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Introduction 

In the previous lesson we developed various spatial trees for use with our collision system, allowing us 
to perform polygon queries on large scenes in a fraction of the time it would have otherwise taken. In 
this lesson we will add to the code that we developed and implement a hardware-friendly rendering 
system using the same spatial trees. Since our spatial tree will ultimately be responsible for rendering its 
static polygon data, we will provide a means for allowing the tree to render only the polygon data that is 
currently visible (i.e., sections of the scene that are contained or partially contained inside the camera 
frustum). From the application’s perspective, rendering the tree will be similar to rendering a mesh. 
CBaseTree will expose a DrawSubset method (just like CActor and CTriMesh) which will instruct the 
tree to render all visible polygons that use a given attribute in a single call. This will allow the 
application to set the textures and materials used by a given subset before instructing the tree to render 
all currently visible polygons that use it. This will ensure that the static data in our tree can be batch 
rendered, minimizing the texture and material state changes that have to be performed by the 
application.  
 
All of the tree types we studied have the same characteristics with regards to rendering. This will make 
CBaseTree an ideal location for the implementation of the render system. Thus we benefit from having 
only one implementation of the system that is shared by all derived types. All of our trees have leaves 
which are either currently visible or outside the frustum. They may or may not contain polygon data 
which will have to be rendered if the leaf is indeed considered visible. Theoretically, our rendering 
system has a simple job; traversing the tree and rendering only the polygons stored in visible leaves. 
However as trivial as this may seem, a naïve implementation can have drastic performance implications 
as we will discuss in the next section. We will have to develop a system that keeps the number of 
traversals to a minimum and introduces as little CPU processing overhead as possible when determining 
which data should be rendered. On the latest graphics cards, which are capable of rendering very large 
numbers of triangles, we could easily end up with a situation where rendering the entire scene brute 
force could far outperform our hierarchical frustum culled visibility system, if an inefficient system is 
put in place.  
 
In the second part of this lesson we will add dynamic object support to our spatial trees. Although the 
application will be responsible for rendering its dynamic objects, by storing them in the spatial tree and 
having access to the leaves in which their bounding volumes exist, we can benefit from the visibility 
system such that the application need only render a dynamic object if it currently exists in a leaf that is 
flagged as visible. We will add methods to CBaseTree to insert a new dynamic object into the tree which 
will be called when the dynamic object is first created. The tree will have no knowledge of exactly what 
type of object has been assigned to it; it will view the concept of dynamic objects in a rather abstract 
way. This will ensure that our tree will not become dependent on certain object types such as CActor or 
CTriMesh. From the tree’s perspective, each dynamic object will simply be an AABB and a context 
pointer which only has meaning to the application. Methods will also be added to the tree so that the 
application can update the current position of a dynamic object that is registered with the spatial tree. 
This will instruct the tree to remove the dynamic object’s pointer from any leaves in which it is currently 
contained and use its AABB to find the new leaves its pointer should be added to. The tree will expose 
methods such as GetVisibleLeaves which will return a list of only the leaves in the tree which are 
currently visible. The application can then loop through these leaves and render only the dynamic 



 
 
 

3 

objects it finds stored there. Any dynamic objects assigned to invisible leaves will not be processed at 
all. For each dynamic object registered with the system the tree will maintain a list containing all the 
leaves that object is currently contained within. This allows the application to query the leaf list for a 
given dynamic object so that the application has knowledge of the leaves in which it is contained 
(whether those leaves are visible or not). In this section, we will also cover the application code that has 
been changed to support dynamic objects being used with an ISpatialTree derived class. 
 
Let us begin our discussions by tying up the spatial tree’s management of its static polygon data. In the 
previous chapter we discussed how to add, build, and run collision queries on this data. Now we must 
implement the final piece, the code that will render this static geometry using hierarchical frustum 
culling. 

15.1 Rendering Spatial Trees 

When we concluded our coverage of spatial trees in the previous chapter, each leaf stored the polygons 
it contained as an array of CPolygon pointers. This polygon data is located in system memory to make 
sure that it is easily accessible for collision queries. Consequently, it is not currently able to be 
efficiently rendered. We know that in order to get maximum performance from our rendering system we 
will want the geometry stored in vertex and index buffers located in video memory so that the GPU on 
the graphics hardware can access that data for transformation/lighting purposes as quickly as possible. 
However, we certainly would not want the only copy of the data our tree uses to be stored in vertex and 
index buffers since this would require the locking and reading these buffers during collision queries 
which would result in very inefficient collision tests. What we will need to do is create a second copy of 
the scene data that is stored in vertex and index buffers that can be optimally rendered by the hardware. 
This also means that we can perform optimizations on the renderable version of the data. For example, 
in this lesson a key optimization will be performing a weld to get rid of duplicate vertices. This is an 
important step since scenes often have separate vertices for each polygon, even when polygons share an 
edge and have the same attributes. 
 
The classic example of why it is efficient to perform a weld on the render geometry can be seen if you 
were to place a cube in GILES™ and export it to an IWF file. For various reasons, GILES™ stores all 
of its data at the per-face level (even vertices), which means it will never share vertices between faces. 
We know that if we were to place a cube and assign the same attribute to each face of that cube, we 
would only need to have eight vertices that are all indexed by the six faces (twelve triangles) of that 
cube. However, GILES™ will actually export four separate vertices per face (quad) resulting in a cube 
consisting of 24 vertices, regardless of vertex location, material, UV coordinates, etc. Thus, in any given 
corner of the cube, there exists three vertices in the same location (one for each face that meets at that 
corner point). For rendering purposes, it is generally going to be preferable to have a shared pool of 
eight vertices that are indexed by all the faces of the cube. This is essentially what a weld does for us -- 
it finds these duplicated vertices and replaces them with a single vertex. All the faces that used those 
previous vertices then have their indices remapped to the new single vertex. The cube looks exactly the 
same, but we have just eliminated 2/3rds of our vertex data. If we imagine the savings that might be 
gained by welding an entire scene, we can see that this would allow us to fit much more geometry into a 
single vertex buffer and thus, minimize the number of vertex buffers we will need to store our scene 
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geometry. Remember that changing between vertex buffers can be an expensive operation, so we will 
want to do it as infrequently as possible. By minimizing the number of vertex buffers needed to store the 
scene, we minimize the number of vertex buffers we need to set and render from in a given frame. 
 
