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Introduction 

 
In this lesson we will continue to add to the lab project implemented in the previous lesson (lab projects 
16.2 and 16.3) to facilitate the calculation and rendering of geometry using potential visibility sets. It is 
imperative that you have read the accompanying text book before continuing with this work book. PVS 
and portal generation theory will not be discussed in this work book as its intention is to focus on the 
implementation of these processes into our compiler tool. It is expected that have read the text book and 
fully understand the theory and placeholder code described there. 
 
In lab project 17.1 we will evolve the development time compiler tool initially implemented in lab 
project 16.2 by adding two new processing modules to it that collectively make PVS calculation for the 
input geometry set possible. In addition to the hidden surface removal, BSP leaf tree compile and T-
junction repair modules added to our tool in the previous lesson, we will now add a portal generation 
processing module and a PVS calculation processing module. This will complete the construction of our 
compiler tool allowing it to compile and save geometry out to an IWF file along with its leaf based PVS 
data. 
 
Lab project 17.2 will involve a very minor evolution from lab project 16.3 requiring only a few lines of 
code to be changed in order for it to render geometry using a PVS. As you have no doubt guessed, this 
lab project (just like 16.3) is being used to represent the run-time component demonstrating how the pre-
calculated PVS data can be loaded from file and rendered efficiently by a rendering engine. 
  
 

Lab Project 17.1:  Adding a PVS Calculator to the BSP 
Compiler 
 

In the first implementation of our BSP compiler tool in the previous chapter, we saw how the compiler 
itself was constructed as a series of separate processes that were glued together by the CCompiler class. 
The CCompiler class itself had no idea how to compile a BSP tree, perform HSR or remove T-Junctions 
from compiled geometry but did know the order in which these processes had to be carried out. The 
CCompiler class itself had the simple task of loading the geometry from an IWF file and passing this 
data to the individual processes in a very specified order. The various processes were all implemented in 
their own classes such as CProcessHSR, CProcessTJR and CBSPTree and as such, as long as 
CCompiler had knowledge of these objects it could invoke their ::Process methods to instruct them to 
perform their specific tasks on the data set. With the exception of the application’s main function having 
to initially inform the CCompiler object of the IWF file that was to be loaded, all it had to do was issue a 
call to the CCompiler::CompilerScene function to set this chain of events in motion. When this function 
returned program flow back to the application’s main function, the CCompiler class had all the 
information it needed stored in its compiled BSP leaf tree. The application would finally issue a call to 
the CCompiler::SaveScene method which would take the information stored in the BSP tree and save it 
out to file. 
 
The CCompiler::CompileScene function was essentially nothing more than a series of calls to functions 
that invoked the various processes. We saw that it would first invoke the CProcessHSR module to 
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perform hidden surface removal on the data set in an attempt to remove hidden surfaces and any illegal 
geometry that may exist in the data set. After this process returned and had performed its task, the 
CBSPTree module would be invoked to compile the leaf BSP tree. After the BSP tree had been 
compiled and program flow had once again returned back to the CCompiler::CompileScene method, the 
next and final module to be invoked was CProcessTJR which would iterate through the polygons in the 
compiled BSP tree and would fix any T-Junctions that were found to exist. This would involve T-
Junctions that were either introduced via the myriad of clipping operations that were performed via BSP 
tree construction or that existed in the original loaded dataset.   
 
With the need to now introduce two new processes into the compiler, the CProcessPRT and 
CProcessPVS modules will be introduced in this lesson and added to the list of processes the compiler 
must perform. These processes will handle the generation of portals for the data set and the calculation 
of its leaf based PVS respectively. The CCompiler class will need to be updated to be aware of these 
new modules and provide a means for storing and passing the compilation options for these modules 
into the modules themselves.  
 
Because of the modular design of the compiler, the additions to the CCompiler class will be extremely 
light. The CCompiler::CompileScene method will be updated to invoke additional processes. The order 
of scene compilation will now be as follows:- 
 

1. Load in the IWF data from file 
2. Perform ‘Hidden Surface Removal’ on loaded geometry to removal illegal surface fragments 
3. Compile BSP leaf tree 
4. Generate portals for compiled tree 
5. Calculate PVS for BSP tree using portals generated in step 4 
6. Perform T-Junction repair on final BSP tree geometry 
7. Construct mesh from BSP geometry and save to file along with PVS and portal Data 

 
Steps 4 and 5 in the above list are clearly the additions to lab project 16.2 and will be the focus of this 
work book. These processes will be wrapped in the CProcessPRT (PRT is short for Portal) and 
CProcessPVS classes respectively. 
 
Step 7 is not actually invoked by the CCompiler::CompileScene method but is activated by the 
application’s main function called the CCompiler::SaveScene method. This function is clearly not a new 
function and its code is actually unchanged from the previous lesson. However, you will recall that this 
simple function uses our custom CFileIWF class to perform its IWF file loading and saving. It is the 
code to this class (in particular its WriteTree method) which has been modified so that it now knows 
how to write out the additional PVS and portal information that will be stored in the tree. 
 

Note: Although there is no need to save the portals out to file it can sometimes be useful to have them 
around. You can decide whether you will need them or not and alter the saving code accordingly.  

 
Finally, before we start looking at the code to the new classes and the modifications to previously 
existing classes, it should be noted that the structures of our CBSPTree class will need to be modified to 
store both portal information and PVS data. Remember from the text book that all this information needs 
to be stored in the BSP tree. That is, we need the BSP tree to maintain a list of all the portals that were 
generated by the portal generation process. Furthermore, we need each of these portals to store in which 
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leaves they were found to reside. We also need each leaf in the BSP tree (each CBSPLeaf structure) to 
store an array of portal indices into the tree’s portal array describing exactly which portals were found to 
reside in that leaf. With respect the calculation of the PVS set, the CBSPTree class must also have a 
place to store the compiled PVS data (the compressed visibility bit set for each leaf in the tree) and each 
leaf in the tree must be modified to also store a PVS index. The leaf’s PVS index will describe the 
location in the tree’s main PVS array where its visibility information will begin. You are reminded that 
after the PVS has been calculated, the visibility information for every leaf in the tree will be stored in 
this one master PVS data array which is why each leaf needs to know where within that array its 
visibility information is located.  
 
We will start our discussion of the lab project 17.1 source code by examining the changes to the top 
level object that binds everything together, the CCompiler class. 
 
 

The CCompiler Class - Updated 
 
The CCompiler class has changed very little from its initial conception in lab project 16.2. The complete 
class declaration is shown below with any new members highlighted in bold. Remembering that the 
CCompiler class stores a set of compilation options for each process that it invokes, we can see that it 
now has two new member variables PRTOPTIONS and PVSOPTIONS. These are structures that 
contain the compilation options for the portal generator module and the PVS calculator module 
respectively. Notice, how two new methods have also been added called PerformPRT and PerformPVS. 
These are the methods called from the CCompiler::CompileScene method to invoke the portal 
generation and PVS calculation modules. This is not a new concept to us as we discussed how each 
process invoked by the compiler has a matching member function that performs this task (such as 
PerformHSR and PerformTJR etc).  
 
Excerpt from CCompiler.h 
class CCompiler 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
             CCompiler(); 
    virtual ~CCompiler(); 
 
     
    // Public Functions for This Class. 
    bool            CompileScene     ( ); 
    void            Release          ( ); 
    void            SetFile          ( LPCTSTR FileName ); 
    void            SetOptions       ( UINT Process, const LPVOID Options ); 
    void            GetOptions       ( UINT Process, LPVOID Options ) const; 
    void            SetLogger        ( ILogger * pLogger ) { m_pLogger = pLogger; } 
    CBSPTree       *GetBSPTree       ( ) const { return m_pBSPTree;   } 
    bool            SaveScene        ( LPCTSTR FileName ); 
     
    void            PauseCompiler    ( ); 
    void            ResumeCompiler   ( ); 
    void            StopCompiler     ( ); 
    bool            TestCompilerState( ); 
 
    COMPILESTATUS   GetCompileStatus ( ) const { return m_Status; } 
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    void            SetCompileStatus ( COMPILESTATUS Status ) { m_Status = Status; } 
     
 
     
    // Public Variables for This Class. 
    vectorMesh      m_vpMeshList;       // A list of all meshes loaded. 
    vectorTexture   m_vpTextureList;    // A list of all textures loaded. 
    vectorMaterial  m_vpMaterialList;   // A list of all materials loaded. 
    vectorEntity    m_vpEntityList;     // A list of all entities loaded. 
    vectorShader    m_vpShaderList;     // A list of all shaders loaded. 
 
private: 
     
    // Private Functions for This Class. 
    bool            PerformHSR( );      // Hidden Surface Removal 
    bool            PerformBSP( );      // Binary Space Partition Compilation 
 
    bool            PerformPRT( );      // Portal Compilation 
    bool            PerformPVS( );      // Potential Visibility Set Compilation 
 
    bool            PerformTJR( );      // T-Junction Repair 
 
     
    // Private Variables for This Class. 
    HSROPTIONS      m_OptionsHSR;       // Hidden Surface Removal Options 
    BSPOPTIONS      m_OptionsBSP;       // BSP Compilation Options 
 
    PRTOPTIONS      m_OptionsPRT;       // Portal Compilation Options 
    PVSOPTIONS      m_OptionsPVS;       // PVS Compilation Options 
 
    TJROPTIONS      m_OptionsTJR;       // T-Junction Repair Options 
     
    ILogger        *m_pLogger;          // Logging interface used to log progress etc. 
    LPTSTR          m_strFileName;      // The file used for compilation 
    COMPILESTATUS   m_Status;           // The current status of the compile run 
    ULONG           m_CurrentLog;       // Current logging channel for messages. 
 
    CBSPTree       *m_pBSPTree;         // Our compiled BSP Tree. 
}; 

 
We will see later that the portal processing module has no real options that influence the way in which 
the portals are compiled. Therefore, the PRTOPTIONS structure contains a single Boolean which 
describes whether the user would like the compiler to perform the portal generation process. The 
structure is defined in CompilerTypes.h and is shown below. 
 
Excerpt from CompilerTypes.h 
typedef struct _PRTOPTIONS {            // Portal Compilation Options 
    bool            Enabled;            // Process Enabled ? 
} PRTOPTIONS; 
 

If the Enabled Boolean is set to false in the CCompiler::m_OptionsPRT structure then the compiler will 
not call the CCompiler::PerformPRT method and the portal generation module will not be invoked. 
 
The PVSOPTIONS structure has three members which will influence the way in which the PVS 
calculator will generate its final PVS data. The PVSOPTIONS structure is also declared in the file 
CompilerType.h and is shown below. 
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Excerpt from CompilerTypes.h 
typedef struct _PVSOPTIONS {            // PVS Compilation Options 
    bool            Enabled;            // Process Enabled ? 
    bool            FullCompile;        // Perform Full PVS Compile 
    unsigned char   ClipTestCount;      // Number of portal clip tests to perform 
} PVSOPTIONS; 
 

The ways in which these members influence the PVS calculator module are described below. 
 
bool       Enabled; 
This member is no stranger to us as the options structure for each process has this member. In the case 
of this structure, it describes to the compiler whether PVS compilation should be invoked when 
compiling the data. It is possible that you might just want to compile a regular leaf tree and may not be 
interested in PVS calculation. When this is the case, this member can be set to false.  
 

Note: If the portal generation module has been disabled then the PVS calculator will not be invoked even if 
this member has been set to true. The PVS calculator absolutely needs the portal information to have been 
generated and stored in the BSP tree in order to perform its task. Enabling the PVS process without 
enabling the portal generation process will simply cause the PVS module to return prematurely as soon as it 
is invoked. That is, the PVS module will exit immediately when it discovers there are no portals for it to 
work with. 

 
bool       FullCompile; 
This is a very handy option to use when you are developing your tool and do not want to wait potentially 
hours for your level to compile each time you wish to run your code. You will recall from the text book 
that the first task performed in calculating the PVS is to generate a very course visibility set for each 
portal based on nothing more than portal orientations to one another. A temporary list is built for each 
portal describing which portals could possibly have a flow between them. This is then use to perform a 
flood fill through the leaves of the tree from the portal currently being processed to very quickly retrieve 
an array of leaf visibility bits for that portal. Any bits set to zero in this ‘Possible Visibility Array’ 
represent leaves that can not possibly be seen from the portal in question. This is done for each portal so 
that prior to the main clipping process beginning, we have a very rough guide as to which leaves may be 
visible from a given portal. The main clipping process simply refines this leaf visibility information for 
each portal by performing anti-penumbra clipping and setting other leaves in the ‘Possible Visibility Set’ 
to zero as they are found to exist outside any valid anti-penumbra originating at the current source 
portal. The result at the end of the PVS process is the ‘Potential Visibility Array’ for each portal. This is 
a much refined version of the ‘Possible Visibility Array’ that was initially calculated at the start of the 
process and will typically contain much fewer leaves in its visibility set. 
 
Having said all this, it is the calculation of the ‘Potential Visibility Array’ for each portal that takes so 
much time due to the exceptionally recursive nature of the procedure and the grotesque amount of 
clipping that will need to be done to the anti-penumbra planes. It is this process that makes sure that we 
have the tightest potential visibility set possible. However, this process takes hours to complete on 
complex data sets and you certainly don’t always need to have a full PVS compile performed when 
testing your application or level geometry. Imagine for example that your artist had just added a new 
asset to the scene and wanted to see it being rendered in-game. The entire scene would have to be 
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compiled again forcing the development team to wait several hours before the new level was compiled 
and able to be loaded into the PVS aware game render engine.  
 
Often, at the development time we are not nearly so picky when testing things such as new assets or new 
light placement within the scene that our game is actually running with the most optimal PVS data set 
and would gladly trade off the hours of compile time for a PVS data set that compiles in seconds even if 
the resulting PVS set generated halved the frame rate of the application. After all, you can save the full-
blown PVS compile for when the game is about to burned and shipped.  
 
The calculation of the ‘Possible Visibility Array’ for each portal is compiled just prior to the main 
clipping process to aid in the speed up of that process. This array can be thought of as a very over 
generous visibility set for each portal. As mentioned, the only thing taken into consideration when 
calculating this array for each portal is the orientations of the portals with respect to one another. No 
occlusion is considered. However, this data is still in PVS format and can be used as the PVS data 
instead of calculating the main data set via the core clipping procedure. It takes seconds/minutes to 
compile instead of hours and is ideal for performing a quick PVS build in order to test some other assets 
in your game engine. Therefore, if this option is not set to true, a full compile will not be performed and 
instead, the PVS data calculated will contain the leaf visibility information returned from the simple 
flood fill for each portal. The main anti-penumbra clipping procedure will not have been invoked to 
further refine this set. If this option is set to true, the full blown calculator will be invoked and a tight 
potential visibility set will be laboriously calculated.  
 
 
unsigned char   ClipTestCount; 
In the text book we examine how when performing the anti-penumbra clipping process, we could further 
refine the amount of geometry that made it into the anti-penumbra’s volume by building it four times. 
This would allow us to trim the size of the source and generation portals that got passed into the next 
recursion by making sure we have the tightest clip planes possible. 
 
In the first step the anti-penumbra planes are built from the source portals vertices to the target portal 
edges and the generator portal is clipped to it. In the second step we would then reverse the order by 
building an anti-penumbra from each vertex in the target portal to each edge in the source portal. Once 
again the generator portal would be clipped to these planes. We showed in the accompanying text book 
that it was entirely possible for tighter planes to be generated from target to source instead of from 
source to target and vice versa. Therefore, we build an anti-penumbra in both directions to make sure we 
clip the maximum possible from the generator portal and reduce its size as much as possible for the next 
recursion. Obviously, if the generator portal does not survive the any of the two clipping stages 
described above, the portal is considered not to be visible from the current source portal and we do not 
recur through it into the neighbor leaf. 
 
In the third test we build an anti-penumbra from what is left of the generator portal and the target portal 
to create an anti-penumbra with which we can clip the source portal too. We also reverse the plane order 
and clip the source portal to the anti-penumbra planes generated from the target to the generator portal in 
a 4th clip test. Once again, if at any point the source portal is entirely clipped away it means that the 
generator portal can not see it and therefore, no line of sight can possibly exist from the source portal 
through the generator portal. The temporarily clipped source portal is also passed into the next recursion 
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with the clipped generator portal so that as we step through the process for a given source portal, the 
source, target and generator portals becomes smaller and smaller allowing us to generate smaller and 
tighter anti-penumbras in future recursions and hopefully reject more generator leaves from being 
recurred into and added to the source portal visibility set. 
 
So we have seen that if all these clipping operations are to be performed, we essentially have to build 
four anti-penumbras and clip four portals to those anti-penumbras for each generator portal that we visit 
during the core recursive clipping process. As this clipping is obviously a laborious process to perform 
each time, the number of these clips that we perform can greatly influence the speed of PVS calculation. 
When generating the commercial data set it is recommended that you activate all four clipping stages to 
get the tightest possible PVS data set generated. However, during development tests and debug runs you 
can perform fewer clip tests. This will speed up PVS compile time at the cost of a more generous PVS in 
the typical case. 
 
While having an option that allows us to toggle the number of clips performed from between 1 to 4 may 
seem like a trivial speed up option, it is not the case. Each anti-penumbra test performed means first 
constructing the anti-penumbra. This involves two loops that iterate through each vertex in the source 
portal and each edge in the target portal. A plane in constructed for each combination and the source and 
target portals are classified against it to determine if it is a separating plane. Two more loops enter the 
fray here as we have to test each vertex in each of the portals against the plane to determine its 
separation status. Only if the plane has the source and target portal in opposite half spaces will the plane 
be added to the anti-penumbras clip list. So as we can see, just the generation of the anti-penumbra 
generated four nested loops. Then of course, we have to loop through each anti-penumbra plane clipping 
the generator portal to each one which can involve memory allocations and de-allocations when the 
portal gets clipped. That is an awful lot of work to perform four times for each generator portal that we 
visit when calculating the visibility set for each source portal. 
 
The ClipTestCount option of this structure can be set from 1 to 4 to determine how many of these clips 
we would like to perform at each generator portal. Performing only one clip will generate the PVS data 
array much faster but will typically have a larger number of leaves flagged as visible in each leaf’s 
potential visibility set.  
 
So we have seen that these two new CCompiler member structures contain compilation options for the 
portal generation process and the PVS process. Although we will set the compile options for each 
process in the CCompiler constructor, the options for each process can also be set by the application via 
the CCompiler::SetOptions function. We will look at the modified code to this method in a moment. 
 
Let us now examine the changes to the CCompiler source code staring with the constructor. 
 
 

Constructor - CCompiler 
 

The constructor of CCompiler is used to set up the default compile options for each of its modules. The 
compile options for every module can be altered and retrieved by the application once the CCompiler 
object has been created via its SetOptions and GetOptions methods respectively. 
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We saw in the previous lab project how the default options were configured for the hidden surface 
removal, BSP compile and T-Junction repair modules in this constructor. Now we have added code to 
also set the default compile options for the portal generation and PVS calculator modules. 
 
 
CCompiler::CCompiler() 
{ 
    // Set up default HSR options 
    m_OptionsHSR.Enabled            = true; 
     
    // Set up default BSP options 
    m_OptionsBSP.Enabled            = true; 
    m_OptionsBSP.TreeType           = BSP_TYPE_SPLIT; 
    m_OptionsBSP.SplitHeuristic     = 3.0f; 
    m_OptionsBSP.SplitterSample     = 60; 
    m_OptionsBSP.RemoveBackLeaves   = true; 
    m_OptionsBSP.AddBoundingPolys   = false; 
 
    // Set up default Portal Compile Options 
    m_OptionsPRT.Enabled            = true; 
     
    // Set up default PVS Options 
    m_OptionsPVS.Enabled            = true; 
    m_OptionsPVS.FullCompile        = true; 
    m_OptionsPVS.ClipTestCount      = 2; 
 
    // Set up default TJR Options 
    m_OptionsTJR.Enabled            = true; 
 
    // Reset Vars 
    m_strFileName = NULL; 
    m_pBSPTree    = NULL; 
    m_pLogger     = NULL; 
    m_Status      = CS_IDLE; 
     
} 
 
 

As you can see, the hidden surface removal module has a single compiler option which dictates whether 
it should be invoked or not. By default, all modules are enabled. As mentioned though, the application 
can change these settings via CCompiler methods prior to calling the CCompiler::CompileScene 
method.  
 
The default parameters for the BSP tree build are also unchanged. We enable the process and specify 
that we would like to build a tree in which the resulting polygons are split/clipped to the leaf nodes in 
which they reside. We set the splitter choosing heuristic to 3.0 so that we weight the reduction of splits 
as three times more important than tree balance during splitter selection. We also set the splitter sample 
to 60 so that in order to speed up BSP tree compile, only the first 60 polygons in the list that make it into 
each node are tested as split plane candidates. We also specify that we would like any geometry that 
makes it into back leaves (such as illegal geometry fragments causes by floating polygon rounding 
errors during the clipping process) to be deleted so that accurate solid/empty space information can be 
maintained. By default, we also specify that we would not like the BSP compiler to seal our level by 
surrounding it in an inward facing cube prior to being compiled. 
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The portal generation options structure has only a single Boolean member describing whether or not this 
process should be enabled. As mentioned, this is set to true because all modules are enabled by default. 
The same is true for the T Junction removal options structure. 
 
By default we also enable the PVS calculator and set it to perform a full compile (instead of a quick 
portal flood) to generate its PVS data. We also set the number of clips to perform at each generator 
portal to 2 by default. The minimum is one and the maximum is four 
 
 
 

SetOptions - CCompiler 
 
The CCompiler::SetOptions function is also not a new function but has now been modified to allow the 
application to set the compilation options of the two new processes. You will recall that this function 
accepted as its first parameter the numerical ID of the process which is to have its properties set. The 
numerical IDs are defined in the file Common.h. We have now added two more numerical defines called 
PROCESS_PRT and PROCESS_PVS which are used to signify the portal generation module and the 
PVS calculation modules respectively. Shown below is our current list of numerical defines. 
 

Excerpt from Common.h 
#define PROCESS_HSR         0   // Hidden Surface Removal 
#define PROCESS_BSP         2   // Binary Space Partition 
#define PROCESS_PRT         3   // Portals 
#define PROCESS_PVS         4   // Potential Visibility Set 
#define PROCESS_TJR         5   // T-Junction Repair 
 

The second parameter to the CCompiler::SetOptions function is a void pointer which the application can 
use to pass the relevant options structure for the process it wishes to alter the compilation parameters for. 
Here is the modified version of the function. 
 
void CCompiler::SetOptions( UINT Process, const LPVOID Options ) 
{ 
    switch (Process) 
    { 
        case PROCESS_HSR: 
            m_OptionsHSR = *((HSROPTIONS*)Options); 
            break; 
 
 
        case PROCESS_BSP: 
            m_OptionsBSP = *((BSPOPTIONS*)Options); 
            break; 
 
        case PROCESS_PRT: 
            m_OptionsPRT = *((PRTOPTIONS*)Options); 
            break; 
 
        case PROCESS_PVS: 
            m_OptionsPVS = *((PVSOPTIONS*)Options); 
            break; 
 
        case PROCESS_TJR: 
            m_OptionsTJR = *((TJROPTIONS*)Options); 
            break; 
 
    } // End Switch 
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} 
 

As you can see, two more case statements have been added to cast the void pointer to either a 
PRTOPTIONS structure or a PVSOPTIONS structure based on the passed process ID.  In each case we 
copy the contents of the passed structure into the relevant member structure to set the compile options 
for the passed process. For example, the application could set the options for the PVS process to compile 
only a 1 clip anti-penumbra PVS by using the following code. 
 
CCompiler Compiler; 
CompilerSetFile(“SomeExampleFile.iwf“) 
 
PVSOPTIONS pvsOptions; 
pvsOptions.Enabled   =  true; 
pvsOptions.FullCompile  = true; 
pvsOptions.ClipTestCount = 1; 
 
Compiler.SetOptions( PROCESS_PVS , (void*) &pvsOptions ); 
 
… Set other process options here … 
 
Compiler.CompileScene (); 
 
This is just a simple example but shows how an application using the compiler can configure the 
compile options of the various processes prior to calling the CompileScene method. 
 
 
 

GetOptions - CCompiler 
 

As one might expect, the CCompiler class also exposes a member function to allow the application to 
fetch the compiler options for a given process. The function takes two parameters with the first being the 
numerical index of the process the application would like to retrieve the compile time options for. The 
second parameter is a void pointer to the options structure for the applicable process that will be cast to 
the correct type inside the function and filled with the compiler settings for that process as shown below. 
 
 
void CCompiler::GetOptions( UINT Process, LPVOID Options ) const 
{ 
    switch (Process) 
    { 
        case PROCESS_HSR: 
            *((HSROPTIONS*)Options) = m_OptionsHSR; 
            break; 
 
         
 
        case PROCESS_BSP: 
            *((BSPOPTIONS*)Options) = m_OptionsBSP; 
            break; 
 
        case PROCESS_PRT: 
            *((PRTOPTIONS*)Options) = m_OptionsPRT; 
            break; 
 
        case PROCESS_PVS: 
            *((PVSOPTIONS*)Options) = m_OptionsPVS; 
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            break; 
 
        case PROCESS_TJR: 
            *((TJROPTIONS*)Options) = m_OptionsTJR; 
            break; 
 
    } // End Switch 
} 
 

Once again, this is not a new method to us but has had two new cases added to the switch statement that 
allow us to retrieve the compiler options for the portal generation and PVS generation modules. 
 
 
 

CompileScene - CCompiler 
 

As we discussed in the previous lesson, it is the CCompiler::CompileScene method that glues the 
various processes together into a geometry compilation pipeline. In the previous lesson, we saw that this 
method was responsible for instantiating a CFileIWF object and using it to import the IWF information 
into its internal mesh, material, texture and entity arrays. This data is then copied from the CFileIWF 
data vectors into the compiler’s own vectors where data that is not related to the BSP compile process 
(such as entities and materials for example) can be stored and then written back out to the resulting 
compiled IWF file. None of this is new and is shown below. 
 
bool CCompiler::CompileScene( ) 
{ 
    CFileIWF IWFFile; 
 
    // Validate Data 
    if (!m_strFileName) return false; 
 
    // Retrieve the filename portion only of the string 
    LPTSTR FileName = NULL; 
    FileName = _tcsrchr( m_strFileName, _T('\\') ); 
    if (!FileName) FileName = _tcsrchr( m_strFileName, _T('/') ); 
    if (!FileName) FileName = m_strFileName; 
    if (FileName[0] == _T('\\') || FileName[0] == _T('/')) FileName++; 
 
    try 
    { 
        // We Are starting the process 
        m_Status = CS_INPROGRESS; 
 
        // Load the specified file 
        IWFFile.Load( m_strFileName ); 
 
        // Obtain ownership of the objects loaded 
        m_vpMeshList     = IWFFile.m_vpMeshList; 
        m_vpMaterialList = IWFFile.m_vpMaterialList; 
        m_vpTextureList  = IWFFile.m_vpTextureList; 
        m_vpEntityList   = IWFFile.m_vpEntityList; 
        m_vpShaderList   = IWFFile.m_vpShaderList; 
 
        // Clear out the IWF's object vectors (don't destroy) 
        IWFFile.m_vpMeshList.clear(); 
        IWFFile.m_vpMaterialList.clear(); 
        IWFFile.m_vpTextureList.clear(); 
        IWFFile.m_vpEntityList.clear(); 
        IWFFile.m_vpShaderList.clear(); 
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        // Write load success 
        if ( m_pLogger )  
        { 
            m_pLogger->LogWrite( LOG_GENERAL,  
                                 0,  
                                 true,  
                                 _T("Successfully loaded geometry from file '%s'"),  
                                 FileName ); 
         
        } // End if Logger 
 
 
    } // End try Block 
 
    catch (HRESULT & e) 
    { 
        // Write Load Failure 
        if ( m_pLogger )  
        { 
            m_pLogger->LogWrite( LOG_GENERAL,  
                        LOGF_ERROR,  
                        true,  
                       _T("Failed to load geometry from file '%s' with error code '0x%x'"), 
                       FileName, e ); 
 
        } // End if Logger 
 
        IWFFile.ClearObjects(); 
        Release(); 
        return false; 
 
    } // End Catch Block 
    catch (...) 
    { 
        // Write Load Failure 
        if ( m_pLogger )  
        { 
            m_pLogger->LogWrite( LOG_GENERAL,  
                                 LOGF_ERROR,  
                                 true,  
                                 _T("Failed to load geometry from file '%s'"),  
                                 FileName ); 
         
        } // End if Logger 
 
        IWFFile.ClearObjects(); 
        Release(); 
        return false; 
     
    } // End Catch Block 

 
At this point the CFileIWF file data has all been copied into the compiler’s internal vectors so the 
CFileIWF data objects can be released as they are no longer needed. 
 
Now we will start the actual compilation process by invoking the various modules one at a time and 
passing the results of each module onto the next in the chain. As we saw in the previous lesson, the 
hidden surface removal module is invoked first to remove any illegal geometry and then the BSP leaf 
tree compiler is invoked to compile the BSP tree. In the previous lesson, the next and final step prior to 
saving the compiled data out to disk was to perform T-Junction repair on the final compiled polygon 
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data. However, we now have to processes that must be inserted after the BSP compile process and 
before the T-Junction repair process. That is, after the BSP tree has been compiled we will then invoke 
the portal generator to generate the portals for the compiled geometry. These portals will be stored in the 
BSP tree. The next module to be invoked will be the PVS calculator which will use the portals stored in 
the tree to generate the final compressed PVS for the BSP tree. This final data will also be stored in the 
BSP tree in the form of a single compressed data array. Each leaf in the tree will also contain a 
numerical index into this master array describing where in the array its PVS data begins. 
 
Providing a logging object has been assigned to the CCompiler class we first output to the general 
channel that the compile process is about to begin. The first parameter to the LogWrite method specifies 
that this message should be output to the general channel and the second parameter describes this 
message as being a normal status message so that the default ink color is used for the text (only when 
being used with a GUI logger). The third parameter instructs the logger that this is the start of a new 
message so that prior to being printed the logger inserts a line feed to move the text output cursor to the 
start of a new line.  
 
    // Write Log Info 
    if ( m_pLogger )  
    { 
        m_pLogger->LogWrite(LOG_GENERAL,  
                            0,  
                            true,  
                            _T("Beginning compilation run \t\t\t- ") ); 
 
    } // End if Logger 
 

 
In the next section we step through each possible module that can be performed and test its options 
structure to test that its Enabled Boolean is set to true. If it is then this means the application would like 
the compiler to perform that process (assuming the compiler has not been placed into a state where the 
user has cancelled the compile). As you can see, we first call the CCompiler::PerformHSR function 
which will invoke the hidden surface removal module and instruct it to removal illegal geometry from 
the compiler’s data set. The second process to be performed is the BSP compiler which is activated via a 
call to the CCompiler::PerformBSP method. Both of these methods were discussed in the previous 
lesson. 
 
