Debugging Applications 101

by Dale LaForce




Table of Contents

THE DEBUGGER WINDOWVS ...ttt ettt sttt e s st te s s s baa e s s saba e e s st ba s s sbtessssabaeesssbbesesanes 4
THE VARIABLES WINDOW ... .cutttiiiieeiieiittiitieessestbtttsesssesisbbatesasssssasbbastsasesssasbbtbasesesssassbbbeessesssasbbbasesesssaias 4
THE CALL STACK WINDOW . ...uuttiiiiiiiiiittiiit e e seiibb ittt s e s s s s sbbbate s e s s s s sabbabaeesesssaabb b b e s e sesssasbbbbbeeseessesabbbasssaseseses 5
THE REGISTERS WINDOW . ... .ututiiiiiiiiiiititiiitieesseistb ittt sesssssbbbaassssssssabbabasesesssasbbbbasesesssasbbbbbeesesssesabbbaassaseseses 5
THE DISASSEMBLY VWINDOW. ..uttiiiiiiiiiitttiiitieeiieiitbtttsesssesstbasssesssssisbbssssesesssasbbbbssssesssassbtbaessessssssbbasssasssans 6
THE MEMORY WINDOW ....ciiiittiiiiieeiiiiitttee e e e s se ittt e e e s e s sabbaaa s s s e st saab b s be e e s e st saab bbb e e e s e e s sas bbb baeeseessesabbbaneseesnasns 6

DEBUGGER WINDOW FORMATTING ..ottt ettt ettt e e st baaa e e s e s sabbaaae e s 7

THE DEBUGGER MENUS ...ttt ettt sttt e s e s s s e bbb e e e s e e s s e sabbbeaaseeesens 11

BREAKPOINTS ...ttt ettt e e et e e s et e e s eb b e e e s aabae s e sabaaeessbbeeesasbessesabaeessbbaeesasrassesabenas 14

DEBUGGING EXAMPLES ...ttt ettt st e e s s b bt e e s ettt e s s st a e e s s bt e e e seabas e e sabenas 16
DEBUGGING EXAMPLE L..uiiiiiiiiiiiiiiiiii ettt e e et s ettt e e e e e et s etab b e e e s e e s s e saabbaeeeeeesssabbaaeeeeesssaabbsbeeeeesssasssrres 17
DEBUGGING EXAMPLE 2...viiiiiiiiieiitiiitie e e e sttt et e e e e s s ettt e e s e s s s et bbb e e s s eessesabbbeeasaessesabbabasasesssasbbebseesesssassbenes 19
DEBUGGING EXAMPLE 3...uiiiiieiiiiiitiiitie e e e e sttt et e e e s s s ettt teesesssasaabbaesseessasabbbaeasaessssabbabesasesssabbebseesesssassberes 22

CONCLUSION ...ttt r e n e e n e e r e nr e nn e nenr e ens 27



Introduction

When writing new code or modifying existing code, debugging typically consumes a
large portion of a programmer’s time. In this short article, we are going to try to provide a
rudimentary foundation in the use of the “debugger” tool shipped with most development
suites. We will be using Visual Studio 6.0 for our examples and explanations but you
should find that the concepts translate fairly well to other development environments.

Debugging is the process of correcting coding and logic errors so that your project will
build and execute properly, working according to the design goals you had in mind. The
debugger is a tool that provides an interface to facilitate this process. It provides special
menus, windows, dialog boxes, and spreadsheet fields for this purpose; drag-and-drop
functionality is often available as well for moving debug information between
components. The debugger essentially allows you to observe and even alter the execution
of your program code in a line-by-line fashion. In doing so, you will be able to isolate the
source of errors, determine whether or not proper commands are executed, view the
current contents of variables, and so on. The application can even be paused during
execution, where it will wait for user input after completing a debugging command (like
break at breakpoint, step into/over/out/to cursor, break at exception, break after Break
command or Restart) which we will see shortly.

An old adage says, “l will not be able to teach you how to remember everything, but |
will teach you how to find the information you cannot remember.” This simple statement
is the key to the pursuit of success in most research fields. No one can know everything,
but if you know how to find information, then it is just as good as total knowledge. In this
article, we will try to provide a good amount of background material to get you
underway, and we will also point you in the direction of additional resources which you
should find helpful.

In the next section, we are going to start to look at the toolbars, windows, and other fine
trappings associated with the debugger tool.

.. OpenCsG - Microsoft Yisual C++

” File Edit View Insert Project Build Tools ‘Window Help

JJE | = o | p 7 | S ||E|E = |Eﬂt|SetExtlusionDistance =] | ‘:H‘
Jj DrizplayListPrimitive ;”[AII clazs members) ;” & DisplapListPrimitive Tl o H@ ¥ ' el
2lx

28] glew_static classes
OpenCSE classes

OpenCSGexample clas

HEE
i

The Visual Studio 6.0 IDE

Apart from buttons, toolbars, and some other slight variations, most of the information
presented here should apply to your debugger. If you are not using Visual Studio 6.0 then
you will need to make the necessary adjustments to correlate this information to the



proper button, window or technique. However, the basics generally remain the same
regardless of the visual appearance of the environment. Note as well that a number of
items have short cut keys assigned so that you can more easily access their functionality,
so you will want to look those up as well. If you are new to code development or
unfamiliar with an integrated development environment like Visual Studio, then you can
be sure that it will take a little time to learn and become familiar with everything. But do
not despair. These tools are designed to help make your development time more efficient
and once you are familiar with the IDE, you will find your projects coming together a lot
quicker.

First, let us take a look at some of the important components that comprise the debugger.

The Debugger Windows

There are several specialized windows that display debugging information for your
program. We will review them quickly now and then come back a bit later to see them all
in action.

