
 
 

Lab Project 16.3: BSP Leaf Tree Loading & 
Rendering 
 
In lab project 16.3, we begin to put together the rendering application that will make use of the 
information that has been compiled and exported by the new pre-processing tool developed in the 
previous lab project. In this application we will move back to our integrated spatial partitioning 
framework which we have been developing in previous lessons and add a new type of tree responsible 
for handling the solid BSP leaf tree information. Due to the fact that the compilation of the spatial 
hierarchy is now delegated to an external application, this new tree class will not perform any physical 
compile process. Instead it will be responsible only for the loading of the tree data from the compiled 
IWF file and reconstructing that information into a format compatible with our current spatial hierarchy 
rendering and utility classes. 
 
The Loading Process 
 
Because we have already developed a full scale scene import process within the ‘CScene’ class, it would 
be ideal if we could find a way to have this class remain responsible for loading and processing all level 
geometry and scene entities. If we can achieve this then no large scale modifications will have to be 
made within the application itself or any part of our existing spatial partitioning framework. In this lab 
project we will develop a process in which the scene object first processes the selected IWF file in the 
same manner as it has always done. Any polygon data imported from that file will simply be added to 
this new tree loading object via the ‘ISpatialTree’ interface as was the case with the tree compiler 
classes. With this polygon data already in place, the new loading class which will be developed in this 
lesson will simply be responsible for processing the IWF file for a second time. During this stage, the 
loading code will retrieve and reconstruct only the custom BSP tree information contained therein. As 
far as the application will be concerned, it would appear as if this new tree class has performed a full 
compilation of the scene geometry in a similar fashion to the quad-tree class for instance. However, all it 
has really done is to load the hierarchy data from an external file. 
 
Enhanced Visibility State Recording 
 
In addition to developing this new tree loading concept, we will also enhance the mechanism by which 
we record the visible state of each of the leaves contained in the tree. In previous applications, during the 
‘ProcessVisibility’ update traversal, we visited every leaf in the tree to update its visibility state with a 
call to its ‘SetVisible’ method even if that leaf was not visible. In this tree class, we will be adopting a 
frame counter system similar to that used by our collision detection and response classes, such that the 
leaf visibility information is invalidated automatically simply by incrementing a centralized counter 
variable. Whenever a leaf is found to be visible, a new leaf variable will be updated with the current 
counter value that can simply be tested during rendering to see if it was marked as visible at any point in 
this frame of the rendering loop. If the ‘SetVisible’ call was not made during this frame, then the leaf’s 
internal copy of the counter will be out of date and as such we can take this as a sign that the leaf is not 
visible. This new mechanism unfortunately prevents the application from making a call to the default 
‘IsVisible’ method of any leaf due to us no longer always updating the ‘m_bVisible’ member of the 
‘CBaseLeaf’ class. As a result we will need to derive a new leaf class from this base leaf, so that we can 



 

override this behaviour and once again restore this function to a working state. This situation will be 
discussed in more detail as we move on to discuss the new ‘CBSPTreeLeaf’ class. 
 
As a direct result of using this new counter mechanism however, we no longer have to visit every single 
leaf in the spatial hierarchy just to mark it as invisible. As you might image this should have a dramatic 
effect on the performance of the BSP tree rendering process specifically because it often has many more 
leaves than the previous types of spatial hierarchy we have developed.  
 
This should be a very interesting use of our existing spatial hierarchy technology. So, without further 
ado, let us move on to cover the implementation of this new type of tree loader object and its associated 
support classes and routines. 
 
The CBSPTreeNode Class 
 
As we know, the BSP leaf tree is a binary partitioning construct that is designed to separate space into 
two parts – one portion on either side of a separating plane. This principal is of course identical to that of 
the kD-tree concept we are already familiar with.  
 
Recall that the node structures within both spatial partitioning schemes are required to maintain similar 
information. Such information includes a separating plane, front and back child nodes and an optional 
child leaf. There are also some additional pieces of data that are common to both systems – such as the 
node’s bounding box extents – that serve as the basis for the various rendering and traversal 
optimizations we have integrated in the past. 
 
If we take a look at the declaration for the new ‘CBSPTreeNode’ class we should notice that it bears a 
striking resemblance to the ‘CKDTreeNode’ class we have previously developed. 
 
class CBSPTreeNode 
{ 
public: 
    // Constructors & Destructors for This Class. 
     CBSPTreeNode( ); 
    ~CBSPTreeNode( ); 
 
    // Public Variables for This Class 
    D3DXPLANE       Plane;              // Splitting plane for this node 
    CBSPTreeNode *  Front;              // Node in front of the plane 
    CBSPTreeNode *  Back;               // Node behind the plane 
    CBSPTreeLeaf *  Leaf;               // Leaf may be stored here 
    D3DXVECTOR3     BoundsMin;          // Minimum bounding box extents 
    D3DXVECTOR3     BoundsMax;          // Maximum bounding box extents 
    signed char     LastFrustumPlane;   // The frame-to-frame coherance index. 
 
    // Public Members Omitted 
}; 

 
Due to the fact that this node structure is almost identical to that used by both the kD-tree and BSP node 
tree, we will only briefly recap on each of the member variables declared here. 
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D3DXPLANE  Plane 
This member describes the separating plane used in the creation of this node. In the case of the polygon-
aligned BSP tree, this will be oriented such that it matches the plane of at least one polygon in the scene. 
In this new rendering application, the plane data is pulled from our combined plane array – stored in the 
import file – and placed into the D3DXPLANE typed member that we have relied upon throughout. We 
will examine this procedure shortly. 
 
CBSPTreeNode * Front 
Each node in the BSP tree partitions the scene into pieces which represent the space contained in both its 
front and back halfspaces. If there are further polygons available to be selected in front of the current 
node, then our compiler will have recursed into the front list and continued to generate new nodes from 
that data. The first of these nodes would be attached to this member in exactly the same manner with 
which we are familiar. In contrast to our compiler tool, our rendering application does not combine the 
concept of attached child leaves and nodes into one member variable and as such only a child node can 
be attached here. This is similar to the previous run-time tree types we have implemented prior to this, 
represented with a type that contains a pointer to another ‘CBSPTreeNode’ object. 
 
CBSPTreeNode * Back 
This member is similar to the previous in that it stores a pointer to any child node that might exist in the 
back halfspace of the current. Again this is identical in principal to the kD and BSP node tree types we 
have implemented in the past. 
 
CBSPTreeLeaf * Leaf 
Should this be a terminal node, this member will store the child leaf that should be attached here. In the 
earlier lab projects dealing with spatial hierarchies, we found that every terminal node would have a leaf 
attached to it. In this application we are implementing the run-time portion of the solid leaf BSP tree. 
Recall in lab project 16.2, there were cases in which a particular area of space within the scene was 
found to be solid. In these cases, no leaf was created or inserted into the tree. These leaves were simply 
replaced with an indicator that allowed us to identify this fact. As a result, when reconstructing the BSP 
tree in this application, there may be cases where this member is assigned a value of NULL that is used 
to signify the same thing. More details will be provided on this subject as we move into covering the 
actual reconstruction of the hierarchy from file. 
 
D3DXVECTOR3 BoundsMin 
This member stores the value that describes the minimum extents of the node’s bounding box. Recall 
that this bounding box will be large enough to contain every node, leaf and polygon that is found to exist 
anywhere beneath the current node. 
 
D3DXVECTOR3 BoundsMax 
Like the previous, this member stores part of the data required to describe the node’s axis-aligned 
bounding box. In this case however, this member stores the maximum extents of the box that describes 
each of the elements contained in this node’s subtree. 
 
signed char  LastFrustumPlane 
We have encountered and discussed this member in previous lessons. Recall that it is used during the 
‘ProcessVisibility’ traversal process when testing the node bounding box against the camera’s frustum 
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planes. This member stores the last frustum plane found to intersect this node’s parent bounding box. 
This is an optional value that can be passed into the camera’s ‘BoundsInFrustum’ function to allow it to 
optimize the order in which it tests the frustum planes during the processing of a hierarchy such as this. 
 
With each of the member variables discussed, it should be clear that this node class does not declare 
anything that we have not encountered before with the kD-tree node type. Similar to the 
‘CKDTreeNode’ class, this exposes only a single method. Let us take a look at this now. 
 
CBSPTreeNode::SetVisible 
 
The only method defined by this node class is the ‘SetVisible’ function. As we know, this function is 
traditionally called during the ‘ProcessVisibility’ traversal in each of our previous tree types. This 
implementation of the BSP tree is no different in that regard. It accepts a single Boolean parameter that 
specifies whether or not this node and its children are visible, this function then passes that information 
on to any applicable children. At the top of the function we can see that if there is a leaf stored in this 
node, that leaf’s own ‘SetVisible’ function will be called – passing in the same visibility status – before 
returning. If there was no leaf stored here, then this recursive procedure calls the ‘SetVisible’ function of 
both its front and back child nodes should either be available. This has the effect of traversing through 
the tree and updating the visibility status of every leaf contained anywhere beneath the initial node on 
which this function has been called. 
 
void CBSPTreeNode::SetVisible( bool bVisible ) 
{ 
    // Set leaf property 
    if ( Leaf  ) { Leaf->SetVisible( bVisible ); return; } 
 
    // Recurse down front / back if applicable 
    if ( Front ) Front->SetVisible( bVisible ); 
    if ( Back  ) Back->SetVisible( bVisible ); 
} 

 
As we can see, this simple recursive function remains unchanged from each of the four node classes we 
have created within the previous spatial hierarchy types. 
 
The CBSPTreeLeaf Class 
This class provides the data structures required to represent the leaf items contained within the spatial 
hierarchy. Again the concepts involved in attaching objects of this type to the tree should be very 
familiar to us already. However, there is a key difference between the implementation of the leaf 
concept used in previous spatial hierarchies and that of this new BSP loading class. In each of the 
previous tree types, recall that we used instances of the ‘CBaseLeaf’ class exclusively within the tree 
structure. This base class provides much of the functionality required to store the various pieces of 
information – such as the polygons and objects contained within that leaf – in addition to the 
functionality required for rendering much of that data. 
 