    // Start compiling by removing all hidden surfaces 
    m_CurrentLog = LOG_HSR; 
    if ( m_OptionsHSR.Enabled && m_Status != CS_CANCELLED) PerformHSR(); 
     
    // Build the BSP Tree if requested 
    m_CurrentLog = LOG_BSP; 
    if ( m_OptionsBSP.Enabled && m_Status != CS_CANCELLED) PerformBSP(); 

     
Out of the final three modules that are activated (shown below), the first two are new to this application 
and show two new methods of CCompiler which will be used to invoke the portal generation processor 
and the PVS calculator modules respectively. The third and final process to be activated is the T-
Junction repair module via a call to the CCompiler::PerformTJR method.  
 
 
    // Build the portals if requested 
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    m_CurrentLog = LOG_PRT; 
    if ( m_OptionsPRT.Enabled && m_Status != CS_CANCELLED) PerformPRT(); 
 

// Build the PVS if requested     
    m_CurrentLog = LOG_PVS; 
    if ( m_OptionsPVS.Enabled && m_Status != CS_CANCELLED) PerformPVS(); 
 
    // Repair any T-Juncs if requested 
    m_CurrentLog = LOG_TJR; 
    if ( m_OptionsTJR.Enabled && m_Status != CS_CANCELLED) PerformTJR(); 
     
    // Clean up if required 
    if ( m_Status == CS_CANCELLED ) Release(); 
 
    // Processing Run Completed 
    m_Status = CS_IDLE; 
 
    // Write end of compilation message (We use warning just to make it blue ;) 
    if ( m_pLogger ) m_pLogger->LogWrite( LOG_GENERAL,  
                                          LOGF_WARNING | LOGF_ITALIC,                                   
                                          false,  
                                          _T("Success") ); 
 
    // Success! 
    return true; 
} 
 

As you can see, when the T-Junction removal method returns, the level data will have been compiled 
and all that is left to do is output the success message (providing the compiler was not cancelled mid 
way through the chain of events). 
 

The two new sections of code are highlighted in bold above and show the calls to the PerformPRT and 
PerformPVS methods. These are simple methods that invoke the new modules we will develop in this 
work book. The code to the PerformPRT method is discussed next.  
 
 

PerformPRT - CCompiler 
 

The CCompiler::PerformPRT method is called by the CCompiler::CompileScene method after the BSP 
tree has been compiled. Its task is to initialize and invoke the portal generation module. Although we 
have not yet discussed the code to the CProcessPRT class (the portal generation module), we can see in 
the following code how the module is initialized and used. You will notice that this module shares the 
same interface methods as the other modules making the way in which the compiler interacts with each 
module consistent for the most part. Each module for example has methods that allow us to set its 
options, set the logging class to be used and to pass a pointer to the parent CCompiler object that is 
invoking the module. The ProcessPRT module is only used during the portal generation process and 
once its Process method has returned, the portal information will all be stored in the BSP tree. Therefore, 
the CProcessPRT object can be instantiated on the stack as shown in the following code.  
 
bool CCompiler::PerformPRT() 
{ 
    // One time compile process 
    CProcessPRT ProcessPRT; 
 
    // Set our process options 
    ProcessPRT.SetOptions( m_OptionsPRT ); 
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    ProcessPRT.SetLogger( m_pLogger ); 
    ProcessPRT.SetParent( this ); 

 
Now that we have allowed the CProcessPRT object to store a pointer to the logger class our application 
is using, we will now write some information to the logger stating that the portal generation module is 
about to start. We clear the logger’s channel that has been reserved for portal generation output 
(LOG_PRT)  and output some copyright information and information instructing the user that the portal 
compilation process is about to begin.  
 
    // Write Log Information 
    if ( m_pLogger ) 
    { 
        m_pLogger->Clear( LOG_PRT ); 
        m_pLogger->LogWrite( LOG_PRT,  
                             LOGF_WARNING | LOGF_BOLD  ,  
                             false,  
                              _T("\r\nPortal Processor v1.0.0\r\n")); 
 
        m_pLogger->LogWrite( LOG_PRT,  
                             LOGF_WARNING | LOGF_ITALIC,  
                             false,  
                             _T("Copyright © 2005 GameInstitute.com.  
                                 All Rights Reserved.\r\n")); 
 
        m_pLogger->LogWrite( LOG_PRT,  
                             0,  
                             true,  
                             _T("Beginning portal compilation process.")); 
 
    } // End if Logger Available 
 

 
As the CProcessPRT object will need access to the BSP tree that it is to generate portals for, its 
‘Process’ method accepts a pointer to a BSP tree as its only parameter.  It is this function that is the top 
level function for the entire portal generation process. That is, when the CProcessPRT::Process function 
returns, every portal will have been created and will be stored in the BSP tree’s portal array. The leaves 
of the BSP tree will also contain portal indices describing which portals they contain and every portal 
will contain a two element leaf array describing the indices of the leaves in which they reside. 
 
Here is the remainder of the function that calls the ‘Process’ method to generate the portals and finally 
outputs a completion method prior to returning. 
 
 
    // Compile the Portal set 
    ProcessPRT.Process( m_pBSPTree ); 
 
    // Write Log Information 
    if ( m_pLogger ) 
    { 
        if ( m_Status != CS_CANCELLED ) 
            m_pLogger->LogWrite( LOG_PRT, 
                                 0,  
                                 true,  
                                 _T("Portal compilation completed successfully.")); 
        else 
            m_pLogger->LogWrite( LOG_PRT, 0, true, _T("Portal compilation cancelled.")); 
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    } // End if Logger Available 
 
    // Success!! 
    return true; 
} 
 

If the process was cancelled for some reason during the portal compile then a cancellation message is 
output to the portal process logging channel instead. 
 
 
 

PerformPVS - CCompiler 
 

This method is almost a duplicate of the previously discussed function with the exception that it 
instantiates and invokes the CProcessPVS module. We will look at the code to the CProcessPVS class 
later in the lesson but for now just know that its Process method will build the master compressed PVS 
data array for the PBS tree.  
 
A CPerformPVS object is instantiated on the stack and the PVS options structure is passed into its 
SetOptions method. We also inform the module of the logging object we are using and pass a pointer to 
the CCompiler object that is invoking the module. We then clear the PVS logging channel and output 
copyright information about the PVS module to that channel. 
 
bool CCompiler::PerformPVS() 
{ 
    // One time compile process 
    CProcessPVS ProcessPVS; 
 
    // Set our processor options 
    ProcessPVS.SetOptions( m_OptionsPVS ); 
    ProcessPVS.SetLogger( m_pLogger ); 
    ProcessPVS.SetParent( this ); 
 
    // Write Log Information 
    if ( m_pLogger ) 
    { 
        m_pLogger->Clear( LOG_PVS ); 
        m_pLogger->LogWrite( LOG_PVS,  
                             LOGF_WARNING | LOGF_BOLD,  
                             false,  
                             _T("\r\nPVS Processor v1.0.0\r\n")); 
 
        m_pLogger->LogWrite( LOG_PVS,  
                             LOGF_WARNING | LOGF_ITALIC,  
                             false,  
                             _T("Copyright © 2005 GameInstitute.com.  
                                 All Rights Reserved.\r\n")); 
 
        m_pLogger->LogWrite( LOG_PVS,  
                             0,  
                             true,  
                             _T("Beginning visibility determination process.")); 
 
    } // End if Logger Available 
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After informing the user that the PVS calculator is beginning its process, we call the 
CProcessPVS::Process method to invoke the top level PVS processing method. When this function 
returns, the passed BSP tree will have had the master PVS data array stored within it and each leaf will 
contain and index into this master array describing where its visibility information begins. 
 
    // Begin the PVS Process 
    ProcessPVS.Process( m_pBSPTree ); 
 
    // Write Log Information 
    if ( m_pLogger ) 
    { 
        if ( m_Status != CS_CANCELLED ) 
            m_pLogger->LogWrite( LOG_PVS,  
                                 0,  
                                 true,  
                                 _T("Visibility determination completed successfully.")); 
        else 
            m_pLogger->LogWrite( LOG_PVS,  
                                   0,  
                                   true,  
                                   _T("Visibility determination cancelled.")); 
 
    } // End if Logger Available 
 
    // Success!! 
    return true; 
 
} 

 
As you can see, after the CProcessPVS::Process method returns, we test the status of the compiler and 
output either a completion message or a cancellation message to the PVS logging channel depending on 
the outcome.  
 
We have now discussed all the code changes to the CCompiler class and as we have seen, the modular 
design of the compiler itself makes adding future modules extremely easy. Of course, most of this work 
book will be dedicated to examining the code to these two new modules (CProcessPRT and 
CProcessPVS) but before we do, we must look at other classes and structures that will need to be 
changed to accommodate the storage of the information these two modules will provide our tree.  
 
In the next section we will examine the changes to the CPolygon class and will examine a new 
CPolygon derived class called CBSPortal. The CBSPPortal object will be used by the CProcessPRT and 
CBSPTree objects to generate and store the portals of the tree respectively. As discussed in the 
accompanying text book, a portal is simply a polygon with some additional information packaged with it 
(such as which leaves in the BSP tree they reside in). 
 
 

The CPolygon Class - Updated 
 

When discussing the generation of portals in the accompanying text book, we learned that the first step 
in generating a portal is to create a large initial polygon on the plane of the node (currently having a 
portal generated for it) that is large enough to at least fill the root node’s bounding box along that plane. 
It was this initial portal that was passed into the BSP tree and clipped to the nodes of the tree so that any 
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portal fragments that existed in solid space were clipped away. The result of this clipping process was a 
portal that described the exact shape and size of the ‘doorway’ between two leaves. 
 
Generating an initial portal on the node plane that was large enough to fill the root node’s bounding box 
was discussed in detail in the text book and requires two inputs, the plane on which the polygon/portal 
should be constructed an a bounding box describing how large it should be on the plane. As it is pretty 
useful in other situations to build a polygon on a certain plane that we know will fill some bounding box, 
we have decided to build this functionality straight into the CPolygon class so that all derived classes 
(including CBSPPortal) expose it. The modified CPolygon declaration is shown below with the new 
method highlighted in bold.  
 

Excerpt from CompilerTypes.h 
class CPolygon 
{ 
public: 
     // Constructors & Destructors 
           CPolygon( ); 
         virtual ~CPolygon( ); 
 
  
 // Public Variables for This Class 
 CVertex     *Vertices;   // Polygon vertices 
 unsigned long   VertexCount;   // Vertices in this poly 
 
  
 // Public Functions for This Class 
        long             AddVertices( unsigned long nVertexCount = 1 ); 
        long             InsertVertex( unsigned long nVertexPos ); 
        void             ReleaseVertices(); 
 
     
 // Public Virtual Functions for This Class 
 virtual HRESULT Split( const CPlane3& Plane,  
                              CPolygon * FrontSplit,  
                              CPolygon * BackSplit,  
                              bool bReturnNoSplit = false ); 
 
       virtual bool    GenerateFromPlane( const CPlane3& Plane,  
                                          const CBounds3& Bounds ); 
 
}; 
 
 

The GenerateFromPlane method accepts two parameters. The first is the plane on which the polygon 
should generate its vertices and the second parameter describes a bounding box which the polygon 
should at least fill (it may be bigger). As the CBSPPortal class used by the portal generator is derived 
from this class it too will expose this method. This means, the portal generator can simply call this 
function to generate the initial portal on the node plane by passing in the node that is currently being 
processed and the bounding box of the root node. This portal can then be passed down the tree and 
clipped at solid leaves. 
 
 

GenerateFromPlane - CPolygon 
 

 19 

 



 

As discussed in the text book, generating a polygon on a plane of a specific size involves first projecting 
the center of the bounding box onto the node plane to calculate the center of the polygon we are 
creating. Projecting the center of the bounding box onto the plane is a simple matter of classifying the 
bounding box center position against the plane to get the distance to the plane from the center point 
along the plane normal. We can then move the bounding box center point along the plane normal to 
position it on the plane. 
 
Figure 17.1 shows the 
center of the bounding box 
labeled CB and shows how 
moving it along the plane 
normal by the distance 
from CB to the plane 
creates the point CP. CP is 
the new center point of our 
polygon and the point from 
which the four vertices of 
the portal quad will be 
placed relative too. 
 

After CP has been 
calculated we have to 
generate the tangent and bi-normal vectors of the plane shown as vectors U and V in figure 17.1.  

 
Figure 17.1 

 
Generating the U and V vectors is simple with the cross product at our disposal. We first find any vector 
which is not identical to the plane normal. This is important because by crossing this vector with the 
normal we will get vector U, a vector that is perpendicular to the plane normal and thus tangent to the 
plane. If the vector we choose to cross with the normal is identical to the normal the two input vectors to 
the cross product will be the same and the resulting vector is undefined. 
 In figure 17.1 the world up vector is used but any vector can be 
used as long as it is not the same as the normal vector. In our 
code we test the world X, Y and Z axis vectors and choose the 
one that is least aligned with the plane normal. This assures that 
our cross product will not have any epsilon issues if the two 
input vectors are nearly equivalent. Once vector U is generated 
we can simply cross it with the plane normal to get vector V. At 
this point, these vectors should be unit length. 
 
Next we get the half length vector of the bounding box by 
subtracting from the maximum box extent vector, the center 
position of the box. We then retrieve the length of this resulting 
half vector. Once we have the length we can use this to scale the U and V tangent vectors so that they 
can be used in combination with the polygon center point to describe the four corner vertex positions if 
the polygon. These four vertices are then generated and stored in the polygons vertex array. 

 
Figure 17.2 

 
Note: It is clear that as this method generates the vertices of the polygon, it should only be called for 
CPolygon’s (and derived objects) which currently contain no vertex data. For example, 
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CPolygon Poly; 
Poly.GenerateFromPlane ( SomePlane , SomeBox); 

 
The code to this method is fairly short and is shown below. We first calculate the center of the polygon 
by calculating the distance from the bounding box center point to the plane and then moving the point 
along the reverse plane normal to locate a point on the plane (CP). 
 
bool CPolygon::GenerateFromPlane( const CPlane3& Plane, const CBounds3& Bounds ) 
{ 
     CVector3 CB, CP, U, V, A; 
 
 // Calculate BBOX Centre Point 
 CB = Bounds.GetCentre(); 
  
        // Calculate the Distance from the centre of the bounding box to the plane 
        float DistanceToPlane = CB.DistanceToPlane( Plane ); 
  
        // Calculate Centre of Plane 
 CP = CB + (Plane.Normal * -DistanceToPlane ); 

 
Next we need to generate the tangent vector and in order to do this we need a vector to cross with the 
plane normal which must not be identical to the plane normal. The vector A is calculated by analyzing 
the plane normal components and generating an axis aligned vector that is least aligned to the normal. 
 
 // Calculate Major Axis Vector 
 A = CVector3(0.0f,0.0f,0.0f); 
  
         if( fabs(Plane.Normal.y) > fabs(Plane.Normal.z) ) { 
  if( fabs(Plane.Normal.z)  < fabs(Plane.Normal.x) ) A.z = 1; else A.x = 1; 
 } else { 
  if (fabs(Plane.Normal.y) <= fabs(Plane.Normal.x) ) A.y = 1; else A.x = 1; 
    } // End if 

 
We then cross vector A with the plane normal to generate vector U and then cross the normal with 
vector U to generate vector V. These vectors are then both normalized. 
 
 // Generate U and V vectors 
     U = A.Cross(Plane.Normal); 
     V = U.Cross(Plane.Normal); 
     U.Normalize(); V.Normalize(); 

 
In the next step we calculate the length of the vector from the center of the bounding box to the box 
corner which describes the furthest the edges of the box could ever be from the polygon. We then scale 
the unit tangent vectors by this amount. 
 
 float Length = (Bounds.Max - CB).Length(); 
 
 // Scale the UV Vectors up by half the BBOX Length 
 U *= Length; V *= Length; 

 
With these two vectors and the polygon center point we can now combine them to generate the position 
vectors of the four vertices of the quad polygon we wish to create on this plane which are stored in a 
temporary 3D vector array called P in the following code. 
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 CVector3 P[4]; 
     P[0] = CP + U - V; // Bottom Right 
     P[1] = CP + U + V; // Top Right 
     P[2] = CP - U + V; // Top Left 
     P[3] = CP - U - V; // Bottom Left 

 
With these corner positions computed we then allocate space in the polygon’s vertex array to store these 
four vertices and then copy them into the vertices one by one. The normal of each vertex is assigned the 
normal of the plane. 
 
     // Allocate new vertices 
     if (AddVertices( 4 ) < 0) return false; 
  
 // Place vertices in poly 
 for ( int i = 0; i < 4; i++)  
     { 
          Vertices[i] = CVertex(P[i]); 
          Vertices[i].Normal = Plane.Normal; 
         } // Next vertex 
 
    // Success! 
    return true; 
} 
 
 

If you are feeling a little rusty on this procedure, please refer back to the accompanying text book where 
we describe this process in more detail. This completes our coverage of the modified CPolygon object. 
As you can see, we simply added a new member function. 
 
 
 

The CBSPPortal Class 
 

The portal generation module will need a structure with which it can use to represent portal data within 
the BSP tree. Although a portal is just a polygon (geometrically speaking), we can not use CPolygon to 
represent them as we need to package additional information with each portal. Such information 
includes storing the indices of leaves in which the portal is found to reside and the number of leaves in 
which the portal resides. As discussed in the text book, each valid portal will always reside in exactly 
two leaves so this leaf count member would be used during portal generation to delete any portal 
fragments that are found not to exist in two. The portal must also store information about the node in the 
tree on whose plane it has been created. This is also important information to have during the portal 
generation process as it allows us to identify the two leaves under that node which are the valid leaves in 
which the portal should reside. If the portal is found to pop out in a leaf which is above the portals owner 
node, it is a rogue fragment and can be discarded.  
 

Note: It is vitally important that you have read the accompanying text book before progressing 
through this work book. Portal and PVS generation is a complex subject and theory of these processes 
will not be rehashed again in this work book. In short, if you have not studied the text book you find 
you understand very little of the discussions that follow.  

 

The process that clips the portal to the BSP tree will at some point through the process will have split the 
initial portal in a list of portal fragments. As these fragments must be grouped together and passed 
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through the tree also, the portal structure will also have a NextPortal member that will allow us to string 
multiple CBSPPortal structures together in a linked list. 
 
The CBSPPortal class is declared in CBSPTree.h and is shown below. Notice that it is derived from 
CPolygon so we do not have the reinvent the wheel with respect to its vertex management and member 
functions. This means the CBSPPortal will also expose the ‘CreateFromPlane’ member previously 
discussed which will be used by the portal generator to build the initial portal quad on the node plane. 
 
Excerpt from CBSPTree.h 
class CBSPPortal : public CPolygon 
{ 
public: 
     
    // Constructors / Destructors for this Class 
    CBSPPortal( ); 
 
   // Public Variables for This Class 
    CBSPPortal     *NextPortal;         // Linked List Next Portal Item 
    unsigned char   LeafCount;          // In how many leaves this portal resides 
    unsigned long   OwnerNode;          // Node that created this portal 
    unsigned long   LeafOwner[2];       // Front / Back Leaf Owner Array 
 
   // Virtual Public Functions for This Class 
   virtual HRESULT Split( const CPlane3& Plane,  
                          CBSPPortal * FrontSplit,  
                          CBSPPortal * BackSplit ); 
 
}; 
 

Notice that we have added four new members to those inherited from CPolygon which allow us to store 
the indices of the leaves in which the portal is eventually found to reside and the node the node on which 
the portal was generated. Notice however that we also implement a new Split function that accepts 
CBSPPortal pointers. Do not worry! We do not have to implement a polygon splitting function all over 
again. As you will see in a moment, the Split function simple calls the base class’s Split function and 
then copies the extra portal information into the two resulting front and back splits.  Let us list those 
member variables and describe their purpose. 
 
unsigned long   OwnerNode;  
As we know, all the nodes of the BSP tree are stored in its master node array. We also know that an 
initial portal will need to be generated on every node that does not have solid space behind it. This portal 
will then be passed down the tree and any portions of the portal that exist in solid space will be clipped 
away. This member contains the index of the node in the tree’s node array whose plane this portal was 
created on. This is used during portal generation to make sure that when a portal ends up in a leaf, it is a 
leaf that is below the owner node in the tree. If this is not the case then this is a rogue fragment and can 
be deleted.           
 
unsigned long   LeafOwner[2];        
Every valid portal will always exist in exactly two leaves as a portal by its very nature is a polygon that 
represents a door way between leaves and as such, has a leaf on either of its sides. Each valid portal will 
contain the indices of the two leaves in which it resides in this array. Therefore, this array tells us the 
two leaves for which this portal forms a doorway. 
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unsigned char   LeafCount;           
This member is used during portal generation to keep track of how many leaf indices we have currently 
added to the above array. This member will start of at zero when the initial portal is first fed into the root 
node of the tree and will be incremented each time the portal pops out in a leaf. This will never be higher 
that 2 as a portal can only ever possibly exist in two leaves. However, that does not mean that the initial 
portal will not end up in many valid portals being created which all exist in a different set of leaves 
throughout the level. Remember, when a split plane is chosen for BSP creation, the entire geometry set 
beneath that node in the tree is split. That split may have caused multiple convex leaves to be created 
across the entire level and therefore, therefore, multiple portals may exist on this node plane to bridge 
the gaps between those pairs of leaves. 
 
CBSPPortal     *NextPortal;          
As we showed in the text book, the portal/BSP tree clipping process will require keeping track of al the 
fragments that a portal gets split into via linked lists. This member allows us to storing multiple 
CBSPPortal fragments together into a linked list so that we can pass the entire list down the tree by 
simply passing a pointer to the head of the list through the recursive process. 
 
 
 

Constructor - CBSPPortal 
 

The constructor of CBSPPortal simply initializes the portals members to their invalid default values. 
Each element in the LeafOwner array is set to zero and so is the leaf count. The NextPortal member is 
set to NULL and the owner node index is set to -1.  
 
CBSPPortal::CBSPPortal() 
{ 
    // Initialise any class specific items 
    LeafOwner[0]    = 0; 
    LeafOwner[1]    = 0; 
    NextPortal      = NULL; 
    LeafCount       = 0; 
    OwnerNode       = -1;            
} 
 

When the portal object is first created we can see that it is not a valid portal. The portal generation 
process, after creating a new CBSPPortal object will first construct its geometry via a call to its 
(inherited) GenerateFromPlane method. This will build the polygon on the chosen node plane and will 
fill the CBSPPortal with geometry representing a large quad on the node plane. This CBSPPortal will 
then be passed down and clipped to the BSP tree where the above members will eventually get assigned 
their final values. 
 
 

Split - CBSPPortal 
 

Every time a portal is split during the portal generation process, we must not only split the geometry into 
two child portals but must also carry over the information recorded in the parent portal into the two 
children. It is vitally important that the journey of the parent is inherited by the children before the 
parent is deleted for the portal generation process to work. For example, if it has already been 
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determined that the parent portal was found to exist in leaf 10, we know that both the children will also 
exist in leaf 10 assuming they are not found to exist in solid space further down the tree and are deleted. 
Therefore, we must make sure that this information is carried over into the split fragments. 
 
As you can see in the code that follows, the CBSPortal::Split method simply wraps a call to the 
CPolygon::Split method which additional code to copy the portal information over into the two child 
splits.  
 
HRESULT CBSPPortal::Split( const CPlane3& Plane,  
                                 CBSPPortal * FrontSplit,  
                                 CBSPPortal * BackSplit) 
{ 
    // Call base class implementation 
    HRESULT ErrCode = CPolygon::Split( Plane, FrontSplit, BackSplit ); 
    if (FAILED(ErrCode)) return ErrCode; 
 
    // Copy remaining values 
    if (FrontSplit)  
    { 
        FrontSplit->LeafCount    = LeafCount; 
        FrontSplit->OwnerNode    = OwnerNode; 
        FrontSplit->LeafOwner[0] = LeafOwner[0]; 
        FrontSplit->LeafOwner[1] = LeafOwner[1]; 
 
    } // End If 
 
    if (BackSplit)  
    { 
        BackSplit->LeafCount     = LeafCount; 
        BackSplit->OwnerNode     = OwnerNode; 
        BackSplit->LeafOwner[0]  = LeafOwner[0]; 
        BackSplit->LeafOwner[1]  = LeafOwner[1]; 
    } // End If 
 
    // Success 
    return BC_OK; 
} 
 

Notice that we can pass FrontSplit and BackSplit into the CPolygon::Split method even though they are 
of type CBSPPortal because CBSPPortal is derived from CPolygon. 
 
 

The CBSPTree Class - Updated 
 

The CBSPTree class will have to be slightly updated in this lab project so that it can now accommodate 
the portal and PVS information that it must now also store. The BSP tree will now maintain a vector of 
all the valid CBSPPortals that were generated via the portal generation process. That is, once the portal 
generation module has found a valid two leaf portal, it will add its pointer the tree’s master portal array. 
 
The CBSPTree class will also need to have some mechanism of storing the final PVS data array that will 
be generated by the PVS module. As discussed in the text book, the PVS data whether compressed or 
uncompressed will be represented as a byte array and therefore, the BSP tree will now have an unsigned 
char pointer that points to this block of data. It will also need a member variable to the store the size of 
the PVS data block and a Boolean specifying whether the data has been compressed. The compression 
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technique used is called ‘zero run length encoding’ which compresses runs of zero bytes up to 255 bytes 
in length into two bytes. This compression technique is discussed in the text book and lecture. 
 
The CBSPTree class is declared in the file, CBSPTree.h. We will not show the whole class declaration 
here as it is getting rather large and we have only added four new members. Therefore, below we show 
just the members that have been added in this lab project to facilitate the storage of the portal and PVS 
data that will be generated by the CProcessPRT and CProcessPVS modules respectively. 
 

Excerpt from CBSPTree.h 
class CBSPTree 
{ 
public: 
 
    // Public Variables for This Class. 
    UCHAR          *m_pPVSData;             // PVS Data set (array) 
    unsigned long   m_lPVSDataSize;         // Size of the PVS data set 
    bool            m_bPVSCompressed;       // Is the PVS data compressed 
 
private: 
    // Private Functions for This Class. 
    vectorBSPPortal m_vpPortals;            // Portals built by the CProcessPRT compiler. 
}; 
 

These new member variables are described below. 
 

UCHAR *m_pPVSData; 
After the PVS calculation module has generated a PVS for every leaf in the tree and merged them 
together into a single array, this pointer will be assigned to point at that master PVS data block. This is 
the PVS data that will be saved out to file and utilized by the run time component. 
 
This member pointer is assigned to the PVS data by the CProcessPVS module via a call to a new 
CBSPTree member function called SetPVSData. This function will be passed a UCHAR pointer to the 
PVS data, the size of the PVS data array and a Boolean describing whether the data is in compressed 
format. We will look at the code to the SetPVSData method in a moment. 
 
unsigned long m_lPVSDataSize; 
This member will be assigned its value via the CBSPTree::SetPVSData method which will be invoked 
by the CProcessPVS module after the PVS has been calculated. It will describe the size of the UCHAR 
array of PVS data stored in the above member. 
 
bool m_bPVSCompressed; 
This member will be assigned a value of true or false by the CBSPTree::SetPVSData method which is 
invoked from the CProcessPVS module. It describes whether the PVS data array is in compressed 
(ZRLE) format or whether it has been stored as an uncompressed bit set. Obviously, if compiler options 
have been set such that the data is not compressed, the run time component will need to know this so 
that it iterates through the PVS data at render time in the correct manner. 
 
vectorBSPPortal m_vpPortals;             
This is an STL vector that will be used to store pointers to all the valid CBSPPortal structures generated 
by the portal generation module. The CBSPTree interface also exposes a SetPortal method which the 
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portal generation module can use to store a portal to this vector once it has been validated as being valid 
two leaf portal. The portals in this array will all be two way portals which will later be used by the 
CProcessPVS module to clone a set of one way portals for PVS calculation. 
 
Because we now have an array (vector) of portals stored in the BSP tree, methods will need to be added 
that allow us to reserve space in this vector every time we wish to add new portals to the tree. Methods 
will also be needed to allow us to retrieve the number of portals in this vector and as mentioned, a 
method will be added to allow another modules to place portal pointers in this vector. Furthermore, the 
CBSPTree object will also have a function that a calling module can use to allocate the memory for a 
new CBSPPortal. Let us have a look at these new methods now which will give us an idea of the 
functions that will be called by the portal generation module, to allocate a new portal, add it to the tree’s 
portal array and retrieve information about that portal. 
 
 

IncreasePortalCount - CBSPTree 
 

This method is called by the CProcessPRT module every time it wishes to add space for a new 
CBSPPortal pointer to the end of the BSP tree’s portal array. So that the vector is not being continually 
resized for every valid portal that we find and add to the tree, we use a resizing threshold which should 
not be new to you. The array resize threshold is set to 100 by default and is assigned the definition 
BSP_ARRAY_THRESHOLD. Here is the code to the function that allows us to make sure there is at 
least enough room at the end of the BSP tree’s portal array to add a new portal pointer. 
 
bool CBSPTree::IncreasePortalCount() 
{ 
    try  
    { 
        // Resize the vector if we need to 
        if (m_vpPortals.size() >= (m_vpPortals.capacity() - 1))  
        { 
            m_vpPortals.reserve( m_vpPortals.size() + BSP_ARRAY_THRESHOLD ); 
             
        } // End If 
 
        // Push back a NULL pointer (will already be allocated on storage) 
        m_vpPortals.push_back( NULL ); 
     
    } // Try vector ops 
 
    // Catch Failures 
    catch (...)  
    {  
        return false;  
     
    } // End Catch 
 
    // Success 
    return true; 
} 
 

The first thing we do in the above code is fetch the size of the vector. This tells us how many portal 
pointers are currently stored in that vector. We compare this against the capacity of the vector which 
describes how many portals can be stored in that vector before it is considered full. As the purpose of 
this function is to assure that the capacity is at least 1 greater than the current size so that there is room 
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to add another portal pointer, a compare between the two is performed. If the size of the vector is greater 
or equal to the capacity then it means the vector is full and we must resize it. However, instead of simply 
resizing the vector by 1 to make room for the a new portal, we resize by our threshold value which by 
default will resize the vector making room for 100 more portal pointers. Why do we do this? Because 
array resizes are expensive and we do not want to be performing one for every single portal that we add. 
This way, we make sure that we only cause a resize every 100 portals even if that means at the end of 
the process we have a little unused capacity in the vector. 
 
You can see that if the capacity is full we reserve more space so that the vector is large enough to 
contain its current data (size) plus the 100 (BSP_ARRAY_THRESHOLD) new elements. Notice how 
we push a NULL pointer on the back of the array which forces the size of array to be increased by 1. 
You will see why this is necessary in a moment as.  
  
 

GetPortalCount - CBSPTree 
 

This simple function allows a calling module to inquire about how many portals are currently contained 
in the BSP tree’s portal array. It simply returns the size of the vector. 
 
unsigned long   GetPortalCount( ) const { return m_vpPortals.size(); } 

 
To understand how this might be needed, imagine that we have a CBSPPortal called pMyPortal that we 
would like to add to the BSP tree’s portal array after finding that it is a valid portal. We would first fetch 
the current portal count of the array as this will also describe the index of the portal we wish to add to 
the end like so. 
 
