzy logic

C. Genetic algorithm

D. Conditional logic

Chapter 18 � Introduction to Artificial Intelligence582

6. Which type of intelligence system solves problems by imitating the workings
of a brain?

A. State machine

B. Genetic algorithm

C. Fuzzy logic

D. Neural network

7. Which of the following uses predetermined behaviors of objects in relation
to the universe problem?

A. Genetic algorithm

B. Deterministic algorithm

C. Fuzzy logic

D. Neural network

8. Which type of deterministic algorithm “fakes” intelligence?

A. Patterns

B. Tracking

C. Random motion

D. Logic

9. Which type of deterministic algorithm will cause one object to follow another?

A. Tracking

B. Conditional

C. Patterns

D. Random motion

10. Which type of deterministic algorithm follows preset templates?

A. Tracking

B. Random motion

C. Genetic

D. Patterns

Chapter Quiz 583

This page intentionally left blank

585

The Mathematical
Side of Games

chapter 19

A
s you might already know, math is an extremely important subject in high-level
computer programming, especially in game programming. Behind the scenes, in
the graphics pipeline, and in the physics engine, heavy math is being processed by

your computer, often with direct implementation in the silicon (as is the case with most
graphics chips). While a huge amount of heavy math is needed to get a polygon on the
screen with a software renderer, that is all handled by highly optimized (and fantastically
complex) mathematics built into the latest graphics processors. Vectors, matrices, functions,
and other math-related topics comprise an indispensable section in any game-programming
curriculum. In this chapter, I will go over basic linear algebra, such as vector operations,
matrices, and probability, with a bit of calculus when I get into the basics of functions.
Please note that this is an extremely simple primer on basic algebra and calculus and
should accomplish little more than whetting your appetite. For a really solid treatment
of game mathematics, please refer to Mathematics for Game Developers (Course Tech-
nology PTR, 2004) by Christopher Tremblay, who has tackled the subject with a tenacity
that is sure to enhance your math skills.

Here is a breakdown of the major topics in this chapter:

� Using trigonometry

� Understanding vectors

� Working with matrices

� Using probability

� Working with functions

Trigonometry
Trigonometry is the study of angles and their relationships to shapes and various other
geometries. You will use some of the material covered here as support for some advanced
operations you will build later.

Visual Representation and Laws
Before I go into the details of trigonometry, let me introduce a new concept—radians. A
radian is a measurement of an angle, just like a degree. One radian is the angle formed in
any circle where the length of the arc defined by the angle and the circle radius are of same
length, as shown in Figure 19.1. You will use radians as your measurement because they
are the units C++ math functions use for angles. Because you are probably accustomed to
using degrees as your unit of measurement, you need to be able to convert from radians
to degrees and vice versa. As you might know, radians is the angle that contains half a
circle, as you can see in Figure 19.2. And you probably know that 180 degrees is also the
angle that contains half a circle. Knowing this, you can convert any radian unit to degrees,
as shown in Equation 19.1, and vice versa using Equation 19.2.

Chapter 19 � The Mathematical Side of Games586

Figure 19.1 Relation of the arc length and
radius of the circle

Figure 19.2 Half a circle denoted by
radians and degrees

double DegreeToRadian(double degree)
{

return (degree * PI / 180);
}
double RadianToDegree(double radian)
{

return (radian * 180 / PI);
}

Now that you know what a radian is, I’ll explain how to use them. Take a look at Figure 19.3.
From the angle and the circle radius, you can get the triangle’s sides and angles. If you exam-
ine that circle a little bit closer, you will see that in any triangle that contains the center of
the circle and the end of the arc as vertices, the hypotenuse of that triangle is the line formed

from the circle’s center to the end of the arc.
Now you need to find the two other lines’
lengths that form the triangle. You will find
these using the cosine and sine functions.
The three equations that are important in
geometry are cosine, sine, and tangent, and
they are directly related to the triangle. See
the cosine Equation 19.3, the sine Equation
19.4, and the tangent Equation 19.5.

Trigonometry 587

Equation 19.1

Equation 19.2

Figure 19.3 A triangle formed by a circle
radius and an angle; radians = 180 degrees

You can calculate these trigonometric operations using the MacLaurin series, but that is
beyond the scope of this book. Now you can determine the length of the adjacent side of
the triangle on the circle by using the cosine, as shown in Equation 19.6.

What if you want to know the angles at each side of the triangle? You use exactly the same
equations as you used before to get the sine or the cosine. When you have them, you use the
inverse of those operations to get the angles. Taking the triangle in Figure 19.3, you find two
of the angles. You don’t need to find one of the angles because you already know that the tri-
angle is a right angle triangle, and as such, the angle formed is 90 degrees, or one-half .

Chapter 19 � The Mathematical Side of Games588

Equation 19.3

Equation 19.4

Equation 19.5

Equation 19.6

Equation 19.7 Equation 19.8

What is the difference between the two equations? If you look carefully, you are trying to
get the angle using the cosine and the opposite side. You do this because the opposite
side of the angle is actually the adjacent side in relation to that angle. So what does this
mean? It means that the terms adjacent and opposite are relative to the angle to which they
are referred. In the second calculation, the opposite side should actually be the adjacent
side of that angle. Table 19.1 shows you the list of trigonometric functions. This might
seem complicated, but it will become clearer when you start using all of this later.

Angle Relations
A couple of relations can prove useful when you are dealing with angles and trigonomet-
ric functions. One of the most important relations is the trigonometric identity shown in
Equation 19.9.

This equation is the base of all the other relations. To be honest, these relations are used
only for problem solving or optimizations. For that reason, I will not go over them in detail;
I will simply show them to you so you can use them at your discretion. The following equa-
tions are derived from Equation 19.9 and should be used to optimize your code.

Trigonometry 589

Table 19.1 C Trigonometric Functions

Trigonometric C Function C Function Inversed

cosine cos acos
sine sin asin
tangent tan atan/atan2

* These functions are all defined in math.h.

Equation 19.9

Equation 19.10

Now you are done with trigonometry. Trigonometry isn’t very useful per se, but it will
prove an indispensable tool later when you use it with other concepts, such as vectors or
matrices.

Vectors
A vector is an n-tuple of ordered real values that can represent anything with more than
one dimension—for example, a 2D or 3D Euclidean space. Basically, vectors are nothing
more than a set of components.

Vectors describe both magnitude and direction. In the two-dimensional case, the X and Y
components represent the distance from the relative origin to the end of the vector, as you
can see in Figure 19.4. Because you are using a 2D world, you define vectors using two
components for convenience, with a commonly known notation (x, y). You can also rep-
resent just one component of the vector by using a subscript either with the order of the
element or with the component identification, as shown in Equation 19.14.

#include <math.h>

typedef struct vector2d

Chapter 19 � The Mathematical Side of Games590

Equation 19.11

Equation 19.12

Equation 19.13

{
double components[2];

}
vector2d;

As you can see, the vector is constituted by an array of two components: X (components[0])
and Y (components[1]).

Addition and Subtraction
Vectors can be added or subtracted to form new vectors. You can see in Equation 19.15
that the addition of two vectors is completed component by component, which is true for
subtraction as well.

591Vectors

Figure 19.4 A 2D vector
composed of two scalars defining
the orientation

Equation 19.14

Equation 19.15

Equation 19.15 also shows that vector addition can be done in any order, but this isn’t true
for vector subtraction. If you take a look at Figure 19.5, you can see how the same vectors
subtracted in different order produce a vector that is the same in length but different in
orientation. Before I move on, I want to create your addition method.

vector2d vector2d_add(vector2d first, vector2d second)
{

vector2d newvector;
newvector.components[0] = first.components[0] + second.components[0];
newvector.components[1] = first.components[1] + second.components[1];
return newvector;

}

As you can see in Figure 19.6, the subtraction of two vectors gives you the distance
between them, but it isn’t commutative. If you subtract A B you get the distance from A
to B, whereas in B A you get the distance from B to A. This is shown in Equation 19.16.

Chapter 19 � The Mathematical Side of Games592

Figure 19.5 Addition of two vectors

Figure 19.6 Subtraction of two vectors in different order

n o t e

In Figure 19.6, you can see that the product of the subtraction has its origin on the end of the first
vector. This is incorrect. The vector origin should be the origin of the world.

To finalize this section, let’s build the subtraction function.

vector2d vector2d_subtract(vector2d first, vector2d second)
{

vector2d newvector;
newvector.components[0] = first.components[0] - second.components[0];
newvector.components[1] = first.components[1] - second.components[1];
return newvector;

}

Scalar Multiplication and Division
You can scale vectors by multiplying or dividing them by scalars, just like normal scalar-
to-scalar operations. To do this, you multiply or divide each vector component by the
scalar. You can see this in Equation 19.17, which shows multiplication of each of the vector
components by a scalar to produce a new vector.

In code you have:

vector2d vector2d_multiply(vector2d vect, double multiplier)
{

vector2d newvector;
newvector.components[0] = vect.components[0] * multiplier;
newvector.components[1] = vect.components[1] * multiplier;
return newvector;

}

Vectors 593

Equation 19.16

Equation 19.17

You do the same thing for division, as you can see in Equation 19.18.

To end the normal operations, let’s build a division function.

vector2d vector2d_divide(vector2d vect, double divisor)
{

vector2d newvector;
newvector.components[0] = vect.components[0] / divisor;
newvector.components[1] = vect.components[1] / divisor;
return newvector;

}

Length
The length is the size of the vector. The length is used in several other vector operations,
so it should be the first one you learn. If you remember the Pythagorean Theorem, you
know that the square of the hypotenuse is equal to the sum of the square of each side. You
use the same theorem to get the length of the vector, as you can see in Equation 19.19.

As usual, I’ll write a function to calculate the length of a vector.

double vector2d_length(vector2d vect)
{

return (double) sqrt (vect.components[0] * vect.components[0] +
vect.components[1] * vect.components[1]);

}

Normalization
As you saw earlier, vectors have both an orientation and a length, also referred to as the
norm. Some calculations you use will need a vector of length 1.0. To force a vector to have

Chapter 19 � The Mathematical Side of Games594

Equation 19.18

Equation 19.19

a length of 1.0, you must normalize the vector—in other words, divide the components of
the vector by its total length, as shown in Equation 19.20.

vector2d vector2d_normalize(vector2d vect)
{

vector2d newvector = vect;
double length = vector2d_length(vect);
if (length > 0)
{

newvector.components[0] /= length;
newvector.components[1] /= length;

}
return newvector;

}

Perpendicular Operation
Finding the perpendicular of a vector is one of those operations you’ll use once a year, but
let’s briefly talk about it anyway. A vector perpendicular to another is a vector that forms
a 90-degree angle, or a half- radians angle with the other. In Figure 19.7, you can see that
vector B forms a 90-degree, counterclockwise angle with vector A.

Finding the perpendicular vector of a 2D vector is
easy; you simply need to negate the Y component
and swap it with the X component of the vector, as
shown in Equation 19.21.

Vectors 595

Equation 19.20

Figure 19.7 A perpendicular vector
forming a 90-degree, counterclockwise
angle with another vector

Just one little thing…. You see that reversed T in Equation 19.21? That is the perpendicu-
lar symbol.

vector2d vector2d_perpendicular(vector2d vect)
{

vector2d newvector = vect;
newvector.components[0] = vect.components[1] * -1;
newvector.components[1] = vect.components[0];
return newvector;

}

Dot Product
The dot product is probably the most used operation with vectors. You can use it to mul-
tiply two vectors, as shown in Equation 19.22.

double vector2d_dotproduct(vector2d first, vector2d second)
{

return (double) first.components[0] * second.components[0] +
first.components[1] * second.components[1];

}

Using the dot product isn’t very informative per se, but the dot product can also be
defined by Equation 19.23.

This equation gives a little more information, don’t you agree? In case you didn’t know,
ø is the smallest angle formed by the two vectors. With a little thought and by combining
Equations 19.22 and 19.23, you can get the equation to find the smallest angle of two vec-
tors (see Equation 19.24).

Chapter 19 � The Mathematical Side of Games596

Equation 19.21

Equation 19.22

You finally have some use for the dot product. If you calculate the arc cosine of the dot
product of the two vectors divided by the product of their lengths, you have the smallest
angle between them. Now you can build the angle function.

double vector2d_angle(vector2d first, vector2d second)
{

return (double) acos (
vector2d_dotproduct(first, second) /
(vector2d_length(first) * vector2d_length(second)));

}

Perp-Dot Product
The perp-dot product is nothing new. It is the dot product of a calculated perpendicular
vector. This operation is mostly used in physics, as you will see later. How do you find the
perp-dot product? Easy—you find the perpendicular of a vector and calculate the dot
product of that vector with another, as shown in Equation 19.25.

Vectors 597

Equation 19.23

Equation 19.24

Equation 19.25

double vector2d_perpdotproduct(vector2d first, vector2d second)
{

return vector2d_dotproduct(vector2d_perpendicular(first), second);
}

Matrices
A simple way of defining a matrix is to say that it is a table of values. You can see in
Equation 19.26 that a matrix is defined by a set of rows and columns. The number of
columns is given by p and the number of rows by q. You can also access any element of the
matrix using the letter i for the row and the letter j for the column. This is shown in
Equation 19.27.

Addition and Subtraction
Matrix addition and subtraction is done exactly the same way as the vector addition and
subtraction. You add (or subtract) each element of one matrix to (or from) the other to
produce a third matrix, as shown in Equation 19.28 (for the addition operation).

Matrix addition is commutative (that is, independent of the order), but this isn’t the case
for subtraction, as you can see in Equation 19.29.

Scalars with Multiplication and Division
Again, to multiply or divide a matrix by a scalar, you multiply or divide each matrix ele-
ment by the scalar, as shown in Equation 19.30 for multiplication.

Chapter 19 � The Mathematical Side of Games598

Equation 19.26

Equation 19.27

This is exactly the same for the division process, shown in Equation 19.31.

Scalar operations in matrices are pretty easy and usually unnecessary. Next I will go over
the most useful matrix operations.

Special Matrices
There are two special matrices I want to go over—the zero matrix and the identity matrix.
First, the zero matrix is a matrix that, when added to any other matrix, produces the
matrix shown in Equation 19.32.

599Matrices

Equation 19.28

Equation 19.29

Equation 19.30

As long as it is a 2×2 matrix, the result of the operation is M—no matter what M is. The
identity matrix is a matrix that, when multiplied by any other matrix, produces the same
matrix as shown in Equation 19.33.

Again, as long as it is a 2×2 matrix, the result of this operation is M—no matter what M is.

Transposed Matrices
A transposed matrix is a matrix in which the matrix values are swapped with the other
diagonal element, proving Equation 19.34 true. This operation is usually used to change
coordinate systems in 3D.

Chapter 19 � The Mathematical Side of Games600

Equation 19.31

Equation 19.32

Equation 19.33

Matrix Concatenation
You have reached one of the most needed (and one of the most complicated) matrix oper-
ations—matrix multiplication, or more correctly, concatenation. Concatenation is the real
name for matrix multiplication. This operation enables you to concatenate matrices to
produce various effects, such as rotating or shearing. Equation 19.35 presents an example
of matrix multiplication.

Well, you have a new symbol in your game. The symbol, in English, represents the sum.
Look at the math in Equation 19.36.

There are three things to explain—the symbol, the number above it, and the number
below it. What you do with this bit of math is sum all the masses you have in the equation
above n. Suppose that mass is an array, such as int mass [n], and you want to add every
element of mass from i = 0 to n.

It’s easy if you think of it like a programmer would, isn’t it? So basically, the sum symbol
means that you will add each element of an array from i to n. In Equation 19.37, what
you actually do is add all the products of the row of matrix A with the column of matrix
B to get each element of the result matrix. It’s easier to check this with the example in
Equation 19.37.

Matrices 601

Equation 19.34

Equation 19.35

Equation 19.36

I want to go over how you actually come to these results. First, you will find Matrix
Concatenatedij. If you look at Equation 19.38, you can see that:

MatrixConcatenatedij = Aiu Buj + Ai(u+i) B(u+i)j

Since u starts at 1 and ends at 2, you can say that:

MatrixConcatenated11= A11 B11+ A12 B21, or MatrixConcatenated11= a 1+b 3

You do the same for each element, as follows:

MatrixConcatenated12= A11 B12+ A12 B22= a 2+b 4

MatrixConcatenated21= A21 B11+ A22 B21= c 1+d 3

MatrixConcatenated22= A21 B12+ A22 B22= c 2+d 4

Vector Transformation
Being able to transform vectors by matrices is one of the fundamental tasks for 2D manip-
ulation, but the concept behind it is very simple. If you treat a 2D vector as a matrix of
size 1×2, you can multiply the matrix vector by another matrix the same way you would
with two matrices, as shown in Equation 19.39.

You just treat the vector as a matrix, and there
you have it.

Chapter 19 � The Mathematical Side of Games602

Equation 19.37

Equation 19.38

Equation 19.39

Probability
Probability is a study of math that analyzes events and then tries to evaluate the odds of
those events happening. I want to go over a simple example.

From yesterday’s weather forecast, there is a good probability of heavy wind and a
50-percent chance of rain.

This forecast actually tells you the probability of heavy wind or rain happening. The text
says there is a good probability of heavy wind, so you can say heavy wind has about a
75–90-percent chance of happening—and as for rain, only a 50-percent chance. What
does this tell you? Well, if you had 100 days with the exact same forecast, you would prob-
ably end up with about 75–90 days with heavy wind, and 50 days with rain. In case you
didn’t know, 50 percent is actually 0.5.

Sets
A set is an unordered collection of objects. You evaluate the objects when you are dealing
with probability. They can be numbers, letters, real objects, or just about anything. A set
is denoted by a capital letter, and the objects in it are listed between curly braces, such as
SetA = {2, 5, 12, 22}. Sets are usually defined as a circle with the letter caption and the
objects contained, as shown in Figure 19.8.

Union
The union operation creates a new set that combines both of the
existing sets. You can see this in Equation 19.40.

Figure 19.9 shows a visual representation of the union of two sets.

Probability 603

Figure 19.8 Graphical
representation of sets

Equation 19.40

Here is an example in pseudo-code:

List unionset;
List setA;
List setB;
unionset = setA;
For each element of setB
Begin

If element exists in setA, do nothing
Otherwise, add it to unionset

End

Intersection
The intersection operation is straightforward. You compare each element of a set to
another set. The elements that are contained in both sets are elements that appear in the
intersected set, as shown in Equation 19.41 and Figure 19.10.

Here is some pseudo-code that describes the process:

List IntersectionSet;
List ListA;

Chapter 19 � The Mathematical Side of Games604

Figure 19.9 Union of two sets

Equation 19.41

List ListB;
For each element of SetB
Begin

If element exists in SetA, add it to IntersectionSet
Otherwise, do nothing

End

As you can see from the code, you go over each element of the set and see whether it exists
in the other set. If it does, it is added to the final set; if it doesn’t exist, it is ignored.

Functions
A function is really an equation, but because you used equation names for all the formu-
las before, you need to distinguish these functions from equations. I think an example will
help. If I gain 0.22 pounds ever day, how much weight will I have gained after 15 days? You
can multiply 0.22 pounds by 15 to get 3.31 pounds. This is correct, but what if you want
to know how much I will weigh after 23 days? And what about after 93 days? You can
mathematically represent this as a function, as shown in Equation 19.42.

You can see this graphically in Figure 19.11. Functions can be used to express various
series, ideas, and so on. They are very helpful as a programming tool.

Functions 605

Figure 19.10 Intersection of two sets

Equation 19.42

Integration
Differentiation and integration are advanced calculus math topics. I will go over some
basic theories related to physics, since you will need it later. If you are driving a car and
you press the gas pedal, producing an acceleration of 11.16 miles per hour, how do you
get to the velocity and position functions? First you need to define your acceleration func-
tion, as shown in Equation 19.43.

Looking at Equation 19.43, how do you get the velocity function? You need to integrate
this function. How? This is a rather simple function, so you can easily do it, as shown in
Equation 19.44.

Chapter 19 � The Mathematical Side of Games606

Figure 19.11 Graphical representation of a function

Equation 19.43

Equation 19.44

How do you know the integration is like this? You cheat. In Appendix B, "Useful Tables,"
you will find a table of useful integration constants. Now that you have the velocity func-
tion, how about getting the position function? Take a look at Equation 19.45.

You also can cheat and use Appendix B to get to the final equation.

Differentiation
A function differentiation gives you the slope of the function at any given position.
Differentiating a function is the exact opposite of integrating. Using the example given in
the integration section, you can get acceleration from velocity, and velocity from position,
as shown in Equations 19.46 and 19.47.

As in the integration process, you also can cheat and use the Appendix B tables to get the
derivatives. Why am I not going through all of the integration and derivation processes?
Honestly, because they would require an entire chapter by themselves.

