WPF Application Series
@5 unicap

Practical WPF

Graphics Programming

Advanced .NET Graphics
Development with the
Windows Presentation Foundation

Jack Xu, Ph.D

Practical WPF
Graphics
Programming

Advanced .NET Graphics Development with
the Windows Presentation Foundation

Practical WPF
Graphics
Programming

Advanced .NET Graphics Development with
the Windows Presentation Foundation

Jack Xu, Ph.D

UniCAD Publishing

Practical WPF Graphics Programming
Copyright © 2007 by Jack Xu, Ph.D
Printed and bound in the United States of America987654321UC

Editor: AnnaHsu

All rights reserved. No part of the contents of this book and corresponding example
source code may be reproduced or transmitted in any form or by any means without the
written permission of the publisher and the author.

The author and publisher have made every effort in the preparation of this book to ensure
the accuracy of the information, however this book is sold without warranty, either
express or implied. No liability is assumed for incidental or consequential damagesin
connection with or arising out of the use of the information or programs contained in the
book.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or specia sales, which may include electronic versions and /or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

sales@unicadpublish.com
Visit us on the website: www.unicadpublish.com

Published by UniCAD Publishing.
Phoenix, USA

ISBN-13: 978-0-9793725-1-3
ISBN-10: 0-9793725-1-8

Publisher’s Cataloging-in-Publication Data

Xu, Jack

Practical WPF Graphics Programming — Advanced .NET Graphics Development with the
Windows Presentation Foundation / Jack Xu

- 1% ed.

p.cm.

ISBN 978-0-9793725-1-3

1. Windows Presentation Foundation. 2. Graphics Programming. 3. .NET Applications
I. Title. 11. Title Il Title: Practical WPF Graphics Programming

For my wonderful family

contents

INtrodUCLION ..o XiX
OVEIVIBW ...ttt ee st te et esne e XiX

What this Book Includes...........ccoooviieiieniineeneeieen XXI
ISThiSBOOK fOr YOU?......ceecieeeecieee e XXI

What Do Y ou Need to Use ThisBOOK?..........cccccevuenuenne XXil

How the Book Is Organized............cccveevveivicenieciennn, XXii

Using Code EXampIes.........ccoceeireeneeneneeneese e XXV
CUSLOMEX SUPPOITeeveeveeeesieesie e see e sreesee e e XXIV
Chapter 1 Overview of WPF Programming................ 1
New FeatureSiNWPF ... 1
XAML DASICS....ooiieieiiniiiieise et 2

Why XAML Needed?..........cocvvvveeerieeeeeseseseeseons 2

Creating XAML Fil€S.....cccoovvviiieieeecere e, 3
Code-Behind Files.........cocoiieiiniiiieeee e 4

Your first WPF Program..........cccceeeeeieeseeniesieeseeseesee e e 5
PropertieS in XAMLcooviiiiiieeeeeee e 6

Event Handlersin Code-Behind Files....................... 7

Code-Only EXample.........ccocoveerenienieneee e 8
XAML-ONlY EXaMPIE......ccoeeieciee e 10
Chapter 2 WPF GraphicsBasicsin 2D..........cccc...... 13
2D Coordinate Systemsin WPFcccovveriinenecienen 13
Default Coordinates.........ccooveveeieeceeseereeiee e 13

Custom CoOrdiNates..........ccceerveerierieereesieeie e 16

Custom Coordinates for 2D Charts...........cccccveneeee. 22

2D VIBWPOIT ..ot 27

Zooming and Panning.........ccccceeeeveereseesenene. 29

x | Contents

Basic 2D Graphics Shapes.........cccovveveeniniinieieceeee 31
LiNES. it 31
Rectangles and EIlIPSeS.......ccocevvreeneeienciineeen, 33
POIYIINES.....cceeeeeceeeee e 37
POIYGONS.....coiiieeeeee e 38

Chapter 32D Transformations..........ccoceveevrceenenneenne 43

Basics of Matrices and Transforms.........cccocevveveveesieennns 43
Vectors and POINES..........ccooeeierennenneneesee e 44
o |] oo T 44
REflECtion ..o, 45
001 11 o] o H PSR SRSS 46
Trangation.........ccocveiieiieeie e 47

Homogeneous CoordiNates..........cccovereereerieeneeseeseesieenens 47
Trandation in Homogeneous Coordinates.............. 48
Scaling in Homogeneous Coordinates.................... 48
Rotation in Homogeneous Coordinaes................... 49
Combining Transforms..........cccceceveeevieve s 50

Vector and Matrix iNWPF..........ccooeiiiiieeeeseee 51
VECIOr SIFUCLUIE ... 51
MaELIX SEUCLUE ..ot 53
MatriX OPErationScccceveereeereeseeriesieeseeseeseeseens 54
MatrixX TransformS........coceveereeieneeresee e 57
Creating Perpendicular LiNeS.........cccoevevvecveeennenne 64

Object Transformsin WPF ... 69
MatrixTransform Classccoevereeresieeseeieseenens 71
ScaleTransform Class........cccoevvveenenienieseeiee 75
TrandateTransform Classccccceeveveevievceesieenene 79
RotateTransform Class.........coccevveevneeneniieseenieenn, 80
SkewTransform Classccceveeceneenecce e 81
Composite Transforms.........ccceceveeveninneeneeceeee 83

Chapter 4 Geometry and 2D Drawingc.ccceeveeene 87

Path and Geometry Classes..........ccvvveveevesieeneeiesieseenens 87
Line, Rectangle, and Ellipse Geometries................ 88
GeometryGroup Class........ccooveveeeeneeneeiesee e 89
CombinedGeometry Class..........ccooerieneeneninnennne. 92
PathGeometry Class........ccccevvevieneeiesieese e 96

Linesand Polylines..........ccoccovervininnennnnnne 97

Contents | xi

ATCS. 97

Bezier CUNVES.......ccooieieeree s 98

Geometry and Mini-Language..........ccccceeereenuenen. 100
Interactive 2D Drawing........cccooveveeeeseeseeseeseeseeseesseeneas 103
MOUSE EVENLS.......eeeiiiieeiee e 114
Creating and Combining Shapes..........cccceevveenen. 115
Dragging and Moving Shapes.........ccccevereereeennnne. 116

[T =S (o U 117
CUSLOM ShaPES......coitieiieiieniee ettt 121
Star ShAPE.....ccveeeeeeere e 121
ATITOW LINE ..o 125
Testing Custom Shapes.........cccccvveeeveeneeieeseeseeenns 131
Chapter 5 Colorsand Brushes..........cccccceveevvecnenne. 137
(070 Lo £ TSRS 137
SysSteM COlOrSoceeceeieceeseee e 138

(000 Fo] gl = T (. SRR 142
BrUSHES.......oiiiie s 150
SOlIACOIOrBrush......cccoeiieerieeeeesee e 151
LinearGradientBrush..........cccceevvevenenenenescnnenn. 153
Custom Colormap Brush.........ccoceveeienenieenennns 158
Radia GradientBrush...........ccccocevevenenenenenennnn. 165
Custom Radial Colormap Brushccceceeviennenne 169
IMagEBIruSh ..o 175
DrawingBrushc.ccooeeirieeneeesee e 181
ViSUAIBIUSH ..., 187
Bitmap EffectS.......cccoveeiieieeeeee 189
OpaCity MaskS........ccccveeereereeeeeseeree e seesaeseeneens 194
Brush TransSforms.........cccoieeiinienenie e 196
LinearGradientBrush Transform...........c.cccceeeunee. 204
Radial GradientBrush Transform...........cccccceeenee... 206
ImageBrush Transformcccceevevevceneeneceee 207
Drawing and Visual Brush Transform.................. 207
Chapter 6 ANiMationcccoeceeveevienieesee e 209
WPF ANimation BasiCS.........c.cvereriirienienenie e 209
Property-Based Animation..........c.ccooeeevvreeneennene 210

A Simple Animation in Code..........ccceeevrverieennene. 211

Animation and Storyboard...........ccceecereeneniineneee 213

xii | Contents

Storyboard and Event Triggerccoeeeverveeneennns 213
Storyboard Animation in Code...........cccccvevereennene 215
Animation and Timing Behavior...........ccceceeunne. 217
DUFELION ... 218
RepeatBehavior..........cccooovveveeienieneeee 220
AUIOREVEISE ... 220
BeginTimecoeeieeeeeeeeee e 221

Speed Controls........cccvveeverce v 221

Interactive Control.........ccooceeverieneeveneseeseeee e 224
Animation and Transform..........ccoceevveeieienenene s 228
Animating Tranglation...........cccocceveiirinneenenenne 228
Rolling Balls.......ccoecevieececece e 231
Combining Transform Animations.............c.ccc..... 236

Path ANIMEaLioNooeiiiieieree e 240
Frame-Based ANMation...........ccooeevereenennieniee e 244
Key-Frame ANiMation..........ccccevveeveeieeneeseesennnens 244
Spline Key-Frame Animationcccceeeeveenenen. 247
CUStOM ANIMELIONcveeieiieieie e 249
Custom Animation CIass.........ccoceverienienieeiiennns 250
Per-Frame Animation..........ccoevevenenieieneneneens 254
Animation Using TIMEYcccoeviieeneniieneenieeene 256
Chapter 7 Physicsand Gamesin WPF 263
Ordinary Differiential EQUations..........c.ccccevvevevieeniennne 263
Fourth-Order Runge-Kutta Method 264
Higher-Order ODES........cccccoveeveeieeseeie e 265

ODE SOIVES ..ot 265
Pendulum ..o 267
Equation of MOtIONccoeeeiieriinieeeie e 267
Pendulum SImUIatorcccoeeieneninencneeee 268
Coupled-Spring SYSteMccccvveeieeeeenee e 274
Equations of MOtioN..........ccccvveveieeseecie e 275
Coupled Spring SIMUIELOrccccveeereeieeeeseeens 275
PrOJECHIES...c.eeeececeee e 287
Aerodynamic Drag FOrce........ccouvenerinneeniennnnne 287
Projectile Equations of Motioncccccevveeneee. 288

GOIf GAME....oiieeceieriee e 289
COllISION ..t 296

Bouncing Ball PhySICS ..o 297

Contents | xiii

Bouncing Ball Simulatorcccoceveeiinienennene 299
FractalS......ooeieieececee s 306
BiNary Tre .. .cooveieiieeeie e 307
SNOWTIEKE.......eeiieieee e 310
Mandelbrot Set ..o 315
JUITASEL ... 323
Chapter 8 Chartsin WPF........ccco oo 331
SimpleLine Charts.......cccoeinieneeeeesee e 331
Creating Simple Line Charts.........ccccccecevevveiiennnnne 332

HOW [t WOIKS.....coieiiiieeeeeee e 334

Line Chartswith Data Collectioncccceeeveneneniene. 334
Chart Styl€......eeeeeeeeeee e 335

Data ColleCtion.........cccceeveiereriieneseseseeeeee 336

Data SENES.....coieeeieeeeeee et 337
Creating Charts.........ccoveeieeceeseese e 339
Gridlinesand Labels........cocoieeieniiieeee e 342
XAML LYOUL.....ccocueieiiieeiiiee e 342
ChartStyleGridlines Class........oceveeveeeeieeiienens 344
Testing ProjeCt......covevveeeceee e 349
LeOENG....c i e 351
Legend ClaSS......ccoceveereceeseesie e 352
Testing Project.......ccovveineeeee e 355
Chart User Controlc.cceeeeeienini e 358
Creating Chart Controlcccoeeveeieninseenienens 359
Defining Dependency Properties................. 361

Chart Style for Chart Contral 366

Data Collection and Data Series.................. 371

Using Chart Controlccooerieieeneninneeneeee 372
Creating Simple Chartcccccevvvceevieenee 373

Creating Multiple Charts.........cccoeivrenenne 375

Chapter 93D Transformations.........ccccceeveervereenne 379
3D MatriceSIiN WPF ...t 379
3D Points and VeCtors.........ccoeererieeseeniesiieneeneens 379
MatriX3D SITUCLUIEccueeueeieiesie e 382
Matrix3D Operations..........ccoveeveereeserreeseeseenseenns 383
Matrix3D Transforms.........coceverererienieeniesiesieneens 387

Rotation and Quaternionccccceeveeeiveevieecnenn 391

xiv | Contents

PrOJECHIONS... .o e 394
Orthographic Projections...........cccccccvveeveeieseennnns 395
Multi-View Projections..........ccocceveevveennne. 395
Axonometric Projections.........c.ccccceevveeeenee. 396
Perspective Projections...........ccoeeeeneneeieniienens 399
One-Point Perspective Projections.............. 400

Two-Point Perspective Projections.............. 400
Three-Point Perspective Projections............ 401
Perspective Projection MatriX.........ccceeeenee. 401

Views and Projectionsin WPFccccvovevvcceevecciec, 402
View Transform ... 403
Perspective Projection..........cccvveceiceeceeiecciesnns 406

View Frustum ... 406
Perspective Transform MatriX...........cc....... 406
Implementing Perspective Transforms........ 409

Testing Perspective Projections................... 411
Orthographic Projectioncccceeeveenenieneenens 415
Orthographic Transform Matrix 416
Implementing Orthographic Transforms..... 417

Testing Orthographic Projections................ 418

Object Transformsin WPFE ... 420
ScaleTransform3D CIass........cccoevenereneserenenne 421
TrandateTransform3D clasScccoeeverieneerienne 425
RotateTransform3D Class........ccocvvrerenereriennnnn. 426
MatrixTransform3D Class.........cccoceverinreeniennnne 428
Combining Transforms...........ccocveveeivsieeseeiesens 429
Chapter 10 WPF GraphicsBasicsin 3D.................. 433
3D GraphiCS BaSICS.......ccooeieeriirieneenieeie et 433
VIEWPOIT3D ...cceeceeeeecie e 434

3D ObjectS INWPF ... 435
Geometry and Meshcccovevvceevece e, 436
GeometryModel 3D and Surfaces...........cceeeeeenens 438
[lluminating the Scene..........ccccccevvevevcesecce e, 440
CameraPOSItIONcooeeeeiieriee e 441
Simple Triangle iN 3Dccccccevieeviee e 442
BasiC 3D Shapesccoveeveeiinenee e 444
Coordinate Axes and Wireframe...........ccoceveerennens 445

Creating Cube.........cccocoveiiiiececee e 447

Contents | xv

Creating SPhere........oocvveieeeeree e 453
Creating CyliNdercooveveeiereee e 456
Creating CONE.......ccooeevieeieeeree e 461
Creating TOIUS......cooeevieeeceeseese e 464
Chapter 11 Custom 3D Geometries........cccoevvrrnnenne 469
CUDE GEOMELIYcoveriiieieeiee ettt 469
CubeGeometry ClaSs........cccovevereereeieeseeseeseeseens 469
Tesing CUDEGEOMELTY........cooeeviereereeneee e 473
Ellipsoid GEOMELIYccccveeieeieceee e 477
EllipsoidGeometry Class........ccoorveieenenieniinnienns 477
Testing EllipsoidGeometryccevveeeveeveennene. 480
Cylindrical GEOMELIY.......cccceeeeiieieriesieseee e 482
CylinderGeometry Class.......ccccoevevevveeneeiinseennns 483
Testing CylinderGeometrycccoveeeeereenienennne 486
CONE GEOMELTYeeeeiieie et 489
ConeGeometry ClaSs........cccovevereererieeneesieesieneens 490
Testing CONEGEOMELTYccveveereerieerieeieseeseeens 493
TOrUS GEOMELIY ...t 497
TorusGeometry Class........cccovveveeveereeieeseeseeseennes 497
Testing TOruSGEOMELYccceveerieeieenienee e 501
[cosahedron GEOMELTYcccveerieeeesierie e 505
|cosahedronGeometry CIass.........ccocceveereenieneenne. 506
Testing |cosahedronGeOmetryccccceeveveereeenee. 509
Dodecahedron GEOMELTYccoveeveereereenienee e 512
DodecahedronGeometry Class..........cccccevvereeennene. 513
Testing DodecahedronGeometry...........cccceeveeennee. 519
Soccer Ball GEOMELNYocveveeieceesece e 521
SoccerGeometry Class........ccveererieeneeniesnieseeneens 522
Testing SOCCErGEOMELTYeevveveeveeereeeieseereeens 529
Chapter 12 Custom 3D Shapes.......cccceeveeveevvrceenne 535
Deriving from UIEIement3Dccccvoevenienenccienene 535
CUDE ShaPE ..o 538
Cube Shape ClasS.......cccoveereeiireereeie e 538
Testing Cube Shape..........cceveeveeveeneeeeeere e 540
Ellipsoid Shape........ccccoveeieniee e 544
Ellipsoid Shape Class.........cccccvvveveeieece e, 544

Testing Ellipsoid Shape.........ccccoeeivinneninnienene 547

xvi | Contents

Cylinder Shape.........cooiiiiie e 548
Cylinder Shape Class........cccecvveevveie e 549
Testing Cylinder Shape.........ccoccevevenieneeneneee 551

CONE ShAPE ..o 552
Cone Shape ClasS.......ccvveeieeiieneereeee e 553
Testing Cone Shape.........ccceeveeveeveereeieseese e 555

TOMUS SNAPE ..ot 556
Torus Shape Class.......cccvveevveieeseereeeseesee e 557
Testing TOrus Shape........cocvveeverieneereee e 559

[cosahedron Shape........ccccveceveerece e 560
Icosahedron Shape CIass........ccocveevenieneenieneee 561
Testing Icosahedron Shape...........ccccceeevveevieennee. 563

Dodecahedron Shapecocceveeieeieneneeeeee e 563
Dodecahedron Shape Class.........ccccveceeveereniiennnns 563
Testing Dodecahedron Shape..........cccocceveeviereenee. 564

SOCCEr SNAPE......eeiveeeerieeieee e re e e e rae e e eee s 565
Soccer Shape Class........coveveeieeneeee e 565
Testing Soccer Shape......ccvevveeeveereee e 569

Combining Shape..........coceiiriiiieeeeeee e 569
Combining Shape Class........ccccecvveeveerieeieseenns 570
Testing Combining Shape.........cccccoverieneenenenne. 573

Chapter 133D SUrfaces......cccccvvevvceeeieerieseeeeeeene 575

SIMPIE SUMACEScceevieeeceece e 575
Rectangular Meshes..........cccorviieiicincee 576
SimpleSurface Class.........cccvvereevesieseese e 577
Creating Simple Surfaces.........ccovcvveeneeieneennens 581

Parametric SUIfacescccoveviniieneeeeee e 584
ParametricSurface Class.........cccceveeierinneeneenene 585
Creating Parametric SUrfaces.........ccoocveveevveviennnns 589

Helicoid Surface.......ccocovvevevceneeieceee 589
Sphere SUrface.......cccuvvveeveece e 590
TOrus SUMaCe.......ccoeeveeneeeeeee e 591
Quadric SUrfaces.......cocevveeceesieeeiee e 592

Extruded SUIfaces.........occoverineeneee e 593
ExtrudeSurface Class........ccooevvveneninencneneeen, 594
Creating Extruded Surfaces..........cccccveeevenieneenens 598

Surfaces of ReVOIULION..........ccooeveninirieee e 599

RotateSurface Class........oooove 600

Contents | xvii

Creating Surfaces of Revelution.............ccccccueenee. 604
Surface ShadiNgcovveveeceseere e 606
SurfaceShading Class........ccoveveeienieneeiesee s 606
Creating Shaded Surfaces..........ccceeevveeneeveseennnns 610
Chapter 14 3D Model Manipulationc.ccceeuue.... 615
Lighting and Shading.........ccccceeinirninineeeeece e 615
Light SOUICES......ccceceeceeeiecee e 616
Testing Light SOUrCes.........ccoeveriinieneeieeeee 617
ShadiNg.....cceeeeeeseee e 620

= = = TR 621
Diffuse MaterialS.........ccooeriiiieneninieeereseie 622
Specular and Emissive Materias..........ccoceeveenen. 624
TeXtUre MapPiNg.......ccoceereeeeseere e se e 627
Using LinearGradientBrush............ccccceeen.e. 627

Using RadialGradientBrush...............c......... 630

Using Image and Tile Brushes..................... 633

2D Elements 0n 3D SUIfaces........c.ceeveeeeneneneniesienienne 634
Viewport2DVisua3D Class.........ccocereenens 635

Using Viewport2DVisual3Dccccceeueeee. 635

Interacting with 3D MoOdElS........ccoovieeiiiieeeeee, 641
Hit-Testing for 3D Geometries.................... 642
Hit-Testing for 3D Shapes........cccceevreeneenne 645

Rotating 3D Objectswith Mouse................. 649

| ntroduction

Overview

Welcome to Practical WPF Graphics Programming. This book will provide all
the tools you need to develop professional graphics applications using the
Windows Presentation Foundation (WPF) and C# based on the .NET framework.
| hope this book would be useful for WPF and C# programmers of all skill
levels.

As a C# programmer, you are probably aready familiar with Windows Forms,
the mature and full-featured development tool. Windows Forms is built on top
of the .NET framework and uses the Windows APl to create the visud
appearance of standard user interface elements. It provides al kinds of tools for
laying out windows, menus, dialogs, and controls. You can also develop
graphics applications based on Windows Forms using the Graphical Device
Interface (GDI+). However, creating a feature-rich graphics application using
Windows Forms can be a difficult and tedious task. For example, Windows
Forms provides no tools for creating three-dimensional (3D) graphics
applications. Even a 3D point, the simplest of 3D graphics objects, must be
defined first in a suitable 3D coordinate system before it can be used as a 3D
graphics object.

WPF completely changes the landscape for graphics programming. At first, you
may think that WPF is just another way to create windows, menus, dialogs, and
controls. However, WPF has much more to offer than any other Windows
programming framework does. It integrates three basic Windows elements — text,
controls, and graphics — into one single programming model, and puts these
three elements into the same element tree in the same manner.

Without WPF, developing a graphics application might have involved using a
number of different technologies, ranging from GDI/GDI+ for 2D graphics to
Direct3D or OpenGL for 3D graphics. On the contrary, WPF is designed as a
single model for graphics application development, providing seamless

xX | Introduction

integration between such services within an application. Similar constructs can
be used for creating animation, data binding, and 3D models.

To take further advantage of new powerful graphics hardware technologies,
WPF implements a vector-based graphics model. This alows for graphics to be
scaled based on screen-specific resolution without the loss of image quality,
something nearly impossible with fixed-size raster graphics. In addition, WPF
leverages Direct3D for vector-based rendering and makes use of the graphics
processing unit on any video card that implements DirectX in hardware.

With WPF, graphics elements can be easily integrated into any part of your user
interface. For example, WPF provides 2D shape elements that can be involved
in the user interface (UI) tree like other elements can. You are free to mix these
shapes with any other kind of element, such as a button. The WPF 3D modd is
based on the Direct3D technology and allows you to create a custom 3D shape
library that can be reused in your projects. The main benefits that WPF offersin
3D areits ease of use and its ability to integrate 3D content anywhere in a WPF
application.

As you may have aready noticed, there are many WPF programming books
available in bookstores. The vast majority of these books are general-purpose
user guides and tutorials, which explain the basics of WPF and how to use it to
implement simple WPF applications. To take full advantage of WPF graphics
features, however, there is a need for a book to provide an in-depth introduction
specifically to WPF graphics programming.

This book is written with the intention of providing you with a complete and
comprehensive explanation of the WPF graphics capability, and pays specia
attention to the code implementation details, which will be useful when you
create your own real-world WPF graphics Applications. This book includes over
120 code examples, which cover broad array of topics on WPF graphics
programming. Much of this book contains original work based on my own
programming experience when | was developing commercial Computer Aided
Design (CAD) packages. Without WPF and the .NET framework, developming
advanced graphics is a difficult and time-consuming task. To add even simple
charts or graphs to your applications, you often have to waste effort creating a
chart program, or buy commercial graphics and chart add-on packages.

Practical WPF Graphics Programming provides everything you need to create
advanced graphics in your WPF applications. It shows you how to create a
variety of graphics, ranging from simple 2D shapes to complex 3D surfaces and
interactive 3D models. I'll try my best to introduce you to WPF graphics
programming in a simple way — simple enough to be easily followed by a
beginner who has never had experience developing WPF graphics applications
before. You can learn from this book how to create a full range of 2D and 3D
graphics applications and how to implement custom 3D geometries and shapes
that can be reused in your WPF projects.

Introduction | xxi

What This Book Includes

This book and its sample code listings, which are available for download at my
website at www.authors.unicadpublish.com/~jack _xu, provide you with:

* A complete, in-depth instruction on practical WPF graphics programming.
After reading this book and running the example programs, you will be able
to add various sophisticated graphics to your WPF applications.

» Over 120 ready-to-run example programs that allow you to explore the
graphics techniques described in the book. These examples can be used to
better understand how graphics algorithms work. Y ou can modify the code
examples or add new features to them to form the basis of your own
projects. Some of the example code listings provided in this book are
already sophisticated graphics packages that can be used directly in your
own real-world WPF applications.

* Many classesin the sample code listings that you will find useful in your
WPF graphics programming. These classes contain matrix manipulation,
coordinate transformation, color maps, chart controls, and the other useful
utility classes. Y ou can extract these classes and plug them into your own
applications.

|sThisBook for You?

You don't have to be an experienced WPF developer or an expert to use this
book. | designed this book to be useful to people of al levels of WPF
programming experience. In fact, | believe that if you have some experience
with the programming language C#, Windows Forms, HTML, and the .NET
framework, you will be able to sit down in front of your computer, start up
Microsoft Visual Studio 2008 and .NET 3.5, follow the examples provided in
this book, and quickly become familiar with WPF graphics programming. For
those of you who are already experienced WPF developers, | believe this book
has much to offer aswell. Thereis agreat deal of information in this book about
graphics programming not available in other WPF tutorial and reference books.
In addition, most of the example programs in this book can be used directly in
your own real-world application development. This book will provide you with
a level of detail, explanation, instruction, and sample program code that will
enable you to do just about anything WPF graphics-related.

The majority of the example programs in this book can be used routinely by
WPF developers and technical professionals. Throughout the book, I'll
emphasize the usefulness of WPF graphics programming to real-world
applications. If you follow the instructions presented in this book closely, you'll
be able to easily develop various practical WPF graphics applications, from 2D
graphics and charts to a sophisticated 3D model libraries. At the same time, I'll
not spend too much time discussing programming style, execution speed, and
code optimization, because there is a plethora of books out there that already

xxii | Introduction

deal with such topics. Most of the example programs you'll find in this book
omit error handlings. This makes the code easier to understand by focusing only
on the key concepts and practical applications.

What Do You Need to Use This Book?

You'll need no speciad equipment to make the best use of this book and
understand the algorithms. To run and modify the sample programs, you’ll heed
a computer that is capable of running either Windows Vista or Windows XP.
The software installed on your computer should include Visual Studio 2008 and
the .NET 3.5 standard edition or higher. If you have Visua Studio 2005
and .NET 3.0, you can aso run most of the sample code with few modification.
Please remember, however, that this book is intended for Visual Studio 2008
and .NET 3.5, and that all of the example programs were created and tested on
this platform, so it is best to run the sample code on the same platform.

How the Book |s Organized

This book is organized into fourteen chapters, each of which covers a different
topic about WPF graphics programming. The following summaries of each
chapter should give you an overview of the book’s content:

Chapter 1, Overview of WPF Programming

This chapter introduces the basics of WPF and reviews some of the general
aspects of WPF programming, including XAML files used to define user
interfaces.

Chapter 2, WPF Graphics Basicsin 2D

This chapter reviews some fundamental concepts of the 2D graphics and the 2D
drawing model in WPF. It introduces coordinate systems and basic 2D shapes.

Chapter 3, 2D Transformations

This chapter covers the mathematical basics for 2D graphics programming. 2D
vectors, matrices, and transformations in the homogeneous coordinate system,
including trandation, scaling, reflection, and rotation, are discussed. These 2D
matrices and transformations allow WPF applications to perform a wide variety
of graphical operations on graphics objectsin asimple and consistent manner.

Chapter 4, Geometry and 2D Drawing

This chapter introduces WPF's Geometry classes and demonstrates why you
need them to create complex 2D graphics objects. It also shows you how to
create interactive 2D drawing programs and custom shapes.

Chapter 5, Colors and Brushes

Introduction | xxiii

This chapter covers the color system and brushes that WPF uses to paint
graphics objects. It introduces a variety of brushes and their transformations.
You'll learn how to create exotic visual effects using different brushes,
including the gradient, tile, and image brushes.

Chapter 6, Animation

This chapter describes WPF animation facilities, which allow most of the
properties and transformations of the graphics objects (such as position, size,
trandation, rotation, etc.) to be animated. It also describes how to create a
custom animation class that can be used in physics-based animation.

Chapter 7, Physics and Games in WPF

This chapter covers topics related to real-world WPF applications. You'll learn
how to create and simulate physics models by solving ordinary differential
equations with the Runge-Kutta method, and how to incorporate physics models
into real-world games in WPF. This chapter discusses several physics models
and games, including a pendulum, a coupled spring system, a golf ball
(projectiles), ball callision, and fractals.

Chapter 8, Chartsin WPF

This chapter contains instructions on creating 2D line charts in WPF. It
introduces basic chart elements including the chart canvas, text canvas, axes,
title, labels, ticks, and legend. From this chapter, you'll aso learn how to put a
2D chart application into a custom user control and how to reuse this control in
your WPF applications.

Chapter 9, 3D Transformations

This chapter extends the concepts described in Chapter 3 into the third
dimension. It explains how to define 3D graphics objects and how to trandate,
scale, reflect, and rotate these 3D objects. It also describes transformation
matrices that represent projection and transformations, which alow you to view
3D graphics objects on a 2D screen. You'll also learn how WPF defines 3D
vectors, matrices, and projections.

Chapter 10, WPF Graphics Basicsin 3D

This chapter explores the basics of 3D models in WPF. It introduces
Viewport3D, the 3D geometry and the mesh model, lighting, camera, etc. You'll
also learn how to create basic 3D shapes directly in WPF.

Chapter 11, Custom 3D Geometries

This chapter explains how to create custom geometries for various 3D shapes.
These custom geometry classes can be used as resources in XAML files, and
these resources can be used in your markup with a data binding.

Chapter 12, Custom 3D Shapes

This chapter shows how to implement custom 3D shape classes. Unlike custom
3D geometry classes, which can only be used as shareable resources, these

xxiv | Introduction

custom 3D shape classes can be used directly in your XAML files in the same
way as the 2D shapes, such as the Line, Rectangle, and Ellipse. You can use
these custom 3D shape classes to create a powerful 3D model library.

Chapter 13, 3D Surfaces

This chapter explains how to create various 3D surfaces, from simple surfaces to
complex surfaces, using rectangular meshes and different techniques, including
parametric, extrusion, and revolution approaches. It also describes how to add
lighting and shading effects to these surfaces.

Chapter 14, 3D Model Manipulation

This chapter covers broad array of topics on manipulating 3D models in WPF. It
describes how to create various 3D specia effects using different materials,
different light sources, and texture maps. It aso explains how to place
interactive 2D elements on 3D surfaces and how to rotate 3D graphics objects
with the mouse using the virtual trackball method.

Using Code Examples

Y ou may use the code in this book in your applications and documentation. Y ou
don’t need to contact the author or the publisher for permission unless you are
reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book doesn’t require permission.
Selling or distributing the example code listings does require permission.
Incorporating a significant amount of example code from this book into your
applications and documentation also requires permission. Integrating the
example code from this book into commercial products isn’'t allowed without
written permission of the author.

Customer Support

| am always interested in hearing from readers, and would like to hear your
thoughts on this book. You can send me comments by emal to
j xu. aut hor s@ni cadpubl i sh.com | also provide updates, bug fixes, and
ongoing support viamy website:

WAL aut hor s. uni cadpubl i sh. cond ~j ack_xu

You can also obtain the complete source code for all of examples in this book
from the above website.

Chapter 1
Overview of WPF
Programming

Windows Presentation Foundation (WPF) is a next generation graphics platform
which isincluded in the Microsoft .NET Framework 3.0 and 3.5. It allows you
to build advanced user interfaces (Ul) that incorporate documents, media, 2D
and 3D graphics, animations, and web-like characteristics. Built on the .NET
framework 3.0 and 3.5, WPF provides a managed environment for developing
applications using the Windows operating system. Like other features of
the .NET Framework 3.0 and 3.5, WPF is available for Windows Vista,
Windows XP, and Windows Server 2003.

In a pre-WPF world, developing a Windows application might have required the
use of several different technologies. For instance, in order to add forms and
user controls to your application, you needed to use the Windows Forms that is
part of the .NET framework. You had to use GDI+ to create images and 2D
graphics. To add 3D graphics, you probably needed to use Direct3D or OpenGL,
a standard part of Windows.

WPF is designed to be a unified solution for the application development,
providing a seamless integration of different technologies. With WPF, you can
create vector graphics or complex animations and incorporate media into your
applications to address al of the areas listed above.

New Featuresin WPF

There are severa new features in WPF that you can take advantage of when you
develop your WPF applications. First, to utilize powerful new graphics hardware,
WPF implements a vector graphics model based on the Direct3D technology.
This allows graphics to scale according to screen-specific resolution without
losing image quality, which is impossible to do with fixed-size raster graphics.
WPF leverages Direct3D for vector-based rendering, and uses the graphics

2 | Chapter 1: Overview of WPF Programming

processing unit on any video card with built-in DirectX implemented. In
anticipation of future technology, such as high-resolution display, WPF uses a
floating-point logical pixel system and supports 32-bit ARGB colors.

Furthermore, to easily represent Ul and user interaction, WPF introduces a new
XML based language, called XAML. XAML alows applications to dynamically
parse and manipulate user interface elements at either design-time or runtime. It
uses the code-behind model, similar to ASP.NET programming, alowing
designers and developers to work in parallel and to seamlessly combine their
work to create a compelling user experience. Of course, WPF also provides you
the option to not use XAML files when you develop WPF applications, meaning
that you can still develop your applications entirely in code such as C#, C++, or
Visual Basic.

Another new feature is related to the resolution-independent layout. All WPF
layout dimensions are specified using device-independent pixels. A device-
independent pixel is one ninety-sixth of an inch in size and resolution-
independent, so you'll get similar results regardiess of whether you are
rendering to a 72-DPI (dots per inch) monitor or a19,200-DPI printer.

WPF is also based on a dynamic layout. This means that a Ul element arranges
itself on a window or page according to its content, its parent layout container,
and the available screen area. Dynamic layout facilitates localization by
automatically adjusting the size and position of Ul elements when the strings
they contain change length. By contrast, the layout in Windows Forms is device-
dependent and more likely to be static. Typically, Windows Forms controls are
positioned absolutely on aform using dimensions specified in hardware pixels.

XAML basics

As mentioned previously, using XAML to create Ul is a new feature in WPF. In
this section, I'll present an introduction to XAML, and consider its structure and
syntax. Once you understand the basics of XAML, you can use it to easily create
Ul and layout in WPF applications.

Why XAML Needed?

Since WPF applications can be developed entirely in code, you may ask a
perfectly natural question — why do we need XAML in the first place? The
reason can be traced back to the question of efficiently implementing complex,
graphically rich applications. A long time ago, developers realized that the most
efficient way to develop these kinds of applications was to separate the graphics
portion from the underlying code. In this way, the designers could work on the
graphics, while the developers could work on the code behind the graphics. Both
parts could be designed and refined separately, without any versioning
headaches.

Chapter 1: Overview of WPF programming | 3

Before WPF, it was impossible to separate the graphics content from the code.
For example, when you work with Windows Forms, you define every form
entirely in C# code or any other language. As you add controls to the Ul and
configure them, the program needs to adjust the code in corresponding form
classes. If you want to decorate your forms, buttons, and other controls with
graphics developed by designers, you must extract the graphic content and
export it to a bitmap format. This approach works for simple applications;
however, it is very limited for complex, dynamic applications. Plus, graphics in
bitmap format can lose their quality when they get resized.

The XAML technology introduced in WPF resolves these issues. When you
develop a WPF application in Visua Studio, the window you are creating isn't
trandlated into code. Instead, it is serialized into a set of XAML tags. When you
run the application, these tags are used to generate the objects that compose the
ul.

XAML isn't a must in order to develop WPF applications. You can implement
your WPF applications entirely in code. However, the windows and controls
created in code will be locked into the Visual Studio environment and available
only to programmers; there is no way to separate the graphics portion from the
code.

In orther words, WPF doesn’t require XAML. However, XAML opens up world
of possihilities for collaboration, because many design tools understand the
XAML format.

Creating XAML Files

There are some standard rules for creating a XAML file. First, every element in
a XAML file must relate to an instance of a .NET class. The name of the
element must match the name of the class exactly. For example, <TextBlock>
tells WPF to create a TextBlock object.

In a XAML file, you can nest one element inside another. In this way, you can
place an element as a child of another element. For example, if you have a
Button inside a Canvas, this means that your Ul contains a Canvas that has a
Button as its child. You can aso set the properties of each element through
attributes.

Let'slook at asimple XAML structure:

<Wndow x: d ass="Chapt er 01. W ndowl1"
xm ns="http://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Titl e="Chapter1" Height="300" Wdth="300">
<@id>
<Text Bl ock>Hel | o, WPF! </ Text Bl ock>
</Gid>
</ W ndow>

4 | Chapter 1: Overview of WPF Programming

This file includes three elements: the top-level Window element, which
represents the entire window; the Grid; and a TextBlock that is placed inside the
Grid as a child. You can use either a Window or a Page as the top-level element
in WPF. The Page is similar to the Window, but is used for navigable
applications. WPF also involves an Application file that defines application
resources and startup settings. If you start with a new WPF Window (or Page)
project, Visua Studio will automatically generate an Application file called
App.xaml. In this book, I'll use Window as the top-level WPF element, although
Page can be used without any difficulty.

The starting tag for the Window element includes a class name and two XML
namespaces. The xmins attribute is a specialized attribute in XML, which is
reserved for declaring namespaces. The two namespaces in the above XAML
file will appear in every WPF XAML file. You only need to know that these
namespaces simply allow the XAML parser to find the right classes. You can
also see three properties within the tag: Title, Height, and Width. Each attribute
corresponds to a property of the Window class. These attributes tells WPF to
create a 300 x 300 window with the title ChapterO1.

Inside the Window tag, there is a Grid control that in turn contains a TextBlock
with its Text property setting to “Hello, WPF!”. You can create the same
TextBlock using the following snippet:

<Text Bl ock Text="Hello, WPF!"/>

Code-Behind Files

As mentioned previously, XAML is used to create the Ul for your application,
but in order to make the application functioning, you need to attach event
handlers to the Ul. XAML makes this easy using the Class attribute:

<Wndow x: d ass="Chapt er 01. Wndowl" ...>

The x namespace prefix places the Class attribute in the XAML namespace,
which means that this is a more genera part of the XAML language. This
example creates a new class named Chapter01.Window1, which derives from
the base Window class.

When you create a WPF Window application, Visual Studio will automatically
create a partial class where you can place your event handling code. In the
previous example, you created a WPF Window application named Chapter01
(the project name) which contained a window named Windowl. Visua Studio
will automatically generate the following code-behind file:

Narmespace Chapt er 01
/1l <sunmmary>
/11 Interaction |ogic for Wndowl. xam
/1l </ sumary>

public partial class Wndowl : W ndow

Chapter 1: Overview of WPF programming | 5

publi ¢ W ndowl()
{

}

InitializeConponent();

}

When you compile this application, XAML is trandated into a CLR type
declaration which is merged with the logic in the code-behind class file
(Window1.xaml.csin this example) to form one single unit.

The above code-behind file only contains a default constructor, which calls the
InitializeComponent method when you create an instance of the class. This is
similar to the C# classin Windows Forms.

Your first WPF Program

Let's consider a simple WPF example. Open Visua Studio 2008 and create a
new WPF Window project called ChapterO1. Remove the default windowl1.xaml
and window1.xaml.cs files from the project. Add a new WPF Window to the
project, and name it StartMenu, which will add two files, StartMenu.xaml and
StartMenu.xaml.cs, to the project. This window will be the main menu window,
from which you can access al of the examples in this chapter. Y ou can examine
the soruce code of these two files and see how to implement them. This file
structure will be used for accessing code examples in each chapter throughout
the book.

Add another new WPF Window to the project and name it FirstWPFProgram.

Figure 1-1 shows the results of running this example.

I First WPF Program

This is a Test

This is 2 Tesf

[Change Text Color |

[Change Text Size |

Figure 1-1 Your first WPF program example.

This example includes severa controls: a Grid, which is the most common
control for arranging layouts in WPF, a StackPanel inside the Grid used to hold
other controls, including a TextBlock, a TextBox, and two Button controls. The

6 | Chapter 1: Overview of WPF Programming

goal of this example isto change the text in the TextBlock accordingly when the
user enters text in the TextBox. At the same time, the text color or font size of
the text in the TextBlock control can be also changed when the user clicks the
Change Text Color or Change Text Size button.

Propertiesin XAML

Hereisthe XAML file of this example:

<Wndow x: d ass="Chapt er 01. Fi r st WPFPr ogr ant
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xan / present ati on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Title="First WPF Programi Hei ght="300" Wdth="300">
<@id>
<St ackPanel >
<Text Bl ock Name="t ext Bl ock" Margi n="5"
Text Al i gnnent =" Cent er "
Text="Hell o WPF! "/ >
<Text Box Name="t ext Box" Margi n="5" Wdt h="200"
Text Al i gnnent =" Cent er "
Text Changed="(nText Changed"/ >
<Button Margi n="5" Wdth="200"
Cont ent =" Change Text Col or"
d i ck="bt nChangeCol or _A i ck"/>
<Button Margi n="5" Wdt h="200"
Cont ent =" Change Text S ze"
ad i ck="bt nChangeS ze_Qd i ck"/>
</ St ackPanel >
</qid>
</ W ndow>

Y ou can see that the attributes of an element set properties of the corresponding
object. For example, the TextBlock control in the above XAML file configures
the name, margin, text alignment, and text:

<Text Bl ock Narme="t ext Bl ock" MNargi n="5"
Text Ali gnment =" Center” Text="Hello WPF! "/>

In order for this to work, the TextBlock class in WPF must provide
corresponding properties. You specify various properties for other controls that
affect your layout and Ul in asimilar fashion.

To achieve the goa of this example, you need to have the ability to manipulate
the TextBlock, TextBox and Button controls programmatically in the code-
behind file. First, you need to name the TextBlock and TextBox controlsin your
XAML file. In this example, these controls are named textBlock and textBox.
Remember that in a traditional Windows Forms application, every control must
have a name. However, in a WPF application, you only need to name the
elements that you want to manipulate programmatically. Here, you don’'t need to
name the Grid, StackPanel, and Button controls, for example.

Chapter 1: Overview of WPF programming | 7

Event Handlersin Code-Behind Files

In the previous section, you learned how to map attributes to corresponding
properties. However, to make controls functioning, sometimes you need to
attach attributes with event handlers. In the above XAML file, you must attach
an OnTextChanged event handler to the TextChanged property of the TextBox.
Y ou must also define the Click property of the two buttons using two click event
handlers; btnChangeColor_Click and btnChangeSize_Click.

This assumes that there should be methods associated with names
OnTextChanged, btnChangeColor_Click, and btnChangeSize Click in the code-
behind file. Here is the corresponding code-behind file of this example:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. Medi a;

nanmespace Chapt er 01

public partial class FirstWFProgram: Wndow

{
public First WPFProgran()
I'nitializeConponent();
}
private voi d OnText Changed(obj ect sender,
Text ChangedEvent Args e)
text Bl ock. Text = text Box. Text;
}
private void bt nChangeCol or _Q i ck(obj ect sender,
Rout edEvent Args e)
i f (textBl ock.Foreground == Brushes. Bl ack)
t ext Bl ock. For eground = Brushes. Red;
el se
t ext Bl ock. For eground = Brushes. Bl ack;
}
private void bt nChangeS ze_Q i ck(obj ect sender,
Rout edEvent Args e)
if (textBl ock.FontS ze == 11)
t ext Bl ock. Font Si ze = 24;
el se
t ext Bl ock. Font Si ze = 11;
}
}

8 | Chapter 1: Overview of WPF Programming

Note that event handlers must have the correct signature. The event model in
WPF is dightly different than that in earlier versions of .NET. WPF supports a
new model based on event routing. The rest of the above code-behind file is
very similar to that used in Windows Forms applications, which you should
already be familiar with.

Running this example produces the results shown in Figure 1-1. If you type any
text in the text box field, the text in the text block will change correspondingly.
In addition, the color or font size will be changed depending on which button is
clicked.

Code-Only Example

As mentioned previously, XAML isn't a must in order to create a WPF
application. WPF fully supports code-only implementation, even though the use
of this kind of implementation is less common. There are some pros and cons
with the code-only approach. The advantage is that the code-only method gives
you full control over customization. For example, when you want to
conditionally add or substitute controls depending on the user’s input, you can
easily implement a condition logic in code. By contrast, this is hard to do with
XAML because controls in XAML are embedded in your assembly as fixed
unchanging resources. The disadvantage is that since WPF controls don't
include parametric constructors, developing a code-only application in WPF is
sometimes tedious. Even adding a simple control, such as a button, to your
application takes several lines of code.

In the following example, well convert the previous example,
FirstWPFProgram, into a code-only application. Add a new class to the project
Chapter01 and name it CodeOnly. The following code listing will reproduce the
results shown in Figure 1-1:

usi ng System

usi ng System W ndows;

usi ng System W ndows. Medi a;
usi ng System Wndows. Gontrol s;
usi ng System W ndows. Mar kup;

namespace Chapt er 01

{
public class Codetnly : Wndow

{

private TextBl ock textBl ock;
private TextBox text Box;

publ i c Codenl y()
{

}

private void Initialization()

Initialization();

}

Chapter 1: Overview of WPF programming | 9

/1 Configure the w ndow

this. Hei ght = 300;

this. Wdth = 300;

this.Title = "Code Only Exanpl e";

/|l Geate Gid and StackPanel and

/1 add themto w ndow

Qidgrid = new @id();

St ackPanel st ackPanel = new StackPanel ();
grid. Chil dren. Add(st ackPanel) ;

this. AdChil d(grid);

/1 Add a text block to stackPanel:

text Bl ock = new Text Bl ock();

text Bl ock. Margi n = new Thi ckness(5);

t ext Bl ock. Hei ght = 30;

t ext Bl ock. Text Ali gnment = Text Al i gnment . Cent er;
textBl ock. Text = "Hell o WPF! ";

st ackPanel . Chi | dr en. Add(t ext Bl ock) ;

/1 Add a text box to stackPanel:

text Box = new Text Box();

t ext Box. Margi n = new Thi ckness(5);

text Box. Wdth = 200;

t ext Box. Text Al i gnment = Text Al i gnnent . Cent er;
t ext Box. Text Changed += (nhText Changed;

st ackPanel . Chi | dr en. Add(t ext Box) ;

/1 Add button to stackPanel used to

/1l chnage text color:

Button btnCol or = new Button();

bt nCol or. Margi n = new Thi ckness(5);

bt nCol or. Wdt h = 200;

bt nCol or. Content = "Change Text Col or";
bt nCol or. dick += bt nChangeCol or_Q i ck;
st ackPanel . Chi | dr en. Add(bt nCol or);

// Add button to stackPanel used to
/1 change text font size:

Button btnS ze = new Button();

bt nS ze. Margi n = new Thi ckness(5);

bt nS ze. Wdth = 200;

bt nSi ze. Content = "Change Text Color";
bt nSi ze. dick += btnChangeS ze Qi ck;
st ackPanel . Chi | dren. Add(bt nSi ze) ;

private voi d OnText Changed(obj ect sender,

Text ChangedEvent Args e)

t ext Bl ock. Text = text Box. Text;

10 | Chapter 1: Overview of WPF Programming

private void bt nChangeCol or _Q i ck(obj ect sender,
Rout edEvent Args e)

{
i f (textBl ock.Foreground == Brushes. Bl ack)
t ext Bl ock. For eground = Brushes. Red;
el se
t ext Bl ock. For eground = Brushes. Bl ack;
}

private void bt nChangeS ze_Q i ck(obj ect sender,
Rout edEvent Args e)

if (textBl ock.FontS ze == 11)
t ext Bl ock. Font Si ze = 24;
el se
t ext Bl ock. Font S ze = 11;

}

You can see that the CodeOnly class is similar to a form class in a traditional
Windows Forms application. It derives from the base Window class and adds
private member variables for TextBlock and TextBox. Pay close attention to
how controls are added to their parents and how event handlers are attached.

XAML-Only Example

In the previous sections, you learned how to create the same WPF application
using both the XAML+code and the code-only techniques. The standard
approach for developing WPF applications is to use XAML from a code-based
application. Namely, you use XAML to lay out your Ul, and use code to
implement event handlers. For applications with adynamic Ul, you may want to
go with the code-only method.

However, for ssimple applications, it is aso possible to use a XAML-only file
without writing any C# code. This is called aloose XAML file. At first glance,
you may think that aloose XAML file seems useless — what'’s the point of a Ul
with no codeto driveit? In fact, XAML provides several features that allow you
to perform some functions with a loose XAML file. For example, you can
develop a XAML-only application using features such as animation, event
trigger, and data binding.

Here we'll create aloose XAML application that mimics the FirstWPFProgram
example. Even though it can’t reproduce exactly the results shown in Figure 1-1,
the XAML-only application still generates a much more impressive result than
static HTML would.

Add a new WPF window to the project Chapter0O1 and name it XamlOnly. Here
is the markup of this example:

<Wndow x: d ass="Chapt er 01. Xam Onl y"

Chapter 1: Overview of WPF programming | 11

xm ns="http://schemas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Xam Onl y" Hei ght ="300" Wdt h="300">
<@id>
<St ackPanel >
<Text Bl ock Name="t ext Bl ock" Margi n="5"
Text Ali gnnent ="Cent er" Hei ght =" 30"
Text ="{Bi ndi ng H enent Narme=t ext Box, Pat h=Text}"/ >
<Text Box Nane="t ext Box" Margi n="5" Wdth="200"
Text Ali gnnment ="Center" Text="Hell o, WPF!"/>
<Button Margi n="5" Wdt h="200"
Cont ent =" Change Text Col or">
<But ton. Tri gger s>
<Event Tri gger Rout edEvent ="Button. dick">
<Begi nSt or yboar d>
<St or yboar d>
<Col or Ani mat i on
St or yboar d. Tar get Narre="t ext Bl ock"
St oryboar d. Tar get Property=
" (Text Bl ock. For eground) . (Sol i dCol or Brush. Col or)"
Fron="Bl ack" To="Red" Duration="0:0:1"/>
</ St or yboar d>
</ Begi n$t or yboar d>
</ Event Tri gger >
</ Button. Tri gger s>
</ But t on>

<Button Margi n="5" Wdt h="200"
Gont ent =" Change Text Size">
<But ton. Tri gger s>
<Event Tri gger Rout edEvent="Button. dick">
<Begi nSt or yboar d>
<St or yboar d>
<Doubl eAni nati on
St or yboar d. Tar get Narme="t ext Bl ock"
St oryboar d. Tar get Property="Font S ze"
Fron¥"11" To="24" Duration="0:0:0.2"/>
</ St or yboar d>
</ Begi nSt or yboar d>
</ BEvent Tri gger >
</ Button. Tri gger s>
</ But t on>
</ St ackPanel >
</qid>
</ W ndow>

This XAML file first binds the Text property of the TextBlock to the Text
property of the TextBox. This data-binding allows you to change the text of the
TextBlock by typing text in the TextBox field. Then two buttons are created,
which are used to change text color and font size. This can be done by using the
buttons event triggers, which start the color animation or the double animation,

12 | Chapter 1: Overview of WPF Programming

depending on which button is clicked. The detailed procedure of the WPF
animation will be described in Chapter 6.

Even though this application lacks the code-behind file, the buttons are till
functioning. Of course, this XAML-only example can’t reproduce exactly the
results of the previous example with a code-behind file. The reason is that
although the event triggers in XAML files can start an animation, they can’t
involve if-statements, for-loops, methods, and any other computation agorithm.

Chapter 2
WPF GraphicsBasicsin 2D

As mentioned in the previous chapter, WPF provides a unified graphics platform
that allows you to easily create a variety of user interfaces and graphics objects
in WPF applications. This chapter begins by describing graphics coordinate
systems used in WPF, and shows you several different coordinate systems that
you can use to make graphics programming easier. Then it shows you how to
create basic 2D shapes in WPF applications.

2D Coordinate Systemsin WPF

When you create a graphic object in WPF, you must determine where the
graphics object or drawing will be displayed. To do this, you need to understand
how WPF measures graphics object’'s coordinates. Each point on a WPF
window or page has an X and Y coordinate. In the following sections, we'll
discuss various coordinate systems and their relationships.

Default Coordinates

For 2D graphics, the WPF coordinate system locates the origin in the upper-left
corner of the rendering area. In the 2D space, the positive X-axis points to the
right, and the positive Y -axis points to downward, as shown in Figure 2-1.

All coordinates and sizes in the default WPF system are measured in units of 96
dots per inch (DPI), called device-independent pixels. In this system, you can
create adaptive layouts to deal with different resolutions, making sure your
controls and graphics objects stretch accordingly when the window is stretched.

The rendering area in WPF can be defined using layout elements deriving from
the Panel class, including Canvas, DockPanel, Grid, StackPand,
VirtualizingStatckPanel, WrapPanel, etc. However, it is also possible to use a
custom layout component as the rendering area by overriding the default
behavior of any of these layout elements.

14 | Chapter 2: WPF Graphics Basics in 2D

Figure 2-1 Default coordinate system in WPF.

Let'slook at an example and see how this can be achieved . Start with Microsoft
Visual Studio 2008, create a new WPF Windows project, and name it Chapter02.
Add a new WPF Window to the project and name it LinelnDefaultSystem. Add
a Canvas element to the application. The canvas is particularly useful when you
need to place graphics and other drawing elements at absolute positions. What's
interesting is that Canvas elements can be nested. Namely, you can prepare part
of adrawing in a canvas, and then insert that entire drawing as a single element
into another canvas. Y ou can aso apply various transformations, such as scaling
or rotation, directly to the canvas.

Now you can draw a line from Point (0, 0) to Point (100, 100) on the canvas
with the default units of device-independent pixels using the following XAML
file

<Wndow x: d ass="Chapt er 02. Li nel nDef aul t Syst en¥
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Line in Default System! Hei ght="300" Wdth="300">
<Canvas Hei ght ="300" Wdt h="300">
<Line X1="0" Y1="0"
X2="100" Y2="100"
St roke="Bl ack"
St rokeThi ckness="2" />
</ Canvas>
</ W ndow>

Figure 2-2 shows the results of running this example.

Chapter 2: WPF Graphics Basics in 2D | 15

M Line in Default 5... [= [B][X]

Figure 2-2 Draw a line from (0, 0) to (100, 100) on the canvas.

It is also possible to use other units for creating graphics objects. WPF provides
four different units of measures:

« px: isthe default device-independent unit (1/96™ inch per unit)
* in:isinches; lin = 96px

e cm: iscentimeters; 1cm = (96/2.54) px

e pt:ispoints; 1pt = (96/72) px

You can create graphics objects and Ul using either any unit of measure listed
above or mixed units. For example, the coordinates for the starting and ending
points of the line can be specified in pixels (px), centimeters (cm), inches (in), or
points (pt). If you omit the unit (such as in the StrokeThickness attribute), the
default device-independent pixelswill beimplied.

If you replace the code inside the canvas of the previous example with the
following piece of XAML code:

<Canvas Hei ght ="300" Wdt h="300">
<Li ne X1="0.5in" Y1="2.O0cn
X2="150" Y2="80pt "
St roke="Bl ue"
St rokeThi ckness="0. 1cnt />
</ Canvas>

this generates the output of Figure 2-3.

16 | Chapter 2: WPF Graphics Basics in 2D

M Line in Default S... = |[B][X]

\

Figure 2-3 Draw a line on the canvas using different units of measures.

Also note the decimal values in the above XAML code: al coordinates in WPF
are double precision values. This alows you to easily create device-independent
applications by simply using real-world units, and the WPF rendering engine
will make sure that everything is rendered in the correct sizes, regardless of
whether you are drawing to the screen or printing.

Custom Coordinates

In addition to the default WPF coordinate system discussed in the previous
section, a WPF application can define its own coordinate system. For example,
2D charting applications usually use a coordinate system where the Y-axis
points from bottom to top, asillustrated in Figure 2-4.

This system can be easily created in WPF by directly performing corresponding
transformations to the canvas. Let's consider an example. Add a new WPF
Window to the project Chapter02 and name it LinelnCustomSystem. Here is the
XAML file of this example:

<Wndow x: d ass="Chapt er 02. Li nel nQust onByst ent
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xan / present ati on"

xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Line In Qustom Systeni Hei ght="240" Wdt h="220">
<Border BorderBrush="Bl ack" Border Thi ckness="1"

Hei ght ="200" Wdt h="200">

<Canvas Hei ght ="200" Wdt h="200">
<Canvas. Render Tr ansf or n»
<Tr ansf or & oup>
<Scal eTransf orm Scal eY="-1" />
<Transl at eTr ansf or m Y="200" />
</ Tr ansf or n@ oup>
</ Canvas. Render Tr ansf or nm»

Chapter 2: WPF Graphics Basics in 2D | 17

<Li ne X1="0" Y1="0"
X2="100" Y2="100"
St r oke=" Bl ack"
St r okeThi ckness="2" />
</ Canvas>
</ Bor der >
</ W ndow>

Figure 2-4 A custom coordinate system.

In this example, you perform two successive transforms on the canvas. The scale
transform, which reverses the Y axis, and the trandation transform, which
translates 200px (the height of the canvas) in the Y direction. These transforms
move the origin from the top-left corner to the bottom-left corner of the canvas.

Figure 2-5 shows the result of this example. The line from (0, 0) to (100, 100) is
now measured relative to the origin of the new custom coordinate system. Y ou
can compare this line with that drawn in the default system of Figure 2-2.

You may notice that there is an issue with this custom coordinate system:
everything inside the Canvas will be transformed in the same way that the
canvas is. For instance, when you add a button control and a text block to the
canvas, using the following XAML code:

<Button Canvas. Top="50" Canvas. Left="80" Font S ze="15"
For egr ound="Red" Nane="| abel 1" Content="M/ Button"/>
<Text Bl ock Canvas. Top="120" Canvas. Left="20" FontSi ze="12pt"
For egr ound="Bl ue"> <Bol d>My Text Bl ock</ Bol d>
</ Text Bl ock>

18 | Chapter 2: WPF Graphics Basics in 2D

The content of the button and the text block will be up-side down, as shown in
Figure 2-6. In order to view the normal text content in this custom coordinate
system, you have to perform a reflective transform on the corresponding
controls using the following XAML code:

Figure 2-5 Draw a line from (0, 0) to (100, 100) in the custom coordinate
system.

M Line In Custom §... E@@

WA 16Xf BJOCK

Figure 2-6 The button and text block are up-side down in the custom
coordinate system.

<Button Canvas. Top="50" Canvas. Left="80" FontS ze="15"
For egr ound="Red" Content="M/ Button">
<But t on. Render Tr ansf or n»
<Scal eTransf orm Scal eY="-1"/>
</ But t on. Render Tr ansf or mp
</ Butt on>

Chapter 2: WPF Graphics Basics in 2D | 19

<Text Bl ock Canvas. Top="120" Canvas. Left="20"
Font S ze="12pt"
For egr ound="Bl ue" >
<Bol d>My Text Bl ock</ Bol d>
<Text Bl ock. Render Tr ansf or n»
<Scal eTransf orm Scal eY="-1"/>
</ Text Bl ock. Render Tr ansf or n»
</ Text Bl ock>

The bold text statements in the above code snippet perform a reflection
transform in the Y direction (corresponding to a scale transform with a scaling
factor of “- 1") . Running this application now produces the result of Figure 2-7.

M Line In Custom S... E@@

My Text Block

Figure 2-7 The button and text block in the custom coordinate system
after the reflection.

You can change the apparent size and location of the graphics objects and user
controls on the screen using this custom coordinate system, which is called
“Zooming” and “Panning”. Zooming and Panning can be achieved using scaling
and trangd ation transforms.

Add a new WPF Window to the project Chapter02, and cal it
ScalelnCustomSystem. Add a StackPanel to the application, add a dlider control
and a border control to the content of the StackPanel, and add a canvas to the
border control. Finally create aline and a rectangle object on the canvas control.
The XAML file of this exampleislisted below:

<W ndow x: d ass="Chapt er 02. Scal el nQust onByst ent

xm ns="http://schemas. m crosoft. comw nf x

/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Title="Scal e I n Qustom Systenm? Hei ght ="310" Wdt h="260">
<St ackPanel Hei ght="280" Wdth="250">

<Bor der Bor der Brush="Bl ack" Bor der Thi ckness="1"

Hei ght ="200" Wdt h="200" Margi n="20">

20 | Chapter 2: WPF Graphics Basics in 2D

<Canvas Hei ght ="200" Wdt h="200">
<Canvas. Render Tr ansf or nm»
<Tr ansf or mx oup>
<Scal eTransf orm Scal eY="-1" />
<Tr ansl at eTr ansf or m Y="200" />
</ Tr ansf or m@ oup>
</ Canvas. Render Tr ansf or n»

<Li ne X1="0" Y1="0" X2="80" Y2="80"
St roke="Bl ack" StrokeThi ckness="2">
<Li ne. Render Tr ansf or n»
<Scal eTransform
Scal eX="{Bi ndi ng H enent Nanme=sl i der, Pat h=Val ue}"
Scal eY="{Bi ndi ng B erent Nane=sl i der, Pat h=Val ue}"/>
</ Li ne. Render Tr ansf or n»
</ Li ne>

<Rect angl e Canvas. Top="100" Canvas. Left="230"
Wdt h="80" Hei ght ="40"
St r oke="Dar kRed"
St rokeThi ckness="3">
<Rect angl e. Render Tr ansf or n»
<Scal eTransform
Scal eX="{Bi ndi ng H enent Narre=sl i der, Pat h=Val ue}"
Scal eY="{Bi ndi ng H enent Narre=sl i der, Pat h=Val ue}"/ >
</ Rect angl e. Render Tr ansf or n»
</ Rect angl e>
</ Canvas>
</ Bor der >

<Sider Name="slider" M nimn¥"0" Mxinum="3"
Val ue="1" Ti ckPl acenent ="Bott onR ght"
Ti ckFrequency="0. 2"
| sSnapToTi ckEnabl ed="Tr ue"/ >
</ S ackPanel >
</ W ndow>

Here, you bind the scaling factors of ScaleX and ScaleY of the line and
rectangle to the value of the dider. The value of the dlider varies from 0 to 3,
meaning that the scaling factor for both the line and rectangle changes in the
range of [0, 3]. When the user moves the dlider with the mouse, the dimension of
the line and rectangle will change accordingly.

Figure 2-8 shows the results of running this example. Y ou can zoom in or zoom
out by moving the dider with your mouse. When you increase the scaling factor
further, you might obtain unexpected results, such as those shown in the figure.
Namely, the graphics objects are extended outside of the canvasl control
specified by the black border line.

Chapter 2: WPF Graphics Basics in 2D | 21

B Scale In Custom System g@@
F |

Figure 2-8 The line and rectangle objects are scaled.

This can easily be fixed by specifying the ClipToBounds property of the canvas
to true:

<Canvas Hei ght ="200" Wdt h="200" d i pToBounds="Tr ue">

This will produce the results shown in Figure 2-9. You can clearly see the
difference between Figure 2-8 and Figure 2-9.

There are till issues associated with this custom coordinate system. First, the
scaling affects not only the shape of the graphics objects, but also the
StrokeThickness, which is undesirable for some applications. For example, for
charting applications, we only want the shape of the graphics or the line length
to vary with the scaling factor, but not the StrokeThickness itself.

Another issue is the unit of the measure used in the coordinate system, where the
default units are used. In real-world applications, sometimes, the real-world
units are usually used. For example, it isimpossible to draw aline with a length
of 100 miles on the screen in the current coordinate system. In the following
section, we'll develop a new custom coordinate system that can be used in 2D
charting applications.

22 | Chapter 2: WPF Graphics Basics in 2D

Figure 2-9 The line and rectangle objects are always drawn inside of the
canvas control.

Custom Coordinatesfor 2D Charts

The custom coordinate system used in 2D charting applications must satisfy the
following conditions. it must be independent of the unit of your real-world
graphics objects, and its Y-axis must point from bottom to top as it does in most
charting applications. This custom coordinate system is illustrated in Figure
2-10.

The real-world X-Y coordinate system is defined within the rendering area. You
can create such a coordinate system using a custom panel control by overriding
the MeasureOverride and ArrangeOverride methods. Each method returns the
size data that is needed to position and render child elements. Thisis a standard
method used to create custom coordinate system. Instead of creating a custom
panel control, here we'll construct this coordinate system using another
approach based on direct coding.

Add a new WPF Window to the project Chapter02 and name it Chart2DSystem.
Thefollowing isthe XAML file of this example:

Chapter 2: WPF Graphics Basics in 2D | 23

Figure 2-10 Custom Coordinate system for 2D charting applications.

<Wndow x: d ass="Chapt er 02. Chart 2DSyst ent
xm ns="htt p://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schenas. m crosof t . con wi nf x/ 2006/ xan "
Title="Chart2D Goordi nate Systent
Hei ght ="420" W dt h="360">

<Vi ewbox Stret ch="Uni forni>
<StackPanel Height="420" Wdth="360">
<Canvas x: Nane="pl ot Canvas"Qd i pToBounds="Tr ue"
W dt h="300" Hei ght ="250"
Mar gi n="30, 30, 30, 30" >
<Rect angl e x: Narre="pl ot Ar ea"
Wdt h="300" Hei ght =" 250"
Stroke="Bl ack"
St rokeThi ckness="1"/>
</ Canvas>
<@id Wdth="340" Hei ght="100"
Hori zontal Al i gnrment ="Left"
Vertical Ali gnnent =" Top" >
<@ i d. Col umbDefi ni ti ons>
<Col umDefi niti on Wdth="60" />
<Col umbefi ni tion Wdth="110" />
<ol ummDefi ni ti on Wdt h="60"/>
<Col umbefini tion Wdth="110" />
</ @i d. Gol umbDefini ti ons>
<@id. Rowbefinitions>
<RowDef i niti on Hei ght="Auto" />
<RowDef i ni ti on Hei ght="Auto" />
<RowDef i niti on Hei ght="Auto" />
</ @i d. Rowbefinitions>

24 | Chapter 2: WPF Graphics Basics in 2D

<Text Bl ock @i d. Gol um='

'0" Qid. Row="0"

Mar gi n="25, 5, 10, 5" >XM n</ Text Bl ock>

<Text Box Nane="t bXM n"
Qid. Row="0"

Gid. Col um="1"

Text Al i gnnent =" Cent er " >0</ Text Box>

<Text Bl ock @i d. Col um="'

‘2" @id Row="0"

Mar gi n="25, 5, 10, 5" >XMax</ Text Bl ock>
<Text Box Name="t bXMax" Qi d. Col um="3"

Qid. Row="0"

Text Al i gnnment =" Cent er " >10</ Text Box>

<Text Bl ock @i d. Col um="'

'0" Qid Row"1"

Mar gi n="25, 5, 10, 5" >YM n</ Text Bl ock>
<Text Box Nane="tbYMn" @i d. Col um="1"

Qid Row"1"

Text Ali gnnent =" Center" >0</ Text Box>

<Text Bl ock @i d. Gol um='

'2" Qid. Row"1"

Mar gi n="25, 5, 10, 5" >YMax</ Text Bl ock>
<Text Box Nanme="t bYMax" @&i d. Col uimm="3"

Gid Row"1"

Text Al i gnnent =" Cent er " >10</ Text Box>
<Button Qick="btnApply Qick"
Mar gi n="40, 20, 20, 0"
Hei ght ="25" @i d. Col ummSpan="2"

Qi d. Col umm="0"
</ But t on>

Qi d. Row="2">Appl y

<Button Aick="btnd ose Adick"
Mar gi n="40, 20, 20, 0"
Hei ght ="25" @i d. Col unnSpan="2"

Qid. Col um="2"
</ But t on>
</Q@id>
</ St ackPanel >
</ Vi enwbox>
</ W ndow>

Qid. Row="2">0 ose

This XAML file places a Viewbox as the topmost element and sets its Stretch
property to UniForm, which will preserve the aspect ratio of the child elements
when the window gets resized. Otherwise, the Stretch property could have been
set to Fill, which disregard the aspect ratio. The best thing about the ViewBox is

that everything inside is scalable.

The graphics objects or drawings will be created on a canvas control, called
plotCanvas. The rectangle, named plotArea, serves as the border of the
rendering area. The other Ul elements will be used to control the appearance of

the graphics.

The corresponding C# code of the code-behind fileis listed below:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System W ndows;

usi ng System Wndows. Control s;
usi ng System W ndows. Medi a;

usi ng Syst em W ndows. Shapes;

Chapter 2: WPF Graphics Basics in 2D | 25

namespace Chapt er 02

{

public partial class Chart2DSystem: W ndow

{

private double xMn = 0.0;
private doubl e xMax = 10.0;
private double yMn = 0.0;
private doubl e yMax = 10.0;

private Line linel;
private Polyline polylinel;

publ i ¢ Wndowl()

{

}

InitializeConponent();
AddG aphi cs();

private voi d AddG aphi cs()

{

}

linel = new Line();

linel. X1 = XNornalize(2.0);
linel.Yl = YNornalize(4.0);
linel. X2 = XNornalize(8.0);
l'inel. Y2 = YNornalize(10.0);

l'inel. Stroke = Brushes. Bl ue;
i nel. StrokeThi ckness = 2;
pl ot Canvas. Chi | dren. Add(linel);

pol ylinel = new Pol yline();

pol yl i nel. Poi nts. Add(new Poi nt (XNor nal i ze(8),
YNor mal i ze(8)));

pol yl i nel. Poi nts. Add(new Poi nt (XNor nal i ze(6),
YNor mal i ze(6)));

pol yl i nel. Poi nts. Add(new Poi nt (XNor nal i ze(6),
YNormal i ze(4)));

pol yl i nel. Poi nts. Add(new Poi nt (XNor nal i ze(4),
YNormal i ze(4)));

pol yl i nel. Poi nts. Add(new Poi nt (XNor nal i ze(4),
YNor mal i ze(6)));

pol yl i nel. Poi nts. Add(new Poi nt (XNor nal i ze(6),
YNor mal i ze(6)));

pol yl i nel. Stroke = Brushes. Red,;

pol yl i nel. StrokeThi ckness = 5;

pl ot Canvas. Chi | dren. Add(pol yl i nel);

private doubl e XNornal i ze(doubl e x)

double result = (x - xMn) *
pl ot Canvas. Wdth / (xMax - xMn);
return result;

26 | Chapter 2: WPF Graphics Basics in 2D

private doubl e YNornal i ze(doubl e y)

{
doubl e result = plotCanvas. Height - (y - yMn)*
pl ot Canvas. Height / (yMax - yMn);
return result;
}

private void btnd ose_Qdick(object sender,
Event Args e)
{

}

private void btnApply_Qick(object sender,
Event Args €)

this.dose();

{
xM n = Convert. ToDoubl e(t bXM n. Text);
xMax = Convert. ToDoubl e(t bXVax. Text);
yM n = Convert. ToDoubl e(t bXM n. Text);
yMax = Convert. ToDoubl e(t bYMax. Text);
pl ot Canvas. Chi | dren. Rermove(li nel);
pl ot Canvas. Chi | dren. Remove(pol yl i nel);
Add@ aphi cs() ;

}

}

In this code-behind file, we begin by defining private members to hold the
minimum and maximum values of the custom coordinate axes. Note that by
changing the values of xMin, xMax, yMin, and yMax, you can define any size
of the rendering area you like depending on the requirements of your
applications. Make sure that the units of these qualtities are in real-world units
defined in the real-world coordinate system.

You may notice that there is an issue over how to draw graphics objects inside
the rendering area, which should be independent of the units of the world
coordinate system. Here we use the XNormalize and Y Normalize methods to
convert the X and Y coordinates in the real-world coordinate system to the
default device-independent coordinate system. After this conversion, the units
for all graphics objects are in device-independent pixels. This can be easily done
by passing the X and Y coordinates of any unit in the world coordinate system
to the XNormaize and YNormalize methods, which will perform the unit
conversion automatically and always return the X and Y coordinates in device-
independent pixelsin the default WPF coordinate system.

Let's examine what we did inside the XNormalize method. We convert the X
coordinate in the real-world coordinate system using the following formula:

double result = (x - xMn) *
pl ot Canvas. Wdth / (xMax - xMn);

Chapter 2: WPF Graphics Basics in 2D | 27

Here, we simply perform the scaling operation. Both (x — xMin) and (xMax —
xMin) have the same unit in the world coordinate system, which is cancelled out
by division. This means that the unit of this scaling term is determined solely by
the unit of plotCanvas.Width, whose unit is in device-independent pixels. You
can easily examine that the above conversion indeed provides not only the
correct unit, but also the correct position in the default WPF coordinate system.

For the Y coordinate conversion, the situation is a bit different. Y ou need to not
only perform the scaling operation, but also reverse the Y axis in the default
coordinate system. The following formula is used for the Y coordinate
conversion:

doubl e result = plotCanvas. Height - (y - yMn) *
pl ot Canvas. Height / (yMax - yMn);

Next, you add a straight line (linel) and a polyline (polylinel) to the plotCanvas
using the AddGraphics method. You draw the straight line from point (2, 4) to
point (8, 10). The end points of this line are in the unit (which can be any unit!)
defined in the world coordinate system. These points aren’t directly used in
drawing the line, but their converted X and Y coordinates are used instead. The
same procedure is used to create the polyline object.

The click event of the “Apply” button allows you to redraw the straight line and
polyline using new values for axis limits specified in corresponding TextBox
elements. Notice that the statements inside the “ Apply” button’s event handler

pl ot Canvas. Chi | dren. Rermove(l i nel);
pl ot Canvas. Chi | dr en. Rermove(pol yl i nel);

are required. Otherwise, both the original and newly created graphics objects
will remain on the screen. The above statements ensure that original objects are
removed when new graphics objects are created.