// Get the current number of portals stored in the tree’s array 
int PortalIndex = pTree->GetPortalCount(); 
 
// The capacity of the array is such that there is enough room to store new portal 
pTree->IncreasePortalCount(); 
 
// Store the portal at the end of the array 
pTree->SetPortal ( PortalIndex , pMyPortal); 
 
You will see later that this is exactly the steps taken by the portal generation module each time it wishes 
to add a new portal to the BSP trees portal array. 
 
 
AllocBSPPortal - CBSPTree 
 
This function should be used by all modules that wish to allocate a new CBSPPortal. In keeping with 
our previous strategy we are placing all memory allocation responsibility on the BSP tree object via a 
series of AllocBSP…method, for all objects that are defined in its header file. This method simply 
allocates a new CBSPPortal structure and returns it to the caller. 
 
CBSPPortal * CBSPTree::AllocBSPPortal( ) 
{ 
    CBSPPortal * NewPortal = NULL; 
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    try  
    { 
        // Allocate new portal 
        NewPortal = new CBSPPortal; 
 
        // Note : VC++ new does not throw an exception on failure (easily ;) 
        if (!NewPortal) throw std::bad_alloc(); 
 
    } // End Try 
     
    catch (...) { return NULL; } 
 
    // Success! 
    return NewPortal; 
} 
 

Note that this function does not add the allocated portal to the portal array in any way. It is simply a 
helper function that wraps the allocation and handles the throwing of an exception if an error occurs. 
 
 

SetPortal - CBSPTree 
 

When discussing the GetPortalCount method a moment ago, we showed some example code that 
demonstrated how to add a new portal to the end of the tree’s portal array. This protocol involved 
fetching the current portal count, increasing the size of the portal array by 1 and then setting the portal at 
the specified position. Here we see the code to the SetPortal function that is used to store the portal 
pointer in the BSP tree’s portal array at the specified position. 
 
The function takes two parameters. The first in the array index where the caller would like the portal to 
be stored in the array and the second is a pointer to the CBSPPortal structure that is to be stored in the 
array.  
 
void CBSPTree::SetPortal ( unsigned long Index, CBSPPortal * pPortal )  
{  
  if (Index < m_vpPortals.size()) m_vpPortals[Index] = pPortal;  
} 
 

Providing that the passed index is within the current size of the array, the value of that array element is 
replaced with the passed pointer. You might be wondering why the passed index is compared against the 
size of the vector and not the capacity. To be safe, we only allow the SetPointer method to assign values 
to elements that are within the current size of the array even if the array has a much larger capacity. As 
we know that we will always be adding portals to this array one at a time and in order, this just 
introduces a safety net that would stop us storing portals in non-linear addresses within the array. 
However, this now clearly demonstrates why in the IncreasePortalCount method we pushed a NULL on 
the back of the array and forced the size of the array to be increased by one. Were we not to do this we 
would not be able to use SetPortal to add a new portal to the end of the array. By adding a NULL to the 
back of the list initially, we create this portal position in the array first and then fill it later when we call 
the SetPortal method.  
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GetPortal - CBSPTree 
 

For completeness, whenever there is a Set function there is usually a Get function that performs the 
reverse operation. The CBSPTree::GetPortal method accepts a single parameter describing the location 
of the element within the BSP tree’s portal array for which the caller would like to fetch the portal 
pointer. This is fetched from the array/vector and returned to the caller.  
 
CBSPPortal* CBSPTree::GetPortal( unsigned long Index ) const  
{  
   return (Index < m_vpPortals.size()) ? m_vpPortals[Index] : NULL; 
} 
 

If the passed index is outside the range of the current number of portals stored in the array (<size), 
NULL is returned. 
 
 
 

SetPVSData - CBSPTree 
 

This new member function will be called by the CProcessPVS module to store the compiled PVS data 
and accompanying information in the BSP tree. The first parameter to this function is where the 
unsigned char array of PVS data for the entire tree will be passed. The second parameter will describe 
the number of bytes in this array and the third parameter will describe whether compression was enabled 
for the CProcessPVS module. This information will be copied and stored in the tree’s member variables. 
 
The first thing the function does is delete any PVS data that the tree may already be pointing to with its 
m_pPVSData pointer as this will now be used to allocate a new block to contain a copy of the passed 
PVS data. A new byte array is allocated of the correct size (described by the second parameter) and is 
pointed to by the tree’s m_pPVSData pointer.  
 
HRESULT CBSPTree::SetPVSData( UCHAR PVSData[], unsigned long PVSSize, bool PVSCompressed ) 
{ 
    // Release any previous data 
    if (m_pPVSData) delete[] m_pPVSData; 
 
    try 
    { 
        // Allocate the PVS Set 
        m_pPVSData = new UCHAR[ PVSSize ]; 
        if (!m_pPVSData) throw std::bad_alloc(); // VC++ Compat 
 
        // Copy over the data 
        memcpy( m_pPVSData, PVSData, PVSSize ); 
 
    } // End Try Block 
 
    catch ( std::bad_alloc ) 
    { 
        return BCERR_OUTOFMEMORY; 
 
    } // End Catch Block 
 
    // Store Values 
    m_lPVSDataSize      = PVSSize; 

 30 

 



 

    m_bPVSCompressed    = PVSCompressed; 
 
    // Success 
    return BC_OK; 
} 
 

After the new array has been allocated the PVS data is copied over from the passed array into the tree’s 
m_pPVSData array. We also copy over the size and compression status of the data into the 
m_lPVSDataSize and m_bPVSCompressed member variables. 
 

After this function has been called by the CProcessPVS module, the BSP tree will contain all relevant 
PVS information. This new BSP tree information will also be written out to file when the scene is saved.  
 
That covers all the changes to the CBSPTree class so we will now look at some minor modifications that 
have been made to the CBSPLeaf class.  
 
 

The CBSPLeaf Class - Updated 
 
With the introduction of the portal generation and PVS calculation process in this lab project, two new 
member variables will be added to our leaf structure. Each leaf will now need to store a ULONG array 
of indices into the tree’s portal array describing the portals in that array that reside in that leaf. You will 
recall from the accompanying text book that in addition to each portal storing the indices of the leaves in 
which it belongs, each leaf will store the indices of the portals (which index in to the BSP tree’s portal 
array/vector) that reside in that leaf. We also discussed in the text book how because of the fact that the 
PVS data for every leaf will be combined into a single PVS data block when stored in the BSP tree (as 
we have seen), each leaf will need to store the index of the BYTE in the tree’s m_pPVSData array where 
its PVS data set begins. Here is the updated class declaration for CBSPLeaf contained in the file, 
CBSPTree.h 
 
Excerpt from CBSPTree.h 
class CBSPLeaf 
{ 
public: 
     
    // Constructors & Destructors 
             CBSPLeaf( ); 
    virtual ~CBSPLeaf( ); 
 
    // Public Functions for This Class 
    bool            BuildFaceIndices( CBSPFace * pFaceList ); 
    bool            AddPortal( unsigned long PortalIndex ); 
 
    // Public Variables for This Class 
    std::vector<long>   FaceIndices;    // Indices to faces in this leaf 
 
    std::vector<long>   PortalIndices;  // Indices to portals in this leaf 
    unsigned long       PVSIndex;       // Index into the master PVS array 
 
    CBounds3            Bounds;         // Leaf Bounding Box 
}; 
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As you can see, there is also a new method called ‘AddPortal’ which is a simple helper function that 
allows the caller (in this application the portal generation module) to add a portal index to the leaf’s 
PortalIndices array. Let us have a look at those two new member variables first. 
 
std::vector<long>   PortalIndices;   
This is an array/vector of portal indices describing the portals that reside in the leaf. Each element in this 
vector is an index into the CBSPTree::m_vpPortals vector. This array will be filled during the portal 
generation process. 
 
unsigned long       PVSIndex;        
This single unsigned long member describes a byte offset into the CBSPTree::m_pPVSData where the 
leaf’s visibility bits begin. This is calculated and stored in each leaf during the PVS calculation process. 
 
 
 
Constructor - CBSPLeaf 
 
The leaf constructor now simply sets the PVSIndex of the leaf to -1 initially indicating that either no 
PVS data exists for the tree or that it is has not yet been calculated. 
 
CBSPLeaf::CBSPLeaf() 
{ 
    // Initialise anything we need 
    PVSIndex        = -1; 
} 

 
 
 
AddPortal - CBSPLeaf 
 
The CBSPLeaf::AddPortal method is called to add a portal index to the leaf’s PortalIndices array. This 
method is called during the portal generation process when a portal is found to exist in a leaf. 
 
The function uses the same BSP_ARRAY_THRESHOLD strategy to minimize the number of array 
capacity resizes that must be performed during the portal generation process. As you can see in the 
following code, if the vector size reaches the vector capacity then the capacity of the vector is resized to 
make room for N more indices (were N is the current resize threshold). The passed portal index is then 
added to the end of the array.  
 
bool CBSPLeaf::AddPortal( unsigned long PortalIndex ) 
{ 
    try  
    { 
        // Resize the vector if we need to 
        if (PortalIndices.size() >= (PortalIndices.capacity() - 1))  
        { 
            PortalIndices.reserve( PortalIndices.size() + BSP_ARRAY_THRESHOLD ); 
        } // End If 
 
        // Finally add this portal index to the list 
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        PortalIndices.push_back( PortalIndex ); 
     
    } // End Try Block 
 
    catch (...)  
    {  
        // Clean up and bail 
        PortalIndices.clear();  
        return false;  
    } // End Catch 
 
    // Success 
    return true; 
} 

 
We have finally covered all the changes to the BSP tree and the CCompiler class and are now ready to 
start looking at the source code to the CProcessPRT class. This is the module whose ‘Process’ function 
is used to generate the portals for the BSP tree.  
 
 

The Portal Generator Module 
 

The portal generation module is the first of the two new modules we will introduce in this lab project. It 
is vitally important that you have read the accompanying text book and especially the section that 
pertains to portal generation before continuing with this section. The portal generation code is highly 
recursive and hard to follow if you have not achieved a grasp of the theory. The theory will not be 
explained in this work book and it is assumed that you have at least a basic understanding of the portal 
generation algorithm we are using when viewing this section. 
 
As we have discussed, the portal generation module is contained in a class called CProcessPRT. That is, 
this module contains all the functions that CCompiler will call to generate the portals for the BSP tree. 
We saw earlier, that the portal generation process is invoked from a function in CCompiler called 
PerformPRT which is called from CCompiler::CompileScene should portal generation be enabled for 
the current compile. The PerformPRT method calls a handful member functions of the CProcessPRT 
object that are common to all our modules. These include such trivial tasks as informing the module of 
the BSP tree that is being used, the logger object that error/status reports should be sent to and informing 
the module of the parent CCompiler object that is invoking the process. This information is all stored 
inside the CProcessPRT module prior to the CProcessPRT::Process method being called. This same 
strategy is common across all the modules. That is, for each module, we set up some of its member 
variables prior to calling its Process method. It is the Process method of each module that kick starts the 
actual process. In the case of the CProcessPRT module, it is the Process method that will generate all the 
portals for the tree. On function return, all portals will have been compiled and stored in the BSP tree’s 
portal array. All leaves in the tree will contain an array of portal indices that describe the portals that 
were found to reside in those leaves. Finally, each portal will contain a 2 element array of leaf indices 
describing the two leaves that each portal forms the doorway between. We will now examine the code to 
this module. 
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The CProcessPRT Class 
 
The CProcessPRT class declaration is contained in the file ProcessPRT.h and is also shown below. The 
public interface of this class should be instantly familiar from other modules. It comprises of four 
methods that are exposed by other modules. The SetOptions, SetLogger and SetParent methods are 
common to all modules and allow the module to be configured prior to the Process method being 
invoked. The options structure, logging object pointer and CCompiler parent pointer passed into these 
methods are all stored in private members variables (you can see that they are inline functions). The 
private member variables are also the same as the other modules with the exception that a 
PRTOPTIONS structure is used to contain the portal compilation options. 
 
Excerpt from ProcessPRT.h 
class CProcessPRT 
{ 
public: 
    // Constructors & Destructors for This Class. 
             CProcessPRT(); 
    virtual ~CProcessPRT(); 
 
    // Public Functions for This Class. 
    HRESULT         Process( CBSPTree * pTree ); 
    void            SetOptions( const PRTOPTIONS& Options ) { m_OptionSet = Options; } 
    void            SetLogger ( ILogger * pLogger )         { m_pLogger = pLogger; } 
    void            SetParent ( CCompiler * pParent )       { m_pParent = pParent; } 
 
private: 
    // Private Functions for This Class. 
    CBSPPortal     *ClipPortal          ( unsigned long Node, CBSPPortal * pPortal ); 
    bool            FindLeaf            ( unsigned long Leaf, unsigned long Node ); 
    unsigned long   ClassifyLeaf        ( unsigned long Leaf, unsigned long Node ); 
    HRESULT         AddPortals          ( CBSPPortal * PortalList ); 
 
    // Private Variables for This Class. 
    PRTOPTIONS      m_OptionSet;        // The option set for portal Compilation. 
    ILogger        *m_pLogger;          // Logging interface used to log progress etc. 
    CCompiler      *m_pParent;          // Parent Compiler Pointer 
    CBSPTree       *m_pTree;            // The tree used to compile the portal set. 
 
}; 

 
The Process method is also no stranger to us and is the method that all modules expose to actually carry 
out their task. This class also has four private member functions which will be called by the public 
Process method to carry out its task of generating the portals and storing them in the tree. 
 
 

Process - CProcessPRT 
 
This method invoked by CCompiler to perform the portal generation. With the help of four of the class’s 
private methods, this function is responsible for the entire process tasked to this module. That is, when 
this function has completed, the two way portals will all have been generated and stored in the BSP 
tree’s portal array. Each portal in this array will also contain the indices of the two leaves in which they 
reside and each leaf in the BSP tree will contain an array of portal that live in that leaf. 
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Note: Recall from text book that while a single portal can never exist in more than two leaves, a single leaf 
may have many portals that reside within it. 

 
The function takes a single parameter when called from the CCompiler object. It is passed a pointer to 
the BSP tree which is to have its portals generated. The passed BSP tree pointer is copied into the 
module’s member variable (m_pTree) so that we have access to the BSP tree throughout all its 
functions. We then output information to the logging object via its LogWrite function displaying the 
message that portal compilation is about to commence. We also set a rewind marker and progress range 
within the logger so that every time the progress indicator is updated, we can return to the cursor 
position set by the rewind marker and overwrite the old progress value with the current one in the 
loggers output window. The initial progress value is set to zero and the range of the progress indicator is 
set to the number of nodes in the tree. Therefore, each time we process a node and (potentially) generate 
a portal for it, we can increase the current progress and have the logging object return to the rewind 
marker (the cursor position in the output channel where the first digit of the progress percentage will be 
displayed) and will update the current progress percentage value. 
 
HRESULT CProcessPRT::Process( CBSPTree * pTree ) 
{ 
    HRESULT      ErrCode; 
    CBounds3     PortalBounds; 
    CBSPPortal * InitialPortal = NULL; 
    CBSPNode   * CurrentNode   = NULL; 
    CBSPNode   * RootNode      = NULL; 
    CPlane3    * NodePlane     = NULL; 
    CBSPPortal * PortalList    = NULL; 
 
    // Validate values 
    if (!pTree) return BCERR_INVALIDPARAMS; 
 
    // Store tree for compilation 
    m_pTree = pTree; 
 
    try  
    { 
        // ************************* 
        // * Write Log Information * 
        // ************************* 
        if ( m_pLogger ) 
        { 
            m_pLogger->LogWrite( LOG_PRT,  
     0,  
     true,  
     _T("Compiling scene portal information \t\t- " ) ); 
 
            m_pLogger->SetRewindMarker( LOG_PRT ); 
            m_pLogger->LogWrite( LOG_PRT, 0, false, _T("0%%" ) ); 
            m_pLogger->SetProgressRange( pTree->GetNodeCount() ); 
            m_pLogger->SetProgressValue( 0 ); 
        }  
        // ************************* 
        // *    End of Logging     * 
        // ************************* 

 
In the next section of the code we first test that we can retrieve the root node (node index 0) from the 
node array and if not then we return error (safety incase we are trying to compile portal data for a BSP 
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tree object that has not yet compiled its data). We fetch the root node because its bounding box will be 
used to create the initial portal on each node plane. We then loop through each node in the node array. 
 
Let us now examine the contents of this node loop.  
 
        // Store required values ready for use. 
        if (!(RootNode = m_pTree->GetNode(0))) throw BCERR_BSP_INVALIDTREEDATA; 
 
        // Create a portal for each node 
        for (unsigned long i = 0; i < pTree->GetNodeCount(); i++)  
        { 
            // Update progress 
            if ( m_pParent && !m_pParent->TestCompilerState()) return BC_CANCELLED; 
            if ( m_pLogger ) m_pLogger->UpdateProgress( ); 

 
The first thing we do inside this loop is test that the parent compiler has not been put into a cancelled 
state by the user. If so, we simple return BC_CANCELLED because the user has obviously aborted the 
process mid compile. Provided this is not the case however, you can see that we instruct the logging 
object to update its progress as we are about to process another node. 
 
In the next section of code we fetch the current node structure we are processing from the BSP tree’s 
node array.  We store a pointer to this node structure in the local node pointer CurrentNode. We then 
fetch from this structure the index of the node plane stored at that node so that we can fetch the node’s 
plane from the BSP tree’s plane array and store its pointer in the local variable NodePlane. 
 
            // Store required values ready for use. 
            if (!(CurrentNode = m_pTree->GetNode(i))) throw BCERR_BSP_INVALIDTREEDATA; 
 
            if (!(NodePlane   = m_pTree->GetPlane(CurrentNode->Plane)))  
        throw BCERR_BSP_INVALIDTREEDATA; 

 
Now that we have the node structure and the plane structure of the node we are currently processing, let 
us first test whether a portal could possibly exist on this node. As we know, a portal can only exist on a 
node plane if that node has not got solid space behind it. If it has then this node does not have leaves in 
both its half spaces and therefore, no portal generated on this node could ever bridge two leaves. When 
this is the case we simply skip processing this node any further and continue on to the next iteration of 
the loop and the next node waiting to be processed. 
  
            // Skip any that have solid space behind them 
            if ( CurrentNode->Back == BSP_SOLID_LEAF ) continue; 

             
If we get this far without skipping to the next iteration then it means the current node we are processing 
has leaves on both sides and it stands a very good chance of generating a real portals. Of course, we do 
not know this for sure yet, but we certainly know that we will have to create a new portal on the node 
plane that is as large as the root node’s bounding box and will have to send this portal down the tree 
clipping away any fragments that exist in solid space. If anything survives, then we do have a portal or 
multiple portal fragments that can be added to the BSP tree’s portal array. 
 
The first step is to allocate a new CBSPPortal structure using the CBSPTree::AllocBSPPortal function 
which we described earlier. This portal will be initially empty but we want it to represent a quad that is 
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located in the current node’s plane and is large enough to fill the root node’s bounding box. Fortunately, 
we have already written the CPolygon::GenerateFromPlane method that will construct such a portal 
given the node plane and the root nodes bounding box. Therefore, in the next section of code, you can 
see that after we allocate a new portal structure and retrieve the root node’s bounding box, we then pass 
this information into the GenerateFromPlane method to generate the initial portal on that plane. We also 
store in the portal the index of the node on which it was initially generated in its OwnerNode member. 
 
            // Allocate a new initial portal for clipping 
            if (!(InitialPortal = CBSPTree::AllocBSPPortal())) throw BCERR_OUTOFMEMORY; 
             
            // Initial Portal should fill root node 
            PortalBounds = RootNode->Bounds;  
             
            // Generate the portal polygon for the current node 
            InitialPortal->GenerateFromPlane( *NodePlane, PortalBounds ); 
            InitialPortal->OwnerNode = i; 

 
At this point we are ready to drop that initial portal in at the root node of the tree and clip it to the solid 
space of the tree as it makes its way down to the leaf nodes. The ClipPortal method is used for this. It is 
a recursive function that will call itself repeatedly until either the initial portal has been completely 
clipped away (in which case PortalList will be assign NULL on function return) or until it has correctly 
calculated the valid portal fragments in which case, they will be returned in a linked list. PortalList will 
point to the head of this valid portal list on function return. As the first parameter to the ClipPortal 
method we pass in the index of the node we would like to start clipping from which will be the root node 
(node zero). As the second parameter we pass our initial portal that is to be passed through the tree and 
clipped. 
 
            // Clip the portal and obtain a list of all fragments 
            PortalList = ClipPortal(0, InitialPortal ); 
 
            // Clear the initial portal value, we no longer own this 
            InitialPortal = NULL; 

             
Notice in the above code how when the ClipPortal method returns, we simply set the InitialPortal 
pointer to NULL instead of releasing it. That is because this portal will have been clipped and deleted by 
the ClipPortal method as it is passed through the tree and split into child fragments. As soon as we pass 
the initial portal into the ClipPortal method it is the responsibility of the ClipPortal method to clean up 
its memory when it gets split.  
 
At this point, if PortalList is not NULL then it contains a list of one or more valid portals that have been 
generated on the current node plane. If this is the case these portals should be added to the BSP tree’s 
portal array. The CProcessPRT::AddPortals method is invoked to perform this task. Contrary to the way 
we normally do things, we will look at the simple AddPortals method prior to examining the ClipPortal 
code. This will show us how the portal information returned from ClipPortal gets added to the tree and 
the leaves of that tree first. 
 
            // Add any valid fragments to the final portal list 
            if (PortalList)  
            { 
                if (FAILED(ErrCode = AddPortals( PortalList ))) throw ErrCode; 
            } // End If PortalList 
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        } // Next Node 
 
    } // End Try 
 
    catch ( HRESULT& Error )  
    { 
        // If we dropped here, something failed 
        if ( InitialPortal )  delete InitialPortal; 
        if ( m_pLogger )   m_pLogger->ProgressFailure( LOG_PRT ); 
        return Error; 
 
    } // End Catch 
 
    // Success 
    if ( m_pLogger ) m_pLogger->ProgressSuccess( LOG_PRT ); 
    return BC_OK; 
     
} 
 

We can see that after the AddPortals method has been called we see the closing brace to the node loop 
such that at the bottom of the function, every portal in the level will have been created and added to the 
tree’s portal list. Before returning success, we output to the logging object that the mission has been a 
success. When the function returns, the portal generation process is over and all portals have been 
created and stored in the tree. 
 
 

AddPortals - CProcessPRT 
 
The AddPortals method is called from the Process method to add a list of valid portals returned from the 
ClipPortal method for a given node to the BSP tree’s node array. The function is passed a CBSPPortal 
pointer that points to the head of this list. First we set up a loop to iterate through every portal in the list. 
The Iterator local pointer is used to step through the elements in the list. 
 
 
HRESULT CProcessPRT::AddPortals( CBSPPortal * PortalList ) 
{ 
    unsigned long PortalIndex = 0; 
    CBSPPortal  * Iterator; 
    CBSPLeaf * Leaf = NULL; 
 
    // Validate  
    if (!PortalList) return BCERR_INVALIDPARAMS; 
 
    // Iterate through the list, obtaining valid portals 
    Iterator = PortalList; 
    while ( Iterator != NULL )  
    { 

 
Inside this loop we first fetch the current portal count from the BSP tree as this will tell us the location 
within the BSP tree’s master portal array where the next portal should be placed (at the end of the 
currently stored portals). 
 
        // Store new portal index 
        PortalIndex = m_pTree->GetPortalCount(); 
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As every portal will at this point store in its LeafOwner array the indices of the two leaves in which it 
was found to reside during the ClipPortal function, we next loop through each of these elements and 
store the index of this portal (in the BSP tree’s portal array) in the PortalIndices array of each leaf. 
 
        // Add this portal to each leaf 
        for ( int i = 0; i < 2; i++ )  
        { 
            Leaf = m_pTree->GetLeaf( Iterator->LeafOwner[i] ); 
            if (!Leaf) return BCERR_BSP_INVALIDTREEDATA; 
            Leaf->AddPortal( PortalIndex ); 
 
        } // Next Leaf 

 
As you can see in the above code, in each iteration of the loop we fetch the leaf index from the portal’s 
LeafOwner array and then use that to retrieve the relevant leaf structure from the tree. Once we have a 
pointer to the leaf in which this portal should have its index stored, we then call the 
CBSPLeaf::AddPortal method (which we looked at earlier) which will add the passed index to the leaf’s 
PortalIndices array. Remember that although we have not yet added the current portal being processed in 
the passed list to the BSP tree’s portal array, PortalIndex describes the location of where it will be stored 
as this describes the current number of portals in the list prior to this portal being added. 
 
With the portal index now stored in the two leaves in which it was found to reside, we next instruct the 
BSP tree to make sure there is enough space in its portal array to add this new portal pointer.  
 
        // We are adding a new portal 
        m_pTree->IncreasePortalCount(); 

 
We then finish processing the current portal by using the CBSPTree::SetPortal method to store the 
current portal’s pointer at that index in the tree’s master portal array.  
 
        // Set the portal 
        m_pTree->SetPortal( PortalIndex, Iterator ); 

 
We then assign the current portal’s NextPortal member to Iterator so that in the next iteration of the 
loop, if NextPortal is not NULL, Iterator will point to the next portal in the passed list to be added to the 
tree’s portal array. 
 
        // Move onto next portal 
        Iterator = Iterator->NextPortal; 
 
    } // End While 
 
    return BC_OK; 
} 

 
When this function returns, every portal in the passed list will have been added to the BSP tree’s portal 
array and the leaves in which these portals reside will have had the portal indices added to their 
PortalIndices array. 
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ClipPortal - CProcessPRT 
 
As discussed in the accompanying text book, the ClipPortal method really is the portal generation 
engine. It is the function that is called from the Process method and passed an initial portal that is to be 
clipped to the tree. When the function is first called it will visit the root node and will then recursively 
call itself until the portal has either been complete deleted, or until it has a list of valid portal fragments 
to return. Valid portals are fragments of the initial portal passed in the root that ended up in empty space 
and were found to reside in two leaves. This is a rather huge function which was explained in detail in 
the text book.  As this version of the function is almost identical we will make our way through it quite 
quickly so that you can see the version of the function that is used by our compiler. 
 
The function is passed a node index (which will be the root node the first time it is called from the 
Process method) and a portal. The first time this function is called this portal will be the initial portal 
that was created on the node inside the Process method, for nodes further down the tree, this portal may 
be a fragment of that initial portal. 
 
CBSPPortal * CProcessPRT::ClipPortal( unsigned long Node, CBSPPortal * pPortal ) 
{ 
    // 52 Bytes including Parameter list (based on __thiscall declaration) 
    CBSPPortal   * PortalList     = NULL, *FrontPortalList = NULL; 
    CBSPPortal   * BackPortalList = NULL, *Iterator        = NULL; 
    CBSPPortal   * FrontSplit     = NULL, *BackSplit       = NULL; 
    CBSPNode     * CurrentNode    = NULL; 
    CPlane3      * CurrentPlane   = NULL; 
    unsigned long  OwnerPos, LeafIndex; 
 
    // Validate Requirements 
    if (!pPortal || !m_pTree) throw BCERR_INVALIDPARAMS; 
 
    // Store node for quick access 
    if (!(CurrentNode  = m_pTree->GetNode( Node ))) throw BCERR_BSP_INVALIDTREEDATA; 
    if (!(CurrentPlane = m_pTree->GetPlane(CurrentNode->Plane)))  
                                                    throw BCERR_BSP_INVALIDTREEDATA; 

 
As we can see in the above section of code, we first use the passed node index to fetch the node structure 
from the BSP tree. This is the node that we are currently visiting with the passed portal/fragment. We 
then use the node’s Plane index to fetch the node’s  plane structure from the BSP tree’s master plane 
array. 
 
The rest of the function is essentially just a switch statement which deals with the result of classifying 
the portal against the plane. The following code classifies the vertices of the polygon against the node 
plane.  We use the CPlane3::ClassifyPoly function for this task. The function will return either 
CLASSIFY_FRONT, CLASSIFY_BACK, CLASSIFY_ONPLANE or CLASSIFY_SPANNING. 
 
    // Classify the portal against this nodes plane 
     switch (CurrentPlane->ClassifyPoly( pPortal->Vertices,  
                                             pPortal->VertexCount,  
                                             sizeof(CVertex)) )  
    { 

  
The front and back cases are small and simple to deal with but the spanning and on plane cases are 
considerably more complex. We will look at the CLASSIFY_ONPLANE case first. 
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        case CLASSIFY_ONPLANE: 
 
            // The Portal has to be sent down Both sides of the tree and tracked.  
            // Send it down front first but DO NOT delete any bits that end up in solid 
            // space, just ignore them.  
            if (CurrentNode->Front < 0 )  
            { 
    // The Front is a Leaf, determine which side of the node it fell 
                LeafIndex   = abs(CurrentNode->Front + 1); 
                OwnerPos    = ClassifyLeaf( LeafIndex, pPortal->OwnerNode ); 
 
                // Found the leaf below? 
                if ( OwnerPos != NO_OWNER)  
                { 
                    // This portal is added straight to the front list 
                    pPortal->LeafOwner[OwnerPos] = LeafIndex; 
      pPortal->NextPortal          = NULL; 
   FrontPortalList          = pPortal; 
                    pPortal->LeafCount++; 
                 
                } // End if leaf found 
                else  
                { 
                    delete pPortal; 
                    return NULL; 
 
                } // End If no leaf found 
             
            } // End if child leaf 
            else  
            { 
   // Send the Portal Down the Front List and get returned  
   // a list of PortalFragments that survived the Front Tree 
   FrontPortalList = ClipPortal(CurrentNode->Front, pPortal); 
 
     } // End If child node 

 
The above code shows the first section of dealing with the on plane case. When a portal is on plane we 
need to send that portal down the front tree so that it can be clipped to the front tree of the node. This 
will return a linked list of any portal fragments that survive the front tree. Each portal in this list should 
then be passed down and clipped to the back tree of the node. Any fragment of the portal passed into this 
function that survives both the front and back trees of the node can then be compiled into a linked list 
and returned from the function. 
 
In the above section of code we show the portion of the on plane case that deals with sending the portal 
down the front of the node first. If the node’s Front member contains a negative number then we know 
that there is a leaf to the front of this node (empty space) and as such, the portal should record the index 
of this leaf in the portal. This is one of the leaves the portal has been found to reside in. Therefore, when 
this is the case we add 1 to the node’s Front value and ABS it so that we have an index into the BSP 
tree’s leaf array of the leaf in which the portal has landed. We then call the ClassifyLeaf function which 
will return either NO_OWNER, FRONT_OWNER or BACK_OWNER indicating whether this leaf is 
located in the front or back half space of the node. If the function returns NO_OWNER then it means 
that the leaf the portal has landed in does not exist beneath the portal’s owner node in the tree and 
therefore this is a rogue portal (rogue portals are discussed in the text book). When this is the case we 
simply delete the portal as this portal is not valid for the current node being generated. However, if 
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FRONT_OWNER or BACK_OWNER is returned then we store the leaf index in the portal’s 
LeafOwner array. Notice that FRONT_OWNER and BACK_OWNER are also used as the array indexes 
so that the leaf that exists in the front space of a portal will always be contained in the first element of 
the portal’s LeafOwner array and the second element will always contain the index of the leaf contained 
in the back half space of the node. You can also see in the above code that if the portal does land in a 
leaf, we increase the portal’s LeafCount member to reflect the fact that we have just added a leaf index 
to the portal’s leaf array. We also assign the FrontPortalList local variable to point at this portal which 
will be used in a moment. We also make sure that the portal’s next pointer is set to NULL. 
 
