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Who Is This Book For? 
Simply put, this book is targeted at computer game developers who do not have a strong 
mechanics or physics background but are charged with the task of incorporating real 
physics in their games. 

As a game developer, and very likely as a gamer yourself, you've seen products being 
advertised as "ultra-realistic" or as using "real-world physics." At the same rime you, or 
perhaps your company's marketing department, are wondering how you can spice up 
your own games with such realism. Or perhaps you want to try something completely 
new that requires you to explore real physics. The only problem is that you threw your 
college physics textbook in the lake after final exams and haven't touched the subject 
since. Maybe you licensed a really cool physics engine but you have no idea how the 
underlying principles work and how they will affect what you're crying to model. Or 
perhaps you are charged with the task of tuning someone else's physics code but you 
really don't understand how it work;. Well then, this book is for you. 

Sure you could scour the Internet, trade journals, and magazines for information and 
how-to's on adding physics-based realism to your games. You could even fish out that 
old physics text and start from scratch. However, you're likely to find that the material 
is either too general to be applied directly or too advanced, requiring you to search 
for other sources to get up to speed on the basics. This book will pull together the 
information you need and will serve as the starting point for you, the game developer, 
in your effort to enrich your game's content with physics-based realism. 

This book is not a recipe book that simply gives sample code for a miscellaneous set 
of problems. The Internet is full of such example programs (including some very good 
ones, I might add). Rather than giving you a collection of specific solutions to specific 
problems, my aim is to arm you with a thorough and fundamental understanding 
of the relevant topics so that you can formulate your own solutions to a variety of 
problems. I'll do this by explaining, in detail, the principles of physics applicable to 



game development and by providing complementary hand calculation examples in 
addition to sample programs. 

:,,E 

What I Assume You Know 
Although I don't assume that you are a physics expert, I do assume that you have at 
least a basic college-level understanding of classical physics typical of non-physics and 
non-engineering majors. It is not essential that your physics background is fresh in your 
mind, as the first several chapters of this book review the subjects relevant to game 
physics. 

I also assume that you are proficient in trigonometry, vector math, and matrix math, 
although I do include reference material in the appendices. Further, I assume that you 
have at least a basic college-level understanding of calculus, including integration and 
differentiation of explicit functions. Numerical integration and differentiation are a 
different story, and I cover these techniques in detail in the later chapters of this book. 

Mechanics 
Most people that I've talked to when I was developing the concept for this book im- 
mediately thought of flight simulators when the phrases "real physics" and "real-time 
simulation" came up. Certain13 cutting-edge flight simulations are relevant in this 
context; however, many different types of games and specific game elements stand to 
benefit from physics-based realism. 

Consider this example: you're working on the next blockbuster hunting game, com- 
plete with first-person 3 4  beautiful textures, and an awesome soundtrack to set the 
mood, but something is missing. That something is realism. Specifically, you want the 
game to "feel" more real by challenging the gamer's marksmanship, and you want to 
do this by adding considerations such as distance to target, wind speed and direction, 
and muzzle velocity, among others. Moreover, you don't want to fake these elements; 
rather, you would like to model them realistically based on the principles of physics. 
Gary Powell, with MathEngine PIC, put it like this: "The illusion and immersive expe- 
rience of the virtual world, so carefully built up with high polygon models, detailed 
textures and advanced lighting. is so often shattered as soon as objects start to move 
and interact."' "It's all about interactivity and immersiveness," says Dr. Steven Collins, 
CEO of Havok.com.t I think boch these guys are right on target. Why invest so much I 
time and effort making your game world look as realistic as possible but not take the 
extra step to make it behave just as realistically? 

* Gary Powell works for MathEngine Plc. Their pioducrs include Dynamics Taolkir 2 and Collision Toolkit 1, 
which handle single- and mulriple-body dynamics. Their web sire is at wurlumorhengine.com if you'd like 
more information about their produco. 

Dr. Collins is the CEO of Havokmm Their rechnology handles rigid body, soft body, cloth, and fluid and 
parude dynamics. You can check their iruff oui ar u~ti~uhavok.com. 
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Here are a few examples of specific game elements that stand to benefit, in terms of 
realism, from the use of real physics: 

The trajectory of rockets and missiles, including the effects of fuel burn-off 

The collision of objects such as billiard balls 

The effects of gravitation between large objects such as planets and battle stations 

The stability of cars racing around tight curves 

TKe dynamics of boats and other waterborne vehicles 

The flight path of a baseball after it is struck by a bat 

The flight of a playing card being tossed into a hat 

This is by no means an qhaustive list, but just a few examples to get you in the 
right frame of mind. Prettyhuch anything in your games that bounces around, flies, 
rolls, slides, or isn't sitting dead still can be realistically modeled to create compelling, 
believable content for your games. 

So how can this realism be achieved? By using physics, of course, which brings us back 
to the title of this section: the subject of mechanics. Physics is a vast field of science 
that covers many different, but related subjects. The subject most applicable to realistic 
game content is the subject of mechanics, which is really what's meanc by "real physics." 

By definition, mechanics is the study of bodies at rest and in motion and of the effect of 
forces on them. The subject of mechanics is subdivided into statics, which specifically 
focuses on bodies at rest, and dynamics, which focuses on bodies in motion. One of 
the oldesc and most studied subjects of physics, the formal origins of mechanics, can 
be traced back more than 2000 years to Aristotle. An even earlier treatment of the 
subject was formalized in Problems of Mechanics, but the origins of this work are 
unknown. Although some of these early works attributed some physical phenomena 
to magical elements, the contributions of such great minds as Galileo, Kepler, Euler, 
Lagrange, d'Alembert, Newton, and Einstein, to name a few, have helped to develop 
our understanding of this subject to such a degree thac we have been able to achieve 
the remarkable state of technological advancement that we see today 

Because you want your game content to be alive and active, I'll look primarily at bodies 
in motion and will therefore delve into the details of the subject of dynamics. Within 
the subject of dynamics there are even more specific subjects to investigate, namely, 
kinematics, which focuses on the motion of bodies without regard to the forces that act 
on the body, and kinetics, which considers both the motion of bodies and the forces that 
act on or otherwise affect bodies in motion. I'll be taking a very close look at these two 
subjects throughout this book. 

Arrangement of this Book 
Physics-based realism is not new to gaming; in fact, many games on the shelves these 
days advertise their physics engines. Also, many 3D modeling and animation tools have 
physics engines built in to help realistically animate specific types of motion. Naturally, 

{I,: 
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magazine articles appear every now and then that discuss various aspects of physics- 
based game content. In parallel, but at a different level, research in the area of real-time 
rigid body* simulation has been active for many years, and the tec5tfical journals are full 
of papers that deal with various aspects of this subject. You'll find papers on subjects 
ranging from the simulation of multiple, connected rigid bodies to the simulation 
of cloth. However, while these are fascinating subjects and valuable resources, as I 
hinted earlier, many of them are of limited immediate use to the game developer, as 
they first require a solid understanding of the subject of mechanics, requiring you to 
learn the basics from other sources. Furthermore, many of them focus primarily on 
the mathematics involved in solving the equations of motion and don't address the 
practical treatment of the forces acting on the body or system being simulated. I asked 
John Nagle, with Animats, what is, in his opinion, the most difficult part of developing 
a physics-based simulation for games, and his response was developing numerically 
stable, robust code.+ Gary Powell echoed this when he told me that minimizing the 
amount of parameter tuning to produce stable, realistic behavior was one of the most 
difficult challenges. I agree that speed and robustness in dealingwith the mathematics of 
bodies in motion are crucial elements of a simulator. On top of that, so are completeness 
and accuracy in representing the interacting forces that initiate and perpetuate the 
simulation in the first place. As you'll see later in this book, forces govern the behavior 
of objects in your simulation, and you need to model them accurately if your objects 
are to behave realistically 

This prerequisite understanding of mechanics and the real-world nature of forces that 
may act on a particular body or system have governed the organization of this book. 

Chapters 1 through 5 are essentially a mechanics primer and will start off by reviewing 
basic concepts and progress by gradually building on these concepts addressing the 
more challenging aspects of rigid body dynamics. The aim here is to give you enough of 
a refresher course in mechanics that you can move on to more advanced reading where 
these fundamentals are prerequisite. If you are already up to speed on the subject of 
mechanics, you might want to skip directly to Chapter 6. 

Chapter 1, Basic Concepts 
This warm-up chapter covers the most basic of principles that are used and referred 
to throughout this book. The specific topics addressed include mass and center of 
mass, Newton's laws, inerria, units and measures, and vectors. 

Chapter 2, Kinematics 
This chapter covers such topics as linear and angular velocity, acceleration, mo- 
mentum, and the general motion of particles and rigid bodies in two and three 
dimensions. 

A rrgK body ir form>lly d.i~r..d ,. , 3 .  d\: ;. ~ ~ p s i c ?  s i a  witem s: par::Ao, u n .  ,: :nrciclo nm:,n i r  m e . !  
dsrmcs iron ca.h orhc: w i h  n., rcl,rw. rr,r>il,rl n sr rru:mn among p>rrl.:lo . \ l h c g h  rhe iubje;: o: 
mechamcr deal, wrh il-xlhle b d c i  ~ r d  even i l u d i  w;h I r  w m r .  ns'll i :US SLIT X ~ C I W J : ~  . :1 bo?tei :hi[ 
are rigid. 

t JoHn Nagk is the developer of Falling Bodies, a dynamicc plug-in for Sofrimage 3D. You can check out his 
patented technology ar www..onimnts.mm. 
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Chapter 3, Force 
The principles of force and torque are covered in this chapter, which serves as a 
bridge from the subject of kinematics to that of kinetics. General categories of forces 
are discussed, including drag forces, force fields, and pressure. 

Chapter 4 Kinetics 
This chapter combines elements of Chapters 2 and3 to address the subject of kinet- 
ics and explains the difference between kinematics and kinetics. Further discussion 
treats the kinetics of particles and rigid bodies in two and three dimensions. 

Chapter 5, Collisions 
In this chapter I cover particle and rigid body collision response, that is, what 
happens after two objects run in to each other. 

Chapters 6 through 10 take a look at some real-world problems. These chapters focus 
on modeling with the aim' of arming you with a solid understanding of the nature of 
certain physical systems, specifically the forces involved, such that these systems can be 
accurately modeled in real-time simulators if you choose to pursue that subject further. 
The example topics in this part are not meant to be all-inclusive of every system you 
might try to model in a game. Rather, they were selected to best illustrate the specific 
physical phenomenon and concepts that are relevant to a wide variety of problems. 

Chapter 6, Projectiles 
Chapter 6 is the first in a series of chapters addressing specific problems that can 
be modeled in a game to provide physically realistic content. This first chapter 
addresses the subject of projectiles and discusses the forces acting on projectiles in 
flight as well as factors that influence speed and trajectory 

Chapter 7, Aircraft 
This chapter focuses on the elements of flight, including propulsor forces, drag, 
geometry, mass, and, most important, lift. It also serves as the starting point for a 
working 3D real-time simulation that will be developed in Chapter 15. 

Chapter 8, Ships 
The fundamental elements of floating vehicles are discussed in this chapter, includ- 
ing floatation, stability, volume, drag, and speed. 

Chapter 9, Hovercraft 
Hovercraft have some of the characteristics of both aircraft and boats. This chapter 
considers the characteristics that distinguish the hovercraft as a unique vehicle. 
Topics covered include hovering flight, aerostatic lift, and directional control. 

Cha~ter  10. Cars 
In this chapter, specific aspects of automobile performance are addressed, including 
aerodynamic drag, rolling resistance, skidding distance, and roadway banking. 

Chapters 11 through 17, along with the three appendices, offer an introduction to real- 
time simulations. These chapters introduce the subject of real-time simulations and 
discuss various aspects of this field as applicable to computer games. The subject of 
real-time simulators is vast and deserves an entire book on its own, so this book focuses 

{I,. 
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on the fundamentals. I walk you through the development of a 2D simulation of a 
couple of hovercraft, a3D  flight simulation, a generic multibody simulation in 3D with 
collision response, and a simulation of cloth using particles and spings. 

! 

Chapter 11, Real-Time Simulations 
This chapter introduces the subject of real-time simulations and covers several 
numerical integration methods for solving the differential equations of motion. 

Chapter 12, 2D Rigid Body Simulator 
This chapter addresses the practical aspects of implementing a simple 2D particle 
and rigid body simulator. A simple real-time simulation of a couple of hovercraft 
is developed in this chapter. 

Chapter U, Implementing Collision Response 
This chapter shows you how to implement collision response, as discussed in 
Chapter 5, in a real-time simulation. Specifically, collision response is added to the 
hovercraft simulation developed in Chapter 12. 

Chapter 14, Rigid Body Rotation 
Before moving to 3D simulators, the issue of representing rotational orientation for 
rigid bodies in three dimensions is addressed. Here, Euler angles, rotation matrices, 
and quaternions are considered. 

Chapter L5,3D Rigid Body Simulator 
This chapter combines all of the material contained in Chapters ll through 14 and 
looks at the practical aspects of implementing a simple 3D rigid body simulator. 
Here, Ishow you how to develop a simple flight simulator based on the aerodynamic 
model discussed in Chapter 7. 

Chapter 16, Multiple Bodies in 3D 
This chapter extends the example program presented in Chapter L5 by adding the 
ability to handle several rigid bodies as well as collision detection and response in 
3D. Theexample presented here consists of a car crashinginto acouple of test blocks. 

Chapter 17, Particle Systems 
This chapter illustrates what you can achieve with simple particle simulations. 
Specifically, this chapter presents an example simulation that uses a system of 
particles and springs to mimic cloth. The example program simulates a cloth flag 
fluttering in the wind while hanging from a flagpole. 

Appendix A, Vector Operations 
This appendix shows you how to implement a C++ class that captures all of the 
vector operations that you'll need when writing 2D or 3D simulations. 

Appendix B, Matrix Operations 
This appendix implements a class that captures all of the operations you need to 
handle 3 x 3  matrices. 

Appendix C, Quaternion Operations 
This appendix implements a class that captures all of the operations you need to 
handle quaternions when writing 3D rigid body simulations. 
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In addition to resources pertaining to real-time simulations, the bibliography at the end 
of this book provides sources of information on mechanics, mathematics, and other 
specific technical subjects, such as books on aerodynamics. 

Conventions in This Book 
The following typographical conventions are used in this book: 

Constant  w id th  
is used to indicate command-line computer output, code examples, and keyboard 
accelerators. 

Constant width  i t a l i c  , 
is used to indicate variables in code examples. 

Italic 
is used to introduce new terms and to indicate URLs, variables, filenames and 
directories, commands, and file extensions. 

Bold 
is used to indicate vector variables. 

We'd Like to Hear from You 
We have tested and verified the information in this book to the best of our ability, but 
you may find that features have changed (or even that we have made mistakes!). Please 
let us know about errors you may find, as well as your suggestions for future editions, 
by writing to: 

O'Reilly &Associates, Inc. 
1005 Gravenstein Highway North 
Sebastopol, CA 95472 
(800) 998-9938 (in the U.S. or Canada) 
(707) 829-0515 (internarionaVlocal) 
(707) 829-0104 (fax) 

We have a web page for the book, where we list examples, errata, and any plans for 
future editions. You can access this information at: 

kttp://www.oreilly,com/catalog/pkysicsgame 

You can also send messages using email. To be put on our mailing list or request a 
catalog, send email to: 

info@oreilly.com 

To comment on the book, send email to: 
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CHAPTER 1 

Basic Concepts 

As a warm-up, this chapter will cover the most basic of principles that will be used and 
referred to throughout the remainder of this book. First, I'll incroduce Newton's laws 
of motion, which are very important in the study of mechanics. Then I'll discuss units 
and measures and explain the importance of keeping track of units in your calculations. 
You'll also have a look at the units associatedwithvarious physical quantities that you'll 
be studying. After discussing units, I'll define our general coordinate system, which will 
serve as our standard frame of reference. Then I'll explain the concepts of mass, center 
of mass, and moment of inertia and show you how to calculate these quantities for 
a collection, or combination, of masses. Finally, I'll discuss Xewton's second law of 
motion in greater detail and take a quick look at vectors. 

Newton's Laws of Motion 
In the late 1600s (around 1687), Sir Isaac Newton put forrh his philosophies on me- 
chanics in his Philosophiae Naturalis Principia Matheinatia. In this work, Newton stated 
the now-famous laws of motion, which are summarized here: 

Law I 
A body tends to remain at rest or continue to move in a straight line at constant 
velocity unless it is acted upon by an external force. This is the concept of inertia. 

Law I1 
The acceleration of a body is proportional to the resultant force acting on the body, 
and this acceleration is in the same direction as the resultant force. 

Law I11 
For every force acting on a body (action) there is an equal and opposite reacting 
force (reaction) in which the reaction is collinear to the acting force. 

Theselaws form the basis for much of the analysis in the field of mechanics. Ofparticular 
interest to us in the study of dynamics is the second law, which is written 



where F is the resultant force acting on the body, m is the mass of the body, and a is the 
linear acceleration of the body's center of gravity I'll discuss this second law in greater 
detail later in this chapter, but before that there are some more fu+tmenta l  issues that 
must be addressed. 

Units and Measures 
Over the years of teaching various engineering courses, I've observed that one of the 
most common mistakes my studen:, make when performing calculations is using the 
wrong units for a quantitx thus failing to maintain consistent units, resulting in some 
pretty wacky answers. For example, in the field of ship performance the most commonly 
misused unit is that for speed, when people forget to convert speed in knots to speed 
in ft/s or m/s. One knot is equal to 1.69 ft/s, and considering that many quantities 
of interest in this field are proportional to speed squared, this mistake could result in 
answers that are as much as 185% off target! So if some of your results look suspicious 
later on, the first thing you need to do is go back to your formulas and check their 
dimensional consistency. 

To check dimensional consistency, you must take a closer look at your units of measure 
and consider their component dimensions. I am not talking about 2D or 3D type 
dimensions here, but rather the basic measurable dimensions that will make up various 
derived units for the physical quantities that we will be using. These basic dimensions 
are mass, length, and time. 

It is important for you to be aware of these dimensions, as well as the combinations 
of these dimensions that make up the other derived units, so that you can ensure 
dimensional consistency in your calculations. For example, you know that the weight 
of an object is measured in units of force, which can be broken down into component 
dimensions: 

where M is mass, L is length, and T is time. Does this look familiar? Well, if you 
consider that the component units for acceleration are (L/T2), let a be the symbol for 
acceleration, and let m be the symbol for the mass of an object, you get 

which is the famous expression of Newton's second law of motion. I will take a closer 
look at this equation later. 

By no means did I just derive this famous formula. What I didwas check its dimensional 
consistency, albeit in reverse. All it means is that any formulas you develop to represent 
a force acting on a body had better come out to a consistent set of units in the form of 
(M)(L/TZ). This might seem trivial at the moment; however, when you start looking 
at more complicated formulas for the forces acting on a body, you'll want to be able 
to break down these formulas into their component dimensions so that you can check 
their dimensional consistency Later, we will be using actual units, either the English 
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system or the SI (Sysrhe International), for our physical quantities, and unless you 
want to show these values to your garners, it really does nor matter which system you 
use in your games. Again, what is important is consistency 

To help clarify this point, consider the formula for the friction drag on a bddy moving 
through a fluid, such as water: 

In this formula, Rr represents resistance (a force) due to friction, p  is the density of 
water, V is the speed of the moving body, S  is the submerged surface area of the body, 
and Cf is an empirical (experimentally determined) drag coefficient for the body Now 
rewriting this formula in terms of basic dimensions instead of variables will show that 
the dimensions on the left side of the formula match exactly the dimensions on the 
righr side. Since Rr is a forc'e, its basic dimensions are of the form 

as discussed earlier, which implies that the dimensions of all the terms on the righr side 
of the equation, when combined, must yield an equivalent form. Considering the basic 
units for density, speed, and surface area: 

D'ensity 

(M)/(L3) 

Speed 

(L)/(T) 

Area 

(L2) 

and combining these dimensions for the terms p V Z S  as follows: 

and collecting the dimensions in the numerator and denominator, we get the following 
form: 

Canceling dimensions that appear in both the numerator and denominator yields 

which is consistent with the form shown earlier for resistance, Rr. This exercise also 
reveals that the empirical term, Cr, for the coefficient of friction must be nondimen- 
sional, that is, it is a constant number with no units. 

With that, let's take a look at some more common physical quantities that you will be 
using, along with their corresponding symbols, component dimensions, and units in 
both the English and SI systems. This information is summarized in Table 1-1 
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Table 1-1. Common Physical Quantities and Units 
l i . , . . . , . . . . ,.*' 
"antity . , .. S y m b o l  D imens ions  ' r ' ~ n i t s , ~ n ~ t i r h . :  Units, il 

LIT2 Ws' 
T,,'". 