As we move forward with the BSP leaf tree concepts, the leaf structure will be required to store and 
process much more information that is specific to this type of tree. As a result, within the 
implementation of this spatial hierarchy type, we will begin to create a new leaf class that derives from 
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‘CBaseLeaf’. This is done in order to extend that base with the additional members and functionality 
required in both this lesson and the next.  
 
With this in mind, let us take a look at this new leaf class declaration before moving on to the initial 
methods that will be exposed. 
 
class CBSPTreeLeaf : public CBaseLeaf 
{ 
public: 
    // Constructors & Destructors for This Class. 
             CBSPTreeLeaf( CBSPTreeLoader * pTree ); 
    virtual ~CBSPTreeLeaf( ); 
 
    // Public Virtual Functions for This Class (from base). 
    virtual bool    IsVisible  ( ) const; 
    virtual void    SetVisible ( bool bVisible ); 
 
    // Public Variables for This Class 
    ULONG           m_nVisCounter; 
}; 

 
As you can see, there is only one member variable declared by this class outside of those inherited from 
the base ‘CBaseLeaf’ class that we are already familiar with. The purpose of this variable is described 
below. 
 
ULONG m_nVisCounter 
This member relates to the new visibility counting mechanism mentioned earlier in this lesson. Should 
the leaf be visible in any given render call, this variable will be updated such that it contains the same 
value as that currently stored within the main tree object. If at any point the leaf is found to be outside of 
the viewing frustum, this member will not be updated and will automatically become out of date as the 
main counter has been incremented. Because the tree’s counter is incremented every frame, if the value 
of this member differs from that of the tree object at any point, we know that this leaf was found not to 
be visible within this frame of the render loop. 
 
With this new visibility counting scheme we must alter the way that the ‘CBaseLeaf’ class detects and 
reports this leaf’s visibility status to the user. This is achieved by overloading the virtual ‘IsVisible’ 
method such that when the application requests the leaf’s visibility information through a pointer to the 
‘ILeaf’ superclass, the function defined in this new ‘CBSPTreeLeaf’ will be called. In addition, we must 
also provide an overload of the ‘SetVisible’ function. This method is not declared within the ‘ILeaf’ 
interface and should never be called by the application. However, we must overload the 
‘CBaseLeaf::SetVisible’ function in order to perform the additional processing that is now required. 
 
CBSPTreeLeaf::CBSPTreeLeaf( ) 
 
The first function we need to discuss is the single constructor for this class. This constructor accepts a 
single parameter as input. This parameter is a pointer to the tree object into which this leaf will be 
attached. Recall from our earlier discussion of the ‘CBaseLeaf’ class, this parent information is placed 
into an internal member variable and is used to allow the leaf object to access information stored within 
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the tree itself. Both the member variable and the code to store the input parameter are inherited from this 
class’s base. As a result, we must ensure that the base class constructor is also called, passing to it the 
same information that this constructor received. The easiest way to achieve this is to simply call the 
relevant ‘CBaseLeaf’ constructor by using the initialization list portion of the ‘CBSPTreeLeaf’ 
constructor shown below. 
 
CBSPTreeLeaf::CBSPTreeLeaf( CBSPTreeLoader * pTree ) : CBaseLeaf( pTree ) 
{ 
    // Reset / Clear all required values 
    m_nVisCounter   = 0; 
} 

 
With the information inherited from ‘CBaseLeaf’ fully initialized by the base class constructor, we can 
then simply continue to initialize those members added by this class. In this lab project, the only variable 
we need to reset here is the ‘m_nVisCount’ member. This is set to ‘0’ in order to ensure that every leaf 
starts its life in an invisible state. 
 
CBSPTreeLeaf::SetVisible 
 
Earlier we talked a little bit about the new mechanism by which we are recording information about 
whether or not a leaf is visible. This scheme uses a counter variable that describes whether or not the 
leaf was marked as visible within the most recent call to the tree class’s ‘ProcessVisiblity’ method. In 
this function and the next, we can see just how this is achieved. Recall that this is the first spatial 
hierarchy type in which we are deriving a new class in order to customize some of the core functionality 
provided by the base ‘CBaseLeaf’. Because we want to add an additional mechanism by which the 
visibility status of the leaf is recorded we need to overload the base class’ ‘SetVisible’ function. 
 
In the code block that follows we have included additional code that updates the member variable 
responsible for recording the most recent frame in which this leaf was found to be visible. If this leaf 
was specified as being visible then the current visibility frame counter value is requested of the parent 
tree object to which this leaf is attached. The value returned is subsequently stored in the leaf’s 
‘m_nVisCounter’ member variable. If a value of ‘false’ was passed to this method’s single parameter, 
then we simply reset the visibility counter to 0. Although in this application we will never explicitly call 
the ‘SetVisible’ method when a leaf is not visible – due to our new updated counter mechanism 
automatically invalidating such leaves – we include the latter case in order to ensure that the system 
exhibits the correct behaviour should we need to do so in the future. 
 
void CBSPTreeLeaf::SetVisible( bool bVisible ) 
{ 
    // Update our current vis counter 
    if ( bVisible ) 
    { 
        // Store the current visibility counter 
        m_nVisCounter = ((CBSPTreeLoader*)m_pTree)->GetVisCounter(); 
     
    } // End if visible 
    else 
    { 
        // Reset the visibility counter 
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        m_nVisCounter = 0; 
     
    } // End if not visible 

 
With the ‘m_nVisCounter’ member variable either having been updated with the current frame counter, 
or reset to a value of 0 depending on the state of the ‘bVisible’ parameter, we must now pass on this 
message to the base class implementation of this function. This is done to allow the ‘CBaseLeaf’ version 
of this method to perform any necessary steps for adding this leaf to the tree’s internal visible leaf array 
as well as populating the appropriate buffers prior to rendering. 
 
    // Call base class implementation 
    CBaseLeaf::SetVisible( bVisible ); 
} 

 
Given this relatively simple logic it should be clear that the ‘m_nVisCounter’ member of any given leaf 
will only be updated to match that of the tree if this method has been invoked in any specific visibility 
update traversal. Because the tree’s internal visibility counter is automatically incremented with each 
subsequent call to the ‘ProcessVisibility’ function in every frame, this of course means that if the leaf 
was not found to be visible at any point, the ‘m_nVisCounter’ variable maintained by that leaf will no 
longer match. This effectively allows us to mark every leaf as invisible at the start of each frame simply 
by incrementing that single counter value maintained by the main tree object. This negates the need to 
explicitly call the ‘SetVisible’ method for each leaf, passing a value of ‘false’ during the visibility 
traversal as we have done in the past. We will take a closer look at the changes we can make to the 
‘ProcessVisibility’ method of the main tree class to improve its efficiency a little later in this lesson. 
 
Due to the fact that we still want the application to be able to query the visibility state of each leaf, we 
must also override the ‘IsVisible’ method to take this new frame counter mechanism into account. 
 
CBSPTreeLeaf::IsVisible 
 
Should the leaf’s counter variable have been updated in a call to its ‘SetVisible’ method then logically 
the value stored in the leaf’s visibility counter should match that maintained by the associated tree 
object. Of course, this will only be the case for the duration of time until the next call to 
‘ProcessVisibility’ is made. If the leaf is not subsequently marked as visible in that frame as well, then 
the value stored in the leaf’s ‘m_nVisCounter’ variable will be out of date. This removes the need for us 
to traverse every part of the tree simply to set a leaf as not being visible. 
 
Given these facts, the ‘IsVisible’ method has been overloaded in this class to return a status of ‘true’ 
only if the leaf was set to visible in this frame of the applications main rendering loop – or more 
accurately the most recent call to the tree’s ‘ProcessVisibility’ method. This is done by comparing the 
visibility counter value stored here, to the value currently maintained by the parent tree object we set in 
the class constructor. If these two values match, then we know that the leaf has been updated in the 
current frame and the comparison operation shown below will result in a value of true being returned. If 
this is not the case, then the function will return false. 
 
bool CBSPTreeLeaf::IsVisible( ) const 
{ 
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    return (m_nVisCounter == ((CBSPTreeLoader*)m_pTree)->GetVisCounter()); 
} 

 
With our newly overridden leaf tree and node classes implemented in their entirety, let us now begin to 
examine the core derived tree class that we will by using in this lab project. 
 

The CBSPTreeLoader Class 
 
Like each of the spatial tree classes we have developed in the past, this new class is derived from 
‘CBaseTree’ from which we inherit a large portion of the required storage, management and rendering 
functionality. The only task that each of these spatial hierarchy classes has essentially been responsible 
for is to populate the leaf, node and polygon arrays maintained by the base class itself. As we know this 
was previously achieved by taking the polygon data that has been loaded and passed in to the tree class 
and compiling that information into a given type of spatial hierarchy. In the case of lab project 16.3, the 
compilation process has already taken place and we are simply reconstructing that tree into a format 
compatible with our already existing spatial hierarchy utility and rendering classes. As a result, the 
majority of the code that we will be implementing within this class revolves around the loading and 
interpreting of the BSP tree information contained within the source IWF file and simply storing it in the 
appropriate base class container members. With this in mind, let us take a look at the new 
‘CBSPTreeLoader’ class declaration to see how we might integrate such a concept into the existing 
hierarchy system. 
 
class CBSPTreeLoader : public CBaseTree 
{ 
public: 
    // Constructors & Destructors for This Class. 
    virtual ~CBSPTreeLoader( ); 
             CBSPTreeLoader( LPDIRECT3DDEVICE9 pDevice, bool bHardwareTnL,  
                             LPCTSTR FileName ); 
 
protected: 
    // Typedefs, Structures and Enumerators. 
    struct iwfNode 
    { 
        long        PlaneIndex; 
        D3DXVECTOR3 BoundsMin; 
        D3DXVECTOR3 BoundsMax; 
        long        FrontIndex; 
        long        BackIndex; 
    }; 
 
    // Protected Variables for This Class 
    CBSPTreeNode * m_pRootNode;         // The root node of the tree 
    LPTSTR         m_strFileName;       // File to load 
    
    CBaseIWF       m_FileLoader;        // The IWF parsing object 
    iwfNode       *m_pFileNodes;        // Node data loaded from file 
    D3DXPLANE     *m_pFilePlanes;       // Plane data loaded from file. 
    ULONG          m_nFileNodeCount;    // Number of nodes loaded from file 
    ULONG          m_nFilePlaneCount;   // Number of planes loaded from file     
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    // Protected Functions Omitted 
 
}; 

 
There are several new members declared here that we have not yet encountered in any of the spatial 
hierarchy classes that we have previously developed. Each of these member variables are outlined 
below. 
 
