

Workbook Eight:
Meshes

© Game Institute Inc.

You may print one copy of this document for your own personal use. You agree to destroy any
worn copy prior to printing another. You may not distribute this document in paper, fax,
magnetic, electronic or other telecommunications format to anyone else.

 2

Lab Project 8.1: Using ID3DXMesh

The two lab projects in this workbook will be dedicated to the construction of a reusable mesh class.
This class will wrap D3DX mesh functionality and employ a sub-system to conveniently handle resource
management (the loading and storing of textures and materials). The D3DX library does provide us with
an easy means for loading geometry from X files with a single function call, but the burden of loading
textures still remains with the application. Our aim is to make this task as easy as possible while
avoiding textures being loaded more than once, when they are referenced by more than one mesh.

A mechanism for the efficient rendering of multi-mesh scenes will also need to be put in place. We can
not always allow meshes to render themselves independently from the rest of the scene if proper batch
rendering is to be achieved. If multiple meshes have subsets that share the same properties, then the
scene should be able to intelligently render all subsets from all meshes that share the same device states
with a single render call. This will minimize device state changes, an ingredient that is crucial for good
performance.

While the D3DX library greatly assists in the loading of X files, if you wish to import your geometry
from another source, this has to be accomplished at a lower level. Vertex buffers, index buffers and
attribute buffers will need to be locked and manually filled with the data that the application has parsed
from a custom file format. An IWF file is an example of such a custom format that we may wish to load
and store in a D3DXMesh. This will ensure that the data can benefit from its optimization features. Our
wrapper class should expose an interface so that the adding of vertices, indices and attributes is done in
as painless a manner as possible. We will expose functions such as AddVertex, AddIndex and
AddAttribute which will allow us to build a mesh gradually from data imported from external resources.
The vertex buffer, index buffer and attribute buffer will only be constructed internally by the mesh object
once all data has been added. This will ensure that we are not locking and unlocking the buffers every
time we add a small amount of data (which is highly inefficient).

Finally, as our mesh class is essentially wrapping the underlying ID3DXMesh interface, geometry
loaded into our mesh will automatically benefit from the collection of optimization features provided by
D3DX.

After the construction of our mesh class you will be able to do the following:

• Populate meshes manually with geometry and attribute data
• Load X files and/or IWF files created by the GILES™ level editor
• Optimize mesh data for rendering
• Create a reusable mesh container class for future applications
• Deal with key aspects of scene state management

o Texture/material sharing across multiple meshes and their subsets
o Elimination of redundant texture loading

 3

The CTriMesh Class

The CTriMesh class will be employed as a means for wrapping D3DX mesh functionality. The
management of multiple mesh objects and the resources they use will be handled at the scene level. This
is made possible by the way each CTriMesh object registers its required resources with the scene
texture/material database. To understand this fully, it makes sense for us to look at the CTriMesh class
first and later examine the code to the CScene class.

Implementation Goals:

The first design issue to be tackled is texture loading. It does not make sense for the mesh object to
manage the loading of textures as the scene or application class is typically the object aware of the
limitations of the device. In our demo applications, the scene class is aware of the available texture
formats compiled from the device enumeration process. The scene class will therefore be responsible for
loading and storing any textures that our mesh objects will use.

Allowing the scene to store and manage the textures used by the mesh is not a trivial design decision.
The D3DXLoadMeshFromX function, which our wrapper class will use internally, does not perform any
texture loading on our behalf. It returns an array of D3DXMATERIAL structures describing the texture
filename and material properties used by each subset in the mesh. We know for example, that the first
element in this array contains the texture filename and the material that should be used to render subset
0. The second element in this array contains the attribute properties for subset 1 and so on.

A naive first approach might be to place some code in the mesh wrapper class that, on return from the
D3DXLoadMeshFromX function, simply loads all textures referenced in this array. While it is true that
every subset in a mesh uses a different texture/material pair, it is probable that multiple subsets in the
mesh will use the same texture. In this instance, multiple D3DXMATERIAL structures would contain
the same texture filename. Blindly loading the texture referenced by each attribute in this array would
cause the same texture to be loaded multiple times. Video memory is a precious resource and we
certainly cannot accept this wasteful outcome.

To solve this problem we will expose a function in our mesh class that will allow an external object (our
scene class in particular) to register a texture loading callback function. After the scene has instantiated a
CTriMesh (but before it has loaded any data into it), it will register a texture loading function with the
mesh. The mesh will store a pointer to this function for use when loading data from an X file. When the
application calls the CTriMesh::LoadFromX function, the function will first load the geometry using the
D3DXLoadMeshFromX function. Then, the mesh object will loop through each of the attributes returned
from D3DXLoadMeshFromX and pass each texture filename to the texture loading callback function.
The callback (which in our application is a static method of the CScene class), will then check its
internal texture list to see if the texture has been previously loaded. If it has, then the function will
simply return the texture pointer back to the mesh class for storage. If it has not been loaded, then the
CScene class will load the texture using a suitable format and add it to its internal texture database. This
pointer is then returned back to the mesh object for storage. After the loading process, a mesh object will
thus maintain an attribute array internally which contains one element for each subset in the mesh. Each

 4

element will contain a D3DMATERIAL9 structure and a pointer to an IDirect3DTexture9 interface. The
original textures are managed and stored at the scene level.

Using this mechanism, we will solve our redundant texture problem. If multiple subsets use the same
texture, their corresponding elements in the internal attribute array will simply contain the same pointer
to a texture in the scene texture list. This is true even if multiple meshes use the same texture. They will
all contain pointers to the same scene owned texture.

This system provides us with a way to make the mesh essentially self-managed when it comes to
rendering since it maintains an internal list of attributes (texture pointer and material) for each subset.
This means the mesh object has all the information it needs to render all of its subsets without
intervention from the application. The CTriMesh::Draw function will be simple to write. It will loop
through each attribute in the attribute array, set the texture and material contained therein, and then use
the ID3DXMesh::DrawSubset function to render the appropriate subset in the underlying ID3DXMesh.

This system of self-management makes the mesh class very easy to use. Meshes can be loaded without
wasting memory on redundant textures. And, with a single function call, the mesh can be batch
rendereded efficiently with mesh triangles that are optimized and sorted by attribute.

This type of self-contained object that requires little external intervention is great for rapid prototyping.
It allows an application (such as a mesh viewer) to load and render the mesh with only a few function
calls. Each mesh is a self-contained object which will manage its own rendering and therefore is unaware
of other mesh objects in the scene. Of course, while easy and intuitive, this approach is not always ideal
for all situations, so our mesh class will need to expose an additional mode of operation. The purpose of
this additional mode will be to make the mesh more state change friendly when the scene contains
multiple meshes.

The importance of batch rendering to minimize state changes has been discussed many times in our
studies together. The problem with the self-contained rendering system discussed thus far is that it fails
to account for other objects in the scene which may share the same states. It is certainly not uncommon
for two or more unique meshes to have cases of identical texture and/or material information at the
subset level. For optimal performace, we might want to render all subsets from all meshes which share
the same attributes together, to minimize texture and material state changes. This would allow us to
batch render across mesh boundaries.

In order for this additional mode (non-managed mode) to allow for state batching across mesh
boundaries, the task of rendering the mesh can no longer reside in the mesh class itself. It must now be
handled by a higher level object, such as the scene, which can maintain a global list of all attributes
(texture and material pairs) used by all meshes in the scene. In this mode, the texture loading callback
mechanism will be disabled in favor of another callback function. The new function will also belong to
the scene class and will be registered with the mesh. It will accept the complete set of attribute data
returned from the D3DXLoadMeshFromX function; not just the texture filename. In this case, the mesh
object will not maintain the list of attributes used by each of its subsets; the scene will maintain a global
list of attributes used by all meshes.

 5

In order for all meshes to reference the same shared list of attributes, a little remapping of mesh attribute
buffers is necessary. This will occur after the mesh is loaded and its textures and materials are registered
with the scene. To understand why this is required we must remember that each mesh has its own zero
based attribute buffer. While two meshes might each have a subset that both use the same texture and
material pair, in the first mesh it may be subset 0 and in the second mesh it may be subset 10.

So we need a way for all of the meshes in the scene to have their attributes remapped. If any meshes
have subsets that share the exact same attributes, then we should make sure that both of these subsets use
the same attribute ID. An attribute ID will then have global meaning across the entire scene. It is
fortunate that attribute IDs within a given mesh do not have to be zero based, or even consecutive,
otherwise we would be forced to work with local attributes. If we know that after the remapping process,
subset 5 describes the same set of attributes across all meshes, the scene can render the matching subset
in all meshes together to reduce state changes. The scene will not loop through each mesh and then
render each subset as before, as this would require setting the texture and material states for every subset
for every mesh. Instead, the scene will loop through each attribute ID in its internal array and then render
any subsets from any mesh that share that attribute together. This way, we set the texture and material for
a given scene attribute only once.

The task of remapping the attribute buffer to a global list of attributes is performed when the mesh is first
loaded. Our mesh object will pass the attribute data (texture filename and material) returned from the
D3DXLoadMeshFromX function to the attribute callback function. This function will search an array of
attributes to see if the texture/material data passed in already exists. If so, then its index in the array is
returned to the mesh class and becomes the new attribute ID for the subset in question. If a matching
attribute cannot be found in the scene attribute array, a new texture/material pair is added to the attribute
list and the index of this new element is returned to the mesh. As before, the mesh object can then lock
its attribute buffer and alter its contents so that the subset now uses this global attribute ID instead.

To better visualize this process, think of a freshly loaded mesh just about to process the attribute for
subset 5. The texture and material used by subset 5 is passed by the mesh into the scene’s attribute
callback function, where the scene object determines that a matching texture and material already exists
in its attribute array at element 35. This means that at least one mesh that was previously loaded used
this same attribute combination for one of its subsets. The value of 35 would be returned from this
function back to the mesh object. The mesh can now lock the attribute buffer and search for all entries
with a value of 5 and replace them with the new global attribute value of 35. Using this method, we can
rest assured that all meshes sharing the same attribute data, now share the same global attribute ID for
the subsets that reference it.

To summarize, we have achieved some important design goals for our mesh class by envisioning a class
that supports two different operational modes:

• Managed Mode: In this mode the mesh object manages its own rendering and setting of states.
The mesh maintains an internal attribute array which contains a texture and material pointer for
each subset in the mesh. An external texture callback function is used for the loading of texture

 6

filenames returned from the D3DXLoadMeshFromX function. The mesh can be rendered in its
entirety with a single function call from the application.

 Pros : With the exception of the texture callback function, the mesh is self contained. This makes
 it very easy to setup and render. This mode is ideal for simple applications and prototyping.
 In this mode the mesh is very easy to plug into existing applications, requiring virtually no
 support code to be written to access its features. The obvious exception to this is the
 texture callback function which will need to be implemented and registered with the mesh
 object if we wish textures to be loaded from the X file.

 Cons : The mesh object is not aware of other meshes in the scene and therefore batch rendering
 across mesh boundaries is not possible. This results in ineffiecient rendering practices when
 many meshes are in the scene which share matching attributes. This mode is not ideal for
 using meshes in a typical multi-mesh game environment. Essentially, this mode’s greatest
 strength is in many ways its greatest weakness. By completely encapsulating the rendering

 of the mesh, the supporting application is denied the chance to use a mesh rendering strategy
 that it considers optimal.

• Non-Managed Mode: In this mode the mesh object no longer maintains an internal list of

attributes used by each of its subsets, and is thus incapable of rendering itself. Instead, the meshes
pass all attribute data loaded from an X file to an external object (such as our scene class) via an
attribute callback function. The scene maintains the attribute list and is responsible for rendering
each of the mesh subsets individually. The scene will also be responsible for setting device states
before rendering any subset of a given mesh. Attribute data is passed to the scene for registration
during X file loading via a callback which returns a global attribute ID for that subset. The mesh
will then remap its attribute buffer so that any triangles belonging to the old subset now have
attribute IDs matching the newly returned global ID.

 Pros : Multiple meshes in the scene can have subsets that share the same attribute ID. This
 attribute ID is actually the index of the texture and material pair stored in the scene’s
 attribute array. The scene can batch render across mesh boundaries. All subsets across all
 meshes that share the same global attribute ID can be rendered together, minimizing state
 changes between each render call. This mode is much more efficient for a game scene that
 contains multiple meshes indexing into a global list of attributes. The mesh object itself is
 ultimately more flexible in this mode because it does not force any rendering semantics on
 the application. The application is free to render the various subsets of all meshes in the
 scene how it sees fit.

 Cons : The only real downside for this mode is that more support code must be implemented in the

 application. This can make integration of the object into new or existing applications a more
 time consuming affair. The application must supply the rendering logic and maintain
 and manage the internal attribute list.

 7

To better visualize the two modes of operation discussed, some diagrams are presented in the next
section. They should aid us in seeing the implementations for the mesh in each of these modes.

Managed Mode

Managed mode is the default mode for the class. As seen above, the CScene class maintains an array of
Texture_Items. Each texture item contains the filename and texture pointer for a texture that has already
been loaded by a mesh in the scene. This array will be empty prior to any meshes having been
instantiated.

The CScene class also has a texture callback function which will be registered with the mesh object. This
function pointer will be stored in the mesh so that it can be called by the mesh object during X file
loading. The CTriMesh::LoadMeshFromX function is exposed to facilitate the loading of X files. This
function will initially use the D3DXLoadMeshFromX function to create the underlying D3DXMesh
object and initialize its geometry. The mesh object will then loop though each D3DXMATERIAL
structure returned from the D3DXLoadMeshFromX function and will pass the texture filename stored
there to the texture callback function. If the texture is not already loaded then it will be and added to the
end of the scene’s Texture_Item array.

The texture callback function will return a texture pointer back to the mesh object to be stored in the
mesh’s Mesh_Attrib_Data array. Each element in this array contains a material and a texture pointer for
a subset in the mesh. The material data is simply copied straight over from the properties returned from
D3DX in the D3DXMATERIAL array. The texture pointer is issued to the mesh by the scene object’s
texture loading callback.

 8

The diagram shows the core components for the mesh in managed mode so we can see that, because the
mesh contains its own attribute list, it has everything it needs to render itself. In order for the mesh to
render itself in its entirety, simple code can be employed:

void CTriMesh::Draw()
{
 // This function is invalid if there is no managed data
 if (!m_pAttribData) return;

 // Render the subsets
 for (ULONG i = 0; i < m_nAttribCount; ++i)
 {
 // Set the attribute data

 pD3DDevice->SetMaterial(&m_pAttribData[i].Material);
 pD3DDevice->SetTexture(0, m_pAttribData[i].Texture);

 // Otherwise simply render the subset(s)
 m_pMesh->DrawSubset(i);

 } // Next attribute
}

The CTriMesh::Draw function will loop through each subset contained in the mesh and manage the
setting of the states stored in its attribute array. Then it calls the ID3DXMesh::DrawSubset function,
passing in the number of the subset we wish to render. The ID3DXMesh::DrawSubset function renders
all triangles in the underlying D3DXMesh with a matching attribute ID.

In this self-contained mode, any burden for rendering the mesh is largely removed from the application.
We might imagine that if a scene has many meshes that are all set to operate in managed mode, the code
to render those meshes would be a single call to the CTriMesh::Draw method for each mesh in the scene.

for(int i = 0; i < m_NumberOfMeshes; i++)
{
 Meshes[i]->Draw();
}

It is the self-contained nature of the managed mode mesh that makes it so quick and easy to plug in and
use in existing applications.

Non-Managed Mode

To batch by state across mesh boundaries, we give more rendering control to the scene. In non-managed
mode, the mesh does not store an attribute array (this pointer is set to NULL) -- it simply passes the
texture/material information loaded from the file to the scene and forgets about it. Subsets will be
rendered by the scene using the CTriMesh::DrawSubset function. This function does not update texture
or material states and the scene class render method will assume this responsibility. The mesh subset
attribute IDs will be remapped to reference a global set of attributes maintained by the scene. This means

 9

that two different meshes that contain matching subset attributes (same texture, same material) can both
be remapped to reference the same attribute IDs in the global attribute table. This is demonstrated in the
following diagram.

The above image shows how two meshes might initially be loaded. The first and second mesh both have
three subsets each. Between both meshes, there are four unique attributes being used. We can see that
(using color coding for this example) both the first and second mesh have a red attribute and both also
have a blue attribute. The green subset is unique to the first mesh and the purple is unique to the second.
We also see that the global attribute list, managed by the scene object, contains those four unique
attributes in an ordered array.

While both the first and second mesh contain a red subset, each mesh has a zero based attribute buffer.
The attribute buffer values returned from the D3DXLoadMeshFromX function have been assigned
differently for the red subset in both meshes. The red material has an attribute ID of 0 in the first mesh
and 1 in the second. In order for the scene to render these two subsets together they must both be
assigned the same attribute ID. It makes sense to use the index at which the attribute is stored in the
global attribute array for this purpose. We can see that the red attribute is stored in this array in position
0. This means any meshes which reference this attribute must use an attribute ID of 0.

The first mesh is basically unaffected because it initially used attribute ID 0 for its red subset. The
second mesh however will need to have its attribute buffer locked and altered. Any faces in the red
subset of this mesh must have their corresponding attribute ID mapped from 1 (original value when
loaded by D3DX) to 0 (the global ID).

 10

The following diagram shows how this model is implemented in our CTriMesh class.

This diagram shows the interaction between the scene and the mesh objects in non-managed mode. The
scene class now has to maintain all attribute information used by meshes in the scene; not just textures.
The CScene class therefore contains a material array, a texture item array and an attribute combo array.
The Texture_Item array is the same one used when dealing with meshes in managed mode. It contans a
texture filename, used for testing whether a requested texture has been loaded already, and its
accompanying texture pointer. The scene also contains an array of D3DMATERIAL9 structures which
will contain all the materials used by all meshes in the scene. These two arrays are maintained by the
scene class and logic is put in place to assure that multiple copies of the same texture or material are not
loaded more than once. The Attribute_Item_Data array contains what is essentially a scene attribute.

When a non-managed mesh has a subset with an attribute ID of 5 for example, it means the texture and
material contained in the 6th element in this array should be used to render that subset. Each element in
the scene’s attribute array contains a material index and a texture index. These indices are lookups into
the Texture_Item array and the D3DMATERIAL9 array. The scene attribute array is analogous to the
attribute array that is maintained internally by the mesh object when placed in managed mode. The
difference is that this contains the global attribute array for all meshes used in the scene.

In order to place a mesh in non-managed mode we must register an attribute callback function with the
mesh, much as we do in managed mode when we register a texture callback function. Registration of this
attribute function informs the mesh that it is to be used in non-managed mode. If an attribute callback

 11

has not been registered, the mesh will operate in managed mode and will try to use the texture callback
function instead (if one has been registered). The attribute callback function must be registered with the
mesh before geometry is loaded.

Pay special attention to the two mesh objects shown in the previous diagram as you can see both the pre-
and post-mapped attribute buffers. The pre-mapped attribute buffer represents what the mesh looked like
just after the D3DXLoadMeshFromX function had been called. Each item is zero based as expected.
After the mesh data has been loaded, the mesh object then loops through each attribute and calls the
attribute callback function, passing in both the texture and material of each subset. The scene will add
the texture and material to its internal arrays and return the index of the corresponding Attribute_Item for
that texture/material pair. The attribute buffer of the mesh is then remapped using this information.

Notice how the first mesh that is loaded is also the first to add attributes to the scene. Therefore, the
global indices returned for each subset from the callback are the same as the original attribute IDs in the
attribute buffer. The second mesh loaded however, has its attribute buffer changed significantly. This is
because the attributes it requires were also required by the first mesh and already exist in the scene
attribute array.

Once all meshes have been loaded and are known to reference the same global list of attributes, the scene
object can render the meshes using whatever method it considers efficient. In the following example we
see some code that might be employed by the scene’s render function to draw all meshes with minimized
texture and material state changes. Batching across mesh boundaries in this fashion is not possible in
managed mode.

for (i = 0 ; i < m_TotalNumberOfSceneAttributes; i ++)
{
 pDevice->SetTexture(0, pTextureList[pAttributeCombo[i].TextureIndex]);
 pDevice->SetMaterial(&pMaterialList[pAttributeCombo[i].MaterialIndex]);

 for (t = 0 ; t < m_NumberOfMeshes ; t ++)
 {
 m_pMeshes->DrawSubset(i);
 }
}

Note that one thing missing from the above code is any mention of the world transform. This is also a
device state that must be set.

Often, batching by attribute across mesh boundaries will provide an increase in performance, but this is
not always guaranteed. In fact, it is possible that the opposite will happen. If meshes are defined in world
space and do not need to be transformed, then batching by attribute across mesh boundaries will provide
an increase in performance and is certainly a worthy goal. It is probable however that many of your
meshes will be defined in model space and will need to have a world matrix set for them before
rendering any of their subsets. If we continue to batch by attribute when this is the case, we are actually
increasing the number of times the world matrix has to be set for a mesh. Under normal circumstances,
the world matrix would need to be set only once and then the entire mesh rendered. But since attribute

 12

batch rendering requires that we no longer render complete meshes in isolation, the total number of
SetTransform calls made per mesh will be equal to its number of subsets:

for (int i=0 ; i<NumberOfAttributes; i ++)
{
 pDevice->SetTexture (0 , pTextureList [pAttributeCombo[i].TextureIndex]);

pDevice->SetMaterial(&pMaterialList [pAttributeCombo[i].MaterialIndex]);

for (int t =0 ; t < NumberOfMeshes ; t++)
{

 pDevice->SetTransform (D3DTS_WORLD , &pMeshes[t]->Matrix);
 pMeshes[t]->DrawSubset[i];

}
}

SetTransform is a very costly operation and it should not be called superfluously. Usually, the 3D
pipeline will try to intelligently predict what information the 3D hardware will need next in its buffers.
As a result, the pipeline will often have one or more frames beyond the one you are currently rendering
cued up in advance. When the application alters any of its state transform matrices, the pipeline has to
flush its buffers. This causes a wait state or stall in the pipeline. In some tests we conducted here in the
Game Institute labs, frame rates actually decreased by as much as 50% when batching by attribute on
certain scenes because each mesh required multiple world transform sets. This will not always be the
case and our non-managed mode mesh provides total flexibility by allowing the scene to choose its
preferred rendering strategy. The scene has the ability now to choose how it wishes to batch, by attribute
or by transform state.

The scene could choose to render its meshes in the following manner which would assure transform
batching over attribute batching. This method would most likely perform better in a scene containing
many dynamic meshes.

for (int t = 0 ; t < NumberOfMeshes ; t++)
{
 pDevice->SetTransform (D3DTS_WORLD , &pMeshes[t]->Matrix);

 for (int i=0 ; i<NumberOfAttributes; i ++)

{
 pDevice->SetTexture (0 , pTextureList [pAttributeCombo[i].TextureIndex]);

pDevice->SetMaterial(&pMaterialList [pAttributeCombo[i].MaterialIndex]);

pMeshes[t]->DrawSubset[i];
}

}

If your scene has many static meshes (which typically lend themselves to being pre-defined in world
space), then it would be quicker to batch across mesh boundaries. When a scene consists of both world
space meshes and meshes that need a world transform set, you could batch them into two groups and use
a different rendering strategey for each group in your core rendering routine.

In our demo applcation we provide the ability for batch render either by attribute or by transform when
the mesh objects are in non-managed mode (using a pre-compiler define directive). The scene class

 13

rendering function will test if this define has been set and if so, batch by attribute. Otherwise, batching
by transform will be employed.

Source Code Walkthrough

The class declaration for the CTriMesh class is contained in the CObject.h header file. In this listing we
have left out the member functions and only show the member variables to improve readability. The
class is shown below followed by a description of some of its important member variables.

class CTriMesh
{
public:
//---
// Public Enumerators for This Class.
//---
 enum CALLBACK_TYPE { CALLBACK_TEXTURE = 0, CALLBACK_EFFECT = 1,
 CALLBACK_ATTRIBUTEID = 2, CALLBACK_COUNT = 3 };

private:
 //---
 // Private Variables for This Class
 //---
 LPD3DXBUFFER m_pAdjacency; // Stores adjacency information
 CALLBACK_FUNC m_CallBack[CALLBACK_COUNT]; // References the various callbacks
 LPD3DXMESH m_pMesh; // Physical mesh object
 TCHAR m_strMeshName[MAX_PATH]; // The filename used to load the mesh

 // Managed Attribute Data
 MESH_ATTRIB_DATA *m_pAttribData; // Individual mesh attribute data.
 ULONG m_nAttribCount; // Number of items in the attribute data array.

 // Mesh creation data.
 ULONG m_nVertexStride; // Stride of the vertices
 ULONG m_nVertexFVF; // FVF
 ULONG m_nIndexStride; // Stride of the indices
 ULONG m_nVertexCount; // Number of vertices to use during BuildMesh
 ULONG m_nFaceCount; // Number of faces to use during BuildMesh
 ULONG m_nVertexCapacity; // We are currently capable of holding this many
 // before a grow
 ULONG m_nFaceCapacity; // We are currently capable of holding this many
 // before a grow
 ULONG *m_pAttribute; // Attribute ID's for all faces
 UCHAR *m_pIndex; // The face index data
 UCHAR *m_pVertex; // The physical vertices.

};

LPD3DXBUFFER m_pAdjacency
Unlike ID3DXMesh, the CTriMesh object always maintains a copy of the adjacency information. We
use an ID3DXBuffer to store the adjacency data in a uniform and consistent way. Recall that some
D3DX functions expect adjacency information as a DWORD array and others expect it as an

 14

ID3DXBuffer. Because the pointer obtained when locking the buffer can be cast to a DWORD pointer,
storing it in an ID3DXBuffer makes sure that we account for both cases.

CALLBACK_FUNC m_CallBack[CALLBACK_COUNT]
This is an array which will hold pointers to callback functions. The type CALLBACK_FUNC is a
structure defined in the header file Main.h. It contains a void pointer to a function and a void pointer to a
context. This second pointer is used to pass arbitrary information to the callback.

typedef struct _CALLBACK_FUNC // Stores details for a callback
{
 LPVOID pFunction; // Function Pointer
 LPVOID pContext; // Context to pass to the function
} CALLBACK_FUNC;

A CTriMesh can hold up to three callback functions for use when loading X files. The first callback
(m_CallBack[0]) is used only in managed mode for texture registration. It is where the texture loading
callback function pointer will be stored if it has been registered by the application. When the X file is
loaded in managed mode, the texture filenames used by each of the mesh attributes will be passed to this
function, if it exists. The object that registered the callback with the mesh should make sure that it
creates the texture if it does not exist and return a pointer to the texture interface back to the mesh. The
returned texture pointer is stored in the mesh MESH_ATTRIB_DATA member. If this callback function
is not registered, then no textures will be loaded for the managed mesh. This callback function is not
used if the mesh is in non-managed mode and therefore does not need to be registered.

The second array entry (m_CallBack[1]) should contain a pointer to an effect file callback function. X
files contain effect file references which the application can use to load the effect file. Effect files are not
used in this demo and will be covered in Module III of this series. This callback is only used in managed
mode and effect files contained within the X file will be ignored if it is not registered.

The third array entry (m_Callback[2]) essentially switches the mesh into non-managed mode if it
contains a function pointer. When this element is not NULL, it should point to an externally defined
attribute callback function. For each attribute returned from the D3DXLoadMeshFromX function, the
mesh passes in the texture and material to this callback function, if it is defined. The owner of this
function should add the material and texture information to its own texture and material lists if they do
not already exist and return a new Attribute ID that the mesh class can use to re-map its attribute buffer
to point to the global stores. Attribute IDs will then take on global meaning across mesh boundaries and
allow for resource sharing. If this function is not registered, then the mesh is assumed to be in managed
mode. Registering this function places the mesh in non-managed mode.

