

Retro Game
Programming:

Unleashed for the Masses

Earl J. Carey

©2005 by Premier Press, a division of Course Technology. All rights reserved.
No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system without written permission from
Course PTR, except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press
and may not be used without written permission.

Portions of the material in this book are copyright: ©A. S. Douglas 1952;
©Willy Higinbotham; ©Digital Equipment Corporation; ©Tech Model Rail-
road Club; ©1967 Ralph Baer; ©1972 Magnavox; ©1976 Fairchild Camera &
Instruments; ©Taito, Corp. All Rights Reserved.; ©Atari, Pac-Man™ ©Namco
Limited, All Rights Reserved.; Donkey Kong™, ©Nintendo. Games are the
property of their respective owners. Nintendo of America, Inc.

All other trademarks are the property of their respective owners.

Important: Course PTR cannot provide software support. Please contact the
appropriate software manufacturer’s technical support line or Web site for
assistance.

Course PTR and the author have attempted throughout this book to distin-
guish proprietary trademarks from descriptive terms by following the capital-
ization style used by the manufacturer.

Information contained in this book has been obtained by Course PTR from
sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, Course PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information and is
not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the
Internet is an ever-changing entity. Some facts may have changed since this
book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the publisher for quantity dis-
count information. Training manuals, CD-ROMs, and portions of this book are
also available individually or can be tailored for specific needs.

ISBN: 1-59200-906-9
Library of Congress Catalog Card Number: 2005921081
Printed in the United States of America

05 06 07 08 09 BH 10 9 8 7 6 5 4 3 2 1

Course PTR,
a division of Course Technology

25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

Publisher and General
Manager of Course PTR:
Stacy L. Hiquet

Associate Director
of Marketing:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Senior Acquisitions Editor:
Emi Smith

Series Editor:
André LaMothe

Marketing Coordinator:
Jordan Casey

Project Editor:
Sandy Doell

Technical Reviewer:
Alex Varanese

PTR Editorial Services
Coordinator:
Elizabeth Furbish

Interior Layout Tech:
Marian Hartsough

Cover Designer:
Mike Tanamachi

Indexer:
Sharon Shock

Proofreader:
Sara Gullion

http://www.courseptr.com

Then she said, “I want you to love me as a poet loves his sorrowful
thoughts. I want you to remember me as a traveler remembers a
calm pool in which his image was reflected as he drank its water. I
want you to remember me as a mother remembers her child that died
before it saw the light, and I want you to remember me as a merciful
king remembers a prisoner who died before his pardon reached him. I
want you to be my companion, and I want you to visit my father and
console him in his solitude because I shall be leaving him soon and
shall be a stranger to him.”

Kahlil Gibran, Broken Wings

To my mother who has passed away. This book, like all positive things I do,
is dedicated to you and your memory.

“He was a genius—that is to say, a man who does superlatively and
without obvious effort something that most people cannot do by the
uttermost exertion of their abilities.”

Robertson Davies, Fifth Business

This book is dedicated to all of the legends that made the video game
industry, the computer industry, and indeed, the way of life we know today
possible.

First I must acknowledge my mother, who died so long ago. For many years the loss of her
tore me apart. While other children existed in a state of eternal bliss, my mind strained
under the weight of the burden of trying to comprehend the fact that she would never see
me, and I would never see her, again. Surely it was this that sobered me at such an early
age and made me value every minute of every day. I was unable to find peace until I real-
ized that as long as I lived my life to the fullest of my ability, she would not be sad. If I did
something significant with my life, she would be happy. So I ran full speed ahead through
life trying to accomplish something, anything, that my mother could be proud of. Only
the faster I ran, the slower I seemed to move through life. After years of running and get-
ting nowhere, I crashed and burned. There were many who loved me and wanted to help,
but who can understand a motherless son?

I thank my Grandmother, Hazel Cooper; my Father, Earl Carey; and my Uncle Farion; my
aunts; my uncles; my cousins; my sister and brother, Earnessa and Earlin Carey; my teach-
ers; everyone who toiled with me and trained me over the years. I know now that it is not
easy to raise a man. We did not always agree, but in the end, we all have to live on this
Earth together. We may as well love each other and be done with it. I have resolved myself
to do just that.

I thank my wife, Mitchlyn Carey. When I was in a dark place, she was able to bring me
light. The two things I always wanted in life were to achieve greatness and to raise my fam-
ily. The path to having my own family always seemed uncertain, because with all of the
troubles of this world, I knew I had little control over finding someone I could trust to the
extent required for marriage. You came and allowed me to find myself, and you helped to
bring me from a very dark place. I love you and I appreciate you, especially for bearing

iv

Acknowledgments

with me over the years as I moved from one project to the next, still trying to accomplish
that one great elusive goal that I could not identify. Most of all, I thank you for my son,
Zurial Earl Carey.

Zurial, what was I doing with my life before I had you? I do not even remember because
it is impossible for me to envision a world without you. You give my life new meaning.
Watching you grow amazes me. How could so pure an entity exist? I love you, and what-
ever positive thing it takes for me to ensure that you reach your full potential will be done.

I need to thank my boss Kathy Ingraham for being so supportive of me in this venture.
When I needed time off to work or to recover from a long weekend of labor or even to
take a trip to California to go to conferences, I always had full support.

I need to thank André LaMothe on so many levels. Thanks for basically starting the whole
game programming book industry. Like so many programmers around the world, I
gained much knowledge from the books André wrote. This game programming series cre-
ated an opportunity for my voice to be heard. He took a chance on me, and I will never
forget it. Thank you.

I need to thank my project editor Sandy Doell. She was patient and stern at the same time.
She kept me focused and made sure I got through author review. I need to thank Alex
Varanese for helping me to keep my facts straight. I need to thank my acquisitions editor
Emi Smith for her help. I need to thank Heather Hurley for helping me with the market-
ing of this book.

Special thanks goes out to Mr. Ralph Baer who assisted me with accuracy when writing
the history section of this book.

Last, but by no means least, I need to thank all of the legends who created the game indus-
try: Ralph Baer, Willy Higinbotham, Nolan Bushnell, Steve Jobs, Steve Wozniak . . . the list
goes on. I thank everyone who made computers and their software. Everyone who grew
up on video games and all who are now growing up on video games. All of you have
helped to make the game industry what it is today.

Acknowledgments v

vi

EARL J. CAREY began programming on the TRS-80 color computer at the age of 5. He has
created numerous C/C++, Visual Basic®, and assembly programs. He now leads a fulfill-
ing career as a computer programmer and graphic artist and is currently the chief graphic
artist/programmer of Capital City Marketing in Nassau, Bahamas. Carey recently deliv-
ered a lecture on Retro Game Programming at the Vintage Computer Festival 7.0. Visit his
Web site at http://www.ristudios.net.

About the Series Editor
ANDRÉ LAMOTHE, CEO of Xtreme Games LLC and the creator of the XGameStation, has
been involved in the computing industry for more than 27 years. He wrote his first game
for the TRS-80 and has been hooked ever since! His experience includes 2D/3D graphics,
AI research at NASA, compiler design, robotics, virtual reality, and telecommunications.
His books are best sellers in the game programming genre and his experience is echoed in
the Thomson Course Technology PTR Game Development books. You can contact André
at ceo@nurve.net and www.xgamestation.com.

About the Author

http://www.ristudios.net
www.xgamestation.com

Letter from the Series Editor

Over 25 years ago in the mid-1970s, there was a “singularity” in the computer indus-
try where in a single moment everything changed. This moment was, more or less,
the introduction of the “computer” to the masses. Now, some historians will argue
when this actually occurred. Some will say in 1974 when the Altair was released, oth-
ers will argue it was the release of the Apple II in 1977. Still others will say that the
creation of Atari and PONG in 1972 was the big bang. Whomever you tend to agree
with more, there is no arguing that in a short period of time we had a “punctuated”
evolution in the computing industry.

I was only a boy when this happened, but I can tell you it was the most exciting thing
that I have ever been part of. Atari, for example, was the fastest growing company in
history—period! People literally slept outside of Atari to try and get jobs there. And
Apple Computer when it went public was the largest public offering in American
history. Commodore Business Machines, when they acquired the Commodore com-
puter, ended up selling more computers than anyone in history (at the time) making
the Commodore C64 the world’s best selling computer.

So what do all these companies and historic events have in common? Video games!
For example, Nolan Bushnell, founder of Atari in 1972, wanted to create games;
specifically, he wanted to create a cheap, high quality version of the Spacewar! game
he had played while attending college. The results of this were Computer Space and
the first steps of Atari. Atari was the quintessential, prototypical model of all the Sil-
icon Valley companies to follow. Nolan Bushnell was the “rock star” of technology
and games and the first Silicon Valley millionaire with the jet and the $25M in
change to prove it from the sale of Atari. But wait; there’s more. . . .

At the same time Atari was in its heyday in the late 1970s, a young programmer/tech
named Steve Jobs was working there. Steve had a friend, Steve Wozniak, and together
they would create Apple Computer. The interesting thing, however, is that the Apple
computer and Steve Jobs’ experience with customer satisfaction, marketing, and
human factors all came from Atari. Steve Wozniak, the technical genius behind the
Apple I/II, made the Apple simply to play games.

The stories go on and on, all of them intertwined, but all of them connected to video
games in one way or another. Even the great duo, John Romero and John Carmack,
were Apple programmers first; they turned to IBM PCs later.

Retro game programming is not only fascinating from a technical standpoint, but
the history and stories are even more fascinating to study. Entire empires were cre-
ated because of video games! And the technology we have today has its roots in
games, so studying this material and getting into the minds of the early hardware
and software developers is a treat that everyone should indulge in. This book will
introduce you to the brilliance of these early innovators, their machines, and their
games.

With that, please enjoy Retro Game Programming: Unleashed for the Masses as your
first step on this incredible journey of discovery.

Sincerely,

André LaMothe
2005
Game Development Series Editor

ix

Introduction . xv

Chapter 1 Bringing Your Retro Machine to Life 1

Chapter 2 Simply Complicated Game Programming 27

Chapter 3 The Early History of Video Games . 59

Chapter 4 Assembly Language . 103

Chapter 5 A Game Graphics Primer . 139

Chapter 6 Setting the Video Mode . 151

Chapter 7 Hacking the Video Buffer . 223

Chapter 8 Adding Player Input, Physics, and AI 241

Chapter 9 Sound Effects . 255

Chapter 10 Putting It All Together: Building Games 267

Index . 297

Contents at a Glance

Introduction. xv

Chapter 1 Bringing Your Retro Machine to Life 1
Setting Up Your TRS-80 Color Computer . 1
Color Computer Storage Devices . 4
Setting Up Your Atari 400/800 . 7
Installation Instructions . 10
Installing the Power Supply . 10
Connecting the Atari to a Monitor. 12
Connecting Your Atari to a TV . 16
Installing Your Disk Drive . 17
Connecting the Joystick . 19
Setting Up Your Commodore 64 . 20
Setting Up Your Apple II . 24

Chapter 2 Simply Complicated Game Programming 27
Game Systems: Similar but Different. 30
Assembly Dialect . 30
The Memory Map . 31
CPU, Bus, and Memory Characteristics . 32
BASIC 101 . 32

x

Contents

Principles of BASIC . 34
The Variable Principle . 35
The Input Principle . 40
The Listing Principle . 43
The Math Principle . 44
The Logic Principle . 47
The Screen Mode Principle . 48
The Graphics Principle. 50
The Branch Principle . 54
The Looping Principle . 55

Chapter 3 The Early History of Video Games 59
Build It and They Will Come! . 59
Noughts and Crosses . 60
Willy Higinbotham’s Game . 60
In a Land Far, Far Away . 62
Spacewar! . 63
The 1960s . 64
Return of the Killer Pong . 72
Spot Generators . 77
The Odyssey . 80
The Syzygy. 84
Atari and Pong . 86
The Knockoff. 88
Big Business. 91
The Birth of Vector Graphics . 95
Space Wars . 95
A New Age of Video Games . 96
Space Invaders. 98
Conclusion . 101

Chapter 4 Assembly Language. 103
Understanding Assembly Language . 103
Moving Memory Around in Your Computer. 104
Understanding Numbers and Math in Assembly Language 107
Addressing Modes. 117
Working with the Stack . 122

Contents xi

System Flags . 123
Logic and Branching Instructions . 124
Facing the Code. 126
6502 Programming . 127
Sweet 16 . 131
6809 Programming . 133
Conclusion . 138

Chapter 5 A Game Graphics Primer . 139
Color . 140
What Makes a Picture? . 140
Approximating Shapes with Limited Pixels . 144
Symbolism . 145
Visual Cues . 145
Putting Them Together . 146
Conclusion . 149

Chapter 6 Setting the Video Mode . 151
Setting the Video Mode . 152
Setting the Video Mode on the COCO . 153
Setting the Video Mode on the Apple II. 157
Setting the Video Mode on the Atari 400/800 159
How Does the Display List Interrupt Work? 175
Timing Considerations. 178
Multiple Display List Interrupts . 183
Create a Generic Display List . 186
Find the Location of Your Display List in Memory 186
Find the Start of Video Memory . 188
Creating Your New Display List . 195
The Load Memory Scan Instruction. 195
Inserting the Remaining ANTIC Mode 2 Lines 196
A Look at What You Have So Far . 196
Switching Back to Video Memory . 197
Polishing Off the Display List . 198
And Then There Was Light . 199
A More Advanced Display List. 199
Creating a Generic Display List . 200
Inserting Text Mode Lines . 201
What’s Next? . 202

Contentsxii

Writing DLI Interrupts . 205
Writing a Display List . 205
Writing the Code for Your Display List Interrupt 206
Guarding the Computer’s Memory . 206
Writing the Actual Heart of the Display List Interrupt 209
Converting Assembly Language Code to Decimal 211
Inserting the Display List into Memory . 212
Setting the Video Mode on the Commodore 64 221
Conclusion . 221

Chapter 7 Hacking the Video Buffer . 223
Identify the Characteristics of the Current Graphics Mode. 224
Video Buffer Hacking 101 . 226
Placing Data in the Video Buffer . 232
Page Flipping . 238
Conclusion . 240

Chapter 8 Adding Player Input, Physics, and AI 241
Creating Your Computer’s Intelligence . 242
Tracking Algorithms . 242
Evasion Algorithms . 244
Better Tracking and Evasion Algorithms. 244
Patterns . 245
Random Movement. 246
Fuzzy Logic . 247
Reading Player Input . 248
Modeling Game Physics. 249
Thrust . 250
Friction . 250
Gravity. 250
Putting All the Forces Together . 251
Conclusion . 254

Chapter 9 Sound Effects. 255
How Sound Works in the Real World . 255
Mimicking Real World Sounds on a Retro Game Machine 257
Computers with Special Sound Hardware. 258
The Commodore 64. 258
The Atari 400/800 . 261

Contents xiii

Basic Sound Command . 261
Assembly Sound Programming . 264
Conclusion . 266

Chapter 10 Putting It All Together: Building Games 267
The Universal Game Structure. 268
Initialization . 268
The Game Loop. 268
Cleanup . 268
Programming Text-Based Games. 269
What Is a Text-Based Game? . 270
Building Your First Text-Based Game . 271
The Story . 271
The Lay of the Land . 271
Creating Things That Go Bump in the Night 275
Tools of the Trade . 281
Creating a Language for Your Game . 283
Writing the Code for Your Game . 284
Mapping Out Your Program . 284
Mapping Out Your World . 285
Jumping from Text-Based Games to Graphics-Based Games. 295
Conclusion . 295

Index . 297

Contentsxiv

I
f we value the pursuit of knowledge, we must be free to follow wherever that
search may lead us. The free mind is not a barking dog, to be tethered on a
ten-foot chain.

Adlai E. Stevenson, Jr. (1900–1965),
speech at the University of Wisconsin, Madison,
October 8, 1952

Twenty-one years ago, I read a book that changed my life. Today I hope to write a book
that will change yours. This is not a self-help book or some form of new philosophy. This
book is the gateway to the inner sanctums of game programming, past and present. Bold
words, I know, but I believe in this book with my whole heart. To someone who has never
touched a keyboard or written a single line of code, game development can seem daunt-
ing. In the old days, this was usually the result of a lack of information. Game program-
ming books weren’t available at your local bookstore, so it was very difficult to learn the
skills needed to build games unless you were very intuitive and willing to dedicate a large
amount of your time to trial and error.

Today, game programming is difficult to learn because there is almost too much informa-
tion: DirectX, OpenGL, Vertex shaders, pixel shaders . . . the list goes on and on. Ironically,
most information about modern computer systems is in the form of closely guarded trade
secrets. Even if this were not the case, it would take a lifetime for the average person to
master all that information. Finally, even if he could master it, the hardware would be
obsolete long before he could use his knowledge!

xv

Introduction

In the 21 years that I have been programming, two things have not changed: Computers
are based on binary logic, and the basic structure of games has not changed. It is these
two facts that give me the courage to call this book the gateway to the game program-
ming world past and present. Master the past to understand the present. The book I read
21 ago that changed my life, was the Users’ Manual for the original TRS-80 color com-
puter. It made computer programming easy to learn and formed the foundation for my
entire programming career. The goal of this book is to make retro game programming
easy for anyone to learn. After you are able to understand the underlying principles of
retro game programming, it will be easier to understand the complexities of modern
game programming.

By the end of this book, you will not only be building games, but you will have the foun-
dation you need to understand how today’s modern games work. If you still have ques-
tions, please feel free to contact me at info@retrogameprogrammingunleashed.com or at
info@ristudios.net. I will help you in any way possible. You can also visit my Web site at
www.ristudios.net for more information and a chance to interact with your fellow retro
game programmers around the world.

The Web site for this book is retrogameprogrammingunleashed.com. There you will find
many neat things, including the source code for the programs in this book, source code
for even more retro games, bonus information, and links to many other sites of interest to
the retro game programmer.

Computer programming has been very rewarding to me. Exactly 80.7695 percent of my
life has revolved around either programming computers, fixing computers, or just mak-
ing them do really “cool things.” It is my hope that, through this book, you will find this
journey as rewarding as I have.

The Significance of Retro Computer Systems
Every generation makes discoveries and innovations that are important. Every so often, a
generation comes along and makes discoveries so profound that they change the way we
think and live, and alter the very fabric of our lives. The innovation that was the catalyst
for virtually all modern development over the past 20 years is the computer. The machines
studied in this book are a part of a great legacy that should be preserved. Future genera-
tions need to know the role they played in the development of the computer industry,
which in turn, has had an undeniable and absolute effect on society as a whole.

A wise man once said that, “The more things change, the more they remain the same.” My
grandfather used to tell me,“The only thing constant is change.” When those two thoughts

Introductionxvi

www.ristudios.net

merged in my mind, the result was the idea that “everything is constantly changing into
another form of the same thing.” For example, take the computer industry; new tech-
nologies come out every day that render ones only a little older obsolete. Yet the exact
same principles are used as the foundation for both. You can take the principles of assem-
bly language programming that you learned programming an Apple IIe and use them,
with slight modifications and a memory map, to write code for an 8086, 286, 386, 486, and
straight up to whatever happens to be the most advanced computer system in use as you
read this book. While you may not use these systems to run your business, the principles
that you will learn programming these machines will never be completely obsolete.

There is a big difference between a programmer and a normal person who reads the fol-
lowing in a computer manual in bold caps:

“THIS COMPUTER SYSTEM CANNOT PERFORM ANY OPERATION
THAT IS NOT DESCRIBED IN THIS MANUAL.”

The “normal” person looks at the list to see if the features he needs are available. If they
aren’t, he moves on to another computer system. The programmer reads the same list,
smiles to himself, takes a deep breath, and then spends the next sleepless week coding until
he has created the features that the manual claimed were impossible.

Pushing computers beyond their limits is a key element in the spirit of the programmer.
No other type of programming pushes personal computers harder than game program-
ming. By learning game programming you will learn how to make use of every single
piece of disk space, RAM, and silicon that the computer has.

It should be noted that game programming is, and always has been, a driving force behind
the development of computer technology for the home user. No other type of software
application pushes the computer to its limits the way video games do. Even today, when
processors have long since crossed the multi-gigabyte milestone, computer games are
pushing the boundaries of what a PC can do by fueling the development of ever more
powerful and sophisticated video cards. The level of real-time photo-realism that is cur-
rently possible is staggering, and it is still growing. What is even more staggering is the fact
that such technology is available to home users. “Necessity is the mother of invention,”
and no other application requires the same level of real-time 3D rendering and powerful
processors that games do. Without games, I’m sure these technologies would still have
been developed, but I think that such advanced technology might only have been avail-
able to universities or large corporations, just as mainframes were in the early days of
computers. If there were no real need for individual users to have powerful desktop
machines, they wouldn’t exist.

Introduction xvii

You Really Can Learn to Program
I started programming when I was very young using the TRS-80 color computer. I could
just leave you there with the impression that I was a very bright kid, but that is not the
whole story. One of the biggest reasons I was able to start programming was that the pro-
gramming manual that came with the machine was very well written. It was easy to read
and made programming much easier. I am happy to say that after you have a firm grasp
of programming principles, the path gets much easier and you can adapt to almost any
programming language.

My goal in this book is to make retro programming as easy to understand as possible, while
explaining the most advanced programming concepts in operation on these machines. If
you follow along and apply yourself, you will be amazed at what you are able to do.

Introductionxviii

Old School Meets New

For a long time, people have said that assembly language programming was dead. Every game pro-
grammer on the planet knew that this was absurd, yet that strange idea persisted. Occasionally though,
something would happen to turn that idea on its head. When Intel released its new MMX technology,
for instance, the only way to take advantage of the processor’s full functionality was through the use
of assembly language because these features had yet to be integrated into any of the high level lan-
guages! These features consist of 57 multimedia instructions that could perform functions normally and
handle my video and sound cards, such as Digital Signal Processing (DSP). Programmers used assem-
bly to create “MMX-enabled” software, which could use this new technology.

With the advent of Application Programming Interfaces (APIs), such as OpenGL and DirectX, many
games today do not make use of assembly language programming! Instead of writing fast screen
routines and other common functions needed to create a game, most programmers use the graphic
functions found in the previously mentioned APIs (DirectX and OpenGL). Although many program-
mers might still use assembly language to program certain areas of the game or even to improve
the speed and power of DirectX itself, computer processors are becoming faster every day, and high
speed computer systems are becoming more inexpensive, so the need for such optimizations is, for
the most part, unnecessary—with one exception—the video card.

The Atari 400 and 800 were the first computers that allowed you to write a program that was not
designed to be executed by the processor but instead was designed to be executed by the video
circuitry of the computer. In today’s computer systems, this kind of technology has advanced greatly
and is an essential part of modern graphics hardware. Vertex shaders and pixel shaders are the key
to real-time photo-realistic games. The new bottleneck for game programmers is not so much get-
ting the program itself to run faster but getting these smaller programs that are being executed by
the GPU on the video card to run faster. Ironically, these programs are written in two languages:
one resembling C, and another resembling assembly language.

My Vision for This Book
I called this book Retro Game Programming: Unleashed for the Masses, but it could just as
easily have been called The Joy of Programming after the famous line of cookbooks. The
vision for this book is that even someone who has never touched a keyboard can learn
how to program retro game machines, and people who are already able to program retro
game machines will learn to do it better.

In writing this book, I am not trying to create blockbuster games. My goal is to make the
concepts behind blockbuster retro games easy to understand so that you can create them.
I want to make a cookbook of sorts. The last chapter contains recipes for games. Every-
thing up to that point is designed to help you understand the ingredients used in those

Introduction xix

What this means for you is that the optimizations you must learn in order to write fast games on
a retro game machine are the same kinds of optimizations that you must make in order to make
these vertex and pixel shaders run faster. Age-old programming methods are the same ones used
to perform today’s most high tech programming!

Why not just learn to program vertex and pixel shaders on a PC? Well, for many people, this is an
option, but for others, it is not. Today’s computers, although more powerful, are more difficult to
learn to program. These machines are a lot more complicated than retro game machines. There is
much more that you need to know in order to write a game for a modern PC than you needed to
know to write a game for a retro game machine.

To exacerbate the problem, there is an ever-increasing level of secrecy around today’s hardware —
“security by obscurity.” Computer designers and manufacturers want to keep a competitive edge
by making the inner workings of their hardware a closely guarded secret. When the computer
industry was young, hobbyists and hackers were encouraged to experiment with computers. To that
end, every single piece of information about the computer system was made public, including
schematic diagrams of how the entire system was wired together! This information was often
included in the Owners’ Manual. Try finding it in the manual of any computer that you buy today—
assuming that it even comes with a manual.

If you want to learn hard core programming, you have two choices: you can start on a modern PC
where many things are mysteriously undocumented and you have to learn a new language. Or you
can start on a retro game machine where everything about the computer system is laid out plainly,
and the only thing that you have to learn is how to practice good programming. By choosing the
latter and reading this book, you will have a firm foundation from which to learn how to program
today’s modern computer systems.

recipes. This way, after you see how I have made my games, you can take those same
recipes, modify them, and get started making games of your own.

You may want to go about reading this book in several different ways, but I will suggest
two.

First of all, you might try reading the first part of the book first to understand how all this
stuff works. Then you could read the chapters where we actually build games to see the
concepts all put together. Next, start writing your own games.

I think the best way to use this book, however, is to set up your machine or emulator, fire
up your assembly program, and load in the source for one of the games. Run the game
and play it a few times. Next, just look at the code and see if you understand what is going
on. Now read Chapter 10, “Putting It All Together: Building Games,” to cement your
knowledge of how the game was made and how it works. If you are unsure about a topic,
then flip over to the chapter where that topic is discussed, read it, understand it, and then
go back to deciphering the program. When you are done, you should know how to make
your own arcade game!

Even though I gave you these suggestions, I would like for you to read this book the way
that makes you feel comfortable. You know best what that is.

Now go wild, let your creativity run free, and produce the coolest video games possible.

Introductionxx

1

Bringing Your Retro
Machine to Life

chapter 1

Setting Up Your TRS-80 Color Computer
The TRS-80 Color Computer (also known as the COCO) is a “deceptively” easy machine
to work with. One of the great things about this machine is that you do not need to have
a degree in computer engineering in order set it up. Furthermore, when the machine starts
up it has everything you need to start programming right there onscreen in front of you.
There are no diskettes to load or operating systems to worry about. There are operating
systems such as Disk Basic and OS9 (not to be confused with Apple’s operating system)
and disks available for the color computer but you do not need to even look at these things
until you are ready to.

Take a look at the photo of the back of the TRS-80 in Figure 1.1.

Figure 1.1 Photo of the back of the TRS-80COCO/ COCO2.

There are three switches and five ports. Starting at the left, the first thing you see is the
reset switch. When you press this button and the machine is turned on it will reset the
machine. What this means is that it will clear memory and all of the registers, basically
placing the machine into the state that the machine was in when the computer first
started. When the rest is completed you will see an OK onscreen.

Second from the left is the cassette port. This is where you plug your cassette player into
the color computer to use as a storage device.

Third from the left is the serial port. This port allows you to connect all manner of devices
to the computer. While it can be used to drive robots or for home automation, it also
allows for more practical capabilities, such as using a modem to log into bulletin board
services.

Next are two joystick ports. This is where we connect our joysticks in order to play arcade
video games.

Sixth over from the left is the channel selection switch. This switch allows you to choose
between using channels 3 or 4 on your TV screen to view the computer’s output. The 7th

element from the left on the back of the computer is the TV connection. This is where you
will plug in the cable that connects your computer to the TV.

Finally the eighth element from the left is the power switch that turns the computer on
and off. Over to the far right is the built-in power cord.

The beauty of this machine is that if all you want to do is jump in and start programming,
we may completely ignore five of the eight elements on the back of the machine. As you
advance and your knowledge of the machine expands, you can make use of the other ele-
ments. The greatest feature of this machine is that you can easily get started using its basic
features without being intimidated by its more complex elements. As your knowledge
grows, you can move on and make use of more and more of the computer’s resources.

Figure 1.2 is a photo of an RF switch.

This is all you need to get started programming the TRS-80. Examine Figure 1.3.

As you can see from the diagram, all that you need to get started programming is to con-
nect the computer to your TV using an RF switch and then plugging in the machine’s
power cord.

Turn on the machine by pressing the power switch and you are good to go.

Right now your screen should look like the screen shown in Figure 1.4.

Chapter 1 ■ Bringing Your Retro Machine to Life2

Setting Up Your TRS-80 Color Computer 3

Figure 1.2 Photo of the RF switch.

Figure 1.3 Diagram of basic TRS-80 color computer installation.

You are now in extended color basic (or color basic if you are following along on a
COCO1). The text onscreen tells you which version of basic you are using. Also note that
you may have a color computer that has been upgraded to extended basic, in which case,
you will know which system you have by looking at the case. (The COCO1 has a gray case
while the COCO2 has a white case.)

Color Computer Storage Devices
You have two options for storage: disk drives or cassette tapes, discussed in the following
sections.

Cassette Tapes

We will discuss cassette tapes first. Fortunately, the tape cassette is very easy to install. Fig-
ure 1.5 is an illustration of how to install the TRS-80’s CTR-80A cassette recorder. There
are other cassette recorders that may work, but the connection will be different, and there
is no guarantee that they will function correctly.

One end of the cable has a single connection, pictured in Figure 1.6.

Chapter 1 ■ Bringing Your Retro Machine to Life4

Figure 1.4 The TRS-80 boot screen.

Look at the U shaped pattern of this pin. The cassette port on the back of your TRS-80
has the same U-shaped pattern of indentations. Line the plug up next to your computer’s
cassette port so that both of their U-shaped patterns line up. Plug it in.

Next, take a look at the three plugs on the other end of the cable, illustrated in Figure 1.7.

Setting Up Your TRS-80 Color Computer 5

Figure 1.5 Illustration showing the installation of the cassette recorder.

Figure 1.6 Illustration showing the connection that plugs into the computer.

The small gray plug connects to the REM jack, the large gray plug connects to the AUX
jack, and the black plug connects to the ear jack.

Finally, plug the recorder power cord into the wall’s power supply.

Disk Drives

Setting up the floppy disk drives is just as easy. Look at the diagram in Figure 1.8.

There are two cables coming out of the floppy disk drive. One looks like a power cord, and
the other looks suspiciously like a game cartridge. This appearance is a hint as to how the
floppy drive is connected. The cable that ends with an improvised cartridge case (shown
in Figure 1.9) is plugged into the TRS-80’s ROM drive on the right side of the computer.

Chapter 1 ■ Bringing Your Retro Machine to Life6

Figure 1.7 Illustration of the other end of the cable.

Figure 1.8 Diagram of the installation of the floppy disk drive.

Next we plug the power cord into the wall socket. After turning the power switch on the
back of the floppy disk into the on position, you are ready to go. When you turn on your
computer with a disk drive connected, the Disk Basic operating system will automaticaly
be loaded which will give you the ability to interact with the disk drive.

Setting Up Your Atari 400/800
Before you can use the Atari 800, you have to set it up. The exact cables that you need to
install an Atari 800 vary slightly depending on whether you are connecting it to a TV or
to a monitor. Following is a list of the devices that you will need to install your Atari.

Power supply (Figure 1.10)

Serial Cable (Figure 1.11)

Joy Stick (Figure 1.12)

Disk Drive (Figure 1.13 and 1.14)

RF Switch (Figure 1.15)

In Line connector (Figure 1.16)

Video Cable (Figure 1.17)

Setting Up Your Atari 400/800 7

Figure 1.9 Photo of the ROM cartridge connector.

Chapter 1 ■ Bringing Your Retro Machine to Life8

Figure 1.10 Power supply: You should have
two of these, one for the Atari Machine itself
and one for the disk drive.

Figure 1.11 Serial Cable: This is used to
connect the computer system to the disk drive.

Figure 1.12 Joystick: Of course no video game system
would be complete without one of these. You will use this to
control all of the action on your Atari console.

Setting Up Your Atari 400/800 9

Figure 1.13 Atari 810 disk drive front view: This is used to store
your programs.

Figure 1.15 Generic RF switch: This is used to connect your
Atari to the television.

Figure 1.14 Atari 810 disk drive rear view: This is used
to store programs.

Installation Instructions
Now, you have gathered all the parts needed to fire up the Atari 800, so let’s bring this
“baby” to life.

Installing the Power Supply
First things first; we have to give our machine some power. Look at the Figure 1.11 above
for a picture of the power supply. Set the Atari before you with the keyboard facing you.
Put your hand on the right side of the machine and turn that end of the Atari to face
you. What you see should look like Figure 1.18.

Chapter 1 ■ Bringing Your Retro Machine to Life10

Figure 1.16 In-line connector: You
will have to use this along with your RF
Switch to connect the Atari to your TV.

Figure 1.17 Generic Video Cable: This is used to
connect the Atari to a computer monitor.

Installation Instructions 11

Figure 1.18 Side view of the Atari 800.

Monitors and Receivers

At first glance a TV and a computer monitor may seem to be exactly the same. Indeed, today with
the plasma screens being used for both television and computers, they often are. Plasma screens
often come with enough input options to allow them to be used interchangeably. Traditionally,
however, computer monitors have the advantage of a much higher resolution and provide a crisper
image than television. The downside is that they usually do not have the circuitry needed to con-
vert television signals to an image on the screen. A television set does not have the same high res-
olution of a computer monitor, but it does possess the circuitry to convert a television signal to an
image on its screen.

When you connect the Atari to a computer monitor, it passes a standard composite signal to the
monitor. A composite signal carries the data that determines the brightness and color of each point
on the screen.

Things get a bit more involved when you connect your television to the Atari. The television was
designed to receive a composite signal that has been mixed with an RF (radio frequency) signal. A
composite signal has all of the information that is needed to display an image on the screen. The
problem is that a composite signal is not strong enough to travel through the air.

If all we had were composite signals, broadcast television would be impossible. RF signals are
strong enough to travel great distances through the air. These are the signals that are used on AM
and FM radios. By combining RF signals with composite signals, we can send television images
great distances through the air.

In order for your Atari to display images onscreen, it has to take its standard composite signal and
combine it with an RF signal so that the telvision is used for receiving.

This technique, which is called crowbar modulation, was actually invented by Mr. Ralph Baer as a
way to display the images from his games on television screens.

The connections that you see going from left to right are as follows:

■ Monitor port: This is where we are going to plug our monitor into the computer.

■ Serial port: This is where we connect the disk drive to the computer.

■ Channel selection switch: You can use this to decide
whether your Atari should function on channel 2 or 3
if you choose to use a TV to play your games.

■ Power switch: This is the master switch, which is used
to turn the Atari off and on.

■ The power port: This is where the power supply is
plugged in.

Be sure that the power switch on the power supply is in the
off position. Pick up your power supply and examine both
ends. You will notice that one end looks just like a regular
drop cord. Plug this end into your wall socket or surge. In
Figure 1.19, you will see a picture of the other end of the
power supply. Plug this end into the power port of your
Atari 800.

Connecting the Atari to a Monitor
You can use either a TV or a computer monitor to view the action on your Atari.

First, we will go through the steps for connecting your Atari to a computer monitor. Fig-
ure 1.20 pictures the monitor port on the Atari. Figure 0.21 is a picture of a generic video
cable. One end of this cable separates into four separate cables; the other is round and
cylindrical. It is this cylindrical end that we are interested in first. Look inside this end of
the cable and make note of the pattern of the pins inside. Now, look at the pattern of the
holes in the monitor port of the Atari. You will see that they both form a half circle as seen
in Figures 1.20 and 1.21.

Now take this same end of the cable and hold it just below the monitor port, shown in
Figure 1.21.

Turn the cable until the patterns of the port and the cable line up with each other. Now
push the cable into the port. Connecting the other end of the cable to the video monitor
is going to be tricky. You have to get the pinout for the generic video cable. This tells you
which pin on the cylindrical end of the cable corresponds to which pin on the other side
of the cable. This is very important for you to know when connecting any of these com-
puters (except the Apple) to your monitor. Next, after finding this information, you will
need to know the pinout information for the Atari 800’s monitor port. This information
is provided for you in Figure 1.22.

Chapter 1 ■ Bringing Your Retro Machine to Life12

Figure 1.19 This side of
the power supply plugs into
the Atari’s power port.

Installation Instructions 13

Figure 1.20 The Atari’s monitor port and the generic video cable have
matching patterns.

Figure 1.21 Be sure to match the patterns of the Atari’s monitor port and
the generic video cable.

Look at Figure 1.23 carefully. Make note of which pin is used to transmit luma, which
transmits chroma, and which transmits audio. Now carefully pull out the monitor cable
from the Atari and hold it as shown in Figure 1.23.

N o t e

Chroma is short for chrominance and refers to color. Luma is short for Luminance and refers to
brightness. The Chroma line controls the colors on the screen while the Luma line controls the
brightness of the colors on the screen. The audio line transmits the sounds that people playing your
game are going to hear.

Make a note of which pin on the cable corresponds to the connection on the monitor port
for Luma. Now make a note of which pin connects to the connection for Chroma and
Audio. Now you have all of the information you need to hook up your monitor. This
information is laid out in Figure 1.24.

On the back of your monitor, you will see connections labeled Luma, Chroma, and Audio.
Use the pinout information that you found for your generic video cable to identify which
cable is transmitting luma, audio, and chroma from the Atari and connect them to the
appropriate port on the monitor.

Chapter 1 ■ Bringing Your Retro Machine to Life14

Figure 1.22 Pinout of Atari’s monitor port.

Installation Instructions 15

Figure 1.23 Make a note of how the pinout of your generic video cable
matches up with the pinout of Atari’s monitor port.

Figure 1.24 A diagram of all the information you need to connect your
Atari to a computer monitor.

Connecting Your Atari to a TV
Most of you will be connecting your Atari to a TV though. For this configuration you will
need three things:

■ An RF switch

■ An inline connector

■ A TV

Located at the rear of the Atari you will find a built-in RF cable. The original Atari came
with its own RF switch, which had a female input. For this reason, the built-in RF cable
on the back of the Atari had a male connector (take a look at Figure 1.25 for an example
of the differences between male and female connectors). Most RF switches today have a
male connection that is designed to plug into a female socket at the back of the computer
device you are working with. For this reason, you probably will not be able to directly con-
nect your Atari to your RF switch unless you are lucky enough to find an original Atari RF
switch.

This is where the inline connector comes into play. The inline connector has female con-
nections on both sides. That helps us because we can connect the RF switch to one end
and the Atari 800 to the other, as seen in Figure 1.26.

Chapter 1 ■ Bringing Your Retro Machine to Life16

Figure 1.25 The relationship between male and female connectors.

Figure 1.26 You can use an inline
connector to hook the Atari up to
your TV using a modern RF switch.

Installing Your Disk Drive
Now it is time to connect your disk drive. First, get your second power supply and plug
the appropriate end into your wall socket or surge protector; plug the other end into the
power socket on the disk drive. Next connect one end of your serial cable to the disk drive
and the other end to your Atari as shown in Figure 1.27.

Now you must adjust the jumpers at the back of the disk drive so that the Atari will rec-
ognize this as disk one. Take a look back at Figure 1.14 to see a picture of the rear of the
Atari 810 disk drive. You will notice that there are two identical I/O connectors. The disk
has two connectors so that we can daisy chain a number of disks together. What this
means is that we could actually string a number of disk drives together by connecting a
serial cable from the Atari itself to the first disk drive by inserting the cable into one of
the I/O connectors. We could then connect a second disk drive by running a serial cable

Installation Instructions 17

It’s a Boy!

Whether you are working with electronics, plumbing, or any number of other fields you will come
across the terms male and female. These terms are usually found where we need to connect one
device or cable to another, as in the case of connecting the generic video cable to the monitor port.
Generally, one connection will be concave and the other will be convex. The convex connection will
typically plug into the concave. As an example of this, think about when you plug your TV in to a
wall socket. The plug from the TV is convex and is called male. The wall socket is concave and is
called female. The male drop cord plugs into the female wall socket.

Figure 1.27 Both ends of the serial cable are identical, so
don’t worry about which end goes where. After it is properly
oriented it will fit just fine.

from the second I/O connector to one
of the I/O connectors on the second
disk drive. This process can go on
until you have connected a total of
four disk drives as seen in Figure 1.28.

Once you have daisy chained several
disk drives together, or even if you
only have one disk drive, the computer
needs to know which drive is which.
For this reason, on the back of the
Atari 810 disk drive there are two
binary switches. These two switches
can be adjusted to form any one of
four combinations. Depending on the
combination that these switches are
set to on each disk drive, the Atari will
be able to tell which is disk 1, 2, 3, or 4.
These combinations can be seen in
Figure 1.29. Figure 1.30 illustrates daisy chaining and the disk settings for each switch.

Chapter 1 ■ Bringing Your Retro Machine to Life18

Figure 1.28 We can connect up to four disks
together by using a daisy chain.

Figure 1.29 Set the two binary switches on the back of each disk
drive so that the Atari can tell which disk drive is which.

Connecting the Joystick
We are almost ready to rock and roll. There is just one more step; you must plug in the
joystick. The diagram in Figure 1.31 demonstrates how to do this.

Installation Instructions 19

Figure 1.30 This diagram illustrates both daisy chaining as well as the
appropriate switch settings for each disk in the daisy chain.

Figure 1.31 Connecting your joystick is easy.

Setting Up Your Commodore 64
Like the Atari and the Color Computer, the Commodore 64 is very easy to set up. Before
you get started, make sure that you have the following items, pictured in Figures 1.32
through 1.36.

Chapter 1 ■ Bringing Your Retro Machine to Life20

Figure 1.33 A power supply.

Figure 1.34 If you are using a monitor, you will
need a video cable.

Figure 1.32 Commodore 64.

Setting Up Your Commodore 64 21

Figure 1.35 If you are using a TV, you need a TV switch box
(sometimes called an RF switch).

Figure 1.36 You will need either a TV set or a vintage monitor.

When you have all of these items, you are ready to get started. Examine Figures 1.37
and 1.38.

Chapter 1 ■ Bringing Your Retro Machine to Life22

Figure 1.37 Side panel of the Commodore 64.

Figure 1.38 Back panel of the Commodore 64.

If you do not have a dedicated monitor for your Commodore, you will have to use a TV
set. Fortunately, this is no problem to do.

The first thing that you need to do is connect your computer to some form of video out-
put. These steps will vary depending upon whether you are using a monitor or a televi-
sion set. If you are using a TV, you will attach one end to your computer’s TV connector
and the other end to the back of your set. Figure 1.39 below illustrates.

Connecting your Commodore is just as easy; it just requires a bit more attention to detail.
It is easy to tell which end goes into the computer. See Figure 1.40.

The other ends of the cable will vary slightly depending on the manufacturer. There will
usually be a white or red connector that must be connected to the video input on your
monitor. Your cable should come with a pinout. Compare it to Figure 1.41 to be sure that
you are connecting the right cable to the right inputs.

Setting Up Your Commodore 64 23

Figure 1.39 Here we see just
how easy it is to connect our
Commodore to our TV set.

Figure 1.40 This end of the video cable gets connected to the
computer.

Figure 1.41 Use this pinout to make sure that you are placing the correct
part of the cable.

After you have confirmed that you know where to put each cable (see Figure 1.42), you
can connect your monitor.

Chapter 1 ■ Bringing Your Retro Machine to Life24

Figure 1.42 Your array of cables.

Now all that you have to do is connect the power supply to your computer and you are
almost ready to rock. There is just one more thing you need to do, and that is connect your
disk drive.

Simply make sure that your computer is off and the disk drive is switched off; then con-
nect the drive.

Setting Up Your Apple II
This machine comes in a few different flavors. The one that I am going to be using is the
IIe Platinum Edition.

In order for you to set up your Apple II, you need the following items:

Retro Computer Monitor

Video Cable

Power Cable

Disk Drive

DOS Boot Disk

You can connect your Apple II using the diagram in Figure 1.43.

Setting up your Apple II 25

Figure 1.43 Basic configuration used to set up our Apple II.

Let’s go through the process step by step. The first thing you need to do is to ensure that
your power switch is in the off position and the power switch is disconnected. Also make
sure that your computer monitor is turned off.

Now that you are sure that there is no power going to your computer, you can begin the
process of installing the machine.

Connect one end of the video cable to the video port of the Apple II. Plug the other end
into the chroma port of the video monitor.

Now connect the disk drive to your computer. Look at the diagram in Figure 1.43 and
locate the disk port. Find this port on the back of your Apple II. This is where you are
going to plug in your disk drive. Connect the disk cable to your computer and place the
disk drive on the side of your computer or on top of it. Place your boot disk into the disk
drive and close the door.

Rear Panel of the Apple IIe

Connecting a joystick is usually optional, and you do not need one in order to use your
Apple computer. If you are going to be playing games, however, then a joystick is a must.
Find the joystick port on the back of your Apple computer. You can use Figure 1.43 as a
guide.

Finally, double check to make sure that the power switch is in the off position and plug in
the power cord. You are now ready to go; turn on your computer monitor and flip the
power switch on the back of your computer into the on position. Your Apple II will now
roar to life. Welcome to the world of the Apple II. You are now ready to get started work-
ing with your retro machine.

Chapter 1 ■ Bringing Your Retro Machine to Life26

27

Simply Complicated
Game Programming

chapter 2

Iwant you to understand that game
programming is easy and complicated

at the same time. Look at the map shown
in Figure 2.1.

If you wanted to direct someone to your
house from point A, you could just say,
“Go straight on Topper Street until you
reach the big hill. Take a right and you are
there.” Easy. Not so easy, however, when
you speak English and the other person
speaks Greek. Or you speak Greek and she
speaks Japanese. Communication becomes
very difficult when you and the other party
do not speak the same language. This is
also true when that other party is your
computer. In this example, you could also communicate directions to your house by
drawing a map or using dictionaries and simple words and gestures to communicate.
These methods will work, but ultimately they are too slow to be useful under a stressful
situation where information needs to be communicated very quickly.

Programming in BASIC (Beginner’s All-purpose Symbolic Instruction Code) is the equiv-
alent of drawing pictures and maps or slowly using a human-to-machine dictionary to
communicate with your computer. You speak in a human language, and the computer

Figure 2.1 Map of a fictitious neighborhood.

speaks in binary. BASIC is designed to get you started communicating with your com-
puter. You can tell it to print files, draw graphics, and perform really complicated proce-
dures. You can have it do almost anything as long as you do not want to do anything really
super fast. Because of the way BASIC is designed and the innate limitations of “High Level
Languages” (computer languages that closely resemble the English language), programs
written in BASIC run very slowly.

Imagine you are sitting right next to your best friend, who we will call Cindy. You tell
her to go and pick up a ball on the opposite side of the room. Your friend gets up right
away and does as you ask. Your instructions were carried out very quickly, just the way you
like it.

Now imagine that you are still sitting next to your friend. There is another person in the
room, who we will call Tom. Tom speaks a language you do not understand. Your friend
knows how to speak a little of Tom’s language. The only way for us to get Tom to go and
get the ball would be for us to ask Cindy to ask Tom to go and get the ball. It takes time
for you to ask Cindy to ask Tom to get the ball. It takes time for Cindy to remember how
to say that in Tom’s language. It takes time for Cindy to ask Tom to get the ball. It takes
even more time for Tom to make sense of the translation before he actually gets the ball.

In the first example, we spoke directly to our friend and our instructions were carried out
immediately. In the second example, we spoke to Tom using an interpreter (Cindy),
which took much more time. The second example is very similar to the way that BASIC
works. BASIC is usually designed in the form of an interpeted language. You type your
program into a text editor and then you run your program. When you run your program,
an interpreter that is usually found in memory reads your instructions and loosely inter-
prets them into binary, which the computer can understand. The effect is similar to ask-
ing Cindy to tell Tom to pick up the ball for us. The job will get done, but it is going to
take a lot longer than if we were able to tell Tom to pick up the ball directly.

Some flavors of BASIC do come in a compiled version. What this means is that rather than
our BASIC program being interpreted and executed at the same time, the program is
interpreted and stored on disk in the computer’s native language where it can be executed
at any time. This is the equivalent of having Cindy tape record the instructions for Tom
to pick up the ball. We can play the instruction to Tom any time we wish, which would
speed up the process a bit. The only problem is that these languages usually are not very
optimized. What that means is that they will usually create more lines of binary instruc-
tions than we really need. If we need the computer to multiply the value of two variables,
the computer may generate 10 lines of binary code when we really only need 5.

What this means is that it takes a longer time for the computer to read the program before
it can actually carry out the instructions found in the program. Also some instructions
take longer than others to execute. The BASIC compiler will not look to find the best

Chapter 2 ■ Simply Complicated Game Programming28

instructions to use in specific situations, which means that its choice of instructions will
not be the best combination of instructions for our program.

To get the ultimate speed from your computer, you would have to learn binary as the pio-
neers of computer science did. Unfortunately, applications, especially games, are much
more complex than those that ran on early machines, so writing them in binary is out of
the question. We must limit ourselves to the next best thing, which is writing in assembly
language. Assembly mangles human and binary into a language, which is just enough like
English to be understood by humans and close enough to binary that it can be easily
assembled accurately into binary.

Because BASIC is an introductory computer language, it is designed more in favor of
being understood by humans. Its commands reflect human concepts: Print something
onscreen, make a sound, draw a circle, and so on. Assembly language, on the other hand,
is designed more in favor of computers. The commands reflect the way computers think:
move bits of information from memory to a register or from a register to a register, test
these bits, and so on.

At first, the way the computer thinks may seem a bit odd. It becomes easier to understand
when you know one very important point. Anything that your computer does, no matter
how complex it seems, no matter how intelligent it seems, as awesome as the latest 3D
shooter looks, every single thing the computer does is done by moving bits from one loca-
tion to another.

At its core, a computer is made up of millions of logic gates. These gates are given names
such as And Gates, Or Gates, XOR Gates, and so on. These gates control the flow of binary
data through the circuitry. While we call these circuits gates, they act more like switches.
Each gate will have two or more inputs (places where binary data can enter the switch)
and one exit. When there is no data coming in to the gates, the exit will usually be closed,
which would mean that no binary data is leaving the gate.

In the case of an AND gate, the gate’s exit will be opened (thus allowing for binary data to
flow out of the gate) only when we have binary data coming into all of the inputs. An OR
gate will open when either the first OR, the second OR, or any of the inputs receive data.
An XOR or Exclusive OR gate will open when any one of the inputs receive data but will
cut off if more than one of the inputs gets data. It is these basic logic functions that allow
the computer to control the flow of binary data flowing through the machine.

These same logic gates are re-created in software using logical statements and are used to
control the flow of the program. This allows us to give instructions like “If variable VB and
a variable XC are greater than 50 then go to line 100.”

While most of what the computer does is move bits of binary data from one location to
another, it is binary logic that allows for the binary data to flow through the computer and

Simply Complicated Game Programming 29

to be stored at specific locations. Logical statements control the order in which the
instructions in our programs are executed. This allows us to apply some logic to the way
in which the binary data is manipulated.

I am typing this book on a laptop computer. From my perception I am pressing keys on
the keyboard and somehow characters are magically appearing onscreen. To the com-
puter, on the other hand, every few seconds a random set of switches is being flipped. Each
time these switches are flipped, a pattern of eight bits is placed into a part of the com-
puter’s memory (don’t worry if you do not know what a bit is; I will explain this shortly).
Several times a second, the computer moves that pattern of eight bits to the video mem-
ory where video circuitry puts it onscreen. This is a rather simplistic way of looking at
how the computer works, but it does emphasize our point. Moving bits of information
around performs most of the complex processes the computer does.

Once we learn how to effectively communicate with our computers, programming video
games becomes very simple. We tell the computer to put an image onscreen, do some stuff
in the background, and finally put a new image onscreen. We do this over and over again,
and from the perspective of the player, a game is being played onscreen. You and I know
better though. We know that it is really a very basic operation being repeated again and
again. Everything else is just an illusion.

The tricky part comes in knowledge. We need to know exactly how to put images
onscreen. We need to learn more about the “stuff” that we need to do in the background,
and of course, because we know how to put an image onscreen we know how to put a new
image onscreen. On the other hand, after we know how to do these three things we can
build any game that our hearts desire.

Game Systems: Similar but Different
All game systems are the same! They all have some form of input. They all have some form
of video output. They all have some form of sound output. They all speak some dialect of
assembly language.

All game systems are different because they interact with these elements in slightly differ-
ent ways.

When you begin with a new game system, you need a few different bits of information in
order to work with it.

Assembly Dialect
In any computer system, the CPU (Central Processing Unit) is the brain of the computer.
Different CPUs understand different dialects of assembly language. All of these dialects,
however, are usually similar, and generally use the same classes of instructions.

Chapter 2 ■ Simply Complicated Game Programming30

As mentioned earlier, the majority of the work that computers do involves moving bits of
data around the computer, so the largest class of instructions will always be Move instruc-
tions. These instructions move data from one memory location to the other, from mem-
ory to registers, from registers to memory, and from register to register.

Another class of instructions is the arithmetic instructions. These allow the computer to
perform basic calculations such as addition, subtraction, multiplication, and division.

The next class of instructions are logical operators, which form the basis of all computer
logic and come into play whenever the computer must make a decision.

Working hand in hand with the logical instructions are the branch instructions. These allow
the program to jump back and forth from one group of instructions to another. This allows
the program to change the way it operates depending on what happens while it is running.

Finally, each CPU tends to have a few miscellaneous instructions to assist you. These
instructions are useful but do not fit into any of the above categories. An example of this
is the NOP instruction. This instruction literally performs no operation. We use this to
“pad” our program. When we run an assembly language program, it is loaded into mem-
ory and each line is given an address. Certain instructions, such as jump or logical instruc-
tions, need to know the address of each line so that they can properly control the flow of
the program. When we add new lines of code to the program, we change the address of
the lines in our program. To solve this problem, if you think that you may need to insert
a few lines of code into your program at a later time, you can insert a few lines of NOP
instructions. The CPU will just ignore them, but if we replace them with other instruc-
tions later on then new functionality can be added to the program without changing the
address of the line in our program.

Apart from always using the same classes of instructions, all instructions are usually three-
letter abbreviations for what the instructions actually do. For example, the Move instruc-
tion which is used to move binary data from one location to another in your computer’s
memory will usually be written as

Mov.

All of these concepts will become much clearer when we cover the chapter on assembly
programming.

The Memory Map
After you learn how to speak your computer’s language, you are going to have to find
things in the computer’s memory. You need to know, for example, where to find video
memory if you want to display your graphics. You need to know where to go to read the
computer’s input and how to find sound registers. After you know the language of your
computer and you have a memory map, you can do almost anything.

Game Systems: Similar but Different 31

CPU, Bus, and Memory Characteristics
Finally, you will need to know how much disk space, RAM memory, and CPU speed you
have available. These characteristics create the confines in which you will have to build
your games. The slower the CPU, the slower your programs will run and the harder you
will have to work to optimize your code to obtain a fast moving video game.

The size of RAM memory limits the overall size of your program.

The amount, or availability, of the disk space determines the size your program can be, as
well as what other features you can use such as saving the highest scores of your players.

BASIC 101
At this time we want to focus completely on learning how to get started programming in
BASIC.

You need to familiarize yourself with the environment that you will be working with,
shown in the Figure 2.2.

Chapter 2 ■ Simply Complicated Game Programming32

Figure 2.2 Screen shot of the Atari 800 work area.

Notice the blue box with a black border. This constitutes the work area. It is here that you
type your commands to the computer, and it is where the computer displays messages.
The first thing you see in the work area is the word READY. This is just the Atari’s way of
letting you know that it’s all set and ready to go. Just below this we see a light blue rec-
tangle. This is what is called a cursor. When you press a key on the keyboard, the letter or
number you press appears onscreen at the exact location where this cursor is located. It’s
time to introduce yourself to the computer. Type the following message and see what the
computer does. Type: Hello my name is Earl. (You should replace my name with yours.)
Your screen will look similar to the one shown in Figure 2.3.

What’s this? The computer says you made an error. What did you do wrong? Did you spell
your name right? Maybe you should have used a period? Well, the problem is you were
simply speaking the wrong language. In order for you to make the computer follow your
commands you must learn to talk in a way that the computer can understand.

The first thing we’ll do is get the computer to print something. Type the following
instructions at the command prompt and press Enter:

Print “hello I am an Atari 800”

BASIC 101 33

Figure 2.3 Our first try at introducing ourselves to the computer.

That’s more like it; this time the computer actually behaved itself and did as we asked it.
Generally, as long as you use the proper syntax and methodologies, the computer will fol-
low your instructions. As you will see, 9 times out of 10, when the computer does not react
to your code the way you expect it to, it is because you did not enter the correct instruc-
tions to accomplish the goals you want. As you learn more about the computer and how it
works, you will be able to more powerfully and completely bend the computer to your will.

Figure 2.4 illustrates.

Principles of BASIC
Your primary school teachers did not try to teach you every single word that you will ever
see for the rest of your life. Instead they taught you how to use the alphabet and later how
to use a dictionary. By learning these basic principles, you were empowered with the abil-
ity to understand words, which allowed you to form sentences that allow you to commu-
nicate with almost any person you will ever meet. I want to use the same concept here. I
want to teach a few basic principles that you can use to communicate with any retro game
machine using the BASIC language.

Using the principles detailed in the following sections, you should be able to create com-
puter programs on any computer system equipped with the BASIC language.

Chapter 2 ■ Simply Complicated Game Programming34

Figure 2.4 Screen shot of the computer obeying our commands.