Figure 2-11 shows the result of running this example. From this window, you
can change the appearance of the graphics objects by changing the values of
xMin, XMax, Ymin, and yMax, and then clicking the “ Apply” button.

2D Viewport

A graphics object can be considered to be defined in its own coordinate system,
which is some abstract place with boundaries. For example, suppose that you
want to create asimple X-Y chart that plots Y-values from 50 to 100 over an X-
data range from 0 to 10. Y ou can work in a coordinate system space with 0 < X
<10and 50 <Y < 100. This spaceis called the world coordinate system.

In practice, you usually aren’t interested in the entire graphic, but only a portion
of it. Thus, you can define the portion of interest as a specific area in the world
coordinate system. This area of interest is called the “Window” . In order to draw
graphics objects on the screen, you need to map this “Window” to the default
WPF coordinate system. We call this mapped “Window” in the default

28 | Chapter 2: WPF Graphics Basics in 2D

coordinate system a 2D viewport. The concept of the window and viewport in
2D spaceisillustrated in Figure 2-12.

B Chart2D Coordinate System [Z”EHEJ

*Min o X¥Max | i

¥Min 0 YMas | 10

Figure 2-11 Draw a line and a polyline in the custom coordinate system.

Figure 2-12 Window and viewport in 2D space.

Chapter 2: WPF Graphics Basics in 2D | 29

In the previous section, we defined the default limits for the X and Y axesin the
custom (world) coordinate system. For example:

private double xMn = 0.0;
private doubl e xMax = 10. 0;
private double yMn = 0.0;
private doubl e yMax = 10.0;

This defines a portion of interest in the custom coordinate system. This area of
interest is called the “Window”. Once you know what you want to display, you
need to decide where on the computer screen to display it. In previous example
of Chart2DSystem, we defined a rendering area (plotCanvas) in the default WPF
coordinate system, which creates a screen area to display the graphics objects.
Thisrendering areaiis called the viewport.

You can use this viewport to change the apparent size and location of the
graphics objects on the screen. Changing the viewport affects the display of the
graphics objects on the screen. These effects are caled “Zooming” and
“Panning”.

Zooming and Panning

The size and position of the “Window” determine which part of the graphics
object is drawn. The relative size of the Window and the Viewport determine the
scale at which the graphics object is displayed on the screen. For a given
viewport or rendering area, a relatively large Window produces a small graphics
object, because you are drawing a large piece of the custom coordinate space
into a small viewport (rendering area). On the other hand, a relatively small
Window produces a large graphics object. Therefore, you can increase the size
of the Window (specified by the X and Y axis limits) to see the “zooming out”
effect, which can be done by changing the values of the parameters, such as
xMin, xMax, yMin, and yMax in the Chart2DSystem example discussed in the
previous section. For instance, setting

xMn = -10;
xMax = 20;
yMn = 0;

yMax = 20;

and clicking the “ Apply” button will generate the results shown in Figure 2-13.

On the other hand, if you decrease the Window size, the objects will appear
larger on the screen; then you would have a “zoom in” effect. Change the
parameters of your axis limits to the following:

xMn = 2;
xMax = 7;
yMn = 2;
yMax = 7;

You will get the following result by clicking the “Apply” button, as shown in
Figure 2-14.

30 | Chapter 2: WPF Graphics Basics in 2D

B Chart2D Coordinate System

XMin

Min

I Apply l | Close

Figure 2-13 Both the size and location of the graphics objects are
changed by increasing the size of the Window: “Zoom out”.

Panning is defined as the moving of all graphics objects in the scene by shifting
the Window. In a panning process, the Window size is kept unchanged. For
example, you can move the Window to the left by changing the following
parameters:

XxMn = -3;
xMax = 7;
yMn = 0;
yMax = 10;

This is equivalent to moving graphics objects toward the right side of the
rendering area.

Please note that when you increase or decrease the size of graphics objects by
zooming in or zooming out, the stroke thickness remains unchanged, which is
different from when you directly scale the plotCanvas, where both the shape and
stroke thickness change correspondingly with the scaling factor. In 2D charting
applications, you usually want to change the size of the graphics only, and keep
the stroke thickness unchanged.

Chapter 2: WPF Graphics Basics in 2D | 31

B Example2 3

%Min | 2 *¥Max

¥Min 2 FMax

Apply] Close

Figure 2-14 Both the size and location of the graphics objects are
changed by decreasing the size of the Window: “Zoom in”.

Basic 2D Graphics Shapes

The simplest way to create 2D graphics objects in a WPF application is to use
the Shape class that represents a number of ready-to-use graphics shape objects.
Available shape objects in WPF include Line, Polyline, Path, Rectangle, and
Ellipse. These shapes are drawing primitives. You can combine these basic
shapes to generate more complex graphics. In the following sections, we'll
consider these basic WPF shapes.

Lines
The Line class in WPF is used to create straight lines between two end points.
The X1 and Y1 properties specify the start point, and the X2 and Y 2 properties

32 | Chapter 2: WPF Graphics Basics in 2D

represent the end point. The following XAML code snippet creates a blue line
from point (30, 30) to point (180, 30):
<Li ne X1="30" Y1="30"
X2 ="180" Y2="30"
St r oke="Bl ue"
St rokeThi ckness="2"/>

This code snippet produces a solid line. However, lines can have many different
styles. For example, you can draw a dash-line with line caps, as shown in Figure
2-15. This means that a line can have three parts: the line body, starting cap, and

ending cap.

Figure 2-15 A line with starting cap, ending cap, and dash style.

The starting and ending caps can be specified by the StrokeStartLineCap and
StrokeEndLineCap properties, respectively. Both the StrokeStartLineCap and
StrokeEndLineCap get or set a PenLineCap enumeration value that describes the
shape at the ends of a line. Available values in the PenLineCap enumeration
include Flat, Round, Square, and Triangle. Unfortunately, the size of the line
cap is the same as the StrokeThickness of the line. Thus, these caps aren’'t very
useful in practical applications. If you want to create a line with an end anchor
or an arrowhead, you have to create a custom shape, which will be discussed in
Chapter 4.

The dash style of alineis specified by the StrokeDashArray property that gets or
sets a collection of double variables, which specify the pattern of dashes and
gaps of the line. Consider the following code snippet:

<Li ne X1="30" Y1="50" X2 ="250" Y2="50"
Stroke="Bl ue" StrokeThi ckness="2"
St rokeDashArray="5, 3" />

The above code creates adashed line, which is shown in Figure 2-16.

Figure 2-16 Dash Lines with different patterns.

Chapter 2: WPF Graphics Basics in 2D | 33

The first line in the figure is a dashed line that is specified by the
StrokeDashArray="5,3". These values means that it has a line value of 5 and a
gap of 3, interpreted relative to the StrokeThickness of the line. So if your lineis
2 units thick (as it is in this example), the solid portion is 5 x 2 = 10 units,
followed by a gap portion of 3 x 2 = 6 units. The line then repeats this pattern
for its entire length.

You can create a line with more complex dash pattern by varying the values of
the StrokeDashArray. For example, you can specify the StrokeDashArray asthe
following:

StrokeDashArray="5, 1, 3, 2"

This creates a line with a more complex sequence: a solid portion that is 10
units length, then a1 x 2 = 2 unit break, followed by a solid portionof 3x2=6
units, and another gap of 2 x 2 = 4 units. At the end of this sequence, the line
repeats the pattern from the beginning.

A funny thing happens if you use an odd number of vaues for the
StrokeDashArray. Take this one, for example:

StrokeDashArray="5, 1, 3"

When you draw this line, you begin with a 10 unit solid line, followed by a 2
unit gap, followed by a 6 unit line. But when it repeats the pattern it starts with a
gap, indicating you get a 10 units space, followed by a 2 units line, and so on.
The dash line smply alternates its pattern between solid portions and gaps, as
shownin Figure 2-16.

The second line has a Round starting cap and a Triangle ending cap. If you
reduce StrockThickness, it is difficult to see the line caps, making them not very
useful in real-world applications

Rectangles and Ellipses

The rectangle and ellipse are the two simplest shapes. To create either one, set
the Height and Width properties to define the size of the shape; then set the Fill
and Stroke properties to make the shape visible.

The Rectangle class has two extra properties: RadiusX and RadiusY. When
setting to nonzero values, these two properties allow you to create rectangles
with rounded corners.

Let's consider an example that shows how to create rectangles in WPF. Add a
new WPF Window to the project Chapter02 and name it RectangleShape. Here
isthe XAML file of this example:

<Wndow x: d ass="Chapt er 02. Rect angl eShape"
xm ns="htt p://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Titl e="Rect angl es" Hei ght ="340" Wdt h="200">
<@id>

34 | Chapter 2: WPF Graphics Basics in 2D

<St ackPanel >
<Text Bl ock

<Rect angl e
<Text Bl ock

<Rect angl e

<Text Bl ock
<Rect angl e
</ St ackPanel >

</Qid>
</ W ndow>

Figure 2-17 shows the results of running this example. You can easily create
rectangles with rounded corners by specifying RadiusX and RadiusY properties
with nonzero values. It can be seen that you can even create an ellipse by setting
its RadiusX and RadiusY with large values (larger than the half of the respective

side length).

Text ="Radi usX = 0, RadiusY = 0:"
Mar gi n="10 10 10 5"/>

Wdt h="150" Hei ght ="70"
Fill="Light Gay" Stroke="B ack"/>
Text ="Radi usX = 20, RadiusY = 10:"
Mar gi n="10 10 10 5"/>

Wdt h="150" Hei ght="70"

Radi usX="20" Radi usY="10"
FiIl="Light Gay" Stroke="Bl ack"/>
Text ="Radi usX = 75, RadiusY = 35:"
Margi n="10 10 10 5"/>

Wdt h="150" Hei ght ="70"

Radi usX="75" Radi usY="35"
Fill="Light Gay" Stroke="Bl ack"/>

Radius

= 0, RadiusY = 0

Radiusx = 20, RadiusY = 10:

—

~

.

Fadiusk = 75, RadiusY = 35

Figure 2-17 Rectangles in WPF.

Chapter 2: WPF Graphics Basics in 2D | 35

You can create elipse shape using properties similar to those used in creating
rectangles. You can also create a circle by setting RadiusX = Radiusy .

Add a new WPF Window to the project Chapter02 and name it EllipseShape.
Here isthe XAML file of this example:

<Wndow x: d ass="Chapt er 02. H | i pseShape"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / present at i on"

xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "

Title="HIipses" Hei ght="280" Wdth="200">

<@id>

<St ackPanel >

<Text Bl ock Text="Hipse:" Margin="10 10 10 5"/>
<H i pse Wdth="150" Hei ght="70"

Fi Il ="Li ght Gay" Stroke="B ack"/>
<TextBlock Text="Grcle:" Margin="10 10 10 5"/>
<B i pse Wdt h="100" Hei ght ="100"

FiI'l="Li ght Gay" Stroke="Bl ack"/>

</ St ackPanel >
</@id>
</ Wndow>

This exampl e produces the results shown in Figure 2-18.

I Ellipses E@@

Ellipza;

Circle:

Figure 2-18 Ellipses in WPF.

Both rectangle and ellipse have the ability to resize themselves to fill the
available space. If the Height and Width properties aren’t specified, the shapeis
sized based on its container. The sizing behavior of a shape depends on the
value of its stretch property. The default value is set to Fill, which stretches a
shape to fill its container if an explicit sizeis not specified.

36 | Chapter 2: WPF Graphics Basics in 2D

Let’s consider another example that illustrates how to place and size rectangles
and elipsesin Grid cells. Add a new WPF Window to the project Chapter02 and
name it PlaceShapes. Here is the markup of this example:

<Wndow x: d ass="Chapt er 02. Pl aceShapes"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / present at i on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Pl ace Shapes" Hei ght="300" Wdth="360">

<@id ShowQ@i dLi nes="True">

<@ i d. RowbDefini tions>
<RowDefinition Hei ght="Auto"/>
<RowDefinition/>
<RowDef i ni tion/>

</ &id. Rowbefinitions>

<@id. Col umDefinitions>
<Col umDefini ti on Wdt h="Auto"/>
<Col umbDefinition/ >
<Col umDefini tion/ >
<Col umbDefi nition/ >

</ &id. Col umDefinitions>

<TextBl ock Gid. Colum="0" G&id. Row="1"
Text ="Rect agl " Margi n="5"/>

<TextBl ock &id. Colum="0" @i d. Row="2"
Text="H|ipse" Margin="5"/>

<TextBl ock Gid.Colum="1" Gid. Row="0" Text="F|Il"
Text Ali gnnent ="Center" Margi n="5"/>

<TextBl ock &id. Colum="2" @&id. Row="0" Text="Uhiforn
Text Ali gnnent ="Center" Margi n="5"/>

<TextBl ock @i d. Colum="3" @i d. Row="0"
Text ="Uni fornToFi I [" Text Al i gnment =" Cent er "
Mar gi n="5"/ >

<Rectangle @id. Colum="1" G&id. Row="1"
Fi |l ="Light Gay" Stroke="Bl ack"
Stretch="Fill" Margi n="5"/>
<Rectangle @id. Colum="2" @&id. Row="1"
Fill="Li ght Gay" Stroke="Bl ack"
Stretch="Uniform¥ Margin="5"/>
<Rectangl e Gid. Colum="3" G&id. Row="1"
Fill="Li ght Gay" Stroke="Bl ack"
Stretch="UnifornToF I | " Margi n="5"/>

<Hlipse Gid. Colum="1" Gid. Row="2" Fill="LightQay"
Stroke="Bl ack" Stretch="Fill" Mrgi n="5"/>

<Hlipse Gid. Colum="2" @id. Row="2" Fill="LightQay"
Stroke="Bl ack" Stretch="Unifornt Margi n="5"/>

<Hlipse Gid. Colum="3" @id. Row="2" Fill="LightQay"
Stroke="Bl ack" Stretch="UnifornToF Il"
Mar gi n="5"/>

</@id>
</ W ndow>

Chapter 2: WPF Graphics Basics in 2D | 37

In this example, you create three rectangles and three ellipses, each shape with
different Stretch property. Figure 2-19 shows the result of running this
application. You can see how the different Stretch properties affect the
appearances of shapes.

M Place Shapes

Ellipsa

Figure 2-19 Shapes with different Stretch properties.

Polylines

The Polyline class allows you to draw a series connected straight lines. You
simply provide a list of points using its Points property. The Points property
requires a PointCollection object if you create a polyline using code. However,
you can fill this collectionin XAML by simply using alean string-based syntax.

Let's consider an example that shows you how to create a simple polyline, a
closed polyline, and a Sine curve in code. Add a new WPF Window to the
project Chapter02 and name it Polylines. Here isthe XAML file of this example:

<Wndow x: d ass="Chapt er 02. Pol yl i nes"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Pol ylines" Hei ght="340" Wdth="250">
<@id>
<StackPanel Nanme="stackPanel 1" Margi n="10">
<Text Bl ock Text="Polyline:"/>
<Pol yli ne Stroke="Bl ack" StrokeThi ckness="3"
Poi nts="0 70, 60 10, 110 60, 160 10,210 70"/>
<Text Bl ock Text="d osed pol yline:"

38 | Chapter 2: WPF Graphics Basics in 2D

Margin="0 10 0 0"/ >
<Polyline Stroke="Bl ack" StrokeThi ckness="3"

Poi nt s="0 70, 60 10, 110 60, 160 10,210 70, 0 70"/>
<Text Bl ock Text="Sine curve:" Margin="0 10 0 0"/>
<Pol yl i ne Name="pol yl i nel" Stroke="Red"

St rokeThi ckness="2"/>
</ St ackPanel >
</@id>
</ W ndow>

Here you create two polylines directly in the XAML file. You also define
another polyline called polylinel that represents a Sine curve and needs to be
created in code. Here is the code-behind file used to generate the Sine curve:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Medi a;
usi ng Syst em W ndows. Shapes;

namespace Chapt er 02

public partial class Polylines : Wndow

{
public Polylines()
I'nitializeConponent();
for (int i =0; i <70; i++)
{
double x =i * Math.Pl;
double y = 40 + 30 * Math. S n(x/10);
pol yl i nel. Poi nts. Add(nhew Poi nt (X, Vy));
}
}
}

}

Here, you simply add points to polylinel’s Points collection using a Sine
function with a for-loop. Running this application produces the results shown in
Figure 2-20.

Polygons

The polygon is very similar to the polyline. Like the Polyline class, the Polygon
class has a Points collection that takes a list of X and Y coordinates. The only
difference is that the Polygon adds a final line segment that connects the final
point to the starting point. You can fill the interior of this shape using the Fill

property.
Add a new WPF Window to the project Chapter02 and name it Polygons. This

example fills the polylines in the previous example with alight gray color. Here
isthe XAML file of this example:

Chapter 2: WPF Graphics Basics in 2D | 39

Polyline:

/NN

Clos=d polyline:

YAVAN

Sine curve:

VAVAVAV

Figure 2-20 Polylines in WPF.

<Wndow x: d ass="Chapt er 02. Pol ygons"
xm ns="http://schemas. m crosoft.comw nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Pol ygons" Hei ght="300" Wdth="300">
<@id>
<St ackPanel Nane="stackPanel 1" Margi n="10">
<Text Bl ock Text="Pol ygon: "/>
<Pol ygon Stroke="Bl ack" StrokeThi ckness="3"
Fi Il ="Li ght Gay"
Poi nts="0 70, 60 10, 110 60, 160 10,210 70"/>
<Text Bl ock Text="Filled sine curve:"
Margin="0 10 0 0"/>
<Pol ygon Nane="pol ygonl" Stroke="Red"
St rokeThi ckness="2" Fill="LightCoral "/>
</ St ackPanel >
</ Qid>
</ W ndow>

The polygonl is created using a Sine function in the code-behind file;

usi ng System

usi ng System W ndows;

usi ng System Wndows. Medi a;
usi ng Syst em W ndows. Shapes;

40 | Chapter 2: WPF Graphics Basics in 2D

nanespace Chapt er 02

{

public partial class Polygons : Wndow
publ i ¢ Pol ygons()
{

I'nitializeConponent();

for (int i =0; i <71, i++)

{
double x =i * Math.Pl;
double y = 40 + 30 * Math.Sin(x / 10);
pol ygonl. Poi nts. Add(new Poi nt (x, y));

—

}
Running this application produces the results shown in Figure 2-21.

M Polygons E@@

Polygon:

Filled sine curvs:

A A _A
vV VvV VYV

Figure 2-21 Polygons in WPF.

In a simple shape where the lines never cross, it is easy to fill the interior.
However, sometimes, you'll have a more complex polygon where it isn't
necessarily obvious what portions should be filled and what portions should not.

Let’s consider an example, which shows a line that crosses more than one other
line, leaving an irregular region at the center that you may or may not want to
fill. Add a new WPF Window to the project Chapter02 and name it
PolygonFillRule. Hereisthe XAML file of this example:

<W ndow x: d ass="Chapt er 02. Pol ygonFi | | Rul e"
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Pol ygonFi | | Rul " Hei ght ="600" Wdt h="300">

Chapter 2: WPF Graphics Basics in 2D | 41

<@id>
<St ackPanel Margi n="10">
<Text Bl ock Text="FileRul e = Evendd: "
Margin="0 0 0 5"/>
<Pol ygon Stroke="Bl ack" Fill="Light G ay"
Fi |l Rul e="EvenQdd"
Poi nts="0 0,0 150, 100 150, 100 50,
50 50,50 100, 150 100, 150 0"/ >
<Text Bl ock Text="FileRul e = NonZero:"
Margin="0 10 0 5"/>
<Pol ygon Stroke="Bl ack" Fill="Li ght G ay"
Fi |l Rul e="Nonzer 0"
Poi nts="0 0,0 150, 100 150, 100 50, 50 50,
50 100, 150 100, 150 0"/ >
<Text Bl ock Text="Fi|leRule = NonZero:"
Margi n="0 10 0 5"/>
<Pol ygon Stroke="Bl ack" Fill="Li ght G ay"
Fi I'l Rul e="Nonzer o"
Poi nts="0 0,0 150, 100 150, 100 100, 50 100,
50 50, 100 50, 100 100, 150 100, 150 0"/ >
</ St ackPanel >
</Q@id>
</ W ndow>

Here, you use the FillRule property to control the filled regions. Every polygon
has a FillRule property that allows you to choose between two different methods
for filling in regions, EvenOdd (the default value) or NonZero. In the EvenOdd
case, in order to determine which region will be filled, WPF counts the number
of lines that must be crossed to reach the outside of the shape. If this number is
odd, the region is filled; if it is even, the region isn't filled, as shown in Figure
2-22.

When FillRule is set to NonZero, determining which region will be filled
becomes tricky. In this case, WPF follows the same line-counting process as
EvenOdd, but it takes into account the line direction. If the number of lines
going in one direction is equal to the number of lines going in the opposite
direction, the region isn’t filled. If the difference between these two counts isn’t
zero, theregion isfilled.

Figure 2-23 shows the results of running this example.

The difference between the two shapesin the figure is that the order of pointsin
the Points collection is different, leading to different line directions. This means
that in the NonZero case, whether a region is filled or not depends on how you
draw the shape, not what the shape itself looks like. Figure 2-23 clearly
demonstrates this conclusion.

42 | Chapter 2: WPF Graphics Basics in 2D

Figure 2-22 Determining filled regions when FillRule is set to EvenOdd.

Figure 2-23 Determining filled regions when FillRule is set to NonZero.

Chapter 3
2D Transfor mations

In the previous chapter, you learned about coordinate systems and basic shapes
in WPF. To create complex shapes in real-world WPF applications, you need to
understand transform operations on graphics objects.

In a graphics application, operations can be performed in different coordinate
systems. Moving from one coordinate space to another requires the use of
transformation matrices. In this chapter, we review the mathematic basis of
vectors, matrices, and transforms in 2D space. Here we acknowledge the
importance of matrices and transforms in graphics applications by presenting
you with a more formal exposition for their properties. We concern ourselves
with linear transformations among different coordinate systems. Such
transforms include simple scaling, reflection, trandation, and rotations. You'll
learn how to perform matrix operations and graphics object transforms in WPF.
More complicated transformationsin 3D will be the topic of Chapter 9.

Basics of Matrices and Transforms

Vectors and matrices play an important role in the transformation process. WPF
uses a row-magjor definition for both vectors and matrices. Thus, a vector is a
row array and a matrix is a multi-dimensiona array in WPF. This section
explains the basics of 2D matrices and 2D transforms. As we discussed in the
previous chapter, by changing the coordinates of a graphics object in the world
coordinate system, such as zooming and panning, you can easily move the
graphics object to another part of a viewport. However, if the graphic contains
more than one object, you may want to move one of the objects without moving
the others. In this case, you can’t use simple zooming and panning to move the
object because these approaches would move the other objects as well.

Instead, you can apply a transform to the object you want to move. Here we'll
discuss transforms that scale, rotate, and trand ate an object.

44 | Chapter 3: 2D Transformations

Vectors and Points

In a row-major representation, a vector is a row array that represents a
displacement in a 2D space. On the other hand, apoint is defined by its X and Y
coordinates at afixed position, as shown in Figure 3-1.

Figure 3-1 Points and Vectors.

The difference between a vector and a point is that a point represents a fixed
position, while a vector represents a direction and a magnitude. Thus, the end
points (x1, y1) and (x2, y2) of aline segment are points, but their difference V12
is a vector that represents the direction and length of that line segment. In WPF,
the following code snippet isavalid statement:

Vector v12 = new Poi nt (x2, y2) — new Point(x1, yl);

Mathematically, you should keep in mind that V12 = V2 — V1, where V2 and
V1 are vectors from the origin to the point (x1, y1) and the point (x2, y2),
respectively.

In WPF, you can apply atransform matrix directly to either avector or a point.

Scaling

To scale or stretch an object in the X direction, you simply need to multiply the
X coordinates of each of the object’s points by the scaling factor s,. Similarly,
you can also scale an object in the Y direction. The scaling process can be
described by the following equation:

Chapter 3: 2D Transformations | 45

Sy

For example, the scaling matrix that shrinks x and y uniformly by a factor of two,
aswell as amatrix that halves in the y direction and increases by three-halvesin
the x direction, are given below respectively:

05 0 15 0
and
(0 0.5] (0 O.SJ
The above two scaling matrix operations have very different effects on objects,
as shown in Figure 3-2.

s, O
(4 yD) =(x y)(o j=(sxx SyY) (3.2)

Figure 3-2 Uniform scaling by half in the x and y directions (top) and
non-uniform scaling in the x and y directions (bottom).

Reflection

By reflecting an object across the X and Y axis, you can create a mirror image
of the object. Reflecting an object across an axisis equivalent to scaling it with a
negative scaling factor. The transform matrices across either of the coordinate
axes can be written in the following forms:

-1 0
Reflect across the x axis: [0 J

46 | Chapter 3: 2D Transformations

10
Reflect acrossthey axis: [0 J

As you might expect, a matrix with -1 in both elements of the diagonal is a
reflection that is simply arotation by 180 degrees.

Rotation

Suppose you want to rotate an object by an angle 6 counter-clockwise. First,
suppose you have a point (x1, y1) that you want to rotate by an angle 6 to get to
the point (x2, y2), as shown in Figure 3-3.

Figure 3-3 Rotation from point (x1, y1) to (x2, y2).

The distance from the point to the origin is assumed to be r. Then, we have the
following relations:

x1=r cosa

yl=rsina
The point (X2, y2) is the same point rotated by an additional angle of 6. Since
this point also has adistance r from the origin, its coordinates are given by:

X2 =rcos(a +8) =r cosa cosfd-rsinasing
y2 =rsin(a +68) =rsinacosé +r cosasiné

Chapter 3: 2D Transformations | 47

Substituting the components of x1 = rcosa and yl1 = rsina into the above
equations gives

x2 =xlcosé - ylsind
y2 =xlsin 8+ ylcosd

In matrix form, the equivalent rotation transform that takes point (x1, y1) to (x2,
y2) is given by the following rotation matrix:

cos@d sin 49]

3.2
-sind cosé (32)

R(6) = (

Trandation

To trandate an object, you ssimply add an offset to the origina X and Y
coordinates of the points that make up the object

X1 = x+ dx
yl=y+dy

Although trandations look very simple, they can’t be expressed in terms of a
transform matrix. It would be feasible to keep track of scales, reflections, and
rotations as a matrix, while keeping track of trandations separately. However,
doing so would involve fairly painful bookkeeping, particularly the application
includes many different transforms. Instead, you can use a technique to move
the computation into a higher dimension. This technique allows you to treat the
different transforms in a uniform or homogeneous way. This approach, called
homogeneous coordinates, has become standard in amost every graphiccs
program. In the following section, we'll introduce homogeneous coordinates
that allow you to manipulate all of these transforms with matrices.

(3.3)

Homogeneous Coordinates

We expect that all transforms in 2D space, including scaling, reflection, rotation,
and trandation, can be treated equally if points are expressed in homogeneous
coordinates. Homogeneous coordinates were first introduced in geometry and
have been applied subsequently to graphics.

In homogeneous coordinates, you add a third coordinate to a point. Instead of
being represented by a pair of (X, Y) numbers, each point is represented by a
triple (X, Y, W). If the W coordinate is nonzero, you can divide through by it:
(X, Y, W) represents the same point as (X/W, Y/W, 1). When W is nonzero, you
normally perform this division, and the numbers X/W and Y/W are usualy
called the point coordinates in the homogeneous coordinate system. The points
where W = 0 are called points at infinity.

48 | Chapter 3: 2D Transformations

Since vectors and points in 2D space are now three-element row arrays,
transform matrices, which multiply a vector to produce another vector, should
be 3x3.

Trandation in Homogeneous Coor dinates

In homogeneous coordinates, a translation can be expressed in the form:

1 00
(@ yi)=(x y /0 1 0 (3.4)
dx dy 1

The above transform can be expressed differently as
R = P T (dx,dy) (3.5)

Here P and P; represent point (X, y) and point (x1, y1) respectively, and T(dx, dy)
is the trand ation matrix:

1 0 O
T(dx,dy)={ 0 1 O (3.6)
dx dy 1

What happens if a point P is translated by T(dx1, dy1) to Py; and then translated
by T(dx2, dy2) to P,? The result, you might intuitively expect, is a net
translation of T(dx1 + dx2, dy1+ dy2). This can be confirmed by the definitions:

P, = PT(dxl, dyl)
P, = P, [T (dx2, dy2)

From the above equations we have:
P, = PT(dx4, dyl) [T (dx2, dy2)
The matrix product T(dx1, dy1) T(dx2, dy2) is

1 0 01 0 0 1 0 o0
O 1 o]0 1 ofl=| o0 1 0 (3.7)
dxl dyl 1){dx2 dy2 1) |(dxi+dx2 dyl+dy2 1

The net trandation isindeed T(dx1 + dx2, dyl + dy2).

Scaling in Homogeneous Coor dinates

Similarly, the scaling equation (3.1) can be represented in matrix form in
homogeneous coordinates as:

Chapter 3: 2D Transformations | 49

s, 0 O
(e y1 9)=(x y)0 s, 0
0 0 1

It can also be expressed in the form:
R =PI5(s,.5,) (39)

Just as successive trandlations are additive, we expect that successive scalings
should be multiplicative. Given

P = P[5(S,5,1) (3.10)
P, = P [5(Syz,8y2) (3.11)
Substituting Eq.(3.10) into Eq.(3.11) obtains
P, = (PB(Sx,8y1)) (B(Sx2: Sy2) = P US(Su, Sy1) [B(Sxa: Sy2))
The matrix product in the above equation is

S¢ 0 OYs, 0 0} (8¢5, O O
0 s, 0 0O s, Oj=[O SyuSy, O
0O 0 1/ 0 0 1 0 0 1
Thus, scalings are indeed multiplicative.

Reflection is a special case of scaling with a scaling factor of -1. You can
represent areflection in the same way as scaling.

Rotation in Homogeneous Coor dinates
A rotation in homogeneous coordinates can be represented as

cosd snéd O
(xl yl 1)=(x y 1) -sing cosd 0 (3.12)
0 0 1
It can be also written as
R =PIR(6)

Where R(0) is the rotation matrix in homogeneous coordinates. You would
expect that two successive rotations should be additive. Given

R =PIR&) (3.13
P, =R [R(G,) (3.14)

50 | Chapter 3: 2D Transformations

Substituting Eg. (3.13) into Eq. (3.14) gets
P, =(PR(6)) [R(6,) = PUR(6) [R(6,))
The matrix product R(6,) R(0,) is

cosg sing, 0)\(cosd, sng, O

—-sing cosg O} -sing, cosd, O

0 0 1 0 0 1
cos cos & —sin §sin 8 cosgsin g, +sing cosd, O
=|-sin cos § —cosgsin§ cosfcosé —-singsing, O
0 0 1

cos(4 +6) sn(G+6,) 0

=|-sin(§+6&) cos(&+6,) 0
0 0 1

Thus, rotations are indeed additive.

Combining Transforms

It is common for graphics applications to apply more than one transform to a
graphics object. For example, you might want to first apply a scaling transform
S, and then arotation transform R. Y ou can combine the fundamental S, T, and
R matrices to produce desired general transform results. The basic purpose of
combining transforms is to gain efficiency by applying a single composed
transform to a point, rather than applying a series of transforms, one after
another.

Consider the rotation of an object about some arbitrary point P1. Since you only
know how to rotate about the origin, you need to convert the origina problem
into severa separate problems. Thus, to rotate about P1, you need to perform a
sequence of several fundamental transformations:

* Trandateit so that the point is at the origin
* Rotateit to the desired angle
» Trandate so that the point at the origin returns back to P1.

This sequence is illustrated in Figure 3-4, in which a rectangle is rotated about
P1 (x1, y1). Thefirst trandation is by (-x1,-y1), wheresas the later translation is
by the inverse (x1, y1). The result is quite different from that of applying just the
rotation. The net transformation is

Chapter 3: 2D Transformations | 51

1 0O O) cos@ snd 01 0O O
T(-x,-yD) RO T(x,y) =| O 1 O0}/-sin@ cosd 0|0 1 O
-x1 -yl 1 0 0 1)lxa y1 1

cosé -sind 0

= sind cosé 0

XLl -cosh) +yl8ing yll{l—-cosd)—-x1&End 1

Figure 3-4 Rotation of a rectangle about a point P1.

Vector and Matrix in WPF

WPF implements a Vector and a Matrix structure in homogeneous coordinates
in 2D space. It uses a convention of pre-multiplying matrices by row vectors. A
point or a vector in homogeneous coordinates is defined using three double
values (X, Y, 1). In WPF, they can aso be expressed in terms of two doubles (X,
Y) since the third doubleis always equal to one.

Vector Structure

A vector in WPF is defined using structure. A structure is similar in nature to a
class. Both the class and structure can contain data members and function

52 | Chapter 3: 2D Transformations

members. One major difference between a structure and a class is that a
structure is a value type and therefore is stored in the stack. On the other hand, a
class is a reference type, and it stores a reference to a dynamically allocated
object. Usually, structures have a performance advantage over classes because
structures are allocated on the stack and are immediately de-allocated when out
of scope. Note that a structure can’t inherit from another class or structure; i.e., a
structure can’t be a base class due to its implicitly sealed nature. Structures are
not permitted to have a parameterless constructor. Many simple math functions,
including vector and matrix in WPF are defined using structures because of their
performance advantage.

A Vector object isarow array with three elements in homogeneous coordinates.
Since the last element is always equal to one, only the first two elements need to
be specified. For instance:

Vector v = new Vector (10, 20);

Note that a vector and a point in WPF are two different objects. The following
statement isinvalid in WPF:

Vector v = new Poi nt (10, 20);
However, you can define a Vector using Points, or vice versa:

Vector vl = new Point (10, 20) - new Point (20, 30);
Vector v2 = (\Vector)new Poi nt (10, 20);
Point ptl = (Point)new Vector (10, 20);

A Vector has four public properties:

» Length — Getsthe length of the vector.

e LengthSquared — Gets the square of the length of the vector.
X —Getsor setsthe X component of the vector.

* Y —Getsor setsthe Y component of the vector.

In addition, there are methods assocated with vectors that allow you to perform
various mathematical operations on them. The following are some frequently
used methods:

e Add-Addsavector to a point or another vector.
e Subtract — Subtracts a vector from another vector.

e Multiply — Multiplies a vector by a specified double, matrix, or vector, and
returns the result as a vector.

» Divide—Divides avector by ascalar and returns avector.
» CrossProduct — Calculates the cross product of two vectors.

» AngleBetween — Retrieves the angle, expressed in degrees, between two
vectors.

¢ Normalize — Normalizes the vector.

Chapter 3: 2D Transformations | 53

For example:
Vector vl = new Vector (20, 10);
Vector v2 = new Vector (10, 20);

Vector cross = Vector. O ossProduct (v1, v2);
Vector angl e = Vector. Angl eBet ween(vl, v2);
vl. Normalize();

doubl e | engt h2 = v1. Lengt hSQuar ed;

This generates the output: cross = 300 with a direction along the Z axis, which
can be easily confirmed by the formula

result =vL.X N2Y -viY 2.X =20[20-10010=2300,

and angle = 36.87 degrees, which can be confirmd by the following formula
used to calcul ate the angle between these two vectors:

6= arctan[vz—'Yj - arctan(ﬂj = arctan(10/ 20) — arctan(20/10) = 36.87 deg
v2.X VL. X

The normalized result of vl is stored in v1 again; in this case, vl becomes
(0.894, 0.447), which is confirmed by its length squared: length2 = 1.

Matrix Structure

We have demonstrated that the transform matrices in homogeneous coordinates
always have a last column of (0 0 1). It can be shown that any combined
transform matrix using these fundamental transforms has the same last column.
Based on this fact, WPF defines the transform in terms of a 3x2 matrix. Namely,
the matrix structure in WPF takes 6 elements arranged in 3 rows by 2 columns.
In methods and properties, the Matrix object is usually specified as a vector with
six members, as follows: (M11, M12, M21, M22, OffsetX, OffsetY). The
OffsetX and OffsetY represent trandlation values.

For example, the default identity matrix constructed by the default constructor
hasavalueof (1, 0, 0, 1, O, 0). In matrix representation, this means:

10 100 0
0 1|.Thisisasimplificationof |0 1 0|.Thelast columnisaways|0]|.
00 0 01 1

Thus a trandation of of 3 units in the X direction and 2 unitsin the Y direction
would berepresented as (1, 0, 0, 1, 3, 2). In matrix form, we should have:

10 100
0 1/|.Thisisasimplificationof |0 1 O0].
3 2 321

You can create a matrix object in WPF by using overloaded constructors, which
take an array of double values (which hold the matrix items) as arguments.

54 | Chapter 3: 2D Transformations

Please note that before using the matrix class in your applications, you need to
add a reference to the System.Windows.Media namespace. The following code
snippet creates three matrix objects for translation, scaling, and rotation in code:

doubl e dx
doubl e dy
doubl e sx . 5;
doubl e sy . 5;
doubl e theta = Math.Pl / 4;

doubl e sin = Math. Sin(theta);

doubl e cos = Mat h. Cos(theta);

Matrix tm= new Matrix(1, 0, 0, 1, dx, dy);
Matrix sm= new Matrix(sx, 0, 0, sy, 0, 0);
Matrix rm= new Matrix(cos, sin, -sin, cos, 0, 0);

P ONW

The matrix tm is a trandation matrix that moves an object by 3 units in the x
direction and by 2 units in the y direction. The scaling matrix sm scales an
object by a factor of 0.5 in the x direction and by a factor of 1.5 in the y
direction. The other matrix rm is a rotation matrix that rotates an object by 45
degrees about the origin.

In addition to the properties of these six matrix elements, there are four other
public properties associated with a matrix, which are:

e Determinant — Gets the determinant of the Matrix structure.

» Haslnverse — Gets a value that indicates whether the Matrix structure is
invertible.

* ldentity — Gets an identity matrix.

e Isldentity — Gets a value that indicates whether the Matrix structure is an
identity matrix.

There are many public methods associated with the Matrix structure which
allow you to perform various matrix operations.

Matrix Operations

The Matrix structure in WPF provides methods to perform rotation, scale, and
trandation. It also implements severa methods to perform matrix operations.
For example, the Invert method is used to reverse amatrix if it isinvertible. This
method takes no parameters. The Multiply method multiplies two matrices and
returns the result in a new matrix. The following are some of the frequently used
methods for matrix operations:

» Scale— Appends the specified scale vector to the Matrix structure.

e ScaleAt — Scale the matrix by the specified amount about the specified
point.

» Trandate — Appends atrandation of the specified offsets to the Matrix
structure.

Chapter 3: 2D Transformations | 55

» Rotate— Applies arotation of the specified angle about the origin of the

Matrix structure.

* RotateAt — Rotates the matrix about the specified point.
» Skew — Appends a skew of the specified anglesinthe X and Y directionsto

the Matrix structure.

* |nvert — Inverts the Matrix structure.

e Multiply — Multiplies a Matrix structure by another Matrix structure.

* Transform — Transforms the specified point, array of points, vector, or array
of vectors by the Matrix structure.

There are aso corresponding Prepend methods associated with the Scale,
Trandation, Rotation, and Skew. The default method is Append. Both Append
and Prepend determine the matrix order. Append specifies that the new
operation is applied after the preceding operation; Prepend specifies that the new
operation is applied before the preceding operation during cumulative operations.

Let’s consider an example that shows how to perform matrix operationsin WPF.
Start with a new WPF Windows Application project, and name it Chapter03.
Add a new WPF Window called MatrixOperation to the project.

Hereisthe XAML file of this example:

<Wndow x: d ass="Chapt er 03. Mat ri x(per at i ons"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xan / present at i on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Matrix Qperations" Hei ght="250" Wdth="250">

<@id>
<St ackPanel >
<Text Bl ock

<Text Bl ock
<Text Bl ock

<Text Bl ock
<Text Bl ock

<Text Bl ock
<Text Bl ock
<Text Bl ock
<Text Bl ock
<Text Bl ock
</ St ackPanel >
<Qid>
</ W ndow>

Mar gi n="10, 10, 5, 5"

Text="Criginal Mtrix:"/>

x: Narre="t bCri gi nal " Margi n="20, 0, 5, 5"/ >
Mar gi n="10, 0, 5, 5"

Text="Inverted Matrix:"/>

x: Name="t bl nvert" Margi n="20,0,5,5"/>
Mar gi n="10, 0, 5, 5"

Text="Criginal Mtrices:"/>

x: Narre="t bMLMR" Mar gi n="20, 0, 5, 5"/ >
Mar gi n="10, 0, 5, 5" Text="M x M:"/>
x: Name="t bML2" Mar gi n="20, 0, 5, 5"/ >
Mar gi n="10, 0, 5, 5" Text="M x M.:"/>
x: Narme="t bM21" Margi n="20, 0, 5, 5"/ >

This markup creates the layout for displaying results using TextBlocks. The
matrix operations are performed in the corresponding code-behind file, as listed

below:

56 | Chapter 3: 2D Transformations

usi ng System

usi ng System W ndows;

usi ng System W ndows. Medi a;
narmespace Chapt er 03

public partial class MatrixQperations : Wndow

{

public MatrixQperation()

{
InitializeConponent();
/1 Invert matrix:
Matrix m= new Matrix(1, 2, 3, 4, 0, 0);
tbQiginal . Text = "(" + mToString() +')";
mlnvert();
tblnvert. Text = "(" + mToString() +")";
// Matrix nmultiplication:
Matrix nl = new Matrix(1l, 2, 3, 4, 0, 1);
Matrix n2 = new Matrix(0, 1, 2, 1, 0, 1);
Matrix nl2 = Matrix. Ml tiply(m, n®2);
Matrix n2l = Matrix. Ml tiply(ng, nl);
tbMIMR. Text = "ML = (" + nl. ToString() + "), " +

"M = (" +nR ToString() +")";

tbML2. Text = "(" + ml2. ToString() + ")";
tbMRl. Text = "(" + nRl. ToString() + ")";

}

}

}

This code-behind file performs matrix inversion and multiplications. In
particular, it shows that the results of the matrix multiplication depend on the
order of the matrix operations. Executing this example generates the output
shown in Figure 3-5.

First, let's examine the matrix invert method which inverts amatrix (1, 2, 3, 4, 0,
0). The Matrix.Invert method gives the result (-2, 1, 1.5, -0.5, 0, 0). This can be
easily confirmed by considering the matrix operation: matrix (1, 2, 3, 4, 0, 0)
multiplied by (-2, 1, 1.5, -0.5, 0, 0) should be equal to an identity matrix (1, 0, O,
1,0,0). Infact:

1 2 0y-2 1 O -2+2x15 1-2x05 O 100
3 4 0||15 -05 0|=| -2x3+4x15 3-4x05 0|=|0 1 O
0 0 1){O 0 1 0 0 1 001

which isindeed an identity matrix, as expected.

Chapter 3: 2D Transformations | 57

Original Matrix:
(1,2,3,4,0,0)
Irverted Matrix;
(-2,1,1.5,-0.5,0,0)
Original Matrices:
M1 =(1,2,3,4,0,1), M2 =(0,1,2,1,0,1)
M1 x M2:
(4,3,8,7,2,2)
M2 2 M1:
(3,4,58,3,5)

Figure 3-5 Results of matrix operations in WPF.

Next, let's consider the matrix multiplication. In the code, you created two
matricesm1 = (1, 2, 3,4,0,1) andm2= (0, 1, 2, 1, 0, 1). You first multiply m1
by m2 and return the result in m12, then multiply m2 by m1 and store the result
in m21. Please note that the result is stored in m1 if the matrix m1 is multiplied
by m2. You can see from Figure 3-5that M12 = (4, 3, 8, 7, 2, 2). In fact:

1 2 0010 4 30

3 4 0|l210|=870

01 1)l0 11 2 21
For M21 = m2 x m1, you would expect the following result:

010|120 340

2 10|3 40|=(580

011011 351

which is consistent with (3, 4, 5, 8, 3, 5) shown in thefigure.

Matrix Transforms

As mentioned in the previous section, the matrix structure in WPF also provides
methods to rotate, scale, and translate the matrices.

Both the Rotate and RotateAt methods are used to rotate a matrix. The Rotate
method rotates a matrix at a specified angle. This method takes a single
argument, a double value, specifying the angle. The RotateAt method is useful
when you need to change the center of the rotation. Its first parameter is the
angle; and the second and third parameters (of type double) specify the center of
rotation.

58 | Chapter 3: 2D Transformations

Let's illustrate the basic matrix transforms (trandation, scaling, rotation, and
skew) in WPF through an example. Add a new WPF Window to the project
Chapter03 and name it MatrixTransforms. The following is the XAML file of
this example:

<Wndow x: d ass="Chapt er 03. Mat ri xTr ansf or ns"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / present at i on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Matrix Transforns" Hei ght="450" Wdth="270">
<St ackPanel >
<Text Bl ock Margi n="10, 10, 5, 5"

Text="Criginal Mtrix:"/>
<Text Bl ock Nanme="tbQriginal" Margi n="20,0,5,5"/>
<Text Bl ock Margin="10, 0, 5,5" Text="Scale:"/>
<Text Bl ock Name="t bScal e" Margi n="20, 0, 5,5"/>
<Text Bl ock Margin="10,0, 5,5" Text="Scale - Prepend:"/>
<Text Bl ock Name="t bScal ePrepend" Margi n="20, 0, 5,5"/>
<Text Bl ock Margin="10, 0, 5,5" Text="Transl ation:"/>
<Text Bl ock Name="t bTransl ate" Margi n="20, 0, 5,5"/>
<Text Bl ock Margi n="10, 0, 5, 5"

Text="Transl ation — Prepend:"/>
<Text Bl ock Name="t bTr ansl at ePr epend"

Mar gi n="20, 0, 5,5"/>
<Text Bl ock Margin="10,0,5,5" Text="Rotation:"/>
<Text Bl ock Narme="t bRot at " Margi n="20, 0, 5, 5"

Text W appi ng="Wap"/ >
<Text Bl ock Margi n="10, 0, 5, 5"

Text ="Rotation — Prepend:"/>
<Text Bl ock Narre="t bRot at ePr epend"”

Mar gi n="20, 0, 5, 5" Text Wappi ng="Wap"/ >
<Text Bl ock Margi n="10, 0, 5,5" Text="RotationAt:"/>
<Text Bl ock x: Nane="t bRotat eA" Margi n="20, 0,5, 5"

Text Wappi ng="Wap"/ >
<Text Bl ock Margi n="10, 0, 5, 5"

Text ="Rotati onAt — Prepend:"/>
<Text Bl ock x: Nane="t bRot at eAt Pr epend"

Mar gi n="20, 0, 5, 5" Text Wappi ng="Wap"/ >
<Text Bl ock Margin="10, 0, 5,5" Text="Skew "/>
<Text Bl ock Name="t bSkew' Margi n="20,0, 5, 5"/>
<Text Bl ock Margin="10, 0, 5, 5" Text="Skew - Prepend:"/>
<Text Bl ock Name="t bSkewPr epend" Margi n="20, 0, 5, 5"/ >

</ St ackPanel >
</ W ndow>

This markup creates the layout for displaying results using TextBlocks, which
are embedded into a StackPanel control. The corresponding code-behind file is
given by the following code:

usi ng System
usi ng System W ndows;
usi ng System W ndows. Medi a;

namespace Chapt er 03

Chapter 3: 2D Transformations | 59

public partial class MatrixTransform: W ndow
{
public MatrixTransforn()

{
InitializeConponent();

// Oiginal matrix:
Matrix m= new Matrix(1, 2, 3, 4, 0, 1);
tbGiginal.Text ="(" + mToString() +")";

[/ Scal e:
m Scal e(1, 0.5);
tbScale. Text = "(" + mToString() + ")";

/1 Scale - Prepend:

m= new Matrix(1, 2, 3, 4, 0, 1);

m Scal ePrepend(1, 0.5);

t bScal ePrepend. Text = "(" + mToString() +")";

[/ Transl ati on:

m= new Matrix(1, 2, 3, 4, 0, 1);

m Transl ate(1, 0.5);

tbTransl ate. Text = "(" + mToString() +")";

/1l Translation - Prepend:
m= new Matrix(1, 2, 3, 4, 0, 1);
m Transl at ePrepend(1, 0.5);
tbTransl at ePrepend. Text =

"(" + mToString() +")";

// Rotati on:

m= new Matrix(1, 2, 3, 4, 0, 1);

m Rot at e(45) ;

tbRotate. Text = "(" + MatrixRound(n). ToString()
+

/1l Rotation - Prepend:
m= new Matrix(1, 2, 3, 4, 0, 1);
m Rot at ePr epend(45) ;
t bRot at ePrepend. Text = "(" +
Mat ri xRound(m) . ToString() + ")";

//Rotation at (x =1, y = 2):

m= new Matrix(1, 2, 3, 4, 0, 1);

m Rot at eAt (45, 1, 2);

tbRotateAt. Text = "(" +
MatrixRound(nj. ToString() + ")";

// Rotation at (x =1, y =2) - Prepend:
m= new Matrix(1, 2, 3, 4, 0, 1);
m Rot at eAt Prepend(45, 1, 2);
t bRot at eAt Prepend. Text = "(" +
Matri xRound(n). ToString() + ")";

60 | Chapter 3: 2D Transformations

/] Skew
m= new Matrix(1, 2, 3, 4, 0, 1);
m Skew(45, 30);
t bSkew. Text =
"(" + MatrixRound(n).ToString() + ")";

/1 Skew - Prepend:
m= new Matrix(1, 2, 3, 4, 0, 1);
m SkewPr epend(45, 30);
t bSkewPr epend. Text =
"(" + MatrixRound(nm).ToString() + ")";

}

private Matrix Matri xRound(Matrix m

{
m M1 = Mat h. Round(m M1, 3);
m M2 = Mat h. Round(m M2, 3);
m M1 = Mat h. Round(m M21, 3);
m M2 = Mat h. Round(m M22, 3);
mCfset X = Math. Round(m Cifset X, 3);
mCfsetY = Math. Round(m CffsetyY, 3);
return m

}

}

Building and running this application generate the output shown in Figure 3-6.
The original matrix m = (1, 2, 3, 4, 0, 1) is operated on by various transforms.
First, let's examine the scale transform that sets the scaling factor as 1 in the x
direction and 0.5 in the y direction. For the Apppend scaling (the default setting),
we have:

1 2 01 0 O 1 1 0
3 4 0|0 05 0f=|3 2 O
01 1)l 0 1 0 05 1

This gives the same result (1, 1, 3, 2, 0, 0.5) shown in Figure 3-6. On the other
hand, for the Prepend scaling, we have:

1 0 01 2 0 1 20
0O 05 0|3 4 0|=[15 2
0 0 1)l0 1 1 0 1

This confirmstheresult (1, 2, 1.5, 2, 0, 1) shown in Figure 3-6.

Then, we trandate the matrix m by one unit in the X direction, and by a half unit
inthe Y direction. For the Append (the default setting) trand ation, we have;

Chapter 3: 2D Transformations | 61

B Matrix Transformations D@@

COriginal Matrix:
(1,2,3,4,0,1)
Scale:
(1,1,3,2,0,0.5)
Scale - Prepend:
(1,2,1.5,2,0,1)
Translation:
(1,2,3,4,1,1.5)
Translation - Prepend:
(1,2,3,4,2.5,5)
Rotation:
(-0.707,2.121,-0.707,4.95,-0.707,0.707)
Fotation - Prepend:
(2.3283,4.243,1.414,1.414,0,1)
RotationAt:
{-0.707,2.121,-0.707,4.95,1,0.585)
FotationAt - Prepend:
(2.828,4.243,1.414,1.414,1.343,3.928)
Skeaw:
(3,2.577,7,5.732,1,1)
Skew - Prepend:
(2.732,4.300,4,6,0,1)

Figure 3-6 The results of matrix transformations.
1 2 0yYy1 0 O 1 2 0
3 4 0|0 1 0f=/3 4 O
01 1){1 05 1 115 1
Thisis consistent with the result (1, 2, 3, 4, 1, 1.5) shown in Figure 3-6.
For the Prepend tranglation, we perform the following transformation:
1 0 01 20 1 20
0 1 03 4 0(=/3 40
1 05 1)l0 11 25 51
This confirmstheresult (1, 2, 3, 4, 2.5, 5) shown in Figure 3-6.

For the rotation transformation, the original m matrix is rotated by 45 degrees.
In the case of the Append rotation, we have:

62 | Chapter 3: 2D Transformations

1 2 0\ cos(zz/4) sin(rm/4) 0) (-0.707 2121 0O
3 4 0|/ -sin(z/4) cos(m/4) 0|=|-0.707 4.949 0
011 0 0 1) (-0707 0707 1

Note that in the above calculation, we have used the fact that cos(n/4) = sin(n/4)
= 0.707. This gives the same result (-0.707, 2.121, -0.707, 4.95, -0.707, 0.707)
asthat givenin Figure 3-6.

For the Prepend rotation, we have:

cos(7r/4) sin(rz/4) O)(1 2 0) (2828 4.243 0
-sin(rz/4) cos(rr/4) 0|3 4 0|=|1414 1414 0
0 0 10 1 1 0 1 1

Thisresult isthe same as (2.828, 4.243, 1.414, 1.414, 0, 1) shown in Figure 3-6.

The RotateAt method is designed for cases in which you need to change the
center of rotation. In fact, the Rotate method is a special case of RotateAt with
the rotation center at (0, 0). In this example, the matrix m is rotated by 45
degrees at the point (1, 2). As discussed previoudly in this chapter, the rotation
of an object about an arbitrary point P1 must be performed according to the
following procedures:

e Trandate P1totheorigin.

* Rotateit to the desired angle.

» Trandate so that the point at the origin returns back to P1.

Considering the matrix transform definition in WPF, the rotation matrix at point
(1, 2) should be expressed in the following form:

T (—dx,—dy) R(&) [T (dx, dy)
1 0 O\ cos(rr/4) sin(zr/4) 0)1 0 O 0.707 0707 O
=0 1 O -sin(7z/4) cos(rr/4) 0|0 1 0|=|-0707 0707 O
-1 -2 1 0 0 1)1 21 1707 -0121 1

Thus, the Append rotation of Matrix m by 45 degrees at Point(1,2) becomes:

1 2 0) 0707 0707 O -0.707 2121 O
3 4 0||-0707 0.707 0|=|-0.707 4949 O
01 1){ 1707 -0121 1 1 0586 1

This gives the same result of (-0.707, 2.121, - 0.707, 4.949, 1, 0.586) shown in
Figure 3-6. The minor difference is due to the decimal rounding.

Similarly, for the Prepend rotation of Matrix m by 45 degrees at Point(1, 2)
should be:

Chapter 3: 2D Transformations | 63

0707 0707 O0)1 2 O 2828 4242 0
-0.707 0.707 0|3 4 0|=|1414 1414 O
170r -0121 1){0 O 1 1344 393 1

Again, the result is the same as the one shown in Figure 3-6.

Finally, we'll examine the Skew method, which provides a shearing transform.
This method takes two double arguments, AngleX and AngleY, which represent
the horizontal and vertical skew factors. The skew transformation in
homogeneous coordinates can be expressed in the form:

1 tan(AngleY) O
(@ y1 1)=(x y 1) tan(Anglex) 1 0
0 0 1

= (x + ytan(AngleX) vy + xtan(AngleY) 1)

where tan(AngleX) and tan(AngleY) are the skew transform factorsin the X and
Y directions, respectively. Return to the Skew transform in this example. The
skew angles used in the example are AngleX = 45 degrees and AngleY = 30
degrees. In this case, the Skew matrix is given by

1 tan(30°) 0) (1 0577 O

tan(45°) 1 Ol=[1 1 0
0 o 1/ (o o 1

Thus, for the Append skew transformation, we have:

1 2 0)(1 0577 O 3 2577 O
3 4 0(|1 1 0|=|7 5732 0
01 1)l0 0 1 1 1 1

This confirms the result shown in Figure 3-6.

For the Prepend Skew transformation, we have:
1 0577 01 2 0 2732 4308 0
1 1 03 4 0|= 4 6 O
0 0 1)l0 1 1 0 1 1

Thisresult is again the same as the one given in Figure 3-6.

Here, we have presented detailed explanations of the matrix transforms in WPF.
This information is useful for understanding the definitions and internal
representations of matrices in WPF, and applying matrices to your applications
correctly.

64 | Chapter 3: 2D Transformations

Creating Perpendicular Lines

Remember that the matrix transforms discussed in the previous sections can't be
directly applied to graphics objects. Instead, they can only be applied to points
and vectors. If these transforms aren’'t related to the objects, you may ask why
we need them in the first place. Here, I'll show you that you do need matrix
transforms in some real-world applications.

I'll use an example to demonstrate how to use matrix transforms in a WPF
application. The example application is very simple. As shown in Figure 3-7, for
a given line segment (the solid line) specified by two end points, (x1, y1) and
(x2, y2), we want to find a perpendicular line segment (the dashed line) at one
end (for example, at Point(x2, y2)) of the original line segment.

Figure 3-7 Creating a perpendicular line for a given line segment.

Open the project Chapter03 and add a new WPF Window to the project. Name
this new Window PerpendicularLine. Create a user interface using the following
XAML code:

<Wndow x: d ass="Chapt er 03. Per pendi cul ar Li ne"
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Ti t1 e="Per pendi cul ar Line" Hei ght="300" Wdth="400">

<Vi ewbox Stretch="Ulhiform >
<@id Wdth="430" Hei ght="300"
Hori zont al Al'i gnrment =" Left"
Verti cal Al i gnnent =" Top" >
<@ i d. Col umDefini ti ons>
<Col umDefi ni ti on Wdt h="150" />
<Col umDefini ti on Wdt h="280" />
</ @i d. Col umDefinitions>
<@id Wdth="140" Hei ght="300" Margi n="5, 10, 5, 5" >
<@i d. Col umDefi niti ons>

Chapter 3: 2D Transformations | 65

<Col ummDefini ti on Wdt h="60" />
<Col umDefinition Wdth="70" />
</ @id. Col umbDefinitions>
<@i d. RowDefi ni ti ons>
<RowDef i niti on Hei ght="Auto" />
<RowDef i ni ti on Hei ght="Auto" />
<RowDef i niti on Hei ght="Auto" />
<RowDef i ni tion Hei ght="Auto" />
<RowDef i niti on Hei ght="Auto" />
<RowDef i nition Hei ght="Auto" />
<RowDef i ni ti on Hei ght="Auto" />
</ Q@i d. Rowbefinitions>

<Text Bl ock Horizontal Ali gnnent="R ght"
Gid Colum="0" @id. Row="0"
Mar gi n="5, 5, 10, 5" >X1</ Text Bl ock>
<Text Box Nanme="t bx1" Gid. Col um="1"
Qid Row="0"
Text Al i gnnent =" Cent er " >50</ Text Box>
<Text Bl ock Horizontal Al i gnment ="R ght "
Gid Colum="0" @id. Row"1"
Mar gi n="5, 5, 10, 5" >Y1</ Text Bl ock>
<Text Box Name="t bY1" &id. Col um="1"
Gid Row="1"
Text Al i gnent =" Cent er " >200</ Text Box>
<Text Bl ock Horizontal Ali gnment="R ght "
Gid Colum="0" Qid. Row="2"
Mar gi n="5, 5, 10, 5" >X2</ Text Bl ock>
<Text Box Name="t bX2" &id. Col um="1"
Gid Row="2"
Text Al i gnnent =" Cent er " >150</ Text Box>
<Text Bl ock Horizontal Al i gnnent="R ght"
Gid Colum="0" Qid. Row="3"
Mar gi n="5, 5, 10, 5" >Y2</ Text Bl ock>
<Text Box Name="tbY2" &id. Col um="1"
Qid. Row="3"
Text Al i gnnent =" Cent er " >100</ Text Box>
<Text Bl ock Horizontal Ali gnnent="R ght"
Gid Colum="0" Gid. Row="4"
Mar gi n="5, 5, 10, 5" >Lengt h</ Text Bl ock>
<Text Box Nane="t bLength" Qi d. Col unn="1"
Qid. Row="4"
Text Al i gnnent =" Cent er " >100</ Text Box>
<Button Qick="BtnApply Qick"
Mar gi n="15, 20, 15, 5"
Qid. Row="5" Height="25"
Qi d. Col umSpan="2"
Qi d. Gol um="0">Appl y</ But t on>
<Button Qick="Btnd ose Adick"
Mar gi n="15, 0, 15, 5"
Qid Row="6" Height="25"
Qi d. Col umSpan="2"
Qi d. Col um="0">0 ose</ But t on>
</Qid>

66 | Chapter 3: 2D Transformations

<Canvas Nane="canvasl" @id. Col um="1"
Mar gi n="10" d i pToBounds=""Tr ue"
Wdt h="270" Hei ght ="280">
<Text Bl ock Nanme="t bPoi nt 1"
Canvas. Top="10">Poi nt 1</ Text Bl ock>
<Text Bl ock Name="t bPoi nt 2"
Canvas. Top="25">Poi nt 2</ Text Bl ock>
<Text Bl ock Name="t bPoi nt 3"
Canvas. Top="40">Poi nt 3</ Text Bl ock>
<Text Bl ock Name="t bPoi nt 4"
Canvas. Top="55">Poi nt 4</ Text Bl ock>
</ Canvas>
</Qid>
</ Vi enbox>
</ W ndow>

This XAML code creates a user interface that allows you to specify the end
points of the line and the length of the perpendicular line segment. The
corresponding code-behind file of this exampleis given below:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System W ndows. Medi a;
usi ng Syst em W ndows. Shapes;

namespace Chapt er 03

{

public partial class Perpendicul arLine : Wndow
{
private Line linel;
private Line line2;
publ i ¢ Perpendi cul arLi ne()
{
I'nitializeConponent();
Rectangl e rect = new Rectangl e();
rect. Stroke = Brushes. Bl ack;
rect. Wdth = canvasl. Wdt h;
rect. Hei ght = canvasl. Hei ght;
canvasl. Chi |l dren. Add(rect);
linel = new Line();
line2 = new Line();
AddLi nes();
}

private voi d AddLi nes()
{
Point ptl
Point pt2

new Poi nt () ;
new Poi nt () ;

pt1. X = Convert . ToDoubl e(t bX1. Text);
pt1.Y = Convert. ToDoubl e(t bY1l. Text);
pt2. X = Convert. ToDoubl e(t bX2. Text);

Chapter 3: 2D Transformations | 67
pt2.Y = Convert. ToDoubl e(t bY2. Text);
doubl e length =
0.5 * Convert. ToDoubl e(t bLengt h. Text);

linel = new Line();

linel. X1 = ptl. X
linel. Y1 = ptl.Y;
linel. X2 = pt2. X
linel.Y2 = pt2.Y;

l'i nel. Stroke = Brushes. G ay;

i nel. StrokeThi ckness = 4;
canvasl. Chi | dren. Add(linel);
Canvas. Set Left (tbPoint1, ptl. X);
Canvas. Set Top(tbPoint1, ptl.Y);
Canvas. Set Left (tbPoi nt2, pt2.X);
Canvas. Set Top(tbPoint2, pt2.V);
t bPoi nt 1. Text "Pt1(" + ptl. ToString() + ")";
t bPoi nt 2. Text "Pt2(" + pt2. ToString() +")";

Vector vl = ptl - pt2;
Matrix nl = new Matrix();
Point pt3 = new Point();

Point pt4 = new Point();
ml. Rot at e(-90);
v1. Normal i ze();
vl *= | ength;
line2 = new Line();
line2. Stroke = Brushes. @ ay;
l'ine2. StrokeThi ckness = 4;
l'ine2. StrokeDashArray =
Doubl eCol | ecti on. Parse("3, 1");
pt3 = pt2 + vl * ni;
m = new Matrix();
nl. Rot at e(90) ;
ptd = pt2 + vl * ni;
line2. X1 = pt3. X%
line2.Yl pt3.Y;
line2. X2 pt4. X
line2.Y2 = pt4d.Y;
canvasl. Chi l dren. Add(Ili ne2);
Canvas. Set Left (tbPoi nt 3, pt3.X);
Canvas. Set Top(tbPoint3, pt3.VY);
Canvas. Set Left (tbPoi nt4, pt4.X);
Canvas. Set Top(tbPoi nt4, pt4.Y);
pt 3. X = Mat h. Round(pt 3. X, 0);
pt3.Y = Math. Round(pt3.Y, 0);
pt4. X = Mat h. Round(pt4. X, 0);
pt4.Y = Math. Round(pt4.Y, 0);
t bPoi nt 3. Text "Pt3(" + pt3. ToString() +")";
t bPoi nt 4. Text "Pt4(" + pt4. ToString() + ")";

}

public void BtnApply_Qick(object sender, EventArgs e)
{

68 | Chapter 3: 2D Transformations

if (linel !'=null)
canvasl. Chi |l dren. Renove(linel);

if (line2 '=null)
canvasl. Chi |l dren. Renove(l i ne2);
AddLi nes();

public void Btnd ose_Qick(object sender, EventArgs e)
{

}

this.dose();

}

Here, we first create a Line segment (linel) using two end points specified by
the user, then create a vector using these two end points:

Vector vl = ptl - pt2;

This gives the direction of linel. The perpendicular line you want to create will
have a length specified by the user. We want the vector to have the same length
as the perpendicular line (line2), so we use the following statements:

v1. Normal i ze();
vl *= | ength;

This vector is first normalized to a unit vector, then multiplied by the length of
the perpendicular line. Now, the vector has the proper length and direction along
Point(x2, y2) to Point(x1, y1). If we rotate this vector by 90 or -90 degrees at
Point(x2, y2), we'll obtain a perpendicular line. This can be achieved using the
code snippet:

Matrix nl = new Matrix();
nml. Rotat e(-90);

pt3 = pt2 + vl * ni,;

m = new Matrix();

nml. Rot at e(90) ;

ptd = pt2 + vl * ni,;

Here a rotation matrix ml is used to rotate the vector by 90 or -90 degrees to
find two end points that define the perpendicular line.

Executing this project produces the results shown in Figure 3-8. The user
interface allows the user to specify arbitrary points and length, and the program
automatically draws the perpendicular line on the screen.

If you change the rotation angle and make some modifications to the program,
you can easily create aline with an arrowhead.

Chapter 3: 2D Transformations | 69

M Perpendicular Line

kul E0
i 200
v 150
{ 115,65}
¥2 100 W;‘ P
Length 100 (150, 100)
b
\PB'185 135)
i r133)
Apply &

Pti{50,200)

Figure 3-8 A perpendicular line in WPF.

Object Transformsin WPF

In the previous sections, we discussed the Vector and Matrix structures, as well
as their operations in WPF. The Matrix structure can be applied to a Point or a
Vector object. However, if you want to apply 2D transforms to objects or
coordinate systems, you need to use the Transform classes. In WPF, there are
five derived classes that can be used to perform specific transforms on objects:

» ScaleTransform — Scales an object in both the X and Y directions. The
ScaleX property specifies how much to stretch or shrink an object along the
X direction, and the ScaleY property specifies how much to stretch or
shrink an object along the Y direction. Scale operations are centered on the
point specified by the CenterX and CenterY properties.

» TrandateTransform — Defines atranglation along the X and Y directions.
The amount the object translated is specified using the X and Y properties.

» RotateTransform — Rotates an object in 2D space by specifying an angle
using the Angle property and a center point specified by the CenterX and
CenterY properties.

» SkewTransform — Defines a 2D skew that stretches the coordinate spacein
anon-uniform manner. Use the CenterX and CenterY properties to specify
the center point for the transform. Use the AngleX and AngleY propertiesto
specify the skew angle along the X and Y directions.

70 | Chapter 3: 2D Transformations

» MatrixTransform — Creates an affine matrix transform to manipulate an
object in 2D space using a custom transform that isn't provided by the other
Transform classes. Affine transform matrices can be multiplied to form any
number of linear transforms, such as rotation and skew, followed by
trand ation.

The structure of the TransformMatrix is the same as the Matrix structure in WPF.
In the homogeneous coordinate system, the TransformMatrix always has a last
column of (0, O, 1). Based on this fact, WPF defines the TransformMatrix in
terms of a 3x2 matrix. Namely, the TransformMatrix classes in WPF take 6
elements arranged in 3 rows by 2 columns. In methods and properties, the
transform matrix is usually specified as a vector with six members, as follows:
(M11, M12, M21, M22, OffsetX, OffsetY). The OffsetX and OffsetY represent
trangdation values.

By directly manipulating matrix values using the MatrixTransform class, you
can rotate, scale, skew, and move an object. For example, if you change the
valuein the first column of the third row (the OffsetX value) to 100, you can use
it to move an object 100 units along the X-axis. If you change the value in the
second column of the second row to 3, you can use it to stretch an object to three
times its current height. If changing both values, you move the object 100 units
along the x-axis and stretch its height by a factor of 3. Since WPF only supports
affine transformsin 2D, the valuesin the third column are always (0, O, 1).

Although WPF alows you to directly manipulate matrix values in the
MatrixTransform class, it also provides several Transform classes that enable
you to transform an object without knowing how the underlying matrix structure
is configured. For example, the ScaleTransform class enables you to scale an
object by setting its ScaleX and ScaleY properties, instead of manipulating a
transform matrix. Likewise, the RotateTransfrom class enables you to rotate an
object simply by setting its Angle property. WPF will use the underlying
structure of the TransformMatrix to perform the corresponding operation on the
object. For instance, when you specify a RotateTransform by an angle of 45
degrees, the corresponding underlying TransformMatrix takes the following
form:

cosd snd O 1 10

-singd cosd O0|=|-1 1 O
0 0O 1 0O 01

One way to transform an object is to declare the appropriate Transform type and
apply it to the transform property of the object. Different types of objects have
different types of transform properties. The following table lists several
commonly used WPF types and their transform properties.

Chapter 3: 2D Transformations | 71

Type Transform Properties
FrameworkElement RenderTransform, LayoutTransform
Ul Element RenderTransform

Geometry Transform

TextEffect Transform

Brush Transform, RelativeTransform
ContainerVisua Transform

DrawingGroup Transform

When transforming an object, you don’'t simply transform the object itself, but
transform the coordinate space in which that object exists. By default, a
transform is centered at the origin of the target object’s coordinate system: (0, 0).
You can change the transform center by specifying the CenterX and CenterY
properties of the transform matrix. The only exception is the TranslateTransform.
A TranslateTransform object has no center properties to set, because the
trand ation effect is the same regardless where it is centered.

In the following few sections, you will apply various transforms to a Rectangle
shape, atype of FrameworkElement that derives from the UlElement class.

MatrixTransform Class

You can create a custom transform using the MatrixTransform class. The
custom transform can be applied to any FrameworkElement or UlElement
objects, including graphics shapes, user controls, panels, etc.

Here I'll use an example to show you how to perform transforms on a Rectangle
shape using the MatrixTransform class. Open the Chapter03 project, and add a
new WPF Window named ObjectMatrixTransforms. This application will allow
the user to enter matrix elements for the transform matrix and to view the
transformed Rectangle shape on the screen interactively. The XAML file of this
exampleis listed below:

<Wndow x: d ass="Chapt er 03. (bj ect Mat ri xTr ansf or ns"
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="(bject Matrix Transforns" Height="300" Wdth="400">

<Vi ewbox Stretch="Uhiform >
<@id Wdth="430" Hei ght="300"
Hori zont al Al'i gnrment =" Left"
Verti cal Al i gnnent =" Top" >
<@ i d. Col umDefinitions>
<Col umDefi ni ti on Wdt h="150"/>
<Col umDefini ti on Wdth="280"/>
</ @i d. Col umDefi nitions>
<@id Wdth="140" Hei ght="300" Margi n="5, 10, 5, 5" >

72 | Chapter 3: 2D Transformations

<@i d. Col umDefi nitions>
<Col umDefi nition Wdth="60"/>
<Col umDefiniti on Wdt h="70"/>
</@id. Col umbefinitions>
<@i d. RowDefi ni ti ons>
<RowDef i ni ti on Hei ght="Auto"/>
<RowDef i ni ti on Hei ght="Auto"/>
<RowDef i ni ti on Hei ght="Auto"/>
<RowDef i ni ti on Hei ght="Auto"/>
<RowDef i nition Hei ght ="Auto"/>
<RowDef i ni ti on Hei ght="Auto"/>
<RowDef i nition Hei ght ="Auto"/>
<RowDef i ni ti on Hei ght="Auto"/>
</ Q@i d. RowbDefinitions>

<Text Bl ock Horizontal Al i gnnent="R ght"
Gid Colum="0" @id. Row="0"
Mar gi n="5, 5, 10, 5" >ML1</ Text Bl ock>
<Text Box Nane="t bML1" Gid. Col umn="1"
Qid. Row="0"
Text Al i gnnent =" Cent er " >1</ Text Box>
<Text Bl ock Horizontal Al'i gnment="R ght"
Gid Colum="0" Qid. Row="1"
Mar gi n="5, 5, 10, 5" >M.2</ Text Bl ock>
<Text Box Name="t bML2" Qi d. Col um="1"
Gid Row"1"
Text Al i gnnent =" Cent er " >0</ Text Box>
<Text Bl ock Horizontal Al i gnnent="R ght"
Gid Colum="0" Qid. Row="2"
Mar gi n="5, 5, 10, 5" >M1</ Text Bl ock>
<Text Box Name="t bM21" Qi d. Col um="1"
Gid Row="2"
Text Al i gnnent =" Cent er " >0</ Text Box>
<Text Bl ock Horizontal Al i gnnent="R ght"
Gid Colum="0" Qid. Row="3"
Mar gi n="5, 5, 10, 5" >Mp2</ Text Bl ock>
<Text Box Nane="t bM22" @i d. Col unn="1"
Qid Row="3"
Text Al i gnnent =" Cent er " >1</ Text Box>
<Text Bl ock Horizontal Ali gnnent="R ght"
Gid Colum="0" @id. Row="4"
Mar gi n="5, 5, 10, 5" >
Cf f set X</ Text Bl ock>
<Text Box Name="t bC(ffset X' &id. Col umn="1"
Gid Row="4"
Text Al i gnnent =" Cent er " >0</ Text Box>
<Text Bl ock Horizontal Al'i gnment="R ght "
@id Colum="0" @id. Row="5"
Mar gi n="5, 5, 10, 5" >
Cf f set Y</ Text Bl ock>
<Text Box Nanme="tbCffsetY' @id. Col um="1"
QGid. Row="5"
Text Al i gnnent =" Cent er " >0</ Text Box>
<Button Qick="BtnApply Qick"

Chapter 3: 2D Transformations | 73

Mar gi n="15, 20, 15, 5" @i d. Row="6"
Hei ght ="25" @i d. Col unmSpan="2"
Qi d. Gol um="0">Appl y</ But t on>
<Button dick="Btnd ose Adick"
Mar gi n="15, 0, 15, 5" Qi d. Row="7"
Hei ght =" 25" @i d. Col unnSpan="2"
Q@i d. Col um="0">0d ose</ But t on>
</Qid>

<Border Margi n="10" @i d. Col um="1"
Bor der Br ush="Bl ack"
Bor der Thi ckness="1"
Hori zontal Al i gnment =" Left"
Background="{Stati cResource M/G ayQi dBrush}">
<Canvas Nanme="canvasl" Qi d. Col um="1"
d i pToBounds="True" Wdth="270"
Hei ght =" 280" >
<Text Bl ock Canvas. Top="53"
Canvas. Lef t =" 90" >
Qiginal shape</ Text B ock>
<Rect angl e Canvas. Top="70"
Canvas. Lef t =" 100"
Wdt h="50" Hei ght ="70"
St r oke="Bl ack"
St r okeThi ckness="2"
St rokeDashArray="3, 1"/ >
<Rectangl e Name="rect" Canvas. Top="70"
Canvas. Lef t =" 100"
Wdt h="50" Hei ght ="70"
Fill="LightCoral" Qpacity="0.5"
St roke="Bl ack"
St r okeThi ckness="2">
<Rect angl e. Render Tr ansf or mp
<Mat ri xTr ansf orm
x: Nane="mat ri xTransforn'/ >
</ Rect angl e. Render Tr ansf or n»
</ Rect angl e>
</ Canvas>
</ Bor der >
</@id>
</ Vi enwbox>
</ W ndow>

This markup creates a user interface that contains TextBoxes, Buttons, and a
Canvas, which allows you to interactively manipulate the elements of the
TransformMatrix and dispay the transformed Rectangle shape on your screen. In
order to precisely monitor the transformed shape, we also add the gridlines to
the Canvas (canvasl). These gridlines, called MyGrayGridBrush, are defined in
the Application.Resource of the App.xaml file. The transform on the rectangle is
specified with the following XAML snippet:

<Rect angl e. Render Tr ansf or nm»
<Mat ri xTransf orm x: Nane="nat ri xTransf orni/ >
</ Rect angl e. Render Tr ansf or n»

74 | Chapter 3: 2D Transformations

From this snippet, you can see that to apply transforms to a FrameworkElement,
you need to create a Transform matrix and apply it to one of the two properties
that the FrameworkElement class provides:

LayoutTransform — A transform that is applied before the layout pass. After the
transform is applied, the layout system processes the transformed size and
position of the element.