Acceleration, linear (I I m/s2 

Acceleration, angular a radian/T2 radian/s2 radiank2 

Density P MIL' slug/f+ kg/m3 

Force f ~ ( 1 1 ~ ~ )  poundrib newton, N 

Kinematicviscosity v 1 l / T  f f ls  m'ls 

Length L ( o r x , y A  1 feet, ft meters, m 

Mass rn M Slug kilogram, kg 

Moment (torque) M (see footnotea) M(L'/T2) ft- lb N-m 

MassMoment oflnertia i M I 2  Ib-ft-s2 kg-m2 

Pressure P M1(lT2) Iblff Nlm2 

Time T T seconds, s seconds, s 

Velocity, linear V LIT W s  m/s 

Velocity, angular w radianlT radianls radiads 

Viscosity M MI(1T) Ibs l f f  N r i m 2  
~~~ ~ ~ . ~ - - ~  ~-..~ ....... ~ - ~ ~ - ~ . .  ~ 

In general, I wil l  use a capitalMto represent a moment (torque) acting ona body and a lowercase rn to represent the mass of a 
body.IfI'rn refeningtothebasicdimension ofmassinageneralsense,thatis,refeningtothedimen<wnal componentsofderived 
unitsofmeasure, I'IIusea tapitalM. Usually, the meanings ofthesesymbols will beobviou based on thecontenin which they 
are used; h o w e r , I  willspecifytheirmeanings incasesin which ambiguitymay exist. 

Coordinate System 
Throughout this book I will refer to a standard right-handed Cartesian coordinate 
system when specifying position in 2D or 3D space. In two dimensions I will use 
the coordinate system shown in Figure 1-la, in which rotations are measured positive 
counterclockwise 

a. Two dimensions 

/ e x  "4 

z " 
b. Three dimensions 

~igu;e 1-1. Right-Handed Coordinnte System 
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In three dimensions 1 will use the coordinate system shown in Figure 1-lb, in which 
rotations about the x-axis are positive from positive y to positive z, rotations about 
the y-axis are positive from positive z to positive x, and rotations about +e z-axis are 
positive from positive x to positive y. 

Vectors 
Let me take you back for a moment to your high school math class and review the 
concept of vectors. Essentially, a vector is a quantity that has both magnituaz and 
direction. Recall that a scalar, unlike a vector, has only magnitude and no direction. In 
mechanics, quantities such as force, velocity, acceleration, and momentum are vectors, 
and you must consider botb their magnitude and direction. Quantities such as distance, 
density, and viscosity are scalars. 

With regard to notation, I'll use boldface type to indicate a vector quantity, such as 
force, F. When referring to the magnitude only of a vector quantity, I'll use lightface 
type. For example, the magnitude of the vector force, F, is F with components along the 
coordinate axes, F,, Fy, and F,. In the code samples throughout the book, I'll use the * 
symbol to indicate vector dot product or scalar product operations, depending on the 
context, and I'll use the A symbol to indicate vector cross product operations. 

Because we will be using vectors througbout this book, it is important that you refresh 
your memory on the basic vector operations, such as vector addition, dot product, 
and cross product. For your convenience, so that you don't have to drag out that old 
math book, I've included a summary of the basic vector operations in Appendix A. 
This appendix provides code for a Vector class that contains all the important vector 
math functionality. Further, I explain how to use specific vector operations, such as 
the dot product and cross product operations, to perform some common and useful 
calculations. For example, in dynamics you'll often have to find a vector perpendicular, 
or normal, to a plane or contacting surface; you use the cross product operation for this 
task. Another common calculation involves finding the shortest distance from a point 
to a plane in space; here you use the dot product operation. Both of these tasks are 
described in Appendix A, and I encourage you to review it before delving too deeply in 
the example code presented throughout the remainder of this book. 

Mass, Center of Mass, and Moment of Inertia 
The properties of a body, mass, center of mass, and moment of intertia, collectively 
called mass properties, are absolutely crucial to the study of mechanics, as the linear 
and angular* motion of a body and a body's response to a given force are functions 
of these mass properties. Thus, to accurately model a body in motion, you need to 

* Linear motion refers ro morion in space withour regard to iotatian; angular motion specifically miers ro the 
rotation of a body about any axis (the body may or may nor be undergoing linear morion at [he same rime). 
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know or be capable of calculating these mass properties. Let's look at a few definitions 
first. 

In general, people think of mass as a measure of the amount of &;tter in a hody For 
our purposes in the study of mechanics, we can also think of mass as a measure of a 
body's resistance to motion or a change in its motion. Thus, the greater a body's mass, 
the harder it will he to set it in motion or change its motion. 

In laymen's terms, the center of mass (also known as center. of gravity) is the poinc in a 
body around which the mass of the hody is evenly distributed. In mechanics, the cencer 
of mass is the point through which any force can act on the body without resulting in 
a rotation of the hody 

Although most people are familiar with the terms mass and center of gravity, the term 
moment of inertia is not so familiar; however, in mechanics it is equally important. The 
mass moment of inertia of a body is a quandtative measure of the radial distribution of 
the mass of a body about a given axis of rotation. Analogous to mass being a measure 
of a body's resistance to linear modon, mass moment of inertia is a measure of a body's 
resistance to rotational motion. 

Now that you know what these properties mean, let's look at how to calculate each. 

For a given body made up of a number of particles, the tocal mass of the body is 
simply the sum of the masses of all elemencal particles making up the hody, where the 
mass of each elemental particle is its mass density dmes its volume. Assuming that 
the body is of uniform density, then the tocal mass of the hody is simply the density 
of the body times the total volume of the body This is expressed in the following 
equation: 

In practice, you rarely need to take the volume integral to find the mass of a  bod^ 
especially considering that many of the bodies we will consider, for example, cars 
and planes, are not of uniform density You will simplify these complicated bodies 
by breaking them down into an ensemble of component bodies of known or easily 
calculable mass and simply sum the masses of all components to arrive at the total 
mass. 

The calculation of the center of gravity of a hody is a little more involved. First, divide 
the body into an infinite number of elemental masses with the center of each mass 
specified relative to the reference coordinate system axes. Next, take the first moment 
of each mass about the reference axes and then add up all of these moments. The first 
moment is the product of the mass times the distance along a given coordinate axis 
from the origin to the center of mass. Finally, divide this sum of moments by the total 
mass of the body, yielding the coordinates to the center of mass of the body relative to 
the 5eference axes. You must perform this calculation once for each dimension, that is, 
twice when working in 2D and three times when working in 3D. Here are the equations 
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for the 3D coordinates of the center of mass of a body: 

where (x, y, z), are the coordinates of the center of mass for the body and (x, y ,  z) ,  
are the coordinates to the center of mass of each elemental mass. The quantities x, dm, 
yo dm, and z, dm represent the first moments of the elemental mass, dm, about each of 
the coordinate axes. 

Here again, don't worry coo much about the integrals in these equations. In practice you 
will be summing finite numbers ofmasses, and the formulas will take on the friendlier 
forms shown here: 

xc = { E x o m ]  / [ E m ]  

Y'= { E y o m ]  / [ E m }  

Note that you can easily substitute weights for masses in these formulas since the 
constant acceleration due to gravity, g, would appear in both the numerators and de- 
nominators, thus dropping out of the equations. Recall that the weight of an object is its 
mass times the acceleration due to gravity, g, which is 32.174 ft/s2 (9.8 m/s2) at sea level. 

The formulas for calculating the total mass and center of gravity for a system of discrete 
point masses can conveniently be written in vector notation as follows: 

where m, is the total mass, mi is the mass of each point mass in the system, CG is the 
combined center of gravity, and cgi is the location of the center of gravity of each point 
mass in design, or reference, coordinates. Notice that CG and cgi are shown as vectors, 
since they denote position in Cartesian coordinates. This is a matter of convenience, 
since it allows you to take care of the x,  y, and 7 (or just x and y in two dimensions) 
components in one shot. 

In the code samples that follow, let's assume that the point masses making up the body 
are represented by an array of structures in which each structure contains the point 
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mass's design coordinates and mass. The structure will also contain an element to hold 
the coordinates of the point mass relative to the combined center of gravity of the rigid 
body, which will be calculated later. :,+ 

typedef struct _PointMass 
f 

float mass; 
Vector designposition; 
Vector correctedposition; 

) PointMass; 

I1 Assume that _NUNELEMENTS has been defined 
PointMass Elements[-NUMELEMENTS]; 

Here's some code that illustrates how to calculate the total mass and combined center 
of gravity of the elements: 

int i; 
float TotalMass: 
Vector ~ o m b i n e d ~ ~ ;  
Vector FirstMoment; 

TotalMass = 0; 
for(i.0; i<-NUMELEMENTS; i++) 

TotalMass+= Elements[I] .mass; 

FirstMoment = Vector(0, 0, 0); 
for(i.0; i<-NUMELEMENTS; it+) 

FirstMoment += Element[il.mass * Element[i].designPosition; 
I , 
CombinedCG = FirstMoment I TotalMass; 

Now that the combined center of gravity location has been found, you can calculate the 
relative position of each point mass as follows: 

To calculate the mass moment of inertia, you need to take the second moment of each 
elementalmass making up the body about eachcoordinate axis. Here, the lever is nor the 
distance to the elemental mass centroid along the coordinate axis, as in the calculation 
for center of mass; it is the perpendicular distance from the coordinate axis, about 
which we want to calculate the moment of inertia, to the elemental mass centroid. The 
second moment is then the product of the mass times this distance squared. 

Referring to Figure 1-2 for an arbitrary body in three dimensions, when calculating 
moment of inertia about the x-axis, I,,, this distance, r ,  will be in the yz-plane such 
that?: = y2 + 2. Similarly, for the moment of inertia about the y-axis, Iv,r: = z2 + x2, 
and for the moment of inertia about the z-axis, I,,, r t  = x2 + y2. 
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Figure 1-2. Arbitrary Body ip 3D 
'. 

The equations for mass moment of inertia about the coordinate axes in 3D are: 

Let's look for a moment at a common situation that arises in practice. Say you are 
given the moment of inertia, I,, of a body about an axis, called the neutral axis, passing 
through the center of mass of the body, but you want to know the moment of inertia, 
I, about an axis some distance from, but parallel to, this neutral axis. In this case, you 
can use the transfer of axes, or parallel axis theorem, to determine the moment of inertia 
about this new axis. The formula to use is 

where m is themass of the body andd is the perpendicular distance between the parallel 
axes. 

There is an important practical observation to make here: the new moment of inertia is 
a function of the distance separating the axes squared. This means that in cases in which 
I, is known to be relatively small and d relatively large, you can safely ignore I,, since 
the md2 term will dominate. You must use your judgment here, of course. This formula 
for transfer of axes also indicates that the moment of inertia of a body will be at its 
minimum when calculated about an axis passing through the body's center of gravity 
The body's moment of inertia about any parallel axis will always increase by an amount 
md2 when calculated about an axis that does not pass through the body's cencer of 
mass. 

In practice, calculating mass moment of inertia for all but the simplest shapes of uniform 
density is a complicated endeavor, so we will often approximate the momenc of inertia 
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of a body about axes passing through irs center of mass by using simple formulas for 
basic shapes that approximate the object. Further, we will break down complicated 
bodies into smaller components and take advantage of the fact that;& may be negligible 
for certain components, considering its md2 contribution to the total body's moment 
of inertia. 

Figures 1-3 through 1-7 show some simple solid geometries for which you can easily 
calculate mass momenrs of inertia. The mass moment of inertia formulas for each of 
these simple geometries of homogenous density about the three coordinate axes are 
shown in the figure captions. Similar formulas for other basic geometries can readily be 
found in college-level dynamics texts (see the bibliography at the end of this book for 
a few sources). 

I 

Figure 1-3. Circular Cylinder; I ,  = 1, = (1/4)rnr2 + (1/l2)rnl2; I ,  = (1/2)rnr2 

Figure 1-4. Circular Cylindrical Shell; I,, = I,, = (1 /2)mr2 + ( l / ~ ) m l ' ;  I,, = rnr" 

As you can see, these formulas are relatively simple to implement. The trick here is to 
break up a complex body into a number of smaller, simpler representative geometries 
whose combination will approximate the complex body's inertia properties. This exer- 
cise is largely a matter of judgment considering the desired level of accuracy 
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Figure 1-5. Rectangular Cylinder; lXx = ( l /12)m(a2 + 1 2 ) ;  lYy = ( l /12)m(b2 + 1 2 ) ;  lZz = ( I l l21  
m(a2 + b2)  

Figure 1-6. Sphere; I ,  = Iyy = Izz  = (2/5)mr2 

I 

Figure 1-7. Spherical Shell; I ,  = I,, = I,, = (2/3)mr2 
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Let's look at a simple 2D example demonstrating how to apply the formulas discussed 
in this section. Suppose you're working on a top-down view auto racing game in which 
you want to simulate the automobile sprite based on 2D rigid bo$y dynamics. At the 
start of thegame the player's car is at the startingline, full of fuel and ready to go. Before 
starting the simulation, you need to calculate the mass properties of the car, driver, and 
fuel load at this initial state. In this case, the body is made up of three components: the 
car, driver, and full load of fuel. Later on during the game, however, the mass of this 
body will change as fuel burns off and the driver gets thrown after a crash. For no.u, 
let's focus on the initial condition as illustrated in Figure 1-8. 

Car 
Driver / 

-x 
(OJ) 

NOT TO SCALE 

Figure 1-8. Example Body Consirfing of Car, Dtiver, and Fuel 

The properties of each component in this example are given in Table 1-2. Note that 
length is measured along the x-axis, width is measured along the y-axis, and height 
would be coming out of the paper. Also note that the coordinates, in the form (x, y), to 
the centroid of each component are referenced to the global origin. 

Table 1-2. Example Properties 

sea 

Length = 15.5ft Length =3.0ft Length=l.SR 

Mdth =&Oft Width= 1.5ft Width =3.Oft 
Height = 4.1 ft Height = 3 S f t  Height=l.OR 

Weight=3913.0lb Weight= 190.01b DensiryofFuel= 1.45slug/ff' 

Centroid = (100,100) ft Centroid = (103,105) ft  Centroid = (93,100) ft 

The first mass property we want to calculate is the mass of the body This is a simple 
calcuIation, since we are already given the weight of the car and the driver. The only 
other component of weight we need is that of the fuel. Since we are given the mass 
density of the fuel and the geometry of the tank, we can calculate the volume of the ' tank and multiply by the density and the acceleration due to gravity to get the weight 
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of the fuel in the tank. This yields 210 lb of fuel as shown here: 

Now, the total weight of the body is 

I 

To get the mass of the body, you simply divide the weight by the acceleration due to ! 
gravity: 

M,,,, = = 43171b/(32.174ft/sz) = U4.2 slugs 
I 

A slug is a strange-sounding unit that you might not feel comfortable using, so con- 
verting to SI units for mass, we get 1958.2 kg, nearly 2 metric tons. 

The next mass property we want is the location of the center of gravity of the body In 
this example we will calculate the centroid relative to the global origin and will apply the 
first moment formula twice, once for the x-coordinate and again for the y-coordinate, 
as shown here: 

Ycgbody = ((~cgcar)(~lcar) + (~cgdrbw)(Wdriuer) + (~c~fuel)(Wfuel))/~or~l 
Ycgbody = ((100 ft)(39U lb) + (105 ft)(WO lb) + (100 ft)(210 lb)]/4317 lb 

Ycgbady = 100.1 f t  

Notice that we used weight in these equations instead of mass. Remember that we can 
do this because the acceleration due to gravity built into the weight value is constant 
and appears in both the numerator and denominator, thus canceling out. 

Now it's time to calculate the mass moment of inertia of h e  body. This is easy enough 
in this 2D example, since we have only one rotational axis, coming out of the paper, 
and therefore need to perform the calculation only once. The first step is to calculate 
the local moment of inertia of each component about its own neutral axis. Given the 
limited information we have on the geometry and mass distribution of each compo- 
nent, we will make a simplifying approximation by assuming that each component 
can be represented by a rectangular cylinder and will therefore use the correspond- 
ing formula for moment of inertia. In the equations that follow, I'll use a lowercase 
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w to represent width so as to not confuse it with weight, for which I've been using a 
capital W. 

'I". 
= (ml12)(w2 + L2) 

I,,,, = ((39U1b/32.174fds~)/l2)((6.0€~)~ + (15.5 it)') = 2800lb-s2-ft 

lodriver = (m/12)(w2 + L2) 

lodriver = ((1901b/32.174ft!;2)/12)((1.5 ft)2 + (3.0ft)2) = 5.5lb-s2-ft 

I,i,,i = (m/12)(w2 + L2) 
I,,i,,l = ((210 lbj32.174 €t/s2)/12)((3.0 ft)' + (1.5 = 6.1 1b-s2-ft 

Since these are the moments of inertia of each component about its own neutral axis, we 
now need to use the parallel axis theorem to transfer these momentz to the neutral axis 
of the body, which is located at the body center of gravity that we recently calculated. 
To do this, the distance from the body center of gravity to each component's center of 
gravity must be found. The distances squared from each component to the body center 
of gravity are 

Now we can apply the parallel axis theorem as follows: 

I,,,,, = 1, + md2 

I,,,, = 2800 lb-s2-ft + (39U lb/32.174ft/s2)(0.1 ft2) = 28l2lb-s2-ft 

I c g d r l w r  = lo + md2 
2 IcgdnWi = 5.5lb-s2-ft + (1901b/32.174ft/s2)(34.9ft2) = 211.6lb-s -ft 

I c g i u e ~  = 1, + md2 

Iqi,,l = 6.1 lb-s2-ft + (2101b/32.174ft/s2)(44.9ft2) = 299.2lb-s2-ft 

Notice the obvious relatively large contribution to Icg for the driver and the fuel due to 
the md2 terms. In this example, the local inertia of the driver and fuel are only 2.7% and 
2.1%; respectively, of their corresponding md2 terms. 
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Finally, we can obtain the total moment of inertia of the body about its own neutral 
axis by summing the ICg contributions of each component as follows: 

In summary, the mass properties of the body, that is, the combination of the car, driver 
and full tank of fuel, are shown in Table 1-3. 

Table 1-3. Example Summary  of Mass Properties 

Property ComputedValue 
Total Mass (irelght) 134 2slugs(4317lb) 
Comb~ned Center of Mass Locat~on (x,y) = (99 7 ft, 100 1 R) 
Mass Moment oflnert~a 3322 Bib-s2-R 

It is important that the concepts illustrated in this example are well understood because 
as we move on to more complicated systems and especially to general motion in 3D, 
these calculations are only going to get more complicated. Moreover, the motion of 
the bodies to be simulated are functions of these mass properties, in that mass will 
determine how these bodies are affected by forces, center of mass will be used to track 
position, and mass moment of inertia will determine how these bodies rotate under the 
action of noncentroidal forces. 

So far, we have looked at moments of inertia about the three coordinate axes in 3D 
space. However, in general 3D rigid body dynamics, the body may rotate about any 
axis, not necessarily one of the coordinate axes, even if the local coordinate axes pass 
through the body center of mass. This complication implies thar we must add a few 
more terms to our set of 1's for a body to handle this generalized rotation. I will address 
this topic further in the last section of this chapter, bur before I do that, I need to go 
over Newton's second law of motion in detail. 

Newton's Second Law of Motion 
As I stated in the first section of this chapter, Newton's second law of motion is of 
particular interest in the study of mechanics. Recall thar the equation form of Newton's 
second law is 

F = ma 

where F is the resultant force acting on the body, m is the mass of the body, and a  is the 
linear acceleration of the body center of gravity 

If you rearrange this equation as 

F l m  = a  

you can see how the mass of a body acts as measure of resisrance to motion. Observe 
here that as mass increases in the denominator for a constant applied force, the resulting 
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acceleration of the body will decrease. It can be said that the body of greater mass offers 
greater resistance to motion. Similarly, as the mass decreases for a constant applled force, 
the resulting acceleration of the body will increase, and it can be.sfld that the body of 
smaller mass offers lower resistance to motion. 

Newton's second law also states that the resulting acceleration is in the same direction 
as the resultant force on the body; therefore, force and acceleration must be treated as 
vector quantities. In general, there may be more than one force acting on the body at a 
given time, which means that the resultant force is the vecror sum of all forces acting on 
the body Thus, you can now write 

C F = m a  

where a represents the acceleration vector. 

In 3 4  the force and acceleration vectors will have x ,  y,  and z components in the Cartesian 
reference system. In this case, the component equations of motion are written as follows: 

x F, = ma, 

An alternative way to interpret Newton's second law is that the sum of all forces acting 
on a body is equal to the rate of change of the body's momentum over time, which is the 
derivative of momentum with respect to time. Momentum equals mass times velocity, 
and since velocity is a vector quantity, so is momentum. Thus, 

where G is linear momentum of the body, m is the body's mass, and v is velocity of the 
center of gravity of the body The time rate of change of momentum is the derivative of 
momentum with respect to time: 

Assuming that the body mass is constant (for now), you can write 

Observing that the time rate of change of velocity, dv/dt,  is acceleration, we arrive at 

and 

So far, we have considered only translation of the body without rotation. In generalized 
3D motion, you must account for the rotational motion of the body and will therefore 
need some additional equations to fully describe the body's motion. Specifically, you 
willkecpire analogous formulas relating the sum of all moments (torque) on a body 



to the rate of change in its angular momentum over time or the derivative of angular 
momentum with respect to time. Thus, 

C M,, = d ~ d t ( ~ , , )  

where C MCg is the sum of all moments about the body center of gravity, and H is the 
angular momentum of the body M,, can be expressed as 

M,, = r x F 

where F is a force acting on the body, r is the distance vector from F, perpendicular to 
the line of action of F, to the center of gravity of the body, and x is the vector cross 
product operator. 

The angular momentum of the body is the sum of the moments of the momentum of 
all particles in the body abput the axis of rotation, which in this case we assume passes 
through the center of gavity of the body; This can be expressed as 

H,, = C r i  x mi(o x ri) 

where i represents the i th particle making up the body, o is the angular velocity of the 
body about the axis under consideration, and ( o x  ri) is the angular momentum of the 
i th particle, which has a magnitude of or{. For rotation about a given axis this equation 
can be rewritten in the form 

Given that the angular velocity is the same for all particles making up the rigid body, 
we have 

and recalling that moment of inertia, I ,  equals Jr2 dm, we get 

H, = lo 

Taking the derivative with respect to time, we obtain 

dH,,/dt = djdt(1o) = Idojdt = I a  

where a is the angular acceleration of the body about a given axis 

Finally we can write 

As I stated in our discussion on mass moment of inertia, we will have to further gen- 
eralize our formulas for moment of inertia and angular moment to account for general 
rotation about any body axis. Generally, M and a will be vector quantities, while I will 
be a tensor,' since the magnitude of moment of inertia for a body may vary depending 
on the axis of rotation. 

In chis case, I will be a second rank censor, which is ersentially a 3 x 3 rnarrix. A vector is  acruall?. a tensor of 
rank 1, and a scalar is actually a rensor of rank m a  



Tensors 
A tensor is a mathematical expression that has magnitude and d;&tion, but its mag- 
nitude might not be unique, depending on the direction. Tensors are usually used to 
represent properties of materials when these properties have different magnitudes in dif- 
ferent directions. Materials with properties that vary depending on direction are called 
anisotropic (isotropic implies the same magnitude in all directions). For example, con- 
sider the elasticity (or strength) of two common materials, a sheet of plain paper and a 
piece of woven or knitted cloth. Take the sheet of paper and, holding it  flat, pull on it 
softly from opposing ends. Try this lengthwise, widthwise, and then along a d~a~onal.  
You should observe that the paper seems just as strong, or stretches about the same, 
in all directions. It is isotropic; therefore, only a single scalar constant is required to 
represent its strength for all directions. 

Now try to find a piece of cloth with a simple, relatively loose weave in which the 
threads in one direction are perpendicular to the threads in the other direction. Most 
neckties will do. Try the same pull test that you conducted with the sheet of paper, 
pulling the cloth along each thread direction and then at a diagonal to the threads. You 
should observe that the clorh stretches more when you pull it along a diagonal to the 
threads than when you pull it along the direction ofthe run of thethreads. The cloth is 
anisouopic in that it exhibits different elastic (or strength) properties depending on the 
direction of pull; thus, a collection of vector quantities (a tensor) is required to represent 
its strength for all directions. 

In the context of the subject of this book, the property under consideradon is a body's 
moment of inertia, which in 3D requires nine components to fully describe it for any 
arbiuary rotation. Moment of inertia is not a strength property as in the paper and cloth 
example, but it is a property of the body that varies with the axis of rotation. Since nine 
components are required, moment of inertia will be generalized in the form of a 3 x 3 
mauix (second-mnk tensor) later in this book. 

1 need to mention a few things at this point regarding coordinates, which will become 
important when you're writing your real-time simulator. Both the equations of motion 
have, so far, been written in terms of global coordinates and not body-fixed coordinates. 
That's okay for the linear equation of motion, in which you can track the body's location 
and velocity in the global coordinate system. However, from a computational point of 
view, you don't want to do that for the angular equation of motion for bodies that 
rotate in three dimensions.' The reason why is because the moment of inertia term, 
when calculated with respect to global coordinates, actually changes depending on the 
body's position and orientation. This means that during your simulation you'll have to 
recalculate the inertia matrix (and its inverse) a lot, which is computationally inefficient. 
It's better to rewrite the equations of motion in terms of local (attached to the body) 
coordinates so that you have to calculate the inertia matrix (and its inverse) only once, 
at the start of your simulation. 
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In general, the time derivative of a vector, V, in a fixed (nonrotating) coordinate system 
is related to its time derivanve in a rotating coordinate system by the following equation: 

The (w x V) term represents the difference between V's time derivative as measured 
in the fixed coordinate system and V's time derivative as measured in the rotating 
coordinate system. We can use this relation to rewrite the angular equation of motion 
in terms of local, or body-fixed, coordinates. Further, thevector to consider is the angular 
momentum vector H c g  Recall that HCp = Iw, and its time derivative is equal to the sum 
of moments about '~r body's center of gravity These are the pieces you need for the 
angular equation of motion, and you can get to that equation by substituting Hcg in 
place of V in the derivanve transform relation as follows: 

where the moments, inertia tensor, and angular velocity are all expressed in local (body) 
coordinates. Although this equation looks a bit more complicated than the one I showed 
you earlier, it is much more convenient to use, since I will be constant throughout your 
simulation (unless your body's mass or geometry changes for some reason during your 
simulation) and the moments are relatively easy to calculate in local coordinates. You'll 
put this equation to use later, in,Chapter 15, when I show you how to develop a simple 
3D rigid body simulator. 

Inertia Tensor 
Take another look at the angular equation of motion and notice that I wrote the inertia 
term, I, in bold, implying that it is a vector. You've already seen that for 2D problems, 
this inertia term reduces to a scalar quantity representing the moment of inertia about 
the single axis of rotation. However, in three dimensions there are three coordinate axes 
about which the body can rotate. Moreover, in generalized three dimensions the body 
can rotate about any arbitrary axis. Thus, for 3D problems, I, is actually a 3  x 3 matrix, 
a second-rank tensor. 

To understand where this inertia matrix comes from, you must look again at the angular 
momentum equation: 

H,, = [(I x w x r)dm 

where w is the angular velocity of the body, r (see Figure 1-9) is the distance from 
the body's center of gravity to each elemental mass, dm, and (wx r) is the angular 
momentum of each elemental mass. The term in parentheses is called a triple vector 
product and can be expanded by taking the vector cross products; r and w are vectors 
that can be written as follows: 



Expanding the triple vector product term yields 

H=, = { [ ( y z  + $)wX - x y y  - xzu.ii + [-yxwl + (zz + x 2 ) u y  - yzwzIj '" 
+ [-zxw, - zyw,  + (x2 + y 2 ) w ~ l k )  dm 

To simplify this equation, let's replace a few terms by letting 

1 = (y2 + z2) dm I 
I, = (zZ + x2) dm I 
I = (xZ + y2 )  dm I 

I = 1 = (xy)  dm I 
I,, = I ,  = (xz)  dm I 

I I ,  = I ,  = ( y z )  dm 

Substituting these I-variables, some of which should look familiar to you, back into the 
expanded equation yields 

H,, = [I,,w, - IxYwy - I,w,li + [-Iy,w, + I,w, - I,w,]j 

+ [-I,w, - Izywy + I,w,lk 

Simplifying this a step further by letting I be a matrix: 

I= - I x y  - I m  

I = - I , I , - I y z - I z x - I z y I z  

yields the following equation: 

H,, = Iw 

You already know that I represents the moment of inertia, and the terms that should 
look familiar to you already are the moment of inertia terms about the three coordinate 
axes, I,,, I y y ,  and I,. The other terms are called products of inertia: 

I ,  = I ,  = (xy)  dm I 
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Figure 1-9. Products of Inertia ' 

Just like the parallel axis theorem, there's a similar transfer of axis formula that applies 
to products of inertia: 

where the I, terms represent the local products of inertia, that is, the products of inertia 
of che object about axes that pass through its own center of gravity, m is the object's mass, 
and the d terms are the distances between the coordinate axes that pass through the 
object's cencer of gravity and a parallel set of axes some distance away (see Figure 1-10), 

Figure 1-10. Transfer ofAxes 

{I,. 



You'll notice that I did not give you any product of inertia formulas for the simple shapes 
shown earlier. The reason is that the given moments of inertia were about the principal 
axes for these shapes. For any body there exists a set of axes orienida with respect to the 
body such that the product of inertia terms in the inertia tensor are all zero. 

For the simple geometries shown earlier, each coordinate axis represented a plane 
of symmetry, and products of inertia go to zero about axes that represent planes of 
symmetry You can see this by examining the product of inertia formulas, where, 
for example, all of the (xy) terms in the integral will be cancelled out by each cor- 
responding 4xy)  term if the body is symmetric about the y-axis as illustrated in 
Figure 1-U. 

Figure 1-1I. Symmetry 

For composite bodies, however, there might not be any planes of symmetry, and the 
orientation of the principal axes will not be obvious. Further, you might not even want 
to use the principal axes as your local coordinate axes for a given rigid body, since it 
might be awkward to do so. For example, take the airplane in the FlightSim example that 
I discuss in Chapter 7, in which you'll have the local coordmate design axes running, 
relative to the pilot, fore and aft, up and down, and left and right. This orientation is 
convenient for locating the parts of the wings, tail, elevators, and so on with respect to 
each other, but these axes don't necessarily represent the principal axes of the airplane. 
The result is that you'll use axes that are convenient and deal with the nonzero products 
of inertia (which, by the way, can be either positive or negaave). 

I already showed you how to calculate the combined moments of inertia for a composite 
body made up of a few smaller elements. Accounting for the product of inertia terms 
follows the same procedure except that, typically, your elements are such that their local 
product of inertia terms are zero. This is the case only if you represent your elements by 
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simple geometries such as point masses, spheres, rectangles, and the like. That being 
the case, the main contribution to the rigid body's products of inertia will be due the 
transfer of axes terms for each element. 

Before looking at some sample code, let's first revise the element structure to include a 
new term to hold the element's local moment of inertia as follows: 

typedef struct -PointMass 
1 

float mass; 
Vector designPosition; 
Vector correctedposltlon; 
Vector locallnertia; 

} PointMass; 

I Here, I'm using a vector to Eepresent the three local moment of inertia terms, and I'm 
! also assuming that the local products of inertia are zero for each element. 

The following code sample shows how to calculate the inertia tensor given the compo- 
nent elements: 

float Ixx, Iyy, Izz, Ixy, 1x2, Iyz; 
Matrix3x3 InertiaTensor; 

IXX = 0; Iyy = 0; Izz = 0; 
Ixy = 0; IXZ = 0; Iyz = 0; 

for (i = 0; ic-NUMELEMENTS; i++) 
i 

Ixx t= Element[i].LocalInertia.x + 
Element[i].mass * (Elernent[i].correctedPosition.y * 
Element[i].correctedPosition.y t 
Element [i] .correctedPosition.z * 
Element[i] .correctedPosition.z); 

Iyy t= Element[i].LocalInertia.y + 
Elementlil.mass * (Elementli1.correctedPosition.z * 

Izz += Element[i] .LocalInertia.z + 
Element[i].mass * (Element[ij.correctedPosition.x * 
Element[i].correctedPosition.x + 
Element [i] .correctedPosition.y * 
Element[i] .correctedPosition.y); 

Ixy += Element[i].mass * (Element[i].carrectedPosition.x * 
Element[i] .correctedPosition.y); 

Ixz += Element[i].mass * (Element[i].correctedPasition.x * 
Element[i] .correctedPosition.z); 

Iyz t= Element[i].mass * (Elernent[i].correctedPosition.y * 
Element[i] .correctedPasition.r); 

1 

/ I  ell stands f a r  element on row 1 column 1, e l 2  for row 1 column 2, etc. 

{I," 
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InertiaTensor.el1 = Ixx; 
InertiaTensor.el2 = -1xy; 
InertiaTensor.el3 = -1xz; 

InertiaTensor.el1 = -1xy; 
InertiaTensor.el2 = Iyy; 
InertiaTensar.e23 = -1yz; 

Note that the inertia tensor is calculated about axes that pass through the combined 
center of gravity for the rigid body, so be sure to use the corrected coordinates for each 
element relative to [he combined center of gravity when applying the transfer of axes 
formulas. 

I should also mention that this calculation is for the inertia tensor in body-fixed coor- 
dinates, or local coordinates. As I discussed earlier in this chapter, ic is better to rewrite 
the angular equation of motion in terms of local coordinates and use [he local inertia 
tensor to save some number crunching in your real-time simulation. 



CHAPTER 2 

Kinematics 

In this chapter I'll explain the fundamenial aspects of the subject of kinematics. Specif- 
ically, I'll explain the concepts of linear and angular displacement, velocity, and ac- 
celeration. I've prepared an example program for this chapter that shows you how to 
implement the kinematic equations for particle motion. After discussing particle mo- 
tion, I go on to explain the specific aspects of rigid body motion. This chapter, along 
with the next chapter on force, are prsrequisites to understanding the subject ofkinetics, 
which you'll study in Chapter 4. 

Introduction 
In the preface I told you that kinematics is the study of the motion of bodies without 
regard to the forces acring on the body Therefore, in kinematics attention will be focused 
on position, velocity, and acceleration oi a body; how these properties are related; and 
how they change over time. 

Here, you'll look at two types of bodies: particles and rigid bodies. In the preface I 
stated that a rigid body is a system of particles that remain at fixed distances from 
each other with no relative translation or rotation among them. In other words, a rigid 
body does not change its shape as it  mows, or any changes in the body's shape are so 
small or unimportant that they can safel!- be neglected. When considering a rigid body, 
its dimensions and orientation are important, and you must consider both the body's 
linear motion and its angular motion. 

On the other hand, a particle is a body that has mass, but its dimensions are negligible 
or unimportant in the problem being investigated. For example, when considering the 
path of a projectile or a rocket over a great distance, you can safely ignore the body's 
dimensions in analyzing its trajectory When you are considering a particle, its linear 
motion is important, but the angular motion of the particle itself is not. It's as though, 
when looking at a problem, you are zooming way out, looking at the big picture, so to 
speak, as opposed to zooming in on the body as you do when looking at the rotation 
of rigid bodies. 



Whether you are looking at problems involvmg particles or rigid bodies, there are 
some important kinematic properties common to both. These are, of course, the ob- 
ject's position, velocity, and acceleration. The next section discus? these properties in 
detail. 

Velocity and Acceleration 
lngen&al, velocity is avector quantity that has magnitude and direction. The magnitude 
of velocity is speed. Speed is a familiar term: it's how fast your speedometer says you're 
going when you drive your car down the highway Formally, speed is the rate of travel, 
or the ratio of distance traveled to the time it took to travel that distance. In math terms 
you can write 

where v is speed, the magnitude of velocity v, and As is distance traveled over the time 
interval At. Note that this relation reveals that the units for speed are composed of the 
basic dimensions length divided by time, L j  T. Some common units for speed are feet 
per second, jWs; miles per hour, milh; and meters per second, mls. 

Here's a simple example: A car is driving down a straight road; it passes marker 1 at 
time tl and marker 2 at time t2, where tl equals 0 s and t2 equals 1.U6 s. The distance 
between these two markers, s, is 100 ft (see Figure 2-1). Calculate the speed of the car. 

I 
Figure 2-1. Example: Car Speed 

You are given that s equals 100 ft; therefore, As equals 100 ft, and A, equals tz - ti, or 
1.U6 s. The speed of the car over this distance is 

v = AslAt = 100ft/l.U6s = 88.03 ftls 

which is approximately 60 milh. This is a simple one-dimensional example, but it 
brings up an important point, which is that the speed just calculated is the average 
speed of the car over that distance. You don't know anything at this point about the 
car's acceleration or whether or not it is traveling at a constant 60 mdh. It could very 
well be that the car was accelerating (or decelerating) over that 1004  distance. 
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To more precisely analyze the motion of the car in this example, you need to understand 
the concept of instantaneous velocity Instantaneous velocity is the specific velocity at a 
given instant in time, not over a large time interval as in the car example. This means 
that you need to look at very small At's. In math terms, you must consider the limit as 
At approaches zero, that is, as At gets infinitesimally small. This is written as follows: 

In differential terms, velocity is the derivative of displacement (chaye in position) with 
respect to time, 

You can rearrange this relationship and integrate over the intervals from sl to sz and tl 
to t 2  as shown here: 

v d t  = ds 

S ~ - S ~ = A S = [ " ~ &  

This relation shows that displacement is the integral of velocity over time. This gives 
you a way of working back and forth between displacement and velocity 

In kinematics an important distinction is made between displacement and distance 
traveled. Inonedimension, displacement is thesame as distance traveled; however, when 
considering vectors in space, displacement is actually the vector from the initial position 
to the final position without regard to the path traveled; displacement is the difference 
between the starting position coordinates and the ending position coordinates. Thus, 
you need to be careful when calculating average velocity given displacement if the path 
from the starting position to the final position is not a straight line. When At is very 
small (as it approaches zero), displacement and distance traveled are the same. 

Another important kinematic property is acceleration, which should also be familiar 
to you. Referring to your driving experience, you know that acceleration is the rate 
at which you can increase your speed. Your friend who boasts that his brand-new 
XYZ 2001 can go from 0 to 60 in 4.2 seconds is referring to acceleration. Specifically, he 
is referring to average acceleration. 

Formally, average acceleration is the rate of change in velocity, or Av over At:  

Taking the limit as At goes to zero gives the instantaneous acceleration: 

Thus, acceleration is the time rate of change in velocity, or the derivadve of velocity with 
respect to time. 



Rearranging and integrating yield 

v2 - v l  = Av = 

This relationship provides a means to work back and forth between velocity and 
acceleration. 

Thus, the relationships between displacement, velocity, and acceleration are 

a  = dvldt  = d2s/dt2 

and 
v d v = a d s  

This is the kinematic differential equation of motion. In the next few sections you'll 
have a look at some examples of the application of these equations for some common 
classes of problems in kinematics. 

Constant Acceleration 
One of the simplest classes of problems in kinematics involves constant acceleration. 
A good example of this sort of problem involves the acceleration due to gravity, g, on 
objects moving relatively near the earth's surface where the gravitational acceleration is 
a constant 32.174 ft/s2 (9.8 m/s2). Having constant acceleration makes integration over 
time relatively easy, since you can pull the acceleration constant out of the integrand, 
leaving just di. 

Integrating the relarionship between velocity and acceleration described earlier when 
acceleration is constant yields the following equation for instantaneous velocity: 

When tl equals zero, you can rewrite this equation in the following form: 
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This simple equanon allows you to calculate the instantaneous velocity at any given 
time by knowing the elapsed time, the initial velocity, and the constant acceleration. 

You can also derive an equation for velocity as a function of displacement instead of 
time by considering the kinematic differential equation of motion: 

Integraling both sides of this equation yields an alternative function for instantaneous 
velocity as fdhws: 

You can derive a similar formula for displacement as a function of velocity, acceleration, 
and time by integrating the differential equation 

v d t  = d s  

with the formula derived earher for instantaneous veloc~ty, 

v 2 = v l + a t  

substituted for v .  Doing so yields the formula 

In summary, the three kinematic equations derived above are 

Remember, these equations are valid only when acceleration is constant. Note that 
acceleration can be zero or even negative in cases in which the body is decelerating. 

You can rearrange these equations by algebraically solving for different variables, 
and you can also derive other handy equations using the same approach that I just 
showed you. For your convenience I've provided some other useful kinematic equations, 
for constant acceleration problems; in Table 2-L 

In cases in which acceleration is not constant but is some function of time, velocity, or 
position, you can substitute the function for acceleration into the differential equations 
shown earlier to derive new equations for instantaneous velocity and displacement. The 
next section considers such a problem. 
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Table 2-1. Constant Acceleration Kinematic Formulas 

Nonconstant Acceleration 
A common situation t h a ~  arises in real-world problems is one in which drag forces 
act on a body in motion. TpicaliX drag forces are proportional to velocity squared. 
Recalling the equation of Newton's second law of motion, F = ma, you can deduce 
that the acceleration induced by these drag forces is also proportional to velocity 
squared. 

Later, I'll show you some techniques that will allow you to calculate this sort of drag 
force, but for now, let the functional form of drag-induced acceleration be 

where k is a constant and the negative sign indicates rhat this acceleration acts in the 
direction opposing the body's velocity Now substituting this formula for acceleration 
into the equation above and then rearranging yields 

If you integrate the right side of this equation from v l  to v 2  and rhe left side from 0 to 
t and then solve for v2, you'll get a formula for the instantaneons velocity as a function 
of the initial velocity and time as shown here: 

30 I Chapter2: Kinematics 



If you substitute this equation for v in the relation v = &/dt and integrate again, you'll 
end up with a new equation for displacement as a function of initial velocity and time. 
This procedure is shown below: 

v d t  = ds, where v = v l / ( l  + vlkt) 

If s l  equals zero, then 

Note that in this equation In is the natural logarithm operator. 

This example demonstrates the relative complexity of nonconscant acceleration prob- 
lems versus constant acceleration problems. It's a fairly simple example in which you are 
able to derive closed-form equations for velocity and displacement. In practice, however, 
there may be several different types of forces acting on a given body in motion, which 
could make the eqression for induced acceleration quite complicated. This complexity 
would render a closed-form solution like the one above impossible to obtain unless 
you impose some simplifying restrictions on the problem, forcing you to rely on other 
solution techniques such as numerical integration. 1'11 talk about this sort of problem 
in greater depth in Chapter ll. 

2D Particle Kinematics 
When considering motion in one dimension, that is, when the motion is restricted to a 
straight line, it is easy enough to directly apply the formulas derived earlier to determine 
inscancaneous velocity, acceleration, and displacement. However, in two dimensions, 
with motion possible in any direction in a given plane, you must consider the kinematic 
proper ties of velocity, acceleration, and displacement as vectors. 

Using rectangular coordinates in che standard Cartesian coordinate system, you must 
account for the s- and y-components of displacement, velocity, and acceleration. Es- 
sentially you can treat the x- and y-components separately and then superimpose these 
components to define the corresponding vector quantities. 

To help keep track of these x- and y-components, let i and j be unit vectors in the x- and 
y-directions, respectively Now you can write the kinematic property vectors in terms 
of cheir components as follows: 

{I," 
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If x is the displacement in the xdirection and y is the displacement in the ydirection, 
then the displacement vector is 

... 7 
s = xi+ yj i 

It then follows that 

Consider a simple example in which you're writing a hunting game and you need to 
figure out the vertical drop in a fired bullet from its aim point to the point at which it 
actually hits the target. In this example, assume that there is no wind and no drag on the 
bullet as it flies through the air (I'll deal with wind and drag on projectiles in Chapter 6). 
These assumptions reduce the problem to one of constant acceleration, which in this 
case is that due to gravity It is this gravitational acceleration that is responsible for 
the drop in the bullet as it travels from the rifle to the target. Figure 2-2 illustrates the 
problem. 

Figure 2-2. 2D Kinematics Example Problem 

Let the origin of the 2D coordinate system be at the end of the rifle, with the x-axis 
pointing toward the target and the i-axis pointing upward. Positive displacements along 
thex-axis are toward the target, and positive displacements along the y-axis are upward. 
This implies that the gravitational acceleration will act in the negative y-direction. 

Treating the x- and y-components separately allows you to break the problem up into 
small, easy-to-manage pieces. Looking at the x-component first, you know that the 
bullet will leave the rifle with an initial muzzle velocity v, in the x-direction, and since 
we are neglecting drag, this speed will be constant. Thus, 

 NO^ looking at the y-component, you know that the initial speed in the y-direction, 
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as the bullet leaves the rifle, is zero, but they acceleration is -g (due to gravity). Thus, 

The displacement, velocity, and acceleration vectors can now be written as follows: 

These equations give the'i~stantaneous displacement, velocity, and acceleration ior 
any given time instant between the time the bullec leaves the rifle and the time ic hiis 
the target. The magnitudes of these vectors give the total displacement, velocity, and 
acceleration at a given time. For example, 

S = ,/(vmt)2 + (112gt~)~  

v = + 
a = # = g  

To calculate the bullet's vertical drop at the instant the bullet hits the target, you must 
first calculate the time required to reach the target, and then you can use that time to 
calculate the y-component of displacement, which is the vertical drop. Here are the 
formulas to use: 

where n is the distance from the rifle to the target and d is the vertical drop of the bullet 
at the target. 

If the distance to the target, A, equals 500 meters (m) and the muzzle velocity, v,, equals 
800 m/s, then the equations for thi, and d give 

These results tell you that to hit the intended target at that range, you'll need to aim for 
a point about 2 m above it. 

3D Particle Kinematics 
Extending the kinematic property vectors to three dimensions is not very diff~cult. 
It simply involves the addition of one more component to the vector representations 

{I,. 
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shown in the previous secdon on 2D kinematics. Introducing k as the unit vector in the 
z-direction, you can now write 

s = xi + yj + zk 'T 
v = dsld t  = dxldt  i + dyldt j + dz/dt k 

a = d2s/dt = d2x/dt i + d2y/dtj  + d2z/dt k 

Instead oE treating two corponents separately and then superimposing them, you now 
treat three components separately and superimpose these. This is best illustrated by an 
example. 

Suppose that instead of a hunting game, you're now writing a game that involves the 
firing of a cannon from, say, a battleship onto a target some distance away, for example, 
another ship or an inland target such as a building. To add complexity to this activity 
for your user, you'll want to give him control of several faccors that aEEecr the shell's 
trajectory, namely, the firing angle of the cannon, both horizontal and vertical angles, 
and the muzzlevelocity of the shell, which is controlled by the amount of powder packed 
behind the shell when it is loaded into the cannon. The situation is set up in Figure 2-3. 

Figure 2-3. 3D Kinematics Example Problem 

I'll show you how to set up the kinematic equations for this problem by treating each 
vector component separately at first and then combining these components. 

The x-components here are similar to that shown in the rifle example of the previ- 
ous section in that there is no drag force acting on the shell; thus, the x-component 
of acceleration is zero, which means that the x-component of velocity is constant 
and equal to the x-component of the muzzle velocity as the shell leaves the cannon. 
Note that since the cannon barrel may not be horizontal, you'll have to compute the 
x-component of the muzzle velocity, which is a function of the direction in which the 
cannon is aimed. 
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The muzzle velocity vector is 

and you are given only the direction of v ,  as determined by the direction in which 
the user points the cannon and its magnitude as determined by the amount of powder 
the user chooses to pack into the cannon. To calculate the components of the muzzle 
velocity, you need to develop some equations for these components in terms of the 
direction angles of the cannon and the magnitude of the muzzle velocity 

You can use the direction cosines of a vector to determine the velocity components as 
follows: 

cos 8, = v,/vm 

COS 8, = vmy/v,  

cos 8, = v,,/v, 

Refer to Appendix A for a description and illustration of vector direction cosines. 

Since the initial muzzle velocity vector direcnon is the same as the direction in which 
the cannon is aimed, you can meat the cannon as a vector .yith a magnitude of L, its 
length, and pointing in a diremon defined by the angles given in this problem. Using 
the cannon length, L ,  and its components instead of muzzle velocity in the equations 
for direction cosines gives 

cos8, = L J L  
cos 8, = L , / L  
cos 8, = L,/ L 

In this example you are given the angles a and y (see Figure 2-4) that define the cannon 
orientation. 

F~gure 2-4 Cannon Onentahon 
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Using these angles, it follows that the projection, b, of the cannon length, L, onto the 
xz-plane is 

",,? 
b = L cos(9O0 - a) 

and the components of the cannon length, L, on each coordinate axis are = 

L, = b cos y 

L, = L cos a 

L, = b sin y 

Now that you have the information required to compute direction cosines, you can 
write equations for the initial muzzle velocity components as follows: 

v,, = v, cos 8, 

v,y = V, cos ey 
v,, = v, cos 8, 

Finally, you can write the x-components of displacement, velocity, and acceleration as 
follows: 

a, = 0 

Y, = Y, = V, cos ex 
x = v,t = (v, cos 8,) t 

The y-components are just like the previous rifle example, again with the exception 
here of the initial velocity in the y-direction: 

vmy = v, cos ey 
Thus, 

Before writing the equation for the y-component of displacement, you need to consider 
the elevation of the base of the cannon, plus the height of the end of the cannon barrel 
to calculate the initial y-component of displacement when the shell leaves the cannon. 
Let yb be the elevation of the base of the cannon, and let L be the length of the cannon 
barrel; then the initial y-component of displacement, yo is 

y 0 = y b f  LCOSCI 

Now you can write the equation for y as 

Y = Y O  f v,t + (1/2)at2 
y = (fi + Lcosa) f (v,cosBy)t - (1/2Igt2 
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The z-componenrs are largely analogous to the x-components and can be written as 
follows: 

The Vectors 
With the components all worked out, you can now combine them to form the vector 
for each kinemadc prope;ty Doing so for this example gives the displacemenr, velocity, 
and acceleration rectors shown here: 

s = [(v, wse&]i+  [(vb + L WSU) + (vmcosBy)t - (112)~t~I j  + [(vmco~Bz)tlk 

v = [v, cos &li + [(v, cos 0,) - gtlj  + [v ,  cosO,]k 

a = -gj 

Observe here that the displacement vector essentially gives the position of the center of 
mass of the shell at any given instant in time; thus, you can use this vector to plot the 
trajectory of the shell from the cannon to the target. 

Hitting the Target 
Now that you have the equations fully describing the shell's trajectory, you need to 
consider the location of the target to determine when a direct hit occurs. To show how 
this is done, I've prepared a sample program that implements these kinematic equations 
along with a simple bounding box collision detection method for checking whether or 
.not the shell has struck the target. Basically, at each time step at which I calculate the 
position of the shell after it has left the cannon, I check to see whether this position falls 
within the hounding dimensions of the target object represented by a cube. 

The sample program is set up such that you can change all of the variables in the 
simulation and liew the effects of your changes. This program is a simple dialog-based 
application, written in standard C, using the Windows API functions. The executable 
file name is cannon.exe. There is only one source file, cannon.c, and one header file, 
cannon.h, for this example. I used Microsoft's Developer Studio to compile and build 
this application. 

Figure 2-5 shows the main screen for the cannon example program, in which thegovern- 
ing variables are shown on the left. The upper illustration is a bird's-eye view looking 
down on the cannon and the target; the lower illustration is a profile (side) view 

You can change any of the variables shown in the main window and press the fire 
button to see the resulting flight path of the shell. A message box will appear when 

{I," 
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igure 2-5. Cannon Sample Program Main Wlndow 

you hit the target or when the shell hits the ground. The program is set up so that you 
can repeatedly change the variables and press fire to see the result without erasing the 
previous uial. This allows you to gauge how much you need to adjust each variable to 
hit the target. Press the refresh button to redraw the views when they get too cluttered. 

Figure 2-6 shows a few trial shots that I made before finally hitting the target 

Figure 2-6. Trial Shots (Profile View) 
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The code for this example is really quite simple. Aside from the overhead of setting up 
the window, controls, and illustrations, all of the action takes place when the fire button 
is pressed. Here's the event handler that gets executed when the fire button is pressed; 
it's contained in the main window message handler function, DemoDlgProc: 

case IDC-FIRE: 
I /  update the variables with 
/ /  the values shown in the edit controls 
GetDlgItemText(hDlg, IDC-VM, str, 15); 
Vm = atof(str); 

GetDlgItemText(hDlg, IDC-ALPHA, str, 15); 
Alpha = atof(str); 

GetDlgItemText(hb$g, IDC-GAMMA, str, 15); 
Gamma = atof(str): 

GetDlgItemText(hDlg, IDC-L, str, 15); 
L = atof(str); 

GetDlgItemText(hD1g. IDC-YE, str, 15); 
Yb = atof(str); 

GetDlgItemText(hDlg, IDC-X, str, 15); 
X = atof(str); 

GetDlgItemText(hDlg, IDLY, str, 15); 
Y = atof(str); 

GetDlgItemText(hDlg, IDLZ, str, 15); 
Z = atof(str); 

GetDlgIternText(hDlg, IDC-LENGTH, str, 15); 
Length = atof(str); 

GetDlgItemText(hDlg, IDC-WIDTH, str, 15); 
Width = atof(str); 

GetDlgltmText(hDlg, IDC-HEIGHT, str, 15); 
Height = atof(str); 

I /  initialize the time and status variables 
status = 0 ;  
time = 0; 

/I start stepping through time for the sim. 
I /  until the target is hit, the shell hits 
/I the ground, or the sim. times out. 
while(status == 0) 
I 
I 

/I do the next time step 
status = DoSimulation(); 

I /  update the views 
hdc = GetDC(hTopView); 
GetClientRect(hTopView, 81); 
DrawTopView(hdc, &I); 
ReleaseDC(hTopView, hdc); 



hdc = GetOC(hSideView); 
GetClientRect(hSideView. &I); . . .  
LlrawSide~iew(hdc, &I); 
ReleaseDC(hSideView, hdc); 

) 

/ I  Report r esu l t s  
if (status == 1) 

MessageBox(NULL, "Direct Hit", "Score!", MB-OK); 

i f  (status == 2) 
MessageBox(NULL, "Missed Target", "No Score.", MB-OK); 

i f  (status == 3) 
MessageBox(NULL, "Timed Dut", "Error", MB-OK); 

break; 

The first several lines simply get the new values for the variables shown on the main 
window After that the program enters a w h i l e  loop, stepplng through increments of 
time and recalculating the position of the shell projectile using the formula for the dis- 
placement vector, s, shown earlier. The shell position at the current time is calculated in 
thefunctionDosimulation. Immediately after calling DoSimulation, the program updates 
the illustrations in the main window showing the shell's trajectory DoSimulat ion returns 
0, keeping the w h i l e  loop going, if there has not yet been a collision or if the time has 
not yet reached the preset time-out value. 

Once the w h i l e  loop terminates, by DoSimulat ion returning nonzero, the return value 
from this function call is checked to see whether a hit has occurred between the shell 
and the ground or the shell and the target. Just so that the program does not get stuck in 
this w h i l e  loop, DoSimulat ion will return a value of 3, indicating that it is taking too long. 

Now let's take a look at what's happing in the function Dosimulat ion (I've also included 
here the global variables that are used in Dosimulation). 

/ /  ................................................................................. // 
/ I  Define a custom type t o  represent 
/I the  three components o f  a 30 vector, 'where 
/ I  i represents the x-component, j represents 
I /  the  y-component, and k represents the z- 
/I component 
// ................................................................................. // 
typedef s t ruc t  NectorTag 

double i: 
double jf 
double k; 

) Nec to r ;  

/ /  ................................................................................. / /  
/ I  Now define the var iables required f o r  t h i s  simulation 
// ................................................................................. // 
double Vm: I /  Maenitude o f  muzzle ve loc i tv .  m/z " ,, ~ 

double Alpha; / I  Angle from y-axis (upward) t o  the cannon. 
I /  When t h i s  angle i s  zero, the  cannon i s  po in t ing  
/ I  s t ra igh t  up; when i t i s  go degrees, the cannon 
/ I  i s  hor izonta l  

40 1 Chapter2: Kinematics 



double 

double 
double 

double 
double 
double 
double 
double 
double 

Gamma; 11 Angle from x-axis, i n  the  xz-plane t o  t h e  cannon. 
11 When t h i s  angle i s  zero t h e  cannon i s  p o i n t i n g  i n  
11 t h e  p o s i t i v e  x -d i rec t ion ;  p o s i t i v e  values o f  t h i s  angle 
11 are  toward t h e  p o s i t i v e  z-axis 

L; 11 This i s  the  l e n g t h  o f  the  cannon, m 
Yb; 11 This i s  the  base e leva t ion  o f  t h e  cannon, m 

X; 11 The x -pos i t ion  of t h e  center  o f  t h e  target ,  m 
Y; 11 The y -pos i t ion  o f  t h e  center o f  t h e  target ,  m 
Z; /I The z - p o s i t i o n  of t h e  center  o f  t h e  ta rge t ,  m 
Length; /I The l e n g t h  o f  t h e  t a r g e t  measured along t h e  x-axis, m 
Width; /I The w id th  o f  t h e  t a r g e t  measured along t h e  z-axis, m 
Height; /I The height  o f  t h e  t a r g e t  measure along t h e  y-axis,  rn 

TVector 5; 11 The s h e l l  p o s i t i o n  (displacement) vector  

double time; (/ The t ime from t h e  i n s t a n t  t h e  s h e l l  leaves 
14 t h e  cannon, seconds 

double t I n c ;  I/ The t ime incremrnt  t o  use when stepping through 
11 t h e  simulation, seconds 

double g; 11 acce le ra t ion  due t o  g rav i t y ,  rn/sA2 

/I ................................................................................. //  
11 This func t ion  steps t h e  s imu la t ion  ahead i n  time. This i s  where t h e  k inemat ic  
11 p r o p e r t i e s  a re  calculated.  The f u n c t i o n w i l l  r e t u r n  I when t h e  t a r g e t  i s  h i t  
11 and 2 when t h e  s h e l l  h i t s  t h e  ground (xz-plane) before h i t t i n g  t h e  ta rge t ;  
11 otherwise, t h e  f u n c t i o n  r e t u r n s  0. 
/I ................................................................................. // 
i n t  DoSimulation(void) 
/I ................................................................................. // 

I 
double cosX; 
double cosy; 
double cosz; 
double xe, ze; 
double b, Lx, Ly, Lz; 
double t x l ,  txz,  t y l ,  tyz, t z l ,  tz2; 

/I step t o  t h e  nex t  t ime i n  t h e  s imu la t ion  
t ime+=tInc; 

// F i r s t  c a l c u l a t e  the  d i r e c t i o n  cosines f o r  t h e  cannon o r i e n t a t i o n .  
, // I n  a r e a l  game you would not want t o  put t h i s  c a l c u l a t i o n  i n  t h i s  

// function, s ince  i t  i s  a waste o f  CPU t ime t o  c a l c u l a t e  these values 
// a t  each t ime s tep  as they  never change dur ing the  sim. I put  them 
// here i n  t h i s  case on ly  so t h a t  you can see a l l  t h e  c a l c u l a t i o n  steps i n  a 
I/ s i n g l e  func t ion .  
b = L * cos((90-Alpha) '3.141180); 11 p r o j e c t i o n  o f  b a r r e l  onto xz-plane 
Lx = b * cos(Gamma * 3.141180); // x-component o f  b a r r e l  l e n g t h  
Ly = L * cos(A1pha * 3.14/180); 11 y-component o f  b a r r e l  l e n g t h  
Lz = b * sin(Gamma * 3.141180); I/ z-component o f  b a r r e l  l e n g t h  

cosx = LXIL; 
COSY = LylL; 
COSZ = LzlL; 

11 These a re  t h e  x- and z-coordinates o f  the  very end o f  t h e  cannon b a r r e l  
/I w e ' l l  use these as t h e  i n i t i a l  x and z d is~ lacements  

{I,. 
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/ /  Now we can ca lcu la te  the pos i t i on  vector a t  t h i s  t ime 
s . i  = Vm * cosX * time t xe; 
s . j  = (Yb t L * cos(Alpha*3.14/180)) + (Vm * cosy * tim) - 

(0.5 * g * time * time); "+ 
s.k = Vm * cosZ * time + ze; 

/ /  Check f o r  c o l l i s i o n  w i th  ta rget  
/ I  Get extents (bounding coordinates) of the  ta rget  
t x l  = X - Lengtht2; 
t x2  = X + Length/2; 
t y l  = Y - Height/>; 
t y2  = Y + Heightt2; 
t z l  = Z - Widthl2; 
t z2  = Z + Width/2; 

/ I  Now check t o  see whether the  s h e l l  has passed through the target  
/ I  I ' m  using a rudimentary c o l l i s i o n  detect ion scheme here i n  which 
/ I  I simply check t o  see whether the  shel l 's  coordinates are w i t h in  the 
/ I  bounding box o f  the target. This works f o r  demo purposes, but 
/ I  a p rac t i ca l  problem i s  t ha t  you might miss a c o l l i s i o n  i f  f o r  a given 
I /  t ime step the shel l 's  change i n  pos i t ion  i s  l a rge  enough t o  a l low 
/ I  i t  t o  "skip" over the target.  
/ I  A be t te r  approach i s  t o  look  a t  the  previous time step's pos i t i pn  data 
/ I  and t o  check the l i n e  from the previous pos i t ion  t o  the current pos i t ion  
/ I  t o  see whether t ha t  l i n e  in tersects  the  ta rget  bounding box. 
i f (  (s.i >= t x l  && s . i  <= tx2) 88 

(s. j  >= t y l  &8 s . j  <= ty2) 88 
(s.k >= t z l  88 s.k <= tz2) ) 
re tu rn  1; 

/ I  Check f o r  c o l l i s i o n  w i th  ground (xz-plane) 
i f ( s . j  <= 0) 

re tu rn  2; 

I /  Cut o f f  the s imulat ion i f  i t ' s  tak ing too long 
/ I  This i s  so the  program does not get stuck i n  the  while loop 
if(time>3600) 

re tu rn  3; 

r e tu rn  0;  

} 

I've commented the code so that you can readily see what's going on. This function 
essentially does four things: 

increments the time variable by the specified time increment; 

calculates the initial muzzle velocity components in the x-, y-, and z-directions; 

calculates the shell's new position; 
checks for a collision with the target, using a bounding box scheme or the ground. 

Here is the code that computes the shell's position: 

/ I  Now we can ca lcu la te  the pos i t ion  vector a t  t h i s  t ime 
s . i  = Vm cosX * t ime t xe; 
s. j = (Yb + L * cos(Alpha~3.14/180)) + ( V m  * cosy * time) - 
, ( 0 . 5  e ' time * time): 

;.k = 6m ; co:z * t ime t ze; 
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This code calculates the three components of the displacement vector, s, using the 
formulas that I gave you earlier. If you wanted to compute the velocity and acceleration 
vectors as well, just to see their values, you should do  so in this section of the program. 
You can set up a couple of new globalvariables to represent the velocity and acceleration 
vectors, just as I did with the displacement vector, and apply thevelocity and acceleration 
formulas that I gave you. 

That's all there is to it. It's obvious by playing with this sample program that the shell's 
trajectory is parabolic in shape, which is typical projectile motion. You'll take a more 
detailed look at this sort of motion in Chapter 6. 

Even though I put a comment in the source code, I must reiterate a warning here regard- 
ing the collision detection scheme that I used in this example. Because I'm checking the 
current position coordinate b$y to see whether it falls within the bounding dimensions 
of the target cube, I run the risk of skipping over the target if: for a given time step, the 
change in position is too large. A better approach would be to keep track of the shell's 
previous position and check to see whether the line connecting the previous position to 
the new one intersects the target cube. 

Kinematic Particle Explosion 
At this point you might be wondering how particle kinematics can help you create 
realistic game content unless you're writing a game that involves shooting a gun or a 
cannon. If you are, let me offer you a few ideas and then show you an example. Say 
you're writing a football simulation game. You can use particle kinematics to model the 
trajectory of the football after it is thrown or kicked. You can also treat the wide receivers 
as particles when calculating whether or not they'll be able to catch the thrown ball. In 
this scenario you'll have two particles, the receiver and the ball, traveling independently, 
and you'll have to calculate when a collision occurs between these two particles, indi- 
cating a catch (unless, of course, your player is all thumbs and fumbles the ball after it 
hits his hands). You can find similar applications for other sports-based games as well. 

What about a 3D shoot-'em-up game? How could you use particle kinematics in this 
genre aside from bullets, cannons, grenades, and the like? Well, you could use particle 
kinematics to model your player when he or she jumps into the air either running or 
standing still. For example, your player reaches the middle of a catwalk only to find 
a section missing, and you have the player immediately back up a few paces to get a 
running head start before leaping into the air, hoping to clear the gap. This long jump 
scenario is perfect for using particle kinematics. All you really need to do is define your 
player's initial velocity, both speed and take-off angle, and then apply the vector formula 
for displacement to calculate whether or not he or she makes the jump. You can also 
use the displacement formula to calculate the player's trajectory so that you can move 
the player's viewpoint accordingly, giving the illusion of leaping into the air. You may 
in fact already be using these principles to model this action in your games, or at least 
you've seen it done if you play games of this genre. If your player happens to fall short 
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on the jump, you can use the formulas for velocity to calculate the impact velocity of 
the player when he or she hits the ground below On the basis of this impact velocity 
you can determine an appropriate amount of damage to deduct fi& the player's health 
score, or if thevelocity is over a certain threshold, you can say goodbye to your would-be 
adventurer! 

Another use for simple particle kinematics is for certain special effects such as particle 
explosions. This sort of effect is quite simple ro implement and really adds a sense of 
realism to explosion effects. The particles don't just fly off in random, straight-line tra- 
jectories. Instead, they rise and fall under the influence of their initialvelocity, angle, and 
the acceleration due to gravity, which gives ths impression that the particles have mass. 

So let me show you an example of a kinemaric particle explosion. The code for this 
example is taken from the cannon example discussed previously, so a lot of it should 
look familiar to you. Figure 2-7 shows this program's main window. 

Figure 2-7. Particle Explosion Program 

The explosion effect takes place in the large rectangular area on the right. I didn't show 
the explosion in this screen shot, since all you would see are a bunch of dots, which 
don't do justice to the effect; it's the motion of those dots that make the effect. 
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In the edit controls on the left, you specify an x- and a y-position for the effect, along 
with the initial velocity of the particles, which is a measure of the explosion's strength, a 
duration in milliseconds, a gravity factor, and finally an angle. The angle parameter can 
be any number between 0 and 360 degrees or 999. When you specify an angle in the 
range of 0 to 360 degrees, all the particles in the explosion will be launched generally in 
that direction. Ifyou specify avalue of 999, then all the particles willshoot off in random 
directions. The duration parameter is essentially the life of the effect. The particles will 
fade out as they approach that life. 

The first thing you need to do for this enample is set up some structures and global 
variables to represent the particle effect and the individual particles making up the effect 
along with the initial parameters describing the behavior of the effect as discussed in 
the previous paragraph. Here's the code: 

/ /  ................................................................................. // 
I /  Define a custom type to represent each particle in the effect. 
/ /  ................................................................................. // 
typedef struct _TParticle 
I 

float X; 

float Yj 
float "1: 

float angle; 
int life; 
int r; 
int g; 
int b; 
int time; 
float gravity; 
BOOL Active; 

I /  x-coordinate of the particle 
// y-coordinate of the particle 
// initial velocity 
// initial trajectory (direction) 
// duration in milliseconds 
/ I  red component of particle's color 
// green component of particle's color 
// blue component of particle's color 
// keeps track of the effect's time 
// eravitv factor 
// hdicakes whether this particle 
// is active or dead 

} TParticle; 

#define _MAXPARTICLES 50 

typedef struct _TParticleExplosion 

TParticle p[.MAXPARTICLES]; / I  list of particles 
/ I  making up this effect 

int VO; // initial velocity, or strength, of the effect 
int x; / /  initial x location 
int y; // initial y location 
BOOL Active; // indicates whether this effect is 

//active or dead 
} TParticleExplosion; 

// ................................................................................. // 
// Now define the variables required for this simulation 
// ................................................................................. // 
TParticleExplosion Explosiqn; 

int 
int 
int 
int 
float 
float 

XC: / I  x-coordinate o f  the effect ~~ ~ ~ ~ ~ -~~ 

YC; // y-coordinate of the effect 
VO; // initial velocity 
Duration; // life in milliseconds 
Gravity; I /  gravity factor (acceleration) 
Angle; I /  indicates particles' direction 



You can see from this code that the pardcle explosion effect is made up of a collection 
of particles. The behavior of each pardcle is determined by kinematics and the initial 
parameters set for each particle. : ,,j? 

Whenever you press the GO button, the initial parameters that you specified are used 
to initialize the pardcle explosion (if you press the Random button, the program ran- 
domly selects these initial values for you). This takes place in the function called 
CreateParticleExplosion: 

111111111111111111111111111111111111111111111111111111111111111111111 
I* This function creates a new particle explosion effect. 

x,yj starting point of the effect 
Vimt: a measure of how fast the particles will be sent flying 

(it's actually the initial velocity of the particles) 
life: life of the particles in milliseconds; particles will 

fade and die out as they approach their specified life 
gravity: the acceleration due to gravity which controls the 

rate at which particles will fall as they fly 
angle: initial trajectory angle of the particles, 

specify 999 to create a particle explosion 
that emits particles in all directions; otherwise, 
0 right, 90 up, 180 left, etc. 

*I 
void CreateParticleExplosion(int x, int y, int Vinit, int life, 

float gravity, float angle) 
t 

int i; 
int m; 
float f; 

Explosion.Active = TRUE; 
Exp1osion.x = x; 
Exp1osion.y = y; 
Explosion.Vo = Vinit; 

for(i-0; i<-MRXPARTICLES; it+) 
{ 

Explosion.p[i].x = 0; 
Explosion.p[i] .y = 0; 
Explosion.p[i].vi = tb-Rnd(Vinitl2, Vinit); 

if(ang1e < 999) 

if(tb-Rnd(0,l) == 0) 
m = -1. 

else 
m = 1; 

Explosion.p[i].angle = -angle + m * tb_Rnd(o,lo); 
} else 

Explosion.p[i].angle = tb-Rnd(0,360); 

f = (float) tbLRnd(80, lw) I 1oo.of; 
Explosion.p[i].life = tbLRound(1ife * f); 
Explosion.p[i].r = 255;11tb_Rnd(225, 255); 
Explosion.p[i] .g = 255;lltb-Rnd(85, 115); 
Explosion.p[i].b = 255;lltb-Rnd(l5, 45); 
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Explosion.p[i] .time = 0; 
Explosion.p[i].Active = TRUE; 
Explosion. p[i] .gravity = gravity; 

) 
1 

Here you can see that all the particles are set to start off in the same position as specified 
by the x- and y-coordinates that you provide; however, you'll notice that the initial 
velocity of each particle is actually randomly selected from a range of Vinit/z to Vinit. 
I do this to give the particle behavior some variety I do the same thing for the life 
parameter of each particle so that they don't all fade out and die at the exact same 
time. 

After the particle explosion is created, the program enters a loop to propagate and draw 
the effect. The loop is a whilq loop as shown here: 

DrawRectangle(hBufferDC, &I, 1, RGB(o,o,o)); 
status = DrawParticleExplosion(hBufferDC); 
hdc = GetDC(h5ideView); 
if(!BitBlt(hdc, 0, 0, r.right, r.bottom, hBufferDC, 0, 0, SRCCOPY)) 
1 

MessageBox(NULL, "BitBlt failed", "Error", ME-OK); 
status = FALSE; 

} 
ReleaseDC(hSideView, hdc); 

} 

Thewhile loop continues as long as status remains true, which indicates that the particle 
effect is still alive. After all the particles in the effect reach their set life, then the effect 
is dead and status will be set to false. All the calculations for the particle behavior 
actually take place in the function called DrawParticleExplosion; the rest of the code 
in this while loop is for clearing the offscreen buffer and then copying it to the main 
window. 

DrawParticleExplosion, updates the state of each particle in the effect by calling another 
function, UpdateParticleState, and then draws the effect to the offscreen buffer passed 
in as a parameter. Here's what these two functions look like: 

/I ................................................................................. I/ 
I/ Draws the particle system and updates the state of each particle. 
/I Returns false when all of the particles have died out. 
/I ................................................................................. /I 
8 W L  DrawParticleExplosion(HDC hdc) 
4 

{I,. 

Kinematic Particle Explosion 1 47 



finished = FALSE; 
r = ((float)(Explosion.p[i].life- .'. 7 

Explosion.p[i].time)/(float)(~xplosion.p[i].~ife)); 
r l r  = RGB(tb-Round(r*Exolosion.~iil.r~. 

tb-iound(r'~;~loiion.~[i]'.i); 
tb~Round(r'Explosion.p[i]. b)); - . . . ~ 

DrawCircle( hdc, 
~x~losion.x+tb_~ound(Explosion.p[i] .x ) ,  
Explc-ion.y+tb-Round(Exp1osion. p[i] .y), 
2. 

if(finished) 
Explosion.Active = FALSE; 

return !finished; 
} 

/ /  ................................................................................. / /  
I L  This is generic function to update the state of a given particle. 

P: pointer to a particle structure 
dtime: time increment in milliseconds to 

advance the state o f  the particle 

If the total elapsed time for this particle has exceeded the particle's 
set life, then this function returns FALSE, indicating that the particle 
should expire. 

* I  

BOOL U p d a t e P a r t i c l e S t a t e ( T V a r t i c l e '  p, int dtime) 
{ 

B W L  retval; 
float t; 

if (p->time ,= p-,life) 
retval = FALSE; 

else 
retval = TRUE; 

return retval; 
1 

UpdateParticleState uses the kinematic formulas that I've already shown you to update 
theparticle'sposition as a tunction of its initiaivelocity, time, and the acceleration due to 
gravity After UpdateParticleState is called, DrawParticleExplosion scales each particle's 
color down, fading ic to black, based on the life of each particle and elapsed time. The 
fade effect is to show the particles dying slowly over time instead ofsimply disappearing 
from the screen. The effect resembles the behavior of fireworks as they explode in the 