The Variable Principle
The first principle that we will cover is the variable principle. It is important for you to
understand that everything that is done with a computer boils down to data manipula-
tion. From its very foundation, a computer is simply a collection of circuitry that is used
to store, generate, and manipulate binary numbers. That is all a computer really does. The
trick is that skilled programmers can cause the computer to manipulate those binary
numbers in such a way as to give the computer the illusion of intelligence and to perform
impressive technical feats. As an example, consider Figure 2.5, which is an image of the
video display of the PC I am using to write this book. The monitor has numerous pixels,
which are tiny dots that cover the entire screen. By changing the colors of these pixels, the
monitor presents us with the illusion of an image onscreen. But what controls the color
in those pixels? Well, for each and every pixel onscreen, there is a portion of Random
Access Memory (RAM) that is referred to as video memory. Video memory is simply a
large collection of . . . you guessed it . . . 0s and 1s. Each color that the computer is able to
generate is represented by a particular combination of 0s and 1s.

Principles of BASIC 35

Figure 2.5 Screen shot of my computer taken as I write this book.

In order to generate an image on the monitor, you must set each pixel onscreen to a par-
ticular color, and the color of each pixel is determined by what combination of 0s and 1s
are in a particular portion of video memory. Then all you have to do to put a picture
onscreen is to fill video memory with a particular combination of 0s and 1s.

Anything the computer does, no matter how elaborate it seems, boils down to a simple
manipulation of 0s and 1s. Of course, typing millions of 0s and 1s is not the most efficient
way to create a computer program. The human brain simply is not designed to process
information in exactly the same way as the computer. It is for this reason that computer
languages such as BASIC were created. Rather than having to think in binary to commu-
nicate with computers we can think in a language that is much closer to English. After we
have created our program in this “English-like” language a compiler or interpreter is used
to convert our “English like” language into full-fledged binary.

Later we will discuss the raw manipulation of memory but now we will focus on our cur-
rent principle, which is the variable principle.

The most basic form of data manipulation is based around a concept called a variable.

The variable principle states that:

“A variable is a container that you can store information in. Generally speaking as
long as your computer does not lose power and you do not give it any commands
that would cause it to alter the memory location where the variable is stored, or you
specifically alter the value kept in the variable; then when you place a value into a
variable it will always remain there and remain unchanged.”

Let’s see this in action. Type the following instructions into your Atari 800 emulator (you
should be running Atari Basic):

LET Q = 6

Your screen should look like the one shown in Figure 2.6.

You just created a variable called Q and placed a value of 6 inside it. The LET command
tells the computer that you have some information you need to store and tells it to create
a variable called Q and LET a value of 6 be put inside of that variable. But let us see if the
computer really did do what we asked it to. Enter the following command:

PRINT Q

You have just given the computer the print command. This command has nothing to do
with printing to an actual printer but instead it will print out whatever you ask it to on
the video screen. In the case above we asked the computer to print out the contents of the
variable named Q. Your screen should now look like that in Figure 2.7.

Chapter 2 ■ Simply Complicated Game Programming36

Principles of BASIC 37

Figure 2.6 Creating a variable for the first time.

Figure 2.7 Printing a variable for the first time.

As you can see, the value 6 really was stored in the variable Q. Now take a few minutes and
play with this concept. Experiment with creating variables and storing information in
them, but for now only attempt to store numbers and not letters. You will see why in a few
moments.

Earlier I told you not to try to store any letters in the variables you were creating and now
you will see why. Enter the following command

GR.0

All that command will do is clear the screen. Now enter this command:

LET G = BN

Now the computer tells us that it is ready to attempt to print out the value of this com-
mand. Enter:

PRINT G

Your screen should look something like that shown in Figure 2.8.

But what went wrong? Why didn’t the computer store our letters the same way it did the
numbers? Well, the answer is that you have to ask the computer to store letters a bit dif-
ferently than the way you ask it to store numbers. Here is the command to ask the com-
puter to store letters:

DIM NAME (X)

Chapter 2 ■ Simply Complicated Game Programming38

Figure 2.8 A failed attempt at printing a text stored in a generic variable.

In the above command line, DIM is the actual command. It is short for dimension. NAME
is the portion of the command that you would use to give your variable a name. The X
represents an integer value that tells the computer how many letters your variable should
be able to hold. So to put it all together if we want to create a variable called G$ that can
be used to store five letters, we would declare it like this.

DIM G$(5)

Notice that we have added a dollar sign to the end of the name of our variable. This is to
signify that this variable is a string variable. Any variable that you create to hold letters
must have this dollar sign at the end of it. Now try this command for yourself; enter the
following code:

DIM D$(5)

Next enter this line of code:

LET D$ = “QWERTY”

Now finally enter this line of code:

PRINT D$

Your screen should look similar to the one shown in Figure 2.9.

Principles of BASIC 39

Figure 2.9 A successful attempt at printing text stored in a string variable.

This time the computer has indeed stored our letters in memory. Once again, experiment
with creating different string variables. (In programming, the term string is used to
describe anything that has to do with storing or manipulating letters and words. As a
result, variables that hold letters are called string variables.) Experiment with printing
them out to be sure that the computer has indeed saved them until you are satisfied that
this stuff works.

The Input Principle
Up to this point in order to fill a variable with a value, programmers have specifically
placed that value into the variable at design time. Now when we create our program and
have it shipped off worldwide for people to use, we will not be there to specifically place
values into the variables. When we are actually writing the instructions for our program,
we call the time that we spend design time. When the computer starts executing our pro-
gram it is called runtime. We need a way to get input from the user at runtime and have
this information placed into the variable at runtime.

This is where the input principle comes into effect. The input principle may be stated as
follows:

“Most flavors of basic provide instructions the computer can use to obtain informa-
tion from the user at runtime. These instructions are usually able to also store the
information they receive into a variable.”

Chapter 2 ■ Simply Complicated Game Programming40

What time is runtime?

As are so many other terms in programming that seem so complicated when you first hear them,
the terms runtime and design time are not very complicated concepts at all. The time you spend
sitting down actually typing out the lines of code for your program is called design time. When you
enter the run command, which will be covered later, and your program code begins to actually exe-
cute, this period of time is called runtime. Simple, isn’t it? Over the years, I have on many occasions
taught people how to use various aspects of the computer. The biggest problem that most people
have to overcome is that the machine intimidates them. Many people think they will break the
machine, or they think that the computer is so complicated they can never comprehend it. It is
important that you do not get caught up with these beliefs. Nothing in life is really hard; there are
just things you do not know how to do yet. These computers are more resilient than you may think,
and they will not break as easily as you might imagine.

Let’s see this principle in action. Enter the following code:

DIM L$(5)
INPUT L$

Your screen should look something like the one shown in Figure 2.10.

What you just did was create a string variable, as we have done so many times before. You
gave that variable a length of 5 letters. What’s new here is the INPUT statement. This state-
ment tells the computer, “I need you to get some information from the user via the key-
board and place that information into a variable for me.” As you can see from this
example, we have asked the computer to store the information it gets from the user into a
string variable we just created called L$.

The format for this command is as follows:

INPUT (string variable)

INPUT is the actual command being given to the computer and (string variable) is where
we enter the name of the variable we want the data to be stored in.

Type in five letters and press Enter. The computer should display READY as a sign that it
has accepted the input and is ready to move on. Now as we have done so many times
before, let’s ask the computer to print out the contents of our variable. Enter:

PRINT L$

Principles of BASIC 41

Figure 2.10 Example of using the INPUT command.

As you can see, the computer prints out the contents of the variable L$, which is the data
that you just typed in.

Now experiment with this concept. Create as many different variables as you want, then
use the INPUT command to place values into the variables you have created. Try creating
string variables and numeric variables just for fun. Experiment with this concept until you
are sure you completely understand how it works, and then move on.

Your computer’s memory is probably pretty cluttered and unorganized because you have
been creating so many variables and filling themn with random data. In order to clean
things up a bit we will use the NEW command. What this command does is erase any vari-
ables or programs that may be stored in memory. In essence, your computer’s memory
will be just as empty as when you first turned it on. It is important for us to note that this
command will not clear the screen as you might expect. In order to clear the screen, we
will use the following command: GR.0. Now let’s give these commands a try.

Enter the following code

NEW
GR.0

At this point your screen should look just like when you first turned it on, as shown in
Figure 2.11.

Chapter 2 ■ Simply Complicated Game Programming42

Figure 2.11 The Atari display after clearing memory and the screen.

The Listing Principle
So far we have been giving the computer direct commands. We type the command and
the computer follows our instructions immediately. This may be fine for learning simple
concepts, but we have to find a way to store all the commands that we need to execute. In
order to do this, we have to create a program listing. A program listing, as its name
implies, is a list of all the commands that are used to make up our program. Now in order
to make a program listing we have to enter our commands into the computer in the fol-
lowing format:

(Line Number1) (Command1)
(Line Number2) (Command2)
(Line Number3) (Command3)
(Line Number4) (Command4)
(Line Number5) (Command5)

The above listing would be used to store a program with four commands. Notice that
before each command is a line number. All commands are executed in order from the one
with the lowest line number to the highest. To make things clear, let us create our first pro-
gram listing.

Enter the following code:

10 Print “Please enter your age”
20 let age = 0
30 input age
40 Print “your age is:”
50 Print age

As you have probably noticed, the commands that you entered did not execute immedi-
ately as earlier ones did. In fact, nothing seemed to happen. That is because all of the
action so far has taken place behind the scenes. The commands that you entered were
stored in the computer’s memory. There are two things that we can do with this program
now that it is in memory. First, we can have the computer display the program so that we
can be sure we typed everything in correctly.

Now clear the screen using the command GR.0. This isn’t strictly necessary, but if you do
it, the screen does not become too cluttered. Now enter the following command:

LIST

As you can see, the computer just listed the entire program that you just wrote onscreen.
It is at this time that we could make changes if something was wrong or if we just wanted
to make some adjustments. Let’s make a change to our program so that you can see how
easy it is to do so. To make a change to the program , simply enter the line number for the

Principles of BASIC 43

command you want to change and then enter the commands for that line the way you
want them to work. To see this concept in action, enter the following code:

10 Print “Please enter your age now”

Again enter the LIST command. You can see that line 10 has been changed. The second
thing we can do is have the computer execute the program. To do so, enter the following
command:

RUN

Be sure to follow the onscreen instructions.

The computer runs each of your commands in order, first asking you to enter your age,
creating a variable to hold your age, giving you the opportunity to enter your age, and
then finally printing your age.

Congratulations. You are now an entry-level programmer.

Here is the listing principle:

“The computer must be given the precise order in which to execute commands. We
give the computer this order by placing line numbers before each command. The
computer executes commands starting from commands with the lowest number up
to the highest.”

Short Test

Before we move on to the rest of the principles, you should take some time and apply
them without any guidance.

1. Create a program that will ask the user for her first name, then her last name, then
her age, and finally print out all of this information.

2. Make up your own program ideas from scratch where you get input from the user
and then display this information onscreen.

Please do not skip these exercises. They will help you to cement the concepts covered so
far in your mind. When you are sure that you have mastered these concepts, then you are
ready to move on. Answers to the exercises can be found on the book’s Web site.

The Math Principle
This principle states that:

“Every version of BASIC has the ability to perform basic and complex calculations,
which can be used to solve math problems and manipulate data.”

Any version of BASIC that you use is capable of functioning as a giant calculator. You are
familiar with standard mathematical expressions such as +, -, ×, –, and ÷. Now on our

Chapter 2 ■ Simply Complicated Game Programming44

BASIC calculator most of the expressions that you use remain the same with a few excep-
tions. Namely, we represent the multiplication sign with a * and we represent the division
sign with a /. So if we wanted to know what 5 × 6 is, we would type the following com-
mand:

PRINT 5*6

This command tells the computer to print the results of 5 × 6.

The following code would give us the result of 100 divided by 20

PRINT 100/20

Now it is important for you to understand that the math principle works hand in hand
with the variable principle. To see what I mean, let’s take a look at the following example.

Enter the following code:

NEW
LET A = 5*6
PRINT A

Your screen should look something like the one shown in Figure 2.12.

Principles of BASIC 45

Figure 2.12 Example of storing the results of a mathematical operation into
a variable.

As you can see, we are able to store the results of mathematical operations inside of vari-
ables. We can take this a step further by incorporating variables into the mathematical
expression itself. To demonstrate this, enter the following code:

PRINT A/5

Your screen should now look like the one shown in Figure 2.13.

As you can see, we were able to take the variable we created earlier, divide it by five, and
have the computer print the results. The use of the math principle to manipulate stored
data is perhaps one of the most powerful features of any computer system.

Take some time to play with this concept by dividing, adding, and multiplying numbers
and storing them into variables and printing them until you are sure about how this stuff
works.

BASIC has what are called mathematical functions that give us even more power when
dealing with mathematical problems. We will learn these functions later in the book as we
study each machine in depth.

Chapter 2 ■ Simply Complicated Game Programming46

Figure 2.13 Example of performing a mathematical operation on a variable.

The Logic Principle
“The logic principle states that all decision making on the computer is based on
binary true or false statements.”

All that this means is that if the computer is making a decision, it will say, “If this is true
and this is true, then I will do this.” To see this in action, write a small program that uses
the IF command. The IF command uses a format like this:

IF variable/value (operator) variable/value THEN
commands
END IF

IF is the command that lets the computer know that we need it to make a decision.
Variable/value can be variables, numbers, or letters that you want to compare. Operator
will be a mathematical symbol, such as the greater than(>), less than(<), or equal
(=)signs. You will usually be able to find out which symbol to use by reading your if com-
mand as a sentence. So for example, if the variable PL holds the value of a player’s health
points and we need to make sure that the game ends when the player’s health points reach
zero we would say if PL is equal to 0 then the game is over. From our sentence, we see that
we will be using the equal sign in our statement. When we write our game code this if
statement would look something like this:

100 IF PL = 0 THEN

THEN is the next command used. This command cannot be used alone in and of itself and
must be used along with the IF command. It tells the computer that if the results of the IF
operation are true then the computer should execute the commands that follow.

The next command you have to be aware of is the END IF command. When we use the IF
command, there are usually a precise number of lines of code that you want executed
when the parameters of your IF command are true. In order for the computer to know
exactly which lines of code you want executed, we normally enclose them between an IF
command and an END IF command as seen in the example below.

It should be noted that not all retro machines support the END IF command. In these cases
your entire IF THEN command has to be written on a single line.

IF A > B THEN PRINT “A IS BIGGER THAN B”

100 IF PL = 0 THEN

commands

commands

commands

200 END IF

Principles of BASIC 47

This way the computer knows that if PL really is equal to 0, it should execute all of the lines
between the IF and the END IF command. On some occasions, you may only have one com-
mand that you want executed as a result of the IF command; in such cases, the END IF com-
mand is not really needed and you can use the following format:

IF variable/value (operator) variable/value THEN commands

Try the following example:

Create two variables called A and B with the following code:

10 LET A = 5
20 LET B = 10

Now it’s time for the IF command:

30 IF A < B THEN PRINT “B is bigger than A”

Enter the RUN command to execute the program.

As you can see the computer prints:

B is bigger than A

Because A is less than B. Now let’s try changing the value of A to 20:

10 LET A = 20

Now run the program again. This time nothing happens. This is because A is no longer
less than B, so the computer does not execute the commands after the THEN command.

The Screen Mode Principle
The screen mode principle states that:

“A given computer system may have a screen mode of one of two types: graphics screen
modes or text screen modes. What makes each graphics screen mode different from other
graphics screen modes is the amount of color that can be displayed, the resolution of the
screen, and whether the screen displays text or graphics elements. The element that sepa-
rates text modes from each other is the amount of colors that can be displayed, the num-
ber of characters that can fit horizontally across the screen, and the number of characters
that can fit vertically onscreen.”

When you want to present information to the user in the form of text, as you have done
so far in this chapter, you need the computer to be in text mode. When you want to pre-
sent information to the user in the form of graphics, as you shall learn to do shortly, you
need the computer to be in graphics mode.

Chapter 2 ■ Simply Complicated Game Programming48

How do we change the graphics mode of the computer? Remember when you learned
how to clear the screen? You used the command GR.0. The GR. command is actually an
abbreviation for the command GRAPHICS. This command is used to set the graphics mode
of the computer. When your computer starts up, it starts in text mode 0. When you give a
command to the computer to change the screen mode, everything that is onscreen is auto-
matically erased even if you are setting the computer to a screen mode that it is already in.
So when the computer starts up in text mode 0 and we give the graphics command to set
the screen mode to 0, the computer simply clears the screen.

Before you experiment with screen modes, you should know that there are also mixed
screen modes that display text on parts of the screen and graphics over the rest of the
screen. Graphics mode 1 is such a screen mode. Let us enter this screen mode now.

Type the following code:

GR.3

Your screen should look like the one shown in Figure 2.14.

Principles of BASIC 49

Figure 2.14 Screen shot of Graphics mode 3.

The blue area at the bottom of the screen is the text area. This is where you can type com-
mands and get information from the computer. The top of this screen is the graphics area
where we are able to draw pictures.

In the next section, you will learn how to create pictures under the graphics principle.

The Graphics Principle
The graphics principle states that:

“Each version of BASIC has built-in functions to facilitate the production of generic
graphics, such as points, lines, and circles. Using these graphics elements, you can
create complex or simple computer graphics.”

If you have been following along with the instructions in this chapter, you should be in
graphics mode 3, which means that you have four text lines at the bottom of the screen,
and the top of your screen is in graphics mode. If this is not the case, enter the following
line of code:

Gr.3

The Color Command

There are color registers that can hold one of 15 different values. Each value represents a
different color. When you execute a graphics command, the command draws a color based
on the value that is in the selected color register. In the current graphics mode, you have
access to four colors at a time. Color register 3 has a default value of blue, so if you want
to use the color blue for drawing you would enter the following command.

COLOR 3

The command we have just used is called the COLOR command and is used to tell the Atari
which color register it should use to draw with. (In our current graphics mode, we can
draw using color registers 0–3.)

More information about using colors on the Atari is covered later on in Chapter 7, “Hack-
ing the Video Buffer.”

You would not see any immediate changes onscreen after executing the COLOR command,
but if you use any graphics command now, the command will draw in the color blue. Let’s
test this idea and introduce the next graphics command, which is the PLOT command.

The PLOT Command

Before we can discuss the use of the PLOT command, we have to understand the way that
the graphics screen is organized. Take a look at Figure 2.15 to see the way the graphics
screen is organized.

Chapter 2 ■ Simply Complicated Game Programming50

As you can see, the screen is organized like a grid and we have a coordinate system that we
can use to find any point onscreen. In our coordinate system the top-left corner represents
the origin. If we give the computer the coordinates 0,0, the computer will focus its atten-
tion on the top-left corner of the screen. For every amount that you increment the x value
of these coordinates, the computer will focus its attention one more pixel to the right. For
every amount that you increment the y value of your coordinate system, the computer will
focus its attention one pixel lower.

The PLOT command uses this coordinate system. When you call this command and provide
a necessary pair of coordinates, it will plot a dot onscreen at the location of the coordi-
nates that you give to this command. If the top-left corner of the screen is represented by
the coordinates 0,0 and if we use the command

PLOT 0,0

our computer should plot a point in the top-left corner of the screen. Enter the command

PLOT 0,0

and let’s see what happens. Your screen should look something like the one shown in
Figure 2.16.

As we predicted, the computer plotted a pixel in the top-left corner of the screen. Now
experiment with the plot command and try plotting points at different coordinates

Principles of BASIC 51

Figure 2.15 Diagram of the graphics screen layout.

onscreen. Continue until you are sure that you fully understand the concept of how the
coordinate system works. Keep in mind that the largest number that you can use for your
x and y value will change depending on the video mode you are using. If you use anything
larger, you will get an error message. Like most of the errors you will make when pro-
gramming, this one is easily corrected. Just retype your commands using values that are
within the limits of what the computer can print.

When you are done experimenting, enter the following command to clear the screen:

GR.3

The DRAWTO Command

When you plot a point using the PLOT command, the computer remembers the coordinates
that were used. The DRAWTO command takes advantage of this. If you plot a pixel in the top-
left corner of the screen and want to plot a line from there to the coordinate 7,7, you
would have to give the computer the following command: DRAWTO 7,7. Let’s give this a try
by entering the following code.

GR.3
COLOR 3
PLOT 0,0
DRAWTO 7,7

Your screen should look like the one shown in Figure 2.17.

Chapter 2 ■ Simply Complicated Game Programming52

Figure 2.16 Here we use the plot command to
place a dot in the top-left corner of the screen.

Now try the following command.

DRAWTO 7,0

Your screen should now look like the one shown in Figure 2.18.

Principles of BASIC 53

Figure 2.17 In this example we use the DRAWTO command to draw lines.

Figure 2.18 You can use the DRAWTO command as often as you wish to
fill the screen with lines.

Experiment with this command a bit by entering the DRAWTO command a few times with
different coordinates until you get the hang of it.

Now you have the hang of the graphics principle. Some versions of BASIC have more
functions to draw circles and other graphics, but we will cover those when we are dealing
with each machine in the following chapters.

The Branch Principle
This principle states:

“The ability of a computer to produce the appearance of intelligence is based on
both the ability to make decisions and the ability to alter program flow as a result
of such decisions. Branch commands are what enable the computer to change the
program flow.”

Earlier we discussed the Logic Principle and saw how we could cause the computer to exe-
cute a number of commands based on the results of an IF statement. While this does give
us the ability to make our program slightly “intelligent,” it is still greatly limited. Your pro-
gram still starts from the first line of code and progresses toward the last line of code, after
which it stops. It has one continuous program flow that never changes.

Now consider the exercise that you did under the previous principle. What if one person
used your program and then someone else wanted to use it? The way your program
is written now, after the first person used it, the next person would have to use the RUN
command and rerun your program in order to use it. Your program will look a lot more
professional if after each person uses it, the program would then ask if anyone else wanted
to use it. If a user types Yes, the program will start over from the first line of code, and if
the user enters No, the program will end.

This is a very simple example of how we can use branch commands to alter program flow
and add another level of intelligence and interaction to your programs. The branch com-
mand that is most common is called GOTO. This command is used to tell the computer to
go to a particular line. The format for this command looks like this.

GOTO line number

This command is very straightforward. Line number is the line number that you want the
computer to jump to. If you use 5 as your line number then the computer will jump to the
5th line of your program and execute the instructions on that line before moving on to
executing the remaining lines of your program. Let’s see this in action. Type NEW and
press enter to clear your computer’s memory. Now enter the following program.

10 A = 100
20 B = RND(10)
30 PRINT A “ x “ B “ = “ A*B

Chapter 2 ■ Simply Complicated Game Programming54

Make a note of the line number for the first line of code in your program. If you ever write
a very long program and you are not sure what the line number is, use the LIST command
to print out a listing of your program onscreen. Now add lines of code to your program
to tell the user to enter yes to use your program again and no to exit your program. Your
program should look something like this.

40 PRINT “WOULD YOU LIKE TO RUN THE PROGRAM AGAIN”
50 INPUT L$

Note the $ after the variable which indicates that this is a string variable.

Now add a new line to your program and on that line enter the following command:

If (your variable) = “yes” then GOTO first line number

Remember to replace your variable with the name of the string variable that you used to
hold your yes or no answer. Substitute first line number with the line number of the first
line in your program. Now run your program. If you did everything correctly, your pro-
gram should run just like it did before, only this time rather than just ending, it will give
the user a chance to start the whole program over or just let the program end as it did
before. Your program should look like this.

10 A = 100
20 B = RND(10)
30 PRINT A “ x “ B “ = “ A*B
40 PRINT “WOULD YOU LIKE TO RUNE THE PROGRAM AGAIN”
50 INPUT L$
60 IF L$ = “YES” THEN GOTO 10
70 PRINT “GOODBYE”

The Looping Principle
The Looping Principle states that:

“When a given task must be repeated again and again, it is best to incorporate that
task into an infinite or a finite loop.”

Let’s take a look at an example of where we might need to use this principle. Suppose we
have a game with a space ship in the center of the screen. When the player presses the but-
ton on his controller, his ship unleashes its “super-mega bad-mega big laser-cooled
plasma cannon.” In order to add to this effect, we may want our player’s space ship to
jump back a short distance and then move back into its original position in order to sim-
ulate a gun’s recoil. Now suppose that we have two variables that hold the ship’s position
called PX and PY. These hold the ship’s x and y values. So far everything is set up just as it
was when we covered the input principle. Now let’s throw in a twist. We will add a new

Principles of BASIC 55

variable called PR, which initially will have a value of 0. From now on, when we plot the
position of our players’ ships, rather than using the following code as we did before

PLOT PX,PY

we will use this code:

PLOT PX,PY + PR

As you are now adding the value of PR to PY, so far this will have no real effect on your pro-
gram because PR is set to 0. Now think about what would happen if PR were equal to 2 or
5 or 10. Because PY controls the vertical position of the ship onscreen and the larger PY is,
the farther down on the screen our player’s ship will appear, increasing the value of PR will
cause the ship to be displayed farther down on the screen. Likewise, if you were to sub-
tract PR from PY, your player’s ship would move farther up on the screen. Assuming that
the ship is facing upwards when it fire its cannons and you want to simulate the ship mov-
ing backwards and then back to its original position, all that you have to do is manipulate
the value of PR. First increment its value so that your ship moves downward, and then
slowly decrease the value of PR to move the ship back into its original position. It is the
manipulation of PR that requires you to use the loop principle.

When you are creating a loop, you will generally use the commands called FOR and NEXT.
The format for these commands is as follows:

100 FOR I = 1 TO 10
110 Commands
120 NEXT I

The command line with the FOR command and the NEXT command form the beginning and
end of our loop. Any number of commands can be placed between the FOR and NEXT com-
mands. In the preceding example, the computer executes the given commands 10 times.
This is because we have given the variable I a range of 1 to 10.

The first time the program reaches line 100, it returns a value of 1. The program then goes
to line 110 and executes the commands on that line. When the program moves down to
line 120, it jumps back to line 100 and the value of I is increased to 2. The computer moves
to line 110, executes the command, moves down to line 120 where once again the NEXT
command causes the program to jump back up to line 100 where I is increased to 3. This
process is repeated again and again until the value of I reaches 10.

It should also be noted that I, like any other variable, can be used in our program. We
noticed that each time the loop ran, the value of I increased. What if the PLOT command
that we used earlier were placed between our FOR and NEXT commands? What if each time
our loop runs, the value of PR is set to the value of I. Each loop would bring our player’s
ship 10 pixels down.

Chapter 2 ■ Simply Complicated Game Programming56

That code would look something like this:

100 if joy code
120 COLOR 0
130 PLOT PX,PY+PR
140 FOR I = 1 TO 10
150 COLOR 0
160 PLOT PX,PY+PR
170 PR = I
180 PLOT PX,PY +PR
190 NEXT I
200 END IF

First, we enclose all of our code in an IF command that will only allow it to be activated
when the player pushes the button on her joystick. Next, we activate our loop, which
causes the player’s ship to move down 10 pixels.

So far you can cause your ship to jump back 10 spaces to simulate the first portion of the
recoil; now we need to have the ship move back to its original position.

You can do the same thing by creating another loop that is very like the last one, except
this time you will set I to range from 10 to 1, which causes the program to count back-
wards from 10 to 1 and places the ship back in its original position. The complete list of
commands that can be used to do this simple recoil animation is listed below.

if joy code
120 COLOR 0
130 PLOT PX,PY+PR
140 FOR I = 1 TO 10
150 COLOR 0
160 PLOT PX,PY+PR
170 PR = I
180 PLOT PX,PY +PR
190 NEXT ISX
200 FOR I = 10 TO 1
210 COLOR 0
220 PLOT PX,PY+PR
230 PR = I
240 PLOT PX,PY +PR
250 NEXT ISX
260 END IF

Principles of BASIC 57

This page intentionally left blank

59

The Early History
of Video Games

chapter 3

H
istory is the witness that testifies to the passing of time; it illumines reality,
vitalizes memory, provides guidance in daily life, and brings us tidings of
antiquity.

Cicero (106 BC–43 BC), Pro Publio Sestio

The task has been laid before me to be your guide as we travel down the mythical halls of
legend and magic and sheer genius that together form the history of the video game
industry. In this manuscript lies the secrets of the ages—the deep knowledge and science
that was born of a will to create machines that did things never before seen and thought
to be impossible. The history of the gaming industry is filled with drama and suspense,
and from its inception, it was filled with controversy. But what great story isn’t?

Build It and They Will Come!
Remember my telling you that the gaming industry is full of
controversy? Well, the very first controversy is the question
of who originally came up with the concept of building
video games. The honor of being the first person to propose
the idea of the video game goes to a 29-year-old TV engi-
neer named Ralph Baer, pictured in Figure 3.1. In 1951,
Sam Lackoff, who was the chief engineer at Loral, gave Mr.
Baer and his collogue, Leo Beiser, an order: “Build the best
TV set in the world!”

That simple phrase fueled the start of the entire video game
industry. Well, almost. . . . You see, during the development Figure 3.1 Ralph Baer.

of this ultimate television set, Ralph Baer proposed the idea of integrating video games
with television sets. Unfortunately, this initiative was not put into effect at the time
because his boss rejected the idea. In fact, the fruit of their labor, the television that was to
be the “best TV in the world,” never even went into production. This experience was not
in vain, however, for the seed had been planted, and this seed grew into quite a tree indeed.

Noughts and Crosses
The first graphical computer game was actually built by a
gentleman named A. S. Douglas in 1952 as a part of his
doctorial thesis on “human-computer interaction.” To
illustrate his point, Douglas developed a tic-tac-toe–type
game called Noughts and Crosses on an EDSAC vacuum
tube computer. Figure 3.2 shows a simulated screen shot
of Noughts and Crosses.

n o t e

While the game Spacewar! is regarded by many as the first
real graphical computer game, it should be noted that this
game actually precedes Spacewar! by 10 years.

This machine stored programs and data on 32 mercury delay lines (or long tanks), which
could hold 1,024 words and represented the display data as a matrix of 35 × 16 dots, which
were displayed via one of three cathode ray tubes. The game allowed the player to choose
who would go first, the player or the computer. The computer would then use special
algorithms to attempt to win the game whenever possible.

Willy Higinbotham’s Game
The next evolution in the gaming industry toke place in 1958.
Every autumn Brookhaven National Laboratory, a U.S.
nuclear research lab in Upton, New York, held a series of open
houses to show people how “safe” working in a nuclear lab
could be. William A. Higinbotham (Figure 3.3), a physicist
working for Brookhaven, noticed that visitors to the lab
seemed to be bored with displays made of simple photographs
and static equipment.

Chapter 3 ■ The Early History of Video Games60

Figure 3.2 Simulated screen
shot of Noughts and Crosses.

Figure 3.3 Willy
Higinbotham.

Determined to make visits to the lab a bit more interesting, he came up with the idea of
creating a video game. At that time, the analog computers in use at Brookhaven were very
good at doing two things: cryptography and plotting missile trajectories. Correctly guess-
ing that nobody would find it fun to sit down and watch a computer deciphering crypto-
graphic keys, Mr. Higinbotham opted to leverage the strength of an analog computer’s
ability to plot missile trajectories. His idea was to use an analog Donner computer to cal-
culate the path of an imaginary ball, which could be displayed on an oscilloscope. The
game had two controllers that were outfitted with a dial and a button as seen in Figures
3.4 and 3.5.

As the ball bounces off a horizontal line at the bottom of the screen (this line, of course,
represented the ground), a player could use the dial on his controller to adjust the angle
of the ball’s trajectory (as long as it was his turn). Then he could
press the button on his controller to hit the ball back over to his
opponent’s side of the screen. (There was also a reset button to
put the ball on either side of the screen and make it ready to go
back into play.) In the center, on the “ground,” stood a small ver-
tical line that represented the net. If a player hit the ball into the
net, she lost the game. It was a brilliant idea, and after three
weeks, Willy Higinbotham and technical specialist Robert V.
Dvorak had built the first ever video game system, which was
dubbed Tennis for Two, as seen in Figure 3.6.

In October 1958 in the Brookhaven National Laboratories gym-
nasium, Tennis for Two went on display for the first time and was
a major hit. Despite the fact that this game was played on a five-
inch oscilloscope screen that only had one color (phosphor
green) and no score was tabulated, people still stood in line for

Build It and They Will Come! 61

Figure 3.4 Picture of
Willy Higinbotham’s
game in action.

Figure 3.5 Picture of
game controls used for
Mr. Higinbotham’s game.

Figure 3.6 Picture of
the first ever video
game system.

hours to play it. One year later Tennis for Two, also known as tennis programming, was
back and bigger and better than ever for the 1959 open house. This time around, its fea-
tures included the ability to adjust gravity to simulate playing tennis on other planets and
a much bigger screen.

Unfortunately, this groundbreaking machine was short lived. In the 1950s, parts were very
expensive and hard to come by. As a result, they often reused the same parts over and over,
building one machine today, then dismantling it to harvest parts, which they would use to
build another machine tomorrow. Such was the fate of the Tennis for Two video game sys-
tem. Even more tragic is the fact that Higinbotham never made any attempt to patent or
copyright his invention. Apparently, he thought the idea was so obvious and simplistic
that it was not worth pursuing, a mistake that he would regret later.

Higinbotham was in no way aware of the dreaming of Ralph Baer or the works of A.S.
Douglas, but to this day there is great controversy concerning which of these men deserves
the right to be called the Father of the Video Game Industry. The concept of using a home
TV set for playing games was not even in the remotest parts of either Higinbotham’s or
Douglas’ minds. Ralph Baer is the first man to be credited with dreaming up the idea of
using a standard home TV set to play a video game, A.S. Douglas was the first man to
actually build an analog computer game, and Higinbotham was the first person to actu-
ally build an analog video game.

At this point, I should probably note that there is a technical difference between video
games and computer games. A video game is a game that is designed to display games
using a Raster video display, a.k.a., a TV. The video games designed by Ralph Baer between
1966 and 1968 and the commercial games based on his inventions in the seventies were
not programmable in the sense of current video games but rather were hard-wired to per-
form one specific task: play the game that they were made to play. In the early days, these
video games were vastly different from computer games, which could only be played on
large mainframe computers that were the size of a small city. (Well, not really as big as a
city, just a small house, but they were huge and cost millions of dollars to make.)

In a Land Far, Far Away . . .
Previous stages of the evolution of the electronic game were pretty straightforward. Ralph
Baer was building a television set and said,“Hey you know what would be really cool? Let’s
integrate a video game with a TV set.” A.S. Douglas was trying to obtain his doctorate
degree, and Willy Higinbotham wanted to entertain guests in the laboratory he worked
for. In each case, there was a simple cause and effect, of which only Baer’s work led to a
major development in the electronic gaming industry.

Chapter 3 ■ The Early History of Video Games62

The next evolution, however, was a bit more complex, in part because technology was
improving, but also because there were actually a number of different causes that all came
together in one big gigantic melting pot. When the molten contents of this pot were
poured into a mold and left to harden, the result was the groundbreaking video game
called Spacewar!.

Spacewar!
Amazingly, if we want to identify the culprit who was the ultimate root and cause of the
Spacewar! game, we would have to go all the way back to the 1920s. It was on a hot sum-
mer night in Washington D.C. that Edward Elmers Smith (better known as E.E., or Doc,
Smith), his wife, and a few close friends were marinating in the slow heat of the Smith
apartment. During the course of idle conversation, Smith mentioned how wonderful it
would be if they were in the absolute zero temperatures of space. Needless to say, it was a
fascinating topic, and the group spent the rest of the evening engaged in a conversation
dominated by fantasies of outer space. Finally, Mrs. Garby convinced Mr. Smith that he
should write a book about adventures in outer space.

Even though he initially refused the idea saying, “Got to have a love story to write a book,
and I don’t see how a love story would fit in with that kind of stuff,” nevertheless, she was
able to convince him to change his mind by agreeing to write the “love stuff” herself if he
would write the “wild stuff.” The rest is history. “The Skylark of Space,” “Gray Lensman,”
and all the other works of “Doc” Smith became seeds that would take some 40 years to
grow.

Long, Long Ago

Cut scene: Fade to a room filled with members of the world’s first hardcore “hackers’”
club, dubbed the Tech Model Railroad Club (TMRC). It is here that the seeds of E.E.
Smith’s space stories take root and begin to blossom into something truly beautiful. You
see, the Tech Model Railroad Club members were major fans, sorry, scratch that, fanatics
of the works of “Doc” Smith. In fact, these guys were also major movie lovers and for the
life of them they could not see why there were not any movies based on the novels of
“Doc” Smith. As a result, they spent hours every day daydreaming and fantasizing about
heavy special effect-ridden movie sequences based on the works of the author they held
so dear. Boy, oh, boy, what fantastic dreams they must have had! You see, “Doc” Smith
wrote about major intergalactic starships and tremendous battles in space. This man was
the grandfather of the entire Sci-Fi genre!

In a Land Far, Far Away . . . 63

n o t e

When most people hear the word hacker, they tend to think about a pimply-faced teenager defac-
ing popular Web sites or some dark malevolent figure hacking into banks and moving money from
one bank account to another. For many people, it would seem very odd to use the word “hacker”
way back in 1961 to describe the Tech Model Railroad Club members. After all, the Internet wasn’t
even invented yet.

The truth is the current image of a hacker is really a modern invention. Oddly enough, the original
definition of a hacker was “one who used an ax to carve furniture.” In the computer world, the
word hacker was used to describe anyone who was skilled with computers and had the ability to
push a computer beyond what others thought possible. This is the noblest definition of the word
“hacker.” A word that was almost a badge of honor has been defiled to the point that it is now
considered almost shameful. Today the words hacker and criminal can almost be used inter-
changeably.

Today dictionary.com gives the three following definitions of a hacker:

1. One who is proficient at using or programming a computer; a computer buff.

2. One who uses programming skills to gain illegal access to a computer network or file.

3. One who enthusiastically pursues a game or sport: a weekend tennis hacker.

Unfortunately for our hacker friends, it took a lot in those days to make a movie. You
needed sound stages, explosions, and a lot of other things that they just simply had no
access to, which meant they would not be making movies any time soon. As fate would
have it, however, a new medium was about to make itself available to them through which
they could create their own adventures in space.

The 1960s
Now, up to this point in time, all computers were huge, I mean, gigantic. These things
were often literally the size of a small house! While things begin to get a little smaller due
to transistorization, computers like the TX-0 mainframe were still pretty big. Then came
the PDP-1 from Digital Equipment Corporation, which can be seen in Figure 3.7. The
PDP-1 was groundbreaking in a number of ways, most notably that it was much smaller
than its predecessors. Another key feature of this machine was that it was more user
friendly than past computers had been. In order to use previous machines, you had to
have a degree in electrical engineering. Furthermore, you virtually had to perform a
séance every morning to get the machine to start up, and shutting it down was not any
easier. With the PDP-1, all you had to do to turn it on was flip a switch, and you could just
shut it off any time you wanted to without fear of irreparable damage to the machine. This
was unheard of in 1961.

Chapter 3 ■ The Early History of Video Games64

Fascinating though these computers may be to computer geeks such as myself who love
them for their inner beauty and charm, the average person takes very little pleasure in
watching them. They are not much to look at. Despite their size, to the untrained eye they
just look like a bunch of closets filled with tape recorders, glowing tubes, and lights that
seem to hum for no apparent reason. In order for the average person to appreciate these
machines you have to give them something to look at, like a cathode ray tube (CRT), more
commonly known as a TV set.

You can take the most computer-illiterate person in the world and sit him in front of a TV
set for hours on end without his losing interest once. So, it stands to reason that if you can
make a computer do something with a CRT, people will be fascinated and amused by what
the computer is doing for hours on end. The truth is that not only was it amazing how
long people would remain captivated, but also how little the computer actually had to be
doing in those days to capture their attention.

This phenomenon was demonstrated yearly at MIT’s annual Open House Day using the
screen of a computer called the Whirlwind. It was here that the first ever demo that uti-
lized a CRT was built and demonstrated. What did it do? Well, it caused a dot to appear
at the top of the screen. This dot then fell as though being pulled down by gravity to the
bottom of the screen and bounced repeatedly, losing momentum each time, until finally
it rolled off the screen. See Figure 3.8.

In a Land Far, Far Away . . . 65

Figure 3.7 Digital Equipment Corporation’s PDP-1.

The TX-0’s answer to the bouncing ball was a demo called “mouse in a maze,” which was
written by Douglas T. Ross and John E. Ward. This demo allowed the user to create a maze
and place pieces of cheese throughout the maze. A virtual mouse would then navigate its
way through the maze finding the pieces of cheese. Another cool version of the demo
replaced the cheese with martinis. After the mouse found the first martini, it would stag-
ger as it walked to find the other martinis. There was another very interesting demo avail-
able for the TX-0 called HAX, which displayed changing patterns on the display and
emitted amusing sounds from the speaker. The display of patterns could be effected in real
time by using two console switch registers.

The Saga Continues

The final demo that was available for the TX-0 was a game of Tic-Tac-Toe.

It is at this point that we must return our focus to the Tech Model Railroad Club. Several
months before a PDP-1 was scheduled to be installed at their campus, Wayne Witanen,
mathematician, early music buff, and mountain climber; Stephen R. (Slug) Russell, spe-
cialist in steam trains, trivia, and artificial intelligence; and J. Martin Graetz, self-described
“man of no fixed talent who tended to act superior because he was already a published
author,” all came together to form a sort of committee to decide what they should do with
it. You see, the demos for the TX-0 and the Whirlwind formed the foundation for build-
ing a great demo for the PDP-1. The bouncing ball was a pure demonstration.“The mouse
in a maze” was unique in that it allowed the user to manipulate it and make it different
every time it ran. HAX was advanced in that it was a graphics program that you could
interact with in real time. And of course, the significance of Tic-Tac-Toe was that it was a
game (simplistic as it may be, it was definitely a game).

Chapter 3 ■ The Early History of Video Games66

Figure 3.8 The infamous bouncing ball demo.

To create a demo for the PDP-1, they quickly developed the criteria that they felt they
must meet to create a great demo:

■ It should demonstrate as many of the computer’s resources as possible, and tax
those resources to the limit.

■ Within a consistent framework, it should be interesting, which means every run
should be different.

■ It should involve the onlooker in a pleasurable and active way; in short, it should
be a game.

But wait, hmm, something was missing. What could it be? What was missing was the rea-
son that the TMRC was so interested in this machine in the first place. They may not have
been able to create a movie based on the works of E. E. Smith, but using this machine, they
could produce a game based on the works of their beloved author. The group concluded
that they would create a space game, which would revolve around two user-controlled
space ships that would be equipped with some form of weapon, such as a ray, beam, or
missile. Finally, to round out the initial features of the game, it was decided to implement
a hyperspace feature that would allow a player to disappear when things got too sticky and
reappear at a random location on the field.

Okay, so it was all set. They would build the game, but there was one problem. The PDP-
1 was a very no-frills machine, and apart from a few diagnostics and utility programs,
there were no tools to make the game with. As a result, before they could build the game,
they had to build the tools to make the game with. Of course, this was no problem for our
hacker friends; as a matter of fact, they liked it that way. Jack Dennis’ MACRO assembler
and Thomas Stockham’s FLIT debugging program, were the first of their kind when they
were created for the TX-0. Both of these programs were translated from TX-ish to PDP-
ese. Steve Piner wrote a text editing program called Expensive Typewriter, which was the
first word processing program ever created.

Wow, so they did it. The hackers had created the tools they needed to produce the video
game. Now it was time for the real work to begin.

Before jumping in and building the beast called Spacewar!, the hackers cut their teeth cre-
ating a few smaller demo programs. First, they re-created the bouncing ball program on
the new PDP-1. Next came The Minskytron. (Actually, its real name was Tri-Pos: Three-
Position Display, but because it was created by Professor Marvin Minsky and “tron” was
the cliché suffix of the early ‘60s, it was inevitable that rather than calling this program by
its real name, it would be dubbed The Minskytron.) It displayed three dots, which bobbed
and weaved and otherwise interacted with each other based on the values of a few initial-
ization constants that were set via the console switches.

In a Land Far, Far Away . . . 67

Now that preliminary work was out of the way, work
could begin on building the actual Spacewar! game.
During the first stage of development, our young pro-
grammers designed the Wedge and the Needle. These
were the names given to the game’s two space ships
because of their shapes: one ship looked like a wedge of
cheese, and the other looked like a sewing needle. It was
decided that both ships should have starting positions
located at diagonally opposite corners of the screen (or,
in keeping with our space theme, two diagonally oppo-
site quadrants) as seen in Figure 3.9.

Already the game was somewhat playable and had very
realistic game physics. When you fired the throttle, the
ship would slowly accelerate until it got up to speed. In order to stop it, you had to turn
around and fire your thrusters in the opposite direction. This use of “realistic” game physics
definitely lent much to the feel of the game. The last feature that Russell, a.k.a. Slug, imple-
mented at this stage of development was a random star generator. This was important
because it was difficult to gauge relative motion with the ships on a plain black screen. At
least with a basic star field background, your brain could compare the relative distance of
the ship from the stars around it to recognize whether the ship was moving or standing still.

n o t e

If you are reading this book, then you may have some interest in becoming a game hacker. It is
important for you to understand that as a game hacker it is never good enough for you to just do
something. Whatever you do must be done with style and class. Your program should either have
elegant code or should carry out its function in an elegant way. Naturally, the ultimate of elegance
is to write program code with style to produce a program that is beautiful. For this reason, a ran-
dom star generator was not good enough for Spacewar!, and Expensive Planetarium had to be cre-
ated, as we shall see.

The original control boxes looked
something like that shown in Figure
3.10. The controls are

■ Right-left rotation

■ Acceleration (pulled back)

■ Hyperspace (pulled forward)

■ Torpedo button

Chapter 3 ■ The Early History of Video Games68

Figure 3.9 Opening round
screen shot of Spacewar!

Figure 3.10 Drawing of the Spacewar! controllers.

And so the seeds of Spacewar! were sown, only they were less like seeds and more like a
large stack of TNT on a short fuse that had just reached its end. The remainder of the
development of Spacewar! did not occur in a series of steps and actions, but rather they
took place as a flurry of activities all happening at the same time.

There were three things that kept the PDP-1 from being a viable game machine as it was.

■ It would be very easy for a player intending to hit the torpedo button to hit the
start button instead and “crash” the system.

■ Because the screen was located off to the side of the machine’s console, one player
would be closer to the screen than the other and thus would have a visual advan-
tage over the other player.

■ The PDP-1’s space was designed for one relatively calm systems operator, not two
intergalactic space warriors locked in the thralls of combat.

Given the temperament of a game player in such cramped quarters (especially if he is los-
ing), damage to the machine would be a constant risk. So what did our hackers do? They
invented the first joystick, of course.

Alan Kotok and Robert A. Saunders marched off to the TMRC room and closed the door.
When they emerged once again, they brought with them the first ever Spacewar! con-
trollers. Compared to today’s controllers they were relatively simplistic but very easy to
use. The switch at the top of the box was used to turn the ship left or right. If you pushed
the switch to the right and backwards, this would activate your thrusters while pushing
the switch forward would activate your hyperspace drive. The button located at the bot-
tom left of the controller was used to fire your weapon. Needless to say, the new con-
trollers made the game much easier to play and therefore a lot more fun.

By February 1962, Spacewar! was playable. The game consisted of two ships, with a lim-
ited fuel supply, and an arsenal of “torpedoes” (these were essentially points of light fired
from the nose of the ship). After you fired a torpedo, it would cruise along until it got near
to a ship or its fuse ran out at which time it would explode.

n o t e

Stephen R. Russell, a.k.a. Slug, gained his nickname from his friends because he had a tendency to
procrastinate a lot. Towards the end of the year 1961, his excuse for not working actively on Space-
war! was “Oh, we don’t have a sine-cosine routine, and, gee, I don’t know how to write a sine-
cosine routine. . . .” Alan Kotok came back from DEC headquarters with paper tapes saying, “All
right, Russell, here’s a sine-cosine routine; now what’s your excuse?”

“Well,” says Slug, “I looked around and I didn’t find an excuse, so I had to settle down and do some
figuring.”

In a Land Far, Far Away . . . 69

Do you remember my mentioning that for a hacker it is not enough to program; you must
program with style? Well here is a quote from Martin Graetz that was published in the
August 1981 issue of Creative Computing magazine:

One of the forces driving the dedicated hacker is the quest for elegance. It is not
sufficient to write programs that work. They must also be “elegant,” either in
code or in function—both, if possible. An elegant program does its job as fast
as possible, or is as compact as possible, or is as clever as possible in taking
advantage of the particular features of the machine in which it runs, and
(finally) produces its results in an aesthetically pleasing form without compro-
mising either the results or operation of other programs associated with it.

This quote says it all. At this time, Spacewar! was playable, but it was not yet elegant. One
of the major drawbacks was considered to be the background. The random display of dots
was just not considered appealing. It was at this point that Peter Samson wrote Expensive
Planetarium. Based on American Ephemeris and Nautical Almanac, Expensive Planetarium
was an accurate reproduction of the night sky between 22 ° N and 22 ° S. (This area
includes the more popular constellations.) The realism of this facsimile of the night sky
was further improved by firing each display point a set number of times, thus recreating
the correct brightness of each star.

Spacewar! was growing in elegance, and it was fun to play—for a while. You see, any game
that is purely a shoot ‘em up type game is fun to play at first, but it quickly loses its appeal.
So something had to be added to the game. Something that would add an element of
strategy and force players to use more than just their motor skills and eye-hand coordi-
nation. Dan Edwards felt that some form of gravity was needed, and after Russell stated
that he did not know how to program gravity calculations, Edwards sat down and pro-
grammed them himself.

The product of his labor presented itself as a blazing star located in the center of the
screen. This star emitted a gravitational pull that could affect both ships no matter where
they were onscreen. As long as a ship was not moving, it would be sucked into the sun.
This feature worked well with the fact that each ship had a limited fuel supply. This meant
that if you ran out of fuel, you would find yourself plummeting into this star. Needless to
say, the use of strategy in the game was greatly improved.

n o t e

When the “Heavy Star” was first implemented, the game lost its steady frame rate and begun to
flicker. The shapes of the ships were stored in tables and were read from these tables on each
game cycle. Dan Edwards realized that this way of doing things was overburdening the game
engine and devised a small routine that would “compile the shape of the ship at the start of the
game and draw the outline throughout the rest of the game cycle without consulting lookup
tables.” After this hack was implemented, Spacewar! regained its flicker-free frame rate.

Chapter 3 ■ The Early History of Video Games70

The CBS Opening

There were some really cool things that could be done
using the gravity of the Heavy Star. For example, a
move called the “CBS Opening” (see Figure 3.11)
became the standard way of beginning a match
between skilled players. To perform this move, players
turned slightly away from the Heavy Star and fired a
short rocket burst that propelled the player’s ship into
an orbit around the Star. After both ships entered this
orbit, they would turn and fire torpedo shots at one
another.

n o t e

Gravity calculations for the two ships were all that the program could handle. There simply was not
enough power to apply gravity to each missile that was fired so the missiles were unaffected by
gravity. The programmers simply made up a story to explain this away to the player. This is a very
important point. The older machines’ limited capabilities prevented you from implementing certain
features that the player, being ignorant of game design, would assume should be there. So what do
you do? You make the limitation a rule in the game. Most players will not question why rules were
made, but if you just leave them hanging and they find out only after playing the game that they
cannot do things they would expect to be able to do, then they will be very disappointed.

There was also another cool strategy that was actually the result of a bug in the game but
added so much fun nobody bothered to change it. This maneuver involved plunging
straight down the “gravity well” (in other words, flying almost directly toward the heavy
star, also called the Sun) to gain more momentum than you were normally allowed by
whipping around the Sun.

Spacewar! was now almost complete, and only one piece of the puzzle remained to be put
in place: hyperspace. The basic idea behind hyperspace was that if you got into a jam, you
could hit the hyperspace button, disappear for a few moments, and then reappear at some
random location of the field. There was one large built-in problem with this feature
though. Unskilled players could choose to jump in and out of hyperspace for the entire
game, making the battle uninteresting and a bore to play.

This problem was solved in two ways. First, each player was allowed only three hyper
jumps, so they could not abuse the feature. Second, the feature was made to be unreliable,
which added an element of uncertainty. J. Martin Graetz, who was the creator of this fea-
ture, made up a story about “Mark One Hyper field Generators . . . hadn’t done a thor-
ough job of testing . . . rushed them to the fleet” to justify to the player why the hyperspace
feature was unreliable.

In a Land Far, Far Away . . . 71

Figure 3.11 The CBS Opening.

The use of hyperspace was made even more perilous
because after your ship’s coordinates had been scram-
bled, you could reappear anywhere, including right on
top of the Sun. Furthermore, your ship could reappear
traveling at the same speed and trajectory as before it
left, which meant that even if you did not land on the
sun, you might still run into it or a missile. The final
element of hyperspace was that this phenomenon
would naturally displace the space surrounding the
hyper jump. This effect was simulated by borrowing
from an effect, pioneered in the Minskytron, which
looked like a classical Bohr atom. (This symbol was an
over-used cliché in the early 1960s to represent any-
thing to do with science fiction.) Whenever a ship dis-
appeared, it would leave behind a Hyperspace Minskytron signature. See Figure 3.12.

Return of the Killer Pong
No dream of a hacker ever dies. Stop him from accomplishing his dreams today, and ten
years from now he will still have a fire burning in him to complete what he started. Such
was the case with Ralph Baer. Fifteen years after he originally came up with the idea of the
video game, fifteen years after being stopped in his tracks by company brass at Loral from
bringing his dream to reality, Ralph Baer was still thinking about building video games.

Of course, by then the first analog computer game had been built by William A. Higin-
botham. However, Mr. Baer was not aware that this game had existed when he created his
invention, and it wouldn’t have made any difference if he had. Ralph Baer not only came
up with a full-blown concept of playing video games on a home TV set, but documented
this concept in a four-page document dated 1 September 1966. William A. Higinbotham
also did not document his invention when he built it. Indeed, he never entertained the
idea of making his analog computer game into a commercial product because this was
manifestly impossible. For now, let us look at how Baer came to eventually convert his
video game concepts into actual, working hardware.

The year was 1966, and a lot had changed. Ralph was no longer working for Loral. He was
now chief engineer and manager of the equipment design division at Sanders Associates,
a large military electronics development and manufacturing company that had absolutely
nothing to do with television technology. That did not stop Mr. Baer, however. Fifteen
years earlier, it had been his chief engineer who shot down his dream, but Mr. Baer was
now the chief engineer and could have his subordinates do his bidding.

One day while Mr. Baer was sitting in a New York bus terminal waiting for a fellow engi-
neer to arrive for a meeting, he started to jot down some notes concerning the concept of

Chapter 3 ■ The Early History of Video Games72

Figure 3.12 Diagram of a
classical Bohr Atom.

building video games. Upon returning to his office in New Hampshire, he transcribed his
handwritten notes into a four-page disclosure document. He asked Bob Solomon, one of
the engineers in his division, to read, date, and sign the document to establish a legal
record of when he created this design. Among other things, this paper documented cate-
gories of games, such as action games, board games, sports games, chase games, and more.
These classifications are still used today. You can see an actual copy of the handwritten
document in Figures 3.13 through 3.16.

Return of the Killer Pong 73

Figure 3.13 Page 1 of Baer’s notes. Notes and drawings on these pages courtesy of Mr. Ralph Baer.

Chapter 3 ■ The Early History of Video Games74

Figure 3.14 Page 2 of Baer’s notes.

Return of the Killer Pong 75

Figure 3.15 Page 3 of Baer’s notes.

Chapter 3 ■ The Early History of Video Games76

Figure 3.16 Page 4 of Baer’s notes.

Spot Generators
Five days later on September 6, 1966 Ralph drew up simplified schematics for what he
called spot generators, as well as a method for using them to modulate a transmitter tuned
to channels 3 or 4. This allowed the signal for the spots to be distributed to any TV set
through the antenna cables. This diagram can be seen in Figure 3.17.

Return of the Killer Pong 77

Figure 3.17 Hand drawn schematics for Baer’s spot generators.

On October 20, Bob Tremblay completed
the task of converting this basic diagram
into an actual working prototype. What
he came up with was rather primitive,
but if you had enough imagination, you
could pretend one spot was a fox and the
other was a hound. The object of the
“game” was for one player who was the
hound to chase the player who was the
fox until the hound caught the fox. Fig-
ure 3.18 shows a picture of the actual
game while Figure 3.19 shows a picture
of the world’s first light gun.

So they had a start, but even though Baer
had accomplished his goal of creating a “game,” he was still not
finished. He still needed to follow the hacker’s axiom and “do it
with style.” That said, in January of ’67, Baer set technician Bill
Harrison the task of creating the world’s first multi-game system.
This new system was truly bold and visionary. Previous video
games were hard-wired to do one thing and one thing only: play
the video game they were meant to play. Not only was Baer to cre-
ate the first game system that played multiple video games, but he
also introduced the revolutionary concept of the light gun.

The Home TV Game

Dubbed the “Home TV Game,” the prototype was made ready for a presentation to the
executives in the company. This would come in the form of a demonstration to Herbert
Campman, who was the corporate director of research and development at Sanders. He
loved the idea and approved the project for funding despite the fact that it had nothing to
do with the military research his company specialized in.

The project was awarded a whopping $2,000 in funding. (Okay, so that’s not whopping by
today’s standards, but back then it was a lot of money.) Additionally, a new engineer by
the name of Bill Rusch was added to the unofficial team of game developers.

And what do you think was the very first game he built? Here’s a clue: it features two pad-
dles and a ball. You guessed it. He built Pong. Only it wasn’t called Pong just yet. We will
see a bit later how the infamous name Pong came into existence. For now, the game would
be called Catch.