RenderTransform — A transform that modifies the appearance of the element but
is applied after the layout pass is completed. By using the RenderTransform
property instead of the LayoutTransform, you can gain some performance
benefits.

You may ask which property we should use. Because of the performance
benefits that it provides, use the RenderTransform property whenever possible,
especialy when you use animated Transform objects. Use the LayoutTransform
property when you are scaling, rotating, or skewing, and you need the parent of
the element to adjust to the transformed size of the element. Note that when they
are used with the LayoutTransform property, TrandateTransform objects appear
to have no effect on elements. This is because the layout system returns the
translated element to its original position as part of its processing.

In this example, the RenderTransform property of the rectangle is used. The
following is the corresponding C# code that is responsible for the event handlers:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. Medi a;
usi ng Syst em W ndows. Shapes;
nanmespace Chapt er 03

public partial class (hjectMatrixTransforms : Wndow
{
publi c (bj ect Mat ri xTr ansf or ns()

InitializeConponent();

}
public void BtnApply_Qick(object sender, EventArgs e)
{
Matrix m= new Matrix();
m M1 = Doubl e. Parse(t bML1. Text);
m M2 = Doubl e. Par se(t bML2. Text);
m M21 = Doubl e. Par se(t bM21. Text);
m M2 = Doubl e. Par se(t bMR2. Text) ;
m O fset X = Doubl e. Parse(t b f set X Text) ;
m O fsetY = Doubl e. Parse(tbO fsetY. Text);
matri XTransform Matrix = m
}

public void Btnd ose_Qick(object sender, EventArgs e)
{

Chapter 3: 2D Transformations | 75

this.dose();

}

The main part of this code-behind file is the Apply button’s click event handler.
We create a new Matrix instance m, and specify its elements using the text
content of the corresponding TextBoxes. Then the matrix m is passed to the
transform matrix named matrixTransform, which is defined in the XAML file.

Building and running this project produce the output shown in Figure 3-9. In the
left pane, you can change al six elements of a custom transform matrix by
entering values of the double type in the TextBoxes. The entered values take
effect after you click the Apply button. The original location of the Rectangleis
obtained by an identical matrix (1, 0, O, 1, 0, 0) in homogeneous coordinates.
The results shown in Figure 3-9 are obtained by moving the rectangle -50 units
in the X direction and 100 unitsin the Y direction.

By changing the other elements, you can obtain a variety of transforms,
including trandlation, scale, rotation, and skew.

B Object Matrix Transformation

i1 1
12 0
21 0 Criginal shape
M2z 1 r -E
I
Offsaty 50 i i
)
Offsety 100 ' i
Epoly

Figure 3-9 Transform on a rectangle using MatrixTransform class.

ScaleTransform Class

In the previous section, we discussed how to perform transforms on Ul Element
or FrameworkElement objects by directly manipulating transform matrix values.
However, WPF also provides severa Transform classes that alow you to
transform an object without knowing how the underlying matrix structure is

76 | Chapter 3: 2D Transformations

configured. For example, the ScaleTransform class enables you to scale an
object by setting its ScaleX and ScaleY properties, instead of directly
mani pulating a transform matrix.

Let’s look at an example. Open the Chapter03 project, add a WPF Window, and
name it ScaleTransforms. In this example, you create two Canvas panels. The
left Canvasis used for animating the scale transform on a rectangle shape, while
the right Canvas is used for an interactive transform that alows you to change
the ScaleX and ScaleY on the screen. The animation gives you the real feeling
of how the scale transform works. I'll discuss the animation process in Chapter 6.
Thefollowing isthe XAML file of this example:

<Wndow x: d ass="Chapt er 03. Scal eTr ansf or ns"
xm ns="htt p://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Scal e Transforns" Hei ght="330" Wdth="480">

<Mi ewbox Stretch="Uniform >
<@id Wdth="525" Hei ght="330"
Hori zont al Al i gnrment =" Left"
Vertical Ali gnnent =" Top"
ShowQ@ i dLi nes="Tr ue" >
<@id. Col umbDefinitions>
<Col umDefini ti on Wdt h="260" />
<Col umDefi ni ti on Wdt h="260" />
</ @i d. Col umbDefi nitions>

<StackPanel @id. Col um="0">
<Text Bl ock Horizontal Al i gnnent="Center"
Mar gi n="10, 10, 10, 0"
Text W appi ng="W ap"
Font S ze="14" Font Wi ght =" Bol d"
Text ="Scal i ng Ani mation"/>
<Text Bl ock Margi n="10, 10, 10, 0"
Text W appi ng="W ap"
Text ="The scal i ng paraneters Scal eX
and Scal eY are aninated fromO to 4."/>
<Bor der Margi n="10" Bor der Br ush="Bl ack"
Bor der Thi ckness="1"
Background="{Stati cResource M/G ayQi dBrush}"
Hori zont al Al i gnrment ="Left ">
<Canvas d i pToBounds="True" Wdth="240"
Hei ght =" 250" >
<Rect angl e Canvas. Left="100"
Canvas. Top="280"
Wdt h="50" Hei ght ="70"
Fill="LightCoral"
paci ty="0.5"
St roke="Bl ack"
St rokeThi ckness="2">
<Rect angl e. Render Tr ansf or n»
<Scal eTransform

Chapter 3: 2D Transformations | 77

x: Nanme="r ect Scal e"
Cent er X="25"
CenterY="35" />
</ Rect angl e. Render Tr ansf or n»
</ Rect angl e>

<l-- Aninate the rectangle: -->
<Canvas. Tri gger s>
<Event Tri gger Rout edEvent =" Canvas. Loaded" >
<Begi nSt or yboar d>
<St oryboar d Repeat Behavi or =" For ever "
Aut oRever se="Tr ue" >
<Doubl eAni nati on
St oryboar d. Tar get Name="r ect Scal e"
St or yboar d. Tar get Proper t y="Scal eX'
Fron¥"0" To="4" Duration="0:0:5"/>
<Doubl eAni nati on
St oryboar d. Tar get Name="r ect Scal e"
St oryboar d. Tar get Propert y="Scal eY"
Fron¥"0" To="4" Duration="0:0:5"/>
</ St or yboar d>
</ Begi nSt or yboar d>
</ Event Tri gger >
</ Canvas. Tri gger s>
</ Canvas>
</ Bor der >
</ St ackPanel >

<StackPanel @id. Col um="1">
<Text Bl ock Hori zontal Al'i gnment =" Cent er"
Mar gi n="10, 10, 10, 10"
Text W appi ng="W ap"
Font Si ze="14" Font Wi ght =" Bol d"
Text="Interactive Scaling"/>
<@id Wdth="260" Hei ght="26"
Hori zont al Al i gnment ="Left"
Vertical Ali gnment =" Top" >
<@i d. Col umDefi ni ti ons>
<Col ummDefiniti on Wdt h="70" />
<Col umDefi ni ti on Wdth="50" />
<Col ummDefini ti on Wdth="70" />
<Col umDefi ni ti on Wdth="50" />
</ @i d. Col umbDefi ni ti ons>

<Text Bl ock Margi n="2, 2, 10, 2"
Text Ali gnment ="R ght "
Text =" Scal eX'/ >
<Text Box Nanme="t bScal eX' Wdth="50"
Hei ght ="20" Qi d. Col umm="1"

Text Ali gnnent ="Center" Text="1"/>

<Text Bl ock Margi n="2, 2, 10, 2"
Qid. Gl um="2"
Text Al i gnnent ="R ght "
Text =" Scal eY"/ >

78 | Chapter 3: 2D Transformations

<Text Box Nane="t bScal eY" Wdth="50"
Hei ght ="20" @i d. Col um="3"
Text Ali gnnent ="Center" Text="1"/>
</qid>

<Bor der Margi n="10" Bor der Br ush="Bl ack"
Bor der Thi ckness="1"
Background="{ St ati cResource MG ayQ i dBrush}"
Hori zont al Al i gnrment =" Left">
<Canvas d i pToBounds="Tr ue"
Wdt h="240" Hei ght =" 250" >
<Text Bl ock Canvas. Left="90"
Canvas. Top="63"
Text="Cri gi nal shape"/>
<Rect angl e Canvas. Top="380"
Canvas. Lef t =" 100"
Wdt h="50" Hei ght ="70"
St roke="Bl ack"
St rokeThi ckness="1"
St rokeDashArray="3, 1"/ >

<Rect angl e Canvas. Top="380"
Canvas. Left ="100"
Wdt h="50" Hei ght ="70"
Fill="LightCoral"
paci ty="0.5"
St roke="Bl ack"
St r okeThi ckness="2">
<l-- Set interactive scale: -->
<Rect angl e. Render Tr ansf or m»
<Scal eTransform
Scal eX="{Bi ndi ng H enent Nane=t bScal eX, Pat h=Text }"
Scal eY="{Bi ndi ng H erent Name=t bScal eY, Pat h=Text } "
Cent er X="25" Cent er Y="35"/ >
</ Rect angl e. Render Tr ansf or n»
</ Rect angl e>
</ Canvas>
</ Bor der >
</ St ackPanel >
</Qqid>
</ Vi enwbox>
</ Wndow>

This XAML file creates a complete WPF application that includes not only the
layout and user interface, but also the animation and interactive scale transform
on the rectangle shapes.

You start the animation for the rectangle object by varying its ScaeX and
ScaleY dependency properties from 0 to 4. The details of WPF animations will
be covered in Chapter 6.

For the interactive scale transform on the other rectangle in the right pane, the
ScaleX and ScaleY properties of the transform are bound to the Text properties
of the corresponding TextBoxes, which can be specified by the user’s input.

Chapter 3: 2D Transformations | 79

This alows you to interactively examine the scaling transform directly on the
screen. Figure 3-10 shows a snapshot of this example.

I Scale Transforms E|E|E|

Scaling Animation : Interactive Scaling
The scaling parametars ScaleX and ScaleY are ! Sealex FI ScaleY 4
animated from O to 4. i — 1
|
; Criginal shape

BT I
i
.
1

Figure 3-10 Scale transformation on Rectangle objects.

TrandateTransform Class

The TrandateTransform class enables you to move an object by setting its X and
Y properties. This transform has no center properties to set because the
trangdlation effect is the same regardless of where it is centered.

Let's consider an example of a trandation on a Rectangle object using the same
layout as that used in the previous example. Add a WPF Window to the project
Chapter03 and call it TrandateTransforms. The XAML file is similar to the
previous ScaleTransformation example, except for the RenderTransform
property of the rectangle. For animating the translation on the rectangle, you use
the following XAML snippet:

<Rect angl e. Render Tr ansf or mp
<Transl at eTransf orm x: Nane="transl ate" />
</ Rect angl e. Render Tr ansf or n»

<Storyboard Repeat Behavi or =" Forever" Aut oReverse="True">
<Doubl eAni mati on St oryboar d. Tar get Nane="t r ansl at e"

St oryboar d. Tar get Propert y="X"

Fronme"-90" To="90" Duration="0:0:5"/>
<Doubl eAni mati on St oryboar d. Tar get Name="t r ansl at e"

St oryboar d. Tar get Property="Y"

80 | Chapter 3: 2D Transformations

Frone"-90" To="90" Duration="0:0:5"/>
</ St or yboar d>

The animation is performed using a storyboard that animates the X and Y
properties of the trandlation. For the interactive trandation of the rectanglein the
right pane, the following XAML snippet defines its RenderTransform property:

<l-- Set interactive translation: -->
<Rect angl e. Render Tr ansf or nm»
<Transl at eTr ansf orm
X="{Bi ndi ng H enent Nane=t bX, Pat h=Text }"
Y="{Bi ndi ng B enent Nane=t bY, Pat h=Text}"/>
</ Rect angl e. Render Tr ansf or n»

Here the X and Y properties of the trandation are attached to the text fields of
the corresponding TextBoxes with data binding. This alows you to interactively
manipulate the trandation of the rectangle by changing the text fields of the
TextBoxes. Figure 3-11 shows a snapshot of this example.

M Translation Transforms

Translation Animation ! Interactive Translation
Tha translation propertias X and ¥ are animated ! ¥ | v zd
from -90 to 90. [=
i original shape

Figure 3-11 Translation transformation on a Rectangle.

RotateTransform Class

The RotateTransform class allows you to rotate an object by setting its Angle,
CenterX, and CenterY properties. In the next example, we'll animate the
rotation of a Rectangle object about its center. However, the origin of this
rectangle will be moved from 0 to 180 units. For the interactive rotation, the
Angle, CenterX, and CenterY properties of the transform take values directly
from the user’ sinputs.

Chapter 3: 2D Transformations | 81

Open the Chapter03 project, add a WPF Window, and name it RotateTransforms.
The XAML file is similar to that used in the previous example, except for the
RenderTransform property of the rectangle. To animate the rotation transform
on the rectangle, use the following XAML snippet:

<Rect angl e. Render Tr ansf or m»
<Rot at eTr ansf or m x: Nane="rot ate"/ >
</ Rect angl e. Render Tr ansf or n»

<Storyboard Repeat Behavi or =" For ever ">
<Doubl eAni mati on St or yboar d. Tar get Nanme="r ot at e"
St oryboar d. Tar get Propert y="Angl e"
Fron¥"0" To="360" Duration="0:0:5"/>
<Doubl eAni mati on St or yboar d. Tar get Narme="r ot at e"
St oryboar d. Tar get Propert y="Cent er X'
Fron¥"-20" To="120" Duration="0:0:5"/>
<Doubl eAni mati on St oryboar d. Tar get Name="r ot at e"
St oryboar d. Tar get Propert y="Cent er Y"
Fron¥"-50" To="90" Duration="0:0:5"/>
</ St or yboar d>

The animation is performed using a storyboard that animates the CenterX,
CenterY, and Angle properties of the rotation transform. For the interactive
rotation transform on the rectangle in the right pane, the following XAML
snippet defines its Render Transform property:

<l-- Set interactive rotation: -->
<Rect angl e. Render Tr ansf or m»
<Rot at eTr ansf orm
Cent er X="{Bi ndi ng B enent Name=t bCent er X, Pat h=Text }"
Cent er Y="{Bi ndi ng H enent Nane=t bCent er Y, Pat h=Text }"
Angl e="{Bi ndi ng B enent Nane=t bAngl e, Pat h=Text}"/>
</ Rect angl e. Render Tr ansf or n»

Here the Angle, CenterX, and CenterY properties of the rotation transform are
attached to the text fields of the corresponding TextBoxes with data binding.
This alows you to interactively manipulate the rotation transform on the
rectangle by changing the text fields of the TextBoxes.

Figure 3-12 shows the result of running this application.

SkewTransform Class

The SkewTransform class defines a 2D skew that stretches the coordinate space
of a FrameworkElement or an UlElement object in a non-uniform manner. You
can use the CenterX and CenterY properties to specify the center point for the
transform, and use the AngleX and AngleY properties to specify the skew angle
alongthe X and Y directions.

82 | Chapter 3: 2D Transformations

Ml Rotation Transforms EHEJEI
Rotation Animation Interactive Translation
The rotztion angle is znimatzd from O ko 350, : Cenber o | Center [5 Angle | -

and the center property is animated from '
{-20,-50) to {120,50).

Figure 3-12 Rotation transform on rectangles.

In this example, we'll animate the skew transform of a Rectangle object about
its center by varying the AngleX and AngleY properties. For the interactive
skew transformation, the AngleX and AngleY properties of the transform take
values directly from the user’ s input.

Open the Chapter03 project, add a WPF Window, and name it SkewTransforms.
The XAML file is similar to that of the previous example, except for the
RenderTransform property of the rectangle. To animate the skew transform on
the rectangle, use the following XAML snippet:

<Rect angl e. Render Tr ansf or nm»
<SkewTr ansf or m x: Nane="skew" Center X="25" CenterY="35"/>
</ Rect angl e. Render Tr ansf or n»

<Storyboard Repeat Behavi or =" For ever " >
<Doubl eAni nati on St or yboar d. Tar get Narme="skew'
St or yboar d. Tar get Pr oper t y="Angl eX"
Fron¥"0" To="360" Duration="0:0:10"/>
<Doubl eAni mati on St or yboar d. Tar get Nane="skew"'
St oryboar d. Tar get Propert y="Angl eY"
Fronm="0" To="360" Duration="0:0:10"/>
</ St or yboar d>

The animation is performed using a storyboard that animates the AngleX and
AngleY properties of the skew transform. For the interactive skew transform on

Chapter 3: 2D Transformations | 83

the rectangle in the right pane, the following XAML snippet defines its
RenderTransform property:

<l-- Set interactive skew -->
<Rect angl e. Render Tr ansf or mp
<SkewTr ansf or m Cent er X="25" Cent er Y="35"
Angl eX="{Bi ndi ng H enent Name=t bAngl eX, Pat h=Text }"
Angl eY="{Bi ndi ng H enent Nane=t bAngl eY, Pat h=Text }"/ >
</ Rect angl e. Render Tr ansf or n»

Here the AngleX and AngleY properties of the skew transform are attached to
the text fields of the corresponding TextBoxes with data binding. This allows
you to interactively manipulate the skew transform on the rectangle by changing
the text fields of the TextBoxes.

Figure 3-13 shows a snapshot of this example.

Composite Transforms

The TransformGroup class, which allows you to combine any of the above
transform classes, can be applied to any UlElement or FrameworkElement
object. In other words, a composite transform that consists of any number of
transforms can be applied to a graphics object. The TransformGroup class
derived from the Transform base class represents a combined transform that
contains a collection of Transforms.

You can represent various transforms using a simple C# code snippet. For
example, to scale a rectangle 2 times in the X direction and 3 times in the Y
direction, you can use a ScaleTransform object:

Rect angl e. Render Transfornati on =
new Scal eTransf ornation(2, 3);

To move the rectangle 100 units in the X direction and -100 units in the Y
direction, you can simply write:

Rect angl e. Render Tr ansform =
new Transl at eTr ansf or n{(100, - 100);

To rotate the Rectangle 45 degrees, you can create a new RotateTransform
object and set the angle to 45.

Rect angl e. Render Tr ansf or m = new Rot at eTr ansf or n{45) ;

To skew an element 30 degrees in the X direction and 45 degrees in the Y
direction, you can use a SkewTransform:

Rect angl e. Render Tr ansf or m = new SkewTr ansf or n{ 30, 45);

Finally, if you want to apply al of these transforms to this rectangle, you can
use a TransformGroup:

84 | Chapter 3: 2D Transformations

B Skew Transforms

Skew Animation ! Interactive Translation

The skaw properties AngleX and Angla are ! Anglex d Angley o0
znimated from 0 ko 380, i | R

Figure 3-13 Skew transformation on rectangles.

Transform@oup tg = new Transf or n@ oup();

tg. Chil dren. Add(Scal eTransforn{(2, 3));

tg. il dren. Add(Tr ansl at eTr ansf or n{ 100, -100));
tg. Chil dren. Add(Rot at eTr ansf orn{45)) ;

t g. Chi | dren. Add(SkewTr ansf or (30, 45));

Rect angl e. Render Transform = tg;

Let’s consider an example that illustrates how to use the TransformGroup class
in a WPF application. In this example, you'll use a composite transform that
contains a scale and arotation transform. This transform is applied to arectangle
object (a square in this case) about its center. You'll animate the dependency
properties for both the scale and rotation transforms.

Open the Chapter03 project, add a WPF Window, and name it
CombineTransforms. Here, we'll only consider the animation of the combined
transform. The following isthe XAML file of this example:

<Wndow x: d ass="Chapt er 03. Conbi neTr ansf or ns"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Ti t1 e="Conbi ni ng Transforns" Hei ght ="330" Wdt h="300">

<Vi ewbox Stret ch="Uni forni>
<St ackPanel >
<Text Bl ock Horizontal Al i gnnent ="Center"
Mar gi n="10, 10, 10, 0" Text Wappi ng="W ap"
Font Si ze="14" Font i ght =" Bol d"
Text="Ani mati on of Conbi ning Transforni/>

Chapter 3: 2D Transformations | 85

<Border Margi n="10" Bor der Brush="Bl ack"
Bor der Thi ckness="1"
Background="{ St ati cResource MG ayQ i dBrush}"
Hori zontal Al i gnment =" Left">
<Canvas Qi pToBounds="True"
Wdt h="340" Hei ght ="320">

<H | i pse Canvas. Left="165"
Canvas. Top="145" Wdt h="10"
Height ="10" Fill="Red"/>

<Rect angl e Canvas. Left="120"
Canvas. Top="100" Wdt h="100"
Hei ght ="100" Fill="Li ght Coral "
Qpaci ty="0.5" Stroke="Bl ack"
St rokeThi ckness="2">
<Rect angl e. Render Tr ansf or mp
<Tr ansf or N> oup>
<Scal eTransf or m x: Nane="scal e"
Cent er X="50"
Cent er Y="50" />
<Rot at eTr ansf orm
x: Nanme="r ot at e"
Cent er X="50"
Cent er Y="50"/ >
</ Tr ansf or m& oup>
</ Rect angl e. Render Tr ansf or n»
</ Rect angl e>

<l-- Aninate the shape: -->
<Canvas. Tri gger s>
<Event Tri gger Rout edEvent =" Canvas. Loaded" >
<Begi nSt or yboar d>
<St oryboard Repeat Behavi or =" For ever"
Aut oRever se="Tr ue" >
<Doubl eAni mati on St oryboar d. Tar get Name="scal e"
St or yboar d. Tar get Propert y="Scal eX'
From="0" To="3" Duration="0:0:5"/>
<Doubl eAni mati on St oryboar d. Tar get Nanme="scal e"
St oryboar d. Tar get Propert y="Scal eY"
Fron¥"0" To="3" Duration="0:0:5"/>
<Doubl eAni mati on St or yboar d. Tar get Nare="r ot at e"
St oryboar d. Tar get Property="Angl e"
Fron¥"0" To="360" Duration="0:0:5"/>
</ St or yboar d>
</ Begi n& or yboar d>
</ Event Tri gger >
</ Canvas. Tri gger s>
</ Canvas>
</ Bor der >
</ St ackPanel >
</ Vi enbox>
</ W ndow>

86 | Chapter 3: 2D Transformations

Here, we gpecify the rectangle's RenderTransform property using a
TransformGroup. Within this TransformGroup, we define two transforms: a
ScaleTransform named “scale’” and a RotateTransform named “rotate’. Both
transforms are animated using a StoryBoard. Within the StoryBoard, we first
animate the ScaleX and ScaleY dependency properties of the ScaleTransform.
Then we perform the rotation animation on the rectangle by animating the Angle
property from O to 360 degrees.

This example produces the results shown in Figure 3-14.

B Combining Transforms E@E|

Animation of Combining Transform

Figure 3-14 Combining transform on a Square.

Chapter 4
Geometry and 2D Drawing

In the previous two chapters, graphics examples were created using simple
shapes that derive from the Shape class. The Shape class inherits from
FrameworkElement. Because Shape objects from the Shape class are elements,
they can render themselves and participate in the layout system. In this sense,
Shape objects are readily usable.

This chapter shows you how to create and manipulate more complex 2D
graphics objects using the more powerful Path class, which can wrap complex
geometry objects derived from the Geometry class. It shows you how to develop
an advanced interactive 2D drawing program using the Geometry class, which
allows you to add and delete, drag and move, as well as perform logic operations
(Union, Intersect, Xor, and Exclude) on the 2D graphics objects. From this
chapter, you'll aso learn how to create custom shape objects, which can be used
in the same way as the WPF built-in shapes.

Path and Geometry Classes

In previous chapters, you learned how to create simple 2D graphics using the
simple shapes that derive from the Shape class, including Line, Rectangle,
Ellipse, and Polygon. However, you haven't considered a more powerful Shape-
derived class, the Path class. The Path class has the ability to draw curves and
complex shapes. These curves and shapes are described using the Geometry
objects. To use a Path object, you create a Geometry object and use it to set the
Path object’ s Data property. You can’t draw a Geometry object directly on your
screen because it is an abstract class. Instead, you need to use one of the seven
derived classes, as listed below:

» LineGeometry — Represents the geometry of a straight line.
» RectangleGeometry — Represents the geometry of a 2D rectangle.
» EllipseGeometry — Represents the geometry of an ellipse.

88 | Chapter 4: Geometry and Advanced 2D Drawing

» GeometryGroup — Represents a composite geometry, which can be added to
asingle path.

e CombinedGeometry — Represents a 2D geometry shape defined by the
combination of two Geometry objects.

» PathGeometry — Represents a complex geometry shape that may be
composed of arcs, curves, ellipses, lines, and rectangles.

» StreamGeometry — Defines a geometric shape described using
StreamGeometryContext. This geometry is aread-only light-weight
alternative to PathGeometry: it doesn’t support data binding, animation, or
modification.

The LineGeometry, RectangleGeometry, and EllipseGeometry classes describe
relatively simple geometry shapes. To create more complex shapes or curves,
you need to use a PathGeometry object.

There is a critical difference between the Shape class and the Geometry class.
The Geometry class inherits from the Freezable class, while the Shape class
inherits from FrameworkElement. Because Shape objects are elements, they can
render themselves and participate in the layout system, while Geometry objects
can't.

Although Shape objects are more readily usable than Geometry objects,
Geometry objects are more versatile. While a Shape object is used to render 2D
graphics, a Geometry object can be used to define the geometric region for 2D
graphics, define a region for clipping, or define a region for hit testing, for
example. Geometry objects can’'t render themselves, and must be drawn by
another element, such as a Drawing or Path element. The attributes common to
shapes, such as the Fill, Stroke, and StrokeT hickness properties, are attached to
the Path or Drawing, which can be used to draw Geometry objects.

Y ou can see from the above discussion that the Geometry object defines a shape,
while a Path object allows you to draw the Geometry shape on your screen. In
the following sections, I'll show you how to create shapes using the objects
derived from the Geometry class.

Line, Rectangle, and Ellipse Geometries

The LineGeometry, RectangleGeometry, and EllipseGeometry classes
correspond directly to the Line, Rectangle, and Ellipse shapes that were used in
the previous chapters. For example, you can convert this XAML code, which
uses the Line element

<Li ne X1="30" Y1="30" X2 ="180" Y2="30"
Stroke="Bl ue" StrokeThi ckness="2"/>

into the following markup, which uses the Path element and LineGeometry:

<Path Stroke="Bl ue" StrokeThi ckness="2">
<Pat h. Dat a>
<Li neGeonetry Start Poi nt="30 30" EndPoi nt="180 30"/>

Chapter 4: Geometry and Advanced 2D Drawing | 89

</ Pat h. Dat a>
</ Pat h>

The only difference is that the Line shape takes X1, Y1, X2, and Y2 values,
while the LineGeometry object takes StartPoint and EndPoint.

Similarly, you can convert the following code snippet:

<Rectangle Fill="Gay” Stroke="Bl ue” StrokeThi ckness="2"
Wdt h="10" Hei ght ="20"/>

into this RectangleGeometry:
<Path Fill="Gay” Stroke="Bl ue” StrokeThi ckness="2">
<Pat h. Dat a>
<Rect angl eGeonet ry Rect="0, 0, 10, 20"/ >
</ Pat h. Dat a>
</ Pat h>

It can be seen that the Rectangle shape takes Height and Width values, while the
RectangleGeometry element takes four numbers that describe the location and
size of the rectangle. The first two numbers represent the X and Y coordinates
where the top-left corner will be placed, while the last two numbers define the
width and height of the rectangle.

Y ou can aso convert an Ellipse shape like this:

<Hlipse Fill="Gay” Stroke="Bl ue” StrokeThi ckness="2"
Wdt h="10" Hei ght="20"/>

into the EllipseGeometry:

<Path Fill="Gay” Stroke="Bl ue” StrokeThi ckness="2">
<Pat h. Dat a>
<H | i pseGeonetry Radi ux="5" Radi usY="10"
Center="5, 10"/ >
</ Pat h. Dat a>
</ Pat h>

Notice that the two radius values are simply half of the width and height values.
Y ou can aso use the Center property to offset the location of the ellipse.

It is clear from the above discussion that these simple geometries work in
exactly the same way as the corresponding shapes. Geometry objects allow you
to offset rectangles and ellipses, but this isn’t necessary if you draw the shapes
on a Canvas, which aready gives you the ability to position your shapes at a
specific position using the Canvas.Top and Canvas.Left properties. The real
difference between the Shape and Geometry classes appears when you decide to
combine more than one Geometry object in a single path, as described in the
next section.

GeometryGroup Class

The simplest way to combine geometries is to use the GeometryGroup object.
Here is an example that creates two circles:

90 | Chapter 4: Geometry and Advanced 2D Drawing

<Path Fill="LightGay" Stroke="Bl ue" StrokeThi ckness="2">
<Pat h. Dat a>
<Geonet ryGoup Fi |l Rul e="Nonzero">
<H |i pseGeonetry Radi usX="50" Radi usY="50"
Cent er ="120, 120"/ >
<H |i pseCGeonetry Radi usX="30" Radi usY="30"
Cent er ="120, 120"/ >
</ Geonet r y@ oup>
</ Pat h. Dat a>
</ Pat h>

This code snippet creates a similar effect as if you had used two Path elements,
each one with an EllipseGeometry object of a different radius. However, thereis
one advantage to using the GeometryGroup object. Here, you have replaced two
elements with one, which means you have reduced the overhead of your user
interface. In general, a window that uses a smaler number of elements with
more complex geometries will perform faster than a window that uses a large
number of elements with simple geometries. This will become significant when
you create complicated computer-aided design (CAD) applications.

Another advantage of using the Geometry classis that the same geometry can be
reused in separate Path elements. You can simply define the geometry in a
Resources collection and refer to it in your path.

Let’'s start with an example WPF Window project and call it Chapter04. As you
did for the previous project Chapter03, add a StartMenu, which will be the
interface for accessing all of examples in this chapter. Now, add another WPF
Window called GeometryGroupExample to the project. Here is the XAML file
of thisexample:

<Wndow x: d ass="Chapt er 04. Geonet r y& oupExanpl e"
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Geormetry Goup" Hei ght="310" Wdth="300">

<W ndow. Resour ces>
<Geonet ryG oup x: Key="Geonet r yNonzer 0"
Fi || Rul e="Nonzero">
<B I'i pseCGeoret ry Radi usX="50" Radi usY="50"
Cent er =" 65, 60"/ >
<H i pseCGeonetry Radi usX="30" Radi usY="30"
Cent er =" 65, 60"/ >
</ Geonet r y@ oup>

<CGeonet ryG oup x: Key="Geonet r yEvenQdd"
Fi || Rul e="EBvenQdd" >
<B I'i pseCGeoret ry Radi usX="50" Radi usY="50"
Cent er =" 65, 60"/ >
<B I'i pseCGeoret ry Radi usX="30" Radi usY="30"
Cent er =" 65, 60"/ >
</ Geonet r y@ oup>
</ Wndow. Resour ces>

Chapter 4: Geometry and Advanced 2D Drawing | 91

<Border Margi n="5" Bor der Brush="Bl ack" Bor der Thi ckness="1"
Background="{ St ati cResource MG ayQi dBrush}"
Hori zontal Al i gnment =" Left">
<Canvas Hei ght="310" Wdt h="300">
<@id Show@i dLi nes="True" Hei ght="265">
<@i d. Col umbDefi ni ti ons>
<Col umDefiniti on Wdth="140"/>
<Col ummDef i ni ti on Wdt h="140"/>
</ @i d. Col umDefi ni ti ons>

<StackPanel Margi n="5" @&id. Col um="0">
<Text Bl ock Text="Fi | eRul e = Nonzero"
Mar gi n="15, 5, 5, 5"/ >
<Path Fill="LightBl ue" Stroke="Bl ue"
St rokeThi ckness="2"
Dat a="{ St ati cResour ce Geonet ryNonzero}"/>
<Path Fill="LightCoral" Stroke="Red"
St rokeThi ckness="2" Canvas. Left="150"
Dat a="{ St ati cResour ce Geonet ryNonzero}"/ >
</ St ackPanel >

<StackPanel Margi n="5" @i d. Col um="1">
<Text Bl ock Text="FileRul e = EvenQdd"
Mar gi n="15, 5, 5,5"/ >
<Path Fill="LightBl ue" Stroke="Bl ue"
St rokeThi ckness="2"
Dat a="{ St ati cResour ce GeonetryEvenQdd}"/ >
<Path Fill="LightCoral" Stroke="Red"
St r okeThi ckness="2"
Canvas. Left ="150"
Dat a="{ St ati cResour ce GeonetryEvenQdd}"/ >
</ S ackPanel >
</Qid>
</ Canvas>
</ Bor der >
</ W ndow>

In the Resources, you define two GeometryGroup objects, GeometryNonzero
and GeometryEvenOdd. Each includes two circles with a different radius but the
same center location. The main difference lies in their FillRule property: one is
set to Nonzero, and the other to EvenOdd. Like the Polygon shape, the
GeometryGroup also has a FillRule property that specifies which shapes to fill.
Y ou can then use these Resources to create multiple shapes at different locations
on a Canvas with different Fill colors and Strokes.

This markup generates the results shown in Figure 4-1. The two solid circles are
created at each of different locations. The left images show results when the
FillRule of the GeometryGroup is set to Nonzero. Two solid circles with the
same center location are created. If you change the FillRule property to
EvenOdd, you'll obtain the results shown in the right pane. Here, you create two
rings, each made up of a solid circle with ablank hole.

92 | Chapter 4: Geometry and Advanced 2D Drawing

B Geometry Group

FileRule = Nonzero FileRulz = Evenldd

Figure 4-1 2D shapes created using GeometryGroup.

Remember that there are some drawbacks to combining geometries into a single
Path element using GeometryGroup: you can’'t perform event handling on each
of the different geometry shapes separately. Instead, the Path object will fire all
of the mouse events.

CombinedGeometry Class

The GeometryGroup class has many advantages for creating complex shapes.
However, it still has some limitations in developing CAD-like applications. For
example, although the GeometryGroup allows you to create a shape by drawing
one shape and subtracting out other shapes from inside by changing its FillRule
property, it doesn’'t alow you to perform rea logic operations on shapes. To
address this issue, WPF implements another class, the CombinedGeometry class,
that takes two geometries specified using the Geometryl and Geometry2
properties.

This class doesn’t include the FillRule property, instead, it has a much more
powerful GeometryCombineMode property that takes one of four values, as
listed below:

* Union — Creates a shape that includes all the areas of the two geometries.

» Intersect — Creates a shape that contains the shared area between the two
geometries.

» Xor — Creates a shape that contains the area that isn't shared between the
two geometries.

Chapter 4: Geometry and Advanced 2D Drawing | 93

* Exclude - Cresates a shape that includes all the area from the first geometry,
but doesn’t include the area that falls in the second geometry.

Note that CombinedGeometry only combines the Area specified by two
geometries, so geometries that don’t have area, such as LineGeometry,
disappear when combined.

Let's consider an example that demonstrates how you can combine two circles
into one shape using CombinedGeometry. Add a new WPF Window to the
project Chapter04 and name it CombinedGeometryExample. Here is the XAML
file of this example:

<Wndow x: d ass="Chapt er 04. Conbi hedGeonet r yExanpl "
xm ns="htt p://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Ti t| e="Conbi ned Georetry" Height="340" Wdth="300">

<Border Margi n="5" Bor der Brush="Bl ack" Bor der Thi ckness="1"
Background="{ St ati cResource MG ayQ i dBrush}"
Hori zont al Al i gnrent =" Left" >
<Canvas Wdt h="300" Hei ght ="340" Margi n="5">
<@id>
<@i d. Col umbDefi ni ti ons>
<Col umDefini ti on Wdt h="140"/>
<ol ummDefi ni ti on Wdt h="140"/>
</ @id. Col umbDefinitions>

<StackPanel @i d. Col unm="0">
<Text Bl ock FontS ze="12pt" Text="Uhi on"
Mar gi n="40, 5, 5, 10"/ >
<Path Fill ="LightBl ue" Stroke="Bl ue">
<Pat h. Dat a>
<Conbi nedGeonet ry
Georret r yConbi neMbde=" Uni on" >
<Conbi nedGeonet ry. Geonet ry1>
<H |i pseCeonetry
Cent er =" 50, 50"
Radi usX="50"
Radi usY="50"/>
</ Conbi nedGeorret ry. Geonet ry1>
<Conbi nedGeonet ry. Geonet ry2>
<H |i pseCeonetry
Cent er =" 80, 50"
Radi usX="50"
Radi usY="50"/ >
</ Conbi nedGeorret ry. Geonet ry2>
</ Conbi nedGeorret ry>
</ Pat h. Dat a>
</ Pat h>

<Text Bl ock Font Size="12pt" Text="Xor"
Mar gi n="45, 15, 5, 10"/ >
<Path Fill ="LightBlue" Stroke="Bl ue">

94 | Chapter 4: Geometry and Advanced 2D Drawing

<Pat h. Dat a>
<Conbi nedCGeonet ry
Georret r yConbi neMbde=" Xor " >
<Conbi nedGeonet ry. Geonet ryl>
<H |i pseGeonetry
Cent er =" 50, 50"
Radi usX="50"
Radi usY="50"/ >
</ Conbi nedGeorret ry. Geonet ry1>
<Conbi nedGeonet ry. Geonet ry2>
<H |i pseCGeonetry
Cent er =" 80, 50"
Radi usX="50"
Radi usY="50"/ >
</ Conbi nedGeorret ry. Geonet ry2>
</ Conbi nedGeorret ry>
</ Pat h. Dat a>
</ Pat h>
</ St ackPanel >

<StackPanel @id. Col um="1">
<Text Bl ock FontS ze="12pt"
Text="Intersect" Margi n="30, 5,5, 10"/>

<Path Fill ="LightBl ue" Stroke="Bl ue"
Mar gi n="5, 0, 0, 0">
<Pat h. Dat a>

<Conbi nedGeonet ry
Geonet r yConbi neMbde="1 nt er sect " >
<Conbi nedGeonet ry. Geonet ry1>
<B I'i pseCGeonet ry
Cent er =" 50, 50"
Radi usx="50"
Radi usY="50"/ >
</ Conbi nedGeorret ry. Geonet ry1>
<Conbi nedGeonet ry. Geonet ry2>
<H |i pseCeonetry
Cent er =" 80, 50"
Radi usX="50"
Radi usY="50"/>
</ Conbi nedGeorret ry. Geonet ry2>
</ Conbi nedGeorret r y>
</ Pat h. Dat a>
</ Pat h>

<Text Bl ock FontS ze="12pt" Text ="Excl ude"
Mar gi n="35, 15, 5, 10"/ >

<Path Fill ="LightBl ue" Stroke="Bl ue"
Mar gi n="10, 0O, 0, 0" >
<Pat h. Dat a>

<Conbi nedGeonet ry
Geonret r yConbi neMbde=" Excl ude" >
<Conbi nedGeonet ry. Geonet ry1>
<H |i pseCGeonetry
Cent er =" 50, 50"

Chapter 4: Geometry and Advanced 2D Drawing | 95

Radi usX="50"
Radi usY="50"/ >

</ Conbi nedGeorret ry. Geonet ry1>

<Conbi nedGeonet ry. Geonet ry2>

<H |i pseGeonetry

Cent er =" 80, 50"
Radi usXx="50"
Radi usY="50"/ >

</ Conbi nedGeorret ry. Geonet ry2>

</ Conbi nedGeonret ry>
</ Pat h. Dat a>
</ Pat h>
</ St ackPanel >
</Qid>
</ Canvas>
</ Bor der >
</ W ndow>

Figure 4-2 shows the results of running this example. Y ou can clearly see how
the CombinedGeometryM ode property affects the combined area.

Although the CombinedGeometry only takes two geometries, you can actually
combine any number of shapes by successively using the CombinedGeometry
objects.

B Combined Geometry E@@

Union Intersect

Xor Exclude

Figure 4-2 Shapes created using CombinedGeometry.

96 | Chapter 4: Geometry and Advanced 2D Drawing

PathGeometry Class

The PathGeometry class is more powerful than the derived geometry classes
discussed previously. It can be used to create any of the shapes that the other
geometries can and much more. A PathGeometry object is built out of one or
more PathFigure objects. Each PathFigure object is a continuous set of
connected lines and curves that can be closed or open. The PathFigure object is
closed if the end point of the last line in the object connects to the starting point
of thefirst line.

The PathFigure class has four key properties, as listed below:

e StartPoint — A Point that indicates where the line or figure begins

» Segments— A collection of PathSegment objects that are used to draw the
figure.

* |IsClosed — If true, WPF adds a straight line to connect the starting and end
points.

» IsFilled—If true, the areainside the figureisfilled using the Path.Fill
property.

Note that the PathFigure is a shape that is drawn using an unbroken line

consisting of a number of segments. There are several types of segments, all of

which derive from the PathSegment class. You can use different types of

segments freely to build your figure. The segment classes in WPF are listed
below:

e LineSegment — Creates a straight line between two points.

» ArcSegment — Creates an elliptical arc between two points.

* PolyLineSegment — Creates a series of straight lines.

* BezierSegment — Creates a Bezier curve between two points.

* QuadraticBezierSegment — Creates a Bezier curve that has one point instead
of two.

» PolyBezierSegment — Creates a series of Bezier curves.

» PolyQuadraticBezierSegment — Creates a series of simpler quadratic Bezier
CUrves.

The Line, Arc, and PolyLine segments may be more familiar to you than the
Bezier-related segments. However, Bezier lines are one of the most important
mathematical representations of curves and surfaces used in computer graphics
and CAD applications. Bezier curves are polynomial curves based on a
complicated mathematical representation. Fortunately, no mathematical
knowledge isrequired in order to use the Bezier curvesin WPF.

Chapter 4: Geometry and Advanced 2D Drawing | 97

Linesand Polylines

It is easy to create a simple line using the LineSegment and PathGeometry
classes. For example, the following XAML snippet begins at (10, 10), draws a
straight line to (150, 150), and then draws a line from (150, 150) to (150, 200):

<Path Stroke="Bl ack">
<Pat h. Dat a>
<Pat hGeonet ry>
<Pat hFi gure StartPoi nt="10, 10" >
<Li neSegrent Poi nt =" 150, 150"/ >
<Li neSegrent Poi nt =" 150, 200"/ >
</ Pat hFi gur e>
</ Pat hGeonet ry>
</ Pat h. Dat a>
</ Pat h>

The PolyLineSegment creates a series of straight lines. You can get the same
effect using multiple LineSegment objects, but a single PolyLineSegment is
simpler. The following code creates a polyline:

<Path Stroke="Bl ue">
<Pat h. Dat a>
<Pat hGeonet r y>
<Pat hFi gure Start Poi nt="100, 120" >
<Pol yLi neSegnent
Poi nt s="200, 120, 200, 220, 100, 170"/ >
</ Pat hFi gur e>
</ Pat hGeoret ry>
</ Pat h. Dat a>
</ Pat h>

Note that the number of PathFigure objects in a PathGeometry element is
unlimited. This means that you can create several separate open or closed
figuresthat are al considered part of the same path.

Arcs

An ArcSegment object is defined by its start and end points; its X- and Y -radii
specified by the Size property; its X-axis rotation factor, a value indicating
whether the arc should be greater than 180 degrees; and a value describing the
direction in which the arc is drawn. Like the LineSegment, the ArcSegment
class doesn't contain a property for the starting point of the arc: it only defines
the destination point of the arc it represents. The beginning point of the arcisthe
current point of the PathFigure to which the ArcSegment is added.

The following markup creates an €ellipse shape using two ArcSegment objects:

<Path Stroke="Bl ue">
<Pat h. Dat a>
<Pat hGeonet ry>
<Pat hFi gure Start Poi nt ="100, 50" >
<Ar cSegnent Poi nt =" 200, 50" S ze="50, 30"

98 | Chapter 4: Geometry and Advanced 2D Drawing

SweepD recti on="Count er cl ockw se"/ >

</ Pat hFi gur e>

<Pat hFi gure Start Poi nt ="100, 50" >

<Ar cSegnent Poi nt =" 200, 50" Si ze="50, 30"

SweepD recti on="d ockw se"/ >

</ Pat hFi gur e>

</ Pat hGeonet ry>
</ Pat h. Dat a>
</ Pat h>

The complete markup file for Lines, PolyLines, and Arcs is given in the
LineCurveExample.xaml filein the project Chapter04.

Bezier Curves

It is also easy to create a Bezier curve using the BezierSegment object. Note that
a Bezier curve is defined by four points. a start point, an end point, and two
control points. The BezierSegment class doesn’'t contain a property for the
starting point of the curve; it only defines the end point. The beginning point of
the curve is the current point of the PathFigure to which the BezierSegment is
added.

The two control points of a cubic Bezier curve behave like magnets, attracting
portions of what would otherwise be a straight line towards themselves and
producing a curve. The first control point affects the beginning portion of the
curve; while the second control point affects the ending portion of the curve.
The curve doesn’'t necessarily pass through either of the control points; each
control point movesits portion of the line toward itself, not through itself.

The following example shows a Bezier curve, whose two control points are
animated. The X-coordinate of the first control point and the Y -coordinate of the
second control point vary in the range [50, 250]. You can clearly see how the
Bezier curve changes shape when the control points are animated.

Add a new WPF Window to the project Chapter0O4 and name it
AnimateBezierCurve. Here is the markup of this example:

<Wndow x: d ass="Chapt er 04. Ani mat eBezi er Qur ve"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Bezier Qurve" Height="300" Wdth="300">

<MVi ewbox Stretch="Fill">
<Border Margi n="5" Bor der Brush="Bl ack"
Bor der Thi ckness="1"
Background="{Stati cResource M/G ayQi dBrush}"
Hori zontal Al i gnrment ="Left">
<Canvas x: Name="canvasl" Wdth="300" Hei ght="270">
<Path Stroke="Bl ack" StrokeThi ckness="5">
<Pat h. Dat a>
<Pat hGeonet ry>

Chapter 4: Geometry and Advanced 2D Drawing | 99

<Pat hFi gure Start Poi nt ="20, 20" >
<Bezi er Segnent
x: Narme="bezi er Segrment " Poi nt 1="150, 50"
Poi nt 2="60, 160" Poi nt 3=" 250, 230"/ >
</ Pat hFi gur e>
</ Pat hGeorret ry>

</ Pat h. Dat a>
</ Pat h>
<Path x: Name="pat hl" Fill="Red" Stroke="Red">
<Pat h. Dat a>
<CGeonet r yQ& oup>

<Li neGeonetry x: Narme="Ii nel"
St art Poi nt =" 20, 20"
EndPoi nt =" 150, 50"/ >

<H | i pseCGeonetry x: Nane="el | i psel"
Cent er =" 150, 50"
Radi usx="5"
Radi usY="5" />

<Li neGeonetry x: Nane="li ne2"
St art Poi nt =" 60, 160"
EndPoi nt =" 250, 230"/ >

<H | i pseGeonetry x: Nane="el | i pse2"
Cent er =" 60, 160"
Radi usX="5"
Radi usY="5" />

</ Geonet r yG oup>
</ Pat h. Dat a>
</ Pat h>

<l-- Set anination: -->
<Canvas. Tri gger s>
<Event Tri gger Rout edEvent =" Canvas. Loaded" >
<Begi nSt or yboar d>
<St oryboard Repeat Behavi or =" Forever" Aut oRever se="Tr ue" >
<Poi nt Ani mati on St or yboar d. Tar get Nane="bezi er Segnent "
St oryboar d. Tar get Propert y="Poi nt 1"
From="50 20" To="250 20"
Duration="0:0:5"/>

<Poi nt Ani mati on St oryboar d. Tar get Nane="11i nel"
St or yboar d. Tar get Pr oper t y="EndPoi nt "
Fron¥"50 20" To="250 20"
Duration="0:0:5"/>

<Poi nt Ani mati on St oryboar d. Tar get Nane="el | i psel"
St oryboar d. Tar get Property="Center"
Fron¥"50 20" To="250 20"
Duration="0:0:5"/>

<Poi nt Ani mat i on St or yboar d. Tar get Nane="bezi er Segnent "
St oryboar d. Tar get Pr oper t y="Poi nt 2"
Fron¥"60 50" To="60 250"
Durati on="0:0: 5"/ >

100 | Chapter 4: Geometry and Advanced 2D Drawing

<Poi nt Ani mat i on St or yboar d. Tar get Nane="1 i ne2"
St oryboar d. Tar get Property="St art Poi nt "
Fron¥" 60 50" To="60 250"
Duration="0:0:5"/>

<Poi nt Ani mati on St oryboard. Tar get Nane="el | i pse2"
St oryboar d. Tar get Property="Cent er"
Fron¥" 60 50" To="60 250"
Duration="0:0:5"/>

</ St or yboar d>
</ Begi n$t or yboar d>
</ Event Tri gger >
</ Canvas. Tri gger s>
</ Canvas>
</ Bor der >
</ Vi enbox>
</ W ndow>

This XAML file creates a Bezier curve using BezierSegment. The two control
points, Pointl and Point2, of the Bezier curve are marked specifically by two
ellipse shapes. At the same time, two line segments are created to guide your eye
during the animation. The first line segment connects the starting point and
Point1, while the second segment connects the end point and Point2.

The animation is performed within a Storyboard element using PointAnimation.
Here, you animate not only the control points of the Bezier curve, but also the
red dots (ellipses) and the guide lines.

This example produces the result shown in Figure 4-3, where you can see how
the Bezier curve changes when the control points move.

Geometry and Mini-Language

StreamGeometry is a light-weight aternative to the PathGeometry class for
creating complex geometric shapes. You can use StreamGeometry when you
need to describe a complex geometry but don’t want the overhead of supporting
data binding, animation, and modification. WPF supports a powerful mini-
language that you can use to describe geometric paths.

There are two classes in WPF that provide the mini-language for describing
geometric paths: StreamGeometry, and PathFigureCollection. You need to use
the StreamGeometry mini-language when you set a property of the Geometry
type, such asthe Data property of a Path element. On the other hand, you use the
PathFigureCollection mini-language when you set the Figures property of a
PathGeometry.

To understand the mini-language, you need to realize that it is simply a long
string that holds a series of commands. These commands are used by WPF to
create corresponding geometries. Each command is a single letter followed by
numeric information separated by spaces or commas.

Chapter 4: Geometry and Advanced 2D Drawing | 101

Bl Bezier Curve

Figure 4-3 A Bezier curve.

For example, in the earlier section, you created a polyline with a PathGeometry
using the following XAML snippet:

<Path Stroke="Bl ue">
<Pat h. Dat a>
<Pat hGeonet ry>
<Pat hFi gure Start Poi nt ="100, 120" >
<Pol yLi neSegnent
Poi nt s="200, 120, 200, 220, 100, 170"/ >
</ Pat hFi gur e>
</ Pat hGeonet ry>
</ Pat h. Dat a>
</ Pat h>

Y ou can use the StreamGeometry mini-language to duplicate this polyline:

<Pat h Stroke="Bl ue"
Data="M 100 120 L 200 120 L 200 220 L 100 170"/>

This path uses a sequence of four commands. The first command, M, creates the
PathFigure and sets the starting point to (100, 120). The following three
commands (L) create line segments.

When you create a StreamGeometry object using the StreamGeometry mini-
language, you can't modify the geometry later on in your code. If this isn't
acceptable, you can create a PathGeometry using the PathFigureCollection mini-
language. The following example uses a attribute syntax to create a PathFigure
collection for a PathGeometry:

102 | Chapter 4: Geometry and Advanced 2D Drawing

<Path Stroke="Bl ue">
<Pat h. Dat a>
<Pat hGeonetry Fi gures="M 100 120
L 200 120 L 200 220 L 100 170"/>
</ Pat h. Dat a>
</ Pat h>

As you can see from the above examples, the two mini-languages are very
similar. It is always possible to use PathGeometry in any situation where you
could use StreamGeometry; so which one should you use? Use StreamGeometry
when you don’'t need to modify the path after creating it; use PathGeometry if
you do need to modify the path in your code.

It is easy to use the mini-language to create complex geometry shapes. The
mini-language uses afairly small set of commands. For your reference, the mini-
language commands are listed in Table 4-1.

Table 4-1 Commands for the Geometry Mini-Language

Name Command Description

Full rule FOor F1 Specifies geometry’s FillRule property. FO
for EvenOdd, F1 for Nonzero. This
command must appear at beginning of the

string.
Move M startPt Creates a new PathFigure and sets its start
m startPt point. This command must be used before
any other commands except for FO or F1.
Line L endpt Creates a LineSegment from the current
| endPt point to the specified end point.

Horizontal H x Creates a horizontal line between the
line h x current point and the specified X-
coordinate.

Vertical Vy Creates a vertical line between the current

line vy point and the specified Y -coordinate.

Cubic Cptl, pt2, Creates a cubic Bezier curve between the
Bezier endPt current point and the specified end point
curve C ptl, pt2, endPt by using the two specified control points

(ptl and pt2).

Quadratic Q pt, endpt Creates a quadratic Bezier curve between
Bezier q pt, endPt the current point and the specified end
curve point using the specified control point (pt).
Smooth S pt2, endpt Creates a cubic Bezier curve between the
cubic spt2, endPt current point and specified end point. The
Bezier first control point is assumed to be the
curve reflection of the second control point of

the previous command relative to the

Chapter 4: Geometry and Advanced 2D Drawing | 103

current point.

Smooth T pt, endpoint Creates a quadratic Bezier curve between
Quadratic t pt, endPoint the current point and the specified end
Bezier point. The control point is assumed to be
curve the reflection of the control point of the
previous command relative to the current
point.
Elliptical A size, angle, Creates an elliptical arc between the
Arc isLargeArc, current point and the specified end point.
Direction, You specify the size of the ellipse, the
endpoint rotation angle, and Boolean flags _that Set
asize, angle the I;LargeArc and SweepDirection
’ """ properties.
Close z Ends the current figure and creates a line
z that connects the current point to the
starting point of the figure. You don’t need
to use this command if you don't want to
close the path.
Point X,Y or Describe the X- and Y-coordinates of a
Xy point.
Special Infinity Instead of a standard numerical value, you
values -Infinity can also use these specia values. These
NaN values are case-sensitive.

The commands with uppercase letters use absolute coordinates while the
commands with lowercase letters evaluate parameters relative to the previous
point.

| nteractive 2D Drawing

In the previous sections, we discussed Geometry and Path, as well as
GeometryGroup and CombinedGeometry. Now it is time for you to put al of
them together in a real-world WPF application. This application alows you to
draw 2D shapes using your mouse, combine shapes, drag and move shapes, and
delete shapes interactively. The approach applied in this project will be useful
when you develop interactive CAD applications.

First I'll present all of the source code and the corresponding results, which
show you what this program can do and how to use it. Next, I'll discuss the
functionality of the properties and methods used in the program.

Add a new WPF Window to the project Chapter0O4 and cal it
Interactive2DDrawing. The following XAML file creates the interface and
layout for the application:

104 | Chapter 4: Geometry and Advanced 2D Drawing

<Wndow x: d ass="Chapt er 04. | nt er act i ve2DDr awi ng"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Interactive 2D Draw ng" Hei ght="400" Wdt h="400">

<@id>
<@id. Rowbefini ti ons>
<RowDefi ni tion Hei ght="Auto"/>
<RowDefini tion/>
</ @i d. RowDefiniti ons>

<Tool BarTray Qi d. Row="0">
<Tool Bar >
<Radi oBut t on x: Nane="r bSquar e"
| sChecked="True" Tool Ti p="Add Square">
<Rectangl e Wdt h="15" Hei ght="15"
Stroke="Blue" Fill="LightBl ue"/>
</ Radi oBut t on>

<Radi oBut t on x: Nane="r bRect angl e"
| sChecked="Fal se" Tool Ti p="Add Rect angl e">
<Rectangl e Wdt h="20" Hei ght="12"
Stroke="Blue" Fill="LightBl ue"/>
</ Radi oBut t on>

<Radi oButton x: Nane="rbd rcl e"
| sChecked=""Fal se" Tool Ti p="Add G rcle">
<BHlipse Wdth="18" Hei ght="18"
Stroke="Bl ue" Fill="Li ghtBl ue"/>
</ Radi oBut t on>

<Radi oButton x: Nane="rbH | i pse"
| sChecked="Fal se" Tool Ti p="Add H | i pse">
<BH |ipse Wdt h="22" Hei ght="15"
Stroke="Blue" Fill="LightBl ue"/>
</ Radi oBut t on>

<Radi oBut t on x: Nane="r bConbi ne"
| sChecked="Fal se" Tool Ti p="Conbi ne shapes">
<Path Fill="LightBl ue" Stroke="B ue">
<Pat h. Dat a>
<Conbi nedGeonet ry>
<Conbi nedGeonet ry. Geonet ry1>
<H |i pseGeonetry
Radi usX="8"
Radi usY="8"
Center="8, 8"/>
</ Conbi nedGeorret ry. Geonet ry1>
<Conbi nedGeonet ry. Geonet ry2>
<H |i pseCeonetry
Radi usX="8"
Radi usY="8"
Center="20, 8"/ >

Chapter 4: Geometry and Advanced 2D Drawing | 105

</ Conbi nedGeorret ry. Geonet ry2>
</ Conbi nedGeorret ry>
</ Pat h. Dat a>
</ Pat h>
</ Radi oBut t on>

<Radi oBut t on x: Narme="rbSel ect"
| sChecked="Fal se" Tool Ti p="Sel ect/ Mve">
<Pol ygon
Poi nts="6 1,10 1,10 10, 14 10,8 16,2 10,6 10"
Fill="Li ght Blue" Stroke="Bl ue">
<Pol ygon. Render Tr ansf or m»
<Rot at eTr ansf or m Cent er X="8"
Center Y="8"
Angl e="225"/ >
</ Pol ygon. Render Tr ansf or n»
</ Pol ygon>
</ Radi oBut t on>

<Radi oBut t on x: Nane="r blel et e"
| sChecked="Fal se" Tool Ti p="Del ete">
<@id>
<Li ne X1="2" Y1="2" X2="14"
Y2="14" Stroke="Bl ue"/>
<Li ne X1="2" Y1="14" X2="14"
Y2="2" Stroke="Bl ue"/>
</@id>
</ Radi oBut t on>
</ Tool Bar >
</ Tool Bar Tr ay>

<Mi ewbox Stretch="Uniformi Qid. Row="1">
<Border Margi n="5" Bor der Brush="Bl ack"
Bor der Thi ckness="1" Qi d. Row="1"
Hori zontal Al i gnment =" Lef t ">
<Canvas Nane="canvasl" Wdth="400"
Hei ght =" 345" A i pToBounds="Tr ue"
Background="{Stati cResource M/G ayQi dBrush}"
Mouselef t But t onDown="nMuselef t But t onDown"
MouselLef t But t onUp="nMbuseLef t But t onUp"
MouseMve="MMbuseMove"/ >
</ Bor der >
</ Vi ewbox>
</@id>
</ W ndow>

Here, we add a ToolBarTray to the layout, which contains toolbars made of
seven radio buttons. These radio buttons have different functionalities and can
be used to add a square, rectangle, circle, or elipse; combine shapes;
select/move shapes; and delete shapes, depending on which radio button is
selected. Different technologies are used to create these buttons, including
CombinedGeometry and rotation transforms.

106 | Chapter 4: Geometry and Advanced 2D Drawing

The drawing area is defined by a Canvas object, canvasl, where several mouse
click events are involved. These events include MouseleftButtonDown,
Mousel eftButtonUp, and MouseMove, which alow you to implement
interactive applicationsin code. More about mouse events will be discussed later
in this chapter.

The code-behind file of this application is listed below:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System W ndows;

usi ng System Wndows. Control s;
usi ng System Wndows. | nput ;

usi ng System W ndows. Medi a;

usi ng Syst em W ndows. Shapes;

namespace Chapt er 04

public partial class Interactive2DDrawi ng : W ndow

{
private List<Path> paths = new Li st<Pat h>();
private Point startPoint = new Point();
private Shape rubberBand = nul | ;

Poi nt currentPoint = new Point();
private bool isDragging = fal se;
private bool isDown = fal se;
private Path original B enent = new Pat h();
private Path novi ngH ement = new Pat h();
private Path pathl = new Path();
private Path path2 = new Path();
private SolidCol orBrush fill Color =
new Sol i dCol or Brush();
private SolidCol or Brush borderCol or =
new Sol i dCol or Brush();
private SolidCol orBrush selectFill Color =
new Sol i dCol or Brush();
private SolidCol or Brush sel ect Bor der Col or =
new Sol i dCol or Brush();

public Interactive2DDraw ng()

{
InitializeConponent();
fillColor.Color = ol ors. Li ght G ay;
fillColor.Qacity = 0.5;
bor der Col or. Col or = Col ors. G ay;
selectFill Col or. Col or = Col ors. Li ght Coral ;
selectFill Color. Qpacity = 0.5;
sel ect Bor der Col or. Col or = Col ors. Red;

}

private voi d OhMuselLef t But t onDown(
obj ect sender, MuseButtonEvent Args e)
{

if (!canvasl. | shMuseCapt ured)

Chapter 4: Geometry and Advanced 2D Drawing | 107

{
startPoint = e. GetPosi tion(canvasl);
canvasl. Capt ur eMouse() ;
i f (rbConbi ne. | sChecked == true)
Set Conbi neShapes(e) ;
else if (rbSelect.|sChecked == true)
{
if (canvasl == e. Source)
return;
i sDown = true;
original B ement = (Path)e. Source;
e. Handl ed = true;
}
else if (rbDel ete.lsChecked == true)
{
original H enent = (Path)e. Source;
Del et eShape(ori gi nal H enent) ;
}
}
}
private voi d Del et eShape(Pat h pat h)
{
pat h. Stroke = sel ect Bor der Col or;
string nsg =
"Do you really want to del ete this shape?";
string title = "Del ete Shape?";
MessageBoxButt on buttons = MessageBoxButt on. YesNb;
MessageBoxI mage i con = MessageBox| mage. Vér ni ng;
MessageBoxResult result =
MessageBox. Show(nsg, title, buttons, icon);
if (result == MessageBoxResul t. Yes)
canvasl. Chi |l dren. Renove(pat h) ;
el se
pat h. Stroke = borderCol or;
return;
}
}

private void Set Conbi neShapes(MuseBut t onEvent Args e)

if (pathl. Nanme != "pathlSel ected")

{
pathl = (Path)e. Source;
pat hl. Qursor = Qursors. Hand;
pat hl. Stroke = sel ect Border Col or;
pat hl. Nane = "pat hlSel ect ed";
}
el se

{

108 | Chapter 4: Geometry and Advanced 2D Drawing
if (path2 !'= null)

pat h2. Stroke
pat h2. Qur sor

bor der Col or;
Qursors. Arrow,

}

pat h2 = (Pat h)e. Source;

pat h2. Qursor = Qursors. Hand;

pat h2. Stroke = sel ect Border Col or;

Cont ext Menu cm = new Cont ext Menu() ;
pat h2. Cont ext Menu = cm
Menultemnm = new Menul ten();
m . Header = "Union";
m.dick +=
new Rout edEvent Handl er (Uni on_A i ck);
cmltens. Add(m);
m = new Menultem();
m . Header = "Xor";
m.dick +=
new Rout edEvent Handl er (Xor _Q i ck);
cmitens. Add(m);
m = new Menultemn();
m . Header = "Intersect";
m.dick +=
new Rout edEvent Handl er (I ntersect _Q i ck);
cmltens. Add(m);
m = new Menul ten();
m . Header = "Excl ude";
m.dick +=
new Rout edEvent Handl er (Excl ude_Q i ck);
cmltens. Add(m);

}

private void Uniion_dick(
obj ect sender, RoutedEvent Args e)

Conbi neShapes(pat hl, path2, "Union");
pat hl. Nane = "";
}

private void Xor_Qdick(object sender,
Rout edEvent Args e)
{

Conbi neShapes(pat hl, path2, "Xor");
pat hl. Nane = "";

}

private void Intersect_Qick(object sender,
Rout edEvent Args e)
{

Conbi neShapes(pat hl, path2, "Intersect");
pathl. Nane = "";

Chapter 4: Geometry and Advanced 2D Drawing | 109

private void Excl ude_Q i ck(object sender,
Rout edEvent Args e)
{

Conbi neShapes(pat hl, path2, "Exclude");
pathl. Nane = "";
}

private void Conbi neShapes(Path pl, Path p2, string s)
{

Path nyPath = new Pat h();

nyPath.Fill = fill Color;

nyPat h. Stroke = bor der Col or;

Conbi nedGeonetry cg = new Conbi nedGeonet ry();

if (s =="UWion")
cg. Geonret r yConbi neMbde =
Georret r yConbi neMbde. Lni on;
elseif (s == "Xor")
cg. Georret r yConbi neMbde =
Georret r yConbi neMbde. Xor ;
elseif (s == "Intersect")
cg. Geonet r yConbi neMbde =
Georret r yConbi neMbde. | nt er sect ;
else if (s == "Exclude")
cg. Georret r yConbi neMbde =
Georret r yConbi neMbde. Excl ude;
cg. Georret ryl = pl. Dat a;
cg. Geonetry2 = p2. Dat a;
nyPat h. Data = cg;
pat hs. Add(nyPat h) ;
canvasl. Chi | dren. Add(pat hs[pat hs. Count - 1]);
canvasl. Chi | dren. Renove(pl);
canvasl. Chi | dren. Renove(p2);

}

private void OnMbuseMove(obj ect sender,
MouseEvent Args e)

i f (canvasl. | sMuseCapt ured)
{
current Point = e. Get Position(canvasl);
if (rubberBand == null)
{
r ubber Band = new Rect angl e();
r ubber Band. St roke = Brushes. Li ght Coral ;
r ubber Band. St rokeDashArray =
new Doubl eCol | ecti on(new doubl e[]{4, 2});
if (rbSquare.|sChecked == true ||
rbRect angl e. | sChecked == true ||
rbArcle. lsthecked == true ||
rbE |'i pse. | sChecked == true)

canvasl. Chi | dren. Add(r ubber Band) ;

110 | Chapter 4: Geometry and Advanced 2D Drawing

}
}

doubl e wi dth = Mat h. Abs(
startPoint. X - current Point. X);
doubl e hei ght = Mat h. Abs(
startPoint.Y - currentPoint.Y);
doubl e left = Math. M n(
startPoint. X currentPoint.X);
doubl e top = Math. M n(
startPoint.Y, currentPoint.Y);

rubber Band. Wdth = wi dt h;

r ubber Band. Hei ght = hei ght ;
Canvas. Set Left (rubberBand, |eft);
Canvas. Set Top(r ubber Band, top);

if (rbSel ect.|sChecked == true)
i f (i sDown)

{
if (lisDragging & Math. Abs(currentPoint. X — startPoint.X) >
Syst enPar anet er s. M ni nuntori zont al DragD st ance &&
Mat h. Abs(currentPoint.Y — startPoint.Y) >
Syst enPar anet er s. M ni numerti cal DragD st ance)
DragStarting();
i f (isDragging)
DragMovi ng() ;

}

private voi d OnMbuselef t But t onUp(
obj ect sender, MuseButtonEvent Args e)
{

if (rbSquare.|sChecked == true)
AddSquar e(start Poi nt, currentPoint);
el se if (rbRectangl e.lsChecked == true)
AddRect angl e(start Poi nt, currentPoint);
else if (rbArcle.lsChecked == true)
AddQ rcl e(startPoint, currentPoint);
else if (rbBEIipse.lsthecked == true)
AddEl i pse(startPoint, currentPoint);

if (rubberBand != null)

{
canvasl. Chi | dren. Remove(r ubber Band) ;
rubberBand = nul | ;
canvasl. Rel easeMbuseCapt ure();

}

if (rbSelect.|sChecked == true)
{

}

Chapter 4: Geometry and Advanced 2D Drawing | 111
if (isDown)

Dr agFi ni shi ng(fal se);
e. Handl ed = true;

private void AddRectangl e(Point ptl, Point pt2)

{

}

Path path = new Path();

path.F Il =fillColor;

pat h. Stroke = border Col or;

Rect angl eGeonetry rg = new Rect angl eGeonetry();
doubl e width = Math. Abs(ptl. X - pt2.X);

doubl e height = Math. Abs(ptl.Y - pt2.V);
double left = Math.Mn(ptl. X pt2.X);

double top = Math.Mn(ptl.Y, pt2.V);

rg. Rect = new Rect(left, top, width, height);
path.Data = rg;

pat hs. Add(pat h) ;

canvasl. Chi | dren. Add(pat hs[pat hs. Count - 1]);

private void AddSquare(Point ptl, Point pt2)

{

}

Path path = new Path();
path.Fill = fillColor;
pat h. Stroke = border Col or;
Rect angl eGeoretry rg = new Rect angl eGeonetry();
doubl e width = Math. Abs(ptl. X - pt2.X);
doubl e height = Math. Abs(ptl.Y - pt2.V);
doubl e left = Math.Mn(ptl. X pt2.X);
double top = Math.Mn(ptl.Y, pt2.VY);
doubl e side = width;
if (width > height)
side = height;
rg. Rect = new Rect(left, top, side, side);
path.Data = rg;
pat hs. Add(pat h) ;
canvasl. Chi | dren. Add(pat hs[pat hs. Count - 1]);

private void AddGrcle(Point ptl, Point pt2)

{

Path path = new Path();

path.F Il =fill Color;

pat h. Stroke = border Col or;

B |ipseCeonetry eg = new H | i pseGeonetry();
doubl e width = Math. Abs(ptl. X - pt2.X);
doubl e height = Math. Abs(ptl.Y - pt2.VY);
double left = Math.Mn(ptl. X pt2.X);
double top = Math.Mn(ptl.Y, pt2.VY);

doubl e side = width;

112 | Chapter 4: Geometry and Advanced 2D Drawing

}

if (width > height)
si de = height;
eg. Center = new Point(left + side / 2,
top + side / 2);
eg. Radi usX = side / 2;
eg. RadiusY = side / 2;
path. Data = eg;
pat hs. Add(pat h) ;
canvasl. Chi | dren. Add(pat hs[pat hs. Count - 1]);

private void AddH |ipse(Point ptl, Point pt2)

{

}

Path path = new Path();
path. Fill fill Color;
pat h. Stroke = border Col or;
B |ipseCeonetry eg = new H | i pseGeonetry();
doubl e width = Math. Abs(ptl. X - pt2.X);
doubl e height = Math. Abs(ptl.Y - pt2.VY);
double left = Math.Mn(ptl. X pt2.X);
double top = Math.Mn(ptl.Y, pt2.VY);
eg. Center = new Point(left + width / 2,
top + height / 2);
eg. RadiusX = width / 2;
eg. Radi usY = height / 2;
path. Data = eg;
pat hs. Add(pat h) ;
canvasl. Chi | dren. Add(pat hs[pat hs. Count - 1]);

private void DragStarting()

{

}

i sDraggi ng = true;

novi nge ement = new Pat h() ;

nmovi ngH erent . Data = ori gi nal B enent . Dat a;
novingH erment . Fill = selectFill Color;

movi ngH errent . Stroke = sel ect Bor der Col or;
canvasl. Chi | dren. Add(novi ngH enent) ;

private void DragMvi ng()

{

}

current Poi nt = Mbuse. Get Posi ti on(canvasl);

Transl ateTransformtt = new Transl at eTransforn{);
tt.X = currentPoint. X - startPoint. X

tt.Y =currentPoint.Y - startPoint.Y;

nmovi ngH erent . Render Transform = tt;

private voi d DragFi ni shi ng(bool cancel)

{

Mouse. Capture(nul I');
i f (i sDraggi ng)
{

Chapter 4: Geometry and Advanced 2D Drawing | 113
if (!cancel)

current Poi nt = Mouse. Get Posi ti on(canvasl);
Transl ateTransformtt0 = new Transl at eTr ansf orn{() ;
Transl ateTransformtt = new Transl at eTransf orny);
tt.X = currentPoint. X - startPoint.X
tt.Y =currentPoint.Y - startPoint.Y;
Geonetry geonetry =
(Rect angl eGeonet ry) new Rect angl eGeorret ry() ;

string s = original B enent. Data. ToString();

if (s == "System Wndows. Medi a. B | i pseGeonet ry")
geonetry = (B |i pseGeoretry) ori gi nal E enent . Dat a;

else if (s == "System Wndows. Medi a. Rect angl eGeonet ry")
geonetry = (Rectangl eGeonetry)ori gi nal B enent. Dat a;

else if (s == System Wndows. Medi a. Conbi nedGeonet ry")
geonet ry = Conbi nedGeorret ry) ori gi nal E enent . Dat a;

if (geonetry. Transform ToString()!= "ldentity")

tt0 = (Transl at eTransf orn geonet ry. Tr ansf orm
tt.X += tt0. X
tt.Y +=tt0.Y,

geonetry. Transform = tt;

canvasl. Chil dren. Renove(ori gi nal B enent) ;
original B ement = new Pat h();
originalBenent.Fill =fillColor;
original B erment . Stroke = border Col or;
original H enent. Data = georretry;

canvasl. Chil dren. Add(ori gi nal El enent) ;

canvasl. Chi | dren. Renove(novi ngHE enent) ;
nmovi nge errent = nul | ;

}
i sDraggi ng = fal se;
i sbown = fal se;

}

The above code-behind file involves severa techniques, including mouse click
events that allow the user to interact with the program, the rubberband for the
outline of the shape to be drawn following the mouse cursor, shapes created
using Geometry objects, combinations of shapes, transforms on Path and
Geometry objects, etc.