CBSPTreeNode *  m_pRootNode 
The ‘m_pRootNode’ member stores a pointer to the root ‘CBSPTreeNode’ object of the constructed 
spatial hierarchy. This is the entry point into the tree and is used to start any traversal operation as we 
know. This member will be assigned during the tree reconstruction step in the ‘BuildTree’ function 
discussed shortly. 
 
LPTSTR  m_strFileName 
This member stores a duplicated copy of the path and file name for the file to be imported. This filename 
string should reference the IWF file that has been compiled and exported by the pre-processing tool 
developed in lab project 16.2. This member is populated in this class’s constructor and later used by the 
‘Build’ function during the file import step (covered shortly). 
 
CBaseIWF  m_FileLoader 
Due to the fact that this tree type does not perform a tree compilation process and instead simply loads 
the data from the IWF file, we need access to the file data. For this we use the ‘CBaseIWF’ class 
provided to us by the ‘libIWF’ import library. The ‘m_FileLoader’ member stores an object of this type. 
Put simply, this object will be used to perform all of the actual parsing of the IWF file and its structure.  
 
By using a series of callback functions, the ‘CBaseIWF’ object will notify us whenever it encounters a 
chunk of a type within the file that we are interested in. With the file automatically positioned at the 
beginning of that applicable data, we can simply read the information using the stream functions 
provided by the ‘CBaseIWF’ class. For more information on this class and its methods, refer to appendix 
A in this chapter. We will see how this can be used to help us load the custom tree data as we move on 
to discuss the overloaded ‘Build’ function in addition to the registered callbacks that we must supply in 
order to read that information. 
 
iwfNode *  m_pFileNodes 
During the import of the tree information contained in the IWF file, there are cases where we must load 
the data into temporary structures. The file data that describe the nodes within the BSP tree is just such a 
case. As we know, each node item stored within the file has a number of dependencies. These include 
the planes that are contained in the file’s combined plane array, the leaf objects that may be attached to 
the node and of course the front and back child nodes. At the point in which we are loading the data for 
any given node, we may not yet have imported any plane or leaf items that may be attached to that node. 
More importantly than either of these is the fact that, until the entire node array has been loaded, the 
build procedure will not have access to the front and back child node information and will be unable to 
rebuild the physical tree structure. As a result, we must import the node data into a temporary area until 
such time as every node has been loaded. Once this has been done, we will then have full access to each 
node that is contained in the tree in order for us to reconstruct it. 
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Because of the fact that the structure of the node data stored within the file is different to that of the run-
time application, and uses an indexing scheme to reference the applicable node, leaf and plane 
information, we must create a new structure that will hold the file’s information temporarily. Let us take 
a quick look at the iwfNode structure we have defined in order to achieve this. 
 
struct iwfNode 
 

• long PlaneIndex 
 

As with each of the variables declared within this ‘iwfNode’ structure, the data stored in this 
member is loaded directly from the IWF file that is being processed. In particular, this member 
stores an index into the file’s combined plane array that describes the plane on which this 
particular node lies. This information will be used to retrieve the correct plane data during the 
reconstruction of the tree into a format suitable for this application. 

 
• D3DXVECTOR3 BoundsMin 
 

This member stores the value that describes the minimum extents of the node’s bounding box. 
Recall that this bounding box will be large enough to contain every node, leaf and polygon that is 
found to exist anywhere beneath it in the tree. 

 
• D3DXVECTOR3 BoundsMax 
 

Like the previous, this member stores part of the data required to describe the node’s axis-
aligned bounding box. In this case however, this member stores the maximum extents of the box 
that describes each of the elements contained in this node’s subtree. 

 
• long FrontIndex 
 

This member represents the index of the item attached to the front side of the current node stored 
within the appropriate array. Recall from our earlier discussion of lab project 16.2 that this can 
either be another child node or a leaf. If the sign of the index is positive then this member 
references a child node. If it is negative, this signifies that a leaf is attached to this side of the 
node. Our run-time tree hierarchy is constructed in a slightly different manner, providing 
additional leaf-nodes to which we attach the physical leaf data, simplifying the traversal process. 
This is yet another reason why ensuring that the node data is fully loaded and stored in a 
temporary array before reconstructing the tree is useful to us. 

 
• long BackIndex 
 

The ‘BackIndex’ member is identical in principal to the aforementioned ‘FrontIndex’. The only 
difference here is that this member is used to reference any leaf or node child that may be 
attached to the back of the current node. Also recall that in the solid tree – such as that compiled 
by the new pre-processing tool – this member may also store a value equal to that defined by the 
‘BSP_SOLID_LEAF’ constant if the space behind this node is to be considered solid. It is 
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important to bear this in mind because we will need to recognize this situation when 
reconstructing the tree hierarchy. 

 
With each of the individual elements in the temporary node structure defined, let us now continue on to 
discuss the remainder of the member variables declared within the ‘CBSPTreeLoader’ class. 
 
D3DXPLANE * m_pFilePlanes 
This member stores the array of plane data that was compiled and stored in the scene IWF file. Due to 
the fact that the plane information is stored in a separate linear block from the node data, this member 
also acts as a temporary container much like the ‘m_pFileNodes’ array. This array will be populated 
during import and will be used during the reconstruction of the spatial hierarchy as the basis for the 
plane data stored at each node. Recall that the node structure within the file stores an index to a specific 
plane within the combined plane array stored in the file. Since this array will represent that same plane 
data it should be used as the source for the plane referenced by the ‘PlaneIndex’ value stored in each 
temporary ‘iwfNode’ structure. 
 
ULONG  m_nFileNodeCount 
This member stores the total number of nodes loaded from file and subsequently stored in the array 
referenced by the ‘m_pFileNodes’ member variable. This information is not used directly during the 
reconstruction of the tree, but it can be used for the purposes of validation to ensure that node data was 
actually loaded from the source file. This information might also be used to check each node’s front and 
back index variables such that we return gracefully if any index exceeds the boundaries of the array, 
indicating that the node data stored in the file is malformed or corrupted. 
 
ULONG  m_nFilePlaneCount 
As with the previous variable, this member stores the total number of planes loaded from file and 
subsequently stored in the ‘m_pFilePlanes’ array. Again, this information is not used directly during the 
reconstruction of the tree but it might be used to provide an extra layer of validation to protect against 
file corruptions or invalid information. 
 
As we can see, with the exception of the ‘m_pRootNode’ variable, each of the members contained 
within this loader class exist primarily for the purpose of handling the import and processing of the 
scene hierarchy data. This information will then be used to reconstruct the hierarchy in a manner 
compatible with the ‘ISpatialTree’ interface concept we have been developing. Now that we have a 
rough understanding of each of the new class member variables, let us now move on to discuss the 
various methods of this class that are responsible for performing these operations. 
 
CBSPTreeLoader::CBSPTreeLoader( ) 
 
We are already familiar with the steps involved in setting up a constructor for a new tree type that has 
been derived from ‘CBaseTree’. As in each of our earlier tree classes, the constructor must accept both a 
valid Direct3D device, in addition to a boolean flag indicating whether hardware transform and lighting 
can and should be used when rendering any scene geometry. These two pieces of information must be 
passed to the base class constructor to allow any vertex and index buffer resources to be created using 
the correct parameters. In this new ‘CBSPTreeLoader’ class, this is achieved in a similar manner to 
those we have previously implemented, by passing these two parameters to the base constructor using 
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the initialization list portion of the function. The only additional piece of information that is required 
specifically by our new BSP tree loading class is the name of the file from which the tree data should be 
imported. This is passed by the application as the third argument to this constructor. 
 
The body of this constructor is very simple and is responsible for initializing the class member variables 
with their default values. In this particular constructor we must also make a copy of the filename 
specified by the application. We do this using the ‘_tcsdup’ runtime function in the same way as we 
have done many times before. It is important that we make a copy of this string here rather than simply 
storing the specified string pointer in order to ensure that the memory referenced by the ‘FileName’ 
parameter is not altered or released before we get a chance to begin importing and building the tree 
information. 
 
CBSPTreeLoader::CBSPTreeLoader( LPDIRECT3DDEVICE9 pDevice, bool bHardwareTnL, 
                                LPCTSTR FileName ) :  
                                CBaseTree( pDevice, bHardwareTnL ) 
{ 
    // Clear required variables 
    m_pRootNode       = NULL; 
    m_pFileNodes      = NULL; 
    m_pFilePlanes     = NULL; 
    m_nFileNodeCount  = 0; 
    m_nFilePlaneCount = 0; 
    m_nVisCounter     = 0; 
 
    // Make a copy of the file name 
    m_strFileName = _tcsdup( FileName ); 
} 

 
Once an object of this type has been instantiated, and the relevant pieces of information initialized and 
stored, the application can then instruct that object to begin building the spatial hierarchy information. 
 
CBSPTreeLoader::GetVisCounter  
 
The ‘GetVisCounter’ function is a publically accessible class method that allows other methods and 
objects to gain access to the tree’s current visibility ‘call’ counter. This method is used by the 
‘SetVisible’ and ‘IsVisible’ methods of the new ‘CBSPTreeLeaf’ class in order to retrieve the current 
counter value that has been incremented by a call to ‘ProcessVisibility’. This function simply returns the 
value currently stored in the ‘m_nVisCounter’ member variable and takes no further action. 
 