Finally notice at the bottom of the above code, how if a leaf does not exist down the front of this node, 
but a child node exists instead, the ClipPortal function is called recursively to send the portal down the 
front tree of the current node. This function will either return a linked list of all the fragments of this 
portal that survived the front tree, the head of which is assigned to the FrontPortalList local variable, or 
will return NULL if none of the portal survived being clipped to the front tree.  
 
At this point, FrontPortalList either points to the single portal that made it into a leaf to the front of this 
node, a list of fragments that survived the portal being clipped to the front tree of the node, or NULL if 
either the portal made it into a leaf that was not beneath the owner node in the tree (rogue portal 
fragment) or if the portal was clipped to the front tree and was found to be contained completely in solid 
space. 
 
In the next section of code we see that if FrontPortalList equals NULL then there is nothing more to do 
at this node. The portal passed into this node has been completely deleted so we return NULL. 
 
     // If nothing survived return here. 
            if (FrontPortalList == NULL) return NULL; 

 
However, if there are portals in our front list then we know each will have to be clipped to the back tree 
of the node next. If the node has no back child (solid space behind it) then we simply return the front list 
of portal fragments.  
 
            //// If the back is solid, just return the front list 
            if ( CurrentNode->Back == BSP_SOLID_LEAF ) return FrontPortalList; 

 
Now we will loop through each portal in the front portal list and will send each one in the list into the 
ClipPortal function to clip it to the front tree of the node. Each time we call the ClipPortal function to 
send the current front list portal being processed down the back tree, we will take the returned list of 
portals and add them to a larger list that is being compiled. This larger list will contain, at the end of the 
next section of the code, any fragments that survived both the front and back trees of the node. 
 
     // Loop through each front list fragment and send it down the back branch 
            pPortal = FrontPortalList; 
  
    while ( pPortal != NULL )  
             {  
     CBSPPortal * NextPortal = pPortal->NextPortal; 
     BackPortalList         = NULL; 
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At the head of the loop we cache the next portal in the front portal list so that when the current portal we 
are processing gets sent down the back tree and potentially deleted, we do not loose access to the next 
portal in the front portal list to be processed. The variable BackPortalList will be used to retrieve any 
fragments of the current front portal fragment that is sent down the back tree of the node. 
 

Note: Remember that the current portal being processed in this loop (pPortal) is a portal fragment 
from the front portal list that is now about to be clipped to the back tree.  

 
First we test the Back member of the current node and if found to be negative it means an empty space 
leaf exists to the back of this node. Here we are adding support for empty back leaves that can occur in 
very special cases which will be discussed later in the series.  As discussed in the text book however, a 
level provided for solid BSP compilation, will not ever contain populated back leaves. Still, we will add 
support for populated back leaves now.  
 
As we did in the case of an immediate front leaf, if a leaf does exist to the back of this node, it means the 
portal has landed in this leaf. As such, we convert the node’s Back member into a valid leaf index and 
fetch the appropriate leaf structure from the BSP tree’s leaf array. We then classify this leaf against the 
portal’s owner node to determine in which half space of the portal this leaf exists. The leaf indices are 
then stored in the portal depending on the outcome. 
 
                // Empty leaf behind? 
                if ( CurrentNode->Back < 0 ) 
                { 
                    // The back is a Leaf, determine which side of the node it fell 
                    LeafIndex   = abs(CurrentNode->Back + 1); 
                    OwnerPos    = ClassifyLeaf( LeafIndex, pPortal->OwnerNode ); 
 
                    // Found the leaf below? 
                    if ( OwnerPos != NO_OWNER )  
                    { 
                        // Attach it to the back list 
                        pPortal->LeafOwner[OwnerPos] = LeafIndex; 
                        pPortal->NextPortal          = BackPortalList; 
                        BackPortalList               = pPortal; 
                        pPortal->LeafCount++; 
                     
                    } // End if leaf found 
                    else  
                    { 
                        // Delete the portal, but continue to the next fragment 
                        delete pPortal; 
                        continue; 
                     
                    } // End If no leaf found 
 
                } // End if child leaf 
                 
                else  
                 
                { 
                    // Send the Portal Down the back and get returned a list of 
                    // PortalFragments that survived the Front Tree 
                    BackPortalList = ClipPortal(CurrentNode->Back, pPortal); 
 
                } // End If child node 
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Notice that if a leaf does not exist immediately to the back of this node it means a child node must exist 
there instead. When this is the case we send the portal down the back of the node to clip it to the node’s 
back tree. Any surviving fragments are returned in a linked list, the head of which is assigned to the 
BackPortalList pointer. 
 
At this point, BackPortalList contains only the list of fragments for a single fragment that survived the 
front tree of the node and as discussed, we must collect all the BackPortalList’s generated from each 
portal in FrontPortalList and stitch them together into a single linked list that can be returned from the 
function. The PortalList local variable will be used to point at the head of this combined list which will 
be returned from the function.  
 
In the next section of code we can see that assuming that BackPortalList is not null, we must add them 
to the current list we have compiled so far. We do this by first iterating to the tail of the BackPortalList. 
 
 
     // Anything in the back list? 
     if (BackPortalList != NULL)  
                { 
                    // Iterate to the end to get the last item in the back list 
   Iterator = BackPortalList; 
                     
                    while ( Iterator->NextPortal != NULL) Iterator = Iterator->NextPortal; 

      
At this point Iterator will point to the last element in BackPortalList. We now assign the NextPortal 
member of this final portal in the back portal list to point at ‘PortalList’ which currently points to the 
head of the list of portal fragments we have collected so far. What we are doing is adding the back portal 
list to the front of the portal list of all the fragments we have collected so far. Here is the remaining code 
of the on plane case. 
 
                    // Attach the last fragment to the first fragment  
                    // from the previous iteration. 
   Iterator->NextPortal = PortalList; 
 
   // Portal List now points at the current complete  
                    // list of fragments collected so far 
   PortalList = BackPortalList; 
                     
     } // End if BackPortalList is not empty 
 
 
                // Move on to next portal 
       pPortal = NextPortal; 
 
  } // End While Portal != NULL 
    
            // Return the full list 
            return PortalList; 

 
As you can see after we have assigned the Iterator to point at PortalList (the current head of the list of all 
fragments we have collected so far), we the reassign PortalList to point at BackPortalList so that it now 
points to the complete list of fragments we have collected so far, including those contained in 
BackPortalList.  Finally, we can see that at the bottom of main loop that iterates through each portal in 
FrontPortalList, we assign pPortal to point at NextPortal. Next Portal is where we stored a pointer to the 
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next portal in FrontPortalList that will need to be clipped to the back tree of the node in the next 
iteration. 
 
Outside the loop and in the very last line of code shown above, PortalList will contain all the fragments 
of the portal passed into the function that survived both the front and back trees of the current node 
being visited. This linked list is returned from the function. 
 
With the on plane case covered, we will next look at what happens if the portal passed into the function 
is found to be contained entirely in the front half space of the current node being visited.  
 
If there is a leaf immediately attached to the front of this node then it means the portal has made it into a 
leaf. When this is the case we see that familiar piece of code that fetches the leaf from the BSP tree’s 
leaf array and classifies it against the owner node of the portal. Depending on which side of the owner 
node’s plane the leaf is found to reside, the leaf index is recorded in the appropriate position in the 
portals LeafOwner array and the portals leaf count is increased so that we know how many leaves this 
portal has been found to exist in at this point. Below we show the entire CLASSIFY_INFRONT case. 
        
            case CLASSIFY_INFRONT: 
             
             // Either send it down the front tree or add it to the portal  
      // list because it has come out in Empty Space 
     if (CurrentNode->Front < 0 )  
            { 
                // The front is a Leaf, determine which side of the node it fell 
                LeafIndex   = abs(CurrentNode->Front + 1); 
                OwnerPos    = ClassifyLeaf( LeafIndex, pPortal->OwnerNode ); 
 
                // Found the leaf below? 
                if ( OwnerPos != NO_OWNER )  
                { 
                    // This is just returned straight away, it's in an empty leaf 
                    pPortal->LeafOwner[OwnerPos] = LeafIndex; 
                    pPortal->NextPortal          = NULL; 
         pPortal->LeafCount++; 
                    return pPortal; 
                 
                } // End if leaf found 
                else  
                { 
                    delete pPortal; 
                    return NULL; 
                 
                } // End if leaf not found 
 
     } // End if child leaf 
            else  
            { 
                // Pass down the front 
     PortalList = ClipPortal(CurrentNode->Front, pPortal); 
     return PortalList; 
 
            } // End If child node 
     
     break; 
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Above we can see that if a leaf does not exist immediately to the front of this node it means a child node 
exists and as such, the portal is passed down the front tree of the node and clipped to any solid space that 
may exist there. The ClipPortal method will return a list of one or more fragments of this portal that 
survived being clipped to the front tree which are then returned from the function to the parent instance 
of the function. 
 
The CLASSIFY_BEHIND case is almost the same except with a very important difference. If solid 
space exists to the back of the node then the portal has to be deleted and NULL returned. It is this case 
during the recursive process that is responsible for clipping away the parts of a portal that land in solid 
space. 
 
     case CLASSIFY_BEHIND: 
    
            // Test the contents of the back child             
            if (CurrentNode->Back == BSP_SOLID_LEAF )  
            { 
                // Destroy the portal 
                delete pPortal; 
                return NULL; 
             
            } // End if solid leaf 
      

 
 However, if solid space does not exist down the back of this node then two other conditions may be 
true. Either an empty space leaf exists down the back of this node in which case we store the leaf index 
in the portal in the normal way, or a child node exists down the back of the current node in which case 
the portal must be clipped to the back tree and the resulting fragment list returned as shown below. 
        
            else  
             
            if (CurrentNode->Back < 0 )  
            { 
                // The back is a Leaf, determine which side of the node it fell 
                LeafIndex   = abs(CurrentNode->Back + 1); 
                OwnerPos    = ClassifyLeaf( LeafIndex, pPortal->OwnerNode ); 
 
                // Found the leaf below? 
                if ( OwnerPos != NO_OWNER )  
                { 
                    // This is just returned straight away, it's in an empty leaf 
                    pPortal->LeafOwner[OwnerPos] = LeafIndex; 
                    pPortal->NextPortal          = NULL; 
                    pPortal->LeafCount++; 
                    return pPortal; 
 
                } // End if leaf found 
                else  
                { 
                    delete pPortal; 
                    return NULL; 
 
                } // End if leaf not found 
 
            } // End if child leaf 
            else  
            { 
                // Pass down the back 
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                PortalList = ClipPortal(CurrentNode->Back, pPortal); 
                return PortalList; 
 
            } // End If child node 
 
            break; 

 
The final case we must deal with I this function is the case where the portal is spanning the plane. When 
this is the case we must split the portal into two child fragments and clip the back fragment to the back 
tree of the node and the front fragment to the front tree of the node. Any surviving fragments from the 
front split portal and the back split portal are joined together into a single linked list which is then 
returned from the function. We will look at this case a section at a time. 
 
     case CLASSIFY_SPANNING: 
    
            // Allocate new front fragment 
            if (!(FrontSplit = CBSPTree::AllocBSPPortal())) throw BCERR_OUTOFMEMORY; 
             
            // Allocate new back fragment 
            if (!(BackSplit  = CBSPTree::AllocBSPPortal())) { delete FrontSplit;  
                                                              throw BCERR_OUTOFMEMORY; } 
    
            // Portal fragment is spanning the plane, so it must be split 
            if (FAILED( pPortal->Split(*CurrentPlane, FrontSplit, BackSplit)))  
            {   
                delete FrontSplit; delete BackSplit;  
                throw BCERR_OUTOFMEMORY; 
            } // End If 
    
            // Delete the ORIGINAL portal fragment 
     delete pPortal; 
     pPortal = NULL; 

  
As the above code shows, because we know the portal is spanning the plane it will have to be split into 
two children so we first allocate two new empty CBSPPortal structures. These are then passed into the 
parent portal’s Split method along with the plane of the current node we are visiting. When the split 
function returns, FrontSplit will contain the fragment of the portal that exists in the front half space of 
the passed plane and BackSplit will contain the fragment that exists in the back half space. The original 
portal (pPortal) that was passed into the function can now be deleted as it has been replaced by these two 
splits. 
 
Our next task is to deal with the front split first by sending it down the front tree of the node. If a leaf 
exists immediately to the front of the node then the front split portal obviously exists in this leaf. When 
this is the case the leaf index is recorded in the portal as we have seen many times before. 
 
     // There is another Front NODE ? 
     if (CurrentNode->Front < 0 )  
            { 
                // The front is a Leaf, determine which side of the node it fell 
                LeafIndex   = abs(CurrentNode->Front + 1); 
                OwnerPos    = ClassifyLeaf(LeafIndex, FrontSplit->OwnerNode ); 
 
                // Found the leaf? 
                if ( OwnerPos != NO_OWNER)  
                { 
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                    FrontSplit->LeafOwner[OwnerPos] = LeafIndex; 
                    FrontSplit->NextPortal          = NULL; 
      FrontPortalList                 = FrontSplit; 
                    FrontSplit->LeafCount++; 
                 
                } // End if leaf found 
                else  
                { 
                    delete FrontSplit; 
                 
                } // End If no leaf found 
    
            } // End if child leaf 
            else  
            { 
   FrontPortalList = ClipPortal(CurrentNode->Front, FrontSplit); 
    
            } // End If child node 

 
Notice in the else case however that if a child node exists here instead, the front split portal is clipped to 
the front tree of the node with any surviving fragments being assigned to the FrontPortalList local 
variable. Notice that even if the portal makes it into the leaf, we also assign FrontPortalList to point at it 
so that regardless of whether a node or a leaf exists to the front of this node, we know that 
FrontPortalList will point to one or more portals that have survived the front tree of the node at this 
point.  
 
With the front split being clipped to the front tree dealt with, we will now send the back split portal 
down the back tree of the node. If there is solid space behind this node then the back split has landed in 
solid space and is therefore simply deleted. Alternatively, if a leaf exists to the back of this node we see 
that familiar code that classifies the leaf against the node and stores the leaf index in the appropriate 
location in the portals LeafOwner array. 
 
 
            // There is another back NODE ? 
            if ( CurrentNode->Back == BSP_SOLID_LEAF )  
            { 
                // We ended up in solid space 
                delete BackSplit; 
             
            } // End if solid leaf 
            else if (CurrentNode->Back < 0 )  
            { 
                // The back is a Leaf, determine which side of the node it fell 
                LeafIndex   = abs(CurrentNode->Back + 1); 
                OwnerPos    = ClassifyLeaf(LeafIndex, BackSplit->OwnerNode ); 
 
                // Found the leaf? 
                if ( OwnerPos != NO_OWNER)  
                { 
                    BackSplit->LeafOwner[OwnerPos] = LeafIndex; 
                    BackSplit->NextPortal          = NULL; 
                    BackPortalList                 = BackSplit; 
                    BackSplit->LeafCount++; 
 
                } // End if leaf found 
                else  
                { 
                    delete BackSplit; 
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                } // End If no leaf found 
 
            } // End if child leaf 

 
Finally, if a child node exists to the back of this node instead of a leaf, we clip the back split portal to the 
back tree of the node using the BackPortalList local pointer to point to any surviving fragments on 
function return.  
      
       else  
            { 
                BackPortalList = ClipPortal(CurrentNode->Back, BackSplit); 
 
            } // End If child node 
    

          
Notice that even in the case where the portal makes it into a back leaf, we assign BackPortalList to point 
at the portal so regardless of whether or not it landed in a leaf or was clipped to the back of the tree, 
BackPortalList will contain any fragments of the back split portal that survived the back node of the tree. 
 
At this point we have FrontPortalList and BackPortalList which can potentially contain the fragments of 
the front split portal and the back split portal that survived being sent down the front and back of the 
node respectively. Our final step is two join these two portal lists together into a single list before 
returning this combined list from the function. 
 
The following code shows that if there are portals in FrontPortalList then we iterate through the list to 
get a pointer to the last portal in that list. If BackPortalList isn’t NULL then we assign the NextPortal 
member of that last portal in FrontPortalList to point to the first portal in the back portal list which is 
then returned from the function. 
 
            // Find the End of the front list and attach it to Back List 
      if (FrontPortalList != NULL)  
            { 
      // There is something in the front list 
   Iterator = FrontPortalList; 
    
   while (Iterator->NextPortal != NULL) Iterator = Iterator->NextPortal; 
 
   if (BackPortalList != NULL) Iterator->NextPortal = BackPortalList; 
                        return FrontPortalList; 
    
            } // End if front list 

 
If there are no portals in the front portal list then alternatively we just return either the back portal list or 
NULL if no portals exist in this the back portal list either as shown below. 
 
            else  
            { 
     // There is nothing in the front list simply return the back list 
                if (BackPortalList != NULL) return BackPortalList; 
                return NULL; 
 
     } // End if no front list 
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     // If we got here, we are fresh out of portal fragments so simply return NULL. 
     return NULL; 
 
    } // End switch 
 
    return NULL; 
} 
 

The ClipPortal method is certainly an intimidating function on first appearance although, examining the 
various cases in isolation has shown that this is really just a special case CSG function. Most of the code 
that seems to make the function look overly complex is actually trivial linked list manipulation and 
management code. This function is the core of the portal generation process. As we have seen, it is 
called by the CProcessPRT::ClipPortal method for each initial portal that is created on a node plane.   
 
Whenever a portal is found to exist in a leaf in the above code, we record the index of that leaf in the 
portal. Whether the leaf index is stored in the first element of the portals LeafOwner array or the second 
depends on whether the leaf exists in the front or back half space of the node respectively. To make this 
determination the ClassifyLeaf method is used. This method also takes care of identifying rogue portal 
fragments if the leaf can not be found down either the front or back tree of the current portals owner 
node. Let us have a look at the code to this function next. 
 
 
ClassifyLeaf - CProcessPRT 
 

When this function is called from ClipPortal it is passed the index of the leaf in which the portal 
fragment has been found to reside and is also passed the index of the portal’s owner node. Recall that the 
owner node is the node for which the initial portal was created and sent into the first instance of the 
ClipPortal method. 
 
The function first uses the passed node index to fetch the node structure from the BSP tree’s node array. 
 
unsigned long CProcessPRT::ClassifyLeaf( unsigned long Leaf, unsigned long Node ) 
{ 
    CBSPNode * CurrentNode = NULL; 
 
    // Validate Requirements 
    if (!m_pTree) throw BCERR_INVALIDPARAMS; 
    if (!(CurrentNode = m_pTree->GetNode( Node ))) throw BCERR_BSP_INVALIDTREEDATA; 

 
If the node has a negative number in its Front member then it means a leaf exists down the front of the 
node. In this case we convert it to a valid leaf index and perform an equality test with the passed leaf 
index. If they are equal then we have located the passed leaf as being attached immediately to the front 
of the node. This means the leaf we are looking for is in the front half space of the portal so we return 
FRONT_OWNER. 
 
    // Check to see if the front is this leaf 
    if ( CurrentNode->Front < 0 )  
    { 
        if ( abs(CurrentNode->Front + 1) == Leaf ) return FRONT_OWNER; 
    }  
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If the node’s Front member is non negative then it contains the index of the front child node. When this 
is the case we use the CProcessPRT::FindLeaf function (discussed in a moment) to traverse the front 
tree of the node looking for the leaf. If the function returns true then the leaf was located down the front 
tree of the node so we can also return FRONT_OWNER. If the function did not return true then we were 
unable to locate the leaf in the front tree so we will have to search the back tree of the node instead. 
 
    else  
    {  
        if (FindLeaf( Leaf, CurrentNode->Front )) return FRONT_OWNER; 
    } // End If 

 
Provided that the node’s Back member is non negative it means a child node exists there so we should 
traverse down the back tree of the node searching for the leaf using the FindLeaf function once again. If 
the function returns true the leaf was located in the back tree which means this is the leaf that exists in 
the back space of the portal thus we return BACK_OWNER. If none of these cases are true then it 
means the portal fragment obviously landed in a leaf that is not beneath the portal’s owner node in the 
tree and as such is obviously a rogue fragment that should be deleted. When this is the case we reach the 
bottom of the function where NO_OWNER is returned. 
 
    if ( CurrentNode->Back >= 0 )  
    { 
        if (FindLeaf(Leaf, CurrentNode->Back )) return BACK_OWNER; 
    } // End If 
 
    return NO_OWNER; 
} 

 
When NO_OWNER is returned from this function back to the ClipPortal method, the portal fragment is 
deleted. 
 
 
FindLeaf - CProcessPRT 
 
This is the recursive leaf searching function that was called from the previously discussed function to 
search for a given leaf down a given sub-tree. As we saw in the previous function, the first parameter to 
this function is where the index of the leaf we wish to search for should be passed. The second 
parameter is where the index of the node we would like to start searching from should be passed. As we 
saw in the previous function, this is the back or front child of the portal’s owner node for which the leaf 
search is being performed.  
 
The function first uses the passed node index to fetch the relevant node structure from the tree’s node 
array. 
 
bool CProcessPRT::FindLeaf( unsigned long Leaf, unsigned long Node ) 
{ 
    CBSPNode * CurrentNode = NULL; 
 
    // Validate Requirements 
    if (!m_pTree) throw BCERR_INVALIDPARAMS; 
    if (!(CurrentNode = m_pTree->GetNode( Node ))) throw BCERR_BSP_INVALIDTREEDATA; 
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If a leaf exists down the front of this node then we test to see if that leaf has the same index as the leaf 
we are searching for. If so, we have found our leaf so we return true. 
 
    // Check to see if the front is this leaf 
    if ( CurrentNode->Front < 0 )  
    { 
        if ( abs(CurrentNode->Front + 1) == Leaf ) return true; 
    }  

 
If a leaf does not exist down the front of the current node we are visiting but a child node exists there 
instead, we will recur down the front tree of this node searching for the leaf. 
 
    else  
    {  
        if (FindLeaf( Leaf, CurrentNode->Front )) return true; 
    } // End If 

 
If we get this far then it means the leaf could not be found down the front tree of the current node so we 
will search the back tree of the current node instead and return true if it is located. 
 
    // Iterate down the back if it's a node 
    if ( CurrentNode->Back >= 0 )  
    { 
        if (FindLeaf( Leaf, CurrentNode->Back )) return true; 
    } // End If 
 
    return false; 
} 
 

If we reach the bottom of the function without returning true then it means the leaf could not be found 
down the front and back tree of the current node so we return false. 
 

Portal Generation Conclusion 
 
This completes our coverage of the portal generation module and as we have seen, it is implemented via 
a handful of functions. We have also seen that all our CCompiler object had to do was invoke the 
CProcessPRT::Process method to populate the BSP with portal data. 
 
We are at the mid-way point in this lab project having implemented one of the two modules necessary to 
add potential visibility set calculation to our compiler application. In the next section we will discuss the 
implementation of the CProcessPVS class which uses the portal data now present in the tree to perform 
the final calculation of the PVS data. It should be noted that the portal generation module must be 
enabled for the PVS calculation module to work. As the PVS calculation module can not possibly 
perform its task with our portal data being present in the tree, the module will terminate immediately if 
no portal data is found to be present in the BSP tree.  
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The PVS Calculator  
 
It is crucial that you have read the PVS section in the accompanying text book before continuing with 
this section of the work book. In this section we will not re-cover the theory of PVS calculation and anti-
penumbra generation and clipping. It is assumed you have read and understood the text book and are 
now interested in seeing how this technique pertains to this particular application and our application 
structures and classes. 
 
Our PVS calculator is contained in the module CProcessPVS. It is this module’s Process method which 
is called from CCompiler post portal generation. The PVS calculation module itself has all its data and 
structures contained in the project source files ProcessPVS.h and ProcessPVS.cpp. 
 
In ProcessPVS.h we have a compiler define named PVS_COMPRESSDATA which can be set to zero or 
one to control whether the resulting PVS data should be zero run length encoded by the PVS generation 
module prior to being stored in the BSP tree.   
 
#define PVS_COMPRESSDATA        1       // 1 = ZRLE Compress, 0 = Don't Compress 

 
By default we set this to 1 and it is unlikely that you will want to change this. PVS data sets for complex 
levels can be quite large if no compression is used and while memory is fairly abundant on today’s end 
user systems, we do not want to waste it considering the typical huge number of other resources that 
may have to be stored. Also, we discussed in the text book how zero run length encoding our data 
actually helps speed up the rendering of a given leaf’s PVS by allowing us to skip past entire runs of 
non-visible leaves with a single byte increment of the PVS data pointer. 
 
Before we examine the code to the CProcessPVS module, there are several support structures used by 
this process that we must first discuss. For example, we know that the two-way portals stored in the BSP 
tree will have to be duplicated into a number of one way portal structures that have added member 
variables that pertain to the PVS calculation process. We also discussed in the text book how in order to 
reduce memory allocation and fragmentation during the recursive clipping process, each of these portals 
will have the ability to share its underlying geometry with other portals.  
 

The CPVSPortal Class 
 
The CPVSPortal class is the object that will be used to store the one way portals used by the PVS 
calculation module. For each original two-way portal stored in the BSP tree at the end of the portal 
generation process, two CPVSPortal objects will be created. Each of the two one-way portals will share 
and represent the same geometry of the two-way portal from which they were cloned but each will point 
into an opposing half space. In the text book we had a section devoted to the need for us having a strict 
portal flow during the PVS clipping process and that is what these one-way portals provide us. 
 
Each one-way portal which is temporarily generated for the PVS calculation module stores much more 
additional information than a normal two-way portal it was cloned from. We have to store in that portal 
the index of its neighbor leaf. The neighbor leaf is the leaf in which the one-way portal does not reside 
but has its normal facing into. That is to say, a one-way portal’s visibility flows out from its owner leaf 
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into the neighbor leaf. We will also need to store in the one-way portal the visibility bit sets that are 
being compiled for that portal. Recall from the text book, that the PVS for the tree is actually generated 
by first calculating the PVS of each portal. Therefore, each of these portals will need to have a member 
where we can store its PVS. Each leaf’s PVS is then calculated by simply accumulating the visibility 
information of each portal that resides within that leaf. 
 
The CPVSPortal structure is shown below followed by a description of its members. 
 
Excerpt from CPVSPortal.h 
class CPVSPortal 
{ 
public: 
    // Constructors / Destructors for this Class 
             CPVSPortal( ); 
    virtual ~CPVSPortal( ); 
 
    // Public Variables for This Class 
    UCHAR             Status;               // The compilation status of this portal 
    UCHAR             Side;                 // Which direction does this portal point 
    long              Plane;                // The plane on which this portal lies 
    long              NeighbourLeaf;        // The leaf into which this portal points 
    long              PossibleVisCount;     // The size of the PossibleVis array 
    UCHAR            *PossibleVis;          // "Possible" visibility information 
    UCHAR            *ActualVis;            // "Actual" visibility information 
    bool              OwnsPoints;           // Does this own the points ?? 
    CPortalPoints    *Points;               // The vertices making up this portal 
 
}; 

 
 
UCHAR             Status;               
This member is used to store the current status of the portal. This allows us to determine whether this 
portal has had its PVS calculated yet, whether it is still waiting to have its PVS calculated or whether it 
is currently in the process of having its visibility information calculated. During the calculation of the 
PVS, each portal can be set to one of the following #defines from the file CProcessPVS.h 
 

Excerpt from CProcessPVS.h 
#define PS_NOTPROCESSED 0       // Portal has not yet been processed 
#define PS_PROCESSING  1       // Portal is currently being processed 
#define PS_PROCESSED  2       // Portal has been processed 

 
These status flags are used in a number of places. Firstly, as the PVS calculation process is one of 
essentially looping through each portal and calculating its PVS, we need to know which portals have 
been processed already so that we do not try and calculate its PVS more than one. Now this would not 
be necessary if we were to simply loop through the array of one-portals and calculate the PVS for each 
one in that order however, as discussed in the text book, the PVS calculator can be speeded up slightly 
by processing less complex portals first. That is, portals which have a lower ‘Possible Visibility Count’. 
The possible visibility count is calculated prior to the core clipping process and describes the number of 
leaves that had the potential to be visible as determined by a simple flood fill. By choosing portals with 
the lowest possible visibility count first and which have not yet be processed (obviously), we have a 
situation where during the main clipping process, the calculation time of visibility information for more 
complex portals can be reduced by using the PVS already calculated for each of the lesser complex 
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portals it can see.  There will only ever be one CPVSPortal with a status of PS_PROCESSING at any 
one time during the PVS calculation procedure. 
 
long              Plane;                 
In this member we will store the index of the plane in the BSP tree’s plane array on which the portal was 
created. This is the index of the owner node of the two way portal from which this portal was cloned. As 
two one-way portals will be generated from a single two-way portal, both of these portals will share the 
same plane index. It might seem strange that these two one-way portals would share the same plane 
when they face into opposing half spaces of that plane but we will see that it is precisely for this reason 
the ‘Side’ member of this structure (discussed next) is used. 
 
The plane is stored in the one-way portal because it will be needed for clipping. For example, we 
discussed in the text book how if during the core clipping process the generator portal is found to span 
the source portal’s plane, the generator portal should be clipped to that plane such that any fragment of 
the generator portal that lay in the back space of that plane is discarded. This helps narrow the anti-
penumbra and is also more vital than a simple optimization. If this was not done then when we recur 
through that generator portal such that it becomes the target portal in the next recursion, the anti-
penumbra generated could become twisted or inverted causing erroneous clipping and endless recursive 
loops to be formed. 
 
The problem one might see at the moment is that both the one-way portals duplicated from a single two-
way portal share the same plane while the portals themselves are pointing into opposing half spaces of 
that plane. Therefore, this would only work correctly for the one-way portal that shares the same front 
space with the plane. For the other one-way portal, clipping the generator portal to its plane would 
actually remove the section of the generator portal that is in the front space of the portal instead of in its 
back space. This would obviously be completely incorrect which is why the ‘Side’ member (discussed 
next) is used. The Side member tells the PVS processing module on which side of the plane the portal’s 
normal is assumed to be pointing into. If the Side member indicates that the one-way portal is actually 
pointing into the opposing half space of its stored plane, then the plane is flipped temporarily on the fly 
prior to the clip being performed such that in both cases, we always remove the section of the generator 
portal that is in the back space of the portal. 
 