In the following sections, I'll explain how this application works. But first |
want to show you the results of this project. Figure 4-4 is a snapshot generated
from this program. You can see from this figure that the application allows the
user to add various shapes, including squares, rectangles, circles, and ellipses,

114 | Chapter 4: Geometry and Advanced 2D Drawing

and perform various operations on the shapes, such as combining, dragging,
moving, and deleting the shapes.

M Interactive 2D Drawing El@

Do0QA X,

Figure 4-4 Interactive 2D drawing application in WPF.

Mouse Events

In the above example, severa mouse events were used to perform various

operations, including LeftMouseButtomDown, LeftMouseButtonUp, and

MouseMove. The mouse button events provide a MouseButtonEventArgs object.
The MouseButtonEventArgs class derives from the MouseEventArgs base class.

Different tasks are performed depending on which radio button is checked when

you press the left mouse button down. First, you obtain a position (a Point object)
at which the left mouse button is clicked on the canvasl control. Then you set

the mouse’'s Capture state. Usually, when an object receives a mouse button

down event, it will receive a corresponding mouse button up event shortly

thereafter. However, in this example, you need to hold down the mouse and

move it around. Thus, you want to have a notification of the mouse up event. To
do so, you need to capture the mouse by calling the CaptureM ouse() method and

passing to the canvasl control.

Chapter 4: Geometry and Advanced 2D Drawing | 115

At the same time, this Mousel eftButtonDown event also controls combining,
selecting and moving, or deleting shapes, depending on which radio button is
checked.

The MouseMove event performs two main tasks. First it draws various shapes,
including sgquares, rectangles, circles, or ellipses. When it draws a shape, a
rubberband is created. This rubberband is a common feature in graphics
applications. It provides an outline of a shape to be drawn following the mouse
cursor, so you can visuaize exactly where the shape will be drawn on your
screen.

The other task performed by the MouseMove event is selecting and moving
shapes when the Select/Move radio button is clicked. Two Boolean numbers,
isDown and isDragging, are used to control the DragStarting and DragMoving.

Sevral actions happen in the Mousel eftButtonUp event. The event adds a shape
to the canvasl if the square, rectangle, circle, or ellipse radio button is checked.
It also removes the rubberband after creating the shape. Finaly, it is responsible
for calling the DragFinishing method, which terminates the moving of the shape
when the Select/Move radio button is checked.

In this example, you use three Mouse events. There are more mouse events in
WPF that you can use in developing interactive graphics applications. For
example, mouse events allow you to react when the mouse pointer moves over a
graphics object. These events include MouseEnter and MouselLeave, which
provide information about a MouseEventArgs object for your program. The
MouseEventArgs object includes properties that show you the state of the mouse
button. There are a'so many other mouse events in WPF that you can use in your
applications. If you need more information about mouse events, you can refer to
Microsoft online help or tutorial books on the topic.

Creating and Combining Shapes

In this example, the shapes are created using the RectangleGeometry and
EllipseGeometry classes. You can aso create shapes directly using the
Rectangle and Ellipse shapes deriving from the Shape class, but if you do so,
you won't be able to perform shape combination.

Let's look at the AddRectangle method. It takes two Point objects as input
parameters. One is the stat point, ptl, recorded when the
Mousel eftButtonDown event fires, and the other is the current point, pt2,
recorded when the MouseL eftButtonUp event fires. After some manipulations,
these two points are used to set the Rect property of the RectangleGeometry
object. Y ou then use a Path object to draw the RectangleGeometry. Notice that a
path collection object, named paths, created using List<Path>, is used to hold all
the Path objects. This allows you to add any humber of rectangles to the canvasl
control. Following the same procedure, you can create square, circle, or ellipse
shapes.

116 | Chapter 4: Geometry and Advanced 2D Drawing

The advantage of using Geometry objects is that shapes can be combined using
the CombinedGeometry class. The SetCombineShapes method performs the
shape combination. You pick up two shapes (both are Path objects) to combine
with the different GeometryCombineMode by clicking you rmouse. The
GeometryCombineMode includes Union, Xor, Intersect, and Exclude, and are
implemented in a Context Menu attached to the second Path object. You can
select the GeometryCombineMode by right clicking on the path2 object.

The CombineShapes method performs the shape combination. The code snippet

Path nyPath = new Pat h();
Conbi nedGeonetry cg = new Conbi nedGeonet ry();

cg. Georret ryl = pl. Dat a;

cg. Geonetry2 = p2. Dat a;

nyPat h. Data = cg;

pat hs. Add(nyPat h) ;

canvasl. Chi | dren. Add(pat hs[pat hs. Count - 1]);

shows the detailed combining procedure. First, you create a new Path and a new
CombinedGeometry object, named “myPath” and “cg’. Then the
GeometryCombineMode property of cg is specified (not shown in the above
code snippet). Next, you set cg’'s Geometryl and Geometry2 properties using
Data property of the first Path object, pl, and second Path object, p2,
respectively. Finaly, you add the combined shape (myPath) to the canvasl
control viathe Path collection “ paths’.

Dragging and Moving Shapes

This application also allows you to select, drag, and move shapes using the
mouse when the Select/Move RadioButton is checked.

The dragStarting and DragMoving methods are responsible for dragging and
moving the shape. When the user starts dragging, the DragStarting method
creates a MovingElement that is simply a copy of the selected shape, but with
different Stroke and Fill properties to distinguish it from the other unselected
shapes. This MovingElement is added to the canvasl control.

The DragMoving method is simple:
private void DragMving()

{
current Poi nt = Muse. Get Posi ti on(canvasl);
Transl ateTransformtt = new Transl at eTransforn{();
tt.X =currentPoint. X - startPoint.X
tt.Y = currentPoint.Y - startPoint.Y;
novi ngH enent . Render Transform = tt;
}

It simply performs a translation transform using the current point of your mouse
cursor relative to the dragging starting point. Thus, the movingElement will
move with your mouse pointer.

Chapter 4: Geometry and Advanced 2D Drawing | 117

When the user finishes dragging and moving the shape, you need to delete the
MovingElement from the canvasl and place the original selected shape in the
final position. In this step, you need to record all the trandation transforms
associated with the shape and pass these transforms to the Geometry’'s
Transform property, as you did in the DragFinishing method:

|f(georretry. Transform ToString() !'= "ldentity")

tt0 = (Transl at eTr ansf or n) geonet ry. Tr ansf or m
tt. X +=1t0. X
tt.Y += tt0.Y;

}

geonetry. Transform = tt;

Notice that the transforms are performed on the underlying Geometry, not
directly on the shape (the Path object). Thisis necessary because WPF performs
the RenderTransform of a shape in alocal coordinate system associated with the
shape. The shape's absolute coordinates don't change after transforms. Thus, if
you place the shape using its RenderTransform property, and then drag and
move the already dragged and moved shape, you'll start dragging and moving
the shape from its original location, instead of its |ocation after you dragged.

Based on this example, you can develop a sophisticated 2D drawing program by
adding more features. You could easily add more types of shapes, such as
polygons, lines, and polylines. You could also easily add features like copy,
paste, undo, edit, save, etc. to the program.

Hit Testing

In the above interactive 2D drawing example, the user’s interaction with the
shapes is treated directly using mouse event handlers. However, WPF provides
powerful hit-testing for visuals through the static Visual TreeHelper.HitTest
method. In developing interactive 2D drawing applications, you can perform
tasks such as dragging, moving, dropping, and deleting shapes more efficiently
using the HitTest method. In particular, when you design a complex application
that contains overlapped visuas, this HitTest method allow you to retrieve al
the visuals (not just the topmost visual) at a specified point, even the visuals
obscured underneath other visuals. You can aso find al the visuas that fall
within a given geometry.

In order to use this advanced hit-testing feature, you need to create a callback.
The Visua TreeHelper will then walk through your visuals from top to bottom.
Whenever it finds a match, it calls the callback with the details. You can then
choose to stop the search or continue until no more visuals remain.

The following example shows how to use this advanced hit-testing feature. Add
a new WPF Window to the project Chapter04 and name it HitTestExample. In
this example, you'll create several rectangle shapes on a Canvas, some of which

118 | Chapter 4: Geometry and Advanced 2D Drawing

are overlapped each other. The program will tell you how many rectangles are
hit when the user clicks a point on the rectangles.

Here isthe XAML file of this example:

<Wndow x: d ass="Chapt er 04. H t Test Exanpl e"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / present at i on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Ti t] e="Chapt er 04" Hei ght ="300" Wdt h="300">

<Canvas x: Nanme="canvasl"

MouselLef t But t onDown="CnMbuseLef t But t onDown" >

<Rect angl e Canvas. Left="20" Canvas. Top="20"
Wdt h="100" Hei ght="60"
Stroke="Bl ack" Fill="Li ght Bl ue"
paci ty="0.7"/>

<Rect angl e Canvas. Left="70" Canvas. Top="50"
Wdt h="100" Hei ght="60"
Stroke="Bl ack" Fill="Li ght Bl ue"
paci ty="0.7"/>

<Rect angl e Canvas. Left="150" Canvas. Top="80"
Wdt h="100" Hei ght ="60"
Stroke="Bl ack" Fill="Li ght Bl ue"
paci ty="0.7"/>

<Rect angl e Canvas. Left="20" Canvas. Top="100"
Wdt h="50" Hei ght ="50"
Stroke="Bl ack" Fill="Li ght Bl ue"
paci ty="0.7"/>

<Rect angl e Canvas. Left="40" Canvas. Top="60"
Wdt h="50" Hei ght ="50"
Stroke="Bl ack" Fill="Li ght Bl ue"
pacity="0.7"/>

<Rect angl e Canvas. Left="30" Canvas. Top="130"
Wdt h="50" Hei ght ="50"
Stroke="Bl ack" Fill="Li ght Bl ue"
paci ty="0.7"/>

</ Canvas>
</ W ndow>

This XAMI file adds six rectangles to the Canvas. The hit-testing is performed
in code:

usi ng System

usi ng System ol | ecti ons. Generi c;
usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;

usi ng System W ndows. Medi a;

usi ng System W ndows. Shapes;

nanespace Chapt er 04

public partial class HtTestExanple : Wndow
{

Chapter 4: Geometry and Advanced 2D Drawing | 119

private List<Rectangl e> hitlList
new Li st <Rect angl e>() ;

private B lipseGeoretry hitArea =
new H | i pseCGeonetry();

public H t Test Exanpl e()
InitializeConponent();

Initialize();

}

private void Initialize()

foreach (Rectangl e rect in canvasl. Children)

{
}

rect.Fill = Brushes. Li ght Bl ue;

}

private voi d OnMuseLef t But t onDown(
obj ect sender, MuseButtonEvent Args e)

{

// Initialization:

Initialize();

/1 Get nouse click point:

Point pt = e. GetPosition(canvasl);

/1 Define hit-testing area:

hitArea = new B | i pseGeonetry(pt, 1.0, 1.0);

hitList.Qear();

/l Call HtTest nethod:

Vi sual Tr eeHel per. H t Test (canvasl, null,
new H t Test Resul t Cal | back(H t Test Cal | back),
new GeonetryH t Test Paraneters(hitArea));

if (hitList.Count > 0)

{
foreach (Rectangle rect in hitList)

{

/l Change rectangle fill color if it is hit:
rect.Fill = Brushes. Li ght Coral ;

}

MessageBox. Show("You hit " +
hitList.Count.ToString() + " rectangles.");

}

}

public H tTest Resul t Behavi or H t Test Cal | back(
HtTestResult result)

/] Retrieve the results of the hit test.

120 | Chapter 4: Geometry and Advanced 2D Drawing

IntersectionDetail intersectionDetail =
((CGeonetryH t Test Resul t)resul t). I ntersectionDetail ;

switch (intersectionbetail)

{

case IntersectionDetail. Ful |l yContai ns:
/] Add the hit test result to the list:
hitList. Add((Rectangl e)result.Visual Ht);
return H t Test Resul t Behavi or. Cont i nue;

case IntersectionDetail.lntersects:
/] Set the behavior to return visuals at all z-order |evels:
return H t Test Resul t Behavi or. Conti nue;

case IntersectionDetail.Fullylnside:

// Set the behavior to return visuals at all z-order |evels:
return H t Test Resul t Behavi or. Cont i nue;

defaul t:
return H t Test Resul t Behavi or. St op;

}

In this code-behind file, you expand the hit test area using an EllipseGeometry.
When the user clicks on the Canvas, the program starts the hit-testing process by
calling the HitTestCallback method. If it hits any rectangle, that rectangle will
be added to the hitList. When the process is finished, the program gives a
collection in the hitList with all of the rectangles that are found.

Note that the HitTestCalback method implements the hit testing behavior.
Usually, the HitTestResult object provides just a single property (VisuaHit), but
you can cast it to one of two derived types depending on the type of hit test
you're performing.

If you're hit testing a point, you can cast HitTestResult to PointHitTestResult,
which provides a PointHit property that returns the origina point you used to
perform the hit test. But if you are hit testing a Geometry object (or shape), like
you are in this example, you can cast HitTestResult to GeometryHitTestResult
and get access to the IntersectionDetail property. This property tells you whether
your geometry (hitArea) completely wraps your rectangle (Fullyinside),
overlaps it (Intersect), or within it (FullyContains). In this example, you
implement all these optionsin the HitTestCallback. Y ou can choose any of these
options depending on the requirements of your application. In this example, hits
are only counted if the geometry (hitArea) is completely inside the rectangle
(FullyContains). Finaly, at the end of the callback, you can return one of two
values from the HitTestResultBehavior enumeration: Continue to keep looking
for hits, or Stop to end the hit-testing process.

Figure 4-5 shows results of running this example.

Chapter 4: Geometry and Advanced 2D Drawing | 121

[[B]X]]

¥ou hit 3 rectangles,

Figure 4-5 Hit Testing in WPF.

Custom Shapes

Sometimes, you may find that the simple shapes defined in WPF aren’t enough
for advanced graphics applications. In these cases, you can create custom shapes
that derive from the Shape class. The custom shapes you create in this way
inherit all of the properties and methods of the Shape class, and they become
FrameworkElement objects. Therefore, you can use them in your applications
just like standard WPF shapes (Line, Rectangle, Ellipse, and Polygon, for
example).

In this section, I'll show you how to create some commonly used custom shapes,
including a Star, ArrowLine, and USFlag. Following the procedure presented
here, you can easily develop your own custom shape library.

Star Shape

Creating a custom shape is relatively easy. You simply need to inherit the
custom shape that you want to create from the abstract Shape class and provide
an override for the getter of the DefiningGeometry property. This returns the
Geometry object, which defines the geometry of your shape.

Let's consider an example that shows how to create a custom Star shape. Open
the project Chapter04 and add a new class, called Star, to the project. | first list
the code and then explain how it works.

122 | Chapter 4: Geometry and Advanced 2D Drawing

usi ng System

usi ng System W ndows;

usi ng System W ndows. Medi a;
usi ng Syst em W ndows. Shapes;

nanespace Chapt er 04

public class Star : Shape

{
protected PathGeonetry pg;
Pat hFi gure pf;
Pol yLi neSegrrent pl s;

public Star()
{

pg = new Pat hGeonetry();

pf new Pat hFi gure() ;

pl s = new Pol yLi neSegnent () ;
pg. Fi gures. Add(pf);

}

/1 Specify the center of the star
public static readonly DependencyProperty
CenterProperty =
DependencyProperty. Regi ster("Center",
typeof (Point), typeof(Star),
new Fr amewor kPr oper t yMet adat a(
new Poi nt (20. 0, 20.0),
Fr amewor kPr oper t yMet adat a(pt i ons. Af f ect sMeasure)) ;

public Point Center
{

set { SetValue(CenterProperty, value); }

get { return (Point)GetVal ue(CenterProperty); }
}

/1 Specify the size of the star:
public static readonly DependencyProperty
Si zeRProperty =
DependencyProperty. Regi ster("Si zeR',
t ypeof (doubl e), typeof(Star),
new Fr amewor kPr oper t yMet adat a(10. 0,
Fr amewor kPr oper t yMet adat apt i ons. Af f ect sMeasure)) ;

public doubl e S zeR

{
set { SetValue(S zeRProperty, value); }
get { return (doubl e)GetVal ue(S zeRProperty); }
}
protected override Georetry Defi ni ngGeonetry
{

get
{

Chapter 4: Geometry and Advanced 2D Drawing | 123

double r = S zeR
double x = Center. X;
double y = Center.Y;

doubl e sn36 = Mat h. Sin(

36.0 * Math.P / 180.0);
doubl e sn72 = Mat h. Sin(

72.0 * Math.Pl / 180.0);
doubl e ¢s36 = Mat h. Cos(

36.0 * Math.P / 180.0);
doubl e ¢s72 = Mat h. Cos(

72.0 * Math.Pl / 180.0);

pf.StartPoint = new Point(x, y - r);

pl s. Poi nts. Add(new Point(x + r * sn36,
y +r1r * ¢s36));

pl s. Poi nts. Add(new Point(x - r * sn72,
y - r * ¢s72));

pl s. Points. Add(new Point(x + r * sn72,
y - r * ¢s72));

pl s. Points. Add(new Point(x - r * sn36,
y +r * cs36));

pl s. Points. Add(new Point(x, y - r));
pf . Segnent s. Add(pl s);

pf.1sd osed = true;
pg. FllRule = Fi Il Rul e. Nonzer o;
return pg;

}

In order to draw a Star shape, you need to have a reference to two parameters.
One is the Center (a Point object) of the Star, the other is the size of the Star
named SizeR (a double object). However, you need to add two dependency
properties in the above code for these two parameters. Y ou may notice that these
two properties are passed into the DependencyProperty.Register method. This
registration process is necessary in order to expose these properties to the user.

Next, you override the getter of the DefiningGeometry property. Here the Star
shape is created using the PolyLineSegment object. First, you need to define the
coordinates of the Star. Asillustrated in Figure 4-6, we assume that the center
coordinates of the star are at (x, y), and r is the radius of the circle around the
star shape. In this notation, r is the same as SizeR. The angle a is equal to 72
degrees and B is equal to 36 degrees. From this figure, you can easily determine
the coordinates of points 0 to 4, as shown in Table 4-2.

Note that the NonZero fill rule is used here. As discussed in Chapter 2, with
Nonzero, WPF follows the same line-counting process as the default EvenOdd
fill rule, but it takes into account the direction that each line flows. If the number
of lines going in one direction is equal to the number going in the opposite
direction, the region is not filled. Otherwise, the region will be filled. You can
see from Figure 4-6 that the pentagon at the center will be filled because the

124 | Chapter 4: Geometry and Advanced 2D Drawing

difference between these two counts is not zero. If you had set the fill rule to
EvenOdd, the pentagon at the center will not be filled because you must across
two linesto get out of the pentagon.

Figure 4-6 Coordinates of a star shape.

Table 4-2 Coordinates of the star

Points X Coordinate Y coordinate
0 X Y- r
1 X + r*sing y + r*cosp
2 X - r*sina y - r*cosoa
3 X + r*sina y - r*cosoa
4 X — r*sing y + r*cosp

Using this information, you can easily create a custom Star shape.

Chapter 4: Geometry and Advanced 2D Drawing | 125

Arrow Line

In Chapter 2, we mentioned that you can specify the end caps of a line shape
through its StrokeStartLineCap and StrokeEndLineCap properties. However, the
size of these caps is aways the same as the StrokeThickness. Thus, it is
impossible to create aline with an arrowhead using these properties.

Instead, you can create such an arrowhead line using a custom shape class. In
this class, in addition to the standard line properties such as X1, Y1, X2, and Y 2,
you need to add four more dependency properties that are used to control the
arrowhead: ArrowheadSizeX, ArrowheadSizeY, ArrowheadEnd, and
IsArrowheadClosed. The ArrowheadSizeX and ArrowheadSizeY properties are
used to specify the size of the arrow head, as defined in Figure 4-7. The
ArrowheadEnd property allows you to select whether the arrowhead should be
at the start point, end point, both ends, or neither end of the line. The
IsArrowheadClosed property lets you set the arrowhead type as open or closed,
asillustrated in Figure 4-7.

Figure 4-7 Arrowheads to be used in the ArrowLine class.

Open the project Chapter04, and add a class named ArrowLine to the project.
This class also inherites from the Shape class. Here isthe C# code of this class:

usi ng System

usi ng System W ndows;

usi ng System W ndows. Medi a;
usi ng Syst em W ndows. Shapes;

126 | Chapter 4: Geometry and Advanced 2D Drawing

namespace Chapt er 04

{

public class ArrowLine : Shape

{

protected PathGeonetry pg;
protected Pat hFi gure pf;
protected Pol yLi neSegnent pls;

Pat hFi gure pf Start Arrow,

Pol yLi neSegrrent pl sStart Arrow,
Pat hFi gure pf EndArrow,

Pol yLi neSegnent pl sEndArrow,

public ArrowLine()
{
pg = new Pat hGeonetry();
pf new Pat hFi gure() ;
pl s = new Pol yLi neSegnent () ;
pf. Segrent s. Add(pl s) ;
pf Start Arrow = new Pat hFi gure();
pl sStart Arrow = new Pol yLi neSegnent () ;
pf Start Arrow Segrrent s. Add(pl sStart Arrow) ;
pf EndArrow = new Pat hFi gure();
pl sEndArrow = new Pol yLi neSegrent () ;
pf EndAr r ow. Segnent s. Add(pl SEndArrow) ;

}

/1 Specify the X1 dependency property:
public static readonly DependencyProperty XlProperty
DependencyProperty. Regi ster (" XL",
t ypeof (doubl e), typeof (ArrowLi ne),
new Fr amewor kPr oper t yMet adat a(0. O,
Fr amewor kPr oper t yMet adat a(pt i ons. Af f ect sMeasure)) ;

public doubl e X1
{

set { SetVal ue(XlProperty, value); }

get { return (doubl e)Get Val ue(X1Property); }
}

/1 Specify the Y1 dependency property:
public static readonly DependencyProperty YlProperty =
DependencyProperty. Regi ster (" Y1",
t ypeof (doubl e), typeof (ArrowLi ne),
new Fr amewor kPr oper t yMet adat a(0. O,
Fr amewor kPr oper t yMet adat a(pt i ons. Af f ect sMeasure)) ;

public double Y1

{
set { SetVal ue(YlProperty, value); }

get { return (doubl e)Get Val ue(YlProperty); }
}

/1 Specify the X2 dependency property:

Chapter 4: Geometry and Advanced 2D Drawing | 127

public static readonly DependencyProperty X2Property =
DependencyProperty. Regi st er (" X2",
t ypeof (doubl e), typeof (ArrowLi ne),
new Fr anmewor kPr oper t yMet adat a(0. O,
Fr amewor kPr oper t yMet adat a(pt i ons. Af f ect sMeasure)) ;

public doubl e X2
{

set { SetVal ue(X2Property, value); }

get { return (doubl e)Get Val ue(X2Property); }
}

/1 Specify the Y2 dependency property:
public static readonly DependencyProperty Y2Property =
DependencyProperty. Regi ster ("Y2",
typeof (doubl €), typeof (ArrowLine),
new Fr anewor kPr oper t yMet adat a(0. O,
Fr amewor kPr oper t yMet adat a(pt i ons. Af f ect sMeasure)) ;

public doubl e Y2
{

set { SetVal ue(Y2Property, value); }

get { return (doubl e)Get Val ue(Y2Property); }
}

/1l Specify the arrowhead size in the x direction:
public static readonly DependencyProperty

ArrowheadS zeXProperty =

DependencyProperty. Regi st er (" ArrowheadS zeX',

t ypeof (doubl €), typeof (ArrowLine),

new Fr amewor kPr oper t yMet adat a(10. 0,

Fr amewor kPr oper t yMet adat aQpt i ons. Af f ect sMeasure)) ;

publ i ¢ doubl e ArrowheadSi zeX

{
set { SetVal ue(ArrowheadSi zeXProperty, value); }
get { return
(doubl e) Get Val ue(ArrowheadSi zeXProperty); }
}

Il Specify the arrowhead size in the y direction:
public static readonly DependencyProperty

ArrowheadS zeYProperty =

DependencyProperty. Regi st er (" ArrowheadS zeY",

t ypeof (doubl e), typeof (ArrowLi ne),

new Fr amewor kPr oper t yMet adat a(10. 0,

Fr amewor kPr oper t yMet adat apt i ons. Af f ect sMeasure)) ;

publ i ¢ doubl e ArrowheadSi zeY
set { SetVal ue(ArrowheadSi zeYProperty, value); }

get { return
(doubl e) Get Val ue(ArrowheadSi zeYProperty); }

128 | Chapter 4: Geometry and Advanced 2D Drawing

/1 Specify arrowhead ends:
public static readonly DependencyProperty
Ar r owheadEndPr operty =
DependencyProperty. Regi st er (" ArrowheadEnd",
t ypeof (Ar r onheadEndEnun), typeof (ArrowLi ne),
new Fr anmewor kPr oper t yMet adat a(Ar r onheadEndEnum End,
Fr amewor kPr oper t yMet adat a(pt i ons. Af f ect sMeasure)) ;

publ i ¢ Arr owheadEndEnum Ar r onwheadEnd

{
set { SetVal ue(Arr onheadEndProperty, value); }
get { return
(Arr owheadEndEnun) Get Val ue(Arr owheadEndPr operty);}
}

/1 Specify | sArrowheadd osed property
public static readonly DependencyProperty
| sArronwheadd osedProperty =
DependencyProperty. Regi st er ("1 sArrowheadd osed",
typeof (bool), typeof (ArrowLine),
new Fr amewor kPr oper t yMet adat a(f al se,
Fr amewor kPr oper t yMet adat a(pt i ons. Af f ect sMeasure)) ;

publ i c bool |sArrowheadd osed

set { SetVal ue(lsArrowheadd osedProperty,
val ue); }
get { return
(bool) Get Val ue(| sArrowheadd osedProperty); }

protected override Georetry Defini ngGeonetry
{
get
{
pg. Figures.dear();
pf.StartPoint = new Poi nt (X1, Y1);
pls.Points.dear();
pl s. Poi nt s. Add(new Poi nt (X2, Y2));
pg. Fi gures. Add(pf);

if (pls.Points.Count > 0)

Point ptl
Poi nt pt2

= new Point();
= new Point ();
if ((ArrowheadEnd &
Ar r owheadEndEnum Start)
== Arr owheadEndEnum Start)

ptl = pf.StartPoint;
pt2 = pls. Points[0];
pg. Fi gur es. Add(Cr eat eAr r owhead(

Chapter 4: Geometry and Advanced 2D Drawing | 129

pfStartArrow, pt2, ptl));
}

if ((ArrowheadEnd & ArrowheadEndEnum End)
== Arr owheadEndEnum End)

{
ptl = pls.Points. Count == 1 ?
pf.StartPoint :
pl s. Points[pl s. Poi nts. Count - 2];
pt2 = pls. Points|
pl s. Points. Count - 1];
pg. Fi gur es. Add(O eat eAr r owhead(
pf EndArrow, ptl, pt2));
}
}
return pg;

}

Pat hFi gure C eat eArr owhead(Pat hFi gure pat hFi gure,
Point ptl, Point pt2)
{

Poi nt pt
Vector v

= new Poi nt ();

= new Vector();

Matrix m= ArrowheadTransforn{ptl, pt2);

Pol yLi neSegnent pl s1 = pat hFi gure. Segnent s[0]
as Pol yLi neSegnent ;

pl sl. Points.Qear();
if (!lsArrowheadd osed)
{
v = new Point (0, 0) — new Point (
ArrowheadS zeX / 2, ArrowheadS zeY);
pt =pt2 +v *m
pat hFi gure. Start Point = pt;
pl s1. Poi nts. Add(pt 2) ;
v = new Point (0, 0) —
new Poi nt (- ArrowheadSi zeX / 2,
ArrowheadS zeY) ;
pt =pt2 +v *m
pl s1. Poi nts. Add(pt);

}
el se if (IsArrowheadd osed)
{
v = new Point (0, 0) —
new Poi nt (ArrowheadSi zeX / 2, 0);
pt =pt2 +v *m
pat hFi gure. Start Poi nt = pt;
v = new Point (0, 0) —
new Poi nt (0, -ArrowheadSi zeY);
pt =pt2 +v *m
pl s1. Poi nts. Add(pt);
v = new Point (0, 0) —

130 | Chapter 4: Geometry and Advanced 2D Drawing

new Poi nt (- ArrowheadS zeX / 2, 0);
pt =pt2 +v *m
pl s1. Poi nts. Add(pt);
}
pat hFi gure. 1sd osed = | sArrowheadd osed;
return pathF gure;

}

private Matrix ArrowheadTr ansf or i
Point ptl, Point pt2)
{

Matrix m= new Matrix();

doubl e theta = 180 * (Math. Atan((pt2. X - pt1l.X) /
(pt2.Y - ptl1.Y))) / Math.Pl;

double dx = pt2. X - ptl. X

double dy = pt2.Y - ptl.Y,

if (dx >= 0 & dy >= 0)
theta = -theta;

else if (dx <0 & dy >= 0)
theta = -theta;

else if (dx <0 & dy < 0)
theta = 180 - theta;

else if (dx >= 0 & dy < 0)
theta = 180 - theta;

m Rot at e(t het a) ;

return m

}

publ i ¢ enum Arr owheadEndEnum

{
None = 0,
Start = 1,
End = 2,
Both = 3

}

In this class, you add eight dependency properties and pass them to the
DependencyProperty.Register method. This registration process is necessary in
order to expose these properties to the user.

Next, you override the getter of the DefiningGeometry property. The arrowhead
line is created using PolyLineSegment. The arrowhead is first created in the
absolute coordinate system, and then placed at the starting or end point of the
line using matrix transforms.

Following the procedures presented here, you can create more custom shapes
and build you own custom 2D shape library.

Chapter 4: Geometry and Advanced 2D Drawing | 131

Testing Custom Shapes

The custom shapes Star and ArrowL ine created in the preceding sections can be
used in the same way as the standard shapes in WPF. They can be used in both
XAML and code-behind files. In order to use custom shapesin XAML files, you
need to add the project that the custom shape classes reside to the xmins
namespace. In this way the markup code can find the location of your custom
classes. In the current case, you need to add the following line:

xm ns: | ocal ="cl r - namespace: Chapt er 04"

Let's consider an example, in which you first create a US flag in code using the
custom Star shape. Then you create a Star and two arrowhead lines in the
XAML file. Finally you perform various transforms and animations to the star
and arrowhead lines.

Add a new WPF Window to the project Chapter04 and name it CustomShape.
Here is the markup of this example:

<Wndow x: d ass=" Chapt er 04. Qust onthape"
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
xm ns: | ocal ="cl r - nanmespace: Chapt er 04"
Ti t] e="Qust om Shapes" Hei ght ="400" W dt h="300">

<Vi ewbox Stretch="Uniform >
<Border Margi n="5" Bor der Brush="Bl ack"
Bor der Thi ckness="1"
Backgr ound="Li ght Cyan"
Hori zontal Al i gnnent ="Left">
<Canvas x: Name="canvasl" Wdth="300" Hei ght ="375"
d i pToBounds=""Tr ue" >
<l ocal : Star x: Name="star1" Canvas. Top="190"
Canvas. Left ="50" Fill="Red"
St roke="Bl ue" S zeR="30"
Center="0, 20" >
<l ocal : St ar. Render Tr ansf or n»
<Tr ansf or m& oup>
<Scal eTr ansf or m x: Nane="st ar Scal e"
Center X="0" CenterVY="20" />
<Transl| at eTransform
x: Nane="st ar Transl ate"/ >
</ Tr ansf or nG oup>
</l ocal : St ar. Render Tr ansf or n»
</local : Star>

<l ocal : ArrowLi ne x: Name="arr owLi nel"
Canvas. Top="280" X1="50"
Y1="20" X2="100" Y2="20"
Stroke="Bl ue" Fill="Red"
| sAr r onheadd osed="Tr ue"
Arr onheadEnd="Bot h" >
<l ocal : ArrowLi ne. Render Tr ansf or n»

132 | Chapter 4: Geometry and Advanced 2D Drawing

<Scal eTr ansf or m x: Nane="| i nelScal e"/ >
</l ocal : ArrowLi ne. Render Tr ansf or n»
</l ocal : ArrowLi ne>
<l ocal : ArrowLi ne x: Name="arr owLi ne2"
Canvas. Top="250" X1="150"
Y1="20" X2="230" Y2="20"
St roke="Bl ue"
St r okeThi ckness="3">
<l ocal : ArrowLi ne. Render Tr ansf or n»
<Rot at eTr ansf or m x: Nane="1 i ne2Rot at "
Cent er X=" 150" Cent er Y="20"/>
</l ocal : ArrowLi ne. Render Tr ansf or n»
</l ocal : ArrowLi ne>
</ Canvas>
</ Bor der >
</ Vi enwbox>
</ W ndow>

The corresponding C# code is listed below:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;

usi ng System W ndows. Medi a;

usi ng System W ndows. Medi a. Ani mat i on;
usi ng Syst em W ndows. Shapes;

namespace Chapt er 04
public partial class Qustonthape : Wndow

publ i ¢ Qust onBhape()

{
InitializeConponent();
AddUSFI ag(10, 10, 280);
StartAni nation();

}

private voi d AddUSFl ag(doubl e xO0,
doubl e y0, doubl e wi dth)
{

Sol i dCol or Brush whiteBrush =

new Sol i dCol or Brush(Col ors. Wite);
Sol i dCol or Brush bl ueBrush =

new Sol i dCol or Brush(Col or s. Dar kBl ue) ;
Sol i dCol or Brush redBrush =

new Sol i dCol or Brush(Col ors. Red) ;
Rectangl e rect = new Rectangl e();
doubl e height = 10 * width / 19;

/1 Draw whi te rectangl e background:
rect.Fi |l = whiteBrush;

rect. Wdth = wi dth;

rect. Hei ght = hei ght;

Chapter 4: Geometry and Advanced 2D Drawing | 133

Canvas. Set Left (rect, x0);
Canvas. Set Top(rect, y0);
canvasl. Chi |l dren. Add(rect);

/1 Draw seven red stri pes:
for (int i =0; i <7; i+
{
rect = new Rectangl e();
rect.Fill = redBrush;
rect. Wdth = width;
rect.Height = height / 13;
Canvas. Set Left (rect, x0);
Canvas. Set Top(rect, yO + 2 * i * height / 13);
canvasl. Chil dren. Add(rect);

}

/1 Draw bl ue box:

rect = new Rectangl e();
rect.Fill = bl ueBrush;

rect. Wdth =2 * width / 5;
rect.Height = 7 * height / 13;
Canvas. Set Left (rect, x0);
Canvas. Set Top(rect, y0);
canvasl. Chil dren. Add(rect);

/1 Draw fifty stars:

doubl e of fset = rect. Wdth / 40;

doubl e dx = (rect.Wdth - 2 * offset) / 11;
double dy = (rect.Height - 2 * offset) / 9;
for (int j =0; j <9; j++)

double y = yO + offset +j * dy + dy / 2;
for (int i =0; i <11; i++)

double x = x0 + offset +i * dx + dx / 2;
if ((i +j) %2 ==0)
{

Star star new Star();
star.Fi |l whi t eBr ush;
star.SizeR =wdth / 55;
star.Center = new Point(Xx, Y);
canvasl. Chil dren. Add(star);

}
}
}
}
private void StartAnimation()
{

/!l Animating the star:
Ani nationTi el i ne at = new Doubl eAni nat i on(

0.1, 1.2, new Duration(new Ti neSpan(0, 0, 5)));
at . Repeat Behavi or = Repeat Behavi or . For ever;
at . Aut oReverse = true;

134 | Chapter 4: Geometry and Advanced 2D Drawing

st ar Scal e. Begi nAni mat i on(

Scal eTransform Scal eXProperty, at);
st ar Scal e. Begi nAni mat i on(

Scal eTransform Scal eYProperty, at);
at = new Doubl eAni nati on(0, 200,

new Dur ation(new Ti meSpan(0, 0, 3)));
at . Repeat Behavi or = Repeat Behavi or . For ever ;
at . Aut oReverse = true;
st ar Tr ansl at e. Begi nAni nat i on(

Transl at eTransform XProperty, at);

/1 Animating arrow inel:
at = new Doubl eAni nation(0, 2.5,

new Dur ati on(new Ti neSpan(0, 0, 4)));
at . Repeat Behavi or = Repeat Behavi or . For ever ;
at . Aut oReverse = true;
| i nelScal e. Begi nAni mat i on(

Scal eTransform Scal eXProperty, at);
|'i nelScal e. Begi nAni mat i on(

Scal eTransform Scal eYProperty, at);

/1 Animating arrow i ne2:
at = new Doubl eAni nati on(0, 50,

new Lur ation(new Ti neSpan(0, 0, 5)));
at . Repeat Behavi or = Repeat Behavi or . For ever ;
at . Aut oReverse = true;
ar rowLi ne2. Begi nAni mat i on(

ArrowLi ne. ArronwheadS zeXProperty, at);
ar rowLi ne2. Begi nAni mat i on(

ArrowLi ne. ArronwheadS zeYProperty, at);
at = new Doubl eAni nati on(0, 360,

new Dur ati on(new Ti neSpan(0, 0, 5)));
at . Repeat Behavi or = Repeat Behavi or . For ever ;
| i ne2Rot at e. Begi nAni mat i on(

Rot at eTr ansf or m Angl eProperty, at);

}

In the above code, the AddUSFag method creates a US flag. You can specify
the location and width of the flag. Inside this method, the fifty stars on the US
flag are drawn using the custom Star shape class. Next, you perform the
animations for a star and arrowlines using various transforms. Note here that the
animation is implemented in code instead of the Storyboard approach in XAML,
which was used extensively in earlier chapters of this book.

Running this example produces the output shown in Figure 4-8.

Chapter 4: Geometry and Advanced 2D Drawing | 135

M Custom Shapes E]@@

Figure 4-8 Shapes created using custom shape classes.

Chapter 5
Colorsand Brushes

Almost everything visible on your computer screen is somehow related to colors
and brushes. For example, a brush with a specified color is used to paint the
background of a button, the foreground of text, and the fill of a shape. We have
used colors and brushes throughout this book, but so far we have done most of
the work with the simple SolidColorBrush object. In fact, you can use colors and
brushes to paint user interface and graphics objects with anything from simple
solid colors to complex sets of patterns and images. This chapter covers the
color system used in WPF and a variety of brushes, including gradient, image,
tile, and visual brushes, aswell as brush transformations.

Colors

In WPF, a color is specified as a Color structure from the
System.Windows.Media namespace. This Color structure describes a color in
terms of apha (A), red (R), green (G), and blue (B) channels. WPF uses two
color systems, SRGB and ScRGB. Y ou have the option to specify a color using
either system.

SRGB is a standard RGB color space created coorperatively by HP and
Microsoft for use on monitors, printers, and the Internet. It is designed to match
typical home and office viewing conditions. SRGB has found wide applications.
Software, LCD displays, digital cameras, printers, and scanners all follow the
SRGB standard. For this reason, you can assume that any 8-bit image file or
deviceinterface fallsin the SRGB color space.

ScRGB system is the latest color space developed by Microsoft. This system
offers 64-bit encoding with 16-bits per channel, which alows you to specify
over 65,000 steps for each color instead of the 256 steps available with SRGB's
8-hits per channel.

Unlike sRGB, ScRGB allows negative values and values above 1.0, which
offers some significant improvements for color processing. In manipulating

138 | Chapter 5: Colors and Brushes

color information based on sRGB, most applications have to cut off anything
below 0 (black) and anything above 1 (white), resulting in the throwing away of
some color information.

Microsoft’s goal for SCRGB is to give it the same ease of use and simplicity of
SRGB. This means that it should require little or no extrawork to take advantage
of it. However, there is a trade-off: SCRGB will make more demands on
performance and bandwidth. It may not work acceptably with low-end systems.
Since there are no SCRGB device available yet, it isn’t clear how the system will
tranglate into the real-world applications.

WPF allows you to specify a color using both sSRGB and ScRGB. There are
several ways available in WPF of creating colors, including:

 AnARGB color value. Y ou specify each value as an integer in the range [0,
255].

» A ScRGB value. The current version of the SCRGB system in WPF has a
value range of [0, 1].

* A predefined color name. Y ou choose from the correspondingly named
property from the System.Windows.Media.Colors class. There are 141
predefined color names in the Colors class.

In addition, you may find the ColorConverter class useful. This class allows you
to convert a color from a string or vice versa.

System Colors

In WPF, as mentioned previously, a color is represented by a 32-bit structure
made up of four components; A, R, G, and B, referred to as SRGB. Color can
also be represented by a 64-bit structure made up of four components: ScA, ScR,
ScG, ScB, referred to as SCRGB. In the SRGB system, the components’ values
range from 0 to 255, while this range becomes [0, 1] in the SCRGB system. The
alpha component of the color represents transparency, which determines how
such a color is blended with the background. An alpha value of zero represents a
fully transparent color, while avalue of 255 in SRGB or 1 in SCRGB represents
afully opaque color.

The following code snippet shows several ways of specifying a color:

Col or col or = new Col or();

//Ceate a color froma R®B val ue:
col or = Col or. FronRgb(255, 0, 0);

// Oeate a color froman ARG val ue:
color = Col or. FronAr gb(100, 255, 0, 0);

/| Oeate a color froma ScREB val ue:
col or = Col or. FronBcRgb(0. 5f, 1.0f, 0.0f, 0.0f);

Chapter 5: Colors and Brushes | 139

/1 Create a col or using predefined col or nanes:
col or = Col ors. Red;

/!l Create a col or using Col orConverter:
col or = (ol or) Col or Convert er. Convert Fronst ri ng(" #FFFF0000") ;

Pay attention to the SCRGB value. It requires a Float value rather than a Double
value. You can aso use afew useful methods on any Color structure to retrieve
color information. For example, you can use a predefined color name from the
Colors class to obtain corresponding color information, including sRGB and
ScRGB values.

Let’slook at an example, which puts al of these techniques to work. Start with a
new WPF Windows project and name it Chapter05. Add a StartMenu Window
like you did the projects presented in the previous chapters. Then add a new
WPF Window called ColorExample to the project.

This example allows you to select a color from a ListBox loaded with al of the
predefined color names in the Colors class. When you type in the Opacity in a
TextBox and select an item from the ListBox, the Fill color of a rectangle is
changed accordingly.

Here is the markup of this example:

<Wndow x: d ass="Chapt er 05. Col or Exanpl e"
xm ns="htt p://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Titl e="Col or Exanpl e" Hei ght="300" Wdth="300">
<@id>
<@ d. Col umbDefi ni ti ons>
<Col umDefi ni ti on Wdth="145"/>
<Col unmDef i ni ti on Wdt h="145"/>
</ @i d. Col umbDefi niti ons>
<StackPanel Gid. Col um="0" Margi n="5">
<Text Bl ock Text ="Select Color" Margin="5,5,5,0"/>
<Li st Box Nane="Ii st Box1"
Sel ecti onChanged="1i st Box1Sel ect i onChanged"
Hei ght ="100" Margi n="5"/>
<Text Bl ock Text ="Show sel ected col or: "
Mar gi n="5, 5,5, 0"/ >
<Rect angl e x: Nane="rect 1" Stroke="Bl ue"
Fill="AliceB ue"
Hei ght ="100" Wdt h="122" Margi n="5"/>
</ St ackPanel >

<StackPanel Gid. Col umm="1" Margi n="5">
<Text Bl ock Text="Qpacity:" Mrgin="5,5,5,0"/>
<Text Box x: Name="t ext Box"
Hori zont al Al i gnrment =" Left"
Text Al i gnnent =" Cent er "
Text="1" Wdth="50" Margin ="5,5,5,8"/>
<Separator/>
<Text Bl ock Font \%i ght =" Bol d"

140 | Chapter 5: Colors and Brushes

Text ="sR@ Information:"
Mar gi n="5, 5, 5, 2"/ >

<Text Bl ock Name="t bAl pha" Text="A pha ="
Mar gi n="5, 0, 5, 2"/ >

<Text Bl ock Nanme="t bRed" Text="Red ="
Mar gi n="5, 0, 5, 2"/ >

<Text Bl ock Nane="t bG een" Text="QG een
Mar gi n="5, 0, 5, 2"/ >

<Text Bl ock Nanme="t bBl ue" Text="Bl ue ="
Mar gi n="5, 0, 5, 2"/ >

<Text Bl ock Nane="t bREB" Text="AREB Hex ="
Mar gi n="5, 0, 5, 5"/ >

<Separator/>

<Text Bl ock Font Vi ght =" Bol d"
Text ="ScR@& Infornation: "
Margi n="5,5,5,2"/>

<Text Bl ock Nane="t bScA"' Text="ScA ="
Mar gi n="5, 0, 5, 2"/ >

<Text Bl ock Nane="t bScR' Text="ScR ="
Mar gi n="5, 0, 5, 2"/ >

<Text Bl ock Nane="t bScG' Text="ScG ="
Mar gi n="5,0, 5,2" />

<Text Bl ock Nanme="t bScB"' Text="ScB ="
Mar gi n="5, 0, 5, 2"/ >

</ St ackPanel >
</Qid>
</ W ndow>

The corresponding code-behind file of this exampleislisted below:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Control s;
usi ng System Wndows. | nput ;

usi ng System Wndows. Medi a;

usi ng Syst em W ndows. Shapes;
using System Refl ecti on;

using System Col | ecti ons. Generi c;

namespace Chapt er 05

{
public partial class Col orExanpl e : W ndow

{

private Col or color;
Sol i dCol or Brush col or Brush = new Sol i dCol or Br ush() ;
publ i c Col or Exanpl e()

{
InitializeConponent();

Type col orsType = typeof (Col ors);

foreach (Propertylnfo property in
col orsType. Get Properties())

{

|'i st Box1. |tens. Add(property. Nane);

Chapter 5: Colors and Brushes | 141

color = Colors. Ali ceBl ue;
| i st Box1. Sel ect edl ndex = 0;
Gol orInfo();

}

private void |istBox1Sel ecti onChanged(
obj ect sender, EventArgs e)

{
string colorString =
| i st Box1. Sel ectedltem ToString();
color = (Col or) Col or Converter. Convert Fronst ri ng(
colorstring);
float opacity = Convert. ToS ngl e(text Box. Text);
if(opacity > 1.0f)
opacity = 1.0f;
else if (opacity < 0.0f)
opacity = 0.0f;
col or. ScA = opacity;
Col orInfo();
}
private void Col orlnfo()
{
rectl. Fill = new SolidCol or Brush(col or);
/1 sR@& color info :
tbA pha. Text = "Alpha =" + color.A ToString();
tbRed. Text = "Red = " + color.R ToString();
tbGeen Text = "Geen =" + color.G ToString();
tbBlue. Text = "Blue =" + color.B.ToString();
string rgbHex =
string. Format ("{0: X2} { 1: X2} {2: X2} {3: X2} ",
color.A color.R color.Gcolor.B);
tbREB. Text = "ARGB = #" + rgbHex;
/1 ScR&B col or info:
tbScA Text = "ScA =" + color.ScA ToString();
tbScR Text = "ScR =" + color.ScR ToString();
thScG Text = "ScG =" + color.ScG ToString();
tbScB. Text = "ScB =" + col or. ScB. ToString();
}

}

To put all of the predefined color names from the Colors class into the ListBox,
you use the following foreach loop:

Type col orsType = typeof (Col ors);
foreach (Propertylnfo property in col orsType. Get Properties())

|'i st Box1. |tens. Add(property. Nane);

142 | Chapter 5: Colors and Brushes

A using System.Reflection statement is needed to make this loop work. You
simply retrieve the Propertylnfo of the Colors class and place its name into the
ListBox.

Now, change the Opacity (with the range of 0 to 1) in the TextBox, and select
the item from the ListBox. The rectangle's fill color will change
correspondingly, and the color information will be aso displayed on your screen.
Figure 5-1 shows the result of running this example.

B Color Example g@@

Select Caolar Opacity:

Blanchedimond 4'\ """ |:|‘5.

Blue [+ =

BlusViclat :
sRGB Information:

BurlyWood Alpha = 127

CadetBlus Fad = 165

Chartreuse ¥ | Green=42

e " Blue=42

Show salected color: ARGE = #7FASZAZA

ScRGB Information:
Sch=0.5

SR = 0.3762621

S0 = 002315337
5B = 0.02315337

Figure 5-1 Color information in WPF.

Color Picker

You might have noticed that unlike GDI+ and Window Forms, WPF
unfortunately doesn’t contain some of the standard common dialogs. For
example, WPF doesn’'t implement a ColorDialog. If you want to have a Color
Picker-like functionality, you need to create a custom ColorDiaog control by
yourself.

Fortunately, the WPF team did create several sample custom dialogs, including
a ColorPickerDialog. | don’t want to re-invent the whedl, so instead, I'll only
show you how to use this ColorPickerDialog in your WPF applications.

The ColorDialog control is packed in a ColorPicker.dll. If you want to useitin a
WPF application, you can simply add this DLL file to the References of your
project. You also need to add a using statement such as this:

usi ng M crosoft. Sanpl es. Qust onCont r ol s;

Chapter 5: Colors and Brushes | 143

Then you can create an instance of the color dialog:
Col or Pi ckerD al og cPi cker = new Col or Pi cker D al og();

Here, I'll use an example to show you how to use this color dialog in a simple
2D drawing application. In this application, you can draw the Rectangle and
Ellipse shapes with your mouse. You can then change the fill color of the
selected shape using the ColorPickerDialog.

Open the project ChapterO5 and add a new WPF Window called
ColorPickerExample to the project. Here is the markup of this example:

<Wndow x: d ass="Chapt er 05. Col or Pi cker Exanpl e"
xm ns="htt p://schenas. m crosoft. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Exanpl e: Col or Picker" Hei ght="300" Wdth="300">

<DockPanel >
<Tool Bar Tray DockPanel . Dock="Left"
Qientation="Vertical" |sLocked="True">
<Tool Bar Paddi ng="2">

<Radi oBut t on x: Nane="r bRect angl e"
| sChecked="Tr ue"
Tool Ti p="Add Rect angl e"

Mar gi n="3">
<Rect angl e Wdt h="20" Hei ght="12"
St roke="Bl ue"

Fi Il ="Li ght Bl ue"/>
</ Radi oBut t on>

<Radi oButton x: Nane="rbH | i pse"
| sChecked="Fal se"
Tool Ti p="Add H Ii pse" Margi n="3">
<H |ipse Wdt h="22" Hei ght="15"
Stroke="Bl ue" Fill="LightBl ue"/>
</ Radi oBut t on>

<Radi oButt on x: Nane="rbSel ect"”
| sChecked="Fal se"
Tool Ti p="Sel ect" Margi n="3">
<Path Stroke="Blue" Fill="LightBl ue"
Wdt h="20" Hei ght ="20">
<Pat h. Dat a>
<Pat hGeonet ry
Fi gures="Mp, 15 L 10,0 15,15 12,15 12,20 8,20 8, 15Z2'>
<Pat hGeonet ry. Tr ansf or n»
<Rot at eTr ansf orm
Cent er X="10"
Cent er Y="10"
Angl e="45"/>
</ Pat hGeonet ry. Tr ansf or n»
</ Pat hGeorret ry>

144 | Chapter 5: Colors and Brushes

</ Pat h. Dat a>
</ Pat h>
</ Radi oBut t on>

<Radi oBut t on x: Name="r bDel et e"
| sChecked=""Fal se"
Tool Ti p="Del ete Shape"
Mar gi n="3">
<Path Stroke="Blue" Fill="LightBl ue"
Wdt h="20" Hei ght ="20">
<Pat h. Dat a>
<Conbi nedGeonet ry>
<Conbi nedGeonet ry. Geonet ryl>
<Pat hGeonet ry
Fi gures="M, 0 L 15,20 15, 15 20, 157"/ >
</ Conbi nedGeorret ry. Geonet ry1>
<Conbi nedGeonet ry. Geonet ry2>
<Pat hGeonet ry
Fi gures="M20,0 L 0,15 5,15 5, 202"/ >
</ Conbi nedGeorret ry. Geonet ry2>
</ Conbi nedGeorret ry>
</ Pat h. Dat a>
</ Pat h>
</ Radi oBut t on>

<Separat or Margi n="0, 10, 0, 10" ></ Separ at or >

<Text Bl ock Margi n="10, 3, 0, 0">Fi | | </ Text Bl ock>
<Button dick="btnFill_Qick"
Backgr ound="Tr anspar ent " >
<Rectangl e x: Nane="rectFi | |" Wdth="20"
Hei ght =" 20" Stroke="Bl ack"
Fill="LightB ue"/>
</ Butt on>

</ Tool Bar >
</ Tool Bar Tr ay>

<Bor der Border Thi ckness="2" Bor der Br ush="Li ght Bl ue"
Mar gi n="5">
<Canvas Name="canvasl" Background="Transparent"
MouselLef t But t onDown="CnMbuseLef t But t onDown"
MouseMve="hMuseMve"
MouseLef t But t onUp="nMouseLef t But t onUp" >
</ Canvas>
</ Bor der >
</ DockPanel >
</ W ndow>

The above XAML file creates a user interface and layout for this example. The
corresponding code-behind fileis listed below:

usi ng System
usi ng System W ndows;

Chapter 5: Colors and Brushes | 145

usi ng System Wndows. Control s;

usi ng System Wndows. | nput ;

usi ng System W ndows. Medi a;

usi ng Syst em W ndows. Shapes;

usi ng M crosoft. Sanpl es. Qust onCont r ol s;

namespace Chapt er 05

{
public partial class Col orPi cker Exanpl e : W ndow

{

private Rectangl e rubberBand;

private Point startPoint;

private Point currentPoint;

private Path sel ect edShape;

private doubl e sel ect edSt rokeThi ckness

private doubl e origi nal StrokeThi ckness

private SolidCol or Brush strokeBrush =
new Sol i dCol or Brush(Col ors. Bl ue) ;

private SolidCol orBrush fillBrush =
new Sol i dCol or Brush(Col or s. Li ght Bl ue) ;

publ i c ol or Pi cker Exanpl e()
{

}

private voi d OnMbuseLeft Butt onDown(obj ect sender,
MbuseBut t onEvent Args e)
{

InitializeConponent();

i f (!canvasl. | shMuseCapt ured)

{
startPoint = e. Get Posi tion(canvasl);
canvasl. Capt ur eMouse() ;

if (rbSel ect.|sChecked == true)
{
if (canvasl == e. Source)
return;

foreach (Path path in canvasl. Chil dren)
pat h. StrokeThi ckness =
ori gi nal StrokeThi ckness;

sel ect edShape = (Pat h)e. Sour ce;
sel ect edShape. St rokeThi ckness =
sel ect edSt r okeThi ckness;
fillBrush =
(Sol i dCol or Brush) sel ect edShape. Fi I | ;
e. Handl ed = true;

}
else if (rbDlel ete.lsChecked == true)

if (canvasl == e. Source)
return;

146 | Chapter 5: Colors and Brushes

sel ect edShape = (Path)e. Sour ce;
Del et eShape(sel ect edShape) ;

}

private void Del et eShape(Path pat h)
{
pat h. StrokeThi ckness = sel ect edSt r okeThi ckness;
string nsg =
"Do you really want to del ete this shape?";
string title = "Del ete Shape?";
MessageBoxButt on buttons = MessageBoxButt on. YesNb;
MessageBoxI mage i con = MessageBox| mage. Vér ni ng;
MessageBoxResult result =
MessageBox. Show(nsg, title, buttons, icon);
if (result == MessageBoxResul t. Yes)
canvasl. Chi |l dren. Renove(pat h);
el se

pat h. St rokeThi ckness =
ori gi nal St rokeThi ckness;
return;

}

private void OnMbuseMove(obj ect sender,
MouseEvent Args e)
{

if (canvasl. | sMuseCapt ured)
{

current Point = e. Get Position(canvasl);
if (rubberBand == null)

{
r ubber Band = new Rect angl e();
r ubber Band. St roke = Brushes. Li ght Coral ;
r ubber Band. St rokeDashArray =
new Doubl eCol | ect i on(
new doubl e[] { 4, 2 });
if (rbRectangle.|sChecked == true ||
rbE i pse. | sChecked == true)
{
canvasl. Chi | dr en. Add(r ubber Band) ;
}
}

doubl e wi dth = Mat h. Abs(
startPoint. X - currentPoint. X);
doubl e hei ght = Mat h. Abs(
startPoint.Y - currentPoint.Y);
doubl e left = Math. M n(
startPoint. X currentPoint.X);
doubl e top = Math. M n(
startPoint.Y, currentPoint.Y);

Chapter 5: Colors and Brushes | 147

rubber Band. Wdth = wi dt h;

r ubber Band. Hei ght = hei ght ;
Canvas. Set Left (rubberBand, left);
Canvas. Set Top(rubber Band, top);

}

private voi d OnMuseleft ButtonUp(obj ect sender,
MouseBut t onEvent Args €)

{
if (rbRectangl e. | sChecked == true)
AddShape(start Poi nt, currentPoint,
"rectangl e");
else if (rbHIipse.|sChecked == true)
AddShape(startPoint, currentPoint, "ellipse");
if (rubberBand != null)
{
canvasl. Chi | dren. Renove(r ubber Band) ;
rubberBand = nul | ;
canvasl. Rel easeMbuseCapt ure();
}
}

private void AddShape(Point ptl, Point pt2, string s)
{
Path path = new Path();
path.Fill = fillBrush;
pat h. Stroke = strokeBrush;
pat h. StrokeThi ckness = ori gi nal StrokeThi ckness;
if (s == "rectangle")
{
Rect angl eGeonetry georretry =
new Rect angl eGeonetry();
doubl e width = Math. Abs(ptl. X - pt2.X);
doubl e height = Math. Abs(ptl.Y - pt2.Y);
double left = Math.Mn(ptl.X pt2.X);
doubl e top = Math.Mn(ptl.Y, pt2.V);
georret ry. Rect = new Rect (l eft, top,
wi dth, height);
path. Data = georretry;

elseif (s == "ellipse")
{
B |i pseGeonetry geonetry =
new B | i pseCGeonetry();
doubl e width = Math. Abs(ptl. X - pt2.X);
doubl e height = Math. Abs(ptl.Y - pt2.V);
double left = Math.Mn(ptl. X pt2.X;
double top = Math.Mn(ptl.Y, pt2.Y);
georret ry. Center = new Poi nt (
left + width / 2, top + height / 2);
georetry. Radi usX = width / 2;
georret ry. Radi usY = height / 2;

148 | Chapter 5: Colors and Brushes

path. Data = georretry;

}
canvasl. Chi | dren. Add(pat h) ;

}

private void btnFill_Qick(object sender,
Rout edEvent Args e)

{
Col or Pi ckerD al og cPi cker =
new Col or Pi cker D al og();
cPicker. StartingCol or = fillBrush. Col or;
cPi cker.Onner = this;
rectFill.Fill =fillBrush;
bool ? di al ogResult = cPi cker. Showb al og();
if (dialogResult !'=null &%
(bool) di al ogResul t == true)
{
if (selectedShape != null)
i f (sel ectedShape. StrokeThi ckness ==
sel ect edSt r okeThi ckness)
{
sel ect edShape. Fil| = new
Sol i dCol or Br ush(
cPi cker. Sel ect edCol or) ;
sel ect edShape. StrokeThi ckness =
ori gi nal StrokeThi ckness;
}
}
fillBrush = new Sol i dCol or Brush(
cPi cker. Sel ect edCol or) ;
rectFill.Fill =fillBrush;
}
}

}

You can see that this example is a simplified version of the interactive 2D
drawing program presented in the previous chapter. This application allows you
to add Rectangle and Ellipse shapes, but it doesn’t implement the
dragging/moving functionality because the purpose of this example is to show
you how to change the color of a selected shape using the ColorPickerDialog
control. The btnFill_Click handler is responsible for the color changes using the
color picker control. Figure 5-2 shows a snapshot of this example.

In this application, you draw shapes by selecting the Add Rectangle or Add
Ellipse button. Y ou can then change a shape' sfill color by clicking on the Select
button, then clicking on a shape, which highlights the selected shape by
increasing its StrokeThickness (see the figure where the rectangle shape is
selected). Then, select the Fill button (the square beneath the word “Fill”),
which brings up the ColorPickerDialog, as shown in Figure 5-3.

Chapter 5: Colors and Brushes | 149

B Example: Color Picker |:| |E| |E|

K QO [

Fill

[]

Figure 5-2 Change the fill color of a selected shape using the
ColorPickerDialog.

M Select a Color

ScR | 0.02028856 R

5o | 0.5354795 G

5cB | 0.2817706 B

Hexadecimal Notation

#FF27C293 |

@ Cancel

Figure 5-3 The color picker dialog from which you can specify whatever
color you like.

To use this color picker, you select a color by clicking on the left color pane
with your mouse, then changing the R, G, and B component using the slider.
The dialog aso allows you to change the opacity of the color. You can preview

150 | Chapter 5: Colors and Brushes

the selected color in the Selected Color view window. If you're satisfied with
the selected color, click the OK button. The fill color of the selected shape will
be changed.

The ColorPicker.dll file is located in the ~Chapter05/bin/Debug directory. You
can useit in your application by adding it to the References of your project.

Brushes

Brushes aren’t new to you. Y ou have used brushes throughout this book, but so
far you have done most of your work with the simple SolidColorBrush object.
However, WPF provides a variety of brushes that you can use to create
graphically rich applications. A brush is much more than a means of applying
color to pixels: it aso alows you to paint with color, gradients, images,
drawings, etc. A brush with gradients gives you a way to create glass effects or
the illusion of depth. Painting with an ImageBrush object provides a means to
stretch, tile, or fill an area with a specified bitmap. A VisualBrush alows you to
fill an area with a visua from another part of the application’s visua tree. You
can use this brush to create illusions of reflection or magnification in your user
interfaces.

In WPF, a brush paints an area with its output. Different brushes have different
types of output. The following describes the different types of brushes:

» SolidColorBrush — Paints an areawith asolid color. The color can have
different opacities.

e LinearGradientBrush — Paints an areawith alinear gradient fill, a gradually
shaded fill that changes from one color to another.

* RadiaGradientBrush — Paints an areawith aradial gradient fill, which is
similar to alinear gradient except that it radiates out in a circular pattern
from a center point.

* ImageBrush — Paints an area with an image that can be stretched, scaled, or
tiled.

» DrawingBrush — Paints an area with a Drawing object. This object can
include shapes and bitmaps.

» VisuaBrush — Paints an areawith aVisual object. A VisualBrush enables
you to project content from one portion of your application into another
area. Itisuseful for creating reflection effects and magnifying portions of
the screen.

From this list, you can see that a brush can indeed provide output other than
simple solid colors. By using different brushes available in WPF, you can create
interesting effects such as gradient, reflection, and lighting effects, among others.

In the following sections, you will explore each of these brushes and learn how
to use them in your WPF applications.

Chapter 5: Colors and Brushes | 151

SolidColorBrush

The most common brush, and the simplest to use, is the SolidColorBrush. This
brush simply paints an area with a solid color. Please note that a brush is
different from a color. A brush is an object that tells the system to paint specific
pixels with a specified output defined by the brush. A SolidColorBrush paints a
color in a specific area of your screen. The output of a SolidColorBrush is the
color.

A SolidColorBrush can be defined by simply providing a value for its Color
property. As mentioned previously, there are several ways to specify a color,
including declaring SRGB or SCRGB values, using hexadecimal string, using the
predefined color names in the Colors class, and even using the
ColorPickerDialog, as discussed in the preceding section. You can also specify
the opacity of a SolidColorBrush.

Like the Colors class for colors, WPF also provides some handy classes for
brushes. The Brushes class, for example, exposes a set of predefined brushes
based on solid colors. This provides a shortcut you can use for creating common
solid color brushes.

Let's consider an example, SolidColorBrushExample, in which you define a
SolidColorBrush using different methods. In this example, you create the
interface and layout using XAML, while you fill the color of Rectangle shapes
using C# code. Of course, you can obtain the same result using either XAML or
C# code only. The following is the XAML and the corresponding C# code of
this example:

<Wndow x: d ass="Chapt er 05. Sol i dCol or Br ushExanpl e"
xm ns="http://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Titl e="Sol i dCol or Brush Exanpl e" Hei ght ="415" Wdt h="270">

<Canvas Margi n="5">
<St ackPanel >

<Text Bl ock Margi n="0, 0, 0, 5" >Predefi ned Brush in
the Brushes cl ass: </ Text Bl ock>

<Rect angl e x: Nane="rect 1" Wdt h="100"
Hei ght =" 30" Stroke="Bl ue"/>

<Text Bl ock Margi n="0, 10, 0, 5" >Fr om pr edef i ned
color nane in the Colors
cl ass: </ Text Bl ock>

<Rect angl e x: Nane="rect 2" Wdt h="100"
Hei ght =" 30" Stroke="Bl ue"/>

<Text Bl ock Margi n="0, 10, 0, 5">From sR@ val ue in
the CGol or structure: </ Text Bl ock>

<Rect angl e x: Nane="rect 3" Wdt h="100"
Hei ght =" 30" Stroke="Bl ue"/>

<Text Bl ock Margi n="0, 10, 0, 5">From SsSR@ val ue in
the CGol or structure: </ Text Bl ock>

<Rect angl e x: Nane="rect 4" Wdt h="100"

152 | Chapter 5: Colors and Brushes

Hei ght =" 30" Stroke="Bl ue"/>
<Text Bl ock Margi n="0, 10, 0, 5">From Hex string usi ng
Col or Convert er: </ Text Bl ock>
<Rect angl e x: Nane="rect5" Wdth="100"
Hei ght =" 30" Stroke="Bl ue"/>
<Text Bl ock Margi n="0, 10, 0, 5" >From
ol or Pi cker D al og: </ Text Bl ock>
<Rect angl e x: Nane="rect 6" Wdth="100" Hei ght="30"
Stroke="Bl ue" Fill="LightBl ue"/>
<Button Qi ck="ChangeCol or_dick" Wdth="100"
Hei ght =" 25" Cont ent =" Change Col or"/>

</ St ackPanel >
</ Canvas>

</ W ndow>

usi ng System

usi ng Syst em W ndows;

usi ng System Wndows. Gontrol s;

usi ng System Wndows. | nput ;

usi ng System W ndows. Medi a;

usi ng Syst em W ndows. Shapes;

usi ng M crosoft. Sanpl es. Qust onCont r ol s;

nanespace Chapt er 05

public partial class SolidCol or BrushExanpl e : W ndow

{

publ i c Sol i dCol or Br ushExanpl e()

{

I'nitializeConponent();
Sol i dCol or Brush brush = new Sol i dCol or Brush();

// Predefined brush in Brushes Q ass:
brush = Brushes. Red;
rectl.F |l = brush;

/1 From predefined color nane in the Colors class:
brush = new Sol i dCol or Brush(Col ors. G een) ;
rect2.Fill = brush;

// FromsR@® values in the Color strutcure:
brush = new Sol i dCol or Br ush(

Col or. FromArgb(100, 0, 0, 255));
rect3.Fi |l = brush;

/] From ScR@® values in the Color structure:
brush = new Sol i dCol or Br ush(

Col or. FronscRgb(0. 5f, 0.7f, 0.0f, 0.5f));
rect4.Fill = brush;

/!l Froma Hex string using Col orConverter:
brush = new Sol i dCol or Br ush(

Chapter 5: Colors and Brushes | 153

(Col or) Col or Converter.
Convert FronSt ri ng("#CBFFFFAA")) ;
rect5.F ||l = brush;

}

/1 From Col or Pi cker D al og:
private void ChangeCol or _Q i ck(
obj ect sender, RoutedEventArgs e)

{
ol or Pi cker D al og cPi cker =
new Col or Pi cker D al og();
cPi cker. StartingCol or = Col ors. Li ght Bl ue;
cPicker.Onner = this;
bool ? di al ogResult = cPi cker. Showb al og() ;
if (dialogResult !'= null &&
(bool) di al ogResult == true)
{
rect6.Fill =
new Sol i dCol or Brush(cPi cker. Sel ect edCol or) ;
}
}

}

In this example, you create six Rectangle shapes and specify their Fill property
using a different SolidColorBrush for each of them. In particular, for rect6, you
use the ColorPickerDialog to specify the color of the brush. You need to click
the Change Color button to bring up the Color Picker window, from which you
can select any color you like.

Figure 5-4 shows the results of executing this sample application.

Linear GradientBrush

The LinearGradientBrush allows you to paint an area with multiple colors, and
create a blended fill effect that changes from one color to another.

The LinearGradientBrush follows a linear gradient axis. You can define the
direction of the axis to obtain vertical, horizontal, or diagonal gradient effects.
The gradient axisis defined by two points, StartPoint and EndPoint. These point
map to a one by one matrix. For example, a StartPoint of (0, 0) and an EndPoint
of (0, 1) produces a vertical gradient, while a StartPoint of (0, 0) and an
EndPoint of (1, 1) generates a diagona gradient. The StartPoint and EndPoint
properties of a LinearGradientBrush let you choose the point where the first
color begins to change and the point where the color change ends with the final
color. Remember that the coordinates you use for the StartPoint and EndPoint
aren’t real coordinates. Instead, the LinearGradientBrush assigns the point (0, 0)
to the top-left corner and (1, 1) to the bottom-right corner of the area you want
to fill, no matter how high and wide it actually is.

154 | Chapter 5: Colors and Brushes

M SolidColorBrush Example E@@

Predefined Brush in the Brushes class:

From predefined color name in the Caolors class:

From sRGE value in the Colar structure;

From ScRGE velue in the Color structurs:

From Hex string using ColorConverter:

From ColorPickerDizloa:

Change Color

Figure 5-4 Shapes painted using SolidColorBrush.

Along the axis you specify a series of GradientStop objects, which are points on
the axis where you want the colors to blend and transition to other colors. You
can define as many GradientStop objects as you need. A GradientStop object
has two properties of interest, Color and Offset. The Offset property defines a
distance, ranging from 0 to 1, from the start point of the axis from which the
color specified in the Color property should begin.