Functions 607

Equation 19.45

Equation 19.46

Equation 19.47

Summary
I have covered a lot of ground here. Math is one of the fundamental aspects of game pro-
gramming, but it has been mostly tucked away by game libraries such as DirectX and
Allegro. This chapter introduced you to the basics and provided you with enough theory
to get you through the basics so you will be prepared (at least marginally) for the mathe-
matical calculations you are likely to find in many game engines today. There are many
other mathematical concepts you will need to know during your game programming
career, so don’t hesitate to check the references in Appendix D for further reading.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, "Chapter Quiz Answers."

1. What is the study of angles and their relationships to shapes and various other
geometries?

A. Calculus

B. Algebra

C. Arithmetic

D. Trigonometry

2. What is the name of the C function that calculates cosine?

A. cosine

B. cos

C. sine

D. cosineof

3. What is the name of the C function that calculates sine?

A. sin

B. calc_sine

C. sine

D. sineof

4. What is the name of the C function that calculates tangent?

A. tan

B. tangent

C. calc_tan

D. tangentof

Chapter 19 � The Mathematical Side of Games608

5. Which C function calculates the inverse sine?

A. asine

B. acos

C. atan

D. asin

6. Which C function calculates the inverse tangent?

A. arctangent

B. arctan

C. atan

D. calc_arctan

7. What does a set intersection contain?

A. The elements not contained in either set

B. The elements inversely shared by both sets

C. The elements that are contained in both sets

D. The union of elements not shared by either set

8. What does a function differentiation return?

A. The slope of the function at any given position

B. The multiplication matrix for two parallel lines

C. The vector points at both ends of a line

D. The difference between two matrices

9. What is the opposite of function differentiation?

A. Interpolation

B. Conflagration

C. Integration

D. Congestion

10. What Greek letter is most often used in calculations of degrees or radians of a circle?

A. Alpha

B. Omega

C. Pi

D. Theta

Chapter Quiz 609

This page intentionally left blank

611

Publishing Your Game

chapter 20

Y
ou have finally made it. You have finished your game and you want to publish it.
Now you can read the following pages for some advice on how you can do it.

Here is a breakdown of the major topics in this chapter:
� Is your game worth publishing?

� Whose door should you knock on?

� Understanding contracts

� Meeting milestones

� Interviews

Is Your Game Worth Publishing?
Before you seek a publisher, you must evaluate your game. Be truthful to yourself, and also
ask friends, family, and even strangers to play your games and give you some feedback. Put
yourself in the position of the buyer—would you buy your own game if you saw it in the
stores? And if so, how much would you pay for it? These are very important questions to
ask yourself when you are thinking about approaching a publisher. In this section, I’ll go
over a few steps you can follow to see whether your game is worth publishing. Please note
that these aren’t strict rules.

Probably the most important thing to evaluate in your game is whether it is graphically
attractive. Don’t get me wrong; I play my old Spectrum games (the good old days) more
often than the new 3D perspective mumbo jumbo out there. But unfortunately, only a
small group of people do so. Users want their $250 video cards to be stretched to the last
polygon. They want to see an infinite number of lights, models, and huge maps, and
unfortunately, games of that size require much time from many people.

Don’t despair! There is still room for 2D games out there, but they must be very good to
beat the new 3D ones. A nice user interface, friendly graphics, and some tricks can do the
job, but understand that this is difficult to do. So, your game is fascinating? It has nice
graphics and animations and even plays smoothly? Great, move on to the next topic.

The sound is not as important, but it’s still a consideration. Does the sound match the
actions? Is it immersive? One good way to test this would be to play the game and have a
friend sit with his back to the computer and try to describe what the sounds depict to him.
If he says that it sounds like a machine gun when you have exploded a mine, it isn’t a good
sign. You should also pay extra attention to the music. Music should immerse the player
in the game, not make him deaf. Make sure the music is pleasing to the ears but still con-
tains the mood of the game. An example of a bad soundtrack would be if you were doing
a horror game and your soundtrack consisted of the Bee Gees and the Spice Girls. The
music shouldn’t force the user to turn it off; rather, it should make him feel he is in the
game itself.

One thing to be critical about when evaluating your game is, does it have a beginning, a
middle, and an end? Does the player progress through various parts of the game feeling
as if he has achieved something? Nowadays, you can’t just throw a game to the player and
expect him to play if you don’t reward him for accomplishing something or you don’t
explain why he should do things. Don’t overlook this part of the game, because it’s ten
times more important than having cool alpha blend effects. The era of games that con-
sisted of putting a player in a dungeon with a pistol and just letting him play are long
gone, my friend.

You should also be concerned with whether the game pulls the player back to play. Is it
attractive? Will it make the player be late to his job because he had the desire to kill the
boss in level seven? If he does, then you have probably done your job well.

To see whether your game is worth publishing, you can finally determine whether it fits
into any hardcore genre. For example, if your game isn’t very pretty or doesn’t have nice
sound but it has a million and one options to run an army, it will probably be interesting
to a small hardcore group. The people in these groups tend to buy the game that fits their
genre (even if it isn’t very impressive graphically) if it excels at simulating a subject in that
genre or hobby. There are many types of games that fall into the sub-genres and niche
product categories, such as war games, strategy games, and puzzle games.

Whose Door to Knock On
Whose door you should knock on depends much on the type of game and its quality. You
can’t expect Codemasters to pick your Pac-Man clone. Nor should you expect a company
that is strictly into the strategy genres to pick your shooter. Knowing what type of game
genres publishers are more interested in could help you immensely.

Chapter 20 � Publishing Your Game612

If you have no previous game published, it might be hard to find a publisher even if
you have a very good game. You should start at the bottom and build up. Do some
small games and sell them online or through budget publishers. Then, start to do more
complex games and try to get some small publisher to take them. As you build a name for
yourself or for your company, make a lot of contacts along the way, and it will be easier to
get to publishers and work out some deals.

Another suggestion is to attend conferences, such as E3 (Electronic Entertainment Expo)
and GDC (Game Developers Conference), and try to get the latest scoop about what pub-
lishers are looking for. You can even make some contacts and exchange business cards
with some of them.

Learn to Knock Correctly
One of the worst errors new developers make is to get too excited about their games and
bombard almost every publisher 20 times about their game. Learning to go through the
correct channels to submit a game can help you greatly.

First, check the publisher’s Web site and try to find information on how to submit games
to them. If you can’t find any information, such as a phone number or e-mail address,
then e-mail the Webmaster and politely ask whom you should contact to talk about pub-
lishing opportunities. This usually works. If you know a publisher’s phone number, you
can call to get this information and take a chance to do some scouting.

When you have your contact, it’s time to let him know you have a game. Send an e-mail to
the person and say you have a game of a certain genre, give a two- to three-line description
of the game, and explain that you would be interested in working some deal with them. If
you have a Web site for the game, send the person a URL for the game’s demo and/or
screenshots. If the publisher is interested in your game, he will probably send an NDA
(non-disclosure agreement) and give you the guidelines to submit the game.

Now it’s up to you to convince the publisher that your game is worth publishing and that
they should be the ones publishing it. Don’t ever disrespect or attack the publisher even if
they refuse your game. They might not want this game, but they might be interested in
another one, and if you do anything to make them angry, you can forget about trying to
go to that publisher again.

No Publisher, So Now What?
You couldn’t get any publisher to take your game? Don’t despair, because it isn’t over yet.
You can still sell the game yourself. Start a Web site, find a host that can handle credit card
purchases (or pay for a payment service), and do a lot of advertising. You might still have
a chance to profit from your game.

Whose Door to Knock On 613

Contracts
The most important advice I can give you when you start dealing with a contract is, get a
lawyer. Get a good lawyer. If possible, try to find a lawyer who has experience negotiating
publishing contracts. The ideal one, of course, has experience in the game industry.

Getting a lawyer to analyze the contract for you, check for any loopholes, and see whether
it is profitable for you is a must if you plan to publish your games. Don’t count on only
common sense when you are reading a contract. There are many paragraphs we law-
impaired people might think we understand, but we don’t. Again, get a good lawyer.

Also, make sure you put everything in writing. Don’t count on oral agreements. If they
promise you something, make sure it is documented in writing. Now that I gave you my
advice, here’s an overview of the types of papers you will need to sign.

Non-Disclosure Agreement
The NDA is probably the first thing the publisher will ask you to sign, even before any
negotiation is made. This legally-bound paper works as a protection for both you and the
publisher. Some people think the NDA is sort of a joke; beware, it isn’t. A breach of any
paragraph in the NDA can, and probably will, get you into trouble. NDAs are usually safe
to sign without much hassle, but you should still check with a lawyer or someone with
expertise in the field just to be safe.

The main objective of the NDA is to protect the confidentiality of all talks, papers, files,
or other information shared between the publisher and the developer. Some NDAs also
include some legal protection (mostly for the publisher) about future disputes that might
arise from working together. Some topics the typical NDA covers are

� Confidentiality

� Protection of material submitted by either party

� The fact that all materials submitted by either party will not breach any
existing law

� Damage liability

� Time of execution

The Actual Publishing Contract
The actual publishing contract is what you are looking for. The NDA doesn’t give you any
assurance on the part of the publisher that they will even take your game for review, but
the actual contract ensures that you and the publisher have to execute all the paragraphs
implied. There isn’t much general information I can give you on this one because these
contracts change depending on publisher, game type, and game budget. My main advice

Chapter 20 � Publishing Your Game614

is to run the contract by a lawyer because he will be able to help you more than I will. Just
be sure to analyze dates and numbers yourself because your lawyer doesn’t know how
much time you need and how much money you want. Some of the typical topics a nor-
mal agreement covers are

� Distribution rights

� Modifications to the original game

� Schedule for milestones

� Royalties

� Confidentiality

� Dates for publishing

Milestones
So, you finally got the contract signed; it’s time to lay back and expect the money to pour
into your pocket, right? Wrong! You are now at the publisher’s mercy. You have to make
all the changes in your game that you agreed to in the contract, fix bugs that for some rea-
son don’t occur on your computer but happen on others, include the publisher’s messages
and splash images (including their logos), build demos, and do just about everything stated
in the contract. It’s a time-consuming task for sure. There are generally three main mile-
stones in the development of a game—the alpha prototype (in which most artwork and
programming is complete), the beta version (in which all artwork is final, but program-
ming bugs are still being worked out), and finally the gold release (in which all artwork
and programming is finished and a master CD-ROM is sent to the publisher).

Bug Report
You thought you were finished with debugging and bug fixing until the publisher sent you
a list with 50-plus bugs? Don’t worry; it’s natural! When you get a bug report from the
publisher, there are usually three types of bugs—critical, normal, and minimal (by order
of importance). Some publishers require that you fix all the bugs; others only force you to
fix the first two types. My advice is to fix them all! If it becomes public that your game has
bugs, it will be a disaster!

Release Day
You made it to release day! Congratulations—not many do. It’s time to start thinking of
your next game. Start designing, program, and create art so you can have your second
game on the shelves as soon as possible!

Milestones 615

Interviews
Nothing better than a little insider input from the ones in the business, is there ? Paul Urbanis
of Urbonix, Inc; Niels Bauer from Niels Bauer Software Design; and André LaMothe of
Xtreme Games LLC were kind enough to answer the following questions.

Paul Urbanus: Urbonix, Inc.
Paul Urbanis is a longtime video game programmer whose experience goes back to the
golden age of the video game industry (the 1970s and 1980s), when he was involved in
designing both the hardware and software of early game machines.

Q: Thank you for agreeing to be interviewed for this book. Care to give our readers
a little background about yourself and your experience?

A: I’m pretty blown away by the tools that are available today. I’m a former video
game programmer myself, but I certainly didn’t plan it. When I was in school for
my electrical engineering degree, I took a cooperative education [co-op] job in the
Home Computer Division of Texas Instruments in Lubbock, Texas. At that time,
Texas Instruments was manufacturing and selling the TI 99/4. The 99/4 was
enhanced in 1981 by adding another graphics mode and a more typewriter-like
keyboard, and was called the TI 99/4A, which replaced the 99/4.

I had two co-op phases with TI, and when I returned to school after my first co-op
phase, I had a single board TMS9900 [the TI 16-bit micro used in the 99/4A] com-
puter with an instant assembler, a dumb terminal, a 99/4A system, and a complete
listing of the monitor ROM. I spent way too much time understanding that
machine and too little time on school. I didn’t flunk out, but that system for me
was like a light bulb for a moth—I was mesmerized and on a quest for knowledge.
My ultimate use for this knowledge was to write a video game, since I also spent
time playing video games that would have been better spent in homework.

When I returned to TI for my second co-op stint after a year in school, I was much
more knowledgeable about the TI-99 architecture. TI was about to introduce their
improved machine, the 99/4A. My first assignment was to generate a pass/fail
matrix of video chip supply voltage versus temperature. So, I would put the 99/4A
into a temperature chamber, set the voltage, wait for the temperature to stabilize,
and then log the pass/fail result for all of the voltages. As you can imagine, this was
B-O-R-I-N-G, but exactly the kind of work that was pushed off to a co-op student.
And I couldn’t complain, because I was making good money [$7 per hour in 1982].

Chapter 20 � Publishing Your Game616

Q: What was it like having an electronics degree, working for a computer hardware
company, and then finding yourself working on games?

A: Well, when I returned to TI, I discovered that they were working on an
editor/assembler package. I was very excited because up to that point, all of my
9900 assembly language programming had been on the single-board computer,
and there was no source code storage except for the thermal printer on my dumb
terminal. The editor/ assembler was in the internal testing phase. This is where
the video chip testing re-enters the picture.

While waiting for the temperature chamber to stabilize, I would be playing
around/testing the new editor/assembler package. How cool was this—you could
type in code for an hour, and it wasn’t lost when the computer was turned off?
Soon, I was reading about the new graphics mode and had some assembly-language
eye candy (screensaver-like stuff) on the screen. This bit of eye candy dramatically
changed my co-op job in the Home Computer Division. Because a few days later
the head of the HC division, Don Bynum, was walking around, just visiting with
everyone—as was his practice—and he saw my graphics experimentation and asked
questions such as, “Who are you and what do you have running here?” I explained
that I was testing the new graphics chip and the editor/assembler package, and
wanted to play with the new graphics mode because no one in the software devel-
opment group was doing anything with it. He nodded in acknowledgement and
continued his visit with the troops.

Later that day, I was called into Don’s office, and he told me that I was being reas-
signed from the Hardware Development group to the Advanced Development
group. Now, the real fun started. The first thing I did was get the source code to the
assembler on the TI single-board computer I had used to learn TMS9900 assembly
language, and port this code to a new cartridge we were working on. I also included
my “Lines” eye-candy demo in source and object format so buyers of this cartridge
would have an example of using the new graphics mode. After I finished this pro-
ject, Don Bynum called me and Jim Dramis into his office and told us he wanted
us to work on a game together. He suggested a space game, but told us that wasn’t
written in stone. And we had carte blanche to do whatever we wanted. There was
no storyboard, script, or anything else. Just collaborate and write a game. Wow!
Life couldn’t get any better unless I could get the royal treatment at the Playboy
Mansion. By the way, Jim Dramis was responsible for developing TI’s best-selling
games, Car Wars and Munchman (a Pac-Man clone). Eventually, we wrote a space
game and it was named (not by us) Parsec.

Interviews 617

Q: Believe it or not, I actually owned a TI-44/Plus computer and jury-rigged my dad’s
tape recorder to save/load programs! What else can you tell me about this space
game?

A: Parsec was a horizontal scroller, somewhat similar to Defender. Unfortunately, due
to the architecture of the 99/4A, the graphics memory was not directly in the mem-
ory map of the CPU, but instead was accessible only through some video chip con-
trol registers. Mainly, there was a 14-bit address register (two consecutive writes to
the same 8-bit address) and an 8-bit data register. So the sequence to read/write
one or more bytes of graphics memory was

1. Write first byte of address N.

2. Write second byte of address N.

3. Read/write byte of data at N.

4. Read/write byte of data at N+1.

5. Continue until non-contiguous address is needed, then go back to Step 1.

As you can see, random access of graphics memory to do bit-blitting was painfully
slow and a real competitive disadvantage when using the 99/4A for gaming. And, in
the early 1980s, video games were hot! Of course, that whole market crashed big in
1983/1984 and Nintendo stepped in to fill the void, but that’s another story entirely.

Back to Parsec. In writing Parsec, Jim did most of the game flow and incorporated
my suggestions. I contributed two technical breakthroughs to allow Parsec to do
things that hadn’t been possible before—and both of these contributions were
directly attributable to my background as a hardware guy and reading the chip
specs in detail. I was able to use a small amount of SRAM that only required two
clock cycles to cache both the code and scroll buffer for the horizontal scrolling
routine. This increased the speed about two times (my best recollection) and made
scrolling feasible. The other thing I did was figure out how to use a new user hook
[added in the /4A version] into the 60-Hz vertical interrupt to allow speech synthe-
sis [when the speech module was connected] data to be transferred during the ver-
tical interrupt. Prior to this, when any speech was needed the application stopped
completely while the speech synthesizer was spoon-fed in a polled loop. I also did
the graphics for the asteroid belt. These were actually done using TI LOGO, a LISP-
like language enhanced with direct support of the 99/4A graphics. The LOGO files
were converted to assembler DATA statements using a utility I wrote.

Q: LOGO! Now that brings back some fond memories, doesn’t it? I actually did a lot
of “Turtle Graphics” programming when I was just starting to learn how to program.

Chapter 20 � Publishing Your Game618

A: I’ve been told that TI actually produced around one million Parsec games. Of
course, after they exited the home computer business at the end of 1983, many of
these may have been buried in a landfill somewhere. Also, Parsec was the first TI
game where the programmers’ names were allowed to be included in the manual—
at the beginning, no less.

Q: What did you do after that game was completed?

A: After Parsec, it was time for me to go back to school, which was New Mexico State
University in Las Cruces. I was in school for the fall semester of 1982, and at that
time I began to have conversations with two ex-TIers who had opened a computer
store in Lubbock, where the Home Computer Division was located. We talked
about forming a video gaming company patterned after Activision. The company
would initially consist of the two business/marketing guys and the three top TI
game programmers—myself, Jim Dramis, and Garth Dollahite. Garth had written
TI-Invaders, an improved Space Invaders knockoff, while he was a co-op student
and was hired by TI after he completed his degree. At that time, the home computer
video game market was extremely hot. So, in January of 1983, I moved to Lubbock.
But Jim and Garth hadn’t quit TI yet, even though they had agreed they would do
so. And I was sharing an apartment with Garth, as we were both single. In
February, they both resigned and Sofmachine was born.

Q: How was the company organized?

A: The stock in Sofmachine was evenly divided between the five principals. The plan
was for the business types to raise money by selling shares in a limited partnership,
and we programmers would each write a game. As it turned out, I ended up doing
lots of work making development tools, since I was the hardware guy. I designed and
built emulator cartridges [not much different in principle than GBA flash carts], as
well as an eprom programmer for the 99/4A. I also modified the TI debugger so all
I/O was through the serial port because our games were too hooked into the video
system to share it with the debugger. I also added a disassembler to the TI debugger.

Q: So your new company focused mainly on the TI-99?

A: Our games were progressing fine, although mine was behind because of all of the
support development I needed to do. However, the business guys weren’t having
much success. In fact, by mid-summer they had raised exactly zero dollars. Keep in
mind, they had income from a computer store they were running, while we had
quit our jobs. Their only additional expense was to install a phone line in their store
that they answered as “Sofmachine.” Of course, there was expense for preparing and
printing up the limited partnership prospectus. Needless to say, we were getting
nervous. Jim was married with two kids, so he was burning through his savings

Interviews 619

at a high rate. And I had taken out a personal loan, co-signed with my dad, and it
wasn’t going to float me too much longer.

In the middle of the summer, Sofmachine was contacted by Atarisoft. Atarisoft had
been buying the rights to port the popular full-size arcade games to game consoles
and home computers of the day. And Atarisoft wanted us to convert three games:
Jungle Hunt, Pole Position, and Vangard. We agreed to do so, at $35,000 for each
game—except for Pole Position, which we managed to get $50,000 to do. So we
started coding in earnest. Meanwhile, absolutely no funding of Sofmachine was
happening. So Jim Dramis and I decided that the business guys needed to be
out of the corporation because it would be unfair for them to get 40 percent of the
Atarisoft revenue for doing nothing. We had delivered 99/4A games to be manufac-
tured and marketed, but they hadn’t delivered the means to manufacture and mar-
ket them. This was complicated even more because Garth was a former high school
student of one of the business people, whose name was Bill Games. In fact, Bill had
recruited Garth to TI as a co-op student. Garth didn’t think we should kick out the
business types, but eventually he relented. We had a meeting and we agreed to pay
all expenses incurred in the limited partnership offering, as well as other tangible
expenses—phone and copy costs—plus five percent of the Atarisoft contract.
Everyone agreed, and they signed their shares over to us programmers.