UCHAR             Side;                  
As discussed above, this member is used to indicate whether the portal is pointing into the same front 
space as its stored node plane. If this member is set to FRONT_OWNER then it is and any generator 
portals can be clipped against this plane without any problems. As polygon clipping functions typically 
remove the polygon fragment that lay in the back space of the plane, this is correct and the fragment of 
the generator portal that lay in the back space of the portal will be discarded. If this member is set to 
BACK_OWNER then it means the stored node plane is actually facing into the opposing half space to 
that of the plane normal and as such, the plane direction will need to be flipped prior to the clip. 
 
long              NeighbourLeaf;         
This member stores the index of the leaf that the portal flows into. As discussed in the text book, portal 
visibility flow happens from a source leaf, through the back of its contained portals and into their 
neighbor leaves. This stores the neighbor leaf of the portal; the leaf that you will arrive in if you step 
through the back of the portal from its owner leaf. 
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UCHAR            *PossibleVis;   
To optimize the core clipping process as much as possible, prior to the main anti-penumbra clipping 
processor being invoked, a very approximate PVS will be calculated using a simple flood fill technique 
controlled by the rules of one-way portal flow. This process will be very quick to perform and will 
generate a leaf visibility bit set for each portal. Any bits set to zero in this bit set represent leaves that 
could not possibly ever be visible from the portal and as such, we know during the core clipping process 
not to visit these leaves unnecessarily and perform wasteful expensive clipping operations to essentially 
arrive at a non visible result. 
 
After the portal flow procedure has been perform for this portal (prior to the core clipping procedure 
being invoked for this portal), this unsigned char pointer will point to an array of bytes that contain the 
‘Possible’ visibility set for the portal. Each bit in the array will represent a leaf and as such, each byte 
element in this array represents the visibility information for eight leaves with respect to this portal. This 
visibility set will be very approximate and vastly over generous but will help optimize the core recursive 
clipping procedure. 
 

Note: We discussed earlier how one of the compile time options for our CProcessPVS module is the 
PVSOPTIONS::FullCompile Boolean. If set to false, our PVS calculator will not bother performing the core 
clipping procedure at all and will simply return the PVS data based into the possible visibility information 
stored in this byte array for each portal. That is, the PVS calculated for each leaf will be the accumulation 
of the PossibleVis arrays of each portal contained in that leaf. While this will generate an very over 
generous PVS with very approximate visibility, it will compile extremely quickly which might be useful 
during development time when you wish to test the compiler but not wait hours for the compiler to 
calculate the actual potential visibility set. 

 
 
long              PossibleVisCount;      
This member will be calculated during the initial flood of this portal and the calculation of its 
PossibleVis array. It will describe the number of possibly visible leaves. That is, the number of bits in 
the PossibleVis array that have been set to 1. As discussed a moment ago, to speed up compilation we 
will wish to calculate the PVS for the least complex portals first. This member describes the portals 
complexity and therefore, describes the order in which it should be chosen for full PVS calculation. The 
lower this number, the earlier in the process this portal will be chosen to have its PVS calculated. 
        
UCHAR            *ActualVis;            
The job of the core clipping process of this module is to take the PossibleVis array of a portal and refine 
it using anti-penumbra clipping to generate the tightest potential visibility set possible. The resulting 
(actual) PVS for the portal will be stored in this array. That is, after this portal has been processed, the 
ActualVis array will contain the ‘real’ visibility information for this portal and the visibility information 
that will ultimately contribute to its owner leaf’s PVS at the end of the process. 
 
CPortalPoints    *Points;                
This member is of a type we have not yet discussed. The CPortalPoints structure is a specialized 
structure derived from CPolygon and as such is actually used to store the geometry of the portal itself. 
We can think of the CPortalPoints class as being a CPolygon object with a few extra member variables 
that pertain to the PVS clipping process. 
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bool              OwnsPoints;            
To save memory, we try to maximize the re-use of geometry among the portals. For example, we know 
that when we generate two one-way portals from a two-way portal that it would be a waste to allocate 
two CPortalPoints objects for each one-way portal. These polygons and their geometry will essentially 
be exactly the same as each other and will contain the exact same vertex data. Therefore, we can allocate 
one CPortalPoints structure (remember this is just a CPolygon derived object) and can have both one-
way portals point at it. Therefore, in order to make sure that when each one-way portal is deleted we do 
not try and delete this shared CPortalPoints structure twice, only one of the one-way portals will have its 
OwnsPoints set to true. This will be assumed to be the portal that owns the structure and the one that 
will take care of releasing it when it is deleted. When the other one-way portal is deleted, which has this 
member set to false, it will not attempt to delete the CPortalPoints structure that it references as it knows 
that another object will handle its clean up. 
 
Let us now have a look at the methods of this one way portal class for which there is only a constructor 
and a destructor. 
 
 
Constructor - CPVSPortal 
 
The constructor simply initializes all members to zero, NULL or false and sets the status of this portal to 
its default state of PS_NOTPROCESSED. That is, this portal has not yet had its PVS data (ActualVis 
array) calculated. 
 
CPVSPortal::CPVSPortal() 
{ 
    // Initialise any class specific items 
    Status              = PS_NOTPROCESSED; 
    Plane               = -1; 
    NeighbourLeaf       = -1; 
    PossibleVisCount    = 0; 
    PossibleVis         = NULL; 
    ActualVis           = NULL; 
    Points              = NULL; 
    OwnsPoints          = false; 
} 
 

 
 
Destructor - CPVSPortal 
 
The destructor is simple also but sheds some light on the OwnsPoints member that we discussed a 
moment ago. 
 
The portal contains three possible memory allocations that it may be responsible for releasing. If its 
ActualVis and PossibleVis arrays have been allocated then they will need to be deleted. Also, if this 
portal is the owner of the CPortalPoints object that it references then it should deleted that too.  
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CPVSPortal::~CPVSPortal() 
{ 
    // Clean up after ourselves 
    if (ActualVis && PossibleVis != ActualVis) delete []ActualVis; 
    if (PossibleVis) delete []PossibleVis; 
    if (Points && OwnsPoints ) delete Points; 
 
    // Empty pointers 
    PossibleVis = NULL; 
    ActualVis   = NULL; 
    Points      = NULL; 
} 

 
As you can see in the above code, we only release the CPortalPoints object if the portal’s OwnsPoints 
Boolean is set to true. 
 
Let us now look at the CPortalPoints object which is derived from CPolygon and contains the actual 
geometry of the portal referenced by this CPVSPortal object. 
 
 

The CPortalPoints Class 
 
The CPortalPoints class essentially encapsulates a portal polygon. It is derived from CPolygon and as 
such inherits its geometry members and methods. This class adds some of its own members and 
implements its own versions of the Split and Clip functions. Once again, do not worry we do not have to 
write polygon splitting and clipping functions all over again. These functions are simple wrappers 
around their base class counterparts that facilitate the copying of the extra data into the child polygons 
resulting from the split/clip. 
 
This class is declared in CProcessPRT.h and is shown below. It will be followed by a discussion of its 
members and an examination of its member functions. 
 
class CPortalPoints : public CPolygon 
{ 
public: 
 
    // Constructors / Destructors for this Class 
      CPortalPoints( ); 
              CPortalPoints( const CPolygon * pPolygon, bool Duplicate = false ); 
    virtual ~CPortalPoints( ); 
 
    // Public Functions for This Class 
    CPortalPoints *     Clip( const CPlane3& Plane, bool KeepOnPlane ); 
    virtual HRESULT     Split( const CPlane3& Plane,  
                               CPortalPoints * FrontSplit,  
                               CPortalPoints * BackSplit); 
 
    // Public Variables for This Class 
    bool                OwnsVertices;           // Do we own the vertices stored here ? 
    CPVSPortal         *OwnerPortal;            // Pointer to this points parent portal ;) 
}; 

 
As you can see, we have added only two member variables to that of those inherited from CPolygon. 
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bool                OwnsVertices;         
This member is analogous to the OwnsPoints member of the CPVSPortal structure. It allows multiple 
CPortalPoints structures to share the same underlying vertex data. For example, when two CPVSPortals 
are first created (from a given two-way portal) we have seen that one CPortalPoints structure is created 
which is shared by both. Furthermore, as the geometry of this portal is identical to that of the two-way 
portal stored in the tree, we can simply assign its vertex pointer to the vertex array stored in the two-way 
portal in the BSP tree. That is, for each one-way portal that we initially create, its CPortalPoints 
structure will not have allocated its own vertex data but will point to the vertex array of the CBSPPortal 
from which it was cloned. 
 
This may all sound a little over cautious but it is quite necessary for both the compiler’s performance 
and addressing memory footprint issues. For example, we know that if portal gets clipped then we will 
have to allocate a new set of vertex data for the child split fragments. There is nothing we can do about 
that. However, there may be many times during the process where a generator portal does not get 
clipped at all and as such, we can happily use the vertex data that was originally created for the 
CBSPPortal version of the portal. 
 
This Boolean lets the CPortalPoints destructor know whether or not the vertex array store here is owed 
by (was allocated for) this portal specifically (such as if this polygon was the result of a clip operation) 
or if its vertex pointer is assigned to the vertex array of another object in which case the memory should 
not be released. As discussed, when each one-way portal is created, each of their CPortalPoints objects 
will not contain there own vertex data but alias the vertex data stored in the portals of the BSP tree. 
 
CPVSPortal         *OwnerPortal;    
This member is used to point at the CPVSPortal that owns this object and will be responsible for its 
clean up. For each pair of one-way portals that we generate, only one of them will own the 
CPortalPoints structure that they both alias (phew, that is a lot to keep track of). 
 
 
 
Constructor - CPortalPoints 
 
There are two constructors for this class. The default constructor simply sets the owner portal pointer to 
NULL and sets the OwnsVertices Boolean to false by default as shown below. 
 
CPortalPoints::CPortalPoints() 
{ 
    // Initialise any class specific items 
    OwnsVertices = false; 
    OwnerPortal  = NULL; 
} 

 
The second constructor is a copy constructor that can be used to create and populate a new 
CPortalPoints object from the data stored in a passed CPolygon object. 
 
The first parameter to the copy constructor is a pointer to the CPolygon we would like this object to 
copy or alias the vertex data of. The second parameter is a Boolean which specifies whether we would 
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like this object to allocate its own vertex array and copy the vertex data over from the passed CPolygon, 
or whether we would like to simply alias the vertex data by assigning the vertex data pointer to point at 
the vertex array of the passed CPolygon. In the later case, the CPortalPoints object will not own the 
vertex data and should no delete it within its destructor. We inform the destructor of whether or not the 
vertex data of this object should be released during object deletion by setting the OwnsVertices member 
to true or false respectively.  
 
Here is the code: 
 
CPortalPoints::CPortalPoints( const CPolygon * pPolygon, bool Duplicate ) 
{ 
    // Initialise any class specific items 
    OwnsVertices = false; 
    OwnerPortal  = NULL; 
    if (!pPolygon) return; 
 
    // Store or duplicate verts 
    if ( Duplicate ) 
    { 
        // Duplicate the vertices 
        if (AddVertices( pPolygon->VertexCount ) < 0) throw BCERR_OUTOFMEMORY; 
        memcpy( Vertices, pPolygon->Vertices, VertexCount * sizeof(CVertex) ); 
        OwnsVertices = true; 
 
    } // End if Duplicate 
    else 
    { 
        // Simply store a copy of the pointer info 
        Vertices     = pPolygon->Vertices; 
        VertexCount  = pPolygon->VertexCount; 
        OwnsVertices = false; 
 
    } // End if !Duplicate 
} 

 
As you can see, if the Duplicate Boolean parameter is set to true then we do indeed allocate a vertex 
array for this object and copy over the vertex data from the passed CPolygon. We then set the 
OwnsVertices member to true which will instruct the destructor to release this memory on object de-
allocation. If the Boolean is set to false then we simply copy over the vertex count from the passed 
polygon and assign the vertex pointer to point at the passed CPolygon vertex array. We also set the 
OwnsVertices member to false so that we do not try to delete this vertex array on object destruction. 
These are not our vertices to delete. 
 
 
Destructor - CPortalPoints 
 
The destructor only deletes the vertex array of the CPortalPoints object if it owns them. That is, if the 
OwnsVertices Boolean is set to true. 
 
CPortalPoints::~CPortalPoints() 
{ 
    // Clean up after ourselves only if required 
    if (OwnsVertices) ReleaseVertices(); 
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    // Simply NULL our vertex values 
    Vertices    = NULL; 
    VertexCount = 0; 
} 

 
It will become more apparent why we try to share as much data as possible during the core clipping 
process. 
 
 
Split - CPortalPoints 
 
The CPortalPoints object implements it own polygon splitter. As with the base class version of this 
function it takes three parameters with the first being the split plane. The final two parameters however 
are now of type CPortalPoints.  
 
As CPortalPoints is derived from CPolygon we can use the base class version of the function to perform 
that actual splitting of the geometry into the front and back children.  
 
HRESULT CPortalPoints::Split( const CPlane3& Plane, 
                                    CPortalPoints * FrontSplit,  
                                    CPortalPoints * BackSplit) 
{ 
    // Call base class implementation 
    HRESULT ErrCode = CPolygon::Split( Plane, FrontSplit, BackSplit ); 
    if (FAILED(ErrCode)) return ErrCode; 

 
As we have created two new polygons by copying over portions of vertex data from the parent polygon, 
each one will own its own vertices so we must set the OwnsVertices member of both the front and back 
split (if they exist) to true.  
 
    // Copy remaining values 
    if (FrontSplit)  
    { 
        FrontSplit->OwnsVertices = true; 
    } // End If 
 
    if (BackSplit)  
    { 
        BackSplit->OwnsVertices  = true; 
    } // End If 
 
    // Success 
    return BC_OK; 
} 

 
As we have seen, this function is a simple wrapper around a call to the base class version of the function 
with the added logic of making sure that the child split fragments understand that they have had there 
own unique vertex data generated by the clipping process. This is especially true as we would not want 
the vertex data of the children to be deleted when the parent polygon is deleted because as we know, one 
of the first things we do after splitting a polygon into two children is delete the original. Our split 
routines (as we have seen) will always create polygon fragments that own there own vertex data. 
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Clip - CPortalPoints 
 
The Clip method simply classifies the polygon represented by this object against the plane passed in as 
the first parameter and removes the portion of the polygon that is found to be behind the plane. The 
second parameter indicates whether we would like the polygon to be clipped or kept if it is found to 
exist on the plane itself. This will be used later during the anti-penumbra clipping process. The function 
returns a pointer to the new clipped polygon. 
 
First we classify the polygon against the plane and then enter a switch statement that chooses the 
outcome based on the classification result. Notice at the top of the function how the NewPoints local 
pointer is allocated. This will be used to point to the clipped fragment and will be the pointer that is 
returned from the function. 
 
 
CPortalPoints * CPortalPoints::Clip( const CPlane3& Plane, bool KeepOnPlane ) 
{ 
    CPortalPoints * NewPoints = NULL; 
 
    try 
    { 
        // Classify the points 
        CLASSIFYTYPE Location = Plane.ClassifyPoly( Vertices, VertexCount, sizeof(CVertex) ); 

 
        // What location ? 
        switch ( Location ) 
        { 

 
If the polygon is found to be contained in the front space of the plane then nothing is to be clipped. 
Therefore, we simple assign the NewPoints pointer to point at the current polygon. This means, the 
method will return a pointer to the CPortalPoints structure for which it was invoked. That is, the object 
will just return a pointer to itself. 
 
            case CLASSIFY_INFRONT: 
                // All were in front, simply return this 
                NewPoints = this; 
                break; 

 
If the polygon is found to exist entirely in the back space of the clip plane then the polygon should be 
totally clipped away. When this is the case we return NULL indicating that none of the polygon should 
survive. The caller can then choose to delete the object if it so chooses. 
 
            case CLASSIFY_BEHIND: 
                // Nothing was in front 
                NewPoints = NULL; 
                break; 

 
We will see later when we cover the core clipping function of the PVS calculation how we sometimes 
want to clip away a polygon even if it is located on the plane. For example, if the generator portal is 
located on the same plane as the target portal then the target portal can not possibly see through the 
generator portal and should be completely clipped away.  
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You can see below that in the on plane case, if the KeepOnPlane Boolean parameter is set to true, we 
just assign the NewPoints pointer to the ‘this’ pointer allowing the object to return a pointer to itself. 
Otherwise, we break and NULL will be returned at the bottom of the function signifying to the caller 
that the portal should be deleted.  
 
            case CLASSIFY_ONPLANE: 
                // Should we keep the onplane case ? 
                if ( KeepOnPlane ) NewPoints = this; 
                break; 

 
Finally, if the polygon is spanning the plane, we create a new CPortalPoints object which is passed into 
the Split function to retrieve the front fragment. NULL is passed as the back split as we do not wish to 
retrieve the back fragment of the polygon as this is the fragment that should be discarded. 
 
            case CLASSIFY_SPANNING: 
 
                // Allocate a new set of points 
                NewPoints = new CPortalPoints; 
                if (!NewPoints) throw std::bad_alloc(); 
 
                // Clip the current portal points 
                if ( FAILED(Split( Plane, NewPoints, NULL ))) throw BCERR_OUTOFMEMORY; 
                break; 
         
        } // End Switch 
 
    } // End try block 
 
    catch (...) 
    { 
        return NULL; 
 
    } // End catch block 
 
    // Success!! 
    return NewPoints; 
} 
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The CProcessPVS Class 
 

With the initial support structures covered, we will now look at the code to the CProcessPVS module. It 
is declared in ProcessPVS.h and is shown below. First four public methods of the object’s interface 
should be familiar as they form the method set common to all our modules. They include the Process 
method that is called by CCompiler to invoke the PVS calculator module and the methods to set the 
modules Logger, parent and options. There are also two additional public methods called 
‘GetPVSPortalCount’ and ‘GetPVSPortal’ which can be used to fetch the one-way portal information 
stored in the module. There are also many private functions which are used by the Process method to 
accomplish its task which we will examine in a moment. 
 
class CProcessPVS 
{ 
public: 
    // Constructors & Destructors for This Class. 
             CProcessPVS(); 
    virtual ~CProcessPVS(); 
 
    // Public Functions for This Class. 
    HRESULT         Process( CBSPTree * pTree ); 
    void            SetOptions( const PVSOPTIONS& Options ) { m_OptionSet = Options; } 
    void            SetLogger ( ILogger * pLogger )         { m_pLogger = pLogger; } 
    void            SetParent ( CCompiler * pParent )       { m_pParent = pParent; } 
 
    unsigned long   GetPVSPortalCount( ) const  
                                { return (unsigned long)m_vpPVSPortals.size(); } 
 
    CPVSPortal     *GetPVSPortal( unsigned long Index ) const  
                                { return (Index < m_vpPVSPortals.size()) ? 
                                           m_vpPVSPortals[Index] : NULL; } 
 
private: 
    // Private Functions for This Class. 
    HRESULT         GeneratePVSPortals( ); 
    HRESULT         InitialPortalVis( ); 
    HRESULT         CalcPortalVis( ); 
    void            PortalFlood( CPVSPortal * SourcePortal,  
                                 unsigned char PortalVis[],  
                                 unsigned long Leaf ); 
 
    HRESULT         ExportPVS( CBSPTree * pTree ); 
 
    void            GetPortalPlane( const CPVSPortal * pPortal, CPlane3& Plane ); 
 
    ULONG           CompressLeafSet ( UCHAR MasterPVS[],  
                                      const UCHAR VisArray[],  
                                      ULONG WritePos); 
 
    ULONG           GetNextPortal(); 
 
    HRESULT         RecursePVS( ULONG Leaf, CPVSPortal * SourcePortal, PVSDATA & PrevData ); 
 
    CPortalPoints * ClipToAntiPenumbra( CPortalPoints * Source,  
                                        CPortalPoints * Target,  
                                        CPortalPoints * Generator,  
                                        bool ReverseClip ); 
     
    // Private Static Functions for This Class. 
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    static CPortalPoints *  AllocPortalPoints( const CPolygon * pPolygon, bool Duplicate ); 
    static bool             GetPVSBit( UCHAR VisArray[], ULONG DestLeaf ); 
    static void             SetPVSBit( UCHAR VisArray[], ULONG DestLeaf, bool Value = true ); 
    static void             FreePortalPoints( CPortalPoints * pPoints ); 
 
    // Private Variables for This Class. 
    PVSOPTIONS      m_OptionSet;        // The option set for PVS Compilation. 
    ILogger        *m_pLogger;          // Logging interface used to log progress etc. 
    CCompiler      *m_pParent;          // Parent Compiler Pointer 
     
    CBSPTree       *m_pTree;            // The tree used to compile the PVS. 
    ULONG           m_PVSBytesPerSet;   // Number of Bytes required to  
                                        // describe a single leaf's visibility 
    vectorPVSPortal m_vpPVSPortals;     // Vector storage of pointers to CPVSPortal objects 
}; 
 

We will first examine the member variables of this object before examining each of its methods. 
 
PVSOPTIONS      m_OptionSet;   
This member holds the compilation options for the PVS module and is set by CCompiler via the 
CProcessPVS::SetOptions method. We looked at this structure earlier and saw that it contained members 
to instruct the module to either do a full or fast compile (where fast simply use the PossibleVis array and 
does not perform the anti-penumbra clipping procedure) and describes the number of anti-penumbra clip 
tests (1 to 4) that should be carried out for each Source/Generator portal combination encountered 
during the recursive clipping procedure. 
 
ILogger        *m_pLogger;         
This member will point to the logging object whose interface will be used by this module to output 
status reports and compilation errors or warnings. This is set by the CCompiler object prior to the 
Process function being called via the CporcessPVS::SetLogger method. 
 
CCompiler      *m_pParent;           
This member is set by the CCompiler object via the CProcessPVS::SetParent method. It stores a pointer 
to the CCompiler object that invoked it.     
 
CBSPTree       *m_pTree;             
This member points to the BSP tree that is having its PVS data calculated and that contains the portal 
information generated by the previously discussed module. This pointer is set by CCompiler via the 
parameter to the CProcessPVS::Process method. 
 
ULONG           m_PVSBytesPerSet;     
This member will be calculated by this module at the start of the Process method and will contain the 
number of bytes needed to store the visibility information for a single leaf. As each byte contains 8 bits a 
single byte will contain the information for 8 leaves. 
 
vectorPVSPortal m_vpPVSPortals;      
This is an STL vector will store CPVSPortal structures. It is in this vector that the pointers of all the one-
way portals generated by this module will be stored. 
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Constructor - CProcessPVS 
 
The constructor of this module simply initializes all members to zero or NULL. 
 
CProcessPVS::CProcessPVS() 
{ 
    // Reset / Clear all required values 
    m_PVSBytesPerSet    = 0; 
    m_pLogger           = NULL; 
    m_pTree             = NULL; 
    m_pParent           = NULL; 
} 
 
 

Destructor - CProcessPVS 
 
The destructor of this object must release the one-way portals (CPVSPortal structures) that it allocated 
to complete its task and must also empty the vector that contained these pointers. 
 
CProcessPVS::~CProcessPVS() 
{ 
    ULONG i; 
 
    // Clean up after ourselves 
    for ( i = 0; i < GetPVSPortalCount(); i++ ) if ( GetPVSPortal(i) )  
                                                     delete GetPVSPortal(i); 
 
    // Clear Vectors 
    m_vpPVSPortals.clear(); 
} 
 
 
 
 

AllocPortalPoints - CProcessPVS 
 
There will be many times throughout the PVS calculation process that we will need to allocate new 
CPortalPoints object. In keeping with the allocation strategy we have used for other modules, this 
function can be used to allocate a new object of this type. The function simply wraps the allocation call.  
 
The function takes two parameters. The first is a pointer to the CPolygon object (or derived object) that 
has the geometry we would like this new CPortalPoints object to represent and the second parameter is a 
Boolean that specifies whether we would like the CPortalPoints structure to copy the polygon data into 
its own vertex array or simply alias it. These parameters are simply passed into the CPortalPoints copy 
constructor which we have already covered. 
 
CPortalPoints * CProcessPVS::AllocPortalPoints( const CPolygon * pPolygon, bool Duplicate ) 
{ 
    CPortalPoints * NewPoints = NULL; 
 
    try 
    { 
        // Attempt to allocate a new set of points 
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        NewPoints = new CPortalPoints( pPolygon, Duplicate ); 
        if (!NewPoints) throw std::bad_alloc(); 
 
    } // End try block 
 
    catch (HRESULT) 
    { 
        // Constructor throws HRESULT 
        if (NewPoints) delete NewPoints; 
        return NULL; 
     
    } // End Catch 
 
    catch ( std::bad_alloc ) 
    { 
        // Failed to allocate 
        return NULL; 
     
    } // End Catch 
 
    // Success!! 
    return NewPoints; 
} 
 
 

FreePortalPoints - CProcessPVS 
 

This module also has a method that can be used to free a CPortalPoints structure. It takes a single 
parameter, a pointer to the CPortalPoints structure that is to be released. 
 
void CProcessPVS::FreePortalPoints( CPortalPoints * pPoints ) 
{ 
    // Validate Parameters 
    if (!pPoints) return; 
 
    // We are only allowed to delete NON-Owned point sets 
    if ( pPoints->OwnerPortal == NULL ) delete pPoints; 
} 
 

Notice that this method will only physically delete the CPortalPoints object if it is not owned by a parent 
portal. If it is owned by a portal then the portal should be responsible for its clean up inside the portals 
destructor. 
 
 

SetPVSBit - CProcessPVS 
 
There will be several times throughout the PVS compilation procedure when we will need to set or clear 
a bit in a given portal’s visibility bit set (be that its ActualVis array or its PossibleVis array). This 
method is a utility method that allows us to pass a bit set, a leaf whose visibility bit is to be altered in 
that set and a Boolean describing whether that leaf’s bit should be set or cleared in the passed bit set. 
The function wraps calculating the bit that needs to be set in the passed bit array and setting that bit 
accordingly.  
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void CProcessPVS::SetPVSBit( UCHAR VisArray[], ULONG DestLeaf, bool Value /* = true */ ) 
{ 
    // Set / remove bit depending on the value 
    if ( Value == true ) 
    { 
        VisArray[ DestLeaf >> 3 ] |=  (1 << ( DestLeaf & 7 )); 
    } 
    else 
    { 
        VisArray[ DestLeaf >> 3 ] &= ~(1 << ( DestLeaf & 7 )); 
     
    } // End if Value 
} 
 

The bit shifting logic is explained in the text book so refer back if you are feeling a little rusty. Recall 
that DestLeaf>>3 just divides it by eight which tells us the byte in which this leaf’s visibility bit resides. 
By ANDing the leaf index with 7 (binary 00000111) we also get the bit within that byte that needs to be 
set (0 through 7). Therefore, we can shift a value of one by this amount to create a byte that has only that 
bit set (or unset) and then OR it with the byte in the bit set to toggle that leaf’s bit on or off. 
 
 

GetPVSBit - CProcessPVS 
 
We also have a function that uses the same bit shifting logic to retrieve the visibility status of a leaf in 
the passed bit set. 
 
bool CProcessPVS::GetPVSBit( UCHAR VisArray[], ULONG DestLeaf ) 
{ 
    return (VisArray[ DestLeaf >> 3 ] & (1 << ( DestLeaf & 7))) != 0; 
} 

 
With these utility functions out of the way, let us now look at the function that makes it all happen. The 
CProcessPVS::Process method. 
 
 
Process - CProcessPVS 
 
This function is the parent function of the PVS calculation process that calls the various sub-processes in 
order to calculate the final PVS for the passed BSP tree. We will look at the code a section at a time. 
 
The first thing we do in this function is test that the passed tree has portal data generated for it. If this is 
not the case we return immediately as we can not possibly calculate PVS data for this tree. Otherwise, 
we copy the passed BSP tree pointer into the module’s member variable. 
 
HRESULT CProcessPVS::Process( CBSPTree * pTree ) 
{ 
    HRESULT hRet; 
 
    // Validate values 
    if (!pTree) return BCERR_INVALIDPARAMS; 
 
    // Validate Input Data 
    if ( pTree->GetPortalCount() == 0 ) return BCERR_BSP_INVALIDTREEDATA; 
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    // Store tree for compilation 
    m_pTree = pTree; 

 
The next thing we do is calculate the module’s m_PVSBytesPerSet member such that it describes the 
number of bytes needed to hold the visibility bit set for a single leaf. As discussed in the text book, 
although there are 8 bits per byte with each bit representing a leaf’s visibility, we can not just divide the 
total leaf count of the tree by 8 to calculate this size. If we did it would erroneously calculate the number 
of bytes to be allocated to store a 9 leaf tree as 9/8 = 1 (integer math). As we know, we would actually 
need two bytes to represent this information with the first 8 leaves having their bits in byte one and the 
9th leaf with its bit in the first position in byte 2. Therefore, to cope with the integer truncation we add 7 
to the leaf count first and then divide this by 8. Therefore, if we had a 9 leaf tree, the number of bytes we 
would need to represent a bit for each leaf would be (9+7)/8 = 16/8=2.  
 
    // Calculate Number Of Bytes needed to store each leafs 
    // vis array in BIT form (i.e 8 leafs vis per byte uncompressed) 
    m_PVSBytesPerSet = (pTree->GetLeafCount() + 7) / 8; 

 
For reasons that will become clear in the core clipping process we also wish to pad this size to the 
nearest four byte boundary. This will allow us to access the visibility byte arrays using a long pointer 
and iterate through 4 bytes (32 leaves) at a time. For example, imagine that we allocated three bytes and 
then tried to write to the first byte with a four-byte pointer (long *). In this case, we would accidentally 
write to the fourth byte, overstepping the bounds of the array and writing to invalid memory. Therefore, 
if we need 22 bytes, we will allocate 24 bytes instead; the two bytes at the end will serve as padding 
only and will never be used by us. 

    // 32 bit align the bytes per set to allow for our early out long conversion 
    m_PVSBytesPerSet = (m_PVSBytesPerSet * 3 + 3) & 0xFFFFFFFC; 

 
This m_PVSBytesPerSet member now describes the size that we will need to allocate each portal’s 
PossibleVis and ActualVis arrays later in the process. These arrays will be padded with extra unused 
bytes at the end of the array if necessary to make sure we can access the array four bytes at a time 
without overflowing the array. The remainder of the function calls four member functions and clearly 
shows the four sub-process involved in generating the PVS data for the tree. 
 
First we call the GeneratePVSPortals method. This is the method that will fetch each two-way portal 
from the tree and will generate two one-way CPVSPortal structures from it. It is the CPVSPortals that 
will be used by the PVS calculator to control flow visibility as we recur through the level.  
 
    // Retrieve all of our one way portals 
    hRet = GeneratePVSPortals(); 
    if ( FAILED( hRet ) ) return hRet; 
    if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 

     
After the above function returns, this object’s m_vpPVSPortals vector will be filled with all the one-way 
portals needed to perform PVS calculation. Because of their one-way nature, there will be twice as many 
CPVSPortals in this array as there are CBSPPortals stored in the BSP tree. 
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With the one-way portals generated, next we call the InitialPortalVis function. It is this function that will 
perform the initial flood fill through the level and calculate the PossibleVis array for each portal. You 
will recall that the PossibleVis array stored in each portal is a very approximate leaf visibility array for 
that portal which will be used to speed up the core clipping process when the portal’s ActualVis array is 
calculated. 
 