night sky 
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Rigid Body Kinematics 
The formulas for displacement, velocicy, and acceleration discussed in the previous 
sections apply as well for rigid bodies as for particles. The difference is that when 
considering rigid bodies, the point on the rigid body that you track, in terms of linear . 

motion, is the body's center of mass (gravity). 

When a rigid body translates with no rotation, all of the particles making up the rigid 
body move on parallel paths, since the body does not change its shape. Further, when 
a rigid body does rotate, it generally rotates about axes that pass through its center of 
mass, unless the body is hinged at some other point about which it is forced to rotate. 
These facts make the center of mass a convenient point to use to track its linear motion. 
This is good news for you because you can use all of the material you learned on particle 
kinematics here in your study of rigid body kinematics. 

The procedure for dealing with rigid bodies involves two distinct aspects: 

tracking the translation of the body's center of mass and 

tracking the body's rotation 

The first aspect is old hat by now-just treat the body as a particle; however, the second 
aspect requires you to consider a few more concepts, namely, local coordinates, angular 
displacement, angular velocity, and angular acceleration. 

For most of the remainder of this chapter I'll discuss plane kinematics of rigid bodies. 
Plane motion simply means that the body's motion is restricted to a flat plane in space 
where the only axis of rotation about which the body can rotate is perpendicular to the 
plane. Plane motion is essentially two-dimensional. This allows us to focus on the new 
kinematic concepts of angular displacement, velocicy, and acceleration without getting 
lost in the math required to describe arbitrary rotation in three dimensions. 

You might be surprised by how many problems lend themselves to plane kinematic 
solutions. For example, in some popular 3D shoot-'em-up games, your character is able 
to push objects, such as boxes and barrels, around on the floor. Although the game 
world is three dimensions, these particular objects are restricted to sliding on the floor, 
a plane, and thus can be treated like a 2D problem. Even if the player pushes on these 
objects at some angle instead of straight on, you'll be able to simulate the sliding and 
rotation of these objects using 2D kinematics (and kinetics) techniques. 

Local Coordinate Axes 
Earlier, I deiined the Cartesian coordinate system to use for your fixed global reference, 
or world coordinates. This world coordinate system is all that's required when you're 
treatingparticles; however, for rigid bodies you'll also use a set of local coordinates fixed 
to the body Specifically, this local coordinate system will be fixed at the body's center 
of mass location. You'll use this coordinate system to track the orientation of the body 
as it rotates. 
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For plane motion we require only one scalar quantity to describe the body's orientation. 
 his is illusaated in ~ igure  2-8. 

Figure 2-8. Local Coordinate Ax- 

Here, the orientation, R, is defined as the angular difference between the two sets of co- 
ordinate axes: the fixed world axes and the local body axes. This is the so-called Euler 
angle. In general 3D motion there is a total of three Euler angles, which are usually called 
yaw, pitch, and roll in aerodynamic and hydrodynamic jargon. While these angular 
representations areeasy tovisualizein terms oftheirphysicalmeaning, they aren'tsonice 
from a numerical point of view, and you'll have to look for alternative representations 
when writing your 3D real-time simulator. These issues are addressed in Chapter 14. 

Angular Velocity and Acceleration 
In2Dplanemotion, as che body rotates, Q  willchange, and the rateat which Q  changesis 
the angular velocity, o. Likewise, the rate atwhich o changes is the angular acceleration, 
a. These angular properties are analogous to the linear properties of displacement, 
velocity, and acceleration. The units for angular displacement, velocity, and acceleration 
are radians (tad), radians per second (rad/s), and radians per second-squared (rad/s2), 
respectively 

Mathematically, you can write these relations between angular displacement, angular 
velocity and angular acceleration: 

n =  o d t  I 
o d o  = a d Q  



In fact, you can substitute the angular properties, Q, o, and a for the linear properties, 
s,  v and a in the equations derived earlier for particle kinematics to obtain similar 
kinematic equations for rotation. For constant angular acceleration you'll end up with 
the following equations: 

When a rigid body rotates about a given axis, every point on the rigid body sweeps 
out a circular path around the axis of rotation. You can think of the body's rotation 
as causing additional linear motion of each particle making up the body This linear 
motion is in addition to the linear motion of the body's center of mass. To get the total 
linear motion of any particli or point on the rigid body, you must be able to relate the 
angular motion of the body to the linear motion of the particle or point as it sweeps its 
circular path about the axis of rotation. 

Before I show you how to do this, let me first explain why you would even want 
to perform such a calculation. Basically in dynamics, knowing that two objects have 
collided is not always enough, and you'll often want to know how hard, so to speak, 
these two objects have collided. When you're dealing with interacting rigid bodies that 
may at some point make contact with one another or with other fixed objects, you need 
to determine not only the location of the points of contact, but also the relative velocity 
or acceleration between the contact points. This information will allow you to calculate 
the interaction forces between the colliding bodies. 

The arc length of the path swept by a particle on the rigid body is a function of the 
distance from the axis of rotation to the particle and the angular displacement, Q. I'll use 
c todenote arclength andr todenote the distance from theaxis of rotation to the particle, 
as shown in Figure 2-9. The formula relating arc length to angular displacement is 

- 
Figure 2-9. Circular Path of Particles Making Up a Rigid Body 
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where S2 must be in radians, not degrees. If you differentiate this formula with respect 
to time: -. 3 

d c j d t  = r d Q j d t  i 

youget an equation relating the linear velocity of the particle as it moves along its circular 
path to the angular velocity of the rigid body This equation is written as follows: 

This velocity as a vector is tangent to the circular path swept by the particle. If you can 
imagine this particle as a ball at the end of a rod whose other end is fixed to a rotating 
axis, then if the ball is released from the end of the rod as it rotates, the ball will fly off 
in a direction tangent to the circular path it was taking when attached to the rod. This 
is in the same direction as [he tangential linear velocity given by the above equation. 
Figure 2-10 illustrates the tangential velocity 

I 

World Axes 

Figure 2-10. Linear Velocity Due to Angular Velocity 

Differentiating the equation, v = r o :  

d v j d t  = r d o j d t  

yields a formula for the tangential linear acceleration as a function of angular 
acceleration: 

Note that there is another component of acceleration for the particle that results from the 
rotation of the rigid body This component is normal, or perpendicular, to the circular 
path of the particle and is the so-called centripetal acceleration, which is always directed 
toward the axis of rotation (see Figure 2-U). Remember that velocity is a vector, and 
since acceleration is the rate of change in the velocity vector, there are two ways in which 
acceleration can be produced. One way is by a change in the magnitude of the velocity 
vector, that is, a change in speed; the other way is a change in the direction of the velocity 
vector. The change in speed gives rise to the tangential acceleration component, while 
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the direction change gives rise to the centripetal acceleration component. The resultant 
acceleradon vector is the vector sum of the tangential and centripetal accelerations. 
Centripetal acceleradon is what you feel when you take your car around a tight curve 
even though your speed is constant 

Figure 2-11. Tangential and Centripetal Acceleration 

The formula for the magnitude of centripetal acceletation, a,, is 

a, = v 2 / r  

where v is the tangential velocity Substituting the equation for tangential velocity into 
this equation for centripetal acceleration gives the following alternative form: 

In two dimensions you can easily get away with using these scalar equations; however, 
in three dimensions you'll have to use the vector forms of these equations. Angular 
velocity as a vector is parallel with the axis of rotation. In Figure 2-10 the angular 
velocity would be pointing out of the page directly at you. I t .  sense, or direction of 
rotation, is determined by the righthand rule. If you take your right hand and curl 
your fingers in an arc around the axis of rotation with your fingers pointing toward the 
direction in which the body is rotating, your thumb will stick up in the direction of the 
angular velocity vector. 

If you take the vector cross product (refer to Appendix A for a review of vector math) of 
the angular velocity vector and the vector from the axis of rotation to the particle under 
consideration, you'll end up with the linear, tangential velocity vector. This is written as 

Note that this gives both the magnitude and direcdon of the linear, tangential velocity 
Also, be sure to preserve the order of the vectors when taking the cross product, that 
is, w cross r ,  not the other way around, which would give the wrong direction for v. 



Vector Cross Product 
T y P  

Given any two vectors A and B, the cross product A x B is defined by a third vector 
C with a magnitude equal to AB sine, where 6 is the angle between the two vectors A 
and B. 

C = A x B  

C = AB sine 

The direcrion of C L determined by the righthand rule. The righthand rule is a simple 
trick to help keep track of vector directions. Assume that A andB lie in a plane, and 
let an axis of rotation extend perpendicular to this plane through a point located at 
the tail of A. Take your right hand and pretend to curl your fingers around the axis of 
rotation from vectorA toward B. Now extend your thumb, as though you are giving a 
thumbs up, while keeping your fingers curled around the axis. The direction in which 
your thumb is pointing indicates the direcnon of vector C. 

In the figure above, a parallelogram is formed by A andB (the shaded region). The area 
of this parallelogram is the magnitude of C, which is AB sin 8. 

There are two equations that you'll need in order to determine the vectors for tangential 
and centripetal acceleration: 

Another way to look at the quantities v, a,, and a, is that they are the velocity and 
acceleration of the particle under consideration on the rigid body relative to the poinc 
about which the rigid body is rotating, for example, the body's centerof mass location. 
This is very convenient, since, as I said earlier, you'll want to track the motion of the 
rigid body a s  a particle when looking at the big picture without having to worry about 
what each particle making up the rigid body is doing all the time. Therefore, you treat 
the rigid body's linear motion and its angular motion separately. When you do need 
to take a close look at specific particles of, or points on, the rigid body, you can do so 
by taking the motion of the rigid body as a particle and then adding to it the relative 
motion of the point under consideration. 



Figure 2-12 shows a rigid body that is traveling at a speed vCg, where v,, is the speed 
of the center of mass (or center of gravity) of the rigid body Remember, the center of 
mass is the point to track when treating a rigid body as a particle. This rigid body is 
also rotating with an angular velocity w about an axis that passes through the center of 
mass of the body The vector r is the vector from the center of mass of the rigid body to . 

the particular point of interest, P, located on the rigid body 

Path of body center of mass \c 
I 
World Axes X 

Figure 2-12. Relative Velocity 

In this case the resultant velocity of point P can be found by taking the vector sum of 
the velocity of the center of mass of the body and the tangential velocity of point P due 
to the body's angular velocity w. Here's what the vector equation looks like: 

You can do the same thing with acceleration to determine point P's resultant acceler- 
ation. Here, you'll take the vector sum of the acceleration of the rigid body's center of 
mass, the tangential acceleration due to the body's angular acceleration, and the cen- 
tripetal acceleration due to the change in direction of the tangential velocity In equation 
form, this looks like 

aR = acg + a,, + a, 

Figure 2-13 illustrates what's happening here. 



a v  

Y Vector sum, resultant acceleration OfpOif7t P 

h of body center of mass 

1 
Figure 2-U. Relative Acceleration 

You can rewrite the equation for the resultant acceleration in the following form: 

a, = aCs + (W x (W x I)) + (a x r) 

As you can see, using these principles of relative velocity and acceleration allows you 
to calculate the resultant kinematic properties of any point on your rigid body at any 
given time by knowing what the center of mass of the body is doing along with how 
the body is rotating. 
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CHAPTER 3 

Force 

This chapter is prerequisite for Chapter 4, which addresses the subject of kinetics. The 
aim here is to provide you with enough of a background on forces chat you can readily 
appreciate the subject of kinetics. This chapter is not meant to be the final word on the 
subject of force. In fact, I believe that the subject of force is so important to realistic 
simulations that I'll revisit the subject several times in various contexrs throughout the 
remainder of this book. In this chapter I'll discuss the two fundamental categories of 
force and briefly explain some important specific types of force. I'll also explain the 
relationship between force and torque. 

Introduction 
As I mentioned at the end of Chapter 2, you need to understand the concept of force 
before you can fully understand the subject of kinetics. Kinematics is only half the battle. 
You are already familiar with the concept of force from your daily experiences. You exert 
a force on this book as you hold it in your hands counteracting gravity You exert force 
on your mouse as you move it from one point to another. When you play soccer, you 
exert force on the ball as you kick it. In general, force is that which makes an object move 
or, more precisely, changes the acceleration of the object. Even as you hold this book, 
although it might not be moving, you have effectively changed irs acceleration from that 
due to gravity to zero. When you kick that soccer ball, you change its acceleration from, 
say, zero when the ball is at rest to some positive value as the ball leaves your foot. These 
are some examples of externally applied contact forces. 

There's another broad category of forces, in addition to contact forces, calledfield forces 
or sometimes force-at-a-distance forces. These forces can act on a body without actually 
having to make contact with it. A good example of this is the gravitational attraction 
between objects. Another example is the elecuomagnetic attraction between charged 
particles. The concept of a force field was developed long ago to help visualize the 
interaction between objects subject to forces at a distance. You can say that an object is 
subjected to the gravitational field of another object. Thinking in terms of force fields 

/I,_ 
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is supposed to help you grasp the fact that an object can exert a force on another object 
without having to physically touch it. 

",,< 
Within these two broad categories of forces, there are specificfypes of forces related 
to various physical phenomena-forces due to friction, buoyancy, and pressure among 
others. I discuss idealizations of several of these types of forces in this chapter. Later in 
this book, I'll revisit these forces from a more practical point of view 

Before going further, I need to explain the implications of Newton's third law as intro- 
duced in Chapter I. Remember, Newon's third law states that for every force acting on 
a body, there is an equal and opposite reacting force. This means that forces must exist 
in pairs: a single force can't exist by itself. 

Consider the gravitational attraction between the earth and yourself. The earth is exert- 
ing a fo rceyour  weight-on you, accelerating you toward its center. Likewise, you are 
exerting a force on rhe earth, accelerating it toward you. The huge difference between 
your mass and the earth's makes the acceleration of the earth in this case so small that 
it's negligible. Earlier, I said that you are exerting a force on this book to hold it up; 
likewise, this book is exerting a force on your hands equal in magnitude but opposite 
in direction to the force you are exerting on the book. You feel this reaction force as the 
book's weight. 

This phenomenon of action-reaction is the basis for rocket propulsion. A rocket engine 
exerts force on the fuel molecules that are accelerated out of the engine exhaust nozzle. 
The force that is required to accelerate these molecules is exerted back against the rocket 
as a reaction force called thrust. Throughout the remainder of this book you'll see many - 
other examples of action-reaction, which is an important phenomenon in rigid body 
dynamics. It is especially important in dealing with collisions and objects in contact, 
as you'll see later. 

Force Fields 
The best example of a force field or force at a distance is the gravitational attraction 
between objects. Newton's law ofgravitation states that the force of attraction between 
two masses is directly proportional to the product of the masses and inversely propor- 
tional to the square of the distances separating the centers of each mass. Further, this 
law states that the line of action of the force of attraction is along the line that connects 
the centers of the two masses. This is written as follows: 

where G is the gravitational constant, Newton's so-called universal constant. G was 
firstmeasuredexperimentally by Sir Henry Cavendishin 1798 and equals 6.673 x lo-' 
( ~ - m = ) / k ~ '  in metric units or 3.436 x ft4/(lb-s4) in English units. 

So far in this book I've been using the acceleration due to gravity, g,  as a constant 
9.8 m/s2 (32.174ft/s2). This is true when you are near the earth's surface, for example, 
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at sea level. In reality, g varies with altitude-maybe not by much for our purposes, bur 
it does. Consider Newton's second law along with the law of gravitation for a body near 
the earth. Equating these two laws, in equation form, yields 

wherem is the mass of the body, a is the acceleration of the body due to the gravitational 
attraction between it and the earth, Me is the earth's mass, & is the radius of the earth, 
and h is the altitude of the body If you solve this equation for a, you'll have a formula 
f-r the acceleration due to gravity as a function of altitude: 

The radius of the earth isapproximately 6.38 x lo6 m, and irs mass is about 5.98 x 
kg. Substituting these Mhes in the above equation and assuming zero altitude (sea 

level) yields the constant g that we've been using so far; that is, g at sea level equals 
9.8m/s2. 

Friction 
Frictional forces (friction) always resist motion and are due to the interacrion between 
contacting surfaces. Thus, friction is a contact force. Friction is always parallel to the 
contacting surfaces at the point of contact, rhat is, it is tangential ro the contacting 
surfaces. The magnitude of the frictional force is a function of the normal force between 
the contacting surfaces and the surface roughness. 

This is easiesr ro visualize by looking at a simple block on a horizontal surface as shown 
in Figure 3-1 

Figwe 3-1. Friction, Block in Contact with Horizontal Surface 

In this figure the block is resting on the horizonral surface with a small force, F,, applied 
to the block on a line of action through the block's center of mass. As this applied force 
increases, a frictional force will develop berween the block and the horizontal surface 
tending to resist the motion of the block. The maximum value of this frictional force is 



where ps is the experimentally determined coefficient of static* friction and N is the 
normal (perpendicular) force between the block and the surface, which equals the 
weight ofthe block in this case. As the applied force increases burFstill less than Ff,,,, 
the block will remain static, and Fi will be equal in magnitude to the applied force. The 
block is in static equilibrium. When the applied force becomes greater than Ff,,, the 
frictional force can no longer impede the block's motion, and the block will accelerate 
under the influence of the applied force. Immediately after the block starts its monon, 
the frictional force will decrease from Ff,,, to F~fk, where Ffk is 

Here, k means kinetic, since the block is in motion, and pk, the coefficient of kinetic 
friction,t is less than ps. Like the stauc coefficient of friction, the kinetic coefficient of 
friction is determined experimentally Table 3-1 shows typical coefficients of friction for 
several surfaces in contact. 

Table 3-1. Coeficients of fiction of Coinrnon Surfaces 

Dry glass anglass 0.94 0.4 54% 
Dry'iron an iron 1.1 0.15 86% 

Dry rubber on pavement 0.55 0.4 27% 

~ r y  steel an steel 0.78 0.42 46% 

Dry Teflon an Teflan 0.04 0.04 - 

Dry wood an woad 0.38 0.2 47% 

Ice on ice 0.1 0.03 70% 

Oiled rteel on steel 0.10 0.08 20% 

The data in Table 3-1 are provided here to show you the magnitude of some typical fric- 
tion coefficients and the relative difference between the static and kinetic coefficients 
for certain surface conditions. Other data are available for these and other surface 
conditions in the technical literature (see the bibliography for sources). Note that ex- 
perimentally determined friction coefficient data will vary, even for the same surface 
conditions, depending on the specific condition of the material used in the experiments 
and the execution of the experiment itself. 

Fluid Dynamic Drag 
Fluid dynamic drag forces oppose motion as friction does. In fact, a major component of 
fluid dynamic drag is friction that results from the relative flow of the fluid over (and in 
contact with) the body's surface. Friction is not the only component of fluid dynamic 
drag, though. Depending on the shape of the body, its speed, and the nature of the 

* Stotic here implies that there is no modon; the block is sitting still ulth all forces balancing. 
t The term dynomic is sometimes used here instead of  kinetic. 
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fluid, fluid dynamic drag will have additional components due to pressure variations in 
the fluid as it flows around the body If the body is located at the interface between two 
fluids (like a ship on the ocean, where the two fluids are air and water), an additional 
component of drag w111 exist due to the wave generation. 

In general, fluid dynamic drag is a complicated phenomenon that is a function ofseveral - 

factors. I won't go into detail in this section on all these factors, since I'll be revisiting 
this subject later. However, I do want to discuss how the viscous (frictional) component 
of these drag forces is typically idealized. 

Ideal viscous drag is a function of velocity and some experimentally determined drag 
coefficient that is supposed to take into account the surface conditions of the body, the 
fluid properties (density and viscosity), and the flow conditions. You'll typically see a 
formula for viscous drag f ~ r c e  in the form 

where Ci is the drag coefficient, v the body's speed, and the minus sign means that the 
force opposes motion. This formula is valid for slow-moving objects in a viscous fluid. 
Slow-movingimplies that the flow around the body is laminar, which means that the 
flow streamlines are undisturbed and parallel. 

For fast-moving objects, you'll use the formula for F, written as function of speed 
squared as follows: 

Fast-moving implies that the flow around the object is turbulent, which means that 
the flow streamlines are no longer parallel and there is a sort of mixing effect in the 
flow around the object. Note that the values of Cr are generally not the same for these 
two equations. In addition to the factors mentioned earlier, Ct depends significantly on 
whether the flow is laminar or turbulent. 

Both of these equations are very simplified and are not adequate for practical analysis 
of fluid flow problems. However, they do offer certain advantages in computer game 
simulations. Most obviously, these formulas are easy to implement; you need only 
know the v e l o c ~ t ~  of the body under consideration, which you get from your kinematic 
equations, and an assumed value for the drag coefficient. This is convenient, as your 
game world will typically have many different types of objects of all sizes and shapes 
that would make rigorous analysis of each of their drag properties impractical. If the 
illusion of realism is all you need, and not real-life accuracy, then these formulas might 
be all you need. 

Another advantage of using these idealized formulas is that you can tweak the drag co- 
efficients as you see fit to help reduce numerical instabilities when solving the equations 
of motion while still maintaining the illusion of realistic behavior. 1f real-life ac&racy is 
what you're going for, then you'll have no choice but to consider a more involved (read 
"complicated") approach for determining fluid dynamic drag. 1'11 talk more about drag 
in Chapters 6 through 10. 
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A Note on Pressure 
Many people confuse pressure with force. I've often heard peopl.+ay, when explaining 
a phenomenon, something like "It pushed with a force of 100 pounds per square inch." 
Although you understand what they mean, technically speaking they are referring to 
pressure not force. Pressure is force per unit area; therefore, the unirs are pounds per 
square inch (psi) or pounds per square foot (psf) and so on. Given the pressure, you'll 
need to know the total area acted on by this pressure to determine the resultant force. 
Force equals pressure times area: 

This formula tells you that for constant pressure, the greater the area acted upon, the 
greater the resultant force. If you rearrange this equation, solving for pressure, you'll see 
that pressure is inversely proportional to area; that is, the greater the area for a given 
applied force, the smaller the resulting pressure and vice versa: 

An important characteristic of pressure is that it always acrs normally (perpendicularly) 
to the surface of the body or object it is acting on. This fact gives you a clue as to the 
direction of the resultant force vector. 

I wanted to mention pressure here because you'll be working with pressure to calculate 
forces when you get to the chapters in this book that cover the mechanics of ships, 
boars, and hovercraft. There, the pressures that you'll consider are hydrostatic pressure 
(buoyancy) and aerostatic lift. You'll also take a brief look at buoyancy in this chapter. 

Buoyancy 
You have no doubt felt the effecrs of buoyancy when immersing yourself in the bathtub. 
Buoyancy is why you feel lighter in water than you do in air and why some people can 
float on their backs in a swimming pool. 

Buoyancy is a force that develops when an object is immersed in a fluid. It's a function 
of the volume of the object and the density of the fluid and results from the pressure 
differential between the fluid just above the object and the fluid just below the object. 
Pressureincreases, the deeper yougo in a fluid; thus, the pressure is greater at the bottom 
of an object of a given height than it is at the top of the object. Consider the cube shown 
in Figure 3-2. 

Lets denote the cube's length, width, and height, which are all equal. Further, let h ,  
denote the depth to the top of the cube and hb the depth to the bottom of the cube. The 
pressure at the top of the cube is P, = pgh, ,  which acrs over the entire surface area of 
the top of the cube, normal to the surface in the downward direction. The pressure at the 
bottom of the cube is Pb = pghb,  which acts over the entire surface areaof the bottom of 
the cube, normal to the surface in the upward direction. Note that the pressure acting on 
the sides of the cube increases linearly with submergence, from P, to Pb. Also, note that 
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Figure 3-2. Immersed Cube 

since the side pressure is symmetric, equal, and opposite, the net side pressure is zero, 
which means that the net side force (due to pressure) is also zero. The same is not true of 
the top and bottom pressures, which are obvio'usly not equal, although they areopposite. 

The force acting down on the top of the cube is equal to the pressure at the top of the 
cube times the surface area of the top. This can be written as follows: 

Similarly, the force acting up on the bottom of the cube is equal to the pressure at the 
bottom times the surface area of the bottom: 

Fb = Pb Ab 

Fb = (pghb)(s2) 

The net vertical force (buoyancy) equals the difference between the top and bottom 
forces: 

This formula gives the magnitude of the buoyancy force. Its direction is straight up, 
counteracting the weight of the object. 

There is an important observation to be made here. Notice that (hb - h,) is simply the 
height of the cube, which is s in this case. Substituting s in place of (hb - h,) reveals 
that the buoyancy force is a function of the volume of the cube: 



This is great, since it means that all you need to do to calculate buoyancy is first calculate 
thevolume of the object and then multiply thatvolume by thespecificweight* (pg) of the 
fluid. In truth, that's a little easier said than done for all but the:fmplest geometries. If 
you're dealing with spheres, cubes, cylinders, and the like, then calculating volume is 
easy. However, ifyou're dealing with any arbitrary geometr): then the volume calculation 
becomes more difficult. There are two ways to handle this difficulty. The first way is to 
simply divide the object into a number of smaller objects of simpler geometry, calculate 
their volumes, and then add them all u p  Thesecond way is to usenumerical intenation 
techniques to calculate volume by integrating over the surface of the object. 

You should also note that buoyancy is a function of fluid density, and you don't have 
to be in a fluid as dense as water to experience the force of buoyancy. In fact, there are 
buoyant forces acting on you right now, although they are very small, due to the fact 
that you are immersed in air. Water is many times more dense than air, which is why 
you notice the force of buoyancy when in water and not when in air. Keep in mind, 
though, that for very light objects with relatively large volumes, the buoyant forces in 
air may be significant. For example, consider simulating a large balloon. 

Springs and Dampers 
Springs are structural elements that, when connected between two objects, apply equal 
and opposite forces to each object. This spring force follows Hook's law and is a function 
of the stretched or compressed length of thespring relative to the rest length of the spring 
and the spring constant of the spring. The spring constant is a quantity that relates the 
force exerted by the spring to its deflection: 

Here, F, is the spring force, k, is the spring constant, L is the stretched or compressed 
length of the spring, and r is the rest length of the spring. In the metric system ofunits, 
F, would be measured in newtons (1 N = 1 kg-m/s2), with L and r in meters and k, 
in kg/sZ. If the spring is connected between two objects, it exerts a force of F, on one 
object and -F, on the other; these are equal and opposite forces. 

Dampers are usually used in conjunction with springs in numerical simulations. They 
act like viscous drag in that dampers act against velocity. In this case, if the damper is 
connected between two objects that are moving toward or away from one another, the 
damper acts to slow the relative velocity between the two objects. The force developed by 
a damper is proportional to the relative velocity of the connected objects and a damping 
constant, kd, that relates relative velocity to damping force: 

This equation shows the damping force, Fd, as a function of the damping constant and 
the relative velocity of the connected points on the two connected bodies. In metric 

* Specific weight is density times the acceleration due to giaviry. Typical unirs are ib/fr3 and ~ l m ' .  
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units, where the damping force is measured in newtons and velocity in m/s, !q has units 
of kgls. 

Typicallx springs and dampers are combined into a single spring-damper element in 
which a single formula is used to represent the combined force. Using vector notation, 
the formula for a spring-damper element connecting two bodies is as follows: 

Here, F I  is the force exerted on body 1, and the force F2 exerted on body 2 is 

L is the length of the spring-damper (L, not in bold print, is the magnitude o l  the 
vector L), which is equal to the vector difference in position between the connected 
points 011 bodies 1 and 2.'$ the connected objects are particles, then L is equal to rhe 
position of body 1 minus the position of body 2. Similarly, vl and vz are the velocities of 
the connected points on bodies 1 and 2. The quantity (vl - vz) represents the relative 
velocity between the connected bodies. 

Springs and dampers are useful when you want to simulate collections of connected 
particles or rigid bodies. The spring force provides the structure, or glue, that holds 
the bodies together (or keeps them separated by a certain distance), while the damper 
helps smooth out the motion between the connected bodies so that it's not too jerky 
or springy These dampers are also very important from a numerical stability point 
oi view in that [hey help keep your simulations from blowing up. I'm getting a little 
ahead of myself here, bur I'll show you how to use these spring-dampers in a real-time 
simulation of cloth in Chapter 1% 

Force and Torque 
I need to make the distinction here between force and torque.' Force is that which causes 
linear acceleration, while torque is that which causes rotational acceleration. Torque is 
force times distance. Specifically, to calculate the torque applied by a force acting on an 
object, you need to calculate the perpendicular distance from the axis of rotation to the 
line of action of the force and then multiply this distance by the magnitude of the force. 
This calculation gives the magnitude of the torque. Typical units for force are pounds, 
newtons, and tons. Since torque is force rimes a distance, its units take the form of a 
length unit times a force unit such as foot-pounds, newton-meters, or foot-tons. 

Since both force and torque are vector quantities, you must also determine the direction 
of the torque vector. The force vector is easy to visualize: its line of action passes through 
the point of application of the force with its direction determined by the direction in 
which the force is applied. As a vector, the line of actiou of torque is along the axis of 
rotarion, with the direction determined by the direction of rotation and the righthand 
rule (see Figure 3-3). The righthand rule is a simple trick to help keep track of vector 

* Another common rerm for torque is moment 



Figure 3-3. Force and Torque 

directions-in this case the torque vector. Take your right hand and pretend to curl 
your fingers around the axis of rotation with your finger tips pointing in the direction 
of rotation. Now extend your thumb, as though you are giving a thumbs up, while 
keeping your fingers curled around the axis. The direction in which your thumb is 
pointing indicates the direction of the torque vector. Note that this makes the torque 
vector perpendicular to the applied force vector, as shown in Figure 3-3. 

I said earlier that the magnitude of torque is found by multiplying the magnitude of 
the applied force times the perpendicular distance berween the axis of rotation and the 
line of action of the force. This calculation is easy to perform in two dimensions, where 
the perpendicular distance (d in Figure 3-3) is readily calculable. 

However, in three dimensions you'll want to be able to calculate torque by knowing 
only the force vector and the coordinates of its point of application on the body relative 
to the axis of rotation. You can accomplish this by using the following formula: 

The torque, M, is thevector cross product of the positionvector, r, and the forcevector, F. 

In rectangular coordinates you can write the distance, force, and torque vectors as 
follows: 

r = x i + y j + z k  
F = F,i + F,j + F,k 

M = M,i + M,j + M,k 

The scalar components of r (x, y, and 2) are the coordinate distances from the axis of 
rotation to the point of application of the force, F. The scalar components of the torque 
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vector, M, are defined by the foilowing: 

M, = yF, - zF,  

M, = zF, - xF, 
M, = xF,. - yF, 

Consider the rigid body shown in Figure 3-4 acred upon by the force F at a point away 
from the body's center of mass. 

'orid Axes 
X 

L 

Figure 3-4. Torque Example 

In this example F, a ,  and b are given and are as iollo\vs: 

F = (-90 1b)i + (156 1b)j - (0)k 

a = 0.66tr 

b = 0.5E ir 

Calculate the torque about the body's center oi mass due to the force F. 

The firsc step is to put together the distance vector from the point of application of F to 
the body's center of mass. Since the local coordinates a and b are given, r is simply 

Now, using the formula M = r x F (or the formulas ior the components of [he torque 
vector shown earlier), you can write 



Note that the x- and y-components of the torque vector are zero; therefore, the torque 
moment is pointing directly along the z-axis. The torque vector would be pomting out 
of the page of this book in this case. - . P  i 

In dynamics you need to consider the sum, or total, of all forces acting on an object 
separately from the sum of all torques acting on a body When summing forces, you 
simply add, vectorally, all of the forces without regard to their point of application. 
However, when summing torques, you must take into account the point of application 
of the forces to calculate the torques as shown in the previous example. Then you can 
take the vector sum of all torques acting on the body 

When considering rigid bodies that are not physically constrained to rotate about a 
fixed axis, any force acting through the body's center of mass will not produce a torque 
on the body about its center of gravity In this case the axis of rotation passes through 
the center of mass of the body, and the vector r would be zero (all components zero). 
When a force acts through a point on the body some distance away from its center of 
mass, a torque on the body will develop, and the angular motion of the body will be 
affected. Generally, field forces, forces at a distance, are assumed to act through a body's 
center of mass; thus, only the body's linear motion will be affected unless the body is 
constrained to rotate about a fixed point. Other contact forces, however, generally do 
not act through a body's center of mass (they could hut aren't necessarily assumed to) 
and tend to affect the body's angular motion as well as its linear motion. 
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CHAPTER 4 

Recall that kinetics is the study of the motion of bodies, including the forces that act on 
them. It's now time that I combine the material presented in the earlier chapters, namely, 
kinematics and forces, to study the subject of kinetics. As in the chapter on kinematics, 
I'll first discuss particle kinetics and then go on to discuss rigid body kinetics. 

In kinetics the most important equation that you must consider is Newton's second 
law: 

When rigid bodies areinvolved, you must also consider that the forces actingon the body 
will tend to cause rotation of the body in addition to translation. The basic relationship 
here is 

where M, is the vector sum of all moments (torques) acting on the body, I is the body 
moment of inertia tensor, and a is the angular acceleration. 

Collectively these two equations are referred to as the equations of motion 

You will encounter two types of problems in kinetics. One type is when you know the 
body's accelerarion or it can be readily determined by using kinematics, and you must 
solve for the force($ acring on the body. The other type is when you know the force(s) 
acting on the body or you can estimate these, and you must solve for the resulting 
acceleration of the body (and subsequently its velocity and displacement). Obviously, 
it's this second type of problem that is most applicable to game physics, so that's 
primarily what I'll be discussing from here on. 

Let me stress that you must consider the sum of all of the forces acting on the body 
when solving kinetics problems. These include all applied forces and all reaction 
forces. Aside from the computational difficulties in solving the equations of motion, 
one of the more challenging aspects of kinetics is identifying and properly account- 
ing for all of these forces. In the next several chapters you'll look at speciiic prob- 
lems in which the particular forces involved will be investigated. For now, and for the 



purpose of generality, let's stick with the idealized forces introduced in the previous 
chaptet. 

The general procedure for solving kinetics prohlems of interest tbl':s is as follows: 

1. Calculate the body's mass properties (mass, center of mass, and moment of inertia). 
2. Identify and quantify all forces and moments acting on the body 
3. Take the vector sum of all forces and moments 

4. Solve the equations of motion for linear and angular accelerations. 
5. Integrate with respect to time to find linear and angular velocity 

6. Integrate again with respect co time to find linear and angular displacement. 

This outline makes the solution to kinetics prohlems seem easier than it actually is 
because there are a number of complicating factors that you'll have to overcome. For 
example, in many cases the forces acting on a body are functions of displacement, 
velocity, or acceleration. This means that you'll have to use iterative techniques to solve 
the equations of monon. Further, since you most likely will not he able to derive closed- 
form solutions for acceleration, you'll have to numerically integrate to estimate velocity 
and displacement at each instant of time under considerauon. These computational 
.aspects will be addressed further in Chapters 11 through 17. 

Particle Kinetics in 2D 
As in particle kinematics, in particle kinetics you need to consider only the linear 
motion of the particle. Thus, the equations of motion will consist of equations of the 
form F = ma, in which monon in each coordinate direction will have its own equation. 
The equations for 2D particle motion are x F, = ma, 

x F, = ma, 

where C F, means the sum of all forces in the x-direction, C F, means the sum of 
all forces in the y-direction, a, is the acceleration in the x-direction, and a, is the 
acceleration in the y-direction. 

The resultant force and acceleration vectors are 
a = a,i + a,j 

Let's look at a simple illustrative example. A ship floating in water, initially at rest, 
starts up its propeller, generanng a thrust T, which starts the ship moving forward. 
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Assume that the ship's forward speed is slow and the resistance to its motion can be 
approximated by 

where R is the total resistance, C is a drag coefficient, v is the ship speed, and the - 

minus sign indicates that this resistive force opposes the forward motion of the ship. 
Find formulas for the ship's speed, acceleration, and distance traveled as functions of 
time, assuming that the propeller thrust and resistance force vectors act on a line of 
action passing through the center of gravity of the ship. (This assumption lets you treat 
the ship as a particle instead of a rigid body) 

The first step in solving this problem is to identify all of the forces acting on the 
ship. Figure 4-1 shows aReeeP-body diagram of the ship with all of the forces acting on 
it, namely; the propeller thrust, T; resistance, R; the ship's weight, W, and buoy- 

Figure 4-1. Free-Body Diagram of Ship 

Notice here that the buoyancy force is exactly equal in magnitude to the ship's weight 
and opposite in direction; thus, these forces cancel each other, and there will be no 
motion in the y-direction. This must be the case if the ship is to stay afloat. This 
observation effectively reduces the problem to a one-dimensional problem with motion 
in the x-direction only where the forces acting in the x-direction are the propeller thrust 
and resistance. 

Now you can write the equation (for motion in thex-direction), using Newton's second 
law, as Follows: 

T - - = m a  

T - (Cv) = ma 

where a is the acceleration in the x-direction and v is the speed in the x-direction 

{I. 
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The next step is to take this equation of motion and integrate it to derive a formula for 
the speed of the ship as a function of time. To do this, you must make the substitution 
a = dv/dt, rearrange, integrate, and then solve for speed as followq? 

T - (Cv) = m(dv/dtj 

d t  = [m/(T - Cv)] dv 

where vl is the initial ship speed (which is constant) and v2 is the ship speed at rime 
t. v2 is what you're after here, since it tells you how fast the ship is traveling at any 
instant of time. 

Now that you have an equation for speed as a function of rime, you can derive an 
equation for displacement (distance traveled in this case) as a function of time. Here, 
you'll have to recall the formula v d t  = ds, substitute the above formula for speed, 
integrate, rearrange, and solve for distance traveled. These steps are shown below: 
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Finally, you can write an equation for acceleration by going back to the originalequation 
of motion and solving for acceleration: 

T - (Cv) = ma 

a = (T - (Cv))/m 

wherev = v2 = (TIC) - ~C(~I" ' )~(T/C - v,) 

Insummary, theequations forvelocity, distance traveled, and acceleration are as follows: 

To illustrate the motion bf the ship further, I've plotted the ship's speed, distance 
traveled, and acceleration versus time as shown in Figures 4-2,4-3, and 4-4. To facilitate 
these illustrations, I've assumed the following: 

The initial ship speed and displacement are zero at time zero. 

The propeller thrust is 20,000 thrust units. 

The ship's mass is 10,000 mass units. 

The drag coefficient is 1000. 

You'll notice that the ship's speed approaches the steady state speed of 20 speed units, 
assuming that the propeller thrust remains constant. This corresponds to a reduction 
in acceleration from a maximum acceleration at time zero to no acceleration once the 
steady speed is achieved. 

1 4 7 10 1 3 ' 1 6  19 22 25 28 31 34 37 40 43 
Time 

Figure 4-2. Speed versus Time 
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- 
Figure 4-3. Distance versus Time 

- 

- 
Figure 4-4. Acceleration versus Time 
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This example illustrates how to set up the differential equations of motion and integrate 
them to find velocity, displacement, and acceleration. In this case you were able to find 
a closed-form solution; that is, you were able to integrate the equations symbolically 
to derive new ones. You could do this because I imposed enough constraints on the 
problem to make it manageable. But you can readily see that if there were more forces 
acting on the ship, or if the thrust were not held constant but was some function of 
speed, or if the resistance were a function of speed squared, and so on, the problem 
would get increasingly complicated, making a closed-form solution much more difficult 
if possible at all. 

Particle Kinetics in 3D 
As in kinematics, extendink the equations of motion for a particle to three dimensions 
is easy to do. You simply need to add one more component and will end up with three 
equations as follows: 

x Fx = ma, 

x F, = ma, 

The resultant force and acceleration vectors are now 

To hammer these concepts home, I want to present another example. 

Let's go back to the cannon program discussed in Chapter 2. In that example I made 
some simplifying assumptions so that 1 could focus on the kinematics of the problem 
without complicating it too much. One of the more significant assumptions 1 made was 
that there was no drag acting on the projectile as it flew through the air. Physically, this 
would be valid only if the projectile were moving through a vacuum, which of course, 
is unlikely here on the earth. Another significant assumption I made was that there was 
no wind to act on the projectile, affecting its course. These two considerations, drag 
and wind, are important in real-life projectile problems, so to make this example a little 
more interesting, and more challenging to the user if this were an actual game, I'll now 
go ahead and add these two considerations. 

First, assume that the projectile is a sphere and that the drag force acting on it as it flies 
through the air is a function of some drag coefficient and the speed of the projectile. 
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This drag force can be written as follows: 

Fd = -Cdv :.,9 
Fd = -Cdv,i - Cdvyj - CdvZk 

where Cd is the drag coefficient, v is the velocity of the projectile (v,, v,, and v, are 
its components), and the minus sign means that this drag force opposes the projectile's 
motion. Actually, I'm cheating a bit here, since in reality the fluid dynamic drag would 
be more a function of speed squared. I'm doing this here to facilitate a closed-form 
solution. 

Second, assume that the projectile is subjected to a blowing wind and that the force of 
this wind on the projectile is a function of some drag coefficienr and the wind speed. 
This force can be written as follows: 

F, = -C,v, 

F, = -C,v,,i - C,v,,k 

where C, is thedrag coefficienr, v, is the windspeed, and the minus sign means that this 
force opposes the projectile's motion when the wind is blowing in a direction opposite 
of the projectile's direction of motion. When the wind is blowing with the projectile, say, 
from behind it, then the wind will actually help the projectile along instead of impede 
its motion. In general, Cu is not necessarily equal to Cd shown in the drag formula. 
Referring to Figure 2-3, I'll define the wind direction as measured by the angle y. The x- 
and z-componen~ of the wind force can now be written in terms of the wind direction, 
y,  as follows: 

F,, = F, cosy = -(C,v,) cos y 

F,, = F, cosy = -(C,v,) sin y 

Finally, let's apply a gravitational force to the projectile instead of specifying the effect 
of gravity as a constant acceleration, as was done in Chapter 2. This allows you to 
include the force due to gravity in the equations of motion. Assuming that the projectile 
is relatively close to sea level, the gravitational force can be written as 

Fg = -mgj 

where the minus sign indicates that it acts in the negative y-direction (pulling the 
projectile toward the earth), and g on the right side of this equation is the acceleration 
due to gravity at sea level. 

Now that all of the forces have been identified, you can write the equations of motion 
in each coordinate direction: 

z F, = -F,, - Fdx = m(dv,/dt) z F, = -Fdy - Fgy = m(dvy/dt) 

z F, = -F,, - Fd, = m(dv,/dt) 
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Note here that I already made the substitution dvldt  for acceleration in each equation. 
Following the same procedure shown in the previous section, you now need to integrate 
each equation of motion twice: once to find an equation for velocity as a function of 
time and again to find an equation for displacement as a function of time. As before, 
I'll show you how this is done component by component. 

You might be asking yourself now, "Where's the thrust force from the cannon that 
propels the projectile in the firsc place?" In this example I'm looking specifically at the 
motion of h e  projectile after it has left iLe muzzle of the cannon where there is no longer 
a thrust force acting on the projectile (it isn't self-propelled). To account for the effect of 
the cannon thrust force, which acts over a very short period of time while the projectile 
is within the cannon, you have to consider the muzzle velocity of the projectile when 
it initially leaves the cannon. The components cf the muzzle velocity in the coordinate 
directions will become initial velocities in each direction, and they will be included 
in the equations of motion once they have been integrated. The initial velocities will 
show up in the velocity and displacement equations just as they did in the example in 
Chapter 2. You'll see this in the following sections. 

The firscstep is to make the appropriate substitutions for the force terms in the equation 
of motion and then integrate to find an equation for velocity: 

-Fw, - Fdr = m(dv , / d t )  

- ( C , v , ,  cos y )  - C,<v, = m d v , / d t  

d t  = m dv,/[-(C,,v:, cosy) - Cdv,] 

Lt d t  = l,:" -m/[(C,,v,,  cos y )  + CAW,] d v ,  

To get an equation for displacement as a function of time, you need to recall the equation 
v d t  = d s ,  make the substitution for v (using the above equation), and then integrate 

{I," 
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one more nme: 

v,dt = ds, 
",,? 

( l / ~ d ) [ e ( - ~ ~ / ~ ) ~ ( c , v ,  cos y + Cdvr,) - (cwvu cosy)] dt = dsx 

Yes, these equations are ugly Jusc imagine if I hadn't made the simplifying assumption 
that drag is proportional to speed and not speed squared! You would have ended up 
with some really nice equations with an arctan term or two thrown in. 

For the y-components you need to follow the same procedure shown earlier for the 
x-components, but with the appropriate y-direction forces. Here's what it looks like: 

Now that you have an equation for velocity, you can proceed on to get an equarion for 
displacement as before: 

Okay; that's two down and only one more to go. 

With thez-component you get a break. You'll notice that the equations of motion for the 
x- and z-components look almost the same with the exception of the x and z subscripts 
and the sine versus cosine terms. Taking advantage of this fact you can simply copy the 
x-component equations and replace the x subscript with a z and the cosine terms with 
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sines and be done w t h  it: 

Cannon Revised 
Now that you have some new equations for the projectile's displacement in each 
coordinate direction, you can go to the cannon example source code and replace the 
old displacement calculadqn formulas with the new ones. Make the changes in the 
D o S i m u l a t i o n  function as foliows: 

/ /  new l o c a l  va r iab les :  
double sx l ,  vx l ;  
double sy l ,  vy l ;  
double sz l ,  vz l ;  

/ /  Now we can c a l c u l a t e  t h e  p o s i t i o n  vec to r  a t  t h i s  t ime  

/ /  Old  p o s i t i o n  vec to r  comented out :  
/ / s . i  = Vrn * cosX * t ime  + xe; 
/ /s . j  = (Yb + L * cos(A1pha ' 3.141180)) + (Vm ' cosy * t ime) 
I/ (0.5 g * t ime  t ime); 
//s.k = Vm * cosZ * t ime + ze; 

/ /  New p o s i t i o n  vec to r  ca lcu la t ions :  
s x l  = xe; 
v x l  = Vm ' cosX; 
s y l  = Yb + L ' cos(A1pha ^ 3.14/180); 
v y l  = Vm * cosy; 

v x l )  - (Cw ' Vu ' cos(GammaW * 3.14/180) ' time) I Cd ) - 
( (mlCd) ' ((-Cw ' Vu ' cos(CammaW ' 3.141180))ICd - v x l )  ) + sx l ;  

{I,. 
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s . j  = s y l  + ( - ( v y l  + (rn * g)/Cd) * (rnlCd) * exp(-(Cd*time)/m) 
(m ' g * t ime)  / Cd ) t ( (m/Cd) * ( v y l  t (m . g)/Cd) ); 

v z l )  - (Cw * Vw * sin(GammaW * 3.141180) * t i m e )  / Cd ) - 
( (rn/Cd) * ((-Cw * Vw * sin(GammaW ' 3.14/180))/Cd - v z l )  ) + sz l ;  

To take into account the cross wind and drag, you'll need to add some new global 
variables to store the wind speed and direction, the mass of the projectile, and the drag 
coefficients. You'll also have to add some controls in the dialog window so that you can 
change these variables when you run the program. Figure 4-5 shows how 1 added these 
interface controls in the upper right corner of the main window 

I 
Figure 4-5. Revised Connon Exnmple Screen Shot 

I also added these lines to the DemoDlgProc function to handle the new wind speed and 
direction values: 

I /  
LRESULT CALLBACK DemoDlgProc(HWND hDlg, UINT message, WPARlVl WParam, LPARlVl 1Param) 
/I .................................................................................. 
/I 
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I 

case WM-INITDIALOG: 

I1 New variables: 
sprintf( str, "%f", m ); 
SetDlgItemText(hDlg, IDCLM, str); 

sprintf( str, "%f", Cd ); 
SetDlgItemText(hDlg, IDCLCD, str); 

sprint+( str, "%f", Vw ); 
SetDlgItemText(hDlg, IDCJW, str); 

sprintf( str, "%f", GarnrnaW ); 
SetDlgItemText(hDlg, IDC-CAMMAW, str); 

sprintf( str, "%fn, Cw ); 
SetDlgItemText(hDlg, IDCLCW, str); 

case IDC-REFRESH: 

I1 New variables: 
GetDlgItemText(hDlg, IDC-M, str, 15); 
m = atof(str); 

GetDlgItemText(hDlg, IDCLCD, str, 15); 
Cd = atof(str); 

GetDlgItemText(hDlg, IDC-VW str, 15); 
Vw = atof(str); 

GetDlgItemText(hDlg, IDC-GIV.IMAW, str, 15); 
GarnmaW = atof(st1); 

GetDlgItemText(hD1g. IDCLCW, str, 15); 
Cw = atof(str); 

case IDC-FIRE: 

I1 New variables: 
GetDlgItemText(hDlg, IDCLM, str, 15); 
m = atof(str); 

GetDlgItemText(hDlg, IDCLCD, str, 15); 
Cd = atof(str); 
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GetDlgItemText(hDlg, IDC-W, str, 15); 
Vw = atof(str); 

GetDlgItemText(hDlg, IOC-GAMMW, str, 19f; 
GamaW = atof(str); 

GetDlgItemText(hDlg, IDC-CW, str, 1 5 ) ;  
Cw = atof(str); 

Afterplayingwith this example program, you should readily see that the trajectory of the 
projectile is noticeably different from that typically obtained in the original example. 
By adjusting the values of wind speed, direction, and the drag coefficients, you can 
dramatically affect the projectile's trajectory If you set the wind speed to zero and the 
drag coefficients to 1, the trajectory will look like that obtained in the original example, 
in which wind and drag were not taken into account. Be careful though; don't set the 
drag coefficient to zero because this will result in a divide-by-zero error. I didn't put 
the exception handler in the program, but you can see that it will happen by looking at 
the displacement vector formulas where the drag coefficient appears in the denominator 
of several terms. 

From a user's perspective, if this were a video game, the problem of hitting the target 
becomes much more challenging when wind and drag are taken into account. The wind 
element is particularly interesnng because you can change the wind speed and direction 
during game play, forcing the user to pay careful attention to the wind in order to hit 
the target accurately 

Rigid Body Kinetics 
You already know from your study of kinematics in Chapter 2 that dealing with rigid 
bodies adds rotation, or angular motion, into the mix of things to consider. As I stated 
earlier, the equations of motion now consist of a sec of equations relating forces to linear 
accelerations and another set of equations relating moments to angular accelerations. 
Alternatively, you can think of the equations of motion as relating forces to the rate of 
change in linear momentum and moments to the rare of change in angular momentum 
as discussed in Chapter 1. 

As in kinematics, the procedure for dealing with rigid body kinetics problems involves 
two distinct aspects: tracking the translacion of the body's cencer of mass, where the 
body is treated as a particle, and tracking the body's rotation, in which you'll utilize 
the principles of local coordinates and relative angular velocity and acceleration as 
discussed in Chapter 2. Real15 the only difference between rigid body kinematics and 
kinetics problems is that in kinetics problems we have forces to consider (including 
their resulting moments). 



The vector equations are repeated here for convenience: 

where, in nvo dimensions, 

Going from two-dimensional particle problems to two-dimensional rigid body prob- 
lems invol\,es only the addition of one more equation. This equation is, of course, the 
moment equation relatidg the sum of all moments acting on the body to the body's 
moment o i  inertia and its angular acceleration. In plane motion the axis of rotation of 
the rigid body is always perpendicular to the coordinate plane. And since there is only 
one axis o i  rotation, there is only one inertia term and one angular acceleration term to 
consider. Thus, you can write 

Mcg = Iff 

where we is the total moment and is calculated by using the formulas discussed in the 
section eititled "Force and Torque" in Chapter 3 and I is calculated about the axis of 
rotation using the techniques discussed in the section entitled "Mass, Center of Mass, 
and Moment of Inertia" in Chapter 1. 

In their component forms, the set of equations of motion for two-dimensional kinetics 
problems are 

1 F' = ma, 

IF,  =may 

Since these equations indicate linear motion on the xy-plane, the angular acceleration 
will be about the z-axis perpendicular to thexy-plane. Likewise, the moment of inertia, 
I ,  will be taken about the z-axis. 

Recall (from Chapter 3) that moment is calculated by taking the cross product of the 
position vector for the force under consideration and the force vector. This means that, 
unlike in particle kinetics, you now have to keep track of exactly where on the body 
each force is applied. This is best illustrated with an example. 

Consider the box of uniform density shown in Figure 4-6. Uniform density means 
that its center of gravity is at the box's geometric center. Find the value of the mini- 
mum force, F p ,  applied at the upper edge of the box, required to start tipping the box 
over. 

{I,. 
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I 
Figure 4-6. Box Free-Body Diagram 

In this figure, Fp is the applied force, R1 and Rz are the reaction forces at supports 1 
and 2, Fn and FQ are the forces due to friction at points 1 and 2, and mg is the weight 
of the box. 

This is an example of the type of problem in which you know something about the 
motion of the object and have to find the value of one or more forces acting on it. To 
find the value of the force that will be just enough to start the box tipping, you need to 
look at the instant when the reaction force at support 2  is zero. This implies that all of 
the weight of the box is now supported at point 1 and the box is starting to rotate over. 
At this instant, just before it starts to rotate, the angular acceleration of the box is zero. 
Note that the box's linear acceleration isn't necessarily zero; that is, you can push on 
the box and it may slide without actually tipping over. 

The equations of motion for this problem are 

Rewriting the second equation (above) when Rz is zero shows that RI is equal to the 
weight of the box. Further, when Rz is zero, the R 2 ( w / 2 )  term drops out of the moment 
equation, which can be rewritten by solving for Fp in terms of R1. Note that when R2 
goes to zero, so does Fh. After some algebra the equation looks as follows: 
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Here, you can see that the tipping force, applied to the upper edge, is proportional to 
the weight and size of the box (actually, the ratio of its width to its height), which you 
can readily appreciate from a physical point ofview The friction term is impprtant here 
because the existence of the friction force actually helps the box to tip. If &e box were 
on a frictionless surface, it would tend to slide rather than tip. 

Let's take a look at another example. Consider a circular cylinder on an inclined plane, 
as shown in Figure 4-7. If the cylinder is set at the top of the plane and released, it will 
start rolling down the plane. Develop equations for the cylinder's linear acceleration 
and angular velocity as it rolls dc ~.n. Note that the cylinder will roll because of the 
torque created by the friction force that's developed between the cylinder and the plane. 
If this were a frictionless problem, then the cylinder would not roll down the plane; it 
would simply slide down Jle plane, and its angular velocity would be zero. 

i mg sine 

Figure 4-7. Cylinder on an Inclined Plane 

In this problem I've set up the coordinate system with the x-axis parallel to the inclined 
plane. This makes the equations cleaner and allows you to effectively eliminate the 
y-component, since the cylinder is not moving into or away from (perpendicularly) 
the plane. Setting up the equations of motion in the y-direction indicates that the 
two y-direction forces, in this case the component of the wigh t  of the cylinder in the 
y-direction and the reaction force normal to the plane, are equal and opposite and thus 
cancel out: 

That was easy. Now look at the forces in the x-direction. The equation of motion is 

C F, = (mg sin 8) - Fr = ma, 

where Fr is the force due to friction, and a, is the linear acceleration (in the x-direction) 
of the center ofgravity of the cylinder. Assuming that the cylinder rollswithout slipping, 
the friction force is equal to psN ,  where p,  is the coefficient of static friction and N is 
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the normal reaction force between the cylinder and the plane.* Making this substitution 
for Ff and solving for a, yields 

*,,? 
(mg sm 6) - fis N = max i 

a, = g(sin6 - fiscosB) 

Notice that this acceleration is constant for a given plane angle and coefficient of 
friction. 

To find the angular velocity, you need to sum all of the moments (torques) about the 
center of gravity, make the subs t i t~ ion  d o l d t  for or,  integrate and solve for o, the 
angular velocity: 

M,, = Ffr  = I,,o 

Ff r = I,, d o l d t  

You could have skipped the integration here by observing that this is a constant accel- 
eration problem and recalling the equation (from Chapter 2) 0 2  = ort + 01. 

These two examples illustrate a very important aspect of rigid body kinetics: you must 
consider the point of application of forces in addition to their magnitudes and directions 
to properly account for angular motion. 

In the case of plane motion, or 2D motion, of rigid bodies as discussed here, you are , 
able to readily set up the equations of motion and investigate both the linear and an- 
gular motion of the body In generalized 3D motion the linear motion of rigid bodies 
is no different from that of particles; you simply track the motion of the rigid body's 
center of gravity. In three dimensions, however, rotation gives us some grief, as it is no 
longer a simple matter of treating rotation about a single axis as in plane motion. In 
3D you'll have to consider rotation about any axis, which leads to some difficulties in 
representing arbitrary rotations (Euler angles won't work for us) as well as to compli- 
cations determining moments of inertia for rotation about any axis. I'll discuss these 
issues in Chapters ll through 15. 

* If rhe cylinder were rolling and slipping. rhen you would use the coefficient of kineric friction instead oi  the 
mefficienr oisraric friction. 
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CHAPTER 5 

Now that you understand the motion of particles and rigid bodies, you nexr need to 
consider what happens when they run into each other. That's what I'll address in this 
chapter. Specifically, I'll show you how to handle particle and, more interestingly, rigid 
body collision response. 

Before moving forward, I need to make a distinction between collision detection and 
collision response. Collision detection is a computational geometry problem involving 
the determination of whether and where two or more objects have collided. Collision 
response is a physics problem involving the motion of two or more objects after they 
have collided. Although the two problems are intimately related, in this chapter I'll be 
focusing solely on the problem of collision response. su~fo:~.  ,r., , :..... > '  , . I.yr;.,,-r. 1. fin,... . , c .- " W .  

?C I must say, however, that collision detection is not to be taken lightly; it is e c u a l  
+of any real-time simulation in which objects are not s u p e d  to be able to 
pass through each other. Your collision response algorithms rely on the results of your 
collision detection algorithms to accurately determine the appropriate response to any 
collision; therefore, youshould take care in makingsure yourcollisiondetection schemes 
are accurate and reliable. That said, collision detection is no easy task. I personally find 
it much more difficult to implement robustly than the physics aspects of rigid body 
simulations. For game applications, speed is also a major issue, as I'm sure you are 
aware, and very accurate collision detection can be slow. For the sake of speed and 
simplicity I'll use a bounding sphere scheme along with bounding box and vertex edge 
and vertex face collision detection schemes in the examples that you'll see later in this 
book. I'll talk more about this subject in Chapters I3 and 16 when I show you some 
example simulations. 

irratu,,~ r ,  ?I*;) > n-,? 
My treatment o r ~ g ~ d  body collision response in this chapter is based on classical 
(Newtonian) impact principles. Here, bodies that are colliding are treated as rigid irres- 
pective of their construction and material. As in earlier chapters, the rigid bodies dis- 
cussed here do not change shape even upon impact. This, of course, is an idealization. 
You know from your everyday experience that when objects collide, they dent, bend, 
compress, or crumple. For example, when a baseball strikes a hat, the ballmay compress 
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as much as three quarters of an inch during the millisecond ofimpact. Notwithstanding 
this reality, we'll rely on well established analytical and empirical methods to approxi- 
mate rigid body collisions. :$J 

This classical approach is widely used in engineering machine design, analysis, and 
simulations; however, for rigid body simulations there is another class of methods, 
known as penalty methods, - at your disposal.' In penalty r n + o ~ ~ ~ e & c e a f j ~ ~ c t  
is represented by a tempsar). :p@@at g~~~~~~.m~res~.~PpP~e.t.weennnnthe~Bjec~s at"$: 
'point of impact. This spring compresses over a very short time and applies equal and 
bpposlte fo?FiZto the colliding bodies to simulate collision response. Proponents of this 
method say that it has the advantage of ease of implementation. However, one of the 
difficulties encountered in its irnplementacion is numerical instability There are other 
arguments for and against the use of penalty methods, but I won't get into the debate 
here. Instead, I've included several references in the bibliography for you to review if 
you are so inclined. 

Impulse-Momentum Principle 
Imulse  is defined as a force chat a c ~ ~ w ~ ~ _ a , y e ~ y ~ h , ~ ~ f  geriod of time. For example, the 
force exerted on a bullet when fired from a gun is an impulse force. The collision forces 
between two colliding objects are impulse forces, as when you kick a football or hit a 
baseball with a bat. 

More specifically, impulse is a vector quantity equal to the change in momentum. The 
so-called impulse-momentum principle says that the change in moment is equal to the 
applied impulse. For problems involving constant mass and moment of inertia, you can 
write 

Linear impulse = F dt = m(v+ - v-) 

Angular impulse = M dt = I(w+ - w - )  P 
In these equations F is the impulsive force, M is the impulsive torque (or moment), t 
is time, v is velocity, the subscript - refers to the instant just prior to impact, and the 
subscript + refers to the instant jusc after impact. You can calculate the average impulse 
force and torque using the following equations: 

* 1 use the classical approach in chis book and am menrioning penalty methods only m ler you know that 
the method I'm going to show is nor the only one. Roughly speaking, the "penalty" in methods" 
refers to the numericalspring mnrranrs, which are usually large, chat areused to represent <he sriffners of the 
springs and thus the hardness (or roirness) of the mlliding bodies. Thaeconstanrs are used in the system oi 
equations of motion desciibingche motion of ail rhe badier under consideration before and after the collision. 
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Consider this simple example: A 150-g (0.01028-slug) bullet is fired from a gun at a 
muzzle velocity of 2480 fds. The bullet takes 0.008 s to travel through the 24-in. rifle 
barrel. Calculate the impulse and the average impulsive force exerted on the bullet. In 
this example the bullet's mass is a constant 150 g, and its initial velocity is zero; thus,.its 
initial momentum is zero. Immediately after the gun is fired, the bullet's momentum is . 

its mass times the muzzle velocity of 2480 ft/s, which yields a momentum of 25.5 slug- 
fds. The impulse is equal to the change in momentum and is simply 25.5 slug-ft/s. The 
average impulse force is equal to the impulse divided by the duration of application of 
the force, or, in this case, 

Average impulse force = (25.5 slug-ft/s)/(0.0008 s) 
Average impulse force = 3187 1b 

This is a simple but impdrtant illustration of the concept of impulse, and you'll use 
the same principle when dealing with rigid body impacts. During impacts, the forces oi 
impact are usually very high, and the duration of impact is usually very short. When 
two objects collide, each applies an impulse force to the other; these forces are equal in 
magnitude but opposite in direction. In the gun example the impulse that is applied to 
the bul1e;to set it in motion is also applied in the opposite direction to the gun to give 
you a nice kick in the shoulder. This is simply Newton's third law in action. 

Impact 
In addition to the impulse momentum principle discussed in the previous section, our 
classical impact, or collision response, analysis relies on another fundamental principle: 
Newton's principle of conservation of momentum, which states that when a system of 
rigid bodies collide, momentum is conserved. This means that for bodies of constant 
mass, the sum of their masses times their respective velocities before the impact is equal 
to the sum of their masses times their respective velocities after the impact: 

Here, m refers to mass, v refers to velocity, subscript 1 refers to body 1, subscript 2 refers 
to body 2, subscript - refers to the instant just before impact, and subscript + refers to 
the instant just after impact. 

A crucial assumption of this method is that dur~ng the instant of impact, the only force 
that matters is the impact force; all other forces are assumed to be negligible over that 
very short duration. Remember this assumption because later, in Chapter U, I'll rely 
on it when implementing collision response in an example 2D real-nme simulation. 

I've already stated that rigid bodies don't change shape during impacts, and you know 
from your own experience that rial objects do change shape during impacts. What's 
happening in real life is that kinetic energy is being converted to strain energy, causing 
the objects to deform. When the deformation in the objects is permanent, energy is lost, 
and thus kinetic energy is not conserved. 
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Kinetic Energy 
- . B  .I 

Kinetic energy is a form of energy associated with moving bodies. Kinetic energy is 
equal to the energy required to accelerate the body from rest, which is also equal to the 
energy required to bring the moving body to a stop As you might expect, kinetic energy 
is a function of the body's speed, or velocity, in addition to its mass. The formula for 
linear kinetic energy is 

Angular, or rotational, kinetic energy is a function of the body's inertia and angular 
velocity: 

KEmgular = ( 1 / 2 ) I o 2  

Conservation of kinetic energy between two colliding bodies means that the sum of 
kinetic energy of both bodies before impact is equal to the sum of the kinetic energy of 
both bodies after impact: 

Collisions that involve losses in kinetic energy are said to be inelastic, or plastic, colli- 
sions. For example, if you throw two clay balls against each other, their kinetic energy 
is converted to permanent strain energy in deforming the clay balls, and their collision 
response, that is, their motion after impact, is less than spectacular. If the collis@s 
perfectly inelastic, then t~e-fsy_o~alJsof clay will stick ~ ~ h ~ ~ p ~ g a w g e t h e r  
a&e same v e l o e t e r  impact. Collisions .--- in which kinetic energy%..~pserved are 
called perfectly elastic. in%Ze collisions the sum of kinetic energy of all objects before 
the lmpact is equal to the sum of kinetic energy of all objects after the impact. A good 
example of elastic impact (though not perfectly elastic) is the collision between two 
billiard balls, in which the ball deformation is negligible and certainly not permanent 
under normal circumstances. 

Of course, in reality, impacts are somewhere between perfectly elastic and perfectly 
inelastic. This means that for rigid bodies, which don't change shape at all, we'll have 
to rely on an empirical relation to quantify the degree of elasticity of the impact(s) that 
we're trying to simulate. The relation that we'll use is the raao of the relative separation 
velocity to the relative approach velocity of the colliding objects: 

e = -(vL+ - v~+) / (v I -  - VZ-) 

Here, e is known as the coefficient of restitution and is a function of the colliding objects' 
material, construction, andgeometry Thiscoefficient can beexperimentally determined 
for specific impact scenarios, for example, the collision between a baseball and bat or 
a golf club and ball. For perfectly inelasac collisions, e is zero; and for perfectly elastic 
collisions, e is 1. For collisions that are neither perfectly inelasac nor perfectly elastic, 
e can be any value between zero and 1. In this regard, the velocities that are considered 
are along the line of action of the collision. 
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In frictionless collisions the line of action of impact is a line perpendicular (or normal) 
to the colliding surfaces. When the velocity of the bodies is along the line of &on, 
the impact is said to be direct. When the line of action passes through the center of 
mass of the bodies, the collision is said to be central. Particles an- m 
mass d~str~lmr~ori  3lw3js experience&e~r*xcr. D~recl cenrrul 1mp3ct occurs when 
[he line oi actlon passes through the centers oi m3ss oi [he colliding bodies and their - - 

velocity is along the line of action. When the velocities of the bodies are not along 
the line of action, the impact is s ~ i d  to be oblique. You can analyze oblique impacts 
in terms of component coordinates where the component parallel to the line of action 
meriences the im~act ,  but the conmonent ~e r~end icu la r  to the line of action does not. 

A A 

Figure 5-1 illustrates these impacts. 

7 
1 Central Impact Direct Impact Dbtique Impact 

L 

Figure 5-1. Types of lmpact 

As an examde, consider the collision between two billiard balls as illustrated in 
Figure 5-2. 

I velocity beiore impact 

I 
Figure 5-2. Billiard Ball Collision Example 



Both balls are a standard 2.25 in. in diameter, and each weighs 5.5 oz. Assume that 
the collision is nearly perfectly elastic and that the coefficient of restitution is 0.9. If 
the velocity of ball 1 when it strikes ball 2 is 20 ftls in the %~cr$rection as shown in 
Figure5-2, calculate the velocities of both balls after the collision, assuming that this is 
a frictionless collision. 

The first thing you need to do is recognize that the line of action of impact is along the 
line connecting the centers of gravity of both balls, which, since these are spheres, is 
also normal to both surfaces. You can then write the unit normal vector as follows: 

n = (Jmi - r j ) / in~ 

n = (0.864) - (0.5) j 

where n is the unit normal vector, r is the ball radius, and i and j represent unit vectors 
in the x- and y-directions, respectively. 

Now that you have the line of action of the collision, or the unit normal vector, you can 
calculate the relative normal velocity between the balls at the instant of collision: 

v,, = [VI- - v1-I . n 

v,, = [(20 ft1s)i + (0 €t/s)j] . [(0.864)i - (0.5)jl 

v,, = 17.28 ftls 

Notice here that since ball 2 is initially at rest; v2- is zero. 

Now you can apply the principle of conservanon of momentum in the normal direction 
as follows: 

Noting that ml equals m2, since the balls are identical, and that vz,- is zero and then 
solving for vl,+ yields 

To actually solve for these velocities, you need to use the equation for coefficient of 
restitution and make the substitution for vl,_. Then you'll be able to solve for vz,+. 
Here's how to proceed: 

Using this result and the formula for vl,+ yields 

Since the collision is frictionless, there is no impulse acting in the tangential direction. 
This means that momentum is conserved in that direction too and that the final tan- 
gential speed of ball 1 is equal to its initial tangential speed, which in this case is equal 



to 10 ft/s (this equals (20 ft/s) sin30"). Since ball 2 had no initial tangential speed, its 

i 
velocity after impact is solely in the normal direction. Converting these results back 
to xy-coordinates instead of normal and tangential coordinates yields the following 
velocities for each ball after impact: 

v ~ +  = (16.42 ft/s) sin 60" i - (16.42 ft/s) cos 60" j 

vl+ = [(0.86 ft/s) cos 30" + (10 ft/s) sin 30•‹]i 
+ [(-0.86 fck) sin30•‹ + (10 f t k )  cos3O0)]j 

vl+ = (5.43 ft/s)i + (8.23 ft/s)j 

To further illustrate the application of these collision response principles, consider 
another example, this time the collision between a baseball bat and baseball as shown 
in Figure 5-3. \ 

velocity after irnpacf 
t 

1 
F p r e  5-3 Baseball and Bat Collston Example 

To a reasonable degree of accuracy the modon of a baseball bat at the instant oi'collision 
can be described as independent of the batter; that is, you can assume that the bat 
is moving freely and pivoting about a point located near the handle end of the bat. 
Assume that the ball strikes the bat on the sweet spot, that is, a point near the cenrer of 
percussion.' Further assume that the bat is swung in the horizontal plane and that the 