There is an enumerated type in the CTriMesh namespace that indexes these callbacks for easy
registration:

enum CALLBACK_TYPE { CALLBACK_TEXTURE = 0, CALLBACK_EFFECT = 1,
 CALLBACK_ATTRIBUTEID = 2, CALLBACK_COUNT = 3 };

 15

The last member (CALLBACK_COUNT) indicates the total number of callbacks available to the mesh
class at present (i.e., it defines the size of the callback array). This allows us to add more callbacks in the
future by inserting them into the enum (before the last element) and incrementing
CALLBACK_COUNT.

An external object or function that creates a mesh can set the callback function using the
CTriMesh::RegisterCallback function:

bool RegisterCallback (CALLBACK_TYPE Type, LPVOID pFunction, LPVOID pContext);

In Lab Project 8.1, the CScene class is responsible for loading the geometry and creating the CTriMesh
objects. After a new CTriMesh has been created (but before the data is loaded) the scene registers its
callback function as follows:

// Create the Mesh
CTriMesh * pNewMesh = new CTriMesh;

// Load in the specified X file
pNewMesh->RegisterCallback(CTriMesh::CALLBACK_ATTRIBUTEID,CollectAttributeID,this);

// Load the X file into the CTriMesh object
pNewMesh->LoadMeshFromX(strFileName, D3DXMESH_MANAGED, m_pD3DDevice);

In this example, after we have created the mesh, the scene registers the CALLBACK_ATTRIBUTEID
callback function. This places the mesh into non-managed mode. The second parameter is the address of
the function that will be called by the mesh for each texture/material combo returned when the X file is
loaded. The CScene class includes a function called CScene::CollectAttributeID which accepts a texture
and a material and returns a global attribute ID which the mesh can then use to re-map its attribute
buffer. This is the also function that is responsible for both creating the texture and adding the texture
and the material to the scene database. In this example we do not have to register the texture or effect
callback functions since they are only used with managed meshes. Note that the scene passes the ‘this’
pointer so that it is stored in the context and can be passed to the callback function when called from the
mesh. We need to do this because the callback function is a static function shared by all instances of the
CScene class. As such, the function can only access static variables. The ‘this’ pointer allows us to
circumvent that problem as we saw in earlier lessons and access the non-static member variables of the
instance of the CScene object being used.

The three callback functions each take different parameter lists and return different values. The function
signatures are typedef’d at the top of the file CObject.h and are shown below. If you register any of these
callback functions, you must make sure the functions you write have the the exact signatures that the
mesh expects.

typedef LPDIRECT3DTEXTURE9 (*COLLECTTEXTURE)(LPVOID pContext, LPCSTR FileName);

typedef LPD3DXEFFECT (*COLLECTEFFECT)(LPVOID pContext,
 const D3DXEFFECTINSTANCE & EffectInstance);

 16

typedef ULONG (*COLLECTATTRIBUTEID)(LPVOID pContext,
 LPCSTR strTextureFile,
 const D3DMATERIAL9 *pMaterial,
 const D3DXEFFECTINSTANCE * pEffectInstance);

Continuing our discussion of the CTriMesh member variable…….

LPD3DXMESH m_pMesh
This is a pointer to the ID3DXMesh wrapped by this class.

TCHAR m_strMeshName[MAX_PATH]
This member will hold the filename of the X file used to load the mesh data.

MESH_ATTRIB_DATA *m_pAttribData
When the mesh is in managed mode (i.e. the attribute callback function has not been registered) the mesh
will maintain an array of MESH_ATTRIB_DATA structures -- one for each subset. Each structure
describes the texture and material used by the corresponding subset. The structure is defined in the
header file CObject.h and is shown below for convenience.

typedef struct _MESH_ATTRIB_DATA
{
 D3DMATERIAL9 Material;
 LPDIRECT3DTEXTURE9 Texture;
 LPD3DXEFFECT Effect;
} MESH_ATTRIB_DATA;

When the mesh is in non-managed mode, this pointer will be NULL and no texture and material
information will be managed by the mesh.

There are two ways that this array can be populated in managed mode. When using the
CTriMesh::LoadMeshFromX function, this array will automatically be populated with the material
information in the X file and the texture pointers returned from the texture callback function. If we are
building the mesh ourselves, then we use the AddVertex, AddFace and AddAttributeData functions to
populate the mesh buffers. The AddAttributeData function makes new space at the end of the
MESH_ATTRIB_DATA array (in managed mode) which we can then populate with the material and
texture information we desire. When rendering the mesh in managed mode (CTriMesh::Draw), this array
is used to set the texture and the material for each subset.

ULONG m_nAttribCount
This value describes how many attributes are in the MESH_ATTRIB_ARRAY. This is only used in
managed mode and should always be equal to the number of subsets in the mesh.

 17

ULONG m_nVertexStride
ULONG m_nVertexFVF
ULONG m_nIndexStride
These three members store vertex stride, FVF, and index stride (16 vs. 32-bit) information. Our
application will set these as soon as it creates a mesh (before calling any loading functions). We set this
information by calling CTriMesh::SetDataFormat:

void SetDataFormat (ULONG VertexFVF, ULONG IndexStride);

SetDataFormat copies over the information into the internal class variables and uses the specified FVF
flags to calculate the vertex stride. This function is only used when creating a mesh from scratch. You
must make sure you call it before adding any data to the mesh, otherwise mesh creation will fail. We do
not call this function when we create the mesh using CTriMesh::LoadMeshFromX because the vertex
and index formats will be taken from the X file. Recall that the D3DXLoadMeshFromX function will set
the FVF of our vertices when the mesh is created based on the vertex components available in the X file.

UCHAR *m_pVertex
ULONG m_nVertexCount
We simplify the manual creation of mesh data by maintaining temporary system memory vertex, index,
and attribute arrays. This allows an application to accumulate data in these arrays and only build the
actual ID3DXMesh once all arrays are finalized. Once the mesh is created, these arrays can be freed
since the data is no longer needed. The m_nVertexCount member describes the current number of
vertices in the temporary array and does not necessarily describe the number of vertices in the underlying
mesh. This is especially true after the underlying mesh has been optimized. These variables are not used
at all if we create the mesh data using CTriMesh::LoadMeshFromX.

UCHAR *m_pIndex
ULONG *m_pAttribute
ULONG m_nFaceCount
These are also temporary storage bins that will be used during manual mesh filling. m_pIndex will
contain three indices per face (m_nFaceCount*3) and the m_pAttribute array will hold m_nFaceCount
DWORD values. These are the per-face attribute IDs. These members are not used if the mesh data is
created using the CTriMesh::LoadMeshFromX function. When we manually add faces to the mesh we
also specify the attribute ID of the face about to be added. The indices and attributes passed for each face
are stored in these temporary bins and later used to populate the actual index and attribute buffers of the
ID3DXMesh.

ULONG m_nVertexCapacity
ULONG m_nFaceCapacity
These member variables are only used during manual mesh creation. When we use the AddVertex
method to add a vertex to the m_pVertex array, the array will need to be resized to accommodate the
new addition. Array resizing can be slow, so to avoid doing it for single vertex additions, we use the
m_nVertexCapacity member to define a resize threshold. For example, the array will be resized only

 18

after every 100 vertices have been added. If we start with a vertex capacity of 100, we only need to
resize the array when we add the 101st vertex. We then resize again by 100 and increase
m_nVertexCapacity by 100 also. We can then once again add another 100 vertices before the new vertex
capacity of 200 is reached. The vertex array is resized again by 100, and so on. While it might seem
wasteful to resize the array by 100 when we may only need to add 1 vertex, this memory is freed as soon
as the underlying ID3DXMesh object is created. Thus the memory footprint is only temporary and it
does greatly speed up manual mesh creation. m_nFaceCapacity works in precisely the same way but
with the index and attribute arrays. These member variables are not used once the underlying
ID3DXMesh has been created.

The Methods

Many of the CTriMesh functions are just wrappers around their ID3DXMesh counterparts (e.g., the
functions which optimize and render the underlying mesh data). Some may be slightly more complex
than others due to the management modes the class supports. This is certainly true in the managed mode
code sections where asset management code is introduced to cater for its self-contained design. We will
look at the list of the methods next, but only discuss source code for non-wrapper functions where the
code inside the function is new or significant.

CTriMesh::CTriMesh()

The mesh class has a default constructor that takes no parameters and initializes all internal variables to
NULL or zero.

CTriMesh::CTriMesh()
{
 // Reset Variables
 m_pAdjacency = NULL;
 m_pMesh = NULL;
 m_pAttribData = NULL;
 m_nAttribCount = 0;
 m_nVertexCount = 0;
 m_nFaceCount = 0;
 m_pAttribute = NULL;
 m_pIndex = NULL;
 m_pVertex = NULL;
 m_nVertexStride = 0;
 m_nIndexStride = 0;
 m_nVertexFVF = 0;
 m_nVertexCapacity = 0;
 m_nFaceCapacity = 0;

 ZeroMemory(m_strMeshName, MAX_PATH * sizeof(TCHAR));

 // Clear structures
 for(ULONG i = 0; i < CALLBACK_COUNT; ++i)
 ZeroMemory(&m_CallBack[i], sizeof(CALLBACK_FUNC));
}

 19

Notice how CALLBACK_COUNT is being used to initially clear the function callback array. Initially no
callback functions are registered so the mesh is assumed to be in managed mode at this point. However,
textures and effect files would be ignored during loading unless a callback is given.

CTriMesh::~CTriMesh()

The destructor calls CTriMesh::Release to free the internal memory used by the object.

CTriMesh::~CTriMesh()
{
 Release();
}

CTriMesh::Release

The Release function manages the freeing of memory resources used by the mesh. This allows us to
release the underlying data and reuse the same CTriMesh object to create another CTriMesh object if
desired. This function calls Release for any COM objects it is currently managing so that reference
counts are decremented as expected. This allows the COM layer to unload those objects from memory if
no other references to those objects remain outstanding.

If the mesh has an internal attribute array defined (which is only the case if the mesh is operating in
managed mode), then the reference count of any textures and effect files contained therein are
decremented and the attribute array deleted. It is likely that the texture objects will not be released from
memory at this point since the scene object will also have a reference to this object. The same texture
resource may also be referenced by other meshes in the scene. Only when all meshes have released their
claim to a texture and the scene itself releases it, will the reference count hit zero and the texture be
unloaded from memory. It is especially important that our mesh class abides by the COM reference
counting convention and is well behaved in this regard. If we did not make sure that the reference count
of a texture was increased and decreased correctly when a mesh object gains or releases its claim to a
texture resource, we might end up with a scenario where meshes in the scene still have pointers to
textures which no longer exist.

void CTriMesh::Release()
{
 // Release objects
 if (m_pAdjacency) m_pAdjacency->Release();
 if (m_pMesh) m_pMesh->Release();

 // Release attribute data.
 if (m_pAttribData)
 {
 for (ULONG i = 0; i < m_nAttribCount; i++)
 {
 // First release the texture object (addref was called earlier)
 if (m_pAttribData[i].Texture) m_pAttribData[i].Texture->Release();

 20

 // And also the effect object
 if (m_pAttribData[i].Effect) m_pAttribData[i].Effect->Release();

 } // Next Subset

 delete []m_pAttribData;

 } // End if subset data exists

 // Release flat arrays
 if (m_pVertex) delete []m_pVertex;
 if (m_pIndex) delete []m_pIndex;
 if (m_pAttribute) delete []m_pAttribute;

 // Clear out variables
 m_pAdjacency = NULL;
 m_pMesh = NULL;
 m_pAttribData = NULL;
 m_nAttribCount = 0;
 m_nVertexCount = 0;
 m_nFaceCount = 0;
 m_pAttribute = NULL;
 m_pIndex = NULL;
 m_pVertex = NULL;
 m_nVertexStride = 0;
 m_nIndexStride = 0;
 m_nVertexFVF = 0;
 m_nVertexCapacity = 0;
 m_nFaceCapacity = 0;

 ZeroMemory(m_strMeshName, MAX_PATH * sizeof(TCHAR));
}

Note that we do not reset the callback array to zero. It may well be the case that you want to free the
internal data but re-use the class to create another mesh. In this case, you will probably want to use the
previously registered callback functions to load a new mesh.

Loading Mesh Data

Once we have a new CTriMesh object, there are two ways to populate it. We can either load the data
from an X file using CTriMesh::LoadMeshFromX or we can use the AddVertex, AddFace, and
AddAttributes functions to add the data to the mesh manually. In the latter case we would call
CTriMesh::BuildMesh to create the final ID3DXMesh. Because the two methods of mesh population are
quite different, we will cover them in two sections.

A. Loading Data from X Files

If we intend to load the mesh from an X file, then before calling CTriMesh::LoadMeshFromX we will
want to register one or more callback functions to handle asset management. The following example
demonstrates texture callback registration for a managed mode mesh. Registering this function will have
no effect for a non-managed mode mesh since the attribute callback function will be called instead in
that case.

 21

CTriMesh MyMesh;
MyMesh.RegisterCallback (CTriMesh::CALLBACK_TEXTURE , MyFunction , pSomeInfo);

pSomeInfo is a pointer to arbitrary data (or NULL) that we wish the mesh class to pass to the callback
function when it is called. We will look at the code to this function next.

CTriMesh::RegisterCallback

The mesh class allows for registration of three types of callback functions to handle asset management
requirements. When instructed to load an X file, the mesh can use these functions to pass texture names
and material properties to the external object that registered the callback. In our application, the CScene
class is responsible for loading and storing textures and making sure that we do not load redundant
texture copies.

bool CTriMesh::RegisterCallback(CALLBACK_TYPE Type, LPVOID pFunction, LPVOID pContext)
{
 // Validate Parameters
 if (Type > CALLBACK_COUNT) return false;

 // You cannot set the functions to anything other than NULL
 // if mesh data already exists (i.e. it's too late to change your mind :)
 if (pFunction != NULL && m_pAttribData) return false;

 // Store function pointer and context
 m_CallBack[Type].pFunction = pFunction;
 m_CallBack[Type].pContext = pContext;

 // Success!!
 return true;
}

This function is passed a member of the CALLBACK_TYPE enumerated type
(CALLBACK_TEXTURE, CALLBACK_EFFECT or CALLBACK_ATTRIBUTEID) indicating the
callback function being set. The first two types are used if the mesh is in managed mode. Registering the
CALLBACK_ATTRIBUTEID function places the mesh object into non-managed mode. When in non-
managed mode we do not need to register the texture or effect callback functions as they will never be
called. Note that CALLBACK_TYPE also serves as the callback array index of each function pointer.

The second parameter is a pointer to the callback function. It will be stored in the callback array. The
third parameter allows the external object that is registering the callback to store arbitrary data that it
wants passed to the callback function on execution. Because our callback functions are static, the CScene
class will pass the ‘this’ pointer as the context to ensure access to non-static members.

 22

CTriMesh::LoadMeshFromX

Once we have registered our callback functions, we call LoadMeshFromX to populate the mesh with
data from an X file. The following example shows how this function might be called. Again, it is
important to call this function only after callback registration so that attribute data is handled properly.

MyMesh.LoadMeshFromX(strFileName, D3DXMESH_MANAGED, m_pD3DDevice);

The function takes three parameters: a string containing the filename of the X file, a DWORD containing
our desired mesh creation flags, and a pointer to the device that will own the mesh resources. The mesh
creation flags are a combination of zero or more D3DXMESH flags that we use when creating an
ID3DXMesh. These flags are passed straight to the D3DXLoadMeshFromX function to control
properties such as the memory pools used for the vertex and index buffers.

Note as well that we do not need to specify vertex stride, FVF, or index size since the X file will provide
that information. If the end result is not to our liking, we can always clone the CTriMesh to a different
format after it has been loaded.

Note: Due to the lengthy nature of this function, we will leave out error checking to compact the
listing. The complete version can be found in the source code that accompanies this lesson.

HRESULT CTriMesh::LoadMeshFromX(LPCSTR pFileName, DWORD Options, LPDIRECT3DDEVICE9 pD3D)
{
 HRESULT hRet;
 LPD3DXBUFFER pMatBuffer;
 LPD3DXBUFFER pEffectBuffer;
 ULONG AttribID, i;
 ULONG AttribCount;
 ULONG *pAttribRemap = NULL;
 bool ManageAttribs = false;
 bool RemapAttribs = false;

The first thing the function does is allocate some local variables. It initially assumes the mesh is in non-
managed mode by setting the ManageAttribs Boolean to false. We also declare two ID3DXBuffer
interface pointers that will passed into D3DXLoadMeshFromX to be filled with material and effect data
from the X file.

Since it is possible that the user may have called this function for an object that already has mesh data
defined, we call the Release member function (shown earlier) to free up any potential old data.

 // Release any old data
 Release();

Next we call D3DXLoadMeshFromX with the appropriate parameters (filename, options, etc.). Since we
will maintain adjacency data, we pass in the module level CTriMesh::m_pAdjacency member. If the call
is successful, the final mesh will be stored in the class variable CTriMesh::m_pMesh.

 23

 // Attempt to load the mesh
 D3DXLoadMeshFromX(pFileName, Options, pD3D, &m_pAdjacency, &pMatBuffer,
 &pEffectBuffer, &AttribCount, &m_pMesh);

At this point the mesh has been created and it contains the geometry from the X file. The remainder of
the function processes the material and texture information loaded from the file and returned from the
D3DXLoadMeshFromX function. In the above code, we can see that it is the pMatBuffer variable which
will contain an array of D3DXMATERIAL structures, one for each subset in the mesh. The
AttributeCount local variable will contain the number of subsets in the mesh. How we process and store
this returned attribute data from this point on depends on whether the mesh is in managed or non-
managed mode.

The first thing we do is test wheter the CALLBACK_ATTRIBUTEID callback function is NULL. If it
is, then the non-managed mode callback function has not been registered, and this is a managed mesh. In
this instance we set the ManageAttribs Boolean to true. Next we store the number of subsets in this mesh
in the m_nAttribCount member variable.

 // Are we managing our own attributes ?
 ManageAttribs = (m_CallBack[CALLBACK_ATTRIBUTEID].pFunction == NULL);
 m_nAttribCount = AttribCount;

If this is a managed mesh, then we need to allocate an array of MESH_ATTRIB_DATA structures -- one
for each subset. They will be filled with the texture and material information for each subset so that the
mesh can render itself using the CTriMesh::Draw function. Once the array is allocated, we initialize it to
zero as shown below.

 // Allocate the attribute data if this is a manager mesh
 if (ManageAttribs == true && AttribCount > 0)
 {
 m_pAttribData = new MESH_ATTRIB_DATA[m_nAttribCount];
 ZeroMemory(m_pAttribData, m_nAttribCount * sizeof(MESH_ATTRIB_DATA));
 } // End if managing attributes

If this is a non-managed mesh then we will not need to allocate an attribute array as no textures or
materials will be stored in the mesh itself. We will however, potentially need to re-map the attribute IDs
in the D3DXMesh attribute buffer so that they index into a global pool of resources at the scene level.
Therefore, we will allocate a temporary array that will hold new attribute IDs for each mesh subset.

 else
 {
 // Allocate attribute remap array
 pAttribRemap = new ULONG[AttribCount];

 // Default remap to their initial values.
 for (i = 0; i < AttribCount; ++i) pAttribRemap[i] = i;
 }

By default we initialize each new attribute ID so that it matches the original attribute ID. If the mesh had
five subsets for example, this array will be five DWORDS long and each element will initially contain 0

 24

to 4 respectively. This array will be used to store the new values that each ID will have to be mapped to,
which will be determined momentarily. Thus if pAttribRemap[2] = 90 after the attribute callback
function has been called, this means that the third subset of this mesh uses the texture and material
combination that is stored in the 91st position in the scene’s global attribute list. We would then loop
through the attribute buffer of the ID3DXMesh and change all attribute ID’s that currently equal 2 to the
new value 90.

Next we retrieve pointers to the material and effects buffers returned from the D3DXLoadMeshFromX
function. Although this mesh supports effect instance parsing, we will not be using it in this lesson and
effects can be ignored for the time being. Notice how we lock the buffers and cast the pointers to the
correct type to step through the data in each buffer.

 // Retrieve data pointers
 D3DXMATERIAL *pMaterials = (D3DXMATERIAL*)pMatBuffer->GetBufferPointer();
 D3DXEFFECTINSTANCE *pEffects = (D3DXEFFECTINSTANCE*)pEffectBuffer->GetBufferPointer();

Now we can loop through each subset/attribute and parse the material data. This is handled differently
depending on whether the mesh is in managed or non-managed mode. We will look at the managed case
first.

 // Loop through and process the attribute data
 for (i = 0; i < AttribCount; ++i)
 {

The material buffer contains D3DXMATERIAL structures that store a D3DMATERIAL9 structure and
a texture filename. First we copy the D3DMATERIAL9 into the correct slot in our
MESH_ATTRIB_DATA array. For example, if we are currently processing subset 5 in the loop, then we
will copy the material into m_pAttribData[4].Material. Since the material information in an X file does
not contain an ambient property, we manually set the ambient member to full reflectance (1.0f, 1.0f, 1.0f,
1.0f) after the copy. You should feel free to change this default behavior.

 if (ManageAttribs == true)
 {
 // Store material
 m_pAttribData[i].Material = pMaterials[i].MatD3D;

 // Note : The X File specification contains no ambient material property.
 // We should ideally set this to full intensity to allow us to
 // control ambient brightness via the D3DRS_AMBIENT renderstate.
 m_pAttribData[i].Material.Ambient = D3DXCOLOR(1.0f, 1.0f, 1.0f, 1.0f);

To process the texture filename stored in the D3DXMATERIAL buffer for this subset we will use the
registered texture callback function. The following code shows how we define a function pointer called
CollectTexture to point at the texture callback function in the mesh’s callback function pointer array.The
CollectTexture variable is a pointer of type COLLECTTEXTURE which we saw defined earlier as a
pointer to a function with the desired function signature.

 25

 // Request texture pointer via callback
 if (m_CallBack[CALLBACK_TEXTURE].pFunction)
 {
 COLLECTTEXTURE CollectTexture =
 (COLLECTTEXTURE) m_CallBack[CALLBACK_TEXTURE].pFunction;

We now call the function using this pointer, passing in the context data that was set for this callback
when it was registered. In our case this will be a pointer to the instance of the CScene class that
registered the function. We also pass the texture filename for the current subset being processed. The
function should return a pointer to an IDirect3DTexture9 interface that will be copied into the Texture
member of the mesh attribute array for this subset. In keeping with proper COM standards, we increase
the interface reference count of this texture pointer as we make a copy of it.

 m_pAttribData[i].Texture = CollectTexture(
 m_CallBack[CALLBACK_TEXTURE].pContext,
 pMaterials[i].pTextureFilename);

 // Add reference. We are now using this
 if (m_pAttribData[i].Texture) m_pAttribData[i].Texture->AddRef();

 } // End if callback available

Next we need to process the CALLBACK_EFFECT callback function using the same process. We will
not register an effect callback function in our application, but we have included the code for future use.
When the effect callback function is registered, we pass the context and the D3DXEFFECTINSTANCE
structure for this subset. This information was returned from the D3DXLoadMeshFromX function in the
pEffects buffer. The effect callback function returns a pointer to an ID3DXEffect interface which is
stored in the mesh attribute data array for the current subset. You can feel free to ignore the code that
deals with effects until we get to Module III.

 // Request effect pointer via callback
 if (m_CallBack[CALLBACK_EFFECT].pFunction)
 {
 COLLECTEFFECT CollectEffect =
 (COLLECTEFFECT)m_CallBack[CALLBACK_EFFECT].pFunction;
 m_pAttribData[i].Effect =
 CollectEffect(m_CallBack[CALLBACK_EFFECT].pContext, pEffects[i]);

 // Add reference. We are now using this
 if (m_pAttribData[i].Effect) m_pAttribData[i].Effect->AddRef();

 } // End if callback available

 } // End if attributes are managed

At the end of this loop, the managed mesh will have all texture and material information used by each
subset stored in the mesh attribute data array. Thus, it can render each of its subsets (including state
setting) in a self-contained manner.

If this is not a managed mesh then the chain of events is quite different. We no longer have to allocate a
mesh attribute data array and we will not store the texture and material information inside the object.

 26

Management of textures and materials is left to the caller. In order to do this, we must pass the texture
filename, the material, and the effect instance to the CALLBACK_ATTRIBUTEID callback function.
This function will belong to the CScene class, which maintains a list of all texture and material
combinations used by all meshes in the scene. The callback will search its list for a matching attribute
(i.e. texture and material combination) and if found, will return the index of this attribute set in its
attribute list. If the attribute does not exist in the global list, it will be created and appended. The result is
the same from the mesh’s perspective -- an index is returned. We store this index in our temporary re-
map array so that we can update the subset attribute ID to this new index. After the loop is complete, a
non-managed mesh will have an array of re-map values describing what each attribute ID in the mesh
attribute buffer should be re-mapped to.

 else
 {
 // Request attribute ID via callback
 if (m_CallBack[CALLBACK_ATTRIBUTEID].pFunction)
 {
 COLLECTATTRIBUTEID CollectAttributeID =
 (COLLECTATTRIBUTEID)m_CallBack[CALLBACK_ATTRIBUTEID].pFunction;

 AttribID = CollectAttributeID(m_CallBack[CALLBACK_ATTRIBUTEID].pContext,
 pMaterials[i].pTextureFilename,
 &pMaterials[i].MatD3D,
 &pEffects[i]);

 // Store this in our attribute remap table
 pAttribRemap[i] = AttribID;

 // Determine if any changes are required so far
 if (AttribID != i) RemapAttribs = true;

 } // End if callback available

 } // End if we don't manage attributes

 } // Next Material

We no longer need the material and effect buffers that were returned by D3DXLoadMeshFromX because
the callbacks have taken care of loading and storing the resources. Therefore, they can be released.

 // Clean up buffers
 if (pMatBuffer) pMatBuffer->Release();
 if (pEffectBuffer) pEffectBuffer->Release();

If this is a non-managed mesh and attributes require remapping, then we lock the attribute buffer, update
it with the new information, and unlock. We can release the remapping data when we are finished
because the modifications have now been made to the attribute buffer of the D3DXMesh.. Remember
that this buffer contains an attribute ID for each triangle in the mesh.

 // Remap attributes if required
 if (pAttribRemap != NULL && RemapAttribs == true)
 {
 ULONG * pAttributes = NULL;

 27

 // Lock the attribute buffer
 m_pMesh->LockAttributeBuffer(0, &pAttributes);

 // Loop through all faces
 for (i = 0; i < m_pMesh->GetNumFaces(); ++i)
 {
 // Retrieve the current attribute ID for this face
 AttribID = pAttributes[i];

 // Replace it with the remap value
 pAttributes[i] = pAttribRemap[AttribID];

 } // Next Face

 // Finish up
 m_pMesh->UnlockAttributeBuffer();

 } // End if remap attributes

 // Release remap data
 if (pAttribRemap) delete []pAttribRemap;

Finally, we store the filename of the X file that was loaded in the m_strMeshName string and return
success.

 // Copy the filename over
 _tcscpy(m_strMeshName, pFileName);

 // Success!!
 return S_OK;
}

The overview of the loading process is not complete until we look at the code for the CScene class
callback functions. However, the above function is all that is needed to handle resource management
from the perspective of the mesh object. We will look at the CScene callback functions after we have
finished examining the methods of CTriMesh.

B. Loading Mesh Data Manually

We have covered the basic loading operations involved for managed and non-managed meshes extracted
from X files. Let us now examine the member functions used to manually populate a CTriMesh with
vertex, index, and attribute data. An application would need to do this when the mesh data is being
created programmatically. More importantly, manual mesh creation will be necessary when the
application is loading data from an alternative file format (e.g., IWF, 3DS, etc.). In this section, we will
discuss the manual creation methods in the order in which they are normally used so that we get a better
feel for the flow of operations.