Now, let's look at an example using the LinearGradientBrush. Add a new WPF
Window, called LinearGradientBrushExample, to the project Chapter05. Here is
the markup of this example:

<Wndow x: d ass="Chapt er 05. Li near G adi ent Br ushExanpl e"
xm ns="htt p: //schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Ti tl e="Li near @ adi ent Brush" Hei ght ="375" Wdt h="300">
<@id>
<@i d. Col umDefi ni ti ons>
<Col urmDef i ni ti on/ >
<Col umDefi ni ti on/ >
</ @i d. Col umbDefi ni ti ons>

Chapter 5: Colors and Brushes | 155

<@id. Rowbefini ti ons>
<RowDefinition Hei ght="Auto"/>
<RowDefi ni tion Hei ght="Auto"/>
<RowDefi nition Hei ght="Auto"/>
</ @i d. Rowbefinitions>

<StackPanel Gid.Colum="0" Gid. Row="0">
<Text Bl ock Margi n="5"
Text ="Vertical linear gradient:"/>
<Rectangl e Wdt h="100" Hei ght="75" Stroke="Bl ue">
<Rectangle.Fill>
<Li near G adi ent Brush Start Poi nt="0, 0"
EndPoi nt ="1, 0" >
<@ adi ent Stop Col or ="Bl ue"

Ofset="0"/>
<G adi ent Stop Col or="Yel | ow'
Ofset="1"/>

</ Li near @ adi ent Br ush>
</Rectangle.Fill>
</ Rect angl e>
</ St ackPanel >

<StackPanel @Qid.Colum="1" Qid. Row="0">

<Text Bl ock Margi n="5"
Text="Hori zontal linear gradient:"/>

<Rect angl e Wdt h="100" Hei ght ="75" Stroke="Bl ue">
<Rectangle.Fill>
<Li near @ adi ent Brush St art Poi nt="0, 0"
EndPoi nt ="0, 1">
<@ adi ent Stop Col or="Red" Cfset="0"/>
<@ adi ent Stop Col or ="Wite"
Ofset="1"/>
</ Li near G adi ent Br ush>
</Rectangle. Fill>
</ Rect angl e>
</ St ackPanel >

<StackPanel Gid.Colum="0" Qid. Row"1">
<Text Bl ock Margi n="5, 10, 5, 0"
Text ="D agonal |inear gradient"/>
<Text Bl ock Margin="5,0,5, 5"
Text="- with 1 Cfset for Wite"/>
<Rect angl e Wdt h="100" Hei ght ="75" Stroke="Bl ue">
<Rectangle.Fill>
<Li near @ adi ent Brush St art Poi nt="0, 0"
EndPoi nt="1, 1" >
<@ adi ent Stop Col or =" Q@ een”

Cfset="0"/>
<@ adi ent Stop Col or ="Wite"
Cfset="1"/>

</ Li near @ adi ent Br ush>
</Rectangle.Fill>
</ Rect angl e>
</ St ackPanel >

156 | Chapter 5: Colors and Brushes

<StackPanel @id.Colum="1" @id. Row="1">
<Text Bl ock Margi n="5, 10, 5, 0"
Text ="D agonal |inear gradient"/>
<Text Bl ock Margin="5,0,5, 5"
Text="- with 0.5 Cifset for Wite"/>
<Rect angl e Wdt h="100" Hei ght ="75" Stroke="Bl ue">
<Rectangle.Fill>
<Li near @ adi ent Brush St art Poi nt="0, 0"
EndPoi nt ="1, 1" >
<@ adi ent Stop Col or =" Q@ een”
G fset="0"/>
<@ adi ent Stop Col or ="Wite"
G fset="0.5"/>
</ Li near @ adi ent Br ush>
</Rectangle.Fill>
</ Rect angl e>
</ St ackPanel >

<StackPanel Gid.Colum="0" @id. Row="2">
<Text Bl ock Mar gi n="5, 10, 5, 0"
Text ="Vertical linear gradient"/>
<Text Bl ock Margin="5, 0,5, 5"
Text="- multiple colors"/>
<Rect angl e Wdt h="100" Hei ght ="75" Stroke="Bl ue">
<Rectangle.Fill>
<Li near G adi ent Brush Start Poi nt="0, 0"
EndPoi nt ="1, 0" >
<@ adi ent Stop Col or =" Red"
Ofset="0.3"/>
<@ adi ent S op Col or =" Q@ een”
Ofset="0.5"/>
<@ adi ent Stop Col or ="Bl ue"
Ofset="0.8"/>
</ Li near G adi ent Br ush>
</Rectangle. Fill>
</ Rect angl e>
</ St ackPanel >

<StackPanel @Gid.Colum="1" @id. Row="2">
<Text Bl ock Margi n="5, 10, 5, 0"
Text ="D agonal |inear gradient"/>
<Text Bl ock Margi n="5,0,5, 5"
Text="- multiple colors"/>
<Rect angl e Wdt h="100" Hei ght ="75" Stroke="Bl ue">
<Rectangle.Fill>
<Li near @ adi ent Brush Start Poi nt="0, 0"
EndPoi nt="1, 1">
<@ adi ent Stop ol or =" Red"
Cfset="0.2"/>
<@ adi ent Stop ol or =" Yel | ow'
Cfset="0.3"/>
<@ adi ent Stop Col or="Coral "
Cfset="0.4"/>

Chapter 5: Colors and Brushes | 157

<@ adi ent Stop Col or ="Bl ue"
O fset="0.5"/>

<G adi ent Stop Col or="Whi te"
O fset="0.6"/>

<@ adi ent Stop Col or =" Q@ een”
O fset="0.7"/>

<@ adi ent Stop Col or ="Purpl e"
O fset="0.8"/>

</ Li near @ adi ent Br ush>
</Rectangle.Fill>
</ Rect angl e>
</ St ackPanel >
</@id>
</ W ndow>

Figure 5-5 illustrates the results of this example.

M | inearGradientBrush g@lle

Vertical linear gradient; Horizontal linear gradient:

b

Diagonal linzar gradient Diaganal linsar gradiznt
- with 1 Offset for White - with 0.5 Offsat for Whits

Vertical linear gradient Diagonal linsar gradisnt
- multiple colors - multiple colors

Figure 5-5 Rectangles filled with different linear gradients.

The first rectangle is filled by a LinearGradientBrush with blue and yellow
along a vertical gradient axis. The second rectangle is filled by a horizontal
gradient brush with red and white colors. Now look at rect3 and rect4. Both
rectangles are filled by a diagonal gradient brush with green and white colors.
The GradientStop for the green color has an offset of 0, which means that the
green color isplaced at the very beginning of the gradient. The GradientStop for

158 | Chapter 5: Colors and Brushes

the white has an offset of 1 for rect3, which places the white color at the end.
For rect4, however, the offset of the GradientStop for the white color is set to
0.5, resulting in the much quicker color blend from green (in the top-left corner)
to white in the middle (the point between the two corners). It can be seen from
Figure 5-5 that the right side of rect4 is almost completely white. The last two
rectangles, rect5 and rect6, are filled by a multi-color brush, the first aong a
vertical gradient axis, and the second along a diagonal gradient axis.

The LinearGradientBrush example presented here is intended to demonstrate the
use of the brush’s basic features in WPF applications. In real-world applications,
you may need to create a custom colormap in order to achieve specific visual
effects. In next section, 1’1l show you how to create custom colormaps using the
LinearGradientBrush.

Custom Colormap Brush

In WPF, these is a ColorMap class in the System.Windows.Media.lmaging
namespace. This class defines a mapping between existing colors and the new
colors to which they are to be converted. When the map is applied, any pixel of
the old color is converted to the new color. This class is useful for image
prcessing applications.

However, in some graphics applications, you may need custom color maps to
achieve specific visual effects. These color maps are simply tables or lists of
colors that are organized in some desired fashion. The shape, surface, and image
objects can be associated with a custom color map.

In many existing CAD and software development tools, many commonly-used
color maps have already been defined. Here, I'll show you how to create these
colormaps using the LinearGradientBrush object.

Remember that here you simply create some predefined LinearGradientBrush
objects: these objects still belong to the type of LinearGradientBrush. Y ou don’t
create a new type of brush itself. If you do want to create a new type of custom
brush, you need to inherit from the Brush class. In this case, you must override
the CreatelnstanceCore method. Depending on whether your class should
perform additional initialization work or contain non-dependency property data
members, you might need to override additional Freezable methods.

Add a ColormapBrush class to the project Chapter05. In this class, you'll
implement several custom colormap brushes, each with a special hame. These
colormaps are commonly used in graphics applications. They can be regarded as
predefined LinearGradientBrush objects, which can be directly used in your
WPF applications.

The following isthe code listing of this class:

usi ng System

using System Col | ecti ons. Generic;
usi ng System W ndows;

usi ng System W ndows. Medi a;

Chapter 5: Colors and Brushes | 159

nanespace Chapt er 05

{

public class Col or mapBr ush
{
private doubl e opacity = 1;
private Point startPoint = new Point(0, 0);
private Point endPoint = new Point(1, 0);
private Linear @ adi ent Brush brush =
new Li near G adi ent Brush();

publ i c doubl e Qpacity

{
get { return opacity; }
set { opacity = value; }
}
public Point StartPoint
{
get { return startPoint; }
set { startPoint = value; }
}
publ i c Point EndPoi nt
{
get { return endPoint; }
set { endPoint = value; }
}
publ i c Li near G adi ent Brush Spring()
{
br ush. G adi ent St ops. Add(new @ adi ent St op(
Col or. FromRgb(255, 0, 255), 0));
brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronmRgb(255, 255, 0), 1));
brush. StartPoint = StartPoint;
br ush. EndPoi nt = EndPoi nt ;
brush. Qpacity = opacity;
return brush;
}
publ i c Li near G adi ent Brush Summer ()
{
brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRgb(0, 128, 90), 0));
brush. G adi ent St ops. Add(new G adi ent St op(
Qol or. FronRgb(255, 255, 90), 1));
brush. Start Point = Start Point;
br ush. EndPoi nt = EndPoi nt ;
brush. pacity = opacity;
return brush;
}

publ i c Li near G adi ent Brush Aut urm()

160 | Chapter 5: Colors and Brushes

{

}

brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRgb(255, 0, 0), 0));

brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRgb(255, 255, 0), 1));

brush. StartPoint = StartPoint;

br ush. EndPoi nt = EndPoi nt ;

brush. Qpacity = opacity;

return brush;

publ i c Li near G adi ent Brush Wnter ()

{

}

brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FromRgb(0, 0, 255), 0));

brush. G adi ent St ops. Add(new & adi ent St op(
Col or. FronmRgb(0, 255, 128), 1));

brush. Start Point = Start Point;

br ush. EndPoi nt = EndPoi nt ;

brush. pacity = opacity;

return brush;

publ i c Li near G adi ent Brush Hot ()

}

brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRgb(85, 0, 0), 0));

br ush. G adi ent St ops. Add(new @ adi ent St op(
Col or. FronRgb(255, 0, 0), 0.25));

br ush. G adi ent St ops. Add(new @ adi ent St op(
Col or. FronRgh(255, 85, 0), 0.375));

br ush. G adi ent St ops. Add(new @ adi ent St op(
Col or . FronRgh(255, 255, 0), 0.625));

brush. G adi ent St ops. Add(new G adi ent St op(
Col or . FronRgb(255, 255, 128), 0.75));

brush. G adi ent St ops. Add(new G adi ent St op(
Qol or. FronRgb(255, 255, 255), 1));

brush. StartPoint = StartPoint;

br ush. EndPoi nt = EndPoi nt ;

brush. Qpacity = opacity;

return brush;

publ i ¢ Li near G adi ent Brush ool ()

{

brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRgb(0, 255, 255), 0));

brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronmRgb(255, 0, 255), 1));

brush. Start Point = Start Point;

br ush. EndPoi nt = EndPoi nt ;

brush. pacity = opacity;

return brush;

Chapter 5: Colors and Brushes | 161

publ i ¢ Li near G adi ent Brush G ay()

{
brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRghb(0, 0, 0), 0));
brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRgb(255, 255, 255), 1));
brush. StartPoint = StartPoint;
br ush. EndPoi nt = EndPoi nt ;
brush. pacity = opacity;
return brush;
}
publ i ¢ Li near G adi ent Brush Jet ()
{
brush. G adi ent St ops. Add(new & adi ent St op(
Col or. FromRgb(0, 0, 255), 0));
brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronmRgb(0, 128, 255), 0.143));
brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronmRgb(0, 255, 255), 0.286));
brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRgb(128, 255, 128), 0.429));
brush. G adi ent St ops. Add(new G adi ent St op(
ol or . FromRgb(255, 255, 0), 0.571));
brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FronRgh(255, 128, 0), 0.714));
br ush. G adi ent St ops. Add(new @ adi ent St op(
Gol or. FromRgb(255, 0, 0), 0.857));
br ush. G adi ent St ops. Add(new @ adi ent St op(
Gol or. FromRgb(128, 0, 0), 1));
brush. StartPoint = StartPoint;
br ush. EndPoi nt = EndPoi nt ;
brush. Qpacity = opacity;
return brush;
}

}

This class has three public properties: StartPoint, EndPoint, and Opacity. The
first two Point objects are used to specify the corresponding properties of the
LinerGradientBrush. The default values of StartPoint = (0, 0) and EndPoint = (1,
0), which define avertical gradient brush. Y ou can change these Point properties
if you want to use a different gradient axis.

The Opacity property is used to define the alpha channel of a color. The default
value of the Opacity is 1, corresponding to a completely opaque color. In this
class, the color is defined using an sRGB vaue. The custom colormap brushes
are created with different colors, each one with a different number of
GradientStops and Offsets.

Now, let’s use an example to show you how to use these colormap brushesin a
WPF application. Add a new WPF Window to the project Chapter05 and name
it ColormapBrushExample. In this example, you'll first create several rectangles

162 | Chapter 5: Colors and Brushes

and fill their color using different ColormapBrush objects. Then, you'll draw
some math functions using the ColormapBrush. Here is the markup of this
example:

<Wndow x: d ass="Chapt er 05. Col or mapBr ushExanpl e"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / present at i on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Ti t1 e="Qust om Col or map" Hei ght ="500" Wdt h="300">

<Canvas>
<@id>
<@i d. Rowbefi ni ti ons>
<RowDefi nition Hei ght="Auto"/>
<RowDefinition Hei ght="Auto"/>
</ Qi d. Rowbefini ti ons>
<StackPanel Margi n="5" G&id. Row="0">
<Text Bl ock Margi n="10, 5, 5, 5"
Text ="Rectangl es filled using
Col or mapBrush obj ect s"/ >
<Rect angl e x: Nane="rect 1" Wdt h="280"
Hei ght =" 30" Stroke="Bl ue"
Margi n="0, 0, 0, 5"/ >
<Rect angl e x: Nanme="rect 2" Wdt h="280"
Hei ght ="30" Stroke="Bl ue"
Mar gi n="0, 0,0, 5"/ >
<Rect angl e x: Nane="rect 3" Wdt h="280"
Hei ght =" 30" Stroke="Bl ue"
Mar gi n="0, 0, 0, 5"/ >
<Rect angl e x: Name="rect 4" Wdt h="280"
Hei ght =" 30" Stroke="Bl ue"
Mar gi n="0, 0,0, 5"/ >
<Rect angl e x: Nanme="rect 5" Wdt h="280"
Hei ght =" 30" Stroke="Bl ue"
Mar gi n="0, 0, 0, 5"/ >
<Rect angl e x: Nane="rect 6" Wdth="280"
Hei ght =" 30" Stroke="Bl ue"
Margi n="0, 0, 0, 5"/ >
<Rect angl e x: Name="rect 7" Wdt h="280"
Hei ght ="30" Stroke="Bl ue"
Mar gi n="0, 0,0, 5"/ >
<Rect angl e x: Nare="rect 8" Wdt h="280"
Hei ght =" 30" Stroke="Bl ue"
Mar gi n="0, 0, 0, 10"/ >
<Text Bl ock Margi n="10, 5, 5, - 5"
Text ="S ne and Cosi ne curve pai nt ed
usi ng col or map"/ >
</ St ackPanel >
<Canvas x: Nane="canvasl" @Qid. Row="1"/>
</Qid>
</ Canvas>
</ W ndow>

The corresponding C# code is listed below:

Chapter 5: Colors and Brushes | 163

usi ng System

usi ng System ol | ecti ons. Generi c;
usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;

usi ng System W ndows. Medi a;

usi ng Syst em W ndows. Shapes;

narmespace Chapt er 05

{
public partial class Col or mapBrushExanpl e : W ndow

publ i ¢ Col or mapBr ushExanpl e()

InitializeConponent();
Fi Il Rectangl es();
AddMat hFuncti on() ;

}

private void FillRectangl es()

{
/1 Fill rectl with "Spring" col ornap:
Col or mapBrush brush = new Col or napBrush();
rectl.Fi |l = brush. Spring();

/1 Fll rect2 with "Summer™ col or nap:
brush = new Col or napBrush();
rect2.Fill = brush. Sumrer ();

/1 Fill rect3 with "Autum" col or map:
brush = new Col or napBrush();
rect3.Fill = brush. Autum();

/1 Fill rect4 with "Wnter" col or nap:
brush = new Col or napBrush();
rect4d. Fill = brush.Wnter();

/1 Fll rects with "Jet" col ornap:
brush = new Col or mapBrush();
rect5.Fi Il = brush.Jet();

/1 Fill rect6é with "Gay" col or map:
brush = new Col or mapBrush();
rect6.Fill = brush. Gay();

/1 Fll rect7 with "Hot" col ornap:
brush = new Col or mapBrush();
rect7.Fill = brush.Hot();

/1 Fill rect8 with "Cool" col or map:
brush = new Col or mapBrush();
rect8.Fi Il = brush. Cool ();

164 | Chapter 5: Colors and Brushes

private void AddMat hFunction()
{
/] Oreate a cosine curve:
Col or mapBrush brushl = new Col or mapBr ush() ;
brushl. StartPoint = new Point (0, 0);
brushl. EndPoi nt = new Poi nt (0, 1);
Polyline linel = new Polyline();
for (int i =0; i < 250; i++)
{
double x = i;
double y = 70 +
50 * Math.Sin(x / 4.0/ Math.Pl);
|'i nel. Poi nts. Add(new Point (x, y));

}

l'inel. Stroke = brushl. Spring();
i nel. StrokeThi ckness = 5;
Canvas. Set Left (1inel, 20);
canvasl. Chil dren. Add(Ili nel);

/!l Oreate a cosine curve:
brushl = new Col or napBrush();
brushl. StartPoint = new Point (0, 1);
brushl. EndPoi nt = new Poi nt (0, 0);
linel = new Pol yline();
for (int i =0; i <250; i++)
{
double x = i;
double y = 70 +
50 * Math.Cos(x / 4.0/ Math.Pl);
l'i nel. Poi nts. Add(new Point(x, y));

}

l'inel. Stroke = brushl. Jet();
l'i nel. StrokeThi ckness = 5;
Canvas. Set Left (linel, 20);
canvasl. Chi l dren. Add(Ilinel);

}
This example produces the output shown in Figure 5-6.

Here, the default vertical colormap brush is used to paint the rectangles. You
simply create a ColormapBrush instance and set the Fill property of rectangles
to the corresponding method. For the Sine and Cosine curves, you specify a
horizontal gradient axis by changing the StartPoint and EndPoint properties.
Y ou should natice that if you exchange the StartPoint with the EndPoint, you'll
reverse the color gradient.

Following the procedure presented here, you can easily add your own colormaps
to the ColormapBrush class.

Chapter 5: Colors and Brushes | 165

EEX

Rectangles filled using ColormapBrush objects

a
X

B Custom Colormap

m

Sine and Cosine curve paintad using colormap

AVIAVIAY

Figure 5-6 Rectangles and curves drawn using ColormapBrush objects.

RadialGradientBrush

RadialGradientBrush works in a similar way to the LinearGradientBrush. It also
takes a sequence of colors with different offsets, but blends colors in a radial
pattern. A radial gradient is defined as a circle. The axis of Radial GradientBrush
starts from the origin, which you specify using its GradientOrigin, and runs to
the outer edge of the circle.

You can set the edge of the gradient circle using three properties: Center,
RadiusX, and RadiusY. By default, the Center property is at (0.5, 0.5), which
places the center of the circle in the middie of your fill region and in the same
position as the gradient origin.

166 | Chapter 5: Colors and Brushes

Let'stake alook at an example to see how the Radial GradientBrush works. Add
a new WPF Window to the project Chapter0O5 and name it
Radial GradientBrushExample. Here isthe XAML file of this example:

<Wndow x: d ass="Chapt er 05. Radi al @ adi ent Br ushExanpl e"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / present at i on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Radial Gadient" Height="320" Wdth="368">
<Canvas>
<@id>
<@ i d. Col umbDefi ni ti ons>
<Col urmDefi ni ti on/ >
<Col urmDefi ni ti on/ >
<Col urmDefi ni ti on/ >
</ @i d. Col umDefinitions>
<@ i d. Rowbefi ni ti ons>
<RowDef i ni tion/>
<RowDefinition/>
</ @i d. RowDefinitions>

<StackPanel @&id. Col um="0" Qid. Row="0"
Mar gi n="5">
<Text Bl ock Text="el |i psel" Margin="35,5,5,5"/>
<B l'ipse x: Name="el | i psel" Stroke="B ue"
Wdt h="100" Hei ght="100" Margi n="5">
<Hlipse.Fill>
<Radi al @ adi ent Brush
QadientCigin="0.5,0.5"
Center="0.5,0.5"
Radi usX="1" Radi usyY="1">
<@ adi ent Stop ol or =" Red"
CGfset="0" />
<@ adi ent Stop Col or =" Yel | ow'
CGfset="0.3" />
<@ adi ent Stop Col or="G een"”
CGfset="0.6" />
</ Radi al @ adi ent Brush>
</Blipse.Fill>
</BIipse>
</ St ackPanel >

<StackPanel @id. Colum="1" @id. Row="0"
Mar gi n="5">
<Text Bl ock Text="el | i pse2" Margin="35,5,5,5"/>
<B lipse x: Name="el | i pse2" Stroke="B ue"
Wdt h="100" Hei ght="100" Margi n="5">
<Hlipse.Fill>
<Radi al @ adi ent Brush
QadientCigin="0.5,0.5"
Center="0, 0"
Radi usX="1" Radi usY="1">
<@ adi ent Stop ol or =" Red"
Cfset="0" />

Chapter 5: Colors and Brushes | 167

<@ adi ent Stop Col or ="Yel | ow'
Ofset="0.3" />

<@ adi ent Stop Col or="G een”
O fset="0.6" />

</ Radi al G adi ent Br ush>
</Blipse.Fill>
</BIipse>
</ St ackPanel >

<StackPanel @id.Colum="2" @&id. Row="0"
Mar gi n="5">
<Text Bl ock Text="ellipse3" Margin="35,5,5,5"/>
<B lipse x: Nanme="el | i pse3" Stroke="B ue"
W dt h="100" Hei ght="100" Margi n="5">
<Hlipse.Fill>
<Radi al G adi ent Brush
QadientCigin="0.50.5"
Center="0.5,0.5"
Radi usX="0.5" Radi usY="0.5">
<@ adi ent Stop ol or =" Red"
Gfset="0" />
<@ adi ent Stop Col or ="Yel | ow'
Gfset="0.3" />
<@ adi ent Stop Col or ="G een”
Gfset="0.6" />
</ Radi al G adi ent Br ush>
</Hlipse.Fll>
</HIipse>
</ St ackPanel >

<StackPanel @id.Colum="0" @&id. Row="1"
Mar gi n="5">
<Text Bl ock Text="ellipse4" Margin="35,5,5,5"/>
<B lipse x: Nanme="el | i pse4d" Stroke="B ue"
Wdt h="100" Hei ght="100" Margi n="5">
<Hlipse.Fill>
<Radi al G adi ent Br ush
QadientQigin="0.5,0.5"
Center="0, 0"
Radi usX="0.5" Radi usY="0.5">
<@ adi ent Stop Col or =" Red"
Gfset="0" />
<@ adi ent Stop Col or ="Yel | ow'
Gfset="0.3" />
<@ adi ent Stop Col or ="G een”
Gfset="0.6" />
</ Radi al G adi ent Br ush>
</Blipse.Fill>
</BIipse>
</ St ackPanel >

<StackPanel @Gid. Colum="1" Qid. Row="1"
Mar gi n="5">
<Text Bl ock Text="el | i pse5" Margin="35,5,5,5"/>

168 | Chapter 5: Colors and Brushes

<B lipse x: Name="el | i pse5" Stroke="B ue"
Wdt h="100" Hei ght="100" Margi n="5">
<Hlipse.Fill>
<Radi al @ adi ent Brush
QadientCigin="0.5,0.5"
Center="0.5,0.5"
Radi usX="1" Radi usY="0.5">
<@ adi ent Stop ol or =" Red"
CGfset="0" />
<@ adi ent Stop Col or ="Yel | ow'
Gfset="0.3" />
<@ adi ent Stop Col or="G een"
Gfset="0.6" />
</ Radi al & adi ent Br ush>
</Blipse.Fill>
</Hipse>
</ St ackPanel >

<StackPanel @id. Colum="2" @id. Row="1"
Mar gi n="5">
<Text Bl ock Text="el | i pse6" Margin="35,5,5,5"/>
<B lipse x: Name="el | i pse6" Stroke="B ue"
W dt h="100" Hei ght="100" Margi n="5">
<Hlipse.Fill>
<Radi al @ adi ent Brush
QadientCigin="0.5,0.5"
Center="0.5,0.5"
Radi usX="0.5" Radi usY="1">
<@ adi ent Stop ol or =" Red"
Gfset="0" />
<@ adi ent Stop Col or ="Yel | ow'
Gfset="0.3" />
<@ adi ent Stop Col or="G een"
Gfset="0.6" />
</ Radi al & adi ent Br ush>
</Hlipse.Fll>

</BIipse>
</ St ackPanel >
</@id>
</ Canvas>
</ W ndow>

This XAML file create six circles using the Ellipse shape class. The first two
circles are filled using a Radial GradientBrush with a RadiusX = 1 and RadiusY
= 1. The difference is that the brush for the first circle has a Center at (0.5, 0.5),
which is the same as its GradientOrigin of (0.5, 0.5), while the brush for the
second circle has a Center at (0, 0), which isn't lined up with its GradientOrigin
of (0.5, 0.5). Ellipse3 and dlipse4 have fill properties similar to the first two
shapes, except that they have smaller RadiusX and RadiusY . The last two circles
have different RadiusX and RadiusY properties, which turns the gradient into an
ellipseinstead of acircle.

Figure 5-7 illustrates the results of running this example.

Chapter 5: Colors and Brushes | 169

I Radial Gradient

llipsel ellipse2 ellipse3

ellipse4 ellipses ellipset

990

Figure 5-7 Shapes filled using RadialGradientBrush objects.

Custom Radial Colormap Brush

Like ColormapBrush for the custom predefined LinearGradientBrush, you can
also create Radial ColormapBrush for the predefined Radial GradientBrush. This
custom defined radia brush may be useful when you want to create some
specia radial visual effects.

Add a new class, caled RadialColormapBrush, to the project Chapter05.
Implement the following C# code for this class:

using System

using System Col | ecti ons. Generic;
usi ng System W ndows;

usi ng System W ndows. Medi a;

nanespace Chapt er 05

{
public cl ass Radi al Col or mapBr ush

{
private Point center = new Point(0.5,0.5);
private Point gradientQigin = new Point (0.5 0.5);
private doubl e radi usX = 0.5;
private doubl e radiusY = 0.5;
private doubl e opacity = 1,
private Radi al @ adi ent Brush brush =
new Radi al & adi ent Brush();

170 | Chapter 5: Colors and Brushes

public Point Center

{
get { return center; }
set { center = value; }
}
public Point GadientQigin
{
get { return gradientQigin; }
set { gradientQigin = value; }
}
publ i ¢ doubl e Radi usX
{
get { return radiusX }
set { radiusX = value; }
}
publ i ¢ doubl e Radi usY
{
get { return radiusY; }
set { radiusY = value; }
}
publi c doubl e Qpacity
{
get { return opacity; }
set { opacity = value; }
}
publ i ¢ Radi al G adi ent Brush Spring()
{
brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FromRgb(255, 0, 255), 0));
brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FronRgb(255, 255, 0), 1));
brush. Center = Center;
brush.GadientQigin = GadientQigin;
brush. Radi usX = Radi usX
brush. Radi usY = Radi usY;
brush. pacity = pacity;
return brush;
}
publ i ¢ Radi al G adi ent Brush Surmer ()
{

brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FromRgb(0, 128, 90), 0));

brush. G adi ent St ops. Add(new & adi ent St op(
Col or. FronRgb(255, 255, 90), 1));

brush. Center = Center;

brush.GadientQigin = GadientQigin;

brush. Radi usX = Radi usX;

brush. Radi usY = Radi usY;

Chapter 5: Colors and Brushes | 171

brush. pacity = pacity;
return brush;

}
publ i ¢ Radi al G adi ent Brush Aut unn()
{
brush. G adi ent St ops. Add(new & adi ent St op(
Col or. FronRgb(255, 0, 0), 0));
brush. G adi ent St ops. Add(new & adi ent St op(
Col or. FromRgb(255, 255, 0), 1));
brush. Center = Center;
brush.GadientQigin = GadientCigin;
brush. Radi usX = Radi usX;
brush. Radi usY = Radi usY;
brush. pacity = Qpacity;
return brush;

}
publ i ¢ Radi al G adi ent Brush Wnter ()

{
brush. G adi ent St ops. Add(new & adi ent St op(
Col or. FronRgb(0, 0, 255), 0));
brush. G adi ent St ops. Add(new & adi ent St op(
Col or. FromRgb(0, 255, 128), 1));
brush. Center = Center;
brush.GadientQigin = GadientQigin;
brush. Radi usX = Radi usX;
brush. Radi usY = Radi usY;
brush. pacity = pacity;
return brush;
}
publ i ¢ Radi al G adi ent Brush Hot ()
{
brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FronRgh(85, 0, 0), 0));
brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FronRgh(255, 0, 0), 0.25));
brush. G adi ent St ops. Add(hew G adi ent St op(
ol or. FronRgb(255, 85, 0), 0.375));
brush. G adi ent St ops. Add(hew G adi ent St op(
ol or. FronRgb(255, 255, 0), 0.625));
brush. G adi ent St ops. Add(hew G adi ent St op(
ol or. FronmRgb(255, 255, 128), 0.75));
brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FromRgb(255, 255, 255), 1));
brush. Center = Center;
brush.GadientQigin = GadientQigin;
brush. Radi usX = Radi usX
brush. Radi usY = Radi usY;
brush. Qpacity = pacity;
return brush;
}

publ i ¢ Radi al G adi ent Brush ool ()
{

172 | Chapter 5: Colors and Brushes

}

brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FronRgb(0, 255, 255), 0));

brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FronRgb(255, 0, 255), 1));

brush. Center = Center;

brush.GadientQigin = GadientQigin;

brush. Radi usX = Radi usX

brush. Radi usY = Radi usY;

brush. pacity = pacity;

return brush;

publ i ¢ Radi al G adi ent Brush G ay()

{

}

brush. G adi ent St ops. Add(new G adi ent St op(
Col or. FromRgb(0, O, 0), 0));

brush. G adi ent St ops. Add(new & adi ent St op(
Col or. FroniRgbh(255, 255, 255), 1));

brush. Center = Center;

brush.GadientQigin = GadientCQigin;

brush. Radi usX = Radi usX;

brush. Radi usY = Radi usY;

brush. pacity = pacity;

return brush;

publ i ¢ Radi al G adi ent Brush Jet ()

{

brush. G adi ent St ops. Add(hew & adi ent St op(
Col or. FronRgb(0, 0, 255), 0));

brush. G adi ent St ops. Add(hew & adi ent St op(
Col or. FromRgb(0, 128, 255), 0.143));

brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FromRgb(0, 255, 255), 0.286));

brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FronRgb(128, 255, 128), 0.429));

brush. G adi ent St ops. Add(hew G adi ent St op(
ol or. FromRgb(255, 255, 0), 0.571));

brush. G adi ent St ops. Add(hew G adi ent St op(
ol or. FronRgh(255, 128, 0), 0.714));

brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FromRgb(255, 0, 0), 0.857));

brush. G adi ent St ops. Add(hew G adi ent St op(
Col or. FronRgbh(128, 0, 0), 1));

brush. Center = Center;

brush.GadientQigin = GadientQigin;

brush. Radi usX = Radi usX

brush. Radi usY = Radi usY;

brush. Qpacity = pacity;

return brush;

Chapter 5: Colors and Brushes | 173

This class has five public properties: Center, GradientOrigin, RadiusX, Radiusy,
and Opacity. These properties are used to specify the corresponding properties
of RadialGradientBrush. The default values of these properties remain the same
as those of the RadialGradientBrush. In this class, color is defined using SRGB
values. The custom colormap brushes are created with different colors, each one
with adifferent number of GradientStops and Offsets.

Now, let’'s consider an example that shows you how to use these radia colormap
brushes in a WPF application. Add a new WPF Window to the project
Chapter05, and name it Radial ColormapBrushExample. In this example, you'll
create severa circles and specify their Fill property using different
Radial ColormapBrush objects. Here isthe XAML file of this example:

<Wndow x: d ass="Chapt er 05. Radi al Col or mapBr ushExanpl e"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Radi al Col or map" Hei ght ="275" Wdt h="425">
<Canvas>
<@id>
<@i d. Col umDefi ni ti ons>
<Col ummDefi ni ti on/ >
<Col umDefi ni ti on/ >
<Col urmDefi ni ti on/ >
<Col ummDefini tion/ >
</ @id. Col umbDefi nitions>
<@ i d. Rowbefi ni ti ons>
<Rowbef i ni tion/ >
<RowDefinition/>
</ @i d. RowDefinitions>

<StackPanel Margin="2,5,2,2" Qid. Col um="0"
Qid Row="0">
<Text Bl ock Text="Spring" Margin="33,0,0,0"/ >
<Blipse x: Name="el | i psel" Stroke="B ue"
Wdt h="90" Hei ght="90" Margi n="5"/>
</ St ackPanel >

<StackPanel Margin="2,5,2,2" Qid. Col umm="1"
Qid Row="0">
<Text Bl ock Text="Sunmer" Margi n="30, 0, 0, 0"/ >
<B |'ipse x: Name="el | i pse2" Stroke="B ue"
Wdt h="90" Hei ght="90" Margi n="5"/>
</ St ackPanel >

<StackPanel Margin="2,5,2,2" @id. Col um="2"
Qid Row="0">
<Text Bl ock Text="Autumn" Margi n="30,0, 0, 0"/ >
<B lipse x: Nanme="el | i pse3" Stroke="B ue"
Wdt h="90" Hei ght="90" Margi n="5"/>
</ St ackPanel >

<StackPanel Mrgin="2,5,2,2" @id.Col um="3"

174 | Chapter 5: Colors and Brushes

Qid. Row="0">
<Text Bl ock Text="Wnter" Margin="30,0,0,0"/>
<Blipse x: Name="el | i pse4" Stroke="B ue"
Wdt h="90" Hei ght="90" Margi n="5"/>
</ St ackPanel >

<StackPanel Margin="2,5,2,2" Qid. Col um="0"
Qid Row="1">
<Text Bl ock Text="Jet" Margi n="40, 0, 0, 0"/>
<B |'ipse x: Name="el | i pse5" Stroke="B ue"
Wdt h="90" Hei ght="90" Margi n="5"/>
</ St ackPanel >

<StackPanel Margin="2,5,2,2" @id. Col um="1"
Qid Row="1">
<Text Bl ock Text="Gay" Margi n="38,0,0,0"/>
<B lipse x: Nanme="el | i pse6" Stroke="B ue"
Wdt h="90" Hei ght="90" Margi n="5"/>
</ St ackPanel >

<StackPanel Margin="2,5,2,2" Qid. Col um="2"
Qid Row="1">
<Text Bl ock Text="Hot" Margi n="40,0, 0, 0"/>
<Blipse x: Name="el | i pse7" Stroke="B ue"
Wdt h="90" Hei ght="90" Margi n="5"/>
</ St ackPanel >

<StackPanel Margin="2,5,2,2" Qid. Col umn="3"
Qid Row="1">
<Text Bl ock Text="Cool " Margi n="38,0,0,0"/>
<B l'ipse x: Name="el | i pse8" Stroke="B ue"
Wdt h="90" Hei ght="90" Margi n="5"/>
</ St ackPanel >
</@id>
</ Canvas>
</ W ndow>

The corresponding code-behind file of this exampleislisted below:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;
usi ng System W ndows. Medi a;
usi ng System W ndows. Shapes;

nanespace Chapt er 05

public partial class Radial ol or mapBr ushExanpl e : W ndow
{

publ i ¢ Radi al Col or mapBr ushExanpl e()

{
InitializeConponent();

Chapter 5: Colors and Brushes | 175

FillBlipses();

}

private void Fill B Ilipses()

{
/1 Fill ellipsel with "Spring" col ornap:
Radi al Gol or mapBrush brush =

new Radi al Col or mapBr ush();

ellipsel.Fill = brush. Spring();
/1 Fill ellipse2 with "Sumer" col or nap:
brush = new Radi al Col or mapBrush();
ellipse2. Fill = brush. Sunmer();
I/l Fill ellipse3 with "Autum" col ornap:
brush = new Radi al Col or mapBrush();
ellipse3.Fill = brush. Autum();
/1 Fill ellipsed with "Wnter" col ornap:
brush = new Radi al Col or mapBr ush() ;
ellipsed.Fill = brush.Wnter();
/1 Fill ellipse5 with "Jet" col or map:
brush = new Radi al Col or mapBr ush() ;
el lipse5.Fill = brush.Jet();
/1 Fill ellipse6 with "Gay" col ornap:
brush = new Radi al Col or mapBr ush();
ellipse6.Fill = brush.Gay();
/1 Fll ellipse7 with "Hot" col or map:
brush = new Radi al Col or mapBr ush();
el lipse7.Fill = brush. Hot ();
/1 Fill ellipse8 with "Cool" col ornap:
brush = new Radi al Col or mapBr ush() ;
ellipse8.Fi Il = brush. Cool ();

}

}

You can see from the above code that the default radial colormap brush is used
to fill the circles. You simply create a Radial ColormapBrush instance, and set
the Fill property of the circles to the corresponding method. Figure 5-8 shows
the results of this example.

ImageBrush

ImageBrush is used to paint an area with an ImageSource. The ImageSource
contains the most common image file types, including bmp, gif, png, and jpg.
You simply specify the image you want to use by setting the ImageSource
property.

176 | Chapter 5: Colors and Brushes

B Radial Colormap

Spring sSummer Autumn Winter

0006
Qe+0

Figure 5-8 Circles painted using RadialColormapBrush objects.

The following example, ImageBrushExample, shows you how to specify an
image to be used as the background of a button:

<Wndow x: d ass="Chapt er 05. | nrageBr ushExanpl e"
xm ns="http://schenas. m crosoft. coni w nfx
/ 2006/ xam / present ati on"
xm ns: x="http://schenas. m crosoft. con w nf x/ 2006/ xam "
Ti tl e="Chapt er 05" Hei ght ="300" Wdt h="300">

<Canvas>
<@id>

<@ i d. Col umDefini tions>
<Col utmDefi ni ti on/ >
<Col umDefinition/>

</ @i d. Col umDefinitions>

<@ i d. Rowbefini tions>
<RowDef i ni tion/>
<RowDefinition/>

</ @i d. RowDefinitions>

<StackPanel Margi n="5" @&id. Col um="0"
Qid Row="0">
<Text Bl ock Margi n="5" Text="Stretch = None"/>
<Button Wdth="135" Hei ght="100">
<But t on. Backgr ound>
<I mageBr ush
| mageSour ce="1 nageFi | e. j pg"
Stret ch="None"/ >
</ But t on. Backgr ound>
</ Butt on>
</ St ackPanel >

Chapter 5: Colors and Brushes | 177

<StackPanel Margi n="5" @&id. Col um="1"
Qid Row="0">
<Text Bl ock Margi n="5" Text="Stretch = FIIl"/>
<Button Wdth="135" Hei ght="100">
<But t on. Backgr ound>
<l mageBr ush
| mageSour ce="1 nageFi | e. j pg"
Stretch="Fi Il"/>
</ But t on. Backgr ound>
</ But t on>
</ St ackPanel >

<StackPanel Margi n="5" @&id. Col um="0"
Qid Row="1">
<Text Bl ock Margi n="5"
Text="Stretch = Uniforni/>
<Button Wdth="135" Hei ght="100">
<But t on. Backgr ound>
<l mageBr ush
I mageSour ce="1 nageFi | e. j pg"
Stretch="Uniforn'/>
</ But t on. Backgr ound>
</ Butt on>
</ St ackPanel >

<StackPanel Margi n="5" @&id. Col um="1"
Qid Row="1">
<Text Bl ock Margi n="5"
Text="Stretch = UnifornToFi I1"/>
<Button Wdt h="135" Hei ght="100">
<But t on. Backgr ound>
<l mageBr ush
I mageSour ce="1 nageFi | e. j pg"
Stretch="UniformloF I | "/>
</ But t on. Backgr ound>
</ But t on>
</ St ackPanel >
</Qid>
</ Canvas>
</ W ndow>

This XAML file defines four buttons. You need to add the image file to the
project by right clicking on the Solution Explorer and selecting Add | Existing
Item..., and then selecting your image file. For each button, the ImageBrush is
used to set the button’s Background property. You may notice that the Stretch
property of each ImageBrush is set differently to demonstrate its effect.

Figure 5-9 illustrates the results of this example. For the first button, the Stretch
property of the ImageBrush is set to None, which preserves the original image
size and places the image at the center of the button. For the second button, this
property is set to Fill, which is the default setting and forces the image to fill the
whole button. For the third button, the stretch property is set to Uniform, which

178 | Chapter 5: Colors and Brushes

maintains the image aspect ratio, but resizes the image to fit inside the button’s
content area. For the last button, the Stretch property is set to UniformToFill,
which resizes the image to best-fit while preserving the original image aspect
ration. In this case, the best-fit is still much larger than the content area of the
button, so the image gets clipped.

B ChapterD5

Stratch = Mane Stretch = Fill

Stratch = Uniform Stretch = UniformTaFill

Figure 5-9 Button’s background painted using ImageBrush objects.

The ImageBrush derives from the TileBrush class. You can get some specia
effects using ImageBrush by tiling the image across the surface of the brush. To
tile an image, in addition to setting the ImageSource, you must also specify the
Viewport and TileMode properties of the ImageBrush object. The latter two
properties determine the size of your tile and the way it is arranged.

The Viewport property is used to set the size of each tile. To use proportionately
sized tiles, the ViewportUnits must be set to RelativeToBoundingBox, which is
the default setting. Then, you define the size of the tile using a proportional
coordinate system that stretches from O to 1 in both dimensions. Namely, atile
that has atop-left corner at (0, 0) and a bottom-right corner at (1, 1) occupies the
entire fill area. To get a tiled pattern, you need to define a Viewport that is
smaller than the total size of the fill area, as shown in the following code snippet:

<l mageBr ush | mageSour ce="Fl ower . j pg”
Til eMode="Til e”
Vi ewPort="0,0,0.2,0.25"/>

This code creates a Viewport box that begins at the top-left corner of thefill area
(0, 0) and stretches down to (0.2, 0.25). As aresult, the flower image will repeat
5 times in the X direction and 4 times in the Y direction, regardless of how big
or small the original imageis.

Chapter 5: Colors and Brushes | 179

Because the size of the tilein this example isrelative to the size of thefill area, a
larger fill areawill use alarger tile. It is also possible to define the size of your
tile in absolute coordinates based on the size of your original image. In this case,
you can set the ViewPortUnits to Absolute, as shown here:

<l mageBr ush | mageSour ce="Fl ower.j pg” Til eMode="Ti | e”
Vi ewPort="0, 0, 25, 25" Vi ewPort Uni t s=" Absol ute”/ >

This code snippet defines a size of 25x25 units for each tile and starts tiling
from the top-left corner. The drawback of using Absolute unitsis that the height
and width of your fill area must be divisible by 25. Otherwise, you will get a
partial tile at the edge.

There are several optionsin the TileMode:

» Tile— Copiestheimage across thefill area.
* FlipX — Copies the image, but flips each second column vertically.
» FlipY — Copies the image, but flips each second row horizontally.

* FlipXY — Copies theimage, but flips each second column vertically and
each second row horizontally.

You can change the TileMode to set how aternating tiles are flipped. The
flipping behavior is often useful when you need to make tiles blend more
seamlesdly.

Now, I'll use an example, called ImageBrushTile, to show you how the image
tileworks. Hereisthe XAML file of this example:

<Wndow x: A ass="Chapt er 05. | nageBr ushTi | "
xm ns="http://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Titl e="lI mageBrush Tiling" Height="300" Wdth="300">

<M ewbox Stretch="Fill">
<@id>

<@ i d. Col umDefi ni ti ons>
<Col umbDefini tion/ >
<Col umDefini tion/>

</ @i d. Col umbDefinitions>

<@id. RowDefini ti ons>
<RowDef i ni tion/>
<RowDefinition/>

</ @id. Rowbefinitions>

<StackPanel Margi n="5" @i d. Col um="0"
Qid Row="0">

<Text Bl ock Margi n="5,5,5, 0"
Text="TileMde = Tile"/>

<Text Bl ock Margi n="5, 0,5, 5"
Text="Unit: Absolute"/>

<Button Wdth="135" Hei ght="100">

<But t on. Backgr ound>

180 | Chapter 5: Colors and Brushes

<l mageBr ush | mageSour ce="Fl ower . j pg"
Vi ewport="0, 0, 25, 25"
Til eMode="Til e"
Vi ewpor t Uni t s=" Absol ute"/ >
</ But t on. Backgr ound>
</ But t on>
</ St ackPanel >
<StackPanel Margi n="5" @&id. Col um="1"
Qid Row="0">
<Text Bl ock Margi n="5, 5, 5, 0"
Text="Ti | eMbde = FlipX'/>
<Text Bl ock Margi n="5, 0, 5, 5"
Text="Unhit: Absol ute"/>
<Button Wdth="135" Hei ght="100">
<But t on. Backgr ound>
<I mageBr ush | mageSour ce="F ower . j pg"
Vi ewport="0, 0, 25, 25"
Ti | eMbde="Fl i pX'
Vi ewpor t Uni t s=" Absol ute"/ >
</ But t on. Backgr ound>
</ But t on>
</ St ackPanel >

<St ackPanel Margi n="5"
Qid Colum="0" Qid Row"1">
<Text Bl ock Margi n="5,5,5, 0"
Text="Ti | eMode = HipY'/>
<Text Bl ock Margi n="5, 0, 5, 5"
Text="Unhit: Reltive"/>
<Button Wdth="135" Hei ght="100">
<But t on. Backgr ound>
<I mageBr ush | mageSour ce="Fl ower . j pg"
Vi ewport="0, 0, 0. 2, 0. 25"
Ti | eMode="Fli pY"/>
</ But t on. Backgr ound>
</ Butt on>
</ St ackPanel >
<StackPanel Margi n="5" @&id. Col um="1"
Qid Row="1">
<Text Bl ock Margi n="5, 5,5, 0"
Text ="Ti |l eMbde = F i pXY'/>
<Text Bl ock Margi n="5,0,5, 5"
Text="Unhit: Reltive"/>
<Button Wdt h="135" Hei ght="100">
<But t on. Backgr ound>
<l mageBr ush | mageSour ce="Fl ower . j pg"
Vi enport="0, 0, 0. 2, 0. 25"
Ti | eMode="Fl i pXY"/ >
</ But t on. Backgr ound>
</ Butt on>
</ St ackPanel >
</Qid>
</ Vi enbox>
</ W ndow>

Chapter 5: Colors and Brushes | 181

Figure 5-10 shows the results of running this application. Here, the backgrounds
of four buttons are filled using the ImageBrush object with different TileModes,
including Tile, FlipX, HipY, and FipXY. The ViewportUnits are set to
Absolute for the first two butons and Relative for the last two buttons. The more
interesting pattern is obtained when the TileMode property is set to FlipXY. In
this case, the pattern appears similar to a mosaic.

B ImageBrush Tiling

TileMode = Tile TileMode = Flipx

Unit: Absclute Unit: Absclute

— T T T
¥ MY oY oF 1 o
o oo B v
d WF Wy wr 1 e
& 5 B r)

i W@ «F ¥ 1L e
e -
i Y1 N o 1
TileMode = Flip TileMode = Fliphly

Unit: Reltive Unit: Reltive

L] *

o]
= ‘*
‘;H-ﬂa.hw-'.::.-h%

£ ¥3

e
L1

Ll
[

..“ w1 uys hlﬂ" Ll i ';
®

Ay hH L

L]
Wiy Cos .I'H'\.! AW f

4
5
% -
-
-
&
= =
]
»
a
L

[
1]

Figure 5-10 Image tiles in WPF.

DrawingBrush

DrawingBrush fills an area using a Drawing object. It can paint shapes, text,
images, and video. The Drawing class represents a 2D drawing and is the base
class for other drawing objects including GeometryDrawing, GlyphRunDrawing,
ImageDrawing, and VideoDrawing. The GeometryDrawing class alows you to
define and render shapes using a specified Fill and Stroke. The
GlyphRunDrawing provides text operations.

The GeometryDrawing class adds the stroke and fill details that determine how
the geometry should be painted. There is another class that derives from
Drawing class, the DrawingGroup, which allows you to group multiple Drawing
obj ects together to create a single complex Drawing object.

The following example applies a DrawingBrush and DrawingGroup to draw
gridlines as a background of a Grid control. Add a new WPF Window to the
project Chapter05 and name it DrawingBrushGridline. Here is the XAML file of
this example:

182 | Chapter 5: Colors and Brushes

<Wndow x: d ass="Chapt er 05. Dr awi ngBrush@i dl i ne"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Drawi ng Brush - Gidline" Height="300" Wdth="300">

<@id>
<@ d. Backgr ound>
<Dr awi ngBrush M ewport="0, 0, 50, 50"
Vi ewpor t Uni t s=" Absol ut e"
Til eMode="Ti |l ">
<Dr awi ngBr ush. Drawi ng>
<Dr awi ngQ oup>
<Dr awi ngG oup. Chi | dren>
<CGeonet ryDraw ng
Geonet ry="M, 0 L50, 0">
<CGeonet r yDr awi ng. Pen>
<Pen Thi ckness="2"

Brush="Li ght G een"/ >

</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
<Geonet ryDraw ng
Geonet ry="M, 10 L50, 10" >
<Geonet r yDr awi ng. Pen>
<Pen Thi ckness="1"

Brush="Li ght G een"/ >

</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
<Georret r yDr awi ng
CGeonret ry="M), 20 L50, 20" >
<Ceorret r yDr awi ng. Pen>
<Pen Thi ckness="1"

Brush="Li ght G een"/>

</ Geonet r yDr awi ng. Pen>
</ Geonet ryDr awi ng>
<Georret r yDr awi ng
Geonet ry="M), 30 L50, 30">
<Ceorret r yDr awi ng. Pen>
<Pen Thi ckness="1"

Brush="Li ght G een"/>

</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
<Geonet ryDrawi ng
Georret ry="M), 40 L50, 40">
<Geonet r yDr awi ng. Pen>
<Pen Thi ckness="1"

Brush="Li ght G een"/ >

</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>

<CGeonet ryDraw ng
Geonet ry="M, O LO, 50">
<Geonet ryDr awi ng. Pen>
<Pen Thi ckness="2"

Chapter 5: Colors and Brushes | 183

Brush="Li ght G een"/ >
</ Geonet r yDr awi ng. Pen>
</ Geonet ryDr awi ng>
<Geonet ryDraw ng
Geonet ry="M0, 0 L10, 50" >
<Geonet ryDr awi ng. Pen>
<Pen Thi ckness="1"
Brush="Li ght G een"/>
</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
<CGeonet ryDrawi ng
Geonet ry="M0, 0 L20, 50" >
<CGeonet r yDr awi ng. Pen>
<Pen Thi ckness="1"
Brush="Li ght G een"/ >
</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
<Geonet ryDrawi ng
CGeonet ry="M0, 0 L30, 50" >
<Geonet ryDr awi ng. Pen>
<Pen Thi ckness="1"
Brush="Li ght G een"/ >
</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
<Georret r yDr awi ng
Geonet ry="MO0, 0 L40, 50" >
<Ceorret r yDr awi ng. Pen>
<Pen Thi ckness="1"
Brush="Li ght G een"/>
</ Geonet r yDr awi ng. Pen>
</ Geonet ryDr awi ng>
</ Dr awi ng@ oup. Chi | dren>
</ Dr awi ngG oup>
</ Dr awi ngBr ush. Dr awi ng>
</ Dr awi ngBr ush>
</ @i d. Backgr ound>
</qid>
</ W ndow>

This example uses DrawingBrush to define the background of a Grid control.
The Viewport and TileMode properties of DrawingBrush are specified to have
the drawing repeat. Furthermore, the ViewportUnits are set to Absolute to make
sure that the gridlines don’t change when the Grid control gets resized. Then the
Drawing objects are created for the DrawingBrush by using a DrawingGroup
object. Next, we create five horizontal and five vertical line segments using
GeometryDrawing with the Pen object. Notice that the top-most and left-most
line segments use a thick Pen, which gives a better view of the gridlines. The
Drawing element created using DrawingGroup is illustrated in Figure 5-11. If
this Drawing element is repeated in both the X and Y directions by specifying
the TileMode property of DrawingBrush, you'll create gridlines for the entire
Grid control, as shown in thisfigure.

184 | Chapter 5: Colors and Brushes

Figure 5-12 shows the results of running this example.

Figure 5-11 Drawing Element (left) used to create gridlines (right).

MM Drawing Brush - Gridline M=1E3

Figure 5-12 Gridlines created using DrawingBrush objects.

Remember that since the Drawing-derived classes aren’'t elements, they can't be
placed in your user interface directly. Instead, to display a drawing object, you
need to use DrawingBrush to paint it, as illustrated in the above example. The
DrawingBrush alows you to wrap a drawing with a brush, and can be used to
paint any surface. You can also use severa other ways to display Drawing
objects, including Drawinglmage and DrawingVisual. The Drawinglmage class
allows you to host a drawing inside an Image el ement, while DrawingVisual lets
you place adrawing in alower-level visual object.

Chapter 5: Colors and Brushes | 185

If you want to use a piece of vector art to create an icon for a button, you can
easily put several Drawing objects into a DrawingGroup and then place the
DrawingGroup in a Drawinglmage, which can in turn be placed in an Image
element.

Here is an example called DrawinglmageExample which shows you how to
create buttons using Drawinglmage objects.

<W ndow x: d ass="Chapt er 05. Dr awi ngl mageExanpl "
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Drawi ngl nage Exanpl " Hei ght="130" Wdth="320">

<@id>
<@id. Col umDefinitions>
<Col utmDefi ni ti on Wdt h="Auto"/>
<Col umDefi ni ti on Wdt h="Aut 0"/ >
<Col ummDefini ti on Wdt h="Auto"/>
</ @i d. Col umbDefinitions>
<@id. Rowbefini tions>
<RowDefinition Hei ght="Auto"/>
</ @id. Rowbefinitions>

<Button Name="Sel ect" Qi d. Col umm="0"
Tool Ti p="Sel ect" Margi n="5">
<l mage Wdt h="80" Hei ght="80">
<l nage. Sour ce>
<Dr awi ngl mage>
<Dr awi ngl mage. Dr awi ng>
<Geonet ryDrawi ng
Brush="Li ght G ay" >
<Geonet ryDr awi ng. Geonret r y>
<Pat hGeonet ry
F gures="M5,75 L 50,0 75,75 60, 75 60, 100 40, 100, 40, 75Z" >
<Pat hGeonet ry. Tr ansf or n»
<Rot at eTr ansf orm
Cent er X="50"
Cent er Y="50"
Angl e="45"/>
</ Pat hGeonet ry. Tr ansf or n»
</ Pat hGeonet ry>
</ Geonet ryDr awi ng. Geonet ry>
<Geonet ryDr awi ng. Pen>
<Pen Brush="Q ay"
Thi ckness="3"/>
</ Geonet r yDr awi ng. Pen>
</ Geonet ryDr awi ng>
</ Drawi ngl nage. Dr awi ng>
</ Draw ngl mage>
</ | mage. Sour ce>
</ | mage>
</ But t on>

186 | Chapter 5: Colors and Brushes

<Button Name="DrawRect angl e" Qi d. Col unn="1"
Tool Ti p="Draw Rectangl e" Margi n="5">
<l mage Wdt h="80" Hei ght="80">
<l nage. Sour ce>
<Dr awi ngl mage>
<Dr awi ngl mage. Dr awi ng>
<Georet ryDrawi ng
Brush="Li ght G ay" >
<Geonet ryDr awi ng. Georret ry>
<Rect angl eGeonet ry
Rect ="0, 20, 100, 60"/ >
</ Geonet ryDr awi ng. Geonet ry>
<CGeonet r yDr awi ng. Pen>
<Pen Brush="QG ay"
Thi ckness="3"/>
</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
</ Draw ngl mage. Dr awi ng>
</ Draw ngl nage>
</ | mage. Sour ce>
</ | mage>
</ Butt on>

<Button Narme="DrawH | i pse" Gid. Col um="2"
Tool Ti p="Draw H | i pse" Margi n="5">
<l mage Wdt h="80" Hei ght="80">
<l mage. Sour ce>
<Dr awi ngl mage>
<Dr awi ngl mage. Dr awi ng>
<Georret ryDr awi ng
Brush="Li ght G ay" >
<CGeonet ryDr awi ng. Geonet ry>
<B I'i pseCGeonet ry

Cent er =" 50, 50"

Radi usx="50"

Radi usY="35"/>
</ Geonet r yDr awi ng. Geonet ry>
<Ceorret r yDr awi ng. Pen>

<Pen Brush="QG ay"
Thi ckness="3"/>
</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
</ Draw ngl mage. Dr awi ng>
</ Draw ngl nage>
</ | mage. Sour ce>
</ | mage>
</ Butt on>
</qid>
</ W ndow>

Figure 5-13 illustrates the results of running this example. Here, you create three
buttons using Drawinglmage objects. Y ou can use the similar approach to create
custom buttons that can be used in your own WPF applications.

Chapter 5: Colors and Brushes | 187

B Drawinglmage Example B@ b

Figure 5-13 Button painted using Drawinglmage objects.

DrawingBrush is very flexible and powerful. It allows you to paint many low-
level objects from the WPF framework. These objects don’t derive from the
UlElement or FrameworkElement, so they don’t participate in the layout system,
which iswhy they are so lightweight.

VisualBrush

The VisuaBrush fills an area with any object that derives from the visual. It
allows you to take the visua content of an element and use it to paint any
surface. For example, you can use a VisaulBrush to copy the appearance of a
button in a window to a region somewhere else in the same window. Note that
the VisualBrush is “copying” the button only. This button copied using the
VisualBrush would not be clickable or interactive in any way. It is simply a
copy of how your element looks.

Here is an example, caled VisualBrushExample, that is included in project
Chapter05:

<Wndow x: d ass="Chapt er 05. Vi sual Br ushExanpl e"
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schenas. m crosof t . con wi nf x/ 2006/ xan "
Titl e="Vi sual Brush Exanpl e" Hei ght="190" Wdt h="250">

<@id>
<@id. Col umbDefiniti ons>
<Col umDefini ti on Wdt h="Auto"/>
<Col umDefi ni ti on Wdt h="Aut 0"/ >
</ @i d. Col umbDefinitions>
<@id. RowDefini ti ons>
<RowDefi ni tion Hei ght="Auto"/>
</ @id. Rowbefinitions>

<St ackPanel Margin="5" @i d. Col um="0">
<Text Bl ock Text="Qriginal button:" Margin="5"/>
<Button Name="Sel ect" Tool Ti p="Sel ect" Margi n="5"
Wdt h="40" Hei ght ="40">
<l mage Wdth="30" Hei ght="30">
<l mage. Sour ce>
<Dr awi ngl nage>

188 | Chapter 5: Colors and Brushes

<Dr awi ngl mage. Dr awi ng>
<CGeonet ryDrawi ng
Br ush="Li ght G ay" >
<CGeonet r yDr awi ng. Geonet ry>
<Pat hGeonet ry
Fi gures="M5,75 L 50,0 75,75 60, 75 60, 100 40, 100, 40, 752" >
<Pat hGeonet ry. Tr ansf or n»
Rot at eTr ansf orm
Cent er X="50"
Cent er Y="50"
Angl e="45"/ >
</ Pat hGeonet ry. Tr ansf or m»
</ Pat hGeonet ry>
</ Geonet ryDr awi ng. Geonret ry>
<CGeonet r yDr awi ng. Pen>
<Pen Brush="QG ay"
Thi ckness="3"/>
</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
</ Draw ngl nage. Dr awi ng>
</ Drawi ngl mage>
</ | mage. Sour ce>
</ | mage>
</ But t on>

<Text Bl ock Text="Copi ed button:" Mrgi n="5"/>
<Button Hei ght ="40" Wdt h="40">
<But t on. Backgr ound>
<M sual Brush Vi sual ="{Bi ndi ng H enment Name=Sel ect}"/>
</ But t on. Backgr ound>
</ Butt on>
</ St ackPanel >

<St ackPanel Margin="10,5,5,5" @&id. Col um="1">
<TextBlock Text="Tiled button:" Margin="5"/>
<Button For eground="Bl ue" Hei ght ="120"
W dt h="120">
<But t on. Backgr ound>
<M sual Brush Vi sual ="{Bi ndi ng H ement Narme=Sel ect }"
Vi ewport ="0, 0, 40, 40"
Vi ewpor t Uni t s=" Absol ute" Til eMbde="Ti | e">
</ Vi sual Brush>
</ But t on. Backgr ound>
</ But t on>
</ St ackPanel >
</Gid>
</ Wndow>

In this example, you draw the original button’s background using DrawingBrush
like you did in the previous example. Although you could directly define the
visual element you want to use in VisualBrush, it is much more common to use
a binding expression to refer to an element in the current window, as you do in
this example. In addition to the origina button, you add two more buttons.

Chapter 5: Colors and Brushes | 189

These two new buttons use VisuaBrush to paint their background. The second
button simply uses VisualBrush to copy the first button and use it as its
background. The last button does the same, only this time it uses the TileMode.
Figure 5-14 illustrates the results of running this example.

M VisualBrush Example E@@

Original button: Tiled button:

Copied button:

Figure 5-14 Button painted using VisualBrush objects.

The background for the last two buttons is created using VisualBrush. By
default, when you mouse over a button, the button is highlighted yellow. Notice
that if you mouse over the original button, the background of the other buttons
becomes highlighted as well. For the tiled button, each of the tiles of the
VisualBrush is highlighted. This is because VisuaBrush “copies’ the entire
visual tree of its source object. Part of the button’s visual tree is the border and
event trigger associated with it.

Because the content of VisualBrush isn’t interactive, you might wonder what
purpose the VisualBrush has. In fact, the Visual Brush is powerful and opens the
door for creating lots of special effects. For example, you can take an element
that contains a significant amount of nested content, shrink it down to a smaller
size, and use it for a live preview. VisuaBrush is aso key for achieving
reflection effects.

Bitmap Effects

You can apply Bitmap effects to any WPF element. The purpose of the Bitmap
effect is to give you an easy way to enhance the appearance of text, images,
buttons, and other controls. This effect alows you to add specia effects to your
visual elements, such as blurring, drop shadows, and glows. Note that
UlElement exposes a BitmapEffect property, while the Visua element exposes a
Visual BitmapEffect property. Both of these properties accept the BitmapEffect
object asavalue.

Bitmap effects have some drawbacks. The first is that bitmap effects in WPF are
implemented in unmanaged code, so they require a fully trusted application. As
a result, you can't use bitmap effects in an XBAP application. The other

190 | Chapter 5: Colors and Brushes

drawback is that bitmap effects are rendered in software and don’t use the
resources of a video card. Therefore, bitmap effects can be expensive for large
visual objects.

Bitmap effects are classes deriving from the BitmapEffect base class. These
classes are found in the System.Windows.Media.Effects namespace. WPF
provides six types of bitmap effects. These are:

« BlurBitmapEffect — Creates a blurring effect on your element.

» BevelBitmapEffect — Adds araised edge around your content.

» DropShadowBitmapEffect — Creates a shadow behind your element.

» EmbossedBitmapEffect — Gives your content an illusion of depth.

* OuterGlowBitmapEffect — Creates a glowing effect around your content.
» BitmapEffectGroup — Applies a composite of bitmap effects.

Now, let's start with an example in which you create a number of eements,
including Buttons, TextBlocks, and images. You then apply various bitmap
effects to these elements.

Hereisthe XAML file of this example:

<Wndow x: d ass="Chapt er 05. Bi t mapEf f ect sExanpl e"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Bitmap Ef fects" Hei ght="500" Wdth="400">

<@id Show@i dLi nes="True">

<@id. Col umDefinitions>
<Col ummDefi ni ti on Wdt h="Aut 0"/ >
<Col umDefini ti on Wdt h="Auto"/>

</ @i d. Col umbDefinitions>

<@id. RowbDefini ti ons>
<RowDefinition Hei ght="Auto"/>
<Rowbefi nition Hei ght="Auto"/>
<RowDefinition Hei ght="Auto"/>

</ @id. RowDefinitions>

<l-- Berel Efect: -->
<StackPanel Margin="5" @id.Colum="0" Qid. Row="0">
<Button Content="A Bevel ed Button" Wdth="175"
Hei ght ="50" Margi n="5">
<Butt on. Bi t napEf f ect >
<Bevel Bi t mapEf f ect Bevel Wdt h="10"
EdgeProf i | e="Qurvedl n" Li ght Angl e="45"
Relief ="0.2" Snoot hness="0.5" />
</ Butt on. Bi t mapEf f ect >
</ Butt on>
<Text Bl ock Text="Bevel " FontS ze="65"
Font i ght =" Bol d" For egr ound=" Dar kRed" >
<Text Bl ock. Bi t napEf f ect >

Chapter 5: Colors and Brushes | 191

<Bevel Bi t mapEf f ect/ >
</ Text Bl ock. Bi t mapEf f ect >
</ Text Bl ock>
</ St ackPanel >

<l-- Blur Efect: -->
<StackPanel Margin="5" @id.Colum="1" Qid. Row="0">
<Button Content="A Blur Button" Wdth="175"
Hei ght ="50" Mar gi n="5">
<But t on. Bi t mapEf f ect >
<Bl ur Bi t napEf f ect Radi us="1"/>
</ Butt on. Bi t mapEf f ect >
</ Butt on>
<Button Content="A Bl ur Button" Wdth="175"
Hei ght ="50" Margi n="5">
<But t on. Bi t mapEf f ect >
<Bl ur Bi t napEf f ect Radi us="3"/>
</ Button. Bi t mapEf f ect >
</ But t on>
</ St ackPanel >

<l-- Qowing Efect: -->
<St ackPanel Margi n="5, 20, 5,5" Qi d. Col umn="0"
Qid Row="1">

<Button Content="A G ow ng Button" Wdth="150"
Hei ght =" 30" Margi n="10">
<Butt on. Bi t mapHE f ect >
<Qut er d owBi t mapEf f ect A owCol or =" G ay"
A owSi ze="15" Noi se="1"/>
</ Button. Bi t mapEf f ect >
</ Butt on>
<Text Bl ock Text="QG owi ng" Font S ze="40"
Font Vi ght =" Bol d"
For egr ound="Wi te" Margi n="5">
<Text Bl ock. Bi t mapEf f ect >
<Qut er d owBi t mapEf f ect A owCol or =" G ay"
d owS ze="10" Noi se="0.5"/>
</ Text Bl ock. Bi t mapEf f ect >
</ Text Bl ock>
</ St ackPanel >

<l-- Shadow Effect: -->
<St ackPanel Margi n="5, 20, 5,5" Qi d. Col um="1"
Qid Row="1">
<Button Content="A Shadow Button" Wdth="150"
Hei ght =" 30" Margi n="5">
<Butt on. Bi t napEf f ect >
<Dr opShadowBi t mapEf f ect ShadowDept h="10"
Col or =" Dar kRed"/ >
</ Butt on. Bi t mapEf f ect >
</ Butt on>

<Text Bl ock Text ="Shadow' Margi n="3,0, 3, 13"
Font S ze="40" Font Wi ght =" Bol d"

192 | Chapter 5: Colors and Brushes

For egr ound="Li ght Coral ">
<Text Bl ock. Bi t napEf f ect >
<Dr opShadowBi t mapEf f ect ShadowDept h="20"
Col or ="@ ay" Softness="0"/>
</ Text Bl ock. Bi t mapEf f ect >
</ Text Bl ock>
</ St ackPanel >

<!-- Enbossed Effect: -->
<St ackPanel Margi n="5, 10, 5,5" @i d. Col um="0"
Qid Row="2">
<Text Bl ock Text="Qriginal |mage" Mrgi n="5"/>
<l mage Wdt h="175" Source="Fl ower.j pg" Margi n="5"
Qid. Colum="0" @id Row="2"/>
</ St ackPanel >

<St ackPanel Margi n="5,10,5,5" @&id. Col um="1"
Qid Row="2">
<Text Bl ock Text ="Enbossed | nage" Margi n="5"/>
<l mage Wdt h="175" Source="F ower.jpg" Mrgi n="5">
<l mage. Bi t mapEf f ect >
<EnbossBi t mapEf f ect Rel i ef ="0. 5"
Li ght Angl e="320" />
</ | mage. Bi t napEf f ect >
</ | mage>
</ St ackPanel >
</@id>
</ W ndow>

Figure 5-15 shows the results of executing this example.

In this example, let's first consider the BevelBitmapEffect, which creates a
raised edge around the border of a Button and a TextBlock element. Y ou can see
from the figure how the beveling affects the appearance of the elements. The
beveling creates a cleanly defined border that wraps the button element, and
creates crisp edges on the text. When you set a bevel, you can adjust the effect
by changing corresponding properties. BevelWidth property controls the width
of the beveled edge (the default value is 5), and the EdgeProfile controls how
this edge is shaped. The values for the EdgeProfile include Linear, Curvedin,
CurvedOut, and BulgeUp.

You can aso change how the beveled edge is shaded by specifying the Relief,
Smoothness, and LightAngle properties. Relief takes a value from O to 1, where
1 creates the strongest shadows (0.3 is default). Smoothness also has a value
range from 0O to 1, where 1 creates the smoothest shadows (the default value is
0.2). Findly, the LightAngle determines where the shadows appear. It takes a
value in degrees, where the default value is 135 degrees, which puts the light
source at the top-left corner and creates shadows on the bottom and right edges.

In this example, the LightAngle is set to 45 degrees for the Button element,
resulting in a shadow on the bottom and left edges. For the Text element, the
default values for al of the properties are used.

Chapter 5: Colors and Brushes | 193

B Bitmap Effects

A& By Button

& Beveled Button ‘

| -

TR

T, T o e e P

Glowing

-Tala1lY
CpATY

Idow

I I B T I I R e N I R I R I T I N]

Figure 5-15 Bitmap effects.

Next, we'll look at the blur effect. The BlurBitmapEffect includes two
properties. The Radius property allows you to control the strength of the blur
from 0 (no blur) to a blurring level of your choice. In this example, you apply
the blur effect to two buttons. The blur effect for the first button has a Radius of
1, while the second button uses a Radius of 3.

In addition to the Radius property, you can also set the Kernel Type property to
change the style of blurring. The default is Gaussian, which creates a smooth
blur. Alternatively, you can use Box, which is less soft and looks a little bit more
like a double image.

The OuterGlowBitmapEffect is used to add a diffuse halo of light around a
Button and Text elements. You can control the color of the glow by using the
GlowCaolor property, the width of the glow by using the GlowSize property, the

194 | Chapter 5: Colors and Brushes

sharpness of the glow by using the Noise property, and the transparency of the
glow by using the Opacity property.

The DropShadowBitmapEffect has a set of properties similar to those of the
OuterGlowBitmapEffect, including Color, Noise, Softness, and Opacity. It aso
includes a LightAngle property, which allows you to set the light direction, and
a ShadowDepth property, which lets you set how far away the shadow appears.
In this example, you apply this effect to both a Button and a Text element.

The final effect is the EmbossBitmapEffect, which provides a textured stand-out
effect to your content. It exposes two properties, Relief and LightAngle. The
Relief property (from 0 to 1 with the default value = 0.44) is used to adjust the
amount of embossing, and the LightAngle property is used to set the direction
that light falls on the embossed edge. In this example, you apply this effect to a
flower image. Both the original and embossed images are displayed in Figure
5-15 for comparison. For the embossed image in the figure, the Relief was set to
0.5 and the LightAngle to 320 degrees.

Opacity Masks

As discussed previously, you can change a color’ s transparency by specifying its
Opacity or changing the color’s apha value. However, all elementsin WPF can
be modified in many different ways. The OpacityMask property can be used to
make specific regions of an element transparent or partially transparent. Y ou can
use the opacity mask to create the glass-like surface effects, which make an
element look glossy or semitransparent.

Although any type of Brush object can be used as the opacity mask, the gradient
brush istypically used. Thisis because the fact that for a SolidColorBrush object,
you can accomplish the same effect more easily with the Opacity property than
you can with the OpacityMask. On the other hand, for a gradient brush,
OpacityMask becomes more useful. Using a gradient brush that moves from a
solid to transparent color, you can create a transparent effect that fades in over
the surface of your element.

To create an opacity mask, you apply a brush to the OpacityMask property of an
element or visual object. The following example, called OpacityMaskExample,
shows you how to apply an opacity mask to an image, and how to create a
reflection effect by combining an opacity mask with a VisualBrush and a
RenderTransform.

<Wndow x: d ass="Chapt er 05. Qpaci t yMaskExanpl e"
xm ns="htt p://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Titl e="Chapt er 05" Hei ght="430" Wdt h="300">

<@id>
<@id. RowDefini ti ons>
<RowDef i nition Hei ght="Auto"/>

Chapter 5: Colors and Brushes | 195

<RowDef i nition Hei ght="Auto"/>
</ Q@i d. Rowbefinitions>

<@id Qid. Row="0" Margi n="5">
<@ i d. Backgr ound>
<l mageBr ush | mageSour ce="Fl ower.j pg"/>
</ @i d. Backgr ound>
<B I'i pse Wdt h="200" Hei ght ="200"
St rokeThi ckness="0" Fill="Yel | ow'
Mar gi n="20">
<B li pse. paci t yMask>
<Radi al G adi ent Brush
QadientQigin="0.50.5"
Center="0.5,0. 5"
Radi usX="1" Radi usY="1">
<G adientStop Offset="0"
Col or="Transparent" />
<@GadientStop OFfset="1"
Gol or="Yel | ow'/ >
</ Radi al & adi ent Br ush>
</B i pse. Qaci t yMask>
</BIipse>
</Qqid>

<@id Qid Row"1">
<St ackPanel Margi n="10">
<Button Name="Sel ect" Tool Ti p="Sel ect"
Mar gi n="5" Wdt h="60" Hei ght ="60"
Backgr ound="Li ght Coral ">
<l mage Wdt h="50" Hei ght="50">
<l mage. Sour ce>
<Dr awi ngl mage>
<Dr awi ngl nage. Dr awi ng>
<CGeonet r yDr awi ng
Brush="Yel | ow'>
<Ceonet r yDr awi ng. Geonet ry>
<Pat hGeonet ry
Fi gures="M5, 75 L 50,0 75,75 60, 75 60, 100 40, 100, 40, 752" >
<Pat hGeonet ry. Tr ansf or m»
<Rot at eTr ansf orm
Cent er X="50"
Cent er Y="50"
Angl e="45"/>
</ Pat hGeonet ry. Tr ansf or e
</ Pat hGeonet ry>
</ Geonet r yDr awi ng. Geonet ry>
<Geonet r yDr awi ng. Pen>
<Pen Brush="G ay"
Thi ckness="3"/>
</ Geonet r yDr awi ng. Pen>
</ Geonet r yDr awi ng>
</ Draw ngl nage. Dr awi ng>
</ Drawi ngl mage>
</ | mage. Sour ce>

196 | Chapter 5: Colors and Brushes

</ | mage>
</ But t on>

<Button Hei ght="60" Wdth="60"
Render Transf ornOri gi n="1, 0. 5" >
<But t on. Backgr ound>
<M sual Brush Vi sual ="{Bi ndi ng H ement Narme=Sel ect }"/ >
</ But t on. Backgr ound>
<But t on. Qpaci t yMask>
<Li near @ adi ent Brush Start Poi nt="0, 0"
EndPoi nt ="0, 1" >
<@ adi ent Stop Col or="Transparent" Cffset="0"/>
<@ adi ent Stop ol or ="#77000000" Cffset="1"/>
</ Li near @ adi ent Brush>
</ But t on. Qpaci t yMask>
<But t on. Render Tr ansf or n»
<Scal eTr ansf orm Scal eY="-1"/>
</ But t on. Render Tr ansf or n»
</ But t on>
</ St ackPanel >
</Qid>
</Q@id>
</ W ndow>

Figure 5-16 shows the result of running this application. In the top image, you
place a circle mask created using a Radial GradientBrush on an image, which
givesthe effect of aflower inside ayellow glassjar.