Q: I played those games quite a bit as a kid. It must have been fun working on arcade
ports. How did that go?

A: We finished both Jungle Hunt and Pole Position at the end of 1983. About midway
through the Vangard project, which I was doing, Atarisoft cancelled the project and
agreed to pay half of the $35,000. When Jim finished Jungle Hunt, he accepted a job
with IBM in Florida. Meanwhile, Garth and I were waiting on Atarisoft to decide
whether they wanted us to port Pole Position to the ColecoVision game console. We
really wanted that because we knew the game and already had the graphics. And,
while the ColecoVision used a Z80 CPU, it had a TMS9918A video chip—the same
as the TI 99/4A. I had already reverse-engineered the ColecoVision and generated a
schematic. In fact, I designed a TMS9900-based single-board computer [SBC] that
attached to the ColecoVision expansion bus, and used DMA to access the
ColecoVision memory space. That way, we were able to use a slightly modified
version of our 99/4A debugger that was ported to the SBC. In fact, Garth even
modified the 9900 disassembler so it would disassemble the Z80 code in a
ColecoVision cartridge. We were all set to make some easy money on the Pole
Position conversion. But the video game industry was in the midst of imploding,
so Atarisoft decided they didn’t want to do this project. Garth moved back to

Chapter 20 � Publishing Your Game620

California and took a job with a defense contractor, and I used my Home
Computer connections to get a job back at TI in their Central Research
Laboratories [CRL].

Q: So you went full circle. What was the CRL all about?

A: At TI’s CRL, I joined the Optical Processing branch, which was researching and
developing the DMD. This is a light modulator technology along the lines of an
LCD. It uses an array of small mirrors—17 microns on a side originally, now 14
microns—to display an image. This image is magnified by projection optics. TI
now refers to this technology as DLP [Digital Light Processing], and it is used in
over 50 percent of the conference room portable projectors and almost all of the
digital cinema installations. In 1990, this technology was moved out of CRL and
spun into its own operating group. While in CRL, I was the systems engineer for
DMD, even though I didn’t actually have a degree. In 1989, thirteen years after
graduating high school, I received my BSEE from the University of Texas at Dallas.
Of course, TI paid for my books and tuition while I worked on my degree.

I worked at TI as an employee until 1995. When I left, I had a project lined up with
Cyrix, which was making X86 clone products at the time. This project lasted about
a year, and just after it was completed, I got a call from the DLP guys, and they
needed some help for about six months. I ended up doing contract engineering for
them for five years. Then, they decided I either needed to become an employee or
leave. So I left.

Q: Now tell me a little something about the company you founded and are still
involved with at this time.

A: I formed Urbonix, Inc. (http://www.urbonix.com), which in reality had existed as a
DBA [Doing Business As] since 1995. Before I cut the cord with TI, I was contacted
by a company on the East coast, Dimensional Media Associates, who was getting
ready to produce a 3D display using TI’s DLP. This company, now LightSpace
Technologies (http://www.lightspacetech.com), is still developing and marketing this
product. Urbonix designed and built the first prototypes for the DMD display
boards, as well as the image processor/formatter board that is used in the Z|1024
product that you see on the LightSpace Technologies Web site. My company,
Urbonix, currently has a contract with Texas Instruments, where I am developing
and supporting FPGA-based boards and peripherals for ASIC emulation.

Q: Thank you very much for your time.

A: Through all of this, I’m still interested in game design. It’s been a pleasure; thank you.

Interviews 621

Niels Bauer: Niels Bauer Software Design
Niels Bauer has been programming since he was 10 years old. He owns Niels Bauer Software
Design and is studying law at the University of Freiburg in Germany. Niels Bauer
Software Design (http://www.nbsd.de), located in Germany, has concentrated on complex
(but still easy to learn) games. One of their best games, Smugglers 2, is an elite-like game
from a strategic point of view. It features a lot of new ideas, such as crew management,
boarding enemy ships, attacking planets, treasure hunting, and smuggling. If you want to
make a game in the Smugglers universe under the loose guidance of this company, get in
touch with them. You can reach them via the Web sites just mentioned or by e-mail, at
contact@nbsd.de. Niels Bauer is now working on Smugglers 3.

Q: You founded Niels Bauer Software Design in 1999. Was it hard for a single person
to develop the games alone?

A: In two years, I finished three games. Unfortunately, they weren’t very successful. In
spring of 2001, I wanted to leave the game business and do something else. Finally,
I decided to make only one more game, Smugglers, and just for myself and nobody
else. I decided to use Delphi because I wanted to concentrate 100 percent on the
gameplay. I wanted a game that I would really like to play myself, even after weeks
of development. When the game was finished, after about one month I showed it to
some friends, and they immediately became addicted. Suddenly I became aware of
the potential of the game and decided to release it. As you can see from this little
story, the most difficult part of working alone is keeping yourself motivated until
you have the first hit. Smugglers 2 is the last game where I wrote most of the code
myself. In the future, I will concentrate more on the business and design part.

Q: I’ve noticed that Smugglers has been a cover mount on some computer magazines.
How easy or difficult was it to achieve this?

A: I would say it was very difficult and pure luck that I got the necessary contacts. I
sent e-mails to many magazines, but from most I didn’t even get a reply. The main
[reason] for this could have been that Smugglers 1 didn’t have cool graphics and
you needed to play the game to become addicted. Those editors became addicted
and so they made a very good offer that I couldn’t turn down, but unfortunately,
from the feedback I got this is very uncommon.

Q: What do you think made Smugglers so popular?

A: Well, this is a difficult question. There are a lot of elite-like games out there.
Unfortunately, most are too complex to be understood by the casual player. Even [I],
as an experienced player, have problems with most. Smugglers, on the other hand, is

Chapter 20 � Publishing Your Game622

very easy to learn and play. With the short interactive tutorial, you can really start
off immediately. On the other hand, it could have been so successful because it
provided the player with a lot of freedom while still keeping the complexity low.
For example, he can be a trader, a smuggler, a pirate, or even fight for the military.
Or, for example, you can fly capital ships and attack planets. These are a lot of
options. What I especially liked was the opportunity to receive ranks and medals
depending on your own success. The last time I saw something like this was in
Wing Commander 1, and this was a while back.

Q: You released Smuggler 2 recently. Any projects for the future?

A: Yes, definitely. The team [has] already begun work on an online version. This time
we say goodbye to the menu system used in previous Smugglers titles and use a very
nice top-down view of the universe. I am very excited about the possibility of such
a game.

Q: From a developer’s perspective, what do you think of the game industry at this
moment?

A: I feel very sorry for it. Where [have] all the cool games like Pirates, Wing
Commander, Civilization, Ultima 7, and Elite gone to? I can tell you. They all landed
in the trashcan because they don’t have high-tech graphics. Only those games with
the best graphics get bought these days in huge masses, and unfortunately, these
games are the least fun and have the most bugs. I can’t imagine a single game—
except Counter-Strike and that was a mod—that I really liked to play for longer
than a couple of hours. I don’t believe I can change this with Smugglers, but maybe
I can provide a safe haven for some people who feel like I do. Considering the
attention I got for Smugglers, it might not be a few.

Q: Any final advice to the starting game developer?

A: Concentrate on the gameplay. I needed two years to understand that it’s not C++
and DirectX that make a game cool. There are thousands of those games out there.
What makes a game really good are two important factors:

1. It’s extremely easy to learn. (Your mother needs to be able to play it right off.)

2. You need to like it to play it yourself all day long.

Someone said in a book, which I unfortunately don’t remember [the name of] now,
that you most likely need to make 10 crappy games before you will finally make a
good game. This is definitely true.

Interviews 623

André LaMothe: Xtreme Games LLC
André LaMothe has been in the computing industry for more than 24 years. He has
worked in just about every field of computing and he even worked for NASA. He cur-
rently owns Xtreme Games LLC, a computer games publishing company. Xtreme Games
LLC was founded five years ago and develops and publishes games for the PC, Palm, and
Pocket PC platforms.

Q: At this time, with gamers wanting 3D environments with cube mapping and realistic
particle systems, what game type do you think a small developer would have more
luck with?

A: That’s really hard to say. Even if a small developer makes a game better than Quake
III, it really doesn’t matter since it’s nearly impossible to get distribution these days,
and publishers screw developers with percentage rates of 5 to 10 percent being
common. So my advice is, simply make what you want to play.

Q: Being Xtreme Games LLC, a publisher, what are the minimum requirements for
publishing a game with you?

A: That the game be of professional quality, bug-free, and competitive with other
value games on the market.

Q: With the new growth of Xtreme Games LLC, what kind of games would you be
more interested in seeing?

A: Value sports games, 3D games leveraging the Genesis engine, etc., and quality Palm
and Pocket PC games.

Q: What steps are involved? And what is the process from the point that a developer
gives you a complete game to retail distribution?

A:

1. The game is tested until all bugs are removed.

2. The packaging of the product is created.

3. Buyers at chains make purchase orders for the product.

4. The product is manufactured and units are shipped to distribution points and
warehouses.

5. The product is shelved.

6. The money for the product is paid. (It takes three to six months.)

7. Royalties are dispersed.

Chapter 20 � Publishing Your Game624

Q: From a developer’s perspective, what do you think of the current state of the
industry at this time?

A: Very bad. I’m sorry to say, corporate America has got into it really deep now, and
completely taken the fun out of game development. Programmers work 100+ hours
a week trying to meet impossible schedules dictated by marketing, distribution, and
manufacturing that aren’t even “real,” and in the end 99 percent of all games don’t
even break even. On top of that, game programmers are not paid well; their average
pay is less than programmers that are nowhere near as technically skilled but work
in more mainstream software endeavors like Internet, database, etc. The problem
with the entire game development industry is that the people running it still to this
day don’t understand it. If the developers ran it, we would all be a lot happier. Just
because we are nerds doesn’t mean we aren’t smarter than MBAs when it comes to
business. They better not ever let us in charge. Instead of a business that is replete
with failure, huge losses, and dismal earnings to gross revenues, we would actually
make money!

Q: Do you have any final advice to the small developer who wants to try to get into
this challenging industry?

A: Don’t think about how to make “them” happy; just do what makes you happy, stay
focused, and finish what you start. Keep this up and sooner or later something
good has to happen.

Xtreme Games is always looking for good products to license. If you’re interested, contact
us at:

Xtreme Games LLC

http://www.xgames3d.com

info@xgames3d.com

Summary
You have been through a crash course in software publishing, and this was just the tip of
the iceberg. There are many options, many contracts, and many publishers you need to
check, and that’s just the beginning. As you get more experience, you will start to easily
recognize the good and bad contracts, as well as the good and bad publishers. So what are
you waiting for? Finish the game and start looking!

Summary 625

References
Below are some URLs of publishing companies. Please note that neither I nor Premier
Press recommend any one publisher over another; the list is alphabetical.

Codemasters: http://www.codemasters.com

E3: http://www.e3expo.com

ECTS: http://www.ects.com

eGames: http://www.egames.com

Game Developers Conference: http://www.gdconf.com

GarageGames: http://www.garagegames.com

MonkeyByte Games: http://www.mbyte.com

On Deck Interactive: http://www.odigames.com

RealArcade Games: http://realguide.real.com/games

Xtreme Games Conference: http://www.xgdx.com

Xtreme Games LLC: http://www.xgames3d.com

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. What is the first step you must take before attempting to get your game published?

A. Evaluate the game.

B. Sell the game.

C. Test the game.

D. Release the game.

2. What is the most important question to consider in a game before seeking a
publisher?

A. Is it challenging?

B. Is it fun to play?

C. Is it graphically attractive?

D. Is it marketable?

3. What is the second most important aspect of a game?

A. Graphics

B. Sound

C. Music

D. Input

Chapter 20 � Publishing Your Game626

4. What is an important factor of gameplay, in the sense of a beginning, middle, and
ending, that must be considered?

A. Progression

B. Goals

C. Difficulty

D. Continuity

5. What adjective best describes a best-selling game?

A. Large

B. Complex

C. Cute

D. Addictive

6. What is an NDA?

A. Never Diverge Anonymity

B. No Disco Allowed

C. Non-Disclosure Agreement

D. Non-Discussion Agreement

7. What is a software bug?

A. An error in the source code

B. A mistake in the design

C. A digital life form

D. A tracking device

8. What term describes a significant date in the development process?

A. Deadline

B. Milestone

C. Achievement

D. Release

9. Who created the game Smugglers 2?

A. Niels Bauer

B. André LaMothe

C. John Carmack

D. Ellie Arroway

Chapter Quiz 627

10. For whom should you create a game for the purpose of entertainment?

A. Yourself

B. Gamers

C. Publishers

D. Marketers

Chapter 20 � Publishing Your Game628

I
tend to say this each time I reach this point, but I can honestly say that this book has
been the most enjoyable book I have written so far. Exploring the vast feature set of
the Allegro library has been an absolute blast, and I am grateful to have had the oppor-

tunity to write this book on such a fascinating subject. I hope you have enjoyed it, too!

Although I do not know you personally, I have gotten to know many readers through
online forums, so there is a certain feeling of coming full circle at this point. I hope you
have found this book not just helpful, but invaluable as a reference and enjoyable to read.
I have strived to cover all the bases of 2D game programming, and I hope you have
enjoyed it.

Although every effort was made to ensure that the content and source code presented in
this book is error-free, it is possible that errors in print or bugs in the sample programs
might have missed scrutiny (especially when multiple compilers are involved, as was the
case here). If you have any problems with the source code, sample programs, or general
theory in this book, please let me know! You can contact me at support@jharbour.com.
I’ll do my best to help you work though any problems (and I’ll try to respond within a day
or so). I also welcome constructive criticism and comments that you might have regard-
ing the content of this book. Reader feedback was the reason for this dramatic revision to
a book that was once based on Windows and DirectX, but is now cross-platform and
based on open-source tools!

Finally, whether you are an absolute beginner or a seasoned professional, I welcome you
to visit my online forum at http://www.jharbour.com to share your games, ideas, and
questions with other Allegro fans! Membership is free and open to the public.

As always, I look forward to hearing from you!

629

Epilogue

This page intentionally left blank

Appendixes

Appendix A
Chapter Quiz Answers .633

Appendix B
Useful Tables .651

Appendix C
Numbering Systems: Binary and Hexadecimal 657

Appendix D
Recommended Books and Web Sites .663

Appendix E
Configuring Allegro for Microsoft Visual C++ and Other Compilers . . .671

Appendix F
Compiling the Allegro Source Code .685

Appendix G
Using the CD-ROM .691

PART IV

W
elcome to Part IV of Game Programming All in One, 2nd Edition. Part IV
includes seven appendixes that provide reference information for your use,
including some useful tables, an ASCII chart, a list of helpful books and Web

sites, an overview of hexadecimal and binary numbering systems, a tutorial on configur-
ing Allegro and compiling the Allegro library, and an overview of the included CD-ROM.

633

Chapter Quiz
Answers

Appendix A

Chapter 1
1. What programming language is used in this book?

A. C

2. What is the name of the free multi-platform game library used in this book?

C. Allegro

3. What compiler can you use to compile the programs in this book?

D. All of the above

4. Which operating system does Allegro support?

D. All of the above

5. Which of the following is a popular strategy game for the PC?

C. Real War

6. What is the most important factor to consider when working on a game?

C. Gameplay

7. What is the name of the free open-source IDE/compiler included on the CD-ROM?

B. Dev-C++

8. What is the name of the most popular game development library in the world?

C. DirectX

9. Which of the following books discusses the gaming culture of the late 1980s and
early 1990s with strong emphasis on the exploits of id Software?

A. Masters of Doom

10. According to the author, which of the following is one of the best games made in
the 1980s?

D. Starflight

Chapter 2
1. What game features an Avatar and takes place in the land of Brittania?

B. Ultima VII: The Black Gate

2. GNU is an acronym for which of the following phrases?

A. GNU is Not Unix

3. What is the primary Web site for Dev-C++?

B. http://www.bloodshed.net

4. What is the name of the compiler used by Dev-Pascal?

A. GNU Pascal

5. What is the name of the powerful automated update utility for Dev-C++?

D. WebUpdate

6. What are the Dev-C++ update packages called?

B. DevPaks

7. What distinctive feature of Dev-C++ sets it apart from commercial development
tools?

D. All of the above

8. What is the name of the game programming library featured in this chapter?

D. Allegro

9. What function must be called before you use the Allegro library?

C. allegro_init()

10. What statement must be included at the end of main() in an Allegro program?

B. END_OF_MAIN()

Appendix A � Chapter Quiz Answers634

Chapter 3
1. What is the term used to describe line-based graphics?

A. Vector

2. What does CRT stand for?

C. Cathode Ray Tube

3. What describes a function that draws a simple geometric shape, such as a point,
line, rectangle, or circle?

B. Graphics Primitive

4. How many polygons does the typical 3D accelerator chip process at a time?

C. 1

5. What is comprised of three small streams of electrons of varying shades of red,
green, and blue?

D. Pixel

6. What function is used to create a custom 24- or 32-bit color?

A. makecol

7. What function is used to draw filled rectangles?

D. rectfill

8. Which of the following is the correct definition of the circle function?

A. void circle(BITMAP *bmp, int x, int y, int radius, int color);

9. What function draws a set of curves based on a set of four input points stored in
an array?

C. spline

10. Which text output function draws a formatted string with justification?

D. textprintf_justify

Chapter 4
1. What is the primary graphics drawing function used to draw the tanks in Tank War?

A. rectfill

2. What function in Tank War sets up a bullet to fire it in the direction of the tank?

C. fireweapon

Chapter 4 635

3. What function in Tank War updates the position and draws each projectile?

D. updatebullet

4. What is the name of the organization that produced GCC?

A. Free Software Foundation

5. How many players are supported in Tank War at the same time?

B. 2

6. What is the technical terminology for handling two objects that crash in the game?

C. Collision detection

7. What function in Tank War keeps the tanks from colliding with other objects?

B. clearpath

8. Which function in Tank War helps to find out whether a point on the screen is
black?

A. getpixel

9. What is the standard constant used to run Allegro in windowed mode?

D. GFX_AUTODETECT_WINDOWED

10. What function in Allegro is used to slow the game down?

C. rest

Chapter 5
1. Which function is used to initialize the keyboard handler?

B. install_keyboard

2. What does ANSI stand for?

C. American National Standards Institute

3. What is the name of the array containing keyboard scan codes?

A. key

4. Where is the real stargate located?

C. Colorado Springs, Colorado

5. Which function provides buffered keyboard input?

C. readkey

Appendix A � Chapter Quiz Answers636

6. Which function is used to initialize the mouse handler?

A. install_mouse

7. Which values or functions are used to read the mouse position?

A. mouse_x and mouse_y

8. Which function is used to read the mouse x and y mickeys for relative motion?

D. get_mouse_mickeys

9. What is the name of the main JOYSTICK_INFO array?

B. joy

10. Which struct contains joystick button data?

C. JOYSTICK_BUTTON_INFO

Chapter 6
1. What is the best way to get started creating a new game?

D. Play other games to engender some inspiration.

2. What types of games are full of creativity and interesting technology that PC
gamers often fail to notice?

A. Console games

3. What phrase best describes the additional features and extras in a game?

C. Bells and whistles

4. What is usually the most complicated core component of a game, also called the
graphics renderer?

D. The game engine

5. What is the name of an initial demonstration of a game that presents the basic
gameplay elements before the actual game has been completed?

B. Prototype

6. What is the name of the document that contains the blueprints for a game?

C. Design document

7. What are the two types of game designs presented in this chapter?

A. Mini and complete

Chapter 6 637

8. What does NPC stand for?

D. Non-Player Character

9. What are the chances of a newcomer finding a job as a full-time game program-
mer or designer?

D. Negligible

10. What is the most important aspect of game development?

A. Design

Chapter 7
1. What does “blit” stand for?

B. Bit-block transfer

2. What is a DHD?

C. Dial home device

3. How many pixels are there in an 800×600 screen?

A. 480,000

4. What is the name of the object used to hold a bitmap in memory?

D. BITMAP

5. Allegorically speaking, why is it important to destroy bitmaps after you’re done
using them?

C. Because the trash will pile up over time.

6. Which Allegro function has the potential to create a black hole if used improperly?

A. acquire_bitmap

7. What types of graphics files are supported by Allegro?

B. BMP, PCX, LBM, and TGA

8. What function is used to draw a scaled bitmap?

B. stretch_blit

9. Why would you want to lock the screen while drawing on it?

A. If it’s not locked, Allegro will lock and unlock the screen for every draw.

10. What is the name of the game you’ve been developing in this book?

D. Tank War

Appendix A � Chapter Quiz Answers638

Chapter 8
1. What is the term given to a small image that is moved around on the screen?