 28

CTriMesh::SetDataFormat

When we load a mesh from an X file, D3DXLoadMeshFromX chooses the format of our vertices and
indices based on the matching data stored in the X file. When creating a mesh manually, before we add
any vertex or index data, we must inform the CTriMesh object of the vertex and index formats we will
be using. This is the only way it will know how to create the ID3DXMesh. To do this, we call the
CTriMesh::SetDataFormat function. This is usually the first function we will call after we have
instantiated a mesh object.

void CTriMesh::SetDataFormat(ULONG VertexFVF, ULONG IndexStride)
{
 // Store the values
 m_nVertexFVF = VertexFVF;
 m_nVertexStride = D3DXGetFVFVertexSize(VertexFVF);
 m_nIndexStride = IndexStride;
}

The first parameter is the FVF flag, describing the vertex format for the mesh. The second parameter is
the size of the indices (in bytes) we wish to use. This will either be 2 or 4 depending on whether we wish
to use 16-bit or 32-bit indices. This function calls the global D3DX helper function
D3DXGetFVFVertexSize which returns the size (stride) of a single vertex given the FVF flag passed in.

The following code snippet demonstrates how we might instantiate a mesh which we intend to use for
manual data population and set its vertex and index formats:

CTriMesh MyMesh;
DWORD FVFFlags = D3DFVF_XYZ | D3DFVF_TEX1;
MyMesh.SetDataFormat (FVFFlags , 2);

Here we are creating a mesh that will have room for a 3D position vector and a single set of 2D texture
coordinates stored in each vertex. We also inform the mesh object that we intend to use 16-bit indices.

CTriMesh::AddVertex

This function is used to add vertices to a temporary vertex array maintained by the mesh. It is very much
like the functions we have studied in previous lessons that manage array allocation and resizing. In our
application, the vertex capacity for the array is initially set to 100 and is increased by 100 every time the
limit is reached. This speeds up adding the vertex data to the array and minimizes memory
fragmentation. This function adds no data to the ID3DXMesh, as it has not even been created yet. All we
are doing is adding vertices to a temporary vertex array which will later be used to create and populate
the vertex buffer of the ID3DXMesh. Once the actual ID3DXMesh has been created, this array will no
longer be used and may be released.

The first parameter describes the number of vertices we wish to add and the second parameter is a
pointer to one or more vertices. We use a void pointer for the vertex data because it must be able to
handle arbitrary vertex formats with varying sizes.

 29

long CTriMesh::AddVertex(ULONG Count , LPVOID pVertices)
{
 UCHAR * pVertexBuffer = NULL;

 if (m_nVertexCount + Count > m_nVertexCapacity)
 {
 // Adjust our vertex capacity (resize 100 at a time)
 for (; m_nVertexCapacity < (m_nVertexCount + Count) ;) m_nVertexCapacity += 100;

 // Allocate new resized array
 if (!(pVertexBuffer = new UCHAR[(m_nVertexCapacity) * m_nVertexStride])) return -1;

 // Existing Data?
 if (m_pVertex)
 {
 // Copy old data into new buffer
 memcpy(pVertexBuffer, m_pVertex, m_nVertexCount * m_nVertexStride);

 // Release old buffer
 delete []m_pVertex;

 } // End if

 // Store pointer for new buffer
 m_pVertex = pVertexBuffer;

 } // End if a resize is required

First we check to see whether the number of vertices passed in will exceed the current capacity of the
vertex array. If so, then we need to resize the array. We grow the array by 100 vertices every time the
capacity is reached so we will not need to resize again until we have added another 100 vertices.

Note the use of the loop rather than a simple conditional test for the resize. This handles the cases where
a user adds large numbers of vertices in one go. If a user wanted to add 500 vertices, we would need to
resize the array by 500, not 100. The loop incrementally adds 100 to the current m_nVertexCapcity
variable until it is large enough to hold all the vertices required.

Next we use the local temporary pointer pVertexBuffer to allocate a new BYTE array large enough to
hold the required number of vertices. Notice that we multiply the vertex capacity by the stride
(m_nVertexStride) to get the total number of bytes needed. This is a clear example of why it is important
to call SetDataFormat prior to adding vertex data.

If the vertex array currently contains vertex data, then we copy it into the newly allocated buffer and
delete the original array because we no longer need it. Finally, we reassign the m_pVertex variable to
point to the new vertex array which now contains any previous vertex data and enough room on the end
to store the input vertex data. Next we copy over the vertex data passed into this function (it will be
appended to the current contents of the buffer). Because we have not yet increased the internal vertex
count variable, this tells us exactly where to start adding the new vertices.

 30

 // Copy over vertex data if provided
 if (pVertices)
 memcpy(&m_pVertex[m_nVertexCount*m_nVertexStride],pVertices,Count*m_nVertexStride);

Finally, we update the vertex count and return the index of the first newly added vertex in the array. This
allows the calling function to retrieve a pointer to the vertex data and use it to start placing vertex data in
the correct position.

 // Increase Vertex Count
 m_nVertexCount += Count;

 // Return first vertex
 return m_nVertexCount - Count;
}

CTriMesh::AddFace

The AddFace function is the second part of the geometry creation functionality. Since the ID3DXMesh
object always represents its data as indexed triangle lists, we will follow the same rules when adding
mesh indices.

The AddFace function is similar to the AddVertex function in the sense that it is used to temporarily
store face data until the ID3DXMesh is created. But there is one important difference -- in addition to the
face data (the indices), we must also specify an attribute ID describing the subset the face belongs to.
These attribute IDs will be arbitrary values that are used by the application to group faces that have like
properties. Therefore, the function must resize the temporary index array as well as the attribute array to
allow for one attribute per index buffer triangle.

The first parameter is the number of triangles we wish to add and the second parameter is a void pointer
to the index data for the triangles. This buffer should contain Count * 3 indices. The final parameter is
the attribute ID we would like associated with the face(s) we are adding. This means that we can add
multiple triangles with the same attribute ID in a single call. If we add N faces to the mesh, we will also
need to add N attribute ID’s to the temporary pAttribute buffer.

long CTriMesh::AddFace(ULONG Count, LPVOID pIndices , ULONG AttribID)
{
 UCHAR * pIndexBuffer = NULL;
 ULONG * pAttributeBuffer = NULL;

First we allocate two pointers that can be used to resize the index and attribute arrays. Because the index
buffer contains faces and the attribute array holds an attribute ID for each face, these two arrays will
always be resized together so that they stay in sync.

Resizing the arrays is identical to the vertex array resize. The default capacity and resize values are both
100.

 31

 if (m_nFaceCount + Count > m_nFaceCapacity)
 {
 // Adjust our face capacity (resize 100 at a time)
 for (; m_nFaceCapacity < (m_nFaceCount + Count) ;) m_nFaceCapacity += 100;

We use the local pIndexBuffer pointer to allocate enough memory to hold the required indices. We
multiply the desired face count by three to get the desired index count, and then multiply that value by
the size of an index (2 or 4 bytes) to get the total number of bytes needed for the new temporary index
buffer.

 // Allocate new resized array
 if (!(pIndexBuffer = new UCHAR[(m_nFaceCapacity * 3)*m_nIndexStride])) return -1;

If there is currently data in the index array then we will copy it into the new index array and release the
old array. We reassign m_pIndex to the newly created array.

 // Existing Data?
 if (m_pIndex)
 {
 // Copy old data into new buffer
 memcpy(pIndexBuffer, m_pIndex, (m_nFaceCount * 3) * m_nIndexStride);

 // Release old buffer
 delete []m_pIndex;
 }

 // Reassign pointer to new buffer
 m_pIndex = pIndexBuffer;

We do similar resizing to the attribute array.

 // Allocate new resized attribute array
 pAttributeBuffer = new ULONG[m_nFaceCapacity];

If the current attribute array (m_pAttribute) holds any data, then we copy it into the new array. Finally
we release the old array and ressign the member variable m_pAttribute.

 // Existing Data?
 if (m_pAttribute)
 {
 // Copy old data into new buffer
 memcpy(pAttributeBuffer, m_pAttribute, m_nFaceCount * sizeof(ULONG));

 // Release old buffer
 delete []m_pAttribute;
 }

 // Store pointer for new buffer
 m_pAttribute = pAttributeBuffer;

 } // End if a resize is required

 32

Next we append the index data passed into the function into the index array.

 // Copy over index and attribute data if provided
 if (pIndices)
 memcpy(&m_pIndex[(m_nFaceCount*3)*m_nIndexStride],pIndices,(Count*3)*m_nIndexStride);

Finally, we loop through the new elements added to the attribute array (one for each new face) and set
the attribute ID to the value passed into the function. We then increment the mesh face count and return
the index of the first newly added face.

 for (ULONG i = m_nFaceCount; i < m_nFaceCount + Count; ++i) m_pAttribute[i] = AttribID;

 // Increase Face Count
 m_nFaceCount += Count;

 // Return first face
 return m_nFaceCount - Count;
}

CTriMesh::AddAttributeData

As discussed earlier, a managed mesh maintains an array of MESH_ATTRIB_DATA structures
describing the texture and material used by each subset. This allows the mesh to render itself. We use the
CTriMesh::AddAttributeData function to add MESH_ATTRIB_DATA information to this array. This
function is necessary if we manually create a mesh which is intended for use in managed mode. It allows
us to specify the texture and material properties used by each subset to manually build the mesh’s
internal attribute array. This function serves no purpose for non-managed mode meshes.

The function takes one parameter which describes how many MESH_ATTRIB_DATA structures to
make room for in the m_pAttribData array. If the array already contains mesh attribute data then the
array will be resized to store the requested number of elements plus the elements already in the array.
Array resizing works in exactly the same way as we saw in the last two functions discussed.

long CTriMesh::AddAttributeData(ULONG Count)
{
 MESH_ATTRIB_DATA * pAttribBuffer = NULL;

 // Allocate new resized array
 pAttribBuffer = new MESH_ATTRIB_DATA[m_nAttribCount + Count] ;

 // Existing Data?
 if (m_pAttribData)
 {
 // Copy old data into new buffer
 memcpy(pAttribBuffer, m_pAttribData, m_nAttribCount * sizeof(MESH_ATTRIB_DATA));

 // Release old buffer
 delete []m_pAttribData;
 }

 33

 // Store pointer for new buffer
 m_pAttribData = pAttribBuffer;

 // Clear the new items
 ZeroMemory(&m_pAttribData[m_nAttribCount], Count * sizeof(MESH_ATTRIB_DATA));

 // Increase Attrib Count
 m_nAttribCount += Count;

 // Return first Attrib
 return m_nAttribCount - Count;
}

The function returns the index of the first attribute added by the call. The calling function can use the
returned value to index into the m_pAttribData function and fill out the required attribute information.
Keep in mind that the number of mesh attribute data elements in this array should match the number of
subsets in the managed mesh. There is a one-to-one mapping between subsets in the mesh and this array,
therefore, the first element you add to this array will be used to describe the texture and material
information for the first subset, and so on.

One thing is not immediately clear. The above function allows us to add space in the internal attribute
array of the mesh and returns the index of the newly added attribute element. How do we use this to
place texture and material information into that array element? The mesh object also exposes a function
called GetAttributeData which returns a pointer to the underlying attribute array. You can use this
pointer along with the index returned from the above function to access the newly added attribute
elements and populate them with texture and material data.

Note: You should not call the AddAttributeData function if you intend to use the mesh in non-managed
mode, since this array will only be used in managed mode. In non-managed mode, the application or
scene class is responsible for setting a subset’s texture and material before rendering it.

Example: Creating a cube using CTriMesh

We have now covered the basic functions we need to add data to the mesh. For illustration, the following
code snippet will demonstrate how we might create a simple cube mesh using these functions. This next
section is like an instruction manual for how to use the wrapper (as opposed to an examination of the
code), and should be helpful in providing insight into the manual creation process.
First the application must allocate a new CTriMesh. In this example we will be using vertices with a 3D
position and one set of 2D texture coordinates. After the mesh is created, the SetDataFormat function is
called to inform the mesh object of the vertex and index formats intended for use:

 CTriMesh CubeMesh;
 CubeMesh.SetDataFormat(D3DFVF_XYZ | D3DFVF_TEX1 , 2);

 34

Because we will be adding one quad at a time in this example (a cube face is two triangles), we will use
temporary arrays of 4 vertices and 6 indices to store the information for each face. We will pass this data
into the CTriMesh::AddVertex and CTriMesh::AddFace functions respectively:

 USHORT Indices[6];
 CVertex Vertices[4];

 // Build Front quad (all quads point inwards in this example)
 Vertices[0] = CVertex(-10.0f, 10.0f, 10.0f, 0.0f, 0.0f);
 Vertices[1] = CVertex(10.0f, 10.0f, 10.0f, 1.0f, 0.0f);
 Vertices[2] = CVertex(10.0f, -10.0f, 10.0f, 1.0f, 1.0f);
 Vertices[3] = CVertex(-10.0f, -10.0f, 10.0f,, 0.0f, 1.0f);

 // Build the front face indices
 Indices[0] = 0; Indices[1] = 1; Indices[2] = 3;
 Indices[3] = 1; Indices[4] = 2; Indices[5] = 3;

We assign the two triangles of this face to attribute 0 using the AddFace function:

 // Add the vertices and indices to this mesh for front face
 CubeMesh.AddVertex(4, &Vertices);
 CubeMesh.AddFace(2, Indices, 0);

We have now added the indices and the vertices to the mesh. The two triangles we have added belong to
subset 0 and describe the front quad of the cube. Now we can re-use our local arrays to store the
information for the back quad before adding it to the mesh. These vertices will be added to the mesh as
vertices 4 through 7, so we must set the indices with this in mind.

 // Back Quad
 Vertices[0] = CVertex(10.0f, 10.0f, -10.0f, 0.0f, 0.0f);
 Vertices[1] = CVertex(-10.0f, 10.0f, -10.0f, 1.0f, 0.0f);
 Vertices[2] = CVertex(-10.0f, -10.0f, -10.0f, 1.0f, 1.0f);
 Vertices[3] = CVertex(10.0f, -10.0f, -10.0f, 0.0f, 1.0f);

 // Build the back quad indices
 Indices[0] = 4; Indices[1] = 5; Indices[2] = 7;
 Indices[3] = 5; Indices[4] = 6; Indices[5] = 7;

 // Add the vertices and indices to this mesh
 CubeMesh.AddVertex(4, &Vertices);
 CubeMesh.AddFace(2, Indices, 0);

This face has also been assigned an attribute ID of 0. Thus the two front triangles and the two back
triangles of the cube belong to subset 0. As a result, these four triangles will be rendered with the same
texture/material combination.

We use the same technique to add the left and right quads. Both will be assigned attribute IDs of 1 so
they will belong to the same subset and be rendered with the same texture/material.

 35

 // Left Quad
 Vertices[0] = CVertex(-10.0f, 10.0f, -10.0f, 0.0f, 0.0f);
 Vertices[1] = CVertex(-10.0f, 10.0f, 10.0f, 1.0f, 0.0f);
 Vertices[2] = CVertex(-10.0f, -10.0f, 10.0f, 1.0f, 1.0f);
 Vertices[3] = CVertex(-10.0f, -10.0f, -10.0f, 0.0f, 1.0f);

 // Build the left quad indices
 Indices[0] = 8; Indices[1] = 9; Indices[2] = 11;
 Indices[3] = 9; Indices[4] = 10; Indices[5] = 11;

 // Add the vertices and indices to this mesh
 CubeMesh.AddVertex(4, &Vertices);
 CubeMesh.AddFace(2, Indices, 1);

 // Right Quad
 Vertices[0] = CVertex(10.0f, 10.0f, 10.0f, 0.0f, 0.0f);
 Vertices[1] = CVertex(10.0f, 10.0f, -10.0f, 1.0f, 0.0f);
 Vertices[2] = CVertex(10.0f, -10.0f, -10.0f, 1.0f, 1.0f);
 Vertices[3] = CVertex(10.0f, -10.0f, 10.0f, 0.0f, 1.0f);

 // Build the right quad indices
 Indices[0] = 12; Indices[1] = 13; Indices[2] = 15;
 Indices[3] = 13; Indices[4] = 14; Indices[5] = 15;

 // Add the vertices and indices to this mesh
 CubeMesh.AddVertex(4, &Vertices);
 CubeMesh.AddFace(2, Indices, 1);

Finally we add the top and bottom quads as subset 2. It should be noted that while we have added the
faces to the mesh in subset order, this is not a requirement. You will usually optimize the mesh once it is
created so that faces are internally batched by subset anyway.

 // Top Quad
 Vertices[0] = CVertex(-10.0f, 10.0f, -10.0f, 0.0f, 0.0f);
 Vertices[1] = CVertex(10.0f, 10.0f, -10.0f, 1.0f, 0.0f);
 Vertices[2] = CVertex(10.0f, 10.0f, 10.0f, 1.0f, 1.0f);
 Vertices[3] = CVertex(-10.0f, 10.0f, 10.0f, 0.0f, 1.0f);

 // Build the indices
 Indices[0] = 16; Indices[1] = 17; Indices[2] = 19;
 Indices[3] = 17; Indices[4] = 18; Indices[5] = 19;

 // Add the vertices and indices to this mesh
 CubeMesh.AddVertex(4, &Vertices);
 CubeMesh.AddFace(2, Indices, 2);

 // Bottom Quad
 Vertices[0] = CVertex(-10.0f, -10.0f, 10.0f, 0.0f, 0.0f);
 Vertices[1] = CVertex(10.0f, -10.0f, 10.0f, 1.0f, 0.0f);
 Vertices[2] = CVertex(10.0f, -10.0f, -10.0f, 1.0f, 1.0f);
 Vertices[3] = CVertex(-10.0f, -10.0f, -10.0f, 0.0f, 1.0f);

 36

 // Build the indices
 Indices[0] = 20; Indices[1] = 21; Indices[2] = 23;
 Indices[3] = 21; Indices[4] = 22; Indices[5] = 23;

 // Add the vertices and indices to this mesh
 CubeMesh.AddVertex(4, &Vertices);
 CubeMesh.AddFace(2, Indices, 2);

At this point the mesh has all vertices stored in its temporary vertex array, all indices in its temporary
index array, and the attribute IDs for each face are stored in its temporary attribute array (describing
three subsets).

If we were intending to use this mesh as a non-managed mesh then our work would be done (except for
loading textures and making sure that they are set before rendering the correct subsets). However, in this
example we will assume that this is a managed mesh with attribute IDs in the range of 0 to 2 (i.e., three
subsets). Therefore, we need to add the attribute data to the mesh for each subset so that the mesh knows
which textures and materials to set when rendering its subsets.

First we call the AddAttributeData function with a value of 3 so that the mesh allocates its
MESH_ATTRIB_DATA array to hold 3 elements.

 // Add the attribute data (We'll let the mesh manage itself)
 CubeMesh.AddAttributeData(3);

Next we call CTriMesh::GetAttributeData which will return a pointer to the internal
MESH_ATTRIB_DATA array so we can populate it with meaningful attribute data for each subset.

 MESH_ATTRIB_DATA *pAttribData;
 pAttribData = CubeMesh.GetAttributeData();

Now we can loop through each element and store the texture pointer and the material for the subset
mapped to that attribute. In this example we are not storing normals in our vertices so will not be using
the DirectX lighting pipeline. Therefore, we do not bother setting the material for each subset because it
will not be used. We just create a default material and copy it into each attribute.

We also assume that pTexture is an application-owned array containing the three textures used by the
subsets. These textures would have been created prior to this code being executed. What is worthy of
note is that the texture and attribute callback functions are only used by the mesh when parsing X files.
When the application manually creates meshes in this way, it is responsible for creating the required
textures and storing their pointers in the mesh attribute array (in managed mode only).

 D3DMATERIAL9 Material;
 ZeroMemory(&Material, sizeof(D3DMATERIAL9));

 // Set the attribute data for each subset
 for (ULONG i = 0; i < 3; ++i)
 {
 pAttribData[i].Texture = pTexture[I];

 37

 pTexture[I]->AddRef();
 pAttribData[i].Material = Material;
 }

A good example of mesh creation happens when loading an IWF file. The IWF file contains all the
texture filenames which would be initially created and stored by the scene. The IWF file also contains
the face data and the material and texture mappings for each face. Using this information, the faces can
be added to the mesh one triangle at a time and the attributes can be grouped and added as the subsets of
the mesh.

All that is left to do at this point is instruct the CTriMesh object to build its internal ID3DXMesh object
using the data we have added to the temporary arrays. Notice that when we call BuildMesh, we pass in
the D3DXMESH_MANAGED member of the D3DXMESH enumerated type in this example. This
indicates that we would like the mesh vertex and index buffers created in the managed resource pool so
that they can support automatic recovery from a lost/reset device.

 // Build the mesh
 CubeMesh.BuildMesh(D3DXMESH_MANAGED, m_pD3DDevice);

CTriMesh::BuildMesh

The BuildMesh function should be called after the application has finished manually populating the
mesh with data. It should not be called if we have loaded the data from an X file as the underlying mesh
will have already been created. BuildMesh will generate the underlying ID3DXMesh object and fill its
vertex and vertex buffers with the information currently stored in the temporary arrays. The code is
shown next a few lines at a time. This listing has had some of the error checking removed to improve
readability, but the error checking is performed in the actual source code.

The function takes three parameters. The first specifes zero or more members of the D3DXMESH
enumerated type. This indicates which memory pool we wish the ID3DXMesh we are about to create to
use for its vertex and index buffers. The second parameter is a pointer to the Direct3D device object
which will own the mesh resources. The optional third parameter, which is set to TRUE by default, is a
Boolean variable indicating whether we wish the temporary vertex, index and attribute arrays to be freed
from memory after the ID3DXMesh has been successfully created.

Usually you would want to release these temporary storage bins as they are no longer required, but it can
be useful to keep them around if the underlying mesh is to be created in the default pool. If the device
should become lost, default pool meshes would need to be created again from scratch, requiring your
application to manually add all the vertex and index data again. If you do not release the temporary
storage bins, then a simple call to the CTriMesh::BuildMesh function is all that is needed to restore the
mesh to its former status. The underlying ID3DXMesh will still be released and recreated, but the vertex
and index data is still in the temporary bins and is automatically copied over by this function. This
convenience obviously comes at the expense of increased memory requirement.

 38

HRESULT CTriMesh::BuildMesh(ULONG Options, LPDIRECT3DDEVICE9 pDevice, bool ReleaseOriginals)
{
 HRESULT hRet;
 LPVOID pVertices = NULL;
 LPVOID pIndices = NULL;
 ULONG *pAttributes = NULL;

If this CTriMesh object already has an ID3DXMesh assigned to it, we should release it. This allows us to
call this function to rebuild meshes that have become invalid due to device loss / reset.

 // First release the original mesh if one exists
 if (m_pMesh) { m_pMesh->Release(); m_pMesh = NULL; }

Next we test the m_nIndexStride member variable to see if the user has set the index data format to 32-
bit. By default D3DXCreateMeshFVF creates meshes with 16-bit indices, so we will need to modify the
mesh creation options to include the D3DXMESH_32BIT flag in that case.

 // Force 32 bit mesh if required
 if (m_nIndexStride == 4) Options |= D3DXMESH_32BIT;

Now we call D3DXCreateMeshFVF to create the ID3DXMesh. We pass in the number of faces and the
number of vertices the mesh will require, followed by the creation options. We also pass the FVF flags
that were registered with the mesh and a pointer to the device that will own the mesh. The final
parameter is the CTriMesh::m_pMesh pointer that will point to a valid ID3DXMesh interface if the
function is successful.

 // Create the blank empty mesh
 D3DXCreateMeshFVF(m_nFaceCount,m_nVertexCount,Options,m_nVertexFVF,pDevice,&m_pMesh);

At this point our D3DXMesh has been created, but it contains no data. The next step is to lock the mesh
vertex, index, and attribute buffers and copy over all of the information stored in our temporary arrays.

 // Lock the vertex buffer and copy the data
 m_pMesh->LockVertexBuffer(0, &pVertices);
 memcpy(pVertices, m_pVertex, m_nVertexCount * m_nVertexStride);
 m_pMesh->UnlockVertexBuffer();

 // Lock the index buffer and copy the data
 m_pMesh->LockIndexBuffer(0, &pIndices);
 memcpy(pIndices, m_pIndex, (m_nFaceCount * 3) * m_nIndexStride);
 m_pMesh->UnlockIndexBuffer();

 // Lock the attribute buffer and copy the data
 m_pMesh->LockAttributeBuffer(0, &pAttributes);
 memcpy(pAttributes, m_pAttribute, m_nFaceCount * sizeof(ULONG));
 m_pMesh->UnlockAttributeBuffer();

Finally, if the ReleaseOriginals Boolean parameter was set to TRUE (the default setting) then the
temporary storage bins are de-allocated and their pointers are set to NULL. We also set all other
variables that describe the data in the temporary arrays to zero.

 39

 // Release the original data if requested
 if (ReleaseOriginals)
 {
 if (m_pVertex) delete []m_pVertex;
 if (m_pIndex) delete []m_pIndex;
 if (m_pAttribute) delete []m_pAttribute;

 m_nVertexCount = 0;
 m_nFaceCount = 0;
 m_pAttribute = NULL;
 m_pIndex = NULL;
 m_pVertex = NULL;
 m_nVertexCapacity = 0;
 m_nFaceCapacity = 0;
 }

 // We're done
 return S_OK;
}

At this point the mesh has been fully created and populated and can be rendered using the DrawSubset
function or the Draw function (if this is a managed mesh).

CTriMesh::Draw

CTriMesh::Draw automates the rendering of a managed mesh and should not be used to render non-
managed meshes. A managed mode mesh maintains internal texture and material resources for subset
rendering. As this is not the case for non-managed meshes, this function only works in managed mode
and will immediately return if called for a non-managed mesh.

void CTriMesh::Draw()
{
 LPDIRECT3DDEVICE9 pD3DDevice = NULL;

 // If the mesh has not been created yet bail
 if (!m_pMesh) return;

 // This function is invalid if there is no managed data
 if (!m_pAttribData) return;

 // Retrieve the Direct3D device
 m_pMesh->GetDevice(&pD3DDevice);

 // Set the attribute data
 pD3DDevice->SetFVF(GetFVF());

 // Render the subsets
 for (ULONG i = 0; i < m_nAttribCount; ++i)
 {
 pD3DDevice->SetMaterial(&m_pAttribData[i].Material);
 pD3DDevice->SetTexture(0, m_pAttribData[i].Texture);

 40

 m_pMesh->DrawSubset(i);

 } // Next attribute

 // Release the device
 pD3DDevice->Release();
}

After checking for managed mode rendering, the function retrieves the device from the ID3DXMesh. We
then loop through each subset of the mesh, set its texture and material, and call
ID3DXMesh::DrawSubset with the subset attribute ID. Finally, we release the device interface because
ID3DXMesh::GetDevice increments the device reference count before returning the pointer.
CTriMesh::GetFVF is a simple wrapper that passes the request through to ID3DXMesh::GetFVF to get
the FVF flags the mesh was created with.

CTriMesh::DrawSubset

DrawSubset provides an interface for rendering individual mesh subsets. It can be used in both managed
and non-managed modes. It is in fact our only means for rendering a non-managed mesh. A higher level
process will be required to set the texture, material, and other states for each subset prior to the render
call (as seen in the CTriMesh::Draw function shown above). This allows the scene to batch render
subsets from multiple meshes to achieve attribute order rendering across mesh boundaries. This function
can also be called to render a subset of a managed mesh, in which case the texture and material of the
subset will be set automatically.

void CTriMesh::DrawSubset(ULONG AttributeID)
{
 LPDIRECT3DDEVICE9 pD3DDevice = NULL;

 // Set the attribute data if managed mode mesh
 if (m_pAttribData && AttributeID < m_nAttribCount)
 {
 // Retrieve the Direct3D device
 m_pMesh->GetDevice(&pD3DDevice);

 pD3DDevice->SetMaterial(&m_pAttribData[AttributeID].Material);
 pD3DDevice->SetTexture(0, m_pAttribData[AttributeID].Texture);

 // Release the device
 pD3DDevice->Release();
 }

 //draw the subset
 m_pMesh->DrawSubset(AttributeID);
}

If the mesh attribute data array is defined, then this is a managed mesh and we set the subset texture and
material before rendering. If it is non-managed, then we simply call ID3DXMesh::DrawSubset straight
away.