The Watch Window

The Watch window displays names and values of variables and expressions.

Hame Yalue

alx

<[ v s westend fwiatchz % Weatchs & Watchs 7

Fig 1.1 Watch window

The Variables Window

The Variables window displays information about variables used in the current and
previous statements, function return values (in the Auto tab), variables local to the
current function (in the Locals tab), and the object pointed to by this (in the This tab).



"thi=" not found

=V ]:l [} l

Error:

4] I Aute s Locals % this /
Feady

Fig 1.2 Variables Window

The Call Stack Window

The Call Stack window displays the stack of all function calls that have not returned.

=
EifE SENEARSURTE )
o |EE E BE

fcall stack unawailable while child i= running)

j |5‘!|Hame |‘h"alue
Fig 1.3 Call Stack Window

The Registers Window

The Registers window displays the contents of the general purpose and CPU status
registers.



e ] ]
EAY = 091F453C EBX = 0012FD9C ECX = 00000000 EDX = 00000000 ESI = 77F82865 EDI = 00000394

EIF = 77F82870 ESF = Q012ZFDE0 EBF = 0012FDA4 EFL = 00000297

MMO = 00300164004C3770 MHM1 = 0000000000000000 MMz = C1lCAT7Z29CEF3D4000 MM3 = S9F3BEAGS7A400000

HM4 = COEGBE9CA1908000 MMS = F?FODSFC2331D000 MMe = 8000000000000000 HM? = BFFFFFO0O00000COQ0

HEMMO = 000000000000000000000000402FDeAC XMH1 = 00000000COQE3ISE40000000000000000

HMMZ2 = 00000000000000000000000000000000 XMM3 = 0O00O0O0O0O00O0OQOOOOOQOOOOOOOOOOOOODON

HMM4 = 00000000000000000000000000000000 XMMS = QO0OOO0O0O0O0OOQOOOOOOOOOOOOOOOO0ODDN

HMME = 00000000CO0E3ISE40000000000000000 XMM? = 0O000O0000COQE3BE40000000000000000

C5 = 001B DS = 0023 ES = 0023 55 = 0023 FS 0038 G5 = 0000 OV=0 UP=0 EI=1 PL=1 ZR=0 AC=1 PE=1 C¥=1
EMMODL = +5.32047916662746E-315 EMMODH = +0.00000000000000E+000 XMMIDL = +0.00000000000000E+000
HMMIDH = +1.59195734600234E-314 XMM2DL = +0.00000000000000E+000 X¥MM2DH = +0.00000000000000E4+000
HMM3DL = +0.00000000000000E4+000 XMM3DH = +0.00000000000000E+000 X¥MMADL = +0.00000000000000E4+000
HXMM4ADH = +0.00000000000000E+000 XMMSDL = +0.00000000000000E+000 XMMSDH = +0.00000000000000E+000
HEMM6DL = +0.00000000000000E+000 EMMADH = +1 59195734600234E-314 EMM7DL = +0.00000000000000E+000
HMHM7DH = +1 .59195734600234E-314

HMMOOD = +2.74748E+000 ¥MMO1 = +0.00000E+000 XMMOZ = +0.00000E4000 XMMO3 = +0.00000E+000

HMM10 = +0.00000E+000 ¥MM11 = +0 . 00000E+000 XEMM12 = -2 222Z22E+000 XMM13 = +0.00000E+000

HMM20 = +0.00000E+000 XMHM21 = +0. 00000E+000 XMM22 = +0.00000E+000 XMM23 = +0.00000E+000

HEMM3I0 = +0.00000E+000 EMM31 = +0.00000E+000 XMM3Z2 = +0. 00000E+000 XMM33 = +0 . 00000E+000

HMMAOD = +0.00000E+000 ¥MM41 = +0 . 00000E+000 XMM42 = +0.00000E+000 XMM43 = +0.00000E+000

HMMS0 = +0.00000E+000 ¥MMGS1 = +0. 00000E+000 XMMSZ2 = +0.00000E+000 XMME3 = +0.00000E+000

HMME0 = +0.00000E+000 X¥MHMel = +0 . 00000E+000 XMMeZ = -2 22222E+000 XMM&63 = +0.00000E+000

HMM70 = +0.00000E+000 XMHM71 = +0.00000E+000 XMM72 = -2 22222E+000 XMM73 = +0.00000E+000

HXCSR = 00001FAQ

STO = —0.01980557151063182=+2989 ST1 = +0.00000000000000000e+0000 STZ2 = -7 . 56995356728329405=e—-0001
ST3 = +2.48803195867458271=+0000 ST4 = +3.15469708724982211=+0000 STS = +3.87407445547867457=2+0000
STe = +1.00000000000000000e+0000 STY = +6.14399951171875000e+0003

CTEL = 027F STAT = 0020 TAGS = FFFF EIF = 087D8613

CS5 = 001B DS = 0023 EDO = D91549EC

Fig 1.4 Registers Window

The Disassembly Window

The Disassembly window displays assembly-language code derived from disassembly of
the compiled program.