    // Calculate initial portal visibility 
    hRet = InitialPortalVis(); 
    if ( FAILED( hRet ) ) return hRet; 
    if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 

 
When the above function returns each CPVSPortal will contain its PossibleVis array of approximate leaf 
visibility information. Next we enter the core clipping process with a call to CalcPortalVis. This 
function is the function that will calculate the ActualVis array for each portal. That is, the function that 
will generate the leaf visibility information for each portal, the portals’ PVS. 
 
    // Perform actual full PVS calculation 
    hRet = CalcPortalVis(); 
    if ( FAILED( hRet ) ) return hRet; 
    if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 

 
At this point in the function the PVS for each portal will have been calculated so we next call the 
ExportPVS method. This method will use the portal PVS’s to calculate the PVS for each leaf in the tree. 
Recall that a leaf’s PVS is simply the accumulation of the PVS’s of each portal residing in that leaf. 
After the PVS for each leaf has been calculated this information will be compressed and stored in the 
BSP tree in a single byte array. The leaves of the tree will also have their PVSIndex members pointing 
to the correct location in this array describing the starting location of the leaf’s visibility information 
within the final PVS data block. 
 
    // Export the visibility set to the final BSP Tree master array 
    hRet = ExportPVS( pTree ); 
    if ( FAILED( hRet ) ) return hRet; 
    if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 
 
    // Success 
    return BC_OK;    
} 
 

After the ExportPVS method returns, all that is left to do is return from the function as the PVS 
information has been calculated, optionally compressed using zero run length encoding and stored in the 
BSP tree. Our module at this point has completed its task and can return program flow back to 
CCompiler. 
 

Note: Recall that after the PVS module has returned after completing its process, CCompiler will then 
activate the T-junction repair module as a final step before saving the BSP tree out to disk in the form of an 
IWF file. 

 
We will now cover the methods called from the above function in order and get a real understanding of 
where and when everything happens throughout the PVS calculation process. The first function to be 
called is the GeneratePVSPortals method so we will examine the code to this function first. 
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GeneratePVSPortals - CProcessPVS 
 
This method has a very simple task. It has to loop through each CBSPPortal (two-way portal) stored in 
the BSP tree and generate two CPVSPortals (one-way portals) for it. Each one-way portal will have a 
different neighbor leaf selected from the two leaves in which the two-way portal resides. This will 
dictate the direction in which the one-way portals are assumed to facing. 
 
The first section of the code fetches the number of portals stored in the BSP tree. We then set up a loop 
to allocate twice this many CPVSPortals and store their pointers in the CProcessPVS::m_vpPVSPortals 
vector. 
 
HRESULT CProcessPVS::GeneratePVSPortals( ) 
{ 
    ULONG i, p, PortalCount = m_pTree->GetPortalCount(); 
 
    // Allocate enough PVS portals to store one-way copies. 
    try  
    {  
        m_vpPVSPortals.resize( PortalCount * 2 ); 
        for ( i = 0; i < PortalCount * 2; i++ ) 
        { 
            // Allocate a new portal 
            m_vpPVSPortals[i] = new CPVSPortal; 
            if (!m_vpPVSPortals[i]) throw std::bad_alloc(); 
 
        } // Next Portal 
     
    } // Try vector ops 
     
    // Catch Failures 
    catch (...) 
    { 
        return BCERR_OUTOFMEMORY; 
     
    } // End Catch 

     
At this point we have allocated the correct number of one-way portals and have their pointers stored in 
the module’s one-way portal vector. However, these portals are still un-initialized as we have not yet 
populated them with geometry.  
 
In the next step we will loop through each of the portals we just calculated two at a time. We  process 
the one-way portals in pairs in the following loop as each pair of one-way portals is a child (to use the 
term very loosely) of a single one-way portal in the BSP tree. So you can see that we set up the 
following loop to step through the one-way portal list two portals at a time. Heee is the first section of 
the loop code. 
 
    // Loop through each portal, creating the duplicate points 
    for ( i = 0, p = 0; i < PortalCount; i++, p+=2 )  
    { 
        // Retrieve BSP Portal for easy access 
        CBSPPortal * pBSPPortal = m_pTree->GetPortal(i); 
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        CPortalPoints *pp = AllocPortalPoints( pBSPPortal, false ); 
        if ( !pp ) return BCERR_OUTOFMEMORY; 

 
Inside the loop we fetch a pointer to the original two-way portal from the BSP tree whose geometry we 
are going to copy/alias using the pair of one-way portals we are currently processing. pBSPPortal points 
to the original portal in the BSP tree which we will use to set up two one-way portals. We then allocate a 
new CPortalPoints object. Remember, this is the polygon that will be stored in the two CPVSPortals we 
are about to populate.  
 
Notice how we clone the CPortalPoints object from the BSP portal. Although we are creating two one 
way portals, we only need to create one CPortalPoints objects as each one-way portal will share the 
same physical polygon data. Only one of the CPVSPortals we are about to populate will actually own 
the CPortalPoints structure and will be responsible for deleting it within its destructor. The other 
CPVSPortal object will simply reference it.  
 
Another important point to notice is how we also pass false into the copy constructor so that the 
CPortalPoints object does not have its own array of vertex data allocated, but simply aliases the vertex 
array stored in the original BSP portal. Therefore, we will create two CPVSPortal structures that share 
the same CCPortalPoints object and that CPortalPoints object will share its vertex data with the original 
BSP portal. It is clear then that the two CPVSPortals we are about to populate share the same vertex 
data, the vertex data in the original BSP polygon. 
 
Here is the remainder of the loop (and the function) that sets up each CPVSPortal which we discuss 
beneath it. 
 
        // Create link information for front facing portal 
        m_vpPVSPortals[p]->Points        = pp; 
        m_vpPVSPortals[p]->Side          = FRONT_OWNER; 
        m_vpPVSPortals[p]->Status        = PS_NOTPROCESSED; 
        m_vpPVSPortals[p]->Plane         = m_pTree->GetNode( pBSPPortal->OwnerNode )->Plane; 
        m_vpPVSPortals[p]->NeighbourLeaf = pBSPPortal->LeafOwner[ FRONT_OWNER ]; 
        m_vpPVSPortals[p]->OwnsPoints    = true; 
 
        // Store owner portal information (used later) 
        pp->OwnerPortal = m_vpPVSPortals[p]; 
 
        // Create link information for back facing portal 
        m_vpPVSPortals[p + 1]->Points   = pp; 
        m_vpPVSPortals[p + 1]->Side     = BACK_OWNER; 
        m_vpPVSPortals[p + 1]->Status   = PS_NOTPROCESSED; 
        m_vpPVSPortals[p + 1]->Plane    = m_pTree->GetNode( pBSPPortal->OwnerNode )->Plane; 
        
        m_vpPVSPortals[p + 1]->NeighbourLeaf = pBSPPortal->LeafOwner[ BACK_OWNER ]; 
        m_vpPVSPortals[p + 1]->OwnsPoints    = false; 
         
    } // Next Portal 
 
    // Success!! 
    return BC_OK; 
} 
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Notice how each one-way portal we populate points to the same CPortalPoints structure but only the 
first portal we create has its OwnsPoints Boolean set to true. The first one-way portal is therefore the 
owner of the polygon itself and is responsible for the cleanup of that polygon in its destructor. 
 

Notice also that because we know that the BSP portal has the index of the leaf in its front space stored in 
element zero (FRONT_OWNER) in its LeafOwner array and the leaf that is located in its back space 
located in element 1 (BACK_OWNER) in the portal’s LeafOwner array, we can easily set up portals 
that correctly point into the relevant neighbor leaves. For example, the first portal we set up is assigned 
the Side value of front owner which means we intend this portal to be the one that faces in the same 
direction as the owner node’s plane. When this is the case we know that its neighbor leaf (the leaf its 
normal should point into should a normal actually exist) is in the front space of the node plane and as 
such, we assign to its NeighborLeaf member the leaf index stored in the BSP portal’s LeafOwner array 
at element FRONT_OWNER. Notice that we simply flip this logic to set up the 2nd one-way portal so 
that its side is set to BACK_OWNER. This means its normal is assumed to flow into the back space of 
the leaf and thus, it faces in the opposite direction to that of the original node plane.  
 
Finally, notice how we also store the plane of the portal’s owner node (the portals plane) in the 
CPVSPortals. As discussed earlier, although the portals are supposed to be facing in opposing directions 
we store the same clip plane in both. The Side member will instruct the core clipping process to flip the 
plane orientation of the back facing portal prior to clipping anything against it. This may seem a little 
unclear at the moment which is why we will jump ahead temporarily and look at a function that will be 
used later during the main clipping process, the GetPortalPlane function. 
 
 
GetPortalPlane - CProcessPVS 
 
This function is used by the PVS calculator when it wishes to retrieve the plane of a CPVSPortal object. 
This is often required when generator portals need to be clipped against the plane of the source portal 
and vice versa. As our clip functions will always remove portions of a polygon/portal that lay in the 
back space of a clip plane, and considering that the two one-way way portals that exist on the same 
plane and were duplicated from the same two way polygon both store the same plane, it is obvious that 
just using this clip plane for the back facing portal (Side = BACK_OWNER) would cause errors. That 
is, as the plane normal is facing into the opposite half space as the portal, clipping anything away that 
lies behind this plane would actually clip away anything that lay in the front half space of the portal 
causing obvious PVS errors. To fix this problem the GetPortalPlane method is used to retrieve the plane 
of a portal. If the portal whose plane is being retrieved has its side set to BACK_OWNER, then the 
plane orientation is flipped prior to it being returned. This will make sure that the returned plane always 
faces into the same front space as the portal flows. 
 
void CProcessPVS::GetPortalPlane( const CPVSPortal * pPortal, CPlane3& Plane ) 
{ 
 
    // Store plane information 
    Plane = *m_pTree->GetPlane( pPortal->Plane ); 
 
    // Swap sides if necessary 
    if ( pPortal->Side == BACK_OWNER ) 
    { 
        Plane.Normal   = -Plane.Normal; 
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        Plane.Distance = -Plane.Distance; 
     
    } // End if Swap Sides 
} 
 
 

InitialPortalVis - CProcessPVS 
 
After the one-way portal array has been created, the Process method next calls the InitialPortalVis 
method. It is this method that performs the flood fill through the leaves of the tree and constructs a very 
crude visibility array (PossibleVis) for each portal. As we have discussed, this array will be used to 
optimize the main PVS calculation procedure (the anti-penumbra clipping process). 
 
The function first sends some information to the PVS logging channel specifying that the initial portal 
flow is about to be calculated and the progress range of the logger is set to the total number of portals in 
the one-way portal array. Once we have processed each portal in this array and calculated its 
PossibleVis array, we will have completed the initial portal flow procedure. 
 
HRESULT CProcessPVS::InitialPortalVis() 
{ 
    CPortalPoints  *pp; 
    ULONG           p1, p2, i; 
    CPlane3         Plane1, Plane2; 
    UCHAR          *PortalVis = NULL; 
    CPVSPortal     *pPortal1, *pPortal2; 
 
    // ************************* 
    // * Write Log Information * 
    // ************************* 
    if ( m_pLogger ) 
    { 
        m_pLogger->LogWrite( LOG_PVS,  
                             0,  
                             true,  
                             _T("Calculating initial PVS portal flow \t\t- " ) ); 
 
        m_pLogger->SetRewindMarker( LOG_PVS ); 
        m_pLogger->LogWrite( LOG_PVS, 0, false, _T("0%%" ) ); 
        m_pLogger->SetProgressRange( GetPVSPortalCount() ); 
        m_pLogger->SetProgressValue( 0 ); 
    }  
    // ************************* 
    // *    End of Logging     * 
    // ************************* 

 
The rest of the function is essentially just a loop through each portal that performs a flood fill and is 
comprised of two different stages.  
 
In the first stage we calculate which portals in the level could conceivably have portal flow with the 
current portal being processed. This allows us to compile a temporary byte array large enough to store a 
byte for each portal. Each byte in this array is set to either 1 or 0 depending on whether that portal can 
be seen from the current portal being processed. Portals that have their bytes set to zero in this array will 
essentially stop the flood for this portal. Once we have this portal visibility array compiled for the 
current portal being processed, it will be passed into a recursive flood filling function and used to 
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calculate the PossibleVis array for the current portal. Remember, the PossibleVis array of the portal is a 
bit set containing the ‘possible’ leaf visibility array of the portal. That is, which leaves in the tree have 
the potential to be visible during the anti-penumbra clipping process. 
 
So, the first thing we must construct inside the loop that iterates through each portal, is the array of bytes 
that describes which portals can be seen by the current portal being processed. 
 
We loop through each of the other portals and perform 
two tests on it to determine whether its corresponding 
byte in the array should be set to zero or one for the 
current source portal. 
 
Firstly, as portal flow passes through the back of a 
portal out into its neighbor leaf, we know that any 
portals that are located behind the plane of the current 
portal being processed can not possibly be visible to 
the current portal as shown in figure 17.3. We can see 
that in the initial test we find two portals located 
behind the current portal’s plane. This means visibility 
flow can not exist out of the front of the current portal 
and through the back of these two portals. That is, the 
current portal can only see into its front space and therefore can not possible see through portals in its 
back space. As such, the two portals in the example would have their bytes set to zero in the current 
portals array.  

Figure 17.3 

 
As flow can only exist out of the front of one portal and through the back of another, we can also see 
that for portals in the front space of the current portal which face towards the current portal no flow can 
exist also.  
 

In figure 17.4 we can see that in this second test 
another portal is also rejected by the visibility test 
because its faces into the opposing half space to 
the current portal. That is, the text portal and the 
current portal are facing each other.  
 
We can see that the middle portal on the right 
hand side of the diagram is not rejected from the 
visibility test because it faces into the same half 
space as the current portal. Therefore, we can 
clearly see that the back side of this portal is 
clearly visible from the current portal and as such, 

portal flow can happen between these two portals. The bottom portal of the three test portals is also 
accepted even though its plane spans the current portal. We will have to sort this problem out later in the 
main recursive process and clip such portals to each others plane, but for now it is accepted as at least 
some of the current portal lay in the test portals back space and can see through the back of that portal. 
Therefore, portal flow does occur between these portals to some degree.  

Figure 17.4 
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Let is now see the code that performs these tests and compiles the temporary portal/portal visibility 
buffer. This should obviously be large enough to store a byte for each portal. 
 
    try 
    { 
        // Allocate temporary visibility buffer 
        if ( !(PortalVis = new UCHAR[ GetPVSPortalCount() ])) throw std::bad_alloc(); 
 
        // Loop through the portal array allocating and checking  
        // portal visibility against every other portal 
        for ( p1 = 0; p1 < GetPVSPortalCount(); p1++)  
        { 
            // Update progress 
            if (!m_pParent->TestCompilerState()) break; 
            if ( m_pLogger ) m_pLogger->UpdateProgress( ); 
 
            // Retrieve first portal for easy access 
            pPortal1 = GetPVSPortal( p1 ); 
 
            // Retrieve portal's plane 
            GetPortalPlane( pPortal1, Plane1 ); 
 
            // Allocate memory for portal visibility info 
            if (!(pPortal1->PossibleVis = new UCHAR[m_PVSBytesPerSet]))  
                  throw std::bad_alloc(); 
 
            ZeroMemory( pPortal1->PossibleVis, m_PVSBytesPerSet ); 
 
            // Clear temporary buffer 
            ZeroMemory( PortalVis, GetPVSPortalCount() ); 

 
Starting at the top of the above section of code we can see that we allocate the byte array that will be 
temporarily used by each portal we process to contain its portal/portal visibility information. We allocate 
it large enough to store a byte for each one-way portal. 
 
We then set up a loop to iterate through each portal and compute its possible visibility. After updating 
the logger’s progress we fetch the pointer to the portal that is to be process p1. We then fetch the portals 
plane using the GetPortalPlane method. Recall from earlier that this function will take care of returning 
a plane which always faces into the portals neighbor leaf. As this portal (pPortal1) is about to have its 
PossibleVis array calculated we allocate this array next. Notice that it is allocated to m_PVSBytesPerSet 
in size. The value of this variable was calculated at the beginning of the Process method and contains 
how many bytes (including 4 byte alignment padding) we must allocate to have an array where we can 
represent a single visibility bit for each leaf in the tree. We then zero this array initially so that all leaves 
are considered invisible to this portal by default. We also zero the PortalVis buffer which is the buffer 
we will use temporarily in this loop to calculate the portal/portal visibility information (byte for each 
portal). 
 
Now that we have all the information for the current portal that we are processing, we will set up a loop 
to iterate through all the other portals in the scene and will perform the two visibility tests illustrated in 
figures 17.3 and 17.4. At the head of this inner loop we obviously skip the tests if the test portal is equal 
to the current portal being processed. If this is not the case however, then we fetch a pointer to the test 
portal and its plane. 
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            // For this portal, loop through all other portals 
            for ( p2 = 0; p2 < GetPVSPortalCount(); p2++)  
            { 
                // Don't test against self 
                if (p2 == p1) continue; 
 
                // Retrieve second portal for easy access 
                pPortal2 = GetPVSPortal( p2 ); 
 
                // Retrieve portal's plane 
                GetPortalPlane( pPortal2, Plane2 ); 

 
For the first test we loop though each of the test portals vertices and classify their positions against the 
plane of the current portal. If any vertex is found to exist in the front space of the current portal then 
some portal flow may exist so we break. If we do not break from the loop prematurely however, then it 
means we must have found that the test portal is contained completely in the back space of the current 
portal’s plane. When this is the case the loop variable ‘i’ will equal the vertex count of the test portal on 
loop exit which we can test and skip any further processing if this is the case. That is, if the test portal is 
found to be in the back space of the current portal then it can not possibly be visible and no portal flow 
can exist between them so we skip any further tests and never set its byte to one in the PortalVis array. 
 
                // Test to see if any of p2's points are in front of p1's plane 
                pp = pPortal2->Points; 
                for ( i = 0; i < pp->VertexCount; i++)  
                { 
           if ( Plane1.ClassifyPoint( pp->Vertices[i] ) == CLASSIFY_INFRONT ) break; 
                 
                } // Next Portal Vertex 
 
                // If the loop reached the end, there were no points in front so continue 
                if ( i == pp->VertexCount ) continue; 

 
If we get this far then it means the test portal (or a fragment of it) must be located in front of the current 
portal. Our next test is to see if the portals are facing into each other because if this is the case, no portal 
flow can exist between them also. 
 
As the portals do not contain normals we perform this test by classifying each vertex in the current 
portal against the plane of the test portal. If portal flow exists between these portals then some of the 
vertices of the current portal must be located in the back space of the test portal. As soon as we find a 
vertex that is contained in the back space of the test portal we break from the loop. 
                 
                // Test to see if any of p1's portal points are Behind p2's plane. 
                pp = pPortal1->Points; 
                
                for ( i = 0; i < pp->VertexCount; i++)  
                { 
            if ( Plane2.ClassifyPoint( pp->Vertices[i] ) == CLASSIFY_BEHIND ) break; 
                 
                } // Next Portal Vertex 
 
                // If the loop reached the end, there were no points in front so continue 
                if ( i == pp->VertexCount ) continue; 
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If the loop does not exit prematurely then it means the current portal is in the front space of the test 
portal and therefore, these portals must be facing each other. When this is the case, loop variable ‘i’ will 
be equal to the current portal’s vertex count so we can perform this comparison and skip this portal if 
this is the case. That is, the back of the test portal is not visible to the current portal so no portal flow can 
exist between them. 
 
If the test portal passes both these tests then it means portal flow does exist between the current portal 
and the test portal so we set the test portal’s byte to 1 in the PortalVis buffer. 
 
                // Fill out the temporary portal visibility array 
                PortalVis[p2] = 1;   
 
            } // Next Portal 2 
 

 
After the above inner loop has completed, PortalVis will contain a byte set to 1 for every portal that is 
potentially visible from the current portal. All we have to do now is perform the flood fill using this 
information. 
 
            // Now flood through all the portals which are visible 
            // from the source portal through into the neighbour leaf 
            // and flag any leaves which are visible (the leaves which 
            // remain set to 0 can never possibly be seen from this portal) 
            pPortal1->PossibleVisCount = 0; 
            PortalFlood( pPortal1, PortalVis, pPortal1->NeighbourLeaf ); 
 
        } // Next Portal 

 
As you can see, before performing the flood fill we set the current portals PossibleVisCount to zero as 
we have not yet found any leaves to be visible, this is what the PortalFlood method will determine. We 
then call the PortalFlood function (which we will discuss next) to perform the flood. We pass in the 
current portal which is to have its PossibleVis array calculated, the PortalVis buffer which describes 
where the flood is blocked by non-visible portals and as the third parameter we pass in the neighbor leaf 
index of the current portal. It is in this leaf the portal flood will begin. When the outer portal loop exits, 
every portal will have had a chance to be the current portal and will have had its PossibleVis array 
calculated using the PortalFlood function.  
 
Before we continue we next test that the compiler has not had a notification to cancel the compilation 
and if it has received such a notification we return. (Remember that the compiler is running in its own 
thread).  
 
        // If we're cancelled, clean up and return 
        if ( m_pParent->GetCompileStatus() == CS_CANCELLED )  
        { 
            if ( PortalVis) delete[]PortalVis; 
            return BC_CANCELLED; 
         
        } // End if Cancelled. 
 
    } // End Try Block 
 
    // Catch Bad Allocations 
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    catch ( std::bad_alloc ) 
    { 
        // Clean up and return (Failure) 
        if (PortalVis) delete []PortalVis; 
        if ( m_pLogger ) m_pLogger->ProgressFailure( LOG_PVS ); 
        return BCERR_OUTOFMEMORY; 
     
    } // End Catch Block 

 
At the bottom of the function we delete the temporary portal/portal visibility buffer and inform the 
logger that the process has been a success before returning from the function. 
 
    // Clean up 
    if (PortalVis) delete []PortalVis; 
 
    // Success!! 
    if ( m_pLogger ) m_pLogger->ProgressSuccess( LOG_PVS ); 
    return BC_OK; 
} 
 

As was evident from look at the above code, a call is made to the PortalFlood function for each portal it 
processes to generate that portals ‘possible’ visibility set. Let us have a look at that function next. 
 
 
 

PortalFlood - CProcessPVS 
 
This recursive function is passed a source portal which needs to have its PossibleVis array populated 
with leaf visibility information. It is also passed a byte array describing, for the passed portal, which 
other portals in the level are visible. As the third parameter the neighbor leaf of the portal is passed. This 
is the leaf that is located immediately in front of the passed portal and is the leaf at which the flood fill 
for the portal will begin. This function will start from the neighbor leaf and will recursively flood out 
through its portals into neighboring leaves. The flood stops in any given direction when we enter an area 
where its portals are no longer considered visible from the passed source portal. That is, when we reach 
a portal that has its corresponding byte in the PortalVis buffer set to zero. 
 
For each leaf we recur into 
via a portal we set its 
visibility bit in the source 
portals PossibleVis array 
to 1. Figure 17.5 
demonstrates this process.  
 
We can see that the flood 
starts in the neighbor leaf 
of portal P1 and flows 
through every portal for 
which portal flow exists and marks that portal’s neighbor leaf as visible. The pattern repeats until we run 
out of visible portals to flood through. You can see in figure 17.5 that we do not flood through portals P5 
or P2 as these portals were found to have no portal flow with the source portal (P1) in the previous 
method. That is, we only flow through a portal and mark its neighbor leaf as visible if its corresponding 

 
Figure 17.5 
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byte in the passed PortalVis array is set to 1. In figure 17.5 the leaves that are highlighted green were 
marked as possibly visible by this flood filling process. 
 
In the first section of the function we use the passed neighbor leaf index to fetch the leaf structure from 
the BSP tree’s leaf array. As this is the leaf we are currently visiting it means the flood has made it into 
this leaf and therefore this leaf must be visible from the portal in question. However, because we do not 
wish to ever get stuck in a recursive loop we must make sure that we have not visited this leaf before in 
the flood so that we do not flow through its portals again. You can see that we use the GetPVSBit 
method to fetch the visibility bit in the portals PossibleVis array for the current leaf and if it is already 
set to 1, it means we have already visited this leaf before and have marked it as visible. When this is the 
case we simply return. If this is not the case however, we use the SetPVSBit method to mark the current 
leaf as visible in the portals PossibleVis array. 
 
void CProcessPVS::PortalFlood( CPVSPortal * SourcePortal,  
                               unsigned char PortalVis[],  
                               unsigned long Leaf ) 
{ 
    CBSPLeaf * pLeaf = m_pTree->GetLeaf( Leaf ); 
 
    // Test the source portals 'Possible Visibility' list 
    // to see if this leaf has already been set. 
    if ( GetPVSBit( SourcePortal->PossibleVis, Leaf ) ) return; 
 
    // Set the possible visibility bit for this leaf 
    SetPVSBit( SourcePortal->PossibleVis, Leaf ); 
 
    // Increase portals 'Complexity' level 
    SourcePortal->PossibleVisCount++; 

 
Notice in the above code that after we have marked the leaf as visible to the portal we increment the 
portal’s PossibleVisCount so that when the flood is complete, this member will contain all the visible 
leaves that were found. That is, the number of leaves that got wet by the flood fill. As described earlier, 
this PossibleVisCount member will be used as a measure of the portal’s potential complexity and will be 
used by the core clipping process to determine which portal should have its PVS calculated next. Portals 
with a smaller PossibleVisCount will be selected for PVS calculation first. 
 
Now that we have identified that the current leaf is visible it is now time to loop through all the portals 
stored in that leaf. If the portal is visible to the current source portal we will recur through that portal 
into its neighbor leaf. Otherwise we will skip the portal. Here is the remainder of the function code. 
 
    // Loop through all portals in this leaf (remember the portal numbering 
    // in the leaves match up with the originals, not our PVS portals ) 
    for ( ULONG i = 0; i < pLeaf->PortalIndices.size(); i++)  
    { 
        // Find correct portal index (the one IN this leaf (not Neighbouring)) 
        ULONG PortalIndex = pLeaf->PortalIndices[ i ] * 2; 
        if ( GetPVSPortal( PortalIndex )->NeighbourLeaf == Leaf ) PortalIndex++; 
 
        // If we can’t pass through this portal then continue to next portal 
        if ( !PortalVis[ PortalIndex ] ) continue; 
 
        // Flood fill out through this portal 
        PortalFlood( SourcePortal, PortalVis, GetPVSPortal( PortalIndex )->NeighbourLeaf ); 
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    } // Next Leaf Portal 
} 
 
 

Notice that because we are accessing the portal information from the leaf of the BSP tree which stores 
one two-way portal instead of a pair of one-way portals, we need to multiply the leaf’s portal index by 2 
to get the index into the one-way portal array of the first in the pair of one-way portals that were 
generated for it. If the first one-way portal in the pair has a neighbor leaf equal to the leaf we are already 
in then this is obviously the one-way portal that points back into this leaf. This is obviously not the one-
way portal that flows out of the neighbor leaf and therefore, the portal we are after must be the second in 
the pair so we increment the leaf index so that it addresses the correct one-way portal. Next we test to 
make sure this portal is visible by testing its corresponding byte in the PortalVis array, and if it is 
visible, the function calls itself to recur into the neighbor leaf of this portal. 
 
We have now covered two of the processes that are invoked from the main Process method of this 
module. At this point, program flow will have been returned back to the Process method and not only 
will the one-way portals have been created and stored, each of these portals will contain a PossibleVis 
array describing a very approximate leaf PVS for that portal. The next method invoked from the Process 
method is the CalcPortalVis function. This is the function that is the doorway to the core PVS 
calculation process and the function that kick starts the anti-penumbra clipping function that ultimately 
calculates the ActualVis array (the real PVS) for each portal. 
 
 
 

The CalcPortalVis - CProcessPVS 
 

Before we look at the CalcPortalVis method we must look at a structure that will be used to pass data 
from one recursion of the function to the next when performing the recursive clipping process. Because 
we will need to recur through the RecursePVS function many times (covered in a moment), it will be 
helpful to have a data structure where we can pass information from the previous recursion to the next.  
For example, when the RecursePVS function calls itself, the current generator portal needs to be passed 
into the next recursion as the target portal.  We also need to be able to access the source portal at all 
times, regardless of what instance of the function we are in, so that we can set its visibility bits for each 
visible leaf we encounter. The structure is shown below. 
 
Excerpt from CProcessPVS.h 
typedef struct _PVSDATA                 // Structure to hold pvs processing data 
{ 
 CPortalPoints   *SourcePoints;   // Current source portals points 
        CPortalPoints   *TargetPoints;   // Current target portals points 
 CPlane3          TargetPlane;    // The target's plane 
 UCHAR            *VisBits;       // Visible Bits being calculated 
} PVSDATA; 
 

This structure is the transport mechanism with which to pass data about the generator portal that was 
selected in a previous iteration of the recursive function onto the next recursion.  Since the previous 
generator portal becomes the target portal in the next recursion and is used to build a new anti-
penumbra, this allows us to find a generator portal, fill out the information about it in one of these 
structures, and then pass on this structure to the next recursion so that we can access and use it as the 
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target portal during anti-penumbra generation. Let is discuss what the four members will be used for by 
the core PVS calculation process. 
 
CPortalPoints   *SourcePoints;   
As we discuss in the text book, during the recursive clipping process the source portal will be the portal 
that is currently having is PVS calculated (ActualVis array populated). As we step recursively through 
generator portal after generator portal into new neighbor leaves, we need access to the source portals 
polygon data so that it can be used to create the anti-penumbra with the target portal at each step. When 
the RecursePVS function is first called, this will be a pointer to the source portal’s polygon data.  
 
However, we also discussed in the text book how at each step we build anti-penumbras between not only 
the source and target portals (allowing us to cull/clip generator portals) but also between the generator 
portal and the target portal which is used to clip a temporary copy of the source portal’s polygon. By 
clipping the source portal and the generator portal at each step as small as possible, we assure that in the 
next recursive step a smaller anti-penumbra will be built allowing us to cull more generator portals from 
having to be visited. During the recursive process, this member will contain a copy of the source portal 
in its currently clipped state. That is, when at a given step in the process the source portal is clipped to 
the anti-penumbra and a new smaller source portal polygon is generated, that polygon is stored in this 
member so that it can be passed into the next recursion as the source portal geometry. 
 
This is always a temporary copy of the source portal polygon from the first point it gets clipped. That is, 
although we set this to the CPortalPoints member of the source portal at the start of the process, we 
never want to clip or delete the original source portal as this will be needed for the calculation of other 
portals later in the process. Our hope is that as we step from leaf to leaf, the portal stored in this member 
will become smaller and smaller due to the ongoing clipping in each recursion until it generates a very 
small anti-penumbra in which no generator portals are contained and stopping the portal flow along that 
given path. 
 
CPortalPoints   *TargetPoints;    
This member will be used to pass the geometry of the generator portal that has been stepped though in 
one recursion onto the next recursion where it will become the target portal and used to build the anti-
penumbra planes.  
 
As was the case with the source portal transport mechanism described above, a generator portal selected 
in one recursion of the function will be clipped to the current anti-penumbra in an attempt to make that 
generator as small as possible (or cull it completely) for the next recursion. The clipped copy of the 
generator portal is then stored in this member variable and passed into the next recursion of the function 
where it will be used as the target portal. By making both the source and target portals smaller and 
smaller with each generator portal that we step through, we will get a tighter and more accurate PVS 
calculated and raise the chances of being able to abort a from given path of portals earlier. 
 