 41

CTriMesh::OptimizeInPlace

CTriMesh::OptimizeInPlace is basically a wrapper around the ID3DXMesh::OptimizeInPlace function.

The first parameter is a DWORD containing one or more D3DXMESHOPT flags describing the
optimization we wish to perform. The second and third parameters can be set to NULL or can be passed
the address of ID3DXBuffer interface pointers that will contain the face and vertex remap information
respectively. These should not be allocated buffers since the function will create both buffers for you.

HRESULT CTriMesh::OptimizeInPlace(DWORD Flags, LPD3DXBUFFER *ppFaceRemap,
 LPD3DXBUFFER *ppVertexRemap)
{
 HRESULT hRet;
 LPD3DXBUFFER pFaceRemapBuffer = NULL;
 ULONG *pData = NULL;

If the mesh has not yet had its adjacency information generated then we do so at this point. The
m_pAdjacency member variable is a pointer to an ID3DXBuffer interface. The GenerateAdjacency
function will create the D3DXBuffer object and fill it with adjacency information.

 // Generate adjacency if none yet provided
 if (!m_pAdjacency)
 {
 GenerateAdjacency();
 }

ID3DXMesh::OptimizeInPlace can be somewhat confusing when it comes to generating remap
information. To get the face remap information you pass in a pointer to a pre-allocated DWORD array.
To get vertex remap information you just pass a pointer to an ID3DXBuffer and the function will
generate and fill it with the relevant data. To avoid confusion, our function will return both face and
vertex remapping information in ID3DXBuffer objects. Therefore, we must first create the face remap
buffer ourselves, obtain a pointer to its data area, cast it to a DWORD, and pass it into
ID3DXMesh::OptimimzeInPlace.

 // Allocate the output face remap if requested
 if (ppFaceRemap)
 {
 D3DXCreateBuffer(GetNumFaces() * sizeof(ULONG), ppFaceRemap);
 pData = (ULONG*)(*ppFaceRemap)->GetBufferPointer();
 }

Finally, we call ID3DXMesh::OptimizeInPlace to optimize the mesh data.

 // Optimize the data
 m_pMesh->OptimizeInplace(Flags, (DWORD*)m_pAdjacency->GetBufferPointer(),
 (DWORD*)m_pAdjacency->GetBufferPointer(), pData, ppVertexRemap);
 return S_OK;
}

 42

CTriMesh::Optimize

This function is a bit more complex than its predecessor due to the fact that it has to clone the optimized
data into a new CTriMesh object. However, unlike ID3DXMesh::Optimize which automatically creates
the output mesh, CTriMesh::Optimize expects the application to pass in a pre-created CTriMesh object.
This mesh will be the recipient of the optimized data. This affords us the extra flexibility of being able to
use a statically allocated or stack allocated CTriMesh object as the output mesh. This might be useful if
you wanted to create a temporary optimized mesh locally inside a function, where the output mesh
would be allocated on the stack and automatically discarded when the function returns.

The first parameter is a combination of D3DXMESH flags describing how the underlying ID3DXMesh
object in the output mesh should be created. This can be combined with one or more D3DXMESHOPT
flags describing the optimization to perform. The second parameter is a pointer to a CTriMesh object
that will receive the optimized ID3DXMesh object. This CTriMesh pointer should point to an already
created CTriMesh object. If the output mesh already contains an underlying ID3DXMesh object, this
mesh will be released in favor of the new one that is created by this function.

HRESULT CTriMesh::Optimize(ULONG Flags, CTriMesh *pMeshOut, LPD3DXBUFFER *ppFaceRemap,
 LPD3DXBUFFER *ppVertexRemap , LPDIRECT3DDEVICE9 pD3DDevice)
{
 HRESULT hRet;
 LPD3DXMESH pOptimizeMesh = NULL;
 LPD3DXBUFFER pFaceRemapBuffer = NULL;
 LPD3DXBUFFER pAdjacency = NULL;
 ULONG *pData = NULL;

If the mesh we are cloning does not yet have its adjacency information generated, then we need to
generate it, because it is needed in the call to ID3DXMesh::Optimize.

 // Generate adjacency if not yet available
 if (!m_pAdjacency)
 {
 hRet = GenerateAdjacency();
 }

If the caller did not pass in a pointer to a device, then we will use the device of the current mesh being
cloned. Typically you will not want to specify a different device unless you are using multiple devices
(very rare). Keep in mind that while the CTriMesh object is not bound to any particular device, its
underlying ID3DXMesh object is. The next section of code calls CTriMesh::GetDevice to get a pointer
to the current mesh’s device if a device pointer was not specified. If a device pointer was passed, then we
increment its reference count until we finish using it.

 if (!pD3DDevice)
 {
 // we'll use the same device as this mesh
 // This automatically calls 'AddRef' for the device
 m_pMesh->GetDevice(&pD3DDevice);

 43

 }
 else
 {
 // Otherwise we'll add a reference here so that we can
 // release later for both cases without doing damage :)
 pD3DDevice->AddRef();
 }

ID3DXMesh::Optimize also returns face adjacency information for the optimized mesh, so we create a
buffer to store this information. As with the OptimizeInPlace method, we create the face remap buffer if
a face remap pointer was passed into the function.

 // Allocate new adjacency output buffer
 D3DXCreateBuffer((3 * GetNumFaces()) * sizeof(ULONG), &pAdjacency);

 // Allocate the output face remap if requested
 if (ppFaceRemap)
 {
 // Allocate new face remap output buffer
 D3DXCreateBuffer(GetNumFaces() * sizeof(ULONG), ppFaceRemap);
 pData = (ULONG*)(*ppFaceRemap)->GetBufferPointer();
 }

At the top of this function we declared a local ID3DXMesh pointer called pOptimizeMesh. This pointer
will be fed into the ID3DXMesh::Optimize function and will point to the newly created optimized mesh
on function return.

 // Attempt to optimize the mesh
 m_pMesh->Optimize(Flags,
 (ULONG*)m_pAdjacency->GetBufferPointer(),
 (ULONG*)pAdjacency->GetBufferPointer(),
 pData, ppVertexRemap, &pOptimizeMesh);

At this point we now have an optimized ID3DXMesh, but it is not yet connected to the output CTriMesh
object that was passed into this function. So we call the CTriMesh::Attach method for the output
CTriMesh object which points the m_pMesh pointer to the optimized ID3DXMesh. Notice that we also
pass the face adjacency buffer so that the new mesh has this data resident.

 // Attach this D3DX mesh to the output CTriMesh
 // This automatically adds a reference to the mesh passed in.
 pMeshOut->Attach(pOptimizeMesh, pAdjacency);

The optimized mesh and its adjacency buffer have now been assigned to the output CTriMesh, which
increases the reference count on both. We no longer need to use these interfaces in this function so we
release them. This does not destroy the buffer or the mesh because they are now being referenced by the
output CTriMesh object.

 // We can now release our copy of the optimized mesh and the adjacency buffer
 pOptimizeMesh->Release();
 pAdjacency->Release();

 44

If we are optimizing a managed mesh, then the source mesh will have an array of mesh attribute data
elements describing the textures and materials used by each subset. If this is the case, we must also copy
this data into the mesh attribute array of the output CTriMesh. First we call AddAttributeData to make
room for the new attributes and then we copy the data over.

 // Copy over attributes if there is anything here
 if (m_pAttribData)
 {
 // Add the correct number of attributes
 pMeshOut->AddAttributeData(m_nAttribCount) ;

 // Copy over attribute data
 MESH_ATTRIB_DATA * pAttributes = pMeshOut->GetAttributeData();
 for (ULONG i = 0; i < m_nAttribCount; ++i)
 {
 MESH_ATTRIB_DATA * pAttrib = &pAttributes[i];

 // Store details
 pAttrib->Material = m_pAttribData[i].Material;
 pAttrib->Texture = m_pAttribData[i].Texture;
 pAttrib->Effect = m_pAttribData[i].Effect;

 // Add references so that objects aren't released when either of these
 // meshes are released, or vice versa.
 if (pAttrib->Texture) pAttrib->Texture->AddRef();
 if (pAttrib->Effect) pAttrib->Effect->AddRef();
 } // Next Attribute
 } // End if managed

 // Release our referenced D3D Device
 if (pD3DDevice) pD3DDevice->Release();

 // Success!!
 return S_OK;
}

Notice that when we copy over each texture pointer (and effect pointer) we make sure that we increase
the reference count so that it correctly reflects how many external pointers to the interface are in
existence.

CTriMesh::GenerateAdjacency

The CTriMesh class includes a member variable called m_pAdjacency which is a pointer to an
ID3DXBuffer interface. This function creates this buffer and calls ID3DXMesh::GenerateAdjacency to
calculate the adjacency information. ID3DXMesh::GenerateAdjacency expects a DWORD pointer to an
array large enough to hold the adjacency information, so we simply allocate the ID3DXBuffer large
enough to hold three DWORDS per face and retrieve the buffer data pointer and cast it before passing it
into the function. CTriMesh::GenerateAdjacency accepts an optional epsilon parameter which will
default to 0.001. This is used as a tolerance value when comparing vertices in neighboring faces to see if
they are joined.

 45

Note: This function should only be called after the underlying ID3DXMesh has been created.

HRESULT CTriMesh::GenerateAdjacency(float Epsilon)
{
 HRESULT hRet;

 // Validate Requirements
 if (!m_pMesh) return D3DERR_INVALIDCALL;

 // Clear out any old adjacency information
 if (m_pAdjacency) m_pAdjacency->Release();

 // Create the new adjacency buffer
 hRet = D3DXCreateBuffer(GetNumFaces() * (3 * sizeof(DWORD)), &m_pAdjacency);
 if (FAILED(hRet)) return hRet;

 // Generate the new adjacency information
 hRet = m_pMesh->GenerateAdjacency(Epsilon, (DWORD*)m_pAdjacency->GetBufferPointer());
 if (FAILED(hRet)) return hRet;

 // Success !!
 return S_OK;
}

CTriMesh::Attach

The Attach function is used when a new ID3DXMesh is created and needs to be attached to a pre-
existing CTriMesh object. Its parameters are an ID3DXMesh and its adjacency buffer. The adjacency
buffer passed is simply stored for later use. If you do not pass the adjacency buffer it will be generated
when it is needed. The function returns NULL if a valid mesh pointer is not passed.

HRESULT CTriMesh::Attach(LPD3DXBASEMESH pMesh, LPD3DXBUFFER pAdjacency /* = NULL */)
{
 HRESULT hRet;

 // Validate Requirements
 if (!pMesh) return D3DERR_INVALIDCALL;

 // Clear our current data
 Release();

We start by calling CTriMesh::Release to release any prior mesh or adjacency data. Since the input mesh
is the generic base class, we use a method of the IUnknown interface to determine whether or not the
passed pointer is to the correct COM interface (ID3DXMesh in this case). We call the
IUnkown::QueryInterface method and pass the interface type we are querying and the m_pMesh pointer.
If the mesh is a valid ID3DXMesh COM interface, it will be copied into the m_pMesh pointer and its
reference count incremented automatically by the QueryInterface call.

 // Store this mesh (ensuring that it really is of the expected type)

 46

 // This will automatically add a reference of the type required
 hRet = pMesh->QueryInterface(IID_ID3DXMesh, (void**)&m_pMesh);
 if (FAILED(hRet)) return hRet;

Next, we copy FVF, vertex and index stride, and the adjacency buffer (if it was passed in). We remember
to call AddRef to ensure proper reference counting on the buffer. Once done, we return success.

 // Calculate strides etc
 m_nVertexFVF = m_pMesh->GetFVF();
 m_nVertexStride = m_pMesh->GetNumBytesPerVertex();
 m_nIndexStride = (GetOptions() & D3DXMESH_32BIT) ? 4 : 2;

 // If adjacency information was passed, reference it
 // if none was passed, it will be generated later, if required.
 if (pAdjacency)
 {
 m_pAdjacency = pAdjacency;
 m_pAdjacency->AddRef();
 }
 // Success!!
 return S_OK;
}

CTriMesh::CloneFVF

A useful feature of the ID3DXMesh interface is the ability to clone the mesh into a new mesh with a
different vertex/index format. This is especially handy when we load data from an X file which may lack
certain pieces of information we need or more components than we intend to support.

This function is almost identical to our Optmize function, without the actual optimization call. The
function simply clones and attaches the mesh based on the creation options and FVF specified as input
parameters. Adjacency data is either copied or generated and attributes are copied if the mesh is in
managed mode. The final mesh is passed out using the third parameter.

HRESULT CTriMesh::CloneMeshFVF(ULONG Options, ULONG FVF, CTriMesh * pMeshOut,
 LPDIRECT3DDEVICE9 pD3DDevice /* = NULL */)
{
 HRESULT hRet;
 LPD3DXMESH pCloneMesh = NULL;

 // Validate requirements
 if (!m_pMesh || !pMeshOut) return D3DERR_INVALIDCALL;

 // Generate adjacency if not yet available
 if (!m_pAdjacency)
 {
 GenerateAdjacency();
 }

 // If no new device was passed...
 if (!pD3DDevice)

 47

 {
 // we'll use the same device as this mesh
 // This automatically calls 'AddRef' for the device
 m_pMesh->GetDevice(&pD3DDevice);
 }
 else
 {
 // Otherwise we'll add a reference here so that we can
 // release later for both cases without doing damage :)
 pD3DDevice->AddRef();
 }

 // Attempt to clone the mesh
 m_pMesh->CloneMeshFVF(Options, FVF, pD3DDevice, &pCloneMesh);

 // Attach this D3DX mesh to the output mesh
 // This automatically adds a reference to the mesh passed in.
 pMeshOut->Attach(pCloneMesh);

 // We can now release our copy of the cloned mesh
 pCloneMesh->Release();

 // Copy over attributes if there is anything here
 if (m_pAttribData)
 {
 // Add the correct number of attributes
 if (pMeshOut->AddAttributeData(m_nAttribCount) < 0) return E_OUTOFMEMORY;

 // Copy over attribute data
 MESH_ATTRIB_DATA * pAttributes = pMeshOut->GetAttributeData();
 for (ULONG i = 0; i < m_nAttribCount; ++i)
 {
 MESH_ATTRIB_DATA * pAttrib = &pAttributes[i];
 // Store details
 pAttrib->Material = m_pAttribData[i].Material;
 pAttrib->Texture = m_pAttribData[i].Texture;
 pAttrib->Effect = m_pAttribData[i].Effect;

 // Add references so that objects aren't released when either of these
 // meshes are released, or vice versa.
 if (pAttrib->Texture) pAttrib->Texture->AddRef();
 if (pAttrib->Effect) pAttrib->Effect->AddRef();

 } // Next Attribute

 } // End if managed
 // Release our referenced D3D Device
 if (pD3DDevice) pD3DDevice->Release();

 // Success!!
 return S_OK;
}

 48

CTriMesh::WeldVertices

WeldVertices is a thin wrapper around the D3DXWeldVertices function.

HRESULT CTriMesh::WeldVertices(ULONG Flags, const D3DXWELDEPSILONS * pEpsilon)
{
 HRESULT hRet;
 D3DXWELDEPSILONS WeldEpsilons;

 // Validate Requirements
 if (!m_pMesh) return D3DERR_INVALIDCALL;

 // Generate adjacency if none yet provided
 if (!m_pAdjacency)
 {
 GenerateAdjacency();
 } // End if no adjacency

 // Fill out an epsilon structure if none provided
 if (!pEpsilon)
 {
 // Set all epsilons to 0.001;
 float * pFloats = (float*)&WeldEpsilons;
 for (ULONG i = 0; i < sizeof(D3DXWELDEPSILONS) / sizeof(float); i++)
 *pFloats++ = 1e-3f;

 // Store a pointer (this doesn't get passed back or anything,
 // we're just reusing the empty var)
 pEpsilon = &WeldEpsilons;

 } // End if

 // Weld the vertices
 D3DXWeldVertices(m_pMesh, Flags, pEpsilon, (DWORD*)m_pAdjacency->GetBufferPointer(),
 (DWORD*)m_pAdjacency->GetBufferPointer(), NULL, NULL);
 // Success!!
 return S_OK;
}

This function takes two parameters. The first is a flag containing zero or more members of the
D3DXMESH enumerated type. While these are usually used as mesh creation flags and this function
does not create a new output mesh, the weld operation will regenerate the vertex and index buffers. This
means that we can optionally use the weld function to change the resource pool allocation strategy while
we are welding it.

The second parameter is a pointer to a D3DXWELDEPSILONS structure which allows us to specify
floating point tolerances for each possible vertex component. Specifying NULL for the second
parameter will force the function to use a default comparison tolerance of 0.001 for each vertex
component.

The D3DXWeldVertices function needs to be passed the face adjacency information, so if our CTriMesh
object has not yet generated it, we tell it to do so. Next we test to see if a valid pointer to a

 49

D3DXWELDEPSILONS structure was passed. If not, then we temporarily create one and set all of its
tolerance values to 0.001. Finally, we call D3DXWeldVertices to perform the weld on the ID3DXMesh
for this CTriMesh object.

CTriMesh::GetNumFaces

There are a number of CTriMesh functions we will not discuss here. They are all GetXX style functions
which are generally one or two lines long. However we will use this one method as an example of the
rest.

ULONG CTriMesh::GetNumFaces() const
{
 // Validation!!
 if (!m_pMesh)
 return m_nFaceCount; // Number of faces in temp index buffer
 else
 return m_pMesh->GetNumFaces(); // Number of faces in actual ID3DXMesh
}

This is a good example of how all of the GetXX functions work. Since the user may be creating meshes
manually, they might call this function before calling the Build function to create the ID3DXMesh
object. In this case, the function should return the number of faces that have currently been added to the
temporary index arrays (m_nFaceCount). If the ID3DXMesh has been created however, then we call the
ID3DXMesh::GetNumFaces function to return the number of faces in the actual mesh object. Many of
these GetXX functions are built to work in these two modes.

 50

Introducing IWF External References

In Chapter Five we discussed loading IWF files using the IWF SDK. While most of that code will
remain intact, in this project we will be introducing some new IWF chunks that are specific to GILES™.

GILES™ v1.5 and above includes a new data type called a reference. References allow the artist to place
multiple objects in the scene which all share the same physical mesh data. This is very much like the
concept of instances we discussed in Chapter One. We only need to store one copy of the vertices and
indices in memory and then have multiple objects reference the data. Any changes to the data will affect
all objects that are referencing it. References can point to internal objects such as those created in
GILES™ or they can point to external files. In the latter case, the IWF will contain filenames for X files.
The X file data is not included within the IWF file, only the name is stored. Thus when we find an
external reference, we will load the file ourselves.

External reference objects are very useful because they allow us to use GILES™ to place and position
objects in the scene while still keeping the mesh data separate from the scene database. This means that
if we need to tweak the polygons in one of our X files, we can do so without having to resave the scene.
This also means that we can use GILES™ to create the scene and position placeholder objects in the
world even before the artist has finalized the assets. Once the model is complete, it can be dropped into
the game folder and (as long as the name has not changed) our code will display the scene properly.

You will recall from earlier lessons how the IWF SDK provides us with a helper function to automate
the loading of IWF files. After the file has been loaded, the various components of the scene are stored in
lists. As a simple example, all faces are stored in an IWFSurface list, all entities are stored in IWFEntity
lists, etc. GILES™ reference objects (internal and external) are implemented as an entity plugin. This
means that they will be stored in the entity list created by the IWF SDK loader, not the mesh list, and
will require our code to load the mesh data using the given filename or object name contained inside the
entity.

Below you can see how the reference entity is laid out in memory inside the entity’s data area. This is the
structure we will use in our CScene class to access the data stored in a reference entity loaded by the
IWF SDK.

typedef struct _ReferenceEntity
{
 ULONG ReferenceType; // What type of reference is this
 ULONG Flags; // Reserved flags
 ULONG Reserved1; // Reserved values
 ULONG Reserved2; // Reserved values
 ULONG Reserved3; // Reserved values
 char ReferenceName[1024]; // External file name or internal object name
};

Many of these members are reserved for future use and can be ignored. Our focus is on the
ReferenceType (0 for internal references, 1 for external references) and the ReferenceName (filename
for external refernces, object name for internal references). For internal references, the name will be the

 51

name of another object stored inside the IWF file. In GILES™, we can give objects in the scene unique
names so that they can be referenced in this way. To keep things simple, our first application will
support only external references (references to X files). This allows us to demonstrate how to use
CTriMesh::LoadMeshFromX to load mesh data for each object in the scene stored in an IWF file.

Note: The IWF file distributed with this project (Space_Scene.iwf) is unlike others we have loaded in
past lessons. This file contains no actual geometry data. It contains only a skybox and a list of external
reference entities. The scene uses four meshes, each stored in its own X file. Three of the meshes are
spacecraft models (Cruiser1.x, Cruiser2.x, sfb-04.x). These objects were positioned in the scene using
external referencing within GILES, so that only the object world matrix is stored in the IWF file along
with its filename. The fourth X file is called Asteroid.x and is referenced many times in the scene. When
we load these objects, we will give each reference its own CObject structure and attach the appropriate
CTriMesh to each. From that point forward, rendering proceeds as usual.

The CScene Class

Our scene class will have several responsibilities:

• File loading
• Resource management

o Textures
o Materials
o (Attributes)
o Meshes

• Rendering

For mesh data, the scene class must be prepared to:

o Load externally referenced X files contained in IWF files
o Manually fill meshes with IWF data
o Manually fill meshes with procedural data (i.e. skyboxes, cubes, etc.)

CGameApp::BuildObjects starts asset loading with a call to CScene::LoadSceneFromIWF. This is very
similar to previous projects we have developed. As before, we will use the CFileIWF class that ships
with the IWF SDK to handle file import automatically on our behalf. This object contains a number of
STL vectors for storage of entities, meshes, texture names, materials, etc that were extracted from the
file. We will implement a number of processing functions (ProcessMeshes, ProcessEntities, etc.) to
extract the relevant data from these vectors and convert them into a format which our scene object
accepts.

Note: We will not be covering all of the code in the CScene class since much of it is unchanged from
previous applications. There are some small alterations where we might now copy data into a CTriMesh
object instead of into a CMesh structure, but that is about the extent of it. We will focus on the major
areas that have undergone revision such as data processing and rendering.

 52

An abbreviated version of the CScene class declaration follows. The full declaration can be found in the
header file CScene.h.

class CScene
{
public:
 //---
 // Constructors & Destructors for This Class.
 //---
 CScene();
 ~CScene();

 //---
 // Public Functions for This Class
 //---
 bool LoadSceneFromIWF(TCHAR * strFileName,
 ULONG LightLimit = 0,
 ULONG LightReservedCount = 0);

 bool LoadSceneFromX (TCHAR * strFileName);

 void Render (CCamera & Camera);
 void RenderSkyBox (CCamera & Camera);

LoadSceneFromIWF will be called from CGameApp at application startup. This function was available
in previous lessons when we discussed light groups (not used in this demo). The LightLimit parameter in
the LoadSceneFromIWF file will simply be used to indicate how many lights we wish to load from the
IWF file. For example, if the current hardware only supports eight simultaneous lights, we would set this
to 8 so that only the first eight lights in the IWF file would be used and the rest would be ignored. In this
application, the third parameter is not used but you may remember that it was used in the light group
demo to reserve a number of light slots for dynamic lights.

The CScene class also has a LoadSceneFromX function which provides loading of X files which may
contain individual or multiple meshes. Unlike LoadSceneFromIWF which gives each mesh loaded its
own world matrix, LoadSceneFromX creates a single CTriMesh for the entire scene. If the X file
contains multiple meshes, they will be collapsed into a single mesh. We will learn in the next chapter
how to load hierarchical X files containing multiple meshes. In that case each mesh will maintain its own
world matrix and can be manipulated separately from other meshes stored in the same X file.

CScene also has two render functions: CScene::Render is called by CGameApp::FrameAdvance to draw
all scene meshes. CScene::RenderSkyBox draws the skybox and is called prior to mesh rendering to
present a nice backdrop for the scene.

The next two methods are static callback functions that the scene will register with the CTriMesh class to
handle the loading of textures and materials. We need two callback functions to differentiate the
behaviour of managed vs. non-managed mesh modes. A managed mesh will call the CollectTexture
function to load textures and store their pointers in its attribute data array. Non-managed meshes call
CollectAttributeID to search the scene database for a material/texture combo index which is used to re-
map the mesh attribute buffer to reference the global resource list.

 53

 //---
 // Static Public Functions for This Class
 //---
 static LPDIRECT3DTEXTURE9 CollectTexture (LPVOID pContext, LPCTSTR FileName);
 static ULONG CollectAttributeID (
 LPVOID pContext, LPCTSTR strTextureFile,
 const D3DMATERIAL9 * pMaterial,
 constD3DXEFFECTINSTANCE *pEffectInstance=NULL);

In our demo project, we will use a managed mesh for our skybox because it shares no resources with
other objects in the scene and non-managed meshes for all scene geometry. This should give you a good
sense of how these types can be used in the same application.

After LoadSceneFromIWF calls CFileIWF::Load, the IWF file data is stored in the CFileIWF object’s
internal vectors. As in previous demos, the scene will then extract the required data from those vectors
using a series of ProcessXX functions.

 private:
 //---
 // Private Functions for This Class
 //---
 bool ProcessMeshes (CFileIWF & pFile);
 bool ProcessVertices (CTriMesh * pMesh, iwfSurface * pFilePoly);
 bool ProcessIndices (CTriMesh * pMesh, iwfSurface * pFilePoly,
 ULONG AttribID = 0, bool BackFace = false);
 bool ProcessMaterials (const CFileIWF& File);
 bool ProcessTextures (const CFileIWF& File);
 bool ProcessEntities (const CFileIWF& File);
 bool ProcessReference (const ReferenceEntity& Reference,
 const D3DXMATRIX & mtxWorld);
 bool ProcessSkyBox (const SkyBoxEntity& SkyBox);
 long AddMesh (ULONG Count = 1);
 long AddObject (ULONG Count = 1);

Note that there is an AddObject function and an AddMesh function which are used for adding CObject
structures to the scene’s CObject array and CTriMesh objects to the scene’s CTriMesh array
respectively.

The first new class member variable is a single statically allocated CTriMesh object that will be used to
store a skybox. Our scene will contain one skybox (at most) and it will be manually created when
necessary. GILES™ does not export geometry information for a skybox, only the six texture file names
needed to create the effect. So when the scene class encounters a skybox entity in the IWF file, it will
extract the texture file names, create the textures and then create the cube faces manually. The SkyBox
mesh will be created in managed mode so that it will render in a self-contained manner.

 //---
 // Private Variables for This Class
 //---
 CTriMesh m_SkyBoxMesh; // Sky box mesh.

 54

The scene class will also be responsible for resource allocation and management regardless of the mesh
management mode selected. A callback mechanism is provided to allow scene loading functions access
to texture resources when needed. In order to avoid duplicating texture resources, the scene will store the
texture pointer along with its filename in the structure shown below.

typedef struct _TEXTURE_ITEM
{
 LPSTR FileName; // File used to create the texture
 LPDIRECT3DTEXTURE9 Texture; // The texture pointer
} TEXTURE_ITEM;

The global resource pool for textures is stored in the CScene class as a single array:

 TEXTURE_ITEM *m_pTextureList [MAX_TEXTURES]; // Array of texture pointers

In the case of a managed mesh, the scene will return a pointer to the texture back to the mesh loading
function after it has added the texture to this array. The managed mesh can store the texture pointer in its
attribute data array for later use. In the case of a non-managed mesh, the texture will still be added to this
array by the callback function, but the pointer will not be returned to the mesh loader. Instead, the index
of a texture/material combination will be returned and used to re-map the mesh attribute buffer.