In the bottom image, you reflect a Select button using the OpacityMask property
in conjunction with VisualBrush. The LinearGradientBrush is used to fade
between a completely transparent color and a partially transparent color, which
makes the reflected button appear more redlistic. A RenderTransform is also
applied, which flips the button and makes it upside down.

Brush Transforms

In Chapter 3, we discussed object transformations. However, you can apply
similar transforms to brushes. The difference between object and brush
transforms is that object transformations transform the object itself, while brush
transformations only affect the way the object is painted by the brush. Namely,
brush transforms only change thefill pattern of the object.

The Brush class provides two transform properties, Transform and
RelativeTransform. These properties alow you to rotate, scale, skew, and
tranglate a brush’ s contents. When you apply atransform to a brush’s Transform
property and want to transform the brush contents about the center, you need to
know the size of the painted area. Suppose the painted area is 200x100. If you
use a RotateTransform to rotate the brush’s output 45 degrees about its center,
you'd give the RotateTransform a CenterX of 100 and a CenterY of 50.

Chapter 5: Colors and Brushes | 197

B ChapterD5 . [Z| @' E|

Figure 5-16 OpacityMask effects.

On the other hand, when you apply a transform to a brush’s RelativeTransform
property, that transform is applied to the brush before its output is mapped to the
painted area. The following list describes the order in which a brush’s contents
are processed and transformed.

» First the brush’s contents are processed. For a GradientBrush, this means
determining the gradient area. For a TileBrush, (ImageBrush,
DrawingBrush, and Visual Brush derive from the TileBush class), the
ViewBox is mapped to the Viewport. This becomes the brush’ s outpuit.

* Then, the brush’s output is projected onto a1 x 1 transform rectangle.
» Thebrush’s RelativeTransformis applied, if it has one.

» Thetransformed output is projected onto the areato paint.

e Finadly, the brush’s Transform is applied, if it has one.

Because the RelativeTransform is applied while the brush’s output is mapped to
a 1 x 1 rectangle, the transform center and offset values appear to be relative.
For example, if you use a RotateTransform to rotate the brush’s output 45

198 | Chapter 5: Colors and Brushes

degrees about its center, you would give the RotateTransform a CenterX of 0.5
and a CenterY of 0.5.

Remember that there are no effectsif you apply transforms to a SolidColorBrush,
because this brush aways gives the solid color paint no matter if it is
transformed or not.

Let’s consider an example that applies the rotation transform to various brushes.
You can easily apply other transforms to the brushes by following the same
procedure presented in this example.

In this section, rather than create a separate code example of rotation transforms
for each of the brushes, here we'll present a single example to demonstrate all of
them. The coding details will then be explained in the following sections.

Hereisthe XAML file of the example, named BrushTransformExample:

<Wndow x: d ass="Chapt er 05. Br ushTr ansf or nExanpl e"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Brush Transforns" Hei ght="475" Wdth="510">

<Wndow. Resour ces>
<Dr awi ngBrush x: Key="M/Dr awi ngBr ush" >
<Dr awi ngBr ush. Dr awni ng>
<Dr awi ngQr oup>
<Dr awi ngQ@ oup. Chi | dren>
<Ceorret r yDr awi ng
Geonet ry="M, 30 L20, 25 20, 35Z" Brush="Bl ue"/>
<Ceorret r yDr awi ng
Geonet ry="Ms0, 0 L25, 20 35, 20Z" Brush="Bl ue"/>
<Ceorret r yDr awi ng
Geonret ry="Ms0, 30 L40, 25 40, 352" Brush="Bl ue"/>
<Geonet r yDr awi ng
Georret ry="Ms0, 60 L25, 40 35, 40Z" Brush="Bl ue"/>
<Geonet r yDr awi ng
Geonet ry="M0, 20 L30, 20 30, 30 20, 30Z" Brush="Red"/>
<Geonet r yDr awi ng
Geonet ry="MB0, 20 L40, 20 40, 30 30, 30Z" Brush="Yel | ow'/ >
<Geonet r yDr awi ng
Geonet ry="M0, 30 L30, 30 30,40 20, 40Z" Brush="Li ght G ay"/>
<Geonet r yDr awi ng
Geonet ry="M0, 30 L40, 30 40, 40 30, 40Z" Brush="Bl ack"/>
<Geonet r yDr awi ng>
<Geonet ryDr awi ng. Georret ry>
<H |'i pseCGeorret ry Radi usX="30"
Radi usY="30"
Cent er =" 30, 30"/ >
</ Geonet r yDr awi ng. Geonet ry>
<Georret r yDr awi ng. Pen>
<Pen Thi ckness="5"
Brush="QG een"/>
</ Geonet r yDr awi ng. Pen>

Chapter 5: Colors and Brushes | 199

</ Geonet r yDr awi ng>
</ Drawi ngQ oup. Chi | dren>
</ Drawi ngQ oup>
</ Drawi ngBr ush. Dr awi ng>
</ Drawi ngBr ush>
</ Wndow. Resour ces>

<@id>

<@id. Col umDefinitions>
<Col umDefiniti on Wdt h="Auto"/>
<Col umDefi ni ti on Wdt h="Aut 0"/ >
<Col umDefiniti on Wdt h="Auto"/>
<Col umDefi ni ti on Wdt h="Aut 0"/ >

</ @i d. Col umbDefinitions>

<@id. RowDefini ti ons>
<Rowbefi nition Hei ght="Auto"/>
<RowDefinition Hei ght="Auto"/>
<RowDefi nition Hei ght="Auto"/>
<RowDefinition Hei ght="Auto"/>
<RowDefi nition Hei ght="Auto"/>
<RowDefinition Hei ght="Auto"/>
<RowDefi nition Hei ght="Auto"/>

</ @i d. RowDefinitions>

<Text Bl ock Text="No Transforn? Margin="30,5,5, 0"
Qid Glum="1" Gid. Row="0"/>
<Text Bl ock Text="Rel ative Transform' Margi n="18, 5,5, 0"
Qid Clum="2" @id. Row="0"/>
<Text Bl ock Text="Transforn{ Margin="38,5,5, 0"
Qid Glum="3" Gid. Row="0"/>
<Text Bl ock Text ="Li near G adi ent Brush"
Mar gi n="5, 25,0,5" @&id. Col um="0"
Qid Row="1"
Hori zontal Al i gnment ="R ght"/ >
<Text Bl ock Text ="Radi al G adi ent Brush"
Mar gi n="5, 25,0,5" Qi d. Gol umm="0"
Qid Row="2"
Hori zontal Ali gnment ="R ght "/ >
<Text Bl ock Text ="1nageBrush" Margi n="5, 25, 0, 5"
Qid Colum="0" Gid. Row="3"
Hori zontal Al i gnent ="R ght "/ >
<Text Bl ock Text="Tiled | mageBrush" Margi n="5, 25, 0, 5"
Qid Clum="0" GQid. Row="4"
Hori zontal Ali gnment ="R ght "/ >
<Text Bl ock Text ="Draw ng, Vi sual Brush"
Margi n="5, 25,0,5" &id. Col um="0"
Qid. Row="5"
Hori zontal Al i gnment ="R ght "/ >
<TextBl ock Text="Titled Vi sual Brush" Margi n="5, 25, 0, 5"
Qid Golum="0" @id. Row="6"
Hori zontal Al i gnment ="R ght"/ >

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="1" @id Row="1">

200 | Chapter 5: Colors and Brushes

<Rectangle.Fill>
<Li near @ adi ent Brush Start Poi nt="0, 0"
EndPoi nt ="1, 0" >
<@ adient Stop Col or="@Gay" Gfset="0.4"/>
<@ adi ent Stop Col or ="Yel | ow'
O fset="0.5"/>
<@ adientStop Col or="Gay" Gfset="0.6"/>
</ Li near O adi ent Brush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="2" @id Row"1">
<Rectangle. Fill>
<Li near @ adi ent Brush Start Poi nt="0, 0"
EndPoi nt ="1, 0" >
<@ adientStop Col or="@Gay" Gfset="0.4"/>
<@ adi ent Stop Col or ="Yel | ow'
Cfset="0.5"/>
<@ adientStop Col or="Gay" Gfset="0.6"/>
<Li near G adi ent Brush. Rel ati veTr ansf or n»
<Rot at eTr ansf or m Cent er X="0. 5"
Center Y="0. 5"
Angl e="45" />
</ Li near @ adi ent Brush. Rel ati veTr ansf or n»
</ Li near G adi ent Br ush>
</Rectangle. Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" MNargi n="5"
Qid Colum="3" @id Row="1">
<Rectangle. Fill>
<Li near @ adi ent Brush Start Poi nt="0, 0"
EndPoi nt ="1, 0" >
<G adientStop Color="Gay" Cfset="0.4"/>
<@ adi ent Stop Col or =" Yel | ow'
Cfset="0.5"/>
<@ adi ent Stop Col or="QGay" Gfset="0.6"/>
<Li near @ adi ent Br ush. Tr ansf or n»
<Rot at eTr ansf or m Cent er X="60"
Cent er Y="30"
Angl e="45" | >
</ Li near @ adi ent Br ush. Tr ansf or n»
</ Li near @ adi ent Brush>
</Rectangle.Fill>
</ Rect ang| e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Gid Colum="1" @id. Row"2">
<Rectangle.Fill>
<Radi al & adi ent Brush>
<@ adientStop Col or="@Gay" GOfset="0.3"/>
<@ adi ent Stop Col or =" Yel | ow'
Cfset="0.5"/>

Chapter 5: Colors and Brushes | 201

<@ adientStop Col or="Gay" Gfset="0.7"/>
</ Radi al @ adi ent Brush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="2" @id Row="2">
<Rectangle. Fill>
<Radi al G adi ent Brush>
<@ adientStop Col or="@ay" Gfset="0.3"/>
<@ adi ent Stop Col or =" Yel | ow'
Ofset="0.5"/>
<@ adientStop Color="@Gay" Gfset="0.7"/>
<Radi al G adi ent Brush. Rel ati veTr ansf or n»
<Rot at eTr ansf or m Cent er X="0. 5"
CenterY="0.5"
Angl e="45"/ >
</ Radi al @ adi ent Brush. Rel ati veTr ansf or n»
</ Radi al @ adi ent Br ush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="3" @id Row="2">
<Rectangle. Fill>
<Radi al G adi ent Brush>
<@ adientStop Col or="@ay" Gfset="0.3"/>
<@ adi ent Stop Col or =" Yel | ow'
Ofset="0.5"/>
<QadientStop Color="Gay" fset="0.7"/>
<Radi al G adi ent Brush. Tr ansf or m
<Rot at eTr ansf or m Cent er X=" 60"
Cent er Y="30"
Angl e="45"/ >
</ Radi al @ adi ent Br ush. Tr ansf or n»
</ Radi al & adi ent Br ush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght="60" Margi n="5"
Gid Clum="1" @id. Row"3">
<Rectangle. Fill>
<l mageBr ush | mageSour ce="Fl ower.j pg"/ >
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="2" @id. Row="3">
<Rectangle. Fill>
<I mageBr ush | mageSour ce="F ower . j pg">
<l mageBr ush. Rel ati veTr ansf or n»

<Rot at eTr ansf or m Cent er X="0. 5"

Cent er Y="0.5"

Angl e="45"/ >

202 | Chapter 5: Colors and Brushes
</ | mageBr ush. Rel at i veTr ansf or m
</ | mageBr ush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="3" @id Row="3">
<Rectangle. Fill>
<I mageBr ush | mageSour ce="H ower . j pg">

<l mageBr ush. Tr ansf or n»
<Rot at eTr ansf or m Cent er X="60"
Cent er Y="30"

Angl e="45"/ >
</ | mageBr ush. Tr ansf or m>
</ | mageBr ush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Clum="1" @id. Row="4">
<Rectangle. Fill>
<l mageBr ush | mageSour ce="Fl ower . j pg"

Ti |l eMode="Ti | e"
Vi ewport="0,0,0.5,0.5"/>

</Rectangle. Fill>
</ Rect angl e>
<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="2" @id Row="4">
<Rectangle.Fill>
<l mageBr ush | mageSour ce="Fl ower . j pg"
Ti | eMbde="Ti | e"
Vi ewport="0,0,0.5,0.5">
<l mageBr ush. Rel ati veTr ansf or n»

<Rot at eTr ansf or m Cent er X="0. 5"
Center Y="0.5"

Angl e="45"/ >
</ | mageBr ush. Rel at i veTr ansf or mp
</ | mageBr ush>
</Rectangle. Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="3" @id. Row="4">
<Rectangle.Fill>
<l mageBr ush | mageSour ce="Fl ower . j pg"
Til eMode="Til e"
Vi ewport="0,0,0.5,0.5">

<l mageBr ush. Tr ansf or n»
<Rot at eTr ansf or m Cent er X=" 60"
Cent er Y="30"

Angl e="45"/>
</ | mageBr ush. Tr ansf or n»
</ | mageBr ush>

Chapter 5: Colors and Brushes | 203

</Rectangle.Fill>
</ Rect angl e>

<Rect angl e x: Nane="M/Dr awi ngRect angl e" Wdt h="120"
Hei ght =" 60" Mar gi n="5"
Qid Colum="1" Gid. Row="5"
Fill="{Stati cResource M/Draw ngBrush}"/>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="2" @id Row="5">
<Rectangle. Fill>
<\fi sual Brush
Vi sual ="{Bi ndi ng B enent Nane=M/Dr awi ngRect angl e}" >
<M sual Brush. Rel ati veTr ansf or n»
<Rot at eTr ansf or m Cent er X="0. 5"
Cent er Y="0. 5"
Angl e="45"/ >
</ Vi sual Brush. Rel ati veTr ansf or n»
</ M sual Brush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid. Colum="3" @id. Row"5">
<Rectangle. Fill>
<M sual Brush
M sual ="{Bi ndi ng B enent Nane=M/Dr awi ngRect angl e}" >
<Vi sual Brush. Tr ansf or n»
<Rot at eTr ansf or m Cent er X="60"
Cent er Y="30"
Angl e="45"/ >
</ Vi sual Brush. Tr ansf or n»
</ Mi sual Brush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" MNargi n="5"
Qid Colum="1" @id. Row="6">
<Rectangle.Fill>
<Vi sual Brush Ti | eMbde="Ti | e"
Wi ewport="0, 0, 0. 5,0.5"
Vi sual ="{Bi ndi ng H erment Name=M/Dr awi ngRect angl e}"/ >
</Rectangle.Fill>
</ Rect ang| e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid. Colum="2" @id. Row"6">
<Rectangle.Fill>
<Vi sual Brush Ti | eMbde="Ti | e"
Vi ewport="0, 0, 0.5, 0. 5"
M sual ="{Bi ndi ng B enent Nane=M/Dr awi ngRect angl e}" >

<M sual Brush. Rel ati veTr ansf or n»
<Rot at eTr ansf or m Cent er X="0. 5"
Cent er Y="0. 5"

204 | Chapter 5: Colors and Brushes

Angl e="45"/ >
</ Vi sual Brush. Rel ati veTr ansf or mp
</ M sual Brush>
</Rectangle.Fill>
</ Rect angl e>

<Rect angl e Wdt h="120" Hei ght ="60" Margi n="5"
Qid Colum="3" @id. Row"6">
<Rectangle.Fill>
<Vi sual Brush Til eMbde="Ti | "
Viewport="0,0,0.5,0.5"
Vi sual ="{Bi ndi ng H enent Name=M/Dr awi ngRect angl e} " >
<Vi sual Brush. Tr ansf or n»
<Rot at eTr ansf or m Cent er Xx="60"
Cent er Y="30"
Angl e="45"/ >
</ Vi sual Brush. Tr ansf or n»
</ M sual Brush>
</Rectangle.Fill>
</ Rect angl e>
</Qid>
</ W ndow>

In this example, you first create a Window Resource, called MyDrawingBrush,
for a DrawingBrush object, which will be used for the DrawingBrush and
VisualBrush transforms. Then, you create severa rectangle shapes that are filled
using various brushes with or without transforms. This example generates the
output shown in Figure 5-17.

Linear GradientBrush Transform

In this example, you create three rectangle shapes that are painted using a
LinearGradientBrush. The first rectangle is filled using a LinearGradientBrush
without a RotateTransform. You can see that a vertical yellow bar is at the
center of the rectangle.

The second rectangle is filled using a transformed LinearGradientBrush. A
RotateTransform of 45 degrees is applied to the brush's RelativeTransform
property. Y ou might wonder how you can obtain the result shown in Figure 5-17
for this relative transform. This can be easily understood using the definition of
a brush’'s RelativeTransform property. Figure 5-18 shows each step of the
process.

The third rectangle is painted using LinearGradientBrush with a Transform
property specified using a RotateTransform of 45 degrees. The result from this
absolute transform is easy to understand: it is simply a direct rotation (45
degrees) of the original (not transformed) brush.

After understanding the difference between the RelativeTransform and
Transform properties of abrush, you can easily create various interesting effects
by using brushes with different transforms.

Chapter 5: Colors and Brushes | 205

Bl Brush Transformations

No Transform Relative Transform
LingarGradientBrush .
— E
"!fa.
ImageBrush e E
e B S
e =1

Tiled ImaageBrush

Drawing,Visual Brush

Titled VisualBrush

Figure 5-17 Brush Transformations.

Figure 5-18 Relative rotation of a LinearGradientBrush.

206 | Chapter 5: Colors and Brushes

RadialGradientBrush Transform

Like the LinearGradientBrush discussed in the preceding section,
RadialGradientBrush aso has two different types of transformations —
Transform and ReativeTransform. In this example, the second row of
rectangles are filled using different RadialGradientBrush objects. The first
rectangle is painted using a brush without a rotation. Take a look &t the
corresponding code segment. You actually define RadialGradientBrush with a
yellow circular ring. This circular ring becomes the €ellipse pattern seen in Figure
5-17. This is because you are trying to fill and fit a rectangle shape using this
brush.

Thefill pattern of the third rectangle in this case is obtained by directly rotating
the original brush by 45 degrees. However, you might wonder why the paint
pattern of the second rectangle is identical to that of the first one. Why is there
no effect on the brush after it is rotated by 45 degrees relatively? The answer to
this can be understood from the explanation of Figure 5-19.

= Project the base tile onto the 1 x 1 transformation rectangle

=1- 0

= Apply the RotateTransform (45 degrees)

El-E

= Project the transformed base tile onto the area to paint

- =3

Figure 5-19 Relative rotation of a RadialGradientBrush.

In fact, according to the process of relative transform, the original rectangle
needs to be projected onto a 1x1 transform square. In this projected space, the
original ellipse pattern becomes a circular ring. The rotation should be applied to
the RelativeTransform property of the brush in this projected space. Since the
pattern of the brush is aring shape, there should be no effect on the pattern when
you rotate it about its center. Thisis why you get the same ellipse pattern as you
would have using original brush after you project the rotated brush back onto the
rectangle paint area.

Chapter 5: Colors and Brushes | 207

ImageBrush Transform

In the third row, you fill rectangle shapes using ImageBrush. The fill image
pattern using an ImageBrush with a relative rotation is different than that of a
pattern using a brush with an absolute rotation. The results can be expained
based on the process of the Transform and RelativeTranform properties of an
ImageBrush.

In the next row, the rectangle is painted using a tiled ImageBrush. The TileMode
and Viewport properties are specified for a transformed brush in the same way
as those of the original ImageBrush. Notice that for the untransformed brush, the
Viewport(0, 0, 0.5, 0.5) always results in afill region with four tiles, no matter
how big or small the region is. However, thisisn’t true for the transformed brush.
Because of the rotation, the tiles don't line up with the edges of the rectangles,
so instead you get partial tiles at the edges.

Drawing and Visual Brush Transform

In this case, you first create a DrawingBrush in Windows Resources, named
MyDrawingBrush. You fill the first rectangle with this DrawingBrush by calling
the StaticResource name. Then, you create two new rectangle shapes, each of
which uses VisuaBrush to fill its background. In this example, you copy the
first rectangle using VisualBrush, and then use this copy to specify the Fill
property of second rectangle. At the same time, VisualBrush is transformed by a
relative rotation of 45 degrees about the second rectangle’s center. The third
rectangle does the same, only this time the VisualBrush is rotated by 45 degrees
in an absolute system.

Finally, you use atiled VisualBrush to paint the last three rectangles. The first
rectangle simply uses VisualBrush to copy MyDrawingBrush, then tiles its Fill
property. The second rectangle is painted using a tiled VisuaBrush that is
transformed by a RelativeTransform. The Fill property of the last rectangle is
specified using a tiled VisualBrush that is transformed by an absolute rotation.
Y ou can seethat all three rectangles have different fill patterns.

Chapter 6
Animation

From the previous chapters you learned that WPF provides a powerful set of
graphics and layout features that enable you to create attractive user interfaces
and appealing graphics objects. Animation can make user interfaces and
graphics even more spectacular and usable. Animation allows you to create truly
dynamic WPF applications and make your programs more responsive and
intuitive. Animation can also draw attention to important objects and guide the
user through transitions to new content.

WPF animation is an important part of the Windows Vista, .NET 3.0, and .NET
3.5. It is integrated seamlessly into WPF windows and pages. To create an
animation in WPF applications, you don't need to write your own code using
timers and event handling; instead, you can directly use corresponding
animation classes that WPF provides.

In this chapter, we'll consider the rich set of WPF animation classes and show
how to use them in WPF applications. As aways, this chapter will also provide
awide range of animation examples.

WPF Animation Basics

Animation is an illusion that is created by quickly cycling through a series of
frames, each dightly different from the last. For example, in order to create a
real-time stock chart, you might follow the steps listed here:

e Createatimer.

e Check thetimer at specified intervals (say, every 30 seconds) to see how
much time has el apsed.

* When you check the timer, feed the lastest market stock datainto your stock
chart program.

» Update the stock chart with the new stock data and redraw it on your screen.

210 | Chapter 6: Animation

Prior to WPF, Windows-based developers had to create and manage their own
timing systems and event handling or use specia custom libraries. Although this
kind of timer-based animation isn’'t very difficult to implement, there are some
issues associated with integrating it into a window application. For example, the
timer-based animation usually assumes a single animation. If you want multiple
animations running at the same time, you need to rewrite all of your animation
code. Another issue is that the animation frame rate is fixed. If you want to
change the timer interval, you might need to change your animation code too.

WPF includes an efficient timing system that is exposed through managed code
and XAML, deeply integrated into the WPF framework. WPF animation makes
it easy to animate controls and other graphical objects.

WPF handles all the behind-the-scene work of managing a timing system and
redrawing the screen efficiently. It provides timing classes that enable you to
focus on the effects you want to create, instead of the mechanics of achieving
those effects. WPF also makes it easy to create your own animations by
exposing animation base classes, from which you can inherit. These custom
animations gain many of performance benefits of the standard animation classes.

Property-Based Animation

The WPF animation system uses a different model than the timer-based
animation. Basically, a WPF animation directly modifies the value of a
dependency property over an interval of time. For example, to make a drawing
of a rectangle fade out of view, you can modify its Opacity property in an
animation. To make it grow or shrink, you can modify its Width and Height
properties. The secret to creating the animation you want becomes determining
what properties you need to modify.

For a property to have animation capabilities, it must meet the following
requirements:

* It must be a dependency property.

» It must belong to aclass that inherits from DependencyObject and
implements the | Animatabl e interface.

» There must be a compatible animation data type available.

This means that to animate a dependency property, you need to have an
animation class that supports its data type. For example, the Width property of a
rectangle uses the double data type. To animate it, you use the DoubleAnimation
class. However, the Color property of a SolidColorBrush object uses the color
structure, so it requires the ColorAnimation class. If WPF doesn't provide the
data type you want to use, you can create your own animation class for that data
type. In fact, you will find that the System.Windows.MediaAnimation
namespace contains over 100 animation classes for almost every data type that
you'll want to use.

Chapter 6: Animation | 211

There are three types of animations in WPF: linear interpolation animation, key
frame animation, and path-based animation. Linear interpolation animations
represent animations that vary properties gradually between starting and ending
values. DoubleAnimation and ColorAnimation belong to this category, and they
use interpolation to smoothly change their values. On the other hand, key frame
animations change property values abruptly at specified times, and are often
used when changing certain data types, such as string and reference type of
objects. All key frame animation classes in WPF are named in the form, Type
Name + AnimationUsingK eyFrames; i.e., StringA nimationUsingK eyFrames and
ObjectAnimationUsingK eyFrames.

Every data type supports key frame animations. However, some data types have
a key frame animation class but no interpolation animation class. For example,
you can animate a string using key frames, but you can’t animate a string using
interpolation. In other worlds, a data type that has a normal animation class that
uses interpolation, such as DoubleAnimation, aso has a corresponding
animation type for key frame animation, such as
DoubleAnimationUsingK eyFrames.

The third type of animation is called path-based animation. Unlike interpolation
and key frame-based animations, path-based animations change a value
according to a shape described by a PathGeometry object. Path-based
animations are useful for moving an element along a path. The classes for path-
based animations have names in the form Type Name + AnimationUsingPath;
i.e., DoubleA nimationUsingPath and PointA nimationUsingPath.

All three of the above types of animation classes derive from an abstract Type,
called Name + AnimationBase (such as DoubleAnimationBase) class. This base
animation class provides you a way to create your own animation classes. You
can teke a look at the members of the System.Windows.Media Animation
namespace from Microsft WPF reference materials, where you will find over
100 animation classes.

A Simple Animation in Code

As you have aready learned, the most common animation technique is linear
interpolation. You have used this type of animations in previous chapters. Now
let's use a simple example to illustrate how an animation works in WPF. Start
off with a new WPF Windows project and name it Chapter06. Add a StartMenu
window to the project, from which you can access all of the examples in this
chapter.

Then, add a new WPF Window, called SimpleAnimation, to the current project.
In this example, you'll move a Rectangle shape around a Canvas. To create this
effect, you use an animation that modifies the Canvas.Left and Canvas.Top
properties of the rectangle. The animation is created in code. Here are the
XAML and code-behind files of this example:

<Wndow x: d ass="Chapt er 06. Si npl eAni mat i on"
xm ns="http://schemas. m crosoft. comw nf x

212 | Chapter 6: Animation

/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="S npl e Ani mati on Exanpl e" Hei ght ="300" Wdt h="300">
<Canvas>
<Rect angl e x: Nane="rect 1" Wdth="100" Hei ght="50"
Fill="Blue"/>
</ Canvas>
</ W ndow>

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;

usi ng System W ndows. Medi a;

usi ng Syst em W ndows. Shapes;

usi ng System Wndows. Medi a. Ani mati on;

nanmespace Chapt er 06
public partial class S npleAnination : Wndow

public S npl eAni mation()

{
InitializeConponent();
Doubl eAni mati on da = new Doubl eAni mati on();
da. From= 0;
da. To = 200;
da. Durati on = Ti meSpan. Fr onBeconds(5) ;
da. Aut oReverse = true;
da. Repeat Behavi or = Repeat Behavi or. For ever;
rect 1. Begi nAni nati on(Canvas. Left Property, da);
rect 1. Begi nAni mat i on(Canvas. TopProperty, da);
}

}

In this example, you define a blue rectangle on a Canvas using XAML and
perform the corresponding animations in code. First, you create a
DoubleAnimation instance. There are three key properties that are required by
any interpolation-based animation: the starting value (From), the ending value
(To), and the time that the animation should take (Duration). In this example,
you also use two more properties, AutoReverse and RepeatBehavior. These two
properties control the playback and repeatability of the animation.

If you execute this sample application, you will obtain a rectangle that moves
around inside the Canvas.

Instead of using the To property, you can use the By property. The By property
is used to create an animation that changes a value by a set amount, rather than
to a specific target. For example, you could create an animation that enlarges the
rectangle’ s width by 50 units more than its current width, as shown here:

Doubl eAni mati on da = new Doubl eAni mati on();
da. By = 50;

Chapter 6: Animation | 213

da. Durati on = Ti meSpan. Fr onBeconds(5) ;
rect 1. Begi nAni nati on(Wdt hProperty, da);

This approach isn't necessary in this rectangle example, because you could
achieve the same effect using a simple calculation to set the To property, such as:

da. To = rect 1. Wdth + 50;

However, the By value makes more sense when you create animations in
XAML because the markup code doesn't provide a way to perform any
calculations.

The preceding example creates the animation in code using the BeginAnimation
method. This approach is called local animation and provides a convenient way
to animate the dependency property of any animatable object. You can use this
approach when you want to apply an animation to a dependency property and
don’t need to interactively control the animation after it starts.

Remember that the local animation is a per-instance approach, indicating that
the local animation is applied directly to the instance of an object. It can’'t be
defined in style, control templates, or data templates. If you do want more
animation features, such as interactive control, you need to use the Storyboard
animations.

Animation and Storyboard

WPF animations are represented by a group of animation classes. You create an
animation instance and specify the animation properties, such as the From, To,
and Duration properties. This makes these animation classes a great fit for
XAML files. What's less clear is how to hook an animation up to a particular
element and property, and how to trigger it at the right time. To solve these
issues, WPF implements two critical components for animations, storyboard and
event trigger.

You'll learn how to create an animation using a storyboard and event trigger in
the following sections.

Storyboard and Event Trigger

In the earlier chapters of this book, you used Storyboard animation extensively
without considering the detailed animation process. Actually, the storyboard in
WPF is simply the XAML equivalent of the BeginAnimation() method in code,
and can be regarded as a specia type of container Timeline, which provides
targeting information for animations it contains. It alows you to direct an
animation to the right element and property. An event trigger responds to a
property change or event, and controls the storyboard. For example, to start an
animation, the event trigger must begin the storyboard.

You can use the storyboard to control multiple animations and playback
behaviors. However, the most basic feature provided by the Storyboard class is

214 | Chapter 6: Animation

its ability to point to a specific property and specific element using its
TargetProperty and TargetName properties. This means that the storyboard fills
the gap between your animation and the property you want to animate.

Y ou should use storyboard when you want to define and apply your animations
in XAML, interactively control your animations after they start, create a
complex tree of animations, or create animations in a Style, Control Template, or
DataTemplate. Note that for an object to be animated by storyboard, it must be a
UlElement or FrameworkElement.

Here, let’s consider an example that shows how to create an animation using the
storyboard. You can rewrite the previous example, SimpleAnimation, using
XAML and storyboard, like this:

<Wndow x: d ass="Chapt er 06. St or yboar dAni mat i on"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Storyboard Ani mation" Hei ght="300" Wdth="300">

<Canvas>
<Rect angl e x: Nane="rect 1" Wdth="100" Hei ght ="50"
Fill="8lue">
<Rect angl e. Tri gger s>
<BEvent Tri gger Rout edEvent =" Rect angl e. Loaded" >
<Bvent Tri gger . Acti ons>
<Begi nSt or yboar d>
<$t or yboar d>
<Doubl eAni nati on

St or yboar d. Tar get Nane="r ect 1"
St oryboar d. Tar get Propert y="(Canvas. Left)"
Fron¥"0" To="200" Duration="0:0:5"
Repeat Behavi or =" For ever "
Aut oRever se="True"/ >

<Doubl eAni mat i on
St or yboar d. Tar get Nanme="r ect 1"
St oryboar d. Tar get Propert y="(Canvas. Top) "
Fron¥"0" To="200" Duration="0:0:5"
Repeat Behavi or =" For ever "
Aut oRever se="True" />
</ St or yboar d>
</ Begi n$t or yboar d>
</ Event Tri gger . Acti ons>
</ Event Tri gger >
</ Rect angl e. Tri gger s>
</ Rect ang| e>
</ Canvas>
</ W ndow>

Here you create an event trigger, Rectangle.Triggers, which performs an action
for an event specified by its RoutedEvent property. Since the EventTrigger
object only supports one event, the Loaded event, you set the RoutedEvent

Chapter 6: Animation | 215

property to Rectangle.Loaded, which starts the animation when the Rectangle
loads. If you want the animation to start when the window first loads, you can
add an event trigger in the Window.Triggers collection that responds to the
Window.Loaded event. It is also possible to add an event trigger in the
Canvas.Triggers collection which responds to the Canvas.Loaded event. In this
case, the animation starts when the Canvasfirst loads.

Next, you add a storyboard to describe and control two animations, one for the
Canvas.Left and the other for the Canvas.Top property of the rectangle; using
the DoubleAnimation class. Note how you specify the TargetName and
TargetProperty using rectl and Canvas.Left (or Canvas. Top) respectively. The
syntax in this example is more common, because it allows you to put severa
aniamtions in the same storyboard, but allows each animation to act on a
different element and property.

You may notice that there are brackets around the Canvas.Left and Canvas.Top
properties. These brackets are necessary because both CanvasLeft and
Canvas.Top are attached properties. An attached property is a dependency
property and is managed by the WPF property system. The difference is that an
attached property applies to a class other than the one where it is defined. The
most common examples of attached properties are found in the layout containers.
For example, the Canvas defines the attached properties Left, Right, Top, and
Bottom. Similarly, the DockPanel defines the attached property Dock, and the
Grid class defines the attached properties Row and Column. You need to wrap
the entire property in brackets when you set an attached property to the
TargetProperty. It doesn’t need the brackets if you set the dependency property
(such as, the Width property) to the TargetProperty, like this:

< ...Storyboard. Target Property="Wdth" .../>

From this example, you can see that an animation in WPF can be created in
either XAML or code. Animations in XAML use the Storyboard and event
triggers, while animations in code use the BeginAnimation method. This,
however, isn’t necessary true. Y ou can aso use the Storyboard in code to create
animations.

Storyboard Animation in Code

Here, I'll use an example, caled StoryboardinCode, to demonstrate how to
create animations using the Storyboard in code. In this example, you create two
Button objects and animate their background colors. Also, you'll set different
animation starting times for these two buttons. For instance, you want the
second button to start its animation 5 seconds later than the first button.

Asusual, you create the layout using an XAML file:

<Wndow x: d ass="Chapt er 06. St or yboar dl nCode"
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Title="Soryboard Animation in Gode"

216 | Chapter 6: Animation
Hei ght ="300" W dt h="300">

<Canvas>
<Button Content="Buttonl" Wdth="150" Hei ght="80"
Canvas. Left="50" Canvas. Top="20">
<But t on. Backgr ound>
<Sol i dCol or Brush x: Nane="brushl1"/>
</ But t on. Backgr ound>
</ Butt on>

<Button Content="Button2" Wdth="150" Hei ght="80"
Canvas. Left ="50" Canvas. Top="110">
<But t on. Backgr ound>
<Sol i dCol or Brush x: Nane="brush2"/ >
</ But t on. Backgr ound>
</ Butt on>
</ Canvas>
</ W ndow>

This defines two Button objects and exposes their Background properties with a
SolidColorBrush object, which will be animated in code. The code below
demonstrates how to animate the buttons' background using Storyboard in code:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;

usi ng System Wndows. | nput ;

usi ng System W ndows. Medi a;

usi ng System W ndows. Shapes;

usi ng System W ndows. Medi a. Ani mat i on;

namespace Chapt er 06

public partial class Storyboardl nCode : W ndow
{
publ i ¢ St oryboardl nCode()

{
InitializeConponent();

Storyboard sb = new Storyboard();
Gol or Ani mation cal =
new Col or Ani mat i on(
Col ors. Blue, Col ors. Yel | ow,
new Duration(new Ti meSpan(0, 0, 10)));
cal. Repeat Behavi or = Repeat Behavi or . For ever;
cal. Aut oReverse = true;
St oryboar d. Set Tar get Nane(cal, "brushl");
St oryboar d. Set Tar get Property(cal,
new Propert yPat h(Sol i dCol or Brush. Col or Property));

Col or Ani nation ca2 =
new ol or Ani mati on(Col ors. Red, Col ors. G een,
new Duration(new Ti meSpan(0, 0, 10)));

ca2. Repeat Behavi or = Repeat Behavi or . For ever ;

Chapter 6: Animation | 217

ca2. Aut oReverse = true;
ca2. Begi nTi ne = new Ti neSpan(0, 0, 5);
St oryboar d. Set Tar get Narre(ca2, "brush2");
St oryboar d. Set Tar get Propert y(ca2,

new Propert yPat h(

Sol i dCol or Brush. Col or Property));

sh. Chi | dren. Add(cal);
sb. Chi | dren. Add(ca2);
sb. Begi n(thi s);

}

Here, you first create a Storyboard object, and then define the ColorAnimation.
Next you use the storyboard to hook ColorAnimation up to the buttons' brush
properties. Finally, you add animations to the Storyboard and start the
simulation using the Storyboard.Begin method. For the second animation ca2,
you also specify its BeginTime property by a five second delay. Of course, you
don’t need to use Storyboard when you' re working in code, instead, you can use
the BeginAnimation method, like this:

Br ushl. Begi nAni mat i on(Sol i dCol or Brush. Col or Property, cal);
Br ush2. Begi nAni mat i on(Sol i dCol or Br ush. Col or Property, ca2);

You can see from the above discussion that you have several options for
creating animations in WPF. Y ou can use XAML and Storyboard, or ssmply use
the BeginAnimation method or Storyboard in code. However, the most
commonly used approach in WPF animationsis XAML plus Storyboard.

Animation and Timing Behavior

In WPF, an animation is a type of timeline. A timeline represents a segment of
time and provides properties that allow you to specify the length of that segment,
when it should start, how many times it will repeat, how fast time progresses in
that segment, etc.

Classes that inherit from the Timeline base class provide additional functionality.
WPF provides the following Timeline types:

* AnimationTimeline—Thisis an abstract base class for Timeline objects that
generate output values for animating properties. It is used for the property-
based animation system.

* MediaTimeline — This class generates output from amediafile and is used
to play audio or video files.

» PardlelTimeline— This classis atype of TimelineGroup that groups and
controls child Timeline objects.

e Storyboard — Thisclassisatype of Parallel Timeline that provides targeting
information for the Timeline objectsit contains.

218 | Chapter 6: Animation

» Timeline— Thisis an abstract base class that defines timing behaviors.

e TimelineGroup — Thisis an abstract class for Timeline objects that can
contain other Timeline objects.

There are some useful members in the Timeline class which define time-related
properties used in animation, including Duration, FillBehavior, and etc. Here is
alist of some propertiesthat are often used in animations:

e BeginTime— Sets a delay time before the animation starts.

» Duration — Sets the length of time the animation runs, from start to finish, as
aDuration object.

» SpeedRatio — Increases or decreases the speed of the animation. The default
valueis 1.

* AccelerationRatio and DecelerationRatio — Makes an animation nonlinear,
so it starts off slow and then speeds up (by increasing AccelerationRatio) or
slows down at the end (by increasing the Decel erationRatio). Both values
areset fromOto 1.

» AutoReverse— If thisis set to true, the animation will play out in reverse
onceit is complete, reversing to the original value.

» FillBehavior — Determines what happens when the animation finishes.
Usually, it keeps the property fixed at the ending value
(FillBehavior.HoldEnd), but you can choose to return it to its original value
by setting FillBehavior.Stop.

* RepeatBehavior — Allows you to repeat an animation in a specific number
of times.

Since some of the timing behaviors such as Duration, RepeatBehavior, and
AutoReverse play an important role in creating animations, the following
sections will explain how to use them in your applications.

Duration

As mentioned previously, atimeline represents a segment of time. The length of
the segment is determined by the timeline's Duration property. In the case of
animations, the Duration specifies how long the animation takes to transition
from its starting value to its ending value. Duration and TimeSpan of an
animation are very similar. In the previous SimpleAnimation example, Duration
is set using TimeSpan. This is because the Duration structure defines an implicit
cast, which can convert System.TimeSpan to System.Windows.Duration as
needed. That iswhy all of the following four statement are valid:

Ti meSpan. FronBeconds(5) ;

new Ti meSpan(0, 0, 5);

new Dur at i on(Ti meSpan. Fr onBeconds(5));
new Dur ation(new Ti meSpan(0, 0, 5));

da. Duration
da. Duration
da. Duration
da. Duration

Correspondingly, the line of code in the StoryboardlnCode example

Chapter 6: Animation | 219

Col or Ani mati on cal = new Col or Ani mati on(Col ors. Bl ue,
Col ors. Yel | ow, new Durati on(new Ti neSpan(0, 0, 10)));

can be rewritten in the form:

Col or Ani mati on cal = new Col or Ani mati on(Col ors. Bl ue,
Col ors. Yel | ow, Ti neSpan. FronBeconds(10));

You can also specify a Duration using the special values Automatic or Forever,
likethis:

da. Duration
da. Duration

Dur ati on. Aut onati c;
Dur ati on. For ever;

The value Automatic simply sets the animation to a one-second duration, and
Forever makes the animation infinite in length, which prevents the animation
from having any effect. These values becomes useful when creating more
complex animations.

Storyboard has a default duration of Automatic, which means it automatically
ends when its last child animation ends. The following markup shows a
storyboard whose Duration resolves in five seconds, the length of time it takes
all of its child DoubleAnimation objects to complete:

<St or yboar d>
<Doubl eAni nat i on
St oryboar d. Tar get Nane="r ect 1"
St oryboar d. Tar get Propert y="Wdt h"
Fron¥"0" To="100" Duration="0:0:5"/>

<Doubl eAni nat i on
St oryboar d. Tar get Nane="r ect 2"
St oryboar d. Tar get Property="Wdt h"
Fron¥"0Q" To="150" Duration="0:0:3"/>
</ St or yboar d>

You can specificaly set the Duration of the Storyboard to a TimeSpan value,
which forces the animation to play longer or shorter than its child Timeline
objects. The following code snippet sets Duration of the storyboard to two
seconds. As a result, the first DoubleAnimation stops progressing after two
seconds, when it has animated the target rectangle’s width to 40. The second
DoubleAnimation also stops after two seconds, when it has animated rect2’s
width to 100.

<Storyboard Duration ="0:0:2">
<Doubl eAni mat i on
St oryboar d. Tar get Nane="r ect 1"
St oryboar d. Tar get Propert y="Wdt h"
Fron¥"0" To="100" Duration="0:0:5"/>

<Doubl eAni nat i on
St oryboar d. Tar get Nane="r ect 2"
St oryboar d. Tar get Propert y="Wdt h"
Fron¥"0" To="150" Duration="0:0:3"/>
</ St or yboar d>

220 | Chapter 6: Animation

RepeatBehavior

The RepeatBehavior property of a timeline controls how many times the
animation repeats its duration. Using the RepeatBehavior property, you can
specify how many times the timeline plays (an iteration Count) or the total
length of time it should play (a repeat Duration). In either case, the animation
goes through as many runs as necessary to fill the requested count or duration.
By default, timelines have an iteration count of 1, which means they play once
and don't repeat at all.

The following markup uses the RepeatBehavior property to make a
DoubleAnimation play for 10 times by specifying the iteration count:

<Doubl eAni mat i on
St or yboar d. Tar get Name="r ect 1"
St or yboar d. Tar get Property="Wdt h"
Fron¥"0" To="100" Duration="0:0: 5"
Repeat Behavi or =" 10x"/ >

You can also specify arepeat duration using the RepeatBehavior property, like
this:
<Doubl eAni mat i on
St or yboar d. Tar get Name="r ect 1"
St oryboar d. Tar get Propert y="Wdt h"
Fron¥"0" To="100" Duration="0:0:5"
Repeat Behavi or =" 0: 5: 30"/ >

This makes the DoubleAnimation play for a period of 5 minutes and 30 seconds.
If you set the RepeatBehavior property to Forever, the animation repeats until it
is stopped interactively or by the timing system.

AutoReverse

The AutoReverse property specifies whether a timeline will play backwards at
the end of each forward iteration. The following XAML snippet sets the
AutoReverse property of a DoubleAnimation to true. As aresult, it animates the
Width property of the rectangle from zero to 100, then from 100 to zero. It plays
for atotal of 5 minutes.

<Doubl eAni nati on
St oryboar d. Tar get Nare="r ect 1"
St oryboar d. Tar get Property="Wdt h"
Fronme"0" To="100"
Dur ati on="0: 2: 30"
Aut oRever se="True"/ >

When you use a Count value to specify the RepeatBehavior of atimeline and the
AutoReverse property of that timeline is set to true, a single repetition consists
of one forward iteration followed by one backward iteration.

Chapter 6: Animation | 221

BeginTime

The BeginTime property enables you to specify when a timeline starts. A
timeline's BeginTime is relative to its parent timeline. A begin time of zero
seconds means the timeline starts as soon as its parent starts. A finite value
creates an offset between when the parent timeline starts playing and when the
child timeline plays. By default, al timelines have a begin time of zero seconds.
You may also set a timeline's begin time to null, which prevents the timeline
from starting.

Note that the begin time isn't applied each time a timeline repeats due to its
RepeatBehavior setting. For example, if you create a animation with a
BeginTime of 5 seconds and a RepeatBehavior of Forever, there would be a 5-
second delay before the animation played for the first time, but not for each
successive repetition. However, if the animation’s parent timeline restarts or
repeats, the 5-second delay will still occur.

The BeginTime property is useful for staggering timelines. In the
StoryboardinCode example, you set the BeginTime property for the second
button’s background animation to a 5-second delay. The following code snippet
creates a storyboard that has two DoubleAnimation objects. The first animation
has a Duration of 10 seconds, and the second has a Duration of 5 seconds. The
BeginTime of the second DoubleAnimation is set to 10 seconds so that it begins
playing after the first DoubleAnimation ends:

<St or yboar d>
<Doubl eAni nat i on
St oryboar d. Tar get Nane="rect 1"
St oryboar d. Tar get Propert y="Wdt h"
Fron¥"0" To="100"
Durati on="0: 0: 10"
Begi nTi ne="0: 0: 0"/ >

<Doubl eAni nat i on
St oryboar d. Tar get Nane="r ect 2"
St oryboar d. Tar get Propert y="Wdt h"
Fronm="0" To="100"
Durati on="0: 0: 5"
Begi nTi ne="0: 0: 10"/ >
</ St or yboar d>

The other property, FillBehavior, specifies whether an animation stops or holds
its last value. An animation with a FillBehavior of HoldEnd holds its output
value — the property being animated retains the last value of the animation. A
value of Stop causes the animation to return its original value after it ends.

Speed Controls

The Timeline class provides three properties for specifying its speed:
SpeedRatio, AccelerationRatio, and DecelerationRatio. The SpeedRatio sets the
rate, relative to its parent, at which time progresses for atimeline. Values greater

222 | Chapter 6: Animation

than one increase the speed of the animation; values between zero and one slow
it down. A value of one (the default value) indicates that the timeline progresses
at the same speed as its parent. The SpeedRatio setting of a container timeline
affects all of its child’s Timeline objects aswell.

The AccelerationRatio and DecelerationRatio properties allow you to compress
parts of the timeline so that it progresses faster or sower. The rest of the
timeline is stretched to compensate so that the total time is unchanged. Both of
these properties represent a percentage vaue. For example, an
AccelerationRatio of 0.5 means that you want to spend the first 50% of the
duration of the animation accelerating. Thus, for a ten-second animation, the
first five seconds of the animation would be accelerating, and the remaining five
seconds would progress at a constant speed. The speed of the last five secondsis
faster than the speed of a nonaccel erated animation, because the animation needs
to make up for its slow start. The DecelationRatio can be discussed in a similar
manner.

Animations with an acceleration and deceleration are often used to give a more
natural appearance, such as when you animate a car. Now, let's consider an
example that shows you how to control the animation speed. Open the project
Chapter06, add a new WPF Window to the project, and name it AnimationSpeed.
Hereisthe XAML file of this example:

<Wndow x: d ass="Chapt er 06. Ani mat i onSpeed"
xm ns="htt p://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Titl e="Ani mati on Speed Exanpl e" Hei ght="240" Wdt h="410">

<StackPanel MNargi n="5">
<l-- Anination wthout accel eration or deceleration: -->
<Rectangl e Name="rect1" Fill="Red" Margi n="2"
Wdt h="20" Hei ght ="20"
Hori zontal Al i gnrent =" Left" />

<l-- Aninmation with a fast speed: -->

<Rectangl e Name="rect2" Fill="Q een" Margin="2"
Wdt h="20" Hei ght ="20"
Hori zontal Ali gnment ="Left" />

<l-- Animation with a slow speed: -->
<Rectangl e Narme="rect3" Fill="Blue" Mrgi n="2"
Wdt h="20" Hei ght ="20"
Hori zontal Al i gnrent ="Left" />

<l-- Anination that accel erates through 50% of
its duration: -->
<Rectangl e Name="rect4" Fill="QGay" Margi n="2"
Wdt h="20" Hei ght ="20"
Hori zontal Al i gnrent =" Left" />

<l-- Anination that decel erates through 50%

Chapter 6: Animation | 223

of its duration: -->
<Rectangl e Name="rect5" Fill="Coral" Margin="2"
Wdt h="20" Hei ght ="20"
Hori zontal Al i gnrent =" Left" />

<l-- Anination that accel erates through 50%
of its duration and decel erates through
the 50%of its duration: -->
<Rectangl e Nare="rect6" Fill="Purple" Margin="2"
Wdt h="20" Hei ght ="20"
Hori zontal Al i gnment ="Left" />

<l-- Set anination: -->
<Button Margin="2,20,0,0" Horizontal Ali gnnent="Left"
Gontent="Start Ani mations" Wdth="100">
<Button. Tri gger s>
<BEvent Tri gger Rout edEvent ="Button. dick">
<Event Tri gger . Acti ons>
<Begi nSt or yboar d>
<$t or yboar d>
<Doubl eAni nati on
St oryboar d. Tar get Narme="r ect 1"
St or yboar d. Tar get Propert y="Wdt h"
Fron¥"20" To="400" Luration="0:0: 10"/ >

<Doubl eAni nat i on
St or yboar d. Tar get Narme="r ect 2"
St or yboar d. Tar get Property="Wdt h"
Fron¥"20" To="400" Duration="0:0: 10"
SpeedRati 0="1.5"/>

<Doubl eAni nati on
St or yboar d. Tar get Narme="r ect 3"
St or yboar d. Tar get Property="Wdt h"
Fron¥"20" To="400" Duration="0:0: 10"
SpeedRati 0="0.5"/>

<Doubl eAni mat i on
St or yboar d. Tar get Narre="r ect 4"
St oryboar d. Tar get Property="Wdt h"
Frome"20" To="400" Duration="0:0: 10"
Accel erati onRati 0o="0.5"/>

<Doubl eAni mat i on
St or yboar d. Tar get Nare="r ect 5"
St or yboar d. Tar get Propert y="Wdt h"
From="20" To="400" Duration="0:0: 10"
Decel erationRati 0="0.5"/>

<Doubl eAni nat i on
St or yboar d. Tar get Name="r ect 6"
St or yboar d. Tar get Property="Wdt h"
Fronm="20" To="400" Duration="0:0: 10"
Accel erationRati 0o="0. 5"

224 | Chapter 6: Animation

Decel erati onRati 0="0.5"/>
</ St or yboar d>
</ Begi n$t or yboar d>
</ Event Tri gger. Acti ons>
</ Bvent Tri gger >
</ Button. Tri gger s>
</ Butt on>
</ St ackPanel >
</ W ndow>

This XAML file creates seven rectangles and a button. The Width property of
the rectangles is animated using different animating speeds.

The first rectangle is animated without any speed changes, acceleration or
deceleration for comparison. The animations for the rest of rectangles progress
with different speeds that are controlled by SpeedRatio, AccelerationRatio,
DecelerationRatio, or a combination of them. Figure 6-1 illustrates the results of
running this example. Click on the Start Animations button to start the
animations and watch how the animations progress with different speeds.

B Animation Speed Example

[Start Animations]

Figure 6-1 Animations with different speeds.

I nteractive Control

So far, you have been using only one action of the Storyboard — the
BeginStoryboard that launches the animation. If this is only the functionality
you need in your animations, you actually don't need the storyboard at all,
because you can perform the same action more easily using the BeginAnimation
method in code. However, the Storyboard becomes more powerful when you
Cregte interactive animations.

If you give the BeginStoryboard a name by specifying its Name property, you'll
make it a controllable storyboard. You can then interactively control the

Chapter 6: Animation | 225

storyboard after it is started. Here is a list of controllable storyboard actions
available in WPF that you can use with event triggers to control a storyboard:

PauseStoryboard — Stops an animation and keepsiit at its current position.
ResumeStoryboard — Resumes a paused animation.
SetStoryboardSpeedRatio — Changes the storyboard’ s speed.

SkipStoryboardToFill — Advances a storyboard to the end of itsfill period,
if it has one.

StopStoryboard — Stops the storyboard.
RemoveStoryboard — Removes the storyboard.

Let's consider an example caled InteractiveStoryboard, in which you create a
circle that is painted using RadialGradientBrush. You'll then animate the
brush’s RadiusX and RadiusY properties interactively. Here isthe XAML file of
this example:

<Wndow x: d ass="Chapt er 06. | nt er acti veSt or yboar d"
xm ns="htt p://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schenmas. m crosoft. com w nf x/ 2006/ xam "
Title="Interactive Storyboard" Hei ght="300" Wdth="300">

<Wndow. Resour ces>
<Styl e Target Type="{x: Type Button}">
<Setter Property="Margin" Val ue="2"/>
<Setter Property="Wdth" Val ue="75"/>
<Setter Property="Height" Val ue="25"/>
</ Style>
</ Wndow. Resour ces>

<StackPanel Margi n="10">

<H i pse Nane="el | i pse" Wdth="150" Hei ght ="150">
<Hlipse.Fill>
<Radi al @ adi ent Br ush>
<@ adientStop Col or="Wite" ffset="0"/>
<@ adi ent Stop Col or ="Li ght Coral "
Cfset="0.1"/>
<@ adi ent Stop Col or ="Li ght Bl ue"
Cfset="0.2"/>
<@ adi ent Stop Col or="Red" Cffset="0.3"/>
<@ adi ent Stop Col or="Bl ue" Gfset="0.5"/>
<@ adi ent Stop Col or =" Yel | ow'
Cfset="0.7"/>
<@ adi ent Stop Col or="G een" (Ffset="0.8"/>
<@ adientStop Color="CGol d" Cfset="0.9"/>
<G adi entStop Col or="Purple" CFfset="1"/>
</ Radi al @ adi ent Brush>
</Hlipse.Fll>
</H i pse>

226 | Chapter 6: Animation

<StackPanel Qientation="Horizontal"
Hori zontal Ali gnment =" Cent er "
Mar gi n="0, 20, 0, 0" >
<Button Nane="bt nBegi n" >Begi n</ Butt on>
<But t on Name="bt nPause" >Pause</ But t on>
<But t on Nane="bt nResune" >Resune</ But t on>
</ St ackPanel >
<StackPanel Crientation="Horizontal"
Hori zont al Al i gnrrent =" Cent er " >
<Butt on Nane="bt nSki pToFi | | ">Skip To Fill </Button>
<Button Nane="bt nSt op" >St op</ But t on>
<Button A ick="btnd ose_Aick">0 ose</Button>
</ St ackPanel >

<St ackPanel . Tri gger s>
<Bvent Tri gger Rout edEvent ="Button.dick"
Sour ceNane=" bt nBegi n" >
<Bvent Tri gger. Acti ons>
<Begi nSt or yboar d Nane="M/Begi nSt or yboar d" >
<St or yboar d>
<Doubl eAni nat i on

St oryboar d. Tar get Narre="el | i pse"

St oryboard. Target Property="Fi | | . Radi usX'

From="0" To="1" Duration="0:0:2"

Repeat Behavi or =" 5x"/ >

<Doubl eAni mati on
St oryboar d. Tar get Nane="el | i pse"
St oryboard. Target Property="Fi | | . Radi usY"
Fron¥"0" To="1" Duration="0:0:2"
Repeat Behavi or =" 5x"/ >

<Col or Ani mat i on
St oryboar d. Tar get Narre="el | i pse"
St oryboard. Target Property="Fil | . G adi ent St ops[2] . Col or"
To="Bl ack" Duration="0:0:2"
Repeat Behavi or =" 5x"/ >
</ St or yboar d>
</ Begi n&t or yboar d>
</ Event Tri gger . Acti ons>
</ BEvent Tri gger >

<Event Tri gger Rout edEvent ="Button. d i ck"
Sour ceNarre=" bt nPause" >
<Pause$St or yboar d
Begi nSt or yboar dNane="M/Begi nSt or yboar d" />
</ Event Tri gger >
<Event Tri gger Rout edEvent ="Button. d i ck"
Sour ceNarre=" bt nResune" >
<Resune$t or yboar d
Begi nSt or yboar dNane=" M/Begi nSt or yboar d" />
</ Event Tri gger >
<Event Tri gger Rout edEvent ="Button. d i ck"
Sour ceNane="bt nSki pToFi | | ">

Chapter 6: Animation | 227

<Ski pSt or yboar dToFi | |
Begi nSt or yboar dNane=" M/Begi nSt or yboar d" />
</ Event Tri gger >
<Event Tri gger Rout edEvent ="Button. d i ck"
Sour ceNane="bt nSt op" >
<St opSt or yboard
Begi nSt or yboar dNane="M/Begi nSt or yboar d" />
</ Event Tri gger >
</ St ackPanel . Tri gger s>
</ St ackPanel >
</ W ndow>

In this example, you should pay close attention to several points. First, the
BeginStoryboard is named MyBeginStoryboard, which will be used by the
buttons' event triggers. Also notice how to set the Storyboard. TargetProperty to
the RadiusX (or RadiusY') property of the ellipse’sfill brush using the statement:

St oryboar d. Target Property="Fi | | . Radi usX'

The Color of the GradientStop of the brush is also changed. Since the
GradientStop is a collection, the color of the third GradientStop (with a
LightBlue color) can be changed using the following XAML snippet:

<Col or Ani mati on St oryboar d. Tar get Name="el | i pse"
St or yboar d. Tar get Property=
"Fill.CQadientStops[2].Color"
To="Bl ack" Duration="0:0: 2"
Repeat Behavi or =" 5x"/ >

The RepeatBehavior is set to 5x, indicating that you want to repeat the original
animation five times. Remember here that if you set the RepeatBehavior
property to Forever, the program will throw an exception when you click the
SkipToFill button, because the animation never ends and the final value is never
reached.

Another point | should mention hereis that for all of the control buttons to work
properly, you must define al of the triggers in one Triggers collection — here,
the StackPanel.Triggers collection is used. If you place the BeginStoryboard
action in a different trigger collection than the buttons' event triggers, all of the
buttons actions, including PauseStoryboard, ResumeStoryboard, and
StopStoryboard, would not work.

Finaly, the Close button’s click event is handled in code because XAML can't
call the Close method.

Figure 6-2 illustrates the results of running this example.

228 | Chapter 6: Animation

EEX]

M Interactive Storyhoard

el lid e d

| sipToFll || stp || Cose |

Figure 6-2 Interactive animation.

Animation and Transform

Transformation is a powerful approach for customizing elements. When you
apply transforms, you don't just change the bounds of an element. In fact, the
entire visual appearance of the element can be moved by translation, enlarged or
shrunk by scaling, skewed by skew transforms, or rotated by rotation transforms.
For example, if you animate the rotation of a button using RotateTransform, the
entire button is rotated, including its border and itsinner content.

Animating Translation

As you learned in the previous chapters, you can apply transforms to any
element, even brush objects. In order to use a transform in animation, the first
step is to define the transform. For example, if you want to perform atrandation
on a Rectangle shape, you need to specify the rectangle’s RenderTransform
property using the TranslateTransform:

<Rect angl e Wdt h="200" Hei ght="35" Fill="Bl ue">
<Rect angl e. Render Tr ansf or n»
<Transl at eTr ansf or mi >
</ Rect angl e. Render Tr ansf or n»
</ Rect angl e>

To animate this transformation, you need an event trigger to make the rectangle
trandlate when the mouse moves over it. For this interactive animation, you can
use the storyboard approach. The RenderTransform.X property (corresponding

Chapter 6: Animation | 229

to the trandation in the X direction) can be used as the target property. The
event trigger reads the rectangle's RenderTransform property and modifies the
X property of the TranslateTransform object.

<Event Tri gger Rout edEvent =" Rect angl e. MouseEnt er " >
<Bvent Tri gger . Acti ons>
<Begi nSt or yboard Nane="tr ansl at eSt or yboar dBegi n" >
<St or yboar d>
<Doubl eAni nat i on
St oryboar d. Tar get Property
="Render Tr ansf orm X'
From ="0" To="70" Duration="0:0:1"
Repeat Behavi or =" 1x"/ >
</ St or yboar d>
</ Begi nSt or yboar d>
</ Event Tri gger . Act i ons>
</ Event Tri gger >

The above XAML snippet create a rectangle that moves 70 units in the X
direction in one second and stops when your mouse moves over the rectangle.
When your mouse leaves the rectangle, you can use a second trigger that
responds to the MouselLeave event. At this point, you could remove the
storyboard that performs the translation, but this causes the rectangle to jump
back to its origina position in one step. A better approach is to start a second
animation that replaces the first one. This animation |leaves out the From and To
properties, which means it seamlessly translates the rectangle back to its original
position in a snappy 0.5 seconds.

<Event Tri gger Rout edEvent =" Rect angl e. MouselLeave" >
<Event Tri gger. Acti ons>
<Begi nSt or yboar d>
<St or yboar d>
<Doubl eAni nat i on
St oryboar d. Tar get Property
=" Render Tr ansf or m X'
Duration="0:0:0.5"/>
</ St or yboar d>
</ Begi nSt or yboar d>
</ Bvent Tri gger . Acti ons>
</ Event Tri gger >

To create the trandating rectangle, you need to add both triggers to the
Rectangle. Triggers collection. However, a better method is to put these triggers
and the trandation into a style, which you can apply to as many rectangles as
you like. You can put al these together into an example, called
AnimationTransform, and add it to the Chapter06 project. Here is the markup of
this example:

<Wndow x: d ass="Chapt er 06. Ani mat i onTr ansf or n{
xm ns="http://schemas. m crosoft. com w nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Title="Animating Transl ati on" Hei ght="300" Wdth="300">

230 | Chapter 6: Animation

<W ndow. Resour ces>
<Styl e Target Type="{x: Type Rectangl e}">
<Setter Property="Wdth" Val ue="200"/>
<Setter Property="Height" Val ue="35"/>
<Setter Property="RenderTransfornm >
<Setter. Val ue>
<Transl at eTr ansf or mi >
</ Setter. Val ue>
</ Setter>

<Styl e. Trigger s>
<BEvent Tri gger
Rout edEvent =" Rect angl e. MouseEnt er " >
<Event Tri gger. Acti ons>
<Begi nSt or yboar d
Nane="transl at eSt or yboar dBegi n" >
<$t or yboar d>
<Doubl eAni nati on
St oryboar d. Tar get Pr oper t y="Render Tr ansf or m X"
From="0" To="70" Duration="0:0: 1"
Repeat Behavi or =" 1x"/ >
</ St or yboar d>
</ Begi n$t or yboar d>
</ Event Tri gger . Acti ons>
</ Event Tri gger >
<Bvent Tri gger
Rout edEvent =" Rect angl e. MbuseLeave" >
<Bvent Tri gger . Acti ons>
<Begi nSt or yboar d>
<$t or yboar d>
<Doubl eAni nati on
St oryboar d. Tar get Pr oper t y="Render Tr ansf or m X"
Duration="0:0:0.5"/>
</ St or yboar d>
</ Begi nSt or yboar d>
</ EBEvent Tri gger. Acti ons>
</ Event Tri gger >
</ Style. Triggers>
</ Syl e>
</ Wndow. Resour ces>

<Canvas Margi n="10">
<Rectangle Fill="Red" Canvas. Top="0"/>
<Rectangl e Fill="Geen" Canvas. Top="40"/>
<Rectangl e Fill="Bl ue" Canvas. Top="80"/>
<Rectangle Fill="Yel |l ow' Canvas. Top="120"/>
<Rectangle Fill="Purple" Canvas. Top="160"/>
<Rectangle Fill="Gay" Canvas. Top="200"/>

</ Canvas>

</ W ndow>

Chapter 6: Animation | 231

Figure 6-3 illustrates results of running this example. If your mouse moves over
any rectangle, that rectangle will move 70 units toward right. When your mouse
leaves, the rectangle will return back to its original position.

B Animating Translation D@@

Figure 6-3 Animating Translation.

Rolling Balls

Y ou can use an approach similar to that used in the previous section to animate a
rotation. Here I'll present a rolling ball example that shows how to create a
rotation animation.

The motion of arolling ball consists of two motions, translation and rotation. If
the ball rolls without dipping, the center of the ball will move a distance of 2xr
for every revolution of the ball, where r is the radius of the ball. Thus, for a
rolling ball animation, you need to animate two transforms, trandation and
rotation. The translation and rotation must satisfy the non-slipping condition.

In this example, named RollingBall, you create four balls. The first ball moves
and rotates with a constant speed, the second ball with an acceleration, the third
one with a decelation, and the last one with both an acceleration and
deceleration. For simplicity, you create the layout using XAML and perform the
animationsin code. Here isthe XAML file of this example:

<Wndow x: A ass="Chapt er 06. Rol | i ngBal | "
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schenas. m crosof t . con wi nf x/ 2006/ xam "
Title="Rolling Balls" Height="350" Wdth="518">

232 | Chapter 6: Animation

<Bor der BorderBrush="G ay" Border Thi ckness="1" Margi n="4">
<Canvas>
<Rectangle Fill ="Gay" Wdth="500" Hei ght="5"
Canvas. Top="60"/ >
<H lipse x: Name="el | i psel" Wdth="50" Hei ght="50"
Stroke="Bl ue" Canvas. Top="10"
Canvas. Left ="0">
<Blipse.Fill>
<Li near G adi ent Br ush>
<@ adi ent Stop Col or ="Bl ue"
Ofset="0.5"/>
<@ adi ent Stop Col or ="Li ght Bl ue"
Ofset="0.5"/>
</ Li near G adi ent Br ush>
</Hlipse.Fill>
<H |'i pse. Render Tr ansf or n»
<Rot at eTr ansf or m x: Nane="el | i pselRot at e"
Cent er X="25" Center Y="25"/>
</ B |'i pse. Render Tr ansf or n»
</BIipse>

<Rectangle Fill ="Gay" Wdth="500" Hei ght="5"
Canvas. Top="130"/>
<B l'ipse x: Name="el | i pse2" Wdth="50" Hei ght ="50"
Stroke="Red" Canvas. Top="80"
Canvas. Left ="0">
<BHlipse.Fill>
<Li near G adi ent Br ush>
<@ adi ent Stop Col or =" Red"
O fset="0.5"/>
<@ adi ent Stop ol or="Li ght Sal non"
Ofset="0.5"/>
</ Li near O adi ent Br ush>
</Hlipse.Fill>
<H | i pse. Render Tr ansf or m»
<Rot at eTr ansf or m x: Nane="el | i pse2Rot at e"
Cent er X="25" CenterY="25"/>
</ B |'i pse. Render Tr ansf or n»
</H i pse>

<Rectangle Fill="Gay" Wdth="500" Hei ght="5"
Canvas. Top="200"/>
<B l'ipse x: Name="el | i pse3" Wdth="50" Hei ght ="50"
Stroke="G een" Canvas. Top="150"
Canvas. Left ="0">
<Blipse.Fill>
<Li near G adi ent Brush>
<@ adi ent Stop Col or =" Q@ een”
G fset="0.5"/>
<@ adi ent Stop ol or ="Li ght G een"
G fset="0.5"/>
</ Li near G adi ent Br ush>
</BHlipse.Fill>

Chapter 6: Animation | 233

<H |'i pse. Render Tr ansf or m>
<Rot at eTr ansf or m x: Nane="el | i pse3Rot at e"
Cent er X="25" Center Y="25"/>
</ B |'i pse. Render Tr ansf or n»
</BIipse>

<Rectangle Fill ="Gay" Wdth="500" Hei ght="5"
Canvas. Top="270"/>
<B lipse x: Name="el | i pse4" Wdth="50" Hei ght="50"
Stroke="Purpl " Canvas. Top="220"
Canvas. Left ="0">
<BHlipse. Fill>
<Li near G adi ent Br ush>
<G adi ent Stop Col or="Purpl e"
Ofset="0.5"/>
<G adi ent Stop Col or="Li ght Pi nk"
Ofset="0.5"/>
</ Li near @ adi ent Br ush>
</Blipse. Fill>
<H |'i pse. Render Tr ansf or m>
<Rot at eTr ansf or m x: Nane="el | i pse4Rot at e"
Cent er X="25" Cent er Y="25"/ >
</ B |'i pse. Render Tr ansf or n»
</BIipse>
</ Canvas>
</ Bor der >
</ W ndow>

The following is the code-behind file of this example:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Control s;

usi ng System Wndows. | nput ;

usi ng System Wndows. Medi a;

usi ng System W ndows. Medi a. Ani mat i on;
usi ng System W ndows. Shapes;

nanmespace Chapt er 06
{
public partial class RollingBall : Wndow
public RollingBall()

InitializeConponent();
StartRolling();

}
private void SartRolling()

double nRotation = 360 * 450 / 2/ Math.Pl / 25;

/1 Constant speed:
Doubl eAni mati on da = new Doubl eAni nati on(0, 450,

234 | Chapter 6: Animation

Ti meSpan. FronBeconds(5)) ;
da. Repeat Behavi or = Repeat Behavi or. For ever;
da. Aut oRever se = true;
el | i psel. Begi nAni mati on(Canvas. Left Property, da);

da = new Doubl eAni mation(0, nRotation,
Ti meSpan. FronBeconds(5)) ;
da. Repeat Behavi or = Repeat Behavi or. For ever;
da. Aut oRever se = true;
el i pselRot at e. Begi nAni mat i on(
Rot at eTr ansf or m Angl eProperty, da);

/1 Accel eration:
da = new Doubl eAni mation(0, 450,
Ti neSpan. FronBeconds(5));
da. Accel erationRatio = 0. 4;
da. Repeat Behavi or = Repeat Behavi or. For ever;
da. Aut oReverse = true;
el | i pse2. Begi nAni mati on(Canvas. Left Property, da);

da = new Doubl eAni mati on(0, nRotation,
Ti meSpan. FronBeconds(5)) ;
da. Accel erationRatio = 0. 4;
da. Repeat Behavi or = Repeat Behavi or. For ever;
da. Aut oReverse = true;
el | i pse2Rot at e. Begi nAni mat i on(
Rot at eTr ansf or m Angl eProperty, da);

[/ Decel erati on:
da = new Doubl eAni mation(0, 450,
Ti meSpan. FronBeconds(5)) ;
da. Decel erati onRati o = 0. 6;
da. Repeat Behavi or = Repeat Behavi or. For ever;
da. Aut oReverse = true;
el |'i pse3. Begi nAni nat i on(Canvas. Left Property, da);

da = new Doubl eAni mation(0, nRotation,
Ti neSpan. FronBeconds(5));
da. Decel erati onRati o = 0. 6;
da. Repeat Behavi or = Repeat Behavi or. For ever;
da. Aut oRever se = true;
el | i pse3Rot at e. Begi nAni mat i on(
Rot at eTr ansf or m Angl eProperty, da);

/1 Accel eration + Decel eration:
da = new Doubl eAni mation(0, 450,
Ti meSpan. FronBeconds(5)) ;
da. Decel erati onRati o = 0. 6;
da. Accel erationRatio = 0. 4,
da. Repeat Behavi or = Repeat Behavi or. For ever;
da. Aut oReverse = true;
el | i psed. Begi nAni mat i on(Canvas. Left Property, da);

da = new Doubl eAni mation(0, nRotation,

Chapter 6: Animation | 235

Ti meSpan. Fr onBSeconds(5)) ;
da. Decel erationRatio = 0. 6;
da. Accel erationRatio = 0. 4;
da. Repeat Behavi or = Repeat Behavi or. For ever;
da. Aut oRever se = true;
el | i psedRot at e. Begi nAni nat i on(
Rot at eTr ansf or m Angl eProperty, da);

}

Each ball’s RotateTransform property is exposed in XAML using its
corresponding name, such as ellipselRotate, which will be used in the
animations in code. The tranglation is animated using the Canvas.Left property
(from 0 to 450 in 5 seconds). For a non-slipping rolling ball, you need to
calculate how many revolutions the ball goes through in the trandation distance
using the formula:

doubl e nRotation = 360 * 450 / 2 / Math.Pl / 25;
This gives the total degrees the ball should rotate in 5 seconds.

Figure 6-4 shows the results of running this example. You can see how the
AccelerationRatio and DecelerationRatio affect the balls' motion.

M Rolling Balls =13

Figure 6-4 Rolling balls.

236 | Chapter 6: Animation

Combining Transform Animations

In WPF, you can easily perform composite transforms on any element using the
TransformGroup, as discussed in Chapter 3. This can be done by simply setting
the element’ s RenderTransform property using the TransformGroup.

Let’s use an example, named CombineTransformAnimation, to illustrate how to
animate composite transforms. In this example, you want to perform a
combining transform, including scale, skew, and rotation, on a buttom:

<But t on. Render Tr ansf or n»
<Tr ansf or m& oup>
<Scal eTransf orni >
<SkewTr ansf or ni >
<Rot at eTr ansf or nd >
</ Tr ansf or nG@ oup>
</ But t on. Render Tr ansf or nm»

To target this RenderTransform collection, you need to use the following path
syntax:

Render Tr ansf or m Chi | dren[Col | ect i onl ndex] . Pr opert yNane

where Collectionindex is the index of objects in the TransformGroup. For
example, if you want to animate the Angle property of the RotateTransform, you
need to set the Collectionindex = 2.