ULONG CBSPTreeLoader::GetVisCounter( ) const 
{ 
    return m_nVisCounter; 
} 

 
CBSPTreeLoader::Build 
 
The ‘Build’ function in the ‘CBSPTreeLoader’ class is a virtual function declared initially by the base 
‘ISpatialTree’ interface. In each of the tree classes we have developed to date, the application has used 
this function to trigger the actual tree compilation process after the scene data has been added. However, 
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as we mentioned earlier, this class will not actually implement any kind of compile behavior. At this 
point, the information associated with the tree has already been compiled by our pre-processing tool and 
written to file. As a result, the ‘Build’ function of this class is primarily responsible only for setting up 
and calling the various import and reconstruction procedures that will create and populate the 
appropriate tree data structures. 
 
One thing that you may notice as we move through the code in this class is that it only imports a small 
portion of the source IWF file specified in the class constructor. At no point does this class ever load or 
manipulate any type of scene polygon data for instance. This is due to the fact that the application will 
already have imported much of this information on our behalf. With the polygon data in particular, these 
will have already been loaded from the file in the ‘CScene’ class, and added to the member arrays 
inherited by this class using the ‘CBaseTree::AddPolygon’ function. With the scene responsible for 
loading much of the physical level data, this class needs only to import and process the BSP tree 
information that was exported by the tool developed in lab project 16.2. Any other information that may 
be stored in the file will simply be ignored. Thanks to the ‘CBaseIWF’ class exposed by the libIWF 
library, this is actually made very simple. 
 
As defined by the ‘ISpatialTree’ super-class, the ‘Build’ method accepts a single parameter as input. 
This parameter is named ‘bAllowSplits’ and is a simple Boolean value that traditionally instructed the 
compiler as to whether the resulting polygon data should be split against the node planes or left whole. 
In the case of the ‘CBSPTreeLoader’ class, the tree and its associated polygon data have already been 
constructed and written to file based on the parameters specified in the pre-processing step. As a result 
this parameter will be ignored and the geometry will instead simply be used in its existing form. 
 
bool CBSPTreeLoader::Build( bool bAllowSplits /* = true */ ) 
{ 
    try 
    { 
        // Open the file 
        m_FileLoader.Open( m_strFileName, CBaseIWF::MODE_READ ); 
 
        // Set up the author ID for custom chunk reading 
        m_FileLoader.SetAuthorID( "BSPC1", 5 ); 

 
Earlier we mentioned the ‘m_FileLoader’ member which is an instance of the ‘CBaseIWF’ class 
exported by the libIWF import library. This class handles the majority of the processing and navigating 
of an IWF file’s structure and provides us with an easy means to gain access to the data stored within 
that file. In order to have this object process a specific file, the first thing we must do in this function is 
to open the file that we are interested in importing. This is achieved by calling the ‘Open’ method of the 
‘m_FileLoader’ object passing in the name of the file to be processed. Recall that when an instance of 
this ‘CBSPTreeLoader’ class is created, the name of the IWF file that we are loading is passed to the 
constructor and duplicated into the ‘m_strFileName’ member variable. Therefore, this is the string that is 
passed as the first argument to the ‘Open’ method of the ‘m_FileLoader’ object. In addition, we must 
also instruct this object that the file should be opened for the purpose of reading data rather than writing. 
To this end, we also pass the ‘CBaseIWF::MODE_READ’ enumerator item as the second argument to 
this same function. 
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During the call to the ‘Open’ method, the file will be tested to ensure that it is of a format supported by 
the import library. Should this be the case, any appropriate file header information will be processed 
automatically and the ‘m_FileLoader’ object will be initialized such that we can begin reading data 
immediately. If an error occurred – such as the file being of an unrecognized format – the ‘CBaseIWF’ 
class will throw an exception that must be handled by our application such that we can return a failure 
code and potentially exit from the application if necessary. For this reason, the entire file loading logic is 
wrapped in a ‘try’ block that is used to this end. 
 
In addition to specifying the source file that we would like this object to process, we must also inform 
the file object of the information that identifies any custom chunk data contained in the file as belonging 
to this application. Recall from our earlier discussions of the author ID with respect to entities and other 
custom data stored with the IWF, each of these items have a configurable signature that can be specified 
by the exporting application. This is done to ensure that only the application(s) that are specifically 
aware of its format ever try to import it. When loading custom chunks from the IWF file using the 
‘CBaseIWF’ class, we can request that the object notifies us of these custom data chunks by specifying 
this signature with a call to the ‘SetAuthorID’ method of the ‘CBaseIWF’ class. This method accepts 
two parameters that require an arbitrary byte or character array – which denotes the author signature to 
verify against – and its associated length in bytes. Assuming that we pass in the same combination of 
signature bytes to this function as was specified during export, the IWF processing object will step into 
these custom data areas and correctly process the information instead of ignoring it. 
 
In order to inform the ‘CBaseIWF’ object of the types of custom chunk we are interested in, we make 
use of the provided ‘RegisterChunkProc’ method. This function accepts the chunk ID value as the first 
of its three parameters. Recall that when exporting the plane, node and leaf data in the pre-processing 
tool we used the following three defines to identify each type of custom chunk written to file: 
 

#define CHUNK_CTM_PLANES    0x2000 
#define CHUNK_CTM_NODES     0x2001 
#define CHUNK_CTM_LEAVES    0x2002 

 
By re-using these same identifier values we are instructing the IWF processing object that we are 
interested in being notified whenever these three chunk types are encountered within the file. The means 
by which the IWF library notifies us of these occurances is by using the same callback mechanism we 
have used many times before in our lab project framework. By passing a function pointer to the second 
parameter of the ‘RegisterChunkProc’ method for each type of chunk, those static callback functions 
will be executed after the file has been positioned at the start of the appropriate data area. 
 
As we know, due to the fact that these types of callback functions are static, it is also useful for the 
calling function to specify a context pointer. This is often a piece of custom data that can be used to pass 
any required information on to the callback procedure. In this application we pass in the pointer to the 
‘CBSPTreeLoader’ class instance which is currently being processed. This context value is passed to the 
third parameter of this function to which we simply specify the ‘this’ pointer in each case. In doing so 
we allow each callback function that is executed to access the members of this specific tree object such 
that it might store any information that may have been loaded. 
 
        // Load leaf and node data 
        m_FileLoader.RegisterChunkProc( CHUNK_CTM_PLANES, ReadBSPPlanes, this ); 
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        m_FileLoader.RegisterChunkProc( CHUNK_CTM_NODES , ReadBSPNodes, this ); 
        m_FileLoader.RegisterChunkProc( CHUNK_CTM_LEAVES, ReadBSPLeaves, this ); 

 
The callback functions that we register with the file loader object must be static and should each have a 
function signature that matches exactly with the one expected by this class. The function pointer typedef 
for the chunk callback procedures is shown below. 
 
typedef void (*CHUNKPROC)(LPVOID pContext,CHUNKHEADER& Header,LPVOID pCustomData); 

 
As we can see, each callback procedure will be passed three parameters and is not expected to provide 
any sort of return value. Given this specification we might imagine any given chunk procedure to be 
declared similar to the following: 
 

static void MyProc( LPVOID pContext, CHUNKHEADER& Header, LPVOID pCustomData ); 
 
We will shortly discuss the specific details of each of the chunk callback functions that we registered 
here and will discuss the function parameters and their purpose in each case. 
 
Now that we have registered the callback functions for each of the custom chunk types we would like to 
be informed of we can instruct the ‘m_FileLoader’ object to begin the processing of the currently open 
file. This is achieved by calling the ‘ProcessIWF’ method which will proceed to step through the various 
chunks in the file and call the appropriate procedure should any registered chunk type be encountered. 
Once the file has been processed in its entirety by this method and the registered callback procedures, 
we can then close the open file handle with a simple call to the ‘m_FileLoader.Close()’ method. 
 
        // Load the additional BSP specific data 
        m_FileLoader.ProcessIWF( ); 
 
        // Close the file 
        m_FileLoader.Close(); 
 
    } // End Try Block 
 
    catch ( ... ) 
    { 
        // Complete Failure 
        return false; 
     
    } // End Catch Block 

 
At this point, the registered chunk procedures should have loaded any node, leaf and plane data required 
for us to reconstruct the BSP tree. If there was no relevant tree data found to exist in the file, or a 
problem occurred for whatever reason, we should not continue with the reconstruction process. To this 
end we must verify that the tree data was indeed loaded by checking both the value contained in the 
‘m_nFileNodeCount’ variable, in addition to the size of the ‘m_Leaves’ STL vector inherited from the 
base ‘CBaseTree’ class. If either of these members indicates that no relevant data was loaded then we 
return a failure code back to the calling function. Again, we will see the importance of checking these 
two variables specifically when we move on to discuss the actual chunk procedures registered earlier. 
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Should the required data have been imported successfully, we are now able to put together the various 
components to construct the spatial hierarchy. This is achieved with a call to the ‘BuildTree’ function 
which is a method of this class. We have encountered this function several times in previous lessons 
whereby it was traditionally responsible for the actual compilation and processing of the scene data in 
order to compile a particular type of spatial hierarchy. With the information having already been loaded 
from file, this function will simply be responsible for taking that information and rebuilding the tree 
structure in a compatible format. We will examine this function in a little while, but for now all that is 
important at this stage are the arguments that are being passed in to this function. 
 
    // No BSP tree data loaded? 
    if ( m_nFileNodeCount == 0 || m_Leaves.size() == 0 ) return false; 
 
    // Reconstruct the tree structure from that loaded 
    BuildTree( &m_pFileNodes[0], NULL ); 

 
The first parameter declared by the ‘BuildTree’ function is the current source node of the type 
‘iwfNode’ (our temporary file based structure). Due to the fact that the node data is currently stored in a 
flat linear array, each of which contain only indices to inform us of the various parent/child 
relationships, it might not be instantly apparent exactly where to begin with the reconstruction process. 
Recall from our earlier coverage of the centralized node array in lab project 16.2 however, we always 
allocated the root node such that it would be located in the first element of that array. Therefore, using 
the temporary node information we loaded from the source IWF file, we begin this process by passing in 
that first element to the ‘BuildTree’ function. The second parameter is the current destination node that 
we will be constructing from the loaded source data during the recursive process. Since we have no root 
node at this point we simply pass NULL to this first call of the ‘BuildTree’ method. We will see how 
this information is used later in this lesson. 
 