B. Sprite

2. Which function draws a sprite?

A. draw_sprite

3. What is the term for drawing all but a certain color of pixel from one bitmap to
another?

C. Transparency

4. Which function draws a scaled sprite?

A. stretch_sprite

5. Which function draws a vertically-flipped sprite?

B. draw_sprite_v_flip

6. Which function draws a rotated sprite?

D. rotate_sprite

7. Which function draws a sprite with both rotation and scaling?

B. rotate_scaled_sprite

8. What function draws a pivoted sprite?

C. pivot_sprite

9. Which function draws a pivoted sprite with scaling and vertical flip?

A. pivot_scaled_sprite_v_flip

10. Which function draws a sprite with translucency (alpha blending)?

B. draw_trans_sprite

Chapter 9
1. Which function draws a standard sprite?

C. draw_sprite

2. What is a frame in the context of sprite animation?

A. A single image in the animation sequence

Chapter 9 639

3. What is the purpose of a sprite handler?

A. To provide a consistent way to animate and manipulate many sprites on the
screen

4. What is a struct element?

D. A variable in a structure

5. Which term describes a single frame of an animation sequence stored in
an image file?

B. Tile

6. Which Allegro function is used frequently to erase a sprite?

A. rectfill

7. Which term describes a reusable activity for a sprite that is important in a game?

D. Behavior

8. Which function converts a normal sprite into a run-length encoded sprite?

B. get_rle_sprite

9. Which function draws a compiled sprite to a destination bitmap?

C. draw_compiled_sprite

10. What is the easiest (and most efficient) way to detect sprite collisions?

A. Bounding rectangle intersection

Chapter 10
1. Does Allegro provide support for background scrolling?

A. Yes, but the functionality is obsolete.

2. What does a scroll window show?

A. A small part of a larger game world

3. Which of the programs in this chapter demonstrated bitmap scrolling for
the first time?

C. ScrollScreen

4. Why should a scrolling background be designed?

D. To achieve the goals of the game

Appendix A � Chapter Quiz Answers640

5. Which process uses an array of images to construct the background as it is displayed?

C. Tiling

6. What is the best way to create a tile map of the game world?

A. By using a map editor

7. What type of object comprises a typical tile map?

C. Numbers

8. What was the size of the virtual background in the GameWorld program?

A. 800×800

9. How many virtual backgrounds are used in the new version of Tank War?

B. 1

10. How many scrolling windows are used in the new Tank War?

C. 2

Chapter 11
1. Why is it important to use a timer in a game?

A. To maintain a consistent frame rate

2. Which Allegro timer function slows down the program using a callback function?

D. rest_callback

3. What is the name of the function used to initialize the Allegro timer?

B. install_timer

4. What is the name of the function that creates a new interrupt handler?

D. install_int

5. What variable declaration keyword should be used with interrupt variables?

C. volatile

6. What is a process that runs within the memory space of a single program but is
executed separately from that program?

C. Thread

7. What helps protect data by locking it inside a single thread, preventing that data
from being used by another thread until it is unlocked?

A. Mutex

Chapter 11 641

8. What does pthread stand for?

C. Posix Thread

9. What is the name of the function used to create a new thread?

B. pthread_create

10. What is the name of the function that locks a mutex?

D. pthread_mutex_lock

Chapter 12
1. What is the home site for Mappy?

C. http://www.tilemap.co.uk

2. What kind of information is stored in a map file?

A. Data that represent the tiles comprising a game world

3. What name is given to the graphic images that make up a Mappy level?

D. Tiles

4. What is the default extension of a Mappy file?

C. FMP

5. Where does Mappy store the saved tile images?

B. Inside the map file

6. What is one example of a retail game that uses Mappy levels?

B. Hyperspace Delivery Boy

7. What is the recommended format for an exported Mappy level?

D. Text map data

8. Which macro in Mappy fills a map with a specified tile?

A. Solid Rectangle

9. How much does a licensed copy of Mappy cost?

D. It’s free!

10. Which MappyAL library function loads a Mappy file?

A. MapLoad

Appendix A � Chapter Quiz Answers642

Chapter 13
1. In which game genre does the vertical shooter belong?

A. Shoot-em-up

2. What is the name of the support library used as the vertical scroller engine?

C. MappyAL

3. What are the virtual pixel dimensions of the levels in Warbirds Pacifica?

D. 640×48,000

4. What is the name of the level-editing program used to create the first level of
Warbirds Pacifica?

B. Mappy

5. How many tiles comprise a level in Warbirds Pacifica?

A. 30,000

6. Which of the following games is a vertical scrolling shooter?

B. Mars Matrix

7. Who created the artwork featured in this chapter?

C. Ari Feldman

8. Which MappyAL function loads a map file?

B. MapLoad

9. Which MappyAL function removes a map from memory?

D. MapFreeMem

10. Which classic arcade game inspired Warbirds Pacifica?

C. 1942

Chapter 14
1. Which term is often used to describe a horizontal-scrolling game with a walking

character?

B. Platform

2. What is the name of the map-editing tool you have used in the last several chapters?

A. Mappy

Chapter 14 643

3. What is the identifier for the Mappy block property representing the background?

A. BG1

4. What is the identifier for the Mappy block property representing the first
foreground layer?

A. FG1

5. Which dialog box allows the editing of tile properties in Mappy?

D. Block Properties

6. Which menu item brings up the Range Alter Block Properties dialog box?

B. Range Edit Blocks

7. What is the name of the MappyAL struct that contains information about tile
blocks?

C. BLKSTR

8. What MappyAL function returns a pointer to a block specified by the (x,y)
parameters?

A. MapGetBlock

9. What is the name of the function that draws the map’s background?

A. MapDrawBG

10. Which MappyAL block struct member was used to detect collisions in the
sample program?

C. tl

Chapter 15
1. What is the name of the function that initializes the Allegro sound system?

A. install_sound

2. Which function can you use to play a sound effect in your own games?

C. play_sample

3. What is the name of the function that specifically loads a RIFF WAV file?

B. load_wav

4. Which function can be used to change the frequency, volume, panning, and
looping properties of a sample?

D. adjust_sample

Appendix A � Chapter Quiz Answers644

5. What function would you use to shut down the Allegro sound system?

B. remove_sound

6. Which function provides the ability to change the overall volume of sound output?

A. set_volume

7. What is the name of the function used to stop playback of a sample?

D. stop_sample

8. Within what range must a panning value remain?

D. 0 to 255

9. What parameter should you pass to install_sound to initialize the standard digital
sound driver?

C. DIGI_AUTODETECT

10. What is the name of the function that plays a sample through the sound mixer?

B. play_sample

Chapter 16
1. What is the shorthand term for an Allegro data file?

B. datafile

2. What compression algorithm does Allegro use for compressed datafiles?

A. LZSS

3. What is the command-line program that is used to manage Allegro datafiles?

D. dat.exe

4. What is the Allegro datafile object struct called?

B. DATAFILE

5. What function is used to load a datafile into memory?

D. load_datafile

6. What is the data type format shortcut string for bitmap files?

C. BMP

7. What is the data type constant for wave files, defined by Allegro for use in reading
datafiles?

C. DAT_SAMPLE

Chapter 16 645

8. What is the dat option to specify the type of file being added to the datafile?

A. -t <type>

9. What is the dat option to specify the color depth of a bitmap file being added to
the datafile?

C. -bpp <depth>

10. What function loads an individual object from a datafile?

D. load_datafile_object

Chapter 17
1. Which company developed the FLI/FLC file format?

A. Autodesk

2. Which product first used the FLI format?

C. Animator

3. Which product premiered the more advanced FLC format?

A. Animator Pro

4. What is the common acronym used to describe both FLI and FLC files?

D. FLIC

5. Which function plays an FLIC file directly?

A. play_fli

6. How many FLIC files can be played back at a time by Allegro?

A. 1

7. Which function loads an FLIC file for low-level playback?

C. open_fli

8. Which function moves the animation to the next frame in an FLIC file?

A. next_fli_frame

9. What is the name of the variable used to set the timing of FLIC playback?

D. fli_timer

10. What is the name of the variable that contains the bitmap of the current
FLIC frame?

B. fli_bitmap

Appendix A � Chapter Quiz Answers646

Chapter 18
1. Which of the following is not one of the three deterministic algorithms covered in

this chapter?

C. Conditions

2. Can fuzzy matrices be used without multiplying the input memberships? Why or
why not?

A. No, it is absolutely necessary to multiply the input memberships.

3. Which type of system solves problems that are usually solved by specialized
humans?

A. Expert system

4. Which type of intelligence system is based on an expert system, but is capable of
determining fractions of complete answers?

B. Fuzzy logic

5. Which type of intelligence system uses a method of computing solutions for a
hereditary logic problem?

C. Genetic algorithm

6. Which type of intelligence system solves problems by imitating the workings
of a brain?

D. Neural network

7. Which of the following uses predetermined behaviors of objects in relation
to the universe problem?

B. Deterministic algorithm

8. Which type of deterministic algorithm “fakes” intelligence?

C. Random motion

9. Which type of deterministic algorithm will cause one object to follow another?

A. Tracking

10. Which type of deterministic algorithm follows preset templates?

D. Patterns

Chapter 18 647

Chapter 19
1. What is the study of angles and their relationships to shapes and various other

geometries?

D. Trigonometry

2. What is the name of the C function that calculates cosine?

B. cos

3. What is the name of the C function that calculates sine?

A. sin

4. What is the name of the C function that calculates tangent?

A. tan

5. Which C function calculates the inverse sine?

D. asin

6. Which C function calculates the inverse tangent?

C. atan

7. What does a set intersection contain?

C. The elements that are contained in both sets

8. What does a function differentiation return?

A. The slope of the function at any given position

9. What is the opposite of function differentiation?

C. Integration

10. What Greek letter is most often used in calculations of degrees or radians of a circle?

C. Pi

Chapter 20
1. What is the first step you must take before attempting to get your game published?

A. Evaluate the game.

2. What is the most important question to consider in a game before seeking a
publisher?

C. Is it graphically attractive?

Appendix A � Chapter Quiz Answers648

3. What is the second most important aspect of a game?

B. Sound

4. What is an important factor of gameplay, in the sense of a beginning, middle,
and ending, that must be considered?

D. Continuity

5. What adjective best describes a best-selling game?

D. Addictive

6. What is an NDA?

C. Non-Disclosure Agreement

7. What is a software bug?

A. An error in the source code

8. What term describes a significant date in the development process?

B. Milestone

9. Who created the game Smugglers 2?

A. Niels Bauer

10. For whom should you create a game for the purpose of entertainment?

A. Yourself

Chapter 20 649

This page intentionally left blank

651

Useful Tables

Appendix B

T
his appendix includes an ASCII table and three mathematical tables containing
integral equations, derivative equations, and inertia equations.

Integral Equations Table

Derivative Equations Table

Inertia Equations Table

Appendix B � Useful Tables652

Char Value Char Value Char Value

ASCII Table
This is a standard ASCII chart of character codes 0 to 255. To use an ASCII code, simply
hold down the ALT key and type the value next to the character in the table to insert the
character. This method works in most text editors; however, some editors are not capable
of displaying the special ASCII characters (codes 0 to 31).

ASCII Table 653

Appendix B � Useful Tables654

Char Value Char Value Char Value

ASCII Table 655

Char Value Char Value Char Value

This page intentionally left blank

657

Numbering Systems:
Binary and Hexadecimal

Appendix C

T
here are three numbering systems commonly used in computer programming—
binary, decimal, and hexadecimal. The binary numbering system is called Base-2
because it has only two digits: 0 and 1.The decimal system is called Base-10; it is the

one with which you are most familiar because it is used in everyday life. The hexadecimal
system is called Base-16 and is comprised of the numerals 0–9 and the letters A–F to
represent values from 0–15. Computers use the binary system exclusively in the hardware,
but to make programming easier, compilers support decimal and hexadecimal (and the
little-used Octal numbering system—Base-8).

Binary
Binary numbers use the Base-2 system, in which the numbers are represented by digits of
either 0 or 1. This is the system the computer uses to store all the data in memory. Each digit
in the number represents a power of two. Table C.1 shows the values in the binary system.

The best way to read a binary number is right to left; the first digit is to the far right and
the last digit is to the far left. The number 1101, read from right to left, has the order 1, 0,

Table C.1 Binary System

Position Digit

1 0
2 1

Appendix C � Numbering Systems: Binary and Hexadecimal658

1, 1. The position of each digit determines the value of that digit, and each position is
twice as large as the previous (with the first digit representing 0 or 1). Table C.2 provides
a breakdown.

Table C.2 Binary Values Table

Position Value

1 1
2 2
3 4
4 8
5 16
6 32
7 64
8 128
9 256
10 512
11 1,024
12 2,048
13 4,096
14 8,192
15 16,384
16 32,768
17 65,536
18 131,072
19 262,144
20 524,288
21 1,048,576
22 2,097,152
23 4,194,304
24 8,388,608
25 16,777,216
26 33,554,432
27 67,108,864
28 134,217,728
29 268,435,456
30 536,870,912
31 1,073,741,824
32 2,147,483,648

Using this table you can decode any binary number as long as you remember to read the
number from right to left and add up each value. How about an example?

The number 10101110 can be decoded as:

0 * 1 = 0
1 * 2 = 2
1 * 4 = 4
1 * 8 = 8
0 * 16 = 0
1 * 32 = 32
0 * 64 = 0
1 * 128 = 128

Adding up the values 2 + 4 + 8 + 32 + 128 = 174. Anyone can read a binary number in
this way, as long as it is read from right to left. With a little practice you will be convert-
ing binary numbers in your head in only a few seconds.

Decimal
You have probably been using the decimal system since childhood and you don’t even
think about counting numbers in specific digits because you have been practicing for so
long. The Base-10 numbering system is a very natural way for humans to count because
we have 10 fingers. But from a scientific point of view, it’s possible to decode a decimal
number by adding up its digits, as you do for binary.

For example, try to decode the number 247. What makes this number “two hundred forty
seven?” The decimal system has 10 digits (thus the name decimal) that go from 0–9. Just
as with the binary system, you decode the number from right to left (although it is read
from left to right in normal use). Because each digit in 247 represents a value to the power
of 10, you can decode it as:

7 * 1 = 7
4 * 10 = 40
2 * 100 = 200

Adding up the values 7 + 40 + 200 = 247. Now this is asinine for the average person, but
for a programmer, this is a good example for understanding the other numbering systems
and it is a good lesson.

Hexadecimal
The hexadecimal system is a Base-16 numbering system that uses the numbers 0–9 and
the letters A–F (to represent the numbers 10–15, since each position must be represented

Hexadecimal 659

Appendix C � Numbering Systems: Binary and Hexadecimal660

by a single digit). Decoding a hexadecimal number works exactly the same as it does for
binary and decimal—from right to left, by adding up the values of each digit. For refer-
ence, Table C.3 provides a breakdown of the values in the hexadecimal system.

To read a hexadecimal number (in other words, to convert it to decimal so a human can
understand it), just decode the hexadecimal digits from right to left using the table of values
and multiply each digit by a successive power of 16. It was easy to calculate Base-2
multipliers, but it is a little more difficult with hexadecimal. Since hex numbers increase
quickly in value, there are usually very few digits in a hex number—just look at the huge
number after only 10 digits! Table C.4 shows multipliers for Base-16.

Using this newfound information, you should be able to decode any hex number. For
instance, the hex number 9C56D is decoded like this:

D: 1 * 13 = 13
6: 16 * 6 = 96
5: 256 * 5 = 1,280
C: 4,096 * 12 = 49,152
9: 65,536 * 9 = 589,824

Table C.3 Hexadecimal Table

Value Digit

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F

Adding these values results in 13 + 96 + 1,280 + 49,152 + 589,824 = 640,365. Because
these numbers grow so quickly in Base-16, they are usually grouped in twos and fours
when humans need to read them. Any hex number beyond four digits is usually too much
for the average programmer to calculate in his head. However, the small size of a hex num-
ber usually means it cuts out several digits from a decimal number, which makes for more
efficient storage in a file system. For this reason, hex numbers are used in compression and
cryptography.

Hexidecimal 661

Table C.4 Hexadecimal Table

Position Multiplier

0 1
1 16 (16^1)
2 16 (16^2)
3 256 (16^3)
4 4096 (16^4)
5 65,536 (16^5)
6 1,048,576 (16^6)
7 16,777,216 (16^7)
8 268,435,456 (16^8)
9 4,294,967,296 (16^9)
10 68,719,476,736 (16^10)

This page intentionally left blank

663

Recommended Books
and Web Sites

Appendix D

H
ere is a collection of sites related to game development that I highly recommend.

All in One Support on the Web
I have set up a Web site to provide online support for this book. This site features an overview,
sample programs and screenshots, related links, and downloads: http://www. jharbour.com/
allinone.

In addition, I have set up an online forum dedicated to game development, focused on
providing additional support for this book from other readers and fans of Allegro. The
online forums are at http://www.jharbour.com/forums.

Game Development Web Sites
Here are some excellent game development sites on the Web that I visit frequently:

Allegro Home Site: http://www.talula.demon.co.uk/allegro
GameDev LCC: http://www.gamedev.net
FlipCode: http://www.flipcode.com
MSDN DirectX: http://msdn.microsoft.com/directx
MSDN Visual C++: http://msdn.microsoft.com/visualc
Game Development Search Engine: http://www.gdse.com
CodeGuru: http://www.codeguru.com
Programmers Heaven: http://www.programmersheaven.com
AngelCode.com: http://www.angelcode.com
OpenGL: http://www.opengl.org

NeHe Productions: http://nehe.gamedev.net
NeXe: http://nexe.gamedev.net
Game Institute: http://www.gameinstitute.com
Game Developer: http://www.gamedeveloper.net
Wotsit’s Format: http://www.wotsit.org

Publishing, Game Reviews, and Download Sites
Keeping up with all that is happening is a daunting task, to say the least. New things hap-
pen every minute all over the world, and hopefully, the next set of links will help you keep
up to date with it all.

Thomson/Course Technology: http://www.course.com
Premier Press: http://www.premierpressbooks.com
Games Domain: http://www.gamesdomain.com
Blue’s News: http://www.bluesnews.com
Happy Puppy: http://www.happypuppy.com
Download.com: http://www.download.com
Tucows: http://www.tucows.com
Slashdot: http://slashdot.org
Imagine Games Network (IGN): http://www.ign.com

Engines
Sometimes it is not worth reinventing the wheel. There are several good engines, both 2D
and 3D, out there. Following are some of the engines I have had the pleasure (or pain) of
working with that I want to recommend to you. Some are expensive, but then again, some
are free. See which is best for you and start developing.

Touchdown Entertainment (LithTech Engine): http://www.lithtech.com
Jet3D: http://www.jet3d.com
Genesis3D: http://www.genesis3d.com
RenderWare: http://www.renderware.com
Crystal Space: http://crystal.sourceforge.net

Independent Game Developers
You know, almost everyone started as you are starting, by reading books and magazines
or getting code listings from friends or relatives. Some of the developers in the following
list have worked hard to complete some great games.

Longbow Digital Arts: http://www.longbowdigitalarts.com
Spin Studios: http://www.spin-studios.com
Positech Games: http://www.positech.co.uk

Appendix D � Recommended Books and Web Sites664

Samu Games: http://www.samugames.com
QUANTA Entertainment: http://www.quanta-entertainment.com
Satellite Moon: http://www.satellitemoon.com
Myopic Rhino Games: http://www.myopicrhino.com

Industry
If you want to be in the business, you need to know the business. Reading magazines and
visiting association meetings will help you for sure.

Game Developers Magazine: http://www.gdmag.com
GamaSutra: http://www.gamasutra.com
International Game Developers Association: http://www.igda.com
Game Developers Conference: http://www.gdconf.com
Xtreme Game Developers eXpo: http://www.xgdx.com
Association of Shareware Professionals: http://www.asp-shareware.org
RealGames: http://www.real.com/games

Computer Humor
Here are some great sites to visit when you are looking for a good laugh.

Homestar Runner (Strong Bad!): http://www.homestarrunner.com
User Friendly: http://www.userfriendly.org
Geeks!: http://www.happychaos.com/geeks
Off the Mark: http://www.offthemark.com/computers.htm
Player Versus Player: http://www.pvponline.com

Recommended Books
I’ve provided a short description for each of the books in this list because they are either
books I have written (plug!) or that I highly recommend and have found useful, relaxing,
funny, or essential on many an occasion. You will find this list of recommended books use-
ful as references to the C language and as complementary titles and references to subjects
covered in this book, such as Linux and Mac game programming (with a few unrelated but
otherwise interesting titles thrown in for good measure).