baseballis traveling in the horizontal plane when it strikes the bat. The bat is ofstandard 
dimensions with a maximum diameter of 2.75 in. and a weight of 36 oz (mass equals 
0.07 slug). The ball is also of standard dimensions with a radius of 1.47 in. and a weight 
of 5.125 oz (mass equals 9.96 x 1 0 6  slug). The ball reaches a speed of U2 ft/s (90 mph) 
at the instant it strikes the bat, and the speed of the bat at the point of impact is 103 ft/s 
(70.2 mph). For this collision the coefficient of restitution is 0.46. In the millisecond of 

The center of percussion is a point located near one of the nodes of natural vibration and is the point ar 
which, when rhe bat is struck by rhe ball, no force is rransmirted to the handle of rhc bat. If you ha= ever hit 
a baseball incorrectlv and emerienced a oainiul vibrating sensation in vaur hands. then vou know n-hat it - 
feels lrke to mlsr the center of percusston 



impact that occurs, the baseball compresses quite a bit; however, in this analysis assume 
that both the bat and the ball are rigid. Finally, assume that this impact is frictionless. 

.-,$ 
As in the previous example, the line of action of impact is along the line connecting the 
centers of gravity of the bat and ball; thus, the unit normal vector is 

n = (JjGGG$i - rlj)/lnl 

n = (0.875)i + (0.484)j 

Here the subscripts 1 and 2 denote [he bat and ball, respectively 

The relative normal velocity between the bat and ball is 

vrn = [vl- - VZ-I . n 

v,, = [(235 fds)i + (0 ft/s)j] . [(0.875)i - (0.484)jI 

v,, = 205.6fds 

The velocity components of the bat and ball in the normal direction are 

Applying the principle of conservation of momentum in the normal direction and 
solving for vl,+ yields 

As in the previous example, applying the formula for coefficient of restitution with the 
above formula for vl,+ yields 

e = (-vln+ + vzn+/(vln- - vzn-) 

0.46 = [-73.691 ft/s + (0.142 ft/s)vz,+ + vz,+/([90.125 fds + 115.5 ft/s) 

vzn+ = 147.34 ft/s and vl,+ = S2.77 ft/s 

Here again, since this impact is frictionless, each object rerains its original tangential 
velocity component. For the bat this component is 49.78 ft/s; for the ball it's -63.8 ft/s. 
Taking these normal and tangential components and converting them toxy-coordinates 
yields the following bat and ball velocities for the instant just after impact: 

vl+ = 70.25 - 18j 

vZ+ = 98.2i + 127j 

Both of these examples illustrate fundamental impact analysis using the classical ap- 
proach. They also share an important assumption: that the impacts are frictionless. 
In reality you know that billiard balls and baseballs and bats collide with friction; 
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otherwise, you would not be able to apply English in billiards or create lift-generating 
spin on baseballs. Later in this chapter I'll discuss how to include friction in your impact 
analysis. 

Linear and Angular Impulse 
In the previous section you were able to work through the specific examples by hand, 
using the principle of conservation of momentum and the coefficient of resdtution. 
This approach will suffice if you're writing games in which the collision evcnts are well 
defined and anticipated. However, if you're writing a real-time simulation in which 
objects, especially arbitrarily shaped rigid bodies, may or may not collide, then you'll 
want to use a more generatapproach. This approach involves the use of formulas to 
calculate the actual impulse tietween collidingobjects so that youcan apply this impulse 
to each object, instantly changing its velocity. In this secrion I'll derive the equations for 
impulse, both linear and angular, and I'll show you how to implement these equations 
in code in Chapter U. 

In dealing with particles or spheres, the only impulse formula that you'll need is that 
for linear impulse, which will allow you to calculate the new linear velocities of the 
objects after impact. So the first formula that I'll derive for you is that for linear impulse 
between two colliding objects as shown in Figure 5-4. 

velocity before impact 

Figure 5-4. Two Colliding Particles (or Spheres) 

For now, assume that the collision is frictionless and that theline of action of the impulse 
is along the line connecting the centers of mass of the two objects. This line is normal 
to the surfaces of both objects. 

To derive the formula for linear impulse, you have to consider the formula from the 
definition of impulse along with the formula for coefficient of resdtution. Here, let J 



represent the impulse: 

In these equations the velocities are those along the line of action of the impact, which 
in this case is a line connecting the centers of mass of the two objects. Since the same 
impulse applies to each object, just in opposite directions, you actually have three 
equations to deal with: 

Notice I've assumed that ] acts positively on body 1 and that its negation, -1, acts on 
body 2. Also notice that there are three unknowns in these equations: the impulse and 
the velocities of both bodies after the impact. Since there are three equations and three 
unknowns, you can solve for each unknown by rearranging the two impulse equations 
and substituting them into the equation fore. After some algebra you'll end up with a 
formula for] that you can then use to determine the velocitia of each body just after 
impact. Here's how that's done: 

For body 1: vl+ = ]/ml +vl- 
For body 2: v2+ = -]/m2 + vz- 

Substituting vl+ and vz+ into the equation fore yields 

Let v, = ( ~ 1 -  - VZ-); then 

ev, + v, = -](l/rnl + l /md 
I = -  v,(e + l)/(l/rnl + l/mz) 

Since the line of action is normal to the colliding surfaces, v, is the relative velocity along 
the line of action of impact and] acts along the line of action of impact, which in this 
case is normal to the surfaces, as I've already stated. 

Now that you have a formula for the impulse, you can use the definition of impulse 
along with this formula to calculate the change in linear velocity of the objects involved 
in the impact. Here's how that's done in the case of two objects colliding: 

Notice that for the second object, the negative of the impulse is applied, since it acts on 
both objects equally but in opposite directions. 
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When dealing with rigid bodies that rotate, you'll have to derive a new equation for 
impulse thar includes angular effects. You'll use this impulse to calculate new linear and 
angular velocities of the objects just after impact. Consider the two objects colliding at 
point P as shown in Figure 5-5. 

Line of action normal to surfaces 

Figure 5-5. Two Colliding Rigid Bodies 

There's a crucial distinction between this collision and that discussed earlier. In this 
case the velocity at the poinr of contact on each body is a function of not only the 
objects' linear velocity but also their angular velocities, and you'll have to recall the 
following formula to calculate the velocities at the impact point on each body: 

vp = vg + (W x r) . 
In rhis relation, r is the vector from the body's center of gravity to the poinr P .  

Using rhis formula, you can rewrite the two formulas relating the linear velocity afrer 
impact to the impulse and initial velocity as follows: 

For body 1: vl,+ + (wl+ x rl) =J/ml +vl,- + (WI- x rl) 

For body 2: vzg+ + (WZ+ x 12) = -J/mz + v z g  + (WZ- x r2) 

There are two additional unknowns here, the angular velocities after impact, which 
means thar you need two additional equations. You can get these equations from the 
definition of angular impulse: 

For body 1: (11 x J) = Il(wl+ - wl-) 

For body 2: (rz x -J) = I 2 ( ~ 2 +  - WZ-) 

Here, the moment due to the impulse is calculated by taking the vector cross product of 
theimpulsewith the distance from the body's center ofgravity to the point ofapplication 
of the impulse. 

By combining all of these equations with the equation for e and following the same 
procedure that's used in deriving the linear impulse formula, you'll end up with a 
formula for ] thar rakes into account both linear and angular effects, which you can 
then use to find the linear and angular velocities of each body immediateIy afrer impact. 

{I," 
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Here's the result: 

.I' 
Here v, is the relative velocity along the line of action at the impact point P ,  and n is a 
unit vector along the line of action at the impact point pointing out from body 1. 

With this new formula for], you can calculate the change in linear and angular velocities 
of the objects involved in the collision using these formulas: 

vl+ = VI- + W / m l  
v?+ = v-- + (-]n)/mz 

mi+ = WI- + (a x Jn)/I, 
wl+ = wr- + (r2 x -]n)/Icg 

As I said earlier, 1'11 show you how to implement these formulas for impulse in code 
when you get to Chapter U. 

Friction 
Friction acts between contacting surfaces to resist motion. When objects collide in 
any type of collision except direct impact, for that very brief moment of contact they 
will experience a friction force that acrs tangentially to the contacting surfaces. Not 
only will this tangential force change the linear velocities of the colliding objects in 
the tangential direction, it will also create a moment (torque) on the objects tending 
to change their angular velocides. This tangential impulse combined with the normal 
impulse results in an effective line of action of the total collision impulse that is no 
longer perpendicular to the contacting surfaces. 

In practice, it is very difficult to quantify this collision friction force due to the fact that 
the friction force is not necessarily constant if the collision is such that the friction force 
doesnot develop beyond the maximum static friction force. Further complications stem 
from the fact that objects do tend to deform when they collide, creating an additional 
source of resistance. That said, since the friction force is a function of the normal force 
between the contacting surfaces, you know that the ratio of the normal force to the 
friction force is equal to the coefficient of friction. If you assume that the collisions are 
such that the kinetic coefficient of friction is applicable, then this ratio is constant: 

11 = F d F "  

Here, Ff is the tangential friction force and F,, is the normal impact force. You can extend 
this to say that the ratio of the tangential impulse co normal impulse isequal to the 
coefficient of friction. 

Consider the collision between the club head of a golf club and a golf ball as illustrated 
in Figure 5-6. 

In the velocity diagram on the left, v-  represenrs the relative velocity between the ball 
and club head at the instant of impact, v+ represents the velocity of the ball just after 
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Figure 5-6. Golf Club-Ball Collision 

impact, and v,_ and v,+ represent the tangential componenrs of the ball velocity at and 
just after the instant of impact, respectively. 

If this were a frictionless collision, v,- and v,+ would be equal, as would the angles o! 
and 8. However, with friction the tangential velocity of the ball is reduced, making v,+ 
less than v,-, which also means that o! will be less than 0.  

The forcediagram on the right in Figure5-6 illustrates the forces involved in this collision 
with friction. Since the ratio of the tangential friction force t o h e  normal collision force 
is equal to the coefficient of friction, you can develop an equation relating the angle @ 
to the coefficient of friction: 

tan @ = FrIF, = p 

In addition to this friction force changing the linear velocity of the ball in the tangential 
direction, it will also change h e  angular velocity of the ball. Since the friction force is 
acting on the ball's surface some distance from irs center of gravity, it creates a moment 
(torque) about the ball's center of gravity that causes the ball to spin. If you use an 
approach similar to the rolling cylinder example back in Chapter 4, you can develop an 
equation for the new angular velocity of the ball in terms of the normal impact force 
or impulse: 

M,, = Fr r = I,, doldt  

pFnr = Icg dwldt 

pFnr  dt = I<, d o  

Jr- Jo- 

Notice here that the integral on the left is the normal impulse; thus, 

Impulse = Icg/(pr)(o+ - W-) 

o+ = (Impulse)(pr)lIcg + W- 



This relation looks very similar to the angular impulse equation that I showed you 
earlier in this chapter, and you can use it to approximate the friction-induced spin in 
specific collision problems. "$9 

Turn back to the equation for impulse, 1, in the preceding section that includes both 
linear and angular effects. Here it is again for convenience: 8 P , oe", i 

J = -vAe + l ) / [ l /ml + l/mz + n (11 x n)/I1 + n  . (12 x n)/I21 

This formula gives you the collision impulse in thenormal direction. To see how friction 
fits in, you must keep in mind that friction acts tangentially to the contacting surfaces, 
that combining the friction force with the normal impact force yields a new effective 
line of action for the collision, and that the friction force (and impulse) is a function of 
the normal force (impulse) and coefficient of friction. Considering all these factors, the 
new equations to calculate the change in linear and angular velocities of two colliding 
objects are as follows: 

In these equations, t is the unit cangent vector, which is tangent to the collision surfaces 
and at a right angle to the unit normal vector. You can calculate the tangent vector if 
you know the unit normal vector and the relative velocity vector in the same plane as 
the normal vector: 

t = ( n x v , ) x n  VoyYCJ, n x ( k ~ ' J r )  

t = t/ltl 

For many problems that you'll face, you may be able to reasonably neglect fr~ction in 
your collision response routines, since its effect may be small in comparison to the effect 
of the normal impulse itself. However, for some types of problems, friction is crucial. 
For example, the flight trajectory of a golf ball depends greatly on the spin imparted to 
it as a result of the club-ball collision. I'll discuss how spin affects trajectory in the next 
chapter, which covers projectile motion. 
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CHAPTER 6 

Projectiles 

This chapter is the first in a series of chapters that discuss specific real-world phenomena 
and systems, such as projectile motion and airplanes, with the idea of giving you a 
solid understanding of their real-life behavior. This understanding will help you to 
model these or similar systems accurately in your games. Instead of relying on purely 
idealized formulas, I'll present a wide variety of practical formulas and data that you 
can use. I've chosen the examples in this and the next several chapters to illustrate 
common forces and phenomena that exists in many systems, not just the ones I'll be 
discussing here. For example, while Chapter 8 on ships discusses buoyancy in detail, 
buoyancy is not limited to ships; any object immersed in a Fluid experiences buoyant 
forces. The same applies for the topics discussed in this chapter and Chapters 7, 9, 
and 10. 

Once you understand what's supposed to happen with these and similar systems, ygu'll 
be in a better position to interpret your simulation results to determine whether they 
make sense, that is, whether they are realistic enough. You'll also be better educated 
on what factors are most important for a given system such that you can make appro- 
priate simplifying assumptions to help ease your effort. Basically, when designing and 
optimizing your code, you'll know where to cut things out without sacrificing realism. 
This gets into the subject of parameter tuning. 

Over the next few chapters I want to give you enough of an understanding of certain 
physical phenomena that you can tune your models for the desired behavior. If you are 
modeling several similar objects in your simulation but want each one to behave slightly 
differently, then you have to tune the forces chat get applied to each object to achieve the 
varying behavior. Since forces govern the behavior of objects in your sin~ulations, I'll 
be focusing on force calculations with the intent of showing you how and why certain 
forces are what they are instead of simply using the idealized formulas that I showed you 
in Chapter 3. Parameter tuning isn't just limited to tuning your model's behavior; it also 
involves dealing with numerical issues, such as numerical stability in your integranon 
algorithms. I'll discuss these issues more when 1 show you several simulation examples 
in Chapters 12 through 17. 



I've devoted this entire chapter to projectile motion because so many physical prob- 
lems that may find their way into your games fall into this category Further, the forces 
governing projectile motion affect many other systems that .qen't necessarily projec- 
tiles; for example, the drag force experienced by projectiles is similar to that experi- 
enced by airplanes, cars, or any other object moving through a fluid such as air or 
water. 

Aprojectileis anobject that is placed in motion by a force actingover avery short period 
of time, which you know from Chapter 5 is also called an impulse. After the projectile 
is set in motion by the initial impulse, during the launching phase, the projectilp enters 
into the projectile motion phase, in which there is no longer a thrust or propulsive force 
acting on it. As you know already from the examples presented in Chapters 2 and 4, 
there are other forces that act on projectiles. (For the moment I'm not talking about 
self-propelled "projectiles" such as rockets, since, owing to their propulsive force, they 
don't follow what I'll refer to as classical projectile motion until after they've expended 
their fuel.) 

In the simplest case, neglecting aerodynamic effects, the only force acting on a pro- 
jectile other than the initial impulsive force is gravitation. For situations in which the 
projectile is near the earth's surface, the problem reduces to a.constant acceleration 
problem. Assuming that the earth's surface is flat, that is, that its curvature is large in 
comparison to the range of the projectile, the following statements describe projectile 
motion: 

The trajectory is parabolic 

The maximum range, for a given launch velocit): occurs when the launch angle 
is 45". 

The velocity at impact is equal to the launch velocity when the launch point and 
impact point are at the same level. 

The vertical component of velocity is zero at the apex of the trajectory 

The time required to reach the apex is equal to the time required to descend from 
the apex to the point of impact, assuming that the launch point and impact point 
are at the same level. 

The time required to descend from the apex to the point of impact equals the time 
required for an object to fall the samevertical distance when dropped straight down 
from a height equal to the height of the apex. 

Simple Trajectories 
There are four simple classes of projectile motion problems that I'll summarize: 

When the target and launch point are at the same level 

When the target is at a level higher than the launch point 



When the target is at a level lower than the launch point 
When the projectile is dropped from a moving system (such as an airplane) above 
the target 

In the first type of problem the launch point and the target point are located on the 
same horizontal plane. Referring to Figure 6-1, vo is the initialvelociry of the projectile at 
the time of launch, y, is the launch angle, R is the range of the projectile, and h is the 
height of the apex of the trajectory 

Figure 6-1. Target and Launch Point at the Same Level 

To solve this type of problem, use the formulas shown in Table 6-1. Note that in these 
formulas, t represents any rime instant after launch and T represents the total time from 
launch to impact. 

Table 6-1. Formulas: Target and Launch Point at  Same Level 
Ti:' 
q o ,  Cal 
2.. 

Use This Formula: 

xlt) (vo (0s y ) t  

yit) (vo sin y)t-lgt1)/2 
v, (t) vo cos y 

V, it) vo sin y- gt 

v(t) Jm 
h lv: sin2y)/i2g1 

R vo Tcos y 

T 12v0 sin y ) / g  

Remember to keep your units consistent when applying these iormulas. If you are 
working in the English system, all your length and distancevalues should be in feet (ft), 
time should be in seconds (s), speed should be in feet per second (fds), and acceleration 



should bein feet per secondsquared (fds2). If youareusing theSI (metric) system, length 
anddistancevaluesshould be in meters (m), time should be in seconds (s), speed should 
be in meters per second (m/s), and acceleration should be in meter+$per second squared 
(m/s2). In the English system, g is 32.2 ft/s2; in the SI system, g is19.8 m/s2. 

In the second type of problem the launch point is located on a lower horizontal plane 
than the target. Referring to Figure 6-2, the launch point's y-coordinate is lower than 
the target's y-coordinate. 

I J 
Figure 6-2. Target Higher than Launch Point 

For this type of problem, use the formulas shown in Table 6-2. Notice that most of these 
formulas are the same as those shown in Table 6-1. 

Table 6-2. Fonnulas Target Higher than Launch Point 
* . . .. . . . , . . . , . . 
.To Calculate: ..: , .  Use This Formula: . . 

IVO (0s io)f 
(vo sin p)t- (gt2)/2 

vp car io 

YO sin p- gf 

,/vi - 2gw0 sinv + g'? 

l ~ s i ~ i o ) / ( 2 g )  
vo rcos p 

IVO sin io )/g+ Jm .. ... - 

Actually, the only formula that has changed is that for T, which has been revised to 
account for the difference m elevanon between the target and the launch point 

In the third type of problem the target is located on aplane lower than the launch point; 
the target's y-coordinate is lower than the launch point's y-coordinate (see Figure 6-3). 



Figure 6-3. Target Lower than Launch Point 

Table 6-3 shows the formulas to use for this type of problem. Here again, almost all of 
the formulas are the same as those shown in Table 6-1. 

Table 6-3. Formulas: Target Lower than Launch Point 

To Calculate: 

xlt) 

y(t) 

v, It) 
v, (t) 

Use This Formula: 

(vo COS (O )f 

(v, sin (~)t- lqt2)/2 

v, car $0 

v0sin(o-gt 

Jvi - 2grvo sinq + d t '  

b +  (v: sinZv )/(2g) 

vo Tcos (O 

1v0 sin d / s +  

As in the second type of problem, the only formula that has changed is the formula for 
T, which has been revised to account for the difference in elevation between the target 
and the launch point (except this time the target is lower than the launch point). 

Finally the fourth type of problem involves dropping the projectile from a moving sys- 
tem, such as an airplane. In this case the initial velocity of the projectile is horizontal and 
equal to the speed of the vehicle dropping it. Figure 6-4 illustrates this type of problem. 

Table 6-4 shows the formulas to use to solve this type of problem. Note here that when 
va is zero, the problem reduces to a simple free-fall problem in which the projectile 
simply drops straight down. 



L 
Figure 6-4. Projectile Dropped from a Moving System 

Table 6-4. Formulas: Projectile Droppedfrom a 
Moving System 

1oCalculaie: '. ' Use This Formula: 

These formulas are useful if you're writing a game that does not require a more accurate 
treatment of projectile motion, that is, if you don't need or want co consider the other 
forces that can act on aprojectile when in motion. If youaregoing for moreaccuracy then 
you'll have to consider these other forces and treat the problem as we did in Chapter 4's 
example. 

Drag 
In Chapters 3 and 4 I showed you the idealized formulas for viscous fluid dynamic drag 
as well as how to implement drag in the equations of motion for a projectile. This was 
illustrated in the example program discussed in Chapter 4. Recall that the drag force is a 
vector just like any other force and that it acts on the line of action of the velocity vector 
but in a direction opposing velocity While those formulas work in a game simulation, 
as I said before, they don't tell the whole story Although we can't treat the subject of 
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fluid dynamics in its entirety in this book, I do want to give you a better understanding 
of drag than just the simple idealized equation presented earlier. 

It can be shown by analytical methods that the dragon an object moving through a fluid 
is proportional to its speed, size, and shape and the density and viscosity of the fluid 
through which it is moving. You can also come to these conclusions by drawing on your 
own real-life experience. For example, when waving your hand through the air, you feel 
very little resistance; however, if you put your hand out of a car window traveling at 
60 mph, then you feel muchgreater resistance (drag force) on your hand. This is because 
drag is speed dependent. When you wave your hand under water, say, in a swimming 
pool, you'll feel a greater drag force on your hand than you do when waving it in the 
air. This is because water is more dense and viscous than ain As you wave your hand 
under water, you'll notice a significant difference in drag depending on the orientation 
of your hand. If your hand :s.such that your palm is in line with the direction of motion, 
that is, you are leading with your palm, then you'll feel a greater drag force than you 
would if your hand were turned 90 degrees as though you were executing a knife hand 
karate chop through the water. This tells you that drag is a function of the shape of the 
object. You get the idea. 

To facilitateour discussion offluid dynamic drag, let's look at the flow around a sphere 
moving through a fluid such as air or water. If the sphere is moving slowly through 
the fluid, the flow pattern around the sphere would look something like that shown in 
Figure 6-5. 

Figure 6-5. Flow Pattern Around a Slowly Mowing Sphere 

Bernoulli's equation, which relates pressure to velocity in fluid flow, says that as the 
fluid goes around the sphere and speeds up, the pressure in the fluid (locally) will 
go down. The equation, presented by Daniel Bernoulli in 1738, applies to frictionless 
incompressible fluid flow and looks like this': 

where P is the pressure at a point in the fluid volume under consideration, y is the 
specific weight of the fluid, z is the elevation of the point under consideration, V is the 
fluid velocity at that point, and g is the acceleration due to gravity As you can see, if 

* In a real fluid wirh friction, this equation will have extra reirns rhar account ior energy losscs due to friction. 

{I,. 
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the expression on the left is to remain constant, and assuming that z is constant, then if 
velocity increases, pressure must decrease. Likewise, if pressure increases, then velocity 
must decrease. : ,,j? 

Referring to Figure 6-5, the pressure will be greatest at the stagnation point, Si, and 
will decrease around the leading side of the sphere and then start to increase again 
around the back of the sphere. In an ideal fluid with no friction, the pressure is fully 
recovered behind the sphere, and there is a trailing stagnation point, St, whose pres- 
sure is equal to the pressure at the leading stagnation point. Since th: pressure fore 
and aft of the sphere is equal and opposite, there is no net drag force acting on the 
sphere. 

The pressure on the top and bottom of thesphere willbe lower than that at the stagnation 
points, since the fluid velocity is greater over the top and bottom. Since this is a case of 
symmeuic flow around the sphere, there will be no net pressure difference between the 
top and bottom of the sphere. 

In a real fluid there is friction, which affects the flow around the sphere such that the 
pressure is never fully recovered on the aft side of the sphere. As the fluid flows around 
the sphere, a thin layer sticks to the surface of thesphere due to friction. In this boundary 
laver the soeed of the fluid varies from zero at the sohere surface to the ideal free stream 
velocity as illushated in Figure 6-6. 

I 
Figure 6-6. Velocity Gradient within a Boundary Layer 

This velocity gradient represents a momentum transfer from the sphere to the fluid 
and gives rise to the frictional component of drag. Since a certain amount of fluid is 
sticking to the sphere, you can chink of this as the energy required to accelerate the fluid 
and move it along with the sphere. (If the flow within this boundary layer is laminar, 
then the viscous shear stress between fluid "layers" gives rise to friction drag. When the 
flow is turbulent, the velocity gradient, and thus the transfer of momentum gives rise 
to friction drag.) 

Moving further aft along the sphere, the boundary layer grows in thickness and will not 
be able to maintain itsadherence to thespheresurface, and it will separate at some point. 
Beyond this separation point, the flow will be turbulent, and this is called the turbulent 
wake. In this region the fluid pressure is lower than that at the front of the sphere. This 
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pressure differential gives rise to the pressure component of drag. Figure 6-7 shows how 
the flow might look. 

I I 
Figure 6.7. Flow Pattern Around a Sphere Showing Separation 

For a slowly moving sphere the separation point will be approximately 80" from the 
leading edge. \ 
Now, if you roughen the surface of the sphere, you'll affect the flow around it. As 
you would expect, this roughened sphere will have a higher friction drag component. 
However, more imoortant, the flow will adhere to the sohere lon~er, and the seoaration - .  
point will be pushed further back to approximately llSO, as shown in Figure 6-8. 

I 

Figure 6-8. Flow Around a Roughened Sphere 

This will reduce the size of the turbulent wake and the pressure differential, thus de- 
creasing the pressure drag. It's paradoxical but true that, all other things being equal, 
a slightly roughened sphere will have less total drag than a smooth one. Have you ever 
wondered why golf balls have dimples? If so, there's your answer. 

The total drag on the sphere depends very much on the nature of the flow around 
the sphere, that is, whether the flow is laminar or turbulent. This is best illustrated by 
looking at some experimental data. Figure 6-9 shows a typical curve of the total drag 
coefficient for a sphere plotted as a function of Reynold's number. 

Reynold's number (commonly denoted N, or R,) is a dimensionless number that rep- 
resents the speed of fluid flow around an object. It's a little more than just a speed 
measure, since Reynold's number includes a characteristic length for the object and the 
viscosity and density of the fluid. The formula for Reynold's number is 

{I,. 
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Figure 6-9. Total Drag Coeficient for a Smooth Sphere Versus Reynold's Numberm 

where v is speed, L is a characteristic length of the object (diameter for a sphere), v is 
the kinematic viscosity of the fluid, p is the fluid mass density, and LL is the absolute 
viscosity of the fluid. For Reynold's number to work out as a dimensionless number, 
velocity, length, and kinematic viscosity must have units of ft/s, ft, and €t2/s, respectively 
when working in the English system. In the SI system their units must be m/s, m, and 
m2/s, respectively. 

This number is useful for nondimensionalizing data measured from tests on an object 
of given size (such as a model) such that the data can be scaled to estimate the data for 
similar objects of different size. Here, "similar" means that the objects are geometrically 
similar, just different scales, and that the flow pattern around the objects is similar. For 
a sphere the characteristic length is diameter, so you can use drag data obtained from 
a small model sphere of a given diameter to estimate the drag for a larger sphere of a 
different diameter. A more useful application of this scaling technique is estimating the 
viscous drag on ship or airplane appendages on the basis of model test data obtained 
from wind tunnel or tow tank experiments. 

Reynold's number is used as an indicator of the nature of fluid flow A low Reynold's 
number generally indicates laminar flow, while a high Reynold's number generally in- 
dicates turbulent flow Somewhere in between, there is a rransition range where the 
flow makes the transition from laminar to turbulent flow. For carefully controlled ex- 
periments, this transition (critical) Reynold's number can consistently be determined. 
However, in general the ambient flow field around an object, that is, whether it has 
low or high turbulence, will affect when this transition occurs. Further, the rransition 
Reynold's number is specific to the type of problem being investigated, for example, 



whether you're looking at flow within pipes, the flow around a ship, or the flow around 
an airplane, and so on. 

The total drag coefficient, Cd, is calculated by measuring the total resistance, R,, from 
tests and using the following formula: 

Cd = ~ , / ( 0 . 5 p v ~ ~ )  

where A is a characteristic area that depends on the object being studied. For a sphere, A 
is typically the projected frcxal area of the sphere, which is equal to the area of a circle of 
d M s g  equal to that of the sphere. By comparison, for ship hulls, A is typically taken 
as the underwater surface area of the hull. If you work out the units on the righthand 
side of this equation, you'll see thar the drag coefficient is nondimensional, that is, it 
has no units. 

Given the total drag coeffhent, you can estimate the total resistance (drag) using the 
following formula: 

R, = (0.5pv2A)Cd 

This is a better equation to use than the ones given in Chapter 3, assuming that you have 
sufficient information available, namely, the total drag coefficient, density, velocity, and 
area. Note the dependence of rota1 resistance on velocity squared. To get R, in units of 
pounds (Ib), you must havevelocity in ids, area in it2, and density in slug/fr3 (remember, 
Cd is dimensionless). In the SI system you'll get R, in newtons (N) if you have velocity 
in m/s, area in m, and density in kg/m3 

Turning back now to Figure 6-9, you can make a couple of observations. First you can see 
that the total drag coefficient decreases as Reynold's number increases. This is due to the 
formation of theseparation point and itssubsequent move aft on the sphere as Reynold's 
number increases and the relative reduction in pressure drag as discussed previously 
At a Reynold's number of approximately 250,000 there is a dramatic reduction in drag. 
This is a result of the flow becoming fully turbulent with a corresponding reduction in 
pressure drag. 

In the cannon2 example in Chapter 4, I implemented the ideal formula for air drag 
on the projectile. In thar case I used a constant value of drag coefficient that was 
arbitrarily defined. As I said earlier, it would be better to use the formula presented in 
this chapter for total drag along with the total drag coefficient data shown in Figure 6-9 
to estimate the drag on [he projectile. While this is more "accurate," it does complicate 
matters for you. Specifically, the drag coefficient is now a function of Reynold's number, 
which is a function of velocity, You'll have to set up a table of drag coefficients versus 
Reynold's number and inrerpolate this table given Reynold's number calculated at 
each time srep. As an alternative, you can fit the drag coefficient data to a curve to 
derive a formula that you can use instead; however, the drag coefficient data may 
be such that you'll have to use a piecewise approach and derive curve fits for each 
segment of the drag coefficient curve. The sphere data presented herein is one such 
case. The data do not lend themselves nicely to a single polynomial curve fit over 
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the full range of Reynold's number. In such cases you'll end up with a handful of 
formulas for drag coefficient with each formula valid over a limited range of Reynold's 
numbers. .:$ 

While the cannon2 example does have its limitations, it is useful tosee the effecrs of drag 
on the trajectory of the projectile. The obvious effect is that the trajectory is no longer 
parabolic. You can see that the trajectory appears to drop off much more sharply when 
the projectile is making irs descent after reaching its apex height. 

I 
Figure 6-10. Cannon2 Example, Trajectories 

Another important effect of drag on trajectory (this applies to objects in free fall as well) 
is the fact that drag will limit the maximum vertical velocity attainable. This limit is 
the so-called'terminal velocity. Take an object in free fall for a moment. As the object 
accelerates toward the earth at the gravitation acceleration, its velocity increases. As 
velocity increases, so does drag, since drag is a function of velocity At some speed the 
drag force retarding the object's motion will increase to a point at which ic is equal to 
the gravitational force that's pulling the object toward the earth. In the absence of any 
other forces that may affect motion, the net acceleration on the object is zero, and it 
continues its descent at the constant terminal velocity 

Let me illustrate this further. Go back to the formula I derived for the y-component 
(vertical component) of velocity for the projectile modeled in the Cannon2 example. Here 
it is again so that you don't have to flip back to Chapter 4: 

It isn'c obvious from looking at this equation, but the velocity component, v ? ~ ,  asymp- 
totes to some constant value as time increases. To help visualize this, I've plotted this 
equation as shown in Figure 6-U. 

As you can see, over time the velocity reaches a maximum absolute value of about 
-107.25 speed units. The negative velocities indicate that the velocity is in the negative 



0 3 6 9 1 2  1 5  1 8  21  24 2 7  30 33 36 39 4 2  4 5  
\ Time 

Figure 6-11. Terminal Velocity 

y-direction, that is, the object is falling toward the earth in this case. (For this calculation 
1 arbitrarily assumed a mass of 100, a drag coefficient of 30, and an initialvelocity of zero.) 

Assuming an initial velocity of zero and equating the formula for total resistance s h o y  
earlier to the weight of an object, you can derive the following formula for terminal 
velocity for an object in free fall: 

The trick in applying this formula is in determining the right value for the drag co- 
efficient. Just for fun, let's assume a drag coefficient of 0.5 and calculate the terminal 
velocitf for several different objects. This exercise will allow you to see the influence of 
the object's size on terminal velocity Table 6-5 gives the terminal velocities for various 
objects in free fall using an airdensity of 237 x10W3 slug/fr' (air at standard atmo- 
spheric pressure at 60•‹F). Using this equation with density in slug/ft3 means that m 
must be in slugs, g in fds2, and A in f t  to get the terminal speed in ft/s. I went ahead 
and comerted from ft/s to miles per hour (mph) to present the results in Table 6-5. The 
weight of each object shown in this table is simply its mass, m, times g. 

Table 6-5. Erminal Velocities for Various Objects 

Terminal 
Object Veloiky (rnph) 

Skydiver in free fall 180 9 125 

Skydiverwithopenparachute 180 226 25 

Baseball (2.88-in.diameter) 0.32 0.045 75 

Golfbali (1.65-in.diameter1 0.10 0.015 72 

Raindrop (0.16-in. diameter) 7.5 x lo-' 1.39 x lo-' 20 
-- -. -- 
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Although I've talked mostly about spheres in this section, the discussions on fluid flow 
generally apply to any object moving through a fluid. Of course, the more complex 
the object's geometry, the harder it is to analyze the drag forces on,$(. Other factors such 
as surface condition and whether or not the object is at the interface between two fluids 
(such a ship in the ocean) further complicate the analysis. In practice, scale model tests 
are particularly useful. In the bibliography I give several sources where you can find 
more practical drag data for objects other than spheres. 

Magnus Effect 
TheMagnus effect (also known as theRobbins effect) is quite an interesting phenomenon. 
You know from the previous section that an object moving through a fluid encounters 
drag. What would happen if that object werespinning as it moved through the fluid. For 
example, consider the sphere that I talked about earlier and assume that while moving 
through a fluid such as air or water, it spins about an axis passing through its center of 
mass. What happens when the sphere spins is the interesting part: it actually generates 
lift! That's right-lift. From everyday experience, most people usually associate lift 
with a winglike shape such as an airplane wing or a hydrofoil. Itis far less well known 
that cylinders and spheres can produce lift as well-that is, as long as they are spinning. 
I'll use the moving sphere to explain what's happening here. 

From the previous section on drag, !.ou know that for a fast-moving sphere there will be 
some point on the sphere where the flow separates, creating a turbulent wake behind 
the sphere. Recall that the pressure acting on the sphere within this turbulent wake is 
lower than the pressure acting on the leading surface of the sphere, and this pressure 
differential gives rise to the pressure drag component. When the sphere is spinning, say, 
clockwise about a horizontal axis passing through its center as shown in Figure 6-12, 
the fluid passing over the top of the sphere will be sped up, while the fluid passing 
under the sphere will be retarded. 

I 

I 
Figure 6-12. Spinning Sphere 
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Remember, becauseof friction, thereis a thin boundary layer of fluid that attaches to the 
sphere's surface. At the sphere's surface thevelocity of the fluid in the boundary layer is 
zero relative to the sphere. Thevelocity increases within the boundary layer as you move 
farther away from the sphere's surface. In the case of the spinning sphere'there is now 
a difference in fluid pressure above and below the sphere due to the increase in velocity 
above the sphere and the decrease in velocity below the sphere. Further, the separation -. 

point on the top side of the sphere will be pushed farther back along the sphere. The 
result is an asymmetric flow pattern around the sphere with a net lift force (due to the 
pressure differential) perpendicular to the direction of flow If the surface of the sphere is 
roughened a little, not only will iricrional drag increase, but this lift effecr will increase 
as well. 

Don't let the term "lift" confuse !-ou into thinking that this force always acts to lift, or 
elevate, the sphere. The &ect o i  this lift force on the sphere's trajectory is very much 
tied to the axis of rotation about which the sphere is spinning as related to the direction 
in which the sphere is traveling, that is, its angular velocity 

The magnitude of the Magnus force is proportional to the speed of travel, the rate of 
spin, density of fluid, the size of the object, and the nature of the fluid flow This force is 
not easy ro calculate analyrically, and as withmany problems in fluid dynamics you must 
rely on experimental data to accurately estimate this force for a specific object under 
s~ecific conditions. There are. however. some analvrical techniaues that will allow vou 
approximate the Magnus force. Without going into the theoretical details, you can apply 
theKutta-Joukouski theroem to estimate the lift force on rotatingobiects such as cylinders - .  
and spheres. TheKutta-Joukouski theorem is based on a frictionless idealizationof fluid 
flow involving the concept of circularion around the object (such as a vortex around 
the object). You can find the details of chis theory in any fluid dynamics text (I give 
some references in the bibliography), so I won't go into the details here. However, I will 
give you some results. 

For a spinning circular cylinder moving through a fluid you can use this formula to 
estimate the Magnus lift force: 

where v is speed of uavel, L is the length of the cylinder, r is i n  radius, and o is i n  
angular velocity in radians per second (rad/s). If you have spin, n, in revolutions per 
second (rps), then o = 2nn. If you have spin, n, in revolutions per minute (rpm), then 
o = (2nn)/60. 

For a spinning sphere moving through a fluid you can use this formula: 

where r is the radius of the sphere. Consistent units for these equations would yield lift 
force in pounds in the English system or newtons in the SI system. In the English system 
density, speed, length, and radius have units of slugs/ft3, ftJs, and ft, respectively. In the SI 
system the appropriate units are for these quantities are kg/m3, m!s, and m, respectively 



Keep in mind that these formulas only approximate the Magnus force; they'll get you 
in the ballpark, but they are not exact and could be off by up to 50% depending on 
the situation. These formulas assume that there is no slip betwegp the fliid and the 
rotating surface of the object, there is no friction, surface roughness is not taken into 
account, and there is no boundary layer. 

At any r?e, these equations will allow you to approximate the Magnus effect for flying 
objects in your games, where you'll be able to model the relative differences between 
objects of different size that may be traveling at different speeds with different spin rates. 
You'll get the look right. If numerical accuracy is what you're lookine for, then you'll 
have to turn to experimental data for your specific problem. 

Similar to the drag data shown in the previous section, experimental lift data are gener- 
ally presentedin terms of lift coefficient. Using an equation similar to the drag equation, 
you can calculate the lift force with the following equation: 

As usual, it's not as simple as this equation makes it appear. The trick is in determining 
the lift coefficient, CL, which is a function of surface conditions, Reynold's number, 
velocity, andspin rate. Further, experiments show that the drag coefficient is also affected 
by spin. 

For example, consider a golf ball struck perfectly (I wish) such that the ball spins about 
a horizontal axis perpendicular to its direction of travel while in flight. In this case the - A . 
Magnus force will tend to lift the ball higher in the air, increasing its flight time and 
range. For a golf ball struck such that it initial velocity is 190 ft/s with a takeoff angle of 
10 degrees the increase in range due to Magnus lift is on the order of 65 yards; thus, it's 
clear that this effect is significant. In fact, over the long history of the game of golf there 
has been an attempt to maximize this effect. In the late 1800s, when golf balls were still 
made with smooth surfaces, people observed that used balls with roughened surfaces 
flew even better than smooth balls. This observation prompted people to start making 
balls with rough surfaces so as to maximize the Magnus lift effect. The dimples that 
you see on modern golf balls are the result of many decades of experience and research 
and are thought to be optimum. 

T'ically, a golf ball takes off from the club with an initial velocity on the order of 
250 ft/s, with a backspin on the order of 60 revolutions per second (rps). For these 
initial conditions the corresponding Magnus lift coefficient is within the range from 0.1 
to 0.35. Depending on the spin rate, this lift coefficient can be as high as 0.45, and the 
lift force acting on the ball can be as much as 50% of the ball's weight. 

If the golf ball is struck with a less than perfect stroke, the Magnus lift force may work 
against you. For example, if your swing is such that the ball leavesthe club headspinning 
about an axis that is not horizontal, then the ball's trajectory will curve, resulting in a 
slice or a draw If you top the ball such that the upper surface of the ball is spinning away 
from you, then the ball will tend to curve downward much more rapidly, significantly 
reducing the range of your shot. 
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As another example, consider a baseball that is pitched such that it is spinning w t h  
topspin about a horizontalaxis perpendicular to its direction of travel. Here, the Magnus 
force will tend to cause the ball to curve in a downward direction, making it drop more 
rapidly than it would without spin. If the pitcher spins the ball such that the axis of 
rotation is not horizontal, then the ball will curve out of the vertical plane. Another 
uick that pitchers use is to give the ball backspin, making it appear (to the batter) to - 

actually rise. This rising fast ball does not actually rise, but because of the Magnus lift 
force,.it falls much less rapidly than it would without spin. 

For a typical pitched speed and spin rate of 148 ft/s and 30 rps, respectively, the lift 
force can be up to 33% of the ball's weight. For a typical curve ball the lift coefficient 
is within the range of 0.1 to 0.2, and for fly balls it can be up to 0.4. 

These are only two examples, however; you need not look far to find other examples 
of the Magnus force in actlon. Think about the behavior of cricket balls, soccer balls, 
tennis balls, or Ping-Pong balls when they spin in flight. Bullets fired from a gun with 
a rifling barrel also spin and are affected by this Magnus force. There have even been 
sailboats built with tall vertical rotating cylindrical "sails" that use the Magnus force 
for propulsion. I've also seen technical articles describing a propeller with spinning 
cylindrical blades instead of airfoil-type blades. 

To further illustrate the Magnus effect, I have prepared a simple program that simulates 
a ball being thrown with varying amounrs of backspin (or topspin). This example is 
based on the cannon example, so here again, the code should look familiar to you. 
In this example I've neglected drag, so the only forces that the ball will see are due to 
gravity and the Magnus effect. I did this to isolate the lift-generating effect of spin and 
to keep the equations of motion clearer. 

Since most of the code for this example is identical, or very similar, to that in the previous 
cannon examples, I won't repeat it here. I will, however, show you the global variables 
used in this simulation along with a revised Dosimulation function that takes care of the 
equations of motion: 

/I -------------------------------------------.---.......-.....-.-----------..--.-// 
11 Global variables required for this simulation 
I/ ................................................................................. 
TVector V1; I1 Initial Velocity (given), mls 
TVector V2: I1 Velocitv vector at time t. mls 
double m; I1 projecthe mass (given), kg 
TVector sl; I1 Initial position (given), rn 
TVector 52; I1 The projectile's position (displacement) vector, m 
double time; 11 The time from the instant the projectile 

I1 is launched, s 
double tInc; 11 The time increment to use when stepping 

11 through the simulation, s 
double g; 11 acceleration due to gravity (given), mls-2 
double spin; 11 spin in rpm (given) 
double omega; 11 spin in radians per second 
double radius; 11 radius of projectile (given), m 

#define PI 3.14159f 
#define RHO 1.225f 11 kglm-3 



-,,? 
double C = P I  * RhU * RHO * radius * radius * radius omega; 
double t; 

/ /  step to the next time in the simulation 
time+=tInc; 
t = tine; 

/ /  Calc. V2: 
V2.i = l . O f / ( l . O f - ( t / m ) ' ( t / m ) * C * C )  * (V1.i + C * Vl. j * (t/m) 

C * ,g * (tit)/m); 
V2.j = V1.3 + (t/m)*C*V2.i - g*t; 

/I Calc. 52: 
s2.i = s1.i + V1.i * t + (1.0fI2.0f) * (CIm * V2.j) = (t't); 
s2.j = s1.j + V1.j * t + (l.OfI2.Of) * ( ((CeV2.i) - nSg)/rn ) * (t-t); 

I/ Check for collision with ground (XI-plane) 
if(s2.j <= 0) 

return 2; 

/ /  Cut off the simulation if it's taking too long 
/I This is so the program does not get stuck in the while loop 
if (tine>Ko) 

return 3; 

return 0; 
} 

The heart of this simulation are lines that calculatevz and 5 2 :  the instantaneous velocity 
and position of the projectile, respectively. The equations of motion here come from the 
2D kinetic equations of motion including gravity, as discussed in Chapter 4, combined 
with the following formula (shown earlier) for estimadng the Magnus lilt on a spinning 
sphere: 

FL = ( 2 ~ r ~ ~ v r ~ w ) / ( 2 r )  

You can see the effect of spin on the projectile's trajectory by providing the sample 
program with different values for spin in revolutions per minute. The program converts 
this to radians per second and stores this value in the variable omega. A positive spin 
value indicates bottom spin such that the bottom of the sphere is spinning away from 
you; a negative spin indicates topspin, in which the top of the ball spins away from 
you. Bottom spin generates a positive lift force that will tend to extend the range of the 
projectile; topspin generates negative lift that will force the projectile toward the ground, 
shortening its range. (Note that this example assumes that the spin axis is horizontal 
and perpendicular to the plane of the screen.) Figure 643 illustrates this behavior. 

Variable Mass 
Earlier in this book I mentioned that some problems in dynamics involve variable 
mass. We'll look at variable mass here, since it applies to self-propelled projectiles such 
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Figure 6-U. Magnus Effect ~ a & l e  Program 

as rockets. When a rocket is producing thrust to accelerate itself, it loses mass (fuel) at 
some rate. When all of the fuel is consumed (burnout), the rocket no longer produces 
thrust and has reached its maximum speed..After burnout you can treat the trajectory 
of the rocket just as you would a. non-self-propelled projectile, as discussed earlier. 
However, while the rocket is producing thrust, you need to consider its mass change, 
since this will affect its motion. 

In cases in which the mass change of the object under consideration is such that the 
mass being expelled or taken in has zero absolute velocity, like a ship consuming fuel, 
for example, you can set up the equations of motion as you normally would, where the 
sum of the forces equals the rate of change in momentum. However, in this case mass 
will be a function of time, and your equations of motion will look like this: 

You can proceed to solve them just as you would normally but keeping in mind the time 
dependence of mass. 

A rocket, on the other hand, expels mass at some nonzero velocity, and you can't use 
the above approach to properly account for its mass change. In this case you need to 
consider the relative velocity between the expelled mass and the rocket itself The linear 
equation of motion now looks like this: 

where u is the relative velocity between the expelled mass and the object (the rocket, in 
this case). 

For a rocket traveling straight up, neglecting air resistance and the pressure at the exhaust 
nozzle, the only force acting on the rocket is due to gravity But the rocket is expelling 
mass (burning fuel). How it expels this mass is not important here, since the forces 
involved there are internal to the rocket; we need only consider the external forces. Let 

<I," 
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the fuel burn rate be -m'. The equation of motion (in the vertical direction) for the 
rocket is as follows: 

C F = m d v l d t  + dmld tu  . . 8  i 
-mg = m dvld t  - m'u 

~f you rearrange this so that it looks as though there's only an ma term on the right of 
the equation, you get 

m'u - mg = m d v l d t  = ma 

Here you can see thar :he thrust that propels the rocket into the air is equal to m'u. Since 
the fuel burn rate is constant, the mass of the rocket at any instant in time is equal to 

m = ma - m't 

where ma is the initial mass and the burn rate, m', is in the form mass per unit time. 



CHAPTER 7 

\, 

If you are going to write a flight simulation game, one of the most important aspects of 
your game engine will be your flight model. Yes, your 3D graphics, user interface, story, 
avionics system simulation, and coding are all important, but what really defines the 
behavior of the aircraft that you are sirnularing is your flight model. Basically, this is 
your simplified version of the physics of aircraft flight, that is, your assumptions, your 
approximations, and all the formulas you'll use to calculate mass, inertia, and lift and 
drag forces and moments. 

There are four major forces that act on an airplane in flight: gravity, thrust, lift, and 
drag. Gravity, of course, is the force that tends to pull the aircraft to the ground, while 
lift is the force generated by the wings (or lifting surfaces) of the aircraft to counteract 
gravity and enable it to stay aloft. The thrust force generated by the aircraft's propulsor 
(jet engine or propeller) increases the aircraft's velocity and enables the lifring surfaces 
to generate lift. Finally, drag counteracts the thrust force tending to impede the aircraft's 
motion. Figure 7-1 illustrates these forces. 

Drag 

Figure 7-1. Forces on an Aircraft in Flight 

I've already discussed the force due to gravity in earlier chapters so I won't address it 
again in this chapter except to say that when looking at all of the forces acting on an 



aircraft, the total of all lift forces must be greater than or equal to the gravitational force 
if the aircraft is to maintain flight. 

To address the other three forces acting on an aircraft, I'll refer to'q'simplified, generic 
model of an airplane and useit as an illustrative example. There are far too many aircraft 
types and configurations to treat them all in this short chapter. Moreover, the subject 
of aerodynamics is too broad and complex. Therefore, the model that we'll look at will 
be of a typical subsonic configuration as shown in Figure 7-2. 

Straight, rectangular win 

Propuiso 

Figure 7-2. Model ConFgumtion 

. In this configuration the main lifting surfaces (the large wings) are located forward on 
the aircraft, with relatively smaller lifting surfaces located toward the tail. This is the 
basic arrangement of most aircraft in existence today 

I'll have to make some further simplifying assumptions to make even this simplified 
model manageable. Further, I'll rely on empirical data and formulas for the calculation 
of lift and drag forces. 

Geometry 
Before getting into lift, drag, and thrust, I need to go over some basic geometry and 
terms to make sure we are speaking the same language. Familiarity with these terms 
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i will also help you quickly find what you are looking for when searching through the 

i references that I'll provide later. 

First, take another lookat the arrangement of our model aircraft inFigure 7-2. The main 
body of the aircraft, the part usually occupied by cargo and people, is called the fuselage. 

1 The wings are the large rectangular lifting surfaces protruding from the fuselage near 
the forward end. The longer dimension of the wing is called its span, and its shorter 
dimension is called its chord length, or simply chord. The ratio of span squared to wing 
area is called the aspect ratio, and for rectangular wings this reduces to the ratio of span 
to chord. 

In our model, the ailerons are located on the outboard ends of the wings. Theflaps are 
also located on the wings inboard of the ailerons. The small winglike surfaces located 
near the tail are called el vators. And the vertical flap located on the aft end of the tail f is the rudder. I'll talk more about what these control surfaces do  later. 

Taking a close look at a cross section of the wing as shown in Figure 7-3 helps to define 
a few more terms. 

Reiahve air veloc~ty : 

Figure 7-3. Airfoil Section 

The airfoil shown in Figure 7-3 is a typical cambered airfoil. Camber represents the 
curvature of the airfoil. If you draw a straight line from the trailing edge to the leading 
edge, you end up with what's called the chord line. Now if you divide the airfoil into a 
number of cross sections, like slices in a loaf of bread, going from the trailing edge to the 
leading edge and then draw a curvedlinepassing through the midpoint of eachsection's 
thickness, you end up with the mean camber line. The maximum difference between 
the mean camber line and the chord line is a measure of the camber of the airfoil. The 
angle measured between the direction of travel of the airfoil (the relative velocity vector 
of the airfoil as it passes through the air), and the chord line is called the absolute angle 
of attack. 

When an aircraft is in flight, it may rotate about any axis. It is standard practice 
always to refer to an aircraft's rotations about three axes relative to the pilot. Thus, 
these axes are fixed to the aircraft, so to speak, irrespective of its actual orientation in 
three-dimensional space; they are the pitch axis, the roll axis, and the yaw axis. 

{I,. 
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The pitch axis runs transversely across the aircraft, that is, in the port-starboard 
direction.' Pitch rotation is when the nose of the aircraft is raised or lowered from the 
pilot's perspective. The roll axis runs longitudinally through the,$$nter of the aircraft. 
Roll motions (rotations) about this axis result in the wingtips bemg raised or lowered 
on either side of the pilot. Finally, the yaw axis is a vertical axis about which the nose 
of the aircraft rotates in the left-to-right (or right-to-left) direction with respect to the 
pilot. These rotations are illustrated in Figure 7-4. 

L 
Figure 7-4. Aircraft Rotations 

Lift and Drag 
When an airfoil moves through a fluid such as air, lift is produced. The mechanisms by 
which this occurs are similar to those in the case of the Magnus lift force discussed in 
the previous chapter, in that Bernoulli's law is still in effect. However, this time, instead 
of rotation, it is the airfoil's shape and angle of attack that affect the flow of air so as to 
create lift. 

Figure 7-5 shows an airfoil section moving through air at a speed V. V is the relative 
velocity between the foil and the undisturbed air ahead of the foil. As the air hits and 

Port is to the pilot's left and starboard is to the pilor's right when sitting in the cockpit facing forward. 



- 
Figure 7-5. Airfoil Moving through Air 

moves around the foil, it splits at the forward stagnation point located near the foil 
leading edge such that air flows both over and under the foil. The air that flows under 
the foil gets deflected downward, while the air that flows over the foil speeds up as it goes 
around the leading edge and over the surface of the foil. The air then flows smoothly 
off the trailing edge; this is the so-called Kutta condition. Ideally; the boundary layer 
remains "attached" to the foil without separaling as in the case of the sphere discussed 
in the preceding chapter. 

The relatively fast-moving air above the foil results in a region of low pressure above the 
foil (remember, Bernoulli's equation that shows pressure is inversely proportional to 
velocity in fluid flow). The air hitting and moving along the underside of the foil creates 
a region of relatively high pressure. The combined effect of this flow pattern is to create 
regions of relarively low and high pressure above and below the airfoil. It's this pressure 
differential that gives rise to the lift force. By definirion the lift force is perpendicular to 
the line of flight, that is, the velocity vector. 

Note that the airfoil does not have to be cambered to generate lift; a flat plate oriented 
at an angle of attack relative to the air flow will also generate lift. Likewise, an airfoil 
does not have to have an angle of attack. Cambered airfoils can generate lift at zero, even 
neganve, angles of attack. Thus, in general, the total lift force on an airfoil is composed 
of two components: the lift due to camber and the lift due to attack angle. 

Theoretically, the thickness of an airfoil does not contribute to lift. You can, after all, 
have a thin curved wing, as in the case of wings made of fabric such as those used for 
hang gliders. In practice, thickness is utilized for structural reasons. Further, thickness 
at the leading edge can help to delay stall (more on this in a moment). 



The pressure differential between the upper and lower surfaces of the airfoil also gives 
rise to a drag force that acts in line with but opposing the veloaty vector. The lift and 
drag forces are perpendicular to each other and lie in the plane.+fined by the velocity 
vector and the vector normal (perpendicular) to the airfoil chord line. These two force 
components, lift and drag, when combined yield the resultant force acting on the airfoil 
in flight. This is illustrated in Figure 7-5. 

Both lift and drag are functions of air density, speed, viscosity, surface area, aspect ratio, 
and angle of attack. Traditionally, the lift and drag properties of a given foil design are 
expressed in terms of nondimensional coefficients: 

where S is the wing planform area (span times chord for rectangular wngs), L is the 
lift force, D is the drag force, V is the speed rhrough the air, and p is air density. These 
coefficients are experimentally determined from wind tunnel tests of model airfoil 
des~gns at various angles of atcack. The results of these tests are usually presented as 
e r a ~ h s  of lift and drag coefficient versus attack an.gle. Figure 7-6 illustrates some typical - A - - 
lift and drag charts for a wing section. 

I 

AHack Angle (degrees) - CL - - - - CL with flap deiecied 15 degrees 

I 
Figure 7-6. Typical CL, CD,  and CM versus Attack Angle 
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Anack Angle (degrees) - CD - - - - CD with fi8p delecied 15 degrees 

Anack Angle (degrees) - CM - - - - CM with flap delecied 15degrees 

Figure 7-6. Continued 



The most widely known family of foil section designs and test data are the NACA foil 
sections. Theory of W~ngSections by IraH. Abbott and Albert E. Von Doenhoff contains 
a wealth of lift and drag data for practical airfoil designs (see *G bibliography for a 

'". complete reference to this work).* 

In practice, the flow of air around a wing is not strictly two-dimensional, that is, flowing 
uniformly over each parallel cross section of the wing, and there exists a spanwise 
flow of air along the wing. The flow is said to be three-dimensional. The more three- 
dimensional the flow, the less efficient the wing.t This effect iz reduced on longer, 
high-aspect-ratio wings (and wings with end plates where the effective aspect ratio is 
increased); thus, high-aspect-ratio wings are comparatively more efficient. 

To account for the effect of aspect ratio, wing sections of various aspect ratio for a given 
foil design are usually tested so as to produce a family of lift and drag curves versus 
attack angle. There are other geometrical factors that affect the flow around wings, 
and for a rigorous treatment of these I'll refer you to the Theory of Wng Sections and 
Fluid-Dynamic Lift.$ 

Turning back to Figure 7-6, you'll notice that the drag coefficient increases sharply with 
attack angle. This is reasonable, as you would expect the wing to produce the most drag 
when oriented flat against or perpendicular to the flow of air. 

A look at the lift coefficient curve, which initially increases linearly with attack angle, 
shows that at some attack angle the lift coefficient reaches a maximumvalue. This angle 
is called the critical attack angle. For angles beyond the critical, the lift coefficient drops 
off rapidly, and the airfoil (or wing) will stall and cease to produce lift. This is bad. 
When an aircraft stalls in the air, it will begin to drop rapidly until the pilot corrects the 
stall situation by, for example, reducing pitch and increasing thrust. When stall occurs, 
the air no longer flows smoothly over the trailing edge, and the corresponding high 
angle of attack results in flow separation, as illustrated in Figure 7-7. This loss in lift is 
also accompanied by an increase in drag. 

Theoretically, the resultant force acting on an airfoil acts through a point located at one- 
fourth the chord length aft of the leading edge. This is called the quarter-chord point. 
In reality, the resultant force line of action will vary depending on attack angle, pressure 
distribution, and speed, among other factors. However, in practice, it is reasonable 
to assume that the line of action passes through the quarter-chord point for typical 
operational conditions. To account for the difference between the actual line of action 
of the resultant and the quarter-chord point, the pitching moment about the quarter- 
chord point must be considered. This pitching moment usually tends to tilt the leading 

* Thean o f   win^ Sections includes srandaid foil secrion eeometrv and oerformance dam. includine the well- 

t Lifting efficiency can be expiersed in terms of liir-ro-drag rario The higher the liir-ro-drag ratio the more 
efficient the wing or foil section. 

t Fluid-DynamicLift, bySighardF. HoeinerandHenryV Borrr,andFluid-DynomicDrag, bySighaidE Hoerner, 
contain tons of practical charts, tables, and formulas for virtually every aspect of aircraft aerodynamics. They 
even indude material that is appropriate for high-speed boats and automobiles. 

128 1 Chapter? Aircraft 



Veioc 
Relative air velocily 

edge of the foil downward. In some cases this moment is relatively small in comparison 
to the other moments acting on the aircraft and may be neglected.* An exception may 
be when the foil has deflected flaps. 

Flaps are control devices that are used to alter the shape of the foil so as to change 
its lift characteristics. Figure 7-6 also shows typical lift, drag, and moment coefficients 
for an airfoil fitted with a plain flap deflected downward at 15 degrees. Notice the 
significant increase in hft, drag, and pitch moment when the flap is deflected. Theory 
of Wing Sections also provides data for flapped airfoils for flap angles between -15 and 
60 degrees. 

Other Forces 
The most notable force that I've yet to discuss is thrust-the propulsion force. Thrust 
provides forward motion, and without it, the aircraft's wings can't generate lift and the 
aircraft won't fly Thrust, whether generated by a propeller or a jet engine, is usually 
expressed in pounds, and a common ratio that's used to compare the relative merits 
of aircraft powering is the thrust-to-weight ratio. The thrust-to-weight ratio is the 
maximum thrust deliverable by the propulsion plant divided by the aircraft's total 
weight. When the thrust-to-weight ratio is greater than 1, the aircraft is capable of 
overcoming gravity in a vertical climb. In this case the lift generated by the wings does 
not aid in maintaining (or increasing) altitude; however, lift is still being generated, 
which tends to pull the aircraft away from a vertical trajectory 

Thrust, whether produced by a propeller or a jet engine, is a function of air density At 
high altitudes the air density (and oxygen content) is reduced, and thrust will decrease 
accordingly At some point the engines will stall and cease to propel the aircraft higher. 
If you've ever been to an air show, you've probably seen this sort of stunt performed on 
purpose. 

* Aircraft designers musr always consider this pitching moment when designing the aircrafr's strucrure, as this 
moment tends to x a n r  to twist the wings off the fuselage 



Besidesgravity, thrust, and winglift anddrag, there areother forces that act on an aircraft 
in flight. These are drag forces (and lift in some cases) on the various components of 
the aircraft besides the wings. For example, the fuselage contribu.? to the overall drag 
acting on the aircraft. Additionally, anything sticking out of the fuselage will contribute 
to the overall drag. If they aren't wings, anything sticking out of the fuselage is typically 
called an appendage. Some examples of appendages are the aircraft landing gear, canopy, 
bombs, missiles, fuel pods, and air intakes. 

Typically drag data for fuselages and appendages are expressed in terms of a drag 
coefficient similar to that discussed in Chapter 6, where experimentally determined drag 
forces are nondimensionalized by projected frontal area (S), density (p), and velocity 
squared (V2). This means that the experimentally measured drag force is divided by the 
quantity ( ~ / ~ ) , J V ~ S  to get the dimensionless drag coefficient. Depending on the object 
under consideration, the drag coefficient data will be presented as a function of some 
important geometric parameter, such as attack angle in the case of airfoils or length- 
to-height ratio in the case of canopies. Here again, H~erner's Fluid Dynamic Drag is an 
excellent source of practical data for all sorts of fuselage shapes and appendages. 

For example, when an aircraft's landing gear is down, the wheels (as well as associated 
mechanical gear) contribute to the overall drag force on the aircraft. Hoerner reports 
drag coefficients based on frontal area of some small plane landing gear designs to be in 
the range of 0.25 to 0.55. By comparison, drag coefficients for typical external storage 
pods (suchas for fuel), which are usually streamlined, can range from 0.06 to 0.26. 

Another component of the total drag force acting on aircraft in flight is due to skin 
friction. Aircraft wings, fuselages, and appendages are not completely smooth. Weld 
seems, rivets and even paint cause surface imperfections that increase frictional drag. As 
in the case of the sphere data presented in Chapter 6, this frictional drag is dependent 
on the nature of the flow around the part of the aircraft under consideration, that is, 
whether the flow is laminar or turbulent. This implies that frictional drag coefficients 
for specific surfaces will generally be a function of Reynold's number. 

In a rigorous analysis of a specific aircraft's flight, you would of course want to consider 
all these additional drag components. If you're interested in seeing the nitty-gritty details 
ofsuchcalculations, I suggest you take alookat Hoerner's FluidDynamicDrag, in which 
he gives a detailed example calculation of the total drag force on a fighter aircraft in his 
Chapter 14. 

Control 
The flaps located on the inboard trailing edge of the wing in our model are used to alter 
the chord and camber of the wing section to increase lift at a given speed. Flaps are used 
primarily to increase lift during slow-speed flight, such as when taking off or landing. 
When landing, flaps are typically deployed at a high downward angle (downward flap 
deflections are considered positive) on the order of 30 to 60 degrees. This increases both 
the lift and drag of the wings. When landing, this increase in drag also assists in slowing 
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the aircraft to a suitable landing speed. When taking off, this increase in drag works 
against you in that it necessitates higher thrust to get up to speed; thus, flaps may not 
be deployed to as great an angle as when landing. 

Ailerons control or induce roll motion by means of producing differential lift between 
the port and starboard wing sections. The basic aileron is nothing more than a pair of . 
trailing edge flaps fitted to the tips of the wings. These flaps move opposite each other, 
one deflecting upward while the other deflects downward, to create a lift differential 
between the port and starboarr' wings. This lift differential, separated by the distance 
between the ailerons, creates a torque that rolls the aircraft. To roll the aircraft to the 
port side (the pilot's left), the starboard aileron would be deflected in a downward 
direction while the port aileron was deflected in an upward direction relative to the 
pilot. Likewise, h e  opposite deflections of the ailerons would induce a roll to the 
starboard side. In a real aitcraft the ailerons are controlled by moving the flight stick to 
either the left or right. 

Elevators, the tail "wings," are used to control the pitch of the aircraft. (Elevators can be 
flaps, as shown in Figure 7-2, or the entire tail wing can rotate, as on the Lockheed Martin 
F-16.) When the elevators are deflected such that their trailing edge goes downward with 
respect to the pilot, a nose-down pitch rotation will be induced; that is, the tail of the 
aircraft will tend to rise relative to its nose, and the aircraft will dive. In an actual aircraft 
this is achieved by pushing the flight stick forward. When elevators are deflected such 
that their tailing edge goes upward, a nose-up pitch rotation will be induced. 

Elevators are very important for uimming (adjusting the pitch 00 the aircraft. Generally, 
the center of gravity of the aircraft is located above the mean quarter-chord line of the 
aircraft wings such that the center of gravity is in line with the main lift force. However, 
as I explained earlier, the lift force does not always pass through the quarter-chord 
point. Eurther, the center of gravity of the aircraft may very well change during flight, 
for example, as fuel is burned off and when ordnance is released. By controlling the 
elevators, the pilot is able to adjust the attitude of the aircraft such that all of the forces 
balance and the aircraft flies at the desired orientation (pitch angle). 

Finally, the rudder is used to control yaw The pilot uses foot pedals to control the 
rudder; pushing the left (port) pedal yaws left, and pushing the right pedals yaws 
right (starboard). The rudder is useful for fine-tuning the alignment of the aircraft for 
approach on landing or when sighting up a target. Typically, large rudder action tends 
also to induce roll motion that must be compensated for by proper use of the ailerons. 

In some cases the rudder consists of a flap on the trailing edge of the vertical tail; in 
other cases there is no rudder flap, and the entire vertical tail rotates. In both cases 
the vertical tail, which also provides directional stability, will usually have a symmetric 
airfoil shape; that is, its mean camber line will be coincident with its chord line. When 
the aircraft is flying straight and level, the tail willnot generate lift, since it is symmetric 
and its attack angle will be zeta However, if the plane sideslips (yaws relative to its flight 
direction), then the tail will be at an angle of attack and will generate lift, tending to 
push the plane back to its original orientation. 
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Although we've yet to cover a lot of the material required to imp$penc a real-time flight 
simulator, I'd like to go ahead and outline some of the steps necessary to calculate the 
lift and drag forces on your model aircraft. Here are the steps: 

1. D~scretize the lifting surfaces into a number of smaller wing sections. 

2. Collect geom-tric and fod performance data. 
3. Calculate the relative air velocity over each wing section. 
4. Calculate the attack angle for each wing section. 
5. Determine the appropriate lift and drag coefficients, and calculate lift and drag 

forces. 

The first step is relatively straightforward in that you need co divide the aircraft into 
smaller sections, each of which is approximately uniform in characteristics. Performing 
this step for the model shown inFigure 7-2, you might divide the wing into four sections: 
one for each wing section that's fitted with an aileron and one for each section that's 
fitted with a flap. You could also use two sections to model the elevators-one port and 
one starboard-and another section to model the caivrudder. Finally, you could lump 
the entire fuselage together as one additional section or further subdivide it into smaller 
sections, depending on how detailed you want to get. 

If ~ o u ' r e  going to model your aircraft as a rigid body, you'll have to account for all of 
the forces and moments acting on the aircraft while it is in flight. Since the aircraft is 
composed of a number of different components, each contributing to the total lift and 
drag, you'll have to break your calculations up into a number of smaller chunks and 
then sum all contributions to get the resultant lift and drag forces. You can then use 
these resultant forces along with thrust and gravity in the equations of motion for your 
aircraft. You can, of course, refine your model further by adding more components for 
such items as the cockpit canop): landing gear, external fuel pods, and bombs. The level 
of detail to which you go depends on the degree of accuracy you're going for. If you are 
trying to mimic the flight performance of a specific aircraft, then you need to sharpen 
your pencil. 

Once you have defined each section, you must prepare the appropriate geometric and 
performance data. For example, for the wings and other lifting surfaces you'll need to 
determine each section's initial incidence angle (ics fixed pitch or attack angle relative 
to the aircraft reference syscem), span, chord length, aspect ratio, planform area, and 
quarter-chord location relative co the aircraft's center of gravity You'll also have to 
prepare a table of lift and drag coefficients versus attack angle appropriate for the 
section under consideration. Since this data is usually presented in graphical form, 
you'll have to pull data from the charts to build your lookup table for use in your game. 
Finally, you'll need to calculate the unit normal vector perpendicular to the plane of 
each wing section. (You'll need this later when calculating angle of attack.) 
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These first two steps need be performed only once at the beginning of your game or 
simulation, since the data will remain constant (unless your plane changes shape or its 
center of gravity shifts during your simulation). 

The third step involves calculating the relative velocity between the air and the each 
component so that you can calculate lift and drag forces. At first glance this might seem 
trivial, since the aircraft will be traveling at an air speed that will be known to you 
during your simulation. However, you must also remember that the aircraft is a rigid 
body, and in addition to the linear velocity of its center of gravity, you must also account 
for its rotational velocity 

Back in Chapter 2, I gave you a formula to calculate the relative velocity of any point on 
a rigid body that was undergoing both linear and rotational motion: 

This is the formula you'll need to calculate the relative velocity at each component in 
your model. In this case vCg is the vector representing the air speed and flight direction 
of the aircraft, w is the angular velocity vector of the aircraft, and r is thedistancevector 
from the aircraft center of gravity to the component under consideration. 

When dealing with wings, once you have the relative velocity vector, you can proceed to 
calculate the attack angle for each wing section. The drag force vector will be parallel to 
the relative velocity vector, while the lift forcevectorwill be perpendicular to the velocity 
vector. Angle of attack is then the angle between the lift force vector and the normal 
vector perpendicular to the plane of the wing section. This involves taking the dot 
product of these two vectors. 

Once you have the attack angle, you can go to your coefficient of lift and drag versus 
attackangle tables to determine the lift and drag coefficients to use at this instant in 
your simulation. With these coefficients you can use the following formulas to estimate 
the magnitudes of lift and drag forces on the wing section under consideration: 

Lift = ~ ~ ( 1 1 2 ) p V ~ S  

Drag = ~ ~ ( l l 2 ) p V ~ S  

The approach outlined here is a very simplified approach that only approximates the 