During the import of the spatial hierarchy data, recall that we used temporary arrays in order to store the 
node and plane information ready for processing. Now that we have fully reconstructed the BSP tree, 
this information is no longer required. As a result, we call a new method of this class called 
‘ReleaseFileData’. This function simply releases any memory associated with those temporary arrays to 
ensure that we don’t consume any more memory than is necessary during the lifetime of the application. 
 
    // Release the file data we had loaded. 
    ReleaseFileData(); 
 
    // Allow our base class to finish any remaining processing 
    return CBaseTree::PostBuild( ); 
} 

 
At this stage we have imported, built and populated the arrays and hierarchy structures for each of the 
node and leaf items required. This is all of the information we need in order to begin using the BSP tree 
we compiled separately. With all of the pre-requisite information now available, we finally call the 
‘PostBuild’ function of the base tree class to allow it to perform any additional processing on the tree 
data we have built. Recall that the ‘PostBuild’ procedure is responsible for constructing the vertex and 
index buffers that will be used during the rendering of the scene. The result of the ‘PostBuild’ function 
is returned directly to the calling function in order to signify the final success or failure of the build 
operation. 
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With the primary build interface function now covered, let us move on to take a look at the chunk 
procedure callbacks we registered in order to allow us to load the relevant components of the BSP tree 
hierarchy. 
 
CBSPTreeLoader::ReadBSPPlanes 
 
The first registered chunk procedure that we come to is the ‘ReadBSPPlanes’ function. As with all such 
registered procedures this function is defined as being static and must conform precisely to the function 
signature we discussed in the coverage of the ‘Build’ function earlier. This callback function accepts 
three parameters. The first of these is a void pointer that is used to inform each callback function of the 
context in which it is being executed. We have seen this type of callback system used many times 
throughout previous lessons, so the concept of a callback context should be nothing new to us. When 
registering this callback function with the ‘CBaseIWF’ object in the ‘Build’ function, recall that we 
passed a value of ‘this’ to the context parameter of the ‘RegisterChunkProc’ method. This of course 
means that the underlying object to which this first parameter will point is an instance of the 
‘CBSPTreeLoader’ class that we are currently in the process of initializing. In this function, the loader 
class instance referenced by the context parameter will be the destination for any plane data that may be 
encountered in this part of the file. It is generally a good idea to cast this pointer to the expected type 
early on in the callback function to ensure that the code remains as simple and clean as possible. 
 
The second and third parameters are not used by this application and are reserved mostly for use by the 
internal functionality of the ‘CFileIWF’ class exported by the libIWF library. As a result we will not 
spend too much time discussing their purpose. Put simply however, these parameters are used to pass 
additional file chunk information to the various callback procedures registered with the system. The 
‘Header’ parameter for instance references a structure that contains various chunk properties such as the 
type of chunk being processed and the length in bytes of the chunk data area. For more information on 
the various pieces of additional chunk information available here, please refer to the IWF specification 
and SDK which should be available to you in your class supplemental download area. 
 
At the point at which any registered chunk procedure is called by the IWF processing class, the file 
being processed should be positioned at the start of the relevant chunk data area within the file. What 
this essentially means is that we can begin reading the data relevant to this particular type of chunk 
immediately on entering this function. In order to do so however, we must gain access to the 
‘CBaseIWF’ object instance that is being used to load the tree information. At the start of this function 
therefore, we cast the specified context pointer to that of our ‘CBSPTreeLoader’ class instance that we 
are populating, and then retrieve from that object a pointer to the ‘m_FileLoader’ member that specifies 
the ‘CBaseIWF’ object for the file we are currently reading from. 
 
void CBSPTreeLoader::ReadBSPPlanes( LPVOID pContext, CHUNKHEADER& Header, 
                                    LPVOID pCustomData ) 
{ 
    ULONG i; 
 
    // Retrieve context pieces. 
    CBSPTreeLoader * pLoader = (CBSPTreeLoader*)pContext; 
    CBaseIWF *pFile = &pLoader->m_FileLoader; 
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Now that we have access to both the source file object and the destination ‘CBSPTreeLoader’ class 
instance, we can begin to load the plane data from the file. We achieve this directly through the file / 
stream handling methods exposed by the ‘CBaseIWF’ class which include functions such as ‘Read’, 
‘Write’ and ‘Seek’. A full list of each of these methods and their usage can be found in appendix A of 
this chapter’s workbook. The first item we come to is a simple four byte ‘unsigned long’ that specifies 
how many planes – in total – are stored within the file. We read this value with a call to the 
‘CBaseIWF::Read’ method, passing in a pointer to the ‘m_nFilePlaneCount’ member of the ‘pLoader’ 
object into which the plane count will be loaded directly, bypassing the need for a temporary variable. 
 
Next on the agenda is to allocate enough room in our loader class’ temporary ‘m_pFilePlanes’ array to 
store every plane contained within this chunk. The number of planes is of course described by the 
‘m_nFilePlaneCount’ variable we initialized prior to this step and is used to correctly size the array with 
the new operator. Before we move on, this new array is cleared with a call to the Win32 ‘ZeroMemory’ 
function such that we begin with a sensible set of default values.  
 
    // Retrieve the Plane Count 
    pFile->Read( &pLoader->m_nFilePlaneCount, sizeof(ULONG) ); 
 
    // Allocate storage for the planes 
    pLoader->m_pFilePlanes = new D3DXPLANE[ pLoader->m_nFilePlaneCount ]; 
    ZeroMemory( pLoader->m_pFilePlanes,  
                pLoader->m_nFilePlaneCount * sizeof(D3DXPLANE) ); 

 
With the temporary plane array allocated, the actual plane information can now be loaded and stored 
ready for the reconstruction step which occurs once the file has been completely processed. The code 
used to achieve this is shown below in which a loop is created that iterates through each of the planes in 
the new temporary plane array. These planes are used as the destination into which each subsequent 
plane contained within this file chunk is loaded and stored. Similar to loading the simple unsigned long 
value we encountered earlier, this is achieved with a call to the ‘CBaseIWF::Read’ method passing in a 
pointer to the destination plane structure stored in the temporary array. In addition we also pass a value 
which indicates the number of bytes that must be read from the file in order to load the plane in its 
entirety. This process is repeated for each plane indicated by the ‘m_nFilePlaneCount’ member until all 
planes have been loaded from the file and stored in the temporary ‘m_pFilePlanes’ member array. 
 
    // Read Planes 
    for ( i = 0; i < pLoader->m_nFilePlaneCount; i++ ) 
    { 
        D3DXPLANE * pPlane = &pLoader->m_pFilePlanes[i]; 
         
        // Load the plane information from file 
        pFile->Read( pPlane, sizeof(D3DXPLANE) ); 
 
    } // Next Plane 
} 

 
At this stage, the ‘m_pFilePlanes’ array contained within the ‘CBSPTreeLoader’ class has been 
allocated and fully populated with that data exported by the pre-processing tool developed in lab-project 
16.2. The plane data is left in its combined form to ensure that the plane indices maintained by each 
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node remain valid. Of course, in order for the plane information to be of any use to us, we must also 
import the node data. Therefore, let us now examine the chunk callback procedure responsible for 
loading that information. 
 
CBSPTreeLoader::ReadBSPNodes 
 
As we observed with the ‘ReadBSPPlanes’ function, the static callbacks we must implement in order to 
load the custom tree data from the IWF file are relatively straight forward. The same is true when 
loading the node data into our temporary array of ‘iwfNode’ structures. 
 
The majority of the code in this function is identical to that of the plane loading callback we discussed 
previously so we will not spend much time discussing the details here. This function simply reads the 
value describing the total number of nodes into the ‘m_nFileNodeCount’ member variable and allocates 
the temporary node array in much the same way as we did in the ‘ReadBSPPlanes’ callback. Due to the 
fact that we have defined the interim ‘iwfNode’ structure using the same format and layout of the node 
items contained in the file, we then simply read the node data one item at a time storing that information 
directly into each element in that temporary node array. 
 
void CBSPTreeLoader::ReadBSPNodes( LPVOID pContext, CHUNKHEADER& Header,  
                                   LPVOID pCustomData ) 
{ 
    ULONG i; 
 
    // Retrieve context pieces. 
    CBSPTreeLoader * pLoader = (CBSPTreeLoader*)pContext; 
    CBaseIWF *pFile = &pLoader->m_FileLoader; 
 
    // Retrieve the Node Count 
    pFile->Read( &pLoader->m_nFileNodeCount, sizeof(ULONG) ); 
 
    // Allocate storage for the nodes 
    pLoader->m_pFileNodes = new iwfNode[ pLoader->m_nFileNodeCount ]; 
    ZeroMemory( pLoader->m_pFileNodes,  
                pLoader->m_nFileNodeCount * sizeof(iwfNode) ); 
 
    // Read Nodes 
    for ( i = 0; i < pLoader->m_nFileNodeCount; i++ )  
        pFile->Read( &pLoader->m_pFileNodes[i], sizeof(iwfNode) ); 
 
} 

 
CBSPTreeLoader::ReadBSPLeaves 
 
The ‘ReadBSPLeaves’ callback is by far the most complex of the tree import procedures implemented 
here. This is primarily due to the fact that there is much more information to be loaded, processed and 
stored in each leaf than in either of the other two cases. Similar to the other two callbacks defined within 
this class, this method is responsible for loading the leaf data from file. However, unlike those 
procedures, this method will load and populate an instance of a ‘CBSPTreeLeaf’ object rather than a 
temporary data structure. As we know, the reason we loaded the node and plane data into temporary 
arrays was due to the dependency that exists between them and the fact that we could not be certain 
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which of the two data chunks would be encountered first within the IWF file. In the case of the leaf 
however, all pre-requisite information has already been loaded by the scene import process, or is 
contained directly within the file leaf chunk we are reading from in this function. 
 