Chapter 3 ■ The Early History of Video Games78

Figure 3.18 First ever two-person video game
system (May 7,1967).

Figure 3.19 World’s
first light gun.

The new game sported a lot of high tech features, such as having the ball served from off
the screen when a player missed it. (Once again, this was high tech by the standard of the
day. Today, we take it for granted that all games have the latest 3D graphics, but back then
just displaying more than two colors on the screen was a major accomplishment.) By the
time Baer’s invention would again be demonstrated, it boasted numerous games (includ-
ing Ping-Pong, volleyball, handball, and several shooting games). There were also colored
transparencies to place over the screen to represent the various play fields, and of course,
their brand spanking new Light Gun.

All in all, Baer had accomplished a lot, but he still had much to do. He and his team con-
tinued improving their project, but they had one big problem: Sanders was a military
company. Its daily business had nothing whatsoever to do with TVs. Sure, company execs
thought that Baer’s project was a cool idea, but they began to grumble and wonder exactly
how Baer’s project would profit the company. Baer had to move
fast or risk having his idea axed by company brass. His first idea
was for the games to be transmitted via cable TV networks. He
worked out methods for accomplishing this, even going so far as to
create a methodology for adding color to the play field, which
would be broadcasted over the cable network. Unfortunately, at
the end of the day, Baer’s ideas were deemed not feasible.

Baer was not deterred. On January 15, 1968, Ralph H. Baer filed for
the first ever video game patent in history, patent number 480. See
Figure 3.20.

In another effort to save his project, on October 1, 1968, Baer and
his team demonstrated a complete switch-programmable video
game unit that could play gun games, football, Ping-Pong, and vol-
leyball. To represent the various play fields, transparencies were
used to cover the screen and give it color. Now it
was time for Baer to take his show on the road
and make his project public. In January 1968, he,
along with Lou Etlinger, who was Sanders’ direc-
tor of patents, began to invite all of the major TV
makers to Sanders Associates’ Nashua, New
Hampshire plant to view a demonstration of the
Home TV Game. Manufacturers invited
included RCA, GE, Zenith, Sylvania, Magnavox,
and Warwick (Sears). These companies were
treated to a demonstration of Baer’s most
advanced prototype to date. A picture of this
device can be seen in Figure 3.21.

Return of the Killer Pong 79

Figure 3.20 Drawing taken
from Baer’s patent application.

Figure 3.21 Prototype of Baer’s home video
game system.

This device, which was the first fully programmable video game and included a joystick
and light gun interface, was very impressive and indeed blew the crowd away. While every-
one seemed to show interest, no one was willing to commit to the project. RCA went so
far as to write a license agreement but quickly canceled it.

The demo Baer gave to prospective buyers was very impressive, and not everyone on
RCA’s team supported the decision not to move forward with Baer’s idea. Bill Benders was
one such individual, and although he was powerless to make Baer’s idea a reality while at
RCA, he would soon hold the position of Vice President at Magnavox. He was able to use
his new and considerable influence at Magnavox to convince them of the virtue of invest-
ing in the home video game market.

The Odyssey
On July 17, 1970 at Magnavox’s Ft. Wayne, Indiana plant, Ralph H. Baer and Lou Etlinger
demonstrated their invention and blew the socks off of Magnavox’s TV Marketing Divi-
sion Vice President Derry Martin. On March 3, 1971, Magnavox licensed Baer’s prototype
(affectionately known as the “brown box”), all rights and patents related to the prototype,
and all know-how related to the device. From March to September of 1971, Baer worked
along with Magnavox engineers to produce the first commercially available video game.
In March 1972, Magnavox dubbed Baer’s invention the Odyssey. They presented the prod-
uct to their dealers, and home video game systems were launched nationwide for the first
time ever. See Figures 3.22 through 3.24.

The Odyssey retailed for $100, which was exactly $80.05 more than Baer had originally
envisioned such games costing. Because Magnavox wanted to cut costs, the final release of
the Odyssey was a somewhat downgraded version of Baer’s original prototype. For exam-
ple, unlike Baer’s device, which used different colors for the play field, the Odyssey was
strictly black and white.

Chapter 3 ■ The Early History of Video Games80

Figure 3.22 The Odyssey was the first ever
commercially available home video game
system.

Return of the Killer Pong 81

Figure 3.23 Magazine ad for the Odyssey.

Chapter 3 ■ The Early History of Video Games82

Figure 3.24 Magazine ad for the Odyssey.

It had no sound at all. To make up for the lack of color, the Odyssey shipped with Mylar
strips that could be placed over the screen to give the play field the appearance of differ-
ent colors. For each game that shipped with the Odyssey, the appropriate strips could be
used to give the screen the appearance of a tennis court or whatever playing field was
appropriate for the game. The game shipped with 12 different cartridges that could be
plugged into it to make it play 12 different games. The game also shipped with two con-
trollers. Each controller had two knobs to control the vertical and horizontal position of
the players “spot” and an “English” knob at the top of the controller to put a spin on the
ball. Other item that shipped with the Odyssey included a pack of playing cards, poker
chips, play money, a pair of dice, and a scoreboard to keep track of scores because the
machine itself could not do so.

Magnavox did it! They were the first company to commercially produce home video game
systems. But . . . yes, there is a but . . . their marketing strategy severely limited the flow of
Odyssey systems and games off store shelves. First of all, because Magnavox makes TV sets
and they were also the makers of this game system, people automatically assumed that you
needed to use a Magnavox TV to play the game. This fact was further reinforced by Mag-
navox’s own marketing campaigns and the fact that distribution of the Odyssey system
and its game was limited to officially licensed Magnavox dealers. Fortunately, (with a lit-
tle help from Frank Sinatra who was featured in a television commercial for the Odyssey),

Return of the Killer Pong 83

Evolution of a Technology

Before there were movie cameras and the cinema, people would go to the theater and watch plays.
After the movie camera was created, people used them to record plays, which would then be
played in the cinema. So basically when you went to the movies, you were just watching a prere-
corded play! Later people realized that they did not have to film the whole play in order. They could
film the action one shot at a time. If there were mistakes, they could just retake the shot where the
mistake was made. Someone said, “Hey, if I am filming a scene with a man in it, and I stop the
camera, remove the man from the shot, and then continue shooting, I can make the man seem to
disappear.”

Although it is outside of the scope of this book to go over the history of the movie industry, I men-
tion this topic to bring to your attention what often occurs when new technologies are introduced.
It takes time for people to fully grasp exactly how to leverage the full force of any new technology.
Full realization of the potential of the home video game system from a technological as well as a
marketing standpoint was a gradual process, so it should be no surprise that so many blunders
occurred so often in this industry, as they do in most industries.

Imagine what executives from Xerox must have thought years later when the idea of the “mouse”
that they laughed at earlier became a staple of the computer industry.

they were still able to ship 100,000 units in their first year. Magnavox’s great fortune was
to be earned in the computer industry a few years later, only this fortune would be mined
from the courtroom rather than from store shelves.

n o t e

It should be noted that, although remarkable, the creation of the first commercially available game
was not Baer’s only accomplishment. He went on to create (and patent) numerous toys and other
inventions, such as the first VCR-based Nested Data interactive TV gaming system.This was the Bike
Max talking bicycle computer, a prototype to play games through the cable system, and the infa-
mous Simon, which was actually based on an idea created by industry legend Nolan Bushnell.

The Syzygy
All right, it was finally here. The video game industry had been born. It was a long
time coming and now that it was here, it was not to be given a very long childhood. The
computer industry would experience a growth spurt and develop at a fast and furious
pace largely due to the miniaturization of the machinery used to create and play games.
Previously, games could only be played on large mainframe computers that cost millions
of dollars and could only be afforded by large universities. (Indeed at this time only three
universities in America could afford the PDP-1 and the expensive monitor needed to play
the infamous Spacewar! computer game.) On the other hand, Ralph Baer had just com-
pleted a 15-year quest, which ended in the production of a video game console that was
not only capable of playing multiple games, but more importantly, did not require
million-dollar hardware to run and could actually use a player’s home television set for
display.

Have you ever watched one of those old Gothic movies where a sorcerer was trying to exe-
cute a spell but in order for everything to work, 10 planets had to be in precise alignment
and this happened once every million years? And even then, he had to mix frogs’ legs, eye
of newt, and a number of other unique ingredients in order for his creation to come to
life. Well, the computer industry must have been spawned by such a sorcerer, because a
whole lot of things that had to line up for the industry to come to life somehow all lined
up and fell into place. A prime example of this is that, among the hundreds of universi-
ties in the United States, only three could afford the expensive monitor needed to play the
Spacewar! video game. One of the universities that had the ability to play it was the Uni-
versity of Utah, which happened to be the school attended by Nolan Bushnell, who just
happened to become the Godfather of the arcade gaming industry.

What did I tell you? Are those planets lining up or what? Oh, yeah, by the way, I forgot to
mention Nolan Bushnell was also the manager of an arcade in a Salt Lake City amusement
park! Now with all these planets in alignment, the mood was right to stimulate the mind

Chapter 3 ■ The Early History of Video Games84

of this 23-year-old college student and produce a vision in his mind that gave him the
enlightenment to understand the commercial viability of a Spacewar! type video game
that could be played on something other than a huge million dollar machine that the
masses would never get to play.

They say the journey of a thousand miles starts with the first step. For Bushnell, his jour-
ney of four years started in 1970 with moving his daughter Brittia from her own room
into her big sister’s room so that he could convert hers into a workroom dedicated to
building what would soon be called “Computer Space.”

The next stop on his journey took place later in 1970 when he was employed by a com-
pany called Ampex in Sunnyvale, California. Ampex was in the business of making pro-
fessional video tape recorders. He was paid the grand sum of $12,000 a year. It was here
that he would join with Ted Dabney to not only build Computer Space, but also become
a major force in the gaming industry. (That last part will come a bit later, as we shall see.)
Filled with great ambition and confidence that he could make Computer Space a success,
Bushnell boldly quit his job in 1971 to work on the project full time.

Fortunately, after all his labor, Bushnell was able to find Nutting Associates, a manufac-
turer who was willing to take a chance and build his dream machine. Bushnell became an
employee of the firm. Unfortunately, the game did not sell well at all. It was a major dis-
appointment for him as well as Nutting Associates, which had made a leap from its usual
business of making coin-operated trivia games to try Bushnell’s idea. But even though
only 1,500 units were built, the experience was not lost on this young visionary—just as
being shot down by his superiors at Loral did not stop Ralph Baer from accomplishing
what he needed to do.

The whole ordeal was simply a learning experience. And what, you may ask, was the les-
son? If you are going to make a game (especially one that is likely to end up in bars where
people are relaxing and having fun, possibly even drunk, not looking for a challenge), you
have to make the game as simple as possible, yet still fun and engrossing.

The Syzygy 85

Simon Says

Do you remember the electronic video game called Simon? You know the one. Round circular disc
with four colored buttons that flashed in random patterns and you had to repeat the pattern by
pressing the buttons. Well, Baer invented that. The interesting thing is that he got the idea indi-
rectly from Bushnell. In 1976 Mr. Baer was at a trade show where he saw a light and sound game
called Touch Me, which was created by Atari. Three years later, Baer’s game was successfully
released by Milton Bradley. Interestingly enough, the patent that Ralph Baer got for the game actu-
ally cites the operating manual for Touch Me.

Now once again we have those planets I keep talking about positioning themselves in per-
fect alignment to facilitate the creation of the game industry we have today. In May 1972,
the Magnavox Profit Caravan trade show at the Airport Marina Hotel in Burlingame, CA
was featuring a demonstration of their new game system, the Magnavox Odyssey. I am
sure you will never believe who showed up for the demo. Nutting Associates had caught
wind of the demonstration and sent our beloved friend Nolan Bushnell and two other
Nutting employees to check it out.

So Nolan went, he signed the guest book, he picked up
the controls to play what essentially was Ralph Baer’s
Ping-Pong game, and he stayed there for half an hour
playing the game. When he returned to Nutting Associ-
ates and was asked about the Odyssey, Bushnell replied
“It’s no Computer Space!”

Right as he was about the Ping-Pong game being“ . . .
no Computer Space,” that simple game would have
more of an impact on his life than he could ever have
imagined that fateful day when he first played it.

Many times, endings are nothing more than a new
beginning, and such was the case for Bushnell when his
relationship with Nutting Associates came to an end and he left (despite being offered a
chance at creating another game) to form his own game company. He and partner Ted
Dabney pooled their resources to obtain their starting capital. (Bushnell contributed $250
and Dabney contributed $250 for a grand total of $500, which, oddly, was the exact
amount of money that they made in profits from selling Computer Space.)

Now here is the kicker. They decided to call their new company Syzygy (pronounced sis-
er-gee). Syzygy is an astronomical expression used to describe the condition of the earth,
moon, and sun all being in perfect alignment. (And you thought I was crazy with all this
stuff about planets aligning.) By now, these two must have realized that they were becom-
ing a part of something much bigger than themselves and much bigger than they had
originally dreamed. Whatever the reason that they chose this name, it was apparently not
meant to be; a roofing company had already registered that name.

Atari and Pong
Bushnell had a love for playing a Japanese game called GO. In this game, the equivalent of
obtaining a check in chess is called Atari. On June 27, 1972, at the age of 29, Bushnell
established his new company called Atari.

In one of the many twists of fate that are common in the game industry, when the time
came for Bushnell to work on his first project under his new company’s umbrella he ended

Chapter 3 ■ The Early History of Video Games86

I Am a Movie Star

The original Computer Space
game may not have made it
in the game business, but at
least it made it to the big
screen. The high tech case
that housed Computer Space
was so stylish that it was
used as a prop in the 1974
sci-fi flick Soylent Green.

up hiring the very engineer (Al Alcorn) that Ampex had hired to replace him when he left
there. Now, as I said, Bushnell was a visionary so, like most visionaries, he thought very big
in everything he did. On this first endeavor, however, he decided to tone things down a bit
and break in his new rookie with a simple game to test his abilities and ease him into game
development. He decided that they should create a simple tennis game where the players
controlled two paddles that could be used to bounce a ball back and forth. Hmmm, does
that sound familiar to you? Doesn’t it sound like the game Nolan Bushnell spent half an
hour playing earlier that year at the Magnavox Profit Caravan? It was this similarity
between the games that led to years of intense courtroom drama and controversy.

In an effort to encourage Al Alcorn to work intensely at developing the game, Bushnell
told him that they already had a contract from General Electric to build the game. This
contract, of course, did not exist and was simply a ruse he created as an incentive.

Even though Bushnell had toned down the intensity of what he wanted out of Atari’s first
game, he was still demanding. He even went so far as to request that Alcorn implement
sound effects like roaring crowds, despite the fact that the technology to do such things
was nowhere near being invented. Alcorn when to work. With no ROMs, and no micro-
processors at his disposal, he had to hardwire the entire system using about 100 conven-
tional logic integrated circuits. Unlike the Odyssey, this machine was designed to do one
thing and one thing only. Fortunately, it did that one thing very well. This machine was
made to play Pong, the name assigned to the game when Alcorn tried to describe the
sound the ball made when it hit the paddle.

Pong probably had the shortest instruction manual in all of computer gaming history. The
instructions read:

“Avoid missing ball for high score.”

For some strange reason, corporations often seem determined to misunderstand the
potential of new technologies. This fact was once again demonstrated when Bushnell tried
to sell Chicago-based pinball giant Bally the Pong concept and they just completely blew
him off. When he returned home, Bushnell installed the prototype machine in a bar
named Andy Capps. That same evening he got a heated call from the bartender telling him
that the machine was not working and he should “get the f#*@% thing out of here.” Imag-
ine Bushnell’s surprise when he found out that his machine was not working because it
was too full of quarters and the eager patrons who wanted to play the game simply could
not push any more coins into the machine.

He decided then that Atari would build its own Pong machines. Bushnell set up shop
in an old abandoned roller skating rink, and by the end of 1973, he had cranked out and
sold 8,000 Pong units plus a few hundred Pong Doubles and Gotcha games. This was an
extraordinary accomplishment especially when you consider that at this time in history a
pinball machine was considered a hit if it sold 2,000 units in its entire production cycle.

The Syzygy 87

Nolan thought a Pong game machine could average $25 dollars a week. Pong machines
often actually generated as much as $100 dollars in quarters each week.

This “simple” game that Nolan Bushnell originally thought would just be a quick step-
ping-stone before moving on to bigger better games, this unit that cost $500 dollars to
make and sold for $1,200, this game called Pong, would carry Atari for the next two years.

The Knockoff
In the summer of 1996, I attended a summer engineering academy at the University of
Michigan. On one of our field trips, we visited a pharmaceutical company. They explained
to us the long process that goes into making a new drug. Then they explained to us that
they labor for years at a time and spend millions of dollars to manufacture a drug. How-
ever, once the patent runs out, other companies, rather than having to spend years of time
and millions of dollars to produce a similar drug, only have to demonstrate that the drug
they produce has the same chemical base as the original drug. That is how generic drugs
come about.

A similar concept occurs in the gaming industry. One company labors and sacrifices and
sheds blood, sweat, and tears just to produce a hit game. Then a million other companies
simply produce knock-off imitations of the game’s concept. This whole phenomenon got
started in 1973 when everyone started producing “pong type” games. Even Nutting Asso-
ciates, Bushnell’s old employer, got in on the act.

The following are some of the games created in the Pong “mode.”

Knockoffs Made by Other Companies

Games Company
Eloping Taito

Pong Tron Sega

Pong Tron II Sega

Tennis Tourney Allied Leisure

TV Table Tennis PMC

Hockey TV Sega

Pro Hockey Taito

TV Football Chicago Coin

Paddle Ball Williams

Soccer Taito

TV Ping-Pong Chicago Coin

Winner Midway

Super Soccer Allied Leisure

TV Ping-Pong Amuntronics

Chapter 3 ■ The Early History of Video Games88

Variations on Pong made by Atari
Dr. Pong

Pin Pong

Pong Cocktail

PONG Doubles

Puppy Pong

Quadrapong

Rebound

Spike

Super Pong

Despite all of the competition, however, Atari was still the clear market leader raking in
$3.2 million in 1973. Unfortunately, despite its success, Atari appeared to be falling apart.
Bushnell’s long time friend and partner decided to leave the company and sold all his
shares to Bushnell. Around the same time, a company called Kee Games, headed by Joe
Keenan emerged as a major force to reckon with and became Atari’s chief competitor. Sev-
eral of Atari’s key employees defected to this new company and from the outside it looked
as if Atari might be looking at some darker days ahead.

Then it came—the game that made Kee Games look like it had Atari beat for sure: Tank!
This game, created by Scott Bristow, was groundbreaking. Because of the rudimentary
circuit being used, previous game machines had very limited graphics. (They could not
display anything except blocks). Tank! changed all that by utilizing ROM chips in its
design for the purpose of holding the graphics memory. This new and never-before-seen
configuration gave Tank the ability to display much more complicated and intricate
graphics than had ever been seen in a video game.

Remember we are talking about arcade video games here. At this point computer games
were still run on very large, very expensive, mainframe computers that the general public
had no access to. Sure, computer games would have had better graphics, but what mom
would have been willing to remove everything from the living room and tear a hole in an
outside wall just so her kids could get a mainframe computer in there to play Spacewar!
on? Not to mention the expense.

Game play in Tank! consisted of two tanks in a maze. The two tanks were controlled by
two players who tried to destroy each other’s tank while avoiding land mines that were
scattered over the playfield. Tank! became the best selling game of 1978, dealing a death-
blow to Atari. Or did it? As it turns out, Kee Games was really a secret subsidiary of Atari.
Why would Atari do a thing like that? What’s with all the cloak and dagger covert corpo-
rate maneuvering?

The Syzygy 89

Before there were video games, there were pinball machines. As video games started to take
over the arcades, many of the old pinball doctrines and practices were still observed. One
such practice was that when a game developer made a game and approached a distributor
to distribute the game, that distributor would want exclusive rights to all games made by
that company. So Atari might create a game this week called Billy Bob’s Derby and sign a
contract with Distributor A to distribute the game. Distributor A would make the company
sign a contract stipulating that if Atari made a game next month called Super Sports Rally,
Distributor A would be the only company that could distribute the new game. By creating
a new company, one that had not signed contracts with any distributor and had no oblig-
ations to bind them to any distributor, and then creating a super hit game that every dis-
tributor wanted to get its hands on, Atari was able to break away from the old pinball
practice and create distribution relationships with multiple distributors.

Once Kee Game had accomplished what it was created to accomplish, it once again
merged with Atari. Joe Keenan took on the role of President at Atari, Steve Bristow became
Atari’s chief engineer and business went on as usual.

Games Created by Atari under the Kee Games Label

Name of the game Year Created
Elimination 1973

Formula K 1974

Spike 1974

Twin Racer 1974

Crossfire 1975

Indy 800 1975

Tank II 1975

Flyball 1976

Quiz Show 1976

Sprint II 1976

Tank 8 1976

Drag Race 1977

Sprint 8 1977

Super Bug 1977

Ultra Tank 1978

Ultra Tank, which was a sequel to the original Tank! Game, was very cool because it was
one of the first video games to allow a player to face off against a machine-controlled
opponent. Not only that, but there was a version that would allow eight people to play
against each other at the same time.

Chapter 3 ■ The Early History of Video Games90

No one can deny that Pong, the arcade game, was a phenomenal smash hit. So it was no
surprise that Bob Brown and Harold Lee (both employees of Atari) thought it would be a
good idea to build a version of Pong that was designed to be played on a home TV set.
They, along with Al Alcorn, the guy who built the original Pong arcade game, built this
new system with the code name Darlene. (Darlene was an employee at Atari. It would
soon come to be a tradition at Atari to name game systems after fellow female employees.)

Unfortunately, retailers were nervous about taking a chance with the machine. Mag-
navox’s TV-based Odyssey game production and sales ended early in 1975 and there was
no obvious sequel in sight, although Magnavox was about to come out with a new line.
Still, the home videogame category had not yet been a blinding success for retailers, and
they were afraid that Atari’s Pong would suffer the same fate. As a result even though the
game was created in 1974, it was not to be released until 1975 when they were able to make
a deal with Tom Quinn, head purchaser for Sears sporting goods section. So Atari found
a buyer for Darlene; that’s the good news. The bad news was that there was no way in the
world that they could produce the 150,000 units Sears ordered in the short space of time
that Sears had given them to fulfill the order.

Bushnell needed to expand Atari’s infrastructure big time. He was able to do so with the
help of Don Valentine, who gave him a $10 million line of credit. Once again, Atari struck
digital gold. There were reports of people waiting in line for hours before stores opened
in order to plop down 100 bucks and get their own Pong game machine.

Big Business
And, yes, as you probably guessed, once again there was a massive digital gold rush as
dozens upon dozens of manufacturers came out of nowhere with their own home version
of Pong, trying to make their own fortunes. This time, however, it was much easier for
others to mooch off Atari’s idea with the aid of an invention developed by General Instru-
ment. This invention came in the form of a microchip called the AY-3-8500 and dubbed
Pong on a chip. It contained all of the essential circuitry needed to create a Pong video
game. So, rather than spending large amounts of time developing the chip which consti-
tuted the internal workings of their own game machine as Atari had, all the other manu-
facturers had to do was follow directions, properly construct the external circuit that the
chip needed, and, presto, they had an instant game of Pong.

Nothing is ever completely sure in the game industry, however, and success is just as much
the result of luck as it is planning, skill, and strategy. As luck would have it, because so
many companies were ordering the chip, it was impossible for General Instrument to
meet all of the orders. And, as luck would have it, Ralph Baer had introduced Coleco man-
agement to the AY-3-8500 at G.I. As a result Coleco was the only company that was able
to get their shipment of chips in time for the 1976 Christmas season. They sold their

The Syzygy 91

machine for roughly half the price of Atari’s game machine and in doing so increased their
profits by 65 percent.

Lady luck was not only looking over the shoulders of Coleco. She was watching over Atari
as well. Needless to say things were going well with Atari. Bushnell was happy and every-
one who invested in his company was happy, so naturally people outside the company
were taking notice and making efforts to see how they could be made happy too. One such
company, or conglomerate, was Warner Communications, which became very interested
in purchasing the now prosperous Atari. Bushnell’s company was a hot commodity, and
Warner was willing to pay a hot price, $28 million.

Kee Games and Other Maneuverings

After some prodding from his primary investor, Don Valentine, Bushnell decided to sell
the company. For his efforts, he was able to secure $16 million for himself as well as the
title of CEO. Joe Keenan was awarded the position of president. Now, Keenan was not just
the president of an ordinary company; he was the president of a company that was about
to take the video game industry, turn it on its ear and evolve a new creation, code named
Stella. Stella would get Atari’s groove back, once again knocking the entire gaming indus-
try to its knees.

Atari was still very active generating its fair share of other games like Tank! Tank! was a
breakthrough when it was released; it took video game graphics to new heights. In 1975
Atari used modified Tank! hardware to create the first ever video game with animated
computer characters, Jaws. In another of its covert corporate operations, Shark Jaws,
which was already produced under the Kee label for previously mentioned reasons, was
also manufactured by Horror Game, which was of course also a subsidiary of Atari.

The reason for this latest tactical maneuver was that Atari was trying to cash in on the
popular movie Jaws. Not only did Atari send out promotional material to prospective
buyers urging them to cash in on the current popularity of sharks, but when they pro-
duced the cabinet they drew the word Jaws in big bold letters with shark written very small
next to it. This popularity of course was a direct result of the movie Jaws. This little detail
was, of course, left out of the promotional material for obvious reasons. So, technically the
cabinet said Shark Jaws, but from a distance people would only see the word JAWS clearly
and thus would associate the game with the movie.

Meanwhile, the rest of the video game industry was not resting on its laurels. Other com-
panies were hard at work developing their own gaming systems. As a matter of fact, the
gaming industry was booming with new players coming into the mix every year. This
growth is plain to see; from 1971 through 1973, there where about 11 manufacturers. All
of these companies together created a total of 30 video games. Over the next two years,
video game production almost doubled. Between 1974 and 1975, 57 games were pro-
duced. In 1976, sales actually quadrupled with the production of 53 video games.

Chapter 3 ■ The Early History of Video Games92

In order to keep things in perspective, we must mention the fact that not all of these were
original games. In fact, most were actually Pong knockoffs, cashing in on Atari’s success.
At least one company, however, demonstrated that it had a mind of its own and could
think for itself enough to create truly new and innovative game titles.

This company was Exidy. They created this name by combining the words excellence in
dynamics. Years before the now famous Grand Theft Auto game series had a chance to take
form in the minds of its developers, Exidy had already discovered the combination of free-
dom and carnage that gamers craved for. They proved that they knew what gamers wanted
when they released their infamous game called “Death Race.”

The idea of crossing the lines of what is taboo to intrigue gamers was first pioneered by
Exidy. Perhaps their offering was not as advanced as Grand Theft Auto. There was no
advanced AI, no 3D graphics, and no police chases. Nevertheless, this game was still very
cool in its own gruesome way. You drove around the screen chasing after little running
stick men. Whenever you successfully ran one of them down, they would scream and turn
into a cross, which you now had to avoid running over or you would be the one turning
into a cross.

Now while the game was obviously not as graphic as, say, Mortal Kombat, or as in-depth as
Grand Theft Auto, it was graphic enough to get it yanked off the shelves. PTAs and other
groups who were trying to save the children from the dangers of video games claimed that
video games were causing delinquency, and Death Race was the poster child for a video
game that would have a harmful effect on our children. (The artwork on the game’s cabi-
net, created by Pat “Sleepy” Peak, did not help matters either; many found the graphics
quite unsettling.) Exidy, however, was not deterred and despite the problems they had with
their first release, which limited sales to a meager 500 units, the following year they released
the sequel to their original title called Super Death Chase. This time they learned from their

The Syzygy 93

In every industry there were always things that were considered taboo in that you just should not
do them. For instance, in movies and TV, for many years it was just not done to show a couple
sleeping in a double bed. Every married couple who shared a bedroom had twin beds with a bed-
side table between them. Much could also be written about the change in acceptable language
over the years, but that too has been reflected in video game content.

In today’s world restraints on behavior and language have slacked off a lot. Nowadays it almost
seems that there is no more taboo. That is, until somebody really crosses the line and does stuff
that shocks us all. Even though the standards change over the years, those who cross that ever-
changing line generally gain much ridicule, much fame, and an ardent following. Such is the case
with today’s Grand Theft Auto series. The current installment, called “Vice City,” contains options
that you just know you’re not supposed to be able to do in a video game.

mistakes; if people had a problem with them running people over and killing them in the
game, they would kill the people before the game! In this sequel, the player chased after
ghosts and skeletons. It seemed to work because this time there were no protests.

n o t e

Death Race 2000

This game, created by the gifted game maker Howell Ivey, was inspired by the 1975 B movie of the
same name, directed by Roger Corman.

Future Gods

Steve Jobs got started in the game industry working as a “game technician” who refined
games and made them better as they came to the Los Gatos branch of Atari from the Grass
Valley development labs. Back then, he made about $5 an hour, a far cry from his net
worth today.

Our story begins on a late night at Atari. Steve Jobs and his friend Steve Wozniak are hard
at work, or perhaps hard at play, on the latest Atari arcade machines. Steve Wozniak,
future god of the Apple computer, is hooked; he loves playing arcade games and is amazed
by their possibilities. He even goes so far as to create his own game. Steve Wozniak’s game
was fun to play and boasted antics such as displaying humorous messages on the screen
when a ball was missed.

Steve Wozniak, also known as “Woz,” soon got a chance to build his first commercial
arcade game. The game was called “Breakout,” and he designed it in 1976. Unlike most
incarnations of Pong, which were two-player games and involved bouncing the ball back
and forth across the screen, this game was different and involved using your paddle to
bounce a ball against a row of blocks. Each time the ball hit the block it disappeared. The
object of the game is to try and get all of the balls to disappear by hitting all of the blocks
with the ball. Steve promised to have the job done in four days. This was a very bold
promise. It was possible for Jobs to be this bold because he knew that he had a secret
weapon. That weapon was Mr. Wozniak. In the true spirit of a computer hacker, he held
down a full time job at Hewlett Packard while for four nights straight he worked on
Breakout and completed the masterpiece on time.

With experience under his belt in the area of logic design and working with TV signals, he
was now ready to take on the world. His first step was to create a computer version of
Breakout. In another one of the major snafus of the computer industry, when Jobs and
Wozniak presented their idea to Nolan Bushnell, he opted not to go along with the project.
Even a demo of the system at Al Alcorn’s house was not enough to get the project going.
Bushnell’s reluctance to take on the project probably stemmed from the fact that he was
already dealing with major financial issues and was not ready to take on another risk.

Chapter 3 ■ The Early History of Video Games94

At the end of the day, Bushnell directed the young inventors to Don Valentine, who in turn,
directed them to Mike Markkula. It was at this point that Jobs decided to leave Atari and
teamed up with his good friend Steve Wozniak to form Apple Computers. Together they
would build the first Apple computer, which would spark the entire home computer industry.

The Birth of Vector Graphics
The cool thing about ideas is that you do not have to be a major corporation in order to
have one as proven by a small El Cajon, California company named Cinematronics, which
in 1977 created the first ever game to use vector graphics. Vector graphics are graphic dis-
plays that use lines and other geometric elements to draw the player’s character and the
environment.

This form of graphics became a huge hit. People loved it and even after people stopped mak-
ing vector graphic games, collectors valued them greatly. It should be noted that all of the
3D games of today are vector graphic games, even though they are much more advanced.

Space Wars
Another one of the many coincidences that seemed to fall into place to allow the game
industry to grow was Larry Rosenthal taking a tour of M.I.T. in 1968 and having a chance
to play Stephen Russell’s Spacewar!. Nine years later, he created his own version of Space-
war!. He tried for a while to market his game to several companies, including Atari, all of
whom brushed him off, possibly because he demanded an unheard of at the time 50 per-
cent of all of the game’s profits.

Larry was finally successful when he managed to sell his game to . . . you guessed it . . . Cin-
ematronics. He succeeded in retaining rights to his game, and they succeeded in purchas-
ing a major hit. Space Wars would sell 30,000 units and remain among the top selling
arcade games for three years straight. This would mark the start of a wonderful thing.

They would be responsible for some of the most interesting arcade games of their time
such as:

Warrior, released in 1978
Rip Off, released in 1979
Tailgunner, released in 1979
Barrier, released in 1979
Star Castle, released in 1980
Armor Attack, released in 1980
Solar Quest, released in 1981
Starhawk, released in 1981
Cosmic Chasm, released in 1983

The Birth of Vector Graphics 95

A New Age of Video Games
Up to this point in time creating video games was the equivalent of writing in stone. Once
the game machine was built, you were stuck with whatever games were on the system
when you bought it. This was great at first, but after you had mastered all the games on
your machine, things could get boring.

This was true until 1976 when Fairchild Camera & Instruments released the Channel F
video game machine. See Figures 3.25 through 3.27. This was the first programmable
video game system ever to be released. When I say that this video game system was pro-
grammable, I mean that rather than all of the games being stored on the game machine
itself, the video game programs were stored on yellow ROM cartridges. By changing car-
tridges, the player could change which game the Channel F gaming console would play.
The first video cart available for this game console was called 4-in-1 because it had four
games: Tic-Tac-Toe, Shooting Gallery, Doodle, and Quadra Doodle. For those not fortu-
nate enough to be able to buy new video carts, the game console came with two games,
hockey and tennis, built into the console itself.

Chapter 3 ■ The Early History of Video Games96

Figure 3.25 A brochure for Fairchild’s Channel F.

Revolutionary as this console was, it would not last long because it was outshone by the
Atari VCS (Video Computer System).

Even though the Atari VCS outdid Channel F, it initially was not an overwhelming suc-
cess. Most of the problems stemmed from within Atari itself. On the production end,
there was a major problem with defective chips and cases. On the management end, the
atmosphere inside of Atari was very laid back and relaxed. In 1978 Bushnell was pressured
to leave Atari and Warner replaced the laid back atmosphere with a more rigid environ-
ment, one that was not as forgiving as the one Atari employees where accustomed to. In a
very gutsy move, they also produced 800,000 VCS units, most of which became lost on
warehouse shelves.

A New Age of Video Games 97

Figure 3.26 Channel F magazine ad.

Space Invaders
And then it happened. In 1980 Atari dropped a bomb on the gaming industry that would
make all other technologies of the day useless and obsolete. Unlike most of Atari’s accom-
plishments, this bomb was not necessarily a new creation and was not a work done by
their own hand. The thing that would propel the VCS from a floundering machine to a
mega success was a game called Space Invaders. When Atari licensed this game and
released it for the VCS, people went crazy. They were hooked and could not free them-
selves from the overwhelming urge to play this game. Maybe it was the 112 different ways
you could play the game. Maybe it was the intense two-player action. Maybe this game was
just fun to play. The VCS machine began to sell so well that it went from being a drain on
Warner’s profits to producing over half of its profits. In the end, 200 games were produced
for the machine by 40 manufacturers, and the VCS grossed over $25 million. Not a bad
haul. See Figures 3.28 through 3.31.

Chapter 3 ■ The Early History of Video Games98

Figure 3.27 A British ad for Channel F, showing a number of games for the system.

A New Age of Video Games 99

Figure 3.28 Screen shot of the mega hit
game Space Invaders.

Figure 3.30 Pac-Man for the VCS.

Figure 3.29 Atari VCS video game console.

Easter Eggs

Not everyone inside Atari was happy about their success. For example, designer Rick
Mauer who was instrumental in porting Space Invaders over to the Atari was paid a total
of $11,000 for his work. That is exactly 0.011 percent of the profit that the game made for
Atari. Many other employees were unhappy over the policies of Atari, such as the practice
of not giving credit to the actual programmers who made the games. Warren Robinette
created a way around this with the first Easter egg. He actually hid his name inside of a
game he created called Adventure for Gamers. If you did everything just right you could
gain access to a hidden room where you would see the name of the author who created
the game.

Third Party Software

Other programmers were not so subtle in expressing their resentment to not getting their
due credits. In 1979, Larry Kaplan, Bob Whitehead, Alan Miller, and David Crane created
their own video game company called Activision. They did not set out to make a compet-
ing game system but rather used their “inside” knowledge to become the first company to
make third-party software for the Atari. They released a number of very good, very
impressive games and because they placed the names of game authors prominently on the
box, the game authors became minor celebrities, receiving in excess of 12,000 fan letters a
week and even getting stopped in the streets for autographs.

In 1981, Imagic became the second company formed to create third-party content for the
Atari. This time the founders of the new venture were former Atari and Mattel employees
Bill Grubb, Brian Dougherty, and Denis Kobel. Denis Kobel was one of the first people to
be employed by Atari. Other talented members of the company included Rob Fulop who

Chapter 3 ■ The Early History of Video Games100

Figure 3.31 Donkey Kong for the VCS.

was the creator of a number of hits for the VCS such as Night Driver and the infamous
Missile Command and Bob Smith who was the creator of Video Pinball, also for the VCS.
Despite the talent and experience, the new company did not fare as well as its counterpart
Activision. The new company released only 20 games, including the top selling Demon
Attack before the great video game crash of 1983.

Activision survived the crash but just barely. At the same time the video game industry
was crashing, the home computer market was booming. Activision changed its name to
Mediagenic and released the first entertainment CD ROM in history, “The Manhole,”
which was designed for the Apple Macintosh.

The great crash of 1983 claimed many casualties, but a few of the more creative compa-
nies survived. Probably the most notable of these was Control Video Corporation. They
had the ingenious idea of starting an online service called Gameline, which allowed
gamers who owned the Atari VCS to download games over their phone lines. The com-
pany was founded by William F. Von Meister who had founded the world’s first “online”
service, called The Source. Players paid a one-time setup fee of $15 for the service. After
that, they would pay either 10 cents a game or $1 an hour for each hour that they wanted
to play a game.

William F. Von Meister had a much bigger design for his invention. He wanted to create a
full-fledged Bulletin Board System with e-mail, home banking, news, and more. This did
not pan out, because agreements could not be arranged with many top game developers.
This meant that some of the best games that were set to be released on the service never
saw the light of day. Finally, this venture bit the dust like so many other great ideas during
the great video game crash.

During the crash, Von Meister was forced out of his own company and the company
changed its name to Quantum Computer Services. This company would also suffer the
fate of Control Video Corporation, but in 1989, AOL was born and became a billion dol-
lar success. Unfortunately, until his death at the age of 53 in 1995 Von Meister would not
reap one dime from this company, which was a direct result of his brainchild.

Conclusion
They say that history is written by those who survive to tell it. Indeed the game industry
has its share of both survivors and casualties, all of whom have their opinions as to how
the history of video games really evolved. This chapter has merely scratched the surface.
The goal here was to give the newcomer to the world of retro game programming a
glimpse into the early history of game design that laid the foundation for building the
games that you will learn to program in this book.

Conclusion 101

Without Ralph Baer’s contributions, there would probably be no game industry and with-
out Steve Wozniak and Steve Jobs there would be no home computer market. At the very
least, without these our computer and game industry would be nothing like what they are
today. Every single person who built, designed, marketed, sold, and played a video game
during these early years played a part in making the game and computer industry what
they are today. Without the series of events you just read about, there would be no game
industry today.

Chapter 3 ■ The Early History of Video Games102

103

Assembly Language

chapter 4

All truths are easy to understand once they are discovered; the point is to
discover them.

Galileo Galilei (1564–1642)

They say that man fears what he does not understand and hates what he cannot conquer.
That means that if you learn to understand something you will lose your fear of it. This
allows you to conquer it and come to love it. This is the mystery behind the mastery of
assembly language. The first thing that we must do is to learn to understand exactly what
assembly language is.

Understanding Assembly Language
Every computer spends 99.99 percent of its time moving binary bits from one location to
another. When you look at your screen, it seems to be one solid image. If you use a mag-
nifying glass to take a closer look, you will see that this solid image is actually made up of
a series of very small dots placed side by side to give the appearance of a solid object (see
Figure 4.1).

Moving Memory Around in Your Computer
When you type a letter or number on your keyboard, somehow the combination of dots
on the screen mysteriously rearranges to form an image of the letter or number that you
just pressed on the keyboard. How does this happen?

Each of those dots on the screen is stored in your computer’s memory as a collection of
bits. The area of memory where these bits are sorted is called video memory.

When you press a key on your keyboard, a group of eight bits used to represent that key
is placed into a portion of memory called the keyboard buffer.

In order for a letter pressed on your keyboard to appear onscreen, the byte representing
that character has to be moved from the keyboard buffer to the video buffer.

Before we can start moving data around, however, we need access to some information.
We need to know where the keyboard buffer and the video buffer are stored in memory.
We further need to know what part of video memory we must write to in order to put an
image on a specific part of the screen.

As you will learn in Chapter 5, “A Game Graphics Primer,” a memory map (see Figure 4.2)
is used to tell us where the location of both video memory and the keyboard buffer are in
the computer’s memory.

Chapter 4 ■ Assembly Language104

Figure 4.1 The screen is made up of many small dots placed side by side.

On most computer systems, the first byte of video memory represents the top-left corner
of the screen. If you are going to place the key that we just pressed onto the top-left
corner of your screen, you have to move the byte of data stored in the keyboard buffer to
the first byte of video memory. (See Figure 4.3.)

If you could write a program to do this in plain English it would look something like this:

1. Read the data stored in the keyboard buffer (memory location xxx).

2. Store the data you just read into the first byte of video memory (memory location
xxx).

This gives you a basic idea of what you have to do: read the data stored in the memory
buffer and write it to the video buffer. This program, however, is not specific enough. What
happens between your telling the computer to read the keyboard buffer and writing it to
video memory? After the computer has read the keyboard buffer, it has to store that infor-
mation somewhere until you give it the next instruction. Fortunately, every computer
comes with built-in containers called registers that you can use to store information.

Understanding Assembly Language 105

Figure 4.2 The memory map of an imaginary computer.

When you program in BASIC, you are introduced to the concept of a variable. A BASIC
programmer creates these variables when he needs them, and he can destroy them at any
time. Registers are like variables, except they are not created by the programmer and can-
not be destroyed by the programmer. These register variables are built into the hardware
of your computer’s CPU. While we use variables in Assembly, it is much more common
for us to work with registers. With this new knowledge you need to rewrite your program.

1. Move the data stored in the keyboard buffer (memory location xxx) to register A
(also called the accumulator).

2. Move the data stored in the accumulator (register A) into the first byte of video
memory (memory location xxx).

That’s more like it; this program is very simple, and it does the job. There is still one prob-
lem with this though. We asked the computer to do two things, but we had to use 36
words. With this kind of ratio, if we had a program that asked the computer to perform
1,000 actions, we would have to write 18,000 words! This simply will not do. What if we

Chapter 4 ■ Assembly Language106

Figure 4.3 Move the data in the keyboard buffer to the
first byte of the video buffer.

could reduce the number of words by using an abbreviation for these sentences? Look at
the following program.

LDA xxx
STA xxx

Wow, we just eliminated 32 words! The first line starts with three letters. These letters
(LDA) stand for Load Accumulator and basically tell the computer to store the memory
address after the LDA instruction in the accumulator register. The second line starts with
another three letters (STA) that stand for Store the accumulator. This instruction tells the
computer to store the contents of the accumulator register into the memory location that
follows this instruction.

Guess what? You just wrote your first assembly language program, and it wasn’t all that
complicated at all.

The important thing to remember is that if you can visualize what you want your program
to do and write the program in plain English, then all you have to do is find the instruc-
tions that act as abbreviations for those sentences in your program. Eventually you will
have the assembly language code that you need for your program.

There are many abbreviations found in the Assembly language. Each abbreviation is called
an instruction. There are instructions that are used to move memory around, perform
mathematical operations, and carry out other basic operations.

Most instructions are broken into two parts called the Opcode and the Operand. In the
example above, for example, LDA would be the Opcode while xxx would be the Operand.

The opcode (which is short for operation code) tells the computer which operation to carry
out. The operand tells the computer which memory location to perform that location on.

Within the small program that we wrote, the LDA command is the opcode that told the
computer to move a memory location into the accumulator. Xxx is the operand that tells
the computer which memory location to move to the accumulator. Likewise, the STA com-
mand is an opcode that tells the computer to store the accumulator in a memory location.
Xxx is the operand that tells the computer where to store the data.

What you have learned so far is enough to give you a general idea of how Assembly works.
We now have to flesh out this idea with specific details. The first detail we need to uncover
is the concept of addressing.

Understanding Numbers and Math in Assembly Language
Once we have mastered the art of moving data around inside of our computer we must
begin the task of learning to manipulate this data. We do this by performing a number of
common mathematical operations of the data such as addition, subtraction, multiplication,

Understanding Assembly Language 107

division, and others. These operations are performed in assembly the same way as we have
performed them all of our lives with a few exceptions. These exceptions make Assembly
based mathematics very scary and confusing until you get the hang of them. Once you
understand how they work however you will find them to be very simple concepts.

It is now time for us to fully understand the way that your computer works with numbers.

Decimal, Binary and Hex Numbers

The numbering system that we have been taught since we were children is called decimal.

Decimal Numbering System

The decimal numbering system is also called base 10 because it is composed of only 10
unique digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. (You are probably familiar with these concepts
but read on anyway; it is important for us to review these points before we can move on.)
Every single number that we can ever write in decimal is made using combinations of
these 10 digits arranged in a horizontal line. So, for example, the number 6798 is made
up of the numbers 6, 7, 9, and 8. Each of these numbers is placed in its own column. (See
Figure 4.4.)

Chapter 4 ■ Assembly Language108

Figure 4.4 Illustration of each
number in its own column.

Each column represents a multiple of 10, which is 10 times larger than the multiple to its
right. (See Figure 4.5.)

This means that we can also represent this number like this.

(6 × 1000) + (7 × 100) + (9 × 10) + (8 × 1) = 6798

The equation above says that if we multiply 6 times 1000 we will get 6000. If we multiply
7 times, 100 we will get 700. If we multiply 9 times 10, we will get 90 and 8 times 1 = 8.
Finally, 6000 + 700 + 90 + 8 = 6798.

This rule holds true with any number. (See Figure 4.6.)

Understanding Assembly Language 109

Figure 4.5 Illustrations of each number in its
own column that is a multiple of 10.

Decimal Addition and Subtraction

Once we understand how the decimal system works we can not only identify decimal
numbers, but we can also learn to add and subtract them.

10
+10

20

In the example above, the first column has two 0s, which are to be added together. This,
of course, gives us 0, which we place at the bottom of the column.

The second column has two ones that are to be added together to equal 2, which we place
at the bottom of the column. This gives us the number 20. ((2 × 10) + 0).

11
+19

30

Chapter 4 ■ Assembly Language110

Figure 4.6 Illustration of some numbers and their
breakdown.

Here we have a 9 and a 1 in the first column. We know that 9 + 1 equals 10. The problem
is that the number 10 has two digits and we can only place one digit in our column. We
solve this problem by placing the 0 at the bottom of the first column and putting the 1 at
the top of the second column.

11
11

+19
0

We now have three 1s in the second column that we have to add together.

1 + 1 + 1 = 3.

We place 3 at the bottom of the first column.

11
11

+19
30

This is how 11 plus 19 come together to equal 30.

A similar process takes place when we do subtraction. Let’s see what happens when we
subtract 11 from 22.

22

–11

In the first column, we are subtracting 2 from 1. This leaves a value of 1, which we place
at the bottom of the first column. The exact same thing happens in the second column,
so we end up with a 1 at the bottom of each column. 22 –11 = 11.

We have to do things a bit differently to subtract 19 from 22.

22

–19

In the first column, we need to subtract 9 from 2, which is something that we cannot do.
To solve this problem, we borrow 1 from the second column and combine it with the two
in the first column to make 12.

1 12

-1 _9

Now we are subtracting 9 from 12, which we can do. The answer is 3, which we place at
the bottom of the first column.

Understanding Assembly Language 111

In the second column, we subtract 1 from 1, which equals 0. We place this value at the bot-
tom of the first column. 22–19 equals 3.

Now that we have reviewed basic math in decimal, we can learn binary and learn to do
these same functions in binary.

Binary Number System

Your computer does not understand decimal numbers. The computer only understands
binary numbers. Binary numbers form a system of numbers called base two. It is called
base two because the system only has two unique numbers: 0 and 1. Every single number
that our computer will ever use, no matter how large, is expressed with a combination of
these two numbers. This is not as impossible as it may sound and works in almost exactly
the same way that decimal is able to represent an infinite amount of numbers using only
10 unique digits.

In decimal, the number 11111 breaks down as shown in Figure 4.7.

In binary, this exact same number breaks down differently. Whereas in decimal, each col-
umn is a multiple of 10 that is progressively one digit longer than the previous column, in
binary each column is a multiple of 2, which is one power greater than the previous col-
umn. This means that the number 11111 will break down as shown in Figure 4.8.

2 to the 0 power equals 1. This means that the first column is equal to 1 × 1.

The second column represents 2 to the second power, which equals 2. Because we have a
1 in this column, the value of this column is 1 times 2, which equals 2.

The third column represents 2 to the third power, which equals 4. Because we have a 1 in
this column, the value of the column is 1 times 4, which equals 4.

The fourth column represents 2 to the fourth power, which equals 8. Because we have a 1
in this column, the value of this column is 8.

The fifth column represents 2 to the fifth power, which equals 16. Because we have a 1 in
this column the value of this column is 16.

Chapter 4 ■ Assembly Language112

Figure 4.7 Illustration of the breakdown of the number 11111.

10
,0

00
’s

10
00

’s

10
0’

s

10
’s

1’
s

Finally, the sixth column represents 2 to the sixth power, which equals 32. Because we have
a 0 in this column, the value of this column is 32 times 0, which equals 0.

In binary, the number 011111 equals 1 +2 +4 +8 +16 +0, which equals 31.Just as in deci-
mal, this rule works with any binary number. (See Figure 4.9.)

Understanding Assembly Language 113

Figure 4.8 Illustration of the way 011111 breaks down in binary.

Figure 4.9 Illustration of various binary numbers broken down.

Binary Addition and Subtraction

Binary addition and subtraction work using the same principles as decimal addition and
subtraction, which is why it was important for us to review them earlier. The only differ-
ence is that we only have two digits to work with. Let’s look at our first example:

01
+10

In the first column we are adding 1 + 0, which of course equals 1, which we place at the
bottom of this column.

01
+10

1

In the second column we are also adding a 0 and a 1, so we place a 1 at the bottom of the
second column.

01
+10

11

This gives us a value of 11, which, as we learned earlier, equals 3. As you can see, even
though we are working in binary, 1 plus 2 still equals 3!

Now let’s change things up a bit by adding 01 to 01.

01
+01

In the first column, we are adding 1 + 1. In decimal, this would be equal to 2, which we
would put at the bottom of the first column. In binary, 1 + 1 is still equal to 2 only we rep-
resent it as 10. We now carry the 1 just like we did in decimal and place the 0 at the bot-
tom of the first column.

1
01

+01
0

Now we are going to add 0 + 0 + 1, which of course equals 1, which we place at the bot-
tom of the second column.

01
+01

10

Chapter 4 ■ Assembly Language114

Our final answer is 10, which is the binary equivalent of 2. Even in binary, even with a
carry, 1 + 1 still equals 2!

The Hexadecimal System

Look at the two following numbers and tell me the difference between them in less than
two seconds. Go.

01110000100011110001011111001101011110101010
01110000100011110001011110001101011110101010

Most people could not do what I just asked
you to do and that includes me. After look-
ing at it for a while, we would eventually see
the difference. The fact is that humans do
not think very well in binary. This poses a
problem because while humans understand
decimal, the computer cannot, and while the
computer understands binary, humans do
not. “What we’ve got here is a failure to com-
municate.” In order to solve this we need to
find some middle ground.

Those long numbers are made up of 44 dig-
its. What if we could reduce them to only 11
digits? That would make our lives a whole lot
easier; lets see how we can do this.

If we divide 44 by 11 we get the number 4.
Lets break these numbers into 11 groups of 4.

0111 0000 1000 1111 0001 0111 1100 1101 0111 1010 1010
0111 0000 1000 1111 0001 0111 1000 1101 0111 1010 1010

If I asked you to instantly find the difference between these two numbers now, you would
probably find it much more quickly so we know that we are moving in a positive direc-
tion.

In reality, however, we have not yet accomplished our goal because we are still thinking in
binary. What we need to do is use this technique to create another base. A combination of
4 bits can be used to produce 16 different combinations of bits. That means the most log-
ical base for us to work with would be a base of 16.

So far, the largest base that we have worked with is base 10, which had 10 unique digits
(0 to 9), but this has six digits less than it would take to represent our base 16 numbering
system. We need to find some substitutes. Whenever scientists run out of numbers, they

Understanding Assembly Language 115

A Failure to Communicate

Just a bit of movie trivia: The quote I used above
came from Stuart Rosenberg’s 1967 film, Cool Hand
Luke, which was one of the great American films of
the 1960s and arguably Paul Newman’s greatest
performance. The words quoted were spoken by the
captain of Road Prison 36, played by Strother Martin.
The full quote is as follows.

“What we’ve got here is a failure to communicate.
Some men you just can’t reach, so you get what we
had here last week, which is the way he wants it.Well,
he gets it. And I don’t like it any more than you men.”

Paul Newman also uses this famous line later in the
movie to mock the prison guards.

usually start using letters. We will do the same thing, so we will use the first 6 letters of the
alphabet to represent the last six digits of our base 16 numbering system.

Base 2 systems use the digits 1 and 2. Base 10 systems use the digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9. Our new base 16 system uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, and f.
This new base 16 system is called hexadecimal and is what we will be using while we work
with Assembly.

Figure 4.10 illustrates decimal, hexadecimal, and binary equivalents.

Using this table, we can now convert the two large decimal numbers above to hexadecimal.

0111 0000 1000 1111 0001 0100 1100 1100 0111 1010 1010 = 708c17cc7aa
0111 0000 1000 1111 0001 0100 1000 1100 0111 1010 1010 = 708c17c87aa

As you can see, working with hexadecimal numbers is much easier than working with
binary numbers.

Chapter 4 ■ Assembly Language116

Figure 4.10 Illustration of decimal hexadecimal equivalents.

Base 16 follows all of the patterns that we have used when working with base 2 and base
10. In every number base, we divide each digit into its own row moving from right to left.
To find the value of the first column, we multiply the number in that column by the base
number to the 0 power. So in base 2, the value in the column is multiplied by 2 to the 0
power. In base 10, the value in the column is multiplied by 10 to the 0 power. In base 16,
the value in the column is multiplied by 16 to the 0 power. Because anything to the 0
power equals 1, the value of the first column will always be equal to the actual value in that
column. Figure 4.11 shows the arrangement of the columns for base 2, 10, and 16.

Addressing Modes
As you just read, most instructions that you give to your computer are made of two parts:
the opcode and the operand. We now know that the operand tells the computer what
address we are working with. What we have not discussed is the fact that operands can use
different kinds of addressing. Addressing modes are sort of like driving instructions. Look
at the map in Figure 4.12.

Understanding Assembly Language 117

Figure 4.11 Table for conversions.

What if you were at point A on the map and you needed to get to point B? You are not
familiar with the city, so you have to ask for directions. If you ask 13 different people for
directions, you will probably get 13 different sets of directions that will all lead you to the
same place. One person might say, “Go straight down West Street and take a left; you’ll see
it on the right.” Another person may say go south on Bay Street, turn east on Bain Street,
turn north on Cliff Street, and drive past West Street and you are there.” Twelve other peo-
ple may give you eight other routes that will take you to point B. You can think of these
kinds of directions as addressing modes.

Using the LDA instruction (Load Accumulator) as an example, there are a few different
ways to tell the computer which memory location to move into the accumulator. Look at
the memory map in Figure 4.13 (our virtual city).

Here we see our familiar memory map showing the location of video memory and the
keyboard buffer. In our example, we used the following command to load the keyboard
buffer into the accumulator.

LDA xxx

This is one kind of addressing. In the same way that there was more than one way for
someone to direct us from point A to point B, there are a number of ways for us to direct
the computer to memory location xxx. Rather than giving the computer the exact instruc-
tion, we could have done this:

LDA xxx + x

Chapter 4 ■ Assembly Language118

Figure 4.12 Small map of a city.

or this:

LDA xxx + y

or this:

LDA xx

Each of these is a different kind of addressing, and each one is very useful. Before you can
use these addressing modes, however, you need to understand how they work. There are
13 kinds of addressing modes available on retro game machines. These modes are dis-
cussed in the following sections.

Immediate Addressing

This is probably the most obvious form of addressing; if you want to add eight to the value
held in the accumulator, then you will use 8 as the operand for the ADC command:

ADC #08

Understanding Assembly Language 119

Figure 4.13 Memory map of a computer.

Notice the number sign that precedes the number 8. This tells the computer that you want
it to use immediate addressing when interpreting the operand.

Absolute Addressing

The next most common form of addressing is called absolute addressing. With this form
of addressing, rather than using the actual number that you want to add as the operand
for your command, you use the address of a location that holds the number you want to
add. So if a value of 8 is stored at the memory location $2f23 and you want to add this
value stored at this memory location, you would use this address as your operand:

ADC $2f23

Notice that you did not place a number sign in front of the operand, and the operand con-
tains four digits. This way the computer knows that it should use absolute addressing to
interpret the operand, so rather than adding the value $2f23 to what is in the accumula-
tor, it will go to memory location $2f23 where the value 8 is stored, and it will add that
value to the accumulator.