lift and drag characteristics. This approach does not account for spanwise flow effects, 
or the flow effects between adjacent wing sections. Nor does this approach account for 
air disturbances, such as downwash, that may affect the relative angle of attack for a 
wing section. Further, the air flow over each wing section is assumed to be steady and 
uniform. 

As a simple example, consider wing panel 1, which is the starboard aileron wing section. 
Assume that the wing is set at an initial incidence angle of 3.5 degrees and that the plane 
is traveling at a speed of 75 knots in level fllght at low altitude with a pitch angle of 
4.5 degrees. This wing section has a chord length of 5.2 ft, and the span of this section 
is 6 ft. Using the lift and drag data presented in Figure 7-6, calculate the lift and drag 
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on this wing section, assuming that the ailerons are not deflected and that the density 
of air 2.37 x lor3 slug/ft3. 

The first step is to calculate the angle of attack, which is 8 d&rees, based on the 
information provided. Now looking at Figure 7-6, you can find the airfoil lift and drag 
coefficients to be 0.92 and O.Ol3, respectively 

Next, you'll need to calculate the planform area of this section, which is simply its 
chord times its span. This yields 31.2 ft2. Now you have enough information to calculate 
lift and drag as follows (don't forget to convert the speed in knots to ftls; 1 knot = 
1.688 ftls): 

Lift = C ~ ( 1 / 2 ) p V ~ s  

Lift = 0.92(1/2)(2.37 x slug/ft3)[(75 kt)(1.688 fc/s/kt)12(31.2 ftz) 

Lift = 542.21b 

Drag = C ~ ( l j 2 ) p V ~ S  

Drag = O.Ol3(1/2)(2.37 x slug/ft3)[(75 kt)(1.688 f t /~/kt)]~(31.2ft~)  

Drag = 8.01b 

In your simulation you'll have to perform a similar set of calculations for every compo- 
nent that you've defined. As you can see, using this sort of empirical data and formulas, 
although only approximate, lends itself to fairly easy calculations. The hard part is de- 
ciding what to model and finding the right data; after that the lift and drag calculations 
are pretty simple. 

I've prepared an example program to show you how to model a simple airplane using 
the method shown here The program is named FlightSim.exe andis a real-time, 3D flight 
simulator.' The small aircraft that is simulated resembles the one shown in Figure 7-2. 

This program includes the following source files along with a text f i e  (Instructionstxt) 
that explains the flight controls: 

Physics.cpp and Physics.h 

D3dstuficpp and D3dstuflh 

Mymath.h 

Wnmain.cpp 

As I said, this program is a real-time simulation, and it treats the aircraft as a rigid body 
We have yet to cover real-lime simulations in this book, so a lot of the code may be 
confusing at this point. Don't worq  though; later in this book I'll cover all you need 
to know to fully understand this program. For now, however, I want you to focus on a 
few specific functions that implement the flight model. These functions are contained 
in the source file, Physics.cpp. 

* I've used Microsoft's Direcr3D for this program, so to run it, you'll have ro make sure Direct3D is installed 
on your system. 

134 1 Chapter? Aircraft 



The first function I wanc you to look at is CalcAirplaneMassProperties: 

/I ......................................................................... // 
I1 This model uses a set of eight discrete elements to represent the 
I1 airplane. The elements are described below: 
I1 
/I Element 1: Outboard, Port (left) wing section fitted with ailerons 
I1 Element 2: Inboard, Port wing section fitted with landing flaps 
/I Element 3: Inboard, Starboard (right) wing section fitted with 
/I landing flaps 
I1 Element 4: Outboard, Starboard wing section fitted with ailerons 
11 Element 5: Port elevator fitted with flap 
I1 Element 6: Starboard elevator fitted with flap 
/I Element 7: Vertical taillrudder (no flap the whole thing rotates) 
/I Element 8: The fuselage , , , , 
I1 This function first',sets up each element and then goes on to calculate 
I1 the combined weight, center of gravity, and inertia tensor for the plane. 
I1 Some other properties of each element are also calculated which you'll 
/I need when calculating the lift and drag forces on the plane. 
// ......................................................................... // 
void CalcAirplaneMassProperties(void) 
I 

float mass; 
Vector "Moment; 
Vector CG: 
int i: 
Float I ~ X ,  ~ y y ,  I ~ Z ,  ~ x y ,  1x2, ~ y z ;  
float in, di; 

I1 Initialize the elements here 
/I Initially, the coordinates of each element are referenced from 
I1 a design coordinates system located at the very tail end of the plane, 
I1 its baseline, and its centerline. Later, these coordinates will be 
11 adiusted so that each element is referenced to the combined center of 
I /  mavitv of the airolane. 
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11 Calculate the vector normal (perpendicular) to each lifting surface. 
11 This is required when calculating the relative air velocity for 
11 lift and drag calculations. 
for (i = 0; i< 8; it+) 
I 

11 Calculate total mass 
mass = 0; 
for (i = 0; i< 8; i++) 

mass += Element[i].fMass; 

I 1  Calculate combined center of gravity location 
vMoment = Vector(O.of, O.Of, 0.Of); 
for (i = 0; i< 8; it+) 
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/ I  Calculate coordinates of each element with respect to the combined CG 
for (i = 0; i< 8; i++) 
I 

Elernent[i].vCGCoords = Element[i].vDCoords - CG; 
} 

/ I  Now calculate the moments and products of inertia for the 
/ I  combined elements. 
I /  (This inertia matrix (tensor) is in body coordinates) 
IXX = 0; 1yy = 0; Irr = 0; 
1xy = 0; 1x2 = 0; 1yz = 0; 
for (i = 0; i< 8; i++J 
I < 

Ixx += Element[i].vLocalInertia.x + Element[i].fMass * 
(Element[i] .vCGCoords.y'Element[i] .vCGCoords.y + 
Element [i] .vCGCoords.z*Element[i] .vCGCoords.z); 

Iyy += Elernent[i].vLocalInertia.y + Element[i].fMass * 
(Element[i] .vCGCoords.z'Element[i] .vCGCoord z + 
Element[i] .vCGCoords.x*Element[i] .vCGCoords.x); 

Izz += Element[i].vLocalInertia.z + Element[i].fMass * 
(Element[i] .vCGCoords.x*Element[i] .vCGCoords. + 
Element[i] .vCGCoords.y*Element [i] .vCGCoords. y); 

Ixy += Elernent[i].fMass * (Element[i].vCGCoords.x * 
Element[i] .vCGCoords .y); 

1x2 += Element[i].fMass * (Element[i].vCGCoords.x * 
Element[i] .vCGCoords. 2 ) ;  

Iyz += Element[i].fMass * (Element[i].vCGCoords.y * 
Element[i] .vCGCoords.z); 

} 

/ I  Finally, set up the airplane's mass and its inertia matrix and take the 
/! inverse of the inertia matrix 
Airplane.fMass s mass; 
Airplane.mInertia.el1 = Ixx; 
Airplane.mInertia.el2 = -1xy; 
Airplane.mInertia.el3 = -1xz; 
Airplane.mInertia.e21 = -1xy; 
Airplane.mInertia.e22 = Iyy; 
Airplane.mInertia.e23 = -1yz; 
Airplane.mInertia.e31 = -1xz; 
Airplane.mlnertia.e32 = -1yz; 
Airplane.mInertia.e33 = Izz; 

, 
Among other things, this function qsentially completes step 1 (and part of step 2) of 
our modeling method: discretize the airplane into a number of smaller pieces, each with 
its own mass and lift and drag properties. For this model I chose to use eight pieces, 
or elements, to describe the aircraft. My comments at the beginning of the function 
explain what each element represents. 
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The very first thing this function does is initialize the elements with the properties thac 
I've defined to approximate the aircraft. Each element is given a mass, a set of design 
coordinates to its center of mass, a set of moments of inertia aboyt each element's center 
of mass, an initial incidence angle, a planform area, and a dihedral angle. 

The design coordinates are the coordinates of the element with respect to an origin 
located at the very rip of the aircraft's tail, on its centerline, and at its baseline. The 
x-axis of this system points toward the nose of the aircraft, and the y-axis poinrs toward 
the port side. The z-axis points upward. You have to set up your Jements in this design 
coordinate system first because you don't yet know the location of the whole aircraft's 
center of mass, which is the combined center of mass of all of the elements. Ultimately, 
you want each element referenced from the combined center of mass because it's the 
center of mass that you'll be tracking during the simulation. (Recall that we discussed 
this in Chapters 2 and 4.) 

The dihedral angle is the angle about the x-axis at which the element is initially set. For 
our mode& all of the elements have a zero dihedral angle, thac is, they are horizontal, 
except for the tail rudder, which has a 90-degree dihedral, since it is oriented vertically 

After you set up the elements, the first calculation that this function performs is to 
find the unit normal vector to each element's surface based on the element's incidence 
and dihedral angles. You need this direction vector to help calculate the angle of attack 
between the air flow and the element. 

The next calculation is the total mass calculation, which is simply the sum of all element 
masses. Immediately following that, the combined center of gravity location is deter- 
mined using the technique I discussed in Chapter 1. The coordinates to the combined 
center of gravity are referenced to the design coordinate system. You need to subtract 
this coordinate from the design coordinate of each element to determine each element's 
coordinates relative to the combined center of gravity After that you're all set, with the 
exception of the combined moment of inertia tensor, which I'll wait until Chapter U to 
discuss. 

Step 2 of our modeling method says that you need to collect the airfoil performance 
data. For the example program I used a cambered airfoil with plain flaps to model 
the wings and elevators, and I used a symmetric airfoil without flaps to model the tail 
rudder. I didn't use flaps for the tail rudder, since I just made the whole thing rotate 
about a vertical axis to provide rudder action. 

For the wings, I set up two functions to handle the lift and drag coefficients: 
// ......................................................................... // 
I /  Given the attack angle and the status of the flaps, this function 
I /  returns the appropriate lift coefficient for a cambered airfoil with 
I /  a plain trailing edge flap ( t l -  15 degree deflection). 
/ /  ......................................................................... // 
float LiftCoefficient(f1aat angle, int flaps) 
{ 

float clfo[s] = {-o.~f, -o.zf, o.2f, o.s7f, o.qzf, 1.21f, 1.43f, 1.4f, 
1.0f); 
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float clfd[9] = {o.of, 0.45f, o.85f, l.o2f, 1.39f, 1.65f, 1.75f, 1.38f, 
1.17f); 

float clfu[g] = {-o.74f, -o.4f, o.of, 0.27f, o.63f, 0.92f, l.o3f, l.lf, 
0.78f); 

float a[9] = {-8.0f, -4.0f, O.Of, 4.0f, 8.0f, 12.Of, 16.0f, 2O.Of, 
24.0f); 

float cl; 
int i; 
cl = 0; 
for (i=O; i<8; iu) 
I 

if( (a[i] <= angle) 55 (a[i+l] , angle) ) 
I 

case o:ll flaps not deflected 
cl = clfo[i] - (a[i] - angle) * (clfO[i] - clfo[i+l]) I 

\ (a[i] - a[i+l]); 
break; 

case -1: I/ flaps down- 
cl = clfd[i] - (a[i] - angle) * (clfd[i] - clfd[i+l]) I 

(a[i] - a[i+l]); 
break: 

case 1: //.flaps up 
cl = clfu[i] - (a[i] - angle) * (clfu[i] - clfu[i+l]) / 

(a[i] - a[i+l]); 
break; 

return cl; 

/ /  ......................................................................... // 
/ I '  Given the attack angle and the status of the flaps, this function 
/I returns the appropriate drag coefficient for a cambered airfoil with 
I/ a plain trailing edge flap (+/- 15 degree deflection). 
/ /  ......................................................................... 11 
float DragCoefficient(f1oat angle, int flaps) 
I 

float cdfo[g] = {o.olf, 0.0074f, 0.004f, O.O09f, 0.013f, 0.023f, 0.05f, 
0.12f, 0.21f); 

float cdfd[g] = {O.o065f, 0.0043f, 0.0055f, 0.0153f, 0.022lf, 0.039lf, o.lf, 
0.195f, 0.3f); 

float cdfu[g] = {0.005f, 0.0043f, 0.0055f, 0.02601f, 0.03757f, 0.06647f, 
O.l3f, O.l8f, 0.25f); 

float a[9] = {-8.0f, -4.0f, O.Of, 4.0f, 8.0f. Iz.Of, 16.0f, 2O.Of, 
24.0fl: . . 

float cd; 
int i; 

Cd = 0.5; 
for (is; i<8; iu) 
I 

if( (a[i] <= angle) 55 (a[i+l] > angle) ) 
{ 

switch(f1aps) 
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I 
case O:// flaps not deflected 

cd = cdfo[i] - (a[i] - angle) * (cdfo[i] - cdfo[i+l]) I 
(a[il - a[i+ll); -.,? 

break; 
case -1: I1 flaps down 

cd = cdfd[i] - (a[i] - angle) * (cdfd[i] - cdfd[i+l]) I 
(a[i] - a[i+l]); 

break: 

return cd; 
1 

Each of these functions takes the angle of attack as aparameter along with a flag used to 
indicate thestate of the flaps, that is, whether the flaps are in neutral position, deflected 
downward, or deflected upward. Notice that thelift and drag coefficient data aregiven 
for a set of discrete attack angles; thus, linear interpolation is used to determine the 
coefficients for attack angles that fall between the discrete angles. 

The functions for determining the tail rudder lift and drag coefficients are similar to 
those shown here for the wings, the only differences being the coefficients themselves 
and the fact that the tail rudder does not include flaps. Here are the functions: 

/ I  ........................................................................ 11 
I1 Given the attack angle this function returns the proper lift coefficient 
I1 for a symmetric (no camber) airfoil without flaps. 
/ I  ........................................................................ 11 
float RudderLiftCoefficient(f1oat angle) 
I 

float clfo[7] = {0.16f, 0.456f, 0.736f, 0.968f, 1.144f, 1.12f, 0.8f); 
float a[7] = {o.Of, 4.0f, 8.0f, 12.0f, 16.0f, 20.0f, 24.0f); 
float cl; 
int i ; 
float aa = (float) fabs(ang1e); 

cl = 0; 
far (i=O; i<8; i++) 
I 
I 

if( (a[i] <= aa) && (a[i+l] > aa) ) 
I 

cl = clfo[i] - (a[i] - aa) * (clfO[i] - clfo[i+ll) 1 
(a[i] - a[i+l]); 

if (angle < 0) cl = -cl; 
break; 

) 

return cl; 
1 



/ /  ........................................................................ //  
I /  Given the attack angle this function returns the proper drag coefficient 
I /  for a symmetric (no camber) airfoil without flaps. 
/ /  ........................................................................ // 
float RudderDragCoefficient(f1oat angle) 
i 

float cdfO[7] = {0.0032f, 0.0072f, 0.0104f, 0.0184f, 0.04f, O.O%f, 0.168f); 
float a[7] = {O.Of, 4.0f, 8.0f, 12.0f, 16.0f, 20.0f, 24.0f); 
float cd: 
int i ; 
float aa  = (float) fabs(ang1e); 

cd = 0.5; 
for (i=o; i d ;  i++) 
I 

if( (a[i] <= aa) 88 (a[i+ll > aa) ) 

cd = cdto[i] - (a[i] - aa) * (cdfo[i] - cdfo[i+l]) / 
(a[i] - aiicl]); 

break; 
} 

return cd; 
1 

With steps 1 and 2 out of the way, steps 3, 4, and 5 are handled in a single function 
called CalcAirplaneLoads: 

/ /  ........................................................................ //  
I /  This function calculates 211 of the forces and moments acting on the 
I /  plane at any given time. 
/ /  ........................................................................ //  
void CalcAirplaneLoads(void) 

Vector Fb, Mb; 

I /  reset farces and moments: 
Airo1ane.vFarces.x = O.0f: 

I /  Define the thrust vector, which acts through the plane's CG 
Th1ust.x = 1.0f; 
Thrust.y = o.0f; 
Th1ust.z = O.Of; 
Thrust *= ThrustForce; 

I /  Calculate forces and moments in bodv soace: . .  ~~ 

Vector vLocalVelocity; 
float fLocalSpeed; 
Vector vDragVector; 
Vector vLiftVector; 
float fAttacMngle; 
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float tmp; 
Vector vlesultant; 
int i; 
Vector vtmp; 

Stalling = false; 

for(i.0; i<7; it+) 11 loop through the seven lifting elements 
/ /  skipping the fuselage 

I 
if 'i == 6) I1 The tailtrudder is a s~ecial case. since it can rotate: 
{ ' / I  therefore, you have to'recalculate the normal vector 

f loa t  in. d i :  

/I Calculate local velocity at element 
I/ The local velocity includes the velocity due to linear 
/I motion of the airplane, 
/I plus the velocity at each element due to the 
/ I  rotation of the airplane. 

/ /  Here's the rotational part 
vtmp = Airplane.vAngularVelocity~Element[i].vCGCoord~; 

vLocalVelocity = Airplane.vVelocity8ody + vtmp; 

/ /  Calculate local air speed 
fLocalSpeed = vLocalVelocity.hagnitude(); 

/ /  Find the direction in which drag will act. 
/ I  Drag always acts inline with the relative 
/ I  velocity but in the opposing direction 
if (f LocalSpeed > 1.) 

vDragVector = -vLocalVelocity/fLocalSpeed; 

/ I  Find the direction in which lift will act. 
I /  Lift is always perpendicular to the drag vector 
vliftvector = (vDragVector'Element[i].vNormal)^vDragVector; 
tmp = vLiftVector.Magnitude(); 
vLiftVector.Norrnalire(); 

// Find the angle of attack. 
I/ The attack angle is the angle between the lift vector and the 
I/ element normal vector. Note that the sine of the attack angle, 
I/ is equal to the cosine of the angle between the drag vector and 
// the normal vector. 
tmp = vDragVector*Element[i].vNormal; 
if(tmp > I.) tmp - 1; 
if(tmp < -1) tmp z -1; 
fAttackAngle = RadiansToUegrees((f1oat) asin(tmp)); 

I/ Determine the resultant force (lift and drag) an the element. 
tmp = o.5f * rho * fLocalSpeed'fLocalSpeed * Elernent[i].fArea; 
if (i == 6) // Taillrudder 
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"Resultant = (vL i f tVector *RudderL i f tCoef f ic ient ( fAt tacngle )  i 

vDragVector*RudderDragCoeff icient(fAttacMngle)) 
* tmp: . . 

} else 
 resultant = (vL i f tVec to r *L i f tCoef f i c ien t ( fA t tacMng le ,  

Element[i] .Map) + 
vDragVector*DragCoefficient(fAttackAngle, 
Element[i] .Slap) ) * tmp; 

I1 Check for stall. 
I1 We can easily determine when stalled by noting when the coefficient 
I1 of lift is zero. In reality stall warning devices give warnings well 
I1 before the lift goes to zero to give the pilot time to correct. 
if (i<=O) 
I 

if (LiftCoefficient(fAttackAngle, Element[i].iFlap) == 0) 
Stallipg = true; 

1 '% 

I1 Keep a running total of these resultant forces (total force) 
Fb += "Resultant; 

I1 Calculate the moment about the CG of this element's force 
I1 and keep a running total of these moments (total moment) 
vtmp = Element[i].vCGCoords"vResultant; 
Mb += vtmp; 

1 
I1 Now add the thrust 
Fb += Thrust; 

I1 Convert forces from model space to earth space 
Airp1ane.vForces = QVRotate(Airplane.qOrientation, Fb); 

I1 Apply gravity (g is defined as -32.174 ftls 2) 
Airp1ane.vForces.z += g * Airplane.fMass; 
Airplane.vMoments += Mb; 

1 '  

The first thing this function does is reset the variables that hold the total force and 
moment acting on the aircraft. Next, the thrust vector is set up. This is trivial in this 
example, since I'm assuming that the thrusc vector always points in the plus x-axis 
direction (toward the nose) and passes through the aircrafc center of gravity (so it does 
not create a moment). 

After calculating the thrust vector, the function loops over the model elements to cal- 
culate the lift and drag forces on each element. I've skipped the fuselage in this model; 
however, if you want to account for its drag in your model, this is the place to add the , drag calculation. 

Going into the loop, the first thing the function does is check to see whether the current 
element is element number 6, the tail rudder. If it is, then the rudder's normal vector 
is recalculated on the basis of the current incidence angle. The incidence angle for the 
rudder is altered when you press the X or C key to apply rudder action. 
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The next calculation is to determine the relativevelocity between the air and the element 
under consideration. As I stated earlier, this relative velocity consists of the linear velocity 
as the airplane moves through the air plus the velocity of $dch element due to the 
airplane's rotation. Once this vector has been obtained, youcalculate the relative air 
speed by taking the magnitude of the relative velocity vecror. 

The next step is to determine the direction in which drag will act. Since drag opposes 
motion, it acts in line with but opposite to the relative velocity vector; thus, all you 
need to do is take the negative of the relative velocity vector and normalize the ~ s u l t  
(divide it by its magnitude) to obtain the drag direction vector. Since this vector was 
normalized, its length is equal to 1 (unity), so you can multiply it by the drag force that 
will be calculated later to get the drag force vector. 

After obtaining the drag direction vector, this function uses it to determine the lift 
direction vector. The lift force vector is always perpendicular to the drag force vector, 
so to calculate its direction, you first take the cross product of the drag direction vector 
with the element normal vector and then cross the result with the drag direction vector 
again. Here again, the function normalizes the liftdirection vector. 

Now that the lift and drag direction vectors have been obtained, the function proceeds 
to calculate the angle of attack for the current element. The attack angle is the angle 
between the lift vector and the element normal. You can calculate the angle by taking 
the inverse cosine of the vector dot product of the lift direction vector with the element 
normal vector. Since the drag vector is perpendicular to the lift vector, you can get the 
same result by taking the inverse sine of the vector dot product of the drag direction 
vector with the element normal vector. 

Now with all the lift and drag vector stuff out of the way, the function goes on to 
calculate the resultant force acting on the element. The resultant force vector is simply 
the vector sum of the lift and drag force vectors. Notice that this is where the lift and 
drag coefficient functions are called and where the empirical lift and drag formulas 
previously discussed are applied. 

After calculating the resultant force, the function checks to see whether the calculated 
lift coefficient is zero. If the lift coefficient is zero, then the stall flag is set to warn us 
that the plane is in a stalled situation. 

Finally, the resultant force is accumulated in the total force vector variable, and the 
moment is calculated by taking the cross product of the element coordinate vector with 
the resultant force. The resulting moment is accumulated in the total moment vector 
variable. After exiting the loop, the function adds the thrust vector to the total force. 

So far, all of these force and moments have been referenced in the body fixed coordinate 
system. The only thing left to do now is apply the gravity force, but this force acts in the 
negative y-axis direction in the earth fixed coordinate system. To apply the gravity force, 
the function must first rotate the body forcevector from body space to earthspace coordi- 
nates. I used a quaternion rotation technique in this example, which I'll discuss later on. 
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That's pretty much it for the flight model. The rest of the code in this example will be 
I discussed later in this book where appropriate. About the only thing I won't get into 

detail on is the code to implement the Direct3D aspects of this program. I will give you 
some good references in the bibliography, though. 

I encourage you to play with the flight model in this program. Go ahead and tweak 
element properties and watch to see what happens. Even though this is a rough model, 
the flight results look quite realistic. 
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CHAPTER 8 

The purpose of this chapter is not to teach you how to design ships, but to explain 
by way of example some fundamental physical principles, such as buoyancy, stabilit~ 
virtual mass, and resistance, thar you may need to consider when writing physics-based 
games or simulations. The typical displacement-type ship lends itself well to illustrating 
these principles; however, many of these principles apply equally to other objects that 
are submerged or partially submerged in a fluid, such as submarines and air balloons. 
Remember, air is considered a fluid, too, when talking about buoyancy. 

While surface ships, that is, ships thar operate on the water's surface (at the air-water 
interface), are similar to fully submerged objects such as submarines or air balloons, 
in that they all experience buoyancy, there are some very distinct differences in their 
physical nature that I'll highlight in this chapter. These differences affect their behavior, 
so you need to be aware of them if you intend to simulate such objects accurately. 

Since the examples in this chapter involve ships, I need to go over some terms and 
geometry so that we are speaking the same language. As I said, I'll discuss a typical 
displacement ship in this chapter. The term displacement in this context means that the 
ship is supported solely by buoyancy, that is, without dynamic or aerostatic lift such as 
you would see on a high-speed racing boat or a hovercraft. The word "displacement" 
itself refers to the volume of water that is displaced, that is, pushed out of the way by 
the ship as it sics floating in the water (more on this in the next section). 

The hull of the ship is the watertight part of the ship that actually displaces the water. 
Everything in or on the ship is contained within the hull, which is partially submerged 
in the water. The length of the s h ~ p  is the dlstance measured from the bow to the stern. 
In practice, there are several lengths that are used to denote the length of a ship, but 
here I'll refer to the overall length of the hull. The bow is the front of the ship, and the 
stem is the aft part. When you are on the ship facing the bow, the port side is to your 
left and the starboard side is to your right. The overall height of the hull is called the 
depth, and its width is called beam. When a ship is floating in the water, the distance 
from the water surface to the bottom of the hull is called the draft. Figure 8-1 illustrates 
these terms. 



Starboard 

Figure 8-1. Ship Geometry 

Flotation 
The absolutely most important thing a ship must do is float. Kot onl!. that-it must 
float upright. 

In Chapter 3 1 introduced the concept of buoyancy and stated that the force on a 
submerged object due to buoyancy is a function of the submerged volume of the object. 
Archimedes' principle states that the weight of an object floating in a iluid is equal to 
the weight of thevolumeoffluid displaced by theobject. This is an important principle. 
It says that a ship of a given weight must have sufficient volume to displace enough 
water, an amount equal to the weight of the ship, for it to float. Further, this principle 
provides a clever way of determining the weight of a ship: simply measure or calculate 
the amount of water displaced by the ship and you can calculate the weight of the ship. 
In the marine field, displacement is synonymous with the weight of the ship. 

The buoyant force on any object can be calculated using the following formula: 

Here, T is the submerged volume of the object, p is the density of the fluid within 
which the object is submerged, andg is the acceleration due to gravity Since buoyancy 
is a force, it has both magnitude and direction and always acts straight up through the 
center of buoyancy The center of buoyancy is the geometric center of the submerged 
part of the object. 

When a ship is floating in equilibrium on the surface of the water, its center of buoyancy 
must be located directly below the center of gravity of the ship. The weight of the ship, 
a force, acts straight down through the center of gravity opposing the fo r~e  due to 

{I," 

Flotatwn 1 147 



buoyancy When the ship is in equilibrium, these two forces-weight and buoyancy- 
are equal in magnitude and opposite in direction. 

Now, when the ship rolls, or pitches, the portion of thehull beloylhe water is changed, 
and the center of buoyancy moves to the new geometric centroid of the underwater 
portion of the hull. For example, if the ship rolls to the starboard side, then the center of 
buoyancy shifts out toward the starboard side. When this happens, the lines of action 
of the weight of the ship and the buoyant force are no longer in line, which results 
in a moment (torque) that acts on the ship. This torque is zqual to the perpendicular 
distance between the lines of action of the forces times the weight of the ship. 

Now here's where we get to the floating upright part that I mentioned earlier. When a 
ship rolls, for example, you don't want it to keep rolling until it capsizes. No, you want it 
to return itself gently to the upright position after whatever force caused it to roll-the 
wind, for example-has been removed. In short, you want the ship to be stable. For a 
ship to he stable, the line of action of the buoyant force must cross the vessel's centerline 
at a point, called the metacenter, above the center of gravity When this happens, the 
moment that is developed when the ship rolls tends to restore the ship to the upright 
position. If the metacenter is located below the center of gravity, then the moment that 
is developed would tend to capsize the ship. Figure 8-2 illustrates these two scenarios. 

Unstable 
4 ,..' / Center of gravity t 

Figure 8-2. Ship Stability 

- 
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If you're a sailor. then you know how important it is to keep the center of gravity of 
your boat low This helps to increase the height of the metacenter above the center of 
gravity and thus helps with stability 

In the case of fully submerged objects, such as submarines or air balloons, the sit- 
uation is different. The buoyant force still acts through the geometric centroid of . 
the object, but for stability the center of buoyancy must be located above the cen- 
ter of gravity This way, when the object rotates, the lines of action of the weight 
of the object and the buoyant force are separated and form a moment that tends to 
restore the object to its upri5ht position. If it's the other way around, then the ob- 
ject would be unstable, like trying to balance one bowling ball on top of another. 
In this case the siightest disturbance would upset the balance, and the object would 
flip upside-down such that the center of gravity would be located below the center of 

\ buoyancy 

The tricky part to these calcularions is determining the submergedvolume and geomet- 
ric centroid for all but the simplest of geometries. For example, ship hulls are generally 
complicated shapss with a lot of curvature, in many cases with recesses or appendages. 
Calculating the displaced volume for a ship requires the use of numerical integration 
techniques. I'll show you such a method in the next section. 

Volume 
There aye various techniques and algorithms for calculating volume that arise from 
various fields of science and engineering. The techniques tend to be optimized for 
the particular task at hand and the nature or format of the geometry defining the 
object of which thc volume is to be determined. For example, in the world of computer 
graphics, objects ire typically represented by triangulated polyhedra, or polytopes, and 
there are various algorithms for calculating the volume of such polytopes by essentially 
constructing a number of tetrahedrons out of the surface triangles and calculating, 
and then summing, the volume of all of the tetrahedrons. (This is the technique that 
I'll show you in a moment.) Yet another volume calculation technique comes from 
the field of chemistry, in which the volume of certain molecules must be calculated. 
Here, techniques have been developed that are specifically optimized for calculating the 
volume of multipic interesting spheres. 

The field of ship design, formally known as naval architecture, is no different. For 
ships the traditional technique of calculatingvolume involves integratingcross-sectional 
areas over the length of the ship hull. It is important to note, however, that while the 
implementation of these techniques are different, they are all essentially numerical 
integration techniques that involve discretizing the object under consideration into a 
number of smallcr, simpler geometries whose volumes are easily calculated and then 
summing up all the volumes to get the total volume. 

Let's look at a rather simple example of how to calculate the volume and center of 
volume for a triangulated cube. Figure 8-3 shows the cube under consideration. 
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Figure 8-3. Triangulakd Cube 

The reason we're considering a cube is because its volume and centroid are readily 
verifiable by using simple hand calculations. Keep in mind, though, that the method 
I'm about to show you applies equally well to more complicated geometries as long as 
the object you are considering is a simple, triangulated polyhedron. This means that all 
of the following must be satisfied: 

All of the faces making up the object must be triangles. 

The object may not have any holes in it. 

The object must enclose a volume. This means that there can be no danglingfaces 
or edges; each edge must connect two vertices, and each edge must be shared by 
exactly two faces. 

The object must satisfy Euler's formula, which states that the number of verdces 
minus the number of edges plus the number of faces must equal 2: No. of vertices - 
No. of edges + No. of faces = 2. 

As I said earlier, the idea behind this method is to divide the object into a bunch of 
tetrahedrons, calculate the volume of each tetrahedron, and then sum all the tetrahedron 
volumes to obtain the total volume of the object. You can also use these tetrahedrons 
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to determine the object's geometric center (center of volume) using a technique similar 
to that for finding the center of mass of a collection of masses. (I showed you how co 
do that in Chapter 1.) In this case you'll use the tetrahedron's volume instead of mass. 
Figure 8-4 illustrates how a tetrahedron is constructed from a triangular face. 

Figure 8-4. Tetrahedron 

Here, the origin (0, 0, 0) is used along with the three vertices of the triangular face to 
define the four vertices of the tetrahedron. You can think of the edges of the tetrahedron 
that connect to the origin as vectors from the origin to eachvercexof the face. Note chat 
the vertices of the face are specified in counterclockwise order when viewing the face 
from the outside of the object. 

To calculate the volume of such a tetrahedron, you can use the vector triple scalar 
product (see Appendix A for a code sample). Lec vectors a, b, and c be the vectors 
shown in Figure 8-4; then the vector triple scalar product of these three vectors is 

Ic just so happens that a handy physical interpretation of the triple scalar product is 
that it is equal to the volume of the parallelepiped formed by the three vectors as shown 
in Figure 8-5:' 

More important for us is that the volume of the tetrahedron formed by these three 
vectors (as shown in Figure 8-4) is one sixth of the volume of the parallelepiped. Thus, 
the formula for calculating the volume of the tetrahedron is 

, Determining the tetrahedron's geometric center is relatively easy: you simply take the 
average of all four vertex coordinates. Note that even if one of the vertices is located at 
the origin, you still have to include it in the average. Referring co Figure 8-4 and using 

* A parallelepiped is a solid rhar has three pairs of parallel side. A box is a parallelepiped wirh perpendicular 
sides. A cube is also a parallelepiped but with all edge equal in length. 



L 
Figure 8-5. Parnllelepiped 

vector notation, the centroid, d, of the tetrahedron is 

d = (a + b + c)/4 

This equation assumes that the fourth vertex is located at the origin with coordinates 
(0, 90) ;  that's why you see only threevectors in the formula even though we are dividing 
by 4. 

For this example I've prepared a simple class called Body3D that stores the object's vertex 
and face data and implements a method to read the object data from a file and another 
to actually calculate the object's volume and centroid: 

typedef s t r u c t  VertexTag { 
f l o a t  x; / I  x-coord of ver tex 
f l o a t  y; / I  y-coord of ver tex 
f l o a t  z; / I  z-coord of ver tex 

typedef s t r u c t  FaceTag { 
/ I  v e r t i c e s  d e f i n i n g  t h e  face a re  i n  counterclockwise 
/ I  order when look ing  a t  t h e  face f r o m  outs ide t h e  ob jec t  

i n t  a; / I  1 s t  ver tex ( index o f  ver tex i n  ver tex l i s t )  
i n t  b; / I  2nd ver tex ( index o f  ver tex i n  ver tex l i s t )  
i n t  c; I /  3rd  ver tex ( index o f  ver tex i n  ver tex l i s t )  

/ /  .................................................................... //  
/ I  Body3D c lass  t h a t  represents a simple, t r i a n g u l a t e d  polyhedron 
.................................................................... // / /  

c lass  Body3D { 
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public: 
int nFaces; /I number of triannular faces 
int nvertices: /I number of verti&s 
Nertex V ~ ~ ~ ~ ~ [ M ~ N U M _ V E R T I C E S ] ;  11 vertex list 
TFace Face[MPX_NUMJERTICES]; I /  face list 
float Volume: /I total volume 
Vector centroid; /I center of total volume 

Body3D(void); /I constructor 

void ReadData(char *filename); I /  reads vertexlface data 
void CalculateProperties(void); I /  calculates Volume & Centroid 

Each member of this class is readily identifiable from the comments in the code sam- 
ple, so I won't elaboracewn them. However, let me show you the two methods (the >, 
constructor is trivial, as it just sets everything to zero). 

ReadData simply reads the object data in from a text file: 

void Body3D: :ReadData(char *filename) 
{ 

FILE *fptr; 
int i; 

fptr = fopen(filename, "r"); 

1 
fscanf( fptr, 

"%f %f %f\nM, 
&(Vertex[i] .x), 
&(Vertex[i] .y), 
&(Vertex[i].z)); 

' }  

fscanf( fptr, 
"%d %d %d\nU, 
&(Face[i] .a), 
&(Face[i] .b), 
&(Face[i].c)); I /  counterclockwise order 

1 

, The first line of the file is an integer that represents the number of vertices to follow 
The next set of lines are the actual vertices with the x-, y - ,  and z-coordinates (floats) 
for each vertex on a single line. After all the vertices are read in, another integer is read 
that represents the number of faces. The next set of lines contain the face data, where 
each line contains three numbers representing the vertex numbers (in counterclockwise 
order) that make up the face. Here's a sample object file defining the a cube that is 2 
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units tall, 2 units wide, and 2 units deep and located at the origin with its base on the 
xyplane as shown in Figure 8-3: 

.: ,,? 
8 
-2.000000 -1.000000 0.000000 
-1.0000W -1.000000 2.000000 
1.000000 -1.000000 0.000000 
1.000000 -1.000000 2.000000 
-1.000000 1.000000 0.000000 
1.000000 1.000000 0.000000 
1.000000 1.000000 2.000000 
-1.000000 1.000000 2.000000 
12 
2 3 1 
2 1 0  
4 5 2 
4 2 0  
6 3 2 
6 2 5  
6 7 1  
6 1 3  
6 5 4  
6 4 7 
1 7  4 
1 4 0  

The next method, CalculateProperties, is really the heart of this example. This method 
goes through the process of discretizing the object into a bunch of tetrahedrons to 
calculate the total volume and centroid, as I discussed earlier. I'll show the code here 
and then discuss it in detail: 

void Body3D::CalculateProperties(void) 
I 

Vector a; 
Vector b; 
Vector c; 
int i; 
float dv = 0; 
float vol = 0; 
Vector d; 
Vector dmom; 

dv = (TripleScalarProduct(a, b, c)) / 6.0f; 
vol += dv; 
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d = ( (a  + b + r )  / 4); 
dmom += (d * dv); 

} 

Volume = vo l ;  
Cen t ro id  = dmom / vo l ;  

} 

Note that this function defines a fewlocalvariables, a, b, and c, of typevector to represent 
the vectors from the origin to eachvertex of each face that will form a tetrahedron. Vector 
is defined in Appendix A. The integer variable i is just a counter. The f l o a t  variables d v  

and v o l  are thevolume ofasingle tetrahedron and the running totalvolume -f the object, 
respectively The Vector types d and dmom are the coordinates of a single tetrahedron and 
the running total first moment of volume of all the tetrahedrons, respectively 

After initializing all the lpcal variables, the method iterates through the list of faces 
making up the object and constructs the vectors a, b, and c for the tetrahedron formed 
by the origin and the current face, Face[i]. Next, the triple scalar product of these three 
vectors is computed, and the result is divided by 6. This calculation yields the volume 
of the tetrahedron, dv, which gets added to the running total, v o l .  The method then 
goes on to calculate the center of the tetrahedron, d; multiplies it by the tetrahedron's 
volume, dv; and adds the result to dmom (the running total of first moments of volume). 
Finally after iterating through all the faces, the total volume is v o l  and the centroid is 
the sum of first moments divided by the total volume, dmom/vol. 

That's all there is to it. To test this class, I prepared a simple console application that 
instantiated Body3D, read the cube data in, and calculated the volume properties. Here's 
how my main function looks: 

i n t  rna in( in t  argr, char* a r g v [ ] )  
i . Body3D body = Body3D(); 

f l o a t  volume = 0; 
i n t  i; 
Vector  cen t ro id ;  

11 read t h e  o b j e c t  data 
body. ReadData(''rube.txtn); 

/ I  echo t h e  data t o  t h e  console 
printf("Number o f  v e r t i c e s  = %d\n", body.nVert ices); 
for ( i=O;  i<body.nVert ices; i++) 

p r i n t f (  'Ve r tex  %d: x=%f y=%f z=%f\n", 
i, 
bodv.Vertexl i1.x. 

printf("Number o f  faces = %d\nn, body.nFaces); 
f o r ( i = o ;  i<body.nFaces; i++) 

p r i n t f (  'Face %d: a=%d b=%d c=%d\n", 
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/ /  calculate the volume and centroid 
body.CalculateProperties(); 

/ /  display the results to the console . y s  
printf ("jn"); 
printf ("Volume = %f\n", body .Volume); 
orintf ("\nn): 
brintf ("&nt;oid:\n2'); 
printf("x=%f y=%f r=%f\n2', body.Centroid.x, body.Centroid.y, body.Centroid.z); 
printf ("\n"); 

printf ("Done.\n"); 

return 0; 

If you rebuild this console application and run it, you should see that the volume of 
the cube is 8.0 units3 with the centroid located at (0, 0, 1). 

For a more interesting test, I prepared an object that resembles a generic boat hull 
(although not a very pretty one!) and ran it through the test program. 

Figure 8-6. Boat hull 

Figure 8-6 shows the hull object and the corresponding data file is as follows: 

-- 
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The results of this test yield a volume of 28.67 units3 with its centroid located at (-1.43, 
0.00, 1.08). 

I should point out that I did not include any error checking in these code samples so 
as to not complicate the purpose and simplicity of the method being demonstlated. As 
always, you should include error checking in your production work. Some things you'll 
want to do if you use this code include checks on the input data to make sure the object 
is a simple, triangulated polyhedron and catching any potential divide-by-zero errors 
in CalculateProperties. 
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Resistance 
In Chapter 6 I discussed drag forces on objects moving through a fluid. Specifically, I 
discussed frictional and pressure drag. Ships moving on the water's surface experience 
these drag forces too; however, at the air-water interface, there are other drag components 
that you have to consider. If you were to write an equation breakingup the total resistance 
acting on a ship into its three main components, that equation would look something 
like this: 

I'll describe each of these components and give you some empirical formulas in just 
a moment. First, however, I want to qualify the material to follow by saying that it 
is very general in nature~and applicable only when little detail is known about the '. 
complete geometry of the particular ship under consideration. In the practice of ship 
design, these formulas would be used only in the very early stages of the design process 
to approximate resistance. That said, they are very useful for getting in the ballpark, so 
to speak, and are sometimes more important in performing parametric studies to see 
the effects of changes in major parameters. 

The first resistance component is the frictional drag on the underwater surface of the 
hull as it moves through the water. This is the same as the frictional drag that I discussed 
in Chapter 6. However, for ships there is a convenient set of empirical formulas that you 
can use to calculate this force: 

In this formula, p is the density of water, V is the speed of the ship, S is the surface area 
of the underwater portion of the hull, and Cf is the coefficient of frictional resistance. 
You can use this empirical formula to calculate Cr: 

Here, R, is the Reynolds number, as defined in Chapter 6, based on the length of 
the ship's hull. This formula was adopted in W57 by the International Towing Tank 
Conference (ITTC) and is widely used in the field of naval architecture for estimating 
frictional resistance coefficients for ships. 

To apply the formula for Rf,  you'll also have to know the surface area of the underwater 
portion of the hull, S. You can directly calculate this area using numerical integration 
techniques, similar to those for calcularingvolume, or you can use yet another empirical 
formula: 

In this formula, r is the displacedvolume, L the length of the ship, and C,,, is the wetted 
surface coefficient. This coefficient is a function of the ship's shape, its beam-to-draft 
ratio, and statistically it ranges from 2.6 to 2.9 for typical displacement hull forms. 
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The pressure drag experienced by a ship is the same as that experienced by projectiles 
as discussed in Chapter 6. Remember, this drag is due to the viscous effects causing a 
region of relatively low pressure behind the ship. Quantifying t b i ~  force is difficult for 
ships of arbitrary geometry Computational fluid dynamics alg6Gthms can be used to 
approximate this force, but this requires detailed knowledge of the hull geometry and 
a whole lot of time-consuming computations. An alternative is to rely on scale model 
test data in which results from the model test are exuapolated to approximate drag on 
the full-size ship. 

Just like Yressure drag, wave drag is difficult to compute, and model testing is usually 
relied on in practice. Wave drag is due to the energy transfer, or momentum transfer, 
from the ship to the fluid; in other words, it is a function of the work done by the ship 
on the surrounding fluid to generate the waves. The visible presence of wave resistance 
is seen as the large bow wave that builds up at the front of the ship as well as the wave 
system that originates at the stern of the ship as it moves through the water. These 
waves affect the pressure disuibution around the ship and thus affect the pressure drag, 
which makes it difficult to separate the wave drag component from pressure drag in 
performing an analysis. 

When scale model tests are performed, pressure drag and wave drag are usually lumped 
together in what's known as residual resistance. Analogous to the coefficient of frictional 
drag, you can determine a coefficient of residual resistance, such that 

Rr = R,,,,, + R,va, = ( 1 / 2 ) p v 2 S C r  

Here, R, is the total residual resistance, and C, is the coefficient of residual resistance. 

There are many resistance estimation methods available that allow you to estimate 
the coefficient of residual resistance for a ship; however, they are usually presented for 
specific ship types. For example, one method might give empirical formulas for C, for 
desuoyer-type ships, while another might give formulas for C, for large oil tankers. 
The trick, of course, is to choose a method appropriate for the type of ship you are 
analyzing.' Generally, C, increases as the displacement and speed of the ship increase. 
A typical range for C, for large displacement hulls is from l.Oe& to 3 .0ec3 .  

While these three resistance components-friction, pressure and wave-are the most 
important for typical displacement-type ships, they aren't the only ones. Since a ship 
operates at the air-water interface, a large part of its structure is above the water surface, 
exposed to the air. This means that the ship will also experience air resistance. You can 
approximate this air resistance using the following formula: 

Raic = ( 1 / 2 ) p ~ * ~ , C , i ~  

Here, C,i, is the coefficient of air resistance, p is the density of air, V is the speed of the 
ship, and Ap is the projected transverse (profile) area of the ship. C,i, typically ranges 
from 0.6 to 1.1 depending on the type of ship. Tankers and large cargo ships tend to be 

These methods are quite involved, and rhere are far too many to discuss here, so I've includedsame references 
in the bibliography for you. 
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near the upper end of the range, while combatant ships tend to be near the lower end. 
In lieu of enough information to calculate the projected transverse area of the ship, you 
can approximate it by 

where B is the beam (width) of the ship. 

Ships experience other forms of resistance as well depending on their age, the sea 
conditions, and their t s e  of service. For example, when a ship has been operating in 
seawater for a long time without havingits hullcleaned, it will build up a layer of marine 
growth that will increase its frictional resistance. If a ship were to operate in shallow 
water or a restricted channel, its resistance might be increased owing to restricted flow 
effects, which cause thc ship to sink deeper in the water. If the sea conditions are very 
rough, with heavy winds ahd large waves, then the ship will experiencegreater resistance 
as it encounters these sea conditions. For some ships with lots of appendages sticking 
out of the hull underwater, its resistance can be increased by 10% to L5% above its 
bare-hull resistance. All of these components are very specific to the situation under 
consideration and must be treated on a case-by-case basis. 

Virtual Mass 
The concept of virtual inass is important in calculating the acceleration of a ship in a 
real-time simulator. Virtual mass is equal to the mass of the ship plus the mass of the 
water that is accelerated with the ship. 

Back in Chapter 6 I told you about the viscous boundary layer, and I said that the 
relative velocity (relative to the moving body) of the fluid particles near the moving 
body's'surface is zero at the body surface and increases to the free stream velocity as 
distance from the body surface increases. Essentially, some of the fluid sticks to the 
body as it moves and is accelerated with the body Since the velocity of the fluid varies 
within the boundary layer, so does the acceleration. The addedmass,  the mass of water 
that gets accelerated, is a weighted integration of the entire mass of fluid that is affected 
by the body's acceleration. 

For a ship the viscous boundary layer can be quite thick, up to several feet near the 
end of the ship depending on its length, and the mass of water that gets accelerated is 
significant. Therefore, when doing any sort of analysis that involves the acceleration 
of the ship, you need to consider added mass too. The calculation of added mass is 
beyond the scope of this book. I should also point out that, unlike mass, added mass is 
a tensor, that is, it depends on the direction of acceleration. Further, added mass applies , 
to both linear and angular motion. 

Added mass is typically expressed in terms of an added mass coefficient, which equals 
the added mass divided by the mass of the ship. Calculations for added mass are well 
beyond the scope of this book. Some methods integrate over the actual hull surface; 
while others approximate the hull as an ellipsoid with proportions matching rhe ship's. 
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Using this approximation, the ellipsoid's length corresponds to the ship's length, while 
iw width corresponds to the ship's beam. For longitudinal motion, that is, linear motion 
along an axis parallel to the ship's length, the added mass coefficient varies nearly 
linearly from zero at a beam-to-length ratio of zero (the ship is i&nitely thin) up one 
half at a beam-to-length ratio of 1 (a sphere). 

When the added mass coefficient is expressed as a percentage of the ship's mass, vir- 
tual mass can be calculated as m, = m ( f  + xa), where m is mass and x, is the added 
mass coecficient, for example, 0.2 for 20%. For typical displacement ship proportions 
the longitudinal added mass ranges from about 4% to 15% of the mass of the ship. 
Conservative estimates generally use 20%. 
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CHAPTER 9 

Hovercraft 

Hovercraft, or air cushion vehicles (ACVs), have made their way into a video game or 
two recently Their appeal seems to stem from their futuristic aura, high speed, and 
levitating ability, which lets them go anywhere. If you slap a couple of large-caliber guns 
on one of these craft and throw in a couple of bad guys, you then have yourself the 
makings of an exciting round of shoot-'em-up bumper cars. In real life, hovercraft have 
been around since h e  1950s and have been used in combat, search and rescue, cargo 
transport, ferrying, and recreational roles. They come in all shapes and sizes, bur they 
all work pretty much the same, with the basic idea of getting the craft up off of the land 
or water to reduce its drag. In this chapter I'll explain the basics of how hovercraft work 
and discuss the main forces you'll want to consider if you try to simulate them in your 
games. 

How They Work 
I was fortunate enough to work on several hovercraft designs when I was a junior naval 
architect at Textron Marine Systems.* While some of the craft that I worked on turned 
out to be quite complicated systems, owing to military requirements, the basic principle 
of how hovercraft work is quite simple. 

The first hovercraft designs pumped air through an annular nozzle around the periphery 
of the craft (see the top diagram in Figure 9-1). Large fans are used to feed the air through 
the nozzle under the craft. This jet of air creates a region of relatively high pressure over 
the area underneath the craft, which results in a net lifting force. The lifting force must 
equal the weight of the craft if the craft is to attain hovering flight. This sort of lifting 
is known as aerostatic lift. The hover height is limited by the amount of power available 
and the lifting fan's ability to pump enough air through the nozzle; the higher the hover 
height, the greater the power demand. 

* Textmn is locared in New Orleans, Louisiana. When I was there, I worked on several hovercraft, one of which 
is h e  U.S. Navy's LCAC, which is used by the Marines for amphibious operations. 



Ground 
I 
Figure 9-1. Hovercraft Configurations 

This approach proved impractical because hover heights werevery limited and made the 
clearance between the hard structure of the craft and the ground (or water) too small to 
overcome all but the smallest obstacles. The solution to this problem was to fit a flexible 
skirt around the craft to contain the air cushion in what's called the plenum chamber 
(see the bottom diagram in Figure 9-1). This approach extended the clearance between 
theground and the hard structure of the craft significantly even though the gap between 
the bottom of the skirt and the ground was very small. This is the basic configuration 
of most hovercraft in operation today, although there are all sorts of skirt designs. Some 
of these skirts are simple curtains, while others are sophisticated pressurized bag and 
finger arrangements. The result is that hovercraft fitted with skirts can clear relatively 
large obstacles without damage to their hard structure; the skirt simply distorts and 
conforms to the terrain over which the craft operates. 

The actual calculation of the aerostatic lift force is fairly complicated because the pres- 
sure distribution within the air cushion is nonuniform and because you must also take 
into account the of the lift fan system. There are theories available to treat 
both the annular jet and plenum chamber configurations, but they are beyond the scope 
of this book. Besides, for a game simulation, what's important is that you realize that 
the lift force must equal the weight of the craft in order for it to maintain equilibrium 
in hovering flight. 
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Ideally, the ability of hovercraft to eliminate contact with the ground (or water) over 
which it operates means that it can travel relatively fast, since it no longer experiences 
contact drag forces. Notice I said "ideally" In reality, hovercraft often pitch and roll 
causing parts of the skirt to drag, and any obstacle that comes into contact with the 
skirt will cause more drag. At any rate, while eliminating ground contact is good for 
speed, it's not so good for maneuverability 

Hovercraft are notoriously difficult to control, since they glide across the ground. They 
tend to continue on their original trajectory even after you try to turn them. Currently, 
several means are employed in various configurations for directional control. Some 
hovercraft use vertical tail rudders much like an airplane, while others actually vector 
their propulsion thrust. Still others use bow thrusters, which offer very good control. 
All of these means are fairly easy to model in a simulation; they are all simply forces 
acting on the craft at  sdme distance from its center of gravity so as to create a yawing 
moment. The 2D simulation that I'll walk you through in Chapter 12 shows how to 
handle bow thrusters. You can handle vertical tail rudders as I showed you in Chapter 7. 

Resistance 
Let's take a look now at the some of the drag forces acting on a hovercraft during flight. 
To do this, I'll handle operation over land separately from operation over water, since 
there are some specific differences in the drag forces experienced by.the hovercraft. 

When operating over smooth land, the total drag acting against the hovercraft is aero- 
dynamic in nature. This assumes that drag induced by dragging the skirt or hitting 
obstacles is ignored. The three components of aerodynamic drag are 

Skin friction and viscous pressure drag on the body of the craft 

Induced drag when the craft is pitched 

Momentum drag 

In equation form, the total drag is as follows: 

The first of these components, the viscous drag on the body of the craft, is the same 
sort of drag as is experienced by projectiles when flying through the air, as explained 
in Chapter 6. This drag is estimated using the by now familiar formula: 

~ .. ~. . 

/Rvismus = ( 1 1 2 ) ~  v2xpcd 
.. . ~ ~ 

. ~. . 

Here, p  is the mass density of air, V is the speed of the hovercraft, Sp is the projected 
frontal area of the craft normal to the direction of V, and g d  is the drag coefficient. -.-.. . - . . 
Typical values of Cd for craft in operation today range from 0.25 to 0.4. 

The next drag component, the induced drag, is a result of the craft assuming a pitched 
attitude when moving. When the bow of the craft pitches upward by an angle s, there 

{I," 
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will be a component of the aerostatic lift vector that acts in a direction opposing V. 
This component is approximately equal to the weight of the craft times the tangent of 
the pitch angle: ': 4 

Rinduced Wtan 5 )  

Finally, momentum drag results from the destruction of horizontal momentum of air, 
relative to the craft, entering the lift fan intake. This component is difficult to compute 
unless you know the properties of the entire lifting system such that the mass flow rate 
of air into the fan is known. Given the mass flow rate, R,,,,,,,, is equal to the mass 
flow rate times the velocity of the craft: 

Mass flow rate is expressed in units such as slugs/s, which when multiplied by velocity 
in fds yields pounds. 

In addition to these three drag components, hovercraft will experience other forms of 
resistance when operating over water. These additional components are wave drag and 
what's called wetted drag. The equation for total drag can thus be revised for operation 
over water as follows: 

When a hovercraft operates over water, its air cushion creates a depression in the water 
surface due the cushion pressure (see Figure 9-2). At zero to low speeds the weight of 
this displaced volume of water is equal to the weight of the craft just as if the craft 
were floating in the water supported by buoyancy As the craft starts to move forward, 
it tends to pitch upward by the bow. When that happens, the surface of the water in the 
depressed region is approximately parallel to the bottom of the craft. As speed increases, 
the depression is reduced, and the pitch angle tends to decrease. 

. . . . .  . .  , . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  
i  i i i i  

Figure 9-2. Hovercraft over Water 

. Wave drag is a result of this depression and is equal to the horizontal components of 
pressure forces acting on the water surface in the depressed region. As it turns out, for 
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small pitch angles and at low speeds, wave drag is on the same order of magnitude as 
the induced drag: 

Since wave drag is proportional to the size of the depression, it tends to be highest at 
low speeds and is reduced at higher operational speeds. I€ you were to plot the wave 
drag curve as a function of speed for a typical hovercraft, you'd find that it is not a 
straight line or even a parabolic curve but has a hump in the curve at the lower speed 
range as illustrated in Figure 9-3. 

Speed 

Figure 9-3. Uiave Drag 

There are several theoretical treatments ofwave drag in the literature that aim to predict 
the speed at which this hump occurs along with its magnitude. These theories indicat- 
ed that the hump depends on the planform geometry of the hovercraft, and it tends to 
occur at speeds in the range of @/2 to @, whereg is the acceleration due to gravity 
and L is the length of the air cushion. In practice, the characteristics of a particular 
hovercraft's wave drag are usually best determined through scale model testing. 

The so-called wetted drag is a function of several things: 

The fact that parts of the hull and skirt tend to hit the water surface during flight 

The impact of spray on the hull and skirt 

The increase in weight as the hovercraft gets wet and sometimes takes on water. 

Wetted drag is difficult to predict, and in practice, model tests are relied on to determine 
its magnitude for a particular design. It's important to note, however, chat this tends 
to be a sign~ficant drag component, sometimes accounting for as much as 30% of the 
total drag force. 
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CHAPTER 10 
.,'I Cars 

In this chapter I want to discuss csrcain aspects of the physics behind automobile 
motion. As in the previous four chapters, the purpose of this chapter is to explain, by 
example, certain physical phenomena. I also want to give you a basic understanding of 
the mechanics involved in automobile motion in case you want to simulate one in your 
games. In keeping with the theme of this book, I'll be talking about mechanics in the 
sense of rigid body motion and not in the sense of how an internal combustion engine 
works, how power is transferred through the transmission system to the wheels, and so 
on. Those are all internal to [he car as a rigid body, and I'll focus on the external forces. 
I will, however, discuss how the torque applied to the drive wheel is translated to a force 
that pushes the car along. 

Resistance 
When a car drives down a road, it experiences two main components of resistance that 
try to slow it down. The first component is aerodynamic drag, and the second is called 
rolling resistance. The total resistance felt by the car is the sum of these two components: 

The aerodynamic drag is primarily skin friction and pressure drag similar to that ex- 
perienced by projectiles discussed in Chapter 6 and the planes, boats, and hovercraft 
discussed in Chapters 7: 8, and 9 Here again, you can use the familiar drag formula of 
the form 

Here, p is the mass density of air, V is the speed of the car, S, is the projected frontal area 
of the car normal to the direction of V, and Cd is the drag coefficient. Typical ranges of 
drag coefficients for different types of vehicles are 0.29 to 0.4 for sports cars, 0.43 to 0.5 
forpickup trucks, 0.6 to 0.9 for tractor-trailers, and 0.4 to 0.5 for theaverage economy car. 
Drag coefficient is a function of the shape of the vehicle, that is, the degree of boxiness 



or streamline. Streamlined body styles have lower drag coefficients; for example, the 
Chevy Corvette has a low drag coefficient of 0.29, while the typical tractor-trailer 
without fairings has a high drag coefficient of up to 0.9. You can use these coefficients 
in your simulations to tune the behavior of different types and shapes of vehicles. 

When a tire rolls on a road, it experiences what's known as rolling resistance, which 
tends to retard its motion. Rolling resistance is not frictional resistance but instead has 
to do with the deformation of the tire while it is rolling. It's a difficult quantity to 
calculate theoretically, since it is a function of a number of complicated factors, such 
as tire and road deformation, the pressure over the contact area of the tire, the elastic 
properties of the tire and road materials, the roughness of the tire and road surfaces, 
and tire pressure, to name a few, so instead you'll have to rely on an empirical formula. 
The formula to use is as follows: 

This gives you the rolling resistance per tire, where w is the weigh[ supported by the tire 
and C, is the coefficient of rolling resistance. C, is simply the ratio of the rolling resistance 
force to [he weight supported by the tire. Luckily for you, tire manufacturers generally 
provide the coefficient of rolling resistance for their tires under design conditions. Typical 
car tires have a C, of about 0.0l5, while truck tires fall within the range of 0.006 to 0.01. 
If you assume that a car has four identical tires, then you can estimate the totd rolling 
resistance for the car by substituting the total car weight for w in the above equation. 

Power 
Now that you know how to calculate the total resistance on your car, you can easily 
calcula~e [he power required to overcome the resistance at a given speed. Power is a 
measure of the amount of work done by a force, or torque, over time. Mechanical work 
done by a force is equal to the force times the distance an object moves under the action 
of that force. It is expressed in units such as foot-pounds. Since power is a measure 
of work done over time, its units are, for example, foot-pounds per second. Power in 
the context of car engine output is usually expressed in units of horsepower, where 1 
horsepower equals 550 ft-lb/s. 

To calculate the horsepower required to overcome toral resistance at a give speed, you 
simply use this formula: 

Here, P is power in units of horsepower, and R,,,,, is the total resistance corresponding 
to the car's speed, V.  Note that in this equation R,,,I must be in pounds and V must 
be in units of ft/s. 

Now this is not the engine output power required to reach the speed V for your car; it 
is the required power delivered by the drive wheel to reach the speed V. The installed 
engine power will be higher for several reasons. First, there will be mechanical losses 
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associated with delivering the power from the engine through the transmission and 
drive train to the tire. The power will actually reach the tire in the form of torque, 
which, given the radius of the tire, will create a force F, that will overcome the total 

1/1 

resistance. This force is calculated as follows: 

Here, F, is the force delivered by the tire to the road to push the car along, T, is the 
torque on the tire, and r is the radius of the tire. The second reason why the installed 
engine power will be greater is because some engine power will be transferred to other 
systems in the car. For example, power is required to charge the battery and to run the 
air conditioner. 

Stopping Distance 
Under normal conditions stopping distance is a function of the braking system and 
how hard the driver applies the brakes; the harder the brakes are applied, the shorter 
the stopping distance. That's not the case when the tires start to skid. Under skidding 
conditions, stopping distance is a function of the frictional force that develops between 
the tires and the road and the inclination of the roadway If the car is traveling uphill, 
then the skidding distance will be shorter because gravity helps to slow the car, while 
it will tend to accelerate the car and increase the skidding distance when the car is 
traveling downhill. 

There's a simple formula that considers these factors that you can use to calculate 
skidding distance: 

d, = V2/[2g(w cosq + sinq)] 

Here, d, is the skidding distance, g is the acceleration due to gravity, w is the coefficient 
of friction between the tires and road, V is the initial speed of the car, and q is the 
inclination of the roadway, where a positive angle means uphill and a negative angle 
means downhill. Note that this equation does not take into account any aerodynamic 
drag that will help to slow the car down. 

The coefficient of friction will vary depending on the condition of the tires and the 
surface of the road, but for rubber on pavement the dynamic friction coefficient is 
typically around 0.4, while the static coefficient is around 0.55. 

When calculating the actual frictional force between the tire and road, say in a real-time 
simulation, you'll use the same formula that I showed you in Chapter 4: 

Here, Fr is the friction force applied to each tire, assuming that they are not rolling, 
and W is the weight supported by each tire. If you assume that all tires are identical, 
then you can use the total weight of the car in the formula above to determine the total 
friction force applied to all tires. 



Roadway Banking 
When you turn the steering wheel of a car, the front wheels exert a side force such that 
the car starts to turn. In terms of Euler angles, this would be yaw, although Euler angles 
aren't usually used in talking about turning cars. Even if the car's speed is constant, it 
experiences acceleration due to the fact that its velocity vector has changed direction. 
Remember, accelerationis the time rateof changeinvelocity, which has both magnitude 
and direction. 

For a car to maintain its curved path, there must be a centripetal force ("center-seeking" 
in Greek) that acts on the car. This force can result from either the side friction between 
the tires and the road or the roadway bank, which is called superelevation, or both. 
When riding in a turnins car, you feel an apparent centrifugal acceleration or force 
directed away from the cehter of the turn. This acceleration is really a result of inertia, 
the tendency of your body and the car to continue on irs original path, and is not a real 
force acting on the car or your body The real force is the centripetal force, and without 
it your car would continue on its straight path and not along the curve. 

If a car is trying to turn too quickly, the side friction between the tires and road might 
not be enough to hold the car in the turn. This is why roads are banked around turns. 
The superelevation helps to keep the car in the turn because as thecar is inclined, a force 
component develops that acts toward the center ofcurvature of the turn (see Figure 10-1). 

Fn Reaction force between car and road t'i 

I Centripetal force 

Figure 10-1. Superelevation 

There's a simple formula that relates the superelevation angle of a roadway to the speed 
of the car and the coefficient of friction between the tires and road: 

tanq = v~(~r )  - @ 

Hereq is thesuperelevation angleas shown in Figure 10-1, V, is the tangential component 
ofvelocity of the car going around the turn, g is the acceleration due to gravity, r is the 
radius of the curve, and @ is the coefficient of friction between the tires and the road. If 
you know q ,  r ,  and @, then you can calculate the speed at which the car will begin to 
slip out of the turn and off the road. 
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CHAPTER 11 

Real-Time Simulations 

This chapter is the first in a series of chapters designed to give you a thorough intro- 
duction to the subject of real-time simulation. I say "introduction" because the subject 
is too vast and complex to treat adequately in a few chapters; however, I say "thorough" 
because I'll do more than talk about real-time simulations. In fact, I'll walk you through 
the development of two simple simulations, one in two dimensions and the other in 
three dimensions. 

What I hope to do is give you enough of an understanding of this subject that you 
can pursue it further with confidence. What I mean is that I want you to have a solid 
understanding of the fundamentals before jumping in to use someone else's physics 
engine or venturing out to write your own. 

In the context of this book, a real-time simulation is a process whereby you calculate 
the state of the object (or objects) you're trying to represent on the fly You don't rely on 
pre-scripted motion sequences to animate your object; instead, you rely on your physics 
model, the equations of motion, and your differential equation solver to take care of the 
motion of your object as the simulation progresses. 

This sort of simulation can be used to model rigid bodies such as the airplane in our 
FlightSim example or flexible bodies such as cloth and human figures. Perhaps one 
of the most fundamental aspects of implementing a real-time rigid body simulator is 
solving the equations of motion using numerical integration techniques. Because of 
this, I'll spend this entire chapter explaining the numerical integration techniques that 
you'll use later in the 2D and 3D simulators that we'll develop. 

If you refer back to Chapter 4 for a moment, where I outlined a generic procedure 
for solving kinetics problems, you'll see that we've covered a lot of ground so far. The 
preceding chapters showed you how to estimate mass properties, develop the govern- 
ing equations of motion, and accurately model forces and torques. This chapter will 
show you how to solve the equations of motion to determine acceleration, velocity, and 
displacement. 



Integrating the Equations of Motion 
By now you should have a thorough understanding of the dynamic equations of motion 
for particles and rigid bodies. If not, you might want to go back and review Chapters 1 
through 4 befor? reading this one. The next aspect of dealing with the equations of 
motion is actually solving them in your simulation. The equations of motion that we've -. 

been discussing can be classified as ordinary differential equations. In Chapters 2 and 4 
you were able to solve these differential equations explicitly, since you were dealing with 
simple functions for acceleration, velocity, and displacement. This won't be the case 
for your simulations. As you've seen already in previous chapters, force and moment 
calculations for your system can get pretty complicated and may even rely on tabulated 
empirical data, which will prevent you from writing simple mathematical functions 
that can be easily integrared. This means that you have to use numerical integration 
techniques to approximatejy integrate the equations of motion. I say "approximately" 
because solutions based on numerical integration won't be exact and will have a certain 
amount of error depending on the chosen method. 

I'm going to start with a rather informal explanation of how we'll apply numerical 
integration because it will be easier to grasp. Later I'll get into some of the formal mathe- 
matics. Take a look at the differential equation of linear motion for a particle (or rigid 
body's center of mass): 

In the simple examples of the earlier chapters of this book, I rewrote this equation in 
the following form so that it could be integrated explicitly: 

One way to interpret this equation is that an infinitesimally small change in velocity, 
dv, is equal to (F lm)  times an infinitesimally small change in time. In earlier examples 
I integrated explicitly by taking the definite integral of the left side of this equation 
with respect to velocity and the right side with respect to time. In numerical integra- 
tion you have to take finite steps in time; thus, dt goes from being infinitely small to 
some discrete time increment, At, and you end up with a discrete change in velocity, 
Av : 

It is important to notice here that this does not give a formula for instantaneous veloc- 
ity; it only gives you an approximation of the change in velocity Thus, to approximate 
the actual velocity of your particle (or rigid body), you have to know what its veloc- 
ity was before the time change At. At the start of your simulation, at time zero, you 
have to know the starting velocity of your particle. This is an initial condition and is 
required to uniquely define your particle's velocity as you step through time using this 
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'I' 
where the initial condition is 

v,=o = va 

Here, vt is velocity at some time t,  v , + ~ ,  is velocity at some time plus the time step. At 
is the time step, and vo is the initial velocity at time zero. 

You can integrate the linear equation of motion one more time to approximate your 
particle's displacement (or position). Once you've determined the new velocity value, 
at time t + At, you can approximate displacement using 

where the initial condition on displacement is 

The inregration technique discussed here is known as Euler's method, and it is the most 
basic integration method. While Euler's method is easy to grasp and fairly straightfor- 
ward to implement, it isn't necessarily the most accurate method. 

You can reason that the smaller you make your time step, that is, as At approaches dt, 
the closer you'll get to the exact solution. However, there are computational problems 
associated with using very small time steps. Specifically, you'll need a huge number of 
calculations at very small At's, and since your calculations won't be exact (depending 
on numerical precision, you'll be rounding off and truncating numbers), you'll end 
up with a buildup of round-off error. This means that there is a practical limit as to 
how small a time step you can take. Fortunately, there are several numerical integration 
techniques at your disposal that are designed to increase accuracy for reasonable step 
sizes. 

EventhoughIused the linear equation of motion for aparticle, this integration technique 
(and the ones 1'11 show you later) applies equally well to the angular equations of motion. 

Euler's Method 
The preceding explanation of Euler's method was, as I said, informal. To treat Euler's 
method in a more mathematically rigorous way, it's helpful to have a look at the Taylor 
series expansion of a general function, y(x). Taylor's theorem lets you approximate 
the value of a function at some point by knowing something about that function 
and its derivatives at some other point. This approximation is expressed as an infinite 
polynomial series of the form 

In mathemada chis sort of problem is termed an initial value problem 
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where y  is some function of x ,  ( x  + Ax)  is the new value of x  at which you want to 
approximate y ,  y' is the first derivative of y ,  y" is the second derivative of y ,  and so on. 

In the case of the equation of motion discussed in the preceding section, the function 
that you are trying to approximate is the velocity as function of time. Thus, you can 
write v ( t )  instead of y ( x ) ,  which yields the Taylor expansion: 

v ( t  + A t )  = v ( t )  + (A t )v ' ( t )  + [ ( ~ t ) ~ / 2 ! l v " ( t )  + [ ( ~ t ) ~ / 3 ! ] v " ' ( t )  + 
Note here that v'(t)  is equal to d v l d t ,  which equals F l m  in the example equation of 
motion discussed in the preceding section. Note also that you know the value of v  at 
time t .  What you want to find is the value of v  at time t  + At knowing v  at time t  and 
its derivanve at time t .  As a first approximation, and since you don't know anything 
about v's second, third, or higher derivadves, you can truncate the polynomial series 
after the term ( A t )  v ' ( t ) ,  whlch yields 

This is the Euler integration formula that you saw in the preceding section. Since Euler's 
formula goes out only to the term that includes the first derivative, the rest of the series 
that was left off is the truncation error. These terms that were left off are called higher- 
order terms, and getting rid of them results in a first-order approximation. The rationale 
behind this approximation is that the further you go in the series, the smaller the terms 
and the less influence they have on the approximation. Since At is presumed to be a 
small number, At' is even smaller, At)  even smaller, and so on, and since these At 
terms appear in the numerators, each successively higher-order term gets smaller and 
smaller. In this case the first truncated term, [ ( ~ t ) ~ / 2 ! ] v " ( t ) ,  dominates the truncation 
error, and this method is said to have an error of order 

Geometrically, Euler's method approximates a new value, at the current step, for the 
functiod under consideration by extrapolating in the direction of the derivative of the 
function at the previous step. This is illustrated in Figure LI-1. 

I I 
F~gure L1-l Euler Integration Step 

61," 
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Figure ll-1 illustrates the truncation error and shows that Euler's method will result 
in a polygonal approximation of the smooth function under consideration. Clearly, if 
you decrease the step size, you increase the number of polygop+l segments and better 
approximate the function. As I said before, though, this isn't alw'gYs efficient to do, since 
the number of computations in your simulation will increase, and round-off error will 

1 

accumulate more rapidly 

To illusnate Euler's method in practice, let's examine the linear equation of motion for 
the ship example of Chapter 4: 

T - (CV) = ,-:a 

where T is the propeller's thrust, C is a drag coefficient, v is the ship's velocity, m its 
mass, and a its acceleration. 

Figure U-2 shows the Euler integration solution superimposed over the exact solution 
derived in Chapter 4 for the ship's speed over time. 
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Figure 11-2. Euler Integration Comparison 

Zooming in on this graph allows you to see the error in the Euler approximation. This 
is shown in Figure U-3. 

Table ll-1 shows the numerical values of speed versus time for the range shown in 
Figure U-3. Also shown in Table 11-1 is the percent difference, the error, between the 
exact solution and the Euler solution at each time step. 

As you can see, the truncation error in this example isn't too bad. It could be better, 
though, and I'll show you some more accurate methods in a moment. Before that, 
however, you should notice that in this example Euler's method is also stable, that is, 
it converges well with the exact solution as shown in Figure 11-4, where I've carried the 