When the RecursePVS method is first called, this will be set to NULL as no target portal will have yet 
been selected. This allows us to identify the special case in the RecursePVS function where we have 
entered it for the very first time and we do yet have two portals with which to construct an anti-
penumbra. In this first special case, no anti-penumbra clipping is performed. A generator portal is 
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simply selected and stored in the TargetPoints member. We then recur through that portal into its 
neighbor leaf where we enter the clipping process proper. 
 
CPlane3              TargetPlane;     
This will be used to store the plane of the target portal when input into the RecursePVS function. That 
is, this will be the plane of the generator portal that was selected in the previous recursion and the plane 
of the portal polygon stored in the TargetPoints member. As discussed in the accompanying text book, 
we will need this as we will need to clip the generator portal to the target portal’s plane to make sure that 
a spanning case does not occur that could corrupt the anti-penumbra in the next recursion.  The source 
portal will also be clipped to the generator portal’s plane so all spanning case are eliminated. Remember, 
the only portion of the generator portal that should be visible is the portion that is contained in the front 
space of the source/target portal and vice versa. 
 
The first time the RecursePVS function is called this will be set to the plane of the source portal. As we 
described above, the first call is a special case where a target portal has not yet been selected. This will 
allow us to make sure that the generator portal we selected (which will become the first target portal in 
the next recursion) will be clipped to the plane of the source portal as once again, the only portion of the 
target portal that should be visible to the source portal is the section that is contained in the source 
portal’s front space. 
 
UCHAR            *VisBits;        
This array will be used to accumulate and pass into the current recursion all leaves that can possibly be 
seen by the source portal given the current combination of portals we have stepped through up to this 
point. This allows us to very efficiently determine if there are any leaves to process down this path 
which might be visible to the source portal and if not, we can terminate this path of flow immediately. 
We know for example that at the start of the process each portal will have a bitset (PossibleVis) 
describing which leaves may be visible. However, we also know that this set can be refined by ANDing 
the bitsets of all portals we have stepped through up until this point. For example, imagine that in a 10 
leaf level the PossibleVis array of the source portal has the following leaf bits set to 1. 
 
Source Portal Vis  - 1111100000 
 
We can see at the start that only the first five leaves of the level could possibly be visible to the source 
portal as this was determined by the portal flood we performed earlier. Let us also assume that we next 
choose a target portal with which to build the anti-penumbra which had the following PossibleVis array 
calculated for it during the portal flood. 
 
Target Portal Vis - 1110011100 
 
We can see that the source portal has the possibility of being able to see into leaves 1 through 5 whilst 
the target portal has the possibility of seeing into leaves 1 through 3 and 6 through 8. Therefore, when 
we build an anti-penumbra between these two portals we are actually asking the question, “How much 
can we see from the source portal through the target portal” which at an approximate level can be 
determined by ANDing the visibility sets 
 
Current Vis  - 1111100000 + 1110011100 = 1110000000  

 83 

 



 

  
As you can see, before we even perform any clipping we can tell that there can only possibly be 3 leaves 
that we need to visit and can be seen through the combination of portals we are currently looking 
through, leaves 1 through 3. It doesn’t stop there though.  
 
For example, imagine that we next choose a generator portal that has the following PossibleVis array 
 
Generator Vis  - 0011111111 
 
When we combine its visibility set with the current visibility information we have collected so far we 
get:- 
 
Current Vis  - 111000000 
                   AND 
Generator Vis  - 001111111 
 
New Current Vis - 001000000 
 
As you can see, this tells us that there is only one leaf we are interested in visiting at this point in the 
process. That is, there is only one leaf that is visible from the source portal when looking through the 
target and generator portals. This process is ongoing. As we step from recursion to recursion we 
combine the possible visibility sets of each portal we step through so we can very quickly determine 
whether there are any leaves to visit down this current path of portals through which we have traveled. 
This allows us to bail from the path early instead of having to perform the anti-penumbra clipping for 
generator portals which we have already determined have neighbor leaves that could not possibly be 
visible through the combination of portals we have traveled to get to this point. 
 
The VisBits member of this structure allows us to pass this combined bitset into the next recursion 
where it will be combined with the next generator portals PossbleVis array and so on. That is, it inputs 
into the RecursePVS function a bitset that describes what leaves could possibly be visible given the 
portals we have traveled through to that point. When the RecursePVS function is first called, this will 
point to the source portal’s PossibleVis array as we have not yet selected any target portals. For all 
future recursions this will contain the combination (the bitwise ANDing) of the source portals 
PossiblVis array with the PossibleVis arrays of all the portals we have walked through to get to the 
current leaf. 
 
With this structure explained we can now look at the code to the CalcPortalVis function a section at a 
time and see how this structure is initially setup and passed into the first instance of the RecursePVS 
function. 
 
In the first section of the code we test the compiler options for this module. If the option has not be set to 
enable a full PVS compile then it means the user does not wish us to perform the core time consuming 
anti-penumbra clipping tests at all and as such we should just use the PossibleVis arrays calculated for 
each portal in the portal flood fill as the actual PVS for each portal and return. 
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HRESULT CProcessPVS::CalcPortalVis() 
{ 
    ULONG   i; 
    HRESULT hRet; 
    PVSDATA PVSData; 
     
    // If we want to perform a quick vis (not at all accurate) we can 
    // simply use the possible vis bits array as our pvs bytes. 
     if ( !m_OptionSet.FullCompile )  
     { 
 for ( i = 0; i < GetPVSPortalCount(); i++ )  
        { 
            CPVSPortal * pPortal = GetPVSPortal( i ); 
     pPortal->ActualVis = pPortal->PossibleVis; 
   
        } // Next Portal 
   
        // We are finished here 
        return BC_OK; 
 
    } // End if !FullCompile 

 
As you can see in the above code, if a full compile is not required we just loop through each portal and 
copy its PossibleVis array into its ActualVis array. As we know, the ActualVis array is where our 
compiler will expect the real PVS data of the portal to exist after the core clipping process has been 
performed. As we do not wish to perform this core clipping process we simply copy over the 
PossibleVis arrays into the ActualVis arrays of each portal so that the bitset is stored in the portal where 
the PVS exporter will expect to find it. We then return because our job is already done. 
 

Note: This option is not to be used for commercial output. The PVS set generated using such an option 
will be extremely over generous and run time application performance will suffer. This option is really 
for the developers of the project to perform a very quick compile to test the various assets of their 
game without having to wait long periods for PVS calculation every time they update the geometry of 
their level.  

 
Now it is time to start the core PVS calculation process and as such we output to the logging device that 
PVS calculation is about to being. As the PVS process is essentially one of just looping through each 
portal and calculating its ActualVis array (that made it sound deceptively easy) we set the range of the 
logger to the portal count so that it can be increased with each portal we process.  
 
    // ************************* 
    // * Write Log Information * 
    // ************************* 
    if ( m_pLogger ) 
    { 
        m_pLogger->LogWrite( LOG_PVS, 0, true, _T("Full PVS compile progress \t\t\t- " ) ); 
        m_pLogger->SetRewindMarker( LOG_PVS ); 
        m_pLogger->LogWrite( LOG_PVS, 0, false, _T("0%%" ) ); 
        m_pLogger->SetProgressRange( GetPVSPortalCount() ); 
        m_pLogger->SetProgressValue( 0 ); 
    }  
    // ************************* 
    // *    End of Logging     * 
    // ************************* 
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Next we make sure that the PVSData structure that we pass into the initial call to the RecursePVS 
function is initialized to zero and then we set up a loop to iterate through each portal.  
 
    try 
    { 
        // Clear out our PVSData struct 
        ZeroMemory( &PVSData, sizeof(PVSDATA) ); 
 
        // Lets process those portal bad boys!! ;) 
        for ( i = 0; i != -1; i = GetNextPortal() ) 
        { 
            CPVSPortal * pPortal = GetPVSPortal( i ); 
         
            // Update Progress 
            if (!m_pParent->TestCompilerState()) throw BC_CANCELLED; 
            if (m_pLogger) m_pLogger->UpdateProgress(); 

 
Notice that we use the GetNextPortal method to choose the next portal in the list to have its PVS 
calculated. We will have a look at this function in a moment but as discussed earlier, we wish to process 
least complex portals first so this function simply returns the index of a portal that has not yet been 
processed and has the smallest number of visible leaves in its PossibleVis array. We then use this index 
to fetch the next portal to be processed (pPortal) which will become the source portal in the next call to 
the RecursePVS function. We also update the logger’s progress as a new portal is about to have its PVS 
calculated. 
 
Our next task is to populate the members of the PVSData structure that will be passed into the first 
recursion of the function. As explained above, we should initially set the SourcePoints member to point 
to the source portal’s polygon geometry (its CPortalPoints structure) and should set the VisBits pointer 
to point at the PossibleVis array of the source portal. The Plane of the source portal is also retrieved and 
stored in the TargetPlane member. Although this last step seems a little strange, by storing the source 
portal’s plane in the TargetPlane member for the first call to the RecursePVS function, it means the 
target portal that we do select in that function will be clipped to the source portals plane so that any 
spanning cases are eliminated. 
 
            // Fill our our initial data structure 
            PVSData.SourcePoints    = pPortal->Points; 
            PVSData.VisBits         = pPortal->PossibleVis; 
            GetPortalPlane( pPortal, PVSData.TargetPlane ); 

 
Notice that we do not set the TargetPoints member of the PVSData structure in the above section of 
code. This is left at NULL so that we can detect in the RecursePVS function that it is the first recur of 
the function and as such, no anti-penumbra has to be created. We can just choose a generator portal and 
recur into its neighbor leaf. 
 
Because the current portal we are processing is about to have its ActualVis array calculated, we had 
better allocate the memory for it now so that it is large enough to store a bitset that represents the 
visibility information for each leaf and we should initially set all the bits in this array to zero so that they 
are all initially invisible. It will be the RecursePVS function that will set the bits to 1 in this array when 
it finds a leaf that is visible. 
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            // Allocate the portals actual visibility array 
            pPortal->ActualVis = new UCHAR[ m_PVSBytesPerSet ]; 
            if (!pPortal->ActualVis) throw std::bad_alloc(); // VC++ Compat 
 
            // Set initial visibility to off for all leaves 
            ZeroMemory( pPortal->ActualVis, m_PVSBytesPerSet ); 

 
Now we call the RecursePVS function to calculate the PVS for this portal. We pass in the neighbor leaf 
index as the first parameter as this is the leaf for which the source portal first leads into and is where the 
recursive procedure should begin for this portal. As the second parameter we pass in the source portal 
itself. This will be needed by the RecursePVS function so that it can set bits to 1 in its ActualVis array 
each time it locates a visible leaf. As the final parameter we pass in the PVSData structure. When this 
function returns, the PVS for the portal will be stored in its ActualVis array so we set the status of this 
portal to PS_PROCESSED. This will assure that the GetNextPortal method used to select the next portal 
to be processed in the loop will not select this portal again. 
 
            // Step in and begin processing this portal 
            hRet = RecursePVS( pPortal->NeighbourLeaf, pPortal, PVSData ); 
            if ( FAILED( hRet ) ) throw hRet; 
 
            // We've finished processing this portal 
            pPortal->Status = PS_PROCESSED; 
 
        } // Next Portal 
 
    } // End Try Block 

 
At this point the PVS for each portal has been calculated and is stored in their ActualVis arrays. All that 
is let to do is inform the logger to output success before returning from the function. 
 
    // Catch all failures 
    catch (std::bad_alloc) 
    { 
        // Failed to allocate 
        if ( m_pLogger ) m_pLogger->ProgressFailure( LOG_PVS ); 
        return BCERR_OUTOFMEMORY; 
 
    } // End if 
 
    catch ( HRESULT& e ) 
    { 
        // Arbitrary Error 
        if ( m_pLogger && FAILED(e) ) m_pLogger->ProgressFailure( LOG_PVS ); 
        return e; 
 
    } // End if 
 
    // Success!! 
    if ( m_pLogger ) m_pLogger->ProgressSuccess( LOG_PVS ); 
    return BC_OK; 
} 
 

Before we look at the RecursePVS function which will undoubtedly require heavy discussion, we will 
first examine the GetNextPortal method of this module that was used in the above code to select the next 
portal to have its PVS calculated. 
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GetNextPortal - CProcessPVS 
 
This small function has the simple task of determining which portal in the list should have its PVS 
calculated next. The function loops through each portal in the list searching for the portal with the lowest 
PossbleVisCount that has not yet had its PVS calculated. That is, it is looking for the least complex 
portal in the list whose status is still PS_NOTPROCESSED. Once the portal is located, its status is set to 
PS_PROCESSING prior to its index being returned. This is the portal that will have its PVS calculated 
next and is therefore the portal that we are currently processing. The complete code is shown below. 
 
 
ULONG CProcessPVS::GetNextPortal( ) 
{ 
    CPVSPortal * pPortal; 
    long PortalIndex = -1, Min = 999999, i; 
 
    // Loop through all portals 
    for ( i = 0; i < (signed)GetPVSPortalCount(); i++ )  
    { 
        pPortal = GetPVSPortal(i); 
 
  // If this portal's complexity is the lowest and it has  
        // not already been processed then we could use it. 
 if ( pPortal->PossibleVisCount < Min && pPortal->Status == PS_NOTPROCESSED)  
        { 
   Min = pPortal->PossibleVisCount; 
   PortalIndex = i; 
 } // End if Least Complex 
 
     } // Next Portal 
 
     // Set our status flag to currently being worked on =) 
     if ( PortalIndex > -1) GetPVSPortal( PortalIndex )->Status = PS_PROCESSING; 
 
    // Return the next portal 
    return PortalIndex; 
} 
 
 
 

RecursePVS - CProcessPVS 
 
We finally get to the function that contains the real meat of the process. This function calls itself 
recursively until the PVS set of the source portal has been calculated. The function takes three 
parameters. The first is the index of the leaf that we have currently stepped into which will be the 
neighbor leaf of the source portal the first time it is called. This leaf will be marked as visible in the 
source portals PVS. As we have stepped into this leaf it is obviously visible from the source portal. The 
second parameter is the source portal itself which is in the process of having its PVS calculated by this 
function. The third parameter is a PVSData structure which in the normal case will contain information 
about the target portal that is to be used in this function (the generator portal selected in the previous 
recursion) and the visibility buffer of all the portals we have stepped through so far which will be used 
for early-out determination. 
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HRESULT CProcessPVS::RecursePVS( ULONG Leaf, CPVSPortal * SourcePortal, PVSDATA & PrevData ) 
{ 
    ULONG           i,j; 
    bool            More; 
    ULONG          *Test, *Possible, *Vis; 
 
    PVSDATA         Data; 
    CPVSPortal     *GeneratorPortal; 
    CPlane3         ReverseGenPlane, SourcePlane; 
    CPortalPoints  *SourcePoints, *GeneratorPoints, *NewPoints; 
 
    // Store the leaf for easy access 
    CBSPLeaf * pLeaf = m_pTree->GetLeaf( Leaf ); 
 
    // Mark this leaf as visible 
    SetPVSBit( SourcePortal->ActualVis, Leaf ); 

 
The first thing the function does is used the passed leaf index to fetch the leaf structure from the BSP 
tree. It then sets this leaf’s bit to one in the source portal’s ActualVis array. This leaf is visible from the 
source portal and has now been added to its PVS.  
 
Notice in the above code that we instantiate on the stack a PVSData structure (in addition the one passed 
into the function as the third parameter). This new PVSData structure (imaginatively named Data) will 
be used to carry the generator portal information and combined visibility bitset from this function into 
the next recursion. That is, the Data local variable will be what we pass into the next call to the function 
as the third parameter and is the structure whose data we must fill out before we do so. 
 
First, we allocate the structure a new VisBits array large enough to hold a bit for each leaf. This array 
will be used to store the result of combining the VisBits array passed into the function 
(PrevData.VisBits) with the PossibleVis array of the generator portal that we select in this function. 
 
    // Allocate our current visibility buffer 
    Data.VisBits = new UCHAR[ m_PVSBytesPerSet ]; 
    if (!Data.VisBits) throw std::bad_alloc(); // VC++ Compat 

 
For ease of access, we also assign some local variables to structure members we are going to need to 
access frequently. We can see in the following code that the Possible local variable is used to point at the 
Data.VisBits array we just allocated and the Vis local variable is used to point at the PVS set (ActualVis 
array) of the source portal. This allows us to access these two buffers in short hand. 
 
    // Store data we will be using inside the loop 
    Possible    = (ULONG*)Data.VisBits; 
    Vis         = (ULONG*)SourcePortal->ActualVis; 
    GetPortalPlane( SourcePortal, SourcePlane ); 

 
Notice in the above code how we then fetch the plane of the source portal and store it in the SourcePlane 
local variable. Remember once again why the GetPortalPlane method is used for this task. It takes care 
of flipping the direction of the portal’s node plane (the returned plane) if it faces into an opposing half 
space to the portals neighbor leaf. 
 
The rest of the function is contained inside a loop that iterates through every portal in the current leaf 
and processes it for generator portal candidacy. Remember that the leaf structure in the BSP tree (which 
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we just retrieved above) will contain the indices of the two-way portals that reside in that leaf. As we did 
before, we must multiply this index by 2 so that we get the index of the first in the pair of one-way 
portals that were generated by that two-way portal. We then test to see if the first portal in the pair does 
not have a neighbor leaf equal to the leaf we are currently in because if it does, this is the one-way portal 
that flows into the current leaf and not out of it. When this is the case we know that the next portal in the 
array must be the other portal in the pair which faces out of the current leaf and into the neighbor leaf we 
may be interested in recurring into if this generator portal is not completely clipped away later in the 
function. 
 
    // Check all portals for flow into other leaves 
    for ( i = 0; i < pLeaf->PortalIndices.size(); i++ ) 
    { 
        // Find correct portal index (the one IN this leaf (not Neighbouring)) 
        ULONG PortalIndex = pLeaf->PortalIndices[ i ] * 2; 
        if ( GetPVSPortal( PortalIndex )->NeighbourLeaf == Leaf ) PortalIndex++; 
 
        // Store the portal for easy access 
        GeneratorPortal = GetPVSPortal( PortalIndex ); 

 
Now that we have the generator portal we can see how the PrevData.VisBits array that is passed into this 
function is used. This contains a leaf bitset that has been generated by ANDing all the PossibleVis arrays 
of the portals we have traveled through to get to this current leaf. Therefore, only leaves with their bits 
set to one in this array are leaves that are visible from the source portal when looking through all the 
portals we have stepped through to get to this leaf. Therefore, we test to see if the generator portal’s 
neighbor leaf has its bit set to one in this bitset. If it does not, it means the leaf on the opposing side of 
this portal is not possibly visible from the source portal so we have no interest in processing this 
generator portal any further. As you can see, when this is the case we simply skip this generator portal 
and continue to the next iteration of the generator portal loop.  
 
        // We can't possibly recurse through this portal if it's neighbour 
        // leaf is set to invisible in the target portals PVS 
        if ( !GetPVSBit( PrevData.VisBits, GeneratorPortal->NeighbourLeaf ) ) continue; 

 
Now it is time to combine the PrevData.VisBits array with the visibility array of the generator portal so 
that we can store the resulting bit set in Data.VisBits (aliased via the ‘Possible’ pointer) and send that 
onto a future recursion. It is this section of code that performs the bitset accumulation we have discussed 
in each recursion. What we are going to do is take the visibility set we have been passed into this 
function (PrevData.VisBits) and further refine it by the generator portal’s PossibleVis bits. But wait!!! If 
the generator portal has already had its PVS generated such that its status is equal to PS_PROCESSED, 
we can refine this bit set even further by using its ActualVis array instead of its PossibleVis array which 
will allow us to hopefully carve of a great many more visible leaves out of the equation. Therefore, in 
the next section of code we first test the status of the generator portal and if it has been processed, we 
assign the local Test pointer to point at its ActualVis array. If not, then Test is assigned to point at its 
PossibleVis array. 
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        // If the portal can't see anything we haven't already seen, skip it 
        if ( GeneratorPortal->Status == PS_PROCESSED )  
            Test = (ULONG*)GeneratorPortal->ActualVis; 
        else 
            Test = (ULONG*)GeneratorPortal->PossibleVis; 
 

 
Now we will loop through PrevData.VisBits four bytes at a time (using a long pointer which is why we 
padded these visibility arrays to a 32 bit boundary) and will AND it with the visibility buffer of the 
generator portal ‘Test’. We will store the result in ‘Possible’ which is a pointer to Data.VisBits which 
we know is the PVSData structure that will be passed into the next recur of this function. As we AND 
these arrays together four bytes at a time and store them in ‘Possible’, we will also perform a bitwise 
AND with the NOT of the source portals PossibleVis array (Aliased by the local Vis pointer). This 
allows us to quickly detect if there are any bits set in Possible which are also set in Vis and therefore 
means there are still leaves in Possible that might be visible from the source portal and will need to be 
visited. When this is the case we set the More local Boolean variable to true 
 
        More = false; 
        // Check to see if we have processed as much as we need to 
        // this is an early out system. We check in 32 bit chunks to 
        // help speed the process up a little. 
        for ( j = 0; j < m_PVSBytesPerSet / sizeof(ULONG); j++ ) 
        { 
            Possible[j] = ((ULONG*)PrevData.VisBits)[j] & Test[j]; 
            if ( Possible[j] & ~Vis[j] ) More = true; 
 
        } // Next 32 bit Chunk 
 
        // Can we see anything new ?? 
        if ( !More ) continue; 

 
The little loop above can be a bit of a brain teaser at first but it is essentially just creating the combined 
VisBits array that will be sent into the next recursion and at the same time determining whether there is 
anything left to see by continuing down this path. Outside the loop you can see that if More is not set to 
true, if means there are no bits set to one in the Possible array that are also set to one in the source 
portal’s PossibleVis array and as such, there is nothing of interested on the other side of this generator 
portal so there is not need to recur through it into the neighbor leaf. When this is the case we simply skip 
any further processing of the generator portal and continue to the next iteration of the loop. 
 
In the next step we fetch the plane of the generator portal and store it in the Data.TargetPlane so that it 
can be passed to the next recursion as the target portal’s clip plane. Remember, the generator portal 
selected in this recursion will become the next target portal when we recur through it into its neighbor 
leaf.  
 
        // The current generator plane will become the next recursions target plane 
        GetPortalPlane( GeneratorPortal, Data.TargetPlane ); 

 
Our next test is to make sure that the generator portal is not ON_PLANE with the target portal that has 
been passed into this function in the PrevData parameter.  If it is, then they cannot see each other and we 
can skip this generator portal. For this test we are using a generator plane with a reversed normal and are 
comparing this normal against the normal the normal of the target portal (PrevData.TargetPlane). We do 
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this because we need to check that the portal we have just entered this leaf through is not on the same 
plane as any we are about to leave this leaf through. A target portal can not see a generator portal that is 
on the same plane as it and stepping through such a portal could carry us back into the leaf that we just 
exited in the previous recur. 
 
        // We can't recurse out of a coplanar face, so check it 
        ReverseGenPlane.Normal   = -Data.TargetPlane.Normal; 
        ReverseGenPlane.Distance = -Data.TargetPlane.Distance; 
        if ( ReverseGenPlane.Normal.FuzzyCompare( PrevData.TargetPlane.Normal, 0.001f )) 
              continue; 

 
Our next task is to clip the generator portal to the plane of the source portal so that any portion of the 
generator portal that is contained in the back space of the source portal is removed. If this operation 
completely clips away the generator portal we skip this generator portal as there seems to be no valid 
portion of it in front of the source portal.  
 
        // Clip the generator portal to the source. If none remains, continue. 
        GeneratorPoints = GeneratorPortal->Points->Clip( SourcePlane, false ); 
        if ( GeneratorPoints != GeneratorPortal->Points )  
             FreePortalPoints( GeneratorPortal->Points ); 
 
        if (!GeneratorPoints) continue; 

 
In this next section of code we see some special case code which is only executed the first time the 
RecursePVS function is called (when PrevData.TargetPoints will equal NULL). When this is the case 
we do not wish to perform any anti-penumbra clipping as we are really just trying to select the first 
target portal. As you can see, in this instance we simply copy over the source points passed into the 
function (PrevData.SourcePoint) into the PVSData structure that will be passed into the next recursion 
(Data.SourcePoints) and also copy over the generator portal into the TargetPoints member of this 
structure also so that it will become the target portal in the next recursion. We then call the RecursePVS 
function to recur into the neighbor leaf of the generator portal (which is really the first target portal in 
this instance) and on function return skip to the next generator portal in the leaf to be processed. 
 
        // The second leaf can only be blocked if coplanar 
        if ( !PrevData.TargetPoints ) 
        { 
            Data.SourcePoints = PrevData.SourcePoints; 
            Data.TargetPoints = GeneratorPoints; 
            RecursePVS( GeneratorPortal->NeighbourLeaf, SourcePortal, Data ); 
            FreePortalPoints( GeneratorPoints ); 
            continue; 
 
        } // End if Previous Points 

 
Remember that the above conditional code is only executed in the first instance of the function when no 
previous target portals exist and need to be found. 
 
The next thing we do is clip the generator portal to the target portal’s plane. The section of the generator 
portal that should be visible to the source portal is that section located in the front space of the target 
portal and as such, can be seen when looking through the back of the target portal. If none of the 
generator portal survives the clip then it is not visible to the source portal and we do not have to step 
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through it into its neighbor leaf. When this is the case we process the generator portal no further and 
simply skip to the next generator portal in the loop that needs to be processed. 
 
        // Clip the generator portal to the previous target. If none remains, continue. 
        NewPoints = GeneratorPoints->Clip( PrevData.TargetPlane, false ); 
        if ( NewPoints != GeneratorPoints ) FreePortalPoints( GeneratorPoints ); 
        GeneratorPoints = NewPoints; 
        if (!GeneratorPoints) continue; 

 
The source portal should also be clipped to the generator portals plane. However, we need to make sure 
that the only portion of the source portal that survives is the portion that is located behind the plane of 
the generator portal and not in front as it usually the case with a clipping routine. The source portal 
should only ever be able to see through the back of a generator portal and a source portal that spans the 
generator portals plane clearly violates that. We need to flip our clipping operation so that is clips away 
any portion of the source portal that is located in the front space of the generator portal’s plane. 
Fortunately, we already calculated a reversed generator plane above so we can re-use it here. By passing 
in the reversed generator plane into our clip function we will remove the section of the source portal that 
is in the back space of this plane, which is really the section that is in the front space of the real 
generator portal’s plane. As you can see, we make a new copy of the source portal geometry from the 
source portal geometry passed into the function (PrevData.SourcePoint) which my have been clipped 
many times before and we then clip it to the reversed generator plane.  
 
        // Make a copy of the source portals points 
        SourcePoints = new CPortalPoints( PrevData.SourcePoints, true ); 
 
        // Clip the source portal 
        NewPoints = SourcePoints->Clip( ReverseGenPlane, false ); 
        if ( NewPoints != SourcePoints ) FreePortalPoints( SourcePoints ); 
        SourcePoints = NewPoints; 
 
        // If none remains, continue to the next portal 
        if ( !SourcePoints ) { FreePortalPoints(  GeneratorPoints ); continue; } 

 
As the above code shows, if none of the source portal survived the clip it means the source portal can 
see no portion of the generator portal’s back face and as such no portal flow can exist. When this is the 
case we skip any further processing of this generator portal and continue to the next iteration of the loop 
where we will test the next generator portal in this leaf which needs to be tested. 
 
At this point we know we have a source portal and a generator portal which although have been clipped 
to each others plane, have portal flow between them in the loosest sense. Our next task is to perform the 
clipping of the source and generator portals to the anti-penumbra. The ClipToAntiPenumbra function is 
the method that creates the anti-penumbra and performs the clipping of the passed portal to its planes. 
As discussed earlier, there are a possibly four anti-penumbras that we can build and clip to and how 
many we perform depends on the number of clip tests that have been enabled in the PVSOPTIONS 
structure. The clip tests are performed as shown below:- 
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• Clip Test 1 : Build Anti-Penumbra from source portal to target portal and clip the  
                        generator portal to its planes. 

 
• Clip Test 2 : Build Anti-Penumbra from target portal to source portal and clip the 

 generator portal to its planes. 
 

• Clip Test 3 : Build Anti-Penumbra from generator portal to target portal and clip the  
 source portal to its planes. 

 
• Clip Test 4 : Build Anti-Penumbra from target portal to generator portal and clip the  

 source portal to its planes. 
 
After each clipping operation, if none of the portal that was clipped survived, the source and generator 
portals can not see each other through the target portal meaning we need process this generator portal no 
further and should not recur through it into the neighbor leaf. Instead, we simply continue on to the next 
iteration of the loop and process the next generator portal in the leaf. Here is the code that performs the 
four clip tests. We will look at the ClipToAntiPenumbra method next. 
 
        // Lets go Clipping :) 
        if ( m_OptionSet.ClipTestCount > 0 ) 
        { 
            GeneratorPoints = ClipToAntiPenumbra( SourcePoints,  
                                                  PrevData.TargetPoints,  
                                                  GeneratorPoints,  
                                                  false );  
 
            if (!GeneratorPoints) { FreePortalPoints( SourcePoints ); continue; } 
         
        } // End if 1 Clip Test 
 
        if ( m_OptionSet.ClipTestCount > 1 ) 
        { 
            GeneratorPoints = ClipToAntiPenumbra( PrevData.TargetPoints,  
                                                  SourcePoints,  
                                                  GeneratorPoints,  
                                                  true ); 
  
            if (!GeneratorPoints) { FreePortalPoints( SourcePoints ); continue; } 
         
        } // End if 2 Clip Tests 
 
        if ( m_OptionSet.ClipTestCount > 2 ) 
        { 
            SourcePoints = ClipToAntiPenumbra( GeneratorPoints,  
                                               PrevData.TargetPoints,  
                                               SourcePoints,  
                                               false ); 
  
            if (!SourcePoints) { FreePortalPoints( GeneratorPoints ); continue; } 
         
        } // End if 3 Clip Test 
 
        if ( m_OptionSet.ClipTestCount > 3 ) 
        { 
            SourcePoints = ClipToAntiPenumbra( PrevData.TargetPoints,  
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                                               GeneratorPoints,  
                                               SourcePoints,  
                                               true ); 
  
            if (!SourcePoints) { FreePortalPoints( GeneratorPoints ); continue; } 
         
        } // End if 4 Clip Test 

 
The first two parameters to the ClipToAntiPenumbra function are the portals between which the anti-
penumbra will be created. The third parameter is where the portal that should be clipped is passed. 
 
The fourth parameter 
to the function is a 
Boolean that describes 
whether the portal 
should be clipped to 
the back of the anti-
penumbra planes or 
the front. This is 
necessary because the 
direction of the plane 
normals being built 
from source to target 
will be opposite to 
that of the normals of 
the plane constructed 
when going from target to source as is shown in figure 17.6.  