Zero Page Addressing

When you use absolute addressing, you use a 16-bit memory address. Because you use the
full 16 bits, you can use absolute addressing to access any part of the computer’s memory
space. There is a special portion of memory that you do not need to use a full 16-bit
address to access. This area is called the zero page, and it is located between address $00
and $FF. Because the largest memory address in the zero page is $FF and $FF can fit into a
single byte, one byte is all that is needed to access any memory location in the zero page.

ADC $F0

Implied Addressing

Unlike other addressing modes, instructions that use implied addressing do not need to
be given an operand.

An example of this kind of instruction is the TAX command. Unfortunately, this is not a
command that is going to automatically do your taxes for you. TAX is actually short for
Transfer A to X, and what this command does is move data stored in the A register to the
X register. It will always move data from the A register to the X register, so we never need
to give it an operand.

Accumulator Addressing

This is simply another form of implied addressing. The difference between this and regu-
lar applied addressing is that the target of this action is always the accumulator.

Chapter 4 ■ Assembly Language120

Indirect Absolute Addressing

This is the name of the addressing method used by the JMP command. The memory
address that we give this command is used as a reference to the low part of a 16-bit address
that contains the address of the next instruction we want to execute.

JMP ($1167)

In the preceding example, the computer would treat $1167 as the low end of the address
and use $1168 as the high end of the address containing the instruction we want to exe-
cute. So if $1167 contains $EA and $1168 contains $12, then the next instruction executed will
be $12EA.

Absolute Indexed Addressing

This form of addressing is interesting and can be useful for things like looping through a
portion of memory. It does this by not only taking a 16-bit memory address, but also by
taking the value held in either the x or the y register, and adding them together in order
to get the final address:

LDA $E367,Y

So if you want to perform an action on the memory location $E367 and the 10 bytes that
follow it, you would do something similar to this:

LDA $E367
Perform processing of data in the accumulator
INY

This code between the LDA command and the INY command would include the code used
to perform the operation that we want repeated 10 times and code that keeps track of the
loop so that we can break out of the loop after 10 cycles.

Zero Page Indirect Addressing

This form of addressing works just like regular indirect addressing. The only difference
between this and normal indirect addressing is that here we are referencing memory loca-
tions stored in the zero page. As with all forms of zero page addressing, we only need to
use an 8-bit memory address to reference data as opposed to 16 bits. This means that per-
forming zero page indirect addressing is faster than normal indirect addressing.

Indexed Indirect Addressing
LDA ($E4,Y)

This is an example of indexed indirect addressing. If we assume that the Y register con-
tains a value of 4, then the LDA command would add $E4 + 4 to get a value of $E8 for the
low end of the address that should move into the accumulator.

Understanding Assembly Language 121

Indirect Indexed Addressing

This one is similar to indexed indirect addressing but is slightly trickier. Here is an exam-
ple

LDA ($B4), x

In this example, the computer first uses $B4 as the low end of a memory address and would
use $B5 as the high end of the address. If B contains $FF and $B5 contains $A4, then the
computer will retrieve the value $12F4. This value will then be added to the value in X, so
if X has a value of 3, then the final value the computer will use will be $12F8. This value will
be used as the address of the data that will be placed into the accumulator.

Relative Addressing

This is the kind of addressing used by branch instructions. Unlike the other forms of address-
ing that give the computer a specific address to go to, when we use this form of addressing
we tell the computer to move a certain distance away from the current instruction.

Working with the Stack
There will be times when you will need to preserve the contents of a memory location or
a CPU register. The computer stack was made specifically for this purpose. Let’s say your
computer has three registers called A, X, and Y. I chose these letters because they are actu-
ally very common names given to registers.

What if you have very important information stored in these registers but need to use
them to do something else without losing your important data? This is where the stack
comes into play. You can push these registers onto the stack to save the contents of your
register, use the registers for whatever you have to do, and then pull the original contents
of the registers from the stack and back into the registers. As you can imagine, this is a very
important technique and you will make use of it often.

Different CPUs will perform pushes and pulls differently. Some use a single push and pull
command, which, when activated, will store all of the registers and flags to the stack and
pull them off at the same time. Other CPUs require you to push each register or flag to
the stack independently and pull them off of the stack again when you are ready to use
them. When you push data onto the stack, you must remember that the first piece of data
pushed onto the stack has to be the last piece of data that you pull from the stack.

Think of it as stacking several books one on top of the other on a table. The first book that
you put on the table will be at the bottom of the stack, while the last book you put on the
table will be on the top. If you start taking books off the stack one at a time, you have to
take the last book you placed in the stack from the top, followed by the second to the last
book you put on the table, and so on, until you have moved every book from the table.
(See Figure 4.14.)

Chapter 4 ■ Assembly Language122

System Flags
System flags are similar to registers except that they only contain one bit. Depending on
whether they are on or off, you can learn things about the state of your computer system,
or you can find out whether certain events have occurred. For example, when you perform
an addition, it is important for you to know if there was a carry. If a carry occurred, this
flag would be set to 1 and if no carry occurred, the flag will be set to 0. Table 4.1 contains
some common registers.

Understanding Assembly Language 123

Figure 4.14 A stack of books compared to the computer’s stack.

Table 4.1 Common System Flags

Name
of flag Action Taken

N NEGATIVE: This is set if bit 7 of the accumulator is set.

V OVERFLOW: Set after an addition of two numbers with the same sign or subtraction of two
numbers with different signs if the result is larger than 127 or less than –128.

B BRK Command: When an interrupt occurs if it was caused by a BRK command, then this flag
is set. If the interrupt was an external interrupt, then this flag is not set.

D DECIMAL MODE: This is set if the CPU is currently in Binary Decimal mode.

I IRQ DISABLED: If mask able interrupts are disabled, then this is set.

Z ZERO: If the result of any operation is zero, then this flag is set.

C CARRY: This is used to tell us if a carry was produced after an addition or if a borrow was
produced by a subtraction and to hold a bit after logical shift.

Logic and Branching Instructions
We have covered enough theory to perform the majority of actions you will do while pro-
gramming in Assembly. You can move data from one location to the next using various
addressing modes. You can add data, subtract data, and even multiply and divide data.
Now you need to learn how to control if and when the computer does these things.

While there are many situations where you will have to use logic in your game, we will
choose a very common yet simple example to understand how these decisions are made.
What if you create a game that is very long? A player plays diligently and reaches the last
level before he has to go to school. If you don’t make special arrangements, that player will
have to start playing the game all over again from the beginning when he returns. This
would be a major turn off. So the question becomes what special arrangements should be
made? The simplest solution is for you to give the player a password every time he reaches
a new level. This password would allow the player to come home from school and con-
tinue playing right where he left off.

In order to implement this feature, you must have the player enter his password. Next you
will have to see if this password matches the password for any of the levels in your game.
If it does match a level, then you need to load that level so that the player can start play-
ing. Here is a plain English list of the actions that need to be performed.

1. Get password from the player.

2. See if it matches the password for any of the levels.

3. If it matches the password of a level, load that level.

4. If it does not match, go back to number 1.

This is a pretty straightforward program. Once you get the password from the player, you
test it and either load the appropriate level or ask the player for the password again. If the
player continues to enter incorrect passwords, the computer will continue to ask for a new
one until he enters a valid password.

This program is a memory map with the plain English program loaded into memory. (We
are not interested in actual assembly instructions right now, just the concept of how logic
and branch instructions work. It is for this reason that the memory map contains English
instructions. This will never happen in an actual program.)

As you can see, this program is broken up into blocks of instructions. Each block is
responsible for carrying out specific actions. One block of instructions gets the password
from the user. Another block checks to see if the password matches the one required for
any of the levels. Finally, several blocks are used to load specific levels. This program seems
pretty organized, right? It should work, right? Wrong!

If you ran this program, it would get a password from the user, check to see if it matches
the password of any of the levels, and then, whether it was a correct password or not, the

Chapter 4 ■ Assembly Language124

program would load every level in the game, one after another. This is because the com-
puter will normally start executing the first command in the program and execute them
all, one by one, going down the list until it has executed the last instruction.

This will not do. You need more control over your program. This is where logic and
branch instructions come into play. They give you the control that you need over your
program.

Let’s look at some of the decisions you will have to make. First of all, the program should
not automatically start checking passwords when the player presses Enter. First of all, the
program needs to check to see if the player even entered a password and, if he did, whether
the password was of the correct length. This means that you need to add another block to
your program that tests to see if the player typed anything.

Here is how this will work. When the player enters a password, the password is placed into
a memory location until you are ready for it. You will call this memory location the pass-
word buffer. Before the player enters a password, this memory location contains only
zeros. Before you have the computer start testing passwords, you need to test this mem-
ory location to see if it contains a value greater than zero. If it does, you check for pass-
words; if not, you ask the player for a password again. Here is how this part of the program
will work.

1. Get password from the player and store it in the password buffer.

2. Test to see if the password buffer has a value greater than zero.

3. If the password buffer equals zero then go to number 1.

4. If the password buffer is greater than zero, jump to memory location xxx.

From the memory map above, we see that location xxx is the portion of memory that con-
tains the code to test for a correct password. If the password buffer equals zero, the player
did not enter a password and he must be prompted to give the password again. If not, the
program starts testing for passwords.

Next, we need to create the logic that is going to test the password to see if it is correct.
The easiest way to do this is to go down the list of passwords and if the password matches
that of any level, jump to that level. If you end up at the bottom of the list and no pass-
word matched, then the program jumps back to the block of memory with the code used
to get a new password from the user. This part of your program would look like this:

1. If password equals to qwedjg then go to memory location xxx.

2. If password equals to lgkjhn then go to memory location xxx.

3. If password equals to lfjgke then go to memory location xxx.

4. If password equals to vnghdu then go to memory location xxx.

5. If password equals to qogmsj then go to memory location xxx.

Understanding Assembly Language 125

6. If password equals to cmgjke then go to memory location xxx.

7. If password equals to mbfhgk then go to memory location xxx.

8. If password equals to mchfke then go to memory location xxx.

9. If password equals to spzmlg then go to memory location xxx.

10. If password equals to qwedjg then go to memory location xxx.

11. Go to xxx.

If the player’s password matches any of the passwords on your list, the computer will jump
to the memory location that contains the code to load the correct level. The only way that
your program will ever reach line number 11 is if the player’s password did not match any
of the passwords for the levels. If that happens, you have the program automatically jump
to the memory location with the code used to get a new password.

The final blocks of memory are out of the scope of this section so we will not go into them
in detail. Suffice it to say that they are used to load a given level.

You now have all of the pieces that you need to add this password save feature to your pro-
gram. As you can see, with the use of logic/branch instruction, we can intelligently add
much functionality to our games.

Facing the Code
Do you remember the motto from the beginning of this chapter?

“Man fears what he does not understand and hates what he cannot conquer. That means
that if you learn to understand something then you will lose your fear of it, which allows
you to conquer it and come to love it. This is the mystery behind the mastery of assembly
language.”

You should now understand the basic idea of how assembly language programming
works. Now that you understand assembly language you can face its code and lose your
fear of it. In order for us to unlock the full power of the machines covered in this book we
will have to use three flavors of assembly; 6502 assembly, sweet 16 assembly, and finally
6809 assembly.

We will now begin to look at actual assembly language instructions. There is nothing for
you to fear here. Remember, when you need to make an assembly language program, you
first write out the instructions you need to give to the computer and then you convert
these instructions to assembly opcodes and operands, which are really just abbreviations
for the sentences you just wrote. There are three basic things you will have to know about
each assembly language environment; what registers are available, what the instruction set
is, and how memory is arranged. Most 8-bit computers have similar registers so you
should never really be completely lost about these. The instruction set is simply a list of

Chapter 4 ■ Assembly Language126

every command that the CPU recognizes. The computer’s memory map will vary from
computer system to computer system. The memory map for the machines used in this
book can be found on the companion Web site to this book.

6502 Programming
The 6502 processor was a beautifully crafted work of art for its time and appears in many
groundbreaking computer systems such as the Apple II, Commodore 64, and even the
original Nintendo Entertainment System (NES for short).

CPU Registers

There are three registers on the 6502 microprocessor. These are the accumulator register,
the x register, and the y register. The most important register is the accumulator. This is
because the functions used for addition, subtraction, and handling comparisons are all
designed to use this register automatically. The x and y registers are general purpose reg-
isters. They can be used to hold data or as the offset to a given memory location.

Instruction Set

In order for you to communicate with your computer, you need to know which instruc-
tions your computer can understand. Most of the instructions that you use to communi-
cate with your computer fall into several different categories. Tables 4.2 through 4.15 list
each instruction that you use to communicate with any computer using the 6502 proces-
sor. They are grouped by category for your convenience.

Facing the Code 127

Table 4.2 Instructions to Load a Memory Location into a Register

Name of instruction Action taken

LDA Load the Accumulator

LDX Load the x register

LDY Load the y register

Table 4.3 Store Information in the Registers to a Memory Location

Name of command Action taken

STA Store the Accumulator

STX Store the x register

STY Store the y register

Chapter 4 ■ Assembly Language128

Table 4.4 Increment Instructions

Name of command Action taken

INC Increment memory by one

INX Increment x by one

INY Increment y by one

Table 4.5 Decrement Instructions

Name of command Action taken

DEC Decrement memory by one

DEX Decrement x by one

DEY Decrement y by one

Table 4.6 Branch Instructions

Name of instruction Action taken

JMP Jump to another location

BCC Branch on carry clear

BCS Branch on carry set

BEQ Branch on equal to zero

BNE Branch on not equal to zero

BMI Branch on minus

BPL Branch on plus

BVS Branch on overflow set

BVC Branch on overflow clear

CMP Compare memory and accumulator

CPX Compare memory and the x register

CPY Compare memory and the Y register

BIT Test bits

Facing the Code 129

Table 4.10 Subroutine Instructions

Name of instruction Action taken

JSR Jump to subroutine

RTS Return from subroutine

RTI Return from interrupt

Table 4.7 Shift Rotate Instructions

Name of instruction Action taken

ASL Accumulator

LSR Logical Shift Right

ROL Rotate Left

ROR Rotate Right

Table 4.8 Transfer Instructions

Name of instruction Action taken

TAX Transfer Accumulator to x

TAY Transfer Accumulator to y

TXA Transfer x to the accumulator

TYA Transfer y to the accumulator

Table 4.9 Stack Manipulation Variables

Name of instruction Action taken

TSX Transfer the stack pointer to x

TXS Transfer x to the stack pointer

PHA Push accumulator on the stack

PHP Push processor status onto the stack

PLA Pull accumulator from the stack

PLP Pull processor status from the stack

Chapter 4 ■ Assembly Language130

Table 4.11 Set/Reset Instructions

Name of command Action taken

CLC Clear carry flag

CLD Clear Decimal mode

CLI Clear interrupt disable

CLV Clear overflow flag

SEC Set carry

SED Set decimal mode

SEI Set interrupt disable

Table 4.12 Arithmetic Commands

Name of command Action taken

ADC Add memory and Carry to Accumulator

SBC Subtract memory from accumulator with borrow

Table 4.13 Logic Commands

Name of command Actions taken

And Logically AND Memory with Accumulator

ORA OR memory with accumulator

Table 4.14 Flag Commands

Name of command Action taken

CLS Clear carry flag

CLD Clear decimal mode flag

CLV Clear interrupt disable flag

CLF Clear overflow flag

SEC Set carry flag

SED Set decimal mode flag

SEI Set interrupt disable flag

Sweet 16
Sweet 16 is really a remarkable accomplishment. Who better to explain it than the man
who created it, Steve Wozniak, aka Woz? Here is an excerpt from “SWEET 16: The 6502
Dream Machine,” Byte Magazine, November 1977.

“While writing Apple BASIC, I ran into the problem of manipulating the 16-bit pointer
data and its arithmetic in an 8-bit machine. My solution to this problem of handling 16-
bit data, notably pointers, with an 8-bit microprocessor was to implement a nonexistent
16-bit processor in software, interpreter fashion, which I refer to as SWEET16. SWEET16
contains sixteen internal 16-bit registers, actually the first 32 bytes in main memory,
labeled R0 through R15. R0 is defined as the accumulator, R15 as the program counter,
and R14 as a status register. R13 stores the result of all COMPARE operations for branch
testing. The user accesses SWEET16 with a subroutine call to hexadecimal address F689.
Bytes stored after the subroutine call are thereafter interpreted and executed by SWEET16.
One of SWEET16’s commands returns the user back to 6502 modes, even restoring the
original register contents.

Implemented in only 300 bytes of code, SWEET16 has a very simple instruction set tai-
lored to operations such as memory moves and stack manipulation. Most opcodes are
only one byte long, but since she runs approximately ten times slower than equivalent
6502 code, SWEET16 should be employed only when code is at a premium or execution
is not. As an example of her usefulness, I have estimated that about 1K byte could be
weeded out of my 5K byte Apple-II BASIC interpreter with no observable performance
degradation by selectively applying SWEET16.”

For more information about SWEET16 visit the companion website for this book.

Instruction Set

Anyone can talk about something hard and make it sound hard. Some people even make
things that are really easy complicated. Woz not only created language for a processor that
does not physically exist, he also made the language very easy to understand and use.
Sweet 16 has 16 register instructions and 13 non-register instructions.

Facing the Code 131

Table 4.15 Miscellaneous Commands

Name of command Action taken

NOP No operation

BRK Break

Sweet 16’s Register Instructions

All register instructions consist of two hexadecimal digits. The first digit is the opcode,
and the second digit is the operand used to specify the register we are using. Similar com-
mands are grouped together in the number line to make them easier to remember. (See
Table 4.16.)

Sweet 16’s Non-Register Instructions

With the exception of the Break command, the command used to return from subroutines,
and the command used to return to 6502 assembly mode, these are all branch instructions
used to cause the computer to jump to a given memory location. (See Table 4.17.)

Chapter 4 ■ Assembly Language132

Table 4.16 Sweet 16’s Register Instructions

Name of command Instruction Function

1 SET Constant (Set)

2 LD (Load)

3 ST (Store)

4 LD (Load Indirect)

5 ST (Store Indirect)

6 LDD (Load Double Indirect)

7 STD (Store Double Indirect)

8 POP (Pop Indirect)

9 STP (Store POP Indirect)

a ADD (Add)

b SUB (Sub)

c POPD (Pop Double Indirect)

d CPR (Compare)

e INR (Increment)

f DCR (Decrement)

6809 Programming
While the 6502 processor made its way into three of the four machines covered in this
book, the 6809 is a superior processor. While virtual 16-bit registers had to be created to
add 16-bit functionality to a 6502 system, the 6809 processor has this functionality built
right in. This functionality comes in the form of two 8-bit accumulators that can be com-
bined to form one 16-bit register. This processor also has two built-in 16-bit index regis-
ters and two stacks. Two stacks mean that the 6809 is capable of addressing modes, which
are not available on the 6502.

The 6809 Processor

The heart of the TRS-80 Color Computer consists of three major components: the
Motorola MC6809E microprocessor (which despite being an 8-bit computer has many
16-bit features, including two 16-bit index registers and two 16-bit stack pointers); the
Motorola MC6847 VDG (video display generator); and the Motorola MC6883 SAM (syn-
chronous address multiplexer).

Facing the Code 133

Table 4.17 Sweet 16’s Non-Register Instructions

Opcode Command Action taken

0 RTN (Return to 6502 mode)

1 BR (Branch always)

2 BNC (Branch if No Carry)

3 BC (Branch if Carry)

4 BP (Branch if Plus)

5 BM (Branch if Minus)

6 BZ (Branch if Zero)

7 BNZ (Branch if Nonzero)

8 BM1 (Branch if Minus 1)

9 BNM1 (Branch if Not Minus 1)

a BK (Break)

b RS (Return from Subroutine)

c BS (Branch to Subroutine)

Because of its versatile use of registers, the MC6809E was a very powerful processor for its
time. First of all, this CPU has two accumulators, which can be used separately or com-
bined to form a third register called D. Normally, the registers are used as holding regis-
ters or for data manipulation. When the CPU needs to perform any of its 16-bit
operations such as additions, subtractions, loads, stores, and 8-bit by 8-bit multiplica-
tions, the D register is used.

Another very innovative and ingenious register that is unique to this CPU is the direct
page register. On most computer systems, there is an area of memory called the zero page,
which consists of the first 256 bytes of memory. This area is a special place because
whereas every other part the computer’s memory needs a 16-bit address to be referenced,
an 8-bit address can be used to address any area of the zero page. This means that it takes
less memory and time to perform operations on page 0. The MC6809E takes this concept
to a whole new level by the use of the direct page register. With this register, any portion
of memory can be treated like zero page memory! This is because when we operate an
instruction that uses direct page addressing, the contents of the DP register is used to
determine the high order byte as opposed to always defaulting to zero. The DP register by
default will usually have a value of 0 and thus addresses the first page of memory. The con-
tents of this register can be changed to place the “zero page” anywhere in memory.

The ability to combine our two accumulators to build a new 16-bit register is cool, but we
also have access to four real 16-bit registers. First of all, we have the U and S registers,
which are responsible for all stack operations. The S (system) register is used to keep track
of the default system generated stack and is called whenever a push or pull function is exe-
cuted. The U (user) register is provided to allow the programmer (that’s us) to create his
or her own stack! Very cool! Finally, we have the X and Y registers. These registers are pri-
marily used as index registers, such as when we are performing indirect addressing. These
registers do, however, have another very powerful feature—as index registers, allowing
indexed addressing, and indirect addressing or indexed indirect addressing. This means
that the MC6809E can function efficiently as a stack processor, allowing the microproces-
sor to support advanced graphics, high-level languages, and modular programming tech-
niques.

As is the case on most processors, the program counter register is used to keep track of
what instruction needs to be executed next. The TRS-80, however, provides us with a
slight twist. This register can be adjusted to function as an indexed register; we can write
programs that address the memory relative to the program counter. In order to take full
advantage of program counter relative programming, we have to use relative branch
instructions and Load Effective Address instructions (LEA for short). The relative branch
instructions can be used in either 8-bit or 16-bit mode. If you use them in 8-bit mode, you

Chapter 4 ■ Assembly Language134

can reference any memory location within plus or minus 256 bytes of the program
counter. If you use them in 16-bit mode, you can reference any part of memory. The LEA
instructions can be used to store the address of a given memory location in a register
where our program can use it. At first, there may seem to be no need for such functional-
ity, but as we will see, this is the key to writing programs that can be placed anywhere in
memory. You see, if all addressing is done relative to the program counter and the pro-
gram counter is adjusted to wherever we place our program in memory, then the relative
address of the lines of code in our program to the program counter will always be the
same.

It should be noted that there are some limitations to relocatable code. This process makes
the program 5 to 10 percent bigger and it takes 5 to 10 percent more time to execute than
regular code. When deciding whether or not to use this kind of code, you have to weigh
the pros and cons against what you are trying to do. They are best used for machine lan-
guage utilities such as graphic routines and subroutines called by BASIC programs.

Finally, the condition register is used for branching instructions.

A key element of any video game, especially on retro machines, is timing. Fortunately for
us, the MC6809E supports a number of interesting features that enable us to make things
happen exactly when we want them to, thanks to a common element of all modern com-
puter systems called the interrupt. Interrupts do just what their name implies. While the
CPU is busy going about its business, an interrupt stops it from what it is doing and makes
it do something else. When the new task is completed, the CPU goes back to what it was
doing before. !NMI, !FIRQ, and !IRQ are interrupt vectors that hardware peripherals can use
to make the computer give them attention. When these are called, the CPU will take a
break from what it was doing in order to do whatever a peripheral device (disk drive,
modem, or anything else that you have plugged into your computer) needs it to do. When
the interrupt is done executing, the CPU will go back to what it was doing.

Other interrupts are also very helpful to us as game programmers, and they come in two
varieties: normal interrupt requests and fast interrupt requests, both of which are very
useful to us as programmers.

An example of how useful these interrupts are can be seen in the way the VDG keeps track
of the vertical and horizontal sync. A cathode ray in the back of the screen starts drawing
from the top-left corner of the screen and paints a line of the image across the screen until
it reaches the top-right corner of the screen. Next, the ray is turned off and drops down
one line and goes all the way back to the left of the screen. Then the ray is turned on and
another line is drawn.

Facing the Code 135

This pattern continues until the whole screen has been drawn and the ray is in the bot-
tom-right corner of the screen. At this point, the ray is tuned off, moved back up to the
top-left corner of the screen, and the whole process starts again. This is how the illusion
of a picture is created. Only one point on the screen is ever actually lit at any given time.
The picture that we see is an optical illusion, which we see because the points on the
screen are all being lit so many times in one second that they appear to our eyes to be lit
at the same time, and the screen seems to have a picture on it. Each line of the image that
is drawn is called a scan line.

The period of time when the ray is turned off and moving from the right of the screen to
the left is called a horizontal blank. The period of time when the ray is turned off and mov-
ing from the bottom right of the screen to the top left is called the vertical blank. Often,
we will want to have some specific action taken when a specific portion of the screen is
being drawn. In order to do this, we will need to know when horizontal and vertical blanks
are happening. Fortunately for us, the VDG tracks these for us. Whenever a vertical or
horizontal blank occurs, an interrupt is generated so that any necessary special code can
be executed.

Interrupts are also used to auto-start read-only memory cartridges. Non-maskable inter-
rupts are reserved for use by the expansion port and cannot be disabled or postponed.

There will be times when we will need to change the instructions stored in these inter-
rupts. Ordinarily, we would not be able to do this because the interrupts are not a part of
programmable memory. Thanks to the SAM chip, however, which we will discuss shortly,
we can write to these areas because they are mapped on top of BASIC ROM memory. Each
interrupt is actually nothing more than a 3-byte area of memory that is referenced when-
ever a specific event occurs. The 3-byte area begins with a 1-byte for the JMP op code,
which tells the computer to jump to a location in programmable memory, which is stored
in the other two bytes.

We can change what happens when a particular interrupt is called by changing this
address from its default memory location containing system code to a new location call-
ing the code that we want to have executed. Keep in mind that sometimes it can be very
handy to have default system code do some of the work for us so you may want to have
your code call the default code and then modify the results afterwards.

Chapter 4 ■ Assembly Language136

Facing the Code 137

If it ain’t broke, don’t fix it (or don’t reinvent the wheel)

In 1998, I became very interested in the Y2K problem. Not only did it pose an interesting intellec-
tual challenge, but solving the problem also seemed to be a sure path to financial security. One
year later, I had created a program I affectionately referred to as S.A.T.H.R. (Software Alternative
To Hardware Replacement).

This story may be interesting to you for a few reasons, starting with the way the program used
interrupts. You see, the problem was that after 1999, the hardware on many computers would start
generating 1900 instead of 2000. Any DOS-based system, which means any operating system
made by Microsoft at the time, used the same interrupts as their foundation, and all operating sys-
tems use the same BIOS interrupts for their foundations. This meant that any process that
depended on interrupts could be hijacked and reconfigured on any Microsoft OS and, in theory,
other operating systems, although this theory was not tested.

(I suspect that the program would have worked on Novell as well but this was never tested. The
reason for my suspicion was that when you read over the interrupt list for DOS, you find a lot of
references to interrupts that were designed for Novell!)

The great workhorse of all Microsoft systems at the time was interrupt 21. This interrupt handles
most major functions such as opening and closing files, and getting and setting the date and time.
By placing the value 2ah into the Ax register and calling Interrupt 21, the operating system and
other software would cause the interrupt to read the date from the hardware and then tell the
operating system or software what the date was. Of course, if the hardware fell victim to the Y2K
bug, then this date would be wrong.

What my program did was replace interrupt 21. Because my program was a TSR (Terminate and
Stay Resident) program, whenever interrupt 21 was called, my program was activated. If the date
was requested, my program would call the original interrupt 21 so that it could do the work of
obtaining the current date from the hardware. When the original interrupt had completed its work,
my program would take over by running the date through a date filter that I invented, producing
the correct date, which was passed on to the OS or application that needed the date.

The point is that I could have completely hijacked the interrupt and read the date manually using
BIOS interrupts and/or by reading the BIOS date locations directly, but for my purpose there was no
need. As a hardcore programmer, I wanted to do this, but as a budding businessman who had to
look at the whole picture, I was forced to resist the urge. My goal was to get a solid application
working that was fast and, most of all, reliable. I knew the interrupt 21 service 2ah would always
reliably obtain the current date from the hardware. What I needed to do was to make sure that my
date filter would work just as reliably! The key thing to remember when you are optimizing games
or any software is that your goal is not to optimize the whole application. Your goal is to optimize
the areas where the speed and reliability will affect the user’s comfort while using your application.

Conclusion
Like so many other things in life, assembly language programming can seem daunting at
first, but with practice it becomes much easier. You can visit this book’s companion Web
site to download assemblers for all of the programs covered in this book as well as many
tutorials and examples of machine language programs.

Once you master the art of assembly language programming, you will be able to build any
game that you can imagine.

Chapter 4 ■ Assembly Language138

139

A Game
Graphics Primer

chapter 5

I magination is the beginning of creation. You imagine what you desire, you will
what you imagine, and at last you create what you will.

George Bernard Shaw (1856–1950)

Many of the things that we enjoy in life are nothing more than illusions. As I write this
chapter, I have a very large bottle of grape juice by my side. The juice looks like grape juice
and tastes like grape juice, but it is not grape juice. Nevertheless, I like it. When I turn on
the radio and listen to my favorite song, there isn’t really a person in the box singing to
me; it is simply another illusion. Finally, when I watch TV or play a video game, I am not
looking into a real 3D environment; this is simply another optical illusion. The key to cre-
ating a good video game is to understand how these optical illusions work so that we can
create a game world that appears to mimic reality.

While there is currently no way to implement the illusion of taste or smell in a video
game, you can make very good use of optical and audio illusions and, to a more limited
degree to fully immerse our players in the game. Always remember that reality is not as
real as you think it is. There is a world around us that passes information to our sensory
organs, which in turn passes this raw data to our unconscious mind where it is assem-
bled to create our conscious perceptions of the world around us. The key to creating the
illusion of there being an actual game on the player’s monitor is not to re-create the
world as you think that you see it, but rather to re-create the raw data that your uncon-
scious mind takes in and converts into your conscious perception of reality. Oddly
enough, once you learn a few new principles, it is actually easier to re-create this raw data
than it is to re-create the world as you see it.

N o t e

There is a very interesting phenomenon that often occurs naturally when a player is truly immersed
in a game. You see, the body is used to moving in order to navigate its environment. In the game
world, however, our whole body does not have to move, only our fingers. Interestingly enough,
when the mind is fully focused on the game, the player’s body will move anyway. You have proba-
bly seen this before. When some people play Mario Brothers and they have to make a big jump,
they often bounce their hands in the air as if this movement will give the character on the screen
more momentum with which to jump. Likewise, when many people play a flight simulator or a dri-
ving game, they will lean as they turn curves or have similar reactions when they speed up or hit
the brakes.

Color
Red, green, and blue are three very special colors. The reason that they are special is
because if you mix these colors equally you will create the color white. Mixing these col-
ors using various proportions, you will be able to create any color in existence. Most com-
puter systems and color monitors work with color using a format called RGB. RGB stands
for Red, Green, and Blue. This means that the colors on the screen are generated by mix-
ing different proportions of red, green, and blue. On a retro game machine, you will not
be able to create every possible combination of red, green, and blue. If you could, you
would be able to generate any color known to man. Instead, you will normally have access
to 16 colors or less, depending on the machine and graphics mode you are using. Because
they are the primary colors, you will normally have access to red, green, and blue on any
machine that you use.

What Makes a Picture?
Take a look at Figure 5.1. What do you see?

It seems like a meaningless arrangement of
blocks, right? Now stand this book up so that
you can look at it from a distance and slowly
walk backwards until the hidden image
becomes clear.

What just happened?

You just discovered one of the many talents
that our brains possess that we not only use
every day but we take for granted every day.
This talent is called reconstruction, and it is

Chapter 5 ■ A Game Graphics Primer140

Figure 5.1 Seemingly random
arrangement of blocks.

the reason your mind can make sense of the
contents of a computer screen, works of art,
and the text on this page! As long as our eyes
are open, rays of light are constantly bouncing
off of objects around us and entering our eyes
as seen in Figure 5.2.

These images form an upside down picture on
the retina of the eye similar to the way a pic-
ture is stored on the film of a camera. Figure
5.3 illustrates.

In a camera, the shutter is normally closed so
that no light can enter the camera. When you
press the button to take a picture, the shutter
is opened for a fraction of a second to allow
light through. This allows the image formed
on the back of the camera to be saved on a
portion of the camera’s film. In movie cam-
eras, the process is exactly the same except the
shutter is opened and closed very rapidly so
that as many as 24 or 30 or more pictures are
taken every second. Examine Figure 5.4.

The human eye takes this process to the next
level. The eye is always open, and there is
always a picture focused on the back of the
retina. This image is detected by optic nerves,
called rods and cones, in the back of the eye
that record the correct image and transmit
this image to the brain via the optic nerve.
The brain then makes sense of the image and
presents your consciousness with the image
that you eventually see.

Figure 5.5 is a rather simple diagram. There
are more than just two or three rays of light
entering our eyes; indeed, there is an
uncountable number of light rays entering
your eyes every fraction of a second, every
day, all day, even as you read this book. Even
more complex is the process that the brain has
to go through to correctly interpret these

What Makes a Picture? 141

Figure 5.2 Light rays are constantly
entering the human eye.

Figure 5.3 Comparison of the path of light
in a camera and the human eye.

Figure 5.4 Illustration of how a camera
and video camera work.

images of the outside world, which it obtains from the eye. While a full understanding of
how the brain works is beyond the scope of this book, an understanding of image recon-
struction is necessary for us to create believable images on the computer screen.

The first thing that we did in this chapter was to look at a strange, seemingly random, col-
lection of blocks that had no meaning up close, but as you walked away from them, the
image became clear.

This simple scientific experiment allowed us
to see an example of one of the brain’s many
functions, as well as its primary limitation.
That is if an image is broken down into a pat-
tern of blocks and put in front of the human
eye, the brain has the ability to reassemble
those blocks into the original image provided
the blocks are not too large. Figure 5.6 illus-
trates this.

When you first looked closely at Figure 5.6,
the “blocks” were too large for your brain to
reassemble. As you moved farther away, the
blocks appeared to become smaller until
finally they were small enough for your brain
to reassemble.

This exact phenomenon occurs when the
player is looking at your game on the screen. If you were to draw that exact same pattern
of blocks on a computer screen, it would be equally unrecognizable and it would become

Chapter 5 ■ A Game Graphics Primer142

Figure 5.5 Illustration of how the eye and brain work together.

Figure 5.6 If an image is broken down
into a series of “blocks” and placed in front
of the human eye, the brain will reassemble
the “blocks” into the original image as long
as the blocks are not too large.

equally clear as the player backs away from the screen. It is not practical, however, to ask
the person playing your game to stand 12 to 50 feet a way from the screen in order to play.
You have to find another way to make your blocks smaller. To solve this problem, most
computer systems are able to display different video modes with different size blocks.

The size of the blocks on the screen is referred to as the resolution of the screen. Screen
resolution, however, is not a measure in the way you may expect. We do not measure the
height and width of the blocks on the screen to find the screen’s resolution; instead, reso-
lution is measured according to how many blocks can fit on the screen. If the blocks are
very small, many blocks will fit on the screen. We call this a high-resolution display. If the
blocks are larger, fewer blocks will fit on the screen. We call this a low-resolution display.
See Figures 5.7 and 5.8.

The higher the resolution, the smaller the blocks on the screen will be, which means that
you can more easily create images on the screen that the brain will recognize. Before you
can create images that will be displayed on a particular video system, you need to know
exactly how many dots can fit on the screen in total as well as how they are arranged. For
this reason, when we give the resolution of the screen we will say how many blocks can fit
horizontally across the screen and how many blocks can fit vertically on the screen. If a
screen can hold 100 blocks horizontally and 50 blocks vertically, then we would say that
the screen has a resolution of 100 × 50. See Figure 5.9.

In a perfect world, you would always be able to use the highest resolution video mode that
your computer can handle. We do not, however, live in a perfect world so things are not
going to be that easy. The highest video mode on most retro game machines is actually
black and white (or green and black or yellow and black depending on your monitor).

What Makes a Picture? 143

Figure 5.7 If the blocks on the screen are
large, only a few blocks will fit on the screen.
This is called a low-resolution display.

Figure 5.8 If the blocks on the screen are
small, many blocks will fit on the screen. This
is called a high-resolution display.

While you would be able to create the most
detailed images that the machine can handle,
black and white games are not as compelling
as a game that fills the screen with color. On
most retro game machines, the lowest resolu-
tion video mode will have the most color
while the highest resolution video mode will
have the least color. I admit, at first this does
not seem to make much sense and actually
goes against all logic. After all, if we want to
make killer games we would want to have the
highest resolution graphics display equipped
with the most colors. Believe me, there is a
method to this madness and all will become
clear once you actually get started program-
ming your game machines. For now, just
accept this concept as a fact of life and take
comfort in the knowledge that later on you
will learn how to hack these game machines to
produce larger amounts of colors than the
manufacturer originally intended.

Approximating Shapes with Limited Pixels
What is the image in Figure 5.10?

I bet you said a house.

What do you see in Figure 5.11?

I bet you said a smiley face.

Chapter 5 ■ A Game Graphics Primer144

Figure 5.9 When we state the resolution
of a computer screen we always state the
number of blocks that can fit across the
screen followed by the number of blocks that
can fit vertically on the screen. A times sign
(×) is placed between the numbers to
separate them. When this is read, we say the
screen has a resolution of “23 by 17.”

Figure 5.10 Boxed image of a house. Figure 5.11 Smiley face.

Have you ever seen an actual house that looks like the one in Figure 5.10? Have you ever
seen a person with a face that looks like the one in Figure 5.11?

I bet that you answered no to both of the last two questions. That begs the question why
in the world did you automatically associate these two images with real world objects even
though they look like no real world object that you have ever seen?

The answers to these questions form the heart of the knowledge that you need in order to
create believable images on the computer screen.

Symbolism
Essentially, a symbol is an image that is used to rep-
resent an abstract concept or an idea. If you see the
symbol found in Figure 5.12 somewhere, then you
know that the area or facility is reserved for handi-
capped individuals.

No one has to spell it out for you. At a handicapped-
parking area you will not find a long explanation
telling you that this is a handicapped area and that if
you are not handicapped then you should not park
there. Instead all that you will see is a symbol and
your brain will automatically kick in to tell you that
this is a handicapped spot.

Symbolism is a very powerful tool in video game
designs because symbols can convey large amounts of information to both the player’s
conscious and subconscious mind. Not all symbols, however, are equal.

A symbol has no effect if no one knows what it is. If you create a symbol that you know
the meaning of but no one else does, the person playing your game will not receive impor-
tant pieces of information that you are trying to convey to him. This will in most cases
lead to confusion and a loss of interest in your game. On the other hand, if you use a sym-
bol that you and your friends understand but no one else does, the game will be fun for
you and your friends and no one else. When using symbolism in games, you want to use
symbols that are universally agreed upon. If it is a must for you to create a new symbol,
make sure that it is properly documented and easy to remember.

Visual Cues
Your mind is truly amazing. As you have seen, your mind works so well that you are not
even aware of much of the work that it does because this work is done subconsciously.
Another example of this is the way the mind will use visual cues to identify what an object

Approximating Shapes with Limited Pixels 145

Figure 5.12 Handicapped symbol.

is. A good example of this is the creation of
shadow animals. By turning off the lights and
turning on a flashlight, you can position your
hands in front of the flashlight in such a way
that the shadow on the wall appears to be the
shadow of an actual animal. You can see an
example of this in Figure 5.13.

This shadow does not look like a living
breathing animal, but the image “feels” like
that of a dog. It seems to have a long snout,
pointy ears and if the person making the
shadows is very skillful it even seems to have a
wagging tongue.

That is basically what we are going for when we create our game graphics. Even though
we cannot produce a photographic rendering of the animal, we would like to have enough
visual cues in our game objects to make our images “feel” like the object or creature that
we are trying to represent.

Putting Them Together
Now that you understand the science and the psychology of how the brain takes in the
world around it you need to look at how to use this information to create pictures play-
ers will recognize.

Time of Day

Our ability to accurately depict whether it is night or day varies depending on the game
machine we are using and the level of detail and color usage that the machine makes avail-
able to us. On modern machines you can easily display many shades of blue and red and
orange and combinations of these colors. This allows you to accurately recreate what a sky
would look like at night, dawn, midnight, dusk, and every hour in between. Furthermore,
most computers today are capable of displaying resolutions of 1280 × 1024 or more!

In the absence of such dazzling capabilities you must improvise, and it is here that sym-
bolism and the visual cue come to the rescue.

There are three primary visual elements that tell us that it is nighttime: The sky is black,
the moon is out, and there are stars in the sky. Element 1 can be reproduced on any com-
puter system. If you do not put a color on the screen, the screen will be black. This means
that all that you have to do is leave the area of the screen representing your game blank
and you will automatically have a night sky! Elements 2 and 3 are still easy but a bit more
involved. See Figures 5.14 and 5.15.

Chapter 5 ■ A Game Graphics Primer146

Figure 5.13 Shadow puppets made using
a flashlight and hand gestures.

Figure 5.14 looks like a deranged checkerboard, while Figure 5.15 is more easily recogniz-
able as a night sky. As you can see if it is a must for us to create a game in low resolution
mode, it is better to represent the night sky as a plain black screen as opposed to trying to
fill the sky with stars. Because stars as well as the moon are usually white, you can use
high-resolution modes to draw a convincing sky without worrying about any limitations
in the number of colors available in a high-resolution mode.

There are basically two elements that tell us that it is definitely daytime: a blue sky and a
sun in the sky.

Most retro game machines will allow you to use the color blue. This means that you
should always be able to create a blue sky as long as the computer is connected to a color
monitor or TV. To further add realism to the game, you can place a yellow ball in the sky
to represent the sun. This allows for much more opportunities than you may think. We
mentioned earlier that you cannot change the color of the sky to represent the shades of
the atmosphere at various time of the day. You can, however, change the position of the
sun to create the same effect. The sun in the top-right corner of the screen may represent
the morning, the sun in the center of the screen may represent
midday, and the sun in the far left of the screen may represent
dusk. When the sun has been set for a period of time, you can
paint the sky black, add stars and a moon, and presto, you have
a night sky. You can repeat the same process with the moon so
that the player can be aware of the passage of the night.

Human Anatomy

Okay, so the artwork in Figure 5.16 is not the best in the world.
Nevertheless, you know what this image is. It’s a stick figure of a

Approximating Shapes with Limited Pixels 147

Figure 5.14 A night sky drawn in low-
resolution mode.

Figure 5.15 A night sky drawn in high-
resolution mode.

Figure 5.16 Stick
figure of a man.

man. This image works partly because of visual
cues and partly because of symbolism. The sym-
bolism comes into play because you probably
learned to draw like this as a child. Someone told
you that this image represents a man, and this is
the primary reason you are able to recognize this
image. Visual cues also play a role in your under-
standing of this image.

Looking at Figure 5.17, you can see that the stick
figure is jumping, running, and walking. A full
understanding of how your mind recognizes what
the man is doing is beyond the scope of this book
(not however beyond the scope of my Web site
www.retrogameprogrammingunleashed.com;
check it out for more information), but suffice it to
say that the position of his appendages as well as
his orientation tells your mind what he is doing.

As simplistic as this stick figure man in Figure 5.18
is, he is the foundation of virtually every character
you will ever create. First of all, when you sit down
to create a game, you enter a brainstorming session
where you try to decide everything about the
game, including what your player is able to do.
Now you might as well be able to sit down and
draw your character exactly as you want him to
appear so you can create storyboards using the
image of your final hero. Not everyone, however,
has this ability. Furthermore, when you are brain-
storming, you may know what the player’s charac-
ter will be able to do, but you may not know
exactly what he will look like yet. Even if you are an
artist and you know what your character will look
like, you may not have time to create detailed sto-
ryboards. For all of these reasons, when you create
your storyboards and decide the way your player
moves, you will often want to use stick figures.
Look at Figure 5.19.

Chapter 5 ■ A Game Graphics Primer148

Figure 5.17 Stick figure of a man
jumping, running, and walking.

Figure 5.19 Stick figure of a man
performing various game-related
actions.

Figure 5.18 Stick figure of a man.

www.retrogameprogrammingunleashed.com

It’s not pretty. In fact, it’s pretty ugly, but it works for me when I need to visualize the var-
ious actions a player in my game will be able to do.

Dithering

At first glance, the image of a pipe in Figure 5.20 appears to be made up of three colors:
white, gray, and black. Upon closer inspection, however, you can see that it is actually
made up of only two colors, black and white. See Figure 5.21.

The technique that was used to give the impression of a third color is called dithering and
involves creating a pattern of black and some other color (in this case, white) to create a
lighter version of the color you are working with. This technique will be invaluable to you
especially when you are working in high-resolution modes, which will usually only allow
you to use black and white. This pattern is also useful when you need to apply shading to
an image.

Conclusion
Creating great pixel art is very important if you are going to create a great-looking game.
On modern day computer systems you have the luxury of using millions of pixels to draw
an image, which means that you can create photo-realistic images. When programming
with vintage computer system, you do not have the option of creating photo-realistic
imagery. In order to make great imagery, you will need to first understand the way that the
brain interprets the world around you. You have to understand the symbols and visual
cues your brain uses to make assumptions about what it sees. Finally, after you have taken

Conclusion 149

Figure 5.20 An image that seems to be
made up of white, black, and gray.

Figure 5.21 The pipe is really only made
up of two colors: black and white.

all of this information into account, you will use the technical knowledge learned later in
this book to put moving pictures on the screen. It is these moving pictures that will cre-
ate the illusion of a game on the screen.

If you do not have an artist to do your artwork, then you should have enough informa-
tion to understand the basics of how to design the graphics for your game.

Chapter 5 ■ A Game Graphics Primer150

151

Setting the
Video Mode

chapter 6

You cannot depend on your eyes when your imagination is out of focus.

Mark Twain (1835–1910)

You now know how to talk to your computer, and you know the concepts that go into
drawing images on a computer screen. Let’s recap in the simplest terms possible. There is
a video screen, shown in Figure 6.2, and there is a video buffer, shown in Figure 6.1.

These two elements of the computer have a direct relationship that can take several forms.
The most basic form is that shown in Figure 6.3.

Figure 6.1 Video buffer.

Figure 6.2 Video screen.

In this example, each bit of video memory controls a point on the screen. If a bit is equal
to 1, the point on the screen that it represents is turned on. If a bit is equal to 0, the point
on the screen that it represents is turned off. This sort of video mode will always be black
and white (or yellow and black or green and black, depending on your monitor). In order
to display more colors on the screen, more than one bit has to be assigned to each point
on the screen. A single bit on the screen can hold two values (0 and 1), so you can only
assign one of two colors to any point on the screen.
If you use two bits to represent each point on the
screen, then it is possible to display up to three col-
ors. With three bits, seven colors. Finally, if you
have used a single byte to represent the points on
the screen, you will be able to paint a point on the
screen in any of 256 unique colors. See Figure 6.4.

What you need to learn now is how to control the
number of bits used to control each bit on the
screen and how to move images to and from the
video display.

Setting the Video Mode
Like most things in life and in programming, setting your computer’s video mode may
seem confusing at first, but once you get the hang of it, you will find the actual process to
be very easy. On most computer systems, this process simply involves placing a special
combination of bits into one or more memory locations. On other machines, such as the
Atari 400/800, things are a little more complicated than that but never get so complicated
as to be beyond the grasp of an informed programmer’s ability. The purpose of this chap-
ter is to teach you how these systems work so that you may have full control over the
graphic display of your chosen computer system. Let’s get the ball rolling with the TRS-
80 Color Computer.

Chapter 6 ■ Setting the Video Mode152

Figure 6.3 Video buffer video screen relationship 1: Each bit
of video memory controls one point on the screen.

Figure 6.4 If you use eight bits to
represent each point on the screen, you
can display up to 256 unique colors.

Setting the Video Mode on the COCO
There are 15 unique graphics modes available to you: 2 alphanumeric, 5 semi-graphics,
and 8 graphics modes. In the alphanumeric modes, placing a byte into video memory will
cause a letter or number to appear on the screen. In semi-graphics mode, placing a byte
of data into the video buffer will cause a letter, a number, or a pattern of blocks to appear
on the screen. In a purely graphics mode, placing a byte of information on the screen will
cause a pattern of blocks to appear on the video screen.

There are two devices that control what video mode your computer is in. These are the
Video Display Generator (VDG) and the Synchronous Address Multiplexer (SAM).

The VDG controls the way video memory is interpreted. It is this chip that decides
whether a byte will be interpreted as a character or as a pattern of bits. The SAM chip has
full control over the way video memory is managed. Because the SAM chip is in charge of
all memory management, it has to be made aware of what video mode is being used by
the VDG chip in order to manage video memory correctly. If the VDG and SAM chip are
set to work with two different video modes, strange things will happen—and some cool
things can happen as well. Setting these two microchips to different video modes is the key
to unlocking new video modes, such as those that put full bitmapped graphics and text on
the screen at the same time.

As powerful as the VDG is, it has one major limitation. There is a limit to how much
memory this chip can read at one time, which means that it cannot read the entire video
buffer at one time. The problem you have with the VDG not being able to view the whole
of video memory is also alleviated because the SAM is able to provide access to the full
screen. Because this configuration allows the VDG to page through video memory 512
bytes at a time, page flipping, which is so vital for animation, is possible.

When you want to set the computer into a particular video mode, you have to place a
special pattern of bits into the VDG register and the SAM register. Figure 6.5 shows these
patterns.

Here is an example of the code you would use to set your video display into a 128 × 192
color graphics mode.

Lda %00000111
Anda $ff22
Ora #%11101000
Sta $ff22
Lda #%11000000
Anda $ffc0
Ora #%00101001
Sta $ffc0

Setting the Video Mode 153

Looking at Figure 6.5, you can see that in order to place the video mode to a 128 × 192
color graphics mode, you need to put a pattern of 11101000 into the VDG register and a
pattern of 00101001 into the SAM register. There is just one problem. Both the VDG reg-
ister and the SAM registers are used for things
other than setting video modes. Because of this,
there are bits in these registers that you are not
allowed to change. If you just place the pattern of
bits that you need into these registers, you will
change the values of bits that you are not sup-
posed to change.

In the VDG register, you are not supposed to
change bits 0, 1, or 2. See Figure 6.6.

Chapter 6 ■ Setting the Video Mode154

Figure 6.5 The patterns of bits needed to place your COCO into specific video modes.

Figure 6.6 Never change the value of
the first three bits of the VDG register.

VDG register

You need to do some clever programming to get around this
problem. Specifically, you are going to be using the AND and OR
commands. Figure 6.7 contains the truth table for the AND
command.

If you AND two bits together and either of those bits is a zero
the result will be zero. This allows you to perform something
called bit masking. See Figure 6.8.

In this example, you AND bits 3 to 7 with zeros. This causes bits
3 to 7 to be carried down as zeros. You AND bits 0, 1, and 2 with
ones. This means that if the value of any of these bits is one, it
will be carried down as a one. If it is a zero, it will be carried
down as a zero. The end result is that the first three bits are preserved while the other five
bits are cleared. You will then store this pattern somewhere until you need it. Now it is
time to use the OR command. Figure 6.9 contains its truth table.

When two bits are ORed together and either or both of the bits is equal to one, the result
will be one. Figure 6.10 demonstrates how you can use this to your benefit.

Setting the Video Mode 155

Figure 6.7 The truth
table for the AND command.

Figure 6.9 The OR truth table.

Figure 6.8 The results of ANDing the VDG with a specific
pattern to preserve the first three bits.

Figure 6.10 Here is the result of ORing the results of the previous operation
with a specific pattern to set the VDG register into the video mode you need.

VDG register

Here you OR the first three bits with 0. This is to ensure that you do not change these bits.
If any of these bits is equal to zero, it will be carried down as a zero. If they are set to 1, the
result will be 1. Bits 3 to 7 were all set to zero in the previous operation. You OR these bits
by the pattern you need to set the video mode that you want (in this case a 128 × 192 color
graphics display). This is how you set the video mode to the VDG register, and it is what
you do in the first four lines of code above.

The first line fills the accumulator register with the pattern you need to “mask” the VDG
register.

lda %00000111

The next line ANDs the value in the accumulator with the contents of memory location ff2,
which is the address of the VDG register. The results are stored in the accumulator. At this
point, the accumulator contains the original value of the first three bits of the VDG reg-
ister while the other five bits are set to 0.

anda $ff22

Line three ORs the contents of the accumulator with the pattern you need in order to set
the video mode of the VDG.

ora #%11101000

Finally, line four stores the results of the ANDs and ORs back into the VDG register, com-
pleting the first step needed to set the video mode.

sta $ff22

And that’s it. You just set the VDG chip to the video mode that you want; now all that you
have to do is set the SAM chip. To do this, you actually do the same thing as before, only
this time you access a different memory location, you use a different pattern for the mask,
and you OR with a different pattern. Let’s see how this works.

This time around, you will use the pat-
tern 11000000 for your mask. This will
preserve the last two bits while blanking
the first six and storing them into the
accumulator. Here is the code that does
this:

lda #%11000000
anda $ffc0

Chapter 6 ■ Setting the Video Mode156

Figure 6.11 Set the first six bits to the value that
you need, but do not change the last two bits.

Next, you will OR the value stored in the accumulator
with the pattern needed to set the SAM chip to the video
mode that you need. Setting this register is a bit tricky at
first though. Think about how the light switches in your
house work. You flip them in one direction to turn the
light on and in another direction to turn it back off
again. The same concept applies in setting the video
mode of the SAM. There are three switches that you
need to turn off or on in a particular pattern to get the
desired result. Each switch is made up of two bits. Plac-
ing a 1 in the odd bit turns the switch off and placing a
1 in the even bit turns the switch on. See Figure 6.12.

You can see in Figure 6.12 that you need to turn switch
1 off, and turn switches 2 and 3 on. To do that, place the
pattern shown in Figure 6.13 into the SAM register.

Here is the code that will OR the correct pattern into the
register and store the results of your operation back into
the SAM register.

ora #%00101001
sta $ffc0

That’s it. You now know how to set the video mode of
the COCO to any mode that you want. All that you have
to do now when you want to set a given mode is look at
the Figure 6.12 to see the pattern you need and modify
the code that you have just written.

Setting the Video Mode on the Apple II
In the Apple II, there are three classes of video displays: text displays, low-resolution dis-
plays, and finally, high-resolution displays. In addition to these dedicated modes, it is also
possible for you to create mixed modes that display text in a window at the bottom of the
screen and either low- or high-resolution modes on the top of the screen. This gives you
a combination of five possible screen modes.

■ Full screen text mode

■ Full screen low-resolution mode

■ Full screen high-resolution mode

■ Mixed text mode and low-resolution mode

■ Mixed text mode and high-resolution mode

Setting the Video Mode 157

Figure 6.12 The SAM register contains
switches that are turned off by placing a 1
into the odd bit and turned on by placing a
1 into the even bit.

Figure 6.13 Use this pattern in order to
set the SAM to the video mode you desire.

Setting these video modes is very straightforward and is similar to the way you pro-
grammed the SAM chip in the COCO with a few differences.

In the Apple II, there are eight soft switches. In your house, you have light switches. You
flip them one way to turn the light on and another way to turn the light off. With a soft
switch, there is one memory location that represents the off position and another that
represents the on position. All that you need to “flip” a switch is to read from or write to
the memory location that represents the on or off address of a given switch.

Figure 6.14 contains a list of the on and off addresses for the eight soft switches used to
control the video mode of the Apple II.

These switches are used to generate the five different distinct video modes available to you
as the programmer. These modes are listed in Figure 6.15.

Here is an example of code that will give you a full screen of high-resolution graphics.

LDA $C054
LDA $C057
LDA $C052
LDA $C050

Line one flips the soft switch used to activate the primary page.

Line two flips the soft switch used to activate high-resolution mode.

Line three flips the soft switch used to decide between a full screen and a mixed mode, set-
ting it to display the whole page in one mode.

Finally, the last line activates graphics mode.

Chapter 6 ■ Setting the Video Mode158

Figure 6.14 These are the on and off addresses of the eight soft switches used to
control the video mode of the computer.

All that you have to do to activate a given video mode is to reference Figure 6.15 to see the
switches you need to flip and modify the four codes above to reference those locations.

Setting the Video Mode on the Atari 400/800
So far, setting video modes has been very easy. In the COCO, all that you had to do was
place specific patterns in two memory locations. On the Apple II, you flipped soft
switches. Setting the video mode on the Atari is a whole other ballgame. It is still easy once
you understand it, but there is a lot more information for you to cover. In the following
sections, you will learn about a concept called the display list.

Screen Modes

Atari has always been a very innovative company. One key area where the Atari proved itself
to be beyond its years in technical wizardry was in the way it handled its video display. As
was discussed earlier in this book, screen memory is just like any other piece of memory in
the game machine except that it is there that you store the binary data that is interpreted
and translated to produce the illusion of images on the computer screen. Most computers
are hard-wired to look at a specific portion of RAM and to always use that specific area of
RAM for video memory. Furthermore, on most machines if, for example, you wanted to
change the color of the screen from white to red, you would have to loop through all of the
computer’s video memory and change the data byte that represents each pixel on the screen

Setting the Video Mode 159

Figure 6.15 The five distinct combinations of video modes and the
combination of switches used to activate them.

from a byte holding the binary combination that is used to represent white to a byte hold-
ing the binary combination that represents red. Such was the case for most computers, but
once again, fortunately for us, the Atari was not like most computers.