78 Disassembly =10 =l
5004126 0E pu=sh =bp 3

0041 8s0F Mo =bp.e=p

oo412c11 Du=sh OFFh

00418613 pu=sh 424388h

oo413618 pu=sh 41 Z6E4h

oo41861D Mmoo sa=x,. f=:[000000007

0418623 pu=sh =ax

oodlse24 Mo dword ptr f=:[0].e=p

004186 2E =uhb =e=p. 10k

004186 2E u=h =hx

004186 2F pu=h ==1

oo4d4i12s320 pu=h =di

ood4i1gs31 Mo dword ptr [ebp—1£8h].e=p

oo41853234 —=all dword ptr d=:[426384h]

0418634 HOI ed=. ed=

0041863C mosy dl.ah

0041863E Ty dword ptr d=:[433EDCh] . =ed=x

Oo415644 TCE SCE . 2aX

00418646 and =c=. 0FFh

oo0418640C b Tt dword ptr d=:[433EDEh].ec=x

00418652 =hl =c=. 8

oo418655 add ecx. ed=

0412657 Mo dword ptr d=s: [422ED4dL] . =cx

oo041865D =sh1r =sax. 10h

oo412c60 Mo [00433EDO] . =a=x

00418665 pu=sh u}

oo413e6? call o041 Cae?E

oo4i1866C Dop =CE

oo4l1866D te=t SAX . 2aXE -
EREE 3P

Fig 1.5 Disassembly Window

The Memory Window

The Memory window displays the current memory contents.



Address:  [0=00000000

00000000 27 77 77 77 77 PP 77 PARPLRY i’
QO0000aa7? PP T OPY T YT OPT OTT O ORIIIIEY
QO000000E 77 77 ?Y YT YT OPT YV ORIYIIIEY
00000015 27 7?7 27 77 97 PP PP ORIRPIYY
0000001C 27 77 F7 O7? 7?7 OPT O?T 0 PAIRIRY
QO0000az23  FF O?T OPY PP YT OPT OTT O ORIIIIEY
000000Z2& 77 77 FY YT YT OPT TV ORIYIIIEY
00000031 29 77 P7 T P OPT PV OPIRPIYY
Q0000038 7?7 T OPY PP YT OPT TV ORIITIEY
Q0000A3F 77 77 FY YT YT OPT YV ORIYIIIEY
00000046 77 77 ?Y T YT OPT YT ORIYIIIEY
0000004D 27 77 PY OT? 7?7 OPT ?T 0 ORAIPIRY
Q0000aS4  FF O?T OPY PR YR OPT YT ORIIIIEY
QO0000ASE 77 77 ?Y YT YT OPT TV ORIYIIIEY
00000062 29 77 P79 7P ?? PP PV OPIRPIYY
00000069 27 77 77 7P 77 OPT 7?7 OPAIPIRY
Qoo00oa7o0 PP T OPY PR YT OPT OTT O ORIIIIEY
00000077  FF YT O?Y YT YT OPT OTYORYIIIEY
OO00O0FE 29 77 779 77 97 77 7?7 ?YRRIYY
Q0000085 77 PP OPY PP YT OPT OTTORIITIEY
QO0000agc  FF YT OPY YT YT OPT YV ORYIIIEY
00000093 7?7 Y OPY YT YT OPT YT ORYIIIEY
00000094 27 77 77 77 97 PT P70 PAIPIRY
Q00000Al 77 PP OPY PP YT OPT TR ORIIIIEY
N00000AS 77 77 77 77 Y7 OPT TV ORIIIIEY
nnonoNnnnaAns v P e P O Mo erw Roe Do P e, e D i) b e B B B e ;I

Fig 1.6 Memory Window

All of the Debugger windows can be docked or floating. When a window is in floating
mode, you can resize or minimize the window to increase/decrease the visibility of other
windows. You can also copy information from any debugger window, but you can only
print information from the Output window.

Debugger Window Formatting

To set formatting and other options for the Debugger windows, use the Debug tab in the
Options dialog box. Figure 1.7 shows the Debug sheet in the Options dialog box which
can be accessed by choosing Tools from the Main menu and then selecting Options,
which will display the dialog box. Then, just select the tab at top labeled Debug as seen
in Figure 1.7.



options 2 x|

Editar I Tabz  Debug | Compatibility I Euild | Directonies | { EE

—General—————  — Memon window
™ Hexadecimal display Address: Farmat:
— Dizazgembly window—— I lE-"'tE j
¥ Source annatation [T Re-evaluats expression
[T Code bytes [T Show data bytes
¥ Symbols I Firedwidh [0
— Call stack window- [ Display unicode shings
I Parameter values v ‘iew floating poink registers
W Parameter types ¥ Justiretime debugging
W Retumn walue ¥ OLE RPC debugging

[” Load COFF & Exports W Debug commands invoke Edit and Continue

OF I Cancel

Fig 1.7 Debug Sheet of Options Dialog

If we check “Hexadecimal display” under the General heading, it displays values in
hexadecimal format and parses user input in hexadecimal format in all debugger windows
and dialogs. When using the debugger in hexadecimal mode, it is possible to enter
decimal numbers using the prefix On (read : zero “n” ), for example: 0n1000.

Dropping down to the Disassembly window label, we first see the check box labeled
Source annotation. When checked, this displays source code within the listing of
assembly-language code. Next we have a check box labeled Code bytes, which displays
bytes corresponding to each assembly-language instruction (if checked). Finally, under
the Disassembly window we have the Symbols check box. This displays symbolic names
(such as CGIApp::OnGIlEvent) for addresses in the Disassembly window.

Just below the Disassembly window settings box, we find the Call Stack window settings
box. The first check box we encounter is labeled Parameter values. If checked, the
debugger will display the values passed to each parameter for each function call shown in
the Call Stack window. The remaining check box labeled Parameter types, displays type
information for each parameter for each call shown in the Call Stack window.

Below the Call Stack window settings box, we see two check boxes: one labeled Return
value and one labeled Load COFF & Exports. The check box labeled Return value, if
checked, will display function return values in the Variables window. The check box
labeled Load COFF & Exports, if checked, will enable the debugger to load COFF-
format debugging information, or DLL Exports when debugging information is not
available. Selecting this option may affect debugger performance when loading the
application to be debugged.