As with each of the previous two functions, this is a static callback that accepts a void context pointer 
along with any appropriate chunk and custom data information neither of which is used by this 
application. Again, we cast the specified context pointer to that of our ‘CBSPTreeLoader’ class instance 
that we are populating, and retrieve the ‘m_FileLoader’ member that specifies the ‘CBaseIWF’ object 
for the file we are currently processing. 
 
void CBSPTreeLoader::ReadBSPLeaves( LPVOID pContext, CHUNKHEADER& Header, 
                                    LPVOID pCustomData ) 
{ 
    ULONG       i, j, LeafCount, PolygonCount, PortalCount, ReservedCount; 
    D3DXVECTOR3 vecMin, vecMax; 
    long        PolygonIndex; 
 
    // Retrieve context pieces. 
    CBSPTreeLoader * pLoader = (CBSPTreeLoader*)pContext; 
    CBaseIWF *pFile = &pLoader->m_FileLoader; 

 
Now that we have access to the source and destination objects we can begin to read the leaf data from 
file. The first item we come to is a simple four byte ‘unsigned long’ that specifies how many leaves – in 
total – are stored within the file. We read this value with a call to the ‘CBaseIWF::Read’ method, 
passing in a pointer to the local ‘LeafCount’ variable declared at the top of this function. We don’t need 
to store this information directly as the tree class’s internal leaf count will be incrememented as each 
leaf is finally added. If no leaves are found to be contained within the file we simply return. 
 
Now we have the information that describes the total number of leaves in the tree, we can reserve the  
‘m_Leaves’ member STL vector of the tree object using the vector’s ‘reserve’ method. This will prevent 
any subsequent ‘CBaseTree::AddLeaf’ call from having to resize / reallocate the leaf array. 
 
    // Retrieve the Leaf Count 
    pFile->Read( &LeafCount, sizeof(ULONG) ); 
    if ( LeafCount == 0 ) return; 
 
    // Allocate storage for the leaves 
    pLoader->m_Leaves.reserve( LeafCount ); 

 
With this step completed, we can now begin to read the leaf information from file. The 
‘CHUNK_CTM_LEAVES’ chunk stores all of the leaves in the tree together in one linear block. The 
size of this block of leaves is indicated by the ‘LeafCount’ variable that was read from the file a moment 
ago. At this point therefore we create a loop that will execute for this same number of iterations as each 
leaf is loaded. 
 
The first thing we must do within this loop is to allocate a new ‘CBSPTreeLeaf’ object that will 
eventually be inserted at some point into the tree hierarchy. This leaf object will be used to store the 
information read directly from the file rather than into a temporary structure as with the node type. 
Remember from our earlier discussion that each leaf must have access to a pointer of the tree object in 
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which it is contained. This is done in the following code – in a similar manner to the previous 
compilation classes – by passing the tree object’s pointer into the single parameter of the 
‘CBSPTreeLeaf’ constructor. Unlike previous applications however, the ‘ReadBSPLeaves’ function is 
static and, as a result, we do not have access to the ‘this’ pointer. If you refer back to the earlier 
discussion of the ‘Build’ function, you will remember that when we registered each callback the ‘this’ 
pointer was specified as the callback context at that time. At the start of this function we cast the context 
pointer to the correct tree class type and copied it over into the ‘pLoader’ variable. Therefore, we can 
instead simply pass in the ‘pLoader’ variable to the leaf’s constructor. 
 
What follows this allocation is the reading of the various pieces of leaf data contained in the file. The 
majority of this information is loaded into temporary variables due to the fact that the actual leaf 
properties will be updated as we perform the various operations such as adding polygon data or setting 
the leaf’s bounding box via the ‘AddPolygon’ or ‘SetBoundingBox’ methods inherited from the 
‘CBaseLeaf’ class. The first two values to be loaded here are the minimum and maximum bounding box 
vectors that describe the absolute world space extents of the polygon data contained in this leaf. These 
are stored in the local ‘vecMin’ and ‘vecMax’ variables. Following these vectors is a value that is 
currently reserved for a later lab project. This is a single unsigned long that will eventually be used to 
store an index into the main visibility array that we will be constructing in the next lesson. For now we 
simply seek over this value. 
 
The next two values contained in the file describe the total number of elements for both the polygon and 
portal index data that we will shortly encounter in the file. Again, the ‘PortalCount’ variable is not used 
by this application and is reserved for the visibility compiler we will build in the next lesson. However, 
it is important that we read this information in case we attempt to import a file built by the later version 
of our pre-processing tool such that we can skip over any portal data that may be contained in this file 
for this leaf. We will discuss the means by which this is achieved a little further on, but for now just 
know that these two variables describe the total number of indices maintained by the leaf for both the 
polygons and portals that are attached to this leaf. 
 
The final of these count variables is the ‘ReservedCount’ item. Again this is not used by any of our 
current lab projects, but this reserved concept can be used by an application to store custom information 
along with the leaf data. The value retrieved by this read operation will describe the amount of space 
reserved for this custom data that will allow us to skip that portion of the leaf should it not be of any 
interest to us. Again we will talk about this more specifically further on in this function’s coverage. 
 
    // Read Leaves 
    for ( i = 0; i < LeafCount; i++ ) 
    { 
        CBSPTreeLeaf * pNewLeaf = new CBSPTreeLeaf( pLoader ); 
         
        // Read initial part of structure 
        pFile->Read( &vecMin, sizeof(D3DXVECTOR3) ); 
        pFile->Read( &vecMax, sizeof(D3DXVECTOR3) ); 
        pFile->Seek( sizeof(ULONG) ); // Seek over PVSIndex 
        pFile->Read( &PolygonCount, sizeof(ULONG) ); 
        pFile->Read( &PortalCount, sizeof(ULONG) ); 
        pFile->Read( &ReservedCount, sizeof(ULONG) ); 
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With this first part of the leaf now loaded and stored we can begin to initialize the actual leaf object we 
created in the initial stages of this loop. The first thing we do here is to set the leaf’s bounding box using 
the local ‘vecMin’ and ‘vecMax’ variables that were populated in the first two read operations for this 
leaf. Once this has been done we then begin to link any appropriate polygon data to the leaf object itself. 
To do this, we create a loop that will execute for the total number of iterations specified by the value 
stored in the ‘PolygonCount’ variable we loaded earlier. Recall that this value describes the total number 
of indices stored in this particular leaf that indicate which polygons we should attach here. At each step 
we then read in a single 4 byte value from the file that describes the index of the polygon to be attached 
to this leaf. Due to the fact that the polygon data has been loaded by the scene class and added to the 
‘CBSPTreeLoader’ polygon array in advance we can simply retrieve the pointer stored at that element in 
the inherited ‘m_Polygons’ array, and pass that pointer directly into the new leaf’s ‘AddPolygon’ 
method. This will proceed to take that pointer and update the leaf’s internal polygon list to store the 
specified polygon. 
 
        // Store bounding box details in the new leaf 
        pNewLeaf->SetBoundingBox( vecMin, vecMax ); 
 
        // Read the face indices 
        for ( j = 0; j < PolygonCount; ++j ) 
        { 
            // Read the index into the polygon array 
            pFile->Read( &PolygonIndex, sizeof(long) ); 
            if ( PolygonIndex < 0 ) continue; 
 
            // Add the specified polygon to the leaf 
            pNewLeaf->AddPolygon( pLoader->m_Polygons[ PolygonIndex ] ); 
 
        } // Next Leaf 

 
Once this loop has completed the required number of iterations, we should have loaded each of the 
polygon indices contained in the file for this leaf, and added the physical polygon pointers to the new 
leaf object that we are building. With this operation completed, we can now move on to process the 
remaining items stored in the file. 
 
Due to the fact that we are not interested in any exported portal index information in this application, the 
final thing we must do is to skip over any such information that may be contained in the file. Although 
the pre-processing tool developed in lab project 16.2 does not export these leaf portal indices, it is 
advisable that we do this regardless in case the source IWF file was not exported by that version of the 
compiler. Notice below that we also seek over the actual reserved data area. The size of this area is 
determined by the value read and stored in the local ‘ReservedCount’ variable which describes the 
number of DWORD sized chunks (32 bits / 4 bytes) of reserved data that is stored here. Again, no 
reserved data is written to file in lab project 16.2 and the ‘ReservedCount’ variable should contain a 
value of 0. However, as with the portal indices, we seek over any data that may have been indicated. 
 
Now that we have read all of the data for this leaf, we can add it to the tree. However, we do not yet 
have access to the full spatial hierarchy and are unable to attach this leaf to any node that might 
reference it. As a result, we simply pass the new leaf into a call to the tree class’ ‘AddLeaf’ method – 
inherited from the ‘CBaseTree’ class – that will proceed to store the leaf in the main centralized array. 
We can later retrieve this pointer when we reconstruct the tree hierarchy in the ‘BuildTree’ function. 
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        // Skip the reserved data areas 
        pFile->Seek( PortalCount * sizeof(long) ); 
        pFile->Seek( ReservedCount * sizeof(long) ); 
 
        // Add this leaf to our leaf array 
        pLoader->AddLeaf( pNewLeaf ); 
 
    } // Next Leaf 
} 

 
At this stage, the file should be positioned at the start of the next leaf ready to be loaded in the next 
iteration of this loop. We continue this entire process until all of the indicated leaves have been loaded 
and stored in the tree’s centralized leaf array. 
 
Once this loop has read and stored the leaves contained within the file and, assuming that the node and 
plane data has already been loaded at this stage, we now have all the information we need to be able to 
reconstruct the tree. Let us now take a look at how this is achieved. 
 
CBSPTreeLoader::BuildTree 
 
There have been several references to the reconstruction of the BSP tree throughout our coverage of the 
lab project 16.3 implementation. In previous applications, we developed a private ‘BuildTree’ function 
which served as the main recursive procedure in which the tree construction was undertaken. In lab 
project 16.3, this function has a similar role in that it must recursively build the spatial hierarchy. 
However, this time it is solely responsible for taking any information that has been previously loaded by 
the ‘Build’ function and piece it together such that it now exists in the appropriate format for use by our 
run-time rendering application. 
 