3D Game Engine Programming
Oliver Duvel, et al; Premier Press; ISBN 1-59200-351-6

“Are you interested in learning how to write your own game engines? With [this book]
you can do just that. You’ll learn everything you need to know to build your own game
engine as a tool that is kept strictly separate from any specific game project, making it a
tool that you can use again and again for future projects. You won’t have to give a second

Recommended Books 665

thought to your engine. Instead, you’ll be able to concentrate on your game and the game-
play experience.”

3D Game Programming All in One
Kenneth Finney; Premier Press; ISBN 1-59200-136-X

An introduction to programming 3D games using the Torque engine by GarageGames.

AI Techniques for Game Programming
Mat Buckland; Premier Press; ISBN 1-931841-08-X

“[This book] takes the difficult topics of genetic algorithms and neural networks and
explains them in plain English. Gone are the torturous mathematic equations and abstract
examples to be found in other books. Each chapter takes you through the theory a step at
a time, explaining clearly how you can incorporate each technique into your own games.”

Beginner’s Guide to DarkBASIC Game Programming
Jonathan S. Harbour and Joshua R. Smith; Premier Press; ISBN 1-59200-009-6

This book provides a good introduction to programming Direct3D, the 3D graphics com-
ponent of DirectX, using the C language.

Beginning C++ Game Programming
Michael Dawson; Premier Press; ISBN 1-59200-205-6

“If you’re ready to jump into the world of programming for games, [this book] will get
you started on your journey, providing you with a solid foundation in the game pro-
gramming language of the professionals. As you cover each programming concept, you’ll
create small games that demonstrate your new skills. Wrap things up by combining each
major concept to create an ambitious multiplayer game. Get ready to master the basics of
game programming with C++!”

Beginning DirectX 9
Wendy Jones; Premier Press; ISBN 1-59200-349-4

An excellent introduction to the new features in DirectX 9.

C Programming for the Absolute Beginner
Michael Vine; Premier Press; ISBN 1-931841-52-7

This book teaches C programming using the free GCC compiler as its development plat-
form, which is the same compiler used to write Game Boy programs! As such, I highly
recommend this starter book if you are just learning the C language. It sticks to the basics.
You will learn the fundamentals of the C language without any distracting material or
commentary—just the fundamentals of what you need to be a successful C programmer.

Appendix D � Recommended Books and Web Sites666

C++ Programming for the Absolute Beginner
Dirk Henkemans and Mark Lee; Premier Press; ISBN 1-931841-43-8

If you are new to programming with C++ and you are looking for a solid introduction, this
is the book for you. This book will teach you the skills you need for practical C++ pro-
gramming applications and how you can put these skills to use in real-world scenarios.

Character Development and Storytelling for Games
Lee Sheldon; Premier Press; ISBN 1-59200-353-2

“[This book] begins with a history of dramatic writing and entertainment in other media.
It then segues to writing for games, revealing that while proven techniques in linear media
can be translated to games, games offer many new challenges on their own, such as interac-
tivity, non-linearity, player input, and more. It then moves beyond linear techniques to
introduce the elements of the craft of writing that are particularly unique to interactive
media. It takes us from the relatively secure confines of single-player games to the vast open
spaces of virtual worlds and examines player-created stories, and shows how even here writ-
ers on the development team are necessary to the process, and what they can do to aid it.”

Game Design: The Art and Business of Creating Games
Bob Bates; Premier Press; ISBN 0-7615-3165-3

This very readable and informative book is a great resource for learning how to design
games—the high-level process of planning the game prior to starting work on the source
code or artwork.

Game Programming for Teens
Maneesh Sethi; Premier Press; ISBN 1-59200-068-1

An excellent introduction to Windows game programming with DirectX.

High Score! The Illustrated History of Electronic Games
Rusel DeMaria and Johnny L. Wilson; McGraw-Hill/Osborne; ISBN 0-07-222428-2

This is a gem of a book that covers the entire video game industry, including arcade
machines, consoles, and computer games. It is jam-packed with wonderful interviews
with famous game developers and is chock full of color photographs.

Mac Game Programming
Mark Szymczyk; Premier Press; ISBN 1-931841-18-7

“Covering the components that make up a game and teaching you to program these com-
ponents for use on your Macintosh, you will work your way through the development of
a complete game. With detailed information on everything from graphics and sound to
physics and artificial intelligence, [this book] covers everything that you need to know as
you create your first game on your Mac.”

Recommended Books 667

Mathematics for Game Developers
Christopher Tremblay; Premier Press; ISBN 1-59200-038-X

“[This book] explores the branches of mathematics from the game developer’s perspective,
rejecting the abstract, theoretical approach in favor of demonstrating real, usable appli-
cations for each concept covered. Use of this book is not confined to users of a certain
operating system or enthusiasts of particular game genres; the topics covered are univer-
sally applicable.”

Microsoft C# Programming for the Absolute Beginner
Andy Harris; Premier Press; ISBN 1-931841-16-0

Using game creation as a teaching tool, this book teaches not only C#, but also the funda-
mental programming concepts you need to learn any computer language. You will be able
to take the skills you learn from this book and apply them to your own situations.
Microsoft C# Programming for the Absolute Beginner is a unique book aimed at the novice
programmer. Developed by computer science instructors, the Absolute Beginner series is
the ideal tool for anyone with little to no programming experience.

Microsoft Visual Basic .NET Programming for the Absolute Beginner
Jonathan S. Harbour; Premier Press; ISBN 1-59200-002-9

Whether you are new to programming with Visual Basic .NET or you are upgrading from
Visual Basic 6.0 and looking for a solid introduction, this is the book for you. It teaches
the basics of Visual Basic .NET by working through simple games that you will learn to
create. You will acquire the skills you need for more practical Visual Basic .NET program-
ming applications and learn how you can put these skills to use in real-world scenarios.

Linux Game Programming
Mark Collins, et al; Premier Press; ISBN 0-7615-3255-2

“This book offers Linux users the information they need to create a game using their OS
of choice. Featuring an overview of the game development cycle, using tools and libraries,
developing graphics applications, and adding extras such as sound, this book provides
clear, concise information on developing games for and with the Linux OS.”

Pocket PC Game Programming: Using the Windows CE Game API
Jonathan S. Harbour; Premier Press; ISBN 0-7615-3057-6

This book will teach you how to program a Pocket PC handheld computer using Visual
Basic and Visual C++. It includes coverage of graphics, sound, stylus and button input,
and even multiplayer capability. Numerous sample programs and games demonstrate the
key topics you need to know to write complete Pocket PC games.

Appendix D � Recommended Books and Web Sites668

Programming Role Playing Games with DirectX, Second Edition
Jim Adams; Premier Press; ISBN 1-59200-315-X

“In the second edition of this popular book, you’ll learn how to use DirectX 9 to create a
complete role-playing game. Everything you need to know is included! You’ll begin by
learning how to use the various components of DirectX 9…. Once you have a basic
understanding of DirectX 9, you can move on to building the basic functions needed to
create a game—from drawing 2D and 3D graphics to creating a scripting system. Wrap
things up as you see how to create an entire game—from start to finish!”

Swords & Circuitry: A Designer’s Guide to Computer Role-Playing Games
Neal and Jana Hallford; Premier Press; ISBN 0-7615-3299-4

This book is a fascinating overview of what it takes to develop a commercial-quality role-
playing game, from design to programming to marketing. This is a helpful book if you
would like to write a game like Zelda.

Visual Basic Game Programming with DirectX
Jonathan S. Harbour; Premier Press; ISBN 1-931841-25-X

This book is a comprehensive programmer’s tutorial and a reference for everything related
to programming games with Visual Basic. After a complete explanation of the Windows
API graphics device interface meant to supercharge 2D sprite programming for normal
applications, the book delves into DirectX 7.0 and 8.1 and covers every component of
DirectX in detail, including Direct3D. Four complete games are included, demonstrating
the code developed in the book.

Recommended Books 669

This page intentionally left blank

671

Configuring Allegro
for Microsoft Visual C++
and Other Compilers

Appendix E

T
his appendix provides instructions for configuring Allegro with the most popular
compilers, including Microsoft Visual C++, KDevelop 3.0 (Linux), and Dev-C++ 5.
It is amazing how there are so many compilers that support Allegro, and several of

them are free! In the past, high-caliber development tools like these were very expensive
and hard to find. These tutorials assume that you have already compiled the Allegro
source code (per Appendix F, “Compiling the Allegro Source Code”) or you have copied
the headers and library files provided on the CD-ROM that accompanies this book.

I have pre-compiled the Allegro library and made it available. The easiest way to examine
the configuration is to open one of the pre-configured source code projects from the CD-
ROM. The second option is to read further and find out how to set up the compiler your-
self. Linking is a complicated subject. If you run into any problems, be sure to refer to
Appendixes E and F whenever necessary.

To make things as easy as possible (especially for those who are not as experienced with con-
figuring compilers), I have included on the CD-ROM the completed project files for every
program in the book for all three primary compilers that are supported: Dev-C++, Visual
C++, and KDevelop. It is more common to use the dynamic library with Visual C++, so
those projects all reference the dynamic library and require the DLL (alleg40.dll). Dev-C++
and KDevelop projects are configured for the statically linked library. If you examine the
CD-ROM that accompanies this book, you’ll find a folder called \sources, in which the
source code projects for the book are separated into three subfolders: msvc, devcpp, and
kdevelop. Within each of these folders you will find all of the projects for each chapter. You
can simply open the projects directly if you do not want to configure the compilers yourself.
The project files for Visual C++ have an extension of .dsw; project files for Dev-C++ have
an extension of .dev; and project files for KDevelop have an extension of .kdevprj.

Microsoft Visual C++
The Microsoft compilers are all very similar in options and configuration, so this short
tutorial is applicable to all recent versions of Visual C++. The dialog boxes might look
slightly different from what is shown here in VC5 or VC7, but the process is simple enough
that you should be able to adapt the basic concept to your needs.

These instructions take for granted that the DirectX SDK is installed on your system.
Although DirectX 9 is available at the time of this writing, you really only need DirectX 8
to compile programs with Allegro. I’m not just talking about the run time—you need to
install the DirectX SDK, which includes the header and library files. If you have not already
installed it, refer to the CD-ROM folder called \libraries. Note that if you are using the
dynamic version of Allegro, you don’t need the DirectX SDK. You only need the DirectX
SDK if you need to compile Allegro or if you plan to statically link it to your programs.

Here is how you can configure Visual C++ 6 to use the Allegro library. Create a new Win32
Application type project (see Figure E.1).

Next, open the Project menu and select Settings to bring up the Project Settings dialog box
(see Figure E.2). Click on the Link tab and look for the Object/Library Modules text field.
Clear the entire field and type in alleg.lib in place of the other library files.

Now you need to make sure the linker can find Allegro. Add a new source file to the pro-
ject and type in the following code. This program does very little, but it verifies that
Allegro has been linked to your program.

Appendix E � Configuring Allegro for Microsoft Visual C++ and Other Compilers672

Figure E.1 The New Project dialog box in Visual C++ 6

#include “allegro.h”
int main(void)
{

allegro_init();
allegro_message(“Welcome To Allegro!”);
return 0;

}
END_OF_MAIN();

If all goes as expected, the compilation output window should show “0 error(s), 0 warn-
ing(s)” (see Figure E.3), and upon running the program, you should see a message box with
the phrase “Welcome To Allegro!” If there are any errors, be sure to check for typos, and
then refer to Appendix F to verify that you have compiled and installed Allegro correctly.

If you want to use the static library of Allegro in Visual C++ (which is not usually the
case), then you’ll want to replace the single alleg.lib entry in the Object/Library Modules
text box with the following entries. (Be sure to separate each with a space.)

alleg_s.lib
gdi32.lib
winmm.lib
ole32.lib
dxguid.lib
dinput.lib
ddraw.lib
dsound.lib

Microsoft Visual C++ 673

Figure E.2 The Project Settings dialog box in Visual C++ 6

You also need to tell Allegro to use the static library by including the following line at the
top of any program that will be compiled static:

#define ALLEGRO_STATICLINK

Dev-C++
Dev-C++ was covered briefly in Chapter 2, but this is a more thorough explanation of
configuring Allegro, assuming that you have already compiled the sources or copied the
Allegro library files and headers as described in Appendix F. Dev-C++ comes with a
WebUpdate tool that will automatically download and install the Allegro headers and
library files into Dev-C++ so it’s ready to use (covered in Chapter 2). But in this tutorial,
I’m going to explain how to set up Dev-C++ without the benefit of WebUpdate.

Dev-C++ is a fully capable Windows compiler with support for all the usual Windows
libraries (kernel32, user32, gdi32, and so on), including DirectX. If you have ever installed
Microsoft’s DirectX SDK, you’ll recall how big it is—hundreds of files, hundreds of
megabytes. There is a much smaller public domain implementation of DirectX 8 for the
MinGW32 system (the version of GCC used by Dev-C++) included on the CD-ROM that
accompanies this book. You will find it in the folder \directx, in the file dx80_mgw.zip.
Extract the \include and \lib folders from dx80_mgw.zip inside the main Dev-C++ folder
on your hard drive. (This will usually be C:\Dev-Cpp.) The easiest way to do this is to copy

Appendix E � Configuring Allegro for Microsoft Visual C++ and Other Compilers674

Figure E.3 Compiling an Allegro program with Visual C++ 6

dx80_mgw.zip to C:\Dev-Cpp and unzip it there, where the header and library files will
be extracted into the existing include and lib folders. That’s all there is to installing
DirectX for Dev-C++ (or more specifically, for GCC). You might note that the header files
are copyrighted by Microsoft, while the lib files actually have the usual GCC library exten-
sion of .a. This way, you can differentiate between the official Microsoft DirectX SDK and
the public domain implementation.

You should note that MinGW32 (bundled with Dev-C++) also includes public domain
implementations of the entire Windows 32-bit API. This means that someone actually
wrote compatible versions of the entire Windows API for use with tools such as MinGW32
to make GCC compatible with Windows. This provides you with all the power of Visual
C++ in a very tight, small package. Because I do not write Windows GUI apps with C/C++
(involving dialogs, windows, and controls, for which I use Visual Basic), I find Dev-C++
with DirectX, OpenGL, and other libraries (such as Allegro) to be an awesome alternative
to Visual C++ for game programming. The real benefit to Visual C++ is the comprehen-
sive documentation in the form of MSDN, the dialog editor/form designer, and other
value-added features. Because Dev-C++ includes the MinGW32 implementation of the
Win32 API, I find it useful to keep Internet Explorer open to the Microsoft Developer
Network Web site at http://msdn.microsoft.com/visualc, where the latest edition of MSDN
is available online (and is equivalent to the distributed version of the MSDN subscription).

I won’t debate the fact that Microsoft produces an exemplary and untouchable C/C++
compiler and IDE for Windows in the form of Visual C++. What I find most convenient
about Dev-C++ is the very small footprint in memory (only about 12 MB), the small
install file, and the simple installer. Combined with the MinGW32 implementation of the
Windows API and the third-party implementation of DirectX, you have a great little game
development package for Windows.

Now that I have presented the pros and cons of using Dev-C++, allow me to explain how to
set up Allegro for this compiler for either dynamic or static link. You must first install Allegro.
Even if you install the Allegro DevPak, I still recommend copying the Allegro 4.0.3 library and
header files over to C:\Dev-Cpp. The header files should be copied to C:\Dev-Cpp\include
and the library files should be copied to C:\Dev-Cpp\lib. (Your path might be different
depending on where you chose to install Dev-C++.) While I have included the library and dll
files in \libraries on the CD-ROM, you’ll want to copy the contents of \include from the
CD-ROM to C:\Dev-Cpp\include as well. This is especially important if you are upgrading
to a new version of Allegro. For instance, the DevPak included on the CD-ROM only supports
Allegro 4.0.0, but you need 4.0.3 for the programs in this book. So even if you install the
DevPak, you still need to copy the 4.0.3 includes and libraries over to C:\Dev-Cpp into their
respective folders. If this whole process is confusing, just follow these simple guidelines:

� Copy CD-ROM\include*.* into C:\Dev-Cpp\include.

� Copy CD-ROM\libraries\devcpp*.* into C:\Dev-Cpp\lib.

Dev-C++ 675

Appendix E � Configuring Allegro for Microsoft Visual C++ and Other Compilers676

If you still have trouble getting the sample programs to compile, refer to Appendix F to
actually compile the Allegro sources. You will benefit from an install script included with
Allegro that installs everything where it’s supposed to go. I have provided the include and
lib files on the CD-ROM so you can just copy them over and get up and running quickly.
Compiling the sources is pretty easy, so you should give it a try even if your compiler is
configured and working correctly.

Now I want to cover how to set up Dev-C++ for the static library. Run Dev-C++ and
open the File menu, and then select New, Project to bring up the New Project dialog box
(Figure E.4).

If you have installed the Allegro DevPak as explained in Chapter 2, then you have the
option of using one of the Allegro project templates (see Figure E.5).

Figure E.4 The New Project dialog box in Dev-C++

Figure E.5 Allegro project template choices for a new
project in Dev-C++

If you choose to create an Allegro (Static) project, I need to inform you of a little bug in the
template. The ALLEGRO_STATICLINK option is in the wrong box for the C compiler
when the template is designed for the C++ compiler. Move -DALLEGRO_STATICLINK
from the first options box to the second box, labeled C++ compiler, and then it will compile
correctly (see Figure E.6). This bug might be fixed in a new release of the Allegro.DevPak,
and it is not an issue at all if you configure the project yourself. (More on that in a
minute.)

The other option is to configure a Dev-C++ project yourself, without using the templates.
You would need to do this, for instance, if you have not installed the Allegro.DevPak. The
DevPaks are really useful because they install the appropriate files in the correct folders for
compiling a program with the requisite library. But if you want to just create a standard
project, here’s how to do it.

First, fire up Dev-C++, and then click on File, New, Project to bring up the New Project
dialog box (see Figure E.7). Choose Windows Application for the project type, and be sure
to select C Project instead of the C++ option because you will be setting up the project for
the standard C compiler. This will be very similar to the settings that were applied with
the project template.

Once the project is created, open the Project Options dialog box and click on the
Parameters tab. All you have to do to create a dynamically linked Allegro program is add
-lalleg to the Linker box. Note that the -l is a linker switch that tells the linker to include
the library file named liballeg.a. (Remember that the lib at the front and .a at the end are
assumed.) You could also simply insert the actual filename with the full path if you want;
for instance, -lc:\allegro\lib\liballeg.a is a valid option. It is generally a good idea to copy
library files into the lib folder for the compiler you’re using. In the case of Dev-C++, that
folder is usually C:\Dev-Cpp\lib.

Dev-C++ 677

Figure E.6 The Project Options dialog box in Dev-C++

If you want to configure the project to use the static library, it requires two extra steps. In the
first box, labeled Compiler, type in the static library option -DALLEGRO_STATICLINK.
In the Linker box, enter the following options:

-lalleg_s
-lgdi32
-lwinmm
-lole32
-ldxguid
-ldinput
-lddraw
-ldsound

Figure E.8 shows the Project Options dialog box with the settings needed for a statically
linked Allegro program.

Appendix E � Configuring Allegro for Microsoft Visual C++ and Other Compilers678

Figure E.7 Creating a new Windows Application project in Dev-C++

Figure E.8 Configuring Dev-C++ for a statically linked Allegro program

That’s all there is to configuring the static library the manual way. Now you can write a
short program to test the configuration and make sure Allegro is properly installed and
the compiler is properly configured. Type the following program into the code window.
(Delete any existing code first.)

#include “allegro.h”
int main(void)
{

char version[80];
allegro_init();
sprintf(version, “Allegro library version = %s”, allegro_id);
allegro_message(version);
return 0;

}
END_OF_MAIN();

Compile and run the program, and you should see a message pop up on the screen with
the following text, which will indicate that Allegro is configured:

Allegro library version = Allegro 4.0.3, MinGW32.s

If you have any problems compiling the program at this point, it is most likely due to
missing DirectX files, missing Allegro include files, or missing Allegro library files. You do
not need alleg40.dll to run the static version. If you have double-checked these issues and
you still have problems compiling, refer to Appendix F to do a full install of Allegro for
Dev-C++.

KDevelop for Linux
The Linux operating system is a good choice for writing games with Allegro because the
GCC compiler is always installed with the operating system, and you can type in programs
with a simple text editor and get them to run with very little effort. However, Linux is not
for the faint at heart, so if you are a beginner trying to get up to speed with Linux, you
might have to pick up a book on using Linux. It’s beyond the scope of this meager appen-
dix to explain how to install KDevelop, the development tool used in this book for com-
piling Allegro programs for Linux. Assuming you have KDevelop already installed (as part
of the KDE window system/user interface), then you can forge ahead. Even if you are
using another window manager, such as GNOME, you can still run KDevelop by simply
installing the KDE libraries. More than likely your distribution of choice provided
KDevelop as an install option, or might have simply installed it with KDE automatically.
If you want to download the latest version of KDevelop for your Linux box, browse to
http://www.kdevelop.org. By the way, KDevelop is merely a front-end GUI for GCC (and
a fine IDE at that).