Here we want to create an interactive animation using XAML and the
Storyboard. Like you did in the AnimationTransform example, you need to add
event triggers and transforms to a style, then apply this style to as many buttons
asyou like. Hereisthe XAML file of this example:

<Wndow x: d ass="Chapt er 06. Conbi neTr ansf or mAni mat i on"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Ani mati ng Conbi ne Transforns"
Hei ght =" 320" Wdt h="300">

<Wndow. Resour ces>
<Styl e Target Type="{x: Type Button}">
<Setter Property="Horizontal Alignnent"
Val ue="GCenter"/>
<Setter Property="RenderTransfornQigin"
Val ue="0.5,0.5"/>
<Setter Property="Margin" Val ue="10"/>
<Setter Property="Wdth" Val ue="80"/>
<Setter Property="Height" Val ue="40"/>
<Setter Property="Render Transforn >
<Setter. Val ue>
<Tr ansf or mx oup>
<Scal eTr ansf or m >
<SkewTr ansf or ml >
<Rot at eTr ansf or ni >

Chapter 6: Animation | 237

</ Tr ansf or n& oup>
</ Setter. Val ue>
</ Setter>

<Styl e.Triggers>
<BEvent Tri gger Rout edEvent ="Butt on. MouseEnt er " >
<Event Tri gger . Acti ons>
<Begi nSt or yboar d
Narme=" St or yboar dBegi n" >
<$t or yboar d>
<Doubl eAni nat i on
St oryboar d. Tar get Property=
"Render Tr ansf orm Chi | dren[0] . Scal eX"
To="1.5" Duration="0:0:1"
Repeat Behavi or =" 1x"/ >
<Doubl eAni mat i on
St or yboar d. Tar get Property=
"Render Tr ansf orm Chi | dren[O] . Scal eY"
To="1.5" Duration="0:0:1"
Repeat Behavi or =" 1x"/ >
<Doubl eAni nati on
St oryboar d. Tar get Property=
"Render Tr ansf orm Chi | dren[1] . Angl eX'
To="30" Duration="0:0:1"
Repeat Behavi or =" 1x"/ >
<Doubl eAni mat i on
St oryboar d. Tar get Property=
"Render Tr ansf orm Chi | dren[1] . Angl eY"
To="30" Duration="0:0:1"
Repeat Behavi or =" 1x"/ >
<Doubl eAni nat i on
St or yboar d. Tar get Property=
"Render Tr ansf orm Chi | dren[2] . Angl e"
To="360" Duration="0:0:1"
Repeat Behavi or =" 1x"/ >
</ St or yboar d>
</ Begi n$t or yboar d>
</ Event Tri gger . Acti ons>
</ Event Tri gger >
<Bvent Tri gger
Rout edEvent =" Rect angl e. MbuselLeave" >
<Bvent Tri gger . Acti ons>
<Begi nSt or yboar d>
<S$t or yboar d>
<Doubl eAni mat i on
St oryboar d. Tar get Property=
" Render Tr ansf orm Chi | dren[O] . Scal eX'
Duration="0:0:0.5"/>
<Doubl eAni nati on
St oryboar d. Tar get Property=
"Render Tr ansf orm Chi | dren[O] . Scal eY"
Duration="0:0:0.5"/>
<Doubl eAni nati on
St or yboar d. Tar get Property=

238 | Chapter 6: Animation

" Render Tr ansf or m Chi | dren[1] . Angl eX'
Duration="0:0:0.5"/>
<Doubl eAni mat i on
St or yboar d. Tar get Pr operty=
" Render Tr ansf or m Chi | dren[1] . Angl eY"
Duration="0:0:0.5"/>
<Doubl eAni mat i on
St or yboar d. Tar get Pr operty=
" Render Tr ansf orm Chi | dren[2] . Angl e"
Duration="0:0:0.5"/>
</ St or yboar d>
</ Begi n$t or yboar d>
</ Event Tri gger. Acti ons>
</ Event Tri gger >
</ Style. Tri gger s>
</ Syl e>
</ Wndow. Resour ces>

<StackPanel Margi n="20" Horizontal Al i gnnent =" Cent er" >
<Button Aick="btnl_dick"
x: Nanme="bt n1" >But t on1</ But t on>
<Button Qick="btn2_dick"
x: Name=" bt n2" >But t on2</ But t on>
<Button Qick="btnd ose_dick">d ose</Button>
<Text Bl ock Name="t b1" Margi n="5, 40, 5, 5"/ >
</ St ackPanel >
</ W ndow>

In this example, the button scales 1.5 times in both the X and Y directions,
skews 30 degrees in both the X and Y axes, and rotates one revolution; al of
these transforms are performed in one seconds whenever your mouse moves
over the button. When the button is being transformed, it is still completely
functioning — for example, you can click it and handle the Click event as normal.

To make sure the button transforms around its center, you set the
RenderTransformOrigin = “0.5, 0.5". Note that the RenderTransformOrigin
property uses relative units from 0 to 1, so the point (0.5, 0.5) represents the
center.

To stop the composite transforms when your mouse leaves, you starts another
animation that replaces the first one. This animation leaves out the To and From
properties, which means that it seamlessly transforms the button back to its
original position in 0.5 seconds.

The C# code handles the button click events:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;
usi ng System Wndows. Medi a;
usi ng Syst em W ndows. Shapes;

namespace Chapt er 06

Chapter 6: Animation | 239

public partial class Conbi neTransformAni nati on : Wndow

{
publ i ¢ Gonbi neTr ansf or mAni nat i on()
InitializeConponent();
}
private void btnl_Qick(object sender,
Rout edEvent Args e)
tbl. Text = "You are clicking on " + btnl. Content;
}
private void btn2_Qick(object sender,
Rout edEvent Args e)
{
tbl. Text = "You are clicking on " + btn2. Content;
}
private void btnd ose_Qick(object sender,
Rout edEvent Args e)
{
this.dose();
}
}

}
Running this project produces the results shown in Figure 6-5.

B Animating Combine Transforms g@g|

You are clicking on Button2

Figure 6-5 Combining transform animations.

240 | Chapter 6: Animation

Path Animation

A path animation is a type of AnimationTimeline that uses a PathGeometry as
its input. Instead of setting a From, To, or By property as you do for a linear
interpolation-based animation, you define a geometric path and use it to set the
PathGeometry property of the path animation. As the path animation progresses,
it reads the X, Y, and angle information from the path and uses this information
to generate its output.

You can apply a path animation to a property by using a Storyboard in XAML
and code, or by using the BeginAnimation method in code. As you learned in
Chapter 4, a PathGeometry can be a complex path object that includes lines, arcs,
and curves. Figure 6-6 illustrates the results of a PathAnimationExample, which
shows two GeometryPath objects. The first animation path consists of several
curve segments that form a closed path. Y ou move an EllipseGeometry object
aong this path by animating its Center property. Here, the
PointAnimationUsingPath class is used to animate the EllipseGeometry object’s
Center property.

M Path Animation Q@@

Figure 6-6 Path animations.

Chapter 6: Animation | 241

The second PathGeometry in this figure consists of three polyline segments. The
ellipse shape (a circle) will roll without slipping aong this path by combining
the path animation with a rotation transform. The AccelerationRatio and
DecelerationRatio properties are also specified to create an effect similar to
driving a car along a downhill highway.

Creating this example is easy. Add a new WPF Window to the Chapter06
project, and name it PathAnimationExample. Here is the XAML file of this
example:

<Wndow x: d ass="Chapt er 06. Pat hAni nat i onExanpl e"
xm ns="http://schenas. nicrosoft.com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Title="Path Ani nation" Hei ght="500" Wdth="518">

<Canvas Margi n="5">
<l-- Pathl animation: -->
<Path Stroke="Light Bl ue">
<Pat h. Dat a>
<Pat hGeorret ry x: Nare="pat h1"
F gures="M0, 120 C75, 20 175, 20 200, 120 220, 220 325, 220 350,
120 325,20 220,20 200, 120 175, 220 75, 220 50, 120"/ >
</ Pat h. Dat a>
</ Pat h>

<Pat h Stroke="Dar kGol denr od">
<Path.Fill>
<Radi al & adi ent Br ush>
<@ adi ent Stop Col or="l d" Cffset="0"/>
<@ adi ent Stop Col or =" Dar k&l denr od"

Cfset="1"/>
</ Radi al G adi ent Brush>
</Path.Fill>
<Pat h. Dat a>

<B li pseCGeonetry x: Nane="circl el"
Cent er="50, 120" Radi usx="10"
Radi usY="10"/>
</ Pat h. Dat a>
</ Pat h>

<l-- Path2 Animation: -->
<Pol yl i ne Poi nts="0, 345, 96, 345, 320, 432, 500, 432"
Stroke="Gay" StrokeThi ckness="5"/>

<Pat h>
<Pat h. Dat a>
<Pat hGeonet ry x: Nane="pat h2"
Fi gures="M, 292 L75, 292 300, 380, 449, 380"/ >
</ Pat h. Dat a>
</ Pat h>

<H i pse Nane="circle2" Stroke="DarkGol denrod"
Canvas. Left="0" Canvas. Top="293"

242 | Chapter 6: Animation

W dt h="50" Hei ght ="50">
<Hlipse.Fill>
<Li near G adi ent Br ush>
<@ adi ent Stop Col or =" Dar k&l denr od"
Cfset="0.5"/>
<@ adi ent Stop Col or="®l d* G fset="0.5"/>
</ Li near @ adi ent Brush>
</Hlipse.Fll>
<H |'i pse. Render Tr ansf or m>
<Rot at eTr ansf or m x: Nane="ci r cl e2Rot at e"
Gent er X="25" CenterY="25"/>
</ B |i pse. Render Tr ansf or m»
</B1Iipse>
</ Canvas>
</ W ndow>

This XAML file creates the two paths. It also creates two circles using the
EllipseGeometry and Ellipse classes, respectively. Note that we also define a
RotateTransform for the circle2 which will be used in code to perform the
corresponding rotation transform.

The animations are performed in the corresponding code-behind file, which is
listed below:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;

usi ng System Wndows. | nput ;

usi ng System Wndows. Medi a;

usi ng System W ndows. Medi a. Ani mat i on;
usi ng Syst em W ndows. Shapes;

namespace Chapt er 06
public partial class PathAni nati onExanpl e : W ndow

publ i ¢ Pat hAni nat i onExanpl e()

{
I'nitializeConponent();
Start Ani nation();
}
private void StartAnination()
{

/1 Pathl ani mation:
pat hl. Freeze(); // For performance benefits.
Poi nt Ani mat i onUsi ngPat h pa =
new Poi nt Ani mat i onUsi ngPat h() ;
pa. Pat hGeonet ry = pat hi,;
pa. Durati on = Ti meSpan. Fr onBeconds(5);
pa. Repeat Behavi or = Repeat Behavi or . For ever ;
ci rcl el. Begi nAni mat i on(
B |ipseCGeonetry. CenterProperty, pa);

Chapter 6: Animation | 243

/1 Path2 ani mation:
pat h2. Freeze(); // For performance benefits.
Doubl eAni mat i onUsi ngPat h daPath =
new Doubl eAni mat i onlsi ngPat h() ;
daPat h. Durati on = Ti meSpan. Fr onBeconds(5) ;
daPat h. Repeat Behavi or = Repeat Behavi or . For ever;
daPat h. Accel erati onRati o = 0. 6;
daPat h. Decel erationRatio = 0. 4;
daPat h. Aut oReverse = true;
daPat h. Pat hGeonetry = pat h2;
daPat h. Sour ce = Pat hAni mat i onSour ce. X;
ci rcl e2. Begi nAni mat i on(
Canvas. Left Property, daPath);

daPat h = new Doubl eAni mat i onUsi ngPat h() ;
daPat h. Durati on = Ti meSpan. Fr onBeconds(5) ;
daPat h. Repeat Behavi or = Repeat Behavi or . For ever;
daPat h. Accel erati onRati o = 0. 6;
daPat h. Decel erati onRatio = 0. 4;
daPat h. Aut oReverse = true;
daPat h. Pat hGeonetry = pat h2;
daPat h. Sour ce = Pat hAni mat i onSour ce. Y;
ci rcl e2. Begi nAni mat i on(
Canvas. TopProperty, daPath);

doubl e nRotation = 360 * (224 +
Math. Sgrt (225 * 225 + 88 * 88))
/ 2/ Math.Pl [/ 25;
Doubl eAni nati on da = new Doubl eAni mat i on(
0, nRotation, TimeSpan. FronBeconds(5));
da. Repeat Behavi or = Repeat Behavi or . For ever ;
da. Aut oReverse = true;
da. Accel erationRatio = 0. 6;
da. Decel erationRatio = 0. 4;
ci rcl e2Rot at e. Begi nAni nat i on(
Rot at eTr ansf or m Angl eProperty, da);

}

The above code creates animations that move the circle objects. To move circlel,
its Center property is adjusted using the PointAnimationUsingPath class. The
DoubleAnimationUsingPath class is used to animate the circle2 by changing the
Canvas.Left and Canvas.Top properties. Here, two animation objects are needed
—one for Canvas.Left and the other for Canvas.Top. For circle2, the exact angle
rotated during the 5-second time span needs to be calculated. In addition, the
same properties for the rotation as for the path animation need to be specified in
order to obtain synchronized resullts, like those shown in Figure 6-6.

As you can see, when you create a path animation, you don’t provide starting
and ending values. Instead, you specify the PathGeometry that you want to use
with the PathGeometry property.

244 | Chapter 6: Animation

Frame-Based Animation

The animations you have seen so far are based on the linear interpolation
approach. In this section, you'll learn other types of animations, including key-
frame animation and spline key frame animation.

Like the From-To-By animations based on linear interpolation, key-frame
animations animate the value of atarget property. A single key-frame animation
can create transitions among any number of target values.

WPF also provides a way to create frame-based animation without using target
properties. This type of animation is useful when you want to create physics-
based animations or are modeling specia particle effects such as fire, snow, and
bubbles.

K ey-Frame Animation

When creating an animation based on linear interpolation, you specify the
starting and ending points. However, this approach may not enough in some
situations. For example, what if you want to create an animation that has
multiple segments and moves less regularly? The easiest way is to use key-
frame animation.

A key-frame animation creates a transition among its target values over its
Duration and can include any number of segments. Each segment represents an
initial, final, or intermediate value in the animation. When you run the animation,
it moves smoothly from one target value to another. To specify the animation’s
target values, you create key frame objects and add them to the animation’s
KeyFrames collection.

In addition to supporting multiple target values, some key-frame methods also
support multiple interpolations. An animation’s interpolation method defines
how it transitions from one value to the next. There are three types of
interpolations: discrete, linear, and splined.

Let's start with an example. Add a new WPF Window to the project Chapter06
and name it KeyFrameAnimation. In this example, a rectangle is painted using
the LinearGradientBrush. You'll animate its GradientStop’s Color property,
which uses the custom color maps defined in Chapter 5. For each key frame, you
specify a custom color map with its name, such as Spring, Summer, Autumn,
Winter, or Cool. The ColorAnimationUsingKeyFrames class is used to create a
smooth transition from one color map to another.

In addition, you aso create a string key-frame animation using the
StringAnimationUsingKeyFrames class. Note that a string key frame
animation’s target values are specified by its KeyFrames property, which
contains a collection of StringKeyFrame object. Each StringKeyFrame defines a
segment of the animation with its own target value and KeyTime. Here you
simply want to label the colormap with its name when the colormap is changed.

Chapter 6: Animation | 245

To achieve this, you need to make sure that both the Color and String key-frame
animations are properly synchronized.

Here is the markup of this example:

<Wndow x: d ass="Chapt er 06. KeyFr aneAni nat i on"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / present at i on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Ti tl e="Key- Frane Ani mation" Hei ght="200" Wdth="300">
<StackPanel MNargi n="15">

<Text Bl ock Name="| abel "
Bl ock. Text Al i gnrment =" Cent er "
For egr ound="Bl ue"/ >

<Rect angl e Narme="rect" Wdth="200" Hei ght="100"
Stroke="Bl ue" Margi n="10">
<Rectangle.Fill>
<Li near @ adi ent Brush Start Poi nt="0, 0"
EndPoi nt ="1, 0" >
<@ adient Stop Gfset="0"/>
<@ adientStop Gfset="1"/>
</ Li near O adi ent Br ush>
</Rectangle.Fill>
</ Rect ang| e>

<St ackPanel . Tri gger s>
<Event Tri gger Rout edEvent =" St ackPanel . Loaded" >
<Bvent Tri gger. Acti ons>
<Begi nSt or yboar d>
<St or yboar d>

<Col or Ani mat i onUsi ngKeyFr armes
St or yboar d. Tar get Name="r ect "
St oryboar d. Target Property= "Fill. & adi ent St ops[0] . Col or"
Repeat Behavi or =" For ever " >
<Li near G0l or KeyFr ane Val ue="#FFOOFF" KeyTi me="0:0:0" />
<Li near ol or KeyFrame Val ue="#00805A" KeyTi ne="0:0:5" />
<Li near ol or KeyFr ane Val ue="#FF0000" KeyTi me="0:0: 10" />
<Li near Gol or KeyFr ame Val ue="#0000FF" KeyTi ne="0: 0: 15" />
<Li near ol or KeyFr ane Val ue="#00FFFF"' KeyTi me="0: 0: 20" />
<Li near Gol or KeyFr arme Val ue="#FFOOFF' KeyTi ne="0: 0: 25" />
</ Col or Ani mat i onlsi ngKeyFr anes>

<ol or Ani mat i onUsi ngKeyFr anes
St or yboar d. Tar get Narme="r ect "
St oryboar d. Target Property= "Fill. Q@ adi ent Stops[1] . Col or"
Repeat Behavi or =" For ever " >
<Li near ol or KeyFr ane Val ue="#FFFF00" KeyTi ne="0:0:0" />
<Li near ol or KeyFr ane Val ue="#FFFF5A" KeyTi me="0:0:5" />
<Li near ol or KeyFr ane Val ue="#FFFF00" KeyTi me="0: 0: 10" />
<Li near Col or KeyFr ane Val ue="#00FF08" KeyTi nme="0:0: 15" />
<Li near Gol or KeyFr ame Val ue="#FFOOFF' KeyTi ne="0: 0: 20" />

246 | Chapter 6: Animation

<Li near Qol or KeyFr ane Val ue="#FFFF00" KeyTi me="0: 0: 25"

</ Col or Ani mat i onlsi ngKeyFr anes>

<Stri ngAni nat i onlsi ngKeyFr anes
St or yboar d. Tar get Narre="1 abel "
St or yboar d. Tar get Propert y="(Text Bl ock. Text)"
Repeat Behavi or =" For ever " >

<D screteStri ngKeyFrane
<D scret eStri ngKeyFrane
<D scret eStri ngKeyFrane
<D scret eStri ngKeyFrane
<D screteStri ngKeyFr anme

<D scret eStri ngKeyFrane

Val ue=" Col or nap:

KeyTi me="0: 0: 0"

Val ue=" Col or map:

KeyTi me="0: 0: 5"

Val ue=" Col or map:
KeyTi me="0: 0: 10"
Val ue=" Col or map:
KeyTi me="0: 0: 15"
Val ue="Col or map:
KeyTi me="0: 0: 20"
Val ue=" Col or map:
KeyTi me="0: 0: 25"

Spring"
/>

Sumrer "
/>

Aut um"
/>
Wnter"
/>

Cool "
/>

Spring"
/>

/>

</ StringAni mat i onUsi ngKeyFr anes>
</ St or yboar d>
</ Begi n&t or yboar d>
</ Event Tri gger . Acti ons>
</ Event Tri gger >
</ St ackPanel . Tri gger s>
</ St ackPanel >
</ W ndow>

This example includes three key-frame animations, each one with six key frames.
The first two key-frame animations are used to animate the color change of
LinearGradientBrush by adjusting its GradientStop’s Color property. Each pair
of GradientStops at a given KeyTime forms a custom colormap.

The third key-frame animation is used to animate the TextBlock’s Text property
with the StringAnimationUsingKeyFrames class. It includes six discrete string
key frames. When the animation progresses, it changes the text property of the
TextBlock from one text string to another. Note how the KeyTime properties are
specified in these three key-frame animations. You should make sure that the
string text change is consistent with the colormap variation.

The animations in this example aren’t reversible, but they do repeat. To make
sure there is no jump between the final value of one iteration and the starting
value of the next iteration, the animations end at the same value as their staring
value. That iswhy you use six key frames to animate five color maps.

Figure 6-7 illustrates the results of running this example.

The above example uses two types of interpolation methods: linear and discrete.
There is one more type of key frame: the spline key frame. Every class that
supports linear key frames also supports spline key frames.

Chapter 6: Animation | 247

B Key-Frame Animation g@@

Colormap: Spring

Figure 6-7 Key frame animation.

Spline Key-Frame Animation

Splined interpolation can be used to achieve more redlistic timing effects. Spline
key frames alow you to animate with splined interpolation. With other key
frames, you specify a Vaue and KeyTime. With a spline key frame, you aso
need to specify a KeySpline. Using the KeySpline property, you define a cubic
Bezier curve that affects the way interpolation is performed. This approach gives
you the ability to create more seamless acceleration and deceleration. The
following snippet shows a single spline key frame for the
DoubleAnimationUsingK eyFrames class:

<Spl i neDoubl eKayFr ame Val ue="20" KeyTi ne="0: 0: 5"
KeySpline="0, 1,1, 0"/ >

Y ou may remember from the discussion in Chapter 4 that a cubic Bezier curveis
defined by a start point, an end point, and two control points. The KeySpline
property of a spline key frame defines two control points of a Bezier curve that
extends from (O, 0) to (1, 1). The first control point controls the curve factor of
the first half of the Bezier curve, and the second control point controls the curve
factor of the second half of the Bezier segment. The resulting curve describes
the rate of change for that spine key frame.

Let’s consider an example, called SplineKeyFrameAnimation that demonstrates
a key spline animation by comparing the motion of two balls across a Canvas.
The spline key frame animation simulates the case of a ball moving along a
trajectory under a gravity. At the beginning, the ball moves upward with ainitial
velocity. Its velocity becomes zero when it reaches the highest point. After that,
the ball starts free falling with an acceleration of gravity. This process is
animated approximately by two spline key frames.

Here isthe XAML code of this example:

<Wndow x: d ass="Chapt er 06. Spl i neKeyFr armeAni nat i on"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xam / pr esent ati on"

248 | Chapter 6: Animation

xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Title="Spline Key Frane Ani mation"
Hei ght =" 250" W dt h="400">

<Canvas Margi n="5">
<Text Bl ock Canvas. Left="10" Canvas. Top="10">
Ball noves in a constant speed</ Text Bl ock>
<H |ipse Name="bal | 1" Canvas. Left="10" Canvas. Top="50"
Wdt h="20" Hei ght ="20">
<BHlipse.Fill>
<Radi al @ adi ent Br ush>
<@ adientStop Col or="l d" ffset="0"/>
<@ adi ent Stop Col or =" Dar kGol denr od"
Ofset="1"/>
</ Radi al O adi ent Brush>
</Hlipse.Fll>
</B1Iipse>

<Text Bl ock Canvas. Left="10" Canvas. Top="120">
Ball roves foll owing spline key frames</ Text Bl ock>
<H | i pse Nane="bal | 2" Canvas. Left="10"
Canvas. Top="160" Wdt h="20" Hei ght="20">
<Blipse.Fill>
<Radi al & adi ent Br ush>
<@ adi ent Stop Col or="l d" Cffset="0"/>
<@ adi ent Stop Col or =" Dar k&l denr od"
Ofset="1"/>
</ Radi al @ adi ent Brush>
</Hlipse.Fll>
</HIipse>

<Canvas. Tri gger s>
<Bvent Tri gger Rout edEvent =" St ackPanel . Loaded" >
<Event Tri gger. Acti ons>
<Begi nSt or yboar d>
<St or yboar d>

<Doubl eAni nati on
St or yboar d. Tar get Narre="bal | 1"
St oryboar d. Tar get Property="(Canvas. Left)"
To="310" Duration="0:0: 10"
Repeat Behavi or =" For ever "/ >

<Doubl eAni mat i onlsi ngKeyFr anmes

St or yboar d. Tar get Nare="Dbal | 2"

St oryboar d. Tar get Propert y="(Canvas. Left)"

Dur ati on="0: 0: 10"

Repeat Behavi or =" For ever " >

<Spl i neDoubl eKeyFr arme
Val ue="160" KeyTi me="0: 0: 5"
KeySpl i ne="0. 25, 0. 5,0.75,1" />

<Spl i neDoubl eKeyFr arre
Val ue="310" KeyTi me="0: 0: 10"
KeySpl i ne="0.25,0.0 0.75,0.5" />

Chapter 6: Animation | 249

</ Doubl eAni nat i onUsi ngKeyFr anes>
</ St or yboar d>
</ Begi n&t or yboar d>
</ Event Tri gger. Acti ons>
</ Event Tri gger >
</ Canvas. Tri gger s>
</ Canvas>
</ W ndow>

In this example, the first ball moves at a constant speed. The second ball reaches
a speed of zero at the end of the first spline frame (the five-second mark), when
the second SplineDoubleKeyFrame kicks in. Then the ball falls freely with an
acceleration that is described approximately by the second spline key frame.

Figure 6-8 shows the results of running this application.

M Spline Key Frame Animation

Ball moves in a constant spesd

O

Ball moves following spline key frames

O

Figure 6-8 Spline key frame animation.

Custom Animation

Although WPF provides powerful animation features, in some cases, you do
need to create your own custom animation. For example, if you want to perform
a physics-based animation, where each step in the animation requires objects to
be recomputed based on the last set of object interactions, you have to create
your own animation in code using either per-frame animation or timer-based
animation. Both the per-frame and timer based animations completely bypass
the WPF animation system.

There are a number of ways to extend the WPF animation system, depending on
the level of built-in functionality you want to use. Here are three approaches that
I'll use to create custom animations:

250 | Chapter 6: Animation

* Create acustom animation class by inheriting from AnimationTimeline or
one of the <Type>AnimationBase classes.

e Use per-frame callback to generate animations on a per-frame basis. This
approach completely bypasses the WPF animation and timing system.

» Create your own timer-based animation using the DispatcherTimer. This
approach completely bypasses the WPF animation and timing system.

There is another method that you can use: creating a custom key frame class.
Y ou can use this approach when you want to have a different interpolation for a
key frame animation. I’ll not discuss this approach here.

In the following sections, I'll show you in detail how to create various custom
animations.

Custom Animation Class

WPF provides a way that allows you to create your own animation class by
inheriting from AnimationTimeline or one of the <Type>AnimationBase classes.
Deriving from a <Type>AnimationBase class is the simplest way to create a
new custom animation class. Use this method when you want to create a new
animation for a type that already has a corresponding <Type>AnimationBase
class.

First, you need to derive your animation class from a <Type>AnimationBase
class, and then implement the GetCurrentValueCore method. This method
returns the current value of the animation. It takes three parameters. a suggested
starting value, a suggested ending value, and an AnimationClock, which you use
to determine the progress of the animation.

Because the <Type>AnimationBase classes inherit from the Freezable class,
you need also to override CreatelnstanceCore to return a new instance of your
class.

Here, I'll show you how to create a simple custom animation class using an
example. In this example, we'll animate the free fall motion of an object. First,
add a custom animation class to the project Chapter06, and cal it
FreefallDoubleAnimation, which derives from the DoubleAnimationBase class.
Here isthe code listing of this class:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;

usi ng System Wndows. | nput ;

usi ng System Wndows. Medi a;

usi ng System W ndows. Medi a. Ani mat i on;
usi ng System W ndows. Shapes;

public class Freefal | Doubl eAni mati on : Doubl eAni mat i onBase

{
public static readonly DependencyProperty

Chapter 6: Animation | 251

Accel erati onProperty =
DependencyProperty. Regi st er (
"Accel eration", typeof(double),
t ypeof (Fr eef al | Doubl eAni mati on),
new PropertyMet adat a(9. 8));

public static readonly DependencyProperty FronProperty
= DependencyProperty. Regi ster ("Front,
t ypeof (doubl e?),
t ypeof (Freef al | Doubl eAni mat i on),
new PropertyMetadata(null));

public static readonly DependencyProperty ToProperty =
DependencyProperty. Regi ster (" To",
t ypeof (doubl e?),
t ypeof (Freef al | Doubl eAni mat i on),
new PropertyMetadata(nul l));

publ i c doubl e Accel eration

{
get { return
(doubl e) Get Val ue(Accel erationProperty); }
set { SetVal ue(Accel erationProperty, value); }
}
publ i c doubl e? From
{
get { return (doubl e?)Get Val ue(FronProperty); }
set { SetVal ue(FronProperty, value); }
}
publ i c doubl e? To
{
get { return (doubl e?) Get Val ue(ToProperty); }
set { SetVal ue(ToProperty, value); }
}

protected override doubl e Get Qurrent Val ueCor e(
doubl e defaul t Ori gi nVal ue,
doubl e def aul t Desti nati onVal ue,
Ani nat i ond ock cl ock)

doubl e returnVal ue;

doubl e tine = cl ock. Qurrent Progress. Val ue;

doubl e start = From!= null ? (doubl e) From:
defaul t i gi nVal ue;

double delta = To !'= null ? (double)To - start :
defaul tOiginValue - start;

double t0O = Math. Sqrt(2 / Acceleration);

if (time >1t0)
tinme =t0;

returnValue = 0.5 * Acceleration * tine * tine;

returnVal ue *= del ta;

returnVal ue = returnValue + start;

252 | Chapter 6: Animation

return returnval ue;

}
protected override Freezabl e O eat el nstanceCore()
{
return new Freef al | Doubl eAni mation();
}

}

In this class, we define several dependency properties, including acceleration
(due to gravity), From, and To. Then we override the GetCurrentValueCore
method, where we implement the animation according to our specific animation
requirements. The method takes three parameters: the defaultOriginValue,
defaultDestinationValue, and AnimationClock, which is used to determine the
progress of the animation. Finally, we override the Createl nstanceCore method
to return anew instance of the class.

Now the custom animation class, FreefallDoubleAnimation, can be used in the
same way as the built-in animation classes, such as DoubleAnimation. Add a
new WPF Window to the project Chapter06 and name it CustomA nimation.
This example shows you how to use the custom animation class in a WPF
application. Hereisthe XAML file of this example:

<Wndow x: d ass="Chapt er 06. Qust omAni nat i on"
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xan / present ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
xm ns: | ocal ="cl r - namespace: Chapt er 06"
Ti tl e="CQust om Ani mati on" Hei ght ="500" Wdth="300">

<Canvas>
<B lipse Nane="el | i psel" Wdth="50" Hei ght="50"
Canvas. Left ="115" Canvas. Top="20">
<Hlipse.Fill>
<Radi al G adi ent Brush G adi ent i gi n="0. 75, 0. 25" >
<@ adi ent Stop Col or ="Li ght Bl ue" Cffset="0"/>
<@ adientStop Col or="B ue" fset="1"/>
</ Radi al & adi ent Brush>
</Blipse.Fill>
</H i pse>

<Canvas. Tri gger s>
<Event Tri gger Rout edEvent =" Rect angl e. Loaded" >
<Bvent Tri gger . Acti ons>
<Begi nSt or yboar d>
<St or yboar d>
<l ocal : Freef al | Doubl eAni mat i on
St or yboar d. Tar get Narme="el | i psel”
St or yboar d. Tar get Propert y="(Canvas. Top) "
Fron¥"20" To="400" Accel eration="10"
Duration="0: 0: 10" Repeat Behavi or =" For ever"/>
</ St or yboar d>
</ Begi nSt or yboar d>

Chapter 6: Animation | 253

</ Bvent Tri gger. Acti ons>
</ Event Tri gger >
</ Canvas. Tri gger s>
</ Canvas>
</ W ndow>

In order to use the custom animation class in XAML files, you need to include
an XML namespace to associate the custom class:

xm ns: | ocal ="cl r - namespace: Chapt er 06"

If the custom class isin a DLL rather than part of the project, the namespace
declaration also needs to indicate the DLL assembly name. Y ou can then use the
custom class in your animation. The above XAML file creates an ellipse object
in XAML and peforms animation on it using the custom
FreefallDoubleAnimation class in exactly the same way as you could use the
WPF built-in DoubleAnimation class. Figure 6-9 shows the results of running

this example.
B Cusiom Animation Q@gl

Figure 6-9 Custom animation.

254 | Chapter 6: Animation

Per-Frame Animation

For physics-based animations, you need to use either per-frame animation or
timer-based animation. Both per-frame and timer-based animations completely
bypass the WPF animation system. Note that these two kinds of animations must
be implemented in code.

To animate frame-by-frame, you simply need to attach an event handler to the
static CompositionTarget.Rendering event. This event handler method gets
caled continuously once per frame. In the rendering event handler, you can
perform whatever calculations are necessary for the animation effect you want,
and set the properties of objects you want to animate with these values. In other
words, you heed to manage all the work associated with the animation yourself.

To obtain the presentation time for the current frame, the EventArgs associated
with this event can be cast as RenderingEventArgs, which provides a
RenderingTime property, which you can use to obtain the current frame's
rendering time.

Let's consider an example that shows how to create a per-frame animation. Add
a new WPF Window to the project Chapter06 and name it PerFrameAnimation.
Here, you'll animate two balls, moving aong two ellipse paths. The following is
the markup of this example:

<Wndow x: d ass="Chapt er 06. Per Fr aneAni nat i on"
xm ns="http://schemas. m crosoft. com w nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Title="Per Frane Animation" Hei ght="400" Wdth="400">

<Canvas>
<Path Fill="Bl ue">
<Pat h. Dat a>
<B |i pseGeonetry x: Nane="bal | 1"
Cent er="30, 180" Radi usX="5" Radi usY="5"/>
</ Pat h. Dat a>
</ Pat h>

<Path Fill="Red">
<Pat h. Dat a>
<BH |i pseCGeonetry x: Nane="bal | 2"
Cent er ="180, 30" Radi usX="5" Radi usY="5"/>
</ Pat h. Dat a>
</ Pat h>

<Path Stroke="Li ght Bl ue">
<Pat h. Dat a>
<B |'i pseGeonetry Cent er="180, 180"
Radi usX="150" Radi usY="75"/>
</ Pat h. Dat a>
</ Pat h>

<Path Stroke="Light Coral ">

Chapter 6: Animation | 255

<Pat h. Dat a>
<B |i pseCeonetry Center="180, 180"
Radi usX="75" Radi usY="150"/>
</ Pat h. Dat a>
</ Pat h>
</ Canvas>
</ W ndow>

Note that the two bigger ellipses in the above XAML aren’t the real moving
paths of the two balls, but are smply used to guide the viewer's eyes. The
corresponding code-behind fileis listed below:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Control s;

usi ng System W ndows. Medi a;

usi ng System W ndows. Medi a. Ani mat i on;
usi ng Syst em W ndows. Shapes;

namespace Chapt er 06

public partial class PerFraneAnimation : Wndow

{

private Ti meSpan | ast Render;

double tine = 0;

doubl e dt = 0;

publ i ¢ Per FraneAni mati on()
InitializeConponent();
| ast Render = Ti neSpan. Froni cks(

Dat eTi ne. Now. Ti cks) ;
Conposi ti onTar get . Rendering +=
Start Ani nati on;

}

private void StartAni nation(
obj ect sender, EventArgs e)

{
Render i ngEvent Args render Args =

(Renderi ngEvent Ar gs) e;
dt = (render Args. Renderi ngTi ne —
| ast Render) . Tot al Seconds;

| ast Render = render Args. Renderi ngTi ne;
double x = 180 + 150 * NMath. Cos(2 * tine);
double y = 180 + 75 * Math.Sn(2 * tine);
bal I 1. Center = new Point(Xx, y);
X =180 + 75 * Math. Cos(0.5 * time);
y =180 + 150 * Math.Sin(0.5 * tine);
bal | 2. Center = new Point(x, y);
tine += dt;

}

}

256 | Chapter 6: Animation

You can see that the event handler StartAnimation is attached to the
CompositionTarget.Rendering event. Inside the event handler, you obtain the
RenderingTime by casting the EventArgs with RenderingEventArgs. You then
get the time difference (dt) needed to progress each frame. Next, you specify
each ball’s Center property using an ellipse function. The argument of this
function is related to the time difference dt. Thus, as the animation progresses
frame by frame, each ball will move along its respective ellipse path. In this way,
your animation speed is independent of the frame rate because dt automatically
adjusts according to the frame rate. You can aso specify dt as a constant
parameter, which will make your animation frame-rate dependent.

Figure 6-10 illustrates the results of running this application.

B Per Frame Animation

Figure 6-10 Per-frame animation.

Animation Using Timer

Another approach you can use in physics-based animations is to use a timer.
This method was commonly used in animation before WPF. Like the per-frame
animation, this timer-based animation completely bypasses the WPF animation
system. You can use either method to create physics-based animations. My

Chapter 6: Animation | 257

personal preference is to use the per-frame animation over timer-based
animation because you don’t need to worry about frame rate in the per-frame
animation, but you need to manage everything (including the frame rate)
yourself in timer-based animation.

There are severa timer systems in WPF that you can use in your animations,
such as System.TimersTimer and the DispaicherTimer in the
System.Windows.Threading namespace. For timer-based animations, | suggest
that you use the DispatcherTimer. This is because the Timer in the
System.Timers namespace runs on a different thread than the user interface
thread of WPF. In order to access objects on the user interface thread, it is
necessary to post the operation onto the Dispatcher of the user interface thread
using the Invoke or Begininvoke method. On the other hand, the
DispatcherTimer runs on the same thread as the user interface, and it can
directly access objects on the user interface thread.

Using the DispatcherTimer is simple —you first create a Dispatcher Timer object,
then add the event handler dispatcherTimer_Tick to the Tick event of the
DispatcherTimer object. The Interval can be set using a TimeSpan object.
Finally, you call the timer’s Start() method.

Figure 6-11shows an example of a projectile, called TimerAnimation.

M Timer-Based Animation

R Maximum X Distance = 92m
10 | Maximum Y Distance = 30m

Figure 6-11 Timer-based animation.

258 | Chapter 6: Animation

Here, an ellipse object with an initial position and velocity moves into the space
above a planet (which can be the Moon, the Earth, or any other planet by
specifying its acceleration of gravity). The only force acting on the object is the
gravity. This physics problem can be animated using a DispatcherTimer.

First, we create alayout for this example using markup:

<W ndow x: d ass="Chapt er 06. Ti rmer Ani nat i on"
xm ns="http://schemas. m crosoft. com w nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Title="Ti ner-Based Anination " Hei ght="400" Wdth="450">

<W ndow. Resour ces>
<Styl e Target Type="{x: Type Text Box}">
<Setter Property="Wdth" Val ue="50"/>
<Setter Property="Height" Val ue="20"/>
<Setter Property="Horizontal Alignnent"
Val ue="Left"/>
<Setter Property="TextAignment" Val ue="Center"/>
<Setter Property="Margin" Val ue="10,0, 2, 2"/>
</ Syl e>
<Styl e Target Type="{x: Type Text Bl ock}">
<Setter Property="Margin" Val ue="10,5,0,2"/>
</ Styl e>
</ Wndow Resour ces>

<@id>
<@i d. Col umDefi ni ti ons>
<Col umDefiniti on Wdt h="75"/>
<Col umDefi ni ti on Wdt h="Auto"/>
</ @i d. Col umbDefi ni ti ons>
<St ackPanel @i d. Col um="0">
<St ackPanel . Backgr ound>
<Li near @ adi ent Brush Start Poi nt="0, 0"
EndPoi nt ="1, 0" >
<@ adientStop Col or="Gay" (ffset="0"/>
<QadientStop Golor="Wite" ffset="1"/>
</ Li near G adi ent Br ush>
</ St ackPanel . Backgr ound>
<Text Bl ock Text="X0:"/>
<Text Box Name="tbX0" Text="10"/>
<Text Bl ock Text="YO0:"/>
<Text Box Name="tbY0" Text="10"/>
<Text Bl ock Text="Wx:"/>
<Text Box Nane="tbW" Text="20"/>
<Text Bl ock Text="W:"/>
<Text Box Nane="tbW" Text="20"/>
<Text Bl ock Text="Gavity:"/>
<Text Box Nane="tbQavity" Text="9.81"/>
<Text Bl ock Text="Ti neDel ay:"/>
<Text Box Nane="t bTi meDel ay" Text="50"/>
<Separat or Margi n="0, 15, 0, 10"/ >
<Button Qick="btnStart_Qdick" Content="Start"

Chapter 6: Animation | 259

W dt h="50" Hei ght="25" Margi n="10, 5, 5, 5"
Hori zontal Al i gnment ="Left"/>
<Button dick="btnd ose dick" Content="d ose"
Wdt h="50" Hei ght="25" Margi n="10, 0, 5, 5"
Horizontal Ali gnment ="Left"/>
</ St ackPanel >

<M ewbox Stretch="FIl" &id. Col um="1">
<Border Margi n="5" Bor der Brush="8Bl ack"
Bor der Thi ckness="1" Qi d. Col um="1"
Hori zontal Al i gnment =" Left">
<Canvas x: Name="canvasl" Wdt h="345"
Hei ght =" 345" Qi pToBounds="Tr ue"
Background="{ St ati cResource MG ayGi dBrush}">
<H i pse Nane="el | i pse" Wdt h="10"
Hei ght ="10" Fi Il ="Red"
Canvas. Bot t on¥" 20"
Canvas. Left="20"/>
<Text Bl ock Nane="t bXVvax"
Text =" Maxi mum X di stance:" />
<Text Bl ock Nane="t bYMax"
Text =" Maxi mum Y di st ance: "
Canvas. Top="15"/>
</ Canvas>
</ Bor der >
</ Vi enbox>
<Qid>
</ W ndow>

This XAML file creates an ellipse object and the user interface that alows the
user to typein various input parameters. In particular, the TimeDelay parameter
controls the speed of the animation. The following is the code-behind file of this
example:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Control s;
usi ng System Wndows. | nput ;

usi ng System Wndows. Medi a;

usi ng Syst em W ndows. Shapes;
usi ng Syst em W ndows. Thr eadi ng;

namespace Chapt er 06

{

public partial class TimerAnimtion : Wndow

{
double XMn = 0;
double YMn = 0;
doubl e XMax = 100;
doubl e YMax = 50;
doubl e X0 = 10;
doubl e YO = 10;
doubl e W = 10;
doubl e W = 10;

260 | Chapter 6: Animation

double Gavity = 9. 81,

doubl e Ti nelel ay = 50;

double tine = 0;

doubl e dt = 0.1;

D spat cher Ti mer timer = new Di spat cher Ti ner();
Pol yline pl = new Pol yline();

publ i c Ti mer Ani mati on()

{
InitializeConponent();
pl . Stroke = Brushes. Bl ue;
canvasl. Chi | dren. Add(pl);
}

private void btnStart_Qi ck(
obj ect sender, RoutedEventArgs e)
{

time = 0;
dt = 0.1;

if (canvasl. Children. Gount > 3)
canvasl. Chi |l dren. Renove(pl);

pl = new Pol yline();

pl . Stroke = Brushes. Bl ue;
canvasl. Chil dren. Add(pl);
timer = new D spat cher Ti rer ();

X0
YO

Doubl e. Par se(t bX0. Text);

Doubl e. Par se(tbYO0. Text);

Vx = Doubl e. Parse(tbWx. Text);

W = Doubl e. Parse(tbW. Text);

Ti meDel ay = Doubl e. Par se(t bTi neDel ay. Text);
Qavity = Doubl e. Parse(tbGavity. Text);

/1 Get maxi numx and y:
double xm=2* W * W/ Qavity;
double ym=0.5* W * W / Qavity;
doubl e x1 Mat h. Round(X0 + xm 0);
doubl e y1 = Math. Round(Y0 + ym 0);
t bXVax. Text = "Maxi num X Di stance =
"+ x1. ToString() + "ni;
tbYMax. Text = "Maxi numY Di stance
"+ yl. ToString() + "ni;

tiner.Interval = TimeSpan. FronM I |i seconds(
Ti nelel ay) ;

timer.Tick += new Event Handl er (ti ner_Ti ck);

timer. Start();

}

private void timer_Tick(object sender, EventArgs e)

{
double x = X0 + W * tineg;

Chapter 6: Animation | 261

double y = YO + W * tine —
0.5* QGavity * tine * tine;

if (y >= YO)

Canvas. Set Left (el li pse, XNornalize(x));
Canvas. Set Top(el i pse, YNornalize(y));
pl . Poi nts. Add(new Poi nt (
XNormal i ze(x) + 5, YNormalize(y) + 5));
}

el se

tiner.Stop();
return;

}

tine += dt;

}

private doubl e XNornal i ze(doubl e x)

doubl e result = (x - XMn) *
canvasl. Wdth / (Xvax - XMn);
return result;

}

private doubl e YNormal i ze(doubl e y)

doubl e result = canvasl.Height - (y - YMn) *
canvasl. Height / (YMax - YMn);
return result;

}

private void btnd ose_Adi ck(
obj ect sender, RoutedEventArgs e)
{

}

this.dose();

}

In the above code, we define several private members that can be changed by
the user’s inputs. The animation using timer is straightforward. When you click
the Start button, the program reads in the input parameters and prepares for the
animation. This example a so involves the following timer-rel ated statements:

tiner.Interval = TineSpan. FronM I | i seconds(Ti nelel ay) ;
timer. Tick += new Event Handl er (ti mer_Ti ck);
tiner.Start();

First, we set the timer interval using the TimeSpan object that takes the input
parameter: TimeDelay. This interval controls the animation speed. Then we add
an event handler, timer_Tick, to the timer.Tick event, and call the timer's Start
method to start the animation.

262 | Chapter 6: Animation

All the animation-related code is implemented in the timer_Tick event handler.
Note how the time variable relates to the timer’ s tick event. For each tick of the
timer, the time adds an additional dt (a constant time increment). The animation
progresses with the timer’s tick event until the ellipse object touches the ground
(corresponding to Y = 0), where the timer stops.

Also note that the calculation uses normalized X and Y coordinates to reflect
real-world scales and use a custom coordinate system with a bottom-up Y axis.

In this chapter, we explored a variety of animation techniques in great detail.
You learned how to use animations in code and how to construct and control
them with XAML. Now that your’' ve matered the basics, you can concentrate on
the art of animation — deciding what properties to be animated and how to get
the effect you want. This book provides many code examples on animations,
including animations of 3D objects, which can be modified and used in your
WPF applications.

Chapter 7
Physics and Gamesin WPF

If you are a game programmer, you know how to render complex game scenes
on the screen. You know about game theory and how to make your games
interesting and attractive. However, if your games aren't based on a solid
physics foundation, they’Il look and act fake. Therefore, physics plays a crucia
role in game programming, because it can make your games more fun to play
and more redlistic.

In this chapter, you'll learn how to represent physics events and how to create
simple 2D physics-based games in WPF. The chapter begins with ordinary
differentia equations (ODEs), which form a mathematical foundation for
describing many physics phenomena. It then presents a variety of examples that
solve different physics models using the ODE solver, including pendulum,
coupled spring system, projectile, and collission. The simulators implemented in
these examples will be a starting point for devel oping physics-based games. This
chapter also presents a golf game simulator based on the projectile model, and
several different kinds of fractals with self-similar behavior.

Ordinary Differiential Equations

Many physics phenomena can be described in terms of a set of ODEs. For
example, if a projectile is flying through the air, it will be subject to the force of
aerodynamic drag, which is a function of the object’s velocity. The force acting
on the projectile will vary during its flight, and the resulting equations of motion
are aset of ODES, which can’t be solved analytically.

Another example is the spring-mass system. In this system, there are two forces
acting on the mass: elastic recovery force, which is proportiona to the
displacement of the mass, and the damping force, which is proportiona to its
velocity. The equations of motion describing this system are also a set of ODES,
which can't be directly solved either.

264 | Chapter 7: Physics and Games in WPF

Fortunately, there are a number of techniques that can be used to solve ODEs
when an analytically closed-form solution is impossible. In the next section, a
technique called the Runge-K utta method will be presented which can be used to
solve the differential equations that you will encounter in your game
programming. This technique has been proven to be versatile, reliable, and
applicable to awide range of applications.

Fourth-Order Runge-Kutta M ethod

Many techniques have been developed over the years for solving ODEs. The
one presented and used in this book is caled the fourth-order Runge-Kutta
method. This method is one of a family of step-wise interpolation methods,
indicating that from a set of initial conditions, the differential equation is solved
at discrete increments of the independent variable. For the equation of motion,
the independent variable is time. The fourth-order Runge-Kutta method isn’t the
most efficient technique available, but it is simple and reliable, and gives
reasonable results as long as extremely high accuracy isn’t required.

The Runge-Kutta method is designed to work on first order differentia
equations. It starts with an initial set of values of t (time variable) and x (position
variable) from which subsequent values of x are calculated as a solution for the
differential equations

dx _
re f(xt) (7.1

Here the function of f(x,t) corresponds to the velocity. Suppose that at a given
time t,,, the x-position and velocity are known: x,, and f,. You want to determine
the x at a future time t,+dt, where dt is a certain time increment. Here are the
relations involved in the fourth-order Runge-K utta method:

ky = At CF (%) (7.2)
k, =dt Ef[xn +%,tn +%j (7.3)
kg = D‘(xn +k—22,tn +d_2tj (7.4)
Ky =dt OF (%, +kat, +) (75)
o =y 1+ 22 ;2"3 +ka) (76)

The Runge-Kutta method can be used to solve any first-order ordinary
differential equation. As long as a derivative can be expressed as a function of
the dependent and independent variables, this method can be used to calculate
the value of the dependent variable.

Chapter 7: Physics and Games in WPF | 265

Higher-Order ODEs

As mentioned preiously, the Runge-Kutta method is designed to solve first order
ODEs. However, you can aso use this technique to solve higher-order
differential equations. The trick is to expand higher-order devivatives into a
series of first-order ODEs. The Runge-Kutta method is then applied to each
first-order ODE. For example, suppose you want to model a spring-mass system
with damping, which can be described by the following second-order
differential equations:

2
d°x _ ko — ax
dt? dt
where k is the spring constant and b is the damping coefficient. Since the

velocity v = dx/dt, the equation of motion for a spring-mass system in Equation
(7.7) can be rewritten in terms of two first-order differential equations:

dv k b
— == X-—V
dt m m
dx

=v

e

(7.7)

(7.9)

In the above equation, the derivative of v is a function of v and x, and the
derivative of x is afunction of v. Since the solution of v as a function of time
depends on x and the solution of x as a function of time depends on v, the two
equations are coupled and must be solved simultaneously using the Runge-Kutta
method.

Most of the ODEs in physics are higher-order ODEs. This means that you must
expand them into a series of first-order ODEs before they can be solved using
the Runge-K utta method.

ODE Solver

Now it is time to implement the ODE solver based on the fourth-order Runge-
Kutta technique. The solver will be written as generally as possible so that it can
be used to solve any number of coupled first-order ODEs.

For a given set of initial values t0O and x0 (here, x0 is an array for multiple
coupled ODES), an increment value dt, and an array x that stores the solution, a
function f(x,t) (also an array for multiple coupled ODEs), and a number of
differential equations N, you can solve ODESs through the following steps:

+ Sett=tOandx =xO0.

* Repeat the subsequent tasksfor i = 0, to N-1.
* Setkl=dt* f(x,t).

e Setk2=dt* f(x + k12, t + di/2).

266 | Chapter 7: Physics and Games in WPF

o Setk3=dt* f(x +k2/2,t + dt/2).
e Setk4=dt* f(x + k3, t+ dt);

o Setx=x+(k1l+k2+k3 +k4)/6.
o SetxO0=x.

o Sett=t+dt.

Note that to solve for multiple coupled differential equations, the Runge-Kutta
variables k1 to k4 must also be arrays.

Now, start with a new WPF Windows project and name it Chapter07. Add a new
class, ODESolver, to the project. Here is the code listing of this class:

usi ng System
usi ng System W ndows;

namespace Chapt er 07
public class CDESol ver

publ i c del egate doubl e Functi on(
doubl €[] x, double t);

public static doubl e[] RungeKutta4(
Function[] f, double[] xO, double t0O, double dt)
{

int n = x0.Length;

doubl e[] k1 = new doubl e[n];
doubl e[] k2 = new doubl e[n];
doubl e[] k3 = new doubl e[n] ;
doubl e[] k4 = new doubl e[n];

double t = tO0;
doubl e[] x1 = new doubl e[n];
doubl e[] x = xO0;

for (int i =0; i <n; i++)
K1[i] =dt * f[i](x, t);

for (int i =0; i <n; i++)
x1[i] =x[i] + k1[i] / 2;

for (int i =0; i <n; i++)
k2[i] =dt * f[i](x1, t +dt / 2);

for (int i =0; i <n; i++)
x1[i] =x[i] + k2[i] I 2

for (int i =0; i <n; i++)
k3[i] =dt * f[i](x1, t +dt / 2);

for (int i =0; i <n; i++)
x1[i] = x[i] + k3[i];

Chapter 7: Physics and Games in WPF | 267

for (int i =0, i <n; i++)

ka[i] =dt * f[i](x1, t + dt);
for (int i =0; i <n; i++)

x[i] +=

(K1[i] +2 * k2[i] + 2 * K3[i] + k4[i]) / 6

return x;

}

Notice that here, you first define a delegate function that takes a double array x
and adouble time variable t asits input parameters. Then you implement a static
method, RungeK uttad, that returns a double array as solutions to the ODEs. This
method takes a Function array f, theinitial values of the array x0, the initial time
t0, and the time increment dt as input parameters. Y ou can see that the delegate
function can be used simply like a normal mathematical function, and is very
easy to program.

The RungeKuttad method looks quite simple and only takes a very short code
listing. However, it is very powerful in the sense that it can be used to solve
first-order ODEs with any number of coupled equations. To apply the
ODESolver to a specific physics problem, you simply supply the function array,
initial values, and time increment. The following sections will show you how to
solve physics problems using this ODE solver.

Pendulum

Let’'s demonstrate the usefulness of the Runge-Kutta ODE solver by applying it
to the problem of a pendulum system. A pendulum is an object that is attached
to a pivot point so that it can swing freely. A simple example is the gravity
pendulum, which is amass on the end of a massless string.

Equation of Motion

The equation of motion for this pendulum system can be written in the form:

d?e . do
mL—— =-mgsind-bL— 7.9
dt? m dt (7.9)

Where misthe mass, L isthe length of the string, g is the acceleration of gravity
(= 9.81m/s), b is the damping coefficient, and 0 is the swing angle. If you
neglect the damping and have a very small swing angle, this equation of motion
has a closed form solution. For alarge swing angle and finite damping, you have
to solve the equation numerically.

268 | Chapter 7: Physics and Games in WPF

In order to solve this second-order differential equation using the Runge-Kutta

method, you need to convert it into a coupled first-order ODEs. Let do/dt = a.
Y ou can then rewrite Equation (7.9) in the following form:

a0 _

gt X (7.10)
99 - _S94ne-24a

dt L m

This system consists of two coupled first-order ODEs.
Pendulum Simulator

Let's start with an example that simulates the motion of a pendulum and
demonstrates how to solve Equation (7.10) numerically using the Runge-Kutta
method. Add a new WPF Window to the project Chapter07 and name it
Pendulum. A screen shot of the Pendulum Simulator is shown in Figure 7-1. A
string with a mass hanging on one end is displayed in the bottom-left pane. The
bottom-right pane shows how the swing angle changes with time. In addition,
there are severa TextBox fields that allow you to input the mass, string length,
damping coefficient, initial angle, and initial angle velocity. A Start button
begins the pendulum simulator, a Stop button stops the simulation, and a Reset
button stops the simulation and returns the pendulum to itsinitial position.

M Pendulum Simulator

Mass: |

— 5
—_— = I Stop
Damping: | g1 |
|

Starting...
-Reset

theta
*

11y
NAAAA
\ .| il I| || ||Il ,II\ IInII I”'] ['F'| |
\\]“l |||I |I| Illl |.|I ||‘| | J VY time
J
\ V¥

Figure 7-1 Pendulum Simulator.

The layout and user interface are implemented in the following XAML file:
<Wndow x: d ass="Chapt er 07. Pendul unY
xm ns="htt p://schenas. m crosoft. com w nf x
/ 2006/ xan / present ati on"

xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "

Chapter 7: Physics and Games in WPF | 269
Titl e="Pendul um Si nul at or" Hei ght ="350" Wdt h="600">

<Wndow. Resour ces>
<Styl e Target Type="{x: Type Text Box}">
<Setter Property="Wdth" Val ue="50"/>
<Setter Property="Height" Val ue="20"/>
<Setter Property="Horizontal Alignnent"
Val ue="Left"/>
<Setter Property="TextAignnent" Val ue="Center"/>
<Setter Property="Mrgin" Val ue="2"/>
</ Styl e>
<Styl e Target Type="{x: Type Text Bl ock}">
<Setter Property="Margin" Val ue="5,2,2,5"/>
<Setter Property="Wdth" Val ue="70"/>
<Setter Property="TextAignnent" Val ue="R ght"/>
</ Syl e>
<Styl e Target Type="{x: Type Button}">
<Setter Property="Mrgin" Val ue="2"/>
<Setter Property="Wdth" Val ue="75"/>
<Setter Property="Height" Val ue="25"/>
</ Syl e>
</ Wndow Resour ces>

<St ackPanel Margi n="10">
<StackPanel Qientation="Horizontal ">
<St ackPanel >
<StackPanel Qientation="Horizontal ">
<Text Bl ock>Mass: </ Text Bl ock>
<Text Box Name="t bMass" Text="1"/>
</ St ackPanel >
<StackPanel Qientation="Horizontal ">
<Text Bl ock>Lengt h: </ Text Bl ock>
<Text Box Name="tbLength" Text="1"/>
</ St ackPanel >
<StackPanel Qientation="Horizontal ">
<Text Bl ock>Danpi ng: </ Text Bl ock>
<Text Box Nane="t bDanpi ng" Text="0.1"/>
</ St ackPanel >
</ St ackPanel >
<St ackPanel >
<StackPanel Oientation="Horizontal ">
<Text Bl ock>Thet a0: </ Text Bl ock>
<Text Box Nanme="t bThet a0" Text="45"/>
</ St ackPanel >
<StackPanel Oientation="Horizontal ">
<Text Bl ock>Al pha0: </ Text Bl ock>
<Text Box Nanme="t bAl pha0" Text="0"/>
</ St ackPanel >
</ St ackPanel >
<StackPanel Margin="70,0, 0, 10">
<Button Qick="btnStart_Qick"
Content="Start"/>
<Button Qick="btnStop_Adick" Content="Stop"/>
<Button Adick="btnReset _dick"

270 | Chapter 7: Physics and Games in WPF

Cont ent =" Reset "/ >
</ St ackPanel >
<St ackPanel Margi n="70, 40, 0, 0">
<Text Bl ock Nane="t bDi spl ay" FontS ze="16"
For egr ound="Dar kRed" >St opped
</ Text Bl ock>
</ St ackPanel >
</ St ackPanel >
<Separ at or Margi n="0, 10, 0, 10" ></ Separ at or >
<M ewbox Stretch="FIl">
<@id>
<@i d. Col umDefi ni ti ons>
<Col utmDefi ni ti on/ >
<Col umDefini tion/ >
</ @i d. Col umbDefi nitions>

<Canvas Nane="canvasLeft" Qid. Col um="0"
Wdt h="280" Hei ght="170">

<Rect angl e Fil| ="DarkGol denrod" Wdt h="50"
Hei ght ="10" Canvas. Left="115"
Canvas. Top="10"/>

<Line Name="linel" X1 ="140" Y1="20"

X2="140" Y2="150" Stroke="Red"/>
<Path Fill="Blue">

<Pat h. Dat a>
<H | i pseGeonetry x: Name="bal | "
Radi usX="10"
Radi usY="10"
Cent er =" 140, 150"/ >
</ Pat h. Dat a>
</ Pat h>
</ Canvas>

<Canvas Nane="canvasR ght" @i d. Col um="1"
d i pToBounds="True" W dt h="280"
Hei ght =" 170" >
<Line X1="10" Y1="0" X2="10" Y2="170"
Stroke="QGay" StrokeThi ckness="1"/>
<Line X1="10" Y1="85" X2="280" Y2="85"
Stroke="QGay" StrokeThi ckness="1"/>
<Text Bl ock Text Al i gnment ="Left"
Canvas. Left="10">t heta
</ Text Bl ock>
<Text Bl ock Text Al'i gnment ="Left"
Canvas. Lef t =" 250"
Canvas. Top="85">ti ne
</ Text Bl ock>
</ Canvas>
</Qqid>
</ Vi ewbox>
</ St ackPanel >
</ W ndow>

Chapter 7: Physics and Games in WPF | 271

Here, you need an animation method to display the real-time motion of the
pendulum on the screen. As you learned in the previous chapter, there are two
techniques available for physics-based animations: per-frame animation and
timer-based simulation. Either method works for the pendulum problem. | prefer
to use per-frame animation. The following is the code-behind file of this
exampl e based on per-frame animation:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;
usi ng System W ndows. Medi a;
usi ng Syst em W ndows. Shapes;

narmespace Chapt er 07

{

public partial class Pendul um: Wndow

{
private doubl e Pendul umvass = 1;
private doubl e Pendul umiength = 1;
private doubl e Danpi ngCoefficient = 0.5;
private doubl e Theta0 = 45;
private doubl e Al pha0 = 0;
doubl e[] xx = new doubl e[2] ;

double tine = 0;

doubl e dt = 0.03;

Pol yline pl = new Pol yline();
double xMn = 0;

Doubl e yM n = -100;

doubl e xMax = 50;

doubl e yMax = 100;

publ i ¢ Pendul un{)

InitializeConponent();
}

private void btnStart_Qi ck(
obj ect sender, RoutedEventArgs e)
{

Pendul uniass = Doubl e. Par se(t bivass. Text);
Pendul uniengt h = Doubl e. Par se(t bLengt h. Text) ;
Danpi ngCoef fi ci ent = Doubl e. Par se(t bDanpi ng. Text) ;

Thet a0 = Doubl e. Par se(t bThet a0. Text);
ThetaO = Math. Pl * ThetaO / 180;
A pha0 = Doubl e. Par se(t bA pha0. Text);

A pha0 = Math. Pl * Al phaO / 180;
tbDisplay. Text = "Starting...";

if (canvasR ght. Children. Count > 4)
canvasR ght . Chi | dren. Renove(pl);

272 | Chapter 7: Physics and Games in WPF

}

pl = new Pol yline();
pl . Stroke = Brushes. Red;
canvasR ght . Chi | dren. Add(pl);

time = 0O;
xx = new doubl e[2] { ThetaO, A phaO };
Conposi ti onTar get . Rendering += Start Ani mati on;

private void StartAnination(

{

}

obj ect sender, EventArgs e)

/'l 1nvoke CDE sol ver:
CDESol ver . Function[] f =
new CDESol ver. Function[2] { f1, f2 };
doubl e[] result = CDESol ver. RungeKut t a4(
f, xx, tine, dt);

/1 D splay moving pendul umon screen:
Point pt = new Poi nt (
140 + 130 * Math.Sin(result[0]),
20 + 130 * Math. Cos(result[0]));
ball.Center = pt;
linel. X2 = pt. X
linel.Y2 = pt.Y,;

// Dsplay theta - time curve on canvasR ght:
if (time < xMax)
pl . Poi nts. Add(new Poi nt (XNor mal i ze(tine) + 10,
YNormal i ze(180 * result[0] / Math.Pl)));

// Reset the initial values for next calcul ation:
XX = result;
time += dt;

if (time >0 & Math. Abs(result[0]) < 0.01 &&
Mat h. Abs(resul t[1]) < 0.001)

tbDi spl ay. Text = " St opped”;
Conposi ti onTarget . Rendering -= StartAni mati on;

private void btnReset Qi ck(

{

obj ect sender, RoutedEvent Args e)

Pendul umni tialize();
tbDi spl ay. Text = " St opped”;
if (canvasRi ght. Children. Count > 4)
canvasR ght . Chi | dren. Renove(pl);
Conposi tionTarget. Rendering -= Start Ani mati on;

Chapter 7: Physics and Games in WPF | 273

private void Pendul umnitialize()
{

t bMass. Text = "1";

tbLength. Text = "1";

t bDanpi ng. Text = "0.1";

t bThet a0. Text 5"

t bAl pha0. Text

linel. X2 = 140;

linel.Y2 = 150;

bal | . Center = new Poi nt (140, 150);

4
0

}

private void btnStop_ Qi ck(
obj ect sender, RoutedEventArgs e)

{
linel. X2 = 140;
l'inel. Y2 = 150;
bal | . Center = new Poi nt (140, 150);
tbDispl ay. Text = " St opped”;
Conposi tionTarget. Rendering -= Start Ani mation;
}
private doubl e f1(double[]xx, double t)
{
return xx[1];
}
private doubl e f2(doubl e[] xx, double t)
{
doubl e m = Pendul univass;
doubl e L = Pendul uniengt h;
double g = 9. 81;
doubl e b = Danpi ngCoefficient;
return -g * Math.Sin(xx[0]) / L - b* xx[1] / m
}

private doubl e XNormal i ze(doubl e x)

double result = (x - xMn) *
canvasR ght . Wdth / (xMax - xMn);
return result;

}
private doubl e YNornalize(doubl e y)
doubl e result = canvasR ght. Height - (y - yMn) *

canvasR ght. Height / (yMax - yMn);
return result;

}

Here, you first define several private members that can be changed by the user’s
inputs. You also define a constant time increment dt for the animation. Thus, the

274 | Chapter 7: Physics and Games in WPF

frame rate of the pendulum motion will depend on your computer and how
many jobs you are running on your computer. You can control the animation
speed by adjusting dt. If you want to have an animation that doesn’t depend on
the frame rate, you can do so using the approach presented in the
PerFrameAnimation example in Chapter 6.

When the Start button is pressed, the input values for the mass, string length,
damping coefficient, and initial position and velocity are obtained from the
values inside their corresponding TextBox fields. At the same time, the event
handler StartAnimation is attached to the static CompositionTarget.Rendering
event.

Inside the StartAnimation event handler, you first create a function array, then
call the static RungeK utta4 method in the ODESolver class using the statements:

CDESol ver. Function[] f = new CDESol ver. Function[2] { f1, f2 };
doubl e[] result = CDESol ver. RungeKutta4(f, xx, time, dt);

The methods f1 and f2 represent the functions on the right-hand side of Equation
(7.20). The array xx in the RungeKutta4 method represents two dependent
variables, 6 and a. Namely, xx[0] = 6 and xx[1] = a. In this case, the result is
also a double array which gives solutions to 6 and a. With the animation
progressing in a frame-by-frame manner, the RungeKutta4 method gets called
continuously to update the string angle and angle velocity of the pendulum.

Once the new values of angle and velocity are obtained, you update the screen
that shows the moving pendulum and the swing angle as a function of time on
the screen. Next, you set the current solution as the initial values for the next
round simulation.

When the swing angle and angle velocity are so small that the pendulum almost
doesn’'t swing, you can stop the animation by detaching the StartAnimation
event handler using the statement:

Conposi ti onTarget . Rendering -= StartAni mati on;

As you can see from this example, once the ODESolver class is written, it is a
simple process to incorporate a pendulum into a game program. Y ou can play
around with the Pendulum Simulator by changing the values of the mass,
damping coefficient, initial string angle, and initial angle velocity, and watch
their effects on the motion of the pendulum.

Coupled-Spring System

In this section, you'll develop a spring simulator for a coupled spring system
with three springs and two masses, as shown in Figure 7-2. This system is fixed
at both ends. The parameters m; and m, represent masses; ki, kp, and ks are
spring constants that define how stiff the springs are; and by, by, and b; are
damping coefficients that characterize how quickly the springs motion will stop.

Chapter 7: Physics and Games in WPF | 275

Figure 7-2 A spring-mass system.

Equations of Motion

The equations of motion for this system can be written in terms of two coupled
second-order ODEs:

d?x dx dx

dtzl = (kg tka)Xg tkoXo —(by +b2)d_t1+b2d_t2

; (7.12)
dox, _ dx, axq

e =ky +k3)X; +kyX _(b2+b3)T+b2E

where x; and x, are the displacements of m; and m, respectively. There are no
closed-form solutions to this set of coupled differential equations. In order to
solve Equation (7.11) numerically using the Runge-Kutta method, you need to
first convert it into a series of first-order ODEs. This can be easily done by
introducing the velocity variables v, = dx,/dt and v, = dx,/dt:

(7.12)

F m, m, m,

These coupled first-order ODES are ready to be solved using the Runge-Kutta
method implemented in the ODESolver class.

Coupled Spring Simulator

Now we can develop the simulator for the coupled spring system. Add a new
WPF Window to the project Chapter07 and name it CoupledSprings. Again,
you'll create the layout and user interface for this example using XAML and
perform the computation and animation in code. A sample screen shot of the
layout of this exampleis shown in Figure 7-3.

276 | Chapter 7: Physics and Games in WPF

Bl Coupled Springs l:“E”-El

Coupled Spring System

b2 [oo ' Position-Time Curves of m1 (Blue) and m2(Red)

3 ()
b3 [0.0 |

x| iz i |"II |nl rII f A I.'I f |
ot LB AN WA~

¥1-¥2 Configuration Space V1-V2 Configuration Space

Figure 7-3 A coupled spring system.

You can see from this figure that in addition to the text fields for the masses,
spring constants, and damping coefficients, there are also text fields for
inputting the initial positions and velocities for m; and m,. All of these
parameters can be changed by the user, so this spring system simulator is very
general. The right side shows various animation results. On the top shows how
the coupled spring system moves during the simulation. The positions for m;
and m, as a function of time are displayed in the middle pane, from which you
can clearly see how the positions for these two masses respond differently to
time. On the bottom illustrates the position (X;vs X,) and velocity (vi VS Vo)
phase diagrams. If you have ever played with an oscilloscope, you have
probably seen the phase diagrams similar to those displayed here.

A Start button starts the simulation, a Stop buttom stops the simulation, and a
Reset button is used to stop the simulation, return all parameters to their default
values, and clear up the screen.