Figure 17.55 

 
The leftmost image shows a 2D representation of the planes generated when the anti-penumbra is being 
constructed from the vertices of the source portal to the edges of the target portal. We can see that on the 
opposite side of the target portal the visible region is bounded by planes that face inwards and as such, 
any portion of the portal that is to be clipped that is located in the back space of any anti-penumbra plane 
is clipped away. In the right most image we see that when the direction of the anti-penumbra is reversed 
and is instead constructed from the target portal to the source portal, the visible region on the opposite 
side of the target portal is now bounded by outward facing planes and as such, the function should clip 
away any section of the generator portal that is located in the front space of any of these planes. That is 
why we flick this Boolean switch with each call in the above section of code. We are informing the 
ClipToAntiPenumbra method as to whether the portal should be clipped to the back or front spaces of 
the anti-penumbra’s clip planes respectively. 
 
If we survive the clip tests performed in the previous section of code then it means the source portal can 
clearly see the generator portal and as such, we should recur through the generator portal into its 
neighbor leaf. Before doing that we store the new clipped source portal polygon and the clipped 
generator portal polygon in the PVSData structure (Data) and then pass it into the RecursePVS function 
to recur into the next leaf.  
 
Below we show the remainder of the function that performs this task and shows the clean up of the 
temporarily clipped source and generator portals inside the bottom of the loop. 
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        // Store data for next recursion 
        Data.SourcePoints = SourcePoints; 
        Data.TargetPoints = GeneratorPoints; 
 
        // Flow through it for real 
        RecursePVS( GeneratorPortal->NeighbourLeaf, SourcePortal, Data ); 
 
        // Clean up 
        FreePortalPoints( SourcePoints ); 
        FreePortalPoints( GeneratorPoints ); 
 
    } // Next Portal 
 
    // Clean up 
    if (Data.VisBits) delete []Data.VisBits; 
         
    // Success 
    return BC_OK; 
} 

 
When we reach the bottom of this loop we will have processed every generator portal in this leaf and 
will have calculated its contribution to the source portal’s ActuaVis array. Before returning we release 
the Data.VisBits array which we allocated earlier. 
 
 
 

ClipToAntiPenumbra - CProcessPVS 
 
The ClipToAntiPenumbra function has the task of finding all separating planes that divide the source 
and target portals into opposing half spaces. Such a plane is a valid anti-penumbra plane which is used 
to clip the generator portal. 
 

Note: In this function we are using the term generator portal to refer to the portal passed in as the 
third parameter to this function. However, as we saw in the above code, this may be a pointer to either 
the actual source or generator portal depending on which clip test is being performed. 

 
This function first sets up a loop to iterate through every edge in the source portal as shown below. 
 
 
CPortalPoints * CProcessPVS::ClipToAntiPenumbra( CPortalPoints * Source,  
                                                 CPortalPoints * Target,  
                                                 CPortalPoints * Generator,  
                                                 bool ReverseClip ) 
{ 
    CPlane3         Plane; 
    CVector3        v1, v2; 
    float           Length; 
    ULONG           Counts[3]; 
    ULONG           i, j, k, l; 
    bool            ReverseTest; 
    CPortalPoints  *NewPoints; 
 
    // Check all combinations 
    for ( i = 0; i < Source->VertexCount; i++ ) 
    { 
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        // Build first edge 
        l = ( i + 1 ) % Source->VertexCount; 
        v1 = Source->Vertices[l] - Source->Vertices[i]; 

 
Loop variable ‘i’ describes the index of the first vertex in the edge we are testing and the ‘l’ local 
variable describes the index of the next vertex forming the edge. This is calculated as being i+1 with a 
modulus performed with the vertex count of the source polygon so that ‘l’ will wrap around to the first 
vertex for the last edge of the portal. Vector v1 is then calculated by subtracting vertex position l from i 
thus generating the current edge vector in the source portal we wish to process. 
 
Now that we have an edge in the source portal we need to create a plane with that edge and every vertex 
in the target portal. Next we set up a loop to loop through each vertex in the target portal and create an 
additional vector v2. This is a vector from the one of the source vertices in the edge and the current 
vertex in the target portal we are processing. Vectors v1 and v2 are now vectors tangent to a plane 
generated from the source to the target portal so we will next perform the cross product between these 
two vectors to retrieve the normal of that plane.   
 
        // Find a vertex belonging to the generator that makes a plane 
        // which puts all of the vertices of the target on the front side 
        // and all of the vertices of the source on the back side 
        for ( j = 0; j < Target->VertexCount; j++ ) 
        { 
            // Build second edge 
            v2 = Target->Vertices[ j ] - Source->Vertices[ i ]; 
            Plane.Normal = v1.Cross( v2 ); 

 
Next we record the length of the returned normal (which has not yet been normalized) and if the length 
is found to be zero (with tolerance) it means we have an invalid plane so will continue to the next 
iteration of the loop where we will process the next target vertex. 
 
            // If points don't make a valid plane, skip it 
            Length = Plane.Normal.x * Plane.Normal.x + 
                     Plane.Normal.y * Plane.Normal.y + 
                     Plane.Normal.z * Plane.Normal.z; 
            if ( Length < 0.1f ) continue; 

 
If we get this far it means that we have a valid plane and as such we will normalize the plane normal and 
will calculated the plane’s distance from the origin by dotting the plane normal with the target vertex 
(which is a point known to be on the plane). 
 
            // Normalize the plane normal 
            Length = 1 / sqrtf( Length ); 
            Plane.Normal *= Length; 
 
            // Calculate the plane distance 
            Plane.Distance = -Target->Vertices[ j ].Dot( Plane.Normal ); 

 
At this point we have a valid plane so our next step is to test if this is a separating plane. That is, if it has 
the source portal completely contained in one half space and the target portal in the other. If not then this 
is not a valid an anti-penumbra plane. Figure 17.7 reminds us of what a separating plane looks like by 
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showing us both a separating plane and a non-separating plane. Only the plane generated in the leftmost 
image is a valid anti-penumbra clip plane and will be used to clip the generator portal.  
 

Figure 17.7 
Our first task in achieving this goal is to loop through each vertex in the source portal and classify it 
against our plane. As it was one of the source portal’s vertices that was used to generate this plane, it is 
impossible to have vertices in the source portal located in both half spaces of the plane. Therefore, in 
this loop we are searching for the first vertex that is found in either the front or back half spaces at which 
point we can break. We know that if one of the vertices is contained in the front space of the plane then 
the entire polygon must be and likewise for the back half space. If the source portal is found to be 
located in the back half space of the plane we set the ReverseTest Boolean to false before breaking so 
that we know that when we test the target portal we are wishing it to be contained in the front half space. 
Alternatively, this Boolean is set to true if the source portal is found to be located in the front space of 
the plane meaning we wish to find the target portal located in the back space. 
 
            // Find out which side of the generated separating plane has the source portal 
            ReverseTest = false; 
            for ( k = 0; k < Source->VertexCount; k++ ) 
            { 
                // Skip if it matches other verts 
                if ( k == i || k == l ) continue; 
 
                // Classify the point 
                CLASSIFYTYPE Location = Plane.ClassifyPoint( Source->Vertices[ k ] ); 
                if ( Location == CLASSIFY_BEHIND ) 
                { 
                    // Source is on the negative side, so we want all pass 
                    // and target on the positive side. 
                    ReverseTest = false; 
                    break; 
                 
                } // End If Behind 
                else if ( Location == CLASSIFY_INFRONT ) 
                { 
                    // Source is on the positive sode, so we want all pass 
                    // and target on the negative side. 
                    ReverseTest = true; 
                    break; 
                 
                } // End if In Front 
 
            } // Next Source Vertex 
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As the above loop has no conditional to deal with the on-plane case, if all its vertices are co-planar with 
the candidate plane then the loop will be allowed to carry out to its conclusion. This means outside the 
loop, the loop variable ‘k’ will be equal to the vertex count of the source portal. This tells us that the 
source portal is co-planar and as such, this plane could not possibly be a separating plane so we should 
skip it and continue on to test the next vertex in the target portal. 
 
            // Planar with the source portal ? 
            if ( k == Source->VertexCount ) continue; 

 
In the next section we will loop through each vertex in the target portal and will classify it against the 
plane. Before doing so we test the value of the ReverseTest local Boolean and flip the direction of the 
plane normal if it is set to true. This allows us to treat the source portal as having existed in the back 
space of the plane (regardless of where it was actually located) which means in this code we are 
searching for a portal that has its vertices contained in the front space of the plane. 
 
            // Flip the normal if the source portal is backwards 
            if ( ReverseTest ) { Plane.Normal = -Plane.Normal;  
                                 Plane.Distance = -Plane.Distance; } 
 
            // If all of the pass portal points are now on the positive  
            // side then this is the separating plane. 
            ZeroMemory( Counts, 3 * sizeof(ULONG) ); 
            for ( k = 0; k < Target->VertexCount; k++ ) 
            { 
                // Skip if the two match 
                if ( k == j ) continue; 
 
                // Classify the point 
                CLASSIFYTYPE Location = Plane.ClassifyPoint( Target->Vertices[ k ] ); 
                if ( Location == CLASSIFY_BEHIND ) 
                    break; 
                else if ( Location == CLASSIFY_INFRONT ) 
                    Counts[0]++; 
                else 
                    Counts[2]++; 
 
            } // Next Target Vertex 
 
            // Points on the negative side ? 
            if ( k != Target->VertexCount ) continue; 
 
            // Planar with separating plane ? 
            if ( Counts[0] == 0 ) continue; 

 
As you can see, as soon as we find a vertex that is situated behind the plane it means this portal is in the 
same half space of the plane as the source portal (pay attention to the flipping of the plane depending on 
the result of ReverseTest that allows us to make that determination). This means we break instantly as 
this is not a separating plane. If any vertices are found to exist in the front space of the plane then we 
increase the value of Counts[0]. 
 
Outside the loop we can see that if loop variable ‘k’ is not equal to the vertex count of the target portal it 
means we broke from the loop early after finding a vertex in the same half space of the source portal. 
This means this plane can not possibly separate the source and target portals into two half spaces so we 
continue on to the next iteration of the loop and the next plane to test. We can also see that if Counts[0] 
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equal zero, it means we never incremented it in the loop meaning no vertex was every found to be in the 
front space of the plane either. This must mean the target portal is located on the candidate plane and as 
such, this can not possibly be a separating plane. Once again, if this is the case we skip any further 
processing of this plane and skip to the next iteration of the loop. 
 
If we reach this point it means we have found a separating plane and the generator portal passed into the 
function should be clipped to it. Before doing so we test the value of the ReverseClip parameter 
remembering that if this is set to true then the caller would like us to clip away portal fragments that are 
in the front space of the separating plane instead of in the back space as is usually the case. We address 
this by simply flipping the direction of the clip plane prior to clipping the portal. 
 
As the next and final section of this function shows, we clip the generator portal to the clip plane and if 
we find that a new portal was created by the clip procedure, the original portal (Generator) is released. 
We then assign the passed Generator portal pointer to point at the new clipped polygon returned from 
the clipping function instead. In the last line of the loop for this plane, we test that the Generator has not 
been assigned a value of NULL and if so, it means we must have completely clipped away the generator 
portal with this plane and as such, the generator portal is outside the anti-penumbra and NULL is 
returned. 
 
            // Flip the normal if we want the back side 
            if ( ReverseClip ) { Plane.Normal = -Plane.Normal;  
                                 Plane.Distance = -Plane.Distance; } 
 
            // Clip the target by the separating plane 
            NewPoints = Generator->Clip( Plane, false ); 
            if ( NewPoints != Generator ) FreePortalPoints( Generator ); 
            Generator = NewPoints; 
 
            // Target is not visible ? 
            if (!Generator) return NULL; 
 
        } // Next Target Vertex 
 
    } // Next Source Vertex 
 
    // Success!! 
    return Generator; 
} 

 
The bottom of the function is only ever reached if some portion of the generator portal survived being 
clipped to all the separating planes generated in the above loops. This new clipped generator portal is 
returned from the function back to the caller. 
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Where Are We? 
 
At this point we have covered the core PVS generation procedure that was invoked from the 
CProcessPVS::Process method via a call to the CalcPortalVis method. When the CalcPortalVis method 
returns program flow back to the Process method, every portal will have had its PVS generated. Let us 
have another look at the CProcessPVS::Process method to remind us of what is let to do.  
 
HRESULT CProcessPVS::Process( CBSPTree * pTree ) 
{ 
    HRESULT hRet; 
 
    // Validate values 
    if (!pTree) return BCERR_INVALIDPARAMS; 
 
    // Validate Input Data 
    if ( pTree->GetPortalCount() == 0 ) return BCERR_BSP_INVALIDTREEDATA; 
 
    // Store tree for compilation 
    m_pTree = pTree; 
 
    // Calculate Number Of Bytes needed to store each leafs 
 // vis array in BIT form (i.e 8 leafs vis per byte uncompressed) 
    m_PVSBytesPerSet = (pTree->GetLeafCount() + 7) / 8; 
 
    // 32 bit align the bytes per set to allow for our early out long conversion 
    m_PVSBytesPerSet = (m_PVSBytesPerSet * 3 + 3) & 0xFFFFFFFC; 
 
    // Retrieve all of our one way portals 
    hRet = GeneratePVSPortals(); 
 
    if ( FAILED( hRet ) ) return hRet; 
    if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 
     
    // Calculate initial portal visibility 
    hRet = InitialPortalVis(); 
 
    if ( FAILED( hRet ) ) return hRet; 
    if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 
 
    // Perform actual full PVS calculation 
    hRet = CalcPortalVis(); 
 
    if ( FAILED( hRet ) ) return hRet; 
    if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 
 
    // Export the visibility set to the final BSP Tree master array 
    hRet = ExportPVS( pTree ); 
 
    if ( FAILED( hRet ) ) return hRet; 
    if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 
 
    // Success 
    return BC_OK;    
} 

 
As you can see, we have covered all methods in the process with the exception of the final one called 
ExportPVS. It is this method, which we will look at next, that is responsible for combining the PVS data 
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for each portal that resides in a given leaf to generate the PVS for that leaf in the BSP tree. This method 
will also compress the data using zero run length encoding and will store in the leaves of the BSP tree 
the index into which each leaf’s visibility data begins in the master PVS data block 
 
 
ExportPVS - CProcessPVS 
 
At the time this function is called each portal will contain its own PVS in its ActualVis array. However, 
our PVS rendering code will not be interested in what each of the portals can see and in fact, there is no 
need for the portals to even be saved to file. Our PVS renderer wants to know what each leaf can see and 
it is this function that takes care of building the master PVS data block that will be stored in the BSP tree 
and will describe the visibility sets for each leaf instead of each portal. 
 
Now that we have the visibility sets for each portal, determining what each leaf can see is trivial. The 
PVS of a leaf is simply the accumulation of the PVS’s of each portal that resides in that leaf and as such 
can be calculated with a simple loop at each leaf. 
 
Let us cover the function a section at a time. The first section of the function writes out logging 
information to the PVS channel describing whether it is going to create a compressed leaf PVS or 
whether it will calculate the leaf PVS for the BSP tree as an uncompressed bit set (this is controller by a 
#define). 
 
HRESULT CProcessPVS::ExportPVS( CBSPTree * pTree ) 
{ 
    UCHAR * PVSData = NULL; 
    UCHAR * LeafPVS = NULL; 
    ULONG   PVSWritePtr = 0, i, p, j; 
     
    try 
    { 
        // ************************* 
        // * Write Log Information * 
        // ************************* 
        if ( m_pLogger ) 
        { 
 
            #if ( PVS_COMPRESSDATA ) 
                m_pLogger->LogWrite( LOG_PVS,  
                                     0,  
                                     true,  
                                     _T("ZRLE compressing PVS data for export \t\t- " ) ); 
            #else 
                m_pLogger->LogWrite( LOG_PVS,  
                                     0,  
                                     true,  
                                     _T("Building final PVS data for export \t\t- " ) ); 
            #endif 
 
            m_pLogger->SetRewindMarker( LOG_PVS ); 
            m_pLogger->LogWrite( LOG_PVS, 0, false, _T("0%%" ) ); 
            m_pLogger->SetProgressRange( pTree->GetLeafCount() ); 
            m_pLogger->SetProgressValue( 0 ); 
        }  
        // ************************* 
        // *    End of Logging     * 
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        // ************************* 

 
Notice that the progress range of the logger in the above code is set to the number of leaves in the passed 
BSP tree. That is because this process will be complete once we have looped through each leaf in the 
BSP tree and have calculated its PVS and added it to a master PVS array. 
 
Our next step is to allocate some memory that will be used to store the master PVS data array. This must 
be large enough to store the visibility for every leaf in the tree in compressed format. One might imagine 
that if m_PVSBytesPerSet contains the number of bytes needed to store a leaf’s visibility information in 
uncompressed format, then we can allocate an array large enough to store 
LeafCount*m_PVSBytesPerSet bytes. This should always be large enough to store everything we need 
as it is large enough to store a visibility set for each leaf in uncompressed format. Is that correct? 
 
Well, in practice yes that will almost definitely be the case and in fact this array will be much larger than 
we actually need once the data is compressed. That doesn’t matter though because after we have 
compressed the data we can resize the array to its correct actual size. However, look at how we allocate 
this array and initialize its memory. 
 
        // Reserve Enough Space to hold every leafs PVS set 
        PVSData = new UCHAR[pTree->GetLeafCount() * (m_PVSBytesPerSet*2)]; 
        if (!PVSData) throw std::bad_alloc(); 
 
        // Set all visibility initially to off 
        ZeroMemory( PVSData, pTree->GetLeafCount() * (m_PVSBytesPerSet*2)); 

 
Why are we multiplying m_PVSBytesPerSet by 2 before multiplying it with the tree’s leaf count? 
Although incredibly unlikely, there is very slim chance that compressing our data using ZRLE could 
actually make it larger than in its uncompressed format. Imagine for example we had 6 bytes in each of 
our visibility sets and the 2nd, 4th and 6th bit were set to zero. 
 
Leaf Set =  N , 0 , N , 0 , N , 0 
 
Imagining that N is some placeholder for a non zero byte in a leaf’s PVS. We know that ZRLE encoding 
will try to compress runs of zero bytes by collapsing those runs in to two bytes. The first is the zero itself 
and the second is the byte that tells us how many bytes of zero the run represents. However, in the above 
scenario there are no runs of zeros and as such, an additional byte (the run byte) would be inserted after 
each zero describing a run of 1. Obviously this provides no benefit and actually would increase the size 
of our 6 byte visibility array to a 9 byte array. 
 
Leaf Set = N , 0 , 1 , N , 0 , 1 , N , 0 , 1 
 
Therefore we can see that in the most unusual circumstances we may generate a compressed PVS that is 
larger than its uncompressed counterpart and in the most appalling of circumstances, compressing the 
PVS could actually double its size.  
 

Note: it should be noted that the above scenario is very unlikely as the PVS by its very nature in an 
occluded environment will generate leaf based PVS sets where most of the other leaves of not visible 
and as such, huge runs of zeros will be compressed into only two bytes providing us with huge memory 
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savings in nearly every case. However, as it is possible that we could double its size by compressing 
it, we had better allocate the PVS data block large enough to handle it so that our compiler does not 
crash and burn mid way through the compression procedure. 

 
With the master PVS data array allocated we will now allocate a temporary buffer that will be used by 
each leaf to accumulate and collect the combined ActualVis arrays of each portal contained in that leaf. 
This buffer should be large enough to store an uncompressed bit set for each leaf. That is, this buffer 
should be equal in size to the portal’s ActualVis array. 
 
        // Allocate enough memory for a single leaf set 
        LeafPVS = new UCHAR[ m_PVSBytesPerSet ]; 
        if (!LeafPVS) throw std::bad_alloc(); 

 
Now we will loop through each leaf in the tree. Inside the loop we will use the loop variable to fetch 
from the BSP tree the structure of the leaf we are currently processing. We also update the progress of 
the logger which is incremented on a per leaf bases.  
 
        // Loop round each leaf and collect the vis info 
        // this is all OR'd together and ZRLE compressed 
        // Then finally stored in the master array 
        for ( i = 0; i < pTree->GetLeafCount(); i++ )  
        { 
            CBSPLeaf * pLeaf = pTree->GetLeaf(i); 
             
            // Update progress 
            if (!m_pParent->TestCompilerState()) break; 
            if ( m_pLogger ) m_pLogger->UpdateProgress( ); 

 
In the next step we will initialize the temporary LeafPVS buffer to zero prior to collecting the visibility 
sets of each of its portals into it. We also set the PVSIndex member of the leaf to that of the value stored 
in the PVSWritePtr local variable. We will see in a moment that this variable will be increased each time 
we compress the PVS data for a leaf and add it to the master PVS data block and as such, it will always 
describe the index into this array where the compressed PVS data of the leaf we are about to process will 
be placed into this array. We also set the visibility bit in the LeafPVS buffer for the current leaf we are 
processing as it can obviously see itself. 
 

Note: PVSWritePtr is zero the first time this loop executes which describes leaf 0’s PVS as starting at 
the very beginning of the master PVS data array 

 
            // Clear Temp PVS Array Buffer 
            ZeroMemory( LeafPVS, m_PVSBytesPerSet ); 
            pLeaf->PVSIndex = PVSWritePtr; 
         
            // Current leaf is always visible 
            SetPVSBit( LeafPVS, i ); 

 
Now we loop through every portal in this leaf and use the familiar methods to retrieve the index of the 
one-way portal that it represents.             
 
            // Loop through all portals in this leaf 
            for ( p = 0; p < pLeaf->PortalIndices.size(); p++ )  
            { 
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                // Find correct portal index (the one IN this leaf) 
                ULONG PortalIndex = pLeaf->PortalIndices[ p ] * 2; 
                if ( GetPVSPortal( PortalIndex )->NeighbourLeaf == i ) PortalIndex++; 

 
At this point we have a pointer to the current portal so we will loop through each byte in its ActualVis 
array and will bitwise OR it with the current contents of the LeafPVS buffer so that the necessary 
visibility bits are enabled. 
 
                // Or the vis bits together 
                for ( j = 0; j < m_PVSBytesPerSet; j++ )  
                { 
                 LeafPVS[j] |= GetPVSPortal( PortalIndex )->ActualVis[j]; 
                 
                } // Next PVS Byte 
 
            } // Next Portal 
 

 
At this point the LeafPVS buffer contains the complete uncompressed PVS set for the current leaf that 
we are processing so our next task is to store this in the master PVSData array. If compression has not 
been enabled then we literally just copy the information stored in LeafPVS into the master data array at 
the location contained in PVSWritePtr and then increase the write pointer by the size of the LeafPVS 
array. This is done so that when we process the next leaf, it will contain an index to the location where 
its data should be copied to in the master PVS data array. However, if we have chosen to compress the 
data set then the data is added to the master PVSData array using a function called CompressLeafSet as 
shown below. 
 
 
            #if ( PVS_COMPRESSDATA ) 
      
                // Compress the leaf set here and update our master write pointer 
                PVSWritePtr += CompressLeafSet( PVSData, LeafPVS, PVSWritePtr ); 
 
            #else 
 
                // Copy the data into the Master PVS Set 
                memcpy( &PVSData[ PVSWritePtr ], LeafPVS, m_PVSBytesPerSet ); 
                PVSWritePtr += m_PVSBytesPerSet; 
 
            #endif 
 
        } // Next Leaf 

 
The CompressLeafSet method will be discussed in a moment but for now just know that it is passed the 
master PVSData array as its first parameter as this is where the function will need to copy the 
compressed data into. As the second parameter we will pass the LeafPVS buffer which contains the 
uncompressed PVS for the current leaf. This is the data that the function will compress and copy into the 
PVSData array. As the third parameter we pass the write pointer index value which describes the 
starting location in the PVSData array where the new compressed data should be written to. As this 
function returns the size that the passed LeafPVS data array was ultimately compressed to, we can use 
this value to increment the write pointer value on function return so that it contains the index of the first 
byte after the block of data we have just added. This will be the starting location for the next leaf’s 
compressed data and the byte at which its PVS data will begin in the master array. 

 105 

 



 

 
At this point we will have compressed every leaf’s PVS and stored it in the PVSData array and each leaf 
in the tree will also have had its PVSIndex member set so that it describes the index of the first byte in 
this array where its visibility information begins. We can now delete the LeafPVS buffer as it is no 
longer needed and can call the BSP tree’s SetPVSData method (discussed earlier) so that it can make a 
copy of the PVSData array we haven just compiled. 
 
 
        // Clean up after ourselves 
        delete []LeafPVS; 
        LeafPVS = NULL; 
 
        // Pass this data off to the BSP Tree (data, size, compressed) 
        if (FAILED(pTree->SetPVSData( PVSData,  
                                      PVSWritePtr,  
                                      PVS_COMPRESSDATA ))) throw std::bad_alloc(); 
 
        // Free our PVS buffer 
        delete []PVSData; 
 
        // If we're cancelled, bail 
        if ( m_pParent->GetCompileStatus() == CS_CANCELLED ) return BC_CANCELLED; 
 
    } // End Try Block 
 
    catch (...) 
    { 
        // Clean up and return (Failure) 
        if ( LeafPVS ) delete []LeafPVS; 
        if ( PVSData ) delete []PVSData; 
        if ( m_pLogger ) m_pLogger->ProgressFailure( LOG_PVS ); 
        return BCERR_OUTOFMEMORY; 
     
    } // End Catch Block 
 
    // Success!! 
    if ( m_pLogger ) m_pLogger->ProgressSuccess( LOG_PVS ); 
    return BC_OK; 
} 
 
 

Recall that the CBSPTree::SetPVSData method will make a copy of the passed PVS data array and by 
passing in PVSWritePtr as the second parameter we also inform it of the final size of the compressed 
data. As it uses this to allocate its PVS array this means that whilst the PVSData array allocated in this 
function may have been allocated much larger than necessary, the actual array stored in the PVS tree 
will be the correct size. The CBSPTree::SetPVSData method copies over all the PVS data into its own 
array and therefore, on function return we can delete the local PVSData array as it is no longer needed. 
The third parameter to the SetPVSData method simply informs the function that the data is compressed 
which the run time component will need to know when reading the PVS data at render time. 
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CompressLeafSet - CProcessPVS 
 

This method is passed as its first parameter a master PVS data buffer that the compressed data will be 
copied into and as its 3rd parameter the location within this array where we should start writing the 
compressed data. As the second parameter the uncompressed PVS of a single leaf of passed. This is the 
data that is to be compressed.  
 

The function first sets up a loop to iterate through every byte in the passed PVS set (VisArray). 
 
ULONG CProcessPVS::CompressLeafSet ( UCHAR MasterPVS[],  
                                     const UCHAR VisArray[],  
                                     ULONG WritePos) 
{ 
    ULONG   RepeatCount; 
    UCHAR  *pDest = &MasterPVS[ WritePos ]; 
    UCHAR  *pDest_p; 
  
    // Set dynamic pointer to start position 
    pDest_p = pDest; 
  
    // Loop through and compress the set 
    for ( ULONG j = 0; j < m_PVSBytesPerSet; j++ )  
    { 
        // Store the current 8 leaves 
 *pDest_p++ = VisArray[j]; 
 
        // Don't compress if all bits are not zero 
 if ( VisArray[j] ) continue; 

 
pDest_p is used to point at the current byte in the master PVS data array (passed as the first parameter) 
that we are currently copying information into. As you can see in the first line inside the loop in the 
above code, we copy the contents of the current byte being processed in the leaf set (VisArray) into the 
master PVS data array. In the bottom line in the above code we can see that after copying over this byte 
we test to see if it was zero or not. If it isn’t zero then this byte has visible leaves in its bitset and can not 
be compressed. This means we can just skip to the next byte in the buffer having copied over this byte 
into the master array.  
 
If we make it past the last line in the above code however, it means the current byte we have just copied 
over is a zero byte and therefore we must set up a loop to see how many zero bytes follow it. Once we 
have counted the run of zeros, we can simply insert this run length byte into the master PVS data array 
just after the zero byte we just copied over. Here is the remainder of the function. 
 
        // Count the number of 0 bytes 
 RepeatCount = 1; 
 for ( j++; j < m_PVSBytesPerSet; j++ )  
        { 
            // Keep counting until byte != 0 or we reach our max repeat count 
     if ( VisArray[j] || RepeatCount == 255) break; else RepeatCount++; 
   
        } // Next Byte 
   
        // Store our repeat count 
        *pDest_p++ = (UCHAR)RepeatCount; 
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        // Step back one byte because the outer loop 
        // will increment. We are already at the correct pos. 
  j--; 
  
    } // Next Byte 
  
    // Return written size 
    return pDest_p - pDest; 
} 

 
As you can see, we loop from our current byte position through the bytes that follow counting how 
many zero bytes we encounter in a continuous run. The RepeatCount is set to 1 to begin with as before 
this loop we only know of one zero that exists, the zero byte we just copied over. In the middle of this 
inner loop you can see that we break from the loop as soon as a non-zero byte is encountered or if the 
repeat count reaches 255 which is the highest run length value we can store in a byte. Otherwise, for 
each consecutive zero byte we find in the run we increment the repeat count. 
 
Outside the inner loop, RepeatCount will contain the length of the run of zeros that were found starting 
from the original zero byte we copied into the master array. We then write this run length into the PVS 
data buffer (pDest_p).  
 
Finally, we return from the function the total size of the data we managed to compress by subtracting 
from pDest_p, which contains the address of the last byte we have just written to the PVS data array, the 
value of pDest which contains the address of the first byte that was written by this function. That is, we 
return the number of bytes of compressed data that we have written to the PVS data array. 
 

Conclusion 
 
Writing a portal and PVS compiler has perhaps been our most challenging task to date. However, our 
compiler tool has now evolved into something quite significant. You are certainly not expected to grasp 
every nuance of the code we have written in this chapter after a single read through the work book 
however, using this book as an aid to help you navigate the source code will have you up to speed on 
exactly how all this stuff works in no time at all. 
 
It is nice that the ultimate work book in this course was dedicated to writing such a useful and reusable 
tool and that the data generated by such a tool will certainly be used in GP3 where it will be used in 
conjunction with a more complete graphics engine. When using complex pixel shaders with multiple 
passes (as we will be in GP3), reducing overdraw has once again become a premier design goal. The 
more wonderful and complex these programmable pixel shaders are, the more strain is placed on the 3D 
hardware for each pixel that it renders. Using a PVS we can make sure that our 3D hardware does not 
grind to a halt spending most of its time performing multiple passes on pixels that are occluded and can 
not even be seen. If it has not become apparent to you yet, let me just say that by developing this tool 
and the means to render its data, we have overcome a huge obstacle in game engine development. The 
ability to render only the small region of the scene that is currently visible from the camera. Our games 
can now spend that GPU processing power rendering high detail objects in the immediate vicinity 
instead of rendering an abundance of low detail objects that can never been seen but are rendered 
anyway. 
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The lab projects in this course have certainly become rather large at times but we have many re-usable 
modules in place now and have acquired many techniques that were necessary to learn before we could 
even start to construct a real graphics engine. We are certainly ready for Graphics Programming with 
DirectX Part III.   
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