KDevelop for Linux 679

Now you need to configure KDevelop for the Allegro library. If you haven’t installed
Allegro yet, jump to Appendix F and follow the instructions for compiling and installing
Allegro under Linux. Because Allegro’s installer script copies files into so many locations,
it is really foolhardy to attempt a manual install by copying the includes and libraries
yourself. Besides, that’s the hard way. Compiling the sources is the single best way to install
Allegro! Once you have done that, then return here and proceed to configure KDevelop as
the following instructions explain.

First, fire up KDevelop, and then create a new project by opening the Project menu and
selecting New. Choose a C terminal program (as shown in Figure E.9).

In the ApplicationWizard dialog box that appears, I recommend disabling the following
three unneeded options:

� GNU-Standard-Files (INSTALL,README,COPYING...)

� User-Documentation

� Ism-File - Linux Software Map

However, you should keep the Generate Sources and Headers option selected, as shown in
Figure E.10.

Appendix E � Configuring Allegro for Microsoft Visual C++ and Other Compilers680

Figure E.9 Creating a new C terminal program in KDevelop

You can skip the Version Control System Support dialog box. In the next two dialog boxes,
turn off Headertemplate for .h-files and Headertemplate for .c-files, which clog up the
source code. Finally, you will come to a Processes dialog box in the ApplicationWizard.
Click on Create to build the new project, and ignore any obscure errors that appear
regarding missing files. When you are finished, click on the Exit button. KDevelop will
create a new project for you, as shown in Figure E.11.

Now you can set up the project for Allegro. Open the Project menu and select Options to
bring up the Project Options dialog box. Click on the Linker Options icon on the left.
Select the X11 and kdeui library check boxes, and type the following in the Additional
Libraries text box:

-L/usr/local/lib
-L/usr/X11R6/lib
-lalleg
-lpthread
-lXxf86dga
-lXxf86vm
-ldl

KDevelop for Linux 681

Figure E.10 Setting parameters in KDevelop’s ApplicationWizard

Note the uppercase L in the first two linker options; these tell the linker to include every
library file found in the supplied folder name, if required by the smart linker (see Figure
E.12).

Appendix E � Configuring Allegro for Microsoft Visual C++ and Other Compilers682

Figure E.11 The new C terminal program, ready to run in KDevelop

Figure E.12 The Project Options dialog box for compiling an Allegro
program with KDevelop

Returning to the editor window, you can type in a program that actually demonstrates
that the Allegro library is indeed working as expected. Here is a short program that will
do just that.

#include “allegro.h”
int main(void)
{

char version[80];
allegro_init();
sprintf(version, “Allegro library version = %s”, allegro_id);
allegro_message(version);
return 0;

}
END_OF_MAIN();

If the project has been configured correctly and if Allegro was installed correctly, the pro-
gram should compile and run with an output like the one shown in Figure E.13.

Final Comments
One final note on the Allegro game library: There are online discussions currently raging
about the future of Allegro. It is very possible that future versions of Allegro will not be
backward compatible with the 4.0.3 version used in this book. If that is the case, then I

Final Comments 683

Figure E.13 Testing the Allegro program compiled with KDevelop

suggest using 4.0.3 and not getting tied up trying to get a newer version to work. It’s very
possible that 5.0 and later will support 4.0.3 programs, but based on my experience with
as recent a version as 4.1.12, which is not compatible with 4.0.3, it seems that the devel-
opers of Allegro are facing the dilemma of providing new functionality without breaking
existing code. If you download a new version of Allegro, it will be up to you to get it to
work. I am only officially supporting 4.0.3 (the most stable version, in my opinion) in this
book.

Appendix E � Configuring Allegro for Microsoft Visual C++ and Other Compilers684

685

Compiling the
Allegro Source Code

Appendix F

T
his appendix will walk you through the process of compiling the Allegro source
code. Allegro is an open-source game programming library that is distributed in
source code form. You must compile Allegro in order to use it. There are some

friendly people on the Web who have compiled Allegro for various operating systems, but
it is best to compile Allegro yourself, if for no better reason than to verify that your com-
piler is compatible with the version of Allegro you intend to use. (I strongly recommend
sticking with 4.0.3.) This is a fairly simple process that I’ll walk you through for Microsoft
Visual C++ 6.0, Borland C++ 5.5 (including C++Builder 3.0 or later), Bloodshed Dev-
C++ 4.9 (or later), and KDevelop 2.1 (or later).

Note that Visual C++ 7.0 or later should be similar to 6.0; if you have problems, refer to
the tutorials at http://www.allegro.cc or visit http://www.jharbour.com for assistance.
A good collection of pre-compiled Allegro library files (and DLLs) is also located at
http://www.allegro.cc/files, including makefiles for MSVC6, MSVC7, and Borland C++
Builder. If you have trouble compiling Allegro yourself, you can use these pre-built versions.

Microsoft Visual C++
There is good news and bad news about working with Visual C++. The good news is that
Allegro compiles just fine under Visual C++. The bad news is that Microsoft’s make util-
ity was created just for Microsoft projects and does not support any type of standard
makefile format.

So, you have to use the make.exe program that comes with Dev-C++ (or any version of
GCC, for that matter). This shouldn’t be a problem because Dev-C++ is rather small, and
you can install a simple version of GCC by downloading it off the Web if you want, just
to acquire the make.exe program. (Browse to http://gcc.gnu.org.) The Allegro makefiles

were designed specifically for the GCC make, not the make program that comes with the
various compilers. If you haven’t installed Dev-C++ but you want to use Visual C++ any-
way, install Dev-C++ to the default folder, which should be C:\Dev-Cpp. After you have
done so, add it to your path so the make program will work.

set path=C:\Dev-Cpp\bin;%path%

You also will need to add the path to Visual C++ in a moment.

Before you can compile the Allegro library, you must extract it from the ZIP file. If you
look on the CD-ROM under \allegro, you will find a file called all403.zip. This file contains
the complete Allegro 4.0.3 source code distribution for all platforms.

Extract the all403.zip file to the root of your hard drive (which is usually C:\) using WinZip,
WinRar, or another archiving utility. Be sure to extract with the directory structure intact
(which is usually the default with WinZip and similar programs). This will create a new
folder on your root called C:\allegro. The Allegro sources (including tools and examples)
will use up about 15.5 MB of disk space after they are extracted.

Open a command prompt window. (Select Start, Run, and type cmd.exe on most
Windows systems.) Change to the C:\allegro folder.

CD \allegro

Now type in the following line at the command prompt:

fix msvc

This invokes the fix.bat batch file to configure the Allegro sources for Microsoft Visual C++.
By default, the Allegro makefiles are set up to compile the standard optimized version of
Allegro (which you would want to use for the release build of a game).

You are almost ready to compile Allegro. But first, have you set a path to your installation
of Visual C++? The standard installation of Visual C++ includes a batch file that will con-
figure the environment variables and paths for Visual C++. If you have installed Visual
C++ to the default folder, you can use this command to set the path:

set path=C:\Program Files\Microsoft Visual Studio\VC98\Bin;%path%

Now you’re ready to compile Allegro. There are three versions that you can compile (stan-
dard optimized version, debug version, and profiler version) for the three standard project
types in a C/C++ compiler. If you want to compile the debug version, you must first set an
environment variable.

set DEBUGMODE=1

Appendix F � Compiling the Allegro Source Code686

That is followed by this command:

make lib

If you want to compile the profile version of Allegro, type the following lines:

set PROFILEMODE=1
make lib

For your purposes, you want to compile all three versions of Allegro, along with all the
example programs. So type the following line:

make all

It will usually take several minutes for the entire Allegro library to compile, along with all
of the support programs (such as dat.exe and grabber.exe) and example programs that
demonstrate Allegro’s features.

Finally, as I discussed in Appendix E, you can compile the static version of Allegro in order
to link Allegro inside the executable file of your game. The static library can be compiled
like so:

set STATICLINK=1
make lib

In general, just remember the fix msvc and make all commands, and you’ll have no prob-
lems. After you have compiled the Allegro source code, you’ll want to look inside \allegro
\lib\msvc for the compiled library files and DLL, and then copy these files to your Visual
C++ lib folder (usually located in \Program Files\Microsoft Visual Studio\VC98\Lib). You
will also want to look in \allegro\include and copy all files and subfolders to the include
folder for Visual C++ (usually located in \Program Files\Microsoft Visual Studio\VC98
\Include).

Borland C++/C++Builder
I did not formally support Borland C++ in the book because it was quite a feat just to keep
my sanity with three different compilers! However, Allegro should compile for Borland
C++ 5.5 (but not 5.0), as well as C++Builder 3.0 or later. The cool thing about this is that
if you have been a Borland fan for many years, or you just prefer to use a compiler other
than GCC, you can download the command-line compiler from Borland’s Web site for
free; it is perfectly suitable for compiling Allegro, as well as the source code from this book.
(Browse to http://www.borland.com/products/downloads/download_cbuilder.html.)
However, Borland C++ does not enjoy as much support from Allegro as MSVC and Dev-Cpp.

Borland C++/C++Builder 687

The process of compiling the Allegro library sources is the same as for Microsoft Visual
C++, with one exception. First, you must configure the Allegro makefiles for Borland
using this command:

fix bcc32

Aside from this change, you can follow the instructions in the previous section for com-
piling Allegro for Visual C++, because the remaining instructions are the same. After you
have compiled the Allegro source code, you’ll want to look inside \allegro\lib\bcc32 for the
compiled library files and DLL, and copy these files to your Borland C++ lib folder. You
will also want to look in \allegro\include and copy all files and subfolders to the include
folder for Borland C++.

Dev-C++
Dev-C++ is the free integrated development environment provided by Bloodshed
Software. It used throughout the book interchangeably with Visual C++ and KDevelop.
The instructions for Dev-C++ are similar to Borland C++/C++Builder. You can follow
the instructions laid out for Visual C++ with a single exception: You must configure the
Allegro makefiles for Dev-C++ (which really means you need to configure the makefiles
for MinGW32/GCC).

fix mingw32

From here, you can set the environment variables for compiling the standard, debug, and
profile versions of Allegro (along with the optional STATICLINK option to create a statically-
linked library file, if you want).

But first, have you set a path to your installation of Dev-C++? If you have a question
about this, refer to Chapter 2 and Appendix E for instructions on how to install and con-
figure Dev-C++. The default install folder is C:\Dev-Cpp, so you might need to set a path
as follows:

set path=C:\Dev-Cpp\bin;%path%

From this point, follow the directions for Visual C++ to set the options and compile
Allegro using the makefiles. After you have compiled the Allegro source code, you’ll want
to look inside \allegro\lib\mingw32 for the compiled library files and DLL, and copy these
files to your Dev-C++ lib folder (usually located in \Dev-Cpp\lib). You will also want to
look in \allegro\include and copy all files and subfolders to the include folder for Dev-C++
(usually located in \Dev-Cpp\include).

Appendix F � Compiling the Allegro Source Code688

KDevelop for Linux
I’m going to have to assume you are somewhat familiar with Linux already because it is a
little more difficult to compile Allegro under Linux than it is under Windows. But once
you have Allegro extracted and you are in the Allegro folder, it’s very easy and automated
for the most part.

Open a command-shell window. Locate the Allegro sources on the CD-ROM in a file
called allegro-4.0.3.tar.gz. You can extract the Allegro library sources using gzip and tar
from the command line, or just use Nautilus or another GUI program that can read
archive files.

Type this command first to extract the tar file out of the gz file:

gzip -d allegro-4.0.3.tar.gz

Next, type this to extract the files out of the tar archive:

tar -xf allegro-4.0.3.tar

If you look in the current folder, you should now see a subfolder called allegro-4.0.3. Move
into this folder using cd allegro-4.0.3.

Now for the steps involved in configuring the project files for compilation. First, assum-
ing you are in shell and currently in allegro-4.0.3, type this command:

./configure

This will configure the Allegro sources and makefiles and prepare them for the GCC com-
piler. After the configuration script runs, you should convert the files to UNIX format and
set the makefile. This is not absolutely necessary, especially if you just extracted Allegro
from a tar file, but it’s worth knowing how to configure the sources for UNIX.

./fix.sh unix

Now you’re ready to compile the Allegro library source code. It’s best to just build all the
versions (standard, debug, and profile) at the same time.

make all

The compilation might take several minutes because all of the utility programs (such as
dat.exe and grabber.exe) are compiled, along with all of the example programs that
demonstrate the features of Allegro.

If all goes well (compilation errors are rare due to the configuration script), you should
soon be ready to compile Allegro programs using KDevelop. You can refer to Appendix E
for instructions on how to set up an Allegro project in KDevelop. After the Allegro sources

KDevelop for Linux 689

have been compiled, you will need to install Allegro into the proper directories for it to
work properly with KDevelop and other development environments. (Make sure you have
root access.) Type the following line:

su -c “make install”

This command will copy the Allegro library and header files into the shared locations.
Next, you can install the manuals (man pages) and info docs using these commands:

su -c “make install-man”
su -c “make install-info”

Appendix F � Compiling the Allegro Source Code690

691

Using the CD-ROM

Appendix G

T
he CD that comes with this book contains some important files you will want to
use when you are working through the sample programs in the book. The CD
comes preloaded with a very nice Autorun program that includes a menu for

installing the various programs and files to your hard drive.

The most important files on the CD are the source code files for the sample programs in
the book. The programs are stored in folders on the CD that are organized by chapter
from the root \sources folder. Inside \sources, you will find the platform subfolders
\sources\msvc, \sources\devcpp, and \sources\kdevelop, which contain the chapter folders
\sources\msvc\chapter01, \sources\msvc\chapter02, and so on. I recommend that you
copy the entire \sources folder for your particular platform/compiler to your hard drive
and turn off the read-only property for all of the files so you will be able to peruse the
sample projects for the book more easily. Zip files have also been provided for each com-
piler: sources_msvc.zip, sources_devcpp.zip, and sources_kdevelop.tar.gz.

Because this book focuses mainly on using Dev-C++ with the GCC compiler, Dev-C++
has also been provided on the CD-ROM in the \dev-cpp folder. You can run the installer
from the Premier Press CD-ROM menu or directly off the CD by running the
devcpp4980.exe installer. To save you time downloading DevPaks for Dev-C++, I have
also included a folder called \devpaks, which contains the most useful updates for the con-
tent in this book.

The Allegro Game Library has been provided on the CD-ROM in the \allegro folder for
both Windows (all403.zip) and Linux (allegro-4.0.3.tar.gz). I have also included the Allegro
header files in \allegro\include. Most importantly, I have compiled the Allegro library for
Visual C++, Dev-C++, and KDevelop. You can avoid the difficulty of compiling Allegro

yourself by simply copying the appropriate library files into \lib, where your compiler is
located. The dynamic, static, and debug builds of Allegro have been provided in \allegro\
libraries.

Windows programmers will need to install the DirectX SDK. (Version 8 or later will
work.) If you are using Visual C++, you will want to install Microsoft’s official DirectX
SDK. However, if you are using Dev-C++ and GCC, you will need a special version of
DirectX that has been compiled into .a files (the library format used by GCC). The GCC
version of DirectX 8 is located in \directx in a file called dx80_mgw.zip.

Appendix G � Using the CD-ROM692

Numbers
1942, 455
2D games market, 14-15
3D cards, 73-74

A
acquiring bitmaps, 223-224
action/arcade game design genre, 191
adventure game design genre, 191-192
AI (artificial intelligence), 563

deterministic algorithms, 570-575
patterns, 573-575
random motion, 571-572
tracking motion, 572-573

expert systems, 564-565
fields, 564-570
finite state machines, 575-577
fuzzy logic, 565-567, 577-580

group membership, 577-579
matrices, 579-580

game states, 580-581
genetic algorithms, 567-569
knowledge trees, 564-565
memory, 580-581
neural networks, 569-570
overview, 563-564
perceptrons, 570
tips, 581

algorithms
deterministic algorithms, 570-575

patterns, 573-575
random motion, 571-572
tracking motion, 572-573

genetic algorithms, 567-569

INDEX

Allegro
backward compatibility, 683-684
CD-ROM, 691-692
compiling source code

Borland C++, 687-688
C++ Builder, 687-688
Dev-C++, 688
KDevelop, 689-690
Linux, 689-690
overview, 685
Visual C++, 685-687

configuring
Dev-C++, 674-679
KDevelop, 679-683
Linux, 679-683
overview, 671
Visual C++, 672-674
Windows, 672-679

cross-platform capabilities, 43
DevPaks, 42-43
DLLs, 42-43
features, 27-28
game development, 26-28
installing, 41-43
operating systems, 27
source code, 42-43
support, 26-28
templates, 63
testing, 53-63
troubleshooting functions, 65-66
versions, 683-684
Web site, 26

allegro_exit function, 79
allegro_id function, 53-54
allegro_init function, 53

allegro_message function, 78
alpha blending, 215
animated sprites

collision detection, 317-324
compiled sprites, 313-317
compression, 306
creating, 280-283
creating speed, 313
flickering, 298
grabbing frames, 291-298
handlers, 283-291, 324-336
multiple, 298-306
overview, 279-280
performance, 298
PlatformScroller game, 499-500
RLE, 306-313
Tank War

handlers, 324-336
treads, 413-426

tiling, 292
troubleshooting, 298
updating, 285-286

animation. See FLIC animation
AnimSprite program, 280-283
answers, chapter quizzes, 633-650
Arkanoid game, 178
ArrayMapTest program, 437-441
arrays, tile-based backgrounds, 351-355
artificial intelligence. See AI
artwork, 353
ASCII values, 653-655
associations, Web sites, 664
audio. See sound
author Web site, 663
Axis & Allies, 22-24

B
backgrounds

scrolling bitmaps, 220
tile-based. See also tiles

arrays, 351-355
buffers, 339
graphics, 346
horizontal scrolling platform maps, 491-498
overview, 345-347
scrolling, 347-351
Tank War, 355-378
tile maps, 351-355

backups, game design, 189-190
backward compatibility (Allegro), 683-684
Base-2 numbers, 657-659
Base-8 numbers, 657
Base-10 numbers, 657-659
Base-16 numbers, 657-661
Bauer, Niels, 622-623
beta testing, 198
binary numbers, 657-659
bit-block transfer. See blitting
bitmaps

acquiring, 223-224
blitting, 79-82, 217

masked, 229
scaled, 228-229
standard, 227-228
stretching, 228-229

buffers, 217-219
clearing, 220
clipping, 224
color, 219-222
creating, 216-221
datafiles, 542-543
destroying, 221
feedback loops, 220-221
formats, 225-226
linear, 222
loading, 79-82, 224-227
locking, 223-224
memory, 222
planar, 222
refresh rates, 218
releasing, 223-224
saving, 226-227
screens, 222
scrolling backgrounds, 220
sprites relationship, 216
Tank War, 229-334
transparency, 221-222

blitting
bitmaps, 79-82, 217

masked, 229
scaled, 228-229
standard, 227-228
stretching, 228-229

graphics, 73
blocks, 491-498

Index694

book, this
artwork, 353
goals, 6

books, 665-669
Borland C++, compiling code, 687-688
Breakout game, 178
buffering/buffers

bitmaps, 217-219
double-buffering, 75, 159
frames, 74
keyboard, 152-153
scrolling, 339
tile-based backgrounds, 339

bug reports, 615
bullets

creating, 122-125
moving, 122-125
troubleshooting, 422-426

business. See industry
buttons

joysticks, 174-175
mouse, 157

C
C/C++

Borland C++, 687-688
C++ Builder, 687-688
cross-platform compatibility, 29, 45
defined, 12
Dev-C++

CD-ROM, 691
compiling source code, 688
configuring compiler, 674-679
DevPaks, 39
GCC (GNU Compiler Collection), 29, 36,
45, 691-692
overview, 29-30
Package Manager, 41-42
testing, 44-53
updating, 37-40

support, 29-30
Visual C++

compiling source code, 685-687
configuring compiler, 672-674

C++ Builder, 687-688
callbacks

circles, 101-102
FLIC animation, 552-554

Index 695

lines, 92-95
timers, 382-383

capturing animated sprites, 291-298
CD-ROM, 691-692
chapter quiz answers, 633-650
characters (ASCII values), 653-655
chips, graphics, 72-74
circle function, 95-97
circlefill function, 97-98
CircleFill program, 97-98
circles

callbacks, 101-102
drawing, 95-98

Circles program, 95-97
classes, game design, 189
clearing bitmaps, 220
clipping bitmaps, 224
closing FLIC animation, 555
code. See source code
collision detection

animated sprites, 317-324
Tank War, 122-126, 324-336
Warbirds Pacifica, 466

CollisionTest program, 319-324
color

bitmaps, 219-222
maps, 431
sprites, 239

companies, publishing games, 626
compatibility

backward (Allegro), 683-684
cross-platform compatibility

Allegro, 43
C/C++, 29, 45
CD-ROM, 691
market, 13-14
scrolling, 339

compiled animated sprites, 313-317
CompiledSprites program, 315-317
compilers

configuring
Dev-C++, 674-679
KDevelop, 679-683
Linux, 679-683
overview, 671
Visual C++, 672-674
Windows, 672-679

compilers (continued)