First of all, even by today’s standards, video cards that have their own processors are con-
sidered high tech. Very recently, vertex and pixel shaders were all the rage. They were con-
sidered breakthroughs in technology because they gave the programmer the ability to
write small programs that could be made to run on the video card itself independently of
the computer’s main processor. If by today’s standards, such technology is considered
amazing, it is unimaginable to me what words could be used to describe Atari imple-
menting such technology over 20 years ago. In my mind, that is the equivalent of a cave-
man building his own double-barreled shotgun to go hunting dinosaurs. The level of
vision and ingenuity that must have been circulating through the veins of Atari employ-
ees is unbelievable.

With regards to dealing with screen modes and video data in general, all of this innova-
tion was made possible by, and came in the form of, ANTIC. ANTIC was the name given
to the full-fledged microprocessor that the Atari uses to manipulate video data. This
processor, along with the CTIA/GTIA chip that was used to control the colors that would
be used to display video data, gave the Atari a level of flexibility never before seen in any
video game machine. Just as programs can be written to actually run on modern video
cards, so did the Atari have the ability to write programs specifically designed to be run
on the ANTIC. This microprocessor had its own language with its own instruction set and
its own data area. This was a true microprocessor in every sense of the word.

When you write a program that is to be run on the ANTIC chip, this program is called a
display list for reasons that will become apparent shortly. With your display list, you have
the ability to do three basic things.

■ You can tell the computer where to find video memory.

■ You can give the computer information about what video mode (or modes) to use
to display video data.

■ You can specify any special video options that you want the computer to use, such
as fine scrolling.

Notice the second thing that you can do with the display list. As this statement implies, it
is possible for you to mix graphics modes on the Atari computer. If you were using any
other computer, when we discuss the concept of a video mode, we would be discussing the
concept of changing the entire video screen into one video mode or the other. As we have
stated, however, we are not dealing with any other computer; we are dealing with the
Atari; and so we must change our entire way of thinking. Until now when you thought of
the screen, you thought of it as one big image that was displayed using one screen mode
or the other. In the world of Atari, the video display is actually made up of a number of

Chapter 6 ■ Setting the Video Mode160

what we call mode lines stacked one on top
of the other. A mode line is a horizontal
strip that extends straight across the screen
from one side to the next and is x number
of horizontal scan lines wide. The entire
video display is made of a number of mode
lines stacked on top of the other, as shown
in Figure 6.16.

You are probably thinking, “Why did they
have to make things so complicated? What
could you have possibly gained by this new
way of doing things other than a colossal
headache and a need for large supplies of
aspirin?” Well, the answer is simple; each
mode line can be set to a different video mode. In case you were not as blown away by this
fact as I was when I first learned of it, let me explain why this is so impressive. Basically,
this feature gives you the ability, for example, to create a game that has a text mode at the
top of the screen, a high-resolution screen mode in the middle of the screen for display-
ing the game action and a low-resolution display at the bottom of the screen that can be
used to display warning lights and signals to the player. This is just one of a billion uses
for this feature. For now, just know that you can mix multiple graphics modes together
when need be so there is no reason to limit your imagination when you are thinking about
how you should lay out your video game.

One last thing that probably needs clearing up with regards to mode lines is that the height
of a mode line depends on which graphics mode you set that mode line to. As we stated ear-
lier, a mode line is x horizontal scan lines high. You probably wondered what that means.
Well, in the back of your TV or monitor is a cathode ray tube that constantly streams elec-
tromagnetic rays and bombards those rays against the display screen. Special devices in the
back of the TV are able to control what part of the screen is bombarded by rays.

Two key elements come together to give the illusion of an image on the computer screen.
First, by changing the intensity of the ray, different colors can be obtained and generated
on the video display. Second and most importantly for the current discussion, is the way
the ray is moved across the screen to paint the picture.

The ray starts at the top-left corner of the screen and moves horizontally from the left to
the top-right corner of the screen. The ray then moves back to the left of the screen and
down one pixel. The ray then moves horizontally over to the right side of the screen and
repeats the above mentioned pattern until it reaches the bottom of the display, at which
time the ray is moved to the top left corner of the screen, and the whole process is repeated
again.

Setting the Video Mode 161

Figure 6.16 The screen mode of the Atari is made
up of a number of mode lines.

Because the monitor updates the display this way so many times per second, the monitor
is able to give the illusion that the whole screen is being lit up at the same time and, hence,
is able to give the illusion of an image on the display screen. Each sweep of the ray across
the video display is called a horizontal scan line. This is the fundamental measurement of
height when measuring things on the screen. We call the period of time when the ray is
not switched on and is moving from the right of the screen to the left of the screen and
one scan line down a vertical blank. The time when the ray is turned off and is moving
from the bottom right corner of the screen to the top left corner of the screen is called a
horizontal blank. It takes 16,684 microseconds to draw the whole screen, the vertical blank
takes roughly 1,400 microseconds, the horizontal blank takes 14 microseconds, and a sin-
gle horizontal line takes 14 microseconds to draw.

You also need to know how to measure horizontal distance on the display screen. The hor-
izontal unit of measurement is the color clock. The actual video display is 228 color clocks
wide, but only 176 of these color clocks are actually visible. So this is generally the num-
ber used when measuring the width of the full screen. Keep in mind that it is possible to
generate twice this resolution by working with what are called half clocks, in which case
you would have a resolution of 352 pixels. This method is not often used, however,
because it results in unusual color effects called artifacts. While the effects can sometimes
be interesting, they can also produce rather undesirable effects.

That was probably a bit more infor-
mation than you expected to get in
order to learn about horizontal scan
lines. All of that information will
come in very handy though as you
learn to bend the Atari to your will.
Try to keep definitions such as hori-
zontal scan line and vertical blank in
your head because you will be using
them a lot in your thought process.

Each mode line will vary in height,
based on what video mode you set it
to. Table 6.1 contains the pertinent
information you need to know
about mode lines of various graphic
modes.

Chapter 6 ■ Setting the Video Mode162

TABLE 6.1 Mode Lines and Their Scan
Lines

ANTIC MODE LINE Number Of Scan
lines Produced

2 8
3 10
4 8
5 16
6 8
7 16
8 8
9 4
a 4
b 2
c 1
d 2
e 1
f 1

The ANTIC instruction set provides you with four types of instructions. The first type of
instructions is called a map mode instruction. These cause the ANTIC to create a mode
line that is used to display pixel data (in other words, it is designed to display pictures and
not text). As you know, the video mode determines
how data stored in video memory is interpreted
and displayed. The Atari also has four color regis-
ters, which means that in any given map mode,
each pixel can be up to any one of four different
colors. In Figure 6.17 you can see that each register
is represented by one of four binary patterns in a
four-color graphics mode.

When in this mode, the computer interprets com-
puter data by identifying how many colors are used
in the given mode, what binary pattern is used to
represent each color in the given mode, and how
many pixels are represented in each byte of data.
With this information the computer can correctly interpret video data and draw pictures
on the screen. See Figure 6.18. Listed on the companion Web site of this book is a graph
of which binary patterns represent which color registers in a given video mode as well as
how many pixels are represented in each byte.

Setting the Video Mode 163

Figure 6.17 Makeup of the color
registers in a four-color graphics mode.

Figure 6.18 How video memory is interpreted in video mode.

The next kind of instruction, which is called a character mode instruction, creates a mode
line used for displaying text characters. See Figure 6.19. While in character mode, the
computer interprets video data by assuming that each byte of information represents a
binary pattern that represents a letter of the alphabet, a number, or some other graphic
character.

“Blank line instruction” is the name given to instructions that cause the computer to dis-
play a mode line (or lines) that does not display text or pixels but rather displays a solid
bar of the background color. The eight blank line instructions that exist are used to tell the
computer to display one to eight blank lines. See Figure 6.20.

Chapter 6 ■ Setting the Video Mode164

Figure 6.19 How video memory is interpreted in text mode.

Figure 6.20 How blank line instructions are interpreted.

The final class of instruction are
the jump instructions, which are
used to reload the ANTIC pro-
gram counter (a feature which is
very handy and will be discussed
in detail a bit later) and come in
two distinctive flavors. The first
arises out of the limitation of the
ANTIC that prevents it from
jumping over a boundary of 1k.
If the display list program must
jump over this boundary, you
must use the JMP instruction to
jump over this boundary. See
Figure 6.21.

To fully understand the impor-
tance of the next instruction, it is
necessary to get ahead of our-
selves for a second and take a superficial look at the structure of the display list program.
In your program, there is a portion where you provide a list of any combination of map,
character, or blank line instructions to set up your display the way you want it. As you
recall about how the monitor or TV creates the illusion of a picture on the screen, you
have a ray that traces back and forth down the screen painting the picture.

You may also remember that each mode line on your screen is made up of a number of
horizontal scan lines. When the cathode ray has completed drawing the screen, it jumps
back to the top of the screen and starts the whole process again.

Now stop and think about this for a minute. If your screen were 20 mode lines high, you
would have to write 20 lines in your display list program to set these mode lines to the cor-
rect video mode. Now the cathode ray is back up at the top of the screen ready to start
drawing again, and it is relying on the ANTIC to correctly interpret video memory and
generate the correct screen information to be displayed.

The ANTIC, in turn, is dependent on the display list program to know what model lines
to use and what is the correct way to interpret screen memory. The problem is that you
cycled through the 20 mode line instructions the first time you drew the screen and now
the ANTIC is expecting you to give it another 20 mode line instructions. As a mater of fact
the ANTIC will expect a new set of 20 mode line instructions each time the screen is
drawn. Given that you use the exact same instruction every time to draw the screen, this
would be a ludicrous method of programming the display list.

Setting the Video Mode 165

Figure 6.21 Normally, the computer would move sequentially
through memory, but when it encounters a jump command, it will
skip over some memory to get to a given location.

This is where the JVB jump instruction comes into play. You can use this command to wait
for the vertical blank and then jump back up to the top of the display list program. This
way, as the monitor’s display is constantly drawing itself from top to bottom and then
jumping back up to the top to start again, the display list program will also provide
ANTIC with the instructions it needs. It then jumps back up to the top in an endless loop
that runs like clockwork to ensure the computer always correctly displays the contents of
video memory.

While they are not really instructions, there are four special options that you can use when
programming the ANTIC. The first of these options is the display list interrupt (DLI),
which is an unbelievably powerful feature. In order to understand the way this works, let’s
take a look at the following example.

You have a space invaders type game that you are
creating. You want to use four colors to draw the
different types of aliens. You also want to use a
fifth color for your hero along with three other
colors to draw the status display for your game.
That gives you a total of eight colors that you
want to use as seen in Figure 6.22.

Now I know you are thinking that the computer
only can display four colors at a time. There is
no way that I can use eight colors. Well, you are
half right. The computer can only display four
different colors at a time, but what if you could
change the four colors that the computer uses
halfway down the screen? What if you could draw the top half of the screen, which holds
the aliens, using four colors and then switch the four colors that you are using just before
you draw the hero and the status display. This is what the display list interrupt allows you
to do. Even though you have not gone into the actual structure of the display list program
in detail, you have the basic idea of how the program works. You know that for each mode
line on the screen, there is a corresponding mode line instruction in the display list pro-
gram. What you have to do is design the layout of the game screen. You have to then
decide exactly what half of the screen should use the first four colors and which part of
the screen should use the last four colors as seen in Figure 6.23.

What you have to do now is find the line in the display list program that draws the last
line on the screen using the first four colors. You are going to set the flag for the display
list interrupt on this line. Ideally, this will cause the computer to stop and generate a dis-
play list interrupt.

Chapter 6 ■ Setting the Video Mode166

Figure 6.22 A theoretical game that
uses eight colors at one time.

Now I think we should pause here for a minute for a brief description on exactly what an
interrupt is. Imagine that you are busy doing your homework or balancing your bank
book or something else that requires your full attention. You have a 2-month-old baby
that you are taking care of. If the baby starts to cry, you would stop what you are doing,
find out what is wrong with the child and if, for example, the problem is that the baby
needs a bottle, you would give the baby the bottle, burp her, and then go back to what you
were doing before you were interrupted.

This is essentiality what happens when you call an interrupt on the computer system. The
computer microprocessor is like you when you are busy working, and an interrupt is like
the baby crying. The 6502 microprocessor, which is generally busy doing some very
important task, will hear the display interrupt and respond to it just as you responded to
that child. And, just as you went back to doing your work when you were done, the proces-
sor will go back to doing its normal work after it has finished responding to your inter-
rupt. See Figure 6.24.

Building Display Lists

Finally, we get down to the point of this whole chapter, actually building display list inter-
rupts. Atari display lists and display list interrupts offer an unbelievable amount of power
to the programmer. The first step to unleashing this power is to create a simple display list
interrupt.

Do you remember the way you organized the code when you were programming using
BASIC? Your code looked something like this:

10 GR.3
20 COLOR 3
30 PLOT 3,3

Setting the Video Mode 167

Figure 6.23 You have to plan which parts of the screen should have which colors. And use
this to decide where you want to implement the change in which colors the computer uses.

You see that you used one line number for each command, and each command has its
own line number to allow you to identify it. This also helps the computer to always know
where a given command starts and ends. When you are creating the display list interrupt,
you do things a bit differently. First of all, you do not use any line numbers. The ANTIC
will automatically start reading the display list from the first byte of the list. Earlier, we dis-
cussed the various kinds of commands, such as character and map mode lines, jump com-
mands, and so on. Most commands, including mode line commands, only occupy one
byte. When the ANTIC comes across one of those commands, it knows that the command
only uses one byte and after it executes the command in that byte, it simply has to move
forward one byte in order to get to the next command.

Jump commands are a bit different. They occupy three
bytes. The first byte is the actual command, and the next
two bytes form the operand for the command; namely,
they give the address for the ANTIC to jump to. When the
computer comes across such commands, it knows that
before it executes the command it has to read the two bytes
following the command so that it knows exactly where it
has to jump to; then it knows that the next byte will always
be a new command for it to execute. This may sound a bit
confusing, but once you get the hang of it, you will see that
it really is not so bad. Figure 6.25 will help to better illus-
trate this point.

Chapter 6 ■ Setting the Video Mode168

Figure 6.24 Just like you are able to stop what you are doing, attend to another
problem, and then go back to what you were doing, you can interrupt the
computer and have it perform some task, then go back to what it was doing.

Figure 6.25 The computer
can always figure out which
command is next without the
use of a line number.

Have you ever been watching a television program
and realized that a part of the picture seemed to be
cut off. Not much, just a small piece of the picture
is missing; this is because of something called over
scan. You see, the borders around the television
screen actually cover a small portion of the cathode
ray tube. This can be seen in Figure 6.26.

As you can see, the border around the screen actu-
ally covers the top 24 scan lines of the display. For
this reason, if you started drawing mode lines from
the first line of the display list, the top of the display
will be cut off. Take a look at Figure 6.27 to see the
relationship between the display list and the screen
display.

The question is, how in the world do you prevent the screen from being cut off by the tele-
vision’s border? The answer is surprisingly simple because those blank line commands
come to the rescue. You will make the first three lines of the program blank eight line
instructions. Each of these commands will draw eight blank scan lines at the top of the
screen. 3 × 8 = 24 so this means that the only thing that will ever be drawn under the bor-
der on the top of the screen are blank scan lines. Figure 6.28 illustrates this point.

Setting the Video Mode 169

Figure 6.26 The border around the screen
actually cuts off a small amount of the screen.

Figure 6.27 Here is a look at how your display
list compares to your actual video display.

Figure 6.28 Using blank line commands, you
can be sure that the display will never be cut off
of the screen.

Once you are sure that the display will not be cut off by the top of the screen, it is time for
you to instruct the Atari as to where to find video memory. This is done via the LMS com-
mand. LMS stands for load memory scan, and this command occupies four bits. All of the
ANTIC mode line commands occupy no more than four bits. As we stated before, the dis-
play list usually reserves one byte per command. Usually, when you write an ANTIC mode
command into the display list, the high bit of the command is left set to zero and the lower
bit is set to the value representing the ANTIC mode line that you are working with. The
fourth line of the display list is unique from every other line in the display list. On this
line, you issue the first of the mode line commands, but unlike every other ANTIC mode
command that you issue, you will not set the high end of the byte to zero. On the fourth
line of the display list, you set the low byte to the value of the ANTIC command, but you
will also set the high byte to the value that represents the load memory scan command.
This way you can kill two birds with one stone. After this command is executed, two things
happen. The computer knows exactly which mode type the first mode line of the display
list will be, and the ANTIC now knows that the following two bytes contain the address
of the memory location of the beginning of video memory. The first byte holds the low
end of the memory location address, and the second byte holds the high end of that same
location. So if video memory is located at 7C20, the 20, which is the low end of the
address, would be placed in the first byte after the LMS command, while 7C, which is the
high end of the address, is placed into the second byte after the LMS command. This con-
cept can be seen in Figure 6.29.

Next comes what can be either the easiest or the hardest part of writing any display list.
This can be the easiest part of writing the display list because all you have to do is decide
which video mode lines you would like to work with and insert the corresponding
ANTIC video mode command. The reason that it can be the hardest thing is because you

Chapter 6 ■ Setting the Video Mode170

Figure 6.29 Because the load memory scan command uses
only four bits, and the mode line commands each use four bits,
you can use a single byte to hold each command.

have to plan exactly how the screen is going to
be organized and how the display list should be
organized. The best way to approach this, like
so many other aspects of computer program-
ming, is usually to start off using a little bit of
pen and paper. First draw out a sample of the
way that you want your screen to look. My
drawing can be seen in Figure 6.30.

Next you have to decide on exactly what type of
mode line is needed to represent each part of
the screen. Now in this planning phase, it is
important for you to keep one thing in mind.
Each mode line that you create uses a certain
amount of scan lines. When you add up all of
the scan lines created by the mode lines, the total amount of scan lines can be no greater
than 192. This is because the television screen is only 192 scan lines high. It is okay for the
display list to have less than 192 scan lines, but you should never allow your display list to
grow beyond 192 scan lines or else strange things will start to happen. Table 6.2 shows the
correlation between mode lines and the number of scan lines that they produce.

What you see is, among other things, a list of the correlation between ANTIC mode lines
and the amount of scan lines they produce. Armed with this information, you can now
properly plan the construction of the display list. All that you need to do now is decide on
how you want the screen to be arranged. For our first example, we will start off very sim-
ple. We will simulate graphics mode 2. Basically, all you need to do is create a display list
where each mode line corresponds to ANTIC mode 2.

So let’s get started. First, you have to insert the three blank eight mode line instructions
like this.

70
70
70

Remember that when a byte in the display list contains 70, the ANTIC will interpret this
as a command to insert eight blank lines. Now you have to simultaneously insert the load
memory scan command and insert your first mode line command. To do this, insert a 4
into the high end of the next byte and an F into the lower end of that same byte, like so.

4F

Now you have to tell the ANTIC exactly where to find the start of video memory. Assum-
ing that video memory is located at 7C20, you draw a line between the C and the 2 to divide
this address into two parts. The first part of the address is called the high end of the

Setting the Video Mode 171

Figure 6.30 Before you create the
display list, you have to plan the way you
want the screen to work.

C
h

ap
ter 6

■
Settin

g
 th

e V
id

eo
 M

o
d

e
172

TABLE 6.2 More Mode lines and Their Scan Lines

ANTIC Mode
Line Number

2

3

4

5

6

7

8

9

a

b

c

d

e

f

BASIC Mode
Numbers

0

none

none

none

1

2

3

4

5

6

none

7

none

8

Number of
Scan Lines
Produced

8

10

8

16

8

16

8

4

4

2

1

2

1

1

Number of
Colors
Available

2

2

4

4

5

5

4

2

4

2

2

4

4

2

Pixels per
Mode Line

40

40

40

40

20

20

40

80

80

160

160

160

160

320

Bytes
per Line

40

40

40

40

20

20

10

10

20

20

20

40

40

40

Bytes per
Screen

960

760

960

480

480

240

240

480

960

1920

3840

3840

7680

7680

address, and the last half of the address is called the low end. Each end of the address takes
up one byte. When inserting this address into the display list, you must first insert the
lower end of the address and then the higher end of the address. When you insert the
starting address of video memory it would look like this.

20
7C

Now what you have to do is insert all of the mode lines. The question is exactly how many
mode lines do you need to insert. You know that you cannot insert more than 192 scan
lines in to the display list and every time you add an ANTIC mode 2 mode line command,
you automatically insert eight scan lines. This means that if you divide 192 by 8, you will
know exactly how many mode lines you need to insert into the display list. This is true for
any mode line that you want to insert; if all of the mode lines are going to be the same, you
can just divide the number of scan lines that will be generated for each mode line by 192.
The answer will be the maximum amount of mode lines you can enter in to the display list.

So going back to our example, 192 divided by 8 gives you a total of 24; what this means is
that in order to fill the screen, you will have to insert a total of 24 ANTIC mode 2 line
commands. You have already inserted the first mode line command in the same byte that
you used to insert the load memory scan command, so you only have to insert the remain-
ing 23 mode line commands.

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

Setting the Video Mode 173

All that’s left for you to do now is a little bit of housekeeping. You have to be sure that
when the ANTIC reaches to the end of the display list, it will automatically jump back up
to the top of the display list, and most importantly, you have to be sure that the ANTIC
jumps back up to the top of the display list at exactly the same time that the monitor is
executing a vertical blank. To do this, you will use the JVB command to wait until the ver-
tical blank occurs and then jump back up to the top of the display list. In code, the JVB
command looks like this.

41

Whenever the ANTIC comes across a byte that contains a 41, it knows that the next two
bytes hold the address of the top of the display list and when the monitor executes a ver-
tical blank, the ANTIC will automatically jump to this address.

As you saw when you inserted the load memory scan command, when you enter an
address into the display list, you must insert the low end of the address first and then the
high end of the address. That means that if the starting address of the display list is 7BE0
then you would insert the display list like this:

E0
7B

Now your completed display list looks like this:

70
70
70
42
20
7C
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

Chapter 6 ■ Setting the Video Mode174

24
24
24
24
24
24
24
24
41
E0
7B

What I have just given you is the basic theory behind creating a display list. Before you
indulge in the actual mechanics of creating the display list, there is one more topic that we
need to cover: the display list interrupts.

The irony is that even though this is one of the most powerful features on the Atari and
indeed probably the most powerful feature of all the game machines covered in this book,
it is completely and utterly useless all by itself. It only has value when used in conjunction
with other features of the Atari such as player missile graphics. In this way, the display list
is more of a catalyst that makes other features of the Atari more powerful. Now as you can
imagine all of this power does not come easy. This is going to be the first real test of your
ability to apply everything you learned about assembly language earlier. You are also going
to have to get the hang of some very complex and intricate timing mechanisms.

Before you read any further, you should grasp one concept. There is nothing that you can-
not do. There are only things that you do not know how to do yet. You can learn to do any
of the things you do not know how to do if you just relax, take your time, and apply your-
self. You are about to see a lot of numbers and figures. Don’t be overwhelmed by them.
Focus on the main body of the text first until you understand the big picture. Once you
understand the main body of text, the tables and charts that you see will become much
more clear and easier to understand.

How Does the Display List Interrupt Work?
By now you understand the way images are drawn on the screen starting from top to bot-
tom. You have also been told that the Atari has certain limitations. For instance, the most
colors that can be displayed by the Atari at any one time is four colors. With that in mind,
think about this: the monitor itself has no limit to how many colors it can display. What-
ever colors the Atari sends it, it will display. What if the Atari starts off displaying a num-
ber of horizontal bars with the colors red, blue, green and yellow? What if when the
monitor is halfway finished drawing the screen, the Atari started sending horizontal bars
with the colors orange, white, black, and gray? The Atari would still have worked within

How Does the Display List Interrupt Work? 175

its own limitation of only being able to produce four colors at one time, but by changing
which four colors it was using halfway through the process of drawing the screen, the
monitor itself would have a display of eight colors! That’s a pretty great trick; the only
question is how in the world are you going to pull it off? See Figure 6.31.

The first question that you have to answer is to find out exactly when the display has
reached the center of the screen. (Actually the concept you are using can be used to change
the color at any point on the screen. You are just using the center of the screen in this
example for simplicity’s sake.) The answer to that question is that you already know. You
know because you wrote the display list that is being used to generate the display. When
the ANTIC reaches the halfway point of the list, it is drawing the center of the screen. See
Figure 6.32.

Chapter 6 ■ Setting the Video Mode176

Figure 6.31 Theoretical diagram of the Atari displaying eight colors at one
time on the screen.

Figure 6.32 When the ANTIC has reached the halfway mark of the display
list, it is at the halfway mark of the screen.

So the problem is half solved, but you still need to solve the rest of the puzzle. To do so,
you must find a way to let the Atari know that you have reached the center of the screen
and tell it to hurry up and change the colors it is using for its display now before the mon-
itor draws the rest of the screen. See Figure 6.33.

This is precisely what a display list interrupt does. You insert this command into the mid-
dle of the display list. When the ANTIC reaches the line that contains the interrupt, it will
interrupt the 6502 CPU of the Atari in whatever it is doing, and tell it to execute whatever
commands you need executed. The CPU will then go back to whatever important work it
was doing, the ANTIC will continue processing the display list, and the monitor will go
back to drawing its image. Everything will go back to normal with one big difference. The
color registers used to draw the display have now been changed to use four different col-
ors. See Figures 6.34 and 6.35.

How Does the Display List Interrupt Work? 177

Figure 6.33 You need a way to tell the Atari that the monitor is halfway down the
screen and have it change the colors that it is using.

Figure 6.34 Normal operation of the computer when drawing display.

We need to put our
interrupt here so

that we can change
the color registers

Timing Considerations
There is a pretty cool movie I like called The Rock, which stars Sean Connery and Nicolas
Cage. There is a scene in the movie where Sean Connery has to break into Alcatraz by
rolling down a corridor that was about 6 feet wide, 2 feet high, and very, very long. The
catch is that this tunnel is part of a furnace, so there are huge streams of fire shooting
across the corridor one after the other. In order for Sean Connery to make it through the
tunnel alive, he has to time the jets of fire correctly and move only within the time frame
so that he is not ever engulfed in flames.

What does the movie have to do with display list interrupts? If Connery made a wrong
move in the movie, his character would have been toast. If you do not time everything
correctly when working with the display list interrupt, the display will be toast. Let’s take
a closer look at the timing involved in creating a display list interrupt.

When you decide on exactly which mode line you will insert the display list interrupt into,
you must keep in mind that the interrupt will not be called the second that the ANTIC
reaches this mode line. The interrupt will be called after that line has been drawn and
while the monitor is in the process of a horizontal blank. In a perfect world, this would be
great because the color change would take place off the screen, giving you an even line
with four colors above it and another four colors beneath it. It is not a perfect world, how-
ever, and the time that passes between the interrupt being called and the service routine
that you write to change the colors is longer than the period of time during which the
monitor is executing the vertical blank. This means that the color change will actually take
place while the monitor is in the middle of drawing the next line on the screen as seen in
Figure 6.36.

Chapter 6 ■ Setting the Video Mode178

Figure 6.35 Operation of the computer when a display list interrupt is executed.

You need a way to solve this problem. The best way to solve it would be for the CPU to
wait until the monitor was once again performing a horizontal blank before it changed the
color registers. Fortunately for us, there is an assembly language command that will make
the CPU do just that. This command is called WSYNC. This is short for “wait for horizontal
sync.” When this command is executed, the CPU basically freezes until the monitor is per-
forming a horizontal blank. This way the color change takes place off the screen and you
obtain the desired smooth line with the first four colors on top and the new colors on the
bottom. See Figure 6.37.

If you were just an ordinary programmer creating ordinary programs, that would be all
you need to know about timing. You are not an ordinary programmer though; you are a
game programmer producing hard core games, which means that you are going to have
to get much deeper into the inner workings of display list interrupts if you intend to pull
off some of the cool stunts that you intend to pull off.

How Does the Display List Interrupt Work? 179

Figure 6.36 The color change takes
place in the middle of the screen,
producing a very unpleasant effect.

Figure 6.37 By freezing the CPU
for a period of time, you can have
the color change take place off the
screen.

n o t e

Most people nowadays know what a screen saver is. But not everyone knows why they exist.
Believe it or not, they were not originally created to entertain us or even so that my son can have
something fun to look at while Daddy is not typing. The reason screen savers were created was
because if you leave a computer for a very long period of time without using it and the exact same
image stays on the screen for that whole time, that image can actually be burned into the monitor.

An example of this could be seen on any PC that ran Lotus 1-2-3 software, which was an early
spreadsheet program. When you were using this program, there would always be a bar extending
horizontally across the screen and another extending vertically down the screen.After working with
this program for an extended period of time, when you turned off your computer monitor, there
would still be a “ghost” image of these bars on the screen. Screen savers were created so that if
you left your computer unattended for a long period of time, the image on your screen would start
to change constantly and so one image would not be burned into your monitor.

With the limited resources of computers from this era, the luxury of screen savers was not
an option, so on the Atari 800, the engineers did the next best thing. If you leave your Atari
turned on and do not touch any keys or use the joystick for nine minutes, the computer
will enter what is called Attract Mode. When this happens, all of the colors on the screen
will be made less bright, and they will change randomly to prevent the current image from
being burned into the screen. See Figure 6.38. I mention all of this about Attract mode
because when you start messing around with the display list interrupt, you stop this fea-
ture from working, which means that you have to include code in the display list interrupt
service to make sure that this function still takes place. And that means that you have one
more thing to worry about when you get deep into the timing mechanisms of the display
list interrupt.

Chapter 6 ■ Setting the Video Mode180

Figure 6.38 Attract mode is used to
prevent the computer from burning an
image into the screen.

Red Blue

Green Yellow

How Does the Display List Interrupt Work? 181

Figure 6.39 The three crucial timing phases involved in executing a display list interrupt.

There are three crucial periods of time that you must be concerned with when you are cre-
ating a display list interrupt. See Figure 6.39.

■ The period of time between when the ANTIC first encounters the display list inter-
rupt and when you actually use the WSYNC command.

■ The period of time from when the WSYNC command is first called to the time that
the electron beam first reappears on the screen.

■ The period of time after the electron beam has reappeared on the screen to the
time that the DLI service is completed.

n o t e

DMA stands for dynamic memory access.

In the real world, Greenwich meridian is the foundation of all time and every other time
zone in the world is measured relative to this time line. In the computer, processor clock
cycles are the Greenwich meridian by which all timing in the computer is measured.

When you execute a display list interrupt, every single thing that you do in regards to the
first stage of this interrupt must take place in a time frame of 114 clock cycles. Why?
Because this is how long it takes for the monitor to draw a horizontal scan line.

Let’s take a look at the sequence of events that have to occur during these 114 clock cycles.
First, it takes a whole 8 cycles just for the 6502 processor to be alerted that a display list
interrupt has occurred and another 8 to 14 cycles before the processor can respond to the
interrupt. Then it takes 11 machine cycles before the operating system will actually give
control over to the routing that you wrote for the interrupt. That’s 33 cycles already used
up plus 3 cycles that will be stolen by DMA, and you have not yet even executed the first
line of code in the display interrupt routine.

To further add to your already steadily growing headache, the WSYNC command cannot be
executed any later than the 100th cycle. All of this combined with the fact that the DMA
will now steal another 9 cycles means that you have a grand total of 55 cycles in which you
must execute and complete the first phase of the DLI execution.

Unfortunately, you will not always be able
to use all 55 of these cycles because the only
way to have access to all of these cycles
would be if you were displaying a blank
line. This is because character mode and
map mode instructions each consume one
cycle for each byte that they the use in video
memory. So, in a worst case scenario, such
as one where you are using a BASIC mode
8, which uses 40 bytes of video memory per
line, you would lose a whole 40 clock cycles.
You would only have a total of 15 cycles to
execute the display list interrupt.

Phase two covers a time frame of approxi-
mately 27 clock cycles. However, after you
account for the loss of 5 cycles if you use
player missile graphics, 1 cycle for the dis-
play instruction, 2 cycles if you use an LMS
command, and of course, 1 to 2 cycles for
our old friend MR DMA, you are left with a
range of 17 to 26 cycles to execute phase
two of the DLI.

Chapter 6 ■ Setting the Video Mode182

The Keyboard and DLI Timing

There is one more very tedious timing prob-
lem that involves the keyboard. The problem
is that every time a key on the keyboard is
pressed, the computer beeps. No big deal,
right? What in the world could this possibly
have to do with the display list interrupt?

The problem arises because the timing for
that beep is accomplished by the use of a
few STA WSYNC commands. As you recall,
whenever this command is executed, the
6502 processor freezes until a horizontal
blank occurs. This screws up the timing of
the DLI interrupt and causes the colors on
the screen to jump downward for a fraction
of a second. The easiest way to solve this
problem is to shut off all input from the key-
board. There are other options available to
you that we will look at a bit later.

Multiple Display List Interrupts
As you can see from the extreme time constraints that are imposed upon the display list
interrupt, it may often be quite impossible for you to accomplish everything that you want
to do in one display interrupt. For this reason, it will sometimes be necessary for you to
execute more than one DLI to accomplish your goals.

There is one very big gotcha that you have to overcome in order to implement multiple
DLIs. There is only one interrupt vector, and you are going to need more than one inter-
rupt routine.

n o t e

You know that when the CPU is busy performing an operation, an interrupt can cause the CPU to
momentarily move from what it is doing and perform some other operation. When this happens,
the CPU needs to know the memory location of the net line of code that it has to execute. This is
where a display list interrupt comes into play.

An interrupt vector in a memory location points to the next line of code that the CPU needs to exe-
cute once an interrupt has been activated. Let’s say that you have an interrupt vector stored at
memory location $10. Whenever an interrupt is executed, the computer goes to memory location
$10 to find the location of the next memory location that it needs to execute.

Because you only have one interrupt vector, you need a way to execute the correct code
each time an interrupt is called. There are a number of options that you can use to solve
this problem. Most solutions, however, would require you to add more code to phase one
and two of the display list interrupts execution, which would further detract from the
amount of time that you have to actually execute the display list routine.

A better solution would be for you to find a way to handle this little problem in phase
three of execution, where you are not overburdened by time constraints. As it turns out,
there is a very straightforward way for you to do just that.

You see, the DLI vector is stored at the memory location $200, $201. That is, this location
holds the address that the computer should jump to in order to find the display list rou-
tine. What if, after the display list interrupt had completed its main task and had entered
phase three, you had it store the value held at address $200, $201 and then write the address
of the next DLI routine into that same memory location. The next time a DLI was called,
it would go to the location of the second routine and execute its code. After this routine
had done its primary job and had entered phase three, if you have a third routine, you
could place the address of this routine into memory location $200, $201 so that it could be
executed next, or you could have it return the original address to that location so that it
would execute the first interrupt routine. Using this technique, you could cycle through as
many different routines as needed to get the job done. See Figure 6.40.

How Does the Display List Interrupt Work? 183

Placing the Text Window at the Top of the Screen

The first thing that you are going to do is create some custom display modes using your
newfound knowledge of display lists. The first game that you created in the video game
primer had a text window at the bottom of the screen. As you might have guessed, the next
time you build this game, you are going to use this area to display the game’s score, player
status, and other such information. There is only one problem. The normal place for such
information to be placed is at the very top of the screen. Of course, you can put this infor-
mation anywhere on the screen that you wish, but as game programmers, the mere fact
that the computer is designed to display text only at the bottom of the screen by default is
enough to make you loathe the very idea of creating a game with text at the bottom of the
screen. Blech. That would leave a very bad taste in our mouths, so let’s start by creating a
basic program that would allow you to place the text window at the top of the screen.

c a u t i o n

Please, always be very careful whenever you are entering lines of code. Remember if you already
have a program in your computer’s memory and you enter test code like the code in the sidebar
without first saving your program and executing a NEW command to clear your memory, the new
program that you type will become a part of the old program that is in memory. So remember to
save your work and clear memory before you enter any test code. Also remember to enter a new
command when you are done with your test code so that memory is free for you to enter your next
program. In you do not do this, strange things may start to happen.

Chapter 6 ■ Setting the Video Mode184

Figure 6.40 Once you know how to cycle through various routines, you can synchronize
your routines to be executed at specific parts of the screen.

t i p

In order to save your work, use the following command:

SAVE “D1:FILENAME.BAS”

This will save your work to floppy disk one. Of course, you would replace filename with whatever
name you wish to call your file, and if you were saving to disk 2 or 3 or any other disk, you would
change the number after D to whatever drive letter you are using.

How Does the Display List Interrupt Work? 185

Cute Little Tricks My Atari Taught Me.

You do not always have to manipulate the computer’s display list to achieve the effect that you
want. For example, normally when you enter graphics mode 3, there is a text window on the
screen. What if you do not want that window to be there? What if you want the whole screen to
be in graphics mode without a text window? The solution is surprisingly simple; all you have to do
is add 16 to the number that you use in the graphics command. That is to say that if you would
normally use the following command to enter graphics mode 3:

10 GRAPHICS 3

In order to display this graphics mode with no text number, you would use this command:

10 GRAPHICS 3 +16

which is really the same as entering

10 GRAPHICS 19

Now before you go and try this, remember that this does not work well in immediate mode. If you
just type GRAPHICS 19 in immediate mode you will just see the screen flicker and return to graph-
ics mode 0.

In order to see this work, type out the following short program:

10 GRAPHICS 19
20 GOTO 10

Press the Break button on your Atari or the Pause/Break button on your PC if you are using the
emulator to stop this program from running after you are satisfied that it works.

Create a Generic Display List
Since you have already started working with graphics mode 3, you will continue using that
as the basis of the program you will create. This will not be a game in itself but rather an
exercise for you to put all of this knowledge that you now have to practical use.

Before you get started, be sure to clear your computer’s memory by using the NEW com-
mand. Change your display to a blank graphics mode 0 display by entering the following
command:

GRAPHICS 0
or
GR.0

Now you are ready to rock and roll. Here is the first line of code for your program:

10 GRAPHICS 3

As you recall, this command will tell the computer to switch to graphics mode 3. Even
though it is possible for you to write the display list completely from scratch, it is often
easier, especially in the beginning, to start the display list by manipulating the display list
that the computer has created for us. This is true for a number of reasons, such as the fact
that the computer places the display list into memory for us, which means that the list will
be stored in a relatively “safe” portion of memory. By safe, I mean that it is less likely that
the computer will overwrite the display list with some other information.

Find the Location of Your Display List in Memory
Now that you have gotten the computer to create a generic display list for us, the first thing
you need to do is glean some information from the display list that is already in memory.
This first thing that you need to find is the location of the display list in memory. Fortu-
nately, this task is much easier than it may seem. When the computer creates a new graph-
ics mode, it does so by creating a generic display list. Once this list is created, the computer
stores the location of the display list at memory locations $0230 and $0231. $0230 holds the
low byte of the address and $0231 holds the high byte of the address. So, if you read the
data in these memory locations, you will know how to find the display list. Here is the
code to do just that:

20 DL=PEEK(560)+256*PEEK(561)

The first thing that you will probably notice about this line of code is that neither the
address $0230 or $0231 are found anywhere in the code. What’s wrong? Did you forget to
put it there? No, the answer is that both of these addresses really are there; it is just that
they are written in binary format.

Chapter 6 ■ Setting the Video Mode186

Do this from the Start menu on your computer; choose Programs (or all programs if you
are using XP), Accessories, and finally Calculator. See Figure 6.41. Select View from the
panel at the top of the calculator’s window and make sure that Scientific is selected. Now
make sure that the HEX option is selected.

Type the address that holds the low byte of the address of the display list.

Now click on the Dec option.

This will change the hexadecimal address that you just entered into its decimal equivalent.
As you can see, the equivalent of $0230 is 560, which is the value that you used in the first
PEEK command in the line of code. What that means is that you are actually reading in the
low byte of the address of the display list!

If you repeat the same procedure using the hexadecimal address of the high byte of the
display list ($0231), you will find that its decimal equivalent is 561. This means that the sec-
ond peek command reads in the high byte of the address holding the display list.

So basically what this line of code does is multiply the high byte of the address by 256 and
add it to the low byte of the address. This is just a little formality that you have to carry
out to reconstruct the address of the display list. Once the address is reconstructed, it is
stored inside of the variable DL.

As you will soon see, you can now use this variable DL to reference any part of the display
list and read or manipulate it in any way that you want.

Create a Generic Display List 187

Figure 6.41 The Windows calculator in Scientific mode.

Find the Start of Video Memory
Take a look at the following list of a mode 3 display:

112
112
112
72
112
158
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
66
96
159
2
2
2
65
78
158

We have already discussed the nature of the display list, so you should understand the
basics behind how this one works. We do, however, have to take a look at a few points that
make this display list different from the ones we have looked at before. We will point out
the difference as we move along.

Chapter 6 ■ Setting the Video Mode188

Look at line 4 of the display list above. You know from experience that this line is a com-
bination of a load memory scan command and the first mode line instruction. You can
find out what mode line is held in this line by subtracting 64 from it. (The number for this
line is obtained by adding 64, which signifies an LMS command and the number for the
mode line that you want displayed as the first mode line of your screen.) 72 – 64 = 8, so
you know that this line holds the first mode line instruction on the screen. You also know
that the following two bytes contain the address of video memory. The first byte after the
LMS command is the low byte of the address of video memory, while the second byte holds
the high byte of the address.

You need a way to read these specific memory locations and save them. This is where the
DL variable comes into play. You see, if you were to use the following command in the pro-
gram:

PEEK (DL)

it would return a value of 112, which is the value of the first byte in the display list. This
represents the first blank eight-line instruction. If you were to use the POKE command, you
could actually change the value located in the first byte of the memory location. This is
the basic principle behind how you are going to both glean information from the current
display list and write the new display list.

You may have noticed a slight problem. You have a way to read and manipulate the first
byte of the display list, but how are you going to manipulate the rest of the display list?
Well, like so many other things you have done so far that looked complicated until you
actually did it and found out how easy it is, the answer is really very simple. If you PEEK or
POKE to memory location DL you will get the first byte of the display list, but if you PEEK or
POKE to memory location DL+1, you can reference the second byte of the display list. PEEK-
ing or POKEing to memory location DL+2 will reference the third byte of the display list. Do
you see a pattern here? You can use indirect addressing to reference any part of the display
list that you want. You may have also noticed that the number that you add to DL is always
1 number less than the number of the byte you are actually trying to reference.

Let’s put this theory to the test by reading the address of video memory, which is located
immediately after the load memories scan command.

The first three bytes of the display list are the blank eight mode line instructions. The
fourth byte of the list is the actual LMS command. This means that the fifth byte will hold
the low byte of the address of video memory while the sixth byte holds the high byte of
the address of video memory. So to reference and read the low byte of the address of video
memory, you would have to use the following command:

PEEK (DL+4)

Create a Generic Display List 189

To find the high byte, you will have to use this command:

PEEK(DL+5)

Here is the code that you will use to read in the memory location of video memory and
store it into a pair of variables.

30 LMSLB=PEEK(DL+4)
40 LMSHB=PEEK(DL+5)

Line 30 above loads the low byte of the address of video memory and stores it into the
variable LMSLB. Line 40 saves the high byte of the same address and stores it into the vari-
able LMSHB. See Figure 6.42.

Text Editor Memory

There are two ways for the computer to get information to put on the screen. The first
way, and the way that we have discussed the most up to this point, is to read video mem-
ory, translate it, and draw it on the screen. There is, however, another way for the com-
puter to get information to place on the screen, which is to reference text editor memory.
You see, video memory basically stays the same until you either use an operating system
graphics command (e.g., PLOT or DRAWTO) to manually manipulate the memory location or
change the graphics mode of the screen (i.e., create a new display list).

What this means is that if the only way for the computer to get information to display on
the screen is from video memory, then you could bang on the computer’s keyboard all day
long and nothing that you typed would ever appear on the screen. This is because when
you type something on the computer screen, the information that you type goes into a spe-
cial computer buffer that has absolutely nothing to do with video memory. See Figure 6.43.

Chapter 6 ■ Setting the Video Mode190

Figure 6.42 You can use DL+4 and DL+5
to reference the low and high byte of the
address of video memory.

Everything you type on the screen and every message that the computer wants you to see
ends up in what is called text editor memory. You write your own custom display list, and
you want to use text lines that will display text as you type it. (This will be graphics mode
0.) You will have to direct the computer to use text editor memory before it starts dis-
playing the ANTIC mode 2 mode lines. This concept is seen in Figure 6.44.

Take a look back at the display list in the preceding section; near the end, you will see a 66.
This is a command used to instruct the computer to start using memory at the location
stored in the following two bytes to get the information to be displayed on the screen. This
memory location is the start of text editor memory.

What you need to do is store the 27th and 28th byte of the display list so that you know
how to find it if you decide to use it later. In order to reference the 27th and 28th byte of
the display list, you will use the indirect addresses D+26 and DL+27, respectively.

Here is the code to do just that:

50 TXTL=PEEK(DL+26)
60 TXTH=PEEK(DL+27)

Create a Generic Display List 191

Figure 6.43 Normally, the things you type on the keyboard would never appear on the
screen because it ends up in a completely different portion of memory than video memory.

Reading and Changing the Address of the Top of the Display List

The very first thing that you did when you started working with the display list was to find
the location of the start of the display list. This was easy because the computer stored this
information at memory location $0230 low and $0231 high.

Even though you can read the location of the display list from this location, you cannot
change the location of the top of the display list by writing to this address location. This
is because this is only a shadow address and not the actual copy of the address the display
list will use to jump up to the top of the display list. This concept is demonstrated in Fig-
ure 6.45.

What this means is that if you want to change the address that the display list jumps to
when the screen is executing a vertical blank, you need to change bytes 32 and 33 of the
display list. Things can get kind of crazy once you really get going manipulating the dis-

Chapter 6 ■ Setting the Video Mode192

Figure 6.44 You have to direct the computer to use text editor memory before you
give it the ANTIC mode 2 instructions so that what you type will appear on the screen.

play list. For this reason, the first thing that I would like to do is create two variables and
store the actual address of the top of the display list as it is stored in bytes 32 and 33 of the
display list. An example of this can be seen bellow.

70 LSTL = PEEK(DL+31)
80 LSTH = PEEK(DL+32)

t i p

You could just PEEK at addresses 560 and 561 to get the shadow copy of the address of the display
list, but when things get hectic, it could be easy to have your program start doing strange things.
This is because you are trying to find the display list at a location stored in your shadow address
after you have already changed the actual address of the display list.

Create a Generic Display List 193

Figure 6.45 Memory address $0230 and
$0231 holds a shadow copy of the location of
the top of the display list. When the ANTIC
chip is looking for the address to use to jump
back over to the top of the screen, it does not
look at the shadow copy of the address but
instead uses an address that is stored in the
last two bytes of the display list.

C
h

ap
ter 6

■
Settin

g
 th

e V
id

eo
 M

o
d

e
194

Table 6.3 Mode 3 Display List Information

Portion of the display list

Shadow copy of the location of the
display list

Location of video memory

Location of text editor memory

Actual location of the display list

Load memory scan command

Location in the display
list

Not found in display list. Low byte:
memory location

$0230 High byte: Memory location
40231

Low byte: 5 High byte: 6

Low byte: 26 High byte 27

Low byte: 32 High byte: 33

Byte 4

Value used to
reference this item
in the display list

Not referenced in the display list.

Low byte: DL+4 High byte: DL+5

Low byte: DL+25 High byte: DL+26

Low byte: DL+31 High byte: DL+32

DL+ 3

Variable used to store
data

DL

Low byte: LMSLB High byte: LMSHB

Low byte: TXTL High byte: TXTH

Low byte: LSTL High byte: LSTH

None

Creating Your New Display List
You now have all of the information that you need to create your own display list. You
know a safe place to store the display list (the same location in memory where the oper-
ating system had stored the original mode 3 display list), you know where video memory
is stored, and finally, you know the current address of text editor memory.

c a u t i o n

You may be tempted to find out the actual memory location of video memory, text editor memory,
and/or the location of the display list and hard code this location into your code. Never, ever, do
this. You see, depending on a number of variables (the most important being the amount of mem-
ory the computer has) the location of these values will change from computer to computer. This
means that if you hard code these values in your game, it may work just fine on your computer but
then just completely bomb when someone else tries to run that same code on her computer.

Let’s now put this vast amount of theory we have been studying for the past two chapters
to use and complete the task of creating the display list.

The Load Memory Scan Instruction
Another benefit of using a predefined display list as the starting point of your own is that
the first three bytes are already created for us. That is, of course the three blank eight mode
line instructions. The fourth byte of the display list is the load memory scan, the first of
the mode line commands. To calculate the correct value to place in this line, use the fol-
lowing formula.

64 (which is the value that signifies the LMS command)
+ The ANTIC mode number you want for the first line of the display

You want the first four rows of the screen to be displayed in ANTIC mode 2, which means
that the first of the mode lines in the display list has to be ANTIC MODE 2. And that
means that you have to add 64 +2 to obtain the correct value for the fourth byte of the
display list. The correct value for you to use is 66. Looking at Table 6.3, you see that you
have to use the equation DL+3 in order to reference the fourth byte of the display list, which
is the LMS command. You alter the LMS instruction like this:

90 POKE DL+3, 64 + 2

You could have just used this code:

90 POKE DL+3, 66

You can type out this instruction in whatever way is most comfortable to you. I would
suggest that while you are just starting out that you use the first method just so you
remember how you obtained the value for the display list.

Create a Generic Display List 195

Originally, the load memory scan command in this display list pointed toward video
memory. For our example, however, you want to point the computer toward text editor
memory so that whatever you type will end up on the top of the screen. Looking once
again at Table 6.3, you see that you have stored the address of text editor memory in the
variables TXTL and TXTH (the low byte and high byte of the address of text editor mem-
ory). What you need to do is replace bytes 5 and 6 with the high and low byte of the text
editor memory. Here is the code:

100 POKE DL+4,TXTL
110 POKE DL+5,TXTH

Inserting the Remaining ANTIC Mode 2 Lines
The next three bytes of the display list contain the instructions to display the next three
ANTIC 2 mode lines of the display list. Remember you already inserted the command for
the first mode line on the screen when you executed the load memory scan command.

To reference these bytes you will use the equations DL+6, DL+7, and DL+8, and POKE a value of 2.

120 POKE DL+6,2
130 POKE DL+7,2
140 POKE DL+8,2

A Look at What You Have So Far
The following listing is the result of your work so far:

5 REM code listing RG091EC.bas
10 GRAPHICS 3
20 DL=PEEK(560)+256*PEEK(561)
30 LMSLB=PEEK(DL+4)
40 LMSHB=PEEK(DL+5)
50 TXTL=PEEK(DL+26)
60 TXTH=PEEK(DL+27)
70 LSTL = PEEK(DL+31)
80 LSTH = PEEK(DL+32)
90 POKE DL+3, 64 + 2
100 POKE DL+4,TXTL
110 POKE DL+5,TXTH
120 POKE DL+6,2
130 POKE DL+7,2
140 POKE DL+8,2

Your screen should look something like that shown
in Figure 6.46.

Chapter 6 ■ Setting the Video Mode196

Figure 6.46 You should now have
text lines at both the top and bottom
of the screen. Whatever you type on
the keyboard shows up on both the
top and bottom of the screen.

The screen looks quite strange, doesn’t it? You have text lines at the top and bottom of the
screen. What’s more, whatever you type appears at both the top and bottom of the screen.
What’s going on? The display list originally had four ANTIC mode 2 lines at the bottom
of the list. Also, originally, just before these text mode lines, the list had a command for
the ANTIC to start using text editor memory to fill these four lines with text.

What you have done is to place four ANTIC mode 2 instructions at the top of the display
list and instructed it to fill these four lines with information from text editor memory as
well. So you see what is happening on the screen is not all that strange after all. While this
is a pretty cool little trick, you are not done yet. You still have to remove the four ANTIC
mode 2 commands from the bottom of the screen, plus you have another problem: to try
to use the PLOT command to draw a dot on the screen.

PLOT 6,6

You will get the following error message:

ERROR- 133

You see, when you start messing around with the display list, it becomes a lot more com-
plicated to actually create the graphics for your displays. With some cases that prove to be
exceptions, you can no longer use the standard graphics commands provided to you by
the operating system. Before you take a look at displaying graphics in your custom display
modes, let’s complete the display list.

Switching Back to Video Memory
Now while you want to see the text that you type displayed in the top four lines of the
screen, you do not (and cannot) want to have this information used for the display in the
graphics portion of the screen. This means that you have to direct the ANTIC to once
again start using video memory so that the graphic part of this screen can be filled with
just graphics and not garbage caused from trying to convert text data to video data.

To accomplish this goal, you must execute another load memory scan instruction. This
time, rather than giving it the address of text editor memory as its operand, you will give
it the address of video memory.

150 POKE DL+9,64+8
160 POKE DL+10,LMSLB
170 POKE DL+11,LMSLB

As you can see, line 150 executes a load memory scan command. This time, however, you
add 8 to the LMS command because you want the next line as well as all the remaining
mode lines of the display to be ANTIC mode instructions so that you can draw the graph-
ics for whatever game you are creating.

Create a Generic Display List 197

Lines 160 and 170 POKE the address of video memory immediately after the new LMS com-
mand as its operands so that the computer will begin using video memory to fill the rest
of the screen with graphical information.

Inserting the Remaining Mode Lines

Now that the computer has once again been instructed to start using video memory, you
have to be sure that the remainder of the mode lines in the display are graphic mode lines
and not text mode lines. The question is exactly how many mode lines do you need to
insert into your list?

Well, to try and figure this out, let’s take a look at what we already know about this prob-
lem. Each mode line that you add to the display list adds a given number of horizontal
scan lines to the screen. You know that you cannot add more than 192 horizontal scan
lines to the display. You know that each of the ANTIC mode 2 lines that you have created
has added 8 horizontal scan lines to the display. You have added 4 of these ANTIC 2 mode
lines so you have already added a total of 32 scan lines to the display, leaving you with a
total of 160 scan lines to fill.

Each ANTIC mode 8 line instruction that you add to the list will add another 8 lines to
the display. If you divide 160 by 8, you will get your answer as to how many more scan
lines need to be inserted. You need to insert 20 ANTIC mode 8 instructions to your list to
complete the display.

This is an example of a time when a for loop comes in handy. You could, of course, write
20 lines of code, each one poking an ANTIC mode 8 instruction into the list, but you are
a budding hacker. So you have to do this with style. Observe the following code.

180 FOR I = DL+12 TO DL+30
190 POKE I,8
200 NEXT I

This is not rocket science but it is effective. You create a for loop. In this loop, the value of
I starts with a value of DL+12. This corresponds to the 13th byte of the display list. The loop
will keep going and incrementing the value of I until it reaches a value of DL+30. This
value corresponds to the 31st byte of the display list. With each loop that is executed, the
computer is given a command to POKE the number 8 at the location stored in I during that
particular iteration of the loop.

The net effect of this code is that the computer will continue looping until it fills the next
20 lines of the display list with ANTIC mode 8 instructions.

Polishing Off the Display List
You have one more little formality to get out of the way before you can consider your dis-
play list to be done. The last thing that you need to do before you can sign off on this list

Chapter 6 ■ Setting the Video Mode198

is to add a Jump on Sync instruction that will cause the computer to jump to the top of the
display list every time the screen is redrawn.

210 POKE DL+31,65
220 POKE DL+32,LSTL
230 POKE DL+32,LSTH

Line 210 is the jump on sync command. Lines 220 and 230 give this instruction the address
of the top of the display list, which you stored earlier so that it knows exactly where to
jump to.

And Then There Was Light
You have just completed your first display list. Now let’s put it to some use with a simple
application. Add the following lines of code to your program:

240 COLOR 1
250 PLOT 0,0
260 DRAWTO 39,0
270 DRAWTO 39,19
280 DRAWTO 0,19
290 DRAWTO 0,0

Load the listing for program RG0902.bas or type in the code from this program and run
it. As you can see, the program draws a border around the graphics area of the screen and
the text window is located definitely at the top of the screen.

A More Advanced Display List
That display list does not exactly take full advantage of much of the power of the display
list. It was just a taste for you to cut your teeth writing your first display list programs.
Now let’s use the power of display lists to do something a bit more practical.

Do you remember the game we created in the BASIC primer? All of the graphics were
done in graphics mode 3. Let’s spice things up a bit and take a look at how you could use
display lists to improve the overall feel of that game.

You can use a combination of mode lines to enhance the game for the player. You can use
a high-resolution graphics mode for the main game area, which gives you the option of a
much more attractive playing field. Beneath the main playing field, you can have text
mode display the tiles for the status display and score. Finally, you have another high-res-
olution mode at the bottom of the screen that can be used to display the number of lives
the player has left.

A More Advanced Display List 199

Creating a Generic Display List
In the display list you created above, you started off by first giving the computer a com-
mand to switch the display to graphics mode 3, which it did by creating its own display
list. You then gleaned all the information that you needed from the display list that the
computer had already provided for you and used it to create your own custom display list.
You are going to use this same basic concept to generate the new display list but with a few
changes.

First of all, graphics mode 3 only requires 240 bytes of memory to draw the whole screen.
A screen drawn in graphics mode 7 with no text window requires 3840 bytes of data. What
this means is that if you tried to create your new advanced display list based on graphics
mode 3, the computer would not generate enough memory to hold either display list of
the video memory that you will need for your display. To get around this you have to
examine the display you are trying to create and identify what kind of mode line is going
to take up the most space in the list and hence take up the most memory.

A display list occupies some amount of screen memory. The larger the list, the more mem-
ory it needs. If you know how much memory your custom display list is going to need, it
makes sense that you should first give the computer the command to generate a display
list for a standard graphic mode that uses the same amount of memory that your custom
display list will need. This gives the computer the headache of allocating memory and car-
rying out other housekeeping issues that need to be addressed.