time range out farther 
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Table 11-1. Exact Solution Versus Euler Solution 
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Figure L1-3. Eulel- Error 
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Here's a code snippet that implements Euler's method for this example: 

11 Global Variables 
float T; 11 thrust 
float C; 11 drag coefficient 
float V; 11 velocity 
float M; 11 mass 
float 5; 11 displacement 

11 This function progresses the simulation by dt seconds using 
/I Euler's basic method 
void StepSimulation(f1oat dt) 
I 
I 

float F; 11 total force 
float A; 11 acceleration 
float Vnew; 11 new velocity at time t + dt 
float Snew; 11 new position at time t + dt 

11 Calculate the total force 
F = (T - (C * V)); 

11 Calculate the acceleration 
A = F / M ;  

11 Calculate the new velocity at time t + dt 
11 where V is the velocity at time t 
Vnew = V + A * dt; 

11 Calculate the new displacement at time t t dt 
11 where 5 is the displacement at time t 
Snew = 5 + Vnew ' dt; 

11 Update old velocity and displacement with the new ones 
V = Vnew; 
5 = Snew; 

> 
Although Euler's method is stable in this example, it isn't always so, depending on the 
problem you're trying to solve. This is something that you must keep in mind when 
implementing any numerical integration scheme. What I mean here by "stable" is that 
in this case the Euler solution converges with the exact. If it weren't stable, it would 
diverge from the exac solution, and the error would grow as you stepped through time. &$p , Instability can also n&st itself in the form of the numerical solution oscillating above 
and below the exact solution and never quite converging on it. 

A& 
Often, your choice of step size affects stability when/smaller step sizes tend to eliminate 
or minimize instability and larger step sizes a E r m e  the problem. If you're working 
with a particularly unwieldy function, you might find that you have to decrease your 
step size substantially to achieve stability This, however, increases the number of com- 
putations you need to make. One way around this difficulty is to employ what's called 
an adaptive step size method, in which you change your step size on the fly depending 
on the magnitude of a predicted amount of truncation error from one step to the next. 
If the truncation error is too large, then you back up a step, decrease your step size, and 
try again. 

1% 1 Chapterll: Real-TirneSirnulationr 



One way to implement this for Euler's method is to first take a step size, At,  to obtain 
an estimate at time t + At,  and then take two steps (starting from time t again) of size 
At12 to obtain another estimate at time t + At. Since we've been talking about velocity 
in the examples so far, let's call the first estimate vl and the second estimate v2*  A 
measure of the truncation error is then 

If it is desired to keep the truncation error within a specified limit, e,, ,  then you can use 
the following formula to find out what your step size should be to maintain the desired 
accuracy: 

Here, hold is the old time step and h,,, is the new one that you should use to maintain 
the desired accuracy You'll'have to make this check for each time step, and if you find 
that the error warrants a smaller time step, then you'll have to back up a step and repeat 
it with the new time step. 

Here's a revised S t e p s i m u l a t i o n  function that implements this adaptive step size tech- 
nique, checking the truncation error on the velocity integration: 

I/ New g loba l  v a r i a b l e  
f l o a t  e to;  I/ t r u n c a t i o n  e r r o r  to lesance  

/ I  This  func t ion  progresses  t h e  s imulat ion by d t  seconds using 
/ I  Euler 's  bas ic  method with an adap t ive  s t e p  s i z e  
void StepSimulat ion(f1oat  d t )  
{ 

f l o a t  F; I/ t o t a l  f o r c e  
f l o a t  A; I/ a c c e l e r a t i o n  
f l o a t  Vnew; I/ new v e l o c i t y  a t  time t + d t  
f l o a t  Snew: I/ new ~ o s i t i o n  a t  time t + d t  
f l o a t  V 1 ,  b; I/ temporary v e l o c i t y  v a r i a b l e s  

' f l o a t  dtnew; I/ new t ime s t e p  
f l o a t  e t ;  I/ t r u n c a t i o n  e r r o r  

I/ Take one s t e p  of s i z e  d t  t o  es t imate  t h e  new v e l o c i t y  
F = (T - (C * V)); 
A = F / M ;  
V 1  = V + A ' d t ;  

I/ Take two s t e p s  of s i z e  d t / 2  t o  es t imate  t h e  new v e l o c i t y  
F = (T - (C * V)); 

/ I  Estimate t h e  t r u n c a t i o n  e r r o r  
e t  = absf(V1 - V2); 

Even though I'm talking about velocity and time here, these rechniques apply ra any function, for example, 
displacemrnr versus time. 



I/ Estimate a new step s i z e  
dtnew = d t  SQRT(eto1et); 

i f  (dtnew < d t )  
{ /I take  a t  step a t  t h e  new smal ler  step s i z e  

F = (T - (C V)); 
A = F / M ;  
Vnew = V + A * dtnew; 
Snew = S t Vnew * dtnew: 

} e l s e  
{ I1  o r i g i n a l  step s i z e  i s  okay 

Vnew = V1; 
Snew = S + Vnew * dt; 

1 
/I Update o l d  v e l o c i t y  and displacement w i t h  t h e  new ones 
V = Vnew; 
S = Snew; 

} 

Other Methods 
At this point you might be wondering why you can't simply use more terms in the 
Taylor series to reduce the truncation error of Euler's method. In fact, this is the basis 
for several integration methods that offer greater accuracy than Euler's basic method 
for a given step size. Part of the difficulty associated with picking up more terms in 
the Taylor's series expansion is in being able to determine the second, third, fourth, 
and higher derivatives of the function you're trying to integrate. The way around this 
problem is toperform additionalTaylor seriesexpansions to approximate the derivatives 
of the function under consideration and then substitute those values back into your 
original expansion. 

Taking this approach to include one more Taylor term beyond the basic Euler method 
yields a so-called improved Euler method that has a reduced tluncation error, on the 
order of ( ~ t ) ~  instead of ( A t ) 2 .  The formulas for this method are as follows: 

k1 = (Ax)yr (x ,  y )  
k2 = ( A x ) y l ( x  + A X ,  y  + kl) 

y(x + A X )  = y(x)  + 1/2(kl + kz) 

Here y  is a function of x ,  y' is the derivative as a function of x  and possibly of y,  and 
Ax the step size. 

To make this clearer for you, I'll show these formulas in terms of the ship example 
equation of motion of Chapter 4, the same example that I discussed in the preceding 
section. In this case velocity is approximated by the following formulas: 

kl = A t [ l / m ( T  - Cv, ) ]  
kz = A t { l / m [ T  - C(vt + k l ) ] )  

vt+at  = v t  + 1/2(k1 + k2) 

where v ,  is the velocity at time t ,  and V,+AL is the new velocity at time t  + At.  
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Here is the revised S t e p S i m u l a t i o n  function showing how to implement this method in 
code: 

I1 T h i s  f u n c t i o n  progresses t h e  s imu la t ion  by d t  seconds u s i n g  
I1 t h e  "improved" Eu le r  method 
v o i d  StepSimulat ion( f1oat  d t )  
i 

f l o a t  F; /I t o t a l  f a r c e  
f l o a t  A; /I a c c e l e r a t i o n  
f l o a t  Vnew; / I  new v e l o c i t y  a t  t i m e  t + d t  
f l o a t  Snew; I1 new p o s i t i o r  a t  t ime  t + d t  
f l o a t  k l ,  k2; 

F = (T - (C * V)); 
A = FIM; 
k l  = d t  * A; 

F = ( T  - (C * (V ;~kl))); 
A = FIN; 
k 2  = d t  ' A; 

I1 Ca lcu la te  t h e  new v e l o c i t y  a t  t ime  t + d t  
/I where V i s  t h e  v e l o c i t y  a t  t i m e  t 
Vnew = V + ( k l  + k 2 )  I 2; 

I1 Ca lcu la te  t h e  new displacement a t  t i m e  t + d t  
I1 where 5 i s  t h e  displacement a t  t ime  t 
Snew = 5 + Vnew * dt ;  

/ I  Update o l d  v e l o c i t y  and displacement w i t h  t h e  new ones 
V = Vnew; 
S = Snew; 

This procedure of raking on more Taylor terms can be carried out even further. The 
popula~ Runge-Kutta method takes such an approach to reduce the truncation error to 
the order of (At)'. The integration formulas for this method are as follows: 

Applying these formulas to our ship example yields 



For our example the Runge-Kutta method is implemented as follows: 

/I This function progresses the simulat ion by d t  seconds using 
I /  the Runge-Kutta method .: ,,iY 

.void StepSimulation(float d t )  
{ 

f l o a t  F; 11 t o t a l  force 
f l oa t  A; 11 accelerat ion 
f l oa t  Vnew; 11 new ve loc i t y  a t  t ime t + d t  
f l oa t  Snew; 11 new pos i t ion  a t  t ime t + d t  
f l oa t  k l ,  k2, k3, k4; -~ 
F = (T - (C * V)); 
A = FIM; 
k l  = d t  ' A; 

F = (T - (C " (V + k112))); 
A = F/N; 
k2 = d t  * A; 

F = (T - (C * (V  + k212))); 
A = FIM; 
k3 = d t  * A; 

F = (T - (C * (V + k3))); 
A = FIN; 
k4 = d t  * A; 

11 Calculate the  new ve loc i t y  a t  t ime t + d t  
I1 where V i s  the ve loc i t y  a t  t ime t 
Vnew = V + ( k l  + 2*k2 + 2*k3 + k4) 1 6; 

11 Calculate the new displacement a t  time t + d t  
11 where S i s  the  displacement a t  t ime t 
Snew = 5 + Vnew * dt; 

I/ Update o ld  ve loc i t y  and displacement w i th  the new ones 
V = Vnew; 
5 = Snew; 

) 

To show you how accuracy is improved over the basic Euler method, I've superimposed 
integration results for the ship example using these two methods over those shown 
in Figures U-2 and U-3. Figures U-5 and U-6 show the results, where Figure U-6 is a 
zoomed view of U-5. 

As you can see from these figures, it's difficult to discern the curves for the improved 
Euler and Runge-Kutta methods from the exact solution because they fall almost right 
on top of each other. These results clearly show the improvement in accuracy over the 
basic Euler method, whose curve is distinct From the other three. Over the interval from 
65 to 8.5 seconds, the average truncation error is 1.72% 0.03%, and 36 x 10W6 % for 
Euler's method, the improved Euler method, and the Runge-Kutta method, respectively 
It obvious, on the basis OF these results, that for this problem the Runge-Kutta method 
yields substantially better results For a given step size than the other two methods. Of 
course, you pay for this accuracy, since you have several more computations per step in 
the Runge-Kutta method. 
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These methods aren't the only ones at your disposal; however, they are the most com- 
mon. Other methods attempt to improve computational efficiency even further; that 
is, they are designed to minimize truncation error while still allowing you to take rel- 
atively large step sizes so as to reduce the number of steps you have to take in your 
integration. I cite some pretty good references for further reading on this subject in the 
bibliography 



CHAPTER 12 - 

2D Rigid Body Simulator 1" 

Now it's time to put all of what you've learned so far to work and implement an actual 
real-time simulator. I chose to model two vehicles in this example so chat in the next 
chapter I can show you how to handle collision response between these two vehicles 
when they run into each other. For now, though, I'll keep it simple to clearly illustrate 
the material that you studied in the earlier chapters. 

Although the source code for this example is available on O'Reilly's web site, I'm going 
to include just about all of it in this chapter. For the most part I'llconcentrate on the code 
that implements the physics part of the simulator, and I'll refer you to O'Reilly's web 
site for the rest of the code that implements rendering the simulation using Microsoft's 
Direct3D technology 

There are four main elements to this simulation: 

Model 
The model refers to your idealization of the thing, in this case a hovercraft, that 
you are trying to simulate. 

Integrator 
The integrator refers to the method by which you integrate thedifferential equations 
of motion. 

User Input 
User input refers to how you'll allow the user to interact with your simulation. 

Rendering 
Finally, rendering refers to how you'll allow the user to view your simulation 

In this simulation the world coordinate system has its x-axis pointing into the screen, its 
y-axis pointing to the left of your screen, and its z-axis pointing upward. Even though 
this is a 2D example, in which all motion is confined to the xy-plane, you still need a 
z-axis about which the hovercraft will rotate. Also, the local, or body-fixed, coordinate 
system has its x-axis poinring toward the front of the hovercraft, its y-axis pointing to 
the port side, and its z-axis pointing upward. 



The vehicles that are modeled in this simulation are a couple of generic hovercraft 
operating over smooth land. The two vehicles are identical and have the properties 
shown in Table 12-1. 

Table 12-1. Hovercraft Properties 

Property 

Length 

Width 

Average projededarea ofentire vehicle 

Center o f  drag location 

Weight i 

Mass 

Centerofgravity(CG) location 

Mass moment o f  inertia' 

Maxthrust (air propeller) 

Propeller location 

Bowthrusters 

Value 

70 f t  

50 f t  

1500 ft2 

2 5  f taf tof theCG 

10 tons (20,000 lb) 

621 6slugs 

35 h a f t  of the bow on thecenterl~ne 
(assumed t o  be in thecenter o f the  
craft) 

383,320 lb-R-s' 

2000 lb 

30f taf tof the CGon centerllne 

one to  port and one tostarboard, each 
30ftfoiwardoftheCGand25ftoflthe 
centerline to either side 

500 lb 

Each craft is fitted with a single air screw propeller that provides forward (or reverse) 
thrust located toward the aft end of the craft. For controllability each craft is fitted with 
two bow thrusters, one to port and the other to starboard, each capable of delivering 
500 lb o i  thrust to either side. These bow thrusters are used to steer the hovercraft. 

I've used a simplified drag model in which the only drag component is due to aerody- 
namic drag on the entire craft. For these calculations I've assumed a mean projected 
area of 1500 ft and a drag coefficient of 0.25. A more rigorous model would consider 
the actual projected area of the craft as a function of the direction of relative velocity, 
as in the tlight simulator example discussed in Chapter 7, as well as the frictional drag 
between the bottomof the craft's skirt and theground. I've also assumed that the center 
of drag is 2.5 ft aft of the center ofgravity so as to give a little directional stability, that is, 
to counteract rotation. This serves the same function as the verrical tail fins on aircraft. 

In code, the first thing you need to do to represent these vehicles is define a rigid 
body structure that contains all of the information you'll need to track the vehicles and 
calculate the forces and moments acting on them. Here's how I did it: 

{I," 
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typedef struct _RigidBody { 

float 
float 
float 
Vector 
Vector 
Vector 
Vector 

float 
float 
Vector 
Vector 

Vector 

Vector 

Vector 

Vector 

float 

float 
Vector 

float 
float 

mass; /I total mass (constant) 
fhertia; / I  mass moment of inertia in body c+dinates 
fInertiaInverse; / I  inverse of mass moment of inertia 
"Position; // position in earth coordinates 
vvelocity; / I  velocity in earth coordinates 
vvelocitybdy; / I  velocity in body coordinates 
~AngularVelocity; // angular velocity in 

/ I  body coordinates 

CD; 

CT; 

CPT; 

CST; 

// speed (magnitude of the velocity) 
I /  orientation 
I /  total force on body 
// tatal moment (torque) on body 
I /  (2D: about z-axis only) 

// location of the center of 
I /  drag relative to the center 
I /  of gravity 
// location of center of thrust 
I /  relative to the center of gravity 
I /  location of the port bow thruster 
I /  relative to the center of gravity 
I /  location of the starboard bow 
I /  thruster relative to the center 
// of gravity 
I /  mean projected area 
/ I  (for drag calcs.) 

ThrustForce; // magnitude of the thrust force 
PThrust, SThrust; / I  bow thruster vectors 

fllidth; / /  bounding dimensions 
flength; 

} RigidBody2D, 'pRigidBody2D; 
f 

This structure contains all the information you'll need to uack the state of each craft. 

The next step in defining the model is to write an initialization function to initialize the 
states of these hovercraft when the program first starts up. Here's what that function 
looks like: 

void InitializeHovercraft(pRigidBody2D body) 
t 

/ /  Set initial position 
body->vPasition.x = o.0f; 
body-wPosition.y = o.Of; 
body-,vPosition.z = 0.of; / I  set all z's to zero blc this is 2D 
/ /  Set initial velocity 
body->vVelocity.x = o.of; 
body-,vVelocity.y = 0.Of; 
body-wVe1ocity.z = o.of; / I  set all z's to zero blc this is 2D 

body-,fSpeed = 0.Of; 

// Set initial angular velocity 
body-,vAngularVelocity.x = 0.Of; / /  will always be zero in 20 
body-,vAngularVelocity.y = 0.Of; / I  will always be zero in 2D 
body-wAngularVelocity. z = 0.Of; / I  in 20 only this component 

/ /  with be used 
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I /  Set the initial thrust, forces, and moments 
body-,vForces.x = 0.0f; 
body-,vForces.y = 0.0f; 
body-,vForces.z = 0.0f; / /  set all z's to zero 
body-,vHoment.x = 0.0f; / I  will always be zero in 20 
bodv->vMament.v = 0.0f: // will alwavs be zero in 2D 
body->vMarnent.z = 0.0f; // in 20 onljr this component 

/ /  with be used 

I /  Zero the velocity in body space coordinates 
body-wVe1ocityBody.x = O.Of; 
body-wVe1ocityBody.y = 0.0f; 
body-wVe1ocityBody.z = 0.0f; 

// Set the initial orientation 
body-,fOrientation = 0.0; 

/ /  Now define the h4ss properties 
body-,fMass = 621.6: 
body->fInertia = 383320; 
body->fInertiaInverse = 1.of / body->fInertia; 

I /  coordinates of the body center of drag 
body->CD.x = -2.5f; body-,CD.y = 0.Of; 

I /  coordinates of the propeller thrust vector 
body-KT.x = -30.0f; body-KT.y = O.Of; 

I /  coordinates of the port bow thruster 
body-,CPT.x = 30.0f; body-,CPT.y = 2S.Of; 

I /  coordinates of the starboard bow thruster 
body-K5T.x = 30.0f; body->CST.y = -2S.Of; 

body-,ProjectedArea = 1500.0f; / /  mean projected area 
body-,ThrustForce = 0; / /  initial thrust force 

' body->fWidth = 50; // width of the body (measured along y-axis) 
body->fLength = 70; / /  length of the body (measured along x-axis) 

} 

You'll notice here that the vector class that I've used is actually a triple, that is, it has 
three components: x, y, and z. Since this is a 2D example, the z-components will always 
be zero, except in the case of the angular velocity vector, in which only the z-component 
will be used (since rotation occurs only about the z-axis). The class that I've used in this 
example is discussed in Appendix A, so I won't give the source code here. The reason I 
didn't write a separate 2D vector class, one with only x- and y-components, is because 
I'll be extending this code to 3D later and wanted to get you used to using the 3D vector 
class. Besides, it's pretty easy to create a 2D vector class from the 3D class by simply 
stripping out the z-component. 

Notice that this function takes as a parameter a pointer to a RigidBody structure. This 
way, you can call this same function to initialize each hovercraft, and then later, if you 
want to make some changes to a particular hovercraft's initial state, you can do so by 
changing only the property of interest. For example, here's how I initialized the two 
hovercraft in this example: 



void Initialize(v0id) 

Here, Hovercraft1 and Hovercraft2 are defined as global variables: 

RigidEady2D Hovercraftl, Hovercraft2; / I  our two hovercraft rigid 
bodies 

You can see here that I didn't want to start the program with both hovercraft occupying 
the same position, one on top of the other. Instead, I set Hovercraft2 some distance 
away from the first and then rotated it 180 degrees so that it faces the first hovercraft. 

This Initialize function is called at the very start of the program. I found it convenient 
to make the call right after the application's main window is created and shown, in this 
case in the standard Windows API InitInstance function as shown here: 

BOOL InitInstance(H1NSTANCE hInstance, int nCmd5how) 
4 

0,  0, 640, 480, 
NULL, NULL, hInst, NULL); 

if (!CreateD3DRMObject()) 
return (FALSE); 

if (!CreateD3DRHClipperObject(hTheMainWindow)) 
return (FALSE); 

if (!CreateViewPort(hTheHainWindow)) 
return (FALSE); 

Initialize(); 

return (TRUE); 
} 

Now that everything is initialized, you need to develop a function to calculate the forces 
and moments that will act on the hovercraft throughout the simulation. Without such a 
function, the hovercraft will just sit there and do nothing, so obviously, this function is 
crucial. Let me also say that while most of the code that I'll show you in this chapter can 
be reused without much modification for your own rigid body simulations, the same 
is not uue  of this function. You'll need a function to calculate forces and moments for 
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whatever you're simulating, but the body of the function will likely be very different 
depending on what you are modeling and how you have idealized your physical model. 
That said, here's the function that I've developed for the hovercraft: 

void CalcLoads(pRigidBody2D body) 
I 

Vector Fb; 
Vector Mb; 
Vector Thrust; 

I /  stores the sum of forces 
I /  stores the sum of moments 

/ I  thrust vector 

/ /  reset forces and moments: 
body->vForces.x = O.Of; 
body->vForces.y = 0.of; 
body->vForces.z = o.of; I /  always zero in 20 

body->vMoment.x = O.Of; / I  always zero in 2D 
body->vMoment.y = O!,Qf; 1 1  always zero in 2D 
body->vMament.r = 0.of; 

1 1  Define the thrust vector, which acts through the craft's CG 
 thrust.^ = 1.0f; 
Th1ust.y = o.of; 
Thrust.2 = O.Of; 1 1  rero in 2D 
Thrust *= body->ThrustForce; 

1 1  Calculate forces and moments in body space: 
Vector vLocalVelocity; 
float fLocal5peed; 
Vector vDragVector; 
float tmp; 
Vector "Resultant; 
Vector vtmp; 

1 1  Calculate the aerodynamic drag force: 
1 1  Calculate local velocity: 
1 1  The local velocity includes the velocity due to 
1 1  linear motion of the craft, 
1 1  plus the velocity at each element due to the rotation 
I 1  of the craft. 
vtmp = body->vAngularVelocity'body->CD; 1 1  rotational part 
vLocalVelocity = body->vVelocityBody + vtmp; 

1 1  Calculate local air speed 
fLocalSpeed = vLocalVelocity.Magnitude(); 

1 1  Find the direction in which drag will act. 
I 1  Drag always acts inline with the relative velocity 
I 1  but in the opposing direction 
if(fLoca1Speed > tol) 
I 
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// Determine the resultant force on the element. 
tmp = 0.5f * rho * fLocalSpeed*fLocalSpeed * 

body->ProjectedArea; 
"Resultant = vDragVeCtor * LINEARDRAGCOEFFICIENT * -\idp; 
// Keep a running total of these resultant 
/ I  forces (total force) 
Fb +=  resultant; 

/ I  Calculate the moment about the CG of this 
I /  element's force 
I /  and keep a running total of these moments (total moment) 
vtmp = body->CD"vResultant; 
Mb += vtmp; 

1 
// Calculate the port and starboard bow thruster forces: 
I /  Keep a running total of these resultant forces (total force) 
Fb += body->PThrust; 

I /  Calculate the moment about the CG of this element's force 
I /  and keep a running total of these moments (total moment) 
vtmp = body->CPT"body->PThrust; 
Mb += vtmp; 

I /  Keep a running total of these resultant forces (total force) 
Fb += body->SThrust; 

I /  Calculate the moment about the CG of this element's force 
I /  and keep a running total of these moments (total moment) 
vtmp = body->C5TAbody->SThrust; 
Mb += vtmp; 

I /  Now add the propulsion thrust 
Fb += Thrust; I /  no moment, since line of action is through CG 

I /  Convert forces from model space to earth space 
body-,vForces = VRotateZD(body->fOrientation, Fb); 

body-Moment += Mb; 
1 

Since the two hovercraft are identical, this same function is used to calculate the loads 
on each by passing this function a pointer to the RigidBody structure for the hovercraft 
under consideradon. 

The first thing that CalcLoads does is initialize the force and moment variables that will 
contain the total of all forces and moments acting on the craft at any instant in time. 

The function then goes on to define a vector representing the propeller thrust. In this 
case the thrust vector act. in the positive (local) x-direcnon and has a magnitude defined 
by ThrustForce, which is set by the user via the keyboard interface. (I'll get to that later.) 
Note that if ThrustForce is negative, then the thrust will actually be a reversing thrust 
instead of a forward thrust. 

After defining the thrust vector, this function goes on to calculate the aerodynamic 
drag acting on the hovercraft. These calculations are very similar to those discussed in 
Chapter 7. The first thing to do is determine the relative velocity at the center of drag, 
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considering both linear and angular motion. You'll need the magnitude of the relative 
velocity vector when calculating the magnitude of the drag force, and you'll need the 
direction of the relative velocity vector to determine the direcdon of the drag force, 
since it always opposes the velocity vector. Once the drag force has been determined, 
the function adds it to the running total of forces and then calculates the moment 
about the center of gravity of the drag force and adds that moment to the running 
total of moments Note that the drag coefficient, LINEARDRAGCOEFFICIENT, is defined as 
follows: 

#define LINEARDRAGCOEFFICIENT 0.25f 

With the drag calculation complete, the function proceeds to calculate the forces and 
moments due to the bow thrusters, which may be active or inactive at any given time. 

Next, the propeller thrust force is added to the running total of forces. Remember, since 
the propeller thrust force act&hrough the center of gravity, there is no moment to worry 
about. 

Finally, the cotal force is converted from local coordinates to world coordinates via a 
vector rotation given the orientation ofthe hovercraft, and the total forces and moments 
are stored in the RigidBody structure for the given hovercraft. These values are stored so 
that they are available when it comes time to integrate [he equations of motion at each 
time step throughout the simulation. 

Integration 
Now that the code to define, initialize, andcalculateloads on the rigid bodies is complete, 
you need to develop the code to actually integrate the equations of motion so that the 
simulation can progress through time. The first thing you need to do is decide on the 
integration scheme that you want to use, as discussed in Chapter 11. For this example I've 
chosen the improved Euler method. To that end, I've developed the funcdon UpdateBody 
that takes as parameters a pointer to a RigidBody and the time step to take (in seconds): 

void UpdateBady(pRigidBady20 craft, float dtime) 
( 

Vector Ae; 
flaat Aa; 
RigidBodyZD body; 
Vector kl, k2; 
float kla, k2a; 
float dt = dtime; 

I /  make a copy of the hovercraft's state 
rnemcpy(&body, craft, sizeof(RigidBody2D)); 

I /  calculate the kl terms far both linear and angular velocity 
CalcLoads(&body); 
Ae = body.vForces / body.fMass; 
kl = Ae * dt; 

Aa = bady.vMoment.r / body.fInertia; 
kla = Aa * dt; 

{I," 
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/ /  add the kl terms to the respective initial velocities 
body.vVelocity += kl; 
body.vAngularVe1ocity.z += kla; 

.,'I 
/ /  calculate new loads and the k2 terms 
CalcLoads(Bbody); 
Ae = body.vForces / body.fMass; 
k2 = Ae * dt; 

Aa = body.vM0ment.z / body.fInertia; 
k2a = Aa * dt; 

/ /  now calculate the hovercraft's new velocities at time t + dt 
craft->vVelocity += ( k l  + k2) / 2.0f; 
craft->vAngularVelocity.r += (kia + k2a) / 2.of; 

// calculate the new position 
craft->vPosition += craft->vVelocity * dt; 
craft->fSpeed = craft->vVelocity.Magnitude(); 

/ /  calculate the new orientation 
craft->fOrientation += 

RadiansToDegrees(craft->vAngularVelocity. * dt); 

By passing this function a pointer to a RigidBody, we can reuse this same function 
regardless of the particular body that is under consideration. Further, passing the time 
step allows us to vary the size of the time step as we see fit. I'll do just that in the next 
chapter when 1 show you how to handle collision response. 

The first thing that UpdateBody does is to make a temporary copy of the current state 
of the rigid body under consideration. This has to be done because in the improved 
Euler method you have to take the intermediate step of adding the 61 terms to the initial 
velocities before completing the integration, and you don't want to corrupt the initial 
velocity values of the rigid body, since you'll need them to finish the integration step. 

The next thing to do is calculate the loads (forces and moments) acting on the rigid 
body by passing a pointer to the temporary copy to the CalcLoads function. With the 
loads calculated, the function proceeds to calculate the 61 terms for both linear and 
angular velocity These k l  terms are then added to the initial velocities, which are then 
used during another call to CalcLoads. The k2 terms are calculated after this second call 
to CalcLoads. 

Now that the k l  and k2 terms have been calculated, the new velocities are calculated 
by using the improved Euler formula. Next, the function integrates the new velocities, 
using Euler's method, to determine the new position and orientation of the rigid body 

The last thing that UpdateBody does is calculate the rigid body's velocity in local co- 
ordinates by applying a vector rotation of the world space velocity by the body's new 
orientation. You need the velocity in local coordinates when calculating drag in the 
CalcLoads function, and this is a convenient place to calculate it. 
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Since there are two rigid bodies-the two hovercraft-in this simulation, UpdateBody 
must be called twice, once for each hovercraft. I do this in the stepsimulation function: 

void StepSimulation(f1oat dt) 
I 

UpdateBody(&Hovercraftl, dt); 
UpdateBody(&HovercraftZ, dt); 

) 

Stepsimulation is trivial in this simulation, since there are only two rigid bodies and 
there's no collision response mechanism in the simulation yet. If you had several rigid 
bodies in your own simulation, you could set up an array of RigidBody srructures and 
then loop through your array in Stepsimulation to update each rigid body 

Stepsimulation is called once per game loop cycle. In this example I set up another 
funcnon call NullEvent thatkets called every nme through the mam wmdow message 
loop as shown here. 

int APIENTRY WinMain(H1NSTANCE hInstance, 
HINSTANCE hPrevInstance, 
LPSTR IpCmdLine, 
int nCmdShow) 

I 

OldTime = timeGetTime(); 
NewTirne = OldTime; 
I1 Main message loop: 
while (1) { 

while(PeekMessage(&msg, NULL, 0, 0, PM-REMOVE)) I 
if (rnsg.message == WM-QUIT) { 

return msg.wParam; 

1 
When NullEvent calls StepSimulation, it passes the size of the time step in as the dt 
parameter. You don't have to do it this way I chose to because I was experimenting with 
having the time step calculated in real time as the difference in time between the last 
call to Stepsimulation and the current time as shown here: 

\ 

void NullEvent(v0id) 
I 

" 
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NewTim = timeGetTime(); 
dt = (float) (NewTime - OldTime)/1000; 
OldTime = NewTime; 

if (dt > 0.016) dt = 0.016; 
if (dt < 0.001f) dt = 0.001f; 

StepSimulation(dt); 

This approach progresses the simulauon in realistically scaled time. The problem is that 
if the program spends too much doing something else during one cycle, then the next 
time step may be too large relative to the last time step, and the motion of the rigid body 
will be less smooth, not to mention that coo large a time step could result in inaccuracies 
and instability during integration. As you can see, I put in a little check to prevent the 
time step from getting too large. I also put in a check to keep the time increment from 
falling below 1 millisecond (ms). timeGetTime has a documented accuracy resolution of 
1 ms, but I found that it would sometimes return values less than that. So I put the 
1-ms check in there to keep things consistent and to make sure we're within the stated 
accuracy of timeGetTime. 

As an alternative, you can fix the time step in your simulauons so that each step is the 
same as the last, regardless of any delay encountered in your game loop. You'll have to 
experiment here to determine a good step size. If you choose one that's too small, your 
simulation will seem to move in slow motion. Conversely, if the step is too large, your 
simulation will seem as though it's in fast-forward mode, and of course, you'll increase 
the likelihood of numerical problems. 

Flight Controls 
If you were to run the program as we have it so far, you would find that even though our 
model and integrator are in place, the hovercraft would still sit there and do nothing. 
That is, of course, because there is no control mechanism built in yet. The user input 
code that I'll show you next is your way to interact with the hovercraft and control their 
behavior. Specifically, I'll associate certain keys on the keyboard with certain forces 
that will be applied to the model. I've already mentioned what those forces are: the 
propeller's thrust and the bow thrusters' thrust. In this way you don't directIy push or 
turn the hovercraft; you can only apply forces and let the integrator take care of how 
the hovercraft will behave under the action of those forces. 

The flight controls in this example are pretty simple. For hovercraft 1, the up arrow 
key increments the propeller thrust by 100-lb increments up to a maximum of 2000 ib; 
the down arrow key decrements the propeller thrust by 100-lb increments down to a 
minimum of -2000 lb (for reversing); the left arrow key applies the starboard bow 
thruster to yaw (turn) the craft to port (the left); and the right arrow key applies the 
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port bow thruster to yaw the craft to starboard. For hovercraft 2, the W Z, A, and S 
keys perform the same functions, respectively. 

I've prepared several functions to handle the propeller and bow thrusters that should 
be called whenever the user is pressing the flight control keys. The first two functions 
handle the propeller: 

v o i d  I n c T h r u s t ( i n t  c r a f t )  
{ 

i f ( c r a f t  == 1) 
I 

Hovercraf t l .ThrustForce += JTHRUST; 
if(Hovercraftl.ThrustForce > _MUTHRUST) 

H ~ ~ e r c r a f t l . T h r ~ S t F O r c e  = MAXTHRUST: - 
} e l s e  { 

Hoverc ra f t~ .Thrus tForce  += JHRUST; 
if(Hovercraft2.ThrustForce , -MAXTHRUST) 

H0vercraf t2 .Thru~tF0rce = -MUTHRUST; 
1 

} 

v o i d  DecThrust ( in t  c r a f t )  
{ 

Hoverc ra f t l .Th rus tFor re  -= JTHRUST; 
if(Hovercraft1.ThrustForce < -_MUTHRUST) 

Hovercraf t l .ThrustForce = --MUTHRUST; 
} e l s e  { 

Hovercraf t2 .ThrustForce -= JTHRUST; 
if(Hovercraft2.ThrustForce < --MAXTHRUST) 

Hovercraft2.ThrustForce = -_MAXTHRUST; 

I n c T h r u s t  simply increases the thrust by JITHRUST checking to make sure it does not 
exceed -MAXTHRUST. I've defined -DTHRUST and -MAXTHRUST as follows: 

DecThrust ,  on the other hand, decreases the thrust by PTHRUST, checking to make sure it 
does not fall below --MAXTHRUST. Both of these functions take as a parameter an integer 
identifying the hovercraft, H o v e r c r a f t 1  or H o v e r c r a f t z ,  to which the changes are to be 
applied. 

The next few functions handle the bow thrusters: 

v o i d  P o r t T h r u s t e r ( i n t  c r a f t )  
I 

i f ( c r a f t  == 1) 
Hovercraft1.PThrust.y = -5oo.of; 

e l s e  
Hovercraft2.PThrust.y = -5oo.of; 

} 



void STBDThruster(int craft) 
t 

if(craft == 1) 
Hovercraft1.SThrust.y = 5OO.Of; 

else 
Hovercraft2.5Thrust.y = 5OO.Of; 

} 

void ZeroThrusters(int craft) 
I 

Hovercraftl.5Thrust.x = O.Of; 
Hovercraftl.5Thruit.y = 0.01; 
Hovercraftl.5Thrust. z = 0.01; 

} else { 
Hovercraft2. PThru5t.x = o.0f; 
Hovercraft2.PThrust.y = O.Of; 
Hovercraft2.PThrust.z = @.Of; 

Po~tThruster simply sets the thrust of the port bow thruster to -500, which is 500 lb 
toward the srarboard to turn the craft to srarboard. The minus 500 means that the 
port thrust vector points in the negative (local) y-direction. Similarly, STBCThruster 
sets the thrust of the starboard bow thruster to 500 lb, which turns the craft to 
port. In this case the srarboard thrust rector points in the positive (local) y-direction. 
ZeroThrusters simply turns off the port and starboard bow thrusters. All three of these . 
functions take an integer parameter identifying the craft to which the changes will 
apply. 

As I said, these functions should be called when the user is pressing the flight control 
keys. Further, they need to be called before the Stepsimulation function is called so that 
they can be included in the current time step's forces and moments calculations. Since I 
put the Stepsimulation call in my NullEvent funcrion, it makes sense to handle the flight 
controls in that function as well. Here's how I did ic: 

void NullEvent(void) 
{ 

/ /  figure out which flight control keys are down 
ZeroThrusters(1); 
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\. 
if (IsKeyDown(Ox57)) /I W key 

IncThrust(2); 

if (IsKeyDown(Ox5A)) / I  Z key 
DecThrust(2); 

if (IsKeyDown(ox53)) /I S key 
I 

if (IsKeyDawn(ox41)) / /  A key 
1 

NewTime = timeGetTime(); 
dt = (float) (NewTime - OldTime)/1000; 
OldTime = NewTime; 

if (dt > 0.016) dt = 0.016; 
if (dt ( 0.001f) dt = o.oo1f; 
StepSimulatian(dt); 

Before Stepsimulation is called, each of the flight control keys for each hovercraft is 
checked to see whether it 1s being pressed. If so, then the appropriate thrust or thruster 
funcnon is called. 

The function IsKeyDown that check whther  a certain key is pressed looks like this: 

BWL IsKeyDown(short KeyCode) 
{ 

SHORT retval; 

retval = GetAsyncKeyState(KeyCode); 

{I " 
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if (HIBYlE(retva1)) 
return TRUE; 

'I" return FALSE; 
1 

I used this function because it is possible that more than one key will be pressed at any 
given time, and I wanted to handle them all simultaneously instead of one at a time in 
the standard window message processing function. 

The addition of flight control code pretty much completes the physics part of the 
simulation. So far, you have the model, the integrator, and the user input or flight control 
elements completed. All that remains is setting up the application's main window and 
actually drawing something to look at that represents what you're simulating. 

Rendering 
Setting up the main window and drawing something interesting to look at aren't really 
related to physics; however, for completeness I'll briefly present the code that I used in 
this example to set up the main window and render the simulation using Direct3D.' 

Starting with the main window, I used standard Windows API code to initialize the 
application, create and update the main window, and handle window messages and 
user input. I assume that you're are familiar with Windows API programming, so I 
won't go into a detailed explanation of the code. 

I've already shown you part of the WinMain function; here's the whole thing: 

int APIENTRY WinMain(H1NSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR 
IpCmdLine, int nCmdShow) 
I 

MSG msg; 
HANDLE hAccelTable; 

if ( !  hPrevInstance) { 
// Perform instance initialization: 
if (!InitApplication(hInstance)) { 

return (FALSE); 

// Perform application initialization: 
if (!Initlnstance(hInstance, nCmdShow)) { 

return (FALSE); 

* IF you aren't already familiar wirh programming D i r e d D ,  you should check out the book enritled The 
Awesome Power ofDirect3DlDirectX by Peter J. Kovack. Simply pur, it's very useful. 
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/ /  Main message loop:  
wh i le  (I) { 

while(PeekMessage(&msg, NULL, 0, 0, PM-REMOVE)) { 
if (msg.message == WM-QUIT) { 

r e t u r n  msg.wParam; 

r e t u r n  (msg.wParam); 
> 

\. 
WinMain makes calls to 1n i t ' I ns tance  and I n i t A p p l i c a t i o n .  I've already shown you 
I n i t I n s t a n c e ,  so here's I n i t A p p l i c a t i o n :  

BOOL InitApplication(H1NSTANCE hlnstance) 
i 

WNDCLASS wc; 
HWND hwnd; 

hwnd = Findwindow (szAppName, NULL); 
i f  (hwnd) { 
if (IsIconic(hwnd)) ( 

ShowWindow(hwnd, SW-RESTORE); 

SetForegroundWindow (hwnd); 

r e t u r n  FALSE; 
> 
wc.sty le = CS-HREDRAW I CS-VREDRAW 1 CSJBLCLKS; 
wc.lpfnWndProc = (WNDPR0C)WndProc; 
wc.cbClsExtra = 0; 
wc.cbWndExtra = 0: 
wc.hInstance = hInstance; 
wc. h Icon = NULL; 
wc.hCursor = LoadCursor(NULL, IDC-ARROW); 

wc.lpszMenuName = NULL; 
wc.lpszClassName = szAppName; 

r e t u r n  RegisterClass(&wc); 
1 

So far, this API code creates a window class for the main window, registers that class, 
creates and displays a 640 x 489 window, creates a couple of Direct3D objects that are 
needed to render into a Direct3D view port (these calls are in I n i t I n s t a n c e ) ,  and starts 
the main program loop calling N u l l E v e n t  each time. 

The only other API function that's needed is the wndow message processing function, 
WndProc: 

{I.. 

Rendering 1 199 



LRESULT CALLBACK WndProc(HWND hWnd, 
UINT message, 
wPARW wParam, 
LPARW 1Param) 

{ 

int mId,  event; 
B W L  validmenu = FALSE; 
int selection =O; 
PAINTSTRUCT ps; 
HDC PDC; 
WPARAN key; 

switch (message) { 
case WM ACTIVATE: - 

if (SUCCEEDED(D3D.Devicee>QueryInterface( 
IID-IDirect3DRMWinDevice, 
(void **) &WinDev))) 

break; 

case WKDESTROY: 
Cleanup(); 
PostQuitMessage(0); 
break; 

case WN-KEYWWN: 
key = (int) wParam; 

if (key == 0x31) 11 1 
SetCameral(); 

if (key == 0x34) 11 4 
setCamera40; 

if (key == 0x35) 11 5 
setCamera50; 

if (key == 0x36) 11 6 
jetCamera60; 

break; 

case WM-PAINT: 
pDC = BeginPaint(hTheMainWindow, (LPPAINTSTRUCT) &ps); 

(void **) &WinDev))) 

- 
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EndPaint(hTheMainWindow, (LPPAINTSTRUCT) &ps); 
return (0); 

break; 
default: 

return (DefWindowProc(hWnd, message, wParam, 1Param)); 
I 
I 
return (a); 

1 
In response to WMJICTIVATE, this funcnon acquires a IDirect3DRMWinDevice that's 
needed for using Direct3D retained mode. 

In response to WKEYDDWN, h i s  funcnon switches to one of the six cameras that I've 
set up to view the simulation from different perspectives. Camera 1 is a view from 
the cockpit of hovercraft 1, camera 2 is a view from outside and just behind hover- 
craft 1, and camera 3 is a view from directly above looking down on hovercraft 1. 
Cameras 4, 5, and 6 are similar to cameras 1, 2, and 3 except that they are relative to 
hovercraft 2. 

The response to wKPAINT handles painting the scene to the main window. Finally, the 
response to WMJESTROY cleans up all the Direct3D stuff and quits the application. 

Before showing you the Direct3D code that I used, I need to show you yet another 
version of my NullEvent function: 

void NullEvent(void) 
{ 

Vector vz, vx; 
char buf[zs6]; 
char s[256]; 
/ I  figure out which flight control keys are down 
ZeroThrusters(1); 

if (IsKeyDown(VK-UP)) 
IncThrust(1); 

if (IsKeyOown(VK-DOWN)) 
DecThrust(1); 

if (IsKeyDown(VK-RIGHT)) 
{ 

ZeroThrusters(1); 
PortThruster(1); 

> 

ZeroThrusters(2); 

{I," - 
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if (IsKeyDown(0x57)) I /  W key 
Indhrust(2); 

if (lsKeyDown(0xSA)) / /  Z key 
DecThrust(2); 

if (IsKeyDown(0x53)) / /  5 key 

ZeroThrusters(2); 
PortThruster(2); 

} 

if (IsKeyDown(Ox41)) I /  A key 

NewTirne = timeGetTime0; 
dt = (float) (NewTime - DldTime)/loOO; 
OldTime = NewTime; 

if (dt > 0.016) dt = 0.016; 
if (dt < 0.00lf) dt = 0.OOlf; 

StepSimulation(dt); 

if(FrameCounter ,= RENDER-FRMELCOUNT) 

vz = GetBodyZAxisVector(); / /  pointing up in 
/ /  our coordinate system 

vx = GetBodyXAxisVector(1); / /  pointing forward in 
/ /  our coordinate system 

vz = GetBodyZAxisVector(); / /  pointing up in 
/ /  our coordinate system 

vx = GetBodyXAxisVector(2); / /  pointing forward in 
/ /  our coordinate system 

sprintf( buf, "Craft 1 (blue): T- %.Of ; ", 
Havercraftl.ThrustForce); 

strcpy(s, buf); 
sprintf( buf, "S= %.Of ", 
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Hovercraftl.fSpeed/l.688); /I divide by 1.688 
I1 to convert ftls to knots 

strcat(s, buf); 

sorintf( buf. . . 
" Craft 2 (red): T= %.of ; ", 
Hovercraft2.ThrustForce); 

strcat(s, buf); 
spr int f  ( buf, 

" S =  %.Of ", 
Hovercraftz.fSpeedll.663); 
I1 divide by 1.688 to convert ftls knots 

strcat(s, buf); 

SetWindowText(hTheMainWindow, s ) ;  
} else 

FIameCounteIcc; 
} 

The code that you have not seen yet appears just aiter the call to Stepsimulation. There 
are several things going on here. 

First, I put in a frame counter check such that the rendering code is not executed as 
often as the physics code. This technique allows you to advance the physics simulation 
at a smaller tlme step without the overhead of updating the display at each time step. 
For this simulation I have RENDER-FRME-COUNT set to 300 as follows: 

This means that the physics simulation will take 300 time'steps for every screen up- 
date. 300 works here, but it's not a practical number for production simulations. This 
simulation has only two bodies in it and, so far, no collision detection, so the physics 
calculations are fairl?. minimal. You'li have to tune this value to get the desired frame 
rate or physics-update-to-screen-update ratio for your specific simulations. 

Next, the camera positions have to be updated to reflect to new location of each hov- 
ercraft. That's pretty easy to do, but you have to take note that the coordinate system 
used by Direct3D is not the same as the one used in the simulation. DirecDD uses a 
left-handed coordinate system with the x-axis pointing to the right, the y-axis pointing 
upward, and the z-axis pointing into the screen. Thus, Direct3D's x-axis is our negative 
y-axis, ics y-axis is our z-axis, and its z-axis is our x-axis. 

In addition to setting the proper location for each camera, you also have to make sure 
its orientation is correct. To do that, Direct3D requires a couple of vectors, one defining 
the frame's new z-axis and the other defining its new y-axis. To make things easier, 
I've prepared a couple of iunctions to get the correct x- and z-axis vectors for each 
hovercraft so that they can be used for Direct3D's z- and y-axis vectors, respectively, 
when setting the camera orientation to align with the orientation of each hovercraft. 
You'll want to do this, for example, when looking out of camera 1, which is a cockpit 
view from hovercrait 1; as the hovercraft rotates, you'll want the scene that you are 
viewing to reflect that rotation as if you were sitting in the hovercraft. 
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Vector GetBodyZAxisVector(void) 
I 

Vector V; 

return v; 
) 

Vector GetBodyXAxisVector(int craft) 
{ 

Vector v; 

if(craft == 1) 
return VRotate2D(Hovercraftl.fOrientation, v); 

else 
return VRotate2D(Havercraft2.f0rientation, v); 

) 

Getting back to the NullEvent function, after the cameras are the scene is 
actually rendered to the main wndow by calling the Render funcrion. Once that's done, 
the window caption is changed to show a few staristics for each hovercraft, name$: each 
hovercraft's thrust setting in pounds and its speed in knots. 

The rest of the code required for this simularion is related to rendering using Direct3D 
and has nothing directly to do with ~hysics, so I have not included that code here. 
However, you can obtain the full source code for this example from 0'Reill:-'s web site 
at www.oreilly.com. 
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CHAPTER 13 

Implementing Collision 
Response 

In this chapter I'll show you how to add a little excitement to the hovercraft example 
discussed in Chapter 12. Specifically, I'll show how to add collision response so 
that the hovercraft can crash into each other and bounce off like a couple of bumper 
cars. This is an important element for man)- types of games, so it's important that 
you understand the code that I'll present hers. Now would be a good time to go back 
and review Chapter 5 to refresh your memory on the fundamentals of rigid body 
collision response, since 1'11 use the principlej and formulas discussed there to develop 
the collision response algorithms for the hovsrcraft simulation. 

To start simply, I'll first show you how to implement collision response as if the hov- 
ercraft were a couple of particles--or a cou?le of spheres, to be more accurate. This 
approach uses only linear impulse and does not include angular effects, so the results 
will be somewhat unrealistic for these hovercraft. However, this approach is applicable 
to other types of problems that you might be interested in, such as billiard ball collisions. 

After we get the linear impulse approach imp!emented, I'll go back and show you what 
you need to do to capture angular effects. This will make the simulation much more 
realistic. When the hovercraft crash into each other, not only will they bounce off of 
each other, but they will also spin, depending on the nature of the collision. 

To get this stuff to work, I'll have to add a couple of new functions and make some 
significant changes to the Stepsimulation fumrion discussed in the preceding chapter. 
There's not a whole lot of new code, but it is a little more complicated, so I'll go through 
each new piece of code step by step to explain what's going on. 

I also want to emphasize that the objective oi this chapter is to show you how to im- 
plement basic collision response, which is a disrinct subject, separate from collision 
detection. While collision detection is a neceisary part of any collision response algo- 
rithm, collision detection is more of a computational geomeuy problem than a physics 
problem. Here, I will focus on physics--collision respons+and will implement only 
the bare necessities in way of collision detecdon in order to get the simulation to work. 
If you're interested in more in-depth discussion on collision detection, I'll refer you to 



the computational geomeuy technical literature, where there is a wealth of information 
I 

to be found. 
-./3 

Linear Collision Response 
In this section I'll show you how to implement simple collision response assuming that 
the two hovercraft are particles (orspheres). I'm going to implement only bare minimum 
collision detection in this simulation; however, regardless of the level of sophistication of 
your collision detection routines, there are very specific pieces of information th?t must 
be collected from your collision detection routine($ for your physics-based collision 
response routines to work. 

To revise the hovercraft evample of the previous chapter to include simple collision re- 
sponse, you'll have to modify the stepsimulation function and add a few more functions: 
CheckForCollision and ApplyImpulse. Let's take a good look at these functions now 

Before showing you CheckForCollision, I want to explain what your collision detection 
function must do. First, it must let you know whether or nor a collision is occurring 
between the hovercraft. Second, i[ must let you know whether the hovercraft are pene- 
tratingeach other. Third, if the hovercraft are colliding, it must tell you what the collision 
normal vector is and what the relarive velocity is between the colliding hovercraft. 

To determine whether or nor there is a collision, you need to consider two factors: 

Whether or not the objects are close enough, within numerical tolerances, to be 
considered in colliding contact 

What the relative normal velocity is between the objects 

If the objects aren't close to each other, they obviously have not collided. If they are 
within your tolerance for contact, then rhey may he colliding, and if they are touching 
and overlapping such that they are moving inside each other, they are penetrating, as 
illustrated in Figure U-1. If your collision detection routine finds that the two objects 

- 
Figure U-1. Collision Nomenclature 

No confact Contact Penetrating 
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are indeed close enough to be in colliding contact, then you have to do another check 
on the relarive normal velocity to see whether they are moving away from each other or 
toward each other. A collision occurs when the objects are in contact and the contact 
points are moving toward each other. 

Peneuation is important because if your objects overlap during the simulation, the re- 
sults won't look realistic-you'll have one hovercraft moving inside the other as they did 
in the preceding chapter. What you have to do is detect this penetration condition and 
then backup yoursimulation, reduce the timestep, and try again.You kee; doing thisun- 
ti1 they are no longer penetrating or they are within tolerance to be considered colliding. 

You need to determine thenormalvelocity vector of thecollision to calculate thecollision 
impulse that will be used to simulate their response to the collision. For simple cases, 
determining this normal vector is fairly straightforward. In the case of particies or 
spheres the collision n o r m a h  simply along the line that connects the centers of gravity 
of each colliding object; this is central impact, as discussed in Chapter 5. This is the 
situation you have here, since you are considering each hovercraft as a particle or sphere. 

Now take a look at the function I've prepared for this simulation to check for collisions: 

int CheckForCollision (pRigidBody2D bodyl, pRigidBody2D body2) 

Vector d; 
float r; 
int retval = 0; 
float s; 
Vector vl, "2; 
float Vrn;  

r = bodyl->fLengthl2 + body2->fLength/2; 
d = bodyl-,vPosition - body2->vPosition; 
s = d.Magnitude() - I; 

. d.Norrnalize(); 
vCollisionNorma1 = d; 

vl = bodyl-,vVelocity; 
v2 = body2->vVelocity; 
~RelativeVelocity = vl - v2; 

Vrn =  relativev velocity * vCollisionNorma1; 
if((fabs(s) <= ctol) && ( V m  < 0.0)) 
I 

retval = 1; / /  collision 
) else if(s < -ctol) 
I 

retval = -1; / /  interpenetrating 
} else 

retval = 0; / I  no collision 
return retval; 

) 

This function uses a simple bounding circle check to determine whether or not the 
hovercraft arecolliding. The first thing it does is calculate the distance, r, that represents 
the absolute minimum separation between these hovercraft when they are in contact. 
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I'm assuming that the bounding circle for each hovercraft has a diameter equal to the 
craft's length. 

Next, the distance separating the hovercraft at the time this fun$on is called is decer- 
mined and stored in thevariable d.  Since I'm assuming that these hovercraft areparticles, 
determining d is simply a matter of calculating the distance between the coordinates of 
the center of gravity of each craft. Using vectors, this is simply the position vector of 
one craft minus the position vector of the other. 

Once the function has d and r ,  it needs to determine the actual amount of space, s, 
separating the hovercrafts' hounding circles. After this separation is determined, the 
function normalizes the vector d.  Since the vector d is along the line that separates the 
centers of gravity of the hovercraft, normalizing it yields the collision normal vector that 
we need for our collision response calculations. The collision normal vector is saved in 
the global variable vCollisionNorma1. 

After calculating the collision normal, this function goes on to determine the relative 
velocity between the hovercraft. In vector form, this is simply the difference between 
the velocity vectors of each craft. Note that the velocity vectors that are used here must 
be in global coordinates, not body-fixed (local) coordinates. Since what's really needed 
to determine whether a collision is made is the relative normal velocity, the function 
proceeds to take the vector dot producc of the relative velocity and the collision normal 
vectors, saving the result in the variable vrn. 

At this point, all of the calculations are complete, and the only thing left to do is make 
the appropriate checks to determine whether there is a collision, a penetration, or no 
collision at all. 

The first check is to see whether the hovercraft are colliding. This is determined by 
comparing the absolutevalue of the separation between the hovercraft, s, with a distance 
tolerance, ctol. If the absolute value of s is less than ctol, a collision might be occurring. 
The second requirement is that the relative normal velocity he negative, which implies 
that the points of impact on the hovercraft are moving toward each other. If there is a 
collision, ;he function returns a 1 to indicate that collision response is necessary 

If the hovercraft are found not to be colliding, then a second check is to see 
whether they have moved so close together that they are penetrating each other. In this 
case, if s is less than -ctol, the hovercraft are penetrating and the function returns a -1. 
If the hovercraft are not colliding and not penetrating, then the function simply returns 
a o, indicating that no further action is required. 

Take a look now at the other new function, ApplyImpulse: 

void ApplyImpulse(pRigidBody2D bodyl, pRigidBody2D body2) 
( 

f l o a t  j; 



This is a simple but crucial function for collision response. What it does-is calculate 
the linear collision impulse as a function of the colliding hovercrafts' relative normal 
velocity, masses, and coefficient of restitution, using the formula that I showed you in 
Chapter 5. Further, it applies this impulse to each hovercraft, effectively changing their 
velocities in response to the collision. Note that the impulse is applied to one hovercraft, 
and then the negative impulse is applied to the other. 

With those two new functions complete, it's now time to revise s t e p s i r n u l a t i o n  to handle 
collision detection and response as the simulation steps through time. Here's what the 
new StepS i rnu la t ion  function looks like: 

\ ~ .  

v o i d  StepSimulat ion( f1oat  d t )  
i 

f l o a t  dt ime = dt; 
boo l  t r yAga in  = t rue ;  
i n t  checks ;  
RigidBody2D c ra f t l copy ,  craft2Copy; 
bool  didpen = fa l se ;  
i n t  count = 0; 

whi le( t ryAgain && dt ime , t o l )  
i 

tryAga in  = f a l s e ;  
memcpy(&craftlCopy, &Hovercraf t l ,  s i z e o f  (RigidBody2D)); 
memcpy(&craft2Copy, &Hovercraft2, sizeof(RigidBody2D)); 

UpdateBody(&craftlCopy, dtime); 
UpdateBody(&craft2Copy, dtime); 

C o l l i s i o n B o d y l  = 0; 
Col l is ionBody2 = 0; 
check = CheckForCollision(&craftlCopy, &craft lCopy); 

i f (check == PENETRATING) 
( 

dtime = dtimel2; 
t r yAga in  = t rue;  
didpen = t rue;  

} e l s e  i f ( check  == COLLISION) 
< 

Obviously, this version is more complicated than the original version. There's one main 
reason for this: penetration could occur because the hovercraft can move far enough 

p. 
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within a single time step to become overlapped. Visually, this situation is unappealing 
and looks unrealistic, so you need co t ~ y  to prevent it. 

The first thing this function does is go into a while loop: .: ;,8 

while(tryAgain && dtime > tol) 
I 

This loop is used to back up the simulation if penetration has occurred on the init- 
ial time step. What happens is this: the function first tries to update the hovercraft and 
then checks to see whether there is a collision. If there is a collision, then it gets handled 
by applying the impulse. If there is penetration, however, then you know the time step 
was too big, and you have to try again. When this occurs, tryAgain is set to true, the 
time step is cut in half, and another attempt is made. The function stays in this loop 
as long as there is penetration or until the time scep has been reduced to a size small 
enough to force an exit from the loop. The purpose of this looping is to find the largest 
step size, less than or equal co dt, that can be taken and still avoid penetration. You want 
either a collision or no collision. 

Looking inside this while loop reveals what's going on. First, tryAgain is set to false, 
optimistically assuming that there vill be no penetration, and copies are made of the 
states of the hovercraft reflecting the last successful call to Stepsimulation. 

Next, the usual call co UpdateBody is made for each copy of the hovercraft. Then a call to 
the collision detection function, CheckForCollision, is made to see whether Hovercraft1 
is colliding with or penetratingHovercraft2. If there is penetration, then tryAgain is set to 
true, dtime is cut in half, didpen is set to true, and the function takes another lap through 
the while loop. didpen is a flag that lets us know that a penetration condition did occur. 

If there was a collision, h e  function handles it byapplying the appropriate impulse: 

After getting through the while loop, the updated hovercraft states are saved, and 
StepSimulation is complete. 

The last bit of code you need to add includes a few new global variables and defines: 

#define LINEARDRAGCOEFFICIENT 0.2Sf 
#define COEFFICIENTOFRESTITUTION 0.5f 
#define COLLISIONTOLERANCE 2.0f 

Vector vCollisionNorma1; / /  the collision normal 
Vector ~Relativevelocity; / /  the world space relative velocity of the 

/ I  two bodies at the ~ o i n t  of collision 
float fCr = COEFFICIENTOFRESTITUTION; / /  ihe coefficient of 
restitution 
float canst ctol = COLLISIONTOLERANCE; / /  the collision 
(distance) tolerance 
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The only one I haven't mentioned so far, although you've seen it in ApplyImpulse, 
is fcr, the coefficient of restitution. Here, I have it set to 0.5, which means that the 
collisions are halfway between perfectly elastic and perfectly inelastic. (Refer back to 
my earlier discussions on coefficients of restitution in Chapter 5 if you've forgotten 
these terms.) This is one of chose parameters that you'll have to tune to get the desired 
behavior. 

While I'm on the subject of tuning, 1 should mention that you'll also have to play with 
the linear drag coefficient that is used to calculate the drag force on the hovercraft. 
While this coefficient is used to simulate fluid dynamic drag, it also plays an important 
role in terms of numerical stability You need some damping in your simulation so that 
your integrator does not blow up, that is, diverge away from the theoretical solution to 
the governing equations of motion. When that happens, your simulator can become 
quite unrealistic and unp;edictable. In Chapter 17, when I show you how to simulate 
cloth, the importance of damping will become quite clear. 

That's pretty much it as far as implementing basic collision response. If you run this 
exam~le. vou'll be able to drive the hovercraft into each other and bounce off accordinele 

A ., - .  
You can play around with the mass of each hovercraft and the coefficient of restitution to 
see how the craft behave when one is more massive than the other or when the collision 
is somewhere in between perfectly elastic and perfectly inelastic 

You might notice that the collision response in this example sometimes looks a little 
strange Keep in mind that this is because this collision response algorithm, so far. 
assumes thar the hovercraft are round when in fact they arerectangular. This approach 
will work just fine for round objects such as billiard balls, but to get the level of realism 
required for nonround rigid bodies, you need to include angular effects. I'll show you 
that in the next section. 

Angular Effects 
Including angular effects will yield more realistic collision response for these rigid 
bodies, the hovercraft. To get this to work, you'll have to make several changes to 
ApplyImpulse and CheckForCollision; Stepsimulation will remain unchanged. The more 
extensive changes are in CheckForCollision, so I'll discuss that one first. 

The new version of CheckForCollision will do more than a simple bounding circle check. 
Here, each hovercraft will be represented by a polygon with four edges and four vertices. 
and the types of contact that will becheckedfor arevertex-vertexand verteu-edge contacr 
(see Figure U-21.' 

In addition to the tasks discussed in the preceding section, this new version of Check- 
ForCollision must also determine the exact point of contact between the hovercraft. 
This is a very important distinction between this new version and the last. You need to 

Note thar rhis function does not handle rnulriple contact points 



- 
Figure U-2. Types of Collision 

Verfex-Verfex Contacl 

Verfex-Edge Contact 

Penetrating 

know the point of contact because to affect the angular velocity, you need to apply the 
impulse at the point of contact. In the preceding section the normal to the contact point 
always passed through the center of gravity of the hovercraft because we assumed that 
they were spheres, and that's not the case here. 

This now brings up the challenge of finding the collision normal. There are two cases 
to consider here. In edge-vertex collisions the normal is always perpendicular to the 
edge that is involved in the collision. In vertex-vertex collisions, however, the normal 
is ambiguous, so what I've done is resort to taking the normal parallel to the line 
connecting the centers of gravity of the hovercraft. 

All of these considerations make CheckForCollisions a little more involved than it was 
in the previous section. The following code listing shows what I mean: 

in1 CheckForColl ision(pRigidBody2D bodyl, pRigidBody20 body2) 

Vector d; 
float r; 
int retval = 0; 
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float s: 
Vector viistl[4], vList2[4]; 
float wd, lg; 
int i '. 

9 1 ,  

bool haveNodeNode = false; 
bool interpenetrating = false; 
bool haveNodeEdae = false; " 
Vector vl, v2, u; 
Vector edge, p, proj; 
float dist, dot; 
float V m ;  

/I First check to see if the boundic; circles are colliding 
r = bodyl->fLength/2 + body>->fLengthl>; 
d = bodyl->vPosition - body2->vPosition; 
s = d.Magnitude() - r; 

if(s <= ctol) ,. 
{ I /  We have a possible collision, check further 

I /  build vertex lists for each hovercraft 
wd = bodyl-,fWidth; 
lg = bodyl-,fLength; 
vListl[o].y = wdl2; vListl[o].x = lg12; 
vListl[l].y = -wd/2; vListl[l] .X = lg12; 
vListl[2].y = -"dl>; vListl[2].x = -1g12; 
vListl[3].y = wdl2; vListl[3] .x = -1g12; 

/ I  Check for vertex-vertex collision 
for(i=o; i<4  && ! haveNodeNode; i++) 
't 

for(j-0; jc4 && !haveNodeNode; j++) 
't 



vi = VRotatezD(body1->fOrientation, vl); 
vz = VRotatezD(body2->fOrientation, v2); 

if( ArePointsEqual(vListl[i], 
vList2[j]) && 

(Vrn < 0.0) ) 
haveNodeNode = true; 

11 Check for vertex-edge collision 
if (!haveNodeNode) 
I 

I 
if(j=-3) 

edge = vListz[o] - vList21jl; 
else 

edge = vList2[j+l] - vListz[j]; 
u = edge; 
u.Normalize(); 

d = p-u; 
dist = d.Magnitude(); 
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- \I 
vRelativeVelocity = (vl - v2); ba:~';hj I I ~ ~ L J  > 
Vrn = vRelativeVelocity * vCollisionNorma1; 

,,- - ch-k &,I* ? 0 6~ rdGr 6q q r n & ~  9 P 
if( (proj.Magnitude() , O.Of) && ., 

(proj.Magnitude() <= edge.Magnitude()) && Pr,jcti . 1'3?b I v c i r  ;O 
(dist <= =to]) && -~- ; !;,:, a ), (Vrn < 0.0) ) ? 

haveNodeEdge = trl'e; 
} L '  US ! 

} 
%,!A !5 ;L 

1 

/ /  Check for penetration 
if(! haveNodeN* && ! haveNodeEdge) 
4 

if(j==3) 
edge = vList2[0] - vList2[j]; 

else 
edge = vList2[jrl] - vList2[j]; 

p = vListl[i] - vList2[j]; 
dot = p * edge; 
if(dot < 0) 

interpenetrating = true; 
} 

} 

1 
retval = -1; 

} else if (haveNodeNode 1 1  haveNodeEdge) 
I 

retval = 1; 
} else 

retval = 0; 

} else 
( 

retval = 0; 
} 

return retval; 

The first thing that CheckForCollision does is perform a quick bounding circle check to 
see whether there is a possible collision. If no collision is detected, the function simply 
exists returning 0. This is the same bounding circle check that was performed in the 



earlier version: 

r = bodyl->fLengthl2 + body2->fLength/2; 
d = bodyl->vPosition - body2->vPosition; 
s = d.Magnitude() - r; 
if(s <= ctol) 
I 

} else 
retval = 0; 

) 

If the bounding circle check indicates the possibility of a collision, then CheckForColli- 
sion proceeds by setting up a couple of polygons, represented by vertex lists, for each 
hovercraft: 

wd = bodyl->fWidth; 
lg = bodyl->flength; 
vListl[o] .y = wdl2; vListl[o] .x = lgl2; 
vListl[l] .y = -wdl2; vListl[l].x = lgl?; 
vListl[2].y = -wd12; vListl[z].x = -1gl2; 
vList1[3] .y = wdl?; vListl[3] .x = -1gl2; 

I 
VRotate2D(body2->fOrientation, vList2[i]); 
vListz[i] = vList2[i) + body?-)vPosition; 

} 

The vertex lists are initialized in unrotated body-fixed (local) coordinates based on the 
length and width of the hovercraft. Thevertices are then rotated to reflect the orientation 
of each hovercraft. After that, the position of each hovercraft is added to each vertex to 
convert from local coordinates to global coordinates. 

Checking first lor vertex-vertex collisions, the function iterates through each vertex in 
one list, comparing it with each vercex in the other list to see whether the points are 
coincident: 

// Check far vertex-vertex collision 
for(i-0; i<4 && !haveNodeNode; i++) 
{ 

for(j.0; jc4 && !haveNodeNode; j++) 
{ 
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>., 
vl = VRotate2D(bodyl->fOrientation, vl); 
"2 = VRotate2D(body2->fOrientation, v2); 

(Vrrl < 0.0) ) 
haveNodeNode = true; 

I 
I 

This comparison makes a call to another new function, ArePointsEqual: 

if( ArePointsEqual(vListl[i], 
vList2[jl) && 

[Vrn < 0.0) ) 
haveNodeNade = true; 

ArePointsEqual simply checks to see whether the points are within a specified distance 
from each other as shown here: 

boo1 ArePointsEqual(Vector pl, Vector p2) 
I 

11 Points are equal if each component is within ctol of each other 
if( (fabs(p1.x - p2.x) <= 0.1) && 

(fabs(p1.y - p2.y) <= 0.1) && 
(fabs(p1.z - p2.z) <= 0.1) ) 
Ieturn true; 

else 
return false; 

1 

Within the nested for loops of the vertex-vertex check, a number of important calcula- 
tions are performed to determine the collision normal vector and relative velocity that 
are required for collision response. 

First, the collision point is calculated, which is simply the coordinates of a vertex that 
is involved in the collision. Note that this point will be in global coordinates, so it will 



have to be converted to local coordinates for each hovercraft to be useful for collision 
response. Here is how that's done: 

~CollisionPoint = vListl[i]; '.,3 
bodyl-,vCollisionPoint = vCollisionPoint - 

bodyl->vPosition; 

The second calculation is aimed at determining the collision normal vector, which for 
vertex-vertex collisions I've assumed is along the line connecting the centers of gravity 
of each hovercraft. The calculation is the same as that shown in the earlier version of 
CheckForCollision: 

The third and final calculation is aimed at determining the relative velocity between 
the points of impact. This is an important distinction from the earlier version, since the 
velocities of the points of impact on each body are functions of the linear and angular 
velocities of the hovercraft: 

vl = VRotate2D(bodyl->fOrientation, vl); 
v2 = VRotate2D(body2-,fOrientation, v2); 

lere, v l  and vz represent thevelocities of the points ofcolli sion relath re to each hovercraft 
in Iocal coordinates, which are then converted to global coordinates. Once the relative 
velocity is obtained, ~RelativeVelocity, the relative normal velocity, V m ,  is obtained by 
taking the dot product of the relative velocity with the collision normal vector. 

If there is no vertex-vertex collision, CheckForCollision proceeds to check for vertex-edge 
collisions: 

I1 Check for vertex-edge collision 
if(! haveNodeNode) 

1 
if(j==3) 

edge = vList2[0] - vListl[j]; 
else 
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edge = vList2[j+l] - vListl[j]; 
u = edge; 
u.Normalire(); 

d = p^u; 
dist = d.Magnitude(); 

if( (proj.Magnitude() , o.of) && 
(proj.Magnitude0 <= edge.Magnitude()) 55 
(dist < s  ctol) && 
( V m  < 0.0) ) 
haveNodeEdge = true; 

) 

Here, the nested for loops check eachvertexin one list to see whether it is in contact with 
each edge built from the vertices in the other list. After the edge under consideration is 
built, a copy of it is saved and normalized to represent a unit vector pointing along the 
edge: 

if ( j = = 3 )  
edge = vList2[0] - vList2[j]; 

else 
edge = vList2[j+1] - vListl[j]; 

u = edge; 
u.Normalize(); 

Variable u represents that unit vector, and it will be used in subsequent calculations. The 
next set of calculations determines the location of the projection of the vertex under 



consideration onto the edge under consideration, as well as the minimum distance from 
the vertex to the edge: 

p = vListl[i] - vList2[j]; ",,9 
proj = (p * U) * U; 

d = pAu; 
dist = d.Magnitude(); 

Variable p is a vector from the first vertex on the edge to the vertex under consideration, 
and proj is the distance from the first edge vertex, along the edge, to the point upon 
which the vertex projects. ::st is the minimum distance from the vertex to the edge. 
Figure U-3 illusnates this geometry 

Edge vertex 2 

:age 

Figure U-3. Vertex-Edge Check 

If there is a collision, the global location of the point of impact is equal to the vertex 
under consideration, which must be converted to local coordinates for each hovercraft 
as shown here: 

Since in this type of collision, the collision normal vector is perpendicular to the edge, 
you can determine it by taking the result of the cross product of u and p and crossing it 
with u as follows: 

These calculations give you a unit length vector in the plane of vectors u and p and 
perpendicular to the edge. 

Next, therelativevelocity between the points of impactoneachhovercraftis determined, 
just as in the vertex-vertex collision check: 
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vRelativeVelocity = (vl - v2); 
Vrn = vRelativeVelocity * vCollisionNorma1; 

In determining whether or not the vertex under consideration is in fact colliding with 
an edge, you have to check to see whether the distance from the vertex is within your 
collision tolerance, and you also have to make sure the vertex actually projects onto the 
edge (that is, it does not projccr beyond the endpoints of the edge). Additionally, you 
need to make sure the relatjve normal velocity indicates chat the points of contact are 
moving toward each other.  ere's how this check looks: 

if( (proj.Magnitude() , 0.0f) && 
(proj.Magnitude() <= edge.Magnitude()) && 
(dist <= ctol) && 
(Vrn < 0.0) ) 
haveNodeEdge = true; 

After CheckForCollision checks for vertex-vertex and vertex-edge collisions, it  goes on 
to check for penetration: 

if(j==3) 
edge = vList2[ol - vListz[jl; 

else 
edge = vList2[j+l] - vList2[j]; 

p = vListl[i] - vListz[jl; 
dot = p * edge; 
if(dot < 0) 
i 

interpenetrating = true; 

This check is a standard point-in-polygon check using the vector dot product to deter- 
mine whether any verrex of one polygon lies within the bounds of the other polygon. 
After this check, the function simply returns the appropriate result. Here again, 0 indi- 
cates no collision or penetration, I indicates a collision, and -I indicates penetration. 

With CheckForCollision out of the way, turn your attention to ApplyImpulse, which also 
has to be revised to include angular effects. Specifically, you need to use the impulse 
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formula thar includes angular as well as linear effects (see Chapter 51, and you also have 
to apply the impulse to the hovercrafts' angular velocities in addition to their linear 
velocities. Here's how the new ApplyImpulse function looks: -.,8 

void ApplyImpulne(pRigidBody2D bodyl, pRigidBody2D body2) 
1 

f l o a t  j; 

Remember, the impulse is applied to one hovercraft while its negative is applied to the 
other. 

That does it for this new version of the hovercraft simulation. If you run the program 
now you'll see thar you can crash the hovercraft into each other and they will bounce 
and rotate accordingly This makes for a much more realistic simulation than the simple 
linear collision response approach of the preceding section. Here again, you can play 
with the mass of each hovercraft and the coefficient of restitution to see how these 
parameters affect the collision response between the hovercraft. 

222 1 Chapter 13: Implementing (ollision Response 



CHAPTER 14 

Rigid Body Rotation 

Before showing you how to implement a 3D simulator, as I'll do in the next chapter, 
I need to discuss the issue of expressing orientation, or rotation, in three dimensions. In 
two dimensions it's quite easy to express the orientation of a rigid body; you need only 
a single scalar to represent the body's rotation about a single axis. In three dimensions, 
however, there are three primary coordinate axes, and a rigid body may rotate about 
each of them. Moreover, a rigid body in three dimensions may rotate about any arbitrary 
axis, not necessarily one of the coordinate axes. 

In two dimensions we say that a rigid body has only one rotational degree of ireedom, 
whereas in three dimensions we say that a rigid body has three rotational degrees of 
freedom. This might lead you to infer that in three dimensions you need to have three 
scalar quanrities to represent a body's rotation, Indeed, this is a minimum requirement, 
and you've already seen a set of angles that represent the orientation of a rigid body in 
3D-the three Euler angles that I talked about in Chapter 7: roll, pitch, and yaw 

These three angles-roll, pitch, and yaw-are very intuitive and easy to visualize. For 
example, in an airplane the nose pitches up or down, the plane rolls (or banks) left or 
right, and the yaw (or heading) changes to the left or right. Unfortunately, there's a 
problem with using these three Euler angles in rigid body simulations. The problem 
is a numerical one that occurs when the pitch angle reaches plus or minus 90 degrees 
(rrf2). When this happens, roll and yaw become ambiguous. Worse yet, the angular 
equations of motion written in terms of Euler angles contain terms involving the cosine 
of the pitch angle in the denominator, which means that when the pitch angle is plus 
or minus 90 degrees, the equations become singular (there is division by zero). If this 
happens in your simulation, the results would be unpredictahIe, to say the least. Given 
this problem with Euler angles, you must use some other means of keeping track of 
orientation in your simulation. 1'11 discuss two such means in this chapter: rotation 
matrices and quaternions. 

Virtually every computer graphics hook that I've read contains a chapter or secrion 
on using rotation matrices. Far fewer discuss quaternions, but if you're familiar with 
quaternions, it's probably in the same context as rotation matrices, that is, how they 



are used to rotate 3D points, objects, scenes, points of view, and so on. In a simulation, 
however, you need to get a little more out of rotation maaices or quaternions and will 
use them in a different context that what you might be used to.$pecifically, you need 
to keep back of a body's orientation in space and, moreover, the change in orientation 
over time. So it's in this light that 1'11 discuss rotarion matrices and quaternions in 
the remainder of this chapter. I'll try to be as concise as possible so as not to cloud 
the water with the proofs and derivations that you can find in the texts I refer to in the 
bibliography 

Rotation Matrices 
A rotation matrix is a 3 x 3 marrix that, when multiplied by a point, or vector, results 
in the rotation of that point about some axis, yielding a new set of coordinates. You can 
rotate points about axes in one coordinate system, or you can use rotarion matrices to 
convert points from one coordinate system to another, where one is rotated relative to 
the other. 

Rotating a vector by a rotation matrix is typically written as follows: If v is a vector and 
R is a rotation matrix, then v' is v rotated by R according to thefollowing formula: 

Multiple rotation matrices reflccting multiple sequential rotations can be combined 
into a single rotation matrix using usual matrix multiplication. If the rotation ma- 
aices are expressed in terms of fixed, global coordinates, then they are combined as 
follows: 

Here, R, is the combined rotanon matrix reflecting a rotation First by R1 and then by 
R2. If the rotation matrices are expressed in terms of rotating, body-fixed coordinates, 
then they are combined in the rcverse order as follows: 

I won't go into the proof of this relation, but the reason it's different, depending on 
how you have defined your rocation matrices, is that rotation matrices that are defined 
in fixed coordinates are unaffected by the rotation itself, since the coordinate axes stay 
fixed. On the other hand, if the rotation matrices are defined relative to a coordinate 
system that is rotating because of sequential application of rotation matrices, then all 
rotation matrices after the first will be affected, since they werefirst defined relarive to 
the original state of the coordinate system, before the first rotation matrix was applied. 
This means that before the subsequent rotation matrices can be correctly applied, they 
must be corrected to reflect the new system as affected by the previous rotation. In other 
words, you have to rotate Rz by R1 to get a new Rz before applying it. All this happens 
to workout insuch a way that you reverse the order of multiplication ofrotation matrices 
when they are defined in a rotating coordinate system. 
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I'm sure that you've seen how rotation matrices are put together to reflect rotanons 
about the three coordinate axes. However, I'll show you these matrices here just in case. 

Figure 14-1 shows a right-handed coordinate system that illustrates the directions of 
positive rotation about each coordinate axis. 

Figure 14-1. Right-Handed Coordinate System 

Let's consider rotation around the z-axis where the point shown in Figure 14-2 is rotated 
through an angle 0. 

I 
Figure 14-2. Rotation Around the z-nxis 

The coordinates of the point before the rotadon are (x, y, z), and after the rotation the 
coordinates are (x,, y,, 2,). The rotated coordinates are related to the original coordinates 
and the rotation angle by the following: 

Notice that since the point is rotating abouc the z-axis, its z-coordinate remains un- 
changed. To write this in vector matrix notation, v' = Rv, let v = [x y z] and lec R be 
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the matrix 

cos(8,) -sin(Q,) 

sin(&) cos(0,) 
0 0 

Here, v' will be the new, rotated vector, v' = [x, y, 

Rotation about the x- and y-axes is similar to rotation about the z-axis; however, in 
those cases the x- and y-coordinates remain constant during rotations about each axis. 
Looking at rotation about each axis separately will yield three rotation matrica similar 
to the one I just showed you for rotation about the z-axis. 

For rotation aboui the x-axis, the matrix is 

And for rotation about the y-axis, the matrix is 

These are the rotarion matrices that you typically see in computer graphics texts in the 
context of matrix transforms, such as translation, scaling, and rotation. You can com- 
bine all three of these matrices into a single rotarion matrix to represent combinations 
of rotations about each coordinate axis, using matrix multiplication as I mentioned 