NOTE: In 32-bit programming, COFF is a format for executable and object files that is
portable across platforms. The Microsoft implementation of COFF is derived from the
UNIX specification for COFF, but includes additional headers for compatibility with MS-
DOS and 16-bit Windows. This Microsoft version is sometimes called the "portable
executable (PE) file format."

Moving up and to the right, we come to the Memory window settings box and the First
item we encounter is the text box labeled Address. This box will display the beginning
address for the block of memory to be displayed. Just to the right of the Address box, we
see the Format box. This is a drop down box, with a large selection to choose from.
Basically, it determines the display format for memory contents. It is a good idea to click
this box and scroll up and down to see the various formats you may choose from (Fig
1.8).

options 2] x|
Editor I Tabs | Debug | Compatibility | Build | Directaries | z EI
General Memary windor
’Vp Hezadecimal display Address FEormat:
- Disassembly window—— I Bute it
¥ Source annatation I~ Re-evaluate A5CI £
5 “wide Char 7
" Code bytes [~ Show data MJ
¥ Symbols I™ Fired width: [Short
- Short Hex
- Call stack window [ Display unicod Shart Unsigred
V' Parameter values IV View floating Luoun.%g. TeT
[ Parameter types [V Justiintime debugging
V¥ Return value ¥ OLE RPC debugging
[" Load COFF & Exports [V Debug commands invoke Edit and Continue
cocel |

Fig 1.8 Format Drop Down Box

Just below the Address text box, we find the Re-evaluate expression check box. When
checked, the debugger dynamically evaluates an expression entered in the Memory
window. Select this option if you want to enter a pointer, for example, and have the
memory window display the address pointed to, even when the pointer changes. Do not
select this option if you want the pointer to be evaluated once and the Memory window to
continue to point to the evaluated address even when the pointer changes.

Next we have Show data bytes check box. If enabled, the debugger displays data as raw
bytes as well as in the selected format (as given by the drop down box mentioned above).

The final item in our Memory window settings box is the Fixed width check box. This
displays memory contents in a fixed-width format when the checkbox is selected. We cab
use the textbox to the right to specify the width. Width units are determined by the format
selected in the Format box. For example, if you choose short and set the width to 4, each
row in the Memory window will display four short values.

There are five more check boxes on this dialog to review.

Display unicode strings should be mostly self-explanatory. It displays Unicode-format
strings for debugging international programs. Only check it if you need it.



Next we see the View floating point registers check box. When checked, the debugger
displays contents of floating-point registers in the Registers window.

The Just-in-time debugging check box enables an application launched from the desktop
to call the debugger when an error occurs. Thus, if you want the application you are
creating to be able to call up the debugger when (however slim the chance) it errors out,
then checking this box is the way to do that.

The OLE RPC debugging check box enables debugging of remote procedure calls. (That
is what RPC stands for -- Remote Procedure Call).

Finally, we have the Debug commands invoke Edit and Continue check box. When this
option is selected, Edit and Continue applies code changes automatically when you
choose a Step, Go, or Run command. Otherwise, code changes are applied only when you
choose Apply Code Changes.

“Edit and Continue” is a debugging feature introduced in the Microsoft Visual C++®
version 6.0 development system. It allows you to make changes to source code during a
debugging session, and to apply the code changes to the application being debugged,
without having to stop debugging, rebuild, restart the debugger, and return that
application to the state it was in when the bug occurred. For typical debugging sessions,
Edit and Continue saves time by shortening the code, compile, and debug cycle and by
allowing the programmer to maintain his or her concentration.

The Edit and Continue feature is enabled by default in all newly generated Visual C++
6.0 debug configuration projects (through the /ZI compiler switch). Additionally, when
using Visual C++ 6.0 to open a project generated with a previous version of Visual C++,
users are prompted to convert the project to the 6.0 format, in which case the /ZI compiler
switch replaces the use of /Zi for each project. Note that the /ZI switch is quite different
from the /Zi compiler switch. Both of these switches configure the compiler to build a
program database (.pdb) file with debug information, but when the /ZI switch is used, the
.pdb file contain information necessary for performing Edit and Continue operations, in
addition to the debug information generated with /Zi. To enable the /ZI compiler switch
for a project within the Visual C++ IDE, select Settings from the Project menu after
activating the project for which Edit and Continue will be enabled. In the Project Settings
dialog box that appears, click the C/C++ tab. Select General from the Category drop
down box. In the Debug info drop down box, select ""Program Database for Edit and
Continue.”



i

Settings For: |4win32 Debug LI General | Debug CAC++ | FResources | Br{ EE
Categony: IGeneraI LI Beset |
‘Warning level: Optimizations:
|Level 3 =] |Disable Debug) =l

I “Wamings as erors [T Generate browse info

D ebug info:

Program D atabasze for Edit and Continue

FPreprocessor definitions:
|WIN32,_DEB UG GLEW_STATIC

Cormmmon Options:

fnologo A3 AGH /21 A0 AD wINEEY AD "_DEBUG";I
/D "GLEW_STATIC" AFD /GZ Ao

ak. I Cancel I

Fig 1.9 /7l Switch and Debug Info Hi-lighted

The /Z1 compiler switch will appear in the Project Options box at the bottom of the dialog
box. Any other selection in the Debug info group box will disable the /ZI compiler
switch. Click OK to accept the settings.