A similar strategy to avoid duplication is used for material resources, but only for non-managed meshes.
Managed meshes will store their own materials internally, although as an exercise, you should be able to
quickly modify the class to reference the global material pool and reduce memory requirements. The
scene material list will contain all materials used by non-managed meshes.

 D3DMATERIAL9 m_pMaterialList[MAX_MATERIALS]; // Array of material structures.

The scene class also uses a D3DLIGHT9 array to store the lights that were loaded from the IWF file. To
simplify the code, this particular demo project does not use light groups, so only the first N lights are
loaded from the file (where N is the total number of simultaneous lights supported by the device). You
could certainly add light group support as an exercise however.

 D3DLIGHT9 m_pLightList [MAX_LIGHTS]; // Array of light structures

The next three variables describe how many items are in the arrays just discussed.

 ULONG m_nTextureCount; // Number of textures stored
 ULONG m_nMaterialCount; // Number of materials stored
 ULONG m_nLightCount; // Number lights stored here

The space scene IWF file used in this project contains three space ships and a number of asteroids. The
scene object will thus contain an array of CObject structures for each object in the scene that needs to be
rendered. The CObject structure contains a world matrix and a pointer to a CTriMesh. Recall that
multiple CObject’s may reference the same CTriMesh. This is the approach used for our asteroids and is
a technique referred to as mesh instancing. The scene also contains an array of CTriMesh objects for the

 55

actual geometry data used by the scene objects. For example, the CTriMesh array will contains 4 meshes
(3 space ship meshes and 1 asteroid mesh).

 CObject **m_pObject; // Array of objects storing meshes
 ULONG m_nObjectCount; // Number of objects currently stored
 CTriMesh **m_pMesh; // Array of loaded scene meshes
 ULONG m_nMeshCount; // Number of meshes currently stored

Non-managed meshes are not aware of the texture or material each of its subsets is using, since this
information is managed at the scene level. The mesh object attribute buffer IDs will simply reference a
texture and material combination stored in the CScene ATTRIBUTE_ITEM array shown next.

 ATTRIBUTE_ITEM m_pAttribCombo[MAX_ATTRIBUTES]; // Table of attribute combinations
 ULONG m_nAttribCount; // Number of attributes.

The ATTRIBUTE_ITEM structure represents a unique texture/material pair. This allows us to batch
subsets across mesh boundaries when they share the same attribute combination (used by non-managed
meshes only).

typedef struct _ATTRIBUTE_ITEM
{
 long TextureIndex; // Index into the texture array
 long MaterialIndex; // Index into the material array
} ATTRIBUTE_ITEM;

When a matching attribute item is found during the mesh loading callback function for non-managed
meshes, an index into this global array is returned and stored in the mesh attribute buffer. If a match was
not found, a new ATTRIBUTE_ITEM is created and inserted into the list and its index returned. The
global texture and material arrays are used to avoid resource duplication as mentioned previously (note
that the ATTRIBUTE_ITEM members are indices into the scene global texture and material arrays).

Finally, the scene stores a default material that will be used for any faces that do not have a material
explicitly assigned in the file.

 D3DMATERIAL9 m_DefaultMaterial; // A plain white material for null cases.
};

Now that we have examined the CScene member variables, let us look at the member functions. We will
try to do this in the approximate order that they would be called so that we can better understand how the
scene is built.

CScene::LoadSceneFromIWF

This function manages the loading of IWF files from disk. We pass in the filename of the IWF file we
wish to load (with absolute or relative path) as well as the device light limit and a count for reserved
light slots for dynamic lights. This project will not use light groups so we can ignore the third parameter.

 56

The first thing the function does is instantiate a CFileIWF object provided us by the IWF SDK. We then
strip off the filename portion of the input string and store the path portion in the m_strDataPath member
variable. This path will be used later to load textures that are stored in the same folder.

bool CScene::LoadSceneFromIWF(TCHAR *strFileName, ULONG LightLimit, ULONG ReservedCount)
{
 CFileIWF File;

 // Retrieve the data path
 if (m_strDataPath) free(m_strDataPath);
 m_strDataPath = _tcsdup(strFileName);

 // Strip off the filename
 TCHAR * LastSlash = _tcsrchr(m_strDataPath, _T('\\'));
 if (!LastSlash) LastSlash = _tcsrchr(m_strDataPath, _T('/'));
 if (LastSlash) LastSlash[1] = _T('\0'); else m_strDataPath[0] = _T('\0');

The next step is loading the IWF file from disk using the CFileIWF::Load function.

 // File loading may throw an exception
 try
 {
 // Attempt to load the file
 File.Load(strFileName);

At this point, all of the meshes, materials, texture names, and entities have been loaded and are stored in
a series of STL vectors internal to the CFileIWF object. We now record the input maximum light count
in a scene member variable.

 // Store values
 m_nLightLimit = LightLimit;

The remainder of the function calls the ProcessXX member functions to extract the stored data into
application defined data types. The first two calls (ProcessMaterials/ProcessTextures) extract the scene
materials and textures and store them in their respective global arrays.

Interestingly, the space scene IWF file that accompanies this demo does not contain material or texture
information because it does not store any actual mesh data. Instead, all meshes are stored in the IWF file
as external reference entities (X file names). The materials and texture names used by this scene will be
stored in the referenced X files, so technically they do not need to be loaded for the IWF. However, we
make the calls anyway to allow for scenes that do store such information. They simply load textures and
materials stored in the CFileIWF object and add them to the scene texture and material arrays.

 // Process the materials and textures first (order is important)
 if (!ProcessMaterials(File)) return false;
 if (!ProcessTextures(File)) return false;

 57

As you might expect, the same logic holds true for geometry data. Since the IWF file in this demo does
not store any meshes, the function will actually wind up doing nothing, but we implement it anyway to
allow for cases where mesh data is exported.

 // Process the pure mesh data
 if (!ProcessMeshes(File)) return false;

Now we are ready to parse the entities stored in the CFileIWF::m_vpEntityList. This job falls to the
CScene::ProcessEntities function. While we have looked at this function in previous demos, its only
responsibility was extracting scene lights. This time however, we have two new entity types that we will
need to write code for: references and skyboxes. In this demo, our reference entities will contain the
filename for the X file(s) we wish to load to create the actual meshes in the scene. The skybox entity will
store a list of the six required textures required.

 // Copy over the entities we want from the file
 if (!ProcessEntities(File)) return false;

Now that we have extracted all of the information that was stored in the IWF file, we can release the
memory used by the CFileIWF STL vectors.

 // Allow file loader to release any active objects
 File.ClearObjects();

If the m_nLightCount member variable is still set to 0 at this point, then the IWF file contained no
lighting information. To ensure that we are able to see our objects in this case, we setup four default
directional lights and add them to the scene light array. This is not something that you must do but we do
it here for convenience.

 // If no lights were loaded, lets default some half-way decent ones
 if (m_nLightCount == 0)
 {
 // Set up an arbitrary set of directional lights
 ZeroMemory(m_pLightList, 4 * sizeof(D3DLIGHT9));
 m_pLightList[0].Type = D3DLIGHT_DIRECTIONAL;
 m_pLightList[0].Diffuse = D3DXCOLOR(1.0f, 0.92f, 0.82f, 0.0f);
 m_pLightList[0].Specular = D3DXCOLOR(1.0f, 0.92f, 0.82f, 0.0f);
 m_pLightList[0].Direction = D3DXVECTOR3(0.819f, -0.573f, 0.0f);

 m_pLightList[1].Type = D3DLIGHT_DIRECTIONAL;
 m_pLightList[1].Diffuse = D3DXCOLOR(0.4f, 0.4f, 0.4f, 0.0f);
 m_pLightList[1].Specular = D3DXCOLOR(0.6f, 0.6f, 0.6f, 0.0f);
 m_pLightList[1].Direction = D3DXVECTOR3(-0.819f, -0.573f, -0.0f);

 m_pLightList[2].Type = D3DLIGHT_DIRECTIONAL;
 m_pLightList[2].Diffuse = D3DXCOLOR(0.8f, 0.8f, 0.8f, 0.0f);
 m_pLightList[2].Specular = D3DXCOLOR(0.0f, 0.0f, 0.0f, 0.0f);
 m_pLightList[2].Direction = D3DXVECTOR3(0.0f, 0.707107f, -0.707107f);

 m_pLightList[3].Type = D3DLIGHT_DIRECTIONAL;
 m_pLightList[3].Diffuse = D3DXCOLOR(0.6f, 0.6f, 0.6f, 0.0f);
 m_pLightList[3].Specular = D3DXCOLOR(0.0f, 0.0f, 0.0f, 0.0f);

 58

 m_pLightList[3].Direction = D3DXVECTOR3(0.0f, 0.707107f, 0.707107f);

 // We're now using 4 lights
 m_nLightCount = 4;

 } // End if no lights

 } // End Try Block

 // Catch any exceptions
 catch (...)
 {
 return false;

 } // End Catch Block

 // Success!
 return true;
}

CScene::ProcessMaterials

This function (called by the CScene::LoadSceneFromIWF) loops through each material in the
CFileIWF::m_vpMaterialList vector and copies the values into the scene material list. The internal
material counter is incremented for each material copied.

bool CScene::ProcessMaterials(const CFileIWF& File)
{
 ULONG i;

 // Loop through and build our materials
 for (i = 0; i < File.m_vpMaterialList.size(); i++)
 {
 // Retrieve pointer to file material
 iwfMaterial * pFileMaterial = File.m_vpMaterialList[i];

 // Retrieve pointer to our local material
 D3DMATERIAL9 * pMaterial = &m_pMaterialList[i];

 // Copy over the data we need from the file material
 pMaterial->Diffuse = (D3DCOLORVALUE&)pFileMaterial->Diffuse;
 pMaterial->Ambient = (D3DCOLORVALUE&)pFileMaterial->Ambient;
 pMaterial->Emissive = (D3DCOLORVALUE&)pFileMaterial->Emissive;
 pMaterial->Specular = (D3DCOLORVALUE&)pFileMaterial->Specular;
 pMaterial->Power = pFileMaterial->Power;

 // Increase internal vars
 m_nMaterialCount++;
 if (m_nMaterialCount >= MAX_MATERIALS) break;

 } // Next Material

 // Success!
 return true;
}

 59

CScene::ProcessTextures

This function (called by CScene::LoadScene from IWF) loops through the CFileIWF::m_vpTextureList
and uses the stored filenames to load the texture resources. This function does not need to worry about
duplicates because IWF files only store unique texture filenames. As each texture is loaded, its
IDirect3DTexture9 interface pointer and filename is stored in the scene objects m_pTextureList array.

The first thing we do is zero out the scene TEXTURE_ITEM array.

bool CScene::ProcessTextures(const CFileIWF& File)
{
 ULONG i;
 TCHAR Buffer[MAX_PATH];
 TEXTURE_ITEM * pNewTexture = NULL;

 ZeroMemory(m_pTextureList, m_nTextureCount * sizeof(TEXTURE_ITEM*));

Now we will loop through each TEXTURE_REF in m_vpTextureList. The TEXTURE_REF structure is
defined in libIWF.h and contains the texture filename and possibly even the actual texture pixel data. We
are interested only in the filename (and its string length) for now.

for (i = 0; i < File.m_vpTextureList.size(); i++)
 {
 // Retrieve pointer to file texture
 TEXTURE_REF * pFileTexture = File.m_vpTextureList[i];

 // Skip if this is an internal texture (not supported by this demo)
 if (pFileTexture->TextureSource != TEXTURE_EXTERNAL) continue;

As we have found a potentially valid texture, we will create a new TEXTURE_ITEM to store the
filename and texture we are about to create. We add the item to the CScene::m_pTextureList array.

 // No texture found, lets create our texture data and store it
 pNewTexture = new TEXTURE_ITEM;
 ZeroMemory(pNewTexture, sizeof(TEXTURE_ITEM));

The TEXTURE_REF structure stores only the filename and not the full path. This allows us to store the
texture in any folder desired. We extracted the path information during the LoadSceneFromIWF
function, so we can add the path string to the texture file name to get the full path for the texture for
loading. We use D3DXCreateTextureFromFileEx to load the texture.

 // Now build the full path
 _tcscpy(Buffer, m_strDataPath);
 _tcscat(Buffer, pFileTexture->Name);

 // Create the texture (use 3 mip levels max) (Ignore error value)
 D3DXCreateTextureFromFileEx(m_pD3DDevice, Buffer, D3DX_DEFAULT, D3DX_DEFAULT, 3, 0,
 m_fmtTexture,D3DPOOL_MANAGED,D3DX_DEFAULT,D3DX_DEFAULT,
 0, NULL, NULL, &pNewTexture->Texture);

 60

We copy the texture filename into the TEXURE_ITEM, add the structure to our global array, and then
increment our counter.

 // Duplicate the filename for future lookups
 pNewTexture->FileName = _tcsdup(pFileTexture->Name);

 // Store this item
 m_pTextureList[m_nTextureCount++] = pNewTexture;
 if (m_nTextureCount >= MAX_TEXTURES) break;

 } // Next Texture

 // Success!
 return true;
}

CScene::ProcessMeshes

ProcessMeshes extracts geometry from CFileIWF::m_vpMeshList and creates CTriMesh objects for
each mesh. The m_vpMeshList vector contains one iwfMesh structure for each mesh extracted from the
file (see libIWF.h).

bool CScene::ProcessMeshes(CFileIWF & pFile)
{
 HRESULT hRet;
 CTriMesh * pNewMesh = NULL;
 long i, j, MaterialIndex, TextureIndex;
 ULONG AttribID = 0;

 // Loop through each mesh in the file
 for (i = 0; i < pFile.m_vpMeshList.size(); i++)
 {
 iwfMesh * pMesh = pFile.m_vpMeshList[i];

 // Allocate a new CTriMesh
 pNewMesh = new CTriMesh;
 if (!pNewMesh) return false;

We are going to populate mesh data buffers manually, so we need to tell the mesh about our vertex
components and our index format so that it can properly allocate its vertex/index buffers. In this project,
VERTEX_FVF is defined in CObject.h as:

#define VERTEX_FVF D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1

 // Set the mesh's data format
 pNewMesh->SetDataFormat(VERTEX_FVF, sizeof(USHORT));

Now that we have created the CTriMesh, we can loop through each surface in the iwfMesh and add the
geometry data. Note that we skip surfaces marked with the SURFACE_INVISIBLE flag.

 for (j = 0; j < pMesh->SurfaceCount; j++)

 61

 {
 iwfSurface * pSurface = pMesh->Surfaces[j];

 // Skip if this surface is flagged as invisible
 if (pSurface->Style & SURFACE_INVISIBLE) continue;

First we extract the texture and material indices used by the face setting the indices to –1 if some error
has occurred (e.g., the texture index has a larger value than the total number of textures stored in the IWF
file). This would mean the IWF file has been created incorrectly. We do not halt execution but instead
assign an idex of –1 indicating that the scene’s default (white) material will need to be assigned to these
faces.

 // Determine the indices we are using.
 MaterialIndex = -1;
 TextureIndex = -1;
 if ((pSurface->Components & SCOMPONENT_MATERIALS) && pSurface->ChannelCount > 0)
 MaterialIndex = pSurface->MaterialIndices[0];

 if ((pSurface->Components & SCOMPONENT_TEXTURES) && pSurface->ChannelCount > 0)
 TextureIndex = pSurface->TextureIndices[0];

 if (MaterialIndex >= m_nMaterialCount) MaterialIndex = -1;
 if (MaterialIndex >= m_nTextureCount) TextureIndex = -1;

With the material and texture indices stored in temporary local variables (MaterialIndex and
TextureIndex), we use them to get a pointer to the material in the scene material array and the texture
filename for the texture stored in the scene texture array (shown below).

 LPCTSTR strTextureFile = NULL;
 D3DMATERIAL9 * pMaterial = NULL;

 // Retrieve information to pass to support functions
 if (MaterialIndex >= 0) pMaterial = &m_pMaterialList[MaterialIndex];
 if (TextureIndex >= 0) strTextureFile = m_pTextureList[TextureIndex]->FileName;

Bear in mind when looking at the above code that when this function has been called, the
ProcessMaterials and ProcessTextures function have already been executed. Therefore, all textures and
materials stored inside the IWF file are already in the scene texture and material lists at this point. This
means the texture and material index stored in each IWFSurface indexes correctly into the scene’s
texture and material arrays. This is because they will have been added to the scene in the same order as
the materials and textures listed inside the IWF file. The texture and material indices stored in each
IWFSurface are therefore still valid when used to access the scene textures and materials.

Now that we have a pointer to the material and the texture filename used by this face, we pass this
information into the CScene::CollectAttributeID function. The function will look for a matching
material/texture combination in its ATTRIBUTE_ITEM array and if one is not found, create a new
entry, loading and creating any textures and materials as necessary. This is the same function that is used
as a callback function for non-managed mode meshes when loading X file data.

 62

The function returns the index of the ATTRIBUTE_ITEM which describes the global attribute ID that
will be assigned to this face when it is added to the CTriMesh. Notice that we also pass in the ‘this’
pointer because CollectAttributeID is a static function.

 // Collect an attribute ID
 AttribID = CollectAttributeID(this, strTextureFile, pMaterial);

Now that we have the attribute index for this material/texture combination, we can add the face indices
to the CTriMesh index buffer. For each triangle added (because this may be an N-gon), we also copy the
attribute ID into the CTriMesh attribute buffer so that all triangles that share the same material and
texture will belong to the same subset. This is all handled by the ProcessIndices function. We pass in a
pointer to our new CTriMesh, a pointer to the iwfSurface that contains the index data for the face we
wish to add, and the face attribute ID that we have just generated.

 // Process the indices
 if (!ProcessIndices(pNewMesh, pSurface, AttribID)) break;

If the surface has the SURFACE_TWO_SIDED flag set, then the level designer wants this surface to be
visible from both its front and back sides. As our application uses back face culling, we add the face to
the mesh again, this time passing in TRUE as the final parameter. This call reverses the winding order of
the face before it adds it to the index buffer the second time. We have essentially created two polygons
that share the same position in 3D space but face in opposing directions.

 if (pSurface->Style & SURFACE_TWO_SIDED)
 {
 // Two sided surfaces have back faces added manually
 if (!ProcessIndices(pNewMesh, pSurface, AttribID, true)) break;
 }

Now we call ProcessVertices to add the vertex data to the new mesh.

 // Process vertices
 if (!ProcessVertices(pNewMesh, pSurface)) break;

 } // Next Surface

After the CScene::ProcessVertices and CScene::ProcesIndices have been called, the CTriMesh will have
had all the vertex, index and attribute data added to its temporary storage bins.

If one of the processing functions failed, then the loop variable ‘j’ will be smaller than the surface count
of the iwfMesh. If this is the case, then we release the new CTriMesh and return failure as we have data
corruption.

 // If we didn't reach the end, then we failed
 if (j < pMesh->SurfaceCount) { delete pNewMesh; return false; }

 63

We next instruct the CTriMesh object to build its underlying ID3DXMesh with a call to the
CTriMesh::BuildMesh function. We pass in the D3DXMESH_MANAGED creation flag indicating our
desire for allocating index and vertex buffers in the managed resource pool.

 // We're done, attempt to build this mesh
 hRet = pNewMesh->BuildMesh(D3DXMESH_MANAGED, m_pD3DDevice);
 if (FAILED(hRet)) { delete pNewMesh; return false; }

Next we clean and optimize the CTriMesh. We start with the CTriMesh::Weld function, passing in a 0.0
floating point tolerance so that only exact duplicated vertices are merged. Then we call the
CTriMesh::OptimizeInPlace function to perform compaction, attribute sorting, and vertex cache
optimizations on the underlying D3DXMesh data.

 // Optimize the mesh of possible
 pNewMesh->WeldVertices(0);
 pNewMesh->OptimizeInPlace(D3DXMESHOPT_VERTEXCACHE);

We now call the CScene::AddMesh() function, which is a simple utility function to resize the scene
CTriMesh array (m_pMesh). This call returns the index of the newly added element, which we use to
store the CTriMesh pointer to the mesh we have just created.

 // Store this new mesh
 if (AddMesh() < 0) { delete pNewMesh; return false; }
 m_pMesh[m_nMeshCount - 1] = pNewMesh;

Although we have added the mesh to the scene, we still require a higher level object to allow for mesh
instancing, so we allocate a new CObject structure, passing our new mesh into the constructor. Note that
while the CObject maintains a world matrix, meshes stored in IWF files exported from GILES™ are all
defined in world space. So the CObject world matrix should just be set to identity, and this is done
implicitly by the constructor.

 // Now build an object for this mesh (standard identity)
 CObject * pNewObject = new CObject(pNewMesh);
 if (!pNewObject) return false;

Finally, we add this new CObject to the scene level CObject array (m_pObject). The AddObject()
member function resizes the array and returns the index where we will copy the pointer .

 // Store this object
 if (AddObject() < 0) { delete pNewObject; return false; }
 m_pObject[m_nObjectCount - 1] = pNewObject;

 } // Next Mesh

 // Success!!
 return true;
}

 64

CScene::ProcessVertices

ProcessVertices is called by ProcessMeshes (discussed above) for each surface in the mesh. Its job is to
add the vertices stored in the iwfSurface to the newly created CTriMesh object. Note that they are not
copied straight into the vertex buffer because the ID3DXMesh will not have been created yet. Instead
they are copied into the CTriMesh::pVertices array. Only after all vertices have been added and the
underlying ID3DXMesh has been created will we fill the vertex buffer with this data.

bool CScene::ProcessVertices(CTriMesh * pMesh, iwfSurface * pFilePoly)
{
 ULONG i, VertexStart = pMesh->GetNumVertices();
 CVertex * pVertices = NULL;

 // Allocate enough vertices
 if (pMesh->AddVertex(pFilePoly->VertexCount) < 0) return false;
 pVertices = (CVertex*)pMesh->GetVertices();

We start by retrieving the number of vertices currently stored in the mesh. This tells us where we want to
start appending our new vertex data. Next we call the CTriMesh::AddVertex function passing in the
number of vertices in the iwfSurface. This function resizes the mesh’s temporary vertex array if
necessary to make room for the new data. We then get a pointer to the mesh vertex array so that we can
start copying the vertex data.

 // Loop through each vertex and copy required data.
 for (i = 0; i < pFilePoly->VertexCount; i++)
 {
 // Copy over vertex data
 pVertices[i + VertexStart].x = pFilePoly->Vertices[i].x;
 pVertices[i + VertexStart].y = pFilePoly->Vertices[i].y;
 pVertices[i + VertexStart].z = pFilePoly->Vertices[i].z;
 pVertices[i + VertexStart].Normal = (D3DXVECTOR3&)pFilePoly->Vertices[i].Normal;

 // If we have any texture coordinates, set them
 if (pFilePoly->TexChannelCount > 0 && pFilePoly->TexCoordSize[0] == 2)
 {
 pVertices[i + VertexStart].tu = pFilePoly->Vertices[i].TexCoords[0][0];
 pVertices[i + VertexStart].tv = pFilePoly->Vertices[i].TexCoords[0][1];
 } // End if has tex coordinates
 } // Next Vertex

 // Success!
 return true;
}

CScene::ProcessIndices

ProcessIndices remains relatively unchanged from our prior projects so we will only show the code that
deals with face indices in indexed triangle list format. This means we simply copy the indices from the
passed iwfSurface into the mesh. Please refer to Chapter Five for code that converts the other formats.

 65

bool CScene::ProcessIndices(CTriMesh * pMesh, iwfSurface * pFilePoly,
 ULONG AttribID, bool BackFace)
{
 ULONG i, Counter, VertexStart, FaceStart, IndexStart;
 USHORT * pIndices = NULL;

 // Validate parameters
 if (!pMesh || !pFilePoly) return false;

Before we add indices to the new CTriMesh object, we need to retrieve the mesh vertex count so that we
can correctly offset the zero-based index values. Keep in mind that this function is called before the
vertices are processed, so if we did not do this, regardless of how many vertices we added, each triangle
would refernce the first three vertices. We also also fetch the number of triangles currently stored in the
CTriMesh so that we can correctly calculate the offset in the mesh index array for appending the new
indices.

 // Store current Mesh vertex and face count
 VertexStart = pMesh->GetNumVertices();
 FaceStart = pMesh->GetNumFaces();
 IndexStart = FaceStart * 3;

If the iwfSurface has a non-zero index count then the face includes indices. If not, then the function will
need to generate indices for the appropriate polygon type (see Chapter Five). All we have to do for the
current case we are looking at is copy the index data.

 // Generate indices
 if (pFilePoly->IndexCount > 0)
 {
 ULONG IndexType = pFilePoly->IndexFlags & INDICES_MASK_TYPE;

 // Interpret indices (we want them in tri-list format)
 switch (IndexType)
 {
 case INDICES_TRILIST:

 // We can do a straight copy (converting from 32bit to 16bit)
 if (pMesh->AddFace(pFilePoly->IndexCount / 3, NULL, AttribID) < 0)
 return false;

 pIndices = (USHORT*)pMesh->GetFaces();

 // Copy over the face data
 for (i = 0; i < pFilePoly->IndexCount; ++i)
 pIndices[i + IndexStart] = pFilePoly->Indices[i] + VertexStart;

 break;

After the indices have been added, we test the BackFace Boolean passed into the function. If TRUE, then
we need to reverse the order of the indices just added and re-copy them. This approach is used when we
encounter a two sided face in the IWF file.

 66

 // We now have support for adding the same polygon again, but in
 // reverse order to add a renderable back face if disabling culling
 // is not a viable option.
 if (BackFace == true)
 {
 // If we specified back faces, invert all the indices recently added
 pIndices = (USHORT*)pMesh->GetFaces();
 for (i = IndexStart; i < pMesh->GetNumFaces() * 3; i+=3)
 {
 USHORT iTemp = pIndices[i];
 pIndices[i] = pIndices[i+2];
 pIndices[i+2] = iTemp;

 } // Next Tri

 } // End if back face

 // Success!
 return true;
}

CScene::CollectAttributeID

This function is called from two possible places. CTriMesh::LoadMeshFromX calls it to process a
material/texture combination extracted from an X file. CScene::ProcessMeshes calls it to process a
material/texture combination used by an iwfSurface. The function is responsible for making sure that
textures and materials are not duplicated and it returns the global attribute ID for subsets in non-managed
meshes.

The first parameter is a void pointer to a context. Remember that this function was declared as a static
member function so that it can double as a callback function for non-managed mode meshes when
needed. We use the context parameter in the ProcessMeshes function to pass the ‘this’ pointer so that
there can be access to non-static member variables. The next three parameters are what we will match
against when searching for the appropriate combination of attributes.

ULONG CScene::CollectAttributeID(LPVOID pContext, LPCTSTR strTextureFile,
 const D3DMATERIAL9 * pMaterial,
 const D3DXEFFECTINSTANCE * pEffectInstance)
{
 TEXTURE_ITEM * pNewTexture = NULL;
 ULONG i;
 long TextureMatch = -1, MaterialMatch = -1;
 bool TexMatched = false, MatMatched = false;

 // Validate parameters
 if (!pContext) return 0;

 // Retrieve the scene object
 CScene *pScene = (CScene*)pContext;

 67

We cast the context pointer to a CScene pointer so that we have access to the texture and materials arrays
for the correct scene object instance. We can now loop through the scene ATTRIBUTE_ITEM array to
see if an element with the passed texture/material combination already exists. The process should be
relatively easy to follow, so we will not explain it in great detail. We start by checking texture filenames
and then the material pointers.