Dev-C++
CD-ROM, 691
compiling source code, 688
configuring compiler, 674-679
DevPaks, 39
GCC (GNU Compiler Collection), 29, 36,
45, 691-692
overview, 29-30
Package Manager, 41-42
testing, 44-53
updating, 37-40

compiling
programs, 51-53
source code

Borland C++, 687-688
C++ Builder, 687-688
Dev-C++, 688
KDevelop, 689-690
Linux, 689-690
overview, 685
Visual C++, 685-687

sprites, 241
compression

animated sprites, 306
datafiles, 540, 543

conferences, Web sites, 664
configuring Allegro, compilers

Dev-C++, 674-679
KDevelop, 679-683
Linux, 679-683
overview, 671
Visual C++, 672-674
Windows, 672-679

contracts, publishing games, 614-615
conventions, Web sites, 664
creating. See also installing

bitmaps, 216-221
bullets, 122-125
circles, 95-98
datafiles, 541-544
demos, 153-154
ellipses, 98-101
filling, 109-112
interrupt handlers (timers), 392-393
lines

any, 88-89
callback, 92-95

horizontal, 85-87
vertical, 87-88

maps, 430-432
FMP, 442-445
overview, 436-437
text, 437-441
vertical scrollers, 456-460

pixels, 82-84
polygons, 107-109
POSIX threads, 401
programs (Greetings), 46-51
rectangles, 89-92
scrolling, 341-345
sound, 518
splines, 103-105
sprites, 238-242

animated sprites, 280-283, 313
flipped, 244-245
pivoted, 252-255
rotated, 245-252
scaled, 242-243, 252
stretching, 242-243, 252
translucent, 256-259

tanks, 120-122
criticism, 24-25
cross-platform compatibility

Allegro, 43
C/C++, 29, 45
CD-ROM, 691
market, 13-14
scrolling, 339

D
datafiles

bitmaps, 542-543
compression, 540, 543
creating, 541-544
encryption, 540
finding, 545
formats, 541
loading, 544-545
overview, 539-541
referencing, 544
searching, 545
sprites, 543
storing resources, 539-541
testing, 545-547
unloading, 545

Index696

DDR graphics, 73-74
debugging games

creating, 465
publishing, 615

decimal numbers, 657-659
delaying timers, 382-383
demos

creating, 153-154
game development, 202

derivative equations, 652
design. See game design
design document, 205-209
destroying

bitmaps, 221
POSIX threads, 402
sound, 518

detecting sound, 515
deterministic algorithms (AI), 570-575

patterns, 573-575
random motion, 571-572
tracking motion, 572-573

Dev-C++
CD-ROM, 691
compiling source code, 688
configuring compiler, 674-679
DevPaks, 39
GCC (GNU Compiler Collection), 29

CD-ROM, 691-692
overview, 44-45
support, 45
Web site, 45
installing, 36

overview, 29-30
Package Manager, 41-42
testing, 44-53
updating, 37-40

development, games. See game development
DevPaks

Allegro, 42-43
Dev-C++, 39

DirectX, 4
game development, 25-26
SDK, 692

DLLs, 42-43
do_circle function, 101-102
DoCircles program, 101-102
doline_callback function, 92-95
DoLines program, 92-95

Index 697

double-buffering, 75, 159
downloads, Web sites, 663
DrawBitmap program, 79-82
drawing. See creating
DrawSprite program, 239-240

E
editing

maps, 429
sound, 518

education, game industry, 10-12
ellipse function, 98-100
ellipsefill function, 100-101
EllipseFill program, 100-101
ellipses, 98-101
Ellipses program, 98-100
encryption (datafiles), 540
engines

game development, 196, 200-201
vertical scrollers, 455-456
Web sites, 663

equations. See math
erasing tiles, 433
evaluating games, 611-612
expansion packs, 203
expectations, 24-25
expert systems (AI), 564-565
explosions. See bullets
exporting. See saving
expo Web sites, 664

F
feasability, 188-190
features

Allegro, 27-28
game design, 189
Tank War final version, 536

feedback loops (bitmaps), 220-221
Feldman, Ari, Web site, 353
fields (AI), 564-570
fighting game design genre, 190-191
files, CD-ROM, 691
filling

graphics, 109-112
horizontal scrolling platform maps, 494-495
tiles, maps, 432-433

finding datafiles, 545

finite state machines (AI), 575-577
firing. See bullets
first-person shooters, 192
FLIC animation

callback function, 552-554
closing, 555
frames, 555-558
loading, 554-558
memory, 554
opening, 555
overview, 551
playing, 551-554
scaling, 558-560
stretching, 558-560

flickering animated sprites, 298
flight simulators, 192
flipped sprites, 244-245
FlipSprite program, 244-245
floodfill function, 109-112
FloodFill program, 109-112
FMP maps, 433-435, 442-445
foreground (horizontal scrolling platform maps),

495-497
formats

bitmaps, 225-226
datafiles, 541

forums, Web sites, 663
frames

animated sprites, 291-298
buffers, 74
FLIC animation, 555-558

functions
allegro_exit, 79
allegro_id, 53-54
allegro_init, 53
allegro_message, 78
circle, 95-97
circlefill, 97-98
do_circle, 101-102
doline_callback, 92-95
ellipse, 98-100
ellipsefill, 100-101
floodfill, 109-112
get_mouse_mickeys, 167
hline, 85-87
install_joystick, 170
install_keyboard, 146-147
install_mouse, 156
keyboard_needs_poll, 148

line, 88-89
makecol, 78
math, 605-607
mouse_needs_poll, 156
mouseinside, 165-166
num_joysticks, 170-171
poll_joystick, 171
poll_keyboard, 146-148
poll_mouse, 156
polygon, 107-109
position_mouse, 165-166
position_mouse_z, 168-170
putpixel, 82-84
readkey, 152
rect, 89-91
rectfill, 91-92
remove_joystick, 170
remove_keyboard, 146-147
remove_mouse, 156
scancode_to_ascii, 153
scare_mouse, 158
scare_mouse_area, 158
set_gfx_mode, 75-78
set_keyboard_rate, 153
set_mouse_range, 167
set_mouse_speed, 167
set_mouse_sprite, 157-158
set_mouse_sprite_focus, 157
show_mouse, 158
simulate_keypress, 153-154
spline, 103-105
srand, 84
text_mode, 112
textout, 112-113
textprintf, 78, 113-114
triangle, 105-107
troubleshooting, 65-66
unscare_mouse, 158
ureadkey, 152
vline, 87-88
voices (sound), 518-522

fuzzy logic (AI), 565-567, 577-580
group membership, 577-579
matrices, 579-580

G
galactic conquest game design genre, 193

Index698

game design
backups, 189-190
classes, 189
design document, 205-209
feasability, 188-190
features, 189
game development, 196
genres

action/arcade, 191
adventure, 191-192
fighting, 190-191
first-person shooters, 192
flight simulators, 192
galactic conquest, 193
MMORPGs, 195
overview, 190
real-life simulators, 195
RPGs, 193-194
RTS, 193
space simulators, 195
sports simulators, 194
TBS, 194
third-person shooters, 194

inspiration, 188, 346
job market, 212
libraries, 204
OOP, 189
overview, 187-188, 204-205
planning, 203-204
SDKs, 204
Space Invaders, 209-211

game developer Web sites, 663-664
game development

Allegro, 26-28
Axis & Allies, 22-24
beta testing, 198
criticism, 24-25
demos, 202
DirectX, 25-26
engines, 196, 200-201
expansion packs, 203
expectations, 24-25
game design, 196
horizontal scrolling platforms, 490-491, 498-506
innovation, 202
input controls, 13
inspiration, 202
keyboards, 13

Index 699

management, 199-200
marketing, 199, 202
motivation, 9-10
niches, 15-17
operating systems, 26
overview, 6-9, 195-196
patches, 202-203
Perfect Match, 17
planning, 201-202
Pocket Trivia, 16
post-production, 198-199
profit, 16-17
prototypes, 196-197
quality, 200-202
quality control, 197-198
releases, 199
RenderWare Studio, 25-26
schedules, 199-200
Star Trek, 18
Starship Battles, 18-22
storyboards, 8-9
Tactical Starship Combat, 18
trends, 201-202
war games, 22-24
Web sites, 663
wrapper code, 13

game engines. See engines
Game Programming All in One Web site, 663
games

1942, 455
Arkanoid, 178
artwork, 353
Breakout, 178
CD-ROM, 691
debugging, 465
demos, 153-154
design. See game design
developer Web sites
development. See game development
double-buffering, 159
industry

2D games, 14-15
cross-platform market, 13-14
education, 10-12
history, 9
specialization, 12-13

Mappy, 430
Missile Command, 158

games (continued)

programming overview, 4-6
publishing

bug reports, 615
companies, 626
contracts, 614-615
debugging, 615
evaluating, 611-612
milestones, 615
NDAs, 614
releases, 615
selling, 612-613

real-time loops, 159
RPGs, 34-35
Space Invaders, 209-211
speed, 395-397
states (AI), 580-581
Strategic Defense

overview, 158-160
source code, 160-164

strategy games, 35
Super Mario World, 489
Tank War. See Tank War
timed game loops, 395-397
Warbirds Pacifica

collision detection, 466
overview, 464-468
power-ups, 465
source code, 468-486
sprite handling, 465
sprites, 466-468
text, 467-468

GameWorld program, 352-355
GCC (GNU Compiler Collection), 29

CD-ROM, 691-692
overview, 44-45
support, 45
Web site, 45

General Public License (GNU), 36
genetic algorithms (AI), 567-569
genres (game design)

action/arcade, 191
adventure, 191-192
fighting, 190-191
first-person shooters, 192
flight simulators, 192
galactic conquest, 193
MMORPGs, 195
overview, 190

real-life simulators, 195
RPGs, 193-194
RTS, 193
space simulators, 195
sports simulators, 194
TBS, 194
third-person shooters, 194

get_mouse_mickeys function, 167
GetInfo program

operating systems, 57-61
overview, 53-56
running, 56-57, 62-63
source code, 61-62

GNU
GCC, 29

CD-ROM, 691-692
overview, 44-45
support, 45
Web site, 45

General Public License, 36
GNU Compiler Collection. See GCC
goals, this book, 6
grabbing frames, 291-298
graphics

3D cards, 73-74
bitmaps

acquiring, 223-224
blitting, 79-82, 217, 227-229
buffers, 217-219
clearing, 220
clipping, 224
color, 219-222
creating, 216-221
datafiles, 542-543
destroying, 221
feedback loops, 220-221
formats, 225-226
linear, 222
loading, 79-82, 224-227
locking, 223-224
memory, 222
planar, 222
refresh rates, 218
releasing, 223-224
saving, 226-227
screens, 222
scrolling backgrounds, 220
sprites relationship, 216

Index700

Tank War, 229-334
transparency, 221-222

blitting, 73
chips, 72-74
circles, 95-98, 101-102
DDR, 73-74
double-buffering, 75
ellipses, 98-101
Feldman, Ari, 353
filling, 109-112
frame buffers, 74
games. See games
initializing, 75-79
lines

any, 88-89
callback, 92-95
horizontal, 85-87
vertical, 87-88

overview, 71-74
pixels

drawing, 82-84
overview, 74-75

polygons, 107-109
rectangles, 89-92
splines, 103-105
sprites. See sprites
tile-based backgrounds, 346
triangles, 105-107
vertices, 73
video cards, 72-74

Greetings program
compiling, 51-53
creating, 46-51
naming, 48
overview, 44-45
running, 51-53
saving, 48
source code, 48-52

group membership (fuzzy logic), 577-579
guns. See bullets

H
handlers

animated sprites, 283-291
Tank War, 324-336
Warbirds Pacifica, 465

joysticks, 170-171
keyboard, 146-148
mouse, 156

Index 701

HelloWorld program, 63-65
hexadecimal numbers, 657-661
hexagonal maps, 431
history, games industry, 9
hline function, 85-87
HLines program, 85-87
horizontal lines, 85-87
horizontal scrolling platforms

developing, 490-491, 498-506
maps, 491-498

blocks, 491-498
filling, 494, 495
foreground, 495-497
layers, 491-498
size, 493, 494
tile-based backgrounds, 491-498

overview, 489-490
humorous Web sites, 664
hyperspace program, 165-166

I
IDEs (Integrated Development Environments).

See Dev-C++
images. See graphics
importing tiles, 432-434
industry

games
2D games, 14-15
cross-platform market, 13-14
education, 10-12
specialization, 12-13

history, 9
interviews

Bauer, Niels, 622-623
LaMothe, André, 624-625
Urbanus, Paul, 616-621

job market, 212
management, game development, 199-200
market, 13-15
marketing game development, 199, 202
publishing games

bug reports, 615
companies, 626
contracts, 614-615
debugging, 615
evaluating, 611-612
milestones, 615
NDAs, 614

industry (continued)

releases, 615
selling, 612-613

Web sites, 663-664
inertia equations, 652
InitGraphics program, 75-79
initializing

graphics, 75-79
sound, 514-516

innovation, 202
input

games, 13
joysticks

buttons, 174-175
handlers, 170-171
moving, 171-174
multiple, 531-534
testing, 175-182

keyboard
buffering, 152-153
games, 13
handlers, 146-148
input, 146-155
key presses, 148-149, 153-154
key repeat, 153
Stargate program, 149-152
Tank War source code, 368-371

mouse
buttons, 157
handlers, 156
input, 155-170
MouseWheel program, 168-170
moving, 167
pointer, 157-158
position, 156, 165-166
PositionMouse program, 165-166
speed, 167
Strategic Defense game, 158-164
tracking, 167
wheels, 167-170

overview, 145-146
inspiration

game design, 188, 346
game development, 202

install_joystick function, 170
install_keyboard function, 146-147
install_mouse function, 156

installing. See also creating
Allegro, 41-43
Dev-C++, 36
Mappy, 430
sound, 515-516
timers, 381-382

integral equations, 651
Integrated Development Environments.

See Dev-C++
interrupt handlers

Tank War, 413-426
timers

creating, 392-393
multi-threading, 392
removing, 393-395

InterruptTest program, 393-395
interviews

Bauer, Niels, 622-623
LaMothe, André, 624-625
Urbanus, Paul, 616-621

isometric maps, 431

J
job market, 212
joysticks, 170-182

buttons, 174-175
handlers, 170-171
moving, 171-174
multiple, 531-534
testing, 175-182

Jupiter Research Web site, 13

K
KDevelop

compiling source code, 689-690
configuring compiler, 679-683

key presses, 148-149, 153-154
key repeat, 153
keyboard

buffering, 152-153
games, 13
handlers, 146-148
input, 146-155
key presses, 148-149, 153-154
key repeat, 153
Stargate program, 149-152
Tank War source code, 368-371

Index702

keyboard_needs_poll function, 148
KeyTest program, 154-155
knowledge trees (AI), 564, 565

L
LaMothe, André, 624-625
layers (horizontal scrolling platform maps), 491-498
levels. See maps
libraries

Allegro. See Allegro
DirectX, 4

game development, 25-26
SDK, 692

DLLs, 42-43
game design, 204

line function, 88-89
linear bitmaps, 222
lines

any, 88-89
callback, 92-95
horizontal, 85-87
vertical, 87-88

Lines program, 88-89
Linux

CD-ROM, 691
compiling source code, 689-690
configuring compiler, 679-683

listings. See source code
LoadFlick program, 556-558
loading

bitmaps, 79-82, 224-227
datafiles, 544-545
FLIC animation, 554-558
maps

FMP, 442-445
overview, 436-437
text, 437-441

sound, 517
locking bitmaps, 223-224
loops

bitmaps, 220-221
real-time games, 159
timed game loops, 395-397

M
magazines, 664
makecol function, 78

Index 703

management, game development, 199-200
Mappy

installing, 430
overview, 429-430
sample games, 430
Web site, 429

maps
color, 431
creating, 430-432

FMP, 442-445
overview, 436-437
text, 437-441
vertical scrollers, 456-460

editing, 429
hexagonal, 431
horizontal scrolling platforms, 491-498

developing, 490-491, 498-506
blocks, 491-498
filling, 494, 495
foreground, 495-497
layers, 491-498
overview, 489-490
size, 493, 494
tile-based backgrounds, 491-498

isometric, 431
loading

FMP, 442-445
overview, 436-437
text, 437-441

Mappy
installing, 430
overview, 429-430
sample games, 430
Web site, 429

PlatformScroller game, 499-500
saving

FMP, 433-435
text, 435-436

scrolling (FMP), 442-445
size, 430
tiles

erasing, 433
filling, 432-433
importing, 432-434
number, 430
palettes, 432-433
scrolling, 433
Tank War, 445-453

maps (continued)

tile-based backgrounds, 351-355
vertical scrollers, 459-460

vertical scrollers
creating, 456-460
engines, 455-456
overview, 455-456
tiles, 459-460

Warbirds Pacifica
collision detection, 466
overview, 464-468
power-ups, 465
source code, 468-486
sprite handling, 465
sprites, 466-468
text, 467-468

zooming, 432
market, 13-15
marketing game development, 199, 202
masked blitting (bitmaps), 229
math

AI. See AI
derivative equations, 652
functions, 605-607
inertia equations, 652
integral equations, 651
matrices, 598-602
overview, 585-586
probability, 603-605
radians, 586-587
trigonometry, 586-590
vectors, 590-598

matrices, 579-580, 598-602
membership (fuzzy logic), 577-579
memory

AI, 580-581
bitmaps, 222
FLIC animation, 554

Microsoft Visual C++
compiling source code, 685-687
configuring compiler, 672-674

milestones, 615
Missile Command, 158
MMORPGs game design genre, 195
motivation, 9-10
mouse

buttons, 157
handlers, 156
input, 155-170

MouseWheel program, 168-170
moving, 167
pointer, 157-158
position, 156, 165-166
PositionMouse program, 165-166
speed, 167
Strategic Defense game

overview, 158-160
source code, 160-164

tracking, 167
wheels, 167-170

mouse_needs_poll function, 156
mouseinside function, 165-166
MouseWheel program, 168-170
movies. See FLIC animation
moving

bullets, 122-125
joysticks, 171-174
mouse, 167
random motion (AI), 571-572
tanks, 125-126
tracking motion (AI), 572-573

multichannel sound, 522
multiple animated sprites, 298-306
multiple joysticks, 531-534
MultipleSprites program, 300-306
MultiThread program, 403-413
multi-threading

interrupt handlers (timers), 392
mutexes, 398
overview, 397-398
parallel processing, 398-399
POSIX threads

creating, 401
destroying, 402
mutexes, 402-403
overview, 399-400

Tank War, 413-426
threads, 397-398

mutexes
multi-threading, 398
POSIX threads, 402-403

N
naming programs, 48
NDAs (non-disclosure agreements), 614
neural networks (AI), 569-570
niches, 15-17

Index704

non-disclosure agreements (NDAs), 614
num_joysticks function, 170-171
numbers

Base-2, 657-659
Base-8, 657
Base-10, 657-659
Base-16, 657-661
binary, 657-659
decimal, 657-659
hexadecimal, 657-661
octal, 657
systems, 657
tiles, maps, 430
voices, sound, 515

O
octal numbers, 657
OOP game design, 189
opening FLIC animation, 555
operating systems

Allegro, 27
game development, 26
GetInfo program, 57-61

P
Package Manager, 41-42
packages

Allegro, 42-43
Dev-C++, 39

palettes, tiles, 432-433
parallel processing, multi-threading, 398-399
patches, game development, 202-203
patterns (AI deterministic algorithm), 573-575
perceptrons (AI), 570
Perfect Match, 17
performance, animated sprites, 298
pivoted sprites, 252-255
PivotSprite program, 252-255
pixels, 82-84
Pixels program, 82-84
planar bitmaps, 222
planning

game design, 203-204
game development, 201-202

platforms
CD-ROM, 691
horizontal scrolling platforms

developing, 490-491, 498-506

Index 705

blocks, 491-498
filling, 494, 495
foreground, 495-497
layers, 491-498
maps, 491-498
overview, 489-490
size, 493, 494
tile-based backgrounds, 491-498