earlier. 

In rigid body simulations you can use a rotation matrix to represent the orientation of 
a rigid body Another way to think of it is that the rotation matrix, when applied to the 
unrotated rigid body aligned wiih the fixed global coordinate system, will rotate the 
rigid body's coordinates so as to resemble the body's current orientation at any given 
time. This leads me to another important consideration when using rotation matrices 
to keep track of orientation in rigid body simulations: the fact that the rotation matrix 
will be a function of time. 

Once you set up your initial rotation matrix for the rigid body, you'll never directly 
calculate it again from orientaiion angles; instead, the forces and moments applied to 
the rigid body will change the body's angular velocity, likewise causing small changes 
in orientation at each time step throughout the simulation. Thus, you can see that you 
must have a means of relating the rotation matrix to angular velocity so that you can 
update the orientation accordingly The formula you need is as follows: 
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Here, is a skew symmetric matrix built from the angular velocity vector components 
as follows: 

Notwithstanding a rigorous proof of this relation, it's easy to see its beauty which is that 
you can differentiate the rotation matrix by simply matrix multiplying by the angular 
velocity (in the form of a). Ina simulation you'll know your initial rotation matrix, and 
you'll calculate the angular velocity at each time step; thus, you can easily progress, or 
integrate, the rotation matrix. 

You should be able to see liere that since you'll explicitly calculate the rotation matrix 
only once and will update with a matrix multiplication, you won't have to use compu- 
tationally expensive trigonometric functions during each time step. Further, you avoid 
the singularity problem that I mentioned in the introduction to this chapter. 

It should also beobvious that you gain these benefits at some price. First, you have to deal 
with nine parameters in the rotation matrix (each element in the 3 x 3 rotation matrix) 
to'represent three angular degrees of freedom. Second, to do that, you need to impose 
constraints on the rotation matrix; specifically, you need to enforce the constraint that 
the matrix be orthogonal with a determinant of 1 such that it satisfies the following 
(each column in the matrix represents a unit vector and they are all at right angles to 
each other)': 

Here, RTis the transpose of R, and I is the identity matrix. Owing to numerical errors 
such as round-off and truncation, you'll have to enforce this constraint very often in 
your simulation. Otherwise, your rotation matrix will do more than rotate your objects; 
it might scale or translate them too. 

Instead of dealing with nine parameters and trying to constrain six degrees of freedom so 
that only the three you want can be represented, you could take an alternative approach 
that lets you keep the advantages that rotation matrices offer, but at a cheaper price. 
That alternative is the subject of the next section: quaternions. 

Quaternions 
Quaternions are somewhat of a mathematical oddity. They were developed over 100 
years ago b-y William Hamilton through his work in complex (imaginary) math but 
have found very little practical use. A quaternion is a quantity, somewhat like a vector 

* Two vectors are orthogonal lf  thelr dot product is zero 
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but made up of four components. It is typically written in the form 

q = 40 + qxi + qyj + q,k -,,P 
Aquaternion is really a four-dimensional quantity in complexspace and, unfortunatel~ 
does not lend itself to visualization. Don't worry, though; our use of quaternions to 
represent orientation in three dimensions does allow us to attach a physical meaning 
to them, as you'll see in a moment. 

Of particular interest to us is what's known as a unit quaternion that satisfies the 
foll&ng: 

q; + q: + q; + 4: = 1 

This is analogous to a normalized, or unit, vector. 

Figure 14-3. Quaternion Rotation 

You can also write a quaternion in the formq = [qo, v], wherev is the vector, q,i f qyj + 
q,k, and qo is a scalar. In the context of rotation, v represents the direction in which the 
axis of rotation points. For a given rotation, 8 ,  about an arbitrary axis represented by 
the unit vector u, the representative quaternion can be written as follows: 

q = [cos(8/2), sin(8/2)u] 

This is illustrated in Figure 14-3 for an arbitrary rigid body rotating about an axis 
passing through its center of gravity Here, the unit vector u is the vector v normalized 
to unit length. 

You can readily see that quaternions, when used to represent rotation or orientation, 
require you to deal with only four parameters instead of nine, subject to the easily 
satisfied constraint that the quaternion be a unit quaternion. In my opinion this makes 
quaternions the preferred choice over rotation matrices to represent orientation in rigid 
body simulations. In fact, this is the approach I take in the next chapter. 

The use of quaternions to represent orientation is similar to how you would use rotation 
matrices. First, you set up a quaternion that represents the inirial orientadon of the 
rigid body at time zero. (This is the only time you'll calculate the quaternion explicitly) 
Then you update the orientation to reflect the new orientadon at a given instant in 
time, using the angular velocities that are calculated for that instant. The differential 
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equation relating an orientation quaternLon to angular velocity is very similar to that 
for rotation matrices and is as follows: 

dqjdt = ( l j2)wq ! 
,~ :. 

Here, the angular velocity is written in quaternions form as [O, w] and is expressed in 
fixed, global coordinates. If w is expressed in rotating, body-fixed coordinates, then you 
need to use this equation: 

As can be done with rotation matrices, you can use quaternion to rotate points, or 
vectors. If v is a vector, h e n  v' is the rotated wctor subjecr to the quaternion q: 

v' = qvq* 

Here, q' is the conjugate ofthe quaternion q,  defined as 

You can also use the above formula to convert vectors from one coordinatc system 
to another, where one is rotated relative to the other. You might have to do this, for 
example, in your simulations when you are converting forces defined in fixed, global 
coordinates to rotating, body-fixed coordinates so that you can apply the forces to the 
body Or you might have to convert a body's velocity defined in global coordinates to 
body coordinates so that you can use the velocity in force calculations. 

As withvectors and matrices, quaternions have their own rules for thevarious operations 
that you'll need, such as multiplication, addition, and subtraction. To make it easy on 
you, I've included sample code in Appendix C that implements all of the quaternion 
operations you'll need. 
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CHAPTER 15 

3D Rigid Body Simulator 

In this chapter I'll show you how ro make the leap from 2D to 3D by implementing a 
rigid body simulation of an airplane. Specifically, this is a simulation of the hypothetical 
airplane model thar I discussed extensively in Chapter 7. Recall rhat this airplane is of 
typical configuration with its large wings forward, its elevators aft, a single vertical tail, 
and plain flaps fitted on the wings. 

Here again, the source code for this example is available on O'Reilly's web sire, but I'll 
still include most of it in rhis chapter. As with the 2D simulator of Chapters 12 and U, 
I'll concentrate on the code that implements the physics part of the simulator, and I'll 
refer you to O'Reilly's web site for the rest of the code that implements rendering using 
Microsoft's Direct3D rechnology 

Even rhough this is a 3D simulation, its implementation is very similar to rhe 2D 
hovercraft simulation that I showed you earlier. When I srarted ralking about that 2D 
simulation, I mentioned that I was going ro use a 3D vector class to represent the vectors 
even though they were 2D, to make rhe transition to 3D easier. Well, as it turns out, 
since I've done that, there's very little obvious difference-with the exception of the 
model, of course-between the code in the 2D simulation and the code in the 3D one 
char we'll be discussing here. Thus, you'll be familiar with a lot of the code presenred 
herein after having already gone through Chapter 12. 

As in 2D, there are four main elements to this 3D simulation: the model, integrator, user 
input, and rendering. Remember, the model refers to your idealization of the thing-an 
airplane, in this case-thar you are rrying ro simulate, while the inregraror refers to the 
method by which you integrate the differential equations of motion. These two elements 
rake care of most of the phyics ofthe simulation. The user input and rendering elements 
refer to how you'll allow the user to interact with and view your simulation. Here again, 
I'll use keyboard input for control and, as before, I'll use Direct3D for rendering. 

In this simulation the world coordinate system has its x-axis pointing into the screen, 
its y-axis pointing to the left of your screen, and the z-axis pointing upward. Also, the 
local, or body-fixed, coordinare system has its x-axis pointing toward the front of the 



airplane, its y-axis pointing to the port side, and its z-axis pointing upward. Since this 
is a 3D simulation of an airplane, once you get it running, you'll be able to fly in any 
direction, looping, banking, diving, and, climbing, or performing any other aerobatic 
maneuver you desire. 

Model 
One of the most important aspects of this simulation is the flight model. I spent all 
of Chapter 7 discussing the physics behind this flight model, so I won't repeat the 
discussion here, except to refresh your memory on the pertinent source code. If you 
have not already read Chapter 7, then I suggest you go back now and take a look at it, 
at least the section entitled "Modeling." 

To implement the flight kodel, you first need to prepare a rigid body structure to 
encapsulate all of the data required to completely define the state of the rigid body at any 
instant during the simulation. I've defined a structure called RigidBody for this purpose: 

typedef struct _RigidBody { 

float fMass; / I  total mass 
Matrix3x3 mhertia; I1 mass moment of inertia 

I1 in body coordinates 

Matrix3x3 mInertiaInverse; I1 inverse of mass moment of inertia 
Vector "Position; I /  position in earth coordinates 
Vector vvelocity; / I  velocity in earth coordinates 
Vector vVelocityBody; / /  velocity in body cdordinates 
Vector ~AngularVelocity; / /  angular velocity in body coordinates 
Vector vEulerAngles; I /  Euler angles in body coordinates 
float fSpeed; / /  speed (magnitude of the velocity) 
Quaternion qorientation; / /  orientation in earth coordinates 
Vector vforces; / /  total force on body 
Vector vMoments; / /  total moment (torque) on body 

} RigidBody, *pRigidBody; 

You'll notice that it is very similar to the RigidBody2D structure that I used in the 2D 
hovercraft simulation. One significant difference, however, is that in the 2D case, 
orientation was a single float value, and now in 3D it's a quaternion of type Quaternion. 
I discussed the use of quaternions for tracking rigid body orientation in the preceding 
chapter, and Appendix C contains a complete definition of the Quaternion class. 

The next step in defining the flight model is to prepare an initialization function to 
initialize the airplane at the start of the simulation. For this purpose I've prepared a 
function called InitializeAirplane: 

RigidBody Airplane; / /  global variable representing the airplane 

void Init ial ireAirplane(void)  
{ 

float iRoll, iPitch, iYaw; 
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I /  (et initial oasition 

/ I  Set initial velocity 
Airp1ane.vVelocity.x = 60.Of; 
Airplane.vVe1ocity.y = O.Of; 
Airplane.vVel0city.z = 0.Of; 
Airplane.fSpeed = 60.Of; 

/ I  Set initial angular velocity 
Airplane.vAngularVel0city.x = 0.Of; 
Airplane.vAngularVel0city.y = O.0f; 
Airplane.vAngularVel0city.r = O.0f; 

// Set the initial thrust, forces, and moments 
Airp1ane.vForces.x = 500.Of; 
Airp1ane.vForces.y = O.Of; 
Airp1ane.vForces.z = 0.Of; 
ThruStFOIce = 500.0; 

/ /  Zero the veloritv in bod" soace coordinates 

/ I  Set these to false at first, 
//you can control later using the keyboard 
Stalling = false; 
Flaps = false; 

/ I  Set the initial orientation 
iRoll = 0.Of; 
iPitch = O.of; 

/ I  Now go ahead and calculate the plane's mass properties 
CalcAirplaneMassProperties(); 

} 

This function sets the initial location, speed, attitude, and thrust for the airplane and 
goes on to calculate its mass properties by making a call to CalcAirplaneMassProperties. 
You've already seen this function in Chapter 7, where I discussed it in detail. I won't 
show the whole thing again here, but I do want to point out a portion of the code that 
is distinctly different from what you do in a 2D simulation, and that's the calculat~on 
of the moment of inertia tensor: 

void CalcAirplaneMassProperties(void) 
{ 
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11 Now calculate the moments and products of inertia for the 
I1 combined elements. 
I1 (This inertia matrix (tensor) is in body coordinates) 

~ ~ 

1xy = 0; IXZ = 0; 1yz = 0; 
for (i = 0; i< 8; i++) 
I 

Ixx += Element[i].vLocalInertia.x + Element[i].fMass * 
(Element[il .vCGCoords.y*Element[i] .vCGCoods.y + 
Element[i].vCGCoords.I'Element[i].vCGCoords.z); 

Iyy += Element[i].vLocalInertia.y + Element[i].fMass * 
(Element[i].vCGCoords.l'Element[i].vCGCoords. + 
Element[i] .v~GCoords.x'Element[i].vCGCoords.x); 

Izz += Element[i].vLocalInertia.z + Element[i].fMass * 
(Element[i].vCGCoords.xfElement[i].vCGCoords.x + 
Element[i] .vCGCoords.y*Element[i] .vCGCoords.y); 

Ixy += Elemenf[i].fMass * (Element[i].vCGCoords.x * 
Element[i] .vCGCoards.y); 

1x2 += Element[i].fMass * (Element[i].vCGCoords.x * 
Element[i] .vCGCoards.z); 

Iyz += Element[i].fMass * (Element[i].vCGCoords.y * 
Element[i] .vCGCoords.r); 

) 

I1 Finally, set up the airplane's mass and its inertia matrix and take 
I1 the inverse of the inertia rnatril 
Airp1ane.fM.x~ = mass; 
Airplane.mInertia.el1 = Ixx; 
Airplane.mInertia.el2 = -1xy; 
Airplane.mInertia.el3 = -1xz; 
Airplane.mInertia.ez1 = -1xy; 
Airplane.mInertia.el2 = Iyy; 
Airplane.mInertia.el3 = -1yz; 
Airolane.mInertia.e31 = -1xz: 

Recall that the airplane is modeled by a number of elements, eachrepresentinga different 
part ot' the airplane's structure-for example, the tail rudder, elevators, wings, and 
fuselage. The code highlighted here takes the mass properties of each element and 
combines them using the techniques discussed in Chapter 11 to come up with the 
combined inertia tensor for the entire aircraft. The important distinction between these 
calculations in a 3D simulation and the 2D simulation is that here the inertia is a tensor, 
and in 2D it is a single scalar. 

InitializeAirplane is called at the,very start of the program. I found ic convenient to 
make the call right after the application's main window is created and shown, in this 
case in the standard Windows API InitInstance function as shown here: 

BWL InitInstance(H1NSTANCE hInstance, int nCmdShow) 
I 
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0, 0, 640, 480, 
NULL, NULL, hInst, NULL); 

if (!CreateD3DRMObject()) 
return (FALSE); 

if (!CreateO3DRMClipperObject(hTheMainWindow)) 
return (FALSE); 

if (ICreateViewPort(hTheMainWindow)) 
return (FALSE); 

return (TRUE); 
1 

The final part of the flight model has to do with calculating the forces and moments 
that act on the airplane at any given instant in time during the simulation. As in the 
2D hovercraft simulation, without this sort of function, the airplane will do nothing. 
For this purpose I'M defined a funcuon called CalcAirplaneLoads, which is called at 
every step through the simulation. This function relies on a few other functions, namely, 
LiftCoefficient,DragCoefficient, RudderLiftCoefficient, andRudderDragcoefficient.Al1 
of these functions are shown and discussed in detail in the section of Chapter 7 entitled 
"Modeling." 

For the most part, the code contained in CalcAirplaneLoads is similar to the code you 
saw in the CalcLoads function of the hovercraft simulation. CalcAirplanLoads is a little 
more involved, since the airplane is modeled by a number of elements that contribute 
to the total lift and drag on the airplane. There's also another difference, which I've 
highlight here: 

void CalcAirplaneLoads(void) 
( 

/ /  Convert forces from model space to earth space 
Airplane.vForces = QVRotate(Airplane.qOrientation, Fb); 

/ /  Apply gravity (g is defined as -32.174 ft/s-2) 
Airp1ane.vForces.z += g * Airplane.fMass; 

Just about all of the forces acting on the airplane are first calculated in body-fixed 
coordinates and then converted to earth coordinates before the gravity force is applied. 



The coordinate conversion is effected through the use of the function QVRotate, which 
rotates the force vector based on the airplane's current orientation represented by a 
quaternion.' 

Integration 
Now that the code to define, initialize, and calculate loads on the airplane is com- 
plete, you need to develop the -ode to actually integrate the equations of motion so 
that the simulation can progress through time. The first thing you need to do is decide 
on the integration scheme that you want to use. In this example I decided to go with 
che basic Euler method. I've already discussed some better methods in Chapter 1l and 
indeed implemented one of those methods in the 2D simulation of Chapters 12 and l3. 
I'm going with Euler's method here because it's simple, and I didn't want to make the 
code here overly complex, burying some key code that I need to point out to you. 7-hat 
said, I've prepared a function called stepsimulation that handles all of the integration 
necessary to actually propagate the simulation. 

void StepSimulation(f1oat dt) 
{ 

I /  Take care of translation first: 
/ /  (If this body were a particle, this is all you would need to do.) 

Vector Ae; 

/ /  calculate all of the forces and moments on the airplane: 
CalcAirplaneLoads(); 

/ /  calculate the acceleration of the airplane in earth space: 
Ae = Airplane.vForces / Airplane.fMass; 

/ /  calculate the velocity of the airplane in earth space: 
Airplane.vVelocity t= Ae * dt; 

/ /  calculate the position of the airplane in earth space: 
Airplane.vPosition += Airplane.vVelority * dt; 

/ /  Now handle the rotations: 
float mag; 

/ /  calculate the angular velocity of the airplane i n  body space: 
Airplane.vAngularVe1ocity += Airplane.mInertiaInwrse * 

(Airplane.vMoments - 
(Airplane.vAngularVelocity^ 
(Airplane.mInertia * 

Airplane.vAngularVelocity))) 
* dt; 

/ /  calculate the new rotation quaternion: 
Airp1ane.qOrientation t= (Airplane.qOrientation * 

Airplane.vAngularVe1ocity) * 
(0.5.f * dt); 

QVRotate is defined in Appendix C 

%fI~. 
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11 now normalize the orientation quaternion: 
mag = Airplane.qOrientation.Magnitude(); 
if (mag I= 0) '.,.' 

Airplane.qOrientation I= mag; 

11 calculate the velocity in body space: 
I f  (we'll need this to calculate lift and drag forces) 

I 1  calculate the air speed: 
Airplane.fSpeed = ~irplane.vVelocity.Magnitude(); 

/ I  get the Euler angles for our information 
Vector u; 

u = MakeEulerAnglesFromQ(Airplane.qOrientation); 
Airplane.vEulerAng1es.x = u.x; I 1  roll 
Airplane.vEulerAng1es.y = u.y; I1 pitch 
Airplane.vEulerAng1es.r = u.1; I /  yaw 

1 
The very first thing that Stepsimulation does is call CalcAirplaneLoads to calculate the 
loads acting on the airplane at the current instant in time. stepsimulation then goes 
on to calculate the linear acceleration of the airplane based on current loads. Next, 
the function goes on to integrate, using Euler's method, once to calculate the air- 
plane's linear velocity and then a second time to calculate the airplane's position. As 
I've commented in the code, if you were simulating a particle, then this is all you 
would have to do. However, since this is not a particle, you need to handle angular 
motion. 

The first step in handling angular motion is to calculate the new angularvelocity at this 
time step, using Euler integration, based on the previously calculated moments acting 
on the airplane and its mass properties. This is done in body coordinates by using the 
equation of motion that I discussed previously: 

The next step is to integrate again to update the airplane's orientation, which is ex- 
pressed as a quaternion. Here, you need to use the differential equation relating an 
orientation quaternion to angular velocity that I showed you in the preceding chapter: 

Next to enforce the constraint that this orientation quaternion be a unit quaternion, 
the function normalizes the orientauon quaternion. 

Since the linear velocity was previously calculated in global coordinates (the fixed coor- 
dinate system), and since CalcAirplaneLoads needs the velocity in the body-fixed (rotat- 
ing) coordinates system, the function rotates the velocity vector, storing the body-fixed 
vector in the vVelocityBody member of the RigidBody structure. This is done here as a 
matter of convenience and uses the quaternion rotation function OVRotate to rotate the 

236 ( Chapter 15: 3D Rigid Body Simulator 



vector on the basis of the airplane's current orientation. Notice here that the conjugate 
of the orientation quaternion is used, since we're now rotating from global coordinates 

I to body coordin'ates. 
As another convenience, the air speed is calculated, which is simply the magnitude of 
the linear velocity vector. This is used to report the air speed in the main window title 
bar. 

Finally, the three Euler angles-roll, pitch, and yaw-are extracted from the orientation 
quaternion so that they can also he reported in the main window title bar. The function 
to use here is MakeEulerAnglesFromQ, which is defined in Appendix C. 

StepSirnulat ion is called once per game loop cycle. In this example I set up another 
function called Nul lEvent  +at gets called every time through the main window message 
loop as shown here: 

i n t  APIENTRY WinNain(H1NSTANCE h~rktance ,  
HINSTANCE hPrevInstance, 
LPSTR IpCmdLine, 
i n t  nCmdShow) 

t 

OldTime = timeGetTime(); 
NewTime = OldTime; 
11 Main message loop: 
whi le (I) { 

while(PeekMessage(&msg, NULL, 0, 0, PM-REMOVE)) { 
if (msg.message == WM-QUIT) { 

I e t u r n  msg.wParam; 
I 

i 
When Nul lEvent  calls StepSimulat ion,  it passes the size of the time step in as the d t  

parameter. As with the hovercraft example, you don't have to do it this way I chose to 
because I was experimenting with having the time step calculated in real time as the 
difference in time between the last call to s t e p s i m u l a t i o n  and the current time as shown 
here: 

void NullEvent(void) 
{ 
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NewTime = timeGetTime(); 
d t  = ( f loa t )  (NewTime - OldTime)11000; 
O l d T i m  = NewTime; 

if ( d t  , (0.016f)) d t  = (0.016f); 
if ( d t  < 0.001f) d t  = 0.001f; 

StepSimulat ion(dt) ;  

Here again, I bracket the time step with the upper limit governed by numerical stability 
and the lower limit by the timer accuracy You'll have to tune these limits for your 
simulations on the basis of your integration technique and chosen timer. 

Flight Controls 
At this point, the simulation still won't work right because you have not implemented 
the flight controls. The flight controls allow you to interact with the airplane's various 
controls surfaces to actually fly the plane. I'll use the keyboard as the main input device 
for the flight controls. Remember, in a physics-based simulation such as this one, you 
don't directly control the motion of the airplane; you control only how various forces 
are applied to the airplane, which then, by integration over time, affect the motion of 
the airplane. 

For this simulation the flight stick is simulated by the arrow keys. The down arrow 
pulls back on the stick, raising the nose; the up arrow pushes the stick forward, causing 
the nose to dive; the lsft arrow rolls the plane to the left (port side); and the right arrow 
rolls the plane to the right (starboard side). TheX key applies left rudder action to cause 
the nose of the plane to yaw toward the left, and the C key applies right rudder action 
to cause the nose to yaw toward the right. Thrust is controlled by the A and Z keys. The 
A key increments the propeller thrust by 100 lb, and the Z key decrements the thrust by 
100 lb. The minimum thrust is zero, and the maximum available thrust is 3000 lb. The 
F key activates the landing flaps to increase lift at low speed, and the D key deactivates 
the landing flaps. 

Pitch is affected by deflecting the flaps on the aft elevators; for example, topitch the nose 
up, the aft elevator flaps are deflected upward, that is, the trailing edge of the elevator 
is raised with respect to the leading edge. Roll is affected in this simulation by applying 
the flaps differentially; for example, to roll right, the right flap deflects upward and 
the left flap deflects downward. Yaw is affected by deflecting the vertical tail rudder; 
for example, to yaw left, the trailing edge of the tail rudder is deflected toward the 
left. 

I've prepared several functions to handle the flight controls that should be called when- 
ever the user is pressing one of the flight control keys. There are two functions for the 
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propeller thrust: 

v o i d  IncThrust(void)  

ThrustForce += JTHRUST; 
i f (ThrustForce > -MAXTHRUST) 

ThrustForce = -MRXTHRUST; 

I 

v o i d  DecThrust(void) 
i 

ThrustForce - =  JTHRUST; 
i f (ThrustForce < 0) 

ThrustForce = 0; 
1 

I n c T h r u s t  simply increases the thrust by DTHRUST checking to make sure it does not 
exceed -MAXTHRUST. I've defined JTHRUST and #AXTHRUST as follows: 

#def ine  - DTHRUST 100.01 
#define - MAXTHRUST 3000.0f 

DecThrust ,  on the other hand, decreases the thrust by -DTHRUST, checking to make sure 
it  does not fall below zero. 

To control yaw I've prepared three functions that manipulate the rudder: 

v o i d  LeftRudder(void) 
I 

vo id  RightRudder(void) 
I 

v o i d  ZeroRudder(void) 
{ 

Element[6].f Incidence = 0; 
} 

LeftRudder changes the incidence angle of Element [6] ,  the vertical tail rudder, to 16 deg- 
rees; Righ tRudder  changes the incidence angle to -16 degrees. ZeroRudder centers the 
rudder at zero degrees. 

The ailerons, or flaps, are manipulated by these functions to control roll: 

v o i d  R o l l L e f t ( v o i d )  
I 

v o i d  Ro l lR igh t (vo id )  



. ( 
Element [0] .iFlap = -1; 
Element[3].iFlap = 1; 

j 

void ZeroAilerons(void) 
i 

Element[O].iFlap = 0; 
Element[3].iFlap = 0; 

j 

RollLeft deflectsfhe port aileron, located on the port wing section (Element[O]), upward 
and deflects the starboard aileron, located on the starboard wing section (Element[3]), 
downward. RollRight does just the opposite, and ZeroAilerons resets the flaps back to 
their undeflected positions. 

I've defined yet another set of functions to control the aft elevators so as to control pitch: 

void PitchUp(void) 
I 

void PitchDown(v0id) 

void ZeroElevators(void) 

Element[4] and Element[s] are the elevators. PitchUp deflects their flaps upward, and 
PitchDown deflects their flaps downward. ZeroElevators resec; their flaps back to their 
undeflected positions. 

Finally, there are two more functions to control the landing flaps: 

void FlapsDown(void) 
I 

Element[l] .iFlap = -1; 
Element[Z] .iFlap = -1; 
Flaps = true; 

j 

void ZeroFlaps(void) 

Element[l].iFlap = 0; 
Element[2].iFlap = 0; 
Flaps = false; 

1 
The landing flaps are fitted on the inboard wings sections, port and starboard, which 
are Element[l] and Element[2], respectively FlapsDown deflects the flaps downward, and 
ZeroFlaps resets them back to their undeflected position. 
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As I said, these functions should be called when the user is pressing the flight control . 
keys. Further, they need to be called before s t e p s i m u l a t i o n  is called so that they can 
be included in the current time step's forces and momentc; calculations. Since I put the 
S t e p s i m u l a t i o n  callinmy N u l l E v e n t  function, it makes sense to handle the flight controls 
in that function as well. Here's how I did it: 

v o i d  Nul lEvent(void)  
{ 

/ /  p i t c h  down 
i f  (1sKeyDown(VK_uP)) 

PitchDown(); 

/ /  p i t c h  up 
if (IsKeyDown(VK_WWN)) 

Pi tchup() ;  

/ /  r o l l  l e f t  
if (IsKeyDown(VK_LEFT)) 

R o l l L e f t ( ) ;  

/ /  r o l l  r i g h t  
if (IsKeyDown(VKLR1GHT)) 

R o l l R i g h t O ;  

/ /  Increase t h r u s t  
if (IsKeyDown(Ox41)) / /  A 

IncThrust( ) ;  

',// Decrease t h r u s t  

/ /  yaw l e f t  
if (IsKeyDown(Ox58)) / /  x 

LeftRudderO; 

/ /  yaw r i g h t  
if (IsKeyDown(Ox43)) / /  c 

RightRudderO; 

/ /  l a n d i n g  f l a p s  down 
if (IsKepown(Ox46)) / / f  

FlapsDownO; 

/ /  l a n d i n g  f l a p s  up 
if (IsKeyDown(Ox44)) / /  d 

ZeroFlaps(); 

NewTime = timeGetTime(); 
d t  = ( f l o a t )  (NewTime - OldTime)/1000; 
OldTime = NewTime; 



if (dt > (0.016f)) dt = (0.016f); 
if (dt < 0.001f) dt = 0.001f; 

StepSimulation(dt); 

Before Stepsimulation is ~alled, each of the flight control keys is checked to see whether 
it is being pressed. If so, then the appropriate function is called. 

The function IsKeyDown that checks whether a certain key is pressed looks like this: 

BOOL IsKeyDown(short Keycode) 
I 

SHORT retval; 

retval = CetAsyncKeyState(KeyCode); 

if (HIBYTE(retva1)) 
return TRUE; 

return FALSE; 

I used this function because it is possible that more than one key will be pressed at any 
given time, and I wanted to handle them all simultaneously instead of one at a time in 
the standard window message processing function. 

The addition of flight control code pretty much completes the physics part of the 
simulation. So far, you have the model, the integrator, and the user input or flight 
control elements completed. All thar remains is setting up the application's main 
window and actually drawing something to look at that repments what you're 
simulating. 

Setting up the main window and drawing something interesting to look at isn't re- 
ally related to physics. However, for completeness I'll briefly present the code thar I 
used in this example to set up the main window and render the simulanon using 
DirecOD.' 

Starting with the main window, I used standard Windows API code to initialize the 
application, create and update the main window, and handle window messages and 
user input. I assume thar you're are familiar with Windows API programming, so I 
won't go into derailed explanation of the code. 

If you aren't already familiar with programming DirecDD, you should check out the book e n d e d  The 
Awesome Power of DirecNDIDirectX by Peter J. Kovack. Simply put, it's very useful. 
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I've already shown you part of the WinMain function, but here's the whole thing: 

int APIENTRY WinMain(H1NSTANCE hlnstance, HINSTANCE hPrevInstance, LPSTR 
IpCmdLine, int nCmdShow) 
f 

MSG msg; 
HANDLE hAccelTable; 

if ( !  hPrevInstance) { 
I1 Perform instance initialization: 
if (!InitApplication(hInstance)) { 

return (FALSE); 
1 

} 

I1 Perform application initialization: 
if (!InitInstance hInstance, nCmdShow)) ( 

return (FALsh; 
} 

OldTime = timeGetTime(); 
NewTime = OldTime; 
I1 Main message loop: 
while (1) ( 

while(PeekMessage(&msg, NULL, 0, 0, PM-REMOVE)) { 
if (msg.message == WM-QUIT) { 

return msg.wParam; 
1 

return (msg.wParam); 
} 

WinMain makes calls to InitInstance and InitApplication. I've already shown you InitIn- 
stance, so here's InitApplication: 

1 
WNDCLASS wc; 
HWND hwnd; 

id = FindWindow IszAooName. NULL): 

I 
SetForegroundWindow (hwnd); 

return FALSE; 
1 
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uc. hIcon = NULL; 
wc.hcursor = LoadCursor(NULL, IDC-ARROW); 
wc.hbrBackground = (HBRUSH)GetStockObject(BLACK-BRUSH); 

wc.lpszMenuNarne = NULL; 
wc.lpszClassName = szAppName; 

r e t u r n  RegisterClass(&wc); 
} 

So far this API code creates a window class For the main window, registers that class, 
creates and displays a 640 x 480 window, creates a couple of Direct3D objects that are 
needed to render into a Direct3D view port (these calls are in ~ n i t ~ n s t a n c e ) ,  and starts 
the main program loop, calling N u l l E v e n t  each time. 

The only other API function that's needed is the window message processing Function, 
WndProc: 

LRESULT CALLBACK WndProc(HWND hWnd, 
UINT message, 
WPARAM "Param, 
LPARAM 1Param) 

I 

i n t  wmId,  event; 
BOOL val idmenu = FALSE; 
i n t  s e l e c t i o n  = 0; 
PAINTSTRUCT ps; 
HOC PDC; 
WPARW! key; 

sw i tch  (message) { 
case WM-ACTIVATE: 
if (SUCCEEDED(D3D.Devicee)QueryInterface( 

IID_IDirect3DRMWinDevice, 
( vo id  *') 8WinDev))) 

break; 

case WMUESTROY: 

case WLKEYWWN: 
key = ( i n t )  wParam; 

i f  (key == 0x31) I 1  1 key 
SetCameral(); 

break; 
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if (key == 0x32) 11 2 key 
SetCamera2(); 

if (key == 0x33) 11 3 key 
SetCamera3(); 

break; 

case WM-PAINT: 
pDC = BeginPaint(hTheMainWindow, (LPPAINTSTRUCT) &ps); 

if (SUCCEEDED(D3D.Device->QueryInterface( 
IID_IDirect3DRMWinDevice, 
(void **) &WinDev))) 

EndPaint(hTheMainWindow, (LPPAINTSTRUCT) &ps); 
return (0); 

break; 

default: 
return (DefWindowP~oc(hWnd, message, wParam, 1Param)); 

1 
I 
return (0); 

} 

In response to WM-ACTIVATE, this function acquires a IDirect3DRMWinDevice that's 
needed for using Direct3D retained mode. 

In response to WKKEYDOWN, chis function switches to one of the three cameras that I've 
set up to view che simulation from different perspectives. Camera 1 is a view from the 
cockpit of the airplane, camera 2 is a view from outside and just behind plane, and 
camera 3 is a view from the global origin chat always looks at the airplane and follows 
its movement. 

The response to WM-PAINT handles painting the scene to the main window Finally, the 
response to WM-DESTROY cleans up all the Direct3D stuff and quits che application. 

Now I need to show you yet anocher version of my NullEvent function: 

void NullEvent(void) 

Vector vz, vx; 
char buf [zsb]; 
char s[256]; 

11 pitch down 
if (IsKeyDown(VK_UP)) 

PitchOown(); 
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I1 pitch up 
if (IsKeyDown(VKLD0WN)) 

Pitchup(); 

I1 roll left 
if (IsKeyDown(VK-LEFT)) 

Rollleft(); 

I1 roll right 
if (IsKeyDown(VKLR1GHT)) 

RollRightO; 

I1 Increase thrust 
if (IsKeyDown(Ox41)) I1 A 

IncThrust(); 

I1 Decrease thrust 
if (IsKeyDown(0xSA)) /I Z 

DecThrust(); 

I1 yaw left 
if (IsKeyDown(Ox58)) I1 X 

LeftRudderO; 

/I yaw right 
if (IsKeyDown(0x43)) I1 c 

RightRudderO; 

/I landing flaps down 
if (IsKeyDown(Ox46)) Ilf 

FlapsDown(); 

11 landing flaps up 
if (IsKeyDown(Ox44)) I1 d 

ZeroFlaps(); 

NewTime = timeGetTime0 ; 
dt = (float) (NewTime - DldTime)11000; 
OldTime = NewTime; 

if (dt > (0.016f)) dt = (0.016f); 
if (dt < 0.001f) dt = 0.001f; 

11 Direct3D x = - our y 
I1 Direct30 y = our z 
I1 Direct3D z = our x 
SetCarneraPosition( -Airplane.vPosition.y, 

Airplane.vPosition.z, 
Airplane.vPositi0n.x); 

vz = GetBodyZAxisVector(); I1 pointing up in our coordinate system 
vx = GetBodyXAxisVector(); I1 pointing forward 

11 in our coordinate system 
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I1 Report stats in window title 
sprintf( buf, "Roll= %.2f ; ", Airplane.vEu1erAngles.x); 
strcpy(s, buf); 
I1 take negative here, since pilots like to see 
//positive pitch as nose up: 
sprintf( buf, "Pitch- %.2f ; ", -Airplane.vEulerAngles.y); 
strcat(s, buf); 
sprintf( buf, "Yaw- %.zf ; ", Airplane.vEulerAne1es.z); 
strcat(s, buf); 

- 
sprintf( buf, "Alt= %.Of ; ", Airp1ane.vPosition.z); 
strcat(s, buf); 
sprintf( buf, "T= %.Of ; ", ThrustForce); 
strcat(s, buf); 
sprint+( buf, "S= %.of ", Airplane.fSpeed/l.688); / /  divide by 1.688 

// to convert 
// ft/s to knots 

strcat(s, buf); 
if (Flaps) 

strcat(s, "; Flaps"); 

if (Stalling) 
I 

strcat(s, "; Stall!"); 
Beep(10000, 250); 

> 
SetWindowText(hTheMainWindow, s); 

I else 

The code that you have not seen yet appears just after the call to Stepcimulation. There 
are several things going on here. 

First, the camera positions have to be updated to reflect to new location of the plane. 
That's pretty easy to do, but remember from the 2D hovercraft example that you have to 
take note that the coordinate system used by Direct3D is not the same as the one used in 
the simulation. Direct3D uses a left-handed coordinate system with the x-axis pointing 
to the right, the y-axis pointing upward, and the z-axis pointing into the screen. Thus, 
Direct3D's x-axis is our negative y-axis, its y-axis is our z-axis, and its z-axis is our 
x-axis. 

In addirion to setting the proper location for each camera, you also have to make sure 
its orientation is correct. To do that, Direct3D requires a couple of vectors, one defining 
the frame's new z-axis and the other defining its new y-axis. To make things easier, I've 
prepared a couple of functions to get the correct x- and z-axis vectors for the airplane 
so that they can be used for DirecDD's z- and y-axis vectors, respectively, when setting 
the camera orientation to align with the orientation of airplane. You'll want to do this, 
for example, when looking out of camera 1, which is a cockpit view; as the plane rolls, 
pitches, or yaws, you'll want the scene that you are viewing to reflect that movement as 
if you were sitting in the airplane: 
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Vector GetBodyZAxisVector(void) 
t 

Vector v; 

return QVRotate(Airplane.qOrientation, v); 
1 
Vector GetBodyXAxisVector(void) 
{ 

Vector v; 

return QVRotate(Airplane.qOrientation, v); 

} 

Getting back to the NullEvent function, after the cameras are positioned, the scene is 
actually rendered to the main window by calling the Render function. Once that's done, 
the window caption is changed to show a few statistics, namely, the three Euler angles, 
propeller thrust, and air speed. Further, if the landing flaps are down, then the word 
"flaps" will appear in the title bar, and if a stall condition is encountered, the word 
"stall" will appear. 

Notice here that I'm using the same technique that I applied in the 2D hovercraft 
example of advancing the physics simulation more often than the display Again, you'll 
have to adjust the physics update to display update for you own specific simulations. 

The rest of the code required for this simulation is related to rendering using Direct3D 
and has nothing directly to do with physics, so I have not included that code here. 
However, you can obtain the full source code for this example from O'Reilly's web site 
at www.oreilly.com. 

248 1 Chapter 15: 3D Rigid Body Simulator 



CHAPTER 16 

Multiple Bodies in 3D 

In this chapter I'll show you how to handle multiple rigid bodies along with collision 
response in three dimensions. The example that 1'11 show you here is a simulation of a 
car crashing into a couple of test blocks. Figure 16-1 is a snapshot of the simulation just 
after impact. 

This example is set up to automatically cycle through three different crash scenarios 
corresponding to different block arrangements.' You can view the simulation from 
different camera angles by pressing the keyboard buttons 1,2, and 3 corresponding to 
views from the car's center of gravity, from outside and behind the car, and from outside 
on the left side of the car, respectively 

This example uses a lot of the same code as the flight simulation example presented in 
the previous chapter, so I won't repeat the shared code here. Instead, I'll highlight the 
specific sections of code that are unique to this example. The procedure for handling 
this simulation is very similar to the simulations that I've already discussed; the steps 
are as follows: 

Set up a rigid body structure to store the state information for each object. 

Setup an array of rigid bodies. 

Initialize the objects. 

Calculate the forces on each object at each time step. 

Integrate to update each object's velocity and position. 

Handle any collisions. 

In the next several sections I'll address each of these steps. After that I'll discuss tuning 
the simulation. I'll also discuss the limitations of this simulation and recommend some 
improvements. 

* I want io remind you tha t  rhe source and execurable files for all the examples discussed in h i s  book am 
available on rhe O'Reilly web sire. 

,I.. 



Model 
The purpose of this simulation is not to show you how to model specific objects in 
detail, like the flight simulation of the last chapter, so I'm going to use simple models 
in this example. What I want to emp&e here is how to handle multiple objects, 
and I don't want to clutter that issue with complex initialization and force calculations. 
Later, in your own simulations, you can develop highly detailed models of the specific 
object(s) that you're trying to simulate using the techniques that I've discussed earlier 
in this book combined w i ~ h  those presented in this chapter. 

Initialization 
Let's start by taking a look at the RigidBody structure that will be used to keep track of 
the state of each object in the simulation: 
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float 
Matrix3x3 

Matrix3x3 

Vector 
Vector 
Vector 
Vector 

Vector 

Vector 

Vector 
float 
Quaternion 

Vector 
Vector 

Matrix3x3 

float 
"tor_ 

fMass: / /  total mass (constant) 
mInertia; / /  mass moment of inertia 

/ /  in body coordinates 
mInertiaInverse; / /  inverse of mass 

/ /  manent of inertia matrix 

vposition: / /  oosition in earth coordinates ~ ~ ~ - -  

~Velocity; / /  hocity in earth coordinates 
vVelocityBody; / /  velocity in body coordinates 
 acceleration; / I  acceleration of cg 

/ /  in earth space 
~AngularAcceleration; / /  angular acceleration 

/ /  in body coordinates 
~AngularVelocity; / /  angular velocity in 

/ /  bodv coordinates 
vEulerAngles; / /  ~ u l k  angles in body coordinates 
?Speed; / /  speed 
qorientation; / /  orientation in earth coordinates 

vforces; / /  total force on body 
vMoments; / I  total moment (torque) on body 

mIeInverse; / /  inverse of moment of 
/ /  inertia in earth coordinates 

} RigidBody, *pRigidBody; 

For the most part, this structure is identical to the one shown in Chapter 15's flight 
simulation example but with a few additions. Since we'll be handling collisions in the 
simulation, I've added fRadius and vVertexlist[8] to the structure. f&Li.us stores the 
r ad j_us .~~fh~_m_in im~m bounding s p h e ~ f o r  the~pbject, ~ h i c h ,  i sused  in an initial 
boundjng,sphere collision check, and vVertexList[8] is a list of vertices .that will be . ~ .... . . . ~ ~  ...... . . -  ~~. . ~ , .  
used t ~ , ~ ~ ~ r e s & t  .~ . the body's . ..... hard . point:, . . that is, the points that will be used for collision 
detection. 

.-- .. ~ ~~ ~~ ~ ~~ 

I've also added v ~ c c ~ r a t ~ d a n d ' v ~ n j u i a r ~ c c e l e r a _ t i ~ p ~ ~  to store the object's linear and 
angular acceleration, respectively We'll need these va lues tph~d!~ .  the co.ntacr forces 
between the objects and theground when they are sitting on the gound  but not colliding 
with it. I'll talk more about this in a moment. 

Now that you have the structure defined, you can go ahead and set up an array of rigid 
bodies as follows: 

#define NUMBODIES 
RigidBody Bodies[NUMBODIES]; 

At the start of the simulation you need to initialize all the objects. In this example I've 
set up a function called Initializeobjects for this purpose: 

/ /  ............................................................................... //  
I /  This function sets the initial state of the objects 
/ /  ....-..............-.-.----..................................-.--------..--....// 
void InitializeObjects(int configuration) 
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float iRoll, iPitch, iYaw; 
int i; 
float Ixx, Iyy, Izz; 
float s; 

/ I  Initialize the car: 
/ I  Set initial position 
Bodies[o].vPosition.x = -50.0'; 
Bodies[o].vPosition.y = O.Of; 
Bodies[o].vPositian.z = CARHEISHT/2.Cr; 

/ I  Set initial Velocity 
svitch(configuration) 
t 

case 0: s = 11o.of; brez<: / I  ftls 
case I: s = 12o.of; brea<; I1 %Is 
case 2: s = 115.0f; brea<; I /  itls 

/ I  Set initial angular velocizy 
Bodies[o] .vAngularVelocity .x = 0.Of; 
Bodies[o].vAngularVelocity.y = 0.01; 
Bodies[o].vAngularVelocity.z = 0.0:; 

/ I  Set the initial thrust, fcrces, and moments 
Bodies[O].vForces.x = O.Of; 
Bodies[O] .vForces.y = O.Of; 
Bodies[o] .vForces.z = 0.01; 
ThrUStForce = 0.0; 

I1 Zero the velocity in body space coordinates 
Bodies[o].vVelocityBody.x = C.0f; 
Bodies[O] .vVelacityBady.y = C .of; 
Bodies[O].vVelocityBody.z = (.Of; 

I1 Set the initial arientatic- 
iRoll = O.Of; 
iPitch = 0.0f; 

/ I  Set the mass properties 
Bodies[O] .fMass = 2OW.Of/(-5); 
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Ixx = Bodies[O].fNassll2.of * 
(CARWIDTH*CARWIDTH t CARHEIGHT'CARHEIGHT); 

I w  = Bodieslol.fNass112.of * 

Bodies[O].mInertia.ell = Ixx; 
Bodies[O] .mhertia.e12 = 0; 
Bodies[O] .mInertia.e13 = 0; 
Bodies[o] .mInertia;ezl = 0; 
BodieslOl.mInertia.e22 = I w :  

Bodies[o].mInertiaInverse = Bodies[O].mInertia.Inverse(); 

' Bodies[O].fRadius = CARLENGTHI2; 11 for bounding sphere check 

ThrustForce = O.Of; 

11 Initialize the blocks 

for(i-1; i<NUMBODIES; i+t) 
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{ 
I /  Set initial position 
switch(configuration) 
I 

case 2: 
if (i==l) 

} else { 
Bodies[i].vPosition.x = O.Of; 
Bodies[i].vPosition.y = 0.0f; 
Bodies[i].vPositian.z = BLOCKSIZE12.0f; 

1 
break; 

case 1: 
if(i==l) 
I 

} else { 
Bodies[i].vPosition.x = O.Of; 
Bodies[i].vPosition.y = BLOCKSIZE12.0f+l.Of; 
Bodies[i] .vPosition.r = BLOCKSIZE12.0f; 

1 
break; 

case 0: 
if(i==l) 
I 

break; 
} 

I/ Set initial velocity 
Bodies[i] .vVelocity.x = O.Of; 
Bodies[i].vVelocity.y = o.of; 
Bodies[i].vVelocity.z = O.Of; 
Bodies[i].fSpeed = 0.of; 

I /  Set initial angular velocity 
Bodies[i] .vAngularVelocity.x = 0.Of; 
Bodies[i].vAngularVelocity.y = O.Of; 
Bodies[i] .vAngularVeloCity.z = O.Of; 

Bodies[i].vAng~larAccelcrarion.x = O.Of; 
Bodies[i].vAng~larAccelerar ion. y = O.Of; 
Bodies[i] .vAngblarAccelerarisn.z = O.Of; 

Boaies[i].vAccclerarion.~ = O.Of; 
Boaies[i].vAccelerarion.~ = O.Of; 
Bodies[i].vAccclerarion.z = o.of; 



11 Set the initial thrust, forces and moments 
Bodies[i].vForces.x = 0.0f; 
Bodies[i] .vForces.y = 0.0f; 
Bodies[i].vForces.r = 0.0f; 

11 Zero the velocity in body space coordinates 
Bodies[i].vVelocityBady.x = 0.0f; 
Bodies[il.vVelocityBody.y = o.of; 
Bodies[i].vVelocityBody.z = o.of; 

11 Set the initial orientation 
iRoll = 0.of: 
iPitch = 0.0f; 
if (configuratiqn == 2) 

iYaw = 45.0f; 
else 

'I S ~ T  tne mass properties 
docit\[i].fMass = soo.of/(-g); 
Ixx = Iyy = Izz = Bodies[i]:fl , . . - . . . . . . . . . 

Bodies[i] .rnInertia.e11 = Ixx; 
Bodieslil .mInertia.e12 = 0: 

Bodies[i].mInertia.e31 = 0; 
Badies[i].mInertia.e32 = 0; 
Bodies[i].mInertia.e~ = Izz; 

Bodies[i].fRadius = BLOCKSIZE12; 11 for bounding sphere check 

11 bounding verteces relative to CG (assumed centered) 
Bodies[i].vVertexList[o].x = BLOCKSIZEI2.of; 
Bodies[i].vVertexList[o].y = BLOCKSIZEI2.of; 
Bodies[i].vVertexList[o].z = -BLOCKSIZE/2.0f; 
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Bodies[i].vVertexList[7].x = -BLOCKSIZE/Z.Of; 
Bodies[i].vVertexlist[7].y = -BLOCKSIZE/2.0f; 
Bodies[i] .vVertexlist[7] .z = -BLOCKSIZE/2.Of; 

) 

) 

This is a long function, but it's really quite simple. All it does is initialize each parameter 
in the RigidBody structure for each body; where body [o] is the car. 

The configuration parameter that's passed into the function is used to control which of 
the three different crash scenarios is initialized. 

I would also like to point out that I'm assuming that each object's moment of inertia, 
including the car's, can be approximated as a rectangular cylinder (a box). Therefore, you' 
can use the inertia formulas for a rectangular cylinder that I gave you back in Chapter 1. 

Forces and Moments 
As I said earlier, I'm using a simplified approach to handling the forces that act the 
objects in this simulation. There are four basic loads that I consider: 

Thrust (for the car only) 

Aerodynamic drag (linear and angular) 

Gravity 

Contact with the ground plane 

All of these loads are taken care of in the function CalcObjectForces: 
/ /  .................................................................................. 
/ I  
/ I  This function calculates all of the forces and moments acting on the objects at 
/ I  any given time. 
/ /  .................................................................................. 

Vector "0;aevector: 
Vector v~n~;lar~rag~ector; 
int i, j; 
Vector ContactForce; 
Vector pt; 
int check = NOCOLLISION; 
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pCollision pCollisionData; // used for contact forces here 
Vector FrictionForce; 
Vector fDir; 

for(i-0; i<NUMBODIES; it+) 
{ 

/I reset farces and moments: 

I1 Define the thrust vector, which acts through the CG 
if (i==o) 
1 

Thru5t.x = l.Of; 
Th1ust.y = O.Of; 
Th1ust.z = O.Of; 
Thrust *= ThrustForce; 
Fb += Thrust; 

1 
. , 

. . 
/I Do drag force 
vDragVector = -Bodies[i].vVelocityBody; 
vDragVector.Normalize(); 
Fb += vDragVector * (Bodies[i].fSpeed * Bodiei[i].fSpeed * rho * 

LINEARDRAGCOEFFICIENT * Bodies[i].fRadius * i, 

Bodies[i] .fRadius); . 
. ~- 

vAngularDragVector = -Bodies[i].vAngularVelocity; 
vAngularDragVector.Normalize(); 
Mb += VAngularDragVector * 

(Bodies[i].vAngularVelocity.Magnitude() * 
Bodies[i].vAngularVelocity.Magnitude() * rho * 
ANGULARDRAGCOEFFICIENT * Bodies[i] .fRadius * 
Bodies[i] .fRadius); 

/I Convert forces from model space to earth space 
Bodies[i].vForces = QVRotate(Bodies[il.qOrientation, Fb); 

I1 Apply gravity 
Bodies[i].vForces.z += GRAVITY * Bodies[i].fMass; 

I1 Save the moments 
Bodies[i].vMoments += Mb; 

I1 Handle contacts with ground plane 
Bodies[i].vAcceleration = Bodies[i].vForces I Bodies[i].fMass; /i Bodies[i] .vAngularAcceleration = Bodies[i] .mInertiaInverse * 

(Bodies[i] .vMoments - 
:< f ?  ;,;. 1- 

(Bodies[i].vAngularVelocity ^ 

(Bodies[i].mInertia * 
Bodies[i] .vAngularVelocity))); 



pCollisionData = Collisions; 
Numcollisions = 0: 
check = CheckGrnundPlaneContacts(pCallisionData, i); 
if(check == CONTACT) '.J 
{ I1  have contact.. . . 

for(j.0; j<NumCollisions; j++) 
I 

ContactForce = (Bodies[i].fMasslNumCollisions * ( 
-Collisions[j].vRelativeAcceleration * 
Collisions[j].vCollisionNomal)) * 
Collisionslil .vCollisionNormal: .. . 

FrictionForce = (ContactForce.Magnitude() * 
FRICTIONCOEFFICIENT) ' 
Collisions[j] .vCollisionTangent; 

Bodies[i].vForces += ContactForce; 
Bodies[i] .vForces += FrictionForce; 
ContactForce = OVRotate(-Bodies[il.q0rientation. 

FrictionForce = QVRotate(-Bodies[i].qbrientation, 
FrictionForce): - - , , 

pt = Collisions[j].vCollisionPoint - 
Bodies[i] .vPosition; 

Bodies[i].vMoments += pt ^ ContactForce; 
Bodies[i].vMornents += pt " FrictionForce; 

1 

For the most part, the calculations within this function should look familiar to you, that 
is, with the exception of contact forces. Also, you'll notice that here, the function initially 
enters a loop to cycle through all the objects in the rigid body array so that loads are 
calculated for all of the objects in the simulation with a single call to CalcObjectForces. 

Upon entering the loop, this function first applies the thrust force to the car object only 
This thrust force is assumed to act through the object's center of gravity and therefore 
does not create a moment. Next, the linear and angular drag forces are calculated. Once 
these loads have been determined, the function converts the accumulated forces to world 
coordinates and applies the force due to gravity All of these calculations so far are very 
similar, although simplified, to those shown in the previous simulation. 

The last part of this function takes care of contact forces between the objects and the 
ground plane. 

Contact 
Contact forces are forces that exist between objects that are in physical contact but are 
not colliding. You've already seen that objects are considered colliding when they are in 
contact and the relative velocity between contacting points is such that the points are 
moving toward each other. In resting contact, the contacting points are indeed touching; 
however, they are not moving toward each other. Instead, they are accelerating toward 
each other, and there exists a force that keeps the objects from penetrating each other. 
This force is an action-reaction, or equal and opposite, force that acrs on each body with 
identical magnitude but applied in the opposite directions. 
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In this simulation, since the objects are initially sitting on the ground, contact forces 
must exist between the objects and the ground to counter the gravitational pull on 
the objects that would tend to pull them down through the ground plane. When the 
objects are sitting still on the ground, the only force acting them is that due to gravity, 
where the magnitude of this force is equal to the objects' mass times the acceleration 
due to gravity. Thus, the contact force that opposes the objects' penetration through 
the ground plane must be equal in magnitude to the force due to gravity but opposite 
in direction. In this way, the two forces cancel each other out, and the objects sit there 
on the ground plane. 

In realin; calculating contact forces is a difficult proposition because of several compli- 
cating factors: there could be any number of concactingpoints located at various points 
relative ro the object's center ofgravity that share thecontact loads, though not necessar- 
ily equally; and the body may be accelerating due to other factors in addition to gravity, 
such as angular acceleration. There are methods that have been developed to handle 
contact forces, and&viva~aLreferences in the Bib~~g~phythatdea!Mrh~&~.~bje~t. 
Some.me~hods h a & . o n t a c r  using temporary springs inserted at the contactpoints 
(penaltymethods~~whil.e.o~rss.assumee that they can be handled by using impulses 
(impulse methods) in.a manner.s~lar_tohow we handle collisions; still other methods 
use - analytical approaches .._ ,.... ___ to dea!.&cont.act. I'll show you a simplified, z.pproximate 
approach in chis simulation that really does not fit nicely in any of these categories. 

Here's how this method works: first you determine which points are actually mak- 
ing contact; then you determine whether or not rhey are in resting contact; then you 
must determine the acceleration of each point; finally, assuming a mass of each point 
as though the object is an assembly connected point masses, you can determine the 
required contact force. 

Determining which points are close enough to be considered in contact involves the 
same sort of calculation that you must perform to determine whether two objects are 
colliding. I've setup a function called CheckGroundPlaneContacts that is nearly identical to 
the function I use to check for collisions; the purpose of this one is to check for possible 
contact between the object and the ground plane. In fact the two functions areso similar 
that you could actually just use a single function with some slight modifications to 
indicate whether you are checking for contact or collisions. I kept them separate here 
for clarity Here's the code for CheckGroundPlaneContacts: 

int 
{ 

CheckGroundPlaneCantacts(pCol1ision CollisionData, int bodyl) 

int i; 
Vector v1[8]; 
Vector tmo: . , 
Vector u, v; 
float d; 
Vector f [4]; 
Vector d l ;  
Vector ptl; 
Vecto~ Vr; 
float V m ;  
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vector n; 
int status = NOCOLLISION; 
Vector Ar; 
float A m ;  

//rotate bounding vertices and covert to global coordinates 
for(i=o; i<8; i++) 
1 

tmp = Bodies[bodyl].vVertexList[i]; 
vl[i] = QVRotate(Bodies[bodyl].qOrientation, tmp); 
vl[i] += Bodies[bodyl].vPosition; 

} 

//check each vertex of bodyl against the ground plane 
for(i=o; i<8; i++) 
I 

U.X = 1.0f; 
u.y = 0.0f; 
u.2 = 0.0f; 
V.X = 0.0f; 
v.y = Lof; 
v . 2  = 0.0f; 
tmp.x = o.of; 
tmp.y = o.of; 
tmp.2 = O.Of; 
d = CalcOistanceFromPointToPlane(vl[i], u, v, tmp); 
if(d < COLLISIONTOLERANCE) 
I 

11 Calculate relative velocity 
ptl = vl[i] - Bodies[badyl].vPositioo; c;; 19 , q - . .. ! . ! - . e , x  l ,tl(>c>,.; >*!. !.*< : 

vell = Bodies[bodyl].vVelocity8ody + ,~ ' 

(Bodies[bodyl] .vAngularVelocity^ptl); 

vell = QVRotate(Bodies[bodyi].qOrientation, "ell); 

Vr = vell; 
Vrn = Vr * n; m G 

; f ? i E  . 
if(fabs(Vrn) <= VELOCITYIOLERANCE) 11 at rest 
I 

11 Now check the relative acceleration 
Ar = Bodies[bodyl].vAcceleration + 

(Bodies[bodyl] .vAngularVelocity 
" (Bodies[bodyl].vAngularVelocity^ptl)) + 
(Bodies[bodyl].vAngularAcceleration - ptl); 

11 We have a contact, fill the data 
11 structure and return 
assert(NumCo1lisions < (NUMBODIES'II)); 
if(NumCol1isians < (NUMBODIES*8)) 
i 

CollisionOata-,body1 = bodyl; 
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CollisionData->body2 = -1; 
CollisionData->vCollisionNormal = n; 
CollisionData->vColli5ionPoint = vl[i]; 
CollisionData->vRelativeVelocity = Vr; 
CollisionData->vRelativeAcceleration = Ar. ;bhl + 

, CollisianData->vCollisionTangent = -(VI:.~ 
((vrtn)*n)); 

II note the negative of the taneent vector 
I l  indicates tKat it opposes th; tangential 
/I velocity; this is 50 we can handle 
I /  friction later 
CollisionData->vCollisionTangent .Normalize(); 
CollisionData++; 
NumCollisions++; 
Status = CONTACT: 

return status; 
1 

Since I'm representing each object with a collection of hard points for collisions and 
contact that were initialized in body fixed coordinates, the first thing that this function 
must do is rotate these points to reflect the current orientation of the object and then 
convert them to world coordinates. 

Next comes the part where each vertex, or hard point, is checked against the ground 
plane to see whether it is close enough to be considered in contact. This is accom- 
plishedvia the call to CalcDistanceFromPointToPlane. vl is the poinr that is being checked, 
and the vectors u, v, and tmp describe the ground plane. u and v are axis-aligned vectors 
in the plane of the ground, and tmp is any point on the ground plane, which in this case 
is the origin. CalcDistanceFromPointToPlane is a short function that simply returns the 
closes<distance (perpendicular to the plane) from the point to the plane. Here's what 
it looks like: 

float CalcDistanceFromPointToPlane(Vector pt, Vector u, Vector v, 
Vector pt0nPlane) 
{ 

Vector n = u"v; 
Vector PQ = pt - pt0nPlane; 

return PQ*n; 
1 

As you can see, it first determines the ground plane's normal vector by taking the cross 
product of vectors u and v and then normalizing the result. Next, a vector is constructed 
€tom any point on the plane, in this case tmp, to the poinr under consideration. Finally, 
this vector is dotted with the normal rector to find the projected distance, perpendicular 
to the plane, from the poinr to the plane and returns the result. 

$. 
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If the distance returned from CalcDistanceFromPointToPlane is within the collision toler- 
ance, then CheckGroundPlaneContacts goes on to perform two crucial checks to determine 
whether the point is in resting contact: '.,> 
Relative Velocity 

The relative velocity must be zero or within some minimum velocity threshold. 

Relative Acceleration 
The relative acceleration must be such that the object is accelerating toward the 
ground plane. 

If either of these checks fails, then there is no resting contact. If the relative velocity is 
such that the object is moving toward the ground, then this is a collision and will be 
handled later. If the relative velocity or acceleration is such that the object is moving or 
accelerating away from the gound,  then there is neither a collision nor testing contact, 
and no acaon is required. 

I've already shown you how to calculate relative velocity and acceleration of a point on 
a rigid body, so I won't go into it again here, except to remind !-ou that you must not 
forget to consider both linear velocity and acceleration along with angular velocity and 
acceleration when performing such calculations for any point on the rigid body object. 

If the check was such that the point is indeed in contact, then you need to save the 
contact data in the collision data structure. I've used the same data srructure to handle 
collision data and contact data, so don't let the name of the structure confuse you. 
Furthermore, I've set up an array of such structures so thar multiple collision and 
contact points can be accounted for. Here's what the data structure looks like, along 
with the global array thar I've set up: 

typedef struct - Collision { 
int bodyi; 11 index to body 1 (-1 used to indicate 

/ /  the ground plane) 
int body2; I/ index to body 2 (-1 used to indicate . ~ 

/I ground plane) 
Vector vCollisionNormal; I/ normal vector outward from 

/ I  face of bodv2 
Vector ~CollisionPoint; I /  contact point in global 

/ /  coordinates 
Vector 
Vector 
Vector 

vRelativeVelocity;// relative velocity 
~RelativeAcceleration; / I  relative acceleration 
~CollisionTangent; / I  tangent vector opposing 

/ I  relative velocity tangent 
11 to contacting plane 

> Collision, *pCollision; 

Collision Collisions[NUMBODIES'8]; 
int NumCollisions = 0; 

The elements in the Collision data structure are commented to indicate the purpose 
of each one. Since there are eight hard points defined for each object, there can be a 
total of N U M B ~ I E S  * 8 possible or collisions or contacts at any given time. This sets the 
size of the collisions array NumCollisions is used to keep track of the current number 
of collisions or contacts at any given time. 



Getting back now to CalcObjectForces, you can see down toward the bottom where 
the contact check and calculations are made. This is the part of CalcObjectForces after 
gravity is applied and the sum of moments is storedin the object's data structure. Here's 
that bit of code again for convenience: 

/ /  Handle contacts with ground plane 
Bodies[i].vAcceleration = Bodies[i].vForces / Bodies[i].fMass; 
Bodies[i].vAngularAcceleration = Bodies[i].mInertiaInverse * 

(Bodies[i] .vMoments - 
(Bodies[i].vAngularVelocity " 

(Bodies[i].mInertia * 
Bodies[i] .vAngularVelocity))); 

{ / /  have contact.. . . 
for(j=o; j<NumCollisions; jtt) 
I 

ContactForce = (Bodies[i].fMass/NumCollisions * ( 
-Collisions[j].vRelativeAcceleration * 
Collisions[j].vColli~ionNormal)) * 
Collisions[j] .vColli~ionNo~mal; 

FrictionForce = (ContactForce.Magnitude() * 
FRICTIONCOEFFICIENT) * 
Collisions[j] .vCollisionTaogent; 

BodiesIil .vForces += ContactForce: . . 
Bodiesli1,vForces += FrictionForce: 
contact~orce = ~~otate(-~odies[if.~Orientation, 

ContactForce); 
FrictionForce = QVRotate(-Bodies[i].qOrientation, 

FrictionForce); 
pt = Collisions[j].vCollisionPoint - 

Bodies[i] .vPosition; 
Bodies[i].vMoments += pt"ContactForce; 
Bodies[i].vMaments += pt"Fricti0nForce; 

} 
} 

Before making any checks at all, the object's acceleration, both linear and angular, 
is calculated and stored. This is the same calculation that you've seen already in the 
Stepsimulation function of the flight simulation example and that you will see again 
later in this example. After the call is made to CheckGroundPlaneContacts, if the value 
returned in the variable check indicates a contact, then the contact forces are calculated 
for each contact stored in the collisions array 

ContactForce is the normal force of contact between the point and the plane and is 
equal to the mass of the contacting times the acceleration of that particle. 
Here I'm assuming that the object is made up of a collection of equal-sized particles 



located at each of the hard points that were defined earlier. I'm also considering fric- 
tion here, which acts tangential to the contact plane. FrictionForce is the force due 
to friction and is equal to the magnitude of the normal force ti es the coefficient of ? . .  
friction times the collision tangent of unit length. This gives us a fr~cnon force that 
opposes the tangendal velocity of the contacting point. Note that the collision tan- 
gent was already negated in function CheckGroundPlaneContacts such that it opposes 
the tangendal velocity of the contacting point. Also note that this is a simplified 
friction model in that it assumes that the friction is kinetic and ignores the static 
case. 

Once these two forces have been determined, they are applied to the body in the usual 
manner; that is, the forces are accumulated in the object's data sttucture, and any 
resulting moments are accounted for. 

Integration 
Turning now to integrating the equations of motion, I want to show you the StepSim- 
ulation function for this example. For the most part, it's similar to the stepsimulation 
functions shown in the previous examples; however, here I've added a loop to cycle 
through all the objects in the rigid body array Here's the new function: 

// .................................................................................. 
/I 
11 Using Euler's method 
/ /  ....-...........-..----.--..-- ...................................................... . . 
I1 
void StepSimulation(f1oat dtime) 
I 

Vector Ae; 
int i; 
float dt = dtime; 

11 Calculate all of the forces and moments on all objects 
CalcObjectForces(); 

11 Integrate 
for(i.0; i<NUMBODIES; it+) 
t 

// calculate acceleration earth space: 
Ae = Bodies[i].vForces I Bodies[i].fMass; 
Bodies[i] .vAcceleratian = Ae; 

I1 calculate velocity in earth space: 
Bodies[i].vVelocity += Ae * dt; 

11 calculate position in earth space: 
Bodies[i].vPositicn += Bodies[i].vVelocity * dt; 

I1 Now handle the rotations: 
float mag; 



I1 c a l c . l a l e  tnr  OQA rorarion q~arernion: 
Boairsl i].~OrienrdTion - =  (Roaies[i].qOrl?ntarlon 

/ /  now normalize the orientation quaternion: 
mag = B~dies[i].~~rientation.fla~nitude(); 
if (mag != 0) 

Bodies[i].qOrientation I =  mag; 

I 1  calculate the velocity in body space: 
Badies[i].vVelacityBody = WRotate(-Bodies[i].qOrientation, 

Bodies[i] .vVelocity); 

I 1  calculate speed: 
Bodies[i].fSpeed = Bodies[i].vVelocity.flagnitude(); 

I 1  get the Euler angles for our information 
Vector u; 

u = MakeEulerAnglesFromO(Bodies[i].qOrientation); 
Bodies[i].vEulerAngles.x = u.x; I 1  roll 
Bodies[i].vEulerAngles.y = u.y; I 1  pitch 
Bodies[i].vEulerAngles.z = u.2; I 1  yaw 

} 

I 1  Handle Collisions 
if(CheckForCallisians() == COLLISION) 

ResolueCollisions() ; 
1 ,  

I'm using Euler's method here for simplicity, not because it's necessarily the best 
choice in terms of numerical stability The first thing that Stepsimulation d o e  is make 
a call to CalcObjectForces to update the forces and moments acting on each object. 
Then the function enters a loop to cycle through all the objects and integrate so 
as to update each object's velocity, position, and orientation. All of this integration 
code is taken directly from the flight simulation example, so it should be familiar to 
you. 

After all of the object loads have been updated and the integration is complete, the last 
thing that StepSimulation does is handle any collisions by making a call to CheckFor- 
Collisions and then ResolveCollisions if appropriate, that is, if there were indeed any 
collisions. Remember, these are collisions that are being checked for; contact forces have 
already been accounted for and included in the force and moment computations before 
integration of the equations of motion. 

61,. 
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Collision Response 
As you know already, there are two parts to handling ~ o l l i s i o ~ ~ :  collision detection 
and response. As I said earlier, collision detection, while not eiactly physics, is very 
important in terms of being able to respond to collisions in your simulations. One of 
the difficult aspects of collision detecrion for your game simulations will be balancing 
speed and accuracy You have no doubt come across very accurate collision detection 
routines in various computational geometry sources; however, you'll probably find that 
such methods would be too slow for your games, or perhaps chey get to a level of detail 
that your simulations don't require. At any rate, whatevercollision detectionscheme you 
use, it needs to give you some specific pieces of information about the collision. These 
pieces of information are the ones that I've included in the collision data structure that 
I showed you earlier, in the section discussing contact forces. 

While the method of collision detection that I've used in this simulation is not perfect - 
it's not super accurate and does not catch penetration-it is simple and serves its pur- 
pose here, which is to show you how to handle collision response in three dimensions. I 
won't go into the collision detecrion code in detail here, since it's similar to the method 
I showed you in Chapter U and you can find the source code on O'Reilly's web site; 
however, I will outline the procedure I use so that you will at least know where the 
collision data are coming from. 

Basically, I first make a bounding sphere check to check for possible collisions between 
objects. If this check passes, indicating a potential collision, I go on to check each hard 
point on one body with each bounding box face on che other body If the check indicates 
that the hard point is within the collision tolerance, then I go on to calculate the relative 
velocities between the potentially ~oll idin~points  to see whether they are indeed moving 
toward each other. If they are, then we have a collision, and the appropriate collision 
data are stored, which include the array indices of the two colliding bodies, the collision 
normal and tangent vectors, the actual point of collision in earth coordinates, and the 
relative velocity between colliding points. The data for each collision get stored in the 
same collision data array I used earlier to handle contacts so that they can be iterated 
through when handling the response co each collision. Note, however, that the collision 
data overwrite any contact data previously stored in the array, since the contact data are 
no longer needed (at least not until the next time forces are calculated, at which point 
new contact data will be generated). 

Now, to handle collision response, you need to cycle through each collision data struc- 
ture and calculate and then apply the appropriate impulse, since we are using impulse- 
based response as discussed in Chapters 5 and U. The funcrion I've set up to handle 
collision response is called ResolveCollisions: 

void ResolveCollisions(void) 
( 

i n t  i ; 
Vector p, p t 2 ;  
f l o a t  1; 
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float fCr = COEFFICIENTOFRESTITUTION; 
int bl, b2; 
float Vrt; 
float mu = FRICTIONCOEFFICIENT; 

for(i-0; i<NurnCollisions; i++) 

bl = Collisions[i].bodyl; 
b2 = Collisions[i].body2; 

if(b2 != -1) I/ not ground plane 

prl - Colli~ions!l].rCollisionPoinr - Booi?~[01].\Po~irlun; 
pt2 - Colli~ion~[i].vCollisior~l'oinr - BoOic~(n2].vPo,irion; 

/I calculate impulse 
j = (-(1rfCr) * (Collisions[i].vRelativeVelority * 

Collisions[i] .vCollisionNormal)) I 
( (l/Bodies[bl].fMass + l/Bodies[b2].fMass) + 
(Collisions[i].vColli~ionNo~mal * ( ( (ptl ̂  

Collisionslil .vCollisionNormall * 

Vrt = Collisions[i].vRelativeVelocity * 
Collisions[i] .vCollisionTangent; 

' 1  . . ,, 

if(fabs(vrt) > 0.0) ( .,, .- 
< .  . ,.. . 1 . . 

Bodies[bl].vVelocity += ( (j * 
Collisions[i].vCollisionNormal) t ((mu * j) 1 , ~ ~ : ;  !':,! .; 
* Collisions[i].vCollisionTangent) ) I 

\ ;  . . Bodies[bl].fMass; - m .  
I , .  

r 7 

Bodies[bll.vAngularVelocity += (ptl ̂ ((j * 
Collisions[i].vCollisionNormal) + ((mu * j) 
* Collisions[i].vCollisionTangent))) * 
Bodies[bl] .mInertiaInverse; 

Bodies[b2].vVelocity -= ((j * 
Collisions[i].vCollisionNormal) + ((mu * j) 
* Collisions[i].vCollisionTangent)) I 
Bodies[b2] .fMass; 

Bodies[b2].vAngularVelocity -= (pt2 "((j * 
Collisions[i].vCollisionNormal) + ((mu * j) 
* Collisions[i].vCollisionTangent))) * 
Bodies[b2] .mInertiaInve~se; 

) else ( 
I/ apply impulse 
Bodieslbll .vVelocitv += l i  * 

Bodies[bl].vAngularVelocity += (pti ̂ ( j  * 
Collisions[i].vCollisionNormal)) * 
Bodies[bl] .rnInertiaInverse; 

Collision Response 1 267 



I 
else ( / I  ground plane 

fCr = COEFFICIENTOFRESTITUTIONGROUND; 
p t l  = Callisions[i].vcollisionPoint - Bodies[bl].vPosition; 

I /  calcula te  impulse 
j = (-(lrfcr) * (Collisions[i].vRelativeVelocity * 

Col l i s i ons l i l  .vCollisionNorrnalN I 

Vrt . Collisions[i].vRelativeVelocity * 
Collisions[i] .vColl is ionTangent ;  

if(fabs(Vrt) > 0.0) ( 
Bodies[bl].vVelocity += ( ( j  * 

Collisions[i].vCollisionNormal) + ( ( m u  * j) * 
Collisions[i].vCollisionTangent) ) I 
Bodies[bl] .fMass; 

I /  a p p l y  impulse 
Bodies[bl].vVelocity += ( j  " 

Collisions[i].vCollisionNormal) I 

Bodies[bl].vAngularVelocity += ( p t l  ^ ( j  * 
Collisions[i] .vCollisionNormal)) * 
Bodies[bl] .mInertiaInverse; 

This functionlooks more complicated that it really is because I have two sections in there 
to separately handle collisions between objects and collisions between objecrs and the 
ground plane. 

Upon entering this function, a loop is entered to cycle through each collision that is 
stored in the global collision data array Since all the information for each collision has 
been precalculated and stored in this array, all this function has to do is calculate the 
appropriate impulse and apply it to each colliding object. 

In the case of two colliding objects, the function first calculates the impulse and then 
determines whether or not the magnitude of the relative .~ tangential . -~ velocity is greater 
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than zero. If it is, then the formulas for ap-&e with friction are used w h e n  
updatinggch object's linear and angular velocities; otherwise, the formulas that don't 
account for friction are used. Both sets of formulas are presented in Chapter 5, and 
you might want to go back and refresh your memory if you've forgotten the differences 
between the two sets. 

In the case of an object colliding with the ground, I take the same approach by first 
calculating impulse and then checking the tangential relative velocity and update the 
object accordingly. There is one notable difference in the way I calculate the impulse and 
update the objects that are colliding with the ground. First, when calculating impulse, 
I assume that the ground plane is infinitely massive with infinite inertia such that the 
terms for Bodies[bz] that include mass or inertia in the denominator go to zero and drop 
out of the impulse equation. Second, since the ground plane is static, there's no need 
to update its velocities, anil that's why you see only calculations to update Bodies[bl]. 
Note that my collision detection scheme assumes that when an object collides with the 
ground, the ground is always body& which is set to -1 in the Collisions data array. 

All these calculations are performed for each set of collision data storedin the collisions 
data array up to the index NurnCollisions-1, inclusive. After each one is handled, the 
function returns and the simulation progresses to the next time step. 

Tuning 
I must admit that the first time I tried to run this simulation after setting everything 
up, it didn't work-that is to say, the results were less that realistic. The main reason for 
this was because of my initially assumed parameters such as coefficient of restitution 
for collision response, coefficients of drag, and time step size, among others. I had to go 
through and tune each of these parameters to get the simulation to work correctly. As 
I discussed earlier in this book, parameter tuning is an important part of simulation 
development. You'll often find that you need to balance realism and accuracy for nu- 
merical stability and speed. Of course, depending on your application, one or more of 
these issues may take precedence over the others. 

In this simulation I was not too concerned about speed, and since I didn't implement 
penetration in my collision detection routines, I was not very concerned about penetra- 
don. These factors led me to small time step sizes and large collision tolerances. At the 
same time, since I implemented Euler's method instead of the improved Euler method 
or Runge-Kutta method, I found that I had to increase my drag coefficients to provide 
enough damping for numerical stability. 

To make it easy on myself, I included all the important parameters that were the subject 
of tuning as global defines. Here they are: 

#define GRAVITY -32.174f 
#define LINEARDRAGCOEFFICIENT 5.0f 
#define ANGULARDRAGCOEFFICIENT 1200. O f  
#define COLLISIONTOLERANCE 0.9f 
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#define COEFFICIENTOFRESTITUTION 0.sf 
#define COEFFICIENTOFRESTITUTIONGROUND 0.02sf 
#define VELOCITYTOLERANCE 0.05f 
#define FRICTIONCOEFFICIENT 0.9f '.$ 

You can modify each of these on your own if you would like to see how the simulation 
IS affected. You probably won't have to change them too much to get things to go astray 
in the simulation. For example, if you change the collision tolerance to something 
too small, then it's likely that you will see objects pass through each other owing to 
penetration's not being accounted for. Also, if you increase the coefficients of restitution 
and decrease the drag factors, you're likely to so- things bounce around wildly owing 
to numerical instability 

There are some things that I recommend you try in order to improve the simulation. 
First, implement a better collision detectionsystem. By "better," Idon't necessarily mean 
that you must check each vertex on a polyhedron with each face on other polyhedrons 
or do triangle-triangle intersections. I mean implementing the penetration check, as I 
showed you in Chapter U, or adding some more hard points to each object (the ones 
that are not shaped like boxes) to use during collision detection. In the bibliography I 
give several references that discuss collision detection in detail. 

The next thing I'd recommend is that you implement is the improved Euler method that 
I showed you in Chapter 11, instead of Euler's method. This will help with numerical 
stability and perhaps allow you get away with larger step sizes. 

Finally, the last thing I'd recommend is that you fine-tune the force calculations to suit 
the system that you are trying to model. You can use techniquessimilar to those1 showed 
in the previous examples-for example, the flight simulation, in which I showed you 
how to accurately calculate mass properties using an assembly of point masses and 
showed you how to accurately deal with lift and drag forces. 
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CHAPTER 17 

Particle Systems 

This chapter is somewhat of a departure from the rigid body simulations that I've 
been discussing in that here, I'll show you how to implement a simulation of a flexible 
object. Specifically, the example presented in this chapter will he a simulation of a cloth 
flag, attached to a flagpole, waving in the wind. Figure 17-1 shows a snapshot of the 
simulation. 

Figure 17-1. Cloth Simulahon 

(1,. 



The aim of this example is not to show you how to handle cloth specifically, but rather 
to show you what you can do with collections of particles and springs instead of rigid 
bodies. Particle systems can be used to simulate a wide variety &things such as cloth, 
smoke, and fire. What's nice about using particles is that theqare much simpler to 
handle than rigid bodies, in that you don't have to deal with rotation and the angular 
equations of motion. Not only does this simplify force calculations and integration, but 
collision response also becomes easier, since you need only deal with linear impulse. 

When you first run this simulation, you'll be facino, the flag, as shown in Figure 17-1, 
and it will be waving in a moderate wind. You can use keys 1 through 6 to control the 
strength of the wind, 1 being low and 6 being high. Press the 0 key for no wind, and 
watch as the flag drapes down under its own weight. If you press the R key, the flag will 
be released from the pole and fall to the ground. If the wind setting is 0, then it will fall 
straight down; otherwise, it will be carried away by the wind. You can navigate through 
the simulation using the arrow keys, where the up and down arrows move the camera 
forward and back, respectively, and the left and right arrows turn the camera to the left 
and right, respectively 

Here again, youcan find the executable and source files for this simulation on O'Reilly's 
web site. Much of the code for this simulation is identical, or very similar, to code that 
you've seen in the past several examples, and I won't repeat that code here. Instead, I 
will show you the code that is unique to this example. 

Model 
To simulate the flag in this example, I'm using a collection of particles that are initially 
arranged in a gridlike pattern and then connected by several springs. The springs act as 
suuctural elements that resist loads and hold the particles together. Figure 17-2, is a wire 
frame view of the flag that shows the gridlike arrangement of particles and connecting 
springs. 

Each line in the wire frame flag represents a spring-damper element, while the nodes 
where these springs intersect represent the particles. The springs are modeled by using 
the spring-damper formulas that I showed you back in Chapter 3. The (initially) hor- 
izontal and vertical springs provide the basic structure for the flag, and the diagonal 
springs are there to resist shear forces and lend further strength to the cloth. Without 
these shear springs, the cloth would be quite stretchy Note that there are no particles 
located at the intersecrion of the diagonal springs. 

To handle the particles, I've set up an array of Particle structures to hold the state 
information for each particle during the simulation. Actually, I made the array multidi- 
mensional, since it's easier to visualize the grid position of each particle when setting 
up the connecting springs. Here's the code for the Particle structure andglobal array: 

typedef struct -Particle ( 
float fMass; 
float fInvMass: 



I 
Figure 17-2. Pal-tide-Spping System 

Vec to r  vpos i t i on ;  
Vec to r  v v e l o c i t y ;  
Vector  acceleration; 
Vector  "Forces: 
BOOL blocked; 

} P a r t i c l e ,  ' ppar t i c le ;  
I /  NUMROWS is t h e  number o f  spaces between t h e  rows o f  p a r t i c l e s  
/ /  NUMCOLUMNS i s  t h e  number o f  spaces between t h e  columns of p a r t i c l e s  

P a r t i c l e  Particles[NUMROWS+l] [NUMCOLUMNStl]; 

Each element in the P a r t i c l e  structure is fairly seli-explanatory and should already be 
familiar to you. Essentially, these parameters include the mass properties of the particle 
along with its position, velocity, acceleration, and total force acting on it at any given 
instant in rime. 