The Debugger Menus

Now that we have had a brief overview of the debugger windows we will encounter, let
us move on to the debugger menu items. Commands for debugging can be found on the
Build menu, the Debug menu, the View menu, and the Edit menu located on the Main
menu of the IDE. The Build menu contains a command called Start Debug, which
contains a subset of the commands on the full Debug menu (Fig 1.10). These commands
start the debugging process (Go, Step Into, Run To Cursor and Attach to Process).
The Debug menu appears in the menu bar while the debugger is running (even if it is
stopped at a breakpoint). From the Debug menu, you can control program execution and
access the QuickWatch window. When the debugger is not running, the Debug menu is
replaced by the Build menu.



Buid Tools Window Help

A £ Cample 7 kionDistance ||
- Buid OpenCSGexample.exe F7

| B4 Rebuid e o [
" BatchBuld...

~ Clean

|

; Start Debug Go

Debugger Remote Connection. .. Il} Step Into Fii

Execute OpenCSGexample.exe  ChHFS ) Rumbo Gursor G+
fttach to Process...

Set Ackive Configuration...
Configurations. ..

Praofile. ..

Fig 1.10 Subset of Start Debug

The View menu contains commands that display the various debugger windows, such as
the Variables window and the Call Stack window discussed previously.

View Insert Project Debug Tools ‘Window Help

:_,lﬁ Classifizard, .,  Chel+W [y | o B R | %IE

biers] ;” & DisplayLis

; D= pesource Symbals, ..

Resource Includes,
Full Screen

Wiorkspace

= Watch alk+3
Refresh Call Stack Alt+7
Memory Alt+6
Variables alt+4
Registers Alk+5
Disassembly  Alk+5

Praperties AlE+Enter

Fig 1.11 Debug Windows from View menu

From the Edit menu, you can access the Breakpoints dialog box, from which you can
insert, remove, enable, or disable breakpoints. We will talk about breakpoints in more
detail in the next section.



*«. OpenCsG - Microsoft ¥isual C++

File |Edit W“iew Insert Project Build Tools

—
—

JJ:@ 23 Undo Chrlh= e
Gl Bedo L o S T
J Dlizp = mermnbe
% i hrl
oy LR
- | 3 Paste Ehrl 4
E 5 pelete el
Seleck all hr -
@y Find. .. CErl+F
Gy Find in Files. ..
Eeplace. .. =Erl4-H
Go To... CErl+G
Breakpoinks,..  AlL+F2
I

Fig 1.12 Breakpoints from the Edit Menu

In addition to windows, the debugger uses a number of dialog boxes to manipulate
breakpoints, variables, threads, and exceptions. You can access the Breakpoints dialog
box using the Breakpoints command on the Edit menu. You can access the other dialog
boxes using commands from the Debug menu.

Location | Data | Messages |
Break at; Cancel |
I A Edt Cod |

el | Click the Condition buttan if you
= waht ko set conditional

parameters for pour break point,

Breakpoints:

Hemove

i

Hemayve &l

Fig 1.13 Breakpoints Dialog Box



Breakpoints

Before concluding our discussion of the debugger interface, let us discuss the concept of
breakpoints, since they are quite important and still fresh in our minds.

Breakpoints are locations in the source code that tell the debugger where to halt (break)
program execution. For obvious reasons, breakpoints represent one of the most important
elements of the debugging process. They allow us to say to the debugger, “run the
program up to this point and then stop here, so that | can look at the current state of the
application”. In this way we can check the values of our variables, return values from
functions, and so on, to try to find out where things might be going wrong. Additionally,
we can find out whether or not a particular line of code is ever even reached (for
example, the code inside an if/else statement), as perhaps our logic is faulty somewhere
or our error happens much sooner than the expected line we want to break on.

We can set breakpoints (one or more) in either the source window or the Call Stack
window. A red dot next to the line of source identifies breakpoints in our code.

NOTE: You must have a project open before you can set a breakpoint. With no project
open, the Breakpoints command does not appear on the Edit menu.

Breakpoints can be set in various places:
e 0n asource-code line
e at the beginning of a function
e at the return of a function
e atalabel

NOTE: If you want to set a breakpoint on a source statement extending across two or
more lines, you must set the breakpoint on the last line of the statement.

You can also set data breakpoints that halt execution when an expression changes value
or evaluates to true. The following list describes instances that are common:

when a variable changes value

when an expression changes value

when an expression is true

break on a variable outside the current scope

when the initial element of an array changes value
when the initial element of an array has a specific value
when a particular element of an array changes value
when any element of an array changes value

when any of the first n elements of an array change value
when the location value of a pointer changes

when the value at a location pointed to changes



when an array pointed to by a pointer changes

when the value at a specified memory address changes
when a register changes

when a register expression is true

The Start Debug Menu

To conclude our discussion of the debugger interface, let us quickly review the options
that we can select through the Start Debug menu.

Attach to Process allows us to attach to a running process either locally or across the
world on another machine.

Go executes code from the current statement until a breakpoint or the end of the program
is reached, or until the application pauses for user input. (Equivalent to the Go button on
the toolbar.)

Step Into, single-steps through instructions in the program, and enters each function call
that is encountered along the way.

Run To Cursor executes the program as far as the line that contains the insertion point.
This is equivalent to setting a temporary breakpoint at the insertion point location. In
other words, where ever you place the cursor in the code, the execution of the application
will run until it reaches the line that has the cursor on it, giving us a fast non-committal
breakpoint that can be modified during execution just by clicking the line we wish to stop
at.

QuickWatch window is supported only in Visual C++ Enterprise Edition. You can use
QuickWatch to quickly examine the value of SQL variables and parameters. You can
also use QuickWatch to modify the value of a local variable or to add a variable to the
Watch window. You cannot modify the value of a global from the QuickWatch window.

That wraps up our overview of the debugger environment and some common terms and
phrases. The next thing we shall do is look at the debugger in action and talk about some
simple steps and routines to get us started in the debugging arena. While we will be brief,
you can be sure that throughout your coding life, you will find ample time and instances
to practice debugging techniques.