 // Loop through the attribute combination table to see if one already exists
 for (i = 0; i < pScene->m_nAttribCount; ++i)
 {
 ATTRIBUTE_ITEM * pAtrItem = &pScene->m_pAttribCombo[i];
 long TextureIndex = pAtrItem->TextureIndex;
 long MaterialIndex = pAtrItem->MaterialIndex;

 TEXTURE_ITEM * pTexItem = NULL;
 D3DMATERIAL9 * pMatItem = NULL;

 // Retrieve pointers
 if (TextureIndex >= 0) pTexItem = pScene->m_pTextureList[TextureIndex];
 if (MaterialIndex >= 0) pMatItem = &pScene->m_pMaterialList[MaterialIndex];

 // Neither are matched so far
 TexMatched = false;
 MatMatched = false;

 // If both sets are NULL, this is a match, otherwise perform the real match
 if (pTexItem == NULL && strTextureFile == NULL)
 TexMatched = true;

 else if (pTexItem != NULL && strTextureFile != NULL)
 if (_tcsicmp(pTexItem->FileName, strTextureFile) == 0) TexMatched = true;

 if (pMatItem == NULL && pMaterial == NULL)
 MatMatched = true;
 else if (pMatItem != NULL && pMaterial != NULL)

 if (memcmp(pMaterial, pMatItem, sizeof(D3DMATERIAL9)) == 0) MatMatched = true;

 // Store the matched indices in case we can use the later on
 if (TexMatched) TextureMatch = TextureIndex;
 if (MatMatched) MaterialMatch = MaterialIndex;

If we have both a texture match and a material match, then we return the index of this attribute item to
the caller. The CTriMesh::LoadMeshFromX function uses this index to remap its attribute buffer from
mesh local attribute IDs to scene attribute IDs.

 // If they both matched up at the same time, we have a winner
 if (TexMatched == true && MatMatched == true) return i;

 } // Next Attribute

If we cannot find a match on both parameters (texture and material), then we will need to add a new
ATTRIBUTE_ITEM structure to the scene array reflecting these attribute properties. We want to look

 68

for individual matches on texture or material first to avoid duplicating data, so we will traverse those
arrays again and record the index of the matches if we find them.

 ATTRIBUTE_ITEM AttribItem;

 if (MaterialMatch < 0 && pMaterial != NULL)
 {
 for (i = 0; i < pScene->m_nMaterialCount; ++i)
 {
 // Is there a match ?
 if (memcmp(pMaterial, &pScene->m_pMaterialList[i], sizeof(D3DMATERIAL9)) == 0)
 MaterialMatch = i;

 // If we found a match, bail
 if (MaterialMatch >= 0) break;

 } // Next Attribute Combination

 } // End if no material match

 if (TextureMatch < 0 && strTextureFile != NULL)
 {
 for (i = 0; i < pScene->m_nTextureCount; ++i)
 {
 if (!pScene->m_pTextureList[i] || !pScene->m_pTextureList[i]->FileName) continue;

 // Is there a match ?
 if (_tcsicmp(strTextureFile, pScene->m_pTextureList[i]->FileName) == 0)
 TextureMatch = i;

 // If we found a match, bail
 if (TextureMatch >= 0) break;

 } // Next texture

 } // End if no Texture match

If matches are found (for either type), we simply copy the index value from the local variable into the
new ATTRIBUTE_ITEM. When a match is not found, we must load the data into our global lists and
record those indices instead. Materials will simply be copied, textures will require loading.

 // Now build the material index, or add if necessary
 if (MaterialMatch < 0 && pMaterial != NULL)
 {
 AttribItem.MaterialIndex = pScene->m_nMaterialCount;
 pScene->m_pMaterialList[pScene->m_nMaterialCount++] = *pMaterial;
 } // End if no material match
 else
 {
 AttribItem.MaterialIndex = MaterialMatch;
 } // End if material match

If a matching texture was not found in the scene texture array then we need to create a new texture with a
call to the CollectTexture function. This function (also used as the texture callback function for managed
mode meshes in the CTriMesh::LoadMeshFromX function) will load the texture if it does not yet exist

 69

and will add it to the end of the scene texture array. If a texture was found, we copy this index into the
attribute item structure as shown below.

 // Now build the texture index, or add if necessary
 if (TextureMatch < 0 && strTextureFile != NULL)
 {
 // We know it doesn't exist, but we can still use
 // collect texture to do the work for us.
 AttribItem.TextureIndex = pScene->m_nTextureCount;
 CollectTexture(pScene, strTextureFile);

 } // End if no texture match
 else
 {
 AttribItem.TextureIndex = TextureMatch;

 } // End if Texture match

Finally, we add the new item to the scene m_pAttribCombo array and return the index of this new
attribute.

 // Store this new attribute combination item
 pScene->m_pAttribCombo[pScene->m_nAttribCount++] = AttribItem;

 // Return the new attribute index
 return pScene->m_nAttribCount - 1;
}

CScene::CollectTexture

This function searches the scene texture array to determine whether a texture with the passed texture
filename already exists. If so, a pointer to this texture item is returned. Otherwise, a new texture is
created, inserted into the array, and its pointer is returned.

CollectTexture is called from a number of places in our code. If we wish to load mesh data from an X
file into a managed mode CTriMesh, we can register this function as the texture callback so that texture
filenames returned from D3DXLoadMeshFromX can be mapped to textures in our scene texture array.
The CollectAttributeID function, which can serve as a callback for non-managed meshes, calls this
function to load its textures as well. We have just seen how ProcessMeshes calls the CollectAttributeID
function (which in turn calls CollectTexture) to add the textures in an IWF file to the scene texture list.

LPDIRECT3DTEXTURE9 CScene::CollectTexture(LPVOID pContext, LPCTSTR FileName)
{
 HRESULT hRet;
 TEXTURE_ITEM * pNewTexture = NULL;

 // Validate parameters
 if (!pContext || !FileName) return NULL;

 // Retrieve the scene object

 70

 CScene *pScene = (CScene*)pContext;

Once we have a pointer to the scene instance, we can loop through its texture array and compare each
texture name with the texture name passed into the function. If a match is found then the texture already
exists and we immediately return a pointer to the texture.

 // Loop through and see if this texture already exists.
 for (ULONG i = 0; i < pScene->m_nTextureCount; ++i)
 {
 if (_tcsicmp(pScene->m_pTextureList[i]->FileName, FileName) == 0)
 return pScene->m_pTextureList[i]->Texture;

 } // Next Texture

If we exit the loop, then we know that a texture with a matching filename does not yet exist. Therefore,
we need to create and initialize a new TEXTURE_ITEM structure that will be added to the texture array.
Note that the texture filename passed into the function will not contain any path information. So in order
to load the image file into a texture, we build the complete filename string with the full path. We will
store the texture filename without a path in the TEXTURE_ITEM structure for future searches.

 // No texture found, so lets create and store it.
 pNewTexture = new TEXTURE_ITEM;
 if (!pNewTexture) return NULL;
 ZeroMemory(pNewTexture, sizeof(TEXTURE_ITEM));

 // Build filename string
 TCHAR Buffer[MAX_PATH];
 _tcscpy(Buffer, pScene->m_strDataPath);
 _tcscat(Buffer, FileName);

 // Create the texture (use 3 mip levels max)
 hRet = D3DXCreateTextureFromFileEx(pScene->m_pD3DDevice, Buffer, D3DX_DEFAULT,
 D3DX_DEFAULT, 3, 0, pScene->m_fmtTexture,
 D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT,
 0, NULL, NULL, &pNewTexture->Texture);

 if (FAILED(hRet)) { delete pNewTexture; return NULL; }

 // Duplicate the filename for future lookups
 pNewTexture->FileName = _tcsdup(FileName);

Finally we add the new TEXTURE_ITEM to the scene array, increment the texture count, and return the
new texture pointer.

 // Store this item
 pScene->m_pTextureList[pScene->m_nTextureCount++] = pNewTexture;

 // Return the texture pointer
 return pNewTexture->Texture;
}

 71

CScene::ProcessEntities

Our current project will support three different entity types: lights, skyboxes, and references. This
function is responsible for navigating the CFileIWF::m_vpEntityList vector and extracting these types as
they are encountered.

The first part of the function tests for light entities. The light entity is one of the IWF standard entity
types and it is defined in the IWF SDK as an entity with an ID of 16:

#define ENTITY_LIGHT 0x0010

bool CScene::ProcessEntities(const CFileIWF& File)
{
 ULONG i, j;
 D3DLIGHT9 Light;
 USHORT StringLength;
 bool SkyBoxBuilt = false;

 // Loop through and build our lights & references
 for (i = 0; i < File.m_vpEntityList.size(); i++)
 {
 // Retrieve pointer to file entity
 iwfEntity * pFileEntity = File.m_vpEntityList[i];

 // Skip if there is no data
 if (pFileEntity->DataSize == 0) continue;

We will extract light information from the entity data area directly into a D3DLIGHT9 structure and add
the new light to our scene light array. In this project we will only process the light if we have not yet
added the maximum number of lights to the array, otherwise it will be ignored.

 // Decide what to do here (skip all lights if we've already reached our limit)
 if ((m_nLightCount < m_nLightLimit && m_nLightCount < MAX_LIGHTS)
 && pFileEntity->EntityTypeMatches(ENTITY_LIGHT))
 {
 LIGHTENTITY * pFileLight = (LIGHTENTITY*)pFileEntity->DataArea;

GILES™ can export ambient lights, but they are not particularly relevant in the DirectX lighting
pipeline, so if the current light is an ambient light we will skip it

 // Skip if this is not a valid light type (Not relevant to the API)
 if (pFileLight->LightType == LIGHTTYPE_AMBIENT) continue;

Extracting the lighting information is very simple due to the fact that the LIGHTENTITY structure used
by CFileIWF is almost identical to the D3DLIGHT9 structure.

 // Extract the light values we need
 Light.Type = (D3DLIGHTTYPE)(pFileLight->LightType + 1);
 Light.Diffuse = D3DXCOLOR(pFileLight->DiffuseRed, pFileLight->DiffuseGreen,
 pFileLight->DiffuseBlue, pFileLight->DiffuseAlpha);

 72

 Light.Ambient = D3DXCOLOR (pFileLight->AmbientRed, pFileLight->AmbientGreen,
 pFileLight->AmbientBlue, pFileLight->AmbientAlpha);

 Light.Specular = D3DXCOLOR (pFileLight->SpecularRed, pFileLight->SpecularGreen,
 pFileLight->SpecularBlue,pFileLight->SpecularAlpha);

Every entity stores a world matrix, so we extract the bottom row to get the light position in world space.

 Light.Position = D3DXVECTOR3(pFileEntity->ObjectMatrix._41,
 pFileEntity->ObjectMatrix._42,
 pFileEntity->ObjectMatrix._43);

We also extract the look vector which describes the direction the light is pointing in world space.

 Light.Direction = D3DXVECTOR3(pFileEntity->ObjectMatrix._31,
 pFileEntity->ObjectMatrix._32,
 pFileEntity->ObjectMatrix._33);

The remaining light data is extracted and we add the light to our light array, incrementing the counter.

 Light.Range = pFileLight->Range;
 Light.Attenuation0 = pFileLight->Attenuation0;
 Light.Attenuation1 = pFileLight->Attenuation1;
 Light.Attenuation2 = pFileLight->Attenuation2;
 Light.Falloff = pFileLight->FallOff;
 Light.Theta = pFileLight->Theta;
 Light.Phi = pFileLight->Phi;

 // Add this to our array
 m_pLightList[m_nLightCount++] = Light;

 } // End if light

Testing for skyboxes and reference entities requires a slightly different approach because these types are
not defined by the IWF standard -- they are custom entity types defined by GILES™. The IWF
specification provides applications the ability to specify their own entity types with their own entity IDs
and chunk IDs provided they do not conflict with IDs reserved by the IWF standard.

To address the possibility of third party entities sharing the same IDs with each other, the IWF
specification records an author ID in addition to the entity chunk IDs. For example, the skybox and
reference entities both have the author ID for GILES™ embedded in those chunks. GILES™ uses a 5
BYTE author ID embedded in its custom chunks. Each byte is the ASCII code for the letters of its name.
We define this array in CScene.cpp and we can use it to test if an entity is a custom GILES™ entity.

const UCHAR AuthorID[5] = { 'G', 'I', 'L', 'E', 'S' };

The iwfEntity class contains a helper function called EntityAuthorMatches. We pass in an array length
and an array of bytes which will be compared against the entity’s author ID, returning true if they match.

If the entity is not a light entity or a GILES™ custom entity (skybox/reference) we will ignore it.

 73

 else if (pFileEntity->EntityAuthorMatches(5, AuthorID))
 {

At this point we do not know if this will be a skybox entity of a reference entity, so we will create two
local variables that can be used to hold the information for both.

 SkyBoxEntity SkyBox;
 ZeroMemory(&SkyBox, sizeof(SkyBoxEntity));

 ReferenceEntity Reference;
 ZeroMemory(&Reference, sizeof(ReferenceEntity));

The SkyBoxEntity and ReferenceEntity structures are both defined in CScene.h.

typedef struct _ReferenceEntity
{
 ULONG ReferenceType; // What type of reference is this
 ULONG Flags; // Reserved flags
 ULONG Reserved1; // Reserved values
 ULONG Reserved2; // Reserved values
 ULONG Reserved3; // Reserved values
 char ReferenceName[1024]; // External file name

} ReferenceEntity;

The entity ID for the GILES™ reference entity is 0x203 (CScene.h).

#define CUSTOM_ENTITY_REFERENCE 0x203

Most of the members of the reference entity are reserved for later use. We are interested only in the
reference type (0 for internal reference, 1 for external reference) and the ReferenceName. In this project
we will work with external references only. The name of the referenced X file will be stored in the
ReferenceName member.

The skybox entity stores a reserved DWORD followed by six texture filenames. When our application
encounters one of these entities, we create the scene skybox mesh (m_SkyBoxMesh) as an inward facing
cube, and then load the six textures using these filenames and map them to the cube faces.

typedef struct _SkyBoxEntity
{
 ULONG Flags; // Reserved flags
 char Textures[6][256]; // 6 Sets of external texture names
} SkyBoxEntity;

The entity ID for the GILES™ skybox entity is 0x202 (CScene.h).

#define CUSTOM_ENTITY_SKYBOX 0x202

To determine which entity type we have found, we retrieve a pointer to the entity data area and check its
ID.

 74

 // Retrieve data area
 UCHAR * pEntityData = pFileEntity->DataArea;

If it is a GILES™ reference entity then we extract the data into the temporary ReferenceEntity structure
and pass it to CScene::ProcessReference for additional processing. Notice that the ProcessReference
function accepts the ReferenceEntity and the entity world matrix. This matrix stores the world space
position and orientation of the object that will ultimately be added to the scene for this reference. Every
IWF entity contains a matrix describing the position and orientation of the entity in the scene. The
following code shows how to extract all the entity information and pass it along to the ProcessReference
function.

 switch (pFileEntity->EntityTypeID)
 {
 case CUSTOM_ENTITY_REFERENCE:

 // Copy over the the reference data
 memcpy(&Reference.ReferenceType, pEntityData, sizeof(ULONG));
 pEntityData += sizeof(ULONG);

 memcpy(&Reference.Flags, pEntityData, sizeof(ULONG));
 pEntityData += sizeof(ULONG);

 memcpy(&StringLength, pEntityData, sizeof(USHORT));
 pEntityData += sizeof(USHORT);

 if (StringLength > 0)
 memcpy(Reference.ReferenceName, pEntityData, StringLength);
 pEntityData += StringLength;

 memcpy(&Reference.Reserved1, pEntityData, sizeof(ULONG));
 pEntityData += sizeof(ULONG);

 memcpy(&Reference.Reserved2, pEntityData, sizeof(ULONG));
 pEntityData += sizeof(ULONG);

 memcpy(&Reference.Reserved3, pEntityData, sizeof(ULONG));
 pEntityData += sizeof(ULONG);

 // Process this reference (returns false only on fatal error)
 if(!ProcessReference(Reference,(D3DXMATRIX&)pFileEntity->ObjectMatrix))
 return false;

 break;

For skybox entities we use a similar approach. We copy the data into the temporary SkyBoxEntity
structure and pass it to ProcessSkyBox for final processing. Note that we only process the sky box entity
if a sky box does not currently exist. This was done for simplicity only, so feel free to change this
behavior to maintain an array of skyboxes that can be modified as you wish. Usually, a given scene will
have one sky box defined, but this is not always necessarily the case.

 case CUSTOM_ENTITY_SKYBOX:

 75

 // We only want one skybox per file please! :)
 if (SkyBoxBuilt == true) break;
 SkyBoxBuilt = true;

 // Copy over the skybox data
 memcpy(&SkyBox.Flags, pEntityData, sizeof(ULONG));
 pEntityData += sizeof(ULONG);

 // Read each of the 6 face textures
 for (j = 0; j < 6; ++j)
 {
 memcpy(&StringLength, pEntityData, sizeof(USHORT));
 pEntityData += sizeof(USHORT);

 if (StringLength > 0)
 memcpy(SkyBox.Textures[j], pEntityData, StringLength);
 pEntityData += StringLength;

 } // Next Face Texture

 // Process this skybox (returns false only on a fatal error)
 if (!ProcessSkyBox(SkyBox)) return false;

 break;

 } // End Entity Type Switch

 } // End if custom entities

 } // Next Entity

 // Success!
 return true;
}

CScene::ProcessReference

As mentioned previously, the space scene for this project stores all scene objects except for the skybox
as external reference entities. These entities contain a world matrix and the filename for an X file which
the object will use as its mesh.

The first thing this function does is check the scene mesh array to see if the mesh has already been
loaded. This is done because there may be many reference entities which reference the same X file and
we would prefer to avoid duplication, to keep memory footprint as small as possible. If the mesh already
exists, then we will simply create a new CObject, instance the CTriMesh pointer, and then use the
reference matrix for the object’s world matrix. If the mesh does not currently exist, then we will need to
create a new CTriMesh object and load the mesh data from the X file using the
CTriMesh::LoadMeshFromX function, passing in the file name stored in the reference. It is in this
function that we will see, for the first time, the registration of callback functions with the CTriMesh
object. As discussed, these functions will automatically add the texture and materials in the X file to the
scene level texture and material arrays.

 76

The first thing the code does is test the ReferenceType member of the entity. If it is not set to 1 then this
is an internal reference and we will ignore this entity and return. If it is set to 0, then we have an external
reference, so we will build the full path and filename for the referenced X file (the reference entity will
not contain any path information, only the name of the file).

bool CScene::ProcessReference(const ReferenceEntity& Reference, const D3DXMATRIX & mtxWorld)
{
 HRESULT hRet;
 CTriMesh * pReferenceMesh = NULL;

 if (Reference.ReferenceType != 1) return true;

 // Build filename string
 TCHAR Buffer[MAX_PATH];
 _tcscpy(Buffer, m_strDataPath);
 _tcscat(Buffer, Reference.ReferenceName);

We now search the scene mesh array for a mesh with the same name as the file name. If a match is
found, we will store a pointer to this matching mesh for now.

 // Search to see if this X file has already been loaded
 for (ULONG i = 0; i < m_nMeshCount; ++i)
 {
 if (!m_pMesh[i]) continue;
 if (_tcsicmp(Buffer, m_pMesh[i]->GetMeshName()) == 0) break;
 } // Next Mesh

 // If we didn't reach the end, this mesh already exists
 if (i != m_nMeshCount)
 {
 // Store reference mesh.
 pReferenceMesh = m_pMesh[i];

 } // End if mesh already exists

If the mesh is not already loaded then we will need to create a new CTriMesh object and call its
LoadMeshFromX function to load the X file data into the mesh. Before we do that though, we register
the CScene::CollectAttributeID function, which automatically places the mesh into non-managed mode.
When the mesh loads the X file data, each texture and material loaded from the X file will be passed to
the CollectAttributeID function. We saw earlier how this function adds the texture and material to the
scene texture and material arrays and returns the index for this texture/material combo back to the mesh.
The mesh will then use this index to remap its attribute buffer.

 else
 {
 // Allocate a new mesh for this reference
 CTriMesh * pNewMesh = new CTriMesh;

 // Load in the externally referenced X File
 pNewMesh->RegisterCallback(CTriMesh::CALLBACK_ATTRIBUTEID, CollectAttributeID, this);
 pNewMesh->LoadMeshFromX(Buffer, D3DXMESH_MANAGED, m_pD3DDevice);

 77

Once the mesh is loaded, we weld its vertices and perform an in-place vertex cache optimimzation. This
performs the attribute sort as well.

 // Attempt to optimize the mesh
 pNewMesh->WeldVertices(0);
 pNewMesh->OptimizeInPlace(D3DXMESHOPT_VERTEXCACHE);

We call the CScene::AddMesh function to make room for the new mesh in the scene mesh array and add
the new mesh pointer to the end of the list.

 // Store this new mesh
 if (AddMesh() < 0) { delete pNewMesh; return false; }
 m_pMesh[m_nMeshCount - 1] = pNewMesh;

 // Store as object reference mesh
 pReferenceMesh = pNewMesh;

 } // End if mesh doesn't exist.

To position the mesh in the scene, we create a new CObject and store the mesh pointer and the entity
world matrix inside the newly allocated CObject structure. The object is added to our global list and the
function is complete. The CScene::AddObject function is very much like the CScene::AddMesh function
in that it resizes the scene’s CObject array making room for a new entry at the end.

 // Now build an object for this mesh (standard identity)
 CObject * pNewObject = new CObject(pReferenceMesh);
 if (!pNewObject) return false;

 // Copy over the specified matrix
 pNewObject->m_mtxWorld = mtxWorld;

 // Store this object
 if (AddObject() < 0) { delete pNewObject; return false; }
 m_pObject[m_nObjectCount - 1] = pNewObject;

 // Success!!
 return true;
}

CScene::ProcessSkyBox

ProcessSkyBox (called by CScene::ProcessEntities) adds six cube faces (12 triangles) to the scene
skybox mesh and loads the six textures whose names are stored in the skybox entity passed into the
function. This function provides some useful insight into populating a CTriMesh manually. It also
demonstrates creation of a managed-mode mesh.

When we wish to create a managed-mode mesh from X file data, we would normally register the
CollectTexture callback with the mesh so that the mesh loading function can pass the texture filenames
found in the X file to the function and get back texture pointers for its own internal storage. The

 78

managed mesh stores the texture pointer along with the matching material for each of its subsets in its
internal attribute data array. In this particular case (skybox) we will not be loading the data from an X
file, so we will not need to register the callback. We will manually add the texture and material
information for each mesh subset to the mesh’s internal attribute array ourselves.

The first thing we need to do is call CTriMesh::SetDataFormat to tell the mesh about our desired
vertex/index formats. Because we will be adding vertices and indices to the cube mesh one face at a time
(i.e. two triangles at a time) each cube face will consist of 4 vertices and 6 indices. We will use two
temporary arrays, an index array and a vertex array, to build the cube faces as we go along. The front
face case is examined first.

bool CScene::ProcessSkyBox(const SkyBoxEntity & SkyBox)
{
 MESH_ATTRIB_DATA * pAttribData;
 USHORT Indices[6];
 CVertex Vertices[4];

 // Set the mesh data format
 m_SkyBoxMesh.SetDataFormat(VERTEX_FVF, sizeof(USHORT));

 // Build Front quad (remember all quads point inward)
 Vertices[0] = CVertex(-10.0f, 10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 0.0f);
 Vertices[1] = CVertex(10.0f, 10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 0.0f);
 Vertices[2] = CVertex(10.0f,-10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 1.0f);
 Vertices[3] = CVertex(-10.0f,-10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 1.0f);

 // Build the skybox indices
 Indices[0] = 0; Indices[1] = 1; Indices[2] = 3;
 Indices[3] = 1; Indices[4] = 2; Indices[5] = 3;

To add the indices and vertices for the quads to the mesh we call the AddVertex and AddFace functions.
Notice that we are adding 2 triangles for the face and that we pass in an attribute ID of 0. Since each
quad will have a different texture mapped to it, each will belong to a different subset. We will
incremement this attribute ID for each quad that we add, such that the front face has an attribute ID of 0,
the back face has an attribute ID of 1, and so on. The resulting mesh of the cube will contain 12 triangles
and six subsets. Each subset represents one cube face and contains two triangles.

 // Add the vertices and indices to this mesh
 m_SkyBoxMesh.AddVertex(4, &Vertices);
 m_SkyBoxMesh.AddFace(2, Indices, 0);

We repeat the process for the remaining five faces of the cube. Keep in mind when examining the vertex
data that these cube faces are inward facing, so the vertex winding order will reflect this fact. Note as
well that the zero length normal may seem strange, but the skybox will be rendered with lighting
disabled anyway so the normal information will not be used. This allows us to use the same vertex flags
for the skybox as the rest of the objects in our scene. Thus, we avoid calling IDirect3DDevice9::SetFVF
in the scene’s main render function to change vertex formats every time we render the skybox.
Alternatively, you can use a vertex format with position and UV coordinates only if you prefer.

 79

 // Back Quad
 Vertices[0] = CVertex(10.0f, 10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 0.0f);
 Vertices[1] = CVertex(-10.0f, 10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 0.0f);
 Vertices[2] = CVertex(-10.0f,-10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 1.0f);
 Vertices[3] = CVertex(10.0f,-10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 1.0f);

 // Build the skybox indices
 Indices[0] = 4; Indices[1] = 5; Indices[2] = 7;
 Indices[3] = 5; Indices[4] = 6; Indices[5] = 7;

 // Add the vertices and indices to this mesh
 m_SkyBoxMesh.AddVertex(4, &Vertices);
 m_SkyBoxMesh.AddFace(2, Indices, 1);

 // Left Quad
 Vertices[0] = CVertex(-10.0f, 10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 0.0f);
 Vertices[1] = CVertex(-10.0f, 10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 0.0f);
 Vertices[2] = CVertex(-10.0f,-10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 1.0f);
 Vertices[3] = CVertex(-10.0f,-10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 1.0f);

 // Build the skybox indices
 Indices[0] = 8; Indices[1] = 9; Indices[2] = 11;
 Indices[3] = 9; Indices[4] = 10; Indices[5] = 11;

 // Add the vertices and indices to this mesh
 m_SkyBoxMesh.AddVertex(4, &Vertices);
 m_SkyBoxMesh.AddFace(2, Indices, 2);

 // Right Quad
 Vertices[0] = CVertex(10.0f, 10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 0.0f);
 Vertices[1] = CVertex(10.0f, 10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 0.0f);
 Vertices[2] = CVertex(10.0f,-10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 1.0f);
 Vertices[3] = CVertex(10.0f,-10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 1.0f);

 // Build the skybox indices
 Indices[0] = 12; Indices[1] = 13; Indices[2] = 15;
 Indices[3] = 13; Indices[4] = 14; Indices[5] = 15;

 // Add the vertices and indices to this mesh
 m_SkyBoxMesh.AddVertex(4, &Vertices);
 m_SkyBoxMesh.AddFace(2, Indices, 3);

 // Top Quad
 Vertices[0] = CVertex(-10.0f, 10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 0.0f);
 Vertices[1] = CVertex(10.0f, 10.0f -10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 0.0f);
 Vertices[2] = CVertex(10.0f, 10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 1.0f);
 Vertices[3] = CVertex(-10.0f, 10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 1.0f);

 // Build the skybox indices
 Indices[0] = 16; Indices[1] = 17; Indices[2] = 19;
 Indices[3] = 17; Indices[4] = 18; Indices[5] = 19;

 // Add the vertices and indices to this mesh
 m_SkyBoxMesh.AddVertex(4, &Vertices);
 m_SkyBoxMesh.AddFace(2, Indices, 4);
 // Bottom Quad
 Vertices[0] = CVertex(-10.0f,-10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 0.0f);
 Vertices[1] = CVertex(10.0f,-10.0f, 10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 0.0f);
 Vertices[2] = CVertex(10.0f,-10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 1.0f, 1.0f);

 80

 Vertices[3] = CVertex(-10.0f,-10.0f,-10.0f, D3DXVECTOR3(0.0f, 0.0f, 0.0f), 0.0f, 1.0f);

 // Build the skybox indices
 Indices[0] = 20; Indices[1] = 21; Indices[2] = 23;
 Indices[3] = 21; Indices[4] = 22; Indices[5] = 23;

 // Add the vertices and indices to this mesh
 m_SkyBoxMesh.AddVertex(4, &Vertices);
 m_SkyBoxMesh.AddFace(2, Indices, 5);

At this point the skybox mesh contains the six quads (12 triangles) needed and has an attribute buffer
with values ranging from 0 to 5. Thus we have six subsets, with two triangles per subset.