The only parameter that might not be obvious is blocked. This parameter is used to 
indicate whether or not the particle is fixed, that is, whether or not it will be allowed 
to move under the influence of iorce. If bLocked is t rue ,  then the particle is locked and 
skipped when the equations of motion are integrated. In this simulation I initially lock 
the upper and lower left particles to attach them to the flagpole. When you press the 
R key to release the flag, the bLocked parameter for these two particles gets reset to f a l s e ,  

and they are allowed to move. 

{I. 
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To handle the springs, I've set up another structure along with a global array to hold 
all the spring data during thesimulation: 

typedef s t r u c t  -Part ic leRef  { 
i n t  r; / I  row index 
i n t  c; 11 column index 

) ParticleRef; 

typedef s t r u c t  -Spring ( 
Par t ic leRef  pl ;  // reference t o  connected p a r t i c l e  # l  
Par t ic leRef  p2; I1  reference t o  connected p a r t i c l e  #2 
f l o a t  k; I1  t e n s i l e  spr ing constant 
f l o a t  d; I 1  damping fac tor  
f l o a t  L; I1  r e s t  l ength  of spr ing 

) Spring, *pSpring; 

#define NUMSTRUCTURALSPRINGS (NUMCOLUMNS*(NUMROWS+l) + 
NUMROWSL(NUnCOLUMNS+l) + 
NUMCOLUMNS*NUMROWS*2) 

Spring StructuralSprings [NUMSTRUCTURALSPRINGS]; 

Elements p~ and p2 in the spr ing  data structure are references to particles in the grid. 
They are of type Par t ic leRef ,  shown above, that holds the row and column position 
(zero-based array indices) of the particle in the P a r t i c l e s  array. The other three pa- 
rameters, k, d, and L, hold'inforrnation describing the spring that will be used in 
calculating the spring force between each connected particle pair; k, d, and L are the 
spring constant, damping factor, and unstretched (or compressed) length of the spring, 
respectively 

Since the geometry of the flag will change continuously throughout the simulation, you 
must rebuild its vertex and face data on the basis of the particle states at each time step. 
To keep track of the flag geometry, I set up two additional global arrays to hold vertex 
and face data that will be used in constructing the 3D object using DirecOD. Here are 
those arrays: 

unsigned i n t  ClothFaces[NUMFACES'3'2]; 
f l o a t  ClothVertices[NUMVERTICES*3'2]; 

Each face is actually a triangle consisting, of course, of three nodes. Note here this it 
appears as though I have nvice the number of faces and nodes required to represent 
the flag (see the * z  in the array size calculation). I had to do this because I'm using 
DirecOD retained mode, which automatically performs back face culling. Thus, I ac- 
tually construct two sides o i  the flag so that it will be visible from either side. Had I 
used immediate mode, or perhaps OpenGL, instead, I would have turned off back face 
culling. 

To set up the start of the simulation, I've prepared a function called I n i t i a l i z e  that fills 
all the data structures for the particles, springs, and cloth geometry: 

#def ine MSSPERFACE 
#def ine CSTEP 
#def ine RSTEP 

(CLoTHf44SSl(float) NUMFACES) 
( ( f l o a t )  CLOTHWIDTH I ( f l o a t )  NUMCOLUMNS) 
( ( f l o a t )  CLOTHHEIGHT I ( f l o a t )  NUMROWS) 



void Initialire(void) 
( 

int 1, C; 

float f; 

unsigned int 'facevertex; 
float 'vertices; 
Vector L: 
int 
int 

count; 
n; 

1 
I1 calc mass of this particle 
if((r == 0) && (C == 0)) 

f = 1; 
else if((r == NUMROWS) && (c == 0)) 

f = 2; 
else if((r == 0) && (c == NUMCOLUMNS)) 

f = 2; 
else if((= == NUMROWS) && ( c  == NUMCOLUMNS)) 

f = 1; 
else i f  = 0 I (I == NUMROWS)) && ( (c  != 0) && 

(C != NUMCOLUMNS))) 
f = 3; 

else 
f = 6; 

Particles[r][c].fMass = (f * MASSPERFACE) 1 3; 
Particles[r] [c] .fInvMass = 1 1 Particles[r] [c] .fMass; 

I1 set initial velocity and forces to zero 
Particles[r][c].vVelocity.x = o.of; 
Particles[r][c].vVelocity.y = O.Of; 
Particles[r][c].vVelocity.z = O.Of; 

Particleslrl lcl .vFo~ces.x = o.Of: . .. . 
Particleslrl lcl.vForce~.v = o.0f: . .. . 
Particles[r][c].vForce5.~ = o.of; 
if((< == 0) && (I == 0 I r == NUMROWS)) 

Particles[r] [c]. bLocked = TRUE; 
else 

Particles[r][c] .bLocked = FALSE; 
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( 
/ /  setup vertices , 

*vertices = Particles[r][c].vPosition.x; vertices++, 
*vertices = Particles[r][c].vPosition.y; vertices++; 
*vertices = Particles[r][c].vPosition.r; vertices++; 

1 

I 
/ /  setup vertices 
'vertices = Particles[r][c].vPosition.X; vertices++; 
'vertices = Particles[r][c].vPosition.y; vertices++; 
'vertices = Particles[r][c].vPosition.z; vertices++; 

/ /  setup faces 
if(= == 0) 
I 

'facevertex = ((NuMCOLUMNS+l)~r) + c; 
faceVertex+t; / /  vertex 1 

*facevertex = ((NUMCOLUMNS+l)'r) + (ctl); 
faceVertex++; / /  vertex 2 

*facevertex = ((NUMCOLUMNS+l)*r) + (NUMCOLUMNS+l) + c; 
faceVertex++; / /  vertex 3 

} else if(= == NUMCOLUMNS) { 
'facevertex = ((NUMCOLUMNS+l)*r) + c; 
faceVertex++; / /  vertex 1 

*facevertex = ((NUMCOLUMNS+l)*r) + (NUMCOLUMNS+l) + c; 
faceVertex++; / /  vertex 2 

'facevertex = ((NUMCOLUMNS+l)*r) + (NUMCOLUMNS+l) + 
(c-1); 

faceVertex++; / /  vertex 3 
} else { 

*facevertex = ((NUMCOLUMNS+l)'r) + C; 
faceVertex++; / /  vertex 1 

'facevertex = ~~~~~~~~~~~~~~~~r) + (NUMCOLUMNS+l) + C; 
facevertextt; / /  vertex 2 

'facevertex = ((NUMCOLUMNS+l}Y) + (NUMCOLUMNStl) + 
(c-1); 

faceVertex++; / /  vertex 3 

*facevertex = ((NUMCOLUMNSt1)'r) + C; 
faceVertex++; / /  vertex 1 



*facevertex = ((NUMCOLUMNSt1)'r) t (c+l); 
facevertextt; I1 vertex 2 

'facevertex = ((NUMC0LUMNStl)'r) t (NUMCOLUMNStl) t c; 
faceVertext+; I1 vertex 3 

I 
/I setup faces 
if(c == 0) 
1 

'facevertex = NUMVERTICES + ((NUMCOLUMNSt1)'r) + 
(NUMCOLUMNS+l) + c; 

facevertextt; I1 vertex 3 

'facevertex = NUMVERTICES + ((NUMC0LUMNStl)'r) t 

(~+l)i 
facevertextt; I1 vertex 2 

*facevertex = NUMVERTICES + ((NUMCOLUMNS+l)'r) + c; 
facevertextt; I1 vertex 1 

} else if(= == NUMCOLUMNS) { 
'facevertex = NUMVERTICES + ((NUMCOLUMNSt1)'r) + 

(NUMCOLUMNStl) + (c-1); 
facevertextt; I1 vertex 3 

'facevertex = NUMVERTICES + ((NUMCOLUMNS+l)"r) + 
(NUMCOLUMNStl) + c; 

facevertextt; I1 vertex 2 

'facevertex = NUMVERTICES + ((NUMC0LUMNStl)'r) + c; 
faceVertex++; I1 vertex 1 

} else { 
-facevertex = NUMVERTICES + ((NUMCOLUMNSt1)'r) t 

(NUMCOLUMNStl) + (c-1); 
facevertextt; I1 vertex 3 

'facevertex = NUMVERTICES + ((NUMCOLUMNSt1)'r) + 
(NUMCOLUMNStl) + c; 

facevertextt; I1 vertex 2 

*facevertex = NUMVERTICES + ((NUMCOLUMNSt1)'r) + c; 
faceVertex++; I1 vertex 1 

'facevertex = NUMVERTICES + ((NUMCOLUMNSt1)'r) + 
(NUMCOLUMNS+l) + C; 

faceVertex++; I/ vertex 3 

'facevertex = NUMVERTICES + ((NUMCOLUMNS+l)'r) + 
(c+1); 

faceVertex++; // vertex 2 

(1 " 
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Ifacevertex = NUMVERTICES + ((NUMCOLUMNS+l)*r) + c; 
facevertexu; 11 vertex I 

11 Create a 030 object to represent the cloth 
CreateCloth("test.bmp", ClothFaces, NUMFACES'2, ClothVertices, 

NUMVERTICES'2, FALSE); 
11 setup the structural springs 
/I connect springs between each adjacent vertex 
count = 0; 
n = NUMSTRUCTURALSPRINGS; 
for(r=O; r<=NUMROWS; I++) 

~tructural~brin~sfcountj.b2.c = =+I; 
StructuralSprings[count].k = SPRINGTENSIONCONSTANT; 
StructuralSprings[count] .d = SPRINGDAMPINGCONSTANT; 
L = Particles[r] [c].vPosition - 

Particles[r] [c+l] .vPosition; 
StructuralSprings[count].L = L.Magnitude0; 
count++; 

I 

StructuralSprings[count].pl.r = I; 
StructuralSprings[count].pl.c = c; 
StructuralSprings[count].p2.r = rtl; 
StructuralSprings[count].p2.c = ctl; 
StructuralSprings[count].k = SPRINGSHEARCONSTANT; 
StructuralSprings[count] .d = SPRINGDAMPINGCONSTANT; 
L = Particles[r][c].vPosition - 

Particles[r+l][c+l] .vPosition; 
StructuralSprings[count].L = L.Magnitude(); 
count++; 

I 



StructuralSprings[count] .p2.r = r+l; 
StructuralSprings[count].p2.c = c-I; 
StructuralSprings[count] . k = SPRINGSHEARCONSTANT; 
StructuralSprings[count] .d = SPRINGDAMPINGCONSTANT; 
L = Particles[r][c].vPosition - 

Particles[r+l] [c-I] .vPositian; 
StructuralSprings[count] .L = L.Magnitude(); 
count++: 

The first set of nested for loops you see in this function iterate through the entire list of 
particles and fill their data structures. The position ofeach particle is calculated so as to 
arrange them in a grid, as I explained earlier. Each particle is assigned a mass calculated 
as one third the sum of masses of each face that shares that particle. 

The next series of loops, up to the call to CreateCloth, set up the flag's face and vertex 
data, which will be passed to Direct3D. CreateCloth actually constructs the flag object 
using Direct3D. Since it is Direct3D-specific code I won't show it here, but you can get 
it from the O'Reilly web site. 

The last set of nested loops sets up the springs that g i ~ e  the flag its suucture. This 
is a somewhat trivial operation in this case, as most of the spring data are fixed, and 
determining the indices to each particle is made easy by the fact that the Particles array 
is multidimensional, corresponding to the rows and columns in the grid. 

The very last thing that gecs initialized is the vector, WindVector, that is used to represent 
the direction of the wind. WindVector is a global variable declared as follows: 

Vector 
float 

WindVector; 
WindForceFactar = WINDFACTOR; 

I've also shown here the variable WindForceFactor that gets multiplied by WindVector when 
determining the wind force acting on the flag. 

In the model I've put together here, there are several other forces, in addition to the wind 
force, that act on the particles making up the flag. You already know that the springs 
will exert forces on the particles to provide structure for the flag. Further, I've modeled 
in gravity as well as viscous drag. All oi  these forces are taken care of in the function 
CalcForces: 

I /  I'm using Oirect3D's coordinate system in this example, where the z- 
I /  axis points into the screen, the x-axis points to the right, and the y- 
I1 axis points upward. 

{IK 
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int 1, c, i, 11, cl, 1 2 ,  c2; 
Vector dragvector; 
Vector fl, f2, d, V; 
float L; 

I1 zero all forces 
for(r.0; r<=NUMROWS; I++) 

I1 process gravity and drag forces 
for(r-0; r<=NUMROWS; I++) 
{ 

for(c=O; c<=NUMCOLUMNS; c++) 

{ 

if (particles[r][c] .bLocked == FALSE) 
t 

I1 gravity 
particles[r] [c] .vForces.y += (float) (GRAVITY * 

particles[r] [c] .fMass); 

I1 viscous drag 
dragvector = -pa~ticles[r][c].vVelocity; 
dragVector.Normalize(); 
particles[r][c].vForces += dragvector * 

(particles[r][c].v~elocity.~agnitude() ' 
particles[r] [c] .vVelocity.Magnitude()) 
DRAGCOEFFICIENT; 

I1 wind 
SetWindVector(tbLRnd(0, lo), 0, tb-Rnd(0, 1)); 

I /  Process spring forces 
for(i = 0; i<NUMSTRUCTURALSPRINGS; it+) 



i f  (particles[rl] [cl] .bLocked == FALSE) 
particles[rl][cl].vForces += f l ;  

if (particles[r2][~2].bLocked == FALSE) 
particles[rz] [cz] .vFoKeS += f2; 

} 
} 

The first thing this function does is zero the forces acting on each particle. Next, the 
function goes on to calculate the gravity, viscous drag, and wind force acting on each 
particle. These calculations are all very similar to those you've seen in the previous 
examples. Note, however, that I've included a little randomness in the wind force cal- 
culation. I did this to ensure that that flag is perturbed enough out of the vertical plane 
that it's initialized in so as to flutter more realistically 

The last loop in this function handles all the spring forces acting on each particle. Since 
all the spring data are set up during initialization, it's a simple matter of extracting 
the data for each spring and applying the spring-damper force to the attached particles 
using the spring-damper force formulas that I gave you in Chapter 3. 

Notice that within all these calculations, checks are made to see whether any given 
particle is locked. If it is locked, forces don't get applied to it, so it remains static. 

Integration 
For this example I again use Euler's method because of its simplicity As with the 
previous examples, I've set up a function called stepsimulation that handles integration 
of the equations of motion. In this particular case the function is quite simple: 

vo id  StepSimulation(f1oat d t )  
{ 

Vector Ae: 
i n t  r, c; 
i n t  check = 0; 

I /  Calculate a l l  of t h e  forces 
CalcForces(Partic1es); 

I /  Integrate 
for(r=O; r<=NUMROWS; I++) 

Ae = Particles[r][c].vForces ' Particles[rl[c].fInvMass; 
Particles[r] [c] .vAcceleration = Ae; 
Particles[r][c].vVelocity += Ae * d t ;  
Particles[r] [c] .vPos i t ion  += Particles[r] [c] .vVelocity * 

d t ;  
} 

I 
I /  Check for collisions 
check = CheckForCollisions(Partic1es); 

p. 
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if(check == COLLISION) 
ResolveCollisions(Particles); 

// Update the D3D cloth object's geometry '$ 
UpdateClothGeometry(); 

1 

Since we're dealing only with particles here and not rigid bodies, the equations of 
motion are limited to linear motion. After making the call to CalcForces, the func- 
tion cycles through all of the particles and updates each one's position, velocity, and 
acceleration. 

After that, a call to CheckForCollisions is made to see whether any of the particles has 
collided with the flagpole or the ground plane. If so, then a call to ResolveCollisions is 
made to apply the appropriate impulse to any particle involved in a collision. 

Finally, UpdateClothGeometry is called to provide Direct3D the new face and vertex infor- 
mation, based on the updated particles, for the flag object. 

Collision Response 
In this example I check for collisions between the particles and the flagpole and the 
particles and the ground plane. If you set the wind to zero, the flag will drape down 
against the flagpole. If you release the locked  articles (by pressing the R key), the flag 
will drop to the ground and either sit there or be blown away, depending on the wind 
setring. 

Since there are a number of particles making up the flag object, you have to be able to 
account for multiple collisions. In this case the maximum number of possible collisions 
is equal to the number of particles (assuming that a particle cannot collide with the 
flagpole and ground at the same time). To store the collision data, I've set up a collision 
structure along with a global array of these structures: 

typedef struct _Collision { 
ParticleRef Pl; 
Vector n; 

} Collision, 'pcollision; 

Collision Collisions[NUMVERTICES]; 

The first parameter in the collision structure, pl, is simply a reference to the particle that 
is involved in the collision. The second parameter, n, is the collision normal vector that 
will be used to calculate the linear impulse. 

Whenever the call to CheckForCollisions is made, the array elements in the Collisions 
array are filled with collision data. Any unfilled elements will have their pl set to -1 to 
indicate the absence of collision data. 

After all of the collisions, if any, have been identified, a call to ResolveCollisions is made. 
Here's what that function looks like: 



void ResolveCollisions(Particle p[NUMROWS+l] [NUMCOLUMNStl]) 
I 

int i: 
int r ,  c; 
Vector Vn, Vt; 

Vt = p[r][c].vVelocity - Vn; 
p[rl[cl.vVelocity = (-(KRESTITUTIONtl) * Vn) + 

(FRICTIONFACTOR*Vt); 
$ 

As you can see, the function is quite short, owing to the fact that we're dealing with 
particles colliding with nonmovable objects; that is, I'm assuming that the flagpole and 
ground are infinitely massive relative to each parricle. In this case, all we really need 
to do is calculate the normal component of the collidingparticle's velocity, reverse it, 
and scale it by the coefficient of restitution to get the particle's normal velocity after 
impact. Next, you can determine the tangendal component of velocity and scale it by 
a friction factor to simulate sliding friction. Adding these new normal and tangential 
velocity components yields the new velocity of the particle at the instant just after 
collision. 

Tuning 
Just as in the previous example, I've placed all the important, controlling parameters in 
a set of global defines so that I can tune the simulation. Here are those defines: 

#define 
#define 
Rdefine 
#define 
Rdefine 
Rdefine 
#define 
Rdefine 
Rdefine 
Rdefine 
#define 
#define 

YOFFSET 
DRAGCOEFFICIENT 
WINDFACTOR 
FLAGPOLEHEIGHT 
FLAGPOLERADIUS 
COLLISIONTOLERANCE 
KRESTITUTION 
FRICTIONFACTOR 

In spite of using Euler's method instead of, say, the improved Euler method, I found 
this simulation to be quite robust as long as the springs were tuned properly For this 
example I fixed the step size to 16 milliseconds and set the physics update-to-display 
update rate at 10 to 1. 

/I. 
b - 
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As you can see, I've defined two different spring constants to represent the main struc- 
tural springs and the shear springs. I did this so that I could tune the shear springs 
independent of the tension springs to see how they affect thelBverall behavior ol  the 
flag. If you play around with these numbers, you'll see that if the shear spring constanc 
is set very low, then [he flag appears very rubbery On the other hand, if you set t h~s  
constant to avery high number, the flag appears quite inelastic in that it does not stretch 
so much under the wind load. 

You have to be careful, though, when increasing these spring constants. If you set either 
of these spring constants too high ir. Lneffort toeliminate any stretchiness, you'll end up 
with what are called stiff equations, and you're likely to run into numerical instability 
Damping can help you a little here. In fact, you should always include a little damping, 
whether ic's viscous damping or spring damping, to help alleviate instability 

If you want to see the effect oldamping, change the spring damping constant to a lower 
number. What you'll find is chat the particles making up the cloth jump around and 
oscillate quite unrealistically This is especially evident if you release the flag and let it 
fall to the ground, where the particles start colliding with the ground. 

Speaking of collisions, you'll probably want to try implementing the penetration check 
that I showed you back in Chapter 13. I was not too concerned about penetration here, 
since the particles could collide only with the flagpole and the ground; however, if you 
are going to implement a system in which your cloth model may collide with arbitrarily 
shaped objects, you should handle penetration. 



APPENDIX A 

Vector Operations 

This appendix implements a class called vector that encapsulates all of the vector 
operations thac you need when writing 2D or 3D rigid body simulations. Although, 
vector represen= 3D vectors, you can easily reduce it to handle 2D vectors by eliminating 
all of the z-terms or simply constraining the z-terms to zero where appropriate in your 
implementation. 

Vector Class 
The vector class is defined with three components, s, y, and z ,  along with several 
methods and operators that implement basic vector operations. The class has two 
constructors, one of which initializes the vector components to zero and the other of 
which initializes the vector components to those passed to the constructor. 

float x; 
float y; 
float z; 

Vector(void); 
Vector(f1oat xi, float yi, float zi); 

float Y,agnitude(void); 
void Normalire(void); 
void Reverse(void); 

Vector& operator+=(Vector u); 
Vector& operator-=(Vector u); 
Vector& operator*=(float 5 ) ;  

Vectorb operatorl=(float s); 

Vector operator-(void); 



I1 Constructor 
inline Vector: :Vector(void) 
( 

// Constructor 
inline Vector::Vector(float xi, float yi, float zi) 
t 

x = xi; 
y = yi; 
z = ri; 

1 

Magnitude 
The Magnitude method simply calculates the scalar magnitude of the vector according 
to the formula 

IVI = Jw 
This is for a zero-based vector in which the components are specified relative to the 
origin. The magnitude of a vector is equal to its length, as illustrated in Figure A-1. 

- 

- 
Figure A-I. Vector Length (Magnitude) 

Here's the code that calculates the vector magnitude for our vector class: 

inline float Vector::Magnitude(void) 
( 

return (float) sqrt(x*x + y*y t z * r ) ;  



Note that you can calculate the components of a vector if you know its length and 
direction angles. Direction angles are the angles between each coordinate axis and the 
vector, as shown in Figure A-2. 

Figure A-2. Direction Angles 

The components of the vector shown in this figure are as follows: 

v,  = IvI COS W X  

v,  = Ivl cos p, 

v,  = IvI COS pz 

The cosines of thedirection angles seen in theseequations are known as directioncosines. 
The sum of the squares of the direction cosines is always equal to 1: 

2 cos p, + cosZ py + cos2 pz = 1 

Normalize 
The Normalize method normalizes the vector, or converts it to a unit vector satisfying 
the following equation: 

IVI = = 1 

In other words, the length of the normalized vector is 1 unit. If v is a nonunit vec- 
tor with components x ,  y,  and 2, then the unit vector u can be calculated from v as 
follows: 

Here, lvl is simply the magnitude, or length, of vector v as described eatlier. 



Here's the code that converts our V e c t o r  class vector to a unit vector: 

i n l i n e  void Vector: :Norrnalize(void) 
t 

f l o a t  rn = ( f l o a t )  sqr t(x*x + y*y + 2'2); 
if(m <= t o l )  m = 1; 
x /= m; 
y I= m; 
z I= m; 

if (fabs(x)  < t o l )  x = 0.Of; 
if (fabs(y)  < t o l )  y = 0.Of; 
if ( fabs ( r )  < t o l )  r = 0.Of; 

) 

In this function to1 is a float type tolerance, for example. 

f l o a t  const  t o 1  = 0.0001f; 

Reverse 
The Reverse  method reverses the direction of the vector, which is accomplished by 
simply taking the negative of each component. After calling Reverse ,  the vector will 
point in a direction opposite to the direction in which it was pointing before Reverse  was 
called. 

i n l i n e  void Vector: :Reverse(void) 
t 

x I .X' 

Y = -y; 
Z I .Z' 

) 

This operation is illustrated in Figure A-3. 

Figure A-3. Vector Reversal 



Vector Addition: The += Operator 
This summation operator is used for vector addition, whereby the passed vector is 
added to the current vector component by component. Graphically, vectors are added 
in rip-to-tail fashion as illustrated in Figure A-4. 

Figure A-4. Vector Addition 

Here's the code that adds the vector u to our vector class vector: 

inline Vector& Vector: :operator+=(Vector u) 
{ 

y += u.y; 
Z += u.2; 
return *this; 

1 

Vector Subtraction: The -= Operator 
This subtraction operator is used to subtract the passed vector from the current one, 
which is performed on a component-by-component basis. Vector subtraction is very 
similar to vector addition except that you take the reverse of the second vector and add 
it to the first as illustrated in Figure A-5 

Figure A-5. Vector Subtraction 

{I.. 



Here's the code that subtracts vector u from our Vector class vector: 

inline Vector& Vect0r::operator-=(Vector u) -.,J" 

X -= u.x; 

y z -= -= U.Yi U.L, 

return *this; 
) 

Scalar Multiplication: The += Operator 
This is the scalar multiplication operator that's used to multiply a vector by a scalar, 
effectively scaling the vector's length. When you n~ultiply a vector by a scalar, you simply 
multiply each vector component by the scalar quantity to obtain the new vector. The 
new vector points in the same direction as the unscaied one, but its length will be 
different (unless the scale factor is 1). This is illustrated in Figure A-6. 

Here's the code that scales our Vector class vector: 

inline Vector& Vector: :operator*=(float s) 

x *=s; 
y *=s; 
z '-5; 
return *this; 

) 

Scalar Division: The /= Operator 
This scalar division operator is similar to the scalar multiplication operator except that 
each vector component is divided by the passed scalar quantity 

inline Vector& Vector: :operator/=(float s )  
I 

x 1;s; 
y l=s; 
z 1.s; 
return 'this; 

F 

Conjugate: The - Operator 
The conjugate operator simply takes the negative of each vector component and can 
be used when subtracting one vector from another or for reversing the direction of the 
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vector. Applying the conjugate operator is the same as reversing a vector, as discussed 
earlier. 

inline Vector Vector::operator-(void) 

return Vector(-x, -y, -z); 
1 

Vector Functions and Operators 
The functions and overloaded operators that follow are useful in performing operations 
with two vectors, or with a vector and a scalar, where the vector is based on the vector 
class. 

Vector Addition: The + Operator 
This addition operator adds vector v to vector u according to the formula 

u + v = (u, + v.)i + (uy + vy)j + (uZ + vz)k 

Here's the code: 

inline Vector operator+(Vector u, Vector v) 
{ 

return Vector(u.x + v.x, u.y + v.y, u.z + v.z) ;  
1 

Vector Subtraction: The - Operator 
This subtraction operator subtracts vector v from vector u according to the formula 

u - v = (u, - vx)i + (us - vy)j + (uZ - vJk 

Here's the code: 

inline Vector operator-(Vector u, Vector v) 
{ 

return Vector(u.x - v.x, u.y - v.y, u.z - v .z ) ;  
} 

Vector Cross Product: The A Operator 
This cross product operator takes the vector cross product between vectors u and v,  
u x v,  and returns a vector perpendicular to both u and v according to the formula 

The resulting vector is perpendicular to the plane that contains vectors u and v. The 
direction in which this resulting vector poinrs can be determined by the righthand ruie. 
If you place the two vectors, u and v, tail to tail as shown in Figure A-7 and curl your 
fingers (of your right hand) in the direction from u to v,  your thumb will point in the 
direction of the resulting vector. 

.& 
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I 
Figure A-7. Vector Cross Product 

In this case the resulting vector points out of the page along the z-axis, since the vectors 
u and v lie in the plane formed by the x-  and y-axes. 

If two vectors are parallel, then their cross product will be zero. This is useful when you 
need to determine whether or not two vector are indeed parallel. 

The cross product operation is distributive; however, it is not commutative: 

U X V ~ V X U  

u x v = - ( v X U )  

s(u x v) = (s)(u) x v = u x (s)(v) 

u x (v + p) = (u X V) + (u x p)  

Here's the code that takes the cross product of vectors u and v: 

inline Vector operatorA(Vector u, Vector v) 
'a 

return Vector( u . y * v . z  - u.z*v.y,  
-U.x*".Z + U.L*".X, 
u.x*v.y - u.y*v.x ); 

1 
Vector cross products are handy when you need to find normal (perpendicular) vectors. 
For example, when performing collision detection, you often need to find the vector 
normal to the face of a polygon. You can construct twovectors in the plane of the polygon 
using the polygon's vertices and then take the cross product of these two vectors to get 
normal vector. 

Vector Dot Product: The * Operator 
This operator takes the vector dot product between the vectors u and v, according to 
the formula 

u . v = ( u , * v , ) + ( u y * v y ) + ( u z * ~ ~ )  



The dot product represents the projection of the vector u onto the vector v as illustrated 
in Figure A-8. 

Figure A-8. Vector Dot P~oducl 

In this figure, P is the result of the dot product, and it is a scalar. You can also calculate 
the dot product if you the know the angle between the vectors: 

P = u . v = j u l ~ v ~ c o s e  

Here's the code that takes the dot product of u and v: 

/ /  Vector dot product 
inline float operator*(Vector u, Vector v)  
1 

return (u.x*v.x + u.yev.y + u.z*v.z); 
) 

Vector dot products are handy when you need to find the magnitude of avector projected 
onto another one. Going back to collision detection as an example, you often have to 
determine the closest distance from a point, which may be a polygon vertex on one 
body (body I), to a polygon face on another body (body 2). If you construct a vector 
from the face under consideration on body 2, using any of its vertices, to the point under 
consideration from body 1, then you can find the closest distance of that point from the 
plane of body 2's face by taking the dot product of that point with the normal vector 
to the plane. (If the normal vector is not of unit length, you'll have to divide the result 
by the magnitude of the normal vector.) 

Scalar Multiplication: The * Operator 
This operator multiplies the vector u by the scalars on a component-by-component 
basis. There are two versions of this overloaded operator depending on the order in 
which the vector and scalar are encountered: 

inline Vector operator*(float s, Vector u) 
I 

return Vector(u.x*s, u.y*s, u.z*s);  
1 

inline Vector operator*(Vector u, float s) 
I 

return Vector(u.x*s, u.y*s, u.z*s); 
} , . 

{I. 

- 
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Scalar Division: The 1 Operator 
This operator divides the vector u by the scalar s on a componergt'by-component basis: 

inline Vector operatorl(Vector u, float s) 
{ 

return Vector(u.x/s, u.y/s, u.zls); 
I 

Triple Scalar Product 
This function takes the triple scalar product of the vectors u, v, and w according to the 
formula 

s =u.(vxw) 

Here, the result, s ,  is a scalar. The code is as follows: 

inline float TripleScalarPraduct(Vector u, Vector v, Vector w) 
i 

return float( (u.x * (v.y*w.z - v.z*W.y)) + 
(u.y * (.Y.x*w.z + v.z*w.x)) + 
(u.z * (V.X*W.Y - v.y*w.x)) ); 

I 
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APPENDIX B 

Matrix Operations 

This appendix implements a class cal!ed Matrix3x3 that encapsulates all of the oper- 
ations you need to handle 3 x 3 (nine-element) matrices when writing 3D rigid body 
simulations. 

Matrix3x3 Class 
The Matrix3x3 class is defined with nine elements, e i j ,  where i represents the ith row 
and j represents the jth column. For example, e ,  refers to the element on the second 
row in the first column. Here's how al! of the elements are arranged: 

The class has two constructors, one of which initializes the matrix elements to zero and 
the other of which initializes the elements to those passed to the constructor: 

class Matrix3x3 { 
public: 

I /  elements eij: i ->  row, j - >  column 
float ell, el2, e13, e21, e22, e23, e31, e32, e33; 
Matrix3x3(void); 
Matrix3x3(float rlcl, float rlc2, float nc3, 

float r2c1, float 1x2, float r2c3, 
float r3c1, float r3c2, float 130 ); 

float det(void); 
Matrix3x3 Transpose(void); 
Matrix3x3 Inverse(void); 

Matrix3x3& operator+=(Matrix3~3 m); 
Matrix3x3& operator-=(Matrix3x3 m); 
Matrix3x3& operator*=(float 5); 
Matrix3x3& operator/=(flaat 5); 

}; 



// Constructor 
inline Matrix3~3::Matrix3~3(void) 

ell = 0;  
el2 = O; 
e13 = o; 
e21 - O; 
e22 - 0;  
e23 = o; 
e31 = 0 ;  
e32 = 0 ;  
e33 = 0;  

1 

I1 Constructor 
inline Matrix3x3: :Matrix3x3(float rlcl, float rlc2, float 1x3, 

float 12~1, float r2c2, float r2c3, 
float 13~1, float r3c2, float r3c3 ) 

Determinant 
The method, det, returns the determinant of the matrix. The determmant of a 2 x 2 
matrix, 

is as follows: 

The determinant of a 3 x 3 matrix is found by first expanding the matrix by minors, 
and then resolving the determinants of the 2 x 2 minors. Here's how you expand a 
3 x 3 matrix by minors: 

Here's how this all looks in code: 

inline float Matrix3~3::det(void) 
{ 

return ell*e2Zte33 - 
ell*e32*e23 t 
e21*e32*e13 - 



Transpose 
The method, Transpose, transposes the matrix by swapping rows with columns, that 
is, the elements in the first row become the elements in the first column and so on for 
the second and third rows and columns. The following relations are true for transpose 
operations: 

( M y  = M 
(sM)' = s (M') 
(MN)' = NrM' 

( M + N ) ' = M ' + N t  
det[ML] = det[M] 

Here, M and N are matrices, t is the transpose operator, and s is a scalar, 

Here's the Transpose method for our Matrix3x3 class: 

inline Matrix3x3 Matrix3~3::Transpose(void) 
I 

return ~atrix3~3(ell,e2l,e3l,el2,e22,e32,el3,e23,e33); 

1 

Inverse 
The method Inverse computes the inverse matrix such that the following relarion is 
satisfied: 

Here, M-' is the inverse of matrix M, and I is the identity matrix. For a 3 x 3 matrix, 
the inverse is found as follows: 

Here, Eij represents the cofactor of element. eij,  which can be found by taking the 
determinant of the minor of each element. Only square matrices, those with the same 
number of rows as columns, can be inverted. Note, however, that not all square matrices 
can be inverted. A matrix can be inverted only if its determinant is nonzero. 
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The follow relation applies to matrix inversion: 

Here's how matrix inversion looks in code for our Matrix3x3 class: 

inline Matrix3x3 Matrix3x3: :Inverse(void) 

( 
float d = ellxe22*e33 - 

ell*e32*e23 + 
e21*e32*e13 - 
e21*e12*e33 + 
e31qe12*e23 - 
e3lXe22*e13; 

if (d == 0) d = 1; 

return Matrix3x3( (e22*e33-e23*e32)/d, 
-(e12*e33-e13*e32)/d, 
(el2*e23-e13*e22)/d, 
- (e2l*e33-e23*e31)/d, 
(eii*e33-e13*e31)/d, 
-(ell*e23-e13*e2l)/d, 
(e2l*e32-e22*e3l)/d, 
-(ell*e32-e12*e31)/d, 
(ell*eZZ-e12*e21)/d ); 

) 

Matrix Addition: The -I-= Operator 
This operator simply adds the passed matrix to the current one on an element-by- 
element basis. For two matrices to be added, they must be of the same order, that is, 
they must have the same number of rows and columns. 

ell += rn.el1; 
el2 t= rn.el2; 
el3 += m.el3; 
e21 += m.e21; 
e22 += m.e22; 
e23 += m.e23; 
e31 += m.e3i; 
e32 += rn.e32; 
e33 += m.e33; 
return *this; 

) 

Matrix addition (and subtraction) is commutative, associative, and distributive; thus, 



Matrix Subtraction: The -= Operator 
This operator simply subtracts the passed matrix from the current one on an element- 
by-element basis. For two matrices to be subtracted, they must be of the same order, 
that is, they must have the same number of rows and columns. 

inline Matrix3x3& Matrix3x3: :operator-=(Matrix3x3 m) 
{ 

ell -= m.el1; 
el2 -= m.el2; 
el3 -= m.e13; 
e21 -= m.e21; 
e22 -=  m.e22; 
e23 -=  m.e23; 
e31 -= m.e31; 
e32 -=  m.e32; 
e33 -=  m.e33; 
return *this; 

I 

Scalar Multiplication: The *= Operator 
This operator simply multiplies each element by the scalar, s: 

inline Matrix3x3& Matrix3x3: :operator*=(float s )  

i 
ell *= s ;  
el2 *= s ;  
el3 *= s ;  
e21 *= s; 
e22 *= s; 
e23 *= s; 
e31 *= s; 
e32 *= s; 
e33 *= s; 
return *this; 

i 
The following relation applies for scalar multiplication (and division): 

s(MN) = (sM)N = M(sN) 

Scalar Division: The I= Operator 
This operator simply divides each element by the scalar, s :  

inline Matrix3x3& Matrix3x3: :operator/=(float s) 
1 

ell / =  5; 
el2 / =  5; 
el3 /= s; 
e21 /= 5; 
e22 /= 5; 
e23 /= s; 
e31 /= 5; 
e32 /= s ;  
e33 /= s; 
return *this; 

I 



Matrix Functions and Operators 
The functions and overloaded operators that follow are usefulin'$erforming operations 
with two matrices, with a matrix and a scalar, or ulth a matrix and a vector. Here, the 
matrices are assumed to be of the type Matrix3x3 and vectors of the type Vector as 
discussed in Appendix A. 

Matrix Addition: The + Operator 
This operator adds the two matrices together on an element-by-element basis: 

inline Matrix3x3 operator+(Matrix3~3 ml, Matrix3x3 m2) 

{ 
return Matrix3x3( ml.ellrm2.el1, 

ml.el2+mZ.e12, 
ml.e13+m2.e13, 
ml.eZl+m2.e21, 
nl,e22+m2.e22, 
ml.e23+mZ.e23, 
ml.e31+m2.e31, 
ml.e32+mz.e32, 
ml.e33+mz.e33); 

} 

Matrix Subtraction: The -Operator 
This operator subtracts matrix m2 from m l  on an element-by-element basis: 

inline Hatrix3x3 operator-(Matrix3x3 ml, Matrix3x3 m2) 

Scalar Divide: The l Operator 
This operator divides every element in the matrix, m, by the scalar, s: 

inline Matrix3x3 operatorl(Matrix3~3 In, float s) 

return 



Matrix Multiplication: The * Operator 
This operator, when applied between two matrices, performs a matrix multiplication. 
In matrix multiplication, each element, ei,, is determined by the product of the ith row 
in the first matrix and the jth column of the second matrix: 

I 
return Matrix3~3(ml.ell*rn2.ell t ml.el2*m2.e21 + rnl.e13*m2.e31, 

ml.ell*m2.e12 + rnl.e12*m2.e22 + ml.e13*m2.e32, 

Two matrices can be multiplied only if one has the same number of columns as the 
other has rows. Matrix multiplication is not commutative, but it is assocociative; thus, 

Scalar Multiplication: The * Operator 
This operator, when applied between a matrix and a scalar, multiplies each element 
in the matrix, m, by the scalar, s. Two forms are given here depending on the order in 
which the matrix and scalar are encountered: 

inline Matrix3x3 operator*(Matrix3x3 m, float s) 
i 

return Matrix3x3( m.ell*s, 
m.el2'5, 
m.e13*s, 
m.e21*5, 
m.e22*s, 
m.e23*s, 
rn.e31es, 
m.e32*s, 
m.e33*5); 

) 

return Matrix3x3( m.ell's, 
m.elZ*s, 
m.el3'5, 
m.e21*5, 
m.e22*5, 
m.e23*5, 
m.e31*5, 
m.e32*5, 
m.e33*5); 

1 



Vector Multiplication: The * Operator 
This operator, when applied between a vector and a matrix, grforms a vector multi- 9 
plication in which the ith column in the matrix is multiplied by the ith component in 
the vector. Two forms are given here depending on the order in which the matrix and 
vector are encountered. 

inline Vector operator*(Matrix3~3 m, Vector u) 
I 

return Vector( rn.el1'u.x + m.el2'u.y + m.el3*u.z, 
m.ezl*u.x + rn.ez2'u.y + m.e23*u.z, 
m.e3l*u.x + rn.e32*u.y + m.e33*u.z); 

inline Vector operator*(Vector u, Matrix3x3 m) 
1 

return Vector( u.x*m.ell t u.y*m.e21 + u.z*m.e31, 
u.x*m.e12 + u.y*m.e22 + u.z*m.e32, 
u.x*m.e13 + u.y*m.e23 + u.z*m.e33); 

1 
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APPENDIX C 

Quaternion Operations 

This appendix implements a class called Quaternion that encapsulates all of the oper- 
arions you need to handle quaternions when writing 3D rigid body simulations. 

Quaternion Class 
The Quaternion class is defined with a scalar component, n, and vector component, v, 
where v is the vector xi + yj + zk. The class has two constructors, one that initializes 
the quaternion to zero and one that initializes the elements to those passed to the 
constructor: 

class Quaternion { 
public: 

float n; / /  number (scalar) part 
Vector v; / /  vector part: v.x, v.y, v.2 

Quaternion(void); 
Quaternion(f1oat eo, float el, float e2, float e3); 

float Magnitude(void); 
Vector CetVector(void); 
float CetScalar(void); 
Quaternion operatort=(Quaternion q); 
Quaternion operator-=(Quaternion q); 
Quaternion operator*=(float s); 
Quaternion operator/=(float s); 
Quaternion aperator-(void) const { return Quaternion( n, 

-V.X, 

-v.v. 

/ /  Constructor 
inline Quaternion::Quaternion(void) 
I 



11 Constructor 
inline QuateInion::Quaternion(float eo, float el, float e2, float e3) 
{ '.,.' 

n = eO; 
v.x = el; 
v.y = e2; 
v.z = e3; 

} 

Magnitude 
The method, Magnitude, returns the magnitude of the quaternion according to the 
following formula: 

1q1 = Jn2 + x2 + y2 + z2 

This is similar to calculating the magnitude of a vector except that for quaternions you 
have to take the fourth term, the scalar n, into account. 

Here's the code that calculates the magnitude for our quaternion class: 

inline float Quaternion::Magnitude(void) 
I . return (float) sqrt(n*n + v.x*v.x + v.y*v.y + v.2'v.z); 
1 

GetVector 
The method, GetVector, returns the vector part of the quaternion. This method uses the 
Vector class defined in Appendix A: 

inline Vector Quaternion::GetVector(void) 
{ 

return Vector(v.x, v.y, v.2); 

1 

GetScalar 
The method Getscalar returns the scalar part of the quaternion: 

inline float Quaternion::GetScalar(void) 
{ 

return n; 
} 

Quaternion Addition: The += Operator 
This operator performs quaternion addition by simply adding the quaternion, q, to the 
current quaternion on a component-by-component basis. 

If q and p are two quaternions, then 



Here, nq + np is the scalar part of the resulting quaternion, while (xq +xp) i  + 
(y ,  + yp)j + (z ,  + z p ) k  is the vector part. 

Quaternion addition is both associative and commutative; thus, 

q + ( p + h )  = ( q + p ) + h  

q + p = p + q  

Here's the code that adds the quaternion q to our Quaternion class: 

inline Quaternion Quaternion: :operator+=(Quaternion q) 

n += q.n; 
v.x  += q.v.x; 
v.y += 9.v.y; 
v . r  += q.v.2; 
return *this; 

} 

Quaternion Subtraction: The -= Operator 
This operator performs quaternion subrrac.tion by simply subtractin g the quatei 
q ,  from the current quaternion on a component-by-component basis. 

If q and p are two quaternions, then 

q - p = q + (-p) = [n, - 1 1 , .  (xq - xp)i + oJq - yp)j + (2, - zp)kl 

Here, nq - np is the scalar part ot' the resulting quaternion, while (xq - xp)i + 
(yq - y,)j + (zq - zp)k  is the vector part. 

Here's the code that subtracts the quaternion q from our Quaternion class: 

inline Quaternion Quaternion: :operator-=(Quaternion q) 
{ 

n -= q.n; 
v.x  -= q.v.x; 
v.y -= 4.v.y; 
v . 2  -= q.v.r; 
return *this; 

T 

Scalar Multiplication: The *= Operator 
This operator simply multiplies each component in the quaternion by the scalar, s.  This 
operation is similar to scaling a vector as described in Appendix A. 

inline Quaternion Quaternian::aperator*=(float s )  
I 

v . y  *= 5 ;  

v.2 *= 5;  

return *this; 
} 
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Scalar Division: The I= Operator 
This operator simply divides each component in the quaternio eb the scalar, s: T Y  

in l ine  Quaternion Quaternion: :operator/.(float s )  
{ 

n /- s; 
v.x I= s;  
v.y I= s;  
v.2 /= 5; 
return *this;  

} 

Conjugate: The -- Operator 
This operator takes the conjugate of the quacernion, -q, which is simply the negative 
of the vector part. If q = [n, xi + yj + zk], then -q = [n, (-x)i + (-y)j + (-4kI. 

The conjugate of the product of quaternions is equal to the product of the quaternion 
conjugates, but in reverse order: 

Here's the code that computes the conjugate for our Quaternion class: 

Quaternion operator-(void) const { return Quaternion( n, 
-".X, 

-v .y> 
-v.z);} 

Quaternion Functions and Operators 
The functions and overloaded operators that follow are useful when performing oper- 
ations with two quaternions, with a quaternion and a scalar, or with a quaternion and 
a vector. Here, the quaternions are assumed to be of the type Quaternion, and vectors 
are assumed to be of the type Vector as discussed in Appendix A. 

Quaternion Addition: The + Operator 
This operator performs quaternion addition by simply adding the quaternion q l  to 
quaternion q 2  on a component-by-component basis: 

in l ine  Quaternion operator+(Quaternion ql, Quaternion q2) 



Quaternion Subtraction: The - Operator 
This operator performs quaternion subtraction by simply subtracting the quaternion 
q2 from quaternion q i  on a component-by-component basis: 

inline Quaternion operator-(Quaternion ql, Quaternion q2) 
I 

return Quaternion( q1.n - q2.n, 
q1.v.x - q2.v.x, 
q1.v.y - q2.v.y, 
q1.v.z - q2.v.z); 

Quaternion Multiplication: The * Operator 
This operator performs quaternion multiplication according to the following formula: 

Here, nqnp - v,  . v,  is the scalar part of the result and nqvp + npvq + (v, x v p )  is the 
vector part. Also note that v,  and V ,  are the vector parts of q and p ,  respecrively, . is the 
vector dot product operator, and x is the vector cross product operator. 

Quaternion multiplication is associative but not commutative; therefore, 

q(ph) = (qp% 

4P # P4 

Here's the code that mulnplies two quaternions q i  and q2: 

inline Quaternion operatorX(Quaternion ql, Quaternion q2) 
I 

return 

Scalar Multiplication: The * Operator 
This operator simply multiplies each component in the quaternion by the scalar, s. 
There are two forms of this operator depending on the order in which the quaternion 
and scalar are encountered: 

inline Quaternion operator*(Quaternion q, float 5) 
1 

return Quaternion(q.nrs, q.v.x*s, q.v.y*s, q.v.z*s); 

1 
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inline Quaternion operator*(float s, Quaternion q) 
{ 

return Quaternion(q.n's, q.v.x*s, q.v.y*s, q.v.2 
) 

Vector Multiplication: The * Operator 
This operator multiplies the quaternion q by the vector v as though the vector v were a 
quaternion with its scalar component equal to zero. There are two forms of this operator 
depending on the order in which the quaternion and vector are encountered. Since v is 
assumes to be a quaternion with its scalar part equal to zero, the rules of multiplication 
follow those outlined earlier for quaternion multiplication. 

inline Quaternion operatorf(Quaternion q, Vector v) 

return Quaternion( -(q.v.x*v.x + q.v.y*v.y + q.v.zfv.z), 
q.n*v.x + q.v.y*v.z - q.v.z*v.y, 
q.nfv.y + q.v.zfv.x - q.v.x*v.z, 
q.n*v.z + q.v.x*v.y - q.v.y*v.x); 

r 
inline Quaternion operator*(Vector v, Quaternion q) 
{ 

return Quaternion( -(q.v.x*v.x + q.v.y*v.y + q.v.zfv.z), 
q.n*v.x + q.v.z*v.y - q.v.y*v.z, 
q.n*v.y + q.v.x*v.z - q.v.z*v.x, 

Scalar Division: The / Operator 
This operator simply divides each component in the quaternion by the scalar, s: 

inline Quaternion operatorl(Quaterni0n q, float s) 
{ 

return Quaternion(q.nls, q.v.xls, q.v.yls, q.v.215); 
) 

This function extracts the angle of rotation about the axis represented by the vector 
part of the quaternion: 

inline float QGetAngle(Quaternion q) 
{ 

return (float) (z'acos(q.n)); 
) 

* For a description ofhowquarcrnions are used to reprecent rotation, rcfei ta the section entitled "Quarernians" 
in Chapter 14. 



QGetAxis 
This function returns a unit vector along the axis of rotation represented by the vector 
part of the quaternion, q: 

inline Vector QGetAxis(Quaterni0n q) 
{ 

Vector v; 
float m; 

v = q.GetVector(); 
m = v.Magnitude(); 

if (rn <= tol) 
return Vector(); 

else 
return vlm; 

1 

QRotate 
This function rotates the quaternion p by q according to the formula 

P' = (q)(p)(-q) 

Here, -q is the conjugate of the unit quaternlon, q. Here's the code: 

inline Quaternion QRotate(Quaterni0n ql, Quaternion qz) 

return ql*qz*(-ql); 
1 

QVRotate 
This funcnon rotates the vector v by the unit quaternion q according to the formula 

P' = (q)(v)(-q) 

Here, -q is the conjugate of the unit quaternion, q. Here's the code: 

inline Vector QVRotate(Quaterni0n q, Vector v) 
I 

Quaternion t; 

t = q*v*(-q); 
return t.GetVector(); 

} 

This function constructs a quaternion from a set of Euler angles 

For a given set ofEuler angles, yaw ( ~ ) ,  pitch ( r ) ,  and roll (p) definingrotation about the 
z-axis, then the y-axis, and then the z-axis, you can construct the representative rotation 
quaternion. You do this by first constructing a quaternion for each Euler angle and then 

/I. 
b - 
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multiplying the three quaternions follo\xlng the rules of quaternion multiplication. Here 
are the three quaternions representing each Euler rotation angle: 

Each one of these quaternions is of unit length.' 

Now you can multiply these quaternions to obtain a single one that represents the 
rotation, or orientation, defined by the three Euler angles: 

Performing this muluplicarion ylelds 

Here's the code that takes three Euler angles and returns a quaternion: 

i n l i n e  Quaternion MakeQFromEulerAngles(f1aat x, f l o a t  y, f l o a t  2 )  

{ 

double cyaw, c p i t c h ,  c r a l l ,  syaw, s p i t r h ,  s r o l l ;  
double cyawcpitch, syawspitch, cyawspitch, syawcpitch; 

~, ~ - , .. 
cp i tch  = cos(0.5f * p i t c h ) ;  
c r o l l  = cos(o.5f  * r o l l ) ;  
syaw = sin(o.5f  * yaw); 
s p i t c h  = sin(o.5f  * pl tch) ;  
s r o l l  = sin(0.5f  * r o l l ) ;  

cyawcpitch = cyaw'cpitch; 
syawspitch = syaw'spitch; 
cyawspitch = cyaw'spitch; 
syawcpitch = syaw'cpitch; 

q.n = ( f l o a t )  (cyawcpitch * c r a l l  + syawspitch * s r o l l ) ;  
q.v.x = ( f l o a t )  (cyawcpitch * s r a l l  - syawspitch * c r o l l ) ;  
q.v.y = ( f l o a t )  (cyawspitch * c r o l l  + syawcpitch * s r o l l ) ;  
q.v.z = ( f l o a t )  (syawcpitch * m o l l  - cyawspitch * s r o l l ) ;  

r e t u r n  q; 
1 

* You can verify this by recalling rhc rrigonomerric relacion cos2 0 + sin2 0 = 1 



This function extracts the three Euler angles from a given quaternion. 

You can extract the three Euler angles from a quaternion by first converting the quater- 
nion to a rotation matrix and then extracting the Euler angles from the rotation matrix. 
Let R be a nine-element rotation matrix, 

and let q be a quaternion, 

q = [n, xi + yj + zk] 

Then each element in R is calculated from q as follows: 

2 2 2  r ~ l  = n2 + x - y - z 

rzl = 2xy + 2zn 
r 3 ~  = 2zx - 2yn 

rn = 2xy - 2zn 
2 2 2  r22=n2-x  + y  - 2  

132 = 2zy + 2xn 

r~ = 2x2 + 2yn 

r a  = 2yz - 2xn 
2 2 2 2  r n = n  - x  - y  + z  

To extract the Euler angles, yaw ($), pitch ( r ) ,  and roll (rp), from R, you can use these 
relations: 

s ins  = -r31 

tan rp = mlr33 
tan$ = r2llru 

Here's the code that extracts the three Euler angles, returned in the form of a Vector, 

from a given quatetnion: 

inline Vector MakeEulerAnglesFromO(Ouaternion q) 
I 

double 111, 121, 131, 132, 133, 112, 113; 
double qoo, qll, q22, q33; 
double tmp; 
Vector u; 
qoo = q.n * q.n; 
$1 = q.v.x * q.v.x; 
q22 = q.v.y * q.v.y; 
q33 = q.v.2 * q.v.2; 
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131 = 2 * (q.v.x*q.v.z - q.ntq.v.y); 
132 = 2 * (q.v.y*q.v.z + q.n*q.v.x); 
133 = qOO - qll - q22 + q33; 

tmp = fabs(r3l); 
if(tmp > 0.999999) 
I 

u.x = RadiansToDegrees(o.of); //roll 
u.y = RadiansToDegrees((f1oat) (-(pil2) * rWtmp)); / I  pitch 
u.z = RadiansToDegrees((f1oat) atan2(-112, -131*r13)); / I  yaw 
return u; 

} 

u.x = RadiansToDegrees((f1aat) atanz(r32, r33)); /I roll 
u.y = RadiansToDegrees((float) asin(-131)); /I pitch 
u.z = RadiansToDegrees((f1oat) atanz(r21, 111)); /I yaw 
return u; 

Conversion Functions 
These two functions are used to convert angles from degrees to radians and radians to 
degrees. They are not specific to quaternions but are used in some of the code samples 
shown earlier. 

inline float DegreesToRadians(f1oat deg) 
I 

return deg * pi / 18O.Of; 
1 

inline float RadiansToDegrees(f1oat lad) 
I 
I 

return rad * 18o.Of / pi; 
1 
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Symbols 
.r operator 

in matrix operations 
matrix multiplication, 301 
scalar mulriplication, 301 
vector multiplication, 302 

in quaternion operations 
quaternion mulriplication, 307 
scalar multiplication, 307-308 
vector multiplication, 308 

in vector operations 
scalar multiplication, 293 
vector dot product, 292-293 

*= operator 
in mauix operations, 299 
in auaternion ooerations. 305 
in vector operations, 290 

+operator 
in mauix operations, 300 
in quaternion operadons, 306 
in vector operadons, 291 

+=operator 
in mauix operarions, 298 
in quaternion operadons, 304-305 
in vector operations, 289 

- operator 
in mauix operations, 300 
in quaternion operations, 307 
in vector operations 

conjugate, 29&291 
vector subsuaction, 291 

-= operator 
in matrix operations, 299 
in quaternion operadons, 305 
in vector operations, 289-290 

foperator 
in matrix operations, 300 T~~~ 

in quaternion operadons, 308 
in vector operadons, 294 

/=operator 
iimauix operations, 299 
in quaternion operations. 306 
in vector operations, 290 

operator, in quaternion operadons, 
306 

A operator, in vector operadons, 
291-292 

acceleration 
angular, 4 , 5 M 6  
centripetal, Z-53 
concepts, 27-28 
constant, 28-30 
equations for, 7'-i3 
linear, units and symbol for, 4 
nonconstant, 30-31 
relative, 55-56 
tangential, R-53 
velocity and, 25-28 

acceleration vector, in law of motion, 16 
aerodynamic drag, 165-167 

in cars, 168 
components of, 165 
induced, 165-166 
momentum, 166 
viscous, 165 
wetted, 166-167 

aerostatic lift, 163 
ailerons, in aircraft, U1 



aircraft, 121-145 
airfoil, l23 
angle of attack, l23 
chord line, l23 
control, U&U1 

ailerons, U1 
elevators, U1 
flaps, U&U1 
ruiders, 131 

fluid dynamic drag, 125, 128 
forces on, 121-122 
geometry of, 122-124 
lift, 12G125 
mean camber line, l23 
modeling, U2-145, 23-235 

fluid dynamic drag, U3-U1 
lift, U3-U4 
sample code, US-143 
samule propram, U4 . . 
steps in, US 

oarts of. 122. l23 . . 
pitch axis, 124 
roll axis, 124 
thrust, 129, 143 
yaw axis, 124 

airfoil, l23 
moving through air, 12G125 
stalled, 128, 129 

angle of attack, l23 
critical, 128 
in lift and drag, 126-127 
stalls and, 128, 129 

angular acceleration, 50-56, 83 
angular impulse, 88 

in collisions, 96-98 
angular momentum 

equation, W-20 
in law of motion, 17 

angular motion 
defined, 5 
in rigid body kinetics, 82-85 

angular velocity, 50-56.86 
aspect ratio, l23 

B 
banking, in cars, 17l 
baseball 

as collision example, 93-95 
as Magnus effect example, 116 

Bernoulli's equation, 107, 125 
billiard ball game, as collision exam] 

boat (See ships) 
boundary layer, in fluid dynamic drag, 108 
buoyancy force,-$$44,71 

in ship flotation, 147-148 

C 
cannon ball game, fluid dynamic drag 

example, ll-112 
cars, 168-In 

power, 169-170 
resistance, 168-169 
roadway banking, 171 
stopping distance, 170 

Cartesian coordinate system, 4, 49-50 
center of gravity 

in shio flotation. 147-148 (See also mass) 
centripetal acceleration, 52-53 

equation for, 54 
centripetal force, in car banking, 17l 
cloth simuladon, 271-284 
coefficient of restitunon, 90 
collision detection, 87, 205-206 
collision response, 87 

angular effects, 211-222 
check for collision, 2U-221 
collision impulse, 221-222 
penetration, 215,221 
vertex-edge, 21G215.218-221 
vertex lists, 216 
vertex-vertex, 213-214, 216-218 

defined, 205 
in 3D multiple body simulation, 

266-269 
implementing, 205-222 
linear, 206-211 

check for collision, 207 
collision impulse, 209-210 
determination of collision, 206-208 

in particle systems, 282-283 
collisions, 87-100 

angular impulse in, 96-98 
ball and bar example, 93-95 
billiard ball example, 91-93 
friction and, 98-100 
golf example, 98-100 
impact, 89-95 
impulse-momentum principle, 88-89 
linear impulse in, 95-96,209-210 
line of action of, 90 
of particles, 95-96 

ple, 91-93 of rigid bodies, 96-98 
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types of 
inelastic, 90 
penetration, 206-207,212 
plastic, 90 
vertex-edge, 211-212 
vertex-vertex, 2U-212 

conjugate 
in quaternion operations, 306 
in vector operations, 290-291 
in vector operations class, 290-291 

constant acceleration, 28-30 
conversion functions, in quaternion 

operations, 312 
coordinate system, 4-5 

right-handed Cartesian, 4, 49-50 

D 
dampers 

defined, 64 
equation for, 64-65 
uses for, 64 

densit): units and symbol for, 4 
determinant, in matrix operations, 296-297 
dihedral angle, l38 
displacement 

in angular velocity and acceleration, 50 
concepts, 27 
ships and, 146 
vs. distance traveled, 27 

distance 
skidding, 170 
stopping, 170 

distance traveled 
equations for, 72-73 
vs. displacement, 27 

drag (See aerodynamic drag; fluid dynamic 
drag) 

drag coefficient, 61, Ill, UO 

E 
elevators, in aircraft, l31 
equations of motion, 69 

in real-time simulations, 173-174 
for two-dimensional kinetics, 83 

error 
Euler, 176, 177 
of order, 175 
truncation, 175 

Euler's angles, in banking of cars, 171 
Euler's method 

in 3D rigid body simulation, 235-236 
{Ik 

improved 
Hovercraft example, 191-192 
for real-time simulations, 180-183 

with multiple bodies in 3 4  264-265 
in real-time simulations, 174-180 

Euler error, 176, 177 
integration comparison, 176 
integration step, 175 
sample code, 178-180 

explosion, 4 3 4 8  
sample code, 4 5 4 8  
sample program, 44-45 

flight controls 
2D rigid body simulator, 194-198 
3D rigid body simulator, 238-242 

flotation, in ships, 147-149 
fluid dynamic drag, 60-61 

in aircraft, l25, 128 
around a sphere, 107-109 
boundary layer, 108 
cannon ball example, 1U-112 
drag coefficient, 61, 111 
fast-moving, 61 
in projectiles, 106-114 
Reynold's number, 109-U0 
separation point in, 108-109 
slow-moving, 61 
of spinning sphere, ll4-ll8 
turbulent wake, 108-109 

force-at-a-distance, 57 
force(s), 57-68 

on aircraft in flight, 121-122 
buoyancy and, 62-64 
concepts, 57-58 
contact, 57 
defined, 65 
field, 57, 58-59 
fluid dynamic drag, 6&61 
friction, 59-60 
impulse, 88 
pressure and, 62 
springs and dampers, 64-65 
torque and, 65-68 
units and symbol for, 4 

friction, 59-60 
calculation of, 59-60 
coefficients of, for common surfaces, 60 
collisions and, 98-100 

friction drag, on body through fluid, 3 
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G 
Getscalar, in quaternion operadons, 304 
Getvector, in quaternion operations, 304 
golf 

as collision mmple,  98-100 
as Magnus effect example, 116 

H 
Hamilton, W~lliam, 227 
Hook's law, 64 
horsepower, in cars, 169-170 
howruaft, 163-167 

aerodynamic drag, 165-167 
components of, 165 
induced, 165-166 
momentum, 166 
viscou$ 165 
wetted, 166-167 

concepts, 163-165 
aerostatic lift, 163-165 
skirts for, 164 

2D rigid body simulation, 184204 
linear collision response in, 206-211 
over water, 165-167 
resistance, 165-167 

I 
impact of collision, 89-95, 91 
impnlse 

angular, 88 
collis~on 

angular, 9&98,221-222 
linear, 95-96,209-210 

force, 88 
linear, 88 
torque, 88 r 

impulse-momentum principle, 88-89 
inelastic collisions, 90 
inertia, products of, 20-21 
inertia tensors, 19-24 

angular momentum equation, 19-20 
products of inertia, 20-21 
sample code, 23-24 
symmetry, 22 
transfer of axes, 21 

instantaneous velociry, 27 
calculation for, 28-29 

inverse, in matrix operations, 297-298 

K 
kinematics, 2.-56 

angular velocity a$acceleration, 50-56 
constant acceleration, 28-30 
2D particle, 31-33 
3D particle, 3 3 4 3  
local coordinate axes, 49-50 
nonconstant acceleration, 30-31 
particle explosion, 4 3 4 8  
rigid body, 49 
velocity and acceleration, 25-28 

kinematic viscosity, units and symbol for, 4 
kinetic energy 

collision impoct nnd, 89 
concepts, 89 

kinetics, 69-86 
2D particle, 70-75 
3D oarticle. 75-82 ~ - 

oroblem solving widelines, 70 
&id body, 82-86 

Kutta-Joukouiski theorem, 115, 125 

L 
length, units and symbol for, 4 
lift force, 114ll8 

in aircraft, 124125 
equation for, 116 

linear acceleration, 4 
linear collision response, simulation, 20&2ll 

check for collision, 207 
collision impulse, 209-210 
determination of collision, 206-208 

linear impulse, 88 
in collisions, 95-96,209-210 

linear momentum, in law of motion, 16 
linear motion, defined, 5 
linear velociry, 4 

magnitude 
in quaternion operadons, 304 
in vector operations, 286-287 

magnus effect, ll4m 
MakeEulerAnglesFromQ, in quaternion 

operations, 311-312 
MakQFromEulerAngles, in quaternion 

operations, 309-310 
mass 

calculation of 6-8 
defined, 6 
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2D example, l2-U 
unis and symbol for, 4 
variable, projectiles of, 118-l2O 
virtual, of a ship, 161-162 

mass moment of inertia 
calculation of, 8-11 
defined, 6 
2D example, U-L5 
unis and symbol for, 4 

mass properties, 5-14 
matrix add;.ion, 298-300 
matrix functions and operators, 300-302 
matrix multiplication, 301 
matrix operations, 295-302 

matrix functions and operators, 30&302 
matrix addition, 300 
matrix multiplication, 301 
matrix substracdon. 300 
scalar division, 300 
scalar multiplication, 301 
vector multiplication, 302 

matrix3x3 class, 224,295-299 
determinant, 29C297 
inverse, 297-298 
matrix addition, 298-299 
matrix subtraction, 299 
scalar division, 299 
scalar multiplication, 299 
transpose, 297 

matrix subtracdon, 299-300 
matrix3x3 class, 224,295-299 
measures and units, 2 4  
metacenter, in ship flotation, 148 
modeling 

aircraft flight, U2-145,231-235 
fluid dynamic drag, U3-U4 
lift, U3-U4 
sample code, US-143 
sample program, U4 
steps in, U2 

steps in, U2 
model(s) 

aircraft flight, U2-145,231-235 
2D rigid body simulation, 185-191 
3D rigid body simuladon, 231-235 
of multiple bodies in 3 4  25&264 
of particle systems, 272-281 

moment (See torque) 
multiple bodies in 3D, simulation, 249-270 

collision response, 26C269 
integration, 26+265 
model, 250-264 

.& 

contact, 258-264 
forces and momens, 25C258 
initialization, 2 5 W 6  

steps in, 249 
tuning of, 269-270 

N 
Newton's Law 

of conservadon of momentum, 89 
first, 1 
of gravitation, 58-59 
second (motion), 1-2, 15-19. 69 
third, 1 

nonconstant acceleration, 30-31 
normalize, in vector operations, 287-288 

P ,- 
parallelepiped, volume of, El-152 
particle explosion, kinematic, 4 3 4 8  (See also 

explosion) 
particles 

collisions between, 95-96 
concepts, 25 

particle systems, 271-284 
collision response, 282-283 
integration, 281-282 
model, 272-281 

initialization, 274-281 
particle-spring system, 272-274 

tuning, 283-284 
penalty methods, 88 
pitch angles, l24, 223 
plastic collisions, 90 
plenum chamber, 163 
pressure 

Force and, 62 
units and symbol for, 4 

products of inerda, 20-21 
projectiles, 101-l2O 

characterisdcs of, 102 
drag and, 10Cll4 
magnus effect, ll4-ll5 
simple trajectories, 102-106 

launch point lower, 104 
projectile is dropped, 105-106 
target and launch at same level, 103-104 
target point lower, 104-105 

terminal velocity, ll?-ll3 
variable mass, 118-120 (See also shooting 

game) 
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Q 
QGetAngle, in quaternion operations, 308 
QGetAxis, in quaternion operations, 309 
QRotate, in quaternion operations, 309 
quaternion addition, 304-306 
quaternion class. 303-306 
quaternion functions and operators, 

306-312 
quaternion multip!'cation, 307 
quaternion operations, 303-312 

quaternion class, 303-306 
conjugate, 306 
Getscalar, 304 
GetVecror, 304 
magnitude, 304 
quaternion addition, 304-305 
quaternion substraction, 305 
scalar division, 306 
scalar multiplication, 305 

quaternion functions and operators, 
306-312 

conversion functions, 312 
MakeE~lerAn~lerFromQ, 3U-312 
MakeQFr~mEulerAn~les, 309-310 
QGetAngle, 308 
QGetAxis, 309 
QRotate, 309 
quaternion addition, 306 
quaternion multiplication, 307 
quaternion substraction, 307 
QVRotate, 309 
scalar division, 308 
scalar multiplication, 307-308 
vector multiplication, 308 

for rigid body rotation, 227-229 
quaternion substracrion, 305,307 
QVRotate, in quaternion operations, 309 

R 
real-time simulations, 172-183 

concepts, 172 
equations of motion and, 173-174 
Euler's method, 174-180 
improved Euler method for, 18&183 
Runge-Kutta method for, 181-182 
Taylor's theorem in, 174-175, 18&182 

relative acceleration, 55-56 
relative velocity, 55 
rendering 

for 2D rigid body simulation, 198-204 
for 3D rigid body simulation, 242-248 

reristance 
in cars, 168-169 
equation for, 7l .,"$ 

in hovercraft, 165-lk? 
rolling, 168-169 
in ships, 159-161 

rertitution, coefficient of, 90 
reverse, in vector operations, 288 
Reynold's number, 109-110 
r~gid body(ier) 

circular path of particler making up a, 5l 
collisions of, 96-98 
concepts, 25 
kinematics of, 49 
kmetics of, 82-86 
multiple, in 3D, 249-270 (See nlso multiple 

bodier in 3D) 
rigid body rotation, 223-229 

in 2D, 2?2 
in 3D, 2?2 
auaternions. 227-229 
rotation matrices, 224-227 

Robins effect, U4-U8 
roll angles, 124, 223 
rolling resistance, 168-169 

coefficient of, 169 
rotation matrices, 224-227 (See also matrix 

operadons) 
rudders, in aircraft, l31 
Runge-Kutta method, for real-time 

simulations, 181-182 

scalar division 
in matrix operations, 299-300 
in quaremion operadons, 306,308 
in vector operations, 290,294 

scalar multiplication 
in mauix operations, 299,301 
in quaternion operations, 305,307-308 
in vector operations, 290, 293 

scalar product, triple, in vector operations, 294 
scalars, 5 
ships, 146-162 

displacemenr and, 146 
2D paracle kinetics example, 71 
flotation, 147-149 
geometry of, 146,147 
resistance, 159-161 
virtual mass, 161-162 
volume, 149-158 
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shooting game 
2D particle kinematics example, 32-33 
3D particle kinematics examplq 3 3 4 3  

sample code, 39-43 
sample program, 37-38 

3D particle kinetics example, 71-82 
program screen, 80 
sample code, 79-82 (See olso projectiles: 

simulation(s) 
cloth, 271-284 
2D rigid body, 18+204 
3D rigid body, 23&248 
linear collision responsq 206-211 
multiple bodies in 3 4  249-270 
particle systems, 271-284 
real-time, 172-183 
rigid body rotation, 2LTZ29 
tuning, 269-270 

skidding distance, 170 
speed 

calculation of, 26 
defined, 26 

springs 
defined, 64 
equation for, 64 
uses for, 65 

stopping distance, in cars, 170 

tangential acceleration, 9-53 
equation for, 54 

Taylor's theorem, in real-time simulations, 
17+175, lS&182 

tensors 
concepts, 18 
inertia, l9-24 

terminal velocity, lU-ll? 
tenahedron, volume of, 15&152 
3 4  multiple bodies in, 249-270 (See also 

multiple bodies in 3D) 
3D particle kinematics, 3 3 4 3  

vectors, 37 
x-components, 34-36 
y-components, 36 
z-components, 37 

3D particle kineticr, 75-82 
x-components, 77-78 
y-components, 78 
z-components, 78-79 

3D rigid body simulator, 23&248 
flight connok, 238-242 

.{I,> 

integration, 235-238 
model, 231-235 
rendering, 242-248 

thrust, in aircraft, 129, 143 
time, units and symbol for, 4 
torque 

calculation of. 65-67 
defined, 65 
in 773 rigid body kinetics, 83 
force and, 6 5 6 8  
impulse, 88 
units and symbol for, 4 

transpose, in matrix operations, 297 
triangulated polyhedron, simple, 150 
triple scalar product, in vector operations, 294 
truncation error, 175 

sample code for checking, 179-180 
turbulent wake, 108-109 
2D particle kinematics, 31-33 
2D particle kinetics, 7&75 
2D rigid body simulator, 18+204 

flight controls, W+l98 
bow thrusters, l95-196 
propeller, 195 

integration, Dl-W4 
main elements of, 184 
model, 185-l91 

calculation of forces on vehicle, 
188-l91 

define vehicle structure, 185-186 
initialization, 186-188 

rendering, l98-204 

uniform density, defined, 83 
units 

derived, 2 
and measures, 2 4  

universal constant, 58 

vector addition, 289, 291 
vector class, 285-291 
vector cross product, 54, 291-292 
vector direction cosines, 35 
vector dot product, 292-293 
vector functions and operators, 291-294 
vector multiplication 

in matrix operations, 302 
in quaternion operations, 308 
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vector operations, 285-294 
vector class, 285-291 

conjugate, 29&291 
magnitude, 286-287 
normalize, 287-288 
reverse, 288 
scalar division, 290 
scalar multiplicadon, 290 
vector addidon, 289 
vector substraction, 289-290 

vector functions and operators, 291-294 
scalar division, 294 
scalar multiplicadon, 293 
triple scalar product, 294 
vector addition, 291 
vector cross product, 291-292 
vector dot product, 292-293 
vector substraction, 291 

vectors, 5 
vector substraction, 289-291 
velocity 

acceleration and, 25-28 

angular, 50-56, 86 
equations for, 73 
instantaneous, 27,-.$$ 
magnitude of, 26 
relative, 55 
terminal, 112-1U 
units and symbol for 

angular, 4 
linear, 4 

virtual mass, of a ship, 161-162 
viscosit~ units and symbol for, 4 
volume 

of a cube, 149-150 
of parallelepiped, 150-152 
sample code for finding, 

12-138 
ofa ship, 149-158 
of a tetrahedron, 150-152 

Y 
yaw angles, 124; 223 
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, iS i~i t ion/u/ j  2000 
392pger, ISBN 1-56592-670-6 

YisuolBacic SkUP~ogrammingventnres 
. where none have gone before by showing 

how to develop shell enensions hat  more 
clncelvinteerale an aoolication m h  h e  .- - . ~~~ " . . I wmdows shell, while at h e  same time pro- 
viding an advanced tutorial-styie lreatment of 

COM pruKmnmg u i h  iisud Rartc. Fach malor rime of chell 
eneniton gee atenuon, indudng custornwd conten ntenu hm- 
d e n ,  per instance icons, and customjzed property sheels. 

E M +  Pro&mming wifh Visual Basic 
-* 

Is1 Hilion June 2001 
304pger, ISBN 1-56592-840~7 

There's simply no oher  documenlaIion avail- 
able for much of whal's in COM+ Pmfram- 
mmg utlh Vrnrolhtc, hv, book d k s  
from h e  aumors wde upcnence ar P 

COM- dewloner 3nd imlmctor llle 661 
pu t  delivers hfonnation hat's mdi,pemabIe 

f i r  cr&g robust, efficient, h1&-perlcmn3ncr COMt apphrd- 
tions llw second focuw on incorporaung mandual COII- 
s e m c a ,  Uk? v d n ~ t i o n  suppon, secuny, md ~ ~ y ~ c h r o n o u ,  
oprraons, into appl~uuons 

VB & VBA in a Nulshell: The Language 
I BvPoulhmar 

h ~ d i l i o n  Oclober 1998 
676pger, ISBN I-56592-35M 

For Visual Basic and VBA programmen, h i 5  

b w k  bo% d o W  the essentials of the VB and 
YBA languages into a single volume, indud- 
ing undocumented and linle-documented 
arm essential to everyday programming. 
?he convenient alnhabetical reference to all 

~BScripfin a NufsheN 
I i RV ~ o u l h m a ,  Malt Cbrldr 6 Ron Pelmbn -, 

IslEdinbn M.g 2000 
512pger, iSBN 1-56592-720-6 

Wheher you're using W r i p t  to c m t e  
dent-side scriob, ASP apnlicalions, WSH 
ccnpu or progtmmable O1111ook forms, 
r h n ~ r  In (2 ru~chell I, h e  onlr book 
you'll need by your s l d ~ a  complele and 
kasy-to-use ] G a g e  reference. 

Wrifing Word Macros 
B', Stwen Roman 
2ndEdilton October 1999 
4IOpoger, ISBN 1-56592-725-7 

1 I This no-nonsense book delves into YBA oro- ~~~ ~ 

gramming and tells how you a n  use YBA to 
automate all h e  tedious, repetitive jobs you 
never houeht vou could do in Microsofl 

- 
VBScripf Pocket Reference 

By Poulhmau. Mati Chi& 6 Ron Pelmha 
Isi Editionjonuary 2001 
126pger, ISBN 0-596-001266 

Based on the beslselling YBScript in a Nut- 
shell. ~ small book detads evem Wcriot  
1m.u e elemenl+ven.swwnm4 funmon, 
and oblect-boh in VR'icript ieelf md in 
h e  Mrrosoft knPW(4 kunume tibran 

ton and VEirip~ inmnsic constank 

Lnetiom nroced;res. slatemenls. and kev- .. ~-~ - . . ~ ~ ~ ~  . 
*or& do*, prodrammen lo u e  h i s  bmk boh ar aslandah 
relm.nce mid? md ac a tool for troubieshcnNn,: md idmuf!lng - 
programming problems. 
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Visual Basic Programming 

ASP in a Nutshell, 2nd Edition 

M P  in aNulshell,2nd Edition, provides the 
high-qualiv reference documenlation thn 

ASP web application developers really need to 
create efective Active Server Pam.  ll focuses , 
on bow features are used in a r& applica- 
tion and highlights little-known or undocu- 
mented feahlres 

Subclassing & Hooking with Visual Basic 
El, Slephen Telba 
lr l  Milion June 2001 
io-ipages, ISBN 0-59600118-5 

Subclassina and the Windows h o o h a  mech- 
anism ("h&$..) allow developers to"manip- 
dare, modify, or wen discard mersages 
bound for other objects within the o k m a  . " 
mtem. in the o m &  chamins the wav in 

blities that or&arily are completely unavailable, or> leas; nor 
eq to implemenr 

Developing ASP Components, 2nd Edition 
B,. Skllq P o w  
Z~dEdillon Manb 2001 
832pger, ISBN I-56592-75&8 

Microsoh's Active Server Pages (ASP) conlin- 
ue to grow in populativwith web dwelop- 
erwspecial ly  as web applicarions replace 
web pages. DeuelopingMPComponenls, 
2nd Edition, provides developers with the 
information and real world examples they 

need to create custom ASP components. 

Win32 API Programming with Visual Basic 

Ist&i&n Abmbm 1999 
5Uplg8, llnduder CD-ROM 
ISBN 1-56j92-631-5 

This b w k  provides the missing documrnta 
tion for VB programmers who want to bar. 
n m  the wwer of accesshe Ihe Win32 API . 
uXhm \.iual B a w  It  she; how IC,-V~~LP 
poarrful m d  umque applmuom uithoul 

n ~ d n g  A background in \-bud CT- or P'1n32 API propmmmg 

ADO: ActiveX Data Objects 
-, , ~ ~ ~ .  ~ . 
IS/* .n;; ZOOI L 

618plger, ISBN 1-56592-415.0 

The archirecrure ofADO, Micmsoll's newest 
form of daIabase communication, is simple, 
concise, and &cienL This indispensable ref- 
erence lake a comprehensive l w k  n wery /P -.I 
obten colbion.  method. and vrooem of . . .  AdO for d ~ . e l o p s  who -I to a& up 

on lhis exciting new ~ h n o l o g y  

CDO & MAP1 Programming with Visual Basic 
- 

384plge, EtWI-56592-665-X 

CDO and.U4Pli%gramming with Visual 
Bacic diver deep inlo Microsoh's CoUabora- 
tion Dala Objects (CDO) and the Messaging 
Application Programming Interface (MAPI), 
then mover into succinct emlanations of the 
types of urpful messaging applications  ha^ 

can be wtinrn in Ksual Basic. 
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Power Users 

Windows Me: The Missing Manual Word 2000 in a Nutshell 
8, Dmid P o p e  By Wdler G k n  
is1 Mitio?r Spleniber 2000 1st EdYlon Augur1 2000 
423pager ii8\'0596-0000%Y 520pogm, ISEN 1-56592-489-4 

In Windoa,s Me: T k  M i s s i n g  Manual, Word2WO i n  n NufsheU is a dm, concise, 
author Dabid Pogue provide Use friendly, and complele reference to h e  most popular 
auhoritatit-e book Usat should have been in word-processing program in h e  world. This 
the box. It's Use i d d  user3 , ~ d e  for Use book is Use h t  choice of h e  Word power 

' world's most popular openring system. user who needs help complering a spec& 
rask or understanding a command or lopic. 

Ouflook2000 in a Nufshell It3 &o an induable rsource hat  uncovers 
Word 2000's undocumented h r e s  and s h a m  powerful time- 

Bjr Torn Syrnidi Bo in( 
IM Fdi I i in  I l m  200" 

saving tips. ... . ..~, .. .- 
6 6 0 p p  /~B.v l-56592-70i~i 
O u N w h  20W i n  n , v u ~ s k l l  MIS Use need for 
an up-to-date and comprehensive reference 
book for sophisticated users who want to get 
aJ Usey can out of his  porerful and versatile 
program. 

PC Hardwarn in a Nufshell 
7 BI R o b e r l B r m  Ilron,Dron 

PCHardunre inn . V l r t s k l l  is a comprehen- 
sive guide to buying, building, upgrading, and 
reoaidne Intel-bared PCr for novices and 

dike. It features buy 
how--to adqice on ins!alling, 

configufmg. and soubleshwting s p e c k  
componene, plus ample reference material and a complete case 
study on building a PC from componeue. * 

Optimizing Windows lor Games, 
Grarrhics. and Multimedia 

to f i w e  out way3 to opli 
mue system performance. O P l i m i z i n R  

"our swem run faster Usan ever before. It d answer vour ques- 

Excel 2000 in a Nutshell - BY linierSimon 

shell farhion, information is organized for I O Y _  . 
qmckand easy access, providing readers 
wiUs e v e w g  Usey need lo know about Use 

premier spreadsheel applicalion. 

&$ 
EXCEL 2000 

.r.-,..vc.-h- 
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Excel20W i n  nNutskU is a one-stop refer- 
ence to every one of Excel's menu oplbns 
and functions, for bolh professtonal and 
power users of Excel 2000. In typical Nut- 



Power Users 
Windows 2000 Pm: The Missing Manual 

Is1 Milion Augusl2000 
4jOpagep, iSBA'0-596-00010-3 

In Whdows 20W Pm: TheMissin8 Manuol, 
best-selling Windows NT author Sharon 
Crawford provides the friendly, authoritative 
book that should have been in fhe box. It's 
fhe i d 4  (and desoeratelv needed) user's . . 
guide for the world's most popular corporate 

opemhg s)sfem. 

Windows 2000 Ouick Fixes 
ByJim B o p  
IsiM&n D~emDm2000 
304pnger, ISBn'0596-00017-0 

Winindows20W@ick Fires provides h e s  to 
common problems in a clear, well-organized 
fashion. It mensivdy troubleshoots bofh the 
Windows 2000 Professional and the Wmdows 
2000 Server editions, laking power users 
fhrough insuation, complex networldng 
con6guralion problems, and important back- 

up and security concerns. When h e  pressure is on i d  here5 no 
lime to waste hunting for Window 2200 solulions, lhis is h e  
book to reach far 

MP3: The Definitive Guide 
E j  Smt H a c k  
IsiEdition Mmch 2000 
400pagep, ISBA'I-56592-661~7 

MP3: TTheDeJnifiue Guide introduces the 
power user to just about all aspects of MP3 
technolow. It delves into detail on obrainine. ", 

1 - , 
recording: and oplimizing MP3 6les using 
both commercial and open source methods. 
Coveraee is comolele fo; four ~latforms: Win- 

dows, Macintosh, Linur, &i BeOS. Redden will I& how to test 
their equipment, evaluate heir playback oplions, control and 
organize a collection, wen bum heir own CDs or distribute heir 
own music lo a massive worldwide audience over fhe Internet. 
Everything you need to h o w  to enjoy MP3 today and tomorrou2 is 

PalmPilof: The lilfimafe Guide. 2nd Edition 

This new edilion of O'Reillqs runaway best- 
seller is densely packed wvifh previously 
undocumented informalion. The bible for 

I usen of Palm W1 and all other Palm rnodei~ ~ ~~ 

it s o m m  Iul,~dreh L. f illrnr.mmg upa nl.1 

surpnwg Im.li<, plus an dl-ncn CD-ROM (fur U ~ n m u ~  .)x, \I 
$or ( . ~ c . n l c ~ r l ~ ~  ionLunina o w  3.100 PalmY.lu~ " m u m s  1n.m 
the coUmlion of palmcentral.c&, the internetdlariest Palm k h -  
ware site. 

Windows Me Annoyances 
.- .- . .. . . . I B1, DauidA. &rO 

Based on the authork popular 
Annovances.ora web sites. WindowsMe 

~ackedwifh credlive and seldom-docluneaed 
WAS 10 q ~ ~ i & \  i.itnuh ~ I J  fii I plrtndar 

mn ,\,amr ,r o~slomize 'Amdons for i n h n ~ u l l  n w u  11's h e  
d e h x c  resource lor dedmp wfh cr~>la..; uninlcUlaiblr. aror 
messages, unwanted icons, &d much more. 

- 

Dreamweaver 4: The Missing Manual - 

480pgw, ITBN 0-596~WO97-9 

Dmamwaver 4: l??e MissingMmuol is the 
i d 4  companion to this complex software. 
FoUowin~ an analomical lour of a web paEe 

ew users, author Dave ~ c ~ a & d  
d k s  you hmugh fhe pmcess of creaung 
and designing a complete web site. Armed 
nifh lhis handbook, bofh Gnt-lime and q e -  

rienced web designen can eas$ use Dreamweaver lo bring smn- 
ning, interaclive web sites lo life. 

conLzined in lhis single volume 
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How to stay in touch with O'Reilly 
1. Visit Our Award-Winning Web Site 

hnp: /~ .ore i l ly .com/  

* 'Top 100 Sites on the Web" -PC Magadne * 'Top 5% Web sites" -Point Communications * 9-Star site" -The McKinley Group 

Our web site contains a Library of comprehensive product 
intormation (including book excerpts and tables of con- 
ten&), downloadable software, background articles, inter- 
views with technolow leaden, Links to relwant sites, book 
cover art, and morcFile us your Bookmarks or 
Hollist! 

2. Join Our Email Mailing Lists 
New Product Releases 
To receive automatic email wih brief descriptions of all 
new O'Reilly products ar hey are released, send email to: 
om-news-subseribe@LisU.omiUy.com 
Put h e  following intomtion in h e  first line of your 
message (not in the Subject field): 
subscribe om-news 

O'Reilly Events 
U you'd also like us IO send i n f o m m n  ahout ~radr  shox 
wmls, special promotions, and oher WRedly menu, 
send dl to: - 
ora-newssubscribe@lists.orelUy.com 
Put the following intonnation in h e  first line of your 
message (not in h e  Subject field): 
subscribe om-events 

3. Get Examples from Our Books 
via FTP 
There are iwo ways to access an archive of example fles 
from our books: 

Regular FTP 
flp to: 
ftp.oreilly.com 
(login: anonymous 
parsword: your email address) 
Point your web bmmer to: 
ftpJ/~@.omilly.com/ 

Send L e d  mesage lo 
ftpmail@online.omill).rom 
( h e .  help" m the messdge bw$J 

4. Contact Us vd'"Emai1 
order@oreiUv.com 

To place a book or software order online. Good for 
Noah American and international customers. 

subscriptions@oreUly.eom 
To place an order for any of our newsletters or 
periodicals. 

books@oreilly.com 
General questions about any of our books. 

cs@oreilly.com 
For answen to problems regarding your order or our 
producls. 

booktecb@oreilly.com 
For book content technical questions or Corrections. 

proposals@oreilly.com 
To submit new book or software proposals to our 
editors and prodnct managen. 

international@oreffly.com 
For intonnation about our international distributors 
or mslation ueries For a list of our distributors 
oulside of N o d  Amehca check out: 
hnpJ/aww.oreilly.com/distributors.hhnl 

5. wo* with Us 
Check out our website for current employment 
opportunites: 
httpJ~jobs.oreilly.com/ 

O'Reilly & Associates, Inc. 
1005 Gravenstein Huy Noah 
Sebartopol, CA 95472 USA 
TEL 707-829-0515 or 800-998-9938 

(6am to 5pm PST) 
FAX 707-829-0104 
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Titles from 0 'Reilly 
WfB 
Mache: The Dehilive Guide 

JAVA SERIES 
DeuelopingJava B a r  
creatl"g F&"i"eJddp 
En te rp t iu JmEar .  3rdEd. 
Java Crvptography 
Java Dismburd Cornpuling 
Java enterprise in a Nu6hd 
Java Exampler in a SurrheU, 2nd Ed. 
JavaFoudaMn llasws 

in a Nuahell 
Jmain a NulJhd, 3rd Ed 
Javalnamationa]ua6on 

PROGRAMMING 
C++: The Core language 
Ractical C++ Programming 
Ranical C Pmgramming. 3rd Ed. 
High PAformance Compullng, 

2nd Ed. 

MAC 
ApploSctipt in a NuIrhell 
AppieWodrr 6: IheMiving bud 
Cmrsing Pindorms 
Movie: The Mising Mmual 
Mac OS in a NurrheU 
Mac OS 9: Ihe M i w g  Manual 
RFALbaic: The DPbiti* Gvide 

Designing Web Audio 
DPsi@aungWhJaMpt, 2nd Ed 
DocBOok: The Debin- Guide 
bnamic m u :  

IheDeGnilirz Reference 
HT,m Pocket Reference 
Lnl0rmai0" ATcUleclure 

for h e m  
f inkripi :  TheDebitive Guide, 

3rd Ed. 
Jan&XML, 2nd Ed. 
Ja$aSctiplAppUcaion C o o ~ o o k  
JawWipt Pocket Wference 
Pmtical Internet Groupware 
PHP Pocket Reference 
Pmgramring Coldlurion 
Phaiorhop for b e  Web. 2nd Ed. 
Web Design in a Yuuhdi, 2nd Ed 
Webmler  in a s u ~ h e i l ,  2ud Ed. 
Web ZatlpaBon: Dcsigling b c  

LlNUX 
Learning Red Hat E-CY 
h w O r n c e  Dtiven, 2ndEd. 
Linw Ne~iorkbdM"~tmor's 

Guide, 2ndEd. 
Ru-g h u ,  3rd Ed. 
Linwin a NumheU, 3rd Ed 
t inw Mulhdidia Guide 

b e  R d  w k d  la 

FQSK Programmer's Guide 
P o w i  Pmgramringaith ReC 
m s ) s t e m s  Pmgramring 

for SW4 
Flhmds programming 
C?8 Pocket Reference 
Mvanced omde  PVSQL 
O n d e  PVSQLGuide to Omcle8i 

F m r m  
oracle PVSQL Pmgramring. 

jzw vo 
JavaNatiue Methods 
JavaNerworkPragramming, 2nd Ed. 
lava PerlarmanceFunine 
Jmakcutity 
Javaknlet Programming 
JavaSomrPager 
JavaThreadr. 2nd Ed. 
Jini in aNulshell 
teamingJava 

SISEM A O M ! N I ~ A T I O N  
Pmtical UWi& lnlemet Secuiy. 

2ud Ed. 
Bullding internet Fimalls, 2nd Ed. 
PCP; PretNGood P W  
SSH, The L u r e  Shell: 

workbook 
Oracle Webrppbl ions 
Orade PVSQL language 

Pocket Refemm 
Or& PVSOL BuUt-ins 

X W,"DOW 
Vol. I: Xlib Pmgramming Manual 
Vol. 2: Nib Reference Manual 
V d  4M: XToolki, inlilnsics 

Wrillng Apache Modules 
W h  Perl and C 

Oracle SQL'Plus: 
Ihe DPGoitiw Guide 

Or& SOLIPlus Pock# Reference 
Programming Manual. M0liiEd 

Val. 5: X Tooiidl inmnrics *hence 
Manual 

Val. 6A: MoulProgramming Manual 
Val. 6D: MaulRelerence Manual, 

2nd Ed. 

oracle &nu 
Or& ~ b a ~ e A d m i n i 6 ~ m  
Oracle lnlemal Semces 
Oracle ShP 
Guide to WdmgDCEAppiiat i~~(  
Undemanding DCE 
Visual Basic ShoU Programming 
WWAinaNulsh~Il: Ihe Language 
Acmr Dmbbase Design 

& Pmgrammiug. 2nd Ed. 
VnBng Word Macros 
rpp lwg  RISand SCCS 
r3ecldngCProgramswib h i  
VB Conlrols in aNulrheU 

TcVIkrn a NulJheU 
The Unix W BookrheU, 2nd FA 
m l x i n  a N"&hd. 

smem V~ditian. 3rd Ed. 
Loarning he Unix opemmg S p m ,  

ih  Ed. 
Leamingvi. 61h Ed. 
Lumiug he b m  ShoU 
teaming GNU Emaa, 2nd Ed. 
Usmg csh & t a h  
Learning b e  barhS1loU. 2nd Ed. 
GhU mats Pockel Relecence 

Prnr 
Adwmd Ped Programming 
CGI Pmgramminguib Pcrl, 2nd Ed 
Learning Perl. 2nd Ed. 
Leadug Per1 for Win32 System 
Lcamiug RrVIk 
Mastering Alga t ih r  vih Peel 
Mastoring Repular Fxpiessions 
PeclCoakbook 
Pedin aNulrhell 

U ~ ~ o w o i T o o b .  2nd Ed. 

DHCP for Windows2000 
Ersonlid W i n d m  MSyrtcmtm ~ e d w  ~ o o h o u  

Per1 R e s o ~ x e  El- Win32 Ed. 
Pcimk Pocket Reference 

Usm Wmows 
%dam Me: The hliving\ianual 
PC Hardwm in a NuEheU 
oplimizing W i d o ~  for Games, 

Graphim, and Multirnodia 
Outiaak2000 iu a Nutshell 
Word 2004 in a NulJheU 
Excel 2OOOin a NrrheU 
Wmdom ZOW Pro: 

The Miving hlanual 

Visual Baic  
ADO: IheDPGnitive Guide 

~ ~~ ~~~ 

Per1 5 Pockct Refcmnce. 3rd Ed. 

OlMER TIlLFS 
m o t :  Tho Ultimate Guide. 

2ud Ed. 
Palm Pmgramming: 

The Dmloper's Guide 
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