Debugging Examples

Debugging, while having a snappy name, is really our old friend “troubleshooting” with a
new set of clothes. Troubleshooting is an art form in itself, and requires a combination of
natural ability/curiosity, a basic skill set in the area of concern, and a relentless desire to
find out why something will not function correctly, how it should function in an ideal
setting, and what elements might contribute to problems that are encountered.

I have spent most of my adult life as a “troubleshooter” in the fields of advanced
avionics, computer systems, and networks. It turns out that the basic skills | learned in
one area were always assets in the others. One helpful procedure for troubleshooting, that
once learned may be applied to any system you can think of, is called the Divide and
Conquer or Half-Step Method. Fundamentally, the idea is to treat a system as a “black
box”. Starting at either the input end or output end, divide the box in half, test, then
repeat the division until the area of concern is narrowed down.

For example, consider an ordinary lamp where the input is electrical energy coming from
the wall outlet and the output is light energy emitted into the environment. Let us try
going from output to input first. We can divide the lamp in half (not physically of course)
and check to see if electrical energy is present at that point. If we find that electrical
energy is present at that point, we have eliminated the first half of our system in one step.
Now from this point to the output we will once again divide it in half. Since the only
object in the system that is left in this example is the light bulb itself, we can be fairly
certain that it is at fault. Common sense would probably have led us to the bulb initially
of course, and the same can be said in other systems as well. There are usually common
“things” that go wrong or break in all systems and we can capitalize on this knowledge
when we have it handy. Often this knowledge is gained through experience and trying to
remember the mistakes you made on past projects (you should not be too surprised to
find that the same bugs keep cropping up over and over again across most projects).
Keeping up with the latest literature in our field of concern will also keep us apprised of
common problems so that we know what to look for when things do not behave as
expected.

The point here is that if you run into a problem and have no idea where to start,
remember the half-step method. It can be applied to many other areas as well, not just
debugging. Virtually all systems have an input and an output, so you can divide the
whole in half, working towards the input or output end, repeating the process until you
narrow down the culprit.

Let us put some of these ideas into practice by looking at a few typical debugging
examples. Of course, as with everything we do in life, with practice and repetition (and a
willingness to accept that we will make mistakes) we will become more comfortable with
solving problems using the debugger. And to be sure, if you are hoping to land a job as a
software programmer, keep in mind that the debugger tool is the most important tool you
have in your toolset. Familiarity with the tool will be assumed at any job you get.



Debugging Example 1

Our first example is very simple and will get us started with using the debugger and get
us acquainted with where everything is and what it looks like. This will save some
frustration and time.

Start a new empty console project in Visual Studio and give it a snazzy title. Then create
a new source file in your project and cut and paste the following code into the source file
you just created.

NOTE: When building an application, always create a Debug build first. Then when you
have all the issues in order (no errors, no warnings), build the Release version.

11/177777777777777777777777/777//7/7///7//7//////77/77777

//

// Module: Pointl.cpp

//

// Purpose: To demonstrate the NULL pointer

// effects in a program and provide
// a simple demonstration of debugging
// the app.-

//

//

1111777777777 77/7//7/7/7/7/7/7/7/7/7//7//7//77//7/7777
#include <iostream.h>
void main

int var = 50;
int *pvar;
int *pvar2;
pvar &var;
pvar NULL;
pvar2 pvar;

cout << "The variable var, pointed to by pvar2, is
<< *pvar2 << "_\nvar is located at address: "
<< pvar2 << endl;

by

Save your workspace at this point and check the build options to make sure that you are
in the debug mode.

Next, under the Tools menu at the top, choose Options and then the Debug tab. If it is
checked, uncheck the box next to just in time debugging. This will prevent our app from
opening another instance of Visual Studio. On final build, if we want to give the user the
ability to bring up the debugger in the event of an error, we can go back and recheck this
box. This is useful if we are on final build and want to do extensive testing of our app -- it
IS a quick way to access the debugger from our app, without the need to start Visual
Studio and load the app by hand.




Now build the application.

Finally, hit Ctrl+F5 to run the application. When prompted, hit cancel to start the

debugger.
“.. Pointer1 - Microsoft Visual C++ [break] - [C:Pointer1Point1.cpp] =18] %
& File Edit Wiew [nsert Project Debug Tools Window Help = 1[
B EEE  mE o OB |G uden |
| | S lems o Bl o
E— "
EHEE > BP0
int =pvar? ;
« [EEEDET
pvar = &var;
pvar = HULL:
pvar? = pvar:
Debug control
cout << "The variable war, pointed to by pvar?, is"
<< *pvar? << ".“nvar is located at address: "
5| ¢¢ pwar2 <{ endl:
I
Values of pvar and pvarl
T — L
T e O =
1 Context Imam[] j 3 !v!_a_l]]_g :!Value
Name Yalue ¢
cout fraed

000000000
D=00000000

DVar
pvar
L I Ao f Locals ) this #

Fieady [[Ln37.ColT  [REC[COL[OVR [READ

iﬂstartm m 6] @ ] g @ |J DEBugger‘doc-MicmsoF...| @A Poinkerl - Microsoft Wisu, ., | B "C:\Pointer11DebugiPoin. . ||wPointerl - Microsoft ¥... \5@5@2 143 AM

A [ ¥ I watch { Watchz 5, Wateh3 ) Watched /

Notice the debug window in the upper right (if it is not present, then right click on an
empty space on the main menu bar and select it from the drop down that appears). The
Output window at the bottom shows the value of our two pointer variables. We can see
immediately that they are NULL (or zero). Just above the Output window, we notice a
yellow arrow pointing to the pvar2. This tells us the point that the program “choked”. But
be very careful here in making assumptions, as this is not the location of the error; it is
simply the point at which we noticed the error because the application failed on this line.
In fact, the error could have occurred 10,000 lines of code before the yellow arrow if we
were working in a more complex program. This is something that is very important to
keep in mind. We now know the location in the program where things broke down, but
we do not yet know why the application broke down.