To make the mesh self-contained, we populate its internal attribute data array with the appropriate
texture and material for each subset. We allocate space in the mesh MESH_ATTRIB_DATA array for 6
elements, one for each subset, by calling AddAttributeData. We follow this with a call to
GetAttributeData to return a MESH_ATTRIB_DATA pointer to the first element in the array. We will
then populate the array with the appropriate subset rendering resources. Note that the skybox will use the
same default white material for each subset. CScene::CollectTexture is used to load and/or retrieve the
texture pointer based on the filenames stored in the skybox entity. Thus, these skybox textures will exist
in the scene’s main texture array like all the others.

 // Add the attribute data (We'll let the skybox manage itself)
 m_SkyBoxMesh.AddAttributeData(6);
 pAttribData = m_SkyBoxMesh.GetAttributeData();

 D3DMATERIAL9 Material;
 ZeroMemory(&Material, sizeof(D3DMATERIAL9));
 Material.Diffuse = D3DXCOLOR(1.0, 1.0, 1.0, 1.0f);
 Material.Ambient = D3DXCOLOR(1.0, 1.0, 1.0, 1.0f);

 // Build and set the attribute data for the skybox
 for (ULONG i = 0; i < 6; ++i)
 {
 pAttribData[i].Texture = CollectTexture(this, SkyBox.Textures[i]);
 pAttribData[i].Material = Material;
 if (pAttribData[i].Texture) pAttribData[i].Texture->AddRef();
 } // Next Texture

We also remember to call AddRef for each texture interface since we are making a copy of the pointer.

At this point the mesh contains all subset attribute information as well as the vertex and index data (in its
temporary system memory vertex and index arrays). The underlying skybox ID3DXMesh has not yet
been created, so this is our final step before returning to the caller.

 // Build the mesh
 m_SkyBoxMesh.BuildMesh(D3DXMESH_MANAGED, m_pD3DDevice);

 return true;
}

 81

We have now discussed all functions of significance with respect to loading the IWF file and populating
the scene’s mesh, object and resource arrays. As it stands, the scene has everything it needs to render.
Let us now look at how the CScene::Render function (called by CGameApp::FrameAdvance) renders all
of its meshes.

CScene::Render

The CScene::Render function is responsible for rendering all the meshes which comprise the scene. In
this application, all meshes, with the exception of one, are being used in non-managed mode. So this
function has to be responsible for setting the states before rendering the subsets of each mesh. The
exception is the scene’s skybox mesh which is utilizing managed mode. The CScene::RenderSkyBox
function is called to set the skybox’s position in the world and render it. We will study the
RenderSkyBox function shortly.

Depending on the type of scene being rendered, it may be more or less efficient to batch render based on
either attribute or transform. We dicussed the various pros and cons of each approach earlier. To allow
our code to easily be adjusted to use both rendering strategies, a pre-compiler define is used to control
how this function is compiled. Using this technique, we can actually instruct the compiler, as our code is
processed, to include or exclude certain sections of the code from the final build.

If we define DRAW_ATTRIBUTE_ORDER with a value of 1, the code that batch renders the scene
based on attributes will be compiled. This will render the entire scene based on subsets minimizing
texture and material state changes. This would be a suitable strategy if many of your meshes exist in
world space and do not need to be transformed.

If we define DRAW_ATTRIBUTE_ORDER with a value of 0, then an alternative version of the render
code will be compiled. This time the code will batch render on a per object basis, minimizing transform
state changes.

In this demonstration we set DRAW_ATTRIBUTE_ORDER to 0 by default so that it renders on a per
object basis by default. Feel free to change this value to 1 so that you can benchmark the different
rendering strategies with different scenes.

The code will be discussed a section at a time. This function is longer than would have been the case had
a single rendering strategy been used, but it is still pretty straightforward. Which of the two versions of
the rendering code actually gets compiled is controlled by the directive just mentioned.

void CScene::Render(CCamera & Camera)
{
 ULONG i, j;
 long MaterialIndex, TextureIndex;

 if (!m_pD3DDevice) return;

 // Setup some states...

 82

 m_pD3DDevice->SetRenderState(D3DRS_NORMALIZENORMALS, TRUE);

 // Render the skybox first !
 RenderSkyBox(Camera);

The first thing the code does is set the D3DRS_NORMALIZENORMALS render state to true. This
render state forces the pipeline to ensure that vertex normals are unit length before being used for the
lighting calculations in the DirectX pipeline. While the normals of a mesh would almost certainly be unit
length to begin with, using a world matrix that scales vertices can cause the normals of the vertex to be
scaled when the vertex is transformed by the pipeline. If such a scaling matrix is being used, the vertex
normals will no longer be unit length, resulting in incorrect lighting calculations. This render state
addresses that potential problem.

The first thing we render is the skybox mesh by issuing a call to CScene::RenderSkyBox. The skybox
must be rendered first so that its faces are rendered behind all other scene objects (making the skybox
scenery appear distant).

The next section of code activates the lights used by the scene. Placing this code here makes sure that if
the user loads a new scene with more (or fewer) lights than are currently active, they will automatically
be set the next time the scene is rendered. This also makes sure that if the device is reset, the lights are
also automatically reset. This code is placed here for simplicity and would be moved outside the main
render loop in a real world situation (light states should not be needlessly set every time a frame is
rendered).

 // Enable lights
 for (i = 0; i < m_nLightCount; ++i)
 {
 m_pD3DDevice->SetLight(i, &m_pLightList[i]);
 m_pD3DDevice->LightEnable(i, TRUE);
 }

Next we define DRAW_ATTRIBUTE_ORDER to 0 so that the scene is rendered per object instead of
per subset. By changing this value to 1, you can recompile the code and force the alternative rendering
strategy to be used instead. It should be noted that both rendering strategies are mutually exclusive. That
is, only one of the possible two sections of rendering code can be compiled into the application at any
given time.

// For this demo
#define DRAW_ATTRIBUTE_ORDER 0

If we have not set DRAW_ATTRIBUTE_ORDER to 0 then it means we wish to compile the code that
batch renders the scene across mesh boundries. This is done by looping through every attribute in the
scene global list and rendering any meshes that contain a subset with a matching global attribute ID. This
minimimzes texture changes but increases the number of times we must set the world matrix. As we are
looping through the scene attributes in the outer loop and objects in the inner loop, the world matrix for a
particular mesh must be set many times, once for each subset.

 83

The code loops through each of the scene attributes and extracts from the attribute array the texture index
and the material index used by that attribute. It uses the material index to get a pointer to the correct
material in the scene’s material array and sets it as the current material on the device. If the current scene
attribute does not contain a material, then we set a default material. We also use the retrieved texture
index to bind the correct texture to texture stage 0. If the current scene attribute contains no texture, we
set texture stage 0 to NULL.

#if (DRAW_ATTRIBUTE_ORDER != 0)

 // Loop through each scene owned attribute
 for (j = 0; j < m_nAttribCount; j++)
 {
 // Retrieve indices
 MaterialIndex = m_pAttribCombo[j].MaterialIndex;
 TextureIndex = m_pAttribCombo[j].TextureIndex;

 // Set the states
 if (MaterialIndex >= 0)
 m_pD3DDevice->SetMaterial(&m_pMaterialList[MaterialIndex]);
 else
 m_pD3DDevice->SetMaterial(&m_DefaultMaterial);

 if (TextureIndex >= 0)
 m_pD3DDevice->SetTexture(0, m_pTextureList[TextureIndex]->Texture);
 else
 m_pD3DDevice->SetTexture(0, NULL);

Now that we have the texture and the material set for this attribute, we will loop through every object in
the scene, get a pointer to its CTriMesh object, set its world matrix and FVF flags, and draw the current
subset. Of course, the subset we are currently processing may not exist in the mesh and it will result in a
no-op and quickly return from the function.

 // Process each object
 for (i = 0; i < m_nObjectCount; ++i)
 {
 CD3DXMesh * pMesh = m_pObject[i]->m_pMesh;
 if (!pMesh) continue;

 // Setup the per-mesh / object details
 m_pD3DDevice->SetTransform(D3DTS_WORLD, &m_pObject[i]->m_mtxWorld);
 m_pD3DDevice->SetFVF(pMesh->GetFVF());

 // Render all faces with this attribute ID
 pMesh->DrawSubset(j);

 } // Next Object

 } // Next Attribute

The above code repeats for every scene attribute until all subsets of all non-managed meshes have been
rendered.

 84

If DRAW_ATTRIBUTE_ORDER is set to 0, alterative rendering code will be compiled instead. This
code will render on a per object basis (which proved to be much faster in our example application). This
is because it minimizes potential FVF changes and the number of times we have to set the world matrix,
thus reducing stalls in the pipeline.

This approach (really just a re-ordering of the code shown above), loops through each of the scene
objects and sets its FVF flags and associated world matrix. The next step loops through each of the
scenes attributes, setting the material and texture for that attribute. Finally, all meshes are instructed to
render any subsets which have matching subset IDs.

#else

 // Process each object
 for (i = 0; i < m_nObjectCount; ++i)
 {
 CD3DXMesh * pMesh = m_pObject[i]->m_pMesh;
 if (!pMesh) continue;

 // Setup the per-mesh / object details
 m_pD3DDevice->SetTransform(D3DTS_WORLD, &m_pObject[i]->m_mtxWorld);
 m_pD3DDevice->SetFVF(pMesh->GetFVF());

 // Loop through each scene owned attribute
 for (j = 0; j < m_nAttribCount; j++)
 {
 // Retrieve indices
 MaterialIndex = m_pAttribCombo[j].MaterialIndex;
 TextureIndex = m_pAttribCombo[j].TextureIndex;

 // Set the states
 if (MaterialIndex >= 0)
 m_pD3DDevice->SetMaterial(&m_pMaterialList[MaterialIndex]);
 else
 m_pD3DDevice->SetMaterial(&m_DefaultMaterial);

 if (TextureIndex >= 0)
 m_pD3DDevice->SetTexture(0, m_pTextureList[TextureIndex]->Texture);
 else
 m_pD3DDevice->SetTexture(0, NULL);

 // Render all faces with this attribute ID
 pMesh->DrawSubset(j);

 } // Next Object

 } // Next Attribute

#endif // !DRAW_ATTRIBUTE_ORDER != 0

Before exiting, we disable any currently active lights so that if we load another IWF scene which uses
fewer lights than the current scene, the current scene’s lights do not remain active and influence the new
scene. Of course, this could be done outside the render loop, and certainly would be in a real world
situation. We placed it here for simplicity in our simple application.

 85

 // Disable lights again (to prevent problems later)
 for (i = 0; i < m_nLightCount; ++i) m_pD3DDevice->LightEnable(i, FALSE);

}

CScene::RenderSkyBox

The CScene::RenderSkyBox function builds a world matrix for the skybox that will translate it to the
camera’s current position. This ensures that the camera remains at the center of the box at all times. We
simply place the camera position in the fourth row (the translation vector) of the world matrix and render
the cube.

void CScene::RenderSkyBox(CCamera & Camera)
{
 // Bail if there is no sky box
 if (m_SkyBoxMesh.GetNumFaces() == 0) return;

 D3DXMATRIX mtxWorld, mtxIdentity;
 D3DXMatrixIdentity(&mtxWorld);
 D3DXMatrixIdentity(&mtxIdentity);

 // Generate our sky box rendering origin and set as world matrix
 D3DXVECTOR3 CamPos = Camera.GetPosition();
 D3DXMatrixTranslation(&mtxWorld, CamPos.x, CamPos.y + 1.3f, CamPos.z);
 m_pD3DDevice->SetTransform(D3DTS_WORLD, &mtxWorld);

We disable lighting and depth buffering since neither is appropriate for this type of effect. Lighting
would create visible seams and strange coloring. Depth buffering is both unnecessary and undesirable --
it is unnecessary because we do not want to perform thousands of per-pixel depth tests when we know
that the depth buffer is currently clear, and it is undesirable because we do not want to write depth values
that may potentially occlude other scene objects (the skybox is only a background and should never
occlude anything).

 // Set up rendering states for the sky box
 m_pD3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
 m_pD3DDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);

When rendering a skybox, we set the texture addressing modes for both the U and V axes to
D3DTADDRESS_CLAMP. This prevents pixels on the edge of each quad from being bilinearly filtered
with pixels on the opposite side of the texture, creating a visible seam.

 m_pD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
 m_pD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);

Since the skybox is a managed mesh, it will handle setting all texture and render states. It contains the
textures used by each of its faces in its internal attribute array which we populated ealier. We simply
need to call the self-contained CTriMesh::Draw function.

 86

 // Render the sky box
 m_SkyBoxMesh.Draw();

Finally, we reset all render and sampler states and the device world matrix before we return so that we do
not influence how the rest of the scene is rendered.

 // Reset our states
 m_pD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
 m_pD3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
 m_pD3DDevice->SetRenderState(D3DRS_LIGHTING, TRUE);
 m_pD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
 m_pD3DDevice->SetTransform(D3DTS_WORLD, &mtxIdentity);
}

 87

Lab Project 8.2: Progressive Meshes

This lab project will add Progressive Mesh support to the code we studied in Lab Project 8.1.

To accomplish our objective, we
will slightly modify our CTriMesh
class so that it has the ability to be
used as a static or progressive
mesh. Most of the functionality for
the mesh class (and indeed the
entire application) will be similar
to the code studied in the last
project.

The CTriMesh (see CObject.h) object will now store two pointers: an ID3DXMesh pointer and an
ID3DXPMesh pointer. If the m_pPMesh pointer is active then the progressive mesh will be used by all
drawing and optimization functions. If not, the standard mesh will be used. This allows us to easily use
the same mesh for both regular and progressive meshes and change from one to the other easily within a
CTriMesh object.

class CTriMesh
{
 …

 LPD3DXMESH m_pMesh; // Physical mesh object
 LPD3DXPMESH m_pPMesh; // Physical PMesh object

We will add a few wrapper functions to set the current level of detail for the underlying progressive
mesh. CTriMesh::SetNumVertices and CTriMesh::SetNumFaces simply pass on the request to the
underlying ID3DXPMesh if it exists. They do nothing if the progressive mesh has not been generated.

 HRESULT SetNumFaces (ULONG FaceCount);
 HRESULT SetNumVertices (ULONG VertexCount);

We also include two more wrapper functions for trimming the base level of detail of the underlying
progressve mesh. Once again, these functions do nothing if the progressive mesh has not been generated.

 HRESULT TrimByFaces (ULONG NewFacesMin, ULONG NewFacesMax);
 HRESULT TrimByVertices (ULONG NewVerticesMin, ULONG NewVerticesMax);

CTriMesh also provides a function to generate its progressive mesh using its underlying ID3DXMesh as
the input for progressive mesh generation. This call essentially places the CTriMesh object into
progressive mesh mode. The underlying ID3DXMesh interface must have been created before switching

 88

to progressive mode. This is because the regular ID3DXMesh is used as the input mesh for D3DX
progressive mesh generation.

 HRESULT GeneratePMesh(CONST LPD3DXATTRIBUTEWEIGHTS pAttributeWeights,
 CONST FLOAT *pVertexWeights, ULONG MinValue,
 ULONG Options, bool ReleaseOriginal = true);

Cloning and optimizing are also supported for both standard and progressive meshes.

HRESULT CloneMeshFVF (ULONG Options, ULONG FVF, CTriMesh * pMeshOut,
 MESH_TYPE MeshType = MESH_DEFAULT,
 LPDIRECT3DDEVICE9 pD3DDevice = NULL);

HRESULT Optimize (ULONG Flags, CTriMesh * pMeshOut,
 MESH_TYPE MeshType = MESH_DEFAULT,
 LPD3DXBUFFER * ppFaceRemap = NULL,
 LPD3DXBUFFER * ppVertexRemap = NULL,
 LPDIRECT3DDEVICE9 pD3DDevice = NULL);

Notice that we use a new parameter in both function calls. This is a member of the MESH_TYPE
enumerated type. By default, this parameter is set to MESH_DEFAULT, which means that the output
mesh will be the same type as the source mesh being cloned. We can also specify standard or progressive
flags to convert between one mesh type and the other. This allows us, for example, to take a CTriMesh
in progressive mesh mode and clone from another CTriMesh object in regular mesh mode and vice
versa.

When cloning a CTriMesh in regular mesh mode out to a CTriMesh in progressive mesh mode, the
underlying progressive mesh in the cloned object will use the regular mesh in the source object as its
base (highest level of detail) geometry. When cloning a CTriMesh in progressive mesh mode to a
CTriMesh in regular mesh mode, the underlying ID3DXMesh in the cloned object will contain the
geometry taken from the progressive mesh of the source object at its current level of detail. This allows
us to create a progressive CTriMesh object and simplify the data by altering its current detail setting,
before cloning it back out to a new CTriMesh in regular mesh mode. The source mesh can then be
released, leaving us with a simplified standard CTriMesh that can be rendered without the runtime
overhead a progressive mesh would incur. If we need the ability to alter the geometric detail of a
CTriMesh at runtime, we will want to use a CTriMesh in progressive mesh mode for rendering.

MESH_TYPE is now part of the CTriMesh namespace and is defined in CObject.h as:

enum MESH_TYPE { MESH_DEFAULT = 0, MESH_STANDARD = 1, MESH_PROGRESSIVE = 2 };

Finally, CTriMesh now includes some utility wrapper functions for working with the progressive mesh
and extracting its current settings. These functions should be self explanatory given our discussion of
ID3DXPMesh in the textbook.

ULONG GetMaxFaces () const;
ULONG GetMaxVertices () const;

 89

ULONG GetMinFaces () const;
ULONG GetMinVertices () const;

If the CTriMesh is not in progressive mesh mode, then all of these functions will return the number of
vertices/faces in the regular ID3DXMesh. The existence of an underlying ID3DXPMesh interface takes
precedence in such functions, in which case the functions return information about the progressive mesh.

Our application can get a pointer to the underlying ID3DXPMesh interface by calling the GetPMesh
function. If the progressive mesh has not been generated, this call will return NULL.

LPD3DXPMESH GetPMesh () const;

While the next two functions are not new to the CTriMesh class, they now behave differently when the
mesh object is in progressive mode. In standard mode, these functions return the number of vertices and
faces in the temporary arrays used to manually generate the ID3DXMesh when the
CTriMesh::BuildMesh function is called. If the ID3DXMesh has already been built, then they return the
number of vertices and faces in the underlying D3DXMesh object. But if the mesh object has its
progressive mesh generated, then these functions will return the number of vertices and faces used to
render the progressive mesh at its current level of detail.

ULONG GetNumVertices () const;
ULONG GetNumFaces () const;

The final new function we will add is called SnapshotToMesh. It clones the CTriMesh progressive mesh
out to a standard mesh and stores the result in the CTriMesh ID3DXMesh pointer. This call does not
destroy the current progressive mesh or change the mode of the CTriMesh object from progressive mesh
to standard mesh mode unless the ReleaseProgressive Booelan parameter is set to true. This is handy
because it allows us to create a CTriMesh object, generate a progressive mesh for it, lower its level of
detail, and clone the current LOD progressive mesh to the underlying standard one. We can then release
the progressive mesh, to place the same CTriMesh back into standard mode. We have simply used the
progressive mesh in this case to perform a one-time simplification procedure on the mesh data.

HRESULT SnapshotToMesh (bool ReleaseProgressive = true);

If we specify false as the input parameter then the underlying progressive mesh will not be released and
the CTriMesh remains in progressive mode. This is also useful since we can attach the simplified mesh
to a new CTriMesh if desired. This allows for easy cloning of a progressive mode CTriMesh to a
standard CTriMesh. In fact, we use this mechanism in CloneMeshFVF and Optimize to do exactly that.

Before we start examining the underlying code for these new and modified functions in more detail, let
us briefly look at some usage scenarios for the updated CTriMesh.

 90

Using CTriMesh to Create a Progressive Mesh

Creating a progressive CTriMesh is a two step process. Step one is exactly the same as our mesh creation
code in the last project -- we simply build the mesh so that the underlying ID3DXMesh is created. Step
two involves calling CTriMesh::GeneratePMesh to generate the ID3DXPMesh from the underlying
ID3DXMesh. This places the CTriMesh in progressive mesh mode and will (by default) release the
ID3DXMesh interface. The newly generated ID3DXPMesh will now be used for all rendering. The
following example code shows how we might create a progressive CTriMesh using data loaded in from
an X file stored on disk:

CTriMesh * pNewMesh = new CTriMesh;
pNewMesh->RegisterCallback(CTriMesh::CALLBACK_ATTRIBUTEID, CollectAttributeID, this);
pNewMesh->LoadMeshFromX(‘MyXFile.x’, D3DXMESH_MANAGED, m_pD3DDevice);
pNewMesh->WeldVertices(0);
pNewMesh->OptimizeInPlace(D3DXMESHOPT_VERTEXCACHE);

At this point we have an optimized ID3DXMesh. So far, this has been exactly like the code in Lab
Project 8.1. Now we call CTriMesh::GeneratePMesh to place the CTriMesh object into progressive
mesh mode. We will pass in NULL in this example for the first two parameters so the default vertex
component weighting is used (all vertices are assumed to have the same weight, and therefore will all be
assigned the same priority for collapse). We also specify that the underlying progressive mesh should be
generated such that it stores enough edge collapse structures to allow us to dynamically simplify down to
a face count of 50. This target might not be possible, but the progressive mesh will calculate enough
collapse structures to get as close to this number as possible without harming the topology of the mesh to
an unacceptable degree.

pNewMesh->GeneratePMesh(NULL, NULL, 50, D3DXMESHSIMP_FACE);

At this point, the CTriMesh has released its ID3DXMesh interface and now has its m_pPMesh pointer
pointing to a valid ID3DXPMesh interface. Finally, we optimize the progressive mesh for rendering.

pNewMesh->OptimizeInPlace(D3DXMESHOPT_VERTEXCACHE);

CTriMesh::GeneratePMesh

This function will use the standard mesh (CTriMesh::m_pMesh) as the base level of detail for a new
progressive mesh. Therefore, the standard mesh should already be a valid ID3DXMesh when this
function is called.

HRESULT CTriMesh::GeneratePMesh(CONST LPD3DXATTRIBUTEWEIGHTS pAttributeWeights,
 CONST FLOAT *pVertexWeights, ULONG MinValue,
 ULONG Options, bool ReleaseOriginal /* = true */)
{
 HRESULT hRet;
 LPD3DXMESH pTempMesh = NULL;
 LPD3DXBUFFER pTempAdjacency = NULL;

 // Validate Parameters

 91

 if (!m_pMesh) return D3DERR_INVALIDCALL;

The first thing the function does is ensure that m_pMesh is not NULL. If it is, then the function has been
called prematurely and we return immediately. If the standard mesh has been created, then we release the
current progressive mesh to make room for the new one we are about to create.

 // Release previous Progressive mesh if one already exists
 if (m_pPMesh) { m_pPMesh->Release(); m_pPMesh = NULL; }

To create a progressive mesh, we need adjacency information for the D3DXGeneratePMesh function
call. If we have not created the adjacency array previously, we do so now.

 // Generate adjacency if not yet available
 if (!m_pAdjacency)
 {
 GenerateAdjacency();
 }

Next we need to validate the standard mesh to make sure it does not contain invalid data that would
cause the generation of a progressive mesh to fail. We call D3DXValidMesh and pass in a pointer to the
standard mesh along with its adjacency data.

 // Validate the base mesh
 hRet = D3DXValidMesh(m_pMesh, (DWORD*)m_pAdjacency->GetBufferPointer(), NULL);

If the D3DXValidMesh function fails, then the standard mesh contains invalid geometry. We will then
attempt to repair the damage using the D3DXCleanMesh function. D3DXCleanMesh does not alter the
actual geometry of the mesh being cleaned -- instead it clones the clean data out to a new ID3DXMesh.
It also fills a new adjacency buffer, so we must allocate this buffer and pass its pointer into the function.

 if (FAILED(hRet))
 {
 // Allocate the temporary adjacency buffer
 hRet = D3DXCreateBuffer(m_pAdjacency->GetBufferSize(), &pTempAdjacency);
 if (FAILED(hRet)) { return hRet; }

 // Clean the mesh data storing the new mesh interface pointer in pTempMesh.
 hRet = D3DXCleanMesh(m_pMesh, (DWORD*)m_pAdjacency->GetBufferPointer(), &pTempMesh,
 (DWORD*)pTempAdjacency->GetBufferPointer(), NULL);

 if (FAILED(hRet)) { pTempAdjacency->Release(); return hRet; }
 }

The clean mesh is assigned to the local ID3DXMesh pointer pTempMesh. If the function fails, then there
is nothing we can do; the data is simply incompatible with progressive mesh generation. If this is the
case, we release the temporary adjacency buffer and return.

If the function is successful, pTempMesh will point to the cleaned ID3DXMesh interface pointer and
pTempAdjacency will contain the updated face adjacency information.

 92

If m_pMesh was valid to begin with, then we copy the mesh interface pointer and its adjacency buffer
into the pTempMesh and pTempAdjacency pointers. This way, whether the mesh needed to be cleaned
or not, pTempAdjacency and pTempMesh point to the adjacency buffer and the mesh we will use to
create the progressive mesh.

 else
 {
 // Simply store common pointers
 pTempAdjacency = m_pAdjacency;
 pTempMesh = m_pMesh;

 // Add references so that the originals are not released
 m_pAdjacency->AddRef();
 m_pMesh->AddRef();

 } // End if valid mesh

We generate the progressive mesh with a call to D3DXGeneratePMesh, passing in the source mesh and
other required parameters. We store the new progressive mesh in the CTriMesh::m_pPMesh member
pointer when complete and the CTriMesh object is now in progressive mesh mode.

 // Generate the progressive mesh
 hRet = D3DXGeneratePMesh(pTempMesh, (DWORD*)pTempAdjacency->GetBufferPointer(),
 pAttributeWeights, pVertexWeights, MinValue, Options, &m_pPMesh);

We can now release pTempMesh and pTempAdjacency since we no longer need them.

 // Release all used objects
 pTempMesh->Release();
 pTempAdjacency->Release();

Finally, if the ReleaseOriginal Boolean paremeter is set to true (the default) then we release the standard
mesh interface (m_pMesh) as well. From this point forward, any member functions we call will work
with the underlying progressive mesh instead. Note that we only release the standard mesh if the
progressive mesh was successfully generated.

 // Release the original mesh if requested, and PMesh generation was a success
 if (ReleaseOriginal && SUCCEEDED(hRet)) { m_pMesh->Release(); m_pMesh = NULL; }

 // Success??
 return hRet;
}

 93

CTriMesh::CloneMeshFVF

The CloneMeshFVF function has had a fair bit of code added to it to cope with the dual-use nature of the
modified CTriMesh class. The MESH_TYPE parameter allows the caller to specify whether the clone
will be a progressive mesh (MESH_PROGRESSIVE), a standard mesh (MESH_STANDARD), or the
same type as the source mesh (MESH_DEFAULT).