The second little twist that you need to be aware of is that as you begin to work with larger
and larger display lists, such as modes 7 and 8, you face the problem of display lists that
are larger than 4K in length. The problem is that the ANTIC cannot address more that 4K
of memory at a time. So each time the computer is about to reach the 4K mark, you have
to execute a new LMS command to reset it and give I the address of the remainder of the
display list. You have to be careful when you manipulate the original display list; you have
to be really careful not to write over the second LMS command or strange things will start
to happen to your display.

For your new display list, you will set the computer to mode 7 without any text lines and
work from there.

Here are the first few lines of the program:

10 GRAPHICS 7 +16
20 DL=PEEK(560)+256*PEEK(561)
30 LMSLB=PEEK(DL+4)
40 LMSHB=PEEK(DL+5)

It is almost exactly the same as the previous program except that this time you have not
stored the location of text editor memory because this display list does not use it. Also you

Chapter 6 ■ Setting the Video Mode200

have not stored the address of the top of the display list. Just to show you that you can
always use different methods to do the same thing, this time you have referenced the
shadow locations to identify the location of the list. The only catch to this method, as I
have said before, is that if you change the address of the display list for some reason, you
will have to update the shadow registers with its location.

Also note that you have added 16 to the number you gave to the graphics command. This
will cause the graphics mode to be generated without any text lines at the bottom of the
screen.

Inserting Text Mode Lines
Now you have to calculate exactly where in the display list you need to insert the instruc-
tion of the ANTIC mode 6 commands. This will cause this portion of the screen to dis-
play text as opposed to graphics.

You want to insert your text line about four lines up from the bottom of the screen so that
you have enough room to draw the graphics for the display at the bottom of the screen.

You have to do a few calculations at this point. First of all, you should know something
that you need to be aware of when you are mixing graphic mode lines. You have to mix
the modes in a particular combination. First, you have to examine the mode lines in the
list to see which mode line uses up the most RAM per line. In our case, graphics mode 7
(ANTIC mode d) uses up the most memory per line, taking up 40 bytes. Graphics mode
1 lines only use up 20 bytes per line. In order for your display to work correctly, you are
going to have to combine all of the mode lines that are smaller than the mode line that
uses up the most memory in groups that equal the same amount of bytes as the largest
mode line in your list.

Let me explain. The display list is currently made up entirely of ANTIC mode d lines. If
you want to insert an ANTIC mode 6 line, you cannot simply insert one ANTIC mode line
between two ANTIC mode d commands. You have to always insert two mode lines
together or multiples of two model lines together. First you must identify the mode line
that uses the most bytes. Next each mode line that you insert into the list that is smaller
than the largest mode line must be inserted in such a way as to be sure the total amount
of bytes used by the group equals the same as the amount of memory used by the largest
mode line in the display.

Every time you insert a pair of ANTIC mode 6 lines you add a total of 16 more scan lines
to the display. Each ANTIC mode d line that you insert in to the list adds two scan lines
to the display. If you are going to insert four ANTIC mode d lines to the bottom of the
screen that means a total of eight scan lines will be added to the screen. This means that
you have to start inserting the ANTIC mode 6 lines 24 scan lines from the bottom of the
screen.

A More Advanced Display List 201

The screen has a total of 192 scan lines, and each ANTIC mode d line uses up two scan
lines. We discovered earlier that if we divide the total number of scan lines on the screen
by the number of scan lines used by each mode line in the display list, we can find out how
many mode line instructions are in the list. That said, 192 divided by 2 gives you 96
ANTIC mode lines all together in the display list.

DL references the first byte of the display list, which is one of the blank mode 8 commands.
DL+1 and DL+2 reference the other two blank 8-mode instructions. DL+3 is the load memory
scan instruction, which also includes the first ANTIC mode d command. DL+4 and DL+5 ref-
erence the low and high bytes of the load memory scan command.

It is not until you reach DL+6 that you reach the second of the 84 mode line commands.
(Remember the first one was found at memory location DL+3 along with the LMS com-
mand.) Keep in mind that you have to insert 84 mode lines before you insert the modi-
fied mode lines. Remember too that you have already added the first command and there
must be 83 commands between the last address of the LMS command and the point where
you will make your insertion.

By adding 83 to DL+5 (the address of the high byte of the LMS command), you realize that
in order to reference the point in the list where you insert the first ANTIC mode you have
to use the equation DL+89 to POKE the first ANTIC mode 6 command into the list and DL+90
to POKE the second ANTIC mode 6 command.

50 POKE DL+89
60 POKE DL+90

The rest of the mode lines on the screen remain the same, and you have neither overwrit-
ten the portion of the display list that gives the jump on sync command nor changed the
location of the display list, which means that the rest of the display list remains the same
and does not have to be changed.

What’s Next?
Try running the program. You can find it on the companion Web site for this book. It is
listing number RG0903.bas. Nothing much happens; in fact, all it seems to do is blink the
screen and bounce back to graphics mode 0. Let’s improve this program to make it do
something useful.

Drawing the Display for the Top Graphics Mode 7 Displays

Add this line of code to the program:

5000 GOTO 5000

Chapter 6 ■ Setting the Video Mode202

The purpose of this line is to pause the display so you can see what you draw on the screen
before the screen switches back to graphics mode 0. As soon as your program is finished,
the screen will immediately switch back to graphics mode 0. You have placed this code on
line 5000 so that you do not accidentally overwrite it as you build this program.

Let’s put some color on the screen. Add the following lines of code to the program:

70 COLOR 1
80 PLOT 0,0
90 DRAWTO 159,0
100 DRAWTO 159,83
110 DRAWTO 0,83
120 DRAWTO 0,0

You have seen these commands before. Line 70 changes the color that you were using to
the value of color register 1, which is by default orange. Lines 80 to 120 draw a border
around the top half of the screen.

Adding Text to ANTIC Mode 6 Lines

The next thing that you want to do is to place the player’s score and the heading for the
number of lives he has left in the text mode lines.

You have a slight problem when writing to a custom display list. To examine this problem,
let’s take a look at what normally happens when you try to print test lines on the screen.

The computer keeps track of which graphics mode it is using as well as how many lines
are needed in order to display a line in that graphics mode. Here is why that is important:
If the computer is displaying a graphics mode that uses 40 bytes and needs to display a let-
ter on line 5, it is easy for it to calculate the correct memory location to store that data for
the letter it has to show.

The computer knows that it has to multiply 5 times 40, which equals 200. This tells the
computer that it has to draw that letter 200 bytes from the beginning of the video mem-
ory. Usually this works perfectly. That is, of course, because usually all of the mode lines
are the same size. The problem is that when we start mixing mode lines in our custom dis-
play list that are all different sizes, there is no easy way for the computer to find the start
of each line 1.

You see that each line occupies 40 bytes of memory. So the computer knows that every
time it has drawn 40 bytes of memory, it has completed drawing a line and is ready to start
writing the next line of the screen.

The same concept occurs when the computer is working with a graphics mode.

A More Advanced Display List 203

Each line on the graphics mode 7 display also uses 40 bytes of memory. Now in whatever
graphics mode you are in, if you give the computer a command to plot a point (or draw
a letter) at a particular line on the screen, the computer has to have a standardized method
of calculating exactly where on the screen you want it to draw the point.

If you tell the computer, for example, that you want it to draw a point on row 5 of the
screen in graphics mode 7, it will multiply 5 by the number of bytes in each line, which in
this case is 40, to give you a value of 200. That way, the computer knows that in order to
manipulate a point on line 5, it has to move forward 200 bytes in screen memory.

Now you are ready to understand why you have a problem when you are trying to write
to a mixed mode display list. In order for the computer to correctly find the line video
memory for the line number you want it to reference, it has to multiply the line number
that you give it by the number of bytes used per line. The problem is that this only works
if all of the bytes in the display list are the same!

Fortunately, like pretty much any problem that you are going to run into in your career as
a programmer, there is a way around this problem. You can solve this problem by manip-
ulating the data stored in three memory locations: namely, memory locations 87, 88, and
89. You see, the computer stores the current graphics mode that you are in at memory loca-
tion 87. Also memory locations 88 and 89 store the low and high bytes of screen memory.

The computer wants to know what mode the computer is in and the number of bytes it
has to multiply by to reference whatever line you need it to reference. The first thing that
you are going to have to do is adjust the value held in memory location to match the kind
of mode line that you will be working with. In the case of your program, you would
change this to a value of D. This will tell the computer that you are working with graphics
mode 1. Next, you are going to have to adjust the values in memory locations 88 and 86.
What you are going to do is trick the computer into thinking that video memory actually
starts at the mode 1 line.

Here is the code you are going to use to both “trick” the computer into thinking it is purely
in mode 1 and to adjust the location of video memory.

130 POKE 87,1
140 SCRN=PEEK(88)+PEEK(89)*256
150 SCRN=SCRN+ 3360 +1
160 POKE 88,SCRN-(INT(SCRN/256)*256)
170 POKE 89,INT(SCRN/256)

Let’s look over this code and examine exactly what it does. First of all, line 130 is the line
of code that is going to actually trick the computer into thinking that you are purely in
graphics mode 1. It does this by poking I into memory location 87 so that when the com-
puter does its calculations, it will assume that it is purely in graphics mode 1.Next line 140
takes the location of the top of video memory and stores it in the variable SCRN.

Chapter 6 ■ Setting the Video Mode204

Now you have to figure out in which portion of video memory the graphics mode 1 line
is located so that you can see that as the top of the video memory. As it turns out, this is
really quite easily done.

You know that 84 graphics mode lines, each one utilizing 40 bytes, are drawn before you
get to graphics mode 1 line, which means that a total of 3360 bytes are used up in video
memory before you get to this line.

If you add 3360 to scan, that will give you the address of the last byte of the last line just
before the video memory for the mode line you want to work with. That means that 3360
+1 must reference the first byte of the graphics mode 1 line.

Lines 150 to 170 add 3360+1 to the address stored in SCRN, and then it POKEs this new
address back into memory locations 88 and 86.

It is now possible for you to correctly print to the graphics mode 1 line using the PRINT #6
command.

Writing DLI Interrupts
The next step for us to take, of course, is to actually start creating our display list inter-
rupts. This will be the first area in this book where you will actually begin to use assem-
bly language programming. For your convenience and to keep this chapter in focus, each
computer that we are studying in this book has an area on the companion Web site with
the assembler programs you have the option of using. You will find instructions on how
to set them up and how to create your first program.

My personal favorite program is SYNASSEMBLER. This is a very cool program with a
number of great features, the best of which for the purpose of learning to get up and run-
ning in assembly language programming, is the fact that this program is designed to work
almost like Atari BASIC does. This means that a lot of the commands that you have
already become accustomed to using such as LIST, NEW, SAVE, LOAD, and so forth will work in
SYNASSEMBLER, usually in exactly the same way.

After you have read the assembly language primer and have chosen and learned how to
setup and use the assembler of your choice, you will be ready to move on and create your
first of many display list interrupts.

Writing a Display List
To refresh our memory, let’s discuss what exactly happens when you cause a display list
interrupt vector.

You call an interrupt display vector by setting bit 7 of the byte holding the mode line
instruction representing the row on the screen where you want the interrupt to take place.

Writing DLI Interrupts 205

When the ANTIC chip reaches this mode line, it will draw out the mode line and then
look at the NMIEN register to see if its enabled bit is set; if so, it pulls the NMI line of the
6502 to low. After this point, the ANTIC no longer has anything to do with the interrupt.
All further processing is done via the 6502 processor.

Because the processor sees that its NMI (which stands by the way for Non Mask able Inter-
rupt) line has been set to low, it executes an NMI interrupt by calling an interrupt service
routine, which is stored in the operating system.

t i p

Remember, an interrupt is a signal that is given to one of the computer processors to tell it to stop
what it is doing so that it can execute a list of commands and then go back to what it was doing.
An interrupt service routine is the list of instructions that the computer is asked to execute.

This routine simply verifies that it was indeed a DLI that was called; then it goes to address
$0200, $0201 (low and high bytes, respectively) to find the location of the code you want
to have executed.

Wow, once again you see the Atari really has its hands full before it even gets as far as exe-
cuting your code.

Writing the Code for Your Display List Interrupt
Remember the example we gave earlier about you doing some homework or doing your
taxes when a baby starts crying? We observed that you would stop what you were doing,
go and assist the baby with whatever was ailing it (a dirty diaper, thirst, or hunger), and
then go back to what you were doing before. Seems rather easy, right, and you do this or
something like it almost every day? But what if after you are done helping the baby, you
could not remember what you were originally doing? It would be impossible for you to
resume your work because you have no idea what your work is any more. It’s the same
thing with the computer. When we interrupt the computer from completing a task, it is
impossible for it to resume what it was doing unless it can remember what it was doing.

Guarding the Computer’s Memory
There are three basic steps that you must take to ensure that the 6502 processor is able to
remember, and hence return to performing, whatever task it was doing before you inter-
rupted it.

First, you have to save the contents of the accumulator register, which you are going to be
using as well as the contents of the processor’s status flags. If you do not do this, when the

Chapter 6 ■ Setting the Video Mode206

computer is done with your interrupt service routing and goes back to its original task, it
will crash because the register, and flags for that matter, will be set incorrectly.

There are two commands that will assist you in this venture. First on the list is the PHA
command. This command pushes the contents of the accumulator onto the stack for safe-
keeping. The second instruction that you need to be aware of is the PHP instruction,
which pushes the value of the processor flags onto the stack.

You are now free to write the code for your interrupt service routine. Once you have com-
pleted writing the code for the DLI, you have to perform the second step of allowing the
computer to “remember” what it was doing before you interrupted it. This set, as you
might imagine, involves pulling the values that were original in the accumulator and in
the processor’s flags from the stack and back into their original locations. The instructions
to do this are PLP to restore the values of the processor flags and PLA to restore the value
of the accumulator.

Finally, the third step to allow the computer to remember what it was doing is to tell the
computer exactly where the code is located that it was working on before it changed its
focus to working on the new request. The command that allows you to do this is RTI. You
see, before the computer got as far as executing out interrupt service routine, it saved the
location of the code that it was working on to the stack. When you execute the RTI com-
mand, it retrieves this address from the stack and instructs the computer to go to this loca-
tion and continue its original work.

t i p

The 6502 only has built-in instructions to store and restore the accumulator and the processor flags,
but these are not the only instructions that you may have to protect. You need a way to protect the
X and Y register as well. Luckily for us, there is a way to do this using existing instructions. You see
the PHP and PLP can only store and retrieve the accumulator, but there is no limit to how many
times it can store or retrieve the accumulator! Look at the following code.

PHA
TXA
PHA
TYA
PHA
PLA
TAY
PLA
TAX
PLA

Writing DLI Interrupts 207

t i p

You executed the PHA instruction three times, pushing the contents of the accumulator onto the
stack three times. The first time, you stored the original contents of the accumulator. The second
time, you filled the accumulator with the contents of the X register and thus stored the contents of
the X register, and the third time, you filled the contents of the Y register to the accumulator and
stored the values of the Y register. When it is time for you to restore the registers, you will simply
do the opposite.

t i p

Remember, pulling and pushing from the stack is sort of like adding and taking away from a stack
of books. If I put down four books named a, b, c, and d, I cannot just move the book on the bottom
without disrupting all of the other books. I have to start removing books from the top of the stack
first. This means that the last book that I add to the stack has to be the first one that I take off, and
the second to the last book has to be the second one that I take off, and so on. It is the same with
the computer’s stack. The first thing that you pull off of the stack has to be the last thing that you
put on the stack. The last thing that you put on the stack was the Y register, so when you execute
the first PLA instruction, it will actually pull the original value of the Y register and store it in the
accumulator. This is why our next instruction is the TAY instruction, which will transfer the contents
of the accumulator to the Y register, thus completing the task of restoring the Y register.

Following this same pattern, you are able to pull the next value from the stack, which is the origi-
nal value of the X register and place it into the accumulator from where the TAX command is able
to move it the X register where it belongs. Finally, you execute the final PLA instruction, which
restores the accumulator to its original value.

Chapter 6 ■ Setting the Video Mode208

Table 6.4 Instructions to Return the Computer to Its Pre-Interrupt State

Instruction Action performed

PHA Pushes the accumulator to the stack.

PHP Pushes the processor registers.

PLA Pulls the accumulator from the stack.

PLP Pulls the processor flags from the stack.

RTI Pulls the address of the code the computer needs to execute to resume what it
was doing before you interrupted it from the stack and instructs the computer
to go to that location and resume executing code.

Writing the Actual Heart of the Display List Interrupt
It is time for you to cut your teeth writing your very first display lists. For this first exam-
ple, we will keep things abundantly simple. All that you are going to do is change the back-
ground color of the screen display. Choose which assembler you are going to use and
follow the steps given to you on this book’s Web site to obtain the file and to set up and
use it. You will be given the pros and cons of each option and a suggested assembler, but
at the end of the day, the choice is yours as to which one you will use.

The first thing that you need to do is to preserve the values of your registers.

PHA
TXA
PHA
TYA
PHA

This is the exact same code as used in the last tip. It uses the PHA command to store the val-
ues of each of the computer’s registers and the processor flags. If you are not going to use
a particular register, it is advisable for you not to push and pull this register from the stack
unnecessarily, as it uses up clock cycles each time and, as you may recall, you do not have
very many clock cycles to spare.

In BASIC, you would use a command called SETCOLOR to change the colors of the color reg-
isters. In Assembly, you do not have this luxury, however, and must do this manually.
Another topic that will be covered in detail in the next chapter is the existence of four-
color registers. You have used these before in a few of the demo programs. The back-
ground of the screen is always drawn using color register 0. The reason that the
background of most graphics screens default to black and graphics mode 0 defaults to
blue is that color register 0 in most graphics modes defaults to black while in graphics
mode 0 it defaults to blue. What this means is that in order for you to change the value of
the background color of the graphics 0 screen, you are going to have to change the value
of color register 0.

As it turns out, this is a rather easy task to accomplish. You see, all the color registers are
locations in memory hold a given color value. Change the color value at that memory
location, and you change the register. Change the register, and you change the colors that
are being used to draw the screen.

Here are the memory locations of the first four of the computer’s nine color registers. The
other five will be discussed in Chapter 7, “Hacking the Video Buffer.”

Writing DLI Interrupts 209

Depending on which GTIA chip you have in your computer, you will have access to a total
of either 128 or 256 colors. Whatever the color range on your computer, every number
between 0 and the largest number in the color range of your computer represents a dif-
ferent color available to you.

So if, for example, you wanted to change the background of the text screen to pink, you
would have to place a value of $58 into color register 0. Given what you have just read, that
means to turn the background of the screen to white, you would place a value of $58 into
memory location $D016. Here are the assembly language instructions to do just that.

LDA #$58
STX WSYNC
STA $D016

This code loads the color value that you want to use into the color register and then stores
it at the memory location that represents color register 0. Between the loading of the color
value into the register and the storing of the new color value, you notice a rather strange
looking instruction. What this does is take the contents of the x register and place it into
the WSYNC register. The value of x in this example is irrelevant. You see, whenever you
make use of this register, no matter what you are doing with it, this will cause the com-
puter to freeze until the computer has finished drawing whatever is the current horizon-
tal scan line. This way the color change takes place between lines giving you a very smooth
display.

Finally, you insert the code to restore the computer’s registers to their original value and
return the computer back to what it was doing.

PLA
TAY
PLA
TAX
PLA
RTI

Chapter 6 ■ Setting the Video Mode210

Table 6.5 Memory Locations of the Computer’s First Four Color Registers

Register Hex Address Decimal Address

Color register 0 D016 53270

Color register 1 D017 53271

Color register 2 D018 53272

Color register 3 D019 53273

Converting Assembly Language Code to Decimal
Before you can actually use this code, it is necessary to convert it into a decimal format
that can be poked into the computer’s memory. Here is the program listing; let’s convert
it to decimal starting with the code that preserves the 6502 registers.

PHA
TXA
PHA
TYA
PHA
LDA #$58
STX WSYNC
STA $D016
PLA
TAY
PLA
TAX
PLA
RTI

Next you create the portion of the code that actually does the work.

Writing DLI Interrupts 211

Table 6.6 First Part of Code Converted to Decimal

Opcode Decimal version of the code

PHA 72
TXA 138
PHA 72
TYA 152
PHA 72

Table 6.7 The Heart of the Interrupt Program

Opcode Decimal version of the code

LDA 169
#$58 88
STX 150
WSYNC 10,212
STA 149
$D016 22,208

Finally, you convert the code that will be used to restore the computer’s register.

Inserting the Display List into Memory
The first thing you have to do is decide exactly what part of your screen you want to have
a pink background. You then have to find the line of your display list where you must start
drawing the pink background.

Assume that you are using ANTIC mode 2 and you want to start drawing pink on line 10.
You know that you have to put your interrupt on the line before where the color is going
to be drawn. This means that you need your interrupt to be triggered on the 10th visible
mode line.

You know that the first 3 mode lines are blank mode lines, the 4th, 5th, and 6th lines are
used by the load memory scan command. This means that the 7th mode line is responsi-
ble for drawing the top line on the screen. You still need to count down another 10 mode
lines. This means that you have to insert your interrupt in mode line 16.

You have to modify the 16th byte of your display list. You know from past experience that
in order to reference this byte of the display list, you will need the following equation
DL+15.

This is the line that you are going to have to modify in order to insert your interrupt. You
perform the actual act of inserting the interrupt by setting the DLI bit, which is bit 7, to
1. When the ANTIC encounters this mode line, it will know that it has to trigger a display
list interrupt. This can be accomplished by adding 2 (our ANTIC mode 2 command) +
128 (the value that will simply set bit 7 of this byte) together and inserting the result,
which is 130, into this byte.

Chapter 6 ■ Setting the Video Mode212

Table 6.8 Decimal version of the code used to restore registers

Opcode Decimal version of the code

PLA 104

TAY 168

PLA 104

TAX 170

PLA 104

RTI 64

Here is the code to implement everything that we have discussed so far.

100 DL=PEEK(560)+256*PEEK(561)
110 POKE DL+15,130

The next step is to write the code that will insert your code into the computer’s memory.
The best way for you to do this is with a simple for loop that will read each byte of the
code and poke it into memory.

120 FOR I = 1 TO 19
130 READ A
140 POKE 1536+1,A
150 NEXT I

Once again, pretty simple. This code reads each byte of the interrupt service routine and
pokes it into a free spot in the computer’s memory.

Now all you have to do is store the program in a few data statements and do a bit of house-
keeping, and your program will be good to go.

160 DATA 72,138,72,152,72,169
170 DATA 88,150,10,212,149
180 DATA 22,208,104,168,104
190 DATA 170,104,64
200 POKE 512,0
210 POKE 5134,6
220 POKE 54286,192

Lines 160 to 190 store the DLI service routing in your program listing. Lines 200 and 210
redirect the DLI interrupt vector to point to your program. Finally, line 220 activates the
DLI feature on the computer.

Fine Scrolling

What’s your favorite sport? Football, basketball, golf, soccer? Whatever it is, imagine the
large field or court that this game is played on. Then imagine this sport being played
inside of your tub. Sounds silly, right? Well, the truth is that as a human being your imag-
ination is huge. Game programming simply gives you an avenue to express this imagina-
tive creativity, and the truth is that it is just as silly for your favorite sports team to play
the championship game in your bathtub as it is to think that all of your overflowing bub-
bling imagination and innovation and genius is going to always be able to fit on a single
screen of game play.

Writing DLI Interrupts 213

When you graduate, as you will shortly, from the world of pong type incarnate games and
create your first intergalactic space shooter, you will find that the universe you are going
to create is going to be much too big to fit on one screen. This is where scrolling comes
into play. Basically, what this technique will do is allow you to create a universe almost as
large as you want and then display a portion of this immense world onto the screen at one
time. Rather than moving the player around the screen, you will use the screen as a win-
dow that moves around the universe, allowing you to explore your world. See Figure 6.47.

Ever since I started writing about the Atari, I have been raving about the vision and
advanced technology for its day that went into building this awesome machine. Here the
Atari shines brightly once again. On most other computers in order to implement any
type of scrolling, you have to move the entire contents of video memory in order to imple-
ment scrolling. See Figure 6.48.

On the Atari, very crude scrolling can be accomplished by simply manipulating two bytes,
namely the address that the load memory instruction inside of the display list uses.
Adding the size of a single line to the address used by the LMS command will cause the
screen to move upward while subtracting the same amount will move it downward. See
Figure 6.49.

Chapter 6 ■ Setting the Video Mode214

Figure 6.47 You will use the screen that you can move over your universe.

Writing DLI Interrupts 215

Figure 6.48 The traditional way of implementing scrolling.

Figure 6.49 Atari’s way of implementing scrolling.

As you can see, the Atari uses a much more advanced method of scrolling than other
machines, and we have not even explored advanced features such as fine scrolling. So let’s
look at the way the computer implements scrolling in more detail.

Course Scrolling

Take a look at the following program:

10 GR.0
20 DL=PEEK(560)+256*PEEK(561)
30 LMSL=DL+4
40 LMSH=DL+5
50 SCRNL=0
60 SCRNH=0
70 SCRNL=SCRNL+40:REM Next line
80 IF SCRNL<256 THEN GOTO 120:REM Overflow?
90 SCRNL=SCRNL-256:REM Yes, adjust pointer
100 SCRNH=SCRNH+1
110 IF SCRNH=256 THEN END
120 POKE LMSL,SCRNL
130 POKE LMSH,SCRNH
140 FOR I = 1 TO 100
150 NEXT I
160 GOTO 70

The first four lines are nothing new. You ensure that the computer is in graphics mode 0
and the screen is clear in line 10.

Lines 20, 30, and 40 first give you a pointer to the display list and save the original address
of video memory that was used by the load memory scan address.

Lines 50 and 60 declare the variables that you are going to use to store the high and low
bytes of the value that you are going to add to the LMS address to perform the scroll.

You are in graphics mode 0. In this graphics mode, each line use up 40 bytes of video
memory. For this reason, you add 40 to SCRNL, which you are going to be adding to the low
byte of the LMS command. Each time the program loops back to line 70, you add 40 to
SCRNL making it 40 bytes bigger; that way, each time the program loops around, the screen
will scroll up by one screen line.

Lines 80 to 110 are used to be sure that you pan through memory correctly. As you recall,
memory is organized into pages. Each page consists of 256 bytes.

If you are scrolling through the computer’s memory from page one, you first increment
through all 256 bytes of page 1, switch to page 2 and increment through all 256 of its bytes,
switch to page 3, and so on until you have looped through all of the pages in the memory.

Chapter 6 ■ Setting the Video Mode216

The high byte of the address used by the LMS represents the page that you are referenc-
ing. The low byte represents the byte within that page that you are trying to reference.

Lines 80 to 110 make sure that you pan through the pages of memory correctly. If SCRNL is
less than 256, the program will loop to line 120, which will update the address used by the
LMS, and thus implement the loop. If SCRN is more than 256, then lines 90 to 110 are
executed.

First of all, if SCRNL is more than 256, you have crossed over into another page of memory.
Line 90 subtracts 256 from SCRNL, which means that you are now referencing the begin-
ning of the page. Line 100 increases SCRNH. This means that you are now referencing the
beginning of the next page of memory.

Finally, if SCRNH is equal to 256 it means that you have crossed over into the last page of
memory so you end the program.

Horizontal Course Scrolling

Horizontal scrolling is a bit more complicated then vertical scrolling. Take a look at Figure
6.50 to understand why horizontal scrolling is more complicated than vertical scrolling.

Writing DLI Interrupts 217

Figure 6.50 Understanding the way that video memory is organized is important
to understanding why horizontal scrolling is more complicated than vertical scrolling.

Figure 6.51 illustrates the solution to this problem.

Now that you understand the general concept of course horizontal scrolling, it is time for
a practical example. Let’s examine the following code:

20 POKE 1536,112:REM 8 blank lines
30 POKE 1537,112:REM 8 blank lines
40 POKE 1538,112:REM 8 blank lines
50 FOR 1=1 TO 12:REM Loop to put in display list
60 POKE 1536+3*1,71:REM BASIC mode 2 with LMS set
70 POKE 1536+3*1+1,0:REM Low byte of LMS operand
80 POKE 1536+3*1+2,1:REM High byte of LMS operand
90 NEXT I
100 POKE 1575,65:REM ANTIC JVB instruction
110 POKE 1576,0:REM Display list starts at $0600
120 POKE 1577,6
130 REM tell ANTIC where display list is
140 POKE 560.0
150 POKE 561,6
160 REM now scroll horizontally
170 FOR 1=0 TO 235:REM Loop through LMS low bytes
175 REM we use 235 —- not 255 —- because screen width is 20 characters
180 FOR J=1 TO 12:REM for each mode line
190 POKE 1536+3*J+1,1:REM Put in new LMS low byte
200 NEXT J
210 NEXT 1
220 GOTO 170:REM Endless loop

Chapter 6 ■ Setting the Video Mode218

Figure 6.51 The solution to your program is to expand the video
memory until it stretches beyond the width of your screen.

Fine Scrolling

Fine scrolling is basically the same as course scrolling but with two major exceptions. First
of all, fine scrolling is much, much easier than course scrolling and, second and probably
the most obvious, is that this version scrolls smoothly.

As you recall from the above example, you scrolled the text on the screen either horizon-
tally one character at a time or vertically one line at a time.

With fine scrolling, you are able to scroll horizontally or vertically by a portion of a char-
acter at a time as can be seen in Figure 6.52.

Amazingly, as we have said before, despite the fact that fine scrolling is a more sophisti-
cated way of performing scrolling, it is 100 times easier to implement. You see there are
two registers related to fine scrolling, a horizontal register and a vertical register. All that
you have to do to implement fine scrolling is to set the fine scrolling enabled bit of each
of the mode lines that you want scrolled and then place a value inside of either the verti-
cal or horizontal register, which represents the amount of clock ticks or scan lines you
want the screen scrolled.

Let’s take a look at a program that implements simple fine scrolling:

10 HSCROL=54276
20 VSCROL=54277
30 GRAPHICS 0:LIST
40 DL=PEEK(560)+256*PEEK(561)
50 FOR O = DL+6 TO DL+28
60 POKE O,50:NEXT O
70 FOR I=O TO 7

Writing DLI Interrupts 219

Figure 6.52 Fine scrolling compared to course scrolling.

80 POKE VSCROL,I
90 GOSUB 200
100 NEXT I
110 FOR J=0 TO 3
120 POKE HSCROL,X
130 GOSUB 200
140 NEXT j
150 END
200 FOR k=1 TO 200
210 NEXT K:RETURN

Lines 10 and 20 create two variables, which hold the decimal memory address of the hor-
izontal and vertical fine scrolling registers.

Line 30 makes sure that you are in graphics mode 0 and then prints a copy of the program
to the screen to make sure that you have something to scroll.

Line 40 creates the usual reference to the display list.

Lines 50 and 60 create a for loop that modifies the mode lines of the screen by enabling
the fine scroll enabled bit of each of the mode lines on the screen.

Lines 70 to 100 create a for loop that increments the value of the vertical register thus
scrolling slowly up the screen.

Lines 110 to 140 create a loop that increments the value of the horizontal scroll register
thus scrolling the screen to the left.

Now it should be noted that both loops reference line 200, which creates a for loop that
does nothing but waste time. Indeed, that is the whole point of this line of code. You use
it to create a delay to slow down the scrolling of the screen so that you can actually see the
scroll. At the end of this loop is a RETURN command; this causes the program to jump back
to the I for loop or the J for loop, depending on which one called it.

The final result is that this program will first scroll the screen vertically and then hori-
zontally. As you can see, implementing fine scrolling is exceptionally easy. There are two
little pitfalls that you need to keep in mind though. First there is a limit to the distance
that fine scrolling can scroll the screen.

In order to circumvent this problem, you have to implement a combination of fine
scrolling and course scrolling.

The last little pitfall is that even though fine scrolling is implemented, the text at the bot-
tom of the screen will appear to pop onto the screen as opposed to smoothly scrolling
onto the screen. This can be solved by not setting the fine scrolling bit on the last mode
line of the screen.

Chapter 6 ■ Setting the Video Mode220

Setting the Video Mode on the Commodore 64
As you can see, setting the graphics mode on the Atari 400/800 is a very involved task. If
you just take your time and go over this chapter piece by piece you will find that it is really
quite easy. Fortunately, setting the video mode on the Commodore 64 is a lot easier.

Graphics in the Commodore 64 are generated by the Vic-II chip. This chip is programmed
by manipulating the contents of its 47 control registers. 34 of these registers are used
exclusively for working with sprite.

Graphic Mode VIC-II Register Address Bit to Set.

When all of these graphic modes are turned off, the computer is in Standard Character
mode. This is also the default mode when your computer boots up.

Conclusion
You will hear me say it often. Retro game programming is easy. You put some graphics on
the screen, get some player input, throw in some AI, rinse, and repeat. You now know 50
percent of what you need to know in order to accomplish the first goal of putting some
graphics on the screen. You know how to set the video mode so that its contents become
visible. Now in the following chapter you are going to learn the basics of how to place
imagery on the screen.

Conclusion 221

Table 6.9 Bit manipulation needed to set the C64 into its various video modes

Graphic Mode Bit to Set VIC-II Register Address

Multi-color mode 4 53270

Extended background color mode 6 53265

Standard bit-mapped graphics 5 53265

Multi-color bit map mode 5 53270

This page intentionally left blank

223

Hacking the
Video Buffer

chapter 7

I’m tired of all this nonsense about beauty being only skin-deep. That’s deep
enough. What do you want, an adorable pancreas?

Jean Kerr

There are a few mantras that I believe in with all of my heart when it comes to game pro-
gramming, and at the foundation of them all is this: “All that any computer can ever do is
move and manipulate binary data and make decisions based on that data.” As I have said
before, once you control the flow of binary data, you control the machine.

At this point in your retro game programming career, you have almost all of the skills you
need to do just that. You have learned how to communicate with your computer, and you
have learned about the kind of graphic images you are going to want your computer to
produce. Chapter 6, “Setting the Video Mode,” has taught you how to place the computer
into a receptive state so that it’s ready for whatever graphics you want to put on the screen.

In this chapter, you will learn how to control the flow of data to the video screen. Within
limitations, you draw images on your computer screen in exactly the same manner no
matter which machine you are programming. The only thing that changes is the exact lan-
guage that you use to do so and the finer details of the video mode you are in.

Identify the Characteristics
of the Current Graphics Mode
The computer is turned on, the assembler is fired up, and all of the code is written to place
the computer into the correct graphics mode you need in order to build your game. Now
what? Well, the first thing that you need to do is figure out exactly where in the computer’s
memory, video memory starts and ends. This will let us know exactly what part of the
computer’s memory you will need to manipulate to draw images on the screen. Fortu-
nately for us, most computers have default locations and sizes of video memory when they
are set to specific video modes. Figure 7.1 shows some of the default locations and sizes
for retro machines.

I often talk to people about the mind-expanding effects of retro game programming. This
is often the result of working within the confines of the resources available. Working
under these extreme conditions, there will often be a few “gotchas” waiting in the shadows
to get you. One such “gotcha” involves the ability of many retro game systems to change
among different colors as they draw horizontal lines of imagery across the screen. Let me
explain. You already know that placing patterns of bits into the video buffer will cause dots
to appear on the screen. You know that in certain video modes you may use a pattern of
two, four, or eight bits to give each image on the screen a specific color.

Here is where the gotcha comes into play. You see, it takes time for your computer to
change from drawing one color to the next. If you want to draw a blue line on top of a
green line, there is no problem. After the blue line has been drawn, the computer can
change colors during the horizontal blank. On the other hand, what if you want to draw
a single horizontal line that starts off blue and then changes to green halfway across the
screen? There is no horizontal blank between colors that will give us time to process the
color change. As a result, strange things can happen in the middle of the screen where you
change colors. In order to deal with this problem, certain conventions have been estab-
lished on most retro game machines to help us to handle that situation. The two most
common conventions are

■ On some machines, placing two dots right next to each other will cause both dots
to appear white no matter what color value you have assigned to the individual
dots.

■ On some machines, even and odd columns use two different groups of colors.

The first convention is easy. You see, on some computers the line you talked about earlier,
which you wanted to be half green and half blue, would actually be drawn as all white!
That’s just a quick and dirty method of allowing us to guarantee what will appear on the
screen as opposed to wondering what will happen on the screen between the blue and
green dots. This may seem strange at first but once you get the hang of working with this
phenomenon, it will not be as big a problem as it may first appear to be.

Chapter 7 ■ Hacking the Video Buffer224

Identify the Characteristics of the Current Graphics Mode 225

Figure 7.1 Default location and sizes of the video buffer on retro machines in various graphics modes.

The second convention can also complicate our programming lives until you really get
used to it. You see, another way of guaranteeing what will happen on the screen is to opti-
mize the computer’s ability to change from one group of colors to the next. As an exam-
ple on the Apple II series of computers (with the exception of those using Revision 0
Apple boards), while in high resolution graphics mode, any dot drawn in an even column
can be black, violet, or blue while dots placed in odd columns are drawn as either black,
green, or red (on Revision 0 Apple II boards the colors blue and red are unavailable). Once
again this convention takes some getting used to, but once you get the hang of it, it will
not seem so bad.

Video Buffer Hacking 101
There are a few basic things that you need to be able to do with video memory now
that you know where it is and how the information placed inside of it is going to be
interpreted.

■ We need to know how to clear the screen either to black or to some background
color.

■ We need to know how to take bytes of data stored elsewhere and place them into
video memory.

■ We need to be able to move data from video memory and store it somewhere else.

These three skills are the fundamental building blocks of computer graphics and anima-
tion. (Remember my mantra “all that any computer can do is move and manipulate bits
of binary data.) Clearing the screen makes sure that you do not have a bunch of garbage
on the screen. For some games you can use the exact same code in order to place a back-
ground color on the screen. Once you have the screen clear, all computer graphics and ani-
mation is done using the second two skills: moving data out of the video buffer to another
location, moving data from another location into the video buffer.

You already know how to clear the computer’s video screen. In order to clear the com-
puter’s video screen you need to set every bit of the video buffer with zeros. You already
know how to set a byte to zero. You load the accumulator with zeros and then you store
those zeros into a given byte that you want to clear.

LDA #0000 LOAD THE ACCUMULATOR WITH ZEROS
STA $400 STORE THE ZEROS IN THE BYTE OF VIDEO MEMORY WE WISH TO CLEAR.

If you only needed to clear one or two bytes to clear the screen, that would be all the infor-
mation you needed. Unfortunately, there are so many bytes to clear that it would be far
too tedious for us to manually clear each byte of the video buffer. Fortunately for us,
Assembly makes it very easy for us to clear large amounts of memory. You simply need to
loop through the video buffer clearing all of its bits.

Chapter 7 ■ Hacking the Video Buffer226

The first thing that you need to do in order to clear an area of memory is to store both the
starting location of the memory you need to clear as well as the number of bytes you
intend to clear. Here is an example of this using 6809 assembly language. As you learned
in Chapter 4, “Assembly Language Programming,” the X and Y registers are real 16-bit reg-
isters.

Ldx #1024 point to top of screen
Ldy #512 set # of bytes to clear

The LDX command stores a decimal value of 1024 into the 16-bit X register. In this exam-
ple, this is the location of the start of video memory. The LDY command loads a decimal
value of 512 into the 16-bit Y register. In this example, this is the number of bytes you wish
to clear (set to zero) in your video buffer. This acts as sort of an ad hoc clock counter.

Next you will use the LDD command to place zeros into the D register. Remember the D
register is a register made by combining the 8-bit A and B registers into one 16-bit regis-
ter. If you reference the A or B register after storing data in the D register, the A register
will have the high part of the data, and the B register will have the low part of the data.

Ldd #0000 use 2 bytes of 0

Now here is where the real work gets done. You have stored two bytes of zeros in the D
register. Now you are going to store those zeros in the video buffer. To clear your screen
you need to fill the video buffer with zeros, two bytes at a time. You need to clear two
bytes, then move to the following two bytes and clear those, and so on. To do this, you
are going to use an interesting form of indirect addressing. Imagine that you had a loop
that kept clearing the byte stored at address 1024. You could run that loop for as long as
you want and all that would happen is that the same two bytes would be cleared over
and over. Now imagine that you stored the address 1024 in the X register and executed
the same loop, clearing the address stored in X. You would still only clear the same two
bytes.

Now imagine that same loop, only this time, every time you clear those same two bytes,
you increase the address stored in X by 2. The next time around, a new area of the video
buffer would be cleared. If you kept running this loop, you would eventually clear the
video buffer! You need to clear 1024 bytes, and you are going to clear these bytes two at a
time, which means that you need to repeat this loop 512 times (1024 ÷ 2).

That seems like a lot of work to do but 6809 assembly is going to allow us to do all of that
using only one instruction.

Loop std ,x++ clear the 2 characters

Be sure to note that this line of code begins with a label named “loop.” This is so you can
jump back to this line later on.

Video Buffer Hacking 101 227

Now that you have cleared two bytes of memory and advanced to the next two bytes of
memory, you need to subtract two for your counter (the Y register). You will do this using
the LEAY instruction and another form of indirect addressing.

Leay -2,y subtract them from count

This instruction will load Y with the original value of Y minus 2. What you want is for
this program to keep looping and clearing memory until the Y register is equal to 0,
which would mean that the proper amount of memory has been cleared. Fortunately,
there is a system flag called the zero flag and a group of assembly commands referred to
as branch commands that assist us with this goal. Whenever the results of an operation,
such as placing a value in a register (in this case the Y register), results in a zero, the zero
flag is set to one. In the line above you subtracted two from the Y register and placed the
value into the Y register. If the result of this operation were zero, the result would cause
the zero flag to be set to 1. If this happens, you know that you have cleared the required
amount of memory.

To help you with your task, you will use the BNE instruction. BNE is short for Branch if
Not Equal to zero.

Bne loop count not 0, so repeat

When the code above is executed, it will check to see if the zero flag is set to 1. If it is not,
then you have not cleared enough memory and it will cause the program to jump back up
to the line that starts with the label “loop.” The program will once again clear two bytes of
memory, move to the next two bytes, and subtract two from the counter.

If the zero flag is set to one, this instruction will do nothing and the rest of the program
will be executed. Here is the complete code to clear portions of video memory. (Actually
this can be used to clear any part of memory and is actually a similar process to the way
you are about to learn to draw sprites.)

*****************************clear the screen
cls ldx #1024 point to top of screen

ldy #512 set # of bytes to clear
ldd #0000 use 2 bytes of 0’s

loop std ,x++ clear the 2 characters
leay -2,y subtract them from count
bne loop count not 0, so repeat

*****************************end clear screen

Remember that the same principle applies when you want to fill the screen with a color
or a given character or pattern. All that you have to do is place the binary pattern for your
character or pattern or color into the video buffer instead of zeros. The same principle
also applies when you are using sweet 16 on the Apple II or 6502 assembly on any com-

Chapter 7 ■ Hacking the Video Buffer228

puter system that uses it. Here is an example of the same clear screen procedure written
in both 6502 and sweet 16 assembly.

Sweet 16 assembly example of clearing the screen.

SET R5 $A034 ;Start of video memory
SET R4 9 ;
SUB R0 ;Zero ACC

LOOP2 ST @R5 ;Clear a mem byte
DCR R4 ;Decrement count
BNZ LOOP2 ;Loop until Zero

6502 assembly example of clearing the screen.

START LDA LDA #$0
LDY #$0
LDX #$400

LOOP STA $400,Y
INY

DEX
BNE LOOP

As you can see, clearing the video buffer is usually quite easy. It is easy when video mem-
ory is arranged to flow line by line as seen in Figure 7.2.

Video Buffer Hacking 101 229

Figure 7.2 When video memory is arranged line by line it is easy to clear.

Some computers complicate things a bit by arranging video memory differently as shown
in Figure 7.3.

In these situations, clearing the video memory is still easy and still works using the same
principle. You simply have to make a few adjustments to your code. Using the knowledge
you have gained so far, let us look at the following code, which is designed to set an Apple
II computer to low resolution mode and clear the screen. If you type this code into your
assembler and run it, you will see that the screen is cleared.

START LDA #$0
STA $C054
STA $C052
STA $C056
STA $C050
LDY #$0
LDX #$79

LOOP STA $400,Y
STA $480,Y
STA $500,Y
STA $580,Y
STA $600,Y

Chapter 7 ■ Hacking the Video Buffer230

Figure 7.3 Not all computers arrange video memory in an obvious fashion.

STA $680,Y
STA $700,Y
STA $780,Y
INY
DEX
BNE LOOP

PSTOP JMP PSTOP

Take a look at the code above and Figure 7.3 and try to see if you understand what is going
on.

As you can see, video memory in the Apple II is arranged in a very interesting pattern. Fig-
ure 7.4 makes the pattern much clearer.

Each byte represents two vertically stacked blocks. Each row is 40 blocks wide (0 to 39), so
if you start at $400 for example and clear 40 bytes of memory, you will clear a line on the
top of the screen. If you clear another 40 bytes you will clear another line about midway
down the screen. Clearing another 40 bytes will clear another line closer to the bottom of
the screen. Clearing another 40 bytes will start clearing the screen again starting with the
row following the one that you first cleared.

Video Buffer Hacking 101 231

Figure 7.4 Video memory in the Apple II is arranged in a very interesting pattern.

Our screen is 24 bytes high. This would normally mean that it would take 24 loops in
order to clear the screen. You, however, are going to reduce this number to 8. You do this
by writing exactly the same code that you wrote before with two exceptions. First of all,
rather than setting your counter to clear one line, you will set it to clear three lines. Next,
rather than just using one STA instruction to start clearing from the beginning of video
memory, you will use the memory locations for the start of the top 8 rows of the screen.
Performing this loop will first clear the top 8 lines of code followed by the middle lines of
the screen and finally the bottom rows of the screen.

Placing Data in the Video Buffer
Programming techniques are almost always built on other techniques. This makes it a bit
easier to learn because once you understand one technique you can use that knowledge to
understand more complex ideas. The skill you just learned for clearing your computer’s
display actually forms the basis for almost all of the graphic work that you are going to do
to make your game.

When you cleared the screen, you placed zeros into one memory location, moved to
the next location, put zeros there, and on and on until you had cleared the display. See
Figure 7.5.

Chapter 7 ■ Hacking the Video Buffer232

Figure 7.5 A flow diagram of
how you cleared the screen.

If you had a picture of the background for your game stored somewhere in memory or on
disk, you could use the exact code that cleared the screen above to paint that picture on the
screen. All that you have to do is add some additional code so that instead of always stor-
ing zero into the memory locations of the video buffer, you can take bytes from your back-
ground, which is stored in memory, and place them into the appropriate byte on the screen.

Let’s take a look at some code to do just that.

START LDY #$0
LDX #$400

LOOP LDA $300,Y
STA $400,Y

INY
DEX
BNE LOOP

As you can see, this is exactly the same code that you used earlier in order to clear the
screen with the addition of one line: LDA $300,y. $300 can be any location in memory where
you have images stored for the background of your video display. Every time this loop is
run, not only will the program loop through video memory storing data in every byte of
the video display, but it will also loop through the memory locations holding your back-
ground image, retrieving the bytes of data that are stored in the video buffer.

This technique works, but it is not very efficient. It takes a whole lot of memory to store
a background at some arbitrary location in memory. On a retro game machine, extra
video memory is usually in short supply and is therefore a commodity you cannot afford
to use haphazardly. As you saw in Chapter 5, “A game Graphics Primer,” it is much more
efficient to use some form of tiling system. A tiling system takes up much less memory and
allows you to build backgrounds on the fly. These tiling systems also work on the same
principles as before only with a few more modifications.

Let’s say that you are in a high-resolution graphics mode where one bit equals one point
on the screen. You want to draw tiles that are 32 bits wide and 32 bits high. That’s 128
bytes of data for each tile. Let’s say that you have that data stored starting at memory loca-
tion $200 and video memory starts at location $400. You want to draw a tile in the top left
hand corner of the screen.

What if you made this quick change to your code?

START LDY #$0
LDX #$80

LOOP LDA $200,Y
STA $400,Y

INY
DEX
BNE LOOP

Video Buffer Hacking 101 233

This code would draw your sprite on the screen but not the way you want it to. Rather
than drawing the sprite as a number of rows stacked on top of each other, this would draw
them as a number of rows laid side by side.

What you need is a way to tell the computer to jump to a new row on the screen every
time it has completed drawing a row of your sprite. Let’s modify your code a bit.

START LDY #$0
LDX #$0

LOOP LDA $200,x
STA $400,Y

INY
INX
LDA $200,x

STA $400,Y
INY
INX
LDA $200,x

STA $400,Y
INY
INX
LDA $200,x

STA $400,Y
INY
INX
CLC
TYA
ADC $27
TAY
TXA

CMP $80
BNE LOOP
LOP2 JMP LOP2

This code is going to draw your sprite on the screen the way you want it. Let’s take a look
at what this code does.

START LDY #$0
LDX #$0

Chapter 7 ■ Hacking the Video Buffer234

We are going to use the X and Y registers as counters. The first two lines of code sets these
counters to zero.

LOOP LDA $200,x
STA $400,Y

The next two lines are the heart of this program. The first line reads a byte from your
sprite using indexed addressing which allows us to treat the sprite memory location as a
kind of array. The second line also uses indexed addressing to store the byte of the sprite
you just retrieved into the video buffer.

INY
INX

Instructions to increment both your X and Y registers (the counter) causes the next byte
of your sprite to be placed into the next screen location when the LDA and STA commands
used above are executed again. Because each row of your sprite is four bytes wide (32 bits),
you will execute this combination of code four times.

LOOP LDA $200,x
STA $400,Y

INY
INX
LDA $200,x

STA $400,Y
INY
INX
LDA $200,x

STA $400,Y
INY
INX
LDA $200,x

STA $400,Y
INY
INX

Now you have the same old problem again. If you just keep on reading from the sprite and
placing data into the buffer, you are going to end up with the sprite being draw as 32 rows
drawn side by side as opposed to stacked on one another as you would like.

Video Buffer Hacking 101 235

This is where the next few lines of code come into play.

CLC
TYA
ADC $27
TAY

If this code looks familiar the reason is that this code is exactly the same as the addition
code you studied in Chapter 4. Let’s look at what it does in the context of your program.

Each row is 39 bytes wide. The first four bytes are used by a row of your sprite. If you move
ahead 36 (24 hex) bytes and start writing the next row of your sprite, that row will be
drawn exactly where you want it! It is for this reason that you add the hexadecimal value
for 36 to the Y register. (Remember the Y register controls the location where each byte
will be written in the video buffer.) Taking this action will cause the next row to be drawn
directly beneath the previous row.

All you need to know now is how to find out if you have any more rows to draw; if you
have more rows to draw, you simply jump back up to the row labeled loop.

TXA
CMP $80
BNE LOOP
The first line of code transfers the contents of the X register to the accumulator. The sec-
ond line of code compares the contents of the accumulator (which you just copied from
the X register) to $80. If they are equal, you know that you have drawn the entire sprite.

We can use the same code to clear a tile from the screen as well. All you have to do is make
some minor modifications to the code.

STAR LDY #$0
LDX #$0

LOO LDA #$0
STA $400,Y

INY
INX
STA $400,Y
INY
INX
STA $400,Y
INY
INX
STA $400,Y
INY
INX

Chapter 7 ■ Hacking the Video Buffer236

CLC
TYA
ADC $27
TAY
TXA

CMP $80
BNE LOOP
LOP2 JMP LOP2

As you can see, the code above does exactly the same thing, only this time rather than
reading sprite data to place in the video buffer, you simply fill the accumulator with zeros
at the beginning of the code. The code will now fill a 32 by 32 square area of video mem-
ory with zeros.

If you need to save a tile from the screen and save to an another part of the computer’s
memory, you can use the same code with another small change added.

START LDY #$0
LDX #$0

LOOP LDA $400,Y
STA $200,x
INY
INX
LDA $200,x

STA $400,Y
INY
INX
LDA $200,x

STA $400,Y
INY
INX
LDA $200,x

STA $400,Y
INY
INX
CLC
TYA
ADC $27
TAY
TXA

CMP $80
BNE LOOP
LOP2 JMP LOP2

Video Buffer Hacking 101 237

This time your code is going to read from the screen and save to a given memory location.

There is still one problem in all of the code written above. Look at the code and see if you
can tell what it is. All of the code references a specific byte of video memory, which means
that you cannot move the tile around the screen. This is an easy problem to fix. All you
have to do is create a variable in your assembler and use that variable to reference the por-
tion of video memory you want to use. Here is an example.

SPRITE .DA $400
START LDY #$0

LDX #$0
LOOP LDA $200,x
STA SPRITE,Y

INY
INX
LDA $200,x

STA SPRITE,Y
INY
INX
LDA $200,x

STA SPRITE,Y
INY
INX
LDA $200,x

STA SPRITE,Y
INY
INX
CLC
TYA
ADC $27
TAY
TXA

CMP $80
BNE LOOP
LOP2 JMP LOP2

Page Flipping
The skills you have just learned are enough for you to perform basic animation. You can
draw a sprite on the screen, then erase it and draw it somewhere else to give the illusion
of animation. If there is a background on the screen, you can save the background before

Chapter 7 ■ Hacking the Video Buffer238

drawing your sprite. This way you can simply redraw the background over the sprite to
clear the screen while preserving the background.

If all you needed to do was move one image at a time on the screen, then I would be able
to end this chapter right here. Few, if any, arcade games will ever have you animating just
one object on the screen, however, which means you are going to have to learn one more
important skill. When you have to draw multiple characters on the screen, it takes a while
for images to be erased and then redrawn. This will lead to flickering and will completely
destroy the illusion of a game, not to mention really irritate the player. This is where page
flipping comes into play.

In page flipping, as the name implies, you actually use two video buffers. Here is how it
works. You set up two video buffers but only display one. While one buffer is being dis-
played, you draw your images in the hidden video buffer. Then, all at once, you switch the
buffer that is being displayed. Now you draw to the other video buffer. When you are
done, you can switch video buffers again. This way, one whole image is drawn on the
screen and there is no flickering.

There is another technique that is very similar called double buffering. In this technique
you have one buffer that is always shown and one buffer that is always hidden. You do all
of your drawing to the hidden buffer and then copy the contents of the hidden buffer to
the visible buffer where they can be seen.

Fortunately, most retro video game systems make this little trick very easy to use.

On the Apple II, you set your video mode so that you can simply adjust the combination
of soft switches you use to choose between the primary and secondary video buffer.

On the Atari you can alter your display list on the fly causing the computer to point to any
video buffer you would like to have displayed at a given time.

On the Color Computer, you have to manipulate the SAM chip.

The Commodore 64 can be adjusted to point to one of the four quarters of the computer’s
64 kilobytes of memory. In order to adjust the video buffer of this machine, you need to
place the location of the video buffer you want to display into the computer’s register
stored at memory location $D018. Then you tell the computer to point to the memory
quadrant that contains your video buffer.

There are numerous examples of both page flipping and double buffering on the com-
panion Web site to this book. I suggest that you download the examples for your retro
machines to see how they work. Each example has a detailed tutorial to explain each line
of code used in the program.

Video Buffer Hacking 101 239

Conclusion
In the past three chapters, you have learned the basics of how computer graphics are
generated followed with a more detailed account of how to set the video mode and finally
how to place images on the screen. Good graphics have always been an important part of
making an enjoyable game. With practice, you will be surprised at what you can do. Now
is a good time to go to this book’s Web site and download some of the graphics demos.
Experiment with them and try making some of your own. When you are sure that you
have mastered creating game graphics, you will be ready to move on to the following
chapters, which will teach you the final lessons you need to learn to create good retro
games.

Chapter 7 ■ Hacking the Video Buffer240

241

Adding Player Input,
Physics, and AI

chapter 8

M
en fear thought as they fear nothing else on earth—more than ruin—
more even than death. . . . Thought is subversive and revolutionary,
destructive and terrible; thought is merciless to privilege, established

institutions, and comfortable habit. Thought looks into the pit of hell and is not
afraid. Thought is great and swift and free, the light of the world, and the chief
glory of man.

Bertrand Russell (1872–1970)

Earlier in this book, I told you that making a video game is very easy once you know how.
You draw something on the screen, do some stuff in the background, “rinse and repeat.”
It is here that we learn what “doing some stuff in the background” means. Basically, in a
retro game, there are four things that will be done in the background:

1. Getting input from the player

2. Running the computer’s artificial intelligence (or AI) algorithms

3. Modeling game physics

4. Managing game states.

These procedures can be as simple or as complicated as the computer system you are pro-
gramming on and the nature of your game demands. In most cases, we will try to keep
things as simple as we can for the sake of writing faster, more optimized, code.

Creating Your Computer’s Intelligence
No game would be fun if all of the player’s enemies just sat in one spot until they got shot.
Your player wants a challenge and he should get one. For this reason, we must be sure that
the enemies in our game appear to think about what they want to do. It really doesn’t take
that much to make an enemy character appear to be intelligent. For an example, if an
enemy sees the player and the enemy is stronger than the player, it should attack the
player. If, on the other hand, an enemy sees the player and the player is stronger, then the
enemy should do the smart thing and run away. It’s not rocket science, but it does make
the player’s experience a lot more challenging and adds much more depth to the game.

As a child, I wrote these algorithms all the time even though I never saw them in any book.
It was not until later when I read my first actual game book that I saw these were “real”
algorithms. My first thought was, “Wow! I was actually on the right track. Cool!” The rea-
son I was able to come up with these algorithms on my own is not because I am some
super genius but simply because these algorithms follow the basic laws of common sense!
This fact makes them very easy to learn.