Of course, you have probably already spotted the error by now -- the line that sets pvar to
NULL. If you comment out or delete this line and then rebuild the app and run it again,
the application should run properly and our output to the DOS window is correct. It is



worth saying that NULL pointer errors (which can cause very nasty General Protection
Faults) are one of the most common types of bugs and will likely come across your radar
many times in the future. Fortunately, they are generally very easy to spot and fix.

Debugging Example 2

Now let us try a new example. Please start a new console project just like in the last
example and cut and paste the following code into your source file.

L1177 7777777777/7777777//77//7/7//77//7/7/7//7/7/777/
//

// Module: breakpoint.cpp

//

// Purpose: To demonstrate setting breakpoints
// in an app.

//

/1171777777777 77/7777777777/7//77///7/7/77/7/77/7/77777

#include <iostream.h>

void main

{
int counter =1;
for ( int 1=0; 1 < 10; i++)
{
cout << counter << endl;
3
cout << "Finished Printing" ;
s

After you build and run the program, your output should look like this:

\break1'Debug'breakl.exe"

inished PrintingPress any key to continue




Now we will set a breakpoint and step through the code to see what is taking place. In the

source window, just behind int counter = 1; right click and choose insert/remove
breakpoint:

P P P P P P P P P
finclude <iostream. h:
woid main ()
& . int counter =1:
for ( int 1=0; 1i¢ 10; 1443
{
cout << counter << endl:
b
cout << "Finished Printing" ;
3
1

Notice the red dot located to the left of int counter =1;. This red dot shows us the location

of our breakpoint. Now from the Build menu choose debug -> Go, or just hit the F5 key
to start the debugger.

tinclude <iostream.h:
woid main ()
| = int counter =1;

for ( int i=0; 1< 10: 144}

1
cout ¢¢ counter << endl;
I
cout << "Finished Printing”
[
I

The yellow arrow now points to the position where the break in execution took place (our
previously placed breakpoint).



x| . . =
]I Contest: imam[] J
Mame Yalue
counter —a3539934a10
v I Acte £ Locals & this £
Feady

The Output window shows the current value of our variable called counter. The reason
we do not see the assigned value of 1 is that the program was halted before the value was
assigned. Thus we are seeing un-initialized memory (which incidentally is another very

common bug that you will encounter down the road, although not problematic in this
particular example).

Using the F10 key, we can step past the line and observe what is taking place. Press the
F10 key once and you should now see the following:

finclude <io=tream. h:
wold main ()
& int counter =1;

(= | for { int 1=0: i< 10: i+4)
i

cout {¢ counter <{ endl:

cout ¢ "Finished Printing"

WK —

:’:II Contest: I i) LI

Mame Yalue
counter 1

1 —858993460

TITI\ Augto ,a: Lacals }\ this f

The yellow arrow has dropped down one line, and now counter stores the assigned value
of 1 in the Output window. Continue to hit F10 to step through the remainder of the code



and observe the Output window to see what is taking place. It is also a good idea to
expand the entries in the output window when you see the “X in a box”, and observe all
that is taking place. We will not go into much detail here, as we will save that for the next
example. This is just to get you familiar with the procedures.

NOTE: While stepping through the code you may encounter a dialog such as this:

Find Source NN 2| x|

Fleaze enter the path for 0k,
CRTO.LC.
bire: Cancel
= ot ;I Mebaork...
= break1 e
£ Debug
Drives:

Simply hit cancel and you will be shown the Disassembly window at that point. Select
Stop Debugging from the debugger window or the main menu access point. If you need
to, run through the procedure several times, until you are comfortable with the
procedure of stepping from line to line through your code and watching the local
variables change in the Output window.

Debugging Example 3

Please start a new project and copy and paste the following code into the new source file.
(Do not forget to check and make sure you are in debug mode for your build.)

#include <iostream.h>
#include <stdlib.h>

int Convert (float decimal);
void main()

{

int a, b;




float c;
int ThePercent;

cout << "Enter two Integers >";
cin >> a >> b;

if (a = b) cout << "They are Equal!\n';
else if (a > b) cout << "The first one is bigger!\n";
else cout << "The second one is bigger!\n';

cout << "Enter a Decimal to be Converted to Percent >";
cin >> c;

ThePercent = Convert(c);

cout << "That"s " << ThePercent << "%\n";

cout << endl << endl;

system(*'pause™);

b

int Convert (float decimal)

{
int result;
result = int(decimal) * 100;
return result;

b

Now build and run the program.

For the input to the convert decimal please use 0.5 as your input. This is important since
we want to see the error that we will encounter with our Convert function. Also, please

use 4 and 6 for the integer input in the first step.

The output tells us that our integers are equal and that our percentage is 0%. This
obviously cannot be correct as we know that 4 and 6 are not equal, and we also know that

0.5 is not 0%. We’ve got bugs, so let us see how we can track them down.