The results differ based on the source mesh type and the requested destination type. The semantics are
detailed below:

Source Mesh: MESH_STANDARD
Destination Mesh: MESH_STANDARD -or- MESH_DEFAULT
In this case the output CTriMesh will be a standard ID3DXMesh. The vertices, faces, and attributes will
be copied into the output mesh creating a duplicate CTriMesh. Vertex/index format may change
depending on the Options and FVF flags passed into the function.

Source Mesh: MESH_STANDARD
Destination Mesh: MESH_PROGRESSIVE
In this case the output CTriMesh will be an ID3DXPMesh. The source mesh determines the base LOD
for the progressive mesh. The source mesh remains in standard mode and the output mesh will be in
progressive mesh mode. Vertex/index format may change depending on the Options and FVF flags
passed into the function.

Source Mesh: MESH_PROGRESSIVE
Destination Mesh: MESH_PROGRESSIVE -or- MESH_DEFAULT
In this case the output CTriMesh will be an ID3DXPMesh. The source progressive mesh is copied in its
entirety and the output mesh will have the same face and vertex count as the source. Vertex/index format
may change depending on the Options and FVF flags passed into the function.

Source Mesh: MESH_PROGRESSIVE
Destination Mesh: MESH_STANDARD
In this case the output CTriMesh will be an ID3DXMesh. The clone will contain only geometry that is
being used at the current level of detail for the source progressive mesh. This is essentially a snapshot of
the source mesh at its current LOD. Vertex/index format may change depending on the Options and FVF
flags passed into the function.

The first thing the clone function does is make sure that the mesh about to be cloned has a valid source
mesh (standard or progressive). If the progressive mesh exists, then the mesh is assumed to be in
progressive mesh mode and the standard mesh will be ignored. The progressive mesh will therefore be
used as the source mesh in the cloning operation. We also generate face adjacency for the source mesh if
it has not been previously generated because it is needed for the cloning operation. Note that the final
parameter to this function is a pointer to an IDirect3DDevice9 interface describing the device we would
like the output mesh to belong to. Usually we will want this to be the same as the source mesh that is

 94

about to be cloned. If so, we can set this parameter to NULL and the device retrieved from the current
mesh will be used.

HRESULT CTriMesh::CloneMeshFVF(ULONG Options, ULONG FVF, CTriMesh * pMeshOut,
 MESH_TYPE MeshType , LPDIRECT3DDEVICE9 pD3DDevice)
{
 HRESULT hRet;
 LPD3DXBASEMESH pCloneMesh = NULL;

 // Validate requirements
 if ((!m_pMesh && !m_pPMesh) || !pMeshOut) return D3DERR_INVALIDCALL;

 // Generate adjacency if not yet available
 if (!m_pAdjacency)
 {
 hRet = GenerateAdjacency();
 if (FAILED(hRet)) return hRet;

 } // End if no adjacency

 // If no new device was passed...
 if (!pD3DDevice)
 {
 // we'll use the same device as this mesh
 // This automatically calls 'AddRef' for the device
 pD3DDevice = GetDevice();
 }
 else
 {
 // Otherwise we'll add a reference here so that we can
 // release later for both cases without doing damage :)
 pD3DDevice->AddRef();
 }

The next step is to determine the requested destination mesh type and process the request as described
above.

If MESH_DEFAULT was passed in then we create a cloned CTriMesh of the same type as the current
mesh object being cloned. Progressive meshes take priority, so if the m_pPMesh pointer is not NULL
then the mesh is currently in progressive mesh mode and we will need to clone a new progressive mesh
using the D3DXClonePMeshFVF function. If the m_pPMesh pointer is NULL then we assume the mesh
is in standard mode and clone the standard mesh using D3DXCloneMeshFVF. Note that we store the
cloned interface as an ID3DXBaseMesh. This allows us to use the same pointer type for both types.

 switch (MeshType)
 {
 case MESH_DEFAULT: // Continue to use the same type as 'this'
 if (m_pPMesh)
 {
 // Attempt to clone the mesh
 hRet = m_pPMesh->ClonePMeshFVF(Options, FVF, pD3DDevice, \
 (LPD3DXPMESH*)&pCloneMesh);
 if (FAILED(hRet)) { pD3DDevice->Release(); return hRet; }

 95

 } // End if Progressive
 else
 {
 // Attempt to clone the mesh
 hRet = m_pMesh->CloneMeshFVF(Options, FVF, pD3DDevice, \
 (LPD3DXMESH*)&pCloneMesh);
 if (FAILED(hRet)) { pD3DDevice->Release(); return hRet; }

 } // End if standard
 break;

Processing the request for a standard output mesh is just as easy. Again, we start by checking our
progressive mesh first and then fall back to the standard mesh if necessary. Both cases use the
CloneMeshFVF to accomplish the objective.

 case MESH_STANDARD: // Convert to, or continue to use standard mesh type
 if (m_pPMesh)
 {
 // Attempt to clone the mesh
 hRet = m_pPMesh->CloneMeshFVF(Options, FVF, pD3DDevice, \
 (LPD3DXMESH*)&pCloneMesh);
 if (FAILED(hRet)) { pD3DDevice->Release(); return hRet; }
 }
 else
 {
 // attempt to clone the mesh
 hRet = m_pMesh->CloneMeshFVF(Options, FVF, pD3DDevice, \
 (LPD3DXMESH*)&pCloneMesh);
 if (FAILED(hRet)) { pD3DDevice->Release(); return hRet; }
 }
 break;

The final case handles cloning to a progressive mesh. If the progressive mesh exists in the source object,
then this becomes a straight cloning operation. If not, then we must convert the standard mesh into
progressive form, directly storing the result in the output mesh object.

 case MESH_PROGRESSIVE: // Convert to, or continue to use progressive mesh type
 if (m_pPMesh)
 {
 // Attempt to clone the mesh
 hRet = m_pPMesh->ClonePMeshFVF(Options, FVF, pD3DDevice, \
 (LPD3DXPMESH*)&pCloneMesh);
 if (FAILED(hRet)) { pD3DDevice->Release(); return hRet; }
 }
 else
 {
 // Attempt to clone the mesh
 hRet = D3DXGeneratePMesh(m_pMesh, (DWORD*)m_pAdjacency->GetBufferPointer(),
 NULL, NULL, 1, D3DXMESHSIMP_FACE, (LPD3DXPMESH*)&pCloneMesh);
 if (FAILED(hRet)) { pD3DDevice->Release(); return hRet; }
 }
 break;

 } // End type switch

 96

We can now attach the new D3DXMesh to the output CTriMesh object that was passed into the function
and release the base mesh interface pointer because we no longer need it.

 // Attach this D3DX mesh to the output mesh
 // This automatically adds a reference to the mesh passed in.
 pMeshOut->Attach(pCloneMesh);

 // We can now release our copy of the cloned mesh
 pCloneMesh->Release();

Our final task is to test whether the source CTriMesh has any data in its attribute data array. If it does
then we are cloning from a managed CTriMesh and we should copy over the attribute data to the output
mesh so that it will have the required textures and materials for each of its subsets.

 // Copy over attributes if there is anything here
 if (m_pAttribData)
 {
 // Add the correct number of attributes
 if (pMeshOut->AddAttributeData(m_nAttribCount) < 0) return E_OUTOFMEMORY;

 // Copy over attribute data
 MESH_ATTRIB_DATA * pAttributes = pMeshOut->GetAttributeData();
 for (ULONG i = 0; i < m_nAttribCount; ++i)
 {
 MESH_ATTRIB_DATA * pAttrib = &pAttributes[i];
 // Store details
 pAttrib->Material = m_pAttribData[i].Material;
 pAttrib->Texture = m_pAttribData[i].Texture;
 pAttrib->Effect = m_pAttribData[i].Effect;

 // Add references so that objects aren't released when either of these
 // meshes are released, or vice versa.
 if (pAttrib->Texture) pAttrib->Texture->AddRef();
 if (pAttrib->Effect) pAttrib->Effect->AddRef();

 } // Next Attribute

 } // End if managed

 // Release our referenced D3D Device
 if (pD3DDevice) pD3DDevice->Release();

 // Success!!
 return S_OK;
}

It should be noted that the CTriMesh::Attach function has been altered so that it accepts an
ID3DXBaseMesh pointer. It will determine whether it is a standard or progressive mesh using
IUnknown::QueryInterface and assign the pointer to the underlying ID3DXMesh or ID3DXPMesh
member pointer of the CTriMesh object appropriately.

 97

CTriMesh::Optimize

The optimize function has had some small changes to accommodate our dual-use CTriMesh concept.
Recall that this function works like a combination clone/optimize-in-place operation. The output mesh
type is once again specified using the MESH_TYPE input parameter. The caller must pass in a pointer to
an already instantiated CTriMesh object that will receive the new cloned and optimized D3DX mesh.

The first part of this function is the same as CTriMesh::CloneMeshFVF. It exits if the standard or
progressive meshes are not yet created, it generates adjacency information if it does not yet exist, and it
retrieves the device from the source mesh if the caller passes NULL for the device parameter.

HRESULT CTriMesh::Optimize(ULONG Flags, CTriMesh * pMeshOut, MESH_TYPE MeshType ,
 LPD3DXBUFFER * ppFaceRemap , LPD3DXBUFFER * ppVertexRemap ,
 LPDIRECT3DDEVICE9 pD3DDevice)
{
 HRESULT hRet;
 LPD3DXMESH pOptimizeMesh = NULL;
 LPD3DXBUFFER pFaceRemapBuffer = NULL;
 LPD3DXBUFFER pAdjacency = NULL;
 ULONG *pData = NULL;

 // Validate requirements
 if ((!m_pMesh && !m_pPMesh) || !pMeshOut) return D3DERR_INVALIDCALL;

 // Generate adjacency if not yet available
 if (!m_pAdjacency)
 {
 hRet = GenerateAdjacency();
 if (FAILED(hRet)) return hRet;

 } // End if no adjacency

 // If no new device was passed...
 if (!pD3DDevice)
 {
 // we'll use the same device as this mesh
 // This automatically calls 'AddRef' for the device
 pD3DDevice = GetDevice();

 }
 else
 {
 // Otherwise we'll add a reference here so that we can
 // release later for both cases without doing damage :)
 pD3DDevice->AddRef();

 } // End if new device

Next we allocate an ID3DXBuffer which we can pass into the Optimize function and it will be filled
with the face adjacency information for the new optimized mesh. Also, if the ppFaceRemap parameter is
not NULL, then the caller would like to know how the faces were re-mapped from their original
positions. In that case, we need to allocate an ID3DXBuffer object to contain this information.

 98

 hRet = D3DXCreateBuffer((3 * GetNumFaces()) * sizeof(ULONG), &pAdjacency);
 if (FAILED(hRet)) { pD3DDevice->Release(); return hRet; }

 // Allocate the output face remap if requested
 if (ppFaceRemap)
 {
 // Allocate new face remap output buffer
 hRet = D3DXCreateBuffer(GetNumFaces() * sizeof(ULONG), ppFaceRemap);
 if (FAILED(hRet)) { pD3DDevice->Release(); pAdjacency->Release(); return hRet; }
 pData = (ULONG*)(*ppFaceRemap)->GetBufferPointer();
 } // End if allocate face remap data

We now optimize the CTriMesh into a new object. Priority is once again given to the progressive mesh
and we fall back to the standard mesh if the progressive mesh has not been created. The mesh that is
output from the Optimize call will match the type of the mesh that called the function.

 if (m_pPMesh)
 {
 // Attempt to optimize the progressive mesh
 m_pPMesh->Optimize(Flags, (ULONG*)pAdjacency->GetBufferPointer(), pData,
 ppVertexRemap, &pOptimizeMesh);
 }
 else
 {
 // Attempt to optimize the standard mesh
 m_pMesh->Optimize(Flags, (ULONG*)m_pAdjacency->GetBufferPointer(),
 (ULONG*)pAdjacency->GetBufferPointer(), pData, ppVertexRemap,
 &pOptimizeMesh);
 }

We attach the new mesh to the output CTriMesh object passed into the function.

 // Attach this D3DX mesh to the output mesh
 // This automatically adds a reference to the mesh passed in.
 pMeshOut->Attach(pOptimizeMesh, pAdjacency);

Our next task is to convert the new mesh (if necessary) into the format requested by the caller.

 switch (MeshType)
 {
 case MESH_DEFAULT: // Continue to use the same type as 'this'

 // Already a standard mesh, does it need converting ?
 if (m_pPMesh) pMeshOut->GeneratePMesh(NULL, NULL, 0, D3DXMESHSIMP_FACE, true);
 break;

 case MESH_PROGRESSIVE: // Convert to, or continue to use progressive mesh type

 // Already a standard mesh, convert it
 pMeshOut->GeneratePMesh(NULL, NULL, 0, D3DXMESHSIMP_FACE, true);
 break;

 } // End type switch

 99

Now that the new mesh is attached to the output mesh, we can release the temporary pOptimizeMesh
interface and the temporary adjacency buffer. Our final task is to copy the attribute array (if it exists) to
accommodate managed meshes.

 // We can now release our copy of the optimized mesh and the adjacency buffer
 pOptimizeMesh->Release();
 pAdjacency->Release();

 // Copy over attributes if there is anything here
 if (m_pAttribData)
 {
 // Add the correct number of attributes
 if (pMeshOut->AddAttributeData(m_nAttribCount) < 0) return E_OUTOFMEMORY;

 // Copy over attribute data
 MESH_ATTRIB_DATA * pAttributes = pMeshOut->GetAttributeData();
 for (ULONG i = 0; i < m_nAttribCount; ++i)
 {
 MESH_ATTRIB_DATA * pAttrib = &pAttributes[i];
 // Store details
 pAttrib->Material = m_pAttribData[i].Material;
 pAttrib->Texture = m_pAttribData[i].Texture;
 pAttrib->Effect = m_pAttribData[i].Effect;

 // Add references so that objects aren't released when either of these
 // meshes are released, or vice versa.
 if (pAttrib->Texture) pAttrib->Texture->AddRef();
 if (pAttrib->Effect) pAttrib->Effect->AddRef();

 } // Next Attribute

 } // End if managed

 // Release our referenced D3D Device
 if (pD3DDevice) pD3DDevice->Release();

 // Success!!
 return S_OK;
}

CTriMesh::OptimizeInPlace

OptimizeInPlace has also been slightly modified to accommodate our new progressive mesh
functionality, although to a lesser degree than the Optimize call. The only different between this version
of the function and the version from Lab Project 8.1 is that it tests to see if the object is in progressive
mesh or standard mesh mode. In standard mesh mode, this function simply wraps a call to the
ID3DXMesh::OptimizeInPlace function for its internal ID3DXMesh object. Since this function does not
exist in the ID3DXPMesh interface, we use the less flexible D3DX optimization function called
OptimizeBaseLOD to optimize the underlying progressive mesh if the CTriMesh object is in progressive
mesh mode.

 100

HRESULT CTriMesh::OptimizeInPlace(DWORD Flags, LPD3DXBUFFER * ppFaceRemap ,
 LPD3DXBUFFER * ppVertexRemap)
{
 HRESULT hRet;
 LPD3DXBUFFER pFaceRemapBuffer = NULL;
 ULONG *pData = NULL;

 // Validate Requirements
 if ((!m_pMesh && !m_pPMesh)) return D3DERR_INVALIDCALL;

 // Generate adjacency if none yet provided
 if (!m_pAdjacency)
 {
 hRet = GenerateAdjacency();
 if (FAILED(hRet)) return hRet;
 }

 // Allocate the output face remap if requested
 if (ppFaceRemap)
 {
 // Allocate new face remap output buffer
 hRet = D3DXCreateBuffer(GetNumFaces() * sizeof(ULONG), ppFaceRemap);
 if (FAILED(hRet)) { return hRet; }
 pData = (ULONG*)(*ppFaceRemap)->GetBufferPointer();
 }

 // Optimize the data
 if (m_pPMesh)
 hRet = m_pPMesh->OptimizeBaseLOD(Flags, pData);
 else
 hRet = m_pMesh->OptimizeInplace(Flags, (DWORD*)m_pAdjacency->GetBufferPointer(),
 (DWORD*)m_pAdjacency->GetBufferPointer(),
 pData, ppVertexRemap);
 if (FAILED(hRet)) return hRet;

 // Success!!
 return S_OK;
}

CTriMesh::SetNumFaces/SetNumVertices

These functions simply wrap the ID3DXPMesh calls of the same names and allow us to dynamically
alter the current LOD of the underlying progressive mesh. The function does nothing if the CTriMesh
object has not had its underlying ID3DXPMesh generated.

HRESULT CTriMesh::SetNumFaces(ULONG FaceCount)
{
 HRESULT hRet = D3DERR_INVALIDCALL;

 // Set number of faces (this is a no-op if there is no pmesh)
 if (m_pPMesh) hRet = m_pPMesh->SetNumFaces(FaceCount);

 // Success??
 return hRet;
}

 101

HRESULT CTriMesh::SetNumVertices(ULONG VertexCount)
{
 HRESULT hRet = D3DERR_INVALIDCALL;

 // Set number of vertices (this is a no-op if there is no pmesh)
 if (m_pPMesh) hRet = m_pPMesh->SetNumVertices(VertexCount);

 // Success??
 return hRet;
}

CTriMesh::TrimByFaces

TrimByFaces is a dual-mode function that works differently depending on whether the CTriMesh is in
progressive or standard mesh mode. In progressive mode, this call simply wraps the call to
ID3DXPMesh::TrimByFaces. This will set new upper and lower boundaries for the progressive mesh.
The caller specifies the new maximum number of faces, which must be less than or equal to the current
maximum number of faces, and the new minimum number of faces which must be greater than or equal
to the current minimum number of faces. This function allows us to trim the dynamic range of the
progressive mesh freeing collapse structures from memory allowing the mesh to consume less memory.

If this function is called and the CTriMesh is in standard mode (no progressive mesh exists) then the
function is interpreted as a request to simplify the underlying ID3DXMesh standard mesh down to a new
level of detail. When this is the case, we call D3DXSimplifyMesh to reduce the input mesh (the current
standard mesh) to the requested LOD. Since the output of this call is a new mesh, the old standard mesh
is released and the new simplied ID3DXMesh is assigned as the new standard mesh for the CTriMesh.

HRESULT CTriMesh::TrimByFaces(ULONG NewFacesMin, ULONG NewFacesMax)
{
 HRESULT hRet = D3DERR_INVALIDCALL;

 // Trim by faces
 if (m_pPMesh)
 {
 // Drop through to P mesh trimming
 hRet = m_pPMesh->TrimByFaces(NewFacesMin, NewFacesMax, NULL, NULL);
 }
 else if (m_pMesh)
 {
 LPD3DXMESH pMeshOut = NULL;

 // Generate adjacency if not yet available
 if (!m_pAdjacency)
 {
 GenerateAdjacency();
 }

 // Since there is no PMesh, we can only comply by simplifying
 D3DXSimplifyMesh(m_pMesh, (DWORD*)m_pAdjacency->GetBufferPointer(), NULL, NULL,
 NewFacesMax, D3DXMESHSIMP_FACE, &pMeshOut);

 102

 // Release old mesh and store the new mesh
 m_pMesh->Release();
 m_pMesh = pMeshOut;

 // Adjacency will be out of date, update it
 GenerateAdjacency();
 }

 // Success??
 return hRet;
}

Note: There is also a CTriMesh::TrimByVertices function which is exactly the same code as above but
trims LOD based on vertices instead of faces. Check the source code for this project for a listing of this
function.

CTriMesh::GetNumFaces

All of the GetXX functions of the CTriMesh class have been slightly modified to accommodate our
dual-use mesh class. We will examine the GetNumFaces call in this example, but you should be aware
that all of these functions behave in exactly the same way.

In progressive mesh mode, GetNumFaces returns the number of faces being used by the progressive
mesh at its current LOD. In standard mesh mode, there are two possible cases. The first is when the
ID3DXMesh has been created. In this case GetNumFaces will return the number of faces in the
underlying ID3DXMesh. The second case handles the mesh as it is undergoing manual construction,
before it has been converted into a D3DX mesh type. In this case we return the number of faces in the
temporary index array.

ULONG CTriMesh::GetNumFaces() const
{
 // Validation!!
 if (m_pPMesh) return m_pPMesh->GetNumFaces();
 else if (m_pMesh) return m_pMesh->GetNumFaces();
 else return m_nFaceCount;
}

CTriMesh::DrawSubset

The DrawSubset function has hardly changed at all. ID3DXMesh and ID3DXPMesh both support the
DrawSubset function, so this function only needs to determine whether the progressive mesh has been
generated or if we should render using the standard mesh. We use an ID3DXBaseMesh pointer to render
the subset to handle both cases.

void CTriMesh::DrawSubset(ULONG AttributeID)
{
 LPDIRECT3DDEVICE9 pD3DDevice = NULL;

 103

 LPD3DXBASEMESH pMesh = m_pMesh;

 // Retrieve mesh pointer
 if (!pMesh) pMesh = m_pPMesh;
 if (!pMesh) return;

 // Set the attribute data if it exisits (which means it is a managed mesh)
 if (m_pAttribData && AttributeID < m_nAttribCount)
 {
 pD3DDevice = GetDevice();
 pD3DDevice->SetMaterial(&m_pAttribData[AttributeID].Material);
 pD3DDevice->SetTexture(0, m_pAttribData[AttributeID].Texture);
 pD3DDevice->Release();
 }

 // simply render the subset(s)
 pMesh->DrawSubset(AttributeID);
 }

Additional Code Changes

The rest of the changes to our scene viewer can be found in the CScene class. Most changes are
relatively minor and you will find most of the code from Lab Project 8.1 intact.

The first change is the addition of one line of code to the ProcessMeshes and ProcessReference
functions. Once these functions have created the CTriMesh and generated the underlying ID3DXMesh,
we call the new function CTriMesh::GeneratePMesh to generate the underlying progressive mesh
(placing it into progressive mesh mode) before adding it to the scene mesh array. The following snippet
from ProcessReference illustrates the idea:

…
CTriMesh * pNewMesh = new CTriMesh;

// Load in the externally referenced X File
pNewMesh->RegisterCallback(CTriMesh::CALLBACK_ATTRIBUTEID, CollectAttributeID, this);
pNewMesh->LoadMeshFromX(Buffer, D3DXMESH_MANAGED, m_pD3DDevice);

// Attempt to optimize the standard mesh ready fro progressive mesh generation
pNewMesh->WeldVertices(0);
pNewMesh->OptimizeInPlace(D3DXMESHOPT_VERTEXCACHE);

// Convert this mesh to a progressive mesh
pNewMesh->GeneratePMesh(NULL, NULL, 50, D3DXMESHSIMP_FACE);

// Optimize the progressive form of the mesh
pNewMesh->OptimizeInPlace(D3DXMESHOPT_VERTEXCACHE);

// Store this new mesh
if (AddMesh() < 0) { delete pNewMesh; return false; }
m_pMesh[m_nMeshCount - 1] = pNewMesh;
…

 104

In this demo, all of the meshes in our scene mesh array will be progressive meshes with an arbitrarily set
minimum LOD of 50 faces. Note that the skybox will not be a progressive mesh.

CScene::CalculateLODRatio

We have added a few new functions to our CScene class to set the current LOD for our meshes prior to
rendering. The LOD selected will be based on the distance from the mesh to the camera. As meshes get
further away from the camera, they will use fewer faces and vice versa. This is easiest to see if you
switch the application to wireframe render mode.

CalculateLODRatio manages this process. The function returns a value between 0.0 and 1.0 based on
camera distance. This value will be used to select a new LOD for the number of mesh faces in the
CScene::Render function. The [0.0, 1.0] range serves as a percentage between the minimum and
maximum number of faces for the mesh.

float CScene::CalculateLODRatio(const CCamera & Camera, const D3DXMATRIX & mtxObject) const
{
 // Retrieve object position.
 D3DXVECTOR3 vecObject = D3DXVECTOR3(mtxObject._41, mtxObject._42, mtxObject._43);

 // Calculate rough distance to object
 float Distance = D3DXVec3Length(&(vecObject - Camera.GetPosition()));

 // Calculate the LOD Ratio, from 0.0 to 1.0 within the first 60% of the frustum.
 float Ratio = 1.0f - (Distance / (Camera.GetFarClip() * 0.6f));
 if (Ratio < 0.0f) Ratio = 0.0f;

 // We have our value
 return Ratio;
}

We pass in the camera and the world matrix for the object we are about to render. The world space
position is extracted from the fourth row of the matrix and the distance to the camera is calculated using
the D3DXVec3Length function. We then divide the distance by the distance to the camera far plane and
multiply by 0.6. This means that any mesh that is over 60% of the distance from the camera, between the
near and far planes, will always have a ratio of 0.0. In this case the mesh will be set to its lowest level of
detail.

CScene::Render

The CScene::Render function has not been modified much since Lab Project 8.1 so we will examine
only the changes that were made. Three new lines were added to the call (highlighted in the following
listing) to manage the LOD transition for each mesh.

 105

For each mesh, we calculate its LOD ratio by passing its object world matrix to CalculateLODRatio. The
return value is used to calculate the desired face count for the progressive mesh. The ratio interpolates
between the minimum and maximum number of faces for the mesh. We then set the mesh LOD with a
call to the CTriMesh::SetNumFaces.

 for (i = 0; i < m_nObjectCount; ++i)
 {
 CTriMesh * pMesh = m_pObject[i]->m_pMesh;

 // Calculate LOD ratio
 float Ratio = CalculateLODRatio(Camera, m_pObject[i]->m_mtxWorld);

 // Calculate the number of faces (simple linear interpolation)
 ULONG FaceCount = pMesh->GetMinFaces() +
 (ULONG)((float)(pMesh->GetMaxFaces()–pMesh->GetMinFaces()) * Ratio);

 // Set the LOD's number of faces
 pMesh->SetNumFaces(FaceCount);

 // Setup the per-mesh / object details
 m_pD3DDevice->SetTransform(D3DTS_WORLD, &m_pObject[i]->m_mtxWorld);
 m_pD3DDevice->SetFVF(pMesh->GetFVF());

 // Loop through each scene owned attribute
 for (j = 0; j < m_nAttribCount; j++)
 {
 // Retrieve indices
 MaterialIndex = m_pAttribCombo[j].MaterialIndex;
 TextureIndex = m_pAttribCombo[j].TextureIndex;

 // Set the states
 if (MaterialIndex >= 0)
 m_pD3DDevice->SetMaterial(&m_pMaterialList[MaterialIndex]);
 else
 m_pD3DDevice->SetMaterial(&m_DefaultMaterial);

 if (TextureIndex >= 0)
 m_pD3DDevice->SetTexture(0, m_pTextureList[TextureIndex]->Texture);
 else
 m_pD3DDevice->SetTexture(0, NULL);

 // Render all faces with this attribute ID
 pMesh->DrawSubset(j);

 } // Next Attribute

 // Increase tri-rendering count
 m_nTrisRendered += pMesh->GetNumFaces();

 } // Next Object

Notice that while the progressive mesh provided by D3DX is a view independent progressive mesh, we
calculate the LOD based on view dependant information. This is a common strategy, but not the only
way to do it. You might instead enable a menu option for reducing/increasing LOD. Perhaps certain
meshes are considered more important than others and the lower priority meshes can be simplified. The

 106

bottom line is that how you choose to modify LOD is up to you. Here we have implemented a distance
based approach simply to show how the CTriMesh in progressive mesh mode can be used by an
application.

We now have a CTriMesh class that is much more than a simple wrapper. Indeed, it is more like a
complete mesh toolkit handling resource management, standard and progressive meshing techniques,
optimization and cloning from standard to progressive meshes and vice versa and finally, automated or
scene handled rendering strategies are exposed to the application. This functionality will serve us well in
future applications as we move forward in the course.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