PlatformScroller program
animated sprites, 499-500
map, 499-500
overview, 498-501
source code, 501-506

playback, sound, 517-522
PlayFlick program, 552-554
playing

FLIC animation, 551-554
sound, 517-518

PlayWave program, 512-514
Pocket Trivia, 16
pointer (mouse), 157-158
poll_joystick function, 171
poll_keyboard function, 146-148
poll_mouse function, 156
polygon function, 107-109
polygons, 107-109
Polygons program, 107-109
position (mouse), 156-166
position_mouse function, 165-166
position_mouse_z function, 168-170
PositionMouse program, 165-166
POSIX threads

creating, 401
destroying, 402
mutexes, 402-403
overview, 399-400

post-production, 198-199
power-ups, 465
primitives. See graphics
printing text, 112-114
probability, 603-605
profit, 16-17
programming games overview, 4-6
programs

AnimSprite, 280-283
ArrayMapTest, 437-441
CD-ROM, 691
CircleFill, 97-98
Circles, 95-97

programs (continued)

CollisionTest, 319-324
CompiledSprites, 315-317
DoCircles, 101-102
DoLines, 92-95
DrawBitmap, 79-82
DrawSprite, 239-240
EllipseFill, 100-101
Ellipses, 98-100
FlipSprite, 244-245
FloodFill, 109-112
games. See games
GameWorld, 352-355
GetInfo

operating systems, 57-61
overview, 53-56
running, 56-63
source code, 61-62

Greetings
compiling, 51-53
creating, 46-51
naming, 48
overview, 44-45
running, 51-53
saving, 48
source code, 48-52

HelloWorld, 63-65
HLines, 85-87
hyperspace, 165-166
InitGraphics, 75-79
InterruptTest, 393-395
KeyTest, 154-155
Lines, 88-89
LoadFlick, 556-558
MouseWheel, 168-170
MultipleSprites, 300-306
MultiThread, 403-413
PivotSprite, 252-255
Pixels, 82-84
PlatformScroller

animated sprites, 499-500
map, 499-500
overview, 498-501
source code, 501-506

PlayFlick, 552-554
PlayWave, 512-514
Polygons, 107-109
PositionMouse, 165-166

Rect, 89-91
RectFill, 91-92
ResizeFlick, 558-560
RLESprites, 307-313
RotateSprite, 249-251
sample, 65-67
SampleMixer, 522-525
ScaledSprite, 242-243
ScanJoystick, 175-177
ScrollScreen, 341-345
Splines, 103-105
SpriteGrabber, 293-298
SpriteHandler, 286-291
Stargate, 149-152
TestDat, 546-547
TestJoystick, 178-182
TestMappy, 442-445
TextOutput, 114-115
TileScroll, 347-351
TimedLoop, 396-397
TimerTest, 383-392
TransSprite, 256-259
Triangles, 105-107
VerticalScroller, 460-464
VLines, 87-88
wormhole, 165-166

prototypes, 196-197
pthreads. See POSIX
publishing

games
bug reports, 615
companies, 626
contracts, 614-615
debugging, 615
evaluating, 611-612
milestones, 615
NDAs, 614
releases, 615
selling, 612-613

Web sites, 663
putpixel function, 82-84

Q-R
quality, 200-202
quality control, 197-198
quiz answers, 633-650
radians, 586-587

Index706

random motion deterministic algorithm (AI),
571-572

readkey function, 152
real-life simulators, 195
real-time loops, 159
real-time strategy (RTS) genre, 193
rect function, 89-91
Rect program, 89-91
rectangles, 89-92
rectfill function, 91-92
RectFill program, 91-92
referencing datafiles, 544
refresh rates (bitmaps), 218
releases

game development, 199
publishing games, 615

releasing bitmaps, 223-224
remove_joystick function, 170
remove_keyboard function, 146-147
remove_mouse function, 156
removing

interrupt handlers, 393-395
sound, 516
timers, 381-382, 393-395

rendering. See creating
RenderWare Studio, 25-26
ResizeFlick program, 558-560
resources

books, 665-669
game publishers, 626
storing, 539-541
Web sites

Allegro, 26
associations, 664
author, 663
conferences, 664
conventions, 664
downloads, 663
expos, 664
Feldman, Ari, 353
forums, 663
game developers, 663-664
game development, 663
game engines, 663
Game Programming All in One, 663
GCC, 45
humor, 664
industry, 664
Jupiter Research, 13

Index 707

magazines, 664
Mappy, 429
publishing, 663
reviews, 663
studios, 663-664

resting timers, 382-383
reviews, Web sites, 663
RLE animated sprites, 306-313
RLESprites program, 307-313
role-playing games. See RPGs
rotated sprites, 245-252
RotateSprite program, 249-251
RPGs (role-playing games), 34-35, 193-194
RTS game design genre, 193
run-length encoding, 306-313
running

GetInfo program, 56-63
Greetings program, 51-53

S
sample programs, 65-67
SampleMixer program, 522-525
saving

bitmaps, 226-227
maps

FMP, 433-435
text, 435-436

programs (Greetings), 48
screenshots, 227

ScaledSprite program, 242-243
scaling

horizontal scrolling platform maps, 493-494
FLIC animation, 558-560
maps, 430
scaled blitting, 228-229
scaled sprites, 242-243, 252

scancode_to_ascii function, 153
ScanJoystick program, 175-177
scare_mouse function, 158
scare_mouse_area function, 158
schedules (game development), 199-200
screens

bitmaps, 222
text, 112-114

screenshots, saving, 227
scrolling

backgrounds (bitmaps), 220
buffers, 339

scrolling (continued)

creating, 341-345
cross-platform compatibility, 339
horizontal scrolling platforms

developing, 490-491, 498-506
blocks, 491-498
filling, 494, 495
foreground, 495-497
layers, 491-498
maps, 491-498
overview, 489-490
size, 493, 494
tile-based backgrounds, 491-498

maps
FMP, 442-445
tiles, 433

overview, 340-341
Tank War

overview, 355-359
source code, 359-378

tile-based backgrounds, 347-351
vertical scrollers

creating, 456-460
engines, 455-456
overview, 455-456
tiles, 459-460

ScrollScreen program, 341-345
SDKs

DirectX, 692
game design, 204

searching datafiles, 545
selling games, 612-613
set_gfx_mode function, 75-78
set_keyboard_rate function, 153
set_mouse_range function, 167
set_mouse_speed function, 167
set_mouse_sprite function, 157-158
set_mouse_sprite_focus function, 157
setting sound, 516
shapes. See graphics
shooting. See bullets
show_mouse function, 158
simulate_keypress function, 153-154
size. See scaling
sound

creating, 518
destroying, 518
detecting, 515
editing, 518

initializing, 514-516
installing, 515-516
loading, 517
multichannel, 522
overview, 511-512
playback, 517-522
playing, 517-518
removing, 516
SampleMixer program, 522-525
setting volume, 516
stopping, 518
Tank War, 525-536
voices

functions, 518-522
number, 515
volume, 515-516

WAV, 512-514
source code

Allegro, 42-43
AnimSprite program, 280-283
Arkanoid game, 178
ArrayMapTest program, 437-441
Breakout game, 178
C/C++ cross-compatibility, 29
CD-ROM, 691
CircleFill program, 97-98
Circles program, 95-97
CollisionTest program, 319-324
CompiledSprites program, 315-317
compiling

Borland C++, 687-688
C++ Builder, 687-688
Dev-C++, 688
KDevelop, 689-690
Linux, 689-690
overview, 685
Visual C++, 685-687

DoCircles program, 101-102
DoLines program, 92-95
DrawBitmap program, 79-82
DrawSprite program, 239-240
EllipseFill program, 100-101
Ellipses program, 98-100
FlipSprite program, 244-245
FloodFill program, 109-112
GameWorld program, 352-355
GetInfo program, 61-62
Greetings, 48-52
HLines program, 85-87

Index708

hyperspace program, 165-166
InterruptTest program, 393-395
KeyTest, 154-155
Lines program, 88-89
LoadFlick program, 556-558
MouseWheel program, 168-170
MultipleSprites program, 300-306
MultiThread program, 403-413
PivotSprite program, 252-255
Pixels program, 82-84
PlatformScroller, 501-506
PlayFlick program, 552-554
PlayWave program, 512-514
Polygons program, 107-109
PositionMouse program, 165-166
Rect program, 89-91
RectFill program, 91-92
ResizeFlick program, 558-560
RLESprites program, 307-313
RotateSprite program, 249-251
SampleMixer program, 522-525
ScaledSprite program, 242-243
ScanJoystick program, 175-177
ScrollScreen program, 341-345
Splines program, 103-105
SpriteGrabber program, 293-298
SpriteHandler program, 286-291
Strategic Defense game, 160-164
Tank War, 126-141

animated sprite handlers, 324-336
bitmaps, 229-334
bullets, 422-426
collision detection, 324-336
interrupt handlers, 413-426
keyboards, 368-371
multiple joysticks, 531-534
multi-threading, 413-426
scrolling, 359-378
sound, 525-536
sprites, 262-275
tile maps, 445-453
tile-based backgrounds, 359-378
treads, 413-426

TestDat program, 546-547
TestJoystick program, 178-182
TestMappy program, 442-445
TextOutput program, 114-115
TileScroll program, 347-351
TimedLoop program, 396-397

Index 709

TimerTest program, 383-392
TransSprite program, 256-259
Triangles program, 105-107
VerticalScroller program, 460-464
VLines program, 87-88
Warbirds Pacifica, 468-486
wormhole program, 165-166
wrapper code, 13

Space Invaders game design, 209-211
space simulators, 195
specialization, 12-13
speed

creating animated sprites, 313
games, 395-397
mouse, 167
timers, 382-383

spline function, 103-105
splines, 103-105
Splines program, 103-105
sports simulators, 194
SpriteGrabber program, 293-298
SpriteHandler program, 286-291
sprites

alpha blending, 215
animated sprites

collision detection, 317-324
compiled sprites, 313-317
compression, 306
creating, 280-283
creating speed, 313
flickering, 298
grabbing frames, 291-298
handlers, 283-291, 324-336
multiple, 298-306
overview, 279-280
performance, 298
PlatformScroller game, 499-500
RLE, 306-313
Tank War, 324-336, 413-426
tiling, 292
treads, 413-426
troubleshooting, 298
updating, 285-286

bitmaps relationship, 216
color, 239
compiling, 241
creating, 238-242

flipped, 244-245

sprites (continued)

pivoted, 252-255
rotated, 245-252
scaled, 242-243, 252
stretching, 242-243, 252
translucent, 256-259

datafiles, 543
handling, Warbirds Pacifica, 465
overview, 215-217, 237-238
Tank War

animated sprites, 324-336, 413-426
overview, 259-262
source code, 262-275

translucency, 215
transparency, 215, 238-242
Warbirds Pacifica, 466-468

srand function, 84
standard blitting, 227-228
Star Trek, 18
Stargate program, 149-152
Starship Battles, 18-22
states (AI), 580-581
stopping sound, 518
storing resources, 539-541
storyboards, 8-9
Strategic Defense game

overview, 158-160
source code, 160-164

strategy games, 35
stretching

blitting bitmaps, 228-229
FLIC animation, 558-560
sprites, 242-243, 252

studios, 663-664
Super Mario World, 489
support

Allegro, 26-28
books, 665-669
C/C++, 29-30
GCC, 45
Web sites

Allegro, 26
associations, 664
author, 663
conferences, 664
conventions, 664
downloads, 663
expos, 664

Feldman, Ari, 353
forums, 663
game developers, 663-664
game development, 663
game engines, 663
Game Programming All in One, 663
GCC, 45
humor, 664
industry, 664
Jupiter Research, 13
magazines, 664
Mappy, 429
publishing, 663
reviews, 663
studios, 663-664

systems, numbers, 657

T
Tactical Starship Combat, 18
Tank War

bitmaps, 229-334
bullets

creating, 122-125
moving, 122-125
troubleshooting, 422-426

collision detection, 122-126, 324-336
final version features, 536
interrupt handlers, 413-426
joysticks, multiple, 531-534
keyboards, 368-371
maps, tiles, 445-453
multi-threading, 413-426
overview, 119-120
scrolling

overview, 355-359
source code, 359-378

sound, 525-536
source code, 126-141

bitmaps, 229-334
keyboard, 368-371
scrolling, 359-378
sprites, 262-275
tile-based backgrounds, 359-378

sprites
animated sprite handlers, 324-336
animated sprite treads, 413-426
overview, 259-262
source code, 262-275

Index710

tanks
creating, 120-122
moving, 125-126

tile-based backgrounds
overview, 355-359
source code, 359-378

tanks
creating, 120-122
moving, 125-126

TBS, 194
templates, Allegro, 63
terrain. See maps
TestDat program, 546-547
testing

Allegro, 53-63
datafiles, 545-547
Dev-C++, 44-53
joysticks, 175-182
timers, 383-392

TestJoystick program, 178-182
TestMappy program, 442-445
text, 112-114

ASCII values, 653-655
maps, 435-441
Warbirds Pacifica, 467-468

text_mode function, 112
textout function, 112-113
TextOutput program, 114-115
textprintf function, 78, 113-114
third-person shooters, 194
threads

multi-threading, 397-398
POSIX

creating, 401
destroying, 402
mutexes, 402-403
overview, 399-400

tile-based backgrounds. See also tiles
arrays, 351-355
buffers, 339
graphics, 346
horizontal scrolling platform maps, 491-498
overview, 345-347
scrolling, 347-351
Tank War

overview, 355-359
source code, 359-378

tile maps, 351-355

Index 711

tiles. See also tile-based backgrounds
animated sprites, 292
maps

erasing, 433
filling, 432-433
importing, 432-434
number, 430
palettes, 432-433
scrolling, 433
Tank War, 445-453
tile-based backgrounds, 351-355
vertical scrollers, 459-460

TileScroll program, 347-351
timed game loops, 395-397
TimedLoop program, 396-397
timers

callbacks, 382-383
delaying, 382-383
installing, 381-382
interrupt handlers

creating, 392-393
multi-threading, 392
removing, 393-395
Tank War, 413-426

multi-threading. See multi-threading
overview, 381
removing, 381-382
resting, 382-383
speed, 382-383
testing, 383-392
timed game loops, 395-397

TimerTest program, 383-392
tips (AI), 581
tracking, mouse, 167
tracking motion deterministic algorithm (AI),

572-573
translucent sprites, 215, 256-259
transparency

bitmaps, 221-222
sprites, 215, 238-242

TransSprite program, 256-259
treads (Tank War), 413-426
trends (game development), 201-202
triangle function, 105-107
triangles, 105-107
Triangles program, 105-107
trigonometry, 586-590

troubleshooting
animated sprites, 298
bullets, 422-426
functions, 65-66

turn-based strategy (TBS), 194
twitch generation, 6

U
unloading datafiles, 545
unscare_mouse function, 158
updating

animated sprites, 285-286
Dev-C++, 37-40

Urbanus, Paul, 616-621
ureadkey function, 152

V
values (ASCII), 653-655
vectors, 590-598
versions (Allegro), 683-684
vertical lines, 87-88
vertical scrollers

engines, 455-456
maps

creating, 456-460
tiles, 459-460

overview, 455-456
Warbirds Pacifica

collision detection, 466
overview, 464-468
power-ups, 465
source code, 468-486
sprite handling, 465
sprites, 466-468
text, 467-468

VerticalScroller program, 460-464
vertices (graphics), 73
video cards (graphics), 72-74
Visual C++

compiling source code, 685-687
configuring compiler, 672-674

vline function, 87-88
VLines program, 87-88
voices (sound)

functions, 518-522
number, 515
volume, 515-516

volume (sound), 515-516

W-Z
war games, 22-24
Warbirds Pacifica

collision detection, 466
overview, 464-468
power-ups, 465
source code, 468-486
sprite handling, 465
sprites, 466-468
text, 467-468

WAV sound, 512-514
Web sites

Allegro, 26
associations, 664
author, 663
conferences, 664
conventions, 664
downloads, 663
expos, 664
Feldman, Ari, 353
forums, 663
game developers, 663-664
game development, 663
game engines, 663
Game Programming All in One, 663
GCC, 45
humor, 664
industry, 664
Jupiter Research, 13
magazines, 664
Mappy, 429
publishing, 663
reviews, 663
studios, 663-664

wheels, mouse, 167-170
Windows

CD-ROM, 691-692
configuring compiler, 672-679

wormhole program, 165-166
wrapper code, 13
zooming, maps, 432

Index712

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software—to make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the
GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any prob-
lems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the dan-
ger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION
0. This License applies to any program or other work which contains a notice placed by the copy-

right holder saying it may be distributed under the terms of this General Public License. The
“Program”, below, refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program (indepen-
dent of having been made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer
to this License and to the absence of any warranty; and give any other recipients of the Program
a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and a notice that there is no
warranty (or else, saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print such an announce-
ment, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work writ-
ten entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all mod-
ules it contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating sys-
tem on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or dis-
tributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Pro-
gram subject to these terms and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible for enforcing compli-
ance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit roy-
alty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Pub-
lic License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of fol-
lowing the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of pre-
serving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE

STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-

VICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-

RIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM

AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-

RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-

ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w’. This is free
software, and you are welcome to redistribute it under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate parts of the Gen-
eral Public License. Of course, the commands you use may be called something other than `show
w’ and `show c’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision’ (which
makes passes at compilers) written by James Hacker. signature of Ty Coon, 1 April 1989 Ty Coon,
President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions.
If, upon reading the following license agreement and notice of limited warranty, you cannot agree
to the terms and conditions set forth, return the unused book with unopened disc to the place
where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You
are licensed to copy the software onto a single computer for use by a single user and to a backup
disc. You may not reproduce, make copies, or distribute copies or rent or lease the software in
whole or in part, except with written permission of the copyright holder(s). You may transfer the
enclosed disc only together with this license, and only if you destroy all other copies of the software
and the transferee agrees to the terms of the license. You may not decompile, reverse assemble, or
reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical defects
in materials and workmanship for a period of sixty (60) days from end user’s purchase of the
book/disc combination. During the sixty-day term of the limited warranty, Thomson Course Tech-
nology PTR will provide a replacement disc upon the return of a defective disc.

Limited Liability:
The sole remedy for breach of this limited warranty shall consist entirely of replacement of the
defective disc. IN NO EVENT SHALL THOMSON COURSE TECHNOLOGY PTR OR THE
AUTHOR BE LIABLE FOR ANY other damages, including loss or corruption of data, changes in
the functional characteristics of the hardware or operating system, deleterious interaction with
other software, or any other special, incidental, or consequential DAMAGES that may arise, even if
THOMSON COURSE TECHNOLOGY PTR and/or the author has previously been notified that
the possibility of such damages exists.

Disclaimer of Warranties:
THOMSON COURSE TECHNOLOGY PTR and the author specifically disclaim any and all other
warranties, either express or implied, including warranties of merchantability, suitability to a par-
ticular task or purpose, or freedom from errors. Some states do not allow for EXCLUSION of
implied warranties or limitation of incidental or consequential damages, so these limitations
mIGHT not apply to you.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of
law principles. The United Convention of Contracts for the International Sale of Goods is specifi-
cally disclaimed. This Agreement constitutes the entire agreement between you and Thomson
Course Technology PTR regarding use of the software.

	Cover
	Contents AT a Glance
	Contents
	CH 1 Demystifying Game Development
	CH 2 Getting Started with Dev-C++ and Allegro
	CH 3 Basic 2D Graphics Programming with Allegro
	CH 4 Writing Your First Allegro Game
	CH 5 Programming The Keyboard, Mouse, and Joystick
	CH 6 Introduction to Game Design
	CH 7 Basic Bitmap Handling and Blitting
	CH 8 Basic Sprite Programming: Drawing Scaled, Flipped, Rotated, Pivoted, and Translucent Sprites
	CH 9 Advanced Sprite Programming: Animation, Compiled Sprites, and Collision Detection
	CH 10 Programming Tile-Based Backgrounds with Scrolling
	CH 11 Timers, Interrupt Handlers, and Multi-Threading
	CH 12 Creating a Game World: Editing Tiles and Levels
	CH 13 Vertical Scrolling Arcade Games
	CH 14 Horizontal Scrolling Platform Games
	CH 15 Mastering the Audible Realm: Allegro’s Sound Support
	CH 16 Using Datafiles to Store Game Resources
	CH 17 Playing FLIC Movies
	CH 18 Introduction to Artificial Intelligence
	CH 19 The Mathematical Side of Games
	CH 20 Publishing Your Game
	Appendix A Chapter Quiz
Answers
	Appendix B Useful Tables
	Appendix C Numbering Systems:
Binary and Hexadecimal
	Appendix D Recommended Books
and Web Sites
	Appendix E Configuring Allegro
for Microsoft Visual C++
and Other Compilers
	Appendix F Compiling the
Allegro Source Code
	Appendix G Using the CD-ROM
	Index