MConvert'\Debug',Convert.exe™
Enter two Integers >4 b

Presz any key to continue




First, let us set a breakpoint just before the user enters the two Integers:

wold maini) {
1 1) = R o
float o
int ThePercent:

cout << "Enter two Integer=s "
& cin »» a »» b

1f {a = b) cout << "They are Equall>n";
el=e 1f (a * b) cout << "The fir=t one i= bigger!~n";
gl=e cout << "The second one i= bigger!»n":

Now run the program in Debug mode (F5).

cout << "Enter two Integers »":
L= cin »> a »r b

if {a = b) cout << "They are Egquall!>n":

el=ze cout << "The second one 1= bigger!n";

elze if (a » b) cout <¢ "The first one i= bigger!~n":

The yellow arrow means that this statement will execute next! Also, notice the word

[break] in Visual Studio's title bar just before the title of the source file.

**.. Convert - Microsoft ¥isual C++ [break] - [Converter.cppl

JJ@ File Edit View Insert Project Debug Tools ‘Window Help

|8 @ an oy - |0 EE | Gaudes =
JJ [Globals) || 140 global members) || @ main R H 2 2

We now need to set up a “Watch” on the two Integer variables.

If there are already values in the Watch window, simply click the boxes under the Name
column and hit the delete key to remove them. Now click the empty box and add ‘a’ as
the first Name entry. Hit the return key and then enter ‘b’ in the empty box just below the

‘a’ entry.
X MName Yalue
1 a —B58993460
b —R58993460

A[ ¥ I wimtoht £ WatchZ % Watch3 % Wiatchd 7




The values you see are just garbage right now, as we have not entered our two integers
for comparison yet and the memory is still un-initialized.

Now press the F10 key to Step Over this line. Notice that in the Visual Studio title bar,
that [break] has now changed to [run]. Since the program has been minimized to the
taskbar, click once on the icon, and then enter 4 and 6 for the Integer values (place a
space between 4 and 6 for readability). Next press the Enter/Return key and the Visual
Studio title bar will reflect that the process is once again in the [break] state. More
importantly, the Watch window now reflects the values of the two Integers that you just
entered.

| Mame Yalue
A a 4
b G

[ ¥ I, wistch1 4 WatchZ % Watch3 % Wiatchd 7

[Ln14.Coll  |REC[COL [OVR [READ

Step Over (F10) once more and notice the yellow line has dropped down one line, and
that the value of “a” has changed in the watch window. We see that “a” and “b” are now
the same value. Our program has just changed the value that we entered, so something is
going on here that we certainly do not want.

| Mame Yalue
A a B
b &

A b watcht f Wvatch2 % WiatchZ ' Watchd /

[In15.Col1 [REC [COL [OWR [READ

A quick look at the code shows us that our Integer problem is due to the fact that instead
of using “is equal to” ( ==) operator, we are in fact assigning “b” to “a” in the following
statement:

if (a = b) cout << "They are Egquall~n":
=2 | gl=ze if (a » b) cout << "The first one is bigger!~n";
glze cout ¢¢ "The second one i= bigger!n":




Stop the debugger from the debug window or the main menu access point and change the
statement to reflect “is equal to” rather than an assignment. Re-build the app and run
again. The first problem (assignment versus equals is another very common problem that
you should be on the lookout for) should now be solved, but we still have the percentage
problem to fix.

In the Watch window, you can delete the two Watches that are set (a and b) by clicking
on each line and pressing "Delete", or you can just type over the existing names. Enter 'c’
and 'ThePercent' in the Watch window Name columns, just as you did for “a” and “b”
previously.

Now set a breakpoint at “ThePercent” just below the “cin >> c;” statement. Press F5 to
start the debug run and enter values of 4 and 6 for the Integers, and 0.5 for the decimal
input to the Convert portion. After you press Enter/Return, you will notice that the yellow
arrow is in place and the title bar shows [break]. We could use the F10 key to Step Over,
but instead we will use the F11 key to Step Into. This way we can single step into and
through the function and see everything that takes place. Single step through (F11) until
the yellow arrow is at the first “cout” statement. Notice the values in the watch window:

g Mame Yalue
A 0.500000
ThePercent ]

| L I wisteht (ivateh2 T Wiatch3 G, Wiatehd F

Our input is correct, but the result returned from ThePercent function is definitely off
target. So the fault must lie somewhere inside the function.

As it turns out, the function is rounding off the decimal value that we input and truncating
to zero prior to the multiplication by 100. We can easily remedy this by changing the
location of the parentheses that are enclosing the decimal input. Place the parentheses just
before the terminating semicolon on the same line. Remove any breakpoints that may
remain, re-build the app, and set a breakpoint on the last cout statement. Press F5 to start
the debug run and enter 4 and 6 for the integers and 0.5 for the decimal input. The app
will break at the cout statement and you can observe the results in the Watch window. As
you can see, it displays the correct value for “ThePercent” return result:



| Mame Yalue
B 0.500000
ThePercent 5o

A b, watch1 f WvatchZ % WatchZ ' Watchd /

[Ln22 Coll  |REC|COL [OWR [READ

Stop the debugger, remove any breakpoints and run the program using Ctrl+F5. The
program now functions in a normal fashion. If desired, you can now create a Release
build, now that all of the bugs are cleaned up.

Conclusion

This wraps up our brief foray into the world of debugging. Hopefully you have gleaned at
least a working knowledge of the processes involved in debugging apps. While being
very simple, the example programs we looked at are good practice to get you up to speed.
Run through the samples as many times as you need to until you are comfortable with
what has been presented here. You should make changes and experiment with them as
much as you can stand. The more time you put in now working with smaller examples,
the better off you will be down the road. Later on, as you begin debugging more complex
applications, you will find that the process is basically the same.

It is worth noting that MSDN (online or from the local install if you have it) includes a
series of very good articles by John Robbins called “Bugslayer.” You should find these
articles to be very helpful in continuing to expand your knowledge in this area and they
are highly recommended reading.

Good luck to you with your projects!



	Fig 1.6 Memory Window