This function accepts two parameters. The first of these indicated by the ‘pFileNode’ parameter is the 
current interim file node that will be used as the source for building a ‘CBSPTreeNode’ that will be used 
in the final spatial hierarchy for this tree object. The second ‘pNode’ parameter is the destination 
‘CBSPTreeNode’ object that is to be populated with any relevant information. Recall from the earlier 
discussion of the ‘Build’ function that the first time that this ‘BuildTree’ method is called, a value of 
NULL is passed to the ‘pNode’ parameter. This is used to indicate that we are constructing the root node 
of our final spatial hierarchy. As a result, the first task undertaken by this function is to allocate a new 
root node and store the resulting pointer in the tree’s ‘m_pRootNode’ member variable. Of course, this 
will only happen the first time that this method is invoked due to each subsequent call being passed an 
already instantiated destination node object. 
 
After creating the root node, or simply using the destination node that was passed, we begin populating 
this node with the simple bounding box and plane information indicated by the interim ‘iwfNode’ 
structure passed to this iteration of the recursive procedure. The first of these is the separating plane on 
which the node lies. Recall that we imported the combined plane array from the file and stored these in a 
temporary ‘m_pFilePlanes’ member array. Due to the fact that the final ‘CBSPTreeNode’ class stores a 
physical plane item, the plane indicated by the file node must be extracted from this array and stored 
directly into the destination node object. The final two values we update in the initial stages of this 
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function are the ‘BoundsMin’ and ‘BoundsMax’ values which are taken directly from the imported node 
structure. 
 
bool CBSPTreeLoader::BuildTree( iwfNode * pFileNode,  
                                CBSPTreeNode * pNode /* = NULL */ ) 
{ 
    D3DXVECTOR3 vecMin, vecMax; 
 
    // First time in? 
    if ( !pNode ) 
    { 
        // Allocate a root node 
        if ( !(pNode = new CBSPTreeNode) ) return false; 
        m_pRootNode = pNode;  
     
    } // End if no node specified 
 
    // Build node data from that loaded from file 
    pNode->Plane     = m_pFilePlanes[ pFileNode->PlaneIndex ]; 
    pNode->BoundsMin = pFileNode->BoundsMin; 
    pNode->BoundsMax = pFileNode->BoundsMax; 

 
With these simple properties updated, this function now proceeds to process and create the child node 
and leaf items where necessary. The first case we come to is the creation of any applicable front child. 
Because we are always guaranteed to have a front child whenever we are dealing with a node that does 
not store a leaf, we first allocate a new ‘CBSPTreeNode’ item which will represent the child in front of 
the current node. The pointer to this new node item is then stored into the ‘Front’ member of the node 
we are currently processing. Once we have allocated this new front node item, this function then tests to 
determine whether the interim file node indicates that a child node or child leaf is attached to the front 
side of the node at this level. The first case we come to is one in which a child node has been indicated 
by the ‘FrontIndex’ member of the imported node structure, in which we would find a positive index 
value. If this turns out to be the case, then there is nothing further for us to do with the current node and 
we simply recurse into the new front child node by making a further call to the ‘BuildTree’ function. At 
this stage we pass in as the first of two parameters the imported node that was specified by the 
‘FrontIndex’ value of the current ‘iwfNode’, as well the node destination node we allocated a moment 
ago. Should we enter this initial ‘if’ statement, then this process would begin again such that the entire 
subtree of the current node is built and attached to the front side of the current destination 
‘CBSPTreeNode’ object. 
 
    // Allocate new node in front 
    pNode->Front = new CBSPTreeNode; 
    if ( !pNode->Front ) return false; 
 
    // Node or leaf in front? 
    if ( pFileNode->FrontIndex >= 0 ) 
    { 
        // Build this new front node 
        if ( !BuildTree( &m_pFileNodes[ pFileNode->FrontIndex ], pNode->Front ) ) 
            return false; 
 
    } // End if node in front 
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The alternate case that we have to deal with is one in which there is a child leaf attached to the front side 
of the current node. This is indicated by the ‘FrontIndex’ value of the imported node having a negative 
value. Because the initial ‘if’ statement simply test for any positive value including zero, we can ensure 
that we are dealing with a leaf simply by using the ‘else’ keyword. If we drop into this ‘else’ case we 
must of course attach a ‘CBSPTreeLeaf’ item to the front of this node. However, recall that our run-time 
spatial hierarchy design requires that a leaf-node always be inserted above any given leaf in the tree. 
Due to the fact that we always explicitly allocated a front node earlier in this function, this is taken care 
of automatically. By simply attaching the indicated leaf to the font child rather than the current node, 
we can always ensure that this parent leaf-node exists. Notice that we first retrieve the pointer to the 
correct leaf from the tree’s existing leaf array using the leaf indexing logic we discussed in lab project 
16.2. Recall that because the value for any indices available for describing a leaf in the file’s front or 
back index members is in the range of -1 and below we must add 1 to the ‘FrontIndex’ member here 
before flipping its sign. By doing so this value is converted back into a valid array index in the range of 
0 and above. 
 
    else 
    { 
        // Build a leaf 
        CBSPTreeLeaf * pLeaf =  
                       (CBSPTreeLeaf*)m_Leaves[ abs(pFileNode->FrontIndex + 1) ]; 
        if ( !pLeaf ) return false; 
 
        // Store pointer to leaf in the node 
        pNode->Front->Leaf = pLeaf; 
 
        // Store the leaf's bounding box in the node 
        pLeaf->GetBoundingBox( vecMin, vecMax ); 
        pNode->Front->BoundsMin = vecMin; 
        pNode->Front->BoundsMax = vecMax; 
 
    } // End if leaf in front 

 
With the front side of this node and the entire front subtree fully reconstructed, this function now turns 
its attention to the back. We perform the initial steps in an identical fashion to that of the front simply 
substituting each of the relvant front indices and pointer variables with those specifying the information 
attached to the back of each node. In the same way as before, we first allocated a new back child 
‘CBSPTreeNode’ object for the current node and then recurse into the back subtree should the value of 
the ‘BackIndex’ member of the imported node indicate that a child node should be attached here. 
 
    // Allocate new node behind 
    pNode->Back = new CBSPTreeNode; 
    if ( !pNode->Back ) return false; 
 
    // Node or leaf behind? 
    if ( pFileNode->BackIndex >= 0 ) 
    { 
        // Build this new back node 
        if ( !BuildTree( &m_pFileNodes[ pFileNode->BackIndex ], pNode->Back ) ) 
            return false; 
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    } // End if node in front 

 
Once again, the alternate case is one in which an attached child leaf is indicated by the imported node 
data. In this case, we perform exactly the same steps as discussed previously. However, there is an 
additional consideration that must be taken with this type of compiled BSP tree information when 
processing the information for the back side of any given node. This is of course when the back 
halfspace of that node is describing an area of solid space. 
 
If we think back to the development of the BSP leaf tree compilation process, solid leaves were not 
physically created or inserted into the tree and instead a value equal to that of the ‘BSP_SOLID_LEAF’ 
defined constant was stored in the ‘BackIndex’ member of the node. To this end, the code within this 
else clause first tests to see whether the current file node’s ‘BackIndex’ member contains this value. If it 
does then of course we must also signify this ‘solid’ area within our current spatial hierarchy framework. 
We achieve this by simply storing a value of ‘NULL’ in the back child of the current destination node 
after releasing the child node that we allocated earlier. We could alternately create a back leaf-node that 
simply stores a value of ‘NULL’ in its ‘Leaf’ pointer member. However, the former method that we 
have chosen to employ in this lab project is slightly more efficient in both processing and memory 
overhead and has no significant drawbacks. 
 
If the space behind the node is not describing a solid area of space, then we simply attach the leaf 
indicated by the imported node in the same manner as with any front child leaf. 
 
    else 
    { 
        // Solid leaf? 
        if ( pFileNode->BackIndex == BSP_SOLID_LEAF ) 
        { 
            delete pNode->Back; 
            pNode->Back = NULL; 
 
        } // End if solid leaf 
        else 
        { 
            // Retrieve the leaf specified 
            CBSPTreeLeaf * pLeaf =  
                          (CBSPTreeLeaf*)m_Leaves[ abs(pFileNode->BackIndex + 1) ]; 
            if ( !pLeaf ) return false;  
 
            // Store pointer to leaf in the node 
            pNode->Back->Leaf = pLeaf; 
 
            // Store the leaf's bounding box in the node 
            pLeaf->GetBoundingBox( vecMin, vecMax ); 
            pNode->Back->BoundsMin = vecMin; 
            pNode->Back->BoundsMax = vecMax; 
 
        } // End if empty back leaf 
 
    } // End if leaf behind 
 
    // Success! 
    return true; 
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} 

 
At this stage, from the point of view of the first level of recursion, both the front and back subtrees will 
now have been fully reconstructed and attached to the front and back member pointers of the root node. 
Hopefully it should be clear that no physical compilation has really been undertaken here, we have 
simply taken the information stored in the file and converted it into the applicable format ready for our 
application to use. 
 
CBSPTreeLoader::ReleaseFileData 
 
Recall that the ‘ReleaseFileData’ method is called by the ‘Build’ function after the tree data has been 
loaded and reconstructed. Due to the fact that this information is only required during import – and 
would simply consume memory unnecessarily – each of these file data arrays should be released once 
the hierarchy has been built.  This function is responsible for clearing these temporary file data arrays 
and resetting any appropriate values for the possibility of later use. 
 
void CBSPTreeLoader::ReleaseFileData() 
{ 
    // Destroy arrays 
    if ( m_pFileNodes  ) delete []m_pFileNodes; 
    if ( m_pFilePlanes ) delete []m_pFilePlanes; 
 
    // Clear Variables 
    m_pFileNodes      = NULL; 
    m_pFilePlanes     = NULL; 
    m_nFileNodeCount  = 0; 
    m_nFilePlaneCount = 0; 
     
} 

 
CBSPTreeLoader::ProcessVisibility 
 
In this method we begin to see the visibility call counting scheme from the point of view of the tree 
class. The ‘ProcessVisibility’ function is almost identical to those we have implemented in each of our 
spatial hierarchy classes so far. The only addition here is that we increment the ‘m_nVisCounter’ 
member of the tree class before we begin the recursive ‘UpdateTreeVisibility’ process. It is important 
that we do this first, because we need to ensure that each of those leaves subsequently found to be 
visible are updated with a value that will remain constant until the next call to this function. If this value 
was to be incremented after the update process, then the visibility counter value stored in each leaf will 
become out of date the moment we stepped out of the ‘UpdateTreeVisibility’ call. 
 
void CBSPTreeLoader::ProcessVisibility( CCamera & Camera ) 
{ 
    CBaseTree::ProcessVisibility( Camera ); 
 
    // Increment the visibility counter for this loop 
    m_nVisCounter++; 
 
    // Start the traversal. 
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    UpdateTreeVisibility( m_pRootNode, Camera ); 
} 

 
CBSPTreeLoader::UpdateTreeVisibility 
 
Once again, the ‘UpdateTreeVisibility’ method defined by this new tree class is almost identical to those 

s we can see, with the exception of substituting the type of the ‘pNode’ parameter to that of our new 

we have already encountered. However, there is one minor alteration to this function that has a 
significant impact from an execution point of view. 
 