Thislayout is created using the following XAML code:

<Wndow x: d ass="Chapt er 07. Coupl edSpri ngs"
xm ns="http://schemas. m crosoft. comw nf x

Chapter 7: Physics and Games in WPF | 277

/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Titl e="Coupl ed Springs" Hei ght="540" Wdt h="560">

<Wndow. Resour ces>
<Styl e Target Type="{x: Type Text Box}">
<Setter Property="Wdth" Val ue="30"/>
<Setter Property="Height" Val ue="20"/>
<Setter Property="Horizontal Alignnent"
Val ue="Left"/>
<Setter Property="TextAignnent" Val ue="Center"/>
<Setter Property="Mrgin" Value="0,0,5,0"/>
</ Styl e>
<Styl e Target Type="{x: Type Text Bl ock}">
<Setter Property="Margin" Val ue="5,5,2,5"/>
</ Syl e>
<Styl e Target Type="{x: Type Button}">
<Setter Property="Mrgin" Val ue="2"/>
<Setter Property="Wdth" Val ue="55"/>
<Setter Property="Height" Val ue="20"/>
</ Syl e>
</ Wndow Resour ces>

<Mi ewbox Stretch="Uniform >
<Qid>
<@ i d. Col umDefini tions>
<Col umDefiniti on Wdth="Auto"/>
<Col umDefi ni ti on Wdt h="Auto"/>
</ @i d. Col umbDefinitions>

<Tool Bar Tray QOientation="Vertical"
Qid. Glum="0">
<Tool Bar >
<St ackPanel >
<G oupBox Margi n="0">
<St ackPanel >

<St ackPanel
Qientation="Horizontal " Vertical Ali gnnent ="Top" >
<Text Bl ock Wdt h="20">ni</ Text Bl ock>
<Text Box Name="tbml" Text="0.2"/>
</ St ackPanel >
<St ackPanel
QOientation="Horizontal " Vertical Ali gnnent ="Top">
<Text Bl ock W dt h="20">k1</ Text Bl ock>
<Text Box Name="t bk1" Text="10"/>
</ St ackPanel >
<St ackPanel
QOientation="Horizontal " Vertical Ali gnnent ="Top">
<Text Bl ock Wdt h="20">b1</ Text Bl ock>
<Text Box Nanme="t bbl" Text="0.0"/>
</ St ackPanel >

278 | Chapter 7: Physics and Games in WPF

Qientati

Cientati

Cientati

Qientati

Cientati

Qientati

Qientati

Cientati

Qientati

<St ackPanel
on="Hori zontal " Vertical A i gnnment =" Top" >
<Text Bl ock Wdt h="20">n2</ Text Bl ock>
<Text Box Name="tbn2" Text="0.2"/>

</ St ackPanel >

<St ackPanel
on="Horizontal " Vertical A i gnrment =" Top" >
<Text Bl ock W dt h="20">k2</ Text Bl ock>
<Text Box Name="t bk2" Text="1"/>

</ St ackPanel >

<St ackPanel
on="Hori zontal " Vertical Al i gnnent =" Top" >
<Text Bl ock Wdt h="20">b2</ Text Bl ock>
<Text Box Name="tbb2" Text="0.0"/>

</ St ackPanel >

<St ackPanel
on="Horizontal " Vertical A ignnent="Top">
<Text Bl ock Wdt h="20">k3</ Text Bl ock>
<Text Box Name="tbk3" Text="10"/>

</ St ackPanel >

<St ackPanel
on="Horizontal " Vertical A i gnrment =" Top" >
<Text Bl ock W dt h="20">b3</ Text Bl ock>
<Text Box Nanme="t bb3" Text="0.0"/>

</ St ackPanel >

<St ackPanel
on="Hori zontal " Vertical Al i gnnent =" Top" >
<Text Bl ock W dt h="20">x01</ Text Bl ock>
<Text Box Name="t bx01" Text="1"/>

</ St ackPanel >

<St ackPanel
on="Horizontal " Vertical Ali gnnent =" Top" >
<Text Bl ock W dt h="20">v01</ Text Bl ock>
<Text Box Name="tbv01l" Text="0"/>

</ St ackPanel >

<St ackPanel
on="Horizontal " Vertical A i gnrment =" Top" >
<Text Bl ock W dt h="20">x02</ Text Bl ock>
<Text Box Name="t bx02" Text="0"/>

</ St ackPanel >

<St ackPanel
on="Hori zontal " Vertical Ali gnnent =" Top" >
<Text Bl ock Wdt h="20">v02</ Text Bl ock>
<Text Box Name="t bv02" Text="0"/>

</ St ackPanel >

</ St ackPanel >
</ G oupBox>

<@ oupBox Margi n="0, 30,0, 0">
<St ackPanel >
<Button Name="btnStart" Qick="btnStart_dick"
Content="Start"/>
<Button Nanme="btnStop" dick="btnStop_QAick"
Cont ent =" St op"/ >

Chapter 7: Physics and Games in WPF | 279

<Button Name="btnReset" Qick="btnReset_dick"
Cont ent =" Reset "/ >
</ St ackPanel >
</ & oupBox>
</ St ackPanel >
</ Tool Bar >
</ Tool Bar Tr ay>

<St ackPanel Gid. Col umm="1">
<Text Bl ock Font Si ze="12" For egr ound="Dar kRed"
Mar gi n="150, 5, 5, 5" >Coupl ed Spri ng
Syst enx/ Text Bl ock>
<Canvas Nane="canvasl" Wdth="470"
Hei ght =" 90" >
<Rect angl e Wdt h="10" Hei ght ="50"
Fi || =" Dar k&ol denr od"
Canvas. Lef t =" 20"
Canvas. Top="20"/ >
<Rect angl e Wdt h="10" Hei ght="50"
Fi | I =" Dar kGol denr od"
Canvas. Lef t =" 440"
Canvas. Top="20"/ >
<Pol yl i ne Nane="springl" Canvas. Left="30"
Canvas. Top="35" Stroke="QG ay"
Poi nts="0, 10 5,10 10,0 20,20 30,0 40,
20 50,0 60,20 70,0 80,20 90,
0 100, 20 105,10 110, 10"/>
<Pat h>
<Path.Fill>
<Radi al @ adi ent Brush G adi ent i gi n="0. 75, 0. 25" >
<@ adi ent Stop Col or ="Li ght Bl ue" ffset="0"/>
<@ adientStop Col or="Blue" Crfset="1"/>
</ Radi al G adi ent Br ush>
</Path.Fill>
<Pat h. Dat a>
<B li pseCeonetry x: Nane="mass1" Radi usx="20"
Radi usY="20" GCent er="160, 45"/ >
</ Pat h. Dat a>
</ Pat h>

<Pol yl i ne Name="spring2" Canvas. Left="180"
Canvas. Top="35" Stroke="Q ay"
Poi nt s="0, 10 5,10 10,0 20,20 30,0 40,
20 50,0 60,20 70,0 80,20 90,
0 100, 20 105,10 110, 10"/ >
<Pat h>
<Path.Fill>
<Radi al @ adi ent Brush G adi ent i gi n="0. 75, 0. 25" >
<@ adient Stop Col or="VYel | ow Cffset="0"/>
<G adient Stop Col or="Red" Offset="1"/>
</ Radi al O adi ent Br ush>
</Path.Fill>
<Pat h. Dat a>
<BH li pseCGeonetry x: Nane="mass2" Radi usx="20"

280 | Chapter 7: Physics and Games in WPF

Radi usY="20" Center="310, 45"/ >
</ Pat h. Dat a>
</ Pat h>

<Pol yl i ne Name="spring3" Canvas. R ght =" 30"
Canvas. Top="35" Stroke="Q ay"
Poi nt s="0, 10 5,10 10,0 20,20 30, 0 40,
20 50,0 60,20 70,0 80,20 90,
0 100, 20 105,10 110, 10"/ >
</ Canvas>
<Separ at or ></ Separ at or >
<Text Bl ock Font Si ze="12" For egr ound="Dar kRed"
Mar gi n="100, 5, 5, 5" >Posi ti on-Tine Qurves of nl
(Blue) and n2(Red) </ Text Bl ock>
<Canvas Nane="canvas2" d i pToBounds="Tr ue"
Hei ght ="100" W dt h="460">
</ Canvas>

<Separ at or ></ Separ at or >
<StackPanel Qientation="Horizontal ">
<Text Bl ock Font Si ze="12" For egr ound="Dar kRed"
Mar gi n="40, 5, 5, 5">X1- X2 Configuration
Space</ Text Bl ock>
<Text Bl ock Font Si ze="12" For egr ound=""Dar kRed"
Mar gi n="95, 5, 5, 5">V1-V2 Configuration
Space</ Text Bl ock>
</ St ackPanel >
<StackPanel Cientation="Horizontal ">
<Canvas Name="canvas3" Hei ght ="225"
Wdt h="225" Margi n="5"
d i pToBounds="Tr ue" >
<Pat h Nanme="pat h1">
<Pat h. Dat a>
<B li pseCeonetry x: Nane="redDot 1" Radi usx="2"
Radi usY="2" Center="10, 10"/ >
</ Pat h. Dat a>
</ Pat h>
</ Canvas>

<Canvas Name="canvas4" Hei ght =" 225"
Wdt h="225" Margi n="5"
d i pToBounds=""Tr ue" >
<Pat h Name="pat h2">
<Pat h. Dat a>
<B |i pseGeonetry x: Nane="redDot 2" Radi usxX="2"
Radi usY="2" Center="10, 10"/ >
</ Pat h. Dat a>
</ Pat h>
</ Canvas>
</ S ackPanel >
</ St ackPanel >
</Qid>
</ Vi enbox>
</ W ndow>

Chapter 7: Physics and Games in WPF | 281

Here, you'll also use the per-frame animation approach to display the real-time
motion of the spring-mass system. The following is the corresponding C# code
of this example based on per-frame animation:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;
usi ng System Wndows. Medi a;
usi ng Syst em W ndows. Shapes;

nanespace Chapt er 07

{
public partial class Coupl edSprings : Wndow

{
private doubl e M
private doubl e Kl
private doubl e Bl
private doubl e M;
private doubl e K2
private doubl e B2
private doubl e K3
private doubl e B3
private doubl e X01;
private doubl e X02;
private doubl e VO1;
private doubl e V02;

private doubl e xbl 4;
6

3.
private doubl e xb2 = 6.

doubl e[] xx = new doubl e[4] ;
doubl e[] result = new doubl e[4];
doubl e time = 0;

doubl e dt = 0.02;

Polyline pl1 = new Pol yline();
Polyline pl2 = new Pol yline();
Polyline pl 3 = new Pol yline();
Polyline pl4 = new Pol yline();
publ i ¢ Coupl edSpri ngs()
{
InitializeConponent();
pl 1. Stroke = Brushes. Bl ue;
canvas2. Chi I dren. Add(pl 1) ;
pl 2. Stroke = Brushes. Bl ue;
canvas3. Chi | dren. Add(pl 2);
Springslnitialize();
}
private void Springslnitialize()
tbml. Text = "0.2";
t bkl. Text = "10";

282 | Chapter 7: Physics and Games in WPF

t bbl. Text
t bn2. Text
t bk2. Text
t bb2. Text
t bk3. Text
t bb3. Text
t bx01. Text
t bv01. Text
t bx02. Text
t bv02. Text

"NQ

(@]

S5 SH88
o

ogagkr
PiTiaq

}

private void btnStart_Qi ck(
obj ect sender, RoutedEvent Args e)
{

~
~

Get input paraneters:
Doubl e. Par se(t bmil. Text);
Doubl e. Par se(t bk1. Text);
Doubl e. Par se(tbbl. Text);
Doubl e. Par se(t bn?. Text);
Doubl e. Par se(t bk2. Text);
Doubl e. Par se(t bb2. Text);
Doubl e. Par se(t bk3. Text);
Doubl e. Par se(t bb3. Text);
Doubl e. Par se(t bx01. Text);
Doubl e. Par se(t bx02. Text);
Doubl e. Par se(t bv0l. Text);
Doubl e. Par se(t bv02. Text);

SSEEBORIRRAER

/1 Add polylines for displaying
/1l positions of ml and ng:
canvas2. Children.dear();

pl 1 = new Pol yline();

pl 1. Stroke = Brushes. Bl ue;
canvas2. Chi | dren. Add(pl 1) ;

pl 2 = new Pol yline();

pl 2. Stroke = Brushes. Red;
canvas2. Chi | dren. Add(pl 2) ;

/1 Add polylines for displaying
/1 position phase di agram
canvas3. Children. d ear();

pathl. Fi |l = Brushes. Red;

pl 3 = new Pol yline();

pl 3. Stroke = Brushes. Dar kG een;
canvas3. Chi | dren. Add(pl 3) ;
canvas3. Chi | dren. Add(pat hl);

/1 Add polylines for displaying
/1l velocity phase di agram
canvas4. Children. d ear();

path2. Fi |l = Brushes. Red;

pl 4 = new Pol yline();

pl 4. Stroke = Brushes. Dar kG een;

Chapter 7: Physics and Games in WPF | 283

canvas4. Chi | dren. Add(pl 4) ;
canvas4. Chi | dren. Add(pat h2) ;

tine = 0;
xx = new doubl e[4] { X01, X02, W01, V02 };
Conposi tionTar get. Rendering += Start Ani mati on;

}

private void StartAni nation(
obj ect sender, EventArgs e)

{
/1l Calcul ate positions of nl and n2:
C(CESol ver. Function[] f =
new CDESol ver. Function[4] { f1, f2, f3, f4 };
result = CDESol ver. RungeKuttad(f, xx, tinme, dt);
Ani nmati ngSprings();
D spl ayPosi tions();
Posi ti onPhase() ;
Vel oci t yPhase() ;
XX =result;
tine += dt;
if (time >0 & Math. Abs(result[0]) < 0.01 &
Mat h. Abs(result[1]) < 0.01 &
Mat h. Abs(result[2]) < 0.005 &&
Mat h. Abs(result[2]) < 0.005)
{
Conposi ti onTarget . Rendering -= Start Ani mati on;
}
}
private void Ani matingSprings()
{

Point ptl = new Poi nt (XNormal i ze(canvasl,
xbl + result[0], O, 10), 45);

Point pt2 = new Poi nt (XNornmal i ze(canvasl,
xb2 + result[1], 0, 10), 45);

nmassl. Center = pt1l;

mass2. Center = pt2;

/1 Animate springl:

int n = springl. Points. Count;

double delta = (ptl.X - 70) / (n - 5);

springl. Poi nts[2] = new Poi nt (
springl. Points[1]. X + 0.5 * delta,
springl. Points[2].YVY);

springl. Points[n - 1] = new Point (
ptl. X - 50, springl.Points[n - 1].Y);

springl. Points[n - 2] = new Point (
ptl. X - 55, springl.Points[n - 2].Y);

springl. Points[n - 3] = new Point (
springl. Points[n - 2].X - 0.5 * delta,
springl. Points[n - 3].Y);

284 | Chapter 7: Physics and Games in WPF

for (int i =3; i <n- 3; i+4)
{
springl. Points[i] = new Point(
10 + (i - 2) * delta,
springl. Points[i].Y);
}

/1 Animate spring2:
Canvas. Set Left (spring2, ptl.X + 20);
delta = (pt2.X - ptl.X- 60) / (n - 5);
spring2. Poi nts[2] = new Poi nt (

spring2. Points[1]. X + 0.5 * delta,

spring2. Points[2].VY);
for (int i =3; i <n- 3; i+4)
{

spring2. Points[i] = new Point (

10 + (i - 2) * delta, spring2.Points[i].Y);

spring2. Points[n - 1] = new Point (

pt2. X - ptl. X - 40, spring2.Points[n - 1].Y);
spring2. Points[n - 2] = new Point (

pt2. X - ptl. X - 45, spring2.Points[n - 2].Y);
spring2. Points[n - 3] = new Point (

spring2. Points[n - 2].X - 0.5 * delta,

spring2. Points[n - 3].Y);

/1 Animate spring3:
spring3. Poi nts[0] = new Poi nt (
XNor mal i ze(canvasl, result[1], 0, 10),
spring3. Points[0].Y);
spring3. Poi nts[1] = new Poi nt (
spring3.Points[0].X + 5, spring3.Points[1].Y);
delta = (spring3.Points[n - 1].X —
spring3.Points[0].X - 20) / (n - 5);
spring3. Poi nts[2] = new Poi nt (
spring3.Points[1] . X + 0.5 * delta,
spring3. Points[2].V);
spring3. Points[n - 3] = new Point (
spring3.Points[n - 2].X - 0.5 * delta,
spring3. Points[n - 3].Y);
for (int i =3; i <n- 3; i+
{
spring3. Points[i] =
new Poi nt (spring3. Points[2].X +
(i - 2) * delta, spring3.Points[i].Y);

}
private void D spl ayPositions()

/1l Shaw positions of ml and nR:
if (tinme < 30)

pl 1. Poi nt s. Add(new Poi nt (

Chapter 7: Physics and Games in WPF | 285

XNormal i ze(canvas2, time, 0, 30),
YNor nal i ze(canvas2,
result[0], O, 6) - 70));

pl 2. Poi nt s. Add(new Poi nt (
XNormal i ze(canvas2, time, 0, 30),
YNor nal i ze(canvas2,
result[1], O, 6) - 30));

}

private void PositionPhase()
if (time < 30)

pl 3. Poi nt's. Add(new Poi nt (
XNormal i ze(canvas3, result[0], -1, 1),
YNormal i ze(canvas3, result[1], -1, 1)));
redDot 1. Center = new Poi nt (
XNormal i ze(canvas3, result[0], -1, 1),
YNormal i ze(canvas3, result[1], -1, 1));

}
private void Vel oci tyPhase()
if (time < 30)

pl 4. Poi nt s. Add(new Poi nt (
XNormal i ze(canvas4, result[2], -8, 8),
YNor mal i ze(canvas4, result[3], -8, 8)));
redDot 2. Center = new Poi nt (
XNormal i ze(canvas4, result[2], -8, 8),
YNormal i ze(canvas4, result[3], -8, 8));

}
}
private doubl e f1(double[] xx, double t)
{
return xx[2];
}
private doubl e f2(doubl e[] xx, double t)
{
return xx[3];
}
private doubl e f3(doubl e[] xx, double t)
{
return -(KL + K2) * xx[0] / ML + K2 * xx[1] / M -
(BL + B2 * xx[2] / ML +B2* xx[3] / M,
}

private doubl e f4(doubl e[] xx, double t)
{

286 | Chapter 7: Physics and Games in WPF

return - (K2 + K3) * xx[1] / M + K2 * xx[0] / M —
(B2 + B3) * xx[3] / M+ B2* xx[2] /I M

private void btnReset _Qick(object sender,
Rout edEvent Args e)

{

Springslnitialize();

canvas2. Children. A ear();

canvas3. Children. d ear();

canvas4. Children.d ear();

Conposi tionTarget. Rendering -= Start Ani mation;
}

private void btnStop_Qick(object sender,
Rout edEvent Args e)
{

}

private doubl e XNormal i ze(Canvas canvas, doubl e X,
doubl e m n, doubl e max)

Conposi tionTarget. Rendering -= Start Ani nati on;

double result = (x - mn) *
canvas. Wdth / (max - mn);
return result;

}

private doubl e YNornal i ze(Canvas canvas, doubl e vy,
doubl e m n, doubl e max)

doubl e result = canvas. Height - (y - mn) *
canvas. Height / (max - mn);
return result;

}

The above code seems to be very involved. However, the basic structure of the
implementation is similar to that of the previous example. Most of the code
deals with how to correctly display the simulation results on the screen. At the
beginning, you define severa private members that can be changed by the user’s
inputs. When the Start button is clicked, the program gets the input parameters
and invokes a StatAnimation event handler through the
CompositionTarget.Rendering event.

Inside the event handler, you call the RungeKutta4d method to solve the ODEs
for this spring system with the statements:

(CESol ver. Function[] f =
new CDESol ver. Function[4] { f1, f2, f3, f4 };
result = CDESol ver. RungeKuttad(f, xx, time, dt);

Chapter 7: Physics and Games in WPF | 287

Here you define a function array with four components which correspond to the
right-hand side of Equation (7.12). The double array xx in the above statement is
defined as

xX = new doubl e[4] { X01, X02, W01, V02 };

Correspondingly, the solution should be x; = result[0], X, = result[1], v; =
result[2], and v, = result[3]. You then use the solution to update the motion of
the spring system and the results displayed on your screen, including the
positions as a function of time and position- and velocity-phase diagrams.

When you animate the motion of the spring system, you should remember that
you need to consider not only the two masses m; and m,, but also the three
springs characterized by the spring constants ki, kp, and ks The
AnimatingSprings method presents the detailed procedure of how to properly
animate the spring system. The other animation results shown in Figure 7-3 are
produced using the DisplayPosition (used to animate positions vs time),
PositionPhase, and Vel ocityPhase methods.

Projectiles

In this section, you'll learn how to model the flight of a projectile. You have
probably worked with projectiles quite a bit in your game programming,
including bullets, golf balls, and tennis balls. Simulating projectlite is a
straightforward application of Newtonian mechanics and kineticsin physics.

Here, we'll consider two kinds of forces acting on a projectile: gravity and
aerodynamic drag force. Effects, such aswind, Laminar and turbulent flows, and
spin, will be neglected. We'll also create a golf game based on projectile physics.

Aerodynamic Drag Force

Aerodynamic drag is the resistance force that air exerts on a projectile traveling
through it, and directly affects the trgjectory of the projectile. This drag force
actsin the opposite direction of the velocity of the projectile.

The aerodynamic drag force depends on the geometry of the object, the density
of the air, and the square of the velocity. Drag force is usualy expressed in the
form:

Fp = %CD p AV? (7.13)

where Fp stands for the drag force, Cp, is the drag coefficient, p is the density of
the air, v isthe velocity, and A isthe characteristic body area which depends on
the body geometry. For most objects, A is taken to be the frontal area. For a
sphere, the frontal areawould be the cross-section area; i.e., A = r%.

288 | Chapter 7: Physics and Games in WPF

Proj ectile Equations of M otion

You are now ready to add aerodynamic drag force to the projectile trajectory
model. For a projectile that travels in a 2D space, the total drag force in
Equation (7.13) needs to be split into directional components. Because the drag
force acts in the opposite direction of velocity, the X- and Y -components of the
drag force will be in the same proportion relative to each other asthe X- and Y-
components of velocity, but the signs will be reversed. Thus, the projected drag
force on the X- and Y -direction can be written in the following form:

\
Fox =—Fp —\;(
(7.14)
Vy
Foy =—Fp

where the total magnitude of the velocity v =/vi +v5 . The negative signs in

the above equation indicate that the drag force acts in the opposite direction of
the velocity. The drag force in Equation (7.14) can be easily added to the
projectile equation of motion:

d?x —p

dt? v

iy L, (7.15)
m—= =—-mg - Fr —=

02 mg —Fp v

There are no analytical solutions to this set of coupled differential equations. In
order to solve Equation (7.15) numerically using the Runge-Kutta method, you
need to first convert it into a series of first-order ODEs. This can be done easily
by introducing the velocity variables v, = dx/dt and vy = dy/dt:

dx

E X

dy

— =V

da Y

avy __FoW%
dt mv

(7.16)

These coupled first-order ODESs are ready to be solved using the Runge-Kutta
method.

Chapter 7: Physics and Games in WPF | 289

Golf Game

Let's create a ssimple golf game based on the projectile equations of motion
described in Equation (7.16). The objective of the gameisto hit agolf ball into a
hole. A sample screen shot of the GolfGame is shown in Figure 7-4.

M Golf Game FEX

vox:| 20 | voy:[40 | DistencetoHole:| 100 |

Mass:| 0.05 | Area:| 0.0014 | Drag:| 0.25 | Density:| 1.2

Start
¥ distance of this par:
Resat Highest ¥ of this par:
Let's start playing...

Figure 7-4 Galf game.

The layout and user interface consist of text fields that are used to input the
initial velocity components of the golf ball. These values can be changed to
adjust the trgjectory of the ball. The Distance to Hole field lets you adjust the
distance from the tee to the flag. The other text fields allow you to input the
mass, area, drag coefficient, and the density of the air. These parameters are
used to calculate the drag force acting on the golf ball.

To create such a golf game, you need to add a new WPF Window to the project
Chapter07 and name it GolfGame. The layout shown in Figure 7-4 is created
using the following XAML file;

<Wndow x: d ass="Chapt er 07. Gl f Gare"
xm ns="http://schemas. m crosoft.comw nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schenas. m crosoft. conl w nf x/ 2006/ xam "
Title="CGol f Gane" Hei ght="400" Wdth="500">

<W ndow. Resour ces>
<Styl e Target Type="{x: Type Text Box}">

290 | Chapter 7: Physics and Games in WPF

<Setter
<Setter
<Setter

<Setter
<Setter
</ Syl e>

Property="Wdth" Val ue="50"/>
Property="Hei ght" Val ue="20"/>
Property="Hori zont al Al i gnrment "

Val ue="Left"/>

Property="Text Ali gnment" Val ue="Center"/>
Property="Margi n" Val ue="0,0,5,0"/>

<Styl e Target Type="{x: Type Text Bl ock}">

<Setter
</ Style>

Property="Mrgin" Val ue="5,5,2,5"/>

<Styl e Target Type="{x: Type Button}">

<Setter

<Setter

<Setter
</ Styl e>

Property="Margi n" Val ue="1"/>
Property="Wdth" Val ue="75"/>
Property="Hei ght" Val ue="20"/>

</ W ndow. Resour ces>

<Gid>

<@i d. Rowbefi ni ti ons>
<RowDefi ni ti on Hei ght="150"/>
<RowDefinition Hei ght="Auto"/>
</ @id. RowDefinitions>

<St ackPanel

Mar gi n="5" Qid. Row="0">

<@ oupBox>
<St ackPanel >

<StackPanel Qientation="Horizontal"
Margi n="5, 5, 5, 0" >
<Text Bl ock>\V0x: </ Text Bl ock>
<Text Box Name="tbVOx" Text="20"/>
<Text Bl ock>\Wy: </ Text Bl ock>
<Text Box Nane="tbWOy" Text="40"/>
<Text Bl ock Text="Di stance to Hole:"/>
<Text Box Name="t bD st ance"
Text ="100"/ >
</ St ackPanel >
<StackPanel Qientation="Horizontal"
Mar gi n="5, 2, 5, 2" >
<Text Bl ock>Mass: </ Text Bl ock>
<Text Box Narme="t bMass" Text="0.05"/>
<Text Bl ock>Ar ea: </ Text Bl ock>
<Text Box Name="tbArea" Text="0.0014"/>
<Text Bl ock>Dr ag: </ Text Bl ock>
<Text Box Nane="tbDrag" Text="0.25"/>
<Text Bl ock>Densi ty: </ Text Bl ock>
<Text Box Nane="tbDensity" Text="1.2"/>
</ St ackPanel >

</ St ackPanel >

</ @ oupBox>

<StackPanel QOientation="Horizontal ">
<@ oupBox Margi n="0">

<S ackPanel Margin="0,5, 0, 0"
Hori zontal Al i gnment =" Left">
<Button Nanme="btnStart"

Chapter 7: Physics and Games in WPF | 291

dick="btnStart_dick"
Content="Start"/>
<Button Name="bt nReset"
dick="btnReset _4ick"
Cont ent =" Reset "/ >
<But t on Nane="bt nd ose"
Aick="btnd ose Aick"
Content ="d ose"/ >
</ St ackPanel >
</ & oupBox>
<StackPanel Margi n="190, 0, 0, 0"
Hori zontal Al i gnrment =" Left ">
<Text Bl ock Narme="t bXvax"
For egr ound="Dar kRed"
Mar gi n="0, 20, 0, 0"
Text="X di stance of this par:"/>
<Text Bl ock Narme="t bYMax"
For egr ound="Dar kRed"
Mar gi n="0"
Text="H ghest Y of this par:"/>
<Text Bl ock Nanme="t bResul t"
For egr ound="Dar kRed"
Font S ze="12" Font Wi ght =" Bol d"
Mar gi n="0, 5, 0, 0"
Text="Let's start playing..."/>
</ St ackPanel >
</ St ackPanel >
</ St ackPanel >

<Mi ewbox Stretch="Fill" @id. Row="1">
<Canvas Name="canvasl" Wdth="500" Hei ght="215"
Mar gi n="5">
<Canvas. Backgr ound>
<l mageBr ush | mageSour ce="gol f01.gi f"
Stretch="FIl"/>
</ Canvas. Backgr ound>

<B lipse Name="gol fBal|" Fill="Wite"
Wdt h="10" Hei ght ="10"
Canvas. Top="170" Canvas. Left="30"/>

<BH lipse Nane="gol f Hol e" Fill="Bl ack"
Wdt h="20" Hei ght ="10"
Canvas. Top="170" Canvas. Left="450"/>

<Pol ygon Nane="gol f Fl ag" Canvas. Top="175"
Canvas. Lef t =" 459"
St roke="Dar k&0l denr od"
Fi Il ="Li ght G ay"
Poi nts="0,0 0,-50 20,-30 2,-35 2,0"/>

</ Canvas>
</ Vi enbox>
</Gid>
</ W ndow>

292 | Chapter 7: Physics and Games in WPF

Note that the background of the golf court is created from an image file called
golfOl.gif. The simulation and animation are performed in the corresponding
code-behind file using the Runge-Kutta method and per-frame animation
respectively. The following is the code-behind file of this example:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;
usi ng System W ndows. Medi a;
usi ng Syst em W ndows. Shapes;

namespace Chapt er 07

{
public partial class &l fGne : Wndow
{
double xMn = 0;
double yMn = 0;
doubl e xMax = 100;
doubl e yMax = 100;

doubl e X0 = 20;
double YO =
doubl e VOx = 10;

doubl e WOy = 10;

doubl e Bal | Mass = 0. 05;

doubl e Bal | Area = 0.0014;
doubl e DragCoefficient = 0.25;
double AirDensity = 1.2;

doubl e D stanceToHol e = 100;

doubl e[] xx = new doubl e[4] ;

doubl e tine
doubl e dt = 0.1;
doubl e gravity = 9. 81;

doubl e ym = 0;

Polyline pl = new Pol yline();

0;
1

public Gl f Gane()

{
InitializeConponent();
pl . Stroke = Brushes. Bl ue;
canvasl. Chil dren. Add(pl);
Gl fGarrel ni ti alize();
}
private void Gl fGnelnitialize()
{
t bVOx. Text = "20";
t bVMOy. Text = "40";

tbD st ance. Text = "100";
t bMass. Text = "0.05";

Chapter 7: Physics and Games in WPF | 293

t bArea. Text = "0.0014";
tbDrag. Text = "0.25";
tbDensity. Text = "1.2";

tbXVax. Text = "X distance of this par:";
tbYMax. Text = "H ghest Y of this par:";
tbResult. Text = "Let's start playing...";

XxMn = X0 - 0.1 * D stanceToHol e;
yMn = X0 - 0.2 * D stanceToHol e;
xMax = X0 + 1.1 * D stanceToHol g
yMax = X0 + 0.7 * D stanceToHol ¢

Canvas. Set Left (gol fBal |, XNormal i ze(X0));
Canvas. Set Top(gol fBal |, YNornal i ze(Y0));
Canvas. Set Left (gol f Hol e,

XNor nal i ze(X0 + D stanceToHol e) - 10);
Canvas. Set Top(gol f Hol e, YNornmal i ze(Y0) - 2);
Canvas. Set Left (gol f Fl ag,

XNormal i ze(X0 + D stanceTotble) - 2);
Canvas. Set Top(gol fFl ag, YNornal i ze(Y0) + 4);

}

private void btnStart_Qick(object sender,
Rout edEvent Args e)
{

tine = 0;

dt = 0.1;

/1 Add trace curve:

if (canvasl. Children. Gount > 3)
canvasl. Chi | dren. Renove(pl);

pl = new Pol yline();

pl . Stroke = Brushes. Li ght Coral ;

canvasl. Chi |l dren. Add(pl);

/1 Get input paraneters:

VOx = Doubl e. Parse(t bVOx. Text);

WOy = Doubl e. Parse(t bWy. Text);

D st anceToHol e = Doubl e. Par se(t bD st ance. Text);
Bal | Mass = Doubl e. Par se(t bMVass. Text);

Bal | Area = Doubl e. Par se(t bArea. Text);

DragCoef fici ent = Doubl e. Par se(t bDrag. Text);

A rDensity = Doubl e. Parse(tbDensity. Text);

/] Set the axis lints

xMn = X0 - 0.1 * D stanceTohHol €;
yMn = X0 - 0.2 * D stanceTotbl e;
xMax = X0 + 1.1 * D stanceTohHol g;
yMax = X0 + 0.7 * Di stanceTohbl e;

/1 Set the golf court:
Canvas. Set Left (gol f Hol e,

XNormal i ze(X0 + D stanceTotbl e) - 10);
Canvas. Set Top(gol fHol e, YNornal i ze(Y0) - 2);
Canvas. Set Left (gol f Fl ag,

294 | Chapter 7: Physics and Games in WPF

XNormal i ze(X0 + D stanceTotble) - 2);
Canvas. Set Top(gol fFl ag, YNornalize(Y0) + 4);
tbXVax. Text = "X distance of this par:";
tbYMax. Text = "H ghest Y of this par:";
tbResult. Text = "Let's start playing...";

xx = new doubl e[4] { X0, YO, VOx, WOy };
Conposi ti onTar get . Rendering += Start Ani mati on;
}

private void StartAni mati on(object sender,
Event Args e)

{
/1 Calculate the golf ball position:
C(CESol ver. Function[] f =
new CDESol ver. Function[4] { f1, f2, f3, f4};
doubl e[] result =
CCESol ver. RungeKutt a4(f, xx, tine, dt);
xx = result;
double x = result[0];
double y =result[1];
if (y>ym
ym=1y;
if (y >= Y0)
{
Canvas. Set Left (gol fBal |, XNormalize(x));
Canvas. Set Top(gol fBal I, YNornal i ze(y));
pl . Poi nts. Add(new Poi nt (XNor nal i ze(x) + 5,
YNormal i ze(y) + 5));
}
if (x >X0 & y <= Y0)
{
doubl e xm = Mat h. Round(x- X0) ;
ym = Mat h. Round(ym YO0) ;
tbXVax. Text = "X distance of this par: " +
xmToString() +" nm;
tbYMax. Text = "H ghest Y of this par: " +
ymToString() +" nm;
if (xm> DistanceToHole - 10 &&
xm < Di stanceToHol e + 10)
tbResul t. Text =
"Congratul ations! You win.";
el se
tbResult. Text = "You mssed. Try again.";
Conposi tionTarget . Rendering -= Start Ani mati on;
}
tine += dt;
}

private doubl e f1(double[] xx, double t)
{

Chapter 7: Physics and Games in WPF | 295

return xx[2];

}
private doubl e f2(doubl e[] xx, double t)
{
return xx[3];
}
private doubl e f3(doubl e[] xx, double t)
{
doubl e A = Bal | Area;
double rho = AirDensity;
doubl e cd = DragCoefficient;
doubl e m = Bal | Mass;
double fd = 0.5 * rho* A* cd * (xx[2] * xx[2] +
xx[3] * xx[3]);
return -fd * xx[2] / m/ Math.Sgrt(xx[2] * xx[2] +
xx[3] * xx[3] + 1.0e-10);
}
private doubl e f4(doubl e[] xx, double t)
{
double A = Bal | Area;
double rho = AirDensity;
doubl e cd = DragCoefficient;
doubl e m = Bal | Mass;
double fd = 0.5 * rho * A* cd * (xx[2] * xx[2] +
xx[3] * xx[3]);
return -gravity - fd * xx[3] / m/ Mth. Sgrt(xx[2]
* xx[2] + xx[3] * xx[3] + 1.0e-10);
}
private doubl e XNormal i ze(doubl e x)
{
double result = (x - xMn) *
canvasl. Wdth / (xMax - xMn);
return result;
}
private doubl e YNornal i ze(doubl e y)
{
doubl e result = canvasl.Height - (y - yMn) *
canvasl. Height / (yMax - yMn);
return result;
}

private void btnReset_Qick(object sender,
Rout edEvent Args e)

Gol fGarel nitialize();
if (canvasl. Children. Gount > 3)
canvasl. Chi |l dren. Renove(pl);

296 | Chapter 7: Physics and Games in WPF

private void btnd ose_Qdick(object sender,
Rout edEvent Args e)
{

}

this.dose();

}

Like the spring system discussed previoudly, you first define several private
members that can be changed by the user's inputs. When the Start button is
clicked, the values from the TextBox fields are obtained, and these values are
used to initialize the ODESolver. To start the animation, the StartAnimation
event handler is attached to the static CompositionTarget.Rendering event.

Inside the event handler, you call the RungeKuttad method to solve the ODEs
for the golf ball described by Equation (7.16). Here you define a function array
with four components, which correspond to the right-hand side of Equation
(7.16). The double array xx in the above statement is defined as

xx = new doubl e[4] { x0, yO, VOx, WOy };

Correspondingly, the solution should be x = result[0], y = result[1], v, =
result[2], and v, = result[3]. You then use the solution to update the motion of
the golf ball and the display of the results on your screen.

You can play around with the GolfGame by adjusting the variables that affect
the drag force. You can see that drag effects make a big difference when it
comes to the flight of a golf ball, as the GolfGame can demonstrate. Figure 7-4
shows the trajectory of the ball with a drag coefficient of 0.25, which is atypical
value for agolf ball. In this case the golf ball travels about 100 m. If you turn off
the drag effect by setting the drag coefficient to zero while using the same set of
initial values, the golf ball will travel 164 m. Clearly, when it comes to
projectiles such as golf balls, the drag effect must be included in the model.

Also, you may notice that when the drag effect is included, the shape of the
trajectory isn’t a perfect parabola. Instead, the downward part of the trgjectory is
dleeper because the drag force is slowing the golf ball down.

Collision

An important aspect of physics modeling for games is what happens when two
objects collide. Do they bounce off each other or stick to each other and travel
together? If the objects do bounce off each other, which direction do they travel
after the collision and at what speed do they travel? In this section, we'll
consider what happens when a ball hitsawall or aflat ground.

In most ball bouncing animations, a linear collision approximation is usually
used. Namely, only the vertical component of the velocity changes signs when
the ball hits awall or surface. This isn’t arealistic situation. In reality, when a
ball is incident obliquely on a flat surface, the ball’s rebound spin, speed, and
angle will generally differ from the corresponding incident values. Thisis much

Chapter 7: Physics and Games in WPF | 297

more complicated than a linear collision approximation. In this section, we'll
investigate physics of a general bouncing ball and create a general bouncing ball
simulator.

Bouncing Ball Physics

The physics of a bouncing ball is characterized by the coefficient of restitution
(COR) of aball for a vertical bounce. The COR for a vertical bounce off aflat
surface that remains at rest is defined as the ratio of the rebound speed to the
incident speed. The horizontal COR can be defined for an oblique impact in
terms of the horizontal components of the incident and rebound speeds of the
contact point on the ball.

Here, our analysis of a bouncing ball is based on Garwin's model (R. Garwin,
“Kinematics of an Ultraglastic rough ball”, American Journal of Physics, Vol.
37, pages 88-92 (1969)). Consider a ball of mass m and radius R incident at
speed V4, angular velocity o, and at an angle 6, on a flat surface, as shown in
Figure 7-5.

Figure 7-5 A ball is incident at velocity V1 and angle 6: and rebounds at
velocity V, and angle 6,.

For simplicity, it is assumed that the mass of the surface is infinite and that the
impact force is much larger than the gravity force during collision . In Garwin’s
model, the equations of motion are not needed explicitly, because the collision
can be described in terms of the vertical (CORy) and horizontal (CORX) values
of the COR, together with the conservation of angular momentum about the
contact point. Referring to Figure 7-5, we can define

Vyo
CORy = -—= (7.17)
yl

Here, the subscripts 1 and 2 denote conditions before and after the collision,
respectively. Similarly, CORXx can be defined by the relation:

298 | Chapter 7: Physics and Games in WPF

CORx = -2 “R&) (7.18)
Via ~Ray
where V, - Ro is the net horizontal speed of a point at the bottom of the ball.
Unlike CORy, CORX can be either positive or negative. If abal isincident at a
sufficiently small angle and without spin, it can dide throughout the impact
without rolling and will bounce with Rw, <VX,, in which case CORx < 0. A

value of CORXx = - 1corresponds to a bounce on africtionless surface, where V.
=V, and o = M.

The horizontal friction force F exerts a torque FR = Id w/dt, where | is the
moment of inertia about an axis through the center of the ball, so that

199, mr Ve _g (7.19)
dt dt

The conservation of angular momentum about a point at the bottom of the ball is
therefore described by the relation

la, +mMRV, =la, + mMRV,, (7.20)

The moment of inertia of a spherical ball is given by | = 2mR?/5. Equations
(7.17)-(20) can be solved to show that

_ [1-(2/5)CORX)]V, +(2/5)(1+ CORX)Re,

Vx2 -
1+(2/5)
Vy, =-CORyV,, (7.21)
_ (1+CORX)V,, +[(2/5) - CORX]Rw
- R1+(2/5)]

The above results are very interesting. If ow;= 0 and CORx = 1, then V,, =
0.43V,; and the corresponding spin value is Rw,/V, = 10/3. This means that the
ball spins much faster than you would expect from the rolling condition Rw,/Vy,
= 1. At the end of the collision, the ball with CORx = 1 will therefore dide
backward on the surface due to the recovery of elastic energy stored in the
horizontal direction. Alternatively, if ;= 0 and CORXx = 0, then V,, = 0.71V,;
and Rw,/V, = 1, indicating that the ball rolls at the end of the duration of the
impact and there is no energy recorvery or no energy stored elastically in the
horizontal direction.

Because CORX is close to 1 for a superball and close to zero for atennis ball, a
superball will bounce with a smaller V,, component than a tennis ball when o=
0 and V; are the same for both balls. Since V; is larger for a superball (for the
same V1), asuperball will bounce at a steeper angle than atennis ball. It is aso
easy to show that a superball with the same radius and same value of Vx1 asa
tennis ball will bounce with agreater spin, by afactor of 2.38 if ®; = 0.

Chapter 7: Physics and Games in WPF | 299

Bouncing Ball Simulator

With Garwin’s bouncing ball model, you can develop a realistic bouncing ball
simulator that incorporates the inelastic collision, the change of horizontal speed,
and the spin of the ball. The simulator is called BounceBall, and a sample screen
shot is shown in Figure 7-6. The simulator consists of a ball inside a 2D
100mx100m box. The collision of the ball with the wall is described in Equation
(7.21). When it travels inside the box (without collision), only gravity acts on
the ball. If only the initial position of the ball (say x0 = 50m and y0O = 95 m) is
specified and the initial velocity is set to zero (VOx = VOy = 0), the ball will
drop as a free-fall object. The text fields allow you to change the mass, radius,
gravity, and coefficients of restitution, as well as the initial position, velocity,
and angle velocity. A Start button starts the simulation, a Stop button stops the
simulation, and a Reset button stops the simulation and resets the ball and the
parameters to their original position and values.

B Ball Bouncing EHEJ

2|

R 5 |

m

corx | 02 |

CORy | 0.8 |

Figure 7-6 Bouncing ball simulator.
The layout of this example is created using the following XAML file:

<W ndow x: d ass="Chapt er 07. BounceBal | "
xm ns="http://schemas. m crosoft. comw nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "

300 | Chapter 7: Physics and Games in WPF
Title="Ball Bouncing" Height="450" Wdth="510">

<Wndow. Resour ces>
<Styl e Target Type="{x: Type Text Box}">
<Setter Property="Wdth" Val ue="30"/>
<Setter Property="Height" Val ue="20"/>
<Setter Property="Horizontal Alignnent"
Val ue="Left"/>
<Setter Property="TextAignnent" Val ue="Center"/>
<Setter Property="Mrgin" Value="0,0,5,0"/>
</ Styl e>
<Styl e Target Type="{x: Type Text Bl ock}">
<Setter Property="Margin" Val ue="5,5,2,5"/>
</ Syl e>
<Styl e Target Type="{x: Type Button}">
<Setter Property="Mrgin" Val ue="2"/>
<Setter Property="Wdth" Val ue="55"/>
<Setter Property="Height" Val ue="20"/>
</ Styl e>
</ Wndow Resour ces>

<DockPanel >
<Tool BarTray Qientation="Vertical"
DockPanel . Dock="Left">
<Tool Bar >
<St ackPanel >
<@ oupBox>
<StackPanel Margin="0,5,0,0">
<St ackPanel
Qientation="Horizontal "
Vertical Al i gnnent =" Top" >
<Text Bl ock W dt h="30"
Text="m'/>
<Text Box Name="tbM Text="2"/>
</ S ackPanel >
<St ackPanel
Cientation="Horizontal"
Vertical Al i gnnent =" Top" >
<Text Bl ock Wdt h="30"
Text="R'/ >
<Text Box Name="tbR' Text="5"/>
</ S ackPanel >
<St ackPanel
Qientation="Horizontal "
Vertical Ali gnnent =" Top" >
<Text Bl ock W dt h="30"
Text =" OORX"/ >
<Text Box Nanme="t bOORx"
Text="0.8"/>
</ S ackPanel >
<St ackPanel
Cientation="Horizontal"
Vertical Ali gnnent =" Top" >
<Text Bl ock Wdt h="30"

Chapter 7: Physics and Games in WPF | 301

Text =" CCRy" [>
<Text Box Nane="t bOORy"
Text="0.8"/>
</ St ackPanel >
<St ackPanel
Qientation="Horizontal "
Vertical Ali gnnent =" Top" >
<Text Bl ock W dt h="30"
Text="G'/ >
<Text Box Name="t bG'
Text="9. 81"/ >
</ S ackPanel >
<St ackPanel
Cientation="Horizontal"
Vertical Al i gnnent =" Top" >
<Text Bl ock Wdt h="30"
Text =" X0"/ >
<Text Box Nanme="t bX0"
Text="5"/>
</ St ackPanel >
<St ackPanel
Cientation="Horizontal"
Vertical Al i gnnent =" Top" >
<Text Bl ock Wdt h="30"
Text ="Y0"/ >
<Text Box Nanme="t bY0"
Text="5"/>
</ S ackPanel >
<St ackPanel
Qientation="Horizontal "
Vertical Al i gnnent =" Top" >
<Text Bl ock W dt h="30"
Text ="VOx"/ >
<Text Box Narme="t bVOx"
Text ="50"/>
</ St ackPanel >
<St ackPanel
Qientation="Horizontal "
Vertical Ali gnnent =" Top" >
<Text Bl ock W dt h="30"
Text ="\VOy"/ >
<Text Box Nane="t bVOy"
Text ="50"/ >
</ St ackPanel >
<St ackPanel
Qientation="Horizontal "
Vertical Ali gnnent =" Top" >
<Text Bl ock Wdt h="30"
Text ="w0"/ >
<Text Box Nanme="t bV{"
Text="0"/>
</ St ackPanel >
</ St ackPanel >
</ G oupBox>

302 | Chapter 7: Physics and Games in WPF

<@ oupBox Margi n="0, 20,0, 0">
<StackPanel Margin="0,5,0,0">
<Button Name="btnStart" Qick="btnStart_dick"
Content="Start"/>
<Button Name="btnStop" dick="btnStop_Aick"
Cont ent =" St op"/ >
<Button Nanme="btnReset" Qick="btnReset_ Qi ck"
Cont ent =" Reset "/ >
</ St ackPanel >
</ & oupBox>
</ S ackPanel >
</ Tool Bar >
</ Tool Bar Tr ay>

<M ewbox Stretch="Unifornm >
<Border BorderBrush="QG ay" Border Thi ckness="2"
Mar gi n="5">
<Canvas Nane="canvasl" DockPanel . Dock="R ght"
W dt h="500" Hei ght ="500"
d i pToBounds=""Tr ue" >
<H i pse Name="bal | " Canvas. Left="0"
Canvas. Bot t on¥" 0" W dt h="50"
Hei ght =" 50" Stroke="Bl ue"
St rokeThi ckness="2">
<Blipse.Fill>
<Li near G adi ent Brush Start Poi nt="0, 0" EndPoi nt="0, 1">
<@ adi ent Stop Col or="DarkBl ue" Cffset="0.5"/>
<@ adi ent Stop Col or="Li ght Bl ue" Cfset="0.5"/>
</ Li near @ adi ent Br ush>
</Hlipse.Fll>
<H I'i pse. Render Tr ansf or n»
<Rot at eTr ansf orm
x: Nane="bal | Rot at "
Cent er X="25" Cent er Y="25"

Angl e="0"/ >
</ B |i pse. Render Tr ansf or n»
</BIipse>
</ Canvas>
</ Bor der >
</ Vi enbox>
</ DockPanel >
</ W ndow>

You may notice that the ball’s RenderTransform property is specified by a
RotateTransform, which is responsible for the spin of the ball when it is
bouncing. The simulation and animation are performed using the following
code-behind file:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;
usi ng System Wndows. Medi a;

Chapter 7: Physics and Games in WPF | 303
usi ng Syst em W ndows. Shapes;

namespace Chapt er 07

{

public partial class BounceBall : Wndow

{
private doubl e Mass;
private doubl e Radi us;
private doubl e OORX;
private doubl e OCRy;
private double Gavity;
private doubl e X0;
private doubl e YO;
private doubl e VOX;
private doubl e Wy;
private doubl e VO;

double tine = 0;
doubl e dt = 0.05;
doubl e
doubl e
doubl e vx
doubl e vy
doubl e w = 0;

doubl e theta0 = 0;
doubl e theta = O;
doubl e max = 100;

=0;
=0;

<< X

0;
0;

publ i ¢ BounceBal | ()

InitializeConponent();
BallInitialize();

}
private void Balllnitialize()
{

tbM Text = "2";

tbR Text = "5";

t bOCRx. Text = "0.8";

tbOCRy. Text = "0.8";
tbG Text = "9.81";

t bX0. Text "5";

t bYO. Text "5

t bVOx. Text = "50";

t bMOy. Text = "50";
tbV. Text = "0";

Canvas. Set Left(ball, 0);
Canvas. Set Botton{bal I, 0);
bal | .Wdth = Wility. XNornalize(
canvasl, 10, 0, max);
bal | . Hei ght = canvasl. Hei ght —
Wility. YNormali ze(canvasl, 10, 0, nax);

304 | Chapter 7: Physics and Games in WPF

private void SetlnputParaneters()
{
Mass = Doubl e. Par se(t bM Text) ;
Radi us = Doubl e. Parse(tbR Text);
QCRx = Doubl e. Parse(t bOCRx. Text) ;
OCRy = Doubl e. Parse(t bCCRy. Text);
Qavity = Doubl e. Parse(tbG Text);
X0 = Doubl e. Par se(tbX0. Text);
if (X0 < Radius)
X0 = Radi us;
YO = Doubl e. Parse(tbY0. Text);
if (YO < Radi us)
Y0 = Radi us;
VOx = Doubl e. Par se(t bVOx. Text);
Oy = Doubl e. Par se(t bWy. Text);
W = Doubl e. Parse(tbW. Text);
bal I .Wdth = Wility. XNormalize(
canvasl, 2*Radius, 0, nax);
bal | . Hei ght = canvasl. Hei ght —
Wility. YNornmal i ze(canvasl, 2*Radius, 0, max);
Canvas. SetBotton{bal |, 0);
Canvas. Set Left(bal |, 0);

}

private void btnStart_Qick(object sender,
Rout edEvent Args e)
{

Set | nput Par anet ers() ;

X 0;

y =0;

vx = 0;

vy = 0;

theta0 = 0;

theta = 0;

time = 0;

Conposi ti onTar get. Rendering += Start Ani mati on;

}

private void StartAni nation(object sender,
Event Args e)
{

/1 Calculate positions and velocities of the ball
/1 for the case w thout collision:
X = X0 + WOx * dt;
y =Y0+Wy *dt - 0.5* Gavity * dt * dt;
theta = thetaO + 180 * V@ * dt / Math. Pl;
vx = VOX;
if (YO > Radi us)
{
vy = My - Qavity * dt;

el se

Chapter 7: Physics and Games in WPF | 305

{

vy = Wy;
}
w = \W;

/!l Reset the ball's position:

Canvas. Set Left(bal |, Wility. XNormalize(
canvasl, X0 - Radius, 0, nax));
Canvas. Set Botton{bal I, canvasl. Hei ght —

Wility. YNormal i ze(canvasl,
YO - Radius, 0, nax));
bal | Rot at e. Angl e = t het a0;

/1l Determine if the ball hits left or right wall:
if ((VOx <0 & X0 <= Radius) || (MOx >0 &&
X0 >= nmax - Radius))

{
vx=-CCRy*VOx;
y=((1-2*Q0/ 5 *Wy+(2/ 5 *
(1 + OR) * Radius * V@) / (1 + 2/ 5);
=((1+0R) * Wy +(2/ 5- OCR) *
Radius * V0) / Radius / (1 + 2/ 5);
}

/1l Determine if the ball hits the top or

/1 bottomwall:

if ((Wy <0 & Y0 <= Radius) || (Wy > 0 &
Y0 >= nax - Radius))

{
y = -QRy * \Wy;
=((1-2*CIZR></5)*VOX+(2/5)*
(1 +OR) * Radius * W) / (1 +2/ 5);
= ((1 +OR) * MOx + (2/ 5- OCR) *
Radius * W) / Radius / (1 + 2/ 5);
}

/] Reset the initial condition for next round
// simlation:

X0 = x;

YO =y;

theta0 = theta;

VOX = vX;

WOy = vy;

VO = w

tine += dt;

/1 Nake sure to keep the ball inside the box:
if (time >0 & YO < Radi us)
Canvas. Set Botton{bal I, 0);

/1 Condition for stoping simulation:
if (tinme > 100)
{
Conposi ti onTarget . Rendering -= StartAni mati on;

306 | Chapter 7: Physics and Games in WPF

}
}

private void btnStop_Qick(object sender,
Rout edEvent Args e)
{

}

private void btnReset Qi ck(object sender,
Rout edEvent Args e)

Conposi tionTarget. Rendering -= StartAni mation;

BallInitialize();
Conposi tionTarget. Rendering -= Start Ani mation;

}

The code begins with the definition of private members that can be specified by
the user. When the Start button is clicked, the values from the TextBox fields are
obtained, and these values are used to initialize the simulation. To start the
animation, the StartAnimation event handler is attached to the satic
CompositionTarget.Rendering event.

Inside the event handler, you calculate the position and velocity for the ball
under the influence of gravity when the ball doesn’t hit to the wall. When the
ball collides with the wall, its motion is determined by Equation (7.21).

Now, you can play around with the bouncing ball simulator. Select a different
set of input parameters and see what happens. The most interesting thing that
may surprise you is that the ball will rotate (spin) at a high angular speed after
collision, even itsinitial angular velocity is zero.

Also, you can see the difference between a superball and a tennis ball using this
simulator. Experimental data show that the coefficients of restitution are very
different for superballs and tennis balls. For the superbal, CORx = 0.76 and
CORy = 0.86, while for the tennis ball, CORx = 0.24 and CORy = 0.79. You
can perform the simulation with these two sets of parameters to examine the
results. You'll find that the superball will bounce with a faster spin speed than
the tennis ball.

Fractals

A fractal is a very unusual object with fractional dimension. Fractals are
currently a hot topic in mathematical theory and physics. You have probably
seen fractals at some point or another: they are those usually colorful pictures
seen in math and chaos physics books, where you zoom in on a region of the
picture and see something similar to the larger picture. No matter how much you
zoom in on a part of the picture, you'll still see the similar pattern repeating over
and over again. Thisis an interesting property of fractals, called self-similar.

Chapter 7: Physics and Games in WPF | 307

This section will concentrate more on how to create interesting fractal graphics
than on explaining the mathematical theory and physics implications behind
fractals. If you are interested in the theory and physics of fractals, you can read
books specifically about fractal or chaos theory.

Binary Tree

You can define a binary tree recursively as a trunk attached to branches. The
branches are attached to smaller branches that are attached to still smaller
branches, and so on, until you reach some point in the tree where there are no
more branches. For example, you could write a program that continues drawing
smaller and smaller branches until the new branches are less than one pixel long.
At this point, the program would stop.

Let's start with an example called BinaryTree. This example creates a simple
binary tree using the recursion approach. In C#, a typica recursion method can
be implemented using the following formula:

Ret ur nVal ue Recur si veFunct i on(Ar gunent s)

{
otionl Action...
Recur si veFunct i on(Modi fi ed Argurents);
ptional Action...

}

This method starts with a return value. If it doesn’t return a value, you can
define it as void. After its name, the method can take one or more arguments.
Most of the time, a recursive method takes at |east one argument that it can then
modify. In the body of the method, you can take the necessary actions. There are
no particular steps to follow when implementing a recursive method, but there
are two main rules you should observe:

* Initsbody, the method must call itself.

» Beforeor after caling itself, the method must check a condition that would
allow it to stop; otherwise, it might run infinitely.

A sample screen shot of the BinaryTree example is shown in Figure 7-7. When
you click the Start button, the program starts drawing the binary tree animately
until the depth = 10.

The simple layout is created using the following XAML file:

<Wndow x: d ass="Chapt er 07. Bi nar yTr ee"
xm ns="htt p://schenas. ni crosof t.com w nf x
/ 2006/ xam / pr esent ati on"
xm ns: x="http://schemas. m crosoft. com w nf x/ 2006/ xam "
Title="Binary Tree" Height="345" Wdth="300">

<Vi ewbox Stretch="Uhiform >
<St ackPanel >
<StackPanel Qientation="Horizontal"
Mar gi n="5, 5,5, 0">

308 | Chapter 7: Physics and Games in WPF

<Button Name="btnStart" dick="btnStart_dick"
Wdt h="50" Content="Start"/>
<Text Bl ock Nare="t bLabel " Margi n="20, 5, 0, 0"/ >
</ St ackPanel >
<Canvas Name="canvasl" Wdth="300" Hei ght="300"

Mar gi n="5"/>
</ St ackPanel >
</ Vi ewbox>
</ W ndow>

M Binary Tree

Skart Binary Trza - Depth = 10. Finishad

Figure 7-7 A binary tree.
The corresponding code-behind file of this exampleislisted below:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;
usi ng System W ndows. Medi a;
usi ng Syst em W ndows. Shapes;

nanespace Chapt er 07

public partial class BinaryTree : Wndow

{
private int Il = 0;
private int i = 0;

Chapter 7: Physics and Games in WPF | 309

public BinaryTree()
{

}

private void btnStart_Qick(object sender,
Rout edEvent Args e)

InitializeConponent();

{
canvasl. Children.d ear();
t bLabel . Text = "";
i =0;
I =1;
Conposi ti onTar get. Rendering += Start Ani mati on;
}
private void StartAnination(object sender,
Event Args e)
t
i +=1;
if (i %60 == 0)
{
DrawBi naryTree(canvasl, |1,
new Poi nt (canvasl. Wdth / 2,
0.83 * canvasl. Height),
0.2 * canvasl. Wdth, -Math.Pl / 2);
string str = "Binary Tree - Depth =" +
I'l.ToString();
t bLabel . Text = str;
I +=1;
if (Il >10)
tbLabel . Text = "Binary Tree - Depth =
10. Fi ni shed";
Conposi ti onTarget. Rendering -=
Start Ani mat i on;
}
}
}

private doubl e | engthScal e = 0. 75;
private doubl e deltaTheta = Math. Pl / 5;

private void DrawBi naryTree(Canvas canvas,
int depth, Point pt, double | ength, double theta)
{

double x1 = pt.X + length * Math. Cos(theta);
double y1 = pt.Y + length * Math. S n(theta);

Line line = new Line();

l'i ne. Stroke = Brushes. Bl ue;
line. X1 = pt. X

line. Yl = pt.Y,

line. X2 = x1;

line. Y2 = yl;

canvas. Chi | dren. Add(1i ne);

310 | Chapter 7: Physics and Games in WPF

if (depth > 1)

DrawBi naryTree(canvas, depth - 1,

new Poi nt (x1, y1),

length * lengthScal e, theta + deltaTheta);
DrawBi naryTree(canvas, depth - 1,

new Poi nt (x1, y1),

length * lengthScal e, theta - deltaTheta);

}

el se
return;

}

The DrawBinaryTree method in the above code first calculates where its main
branch should end, then draws the branch. Its length parameter determines the
branch’s length. The parameter theta gives the branch’ s direction.

If the current depth is greater than one, the method recursively calls itself to
draw two new branches. These branches are shorter than the main branches by a
factor of lengthScale and are drawn in the directions theta + deltaTheta and theta
— deltaTheta.

This example also uses per-frame based animation to animate the drawing
process. If you press the Start button, the program starts to draw the binary tree.
There are several modifications that you can make to this example. For instance,
you can modify the parameters lengthScale and deltaTheta to change the binary
tree' s appearance.

Snowflake

You can also use the recursive method to create a snowflake. Figure 7-8 shows
the basic unit used to replace a straight line. This unit is created by the following
steps. Start with a straight line and trisect this line into three equal segments.
Form an equilateral triangle rising out of the middle segment.

Figure 7-8 A basic unit to replace a straight line.

The snowflake begins with an equilateral triangle. The program replaces each of
the triangle’s sides with a properly scaled and rotated version of the basic unit

Chapter 7: Physics and Games in WPF | 311

shown in Figure 7-8. The program then replaces each of the straight segmentsin
the new figure with a smaller version of the basic unit. It replaces the newer
straight segments with smaller and smaller version of the basic unit, until the
snowflake reaches the desired depth.

Let's look at an example that demonstrates how to create a snowflake. Add a
new WPF Window to the project Chapter07 and name it SnowFlake. A sample
screen shot of this example is shown in Figure 7-9. When you click the Start
button, the program starts drawing the snowflake animately until the depth = 5.

I Snow Flake

Start Snow Flake - Depth = 5. Finished

Figure 7-9 Snowflake created using the recursion method.
The layout of this example is created using the following XAML:

<Wndow x: d ass="Chapt er 07. SnowFl ake"
xm ns="htt p://schemas. m crosoft. com w nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="http://schenas. m crosoft. com w nf x/ 2006/ xam "
Title="Snow fl ake" Hei ght="345" Wdth="300">

<Vi ewbox Stretch="Ulhiforn>
<St ackPanel >
<StackPanel Qientation="Horizontal"
Mar gi n="5, 5,5, 0">
<Button Name="btnStart" dick="btnStart_dick"
Wdt h="50" Content="Start"/>
<Text Bl ock Narre="t bLabel " Margi n="20, 5, 0, 0"/ >

312 | Chapter 7: Physics and Games in WPF

</ St ackPanel >
<Canvas Nane="canvasl" Wdth="300" Hei ght="300"
Mar gi n="5">
</ Canvas>
</ St ackPanel >
</ Vi ewbox>
</ W ndow>

The C# code that creates the snowflake using the recursion method is listed
below:

usi ng System

usi ng System W ndows;

usi ng System Wndows. Gontrol s;
usi ng System Wndows. | nput ;
usi ng System W ndows. Medi a;
usi ng System W ndows. Shapes;

nanmespace Chapt er 07

public partial class SnowH ake : Wndow
{
private doubl e distanceScale = 1.0 / 3;
doubl e[] dTheta = new doubl e[4] { O, Math.Pl / 3,
-2 * Math.Pl / 3, Math.Pl / 3 };
Pol yline pl = new Pol yline();
private Point Snowfl akePoint = new Point();
private doubl e Snowf | akeS ze;
private int Il = 0;
private int i = 0;

publ i c SnowFl ake()

{
InitializeConponent();

/] determine the size of the snowl ake:
doubl e ysize = 0.8 * canvasl. Hei ght /
(Math.Sgrt(3) * 4/ 3);
doubl e xsize = 0.8 * canvasl. Wdth / 2;
doubl e size = 0;
if (ysize < xsize)
si ze = ysi ze;
el se
si ze = Xsi ze;
Snowf | akeSi ze = 2 * size;

pl . Stroke = Brushes. Bl ue;
}

private void btnStart_Qick(object sender,
Rout edEvent Args e)
{

canvasl. Children.d ear();

}

Chapter 7: Physics and Games in WPF | 313

tbLabel . Text = "";

i =0;

I =0;

canvasl. Chil dren. Add(pl);

Conposi tionTar get. Rendering += Start Ani mati on;

private void StartAni nation(object sender,

{

}

Event Args e)

i += 1
if (i %60 == 0)
{
pl.Points.dear();
Dr awSnowFl ake(canvasl, Snowfl akeSize, I1);

string str = "Snow Flake - Depth =" +
I'l.Tostring();

t bLabel . Text = str;

I +=1;

if (Il >5)

tbLabel . Text = "Snow F ake - Depth =
5. Fi ni shed";

Conposi ti onTarget. Rendering -=
Start Ani mat i on;

private void SnowFl akeEdge(Canvas canvas,

{

int depth, double theta, double distance)

Point pt = new Point();
if (depth <= 0)
{
pt. X = Snowf | akePoi nt. X +
di stance * Math. Cos(theta);
pt.Y = Snowf |l akePoint.Y +
di stance * Math. Sin(theta);
pl . Poi nts. Add(pt);
Snowf | akePoi nt = pt;
return;

}

di stance *= di st anceScal €;
for (int j =0; j <4; j++)

{
theta += dTheta[j];
SnowFl akeEdge(canvas, depth - 1,
theta, distance);
}

314 | Chapter 7: Physics and Games in WPF

private void DrawsnowFl ake(Canvas canvas,
doubl e length, int depth)

{

doubl e xmd = canvas. Wdth / 2;

doubl e ynid = canvas. Height / 2;

Point[] pta = new Point[4];

pta[0] = new Point(xmd, ymd + length / 2 *
Math. Sgrt(3) * 2/ 3);

pta[1] = new Point(xmd + length / 2,
ymd - length / 2 * Math.Sgrt(3) / 3);

pta[2] = new Point(xmd - length / 2,
ymd - length / 2 * Math.Sgrt(3) / 3);

pta[3] = pta[0];

pl . Points. Add(pta[0]);

for (int j =1; j <pta. lLength; j++)

{
doubl e x1 = pta[j - 1].X%
double y1 = pta[j - 1].Y,
double x2 = pta[j].X%
double y2 = pta[j].Y;
doubl e dx = x2 - x1;
double dy = y2 - yl;
doubl e theta = Math. Atan2(dy, dx);
Snowf | akePoi nt = new Poi nt (x1, y1);
SnowFl akeEdge(canvas, depth, theta, |ength);

}

}

}

The code defines a double array dTheta that stores the angles, which control the
directions of the segments as shown in Figure 7-8. When the program
recursively draws a line segment, it begins by drawing a third of the length of
the segment in its current direction. It then turns 60 degrees and draws another
third of length of the segment. Next, it turns -120 degrees and draws another
third. Finally, it turns 60 degrees again and draws yet another third of the length
of the original segment. Thisiswhy you define the dTheta in the form:

doubl e[] dTheta = new doubl e[4] { O, Math.Pl / 3,
-2 * Math.Pl / 3, Math.Pl / 3 1};

With this dTheta array and the value of the distanceScale factor, you can write a
method to draw a segment in the SnowFlake.xaml.cs class. The SnowFlakeEdge
method recursively draws a segment (by adding the point to the polyline's point
collection) that starts at snowflakePoint and moves in the direction theta by a
length of distance. When it is finished, it leaves the value of the snowflakePoint
to indicate the endpoint of the segment. This makes it easier to perform all of the
necessary recursive calls one after another.

The DrawSnowFlake method calls the SnowFl akeEndge method to draw each of
the sides of the initial triangle. Inside this method, the Atan2 function takes the

Chapter 7: Physics and Games in WPF | 315

parameters dy and dx, which are the changes in a line segment’'s Y and X
coordinates. It returns the angle with the tangent of dy/dx.

Now, if the Start button is pressed, the program starts drawing the snowflake.
There are several modifications you can make to this example. For example, you
can modify the parameter dTheta array to create a snowflake with a different
appearance.

Using this basic snowflake unit, you can create a realistic snow falling effect by
animatedly drawing multiple snowflakes in random positions and falling down
in random paths.

You can easily expand the recursive method to create other types of fractals,
such as Hilbert, Sierpinski, and Peano curves.

M andelbrot Set

The Mandelbrot set is probably the most widely recognized fractal. It has
become popular both for its aesthetic appeal and for being a complicated
structure arising from a simple definition.

The Mandelbrot set is a set of points in the complex plane that forms a fractal. It
is based on avery simple equation

2
Z,q =Z5+C

where z and ¢ are complex numbers. The easiest approach for modeling the
Mandelbrot set is to use a complex class or structure that allows you to perform
operations directly on complex variables. Unfortunately, WPF doesn’'t provide
the complex class or structure. However, you can easily implement a complex
structure yourself. Here, you can get around without using a complex class or
structure. Recall that complex numbers have a real part and an imaginary part. z
and ¢ in the above equation can bewritten asz=x + iy and ¢ = cr +i ¢i, herei?
=-1. Thus, you can rewrite the above equation as

Zpey =(X7 —Ya +er) +i [(2%, Y, +)
Which can further be rewritten in terms of two separate equations for the rea
and imaginary parts:
Xne1 = Xr% - yr% +or
yn+1 = 2Xn yn + Ci

Using these equations, you can compute the real and imaginary parts of z,., for
different values of n, Xq, Yo, Cr, and ci. It can be shown that after severa
iterations, if the magnitude of z, ever exceeds 2, the magnitude of z, will
eventually head towards infinity.

The Mandelbrot set is a map showing how quickly the magnitude of z, goes
towards infinity for different values of c. displaying the Mandelbrot set on your

316 | Chapter 7: Physics and Games in WPF

computer screen in a pixel by pixel manner can pose problems. Before WPF,
you needed to draw graphics objects in the .NET framework using GDI+. One
of the restrictions you often run into with GDI+ was that it becmes extremely
slow when you had to work with large raw pixel data using the GetPixel and
SetPixel methods, because you needed to call these methods for every single
pixel.

WPF alows you to pass in a big array of pixel data to create a new
BitmapSource. It also provides the CopyPixel method to copy pixel data out of
the bitmap into an array. Thus, WPF can process large raw pixel data vey
efficiently. Here, we'll use the WPF pixel-based process to display the
Mandelbrot set.

Now we can create a Mandelbrot set program. Add a new WPF Window to the
project Chapter07 and name it MandelbrotSet. A sample screen shot of this
exampleis shown in Figure 7-10.

B Mandelbrot Set = |[E]][
Xmin II' Kmaxl 1 | Yr'ninl -1.5 | anax| 1.5 |
May Iterations Escape Radius

Figure 7-10 Mandelbrot Set.

Chapter 7: Physics and Games in WPF | 317

It can be seen from the figure that there are text fields to input the axis limits, the
maximum number of iterations, and the escape radius. A Start button starts the
simulation and a Reset button resets the input parameters to their default values.

You can also zoom in to the plot by following these steps. Press your left mouse
button, and leaving it pressed, drag the mouse to create a red zoom rectangle.
Then release the left mouse button to start the computation of the image within
the zoom area defined by the red zoom rectangle. Click the Reset button to
restore the original non-zoomed image generated using the default parameters.

The GUI and layout of this example are created using the following markup:

<Wndow x: d ass="Chapt er 07. Mandel br ot Set "
xm ns="http://schenas. ni crosof t. com wi nf x
/ 2006/ xam / pr esent at i on"
xm ns: x="ht t p: // schenas. n crosof t. coni wi nf x/ 2006/ xam "
Titl e="Mandel brot Set" Hei ght="520" Wdth="400">

<St ackPanel >
<St ackPanel >
<StackPanel Qientation="Horizontal"
Mar gi n="5, 5,5, 0">

<Text Bl ock Margi n="0, 2, 0, 0" >Xm n</ Text Bl ock>

<Text Box Name="tbXm n" Text="-2"
Text Ali gnnent ="Cent er” W dt h="40"
Mar gi n="5, 0, 10, 5"/ >

<Text Bl ock Margi n="0, 2, 0, 0" >Xmax</ Text Bl ock>

<Text Box Name="t bXmax" Text="1"
Text Ali gnnent ="Center” W dt h="40"
Mar gi n="5, 0, 10, 5"/ >

<Text Bl ock Margi n="0, 2, 0, 0">Ym n</ Text Bl ock>

<Text Box Name="tbYm n" Text="-1.5"
Text Ali gnnent ="Center” W dt h="40"
Mar gi n="5, 0, 10, 5"/ >

<Text Bl ock Margi n="0, 2, 0, 0" >Ymax</ Text Bl ock>

<Text Box Name="t bYnax" Text="1.5"
Text Ali gnnent ="Center” W dt h="40"
Mar gi n="5, 0, 10, 5"/ >

</ St ackPanel >

<StackPanel Qientation="Horizontal"
Mar gi n="5, 2, 5,5">
<Text Bl ock Margi n="0, 2, 0, 0" >NVax
| terations</ Text Bl ock>
<Text Box Narme="tblterations" Text="100"
Text Al i gnnent =" Center” W dt h="40"
Margi n="5, 0, 10, 5"/ >
<Text Bl ock Margi n="0, 2, 0, 0" >Escape
Radi us</ Text Bl ock>
<Text Box Name="t bRadi us" Text="2"
Text Al i gnnent =" Cent er” W dt h="40"
Mar gi n="5, 0, 10, 5"/ >
</ St ackPanel >

318 | Chapter 7: Physics and Games in WPF

<StackPanel QOientation="Horizontal"
Mar gi n="5, 5, 5, 10" >
<Button Name="btnStart" dick="btnStart_ Qi ck"
Content="Start" Wdth="50"
Mar gi n="0, 0, 10, 0"/ >
<Button Nanme="btnReset" Qick="btnReset_di ck"
Cont ent =" Reset " Wdt h="50"/>
</ St ackPanel >
</ St ackPanel >

<Canvas Nane="canvas" Wdth="384" Hei ght="384"
MouseLef t But t onDown="CnMouseLef t But t onDown"
Mouselef t But t onUp="nMbuselef t But t onUp"
MouseMve="MuseMve" >
<l mage Nanme="show nage" />
</ Canvas>

</ St ackPanel >
</ W ndow>

The corresponding code-behind file is listed below:

usi
usi
usi
usi
usi
usi
usi
usi

ng
ng
ng
ng
ng
ng
ng
ng

System

Syst em W ndows;

System ol | ecti ons. Generi c;
Syst em W ndows. Cont r ol s;

Syst em W ndows. | nput ;

Syst em W ndows. Medi a;

Syst em Wndows. Medi a. | magi ng;
Syst em W ndows. Shapes;

namespace Chapt er 07

{

public partial class Mandel brot Set : Wndow

{

private doubl e Xmn

private doubl e Xmax = 1;
private double Ymn = -1.5;
private double Ymax = 1.5;

private int Nterations = 200;
private doubl e MaxRadi us = 2;

private int width = 3*128;

private int height = 3*128;

private doubl e zmax = O;

private Shape rubberBand = null;
private Point startPoint = new Point();
Poi nt endPoi nt = new Point ();

publ i ¢ Mandel br ot Set ()

I'nitializeConponent();
InitializeMandel brot ();

Chapter 7: Physics and Games in WPF | 319

private void InitializeMandel brot ()
{
tblterations. Text = "100";
t bRadi us. Text = "2";
t bXm n. Text ".2"
t bXmax. Text "1
tbYm n. Text "-1.5";
t bYnmax. Text "1.5";
N terations 100;
MaxRadi us = 2;
Xmn = -
Xrmax
Ym n
Yrmax

N I

1
- 1,
1

}

private void btnStart_Qick(object sender,
Rout edEvent Args e)

AddMandel brot Set () ;
}

private void btnReset Qi ck(object sender,
Rout edEvent Args e)

InitializeMandel brot();
AddMandel brot Set () ;

}

private voi d OnMuseleft But t onDown(obj ect sender,
MouseBut t onEvent Args €)

if (!canvas.|sMuseCapt ured)

{
startPoint = e. Get Posi tion(canvas);
canvas. Capt ur eMouse() ;

}

private voi d OhMbuseMove(obj ect sender,
MouseEvent Args e)
{

if (canvas. | sMuseCapt ur ed)

{
endPoi nt = e. Get Posi ti on(canvas);
if (rubberBand == null)

r ubber Band = new Rect angl e();

r ubber Band. Stroke = Brushes. Red;

canvas. Chi | dr en. Add(r ubber Band) ;
}

doubl e wi dthl = Mat h. Abs(
startPoint. X - endPoint. X);

320 | Chapter 7: Physics and Games in WPF

doubl e hei ght 1 = Mat h. Abs(
startPoint.Y - endPoint.Y);
double leftl = Math. M n(
startPoint. X endPoint.X);
doubl e topl = Math. M n(
startPoint.Y, endPoint.Y);
rubber Band. Wdt h = wi dt hl;
r ubber Band. Hei ght = hei ght 1;
Canvas. Set Lef t (rubberBand, leftl);
Canvas. Set Top(rubber Band, topl);

}

private voi d OnMbuseleft ButtonUp(obj ect sender,
MouseBut t onEvent Args €)
{

endPoi nt = e. Get Posi ti on(canvas);
if (endPoint.X > startPoint.X)
{
Xmn = Xnn + (Xmax - Xmn) *
startPoint. X / wdth;
Xmax = Xmn + (Xmax - Xmn) *
endPoi nt. X / width;

}
else if (endPoint.X < startPoint. X)

{
Xmax = Xmin + (Xmax - Xmn) *
startPoint. X/ width;
Xmn = Xnin + (Xmax - Xmn) *
endPoi nt. X / width;
}
if (endPoint.Y > startPoint.Y)
{

Ymn =Ymn+ (Ymax - Ymn) *
startPoint.Y / height;
Ymax = Ymin + (Ynax - Ymn) *
endPoint.Y / height;

elseif (endPoint.Y < startPoint.Y)
{
Ymax = Ymin + (Ynax - Ymn) *
startPoint.Y / height;
Ymn = Ynmn + (Ynax - Ymn) *
endPoint.Y / h