Tracking Algorithms
Tracking plays a very important part in any game. Whenever an enemy fires a missile or
chases after our player some form of tracking algorithm is being used. A tracking algo-
rithm has to be aware of two game objects; a source object and a target. In the case of a
missile that is fired at our player, the missile is the source object and the player is the tar-
get. With every game cycle the source object will be moved closer to the target object until
eventually the source object reaches its target. In this case the missile will continue to get
closer to the player until it hits the player. Figure 8.1 illustrates this concept.

Chapter 8 ■ Adding Player Input, Physics, and AI242

Figure 8.1 Screen coordinate system with
the player and several enemies on the screen.

Looks like our player is in a lot of trouble. The player is completely surrounded by ene-
mies. As players, we should be very afraid. As game programmers, we know that the player
is really in no danger. Why? Because we have not yet written the code that will allow those
ships to track down our player. Right now, all that those ships can do is sit there and look
pretty.

We can easily think in a common sense sort of way and figure out exactly what we need
to do. First let’s look at what we know.

■ We know that each enemy has its own X and Y positions that determine where it
appears on the screen.

■ We know that the top-left corner of the screen is the origin of the screen, which
means that a sprite whose position is 0,0 will appear there.

■ We know that the higher the value of a sprite’s y value, the lower it will be on the
screen and vice versa.

■ We also know that the larger its x components are, the farther to the right of the
screen it will appear and vice versa.

Armed with this information, let’s take a look at enemy number one in Figure 8.1. As you
can see, it is to the left of our enemy. We can infer that this enemy’s X component is less
than that of our player’s. We can also infer that if we increase this enemy’s X component,
then that enemy will move further to the right and thus closer to our player.

If we look at enemy number two, we can see that it is located to the right of our player,
which means that its X component must be greater that that of our player. If we want this
enemy to move closer to our player, we are going to have to decrease its X component.

Enemy three is above our player, so we need to increase its Y components in order to move
it closer to our player. Inversely, enemy number four is beneath our player, so we will have
to decrease its Y component in order to move it closer to the player.

From the example above, we can easily assume how to implement a tracking system to
allow any enemy or enemy missile to track our player. Our algorithm will look something
like this.

1. Compare the X component of the player and the enemy object.

2. If the X component of the enemy object is less than that of the player, increase the
X component of the Enemy.

3. If the enemy’s X component is greater than that of the player, decrease the enemy’s
X component.

4. Compare the Y component of the player and the enemy object.

5. If the Y component of the enemy object is less than that of the player, increase the
Y component of the enemy.

Creating Your Computer’s Intelligence 243

6. If the enemy’s Y component is greater than that of the player, decrease the enemy’s
Y component.

As you can see, this is not a very difficult algorithm. All of the other algorithms are just as
easy once you come to understand them.

Now that you know the theory of how this program works, let’s look at some actual code.

Evasion Algorithms
This is another important ability that your player’s enemies must possess, which is the
sense to know how to run away. The good news is that if you read and understood the pre-
vious section, then you have all of the information that you need in order to implement
evasion (think about it). In the last section, we compared the X and Y components of the
enemy and the player and either increased or decreased the value of the enemy’s coordi-
nate components in order to move them closer to the player. All that you have to do now
is the opposite. You will compare the coordinate components of both the player and his
enemy; then where you increased the value of a component in the previous example, you
will decrease it here, and vice versa.

Better Tracking and Evasion Algorithms
The tracking and evasion algorithms we developed earlier work well for many situations,
but they are not suitable for all situations because they are not very realistic. Planes and
cars and motorbikes do not make perfect 90 degree turns at full speed. Vehicles moving at
high rates of speed tend to turn in arcs. The reasons for this will be discussed in detail
when we discuss game physics at the end of the chapter. For now, we will jump the gun a
little and examine how to use this fact in our tracking algorithm. Examine Figure 8.2.

What this concept means for us as game programmers is that we are going to have to
rethink our tracking and evasion algorithm. Look at Figure 8.3.

Chapter 8 ■ Adding Player Input, Physics, and AI244

Figure 8.2 Fast moving vehicles do not turn at
acute 90-degree angles but rather turn on arcs.

Vehicles turn in arcs

Figure 8.3 A missile has been fired
at our player who is standing still in
the center of the screen.

Because our player is standing still, he can easily
move in any direction. The missile that has just
been fired does not enjoy this same freedom
because it is already traveling in a specific direc-
tion toward our player. Suppose our player
moves down a few pixels out of the way. See
Figure 8.4.

In the real world, this missile cannot just turn
around suddenly and point directly at the
player. What this missile could do, however, is
begin to make a turn in the player’s direction. In
order for the missile to travel in the direction it
is supposed to travel, it is moved a certain number of pixels to the right and a certain
number of pixels up with each form of animation within certain bounds of error.

If we keep incrementing the position of the missile at this constant rate, the missile will
follow its original path. Now what if we were to increase the rate at which the missile is
moved to the right while keeping its upward momentum constant? The answer is that the
path of the missile will change. If we were to adjust the rate of change just right, the mis-
sile could be made to arc in the direction of the player and possibly hit him. An added
benefit is that this gives the player a chance to actually escape. Although we do want the
game to be a challenge to the player, if the game becomes impossible to win, it will be no
fun to play at all.

Patterns
Having some enemy characters pursue
the player all the time is the most basic
form of intelligence. The next step up is
to give the enemy the ability to patrol a
given area or to use some form of strat-
egy to fight the player. Look at the game
in Figure 8.5.

Those ships are actively out on patrol
searching for our player character. The
easiest kind of pattern is for the player’s
ship to simply fly back and forth over a
given area. All patterns, however, do not
have to be so simple. See Figure 8.6.

Creating Your Computer’s Intelligence 245

Figure 8.4 Our player moves to dodge
the missile.

Figure 8.5 Enemy ships do not just sit in one
spot waiting for the player to come near. Instead
they are patrolling, looking for the player.

They can actually be very complex and do things like fly to the top-left quarter of the
screen and patrol that area. If the enemy sees the player’s ship, then the enemy engages the
player. If not, move to the lower right quarter of the screen. Fire random shots just in case
a player is hiding out of range of the radar.

Patterns can also play an important role in battle. You see, although it may be acceptable
for lower level minions to only be capable of charging directly at the player, higher level
bosses should show a bit more class. They should seem to think about what they are
doing. Perhaps they zoom around the screen very fast so that the player cannot aim at
them, or they stop and release a barrage of attacks. Really, it is up to the creativity of the
programmer to produce interesting patterns for the enemy AI to follow.

Random Movement
Completely random and chaotic movement also has its place in the world of arcade
games. This kind of movement is often found in games such as space shooters where
enemy ships will often come barreling toward the player at full speed with completely
unpredictable movements. This adds another element to the challenge of the game
because the player cannot predict what will happen next and so must very quickly find
some way to either dodge the enemy or get the enemy in their sights so that they can blast
them away.

At the heart of random movement is a random number generator. This kind of code gen-
erates a random number between 0 and 10. We can make a decision, based on which num-
ber comes up, to determine the direction that our player should travel. The next step up
from completely raw chaotic movement is the chaotic selection of predefined patterns.
Earlier we discussed using patterns that make the enemy appear to think about what he is
doing. If all that we do is use patterns, then no matter how complex those patterns are, the
player will eventually figure out what the patterns are and how to counteract them to win

Chapter 8 ■ Adding Player Input, Physics, and AI246

Figure 8.6 The patterns the enemy uses to patrol a given area
can be as complicated or as simple as we want them to be.

the game. We can make our enemy characters seem even more intelligent by having them
choose from a selection of a few patterns. This way just when the player thinks that he has
figured the computer out, we can throw in a curve that takes him completely by surprise.

Fuzzy Logic
Fuzzy logic is a term coined in 1965 by Lotfi Zadeh, a professor at the University of Cali-
fornia at Berkeley. At the time, it formed a revolutionary new approach to data process-
ing. Until then, the only form of logic that was used in the computer industry was binary
logic. Binary logic can be described as a black and white form of reasoning. Everything is
right or wrong, good or bad; you have to turn left or right. While this form of logic was
able to solve most kinds of problems, it did not take into account the gray areas of the
world that we live in. Fuzzy logic was an attempt at embracing the gray areas of the world
that we live in and thus move computers closer to “thinking” the way humans do.

There is often very little “logic” to the way we as humans do things or even why we do
things for that matter. Why do we choose to eat the meat off our plate before the rice, or
the other way around? Why would you choose to buy a red car as opposed to a yellow one?
There is no black and white logical answer to these questions.

The simplest way to think of fuzzy logic is to consider that we will add a level of uncer-
tainty to the kind of logic we have grown used to. Given the same set of inputs, our fuzzy
logic code will not always produce the same results. If you ask three people the same ques-
tion, you are likely to get three different answers. Even asking the same person the same
question three times will not guarantee that you get the same answer three times. So it is
with fuzzy logic.

Fuzzy logic is actually no less precise than binary logic; it is simply better suited for mak-
ing decisions based on inherently imprecise concepts.

The reason that fuzzy logic is able to be so flexible is that, unlike binary logic, which rep-
resents all of its data as zeros and ones, fuzzy logic can store data as any number between
0 and 1. This means that fuzzy logic data can be represented as 0, 0.1, 0.9786, 0.539, or 1.

Binary data can be used to identify whether something is hot or cold and make a decision
based on that information. Fuzzy logic, on the other hand, can determine whether an
object is warm, kind of hot, hot, very hot, or scalding, and make decisions based on this
information.

One very exciting prospect of fuzzy logic is the ability to create in a game, artificial intel-
ligence (AI), which can cause the game to learn from watching the way a player plays. By
keeping track of what a player does in a given situation, for example, the computer, before
it attacks the player, can decide whether the player is likely to dodge a particular attack,
very likely to dodge it, or not very likely to dodge the attack at all. Based on the outcome,
the computer may opt to use a different attack or not to attack the player at all.

Creating Your Computer’s Intelligence 247

Reading Player Input
Giving a computer the ability to think allows us to create a rich environment that is able
to react to the actions our player makes as he plays the game. There’s just one problem.
We haven’t yet examined the concepts that will allow the player to create actions in our
world. In order for the game to actually be a game, there has to be some way for the player
to affect what is happening in the game’s world. The most common methods the player
uses to affect the game world are typing on the keyboard and manipulating the joysticks.

Here we are going to learn how to retrieve player input from the keyboard and joysticks
of the computers covered in this book.

The keyboard was being used to control the action in video games long before the inven-
tion of the joystick. The exact method used to find out which key has been pressed is
almost exactly the same on all of our game machines and the way we read the keyboard
on modern day PCs.

Most computer systems have what is called a keyboard buffer. See Figure 8.7. The keyboard
buffer is a specific memory location used to store whatever key has been pressed on the
keyboard until we have a chance to use it.

All keyboard buffers work in exactly the same way. The only thing that really changes is
the size of the keyboard buffer, which, in turn, controls how many keystrokes can be
stored there. In the worst-case scenario, you will have one byte of data available for your
keyboard buffer. In this kind of computer system, you will only be able to store the last
keystroke typed. If you are lucky, you will have a few bytes to use as your keyboard buffer.
In this situation, you will be able to store the last few keys the player pressed in the key-
board buffer.

Chapter 8 ■ Adding Player Input, Physics, and AI248

Figure 8.7 Most computer systems have a special memory
location called a keyboard buffer that is used to store what is
typed on the keyboard.

The first thing that you need to do to read the keyboard of your favorite vintage computer
is to visit the companion Web site for this book and find out the size and location of your
keyboard buffer. Once you have this information, you have a few options for reading the
keyboard buffer. From BASIC, we would use the PEEK command.

A = PEEK (6502)

The PEEK command reads the contents of a byte of memory and stores it into a variable.
In this case, the byte of data that we read will represent a key that was pressed and stored
into the keyboard buffer.

If you are working in assembly language, you would use the LDA command to store the byte
of the keyboard buffer in the Accumulator, followed by STA command that will allow you
to store that byte to some other memory location where you can manipulate it.

LDA $100
STA $5A9

As you learned when we studied the history of computer games, the joystick was actually
invented by the Tech Model Railroad Club when they needed a better way for people to
play their computer game called SpaceWar!. The joystick has been a staple of the video
game industry ever since.

Reading the position of the joystick is actually very similar to the way that we read the last
key pressed on the keyboard. There will be a special memory location in the computer’s
memory that holds the data that lets us know what position the joystick is in. All that we
have to do is read that memory location and translate the data correctly. A list of the mem-
ory locations where joystick data is stored can be found on this book’s companion Web site.

Modeling Game Physics
We’re almost there! You actually have all of the tools that you need in order to build a
working game. All that you need to do now is add a few finishing touches to polish the
game off and make things operate in a very realistic manner.

If you throw a ball up in the air, it is not going to keep flying until it reaches outer space.
Instead, gravity is going to ensure that the ball always comes back down to Earth. If you
bounce a ball the height it bounces to depends on the amount of air in the ball. Not every-
thing that is round like a ball will bounce either. Some things will simply smash to the
ground while others, such as a balloon filled with helium, will rise high into the sky. The
point I want to make is that in the real world there are a number of very important forces
that act on all objects. If we are going to include an object in our game and want that
object to behave the way it does in the real world, we must understand the forces of
physics that affect that object and find some way to include those forces in our game.

Modeling Game Physics 249

There are three forces that will apply to almost every game you make. These forces are
thrust, friction, and gravity. Thrust is the force that causes objects in our games to speed
up. Friction is the opposite of thrust and works to slow down objects in our game. Grav-
ity is the reason that what goes up must come down.

Thrust
Newton’s First Law of Physics states that “An object at rest tends to stay at rest, and an
object in motion tends to stay in motion with the same speed and in the same direction
unless acted upon by an unbalanced force.”

In plain English, the first part of this law means that if a ball is sitting still on a desk, that
ball will continue to sit still until someone pushes it or the wind blows it or some other
outside force causes it to move. Thrust is that force that causes the ball to move.

Friction
The exact opposite of thrust is friction. When an object is moving through space, a force
called friction works to slow it down. Different mediums create different amounts of fric-
tion. Water slows a vehicle down a lot more than air, so if we create a vehicle that can fly
in the air and in the water, the force of friction should slow the vehicle down more when
it is in water than when it is in the air.

Gravity
The force of gravity rounds out our trio of forces. Newton’s Law of Gravity states that
“Every object in the universe attracts every other object with a force directed along the line
of centers for the two objects that is proportional to the product of their masses and
inversely proportional to the square of the separation between the two objects.”

This definition expands upon most people’s concept of gravity. When most people think
of the word gravity, they tend to think about the force that pulls objects closer to the
Earth. This is only partly right. Actually, every object in the universe draws other objects
toward it like a magnet as seen in Figure 8.8.

As Figure 8.8 also demonstrates, the larger the object, the stronger it is able to pull objects
toward it. This is why we are able to sense the pull of gravity from the Earth and not from
other objects, such as your desk or this book or even other people!

The other limiting factor of gravity is distance. The farther we are away from an object,
the less its pull of gravity is on us. That is why astronauts in space are able to float around
when they travel far away from the Earth, while we are still held solidly to the ground.

Chapter 8 ■ Adding Player Input, Physics, and AI250

Putting All the Forces Together
Very rarely will an object in the real world be subject to only one force. Most objects will
be affected by all three of the forces that we just discussed. We need to learn how to apply
these forces to an object on the screen. Take into consideration Figure 8.9.

The first thing that we have to do is assign X and Y values to our ships. See Figure 8.10. In
this case let’s use a value of 20 for both variables to put the ship in the middle of the
screen.

LET X = 20
LET Y = 20

Modeling Game Physics 251

Figure 8.8 Every object in the universe attracts every other object towards it.

Figure 8.9 Most objects are affected by at least three forces.

Right now, the ship is at rest because we are not applying any forces to it. With each cycle,
our ship is going to either stand still, or it is going to move in a given direction. During
each game cycle, we have to change the values of the X and Y variables to make the ship
move in the direction that we want.

Let’s define our forces. We will declare a variable called TF to represent forward thrust, TU
for upward thrust, F for friction and G for gravity. We will assign some values to these vari-
ables, but we are not going to use them in the game cycle.

LET TF = 3
LET TU = 3
LET F = 1
LET G = 2

We will start adding these forces to the game cycle, one by one, until the ship behaves nat-
urally. We will begin with thrust. See Figure 8.11. When the player moves his joystick to
the right, the TF variable will be set to three. When the joystick is moved to the left, that
same variable will be set to negative three. When the player moves the joystick up, the TU
variable will be set to minus three, causing the ship to move up. When the joystick is
moved down, the TU variable is set to three, which causes the ship to move down. When

Chapter 8 ■ Adding Player Input, Physics, and AI252

Figure 8.10 We have to give both X and Y
variables to the ship.

the joystick is not being moved up or down, TU will be set to zero. When it is not moving
left or right, the TF variable will be set to zero.

In order for this to work, we would add the TU variable to the Y variable in every game
cycle. We will also add the TF variable to the X variable.

Right now, the ship will move when we move the joystick, and continue moving in the last
direction it was directed to move when we stop moving the joystick.

Next, we need to apply the concept of friction to our game. See Figure 8.12. The force of
friction will always resist the movement of an object through space. So if the force of
thrust is three, we are going to need a negative value for friction to counteract its force.

Without the force of friction, the ship would never stop moving. With the force of thrust
active in our game, the ship will slow to a stop whenever we let go of our joystick.

The next force that we need to bring into the equation is gravity. In the context of most
games that we create, the bottom of our screen is going to be the ground and gravity will
be the force that pulls objects downward. Some games will be different, such as the first
ever video game Spacewar!, which had a star in the center of the screen that acted as the
center of gravity. In the case of this game, all objects were attracted to the center of the
screen.

Modeling Game Physics 253

Figure 8.11 The force of thrust causes the ship to
move.

Figure 8.12 The force of friction resists the
movement of an object through space.

Conclusion
Game input and physics are important to allow the player to control his character and
have that character explore a world that functions the way the player would naturally
expect. The information covered in this chapter has familiarized you with the concepts
needed to understand the complex issues that go in to building a convincing game envi-
ronment. We are now one step closer to being ready to build our own video games. At this
time, I would suggest going to the companion Web site for this book and looking over the
examples you will find there.

Chapter 8 ■ Adding Player Input, Physics, and AI254

Figure 8.13 The force of friction will counteract
the force of thrust.

255

Sound Effects

chapter 9

Excuses are the tools of incompetence built upon monuments of nothingness
and those who so often use them seldom amount to anything.

Unknown

How Sound Works in the Real World
There are many tried and true analogies used to explain the way sound travels through the
air. The example that I will use here is that of a pond with a perfectly still surface. Picture
in your mind a small pond that is perfectly still. Now imagine if you threw a stone into
the center of the pond. There is going to be a splash where the stone enters the water.
Within seconds, ripples will extend from the point of impact and spread over the entire
pond.

Sound travels through the air in the same way, only rather than a stone, the ripples are
caused by vibrations and rather than a pond, the waves travel through the air. These vibra-
tions can be caused by any number of sources; the speakers in a radio, a car alarm, a musi-
cal instrument. Even the keys on my keyboard make a noise as I type this book. These
waves are what we call sine waves and look similar to the diagram in Figure 9.1.

As you can see the wave goes up, then down, then up, then down. Each time the wave goes
up and then down, it is said to have completed a cycle. The distance from the start of one
cycle to its end is called the wavelength and the height of the wave is called its amplitude.

The unit of measurement for sound is the hertz. This is a measurement of the number of
cycles that occur in a second. The shorthand for this unit is Hz. It will often be used with
several different prefixes that you are already familiar with. Examples of two prefixes are
M (for mega or one million). You are already familiar with this term and its use in mea-
suring disk space. Another prefix is K (for kilo or 1000). Most retro machines measure
their memory in kilobytes. In the example above, rather than writing 20,000 Hz we would
write 20 KHz.

Whenever an object vibrates, it compresses and expands the air molecules around it.
These compressions and expansions spread through the air in every direction in the form
of waves. When these sound waves reach our ears, they cause tiny hairs in our ears to
vibrate. Finally, if these are between 20 and 20,000 cycles per second (20 to 20,000 hertz
or 20Hz to 20,000Hz), then these vibrations are converted to signals, which are sent to our
brain where they are interpreted as sounds we recognize. Humans cannot hear any sound
with a frequency outside of the 20 to 20,000 hertz range. Other creatures have much
greater ranges of hearing. A dog can hear sound in the range of 67 to 45,000Hz; cats can
hear from 45 to 64,000Hz; a cow can hear from 23 to 35,000Hz; and finally, a porpoise can
hear in the range of 75 to 150,000Hz. This is how dog whistles work. Your pets can hear
the sound and be trained to react to it in a certain way. Humans cannot hear the sound,
so it does not irritate anyone.

The speed of sound is not always constant. It changes depending on the density of the
substance that it is traveling through. The closer the molecules are packed together the less
time it takes for one molecule to bounce against another; therefore, the wave travels faster.

Solids are packed the most densely, followed by liquids and, finally, gasses. As a result, if
you tap on a desk, the sound will travel from one end of that desk to another before it gets
to your ears. If the same sound is made in the air and in a body of water at the same time,
the sound will travel farther more quickly through the water than in the air. At sea level in
dry air, sound will travel at roughly 770 miles per hour. Despite what you have seen in
endless Sci-Fi movies, sound will not travel in outer space.

Chapter 9 ■ Sound Effects256

Figure 9.1 Sound travels as sine waves.

Scientists are able to find the wavelength of a sound by dividing the speed of a sound by
its frequency.

Speed ÷ frequency = wavelength

Sounds with lower frequencies tend to have longer wavelengths and produce a lower
pitch. Inversely, sounds with higher frequencies usually have a higher pitch and shorter
wavelengths.

n o t e

People often say that there are no molecules in space. In reality, there are molecules in space, and
indeed, there is actually wind in space! The molecules are simply spaced very far apart, and the
wind is not as dense as what we have here on earth. This wind, which is sometimes considered the
“interplanetary medium,” is estimated to fluctuate between 5 particles/cm3 and 100 particles/cm3
and has a temperature of 100,000 Kelvin. This wind is created by a dense stream of charged parti-
cles emitted by the sun at roughly 450 km/sec. These winds have very slight effects on the paths of
spacecraft and combine with much higher energy particles ejected by solar flares to cause radio
interference, power surges, and even the Aurora Borealis here on Earth.

Mimicking Real World Sounds
on a Retro Game Machine
Often a problem may seem overwhelming. As a programmer it is important for you to
learn to break a problem down into its simplest parts. These smaller parts are usually
much more manageable. The problem that we have to solve is how we are going to get our
digital retro computer system to play analog sound.

The only tool that we are guaranteed to have in every machine we program is a built-in
speaker and some form of digital soft switch that we can use to make the speaker click.

So what we end up with is a basic sound element: the beep. Just as we use pixels to make
up an approximation of a picture, we can use a beep to make an approximation of a sound
or even music. Our brains will fill in the blanks enough to figure out what sound we are
trying to make. The context of the game also has a lot to do with how the player perceives
a sound. The same sound may be interpreted as a laser or a shooting star or a crash
depending on the kind of game, what’s happening in the game, and what you tell the
player in the user’s manual about that sound.

We know that we can vary the sound that is generated by adjusting the frequency of beeps
generated by the computer. Look at the following algorithm.

1 Beep computer
2 goto 1

Mimicking Real World Sounds on a Retro Game Machine 257

This algorithm generates a very high-pitched tone. What if we did this?

1 beep computer
2 delay computer by x microseconds
3 goto 1

This time we generate a different frequency. By changing the value of x, we are able to gen-
erate sounds of different frequencies.

If we repeat this process several times using different values for x we will be able to create
a basic melody.

Computers with Special Sound Hardware
You will not always be limited to working directly with the speaker in order to generate
sound. Some retro game machines actually have very complex sound hardware built into
them. The Commodore 64, for example, was so sophisticated that after the computer was
no longer in production, sound cards for PCs were being created using not only its tech-
nology but also the very same chips that were in the machine.

Before we take a look at how these systems work, we need to cover a bit more sound the-
ory. You know that every sound can be played at a particular volume. The problem that
we have is that sound does not just appear out of silence, play, and then go back to silence.
There is a process that occurs, and if we ignore this process, then our sounds will be “flat.”

The volume of the sounds we generate will actually increase until it is higher than the vol-
ume that we need to produce. The frequency then decreases until it reaches the volume
that we want. The volume stays where we want it for a while and then it decreases back to
zero, or silence. Each of these four phases actually has a scientific name. These names are
labeled in Figure 9.2.

The period of time when the volume is rising to a point above our desired sound is called
the attack. When the volume is falling to the level that we want it is called decay. While the
volume is where we want it is called the sustain and finally the period where the volume
goes back to zero is called the release.

The benefit of computers with specialized sound hardware is that we have more control
over attack, decay, sustain, and release.

The Commodore 64
When we were working directly with the speaker, the basic sound element that we had to
work with was the beep. We adjusted the frequencies used to generate the beeps to make
different sounds. This time around, we have a bit more control over how we are going to
be generating sound. First of all, we have three “voices” to work with. When we were

Chapter 9 ■ Sound Effects258

working directly with the computer, we could effectively only generate one sound at any
given time. When we work with advanced sound hardware, we have the ability to control
more than one voice, all of which can be played at the same time. Each voice has a num-
ber of properties that we can control by writing to specific memory locations.

Sound on the Commodore 64 is generated by the 6581 Sid chip. This chip has three syn-
thesizer voices, which means that it can play three sounds at once. We are able to control
attack, decay, sustain, and release on each channel by writing to specific memory loca-
tions. Examine Figure 9.3.

As you can see, the lowest four bits of the first register control the decay, while the high-
est bits of that same byte control attack. Likewise the lower four bits of the second regis-
ter control release, while the highest four bits control sustain.

Computers with Special Sound Hardware 259

Figure 9.2 Sounds in the real world are made up of four parts: attack, decay, sustain, and release.

Figure 9.3 Here is how the registers that control attack, decay,
sustain, and release are arranged.

We can set the values for attack, decay, sustain, and release to values 0 through 15. These
values correspond to a pre-established amount of time as can be seen in Table 9.1.

Chapter 9 ■ Sound Effects260

Table 9.1 Attack, decay, sustain, and release Timing

Value Attack Rate Decay/Release Rate
(time/Cycle) (time/cycle)

0 2 ms 6 ms

1 8 ms 24 ms

2 16 ms 48 ms

3 24 ms 72 ms

4 38 ms 114 ms

5 56 ms 168 ms

6 68 ms 204 ms

7 80 ms 240 ms

8 100 ms 300 ms

9 250 ms 750 ms

10 500 ms 1.5 s

11 800 ms 2.4 s

12 1 s 3 s

13 3 s 9 s

14 5 s 15 s

15 8 s 24 s

The address of the relevant registers can be found in Table 9.2.

Table 9.2 Location of the relevant registers.

Memory
Voice Address(hex) Type

1 05 Attack/Decay

1 06 Sustain/Release

2 0C Attack/Decay

2 OD Sustain/Release

3 13 Attack/Decay

3 14 Sustain/Release

The lower three bits of SID register 24 control the overall value of sound from the
computers.

The Atari 400/800
At your disposal is the advanced sound chip called POKEY. This bad boy supports four
independent voice channels. This means that we can play four separate sounds simulta-
neously and completely independent of each other. Each channel has its very own fre-
quency register that can be used to determine the note being played, a control register to
keep track of the volume, and the noise added to that channel. There are also a lot of other
features, which allow you to add some cool effects such as high and low pass filters. So let’s
get started.

Basic Sound Command
Probably the best and easiest place to start in our discussion of sound is the Atari sound
command. Here is the basic format for using this command.

SOUND voice, pitch, distortion, loudness

We have four separate sound channels at our disposal. See Table 9.3. The voice option
allows us to choose which of the four voice channels we are going to use. A value of 0 will
reference channel 1, a value of 1 references channel 2, a value of 2 references channel 3,
and of course, a value of 3 references channel 4.

The pitch option controls the frequency of the sound being produced and can range in
value from 0 to 255. The clock produces a steady stream of pulses. If we set our pitch
option to 255, then all of those clock pulses would go to the speaker. We would hear the
highest pitch that the computer can generate. If we set this pitch to zero, then almost none
of the clock pulses would make it to the speaker. We would hear the lowest frequency that
our computer can generate.

Basic Sound Command 261

Table 9.3 The Atari Has Four Voice Channels

Voice channel Reference number

1 0

2 1

3 2

4 3

In the real world, sound is sometimes distorted by various natural phenomena that occur
in nature. Often, we will want to recreate this in our games. The distortion option of the
sound command allows us to do just that. By selectively removing some pulses from the
sound wave being produced, the computer can actually simulate distortion that occurs
naturally. If we set this value to 10 or 14, the computer will generate pure tones. Using
other even numbered values will introduce different amounts of noise to the tone being
produced.

The final option used by the sound command sets the volume of the tone that we are cre-
ating. This can be set to any value from 0 (which will be completely silent) to 15 (which is
the loudest). In order to get the best quality sound, it is suggested that you do not allow the
sum of the volume of all of the channels to equal more than 32 because this can over mod-
ulate the audio’s output and cause a degradation in the quality of the sound produced.

For all its power, there is one major disappointing element lacking in the sound com-
mand, and that is an option to control how long the sound is produced. Once the sound
command is used to start generating a tone, the computer will continue generating that
tone until another sound command is used to either shut off the sound or change the
nature of the tone. For this reason, we are forced to resort to the rather crude method of
using FOR…NEXT loops to control the timing of sound in our game.

Even though numbers can vary depending on runtime conditions, an empty FOR…NEXT loop
can be executed about 450 times per second. Furthermore, an empty loop, where
I = 1 to 225, takes approximately 1/2 second to execute; thus, we can use a number of for
loops whose counters are either 225 or multiples or factors of 225 to generate the timing
for our musical score or sound effect. A few examples of this can be seen in the following

Chapter 9 ■ Sound Effects262

Figure 9.4 The AUDCTL register controls the global settings for all of the sound channels.

code samples, which can be used to generate several common sound effects found in
arcade games.

Sample for loop that simulates a pistol being fired:

10 FOR I=10 TO 4 STEP -0.25
20 SOUND 0,10,0,I
30 NEXT I
10 FOR I=15 TO 0 STEP -0.5
20 SOUND 0,20,2,I
30 NEXT I

Here we see an example of mixing a number of different sound commands and timing FOR
NEXT loops to generate the sound of a falling object:

10 FOR I=30 TO 200 STEP 3 REM START FOR LOOP
20 SOUND 0,I,10,I/25 REM PLAY SOUND BASED ON I
30 FOR J=1 TO I/10:NEXT J REM ADD A DELAY
40 NEXT I REM END LOOP
50 SOUND 0,20,0,14 REM PLAY SOUND
60 SOUND 1,255,10,15 REM PLAY SOUND
70 FOR K=1 TO 150:NEXT J REM ADD DELAY
80 SOUND 1,0,0,0 PLAY SOUND

Now if the only thing in the world that our program did was play sound, then this would
be no problem. Unfortunately, our programs are games and, hence, will be doing much
more than playing sounds, which means that we have a very big problem. Imagine that we
have a number of FOR loops and sound commands that are combined to create a nice back-
ground sound for our computer. The timing for this musical score is based solely on the
timing set up by the for loops. But if the computer is locked up in these FOR loops, it has
no opportunity to execute code used for the actual playing of the game. On the other
hand, we can create a game loop and integrate the FOR NEXT loops for the sound inside of
this main game loop. The sound will play and the game will play, but at one time, the tim-
ing between two sound commands may be half a second while at another, it may be 1⁄4 of
a second and yet another time one second. Obviously, this is unacceptable. There has to
be a more reliable way to implement the sound for our game.

If we can execute the code to play our sound during the vertical blank we will be able to
play our sound even while the game is playing without any adverse effects on the timing
of our sound or our game. The only possible way to accomplish this is to write an assem-
bly language program that will be used in conjunction with our BASIC program in order
to give us the power we need over the POKEY chip in order to unleash the full potential
of the Atari’s sound hardware.

Basic Sound Command 263

Assembly Sound Programming
There are eight registers that are used to control sound when we are working in assembly
language. These registers are as follows:

AUDF1=$D000 AUDC1=$D001
AUDF2=$D002 AUDC2=$D003
AUDF3=$D004 AUDC3=$D005
AUDF4=$D006 AUDC4=$D007

There are four AUDF registers, which control the frequency on the sound for each avail-
able voice channel and can have a value ranging from $00 to $FF. Four AUDC registers con-
trol both the volume and distortion of the sound channels.

In addition, there is also an AUDCTL register, which can be used to control the global settings
of the Atari’s sound hardware.

The frequency of our tone is based largely on the clock frequency. By setting bit 0 of the
AUDCTL register, we are able to switch the base clock between a rate of 60 and 15 kHz.

By setting bits 1 and 2 of the AUDCTL register, we are able to implement a high pass filter.
This is a basic effect that is used a lot in stereo systems but can also have some use in cre-
ating certain sound effects in our games. Basically, what this feature does is use one chan-
nel as a rule to measure all of the other channels. So if, for example, channel one is playing
at a given volume, the only way we will hear any of the other channels is if they are play-
ing a sound equal to or louder than that being played by channel one.

Bits three and four are used to control a very interesting and powerful feature of the AUD-
CTL register, the ability to combine two voice channels to form one channel with a larger
frequency range. Whereas previously we could only use a frequency value between 0 and

Chapter 9 ■ Sound Effects264

Figure 9.5 Here is the make-up of a general AUDC register.

255, we would now have the ability to enter a frequency value between 0 and 65,535,
which means we can generate the tones and notes for our musical score with a great deal
more precision.

Take another look at the general makeup of an AUDC register. As you can see, three bits are
reserved to control distortion of sound, but we are not sure exactly how this works. Let’s
examine this concept.

We know how the tones are created on the Atari. The base clock generates a base fre-
quency. The Atari then uses the value that we give it to divide the base frequency by to give
us the final tone that will actually be heard by the person playing our game. When we
introduce the concept of distortion into our channel, the Atari generates an irregular fre-
quency in which random pulses will be missing. Both the tone and the irregular wave are
used as inputs for a comparator circuit. Basically, a comparator circuit is one that will only
generate a pulse when both of the inputs are receiving a pulse.

As you can see, the net effect is that some of the pulses from our tone will not be heard.
This is how distortion is implemented on the Atari. Just as the system clock is the basis for
the creation of the frequency of our tones, the polynomial register is the foundation of the
timing (or lack of timing) for distortion on the Atari. Bit seven of the AUDC register is used
to switch the polynomial counter from between a 17-bit and a 9-bit counter.

Now that we understand the basics about the POKEY registers that are available to us, let’s
revisit the problem of playing music and sound effects on the Atari with our interfering
with the timing of either our game or the musical score.

We need to find a point in time when the computer is free and not doing anything in par-
ticular. Sounds impossible, right? From what we have seen so far about the Atari, it does
not seem possible that there is any time when the computer is not busy. In reality, there is
such a time. As a matter of fact, this happens 60 times every second. You see, 60 times per
second the screen is redrawn. After each time the screen is redrawn, a vertical blank
occurs, and each time a vertical blank occurs, it generates a vertical blank interrupt.

Normally, this interrupt is used to do nothing more than perform a few housekeeping
tasks, such as maintaining timers and other tasks that need regular updating. We have the
power to take over this interrupt and execute any code that we wish every time this inter-
rupt occurs. What this means is that we can write a small group of code and have it exe-
cuted consistently 60 times every second! This is the key to our problem.

Let us suppose that we want to play some invigorating music to get the player’s blood
pumping as he gets ready to fight the final boss in our game.

Rather than using a number of commands and timing mechanisms to generate the music,
we would pre-calculate the notes that we are going to be using as well as the length of time
each note will be played and store them in a table. We would then create an interrupt

Basic Sound Command 265

service routine, which will be executed each time a vertical blank interrupt is called. This
program will simply read the current note that is to be played from the table and play it.
Sixty times per second, we can update the sound that is being played on any channel at
any time.

This method of playing our music has absolutely no effect on the speed and accuracy of
our main game code. In fact, the main game program is not even “aware” that the code
playing our music even exists. Furthermore, because of the consistency with which this
code is called and executed, we are 100 percent guaranteed that the timing in our music
will always be the same and always be correct.

Once we have designed the code to play our music and have created a lookup table with
our musical notes, we are ready to install it as an interrupt service routine. The procedure
is really pretty straightforward. First, we have to place our program and its table into the
computer’s memory. Remember that interrupt I told you about? The interrupt service
routine for this interrupt is called XITVBL and the address of this interrupt is stored at
memory location $224 low byte, $225 high byte. Before we replace XITVBL with our code, we
have a way of calling this interrupt. We still want this interrupt to be called after our code
is executed so that all the housekeeping that it is supposed to do is still maintained. By
making sure that the last command in our interrupt service routine is JMP $E462, we ensure
that at the very time the vertical blank interrupt is called, our code is executed, thus
playing our music, performing housekeeping, and finally, giving control back to the main
program.

Next we store the low byte of the address in the Y register and the high byte in the X reg-
ister and execute the following command:

JSR $E45C

This command makes a call to the SETVBV function, which takes the address of our inter-
rupt service routine (which we store in the X and Y register) and sets that as the address
that will be called when a vertical blank interrupt is executed.

Conclusion
Sound programming is an important element of our video games. At first it seems
unlikely that we are going to be able to use our digital computer to produce analog sound.
Knowledge of this skill rounds off the techniques that you need to build your own retro
games. Like all chapters in this book, tutorials, source code, and demo programs can be
found on the book’s Web site in order. The more you experiment with the code and see it
in action, the better you will be at programming both sound effects and musical scores for
your games.

Chapter 9 ■ Sound Effects266

267

Putting It All Together:
Building Games

chapter 10

CHRIS: The bane and blessing of human nature. That old cat killer, curiosity.
Something so deeply embedded in our psyches that it screams to us from
ancient myths of Pandora. Eve. Lot’s wife.

JOEL: Eve lost Paradise, Lot’s wife was turned into a pillar of salt. Knowledge
doesn’t come cheap, my friend.

CHRIS: Good or bad, curiosity is woven into our DNA like tonsils or like the
opposable thumb. It’s the fire under the ass of the human experience!

Jeffrey Vlaming, Northern Exposure,
The Final Frontier, 1992

Great! You made it. I’m happy to see that you have gotten this far! The majority of this
book has been geared toward providing you with the ingredients needed to build a retro
video game. This chapter is different in that it focuses on teaching you to take those ingre-
dients and put them together in a playable recipe.

There is nothing really complicated in this chapter. If you have made it through all of the
other chapters in this book, then you can make it through this one. All you will do here is
create the rules and guidelines that you need so that you can apply your newfound knowl-
edge to any retro computer system you choose.

The Universal Game Structure
When your computer starts up, it is not a clean slate ready for you to write on. It is more
like a chalkboard that has chalk and paint and pencil markings all over it. Before you can
do anything useful with it, you have to clean it up and make sure it is well organized. You
saw an example of this when you learned to set, and later to clear, your computer’s video
buffer. When you set your computer to a high resolution, for example, the screen was full
of random dots of different colors. Even if you drew an image on the screen, it would be
hard for the player to recognize it among all of the chaos surrounding it. After you clear
the screen, however, it becomes much easier for a player to see what is going on. It is for
this reason that every computer game starts with what is referred to as initialization code.

Initialization
This is always the first part of any game’s code. It is here that you clear the screen, load any
graphics you need from the disk, and set up your variables. After this code is executed, you
are ready to enter the next phase of your game, which is called the game loop.

The Game Loop
If there is one idea I have repeated more than anything else in this book it is that all any
game ever really does is draw an image on the screen, manipulate some binary data and
then draw another image on the screen. That phrase sums up in its entirety what the game
loop does. The game loop is the name given to the actual code responsible for perform-
ing these actions.

Cleanup
On a game console, all the player ever does is play games. Usually, for them to change
games, they have to turn the computer off and put a new game in. That means the games
do not have to worry about the state that they leave the computer’s memory in. On a per-
sonal computer, however, you do not have that luxury because the player uses his com-
puter for more than just playing games. After he chooses to exit your game, he may want
to use a word processor or perhaps even play another game. In a perfect world, the next
application that runs will clean up the memory address that it wants to use. This is not a
perfect world, and some applications that the player is using will just assume that all is
well with the system. It is for this reason that you have to always be sure to leave the com-
puter in exactly the same state that you found it. This is what the cleanup code does. It
clears any memory that you may have used and corrects any changes you may have made
to the OS or the environment, including the screen mode.

Chapter 10 ■ Putting It All Together: Building Games268

In many ways, retro game programming is simply putting pieces of a puzzle together to
form a picture. You know the elements of a game (graphics, sound, AI, etc). You know the
order that they have to be used, and you have an idea in your head concerning the kind of
game that you want to make. The trick is in knowing how to put the pieces together. Let’s
take a look at some basic concepts for making simple retro games. Once you can do this
you can build some more complex games.

Programming Text-Based Games
The first question that anyone who has never played a text game and grew up in a Quake
3 world may ask is “What’s so special about a text-based game?” Today’s games live or die
by their graphics. How can you be impressed by a game that has absolutely no graphics at
all? Well, the answer to that question is that no computer game system available today is
able to create the kind of graphics found in those old text-based games. The reason for
this is that today’s games depend on inferior technology. Games today depend on silicon
and megabytes and RAM and ROM. They use video cards made by companies like,
Nvidia™, and ATI™. Text-based video games, on the other hand, are powered by imagi-
nation and are rendered by the human mind!

Before there were computers and, hence, computer games there were books. Before there
were books, there were storytellers. The storyteller was perhaps the first entertainer. A
skilled narrator could make a listener feel like he was in some far away land fighting
mythical dragons or conquering lands, winning the love of a fair maiden, or even just
floating along on a cloud. When the storyteller told a single story, she was really telling a
multitude of stories because each person who heard her pictured himself living out the
adventures told in the story. Countless dreams have been the result of a good tale told the
day before.

In time, books were created, allowing the storyteller’s tale to travel to countries she had
never seen and whisper into the ears of people she had never met. Millions of people
could now read a story that once would only have been heard by a handful. The advance-
ments in printing technology made this possible, but for a long time there was still one
major limitation. Interactivity!

You could read a book from cover to cover and create your own adventures in your imag-
ination. Then you could sit down and use your imagination to create your own versions
of the adventure, but you could not actively modify the story of the book as you read it.
If a character in the book has a choice to take the left or the right path and the author has
the character take the left path, then every time you read that book, the character will take
the left path.

Programming Text-Based Games 269

This limitation was overcome eventually through interactive books. These were very inter-
esting documents because the story was not meant to be read from cover to cover. Instead
if, for example, the book reaches the point where a character has to choose between the
left or the right path, a note would be placed at the bottom of the page telling you to turn
to a specific page if you want the character to turn left and to another page if you want
him to turn right. What this meant was that the rest of the story that you read would be
different depending on which choice you have the character make. Not only did this make
the story much more interesting and enjoyable, but it also added to the reread value of the
book. You could read the same book 10 times and read a different story each time!

Text-based games are the next technological step up from these “interactive books” and
were perfect for early computer systems that were still a very long way from producing a
photo-realistic video display. Most of these games had you exploring an abandoned man-
sion or a dark dank cave. These environments were the most common for two reasons.
First of all, the most natural genre of games to translate into text-based games were the
old dungeon crawling board games, such as Dungeons and Dragons. Second, because of
the way that these games operate, it is easier to create a modular environment such as a
house that has defined rooms than it is to create an abstract wide open expansive envi-
ronment such as a desert or a forest.

What Is a Text-Based Game?
As the name implies, a text-based game is a game that uses text instead of graphics to cre-
ate the gaming environment.

A computer game can be either turn-based or real-time. All text-based games were turn-
based. An example of a real-time game is QUAKE™ 1 through 3. In these games, all char-
acters in the game are moving simultaneously. While you are shooting at a player, that
player can shoot back at you. An example of a turn-based game is the Final Fantasy™
series. In these games, if there are three characters on the screen fighting each other, they
each have to take their turn fighting. First, you will attack, then your team member will
attack, and finally, the enemy will attack. The last man standing wins.

The combination of being text-based and turn-based meant that these games could be
played even on the most modest of game systems. Graphic-based games do not share this
luxury. It takes many times the effort and resources to recreate the imagery described fig-
uratively in a large text-based game literally as a graphical adventure. A text-based game
can use generic instructions and does not need special access to memory, which means
that they can run exactly the same on multiple game systems. Graphics-based games use
machine-specific commands and reference machine-specific memory locations, which
means that they are not platform portable like graphical games.

Chapter 10 ■ Putting It All Together: Building Games270

As you can see, a text-based game is really an electronic interactive book that can be
enjoyed on almost any computer system. Now that you know what a text-based game is,
let’s learn how to make one.

Building Your First Text-Based Game
Building a text-based game starts the same way building any game, including the most
advanced 3D animated games, or the biggest blockbuster movie, begins. You write a good
story. Although there are some obvious exceptions to this point, such as Tetris, where a
story is of little or no importance, if a game does not have a good story line, it is not going
to be very compelling to play. Let’s create a story line for your first text-based games.

The Story
“You are Tom Smith, and the fate of the world is in your hands. You are the only person
in the world skilled enough to fight legions of ghosts and goblins that are threatening to
invade the whole world starting with your town. You have killed almost all of the ghouls
and you are ready to go after the head honcho. He, along with the strongest ghost he could
find, are holed up in Old Man Peterson’s house planning their next move. It is up to you
to stop them.

You are standing at the front door of the house. What will you do?”

Our goal is to paint a picture for the player as well as to elicit an emotional response. You
want the player to be filled with a sense of trepidation, yet at the same time you want him
to feel that there is a very important mission that he must fulfill. After all, the entire world
is depending on him.

The Lay of the Land
Our story is the gateway to the world your game is being played in. It places the player in
the correct frame of mind to play your game. It is important for us to maintain this illu-
sion by creating a believable game environment. Whatever emotional response you are
able to elicit from the player after he has read your story should be maintained as the
player plays the game. In graphics-based games, this is done by placing graphic images on
the screen that look as much like the imaginary environment as possible. In text-based
games, the player’s environment is created through the use of figurative and descriptive
language. This gives text-based games a definite advantage over other games of the era.

A game designer could envision a creepy old haunted mansion and draw an image on the
screen. The image could convey the point that the player is in a dark haunted mansion and
draw it on the screen, but that picture (especially with the limited graphics functionality

Building Your First Text-Based Game 271

available) may not fully capture what the designer was thinking when he created the game.
On the other hand, through the clever use of words, the game designer could render in
your mind’s eye a much more detailed image of what he was seeing as he wrote the game.

Before you can start putting together your potent, passionate, image generating prose,
however, you have to take a collective look at the world that you want your player to live
in and then create a map of this world.

Let’s think. What would a haunted house full of ghost and ghouls look like?

Well, it is a house, so you can assume that this house will have a few basic rooms: living
room, dining room, bedroom, bath room, and kitchen. To add a bit of variety to the game,
you will add a study and a small corridor filled with art.

The rooms have to be arranged in some logical fashion. The arrangement of the rooms of
the house is called a floor plan and can be created in a number of ways. You can use the
floor plan from your house or office, you can look at real floor plans from architectural
magazines, or Web sites, or you can create a floor plan from your imagination. Figure 10.1
shows the floor plan for the game that you are creating.

You know that the game will take place in a house, you know that the house is haunted,
and you have a general idea in your mind of what the house will look like. Now you have
to let your mind wander a bit farther.

Close your eyes and imagine yourself standing outside the front door of your haunted
house. Imagine the look, feel, and smell of your environment.

Chapter 10 ■ Putting It All Together: Building Games272

Figure 10.1 Floor plan for your first text-based game.

Look around, take in everything you see, hear, smell, and touch. Now imagine yourself as
you open the front door. It creaks a little as you open it . . . you hope that the noise has
not alerted any of the uninvited guests inside . . . a black crow flies overhead, and you
shiver as a cold breeze blows out of the house and kisses your cheek.

It’s too dark to see anything, so you light the kerosene lamp in your hand . . . the lamp
casts strange shadows on the walls . . . you almost drop it as the reflection from your lamp
passes over an old jacket hanging on a rack casting a shadow that looks more like a dragon
than what it actually is.

It’s unusually dusty in here for a house that was fully occupied until yesterday. A strange,
bittersweet stench fills the air, and you follow a trail of rancid smoke trailing from the
kitchen.

Apparently, someone left a pot of soup on the stove and forgot to turn off the burners. As
you look inside the pot, you see the charred remains of bones, human bones . . . this is
going to be a long night.

Despite the smoke, this room is impeccably clean. There is no dust, no dirt, and apart
from the rancid odor and smoke filling your nostrils, there is nothing to see here . . . time
to explore the rest of this house. You leave the kitchen, and you are once again standing in
the living room. To the north, you see a door and you walk through it. This is obviously
the dining area. There is a large table big enough to seat at least 10 people. Candles are still
burning though they are producing remarkably little light. Five of the 10 places have plates
of half eaten food. The other five have their place mats neatly set aside.

Whoosh.

A cold breeze has just blown out all of the candles. In the dim light, you see strange fig-
ures dancing along the wall, and at first, you think that they are just more strange shad-
ows from the light of your lamp. Then you realize the breeze has blown out your lamp as
well. Whatever is dancing on that wall in front of you must be real!

As suddenly as they came, the images have vanished. Were they real or were they a figment
of your imagination? You will, unfortunately, know soon enough. It’s time to move on.

A door to the east of the room takes you into a long corridor. The walls are filled with
priceless paintings. Hold on, isn’t that the rare painting that was just stolen from the
museum? It’s worth well over two billion dollars. What in the world is it doing here?

You do not notice it, but the eyes of many of the paintings are actually moving. They are
turning to watch you as you walk by. The statues that you have passed have now moved
and are making threatening gestures toward you.

This is not a good place to be right now. Let’s explore the rest of the house.

Building Your First Text-Based Game 273

A large glass door has brought us into the study. There are papers on the desk . . . strange
papers written in a language that you do not understand. They seem to be diagrams and
maps . . . maps of the town . . . maps of the whole country . . . maps of the globe and all of
the electronic communication and transport for the entire world. What is going on here?

Wait, something is wrong, but you can’t quite put your finger on it. That’s it; there are
footprints in the dust on the ground . . . footprints that are not yours . . . footprints that
were not there when you came in!

Very strange. You walk through the bedroom door.

The only thing that separates this room from a hotel room is that there is no mint on the
pillow.

That and the stench coming from the bathroom door. Someone must have used it
recently. But what is that strange light coming from under the door?

You go to investigate, but as soon as you open the door there is silence. A bright light . . .
you fall to the floor. You have not won the fight on this night.”

The above narration is an example of a mental journey that you should take to help you
design your game. At this stage you did not describe any monsters or even any elements
of the game play. You simply think of the environment that you want to build. After you
have a very good understanding of what the environment is going to be like, you can carry
out the same exercise again but in more detail.

Picture yourself standing outside the front door, only this time, write down what you “see”
on paper (or type it in a word processor). This will be the description that you give the
player when he first starts the game.

Next, picture yourself in the living room. Describe it to yourself in great detail, and once
again, write this description down. This is the description that you will give to the player
when he enters the living room.

Go through the steps of describing each of the rooms in this manner.

As you describe the rooms, there is a kind of middle ground that you need to walk. You
see, if you do not give enough detail in your descriptions, it will be hard for the player to
picture the room in the same way that you see it in your mind’s eye. If you give too much
detail, there is little room for the player to use his own imagination.

Apart from the correct use of detail, you have to be sure to be as creative as possible. Think
of clever traps and pitfalls that you can create for your player to figure out. For example,
the owner of the house may be a rock climber and have a room where he keeps all of his
rock climbing supplies. The player may need to go to this room and find a rope before he
can climb through a trapdoor that is well hidden beneath a bed in one of the other rooms
into a strange, underground cavern.

Chapter 10 ■ Putting It All Together: Building Games274

You may create rooms where the floor automatically falls apart, hurling the player down
a bottomless pit. No one says that your map has to have only one floor. You can incorpo-
rate stairs and elevators into your game design. Most of all, be as creative as you can pos-
sibly be when you describe the room so that the player feels that he is really in your world
and can actually see what you see when you think about the game.

Creating Things That Go Bump in the Night
What would a game be without something or someone to blow up, shoot at, or otherwise
have war with. Now that you have made the game environment compelling to play, you
need to focus on making it exciting. The key to this is not to limit your creativity to the
description of the rooms but to allow this creativity to overflow in the design and devel-
opment of your monsters, ghosts, and whatever other villains run rampant in your game.

It should be noted that the adversaries in your game do not have to be strange creatures
from another world. In fact, your game does not even have to be violent. You can create a
game based on the old Clue™ board game where there are a number of people in the
house and a murder, or perhaps some other crime or mystery, has occurred, and the job
of the player is to explore the house finding clues until the player is able to solve the crime.

In the game that you are creating, all of the protagonists are ghosts, goblins, Frankenstein,
or some similar otherworldly character. Most players have probably watched a Dracula
movie or some other film of the horror genre. When you mention a monster, their minds
probably race back to the picture of that monster that they saw in those movies. You can
use this to your advantage. You do not necessarily have to go into as much detail to
describe a werewolf as you would if you were describing one to someone who had never
seen a werewolf movie. All that you have to do is give enough details for the player to recall
the details they remember from the last werewolf film that they watched. In this way, you
can focus more on what the werewolf is doing as opposed to what it looks like. Your
description of the werewolf itself could focus on specific images that will stick in the
player’s mind, such as an arm hanging out of its jaws.

To add a bit of variety to your game, you should create at least five different monsters:

1 A ghost

2 A walking skeleton

3 Frankenstein

4 A werewolf

5 A strange three-headed fire-breathing creature who is the leader of these monsters

You have a number of choices for implementing your monsters as well as the way you
choose to represent them in your game world. Generally speaking, you will have to give
the creature a name, you must create a value that represents how strong the monster is,

Building Your First Text-Based Game 275

and you must assign a value that describes how ferocious the creature is. While the first
two values may seem obvious, the last one may need more explaining. See Table 10.1.

You need to give the monster a name so that you are able to identify it and so that the
player knows which monster he is facing. This is important to help him plan his strategy.
If he is fighting a werewolf, he is going to have to use a silver bullet. On the other hand, if
he is fighting a ghost, the bullet will be useless and he needs to use the holy water. When
he is facing the last boss, he may need to use all of his weapons to defeat him.

The strength of the monster tells us how much life energy the creature has left. The
stronger the monster, the more you have to hurt it to destroy it. Some monsters are
stronger than others, and this helps to add to strategy. If your energy is low, you may take
a chance fighting a ghost, but you may choose to run from a werewolf, which would be
much harder to kill. You also have a strength meter, which will be taken into considera-
tion in the battle. If you are very strong, the blows you inflict with your weapon will be
more powerful and inflict more damage than they will if you are weak. Likewise, a mon-
ster with little strength will inflict less injury to you than a beast that is fully charged and
ready to fight.

The third element used to describe your monsters is the ferocity of the creature. This is a
meter of how aggressive each creature is. As an example, the ferocity meter of a sheep
might be a 1 or a 0, while the ferocity of a lion would be 100. This number will be used to
establish how likely a creature is to attack you. The lower the ferocity rating, the more
likely you will be able to run away from it. If you try to run away from a more ferocious
creature, it will charge and attack you before you reach the door. This factor will also influ-
ence how likely a creature is to win a fight. The more ferocious the creature, the more
aggressively it will fight and the more damage it will inflict.

It should be noted here that your player’s character also has variables that are used to
describe it. First of all, there is the player’s name. You could just give your player a name

Chapter 10 ■ Putting It All Together: Building Games276

Table 10.1 Variables You Must Track for Each Monster

Monster name Strength Ferocity

A ghost 100 30

A walking skeleton 100 40

Frankenstein 110 50

A werewolf 110 60

Three-headed monsters 150 100

and leave it at that. This, however, lessens the player’s feeling of being a part of the game.
You want to totally engulf the player in the game. An important element of this kind of
game design is to have the player enter his name and use his own name during the actual
game play. If you have to tell the player that he has lost the game, you can say, “Sorry, Tom,
but you just lost the game,” as opposed to just saying “game over.” You can also have the
characters of the game interact with the player using his first name; “Come on, Tom,
surely you must know that I am smarter than that.”

I mentioned that there is a strength variable that can be used to keep track of how much
health energy you have left. I also mentioned that there is a ferocity meter to tell us how
aggressive a monster will be. The equivalent of a ferocity meter for your character is the
fear meter. Like its counterpart, this variable will help to determine how likely it is for the
player to win a fight with a monster. If a player’s fear meter is zero, he is very courageous
and will fight more aggressively. If, on the other hand, his fear meter is 100, he is scared
out of his wits.

This can affect game play in a number of ways. For example, if a player is afraid, then
when a command is given to attack, he may drop his weapon or be much more likely to
miss his target. If the command is given to run, he may fall down. The initial value for the
fear variable can be set in a number of ways. It could be set according to the difficulty set-
ting of the game. If the game is at the easiest level, the fear variable could be set to zero,
and if the difficulty is set to the hardest, the fear variable may be set to 100.

Another option would be to automatically set the fear factor to zero and increase it
depending on the events of the game. The fear factor could change according to the type
of creature the player is facing. Perhaps the stronger the ferocity factor of the monster the
player is fighting, the higher the player’s fear factor will be. Also the fear factor can be set
to zero and increase every time the player does something that could be considered cow-
ardly such as running away from a fight.