A
node class, and including this method in the new ‘CBSPTreeLoader’ namespace, the initial part of this 
function remains unchanged. Each of the parameters are declared and used in the same manner as 
before, and the frustum culling result code is retrieved in the same way. Once we have retrieved this 
frustum value, we then come to the conditional ‘switch’ statement that is also part of each of the 
previous implementations. 
 
void CBSPTreeLoader::UpdateTreeVisibility( CBSPTreeNode * pNode, CCamera & Camera, 
                                           UCHAR FrustumBits /* = 0x0 */ ) 
{ 
    CCamera::FRUSTUM_COLLIDE Result =  
                             Camera.BoundsInFrustum( pNode->BoundsMin, 
                                                     pNode->BoundsMax, NULL, 
                                                     &FrustumBits, 
                                                     &pNode->LastFrustumPlane ); 
 
    // Test result of frustum collide 
    switch ( Result ) 
    { 

 
The first case we come to when determining if the current node’s bounding box is fully within the 

 you recall the earlier implementations of this function, we previously called the node’s ‘SetVisible’ 

s we move forward and add concepts such as the ‘Potential Visibility Set’ – covered in the next lesson 

‘ProcessVisibility’ pass. 

frustum is that of the ‘FRUSTUM_OUTSIDE’ case. The only difference in this function can be found in 
here. Recall that this result is returned whenever that bounding box is completely outside of all of the 
camera’s frustum planes and as a result cannot possibly seen. In addition we know that none of its 
children can possibly be seen either because of the fact that a node’s bounding box will be large enough 
to contain every child node beneath it in that branch of the tree. 
 
If
method, passing in a value of ‘false’ in this outside case. This function would then traverse this node’s 
subtree simply in order to visit every node and leaf that existed as a child of the current node, marking 
each leaf encountered as invisible. With our new visibility call counter mechanism, this process of 
updating each leaf’s visibility status when it is not visible is no longer required. As a result, this case 
now simply returns from the function without taking any additional action. 
 
A
– this adjustment could save us a significant amount of additional processing in a highly occluded scene. 
However, even in the case of simple frustum culling, this technique can be employed in order for us to 
remove a large portion of the traversal operation we were previously required to perform during the 
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        case CCamera::FRUSTUM_OUTSIDE: 
            // Node (and all its children) are not visible 
            return; 

 
his switch statement remain unaltered from our previous implemThe remaining cases in t entations. In 

e ‘FRUSTUM_INSIDE’ case we must continue to recurse through the subtree of the current node in th
order to set each child leaf as visible. In the ‘FRUSTUM_INTERSECT’ case we must continue to 
perform the frustum tests for any child node until we find a node that is either contained within or is 
completely outside of the frustum. This is of course unless this is a leaf node, in which case the leaf must 
be set to a visible state to ensure that the visibility status information and rendering buffers are updated 
correctly for that leaf. 
 
        case CCamera::FRUSTUM_INSIDE: 
            // Node is totally visible 
            pNode->SetVisible( true ); 
            return; 
 
        case CCamera::FRUSTUM_INTERSECT: 
            // We need to resolve this further, unless this is a leaf 
            if ( pNode->Leaf ) 
            { 
                pNode->SetVisible( true ); 
                return; 
            } // End if leaf 
            break; 
 
    } // End Switch 

 
As before, the final block of code is only ever executed if the bounding box of the current node was 

und to be intersecting the frustum planes. If this was the case then further consideration needs to be fo
taken and as a result we must traverse down the front and back of this node. 
 
    // The remaining case (FRUSTUM_INTERSECT) means we need to test further 
    if ( pNode->Front ) UpdateTreeVisibility( pNode->Front, Camera, FrustumBits ); 
    if ( pNode->Back  ) UpdateTreeVisibility( pNode->Back, Camera, FrustumBits ); 
} 

 
Additional CBSPTreeLoader Routines 

ed in the past that allow the 
pplication to perform operations such as the collection of a list of leaves that are intersected by either 

 
There are several tree related support routines that we have develop
a
an axis aligned bounding box or a ray, and the drawing of debug information. Due to the large 
similarities between the basic principals of both the BSP tree and the kD-tree, the ‘CBSPTreeLoader’ 
class duplicates several of these functions taken directly from the ‘CKDTree’ class. Because we have 
covered the kD-tree support methods in earlier lessons, we will not spend any time covering them again 
here. 
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The list below outlines those functions which are direct copies from the ‘CKDTree’ class that have 

ool CollectLeavesAABB    ( LeafList & List, const D3DXVECTOR3 & Min, 

simply been altered to be declared within the ‘CBSPTreeLoader’ namespace and also to make use of the 
new ‘CBSPTreeNode’ class. 
 
b
                            const D3DXVECTOR3 & Max ); 

bool CollectAABBRecurse   ( CBSPTreeNode * pNode, LeafList & List,  
                            const D3DXVECTOR3 & Min, const D3DXVECTOR3 & Max,  
                            bool bAutoCollect = false ); 

bool CollectLeavesRay     ( LeafList & List, const D3DXVECTOR3 & RayOrigin, 
                            const D3DXVECTOR3 & Velocity ); 

bool CollectRayRecurse    ( CBSPTreeNode * pNode, LeafList & List,  
                            const D3DXVECTOR3 & RayOrigin,  
                            const D3DXVECTOR3 & Velocity ); 

void DebugDraw            ( CCamera & Camera ); 

bool DebugDrawRecurse     ( CBSPTreeNode * pNode, CCamera & Camera,  
                            bool bRenderInLeaf ); 

bool GetSceneBounds       ( D3DXVECTOR3 & Min, D3DXVECTOR3 & Max ); 

 
Scene Class Modifications 

ith the new BSP tree loading class fully implemented, the only task that remains is to make any 
 
W
modifications to the application code such that this new spatial hierarchy class is utilized. Because of the 
way that the ‘ISpatialTree’ concept has been developed, switching to other types of tree within the 
application is trivial. We have observed on several occasions how we can alternate between an oct-tree, 
quad-tree and kD-tree simply by altering a single line in the ‘CScene’ class such that the relevant type of 
object is instantiated before the scene is loaded. The new ‘CBSPTreeLoader’ class is integrated into the 
application in exactly the same way. With this in mind let us look at the minor modification that we 
must make in the scene class’ ‘LoadSceneFromIWF’ function in order to make use of the compiled solid 
leaf BSP tree. 
 
CScene::LoadSceneFromIWF 
 
The following code block shows a small portion of the ‘LoadSceneFromIWF’ method that we should 

hen instantiating this type of spatial partitioning tree we pass in the common parameters required by 
all types of tree that we have developed. These are the Direct3D device that was registered with the 

already be extremely familiar with. The only line of code that has changed here is marked in bold. We 
can see that when instantiating the spatial partitioning tree object we have simply created an object of 
the type ‘CBSPTreeLoader’, storing the returned pointer in the scene’s ‘m_pSpatialTree’ member 
variable. Recall that this member is of the type ‘ISpatialTree’ which allows the application to access the 
tree functionality without necessarily having to be aware of the specifics of the selected tree class itself. 
 
W
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scene during application startup, along with the Boolean flag describing whether hardware 
transformation and lighting is being used. These two parameters are used by the underlying ‘CBaseTree’ 
class to create and populate the vertex and index buffers used in the rendering of the geometry registered 
with the tree. The third and final parameter is the one that is specific to the ‘CBSPTreeLoader’ class. 
Here we simply pass in the filename that was also passed to the ‘LoadSceneFromIWF’ method by the 
application. This means that both the scene geometry and the custom tree information will be loaded 
from the same file. Whilst this is convenient it is not a requirement. Due to the fact that the BSP tree 
loader class opens and processes the file independently of the scene class, it would be possible to have 
the scene geometry and BSP tree information stored in separate files. In this case we would simply pass 
in an alternate filename to the loader class constructor. 
 
    ... 
    ... 
 
    // File loading may throw an exception 
    try 
    { 
        // Allocate our spatial partitioning tree of the required type 
        m_pSpatialTree = new CBSPTreeLoader( m_pD3DDevice, m_bHardwareTnL, 
                                             strFileName ); 
 
        m_pAlphaTree   = new CBSPNodeTree( m_pD3DDevice, m_bHardwareTnL ); 
 
        // Add our scene callback to the player. 
        GetGameApp()->GetPlayer()->AddPlayerCallback( CScene::UpdatePlayer, this ); 
 
        // Attempt to load the file 
        File.Load( strFileName ); 
 
        ... 
        ... 

 
This line is all that needs to be altered in order for our application to begin using the compiled BSP tree 

formation generated and exported by the pre-processing tool developed in lab project 16.2. It is still 

ab Project Conclusion 

e rendering application. In the next lesson we will 
nhance both the compiler tool and the BSP tree loader class to make use of accurate visibility 

in
also entirely possible for the application to select an alternate spatial partitioning tree class at any point, 
using the same compiled IWF file. The polygon data that is loaded by the scene will simply be compiled 
as has always been the case in earlier lab projects. 
 

 
L
 
This concludes our coverage of the first BSP tre
e
information. This will be used to cull away any level geometry that cannot possibly be seen due to any 
other geometry that might be occluding the player’s view of other parts of the scene. This should greatly 
enhance both the performance of our rendering application, but will also open up many opportunities for 
improving the efficiency of many tasks that we must undertake in the future when developing additional 
game technologies. 
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