Getting back to the villains in your game, they all range in ferocity from about 30 to 100.
They are also listed in order from least ferocious to most ferocious.

1. The ghost (ferocity level 30)

2. A walking skeleton (ferocity level 40)

3. Frankenstein (ferocity level 50)

4. A werewolf (ferocity level 60)

5. Strange three-headed fire-breathing creature who is the leader of these monsters
(ferocity level 100)

So you have your hero and you have your hero’s foes and a great story that gives them all
the reason in the world to fight. Now all that you need to do is give them the tools that

Building Your First Text-Based Game 277

they need in order to do so. You have to figure out how you are going to take that action-
filled fight scene that is going on in your head and put it on the computer screen. The first
thing that you have to remember is that you are creating a turn-based game, so there is
not going to be a whole lot of button mashing going on. The player is going to enter a
room and come face to face with a vile villain. He will be asked that all encompassing
question:

“What do you want to do?”

The player can choose to run, to defend, or to attack. The attack can be of a magical
nature, such as using an amulet or casting a spell, or the attack can be of a physical nature,
such as swinging a sword or even fighting barehanded if need be. After the player makes
his move, the computer takes over and decides what happens next. You have quite a few
options for allowing the computer to determine the result of the battle. The easiest
method, of course, would be to have the computer just randomly decide whether you or
the monster wins. While this method is easy to implement, it is not very realistic and
makes the game more a game of chance than one that rewards players for their skills.

The next step up is to take into account the nature of the hero and his current state of
mind as well as the nature and demeanor of the monster. For example, if a player’s fear
level is very high, he may be twice as likely to lose the fight. If his strength is low, he may
be four times more likely to lose. If he is weak and the monster he is fighting is strong, he
may be 20 times more likely to lose, and so on.

With this system, it is in the player’s best interest to play smart and stay healthy as long as
he can because if he doesn’t he will never beat the harder bosses later on. This adds to the
overall strategy of the game. There are other elements that can add to this strategy. For
example, if a player is holding a special amulet, it may give him courage and make him
much more likely to win. This encourages exploring and rewards the players who take the
time to look under every last rock in your game.

This is a very important point; the player needs to feel like he has gained something when
he survives and explores and spends countless hours playing your game. Furthermore, he
needs to always feel that there is something else he needs to achieve and he absolutely has
to explore at least 10 more rooms before he goes to bed.

Another creative twist that you can add to your game to make it a bit more challenging is
to have weapons that only work on certain creatures. So, for example, you would not be
able to use a sword or an axe to attack a ghost. In order to defeat any apparitions that may
appear, the player may have to use holy water, a magic spell, or possess a certain amulet.
You can tie this technique in with your fear system. If a player uses the wrong weapon
against a creature you can cause the player’s character to panic and drastically increase his
fear factor.

Chapter 10 ■ Putting It All Together: Building Games278

You have a multitude of choices. Which ones will you take? It would not be practical for us
to cover every possible combination of fight system elements in this book. What you can
do, however, is choose a combination here and add it to your game. You can experiment
later and try mixing and matching these elements to see which works best for your game.
Don’t forget to upload your creations to www.ristudios.net for the whole world to see.

In order to get your fighting system to work, you need to give a weight to all of the factors
that will affect the outcome of the fight, namely your player’s fear, the enemy’s ferocity,
your player’s strength, the monster’s strength, and whether or not the player is holding a
magic amulet. See Figure 10.2.

You have two variables; one represents the fear rating of the battle while the other is the
randomly generated number that decides the outcome of the battle. Let’s say that you use
the command RND(100) to produce the randomly generated result of your battle. If you call
this variable OC (for outcome), then when you are done, this variable will have a random
number between 0 and 100. If you wanted to write the simplest code possible, you could
just say that if the number is over 50, the enemy will win, and if the number is less than
50, the player wins. You do not want to do this however, so in addition to the OC variable,
you will create a variable called FF (for fear factor).

If OC is less than FF, the player will win, while if OC is greater than FF, the enemy will win.
You can set the value of FF to 50. This would mean that 50 percent of the time the player
will win and 50 percent of the time the enemy will win. Now you have to allow the four
factors that affect the outcome of the battle by changing the value of FF.

Building Your First Text-Based Game 279

Figure 10.2 Weights of the elements of the fear factor.

www.ristudios.net

First you subtract the fear of the player from FF. See Figure 10.3.

This will decrease the value of FF, making it more likely that the value of OC will be greater
than FF and hence more likely that the enemy will win.

Next you add the player’s strength to this variable.

This will increase the value of FF and make it more likely that the player will win.

Next you subtract the creature’s ferocity from FF as well as the enemy’s strength, which will
increase the odds of the enemy winning.

You now have the theory in place for a working fighting system. All that you have to do
now is determine whether you want to apply this on a micro or a macro level. What I
mean is that you can use this system to either play out the entire fight or on a turn-by-
turn basis. If you allowed this to determine the results of the whole battle, the player
would decide to either attack or defend and, depending on the results of your calculations,
the computer can go into auto mode where it narrates a battle sequence where the player

Chapter 10 ■ Putting It All Together: Building Games280

Figure 10.3 Subtract the fear of the player from FF. Then add the player’s strength to the FF
variable. Finally we subtract the creature’s ferocity from FF as well as the enemy’s strength, which
will increase the odds of the enemy winning.

either wins or loses. On a turn-by-turn basis, you can use this system to effect how pow-
erful each attack is in a given round. So you will make an attack or a defensive movement
and the enemy will do the same. Your battle system will decide who will be hurt, the player
or his enemy. Whoever gets hurt in this round will be weaker in the next round until
someone loses completely.

Personally, I do not like it when the computer goes off and completes a whole battle. I like
to feel as though I am a part of what is happening. Not everyone shares my preference and
it is for this reason that whenever possible you should build your game in a way that gives
the player the option of how he wants his battles to be played out. (You should give the
player other options as well, such as difficulty settings and the ability to set the initial value
of his fear factor and strength, whenever possible.)

Tools of the Trade
There is usually more than just running and gunning in any good adventure game. Text-
based games are no different. A great deal of the fun of these games is the exploration.
Exploration is not fun if you do not find something useful. A thing is not useful if you
cannot use it in some meaningful way. What this means is that you not only have to think
of things the player can add to his inventory but also you have to understand exactly how
to incorporate these elements into game play.

What’s the point in the player having a torch if all of the rooms in the game are lit? To fur-
ther integrate the torch into the game, you can make some or all of the rooms in your
game dark. This way, if the player has no torch, he can see nothing. On the other hand,
with a torch he can see the room clearly. To further add to the challenge of the game and
further encourage the player to explore, you can set a time limit for how long a torch can
last. This way the player cannot simply find one torch and use it for the whole game; he
has to constantly explore the game world to find more. Another level of detail can be
added by having the torch fade over time. When it is fully lit the player can “see” every-
thing in the room. When the torch is half lit, the player can see half of the items in the
room, and so on.

An important note here is that you have to handle time differently in a turn-based game
as opposed to a real-time game. In a real-time game, if you want a torch to last for 10 min-
utes, you simply set a timer for 10 minutes, and when the timer reaches 0, you put the
torch out. You cannot do this in a turn-based game. If you have not put a timer on how
long the player has to make a move, then he could conceivably wait for a minute, an hour,
or two years before he makes a move.

In turn-based games you have to measure time in turns. Each time the player or an enemy
makes a move, you assume that a certain amount of time has passed. You can have a torch
that is good for 10 turns, for example, and after 10 turns, the torch will go out. The

Building Your First Text-Based Game 281

amount of “time” that passes before the torch goes out can be set by the difficulty setting,
or you can let the player choose this value when the game starts.

There is a very thin line here. There is a difference between rewarding the player and irri-
tating him. If a player can just play your game without much exploring and still win, that
is okay. It makes your game accessible to more players. On the other hand, if a player who
does explore finds tools that make playing the game more fun or just easier, that is a
reward for his efforts. If, on the other hand, there are numerous elements that a player
must have in order to play the game and this results in a lot of backtracking, then you have
a problem. There are few things that a player hates more than backtracking, especially
when it is a regular part of the game. Be aware of this phenomenon. Make your games
challenging but not irritating.

But what in the world are you going to litter about the game world for the player to find?
There are some regular staples that you almost cannot do without:

1. Health

2. Magic

3. Maps

4. Talismans

5. Treasure

There are also a number of proven methods for placing these items throughout your world
and having the player find them. The absolute easiest method is to randomly fill the rooms
with a single item. When the player enters the room, he automatically acquires that item.
This solution is easy to program but not very realistic. When you walk into a room, items
do not automatically jump into your pocket. You have to decide which item in the room
you want to pick up and make a conscious effort to pick it up and put in your pocket.

This adds a new level of strategy to the game. Your player will only be able to carry a lim-
ited number of items and so he will have to choose wisely when deciding whether or not
to pick up each item. For example, if a player can only hold one more item and he has no
torches and must pass through a dark room, it would not be wise for him to pick up a
magical item. Instead, he may explore to find a torch before moving on and make a note
of the room so that he can come back to that room later if he needs some magic.

The next level of complexity for your game is to have items in an enemy’s possession
instead of just lying around. This way, the player has to actually defeat his opponents and
then the item is his reward. This also forces the player to fight through the game instead
of being able to always run away from a fight.

Chapter 10 ■ Putting It All Together: Building Games282

Creating a Language for Your Game
Could you imagine yourself going through life without knowing any specific language?
How could you communicate with others? How could you let your ideas be known?

Not a very pleasant thought. It’s just as unpleasant a thought to plop the player in the mid-
dle of your game world with absolutely no form of communication with the world
around him.

Communication can occur on a number of different levels. In most text-based games,
such as the one you will build shortly, the computer will communicate with the player to
find out what he wants the character to do. In more advanced games, you may have other
friendly characters who the player must talk to in order to find out information or simply
to give them orders to do something.

The foundation of communication is language. The computer does not understand Eng-
lish, and you cannot expect the player to learn the BASIC programming language in order
to play your game. You have to create your own language that falls somewhere in between.

Your language should be easy to learn and easier to remember. You do not want the player
struggling to remember the command he needs in order to use his magic amulet when a
12-foot tall werewolf is about to bite his head off! Your language also should not be overly
comprehensive; the player will not be describing any sunsets, or writing epic poems in
your game (unless, of course, that is the point of your game). All the player needs to do is
move around the game world, pick up items, use those items, and fight so you only need
to create a language that allows the player to carry out these actions. Adding any more ele-
ments to your language will constitute wasted energy. You also want to be sure that the
player does not have to enter the full word of the command that he wants to execute. This
way, when the heat is on, the player can simply enter F instead of the full word, FIGHT, in
order to enter battle with an enemy. That said, let us take a look at your new programming
language.

N-NORTH
S-SOUTH
E-EAST
W-WEST
U-UP
D-DOWN
P-PICKUP
M-MAGIC
F-FIGHT
R-RUN

Creating a Language for Your Game 283

If the player enters one of the directional commands (north, south, east, west), the game
will check to see if there is a door in that part of the room, and if there is, the player will
go through that door.

Up and down work in basically the same way. If there is a stairway or a ladder or an ele-
vator in the room, the player will climb either up or down to another floor.

If the player enters a room and there is treasure or other useful items lying around, the
player will use the pickup command to pick it up.

The magic command will be used to cast spells that can either aid the player’s health or
help to defeat an enemy.

Finally you come to quite possibly the two most important words in the game. Fight and
run. These are the two options that the player will have whenever he encounters an enemy.
As you will see later, in order to discourage the player from cowardly behavior, the run
command will not always work. Eighty percent of the time when the player runs, the com-
mand will not work and the player will be forced to fight. The fear factor for the player
will be adversely affected each time he chooses to run. If the run command does work, the
player will exit the room through the same door he entered.

The key to making your game as interesting as possible is to incorporate as much strategy
as you can. The more elements that the player has to manage, the more satisfying game
play is going to be. When the player enters the fight command, a menu will appear asking
the player which weapon he wants to attack with. This menu will list the weapons that the
player is currently carrying. When the player selects an item, that weapon will be used to
attack the enemy.

Likewise, when a player uses the magic command, he will also be presented with a menu
where he can choose which spell he would like to use. Options would normally include
teleportation, restoration of health, and various attacks on the enemy.

Writing the Code for Your Game
Now that you have the theory of how a text-based game works, it is time for us to get
down to business and start writing some code. It should be noted that the choice of com-
mands used in the program you are about to write will work on all of the retro game pro-
gramming machines covered in this book.

Mapping Out Your Program
Many great sculptors will tell you that when they first start working on a project they have
no idea what it will look like when they are done. They will tell you that the sculpture is

Chapter 10 ■ Putting It All Together: Building Games284

already there in the raw material and it is up to them to find it. They start with the gen-
eral shape of what they want and then they chip away until a masterpiece is created. A sim-
ilar process takes place as you write your video games. You are looking at a blank screen
with nothing but a prompt from your editor, compiler, or interpreter. You know the gen-
eral idea of the game you want to build. Now all that’s left to do is create your generic
shape and then chip away until you have a masterpiece.

The General Shape of Your Game

You already know that a number of things must happen for your game to work; you have
to initialize all of the variables and clear the screen; you have to describe the room the
player is in, including any monsters; you must give the player a chance to react to the envi-
ronment; you must process what the player has done; and, finally, you must repeat this
procedure continually until the player is either dead or has won the game.

Although you have a vague idea of how to write this program, you will not get a good idea
of how to implement the specific game features until you take these general ideas and
create a skeleton on which you can build your game.

B 1000 : REM INITIALIZE GAME
GOSUB 3000 : REM

This code will not run.

The following sections explain how to use those two lines of nonworking code to expand
upon and create your game. Notice the colon in the middle of each line. That’s an impor-
tant factor in the BASIC language, which will also be covered in the following sections.

Mapping Out Your World
What you need is a simple method of storing your game map in the computer’s mem-
ory. As it turns out, this is not very difficult to do. There is a handful of information that
you need to store in order to represent each room of your game. All that you need to do
is create a few arrays that you can use to store this list of items. The word array is new,
but like most topics covered in this book, it is not very complicated. Look at this line of
code:

A = 5

You have seen this before. Basically you created a variable called A and stored the number
5 in it. Now look at this.

Dim A(4)

This is new; you have added two brackets with the number 4 in the middle. This rather
innocent looking change is actually a very powerful new twist on the way you store your

Writing the Code for Your Game 285

information. Previously, if you wanted to store the numbers 1, 2, 3, and 4, you would have
had to create four variables:

A = 1
B = 2
C = 3
D = 4

Using an array gives us a much simpler method of storing lists of information.

A(1) = 1
A(2) = 2
A(3) = 3
A(4) = 4

What you just did was to make use of the A(4) variable that you created earlier. When you
executed the Dim A(4) command, you made a new variable that was exactly like all of the
other variables that you have made, with one exception. This variable can hold more than
one value. The number found in brackets determines how many separate values the vari-
able can hold. In this case, the variable was set up to hold four elements. Each value stored
in the variable is given a number. If you want to read what that value is or store a new
value there, you have to write the variable name followed by an open bracket, followed by
the number representing the value that you want to work with, followed by a closed
bracket. This way, a single variable called A(4) can act as four separate variables called A(1),
A(2), A(3), and A(4). See Figure 10.4.

Chapter 10 ■ Putting It All Together: Building Games286

Figure 10.4 You can think of an array as a container that can hold data in a
number of separate compartments.

Using arrays makes it easier for you to work with lists of information, saving time and
lines of code. As an example, let’s say you need to check to see if any of five different vari-
ables has a value greater than 5. If so, you need to jump to line 250 of your program. Here
is how you would do this without a variable array.

10 IF A > 5 THEN GOTO 250
20 IF B > 5 THEN GOTO 250
30 IF C > 5 THEN GOTO 250
40 IF D > 5 THEN GOTO 250
50 IF E > 5 THEN GOTO 250

It just took five lines of code to do what you had to do. On the other hand, look at the
same code written using an array.

10 FOR I = 1 TO 5
20 IF A(I) > 5 THEN GOTO 250
30 NEXT I

You just did the same thing as above using only three lines of code!

It gets better.

The array that you just used is called a single dimension array because it uses only one
number to determine exactly which of the values contained in an array you would like to
reference. When you use two or more numbers to select items in the array, things get a lot
more interesting. For the purpose of your game, you will be using a number of two-
dimensional arrays. It will be much easier to understand this concept when you are able
to see the practical use of a two-dimensional array. See Figure 10.5.

The house that your game takes place in has eight rooms as well as a ninth “room,” which
is used to represent outdoors. Each room (except, of course, the ninth room representing
outside) has four walls. Each wall has the potential to hold one door. When the player
wants to move in any of the four possible directions, the computer has to know if there is
a door or some other similar facility in that direction, which the player can use to exit the
room and, if so, which room that door leads to.

Figure 10.6 illustrates the concept of a two-dimensional array. The array is declared like
this:

DIM A(8,4)

This array holds 32 separate values (8 × 4).

These values are divided into eight rows of four columns.

Writing the Code for Your Game 287

Chapter 10 ■ Putting It All Together: Building Games288

Figure 10.5 Single and multiple dimension arrays work differently.

Each group represents a room, and each value for that room represents a wall. The letters
n, s, e, and w stand for north, south, east, and west. See Figure 10.7. Under each of these
letters, you will find a number between 0 and 9.

Writing the Code for Your Game 289

Figure 10.6 Illustration of eight groups of four values in your array.

Figure 10.7 The player can move in 4 directions.

When the player is standing in a room, he can move either north, south, east, or west.

If you assume that the player is standing in room one, then he is standing in the enter-
tainment room. He can move north into the dining room, south to go outside, or east to
go to the kitchen. The player cannot move to the west because there is no door. You can
easily create a short program to store this information in the computer.

10 Dim A(8,4)
20 A(1,1) = 3
30 A(1,2) = 9
40 A(1,3) = 2
50 A(1,4) = 0

In line 10, this short program creates a two-dimensional array to represent the house. In
line 20, you reference room 1 and wall 1 (a room number, wall number), which represents
the north wall. You store the number 3 because the door on the north wall of this room
leads to room 3, which is the dining room. Next, in line 30 you reference room 1, wall 2,
which is the south wall. You store the number 9 here because the south wall leads to room
9, which in your game represents outside. In line 40, you reference room 1, wall 3, which
is the east wall, and you store a value of 2 because this door leads to the kitchen. Finally,
line 50 references room 1, wall 4, which is the west wall. Because there is no door you store
a value of 0 here.

Each room in the game can be represented in this manner.

You now have a way to store the map of your world in the computer, but you still have one
problem. The method that you just used was very awkward and cumbersome. There’s got
to be a better way to do this. Take a look at the following code:

10 DIM A(9,4)
20 FOR B = 1 TO 9
30 FOR C = 1 TO 4
40 READ A(B,C)
50 NEXT C
60 NEXT B
70 DATA 3,9,2,0
80 DATA 0,0,0,1
90 DATA 0,1,4,0
100 DATA 0,5,6,3
110 DATA 4,0,0,0
120 DATA 0,7,0,4
130 DATA 6,0,8,0
140 DATA 0,0,0,7
150 DATA 1,0,0,0

Chapter 10 ■ Putting It All Together: Building Games290

This code is a lot neater. Look at it for a minute and see if anything seems familiar. The
data statements found in lines 70 through 150 are an exact replica of the table you used to
store the map of your house! This not only makes it a lot easier to enter your game’s map
into the computer, it also makes it easier for you to see if you have made a mistake.

n o t e

Data statements use two commands: READ and DATA. These commands are very useful for storing
and retrieving data.

Line 70 shows how the DATA command is used. Following each command is a list of numbers sep-
arated by commas. Each number represents a piece of data that you need for your game.

70 DATA 3,9,2,0

80 DATA 0,0,0,1

90 DATA 0,1,4,0

100 DATA 0,5,6,3

110 DATA 4,0,0,0

120 DATA 0,7,0,4

130 DATA 6,0,8,0

140 DATA 0,0,0,7

150 DATA 1,0,0,0

Every time you execute the READ command, a number will be pulled from this list of numbers stored
in a variable that you specify. The READ command is used like this:

READ variable

So in line 40, you are able to use the READ command to fill your two-dimensional array.

40 READ A(B,C)

Lines 10 through 60 should look slightly familiar. You have seen all of these commands
before but never in this particular configuration. What you are looking at is called a nested
loop. This is another way of saying that you are looking at a loop within a loop.

Let’s say that you want to put doors on all of the walls in room 2 of your house. You can
use a simple for next loop to accomplish your goal.

10 FOR I = 1 TO 4
20 A(2,I) = 18
30 NEXT I

Writing the Code for Your Game 291

In this example, all of the walls in room 2 would lead to room 18, as would be the case if
room 2 was a smaller room located at the center of room 18. See Figure 10.8.

Let’s say that you had eight rooms, each having two doors, one in the north and one in the
south. All of these doors lead to room 18, as would be the case if you had a row of eight
stalls located at the center of a larger room numbered 18. See Figure 10.9.

Chapter 10 ■ Putting It All Together: Building Games292

Figure 10.8 Illustration of a small room 2 at the
center of room 18.

Figure 10.9 Illustration of eight small rooms at the
center of room 18.

This calls for a slightly more complex tech-
nique. That technique is called a nested
loop. Basically, what you want to do with
your nested loop in this situation is:

1. To start in room 1, create two doors
each leading to room 18.

2. Move on to room 2 and make two
doors that each lead to room 18.

3. This continues until you have created
all of the doors for all eight of your
rooms.

Laid out as a flow diagram, this process
would look the diagram you see in Figure
10.10.

You know what will happen if you create the
following code:

10 FOR I = 1 TO 8
…
…
…
50 NEXT I

Whatever code is located between lines 10 and 50 is going to be executed eight times.
What if you put this code between lines 10 and 50?

10 FOR I = 1 TO 8
20 FOR Y = 1 TO 2
30 A(I,Y) = 18
40 NEXT Y
50 NEXT I

The for loop found in lines 20 to 40 will be repeated eight times.

With a nested loop, each time your Y loop is executed, the value for I will be increased by
1, so rooms 1 to 8 will be fitted with two doors both leading to room 18.

Now let’s take another look at your nested loop in your program and see what it does.

10 DIM A(9,4)
20 FOR B = 1 TO 9
30 FOR C = 1 TO 4
40 READ A(B,C)

Writing the Code for Your Game 293

Figure 10.10 Illustration of your nested loop shown
as a flow diagram.

50 NEXT C
60 NEXT B
70 DATA 3,9,2,0
80 DATA 0,0,0,1
90 DATA 0,1,4,0
100 DATA 0,5,6,3
110 DATA 4,0,0,0
120 DATA 0,7,0,4
130 DATA 6,0,8,0
140 DATA 0,0,0,7
150 DATA 1,0,0,0

Lines 70 through 150 place 32 numbers into memory in a straight line. See Figure 10.11.

Chapter 10 ■ Putting It All Together: Building Games294

Figure 10.11 Illustration of the numbers in memory.

The READ command takes one parameter.

READ variable

When you execute the READ command, the first number in your list is moved into what-
ever variable you indicated. If you execute the READ command four times, then the first
four numbers in your list will be moved from your list and into variables.

Looking at the data lines, you see that you have eight lines containing four numbers each.
Each line represents a room, and each of the numbers represents a wall in that room. What
you want to do is read the first four numbers and store them into the portion of your
array that represents room 1. Next, you want to read the following four numbers and save
them in the array as another room. You need to repeat this loop until each room is
assigned a wall. That job is taken care of by your nested loop.

Jumping from Text-Based Games
to Graphics-Based Games
The key to creating any graphics-based game is to understand the game elements that we
have been discussing throughout this book. You now know how to clear the computer’s
screen, draw sprites, and add game logic. All that you have to do now is apply them in the
same kind of pattern you used to create the text-based games, mixed with a little imagi-
nation to make a great game.

Conclusion
You have now come to the end of this book but not the end of your journey. You now
understand all of the features and principles needed to build retro games. The next step
is for you to log on to www.ristudios.net and visit the code and tutorial repository there.
You will find basic and advanced source code and tutorials for each of the machines
covered in this book. Also be sure to visit the Web site for this book at www.retrogame-
programmingunleashed.com for all the code in the book, links to other great retro pro-
gramming sites, and much more.

Before you read this book, the data on this Web site would have been useless to you. Now
that you have mastered the principles of retro game programming, however, you can not
only understand the code in this repository, but you can use it as the basis for your own
games. You are now ready to push these machines to their limits.

Have fun.

Live long and prosper.

Conclusion 295

www.ristudios.net
www.retrogameprogrammingunleashed.com
www.retrogameprogrammingunleashed.com

You are now a part of the official worldwide retro game programming community, and
there is no limit to what you can do. Be sure to check out André LeMothe’s X Game Sta-
tion at www.xgamestation.com. There you will not only learn to build your own game,
but you will also be able to learn to build your own video game system!

Chapter 10 ■ Putting It All Together: Building Games296

www.xgamestation.com

INDEX

Symbols and Numerics
/ (division operator), 45

$ (dollar sign), 39

= (equals sign), 47

* (multiplication operator), 45

6502 processors

CPU registers, 127

instruction sets

arithmetic, 130

branch instructions, 128

decrement instructions, 128

flag instructions, 130

increment instructions, 128

memory location, 127

miscellaneous, 131

set/reset, 130

shift rotate, 129

stack manipulation, 129

subroutine, 129

transfer instructions, 129

6809 processors, 133–137

A
absolute addressing mode, 120

accumulator addressing mode, 120

addition

binary number system, 114–115

decimal numbering system, 110–112

addresses

addressing modes

absolute, 120

accumulator, 120

binary number system, 117

decimal numbering system, 117

hexadecimal numbering system, 117

immediate, 119–120

implied, 120

indexed indirect, 121

indirect absolute, 121

indirect indexed, 122

LDA instruction example, 118

relative, 122

zero page, 120

zero page indirect, 121

top of display lists, reading and changing,
192–193

Adventure for Gamers, 100

AI (artificial intelligence)

binary logic, 247

evasion algorithms, 244

fuzzy logic, 247

patterns, 245–246

random movement, 246

tracking algorithms, 242–244

Alcorn, Al, 87, 91, 94

algorithms

evasion, 244

tracking, 242–244

American Ephemeris, 70

amplitude, sound, 255

AND command, 155–156

And Gates, 29

André LeMothe X Game Station, 296

ANTIC command, 160, 163, 165–166, 168,
170–171, 173–174

Apple II

setup instructions, 24–26

video buffer location and sizes, 225

video mode setup, 157–159

arithmetic instructions, 6502 processor instruction
sets, 130

Armor Attack, 95

arrays

defined, 285

multiple dimension, 288–289

single dimension, 287

two-dimensional, 287, 290

artifacts, 162

artificial intelligence (AI)

binary logic, 247

evasion algorithms, 244

fuzzy logic, 247

patterns, 245–246

random movement, 246

tracking algorithms, 242–244

Assembly, 103

assembly dialect game systems, 30–31

Atari 400/800

installation

Atari to monitor connections, 12–16

Atari to TV connections, 16

audio transmission, 14

channel selection switch, 12

chroma transmission, 14

disk drives, 17–19

joystick connections, 19

luma transmission, 14

monitor port, 12

power port, 12

power supply, 10–12

power switch, 12

serial port, 12

setup instructions, 7–9

sound effects, 261

video buffer location and sizes, 225

video mode setup

display lists, 167–175

screen modes, 159–167

work area screen shot, 32–33

attack, sound, 258–260

Attract mode, display lists, 180

AUDC registers, sound effects, 264–265

B
B (BRK) system flag, 123

back panel, Commodore 64, 22

Baer, Ralph, 62, 72

handwritten notes, 73–76

Home TV Game prototype, 77–79

illustration, 59

light gun concept, 78

Odyssey, 80–84

spot generators (hand drawn schematics), 77

video game and TV integration, 60

Barrier, 95

base 10, decimal numbering system, 108

base 2, binary number system, 112–113

BASIC (Beginner’s All-purpose Symbolic
Instruction Code)

branch principle, 54–55

graphics principle, 50–54

input principle, 40–42

listing principle, 43–44

logic principle, 47–48

looping principle, 55–57

math principle, 44–46

overview, 27–29

Index298

principles, 34

screen mode principle, 48–50

variable principle, 35–40

Bender, Bill, 80

binary logic, 247

binary number system

addition and subtraction, 114–115

addressing modes, 117

base two, 112–113

bit masking, 155

blank eight line instruction, 169

blank line instruction, 164

block arrangements, graphic images, 140–143

BNE command, 228

Bohr atom, 72

boot screen, TRS-80 Color Computer, 4

bouncing ball demonstration, 66

branching instructions, 124

6502 processor instruction sets, 128

branch principle, 54–55

Breakout, 94

BRK (B) system flag, 123

Brown, Bob, 91

buffers

keyboard buffers, 104, 106, 248

video buffers

clear screen procedure, 226–232

double buffering, 239

locations and sizes, 225

page flipping, 238–239

placing data in, 232–238

Bulletin Board System, 101

bus characteristics, game systems, 32

Bushnell, Nolan, 86, 91, 94, 97

C
C (CARRY) system flag, 123

cable arrays, Commodore 64, 24

Campman, Herbert, 78

Capps, Andy, 87

CARRY (C) system flag, 123

Index 299

cassette port, TRS-80 Color Computer, 2

cassette tapes, TRS-80 Color Computer, 4–7

Catch, 78

cathode ray tube (CRT), 65

CBS Opening, 71–72

center screen point, display lists, 176–177

Central Processing Unit (CPU), 30, 32, 127

Channel F video game machine, 96–98

channel selection switch

Atari 800 installation, 12

TRS-80 Color Computer, 2

chroma transmission, 14

cleanup, universal game structure, 268

clear screen procedure, clear screen procedure,
226–232

clearing memory, 42

COCO (TRS-80 Color Computer)

boot screen, 4

cassette port, 2

cassette tapes, 4–7

channel selection switch, 2

Extended color basis, 4

floppy disk drive installation, 6

illustration, 1

joystick ports, 2

power switch, 2

REM jack, 6

reset switch, 2

RF switch, 3

ROM cartridge connector, 7

serial port, 2

storage devices, 4–7

video buffer location size, 225

video mode setup, 153–157

Coleco, 91–92

color

COLOR command, 50

four-color graphics mode, 163

RGB (Red, Green, and Blue) value, 140

SETCOLOR command, 209

color clock, 162

commands

AND, 155–156

FOR, 56

ANTIC, 160, 163, 165–166, 168, 170–171,
173–174

BNE, 228

COLOR, 50

DATA, 291

DIM, 38–39, 286

DRAWTO, 52–54

END IF, 47–48

example of, 34

GOTO, 54

GRAPHICS, 49

IF, 47

IF THEN, 47

INY, 121

JMP, 165

JVB, 166

LDD, 227

LDX, 227

LET, 36

LIST, 44

LMS, 170, 189, 195

NAME, 39

NEW, 42, 184, 186

NEXT, 56

NMI, 206

OR, 155–156

PEEK, 187, 189, 249

PHA, 208

PHP, 208

PLA, 208, 212

PLOT, 50–52

PLP, 208

POKE, 189, 198

print, 33, 36, 38

READ, 291, 295

READY, 41

RETUN, 220

RND, 279

RTI, 207–208, 212

RUN, 48

SCRNH, 217

SCRNL, 216–217

SETBV, 266

SETCOLOR, 209

stored letters, 38

TAX, 208, 212

TAY, 212

THEN, 48

WSYNC, 179, 181–182

Commodore 64

setup instructions, 20–24

sound effects, 258–261

video buffer location and sizes, 225

video mode setup, 221

complexity levels, game creation, 281–282

connections

Atari to monitor, 12–16

Atari to TV, 16

conversions, to decimal numbering system,
211–212

coordinate systems, PLOT command, 51

Corman, Roger, 94

Cosmic Chasm, 95

course scrolling, 216–217

CPU (Central Processing Unit), 30, 32, 127

Crane, David, 100

Creative Computing magazine, 70

creativity suggestions, game creation, 275–281

Crossfire, 90

crowbar modulation, 11

CRT (cathode ray tube), 65

cycles, sound, 255

D
D (DECIMAL MODE) system flag, 123

Dabney, Ted, 85

daisy chains, disks, 17–19

DATA command, 291

day and night variations, graphic images, 146–147

Death Race, 93

decay, sound, 258–260

Index300

DECIMAL MODE (D) system flag, 123

decimal numbering system

addition and subtraction, 110–112

addressing modes, 117

base 10, 108

conversions to, 211–212

discussed, 108

decrement instructions, 6502 processor instruction
sets, 128

Demon Attack, 101

Dennis, Jack, 67

design time, 41

dialects, assembly, 30–31

Digital Equipment Corporation (PDP-1), 64–65

DIM command, 38–39, 286

direct memory access (DMA), 181

Disk Basic operating system, 1

disk drives

Apple II setup instructions, 25

Atari 800, 7, 9

Atari installation, 17–19

display list interrupt (DLI), 166

display lists

address, reading and changing to top, 192–193

Atari 400/800 video mode setup, 167–175

Attract mode, 180

center screen point, 176–177

creating new, 195

inserting into memory

course scrolling, 216–217

discussed, 212

fine scrolling, 219–220

horizontal course scrolling, 217–218

scrolling implementation, 213–215

Jump on Sync instruction, 199

load memory scan instruction, 195–196

in memory, finding location of, 186–187

multiple, 183

start of video memory, finding, 188–190

switching back to video memory, 197–198

text editor memory, 190–191

text mode lines, inserting, 201–202

Index 301

text windows, placing at top of screen, 184

timing considerations, 178–182

writing, 205–206

distorted sound effects, 262

dithering, graphic images, 149

division operator (/), 45

DLI (display list interrupt), 166

DMA (direct memory access), 181

dollar sign ($), 39

Doodle, 96

double buffering, 239

Dougherty, Brian, 100

Douglas, A. S. (Noughts and Crosses), 60

Dr. Pong, 89

Drag Race, 90

drawing lines, 52–54

DRAWTO command, 52–54

Dvorak, Robert V., 61

E
Easter egg, 100

Edwards, Dan, 70

Elimination, 90

Eloping, 88

END IF command, 47–48

environment options, text-based games, 270

equals sign (=), 47

Etlinger, Lou, 79

evasion algorithms, 244

Expensive Planetarium (Peter Samson), 70

Expensive Typewriter (Steve Piner), 67

Extended color basic, TRS-80 Color Computer, 4

F
fear factors, game creation, 277–280

female adaptors, Atari to TV connections, 16

fight scenes, game creation, 278

fine scrolling, 219–220

flag instructions, 6502 processor instruction sets,
130

flags, 123

flat sound, 258

FLIT debugging program, 67

floppy disk drive installation, TRS-80 Color Com-
puter, 6

Flyball, 90

FOR commands, 56

forces

friction, 250–251, 253

gravity, 250–251, 253

thrust, 250–252

Formula K, 90

four-color graphics mode, 163

friction, 250–251, 253

Fulop, Rob, 100

fuzzy logic, 247

G
game loop, 268

game systems

assembly dialect, 30–31

bus characteristics, 32

CPU, 32

memory characteristics, 32

memory map, 31

gates, 29

generic variables, 38

GOTO command, 54

Graetz, J. Martin, 66, 70–71

Grand Theft Auto series, 93

graphics

block arrangements and, 140–143

color options, 140

day and night variations, 146–147

dithering, 149

four-color mode, 163

GRAPHICS command, 49

graphics principle

COLOR command, 50

DRAWTO command, 52–54

PLOT command, 50–52

human, 147–149

reconstruction, 140–142

rods and cones, 141

screen modes, 48–50

screen resolution, 143–144

symbolism, 145

vector graphics, gaming development and, 95

visual cues and, 145–146

graphics-based games, 295

gravitational force, 250–251, 253

gravity calculations, 71

Greenwich time zone, 182

Grubb, Bill, 100

H
hackers, 63–64

half clocks, 162

handwritten notes (Ralph Baer), 73–76

HAX, 66

Heavy Star, 71

hertz sound measurement, 256

hexadecimal numbering system, 115–117

high-pitched tones, sound and, 258

Higinbotham, Willy, 60–62, 72

Hockey TV, 88

Home TV Game prototype (Ralph Baer),
78–80

horizontal blank, 135, 162

horizontal course scrolling, 217–218

horizontal scan line, 162

human anatomy, graphic images, 147–149

human-computer interaction thesis
(A. S. Douglas), 60

Hyperspace Minskytron, 72

I
I (IRQ DISABLED) system flag, 123

I/O connectors, disk drive installation, 17–18

IF command, 47

IF THEN command, 47

immediate addressing mode, 119–120

implied addressing mode, 120

in line connectors, Atari 800, 7, 10

increment instructions, 6502 process instruction
sets, 128

Index302

indexed indirect addressing mode, 121

indirect absolute addressing mode, 121

indirect indexed addressing mode, 122

Indy 800, 90

initialization code, 268–269

input

design time, 41

input principle, 40–42

INPUT statement, 41–42

NEW command, 42

player, 248–249

runtime, 41

installation, Atari 800

Atari to monitor connections, 12–16

Atari to TV connections, 16

audio transmission, 14

channel selection switch, 12

chroma transmission, 14

disk drives, 17–19

joystick connections, 19

luma transmission, 14

monitor port, 12

power port, 12

power supply, 10–12

power switch, 12

serial port, 12

instruction sets

6502 processors

arithmetic instructions, 130

branch instructions, 128

decrement instructions, 128

flag instructions, 130

increment instructions, 128

memory location, 127

miscellaneous instructions, 131

set/reset instructions, 130

shift rotate, 129

stack manipulation instructions, 129

subroutine, 129

transfer instructions, 129

SWEET 16, 131–132

Index 303

interrupts

defined, 135

DLI (display list interrupt), 166

pre-interrupt state, 208

Y2K and, 137

INY command, 121

IRQ DISABLE (I) system flag, 123

J
Jaws, 92

JMP command, 165

Jobs, Steve, 94

joysticks

Apple II setup instructions, 26

Atari 800, 7–8, 19

joystick ports, TRS-80 Color Computer, 2

Jump on Sync instruction, display lists, 199

JVB command, 166

K
Kaplan, Larry, 100

Kee Games, 89–90, 92

Keenan, Joe, 92

keyboard buffers, 104, 106, 248

Kobel, Dennis, 100

Kotok, Alan, 69

L
Lackoff, Sam, 59

LDA (Load Accumulator), 107, 118

LDD command, 227

LDX command, 227

LEA (Load Effective Address), 134

Lee, Harold, 91

Lensman, Gray, 63

LET command, 36

life-energy forms, game creation, 276

light gun concept (Ralph Baer), 78

lines

drawing, 52–54

text mode, 201–202

listings

LIST command, 44

program listings, 43–44

LMS command, 170, 189, 195

Load Accumulator (LDA), 107, 118

Load Effective Address (LEA), 134

locations, video buffers, 225

logic instructions

logic principle, 47–48

memory maps and, 124

long tanks, 60

loops

FOR command, 56

looping principle, 55–57

nested, 291–293

NEXT command, 56

luma transmission, 14

M
male adapters, Atari to TV connections, 16

Martin, Derry, 80

math principle, 44–46

mathematical expressions, 44–46

mathematical operations

binary number system

addition and subtraction, 114–115

addressing modes, 117

base two, 112–113

decimal numbering system

addition and subtraction, 110–112

addressing modes, 117

conversions to, 211–212

discussed, 108–109

discussed, 107

hexadecimal numbering system, 115–117

Meister, William F. Von, 101

memory

6502 processor instruction sets, 127

clearing, 42

display lists in, finding location of, 186–187

DMA (direct memory access), 181

inserting display lists into

course scrolling, 216–217

discussed, 212

fine scrolling, 219–220

horizontal course scrolling, 217–218

scrolling implementation, 213–215

keyboard buffers, 104, 106, 248

memory characteristics, game systems, 32

safe storage, 186

text editor, 190–191

video, 104

video mode, 152

memory maps

discussed, 31

logic instruction and, 124

video memory and, 104–105

Miller, Alan, 100

Minsky, Marvin, 67

Missile Command, 101

mode lines, 161

monitor port, Atari 800 installation, 12

monitors

Atari connection, 12–16

receivers and, 11

Mortal Kombat, 93

mouse in a maze, 66

movement, random, 246

multiple dimension arrays, 288–289

multiplication operator (*), 45

N
N (NEGATIVE) system flag, 123

NAME command, 39

Nautical Almanac, 70

NEGATIVE (N) system flag, 123

nested loops, 291–293

NEW command, 42, 184, 186

NEXT command, 56

night and day variations, graphic images,
146–147

Night Driver, 101

Index304

NMI command, 206

Noughts and Crosses (A. S. Douglas), 60

O
Odyssey (Ralph Baer), 80–84

Opcode, 107

operands, defined, 107

OR command, 155–156

Or Gates, 29

OS9 operating system, 1

over scan, 169

OVERFLOW (V) system flag, 123

P
Pac Man, 99

Paddle Ball, 88

page flipping, video buffers, 238–239

passwords

logic and branching instructions, 124–125

password buffer, 125

patterns, 245–246

PDP-1 (Digital Equipment Corporation),
64–65

PEEK command, 187, 189, 249

PHA command, 208

PHP command, 208

Piner, Steve, 67

Ping-Pong, 79, 89

pitch options, sound effects, 261

PLA command, 208, 212

player input, 248–249

player names, game creation, 276–277

PLOT command, 50–52

PLP command, 208

POKE command, 189, 198

POKEY sound chips, 261, 263, 265

Pong, 78–79

Pong Cocktail, 89

PONG Doubles, 89

Pong on a chip, 91

Pong Tron, 88

Index 305

Pong Tron II, 88

power port, Atari 800 installation, 12

power supply

Atari 800, 7–8, 10–12

Commodore 64, 20

power switch

Apple II, 25–26

Atari 800 installation, 12

TRS-80 Color Computer, 2

printing

print commands, 33, 36, 38

variables, 37

Pro Hockey, 88

program listings, 43–44

Puppy Pong, 89

Q
Quadra Doodle, 96

Quadrapong, 89

QUAKE, 270

Quiz Show, 90

R
RAM (random access memory), 32, 35

random movement, 246

random number generators, 246

raster video display, 62

READ command, 291, 295

READY command, 41

Rebound, 89

receivers and monitors, 11

reconstruction, 140–142

Red, Green, and Blue (RGB) color value, 140

register variables, 106

registers

defined, 105

SWEET 16 instruction set, 132

relative addressing mode, 122

release, sound, 259–260

REM jack, TRS-80 Color Computer, 6

reset switch, TRS-80 Color Computer, 2

resolution, 143–144

RETUN command, 220

reward system, game creation, 278

RF switch

Atari 800, 7, 9

Commodore 64, 21

TRS-80 Color Computer, 3

RGB (Red, Green, and Blue) color value, 140

Rip Off, 95

RND command, 279

rods and cones, 141

ROM cartridge connector, TRS-80 Color
Computer, 7

Ross, Douglas T., 66

RTI command, 207–208, 212

RUN command, 48

runtime, 41

Rusch, Bill, 78

Russell, Stephen R., 66, 68–69

S
S (system) register, 134

safe memory storage, 186

SAM (Synchronous Address Multiplexer),
153, 156

Samson, Peter (Expensive Planetarium), 70

Saunders, Robert A., 69

scan lines, 135, 162

screen modes

Apple II, 157–159

Atari 400/800 video mode setup, 159–167

screen mode principle, 48–50

screen resolution, 143–144

SCRNH command, 217

SCRNL command, 216–217

scrolling

course, 216–217

fine, 219–220

horizontal, 217–218

mplementation, 213–215

serial cables, Atari 800, 7–8

serial ports

Atari 800 installation, 12

TRS-80 Color Computer, 2

set/reset instructions, 6502 instruction sets, 130

SETBV command, 266

SETCOLOR command, 209

setup instructions

Apple II, 24–26

Atari 800, 7–9

Commodore 64, 20–24

shadows, graphic images, 146

Shark Jaws, 92

shift rotate instructions, 6502 processor
instruction sets, 129

Shooting Gallery, 96

side panel, Commodore 64, 22

Simon, 85

sine waves, sound and, 256

single dimension arrays, 287

sizes, video buffers, 225

Smith, Bob, 101

Smith, Edward Elmers, 63, 67

Soccer, 88

Solar Quest, 95

Soloman, Bob, 73

sound

amplitude, 255

on Atari 400/800, 261

attack, 258–260

AUDC registers, 264–265

on Commodore 64, 258–261

cycles, 255

decay, 258–260

distorted, 262

flat, 258

hertz measurement, 256

high-pitched tone example, 258

pitch options, 261

POKEY sound chips, 261, 263, 265

release, 259–260

sine waves and, 256

Index306

sources, 253

sustain, 259–260

timing mechanisms, 265

vibration and, 256

voice channels, 261

wavelengths, 255, 257

Space Invaders, 98–100

Space Wars, 95

Spacewar!, 63, 67–70, 249, 253

Spike, 89–90

spot generators, hand drawn schematics (Ralph
Baer), 77

Sprint 8, 90

Sprint II, 90

STA (Store the accumulator), 107, 249

stack manipulation instructions, 6502 processor
instruction sets, 129

stacks, 122–123

Star Castle, 95

Starhawk, 95

stick figures, human graphics, 146–147

Stockham, Thomas, 67

storage devices, TRS-80 Color Computer, 4–7

Store the accumulator (STA), 107, 249

story lines, text-based games, 271

string variables, 39–40

subroutine instructions, 6502 instruction sets, 129

subtraction

binary number system, 114–115

decimal numbering system, 110–112

Super Bug, 90

Super Death Chase, 93

Super Pong, 89

Super Soccer, 88

sustain, sound, 259–260

SWEET 16, 131–132

symbolism, graphic images, 145

Synchronous Address Multiplexer (SAM), 153, 156

system flags

discussed, 123

zero flag, 228

Syzygy, 84–86

Index 307

T
Tailgunner, 95

Tank!, 89, 92

Tank 8, 90

Tank II, 90

TAX command, 208, 212

TAY command, 212

Tech Model Railroad Club (TMRC), 63

Tennis for Two, 62

tennis programming, 62

Tennis Tourney, 88

Terminate and Stay Resident (TSR) program, 137

Tetris, 271

text-based games

complexity levels, 281–282

creativity suggestions, 275–281

environment options, 270

fear factors, 277–280

fight scenes, 278

graphics-based games, 295

life-energy forms, 276

overview, 269–270

player names, 276–277

reward systems, 278

story lines, 271

weapon choices, 278–279

text editor memory, 190–191

text mode lines, 201–202

text screen modes, 48–50

text windows, placing at top of screen, 184

TF variable, 252–253

The Manhole, 101

The Minskytron, 67

THEN command, 48

thrust, 250–252

Tic-Tac-Toe, 66, 96

tiling systems, 233

timing considerations, display lists, 178–182

timing mechanisms, sound effects, 265

TMRC (Tech Model Railroad Club), 63

Touch Me, 85

tracking algorithms, 242–244

transfer instructions, 6502 instruction sets,
129

Tremblay, Bob, 78

Tri:Pos Three-Position Display, 67

TRS-80 Color Computer (COCO)

boot screen, 4

cassette port, 2

cassette tapes, 4–7

channel selection switch, 2

Extended color basic, 4

floppy disk drive installation, 6

illustration, 1

joystick ports, 2

power switch, 2

REM jack, 6

reset switch, 2

RF switch, 3

ROM cartridge connector, 7

serial port, 2

storage devices, 4–7

video buffer location and size, 225

video mode setup up, 153–157

TSR (Terminate and Stay Resident) program,
137

TU variable, 252–253

turn-based games, 270

TV connections, Atari, 16

TV Football, 88

TV Ping-Pong, 88

TV Table Tennis, 88

Twin Racer, 90

two-dimensional arrays, 287, 290

TX-0, 66–67

TXTH variable, 196

TXTL variable, 196

U
U (user) register, 134

Ultra Tank, 90

universal game structure, 268–269

V
V (OVERFLOW) system flag, 123

Valentine, Don, 91–92

variables

creating, 37

defined, 106

dollar signs in, 39

generic, 38

mathematical expressions, 44–46

printing, 37

register, 106

string, 39–40

TXTH, 196

TXTL, 196

variable principle, 35–40

vector graphics, gaming development and, 95

vertical blank, 135, 162

vibration, sound and, 256

video buffers

clear screen procedure, 226–232

double buffering, 239

locations and sizes, 225

page flipping, 238–239

placing data in, 232–238

video cables

Apple II setup instructions, 25

Atari 800, 7, 10

Commodore 64, 20, 23

Video Display Generator (VSG), 153

video memory, 35, 104–105

video mode

Apple II, 157–159

Atari 400/800

display lists, 167–175

screen modes, 159–167

COCO (TRS-80 Color Computer), 153–157

Commodore 64, 221

horizontal scan line, 162

memory controls, 152

video buffer, 151

Index308

visual cues, graphic images, 145–146

voice channels, 261

VSG (Video Display Generator), 153

W
Ward, John E., 66

Warrior, 95

wavelengths, sound, 255, 257

weapon choices, game creation, 278–279

Whitehead, Bob, 100

Winner, 88

Witanen, Wayne, 66

work area screen shot, Atari 800, 32–33

Wozinak, Steve, 94

WSYNC command, 179, 181–182

Index 309

X
XOR Gates, 29

Y
Y2K, interrupts and, 137

Z
Z (ZERO) system flag, 123

Zadeh, Lotfi, 247

zero flad, 228

zero page addressing mode, 120

zero page indirect addressing mode, 121

ZERO (Z) system flag, 123

Call 1.800.354.9706 to order
Order online at www.courseptr.com

Check out the Beginning series from Course PTR—full of tips and
techniques for the game developers of tomorrow! Perfect your
programming skills and create eye-catching art for your games to
keep players coming back for more.

Check out advanced books and the full Game Development series at

WWW.COURSEPTR.COM/GAMEDEV

Beginning C++
Game Programming

ISBN: 1-59200-205-6
$29.99

Beginning DirectX 9
ISBN: 1-59200-349-4

$29.99

Beginning OpenGL
Game Programming

ISBN: 1-59200-369-9
$29.99

Beginning Illustration
and Storyboarding

for Games
ISBN: 1-59200-495-4

$29.99

RISE TO THE TOP OF YOUR
GAME WITH COURSE PTR!

Professional ■ Trade ■ Reference

WWW.COURSEPTR.COM/GAMEDEV
www.courseptr.com

CREATE AMAZING GRAPHICS
AND COMPELLING STORYLINES

FOR YOUR GAMES!

Professional ■ Trade ■ Reference

Call 1.800.354.9706 to order
Order online at www.courseptr.com

The Dark Side of Game Texturing
ISBN: 1-59200-350-8 ■ $39.99

Get ready to analyze—and re-create—the textures and graphics used in your
favorite 3D first-person shooter games. Not a born artist? That’s okay. You’ll
learn how to let Photoshop do most of the work. Begin with texturing basics,
including pixel sizes, color modes, and alpha channels. Then jump right into
hearty texture tutorials as you create everything from sci-fi backgrounds and
molten lava to medieval castle walls and dragon skin.

Beginning Game Graphics
ISBN: 1-59200-430-X ■ $29.99

This step-by-step guide begins with the most basic modeling techniques and
wraps up with advanced workflows used by professional game artists. It
provides powerful and easy-to-use tools to get you started, and it covers many
of the methods, philosophies, and proven techniques that can improve your
game demos and help separate you from the crowd in the rapidly growing
interactive entertainment industry.

Shaders for Game Programmers and Artists
ISBN: 1-59200-092-4 ■ $39.99

Master the fine points of shader creation by using ATI’s RenderMonkey platform.
This easy-to-use framework allows you to focus your energy on shader
development as you cover simple techniques, from the basics of color filters to
more advanced topics, such as depth of field, heat shimmer, and high-dynamic
range rendering. Extensive exercises at the end of each chapter allow you to
test your skills by expanding upon the shader you’ve just developed.

Character Development
and Storytelling for Games

ISBN: 1-59200-353-2 ■ $39.99
This is a book of ideas and of choices. Knowing which choices to make is not
teachable. It’s part of that creative instinct we call talent whose secret voice
guides us every time we sit down at the keyboard. All stories are not identical.
They are shaped by all those unique facets of the human beings who write
them. [This book] is meant to inform, to instruct, and maybe even inspire. [It] has
been designed as a quest. We are all of us on a journey toward a destination
for which there is no single road.—Lee Sheldon, Author

www.courseptr.com

Take Your
Game to the

XTREME!

Xtreme Games LLC was founded to help small game developers
around the world create and publish their games on the commercial
market. Xtreme Games helps younger developers break into the field
of game programming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of developers around
the world. If you’re interested in becoming one of them, visit us at
www.xgamestation.com.

www.xgamestation.com

www.xgamestation.com
www.xgamestation.com

Professional ■ Trade ■ Reference

GOT GAME?

Call 1.800.354.9706 to order
Order online at www.courseptr.comA division of Course Technology

™

Game Testing All in One

1-59200-373-7 ■ $49.99

Game Design, Second Edition

1-59200-493-8 ■ $39.99

Game Interface Design

1-59200-593-4 ■ $39.99

3D Game Programming
All in One

1-59200-136-X ■ $49.99

www.courseptr.com

	Contents
	Introduction
	Chapter 1 Bringing Your Retro Machine to Life
	Setting Up Your TRS-80 Color Computer
	Color Computer Storage Devices

	Setting Up Your Atari 400/800
	Installation Instructions
	Installing the Power Supply
	Connecting the Atari to a Monitor
	Connecting Your Atari to a TV
	Installing Your Disk Drive
	Connecting the Joystick

	Setting Up Your Commodore 64
	Setting Up Your Apple II

	Chapter 2 Simply Complicated Game Programming
	Game Systems: Similar but Different
	Assembly Dialect
	The Memory Map
	CPU, Bus, and Memory Characteristics

	BASIC 101
	Principles of BASIC
	The Variable Principle
	The Input Principle
	The Listing Principle
	The Math Principle
	The Logic Principle
	The Screen Mode Principle
	The Graphics Principle
	The Branch Principle
	The Looping Principle

	Chapter 3 The Early History of Video Games
	Build It and They Will Come!
	Noughts and Crosses
	Willy Higinbotham’s Game

	In a Land Far, Far Away
	Spacewar!
	The 1960s

	Return of the Killer Pong
	Spot Generators
	The Odyssey

	The Syzygy
	Atari and Pong
	The Knockoff
	Big Business

	The Birth of Vector Graphics
	Space Wars

	A New Age of Video Games
	Space Invaders

	Conclusion

	Chapter 4 Assembly Language
	Understanding Assembly Language
	Moving Memory Around in Your Computer
	Understanding Numbers and Math in Assembly Language
	Addressing Modes
	Working with the Stack
	System Flags
	Logic and Branching Instructions

	Facing the Code
	6502 Programming
	Sweet 16
	6809 Programming

	Conclusion

	Chapter 5 A Game Graphics Primer
	Color
	What Makes a Picture?
	Approximating Shapes with Limited Pixels
	Symbolism
	Visual Cues
	Putting Them Together

	Conclusion

	Chapter 6 Setting the Video Mode
	Setting the Video Mode
	Setting the Video Mode on the COCO
	Setting the Video Mode on the Apple II
	Setting the Video Mode on the Atari 400/800

	How Does the Display List Interrupt Work?
	Timing Considerations
	Multiple Display List Interrupts

	Create a Generic Display List
	Find the Location of Your Display List in Memory
	Find the Start of Video Memory
	Creating Your New Display List
	The Load Memory Scan Instruction
	Inserting the Remaining ANTIC Mode 2 Lines
	A Look at What You Have So Far
	Switching Back to Video Memory
	Polishing Off the Display List
	And Then There Was Light

	A More Advanced Display List
	Creating a Generic Display List
	Inserting Text Mode Lines
	What’s Next?

	Writing DLI Interrupts
	Writing a Display List
	Writing the Code for Your Display List Interrupt
	Guarding the Computer’s Memory
	Writing the Actual Heart of the Display List Interrupt
	Converting Assembly Language Code to Decimal
	Inserting the Display List into Memory
	Setting the Video Mode on the Commodore 64

	Conclusion

	Chapter 7 Hacking the Video Buffer
	Identify the Characteristics of the Current Graphics Mode
	Video Buffer Hacking 101
	Placing Data in the Video Buffer
	Page Flipping

	Conclusion

	Chapter 8 Adding Player Input, Physics, and AI
	Creating Your Computer’s Intelligence
	Tracking Algorithms
	Evasion Algorithms
	Better Tracking and Evasion Algorithms
	Patterns
	Random Movement
	Fuzzy Logic

	Reading Player Input
	Modeling Game Physics
	Thrust
	Friction
	Gravity
	Putting All the Forces Together

	Conclusion

	Chapter 9 Sound Effects
	How Sound Works in the Real World
	Mimicking Real World Sounds on a Retro Game Machine
	Computers with Special Sound Hardware
	The Commodore 64
	The Atari 400/800

	Basic Sound Command
	Assembly Sound Programming

	Conclusion

	Chapter 10 Putting It All Together: Building Games
	The Universal Game Structure
	Initialization
	The Game Loop
	Cleanup

	Programming Text-Based Games
	What Is a Text-Based Game?
	Building Your First Text-Based Game
	The Story
	The Lay of the Land
	Creating Things That Go Bump in the Night
	Tools of the Trade

	Creating a Language for Your Game
	Writing the Code for Your Game
	Mapping Out Your Program
	Mapping Out Your World

	Jumping from Text-Based Games to Graphics-Based Games
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