There are many ways a rendering system can be implemented for a spatial tree. Indeed, quite a few 
designs were attempted during the development of this course. This was time consuming but fortunate as 
we discovered quite significant performance differences between the various systems. Even system 
designs that seemed quite clever and robust on paper performed terribly when compared against simple 
brute force rendering on high end machines with the latest graphics hardware. To be fair, a number of 
the maps and levels we tested had fairly low polygon counts (by today’s standards), so we were not too 
surprised to see that they could be easily brute force rendered by the latest nVidia and ATI offerings. 
Also note that these scenes were not being rendered with complex shaders or multiple render passes, so 
the latest hardware could easily fill the frame buffer without any trouble. This was certainly true in tests 
where we used pre-lit scenes with a single texture. 
 
Although this might seem an unfair test for any visibility system, the fact that brute force rendering was 
significantly outperforming these various system implementations on high end hardware, even when 
only half the scene was visible, is an important point that is really worth keeping in mind. It is a 
common mistake to assume that because the spatial visibility system might be rendering only half the 
scene when the player is in a given location within the game world, versus the brute force approach 
which is always rendering the entire scene, that the latter would always be slower. But it is critical to 
factor in the hardware in question. If the hardware is able to brute force render the entire scene without 
difficulty, the difference then becomes one of what is involved in the spatial system’s determination of 
which polygons should be rendered. That is, we found in various spatial tree visibility systems that we 
implemented that the processing and collection time for visible data often exceeded the time it took to 
render the whole scene using brute force. 
 

Note: To be clear, we are talking solely about the rendering of the static scene polygon data here, which is 
perhaps being a bit unbalanced with respect to such spatial visibility schemes. One must also factor in the 
savings of quickly identifying and rendering dynamic objects which are only contained in visible leaves. A 
typical scenario might contain dozens of skinned characters for example, of which only two are contained in 
visible leaves. If these characters were each comprised of thousands of triangles, the savings over brute 
force would generally become more apparent. In this section though, we are focusing on trying to 
efficiently render the static scene in a way that helps rather than hinders performance on high end 
systems.   

 
When the same systems were compared on much lower end machines, the situation was much better for 
hierarchies. That is, the extra CPU processing involved in collecting only the visible data made all the 
difference to the aging video hardware. Such cards could not render the entire scene brute force at 
interactive frame rates and the various visibility systems helped to achieve much higher frame rates. One 
might be tempted to conclude that the spatial tree’s visibility system could be put in place to help our 
games run at acceptable speeds on lower end machines even if they provide no real benefit on the latest 
cutting edge systems (which seemed not to need much help). This is certainly a valid consideration, as it 
allows a game to run on a much wider variety of machines (which could mean the difference between 
decent sales and great sales for a commercial title). Certainly it is generally in a software company’s best 
interest to implement systems that support a wide variety of target platforms as it opens up the potential 
market for the game. A recent survey showed that the vast majority of computer owners that play games 
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are still using nVidia geForce™ 2/3 (or equivalent) hardware, so there is certainly something to be said 
about that. 
 
However, what was unacceptable about many of the system designs we tried was that while speeding up 
performance on low end machines, performance on high end machines was degraded (sometimes 
significantly so). Essentially, the time required to traverse the tree and collect the visible data became 
the main bottleneck. As mentioned, this situation would likely be quite different if we were rendering a 
huge scene with high polygon counts or a scene that required many rendering passes per–polygon to 
achieve advanced lighting and texturing effects. In such cases, even the latest graphics cards would find 
themselves hard pressed to perform brute force renders. This is where our spatial tree’s visibility system 
could really make a difference as it only asks the hardware to render the geometry that is currently 
visible. This would once again allow for a reduction in the list of primitives to be rendered each frame 
which will hopefully represent an amount that can be easily rendered by the hardware. 
 
We should also not neglect the far plane case when imagining how our spatial tree’s visibility system 
can help out even powerful graphics cards. Imagine for example a game that implements a continuous 
terrain such as those found in such products as Microsoft Flight Simulator®. The terrains in such games 
would not only be too large to render brute force, but even on the latest hardware they might also be too 
large to even fit in memory at once. The terrain data would have to be streamed from disk as and when it 
comes into view and released when it is no longer visible. With our spatial tree’s visibility system, any 
leaves that are outside the frustum could have their geometry data flushed from memory. With our 
hierarchical traversals, we could very easily detect which leaves are within the frustum each frame and 
stream the terrain data for that leaf from disk if it is not already loaded. We can then collect the data 
from each visible leaf and pass it to the pipeline to render. This task would be almost impossible to 
achieve without a spatial manager. It is for this reason that a spatial manager and visibility systems 
generally will be at the heart of nearly every commercial quality game title. 
 
Although the benefits of a spatial tree for rendering purposes are numerous, there will be times when 
you will be rendering small and simple scenes which modern hardware can brute force render more 
efficiently than our spatial tree’s visibility system. Although not using a spatial manager and visibility 
system in the days of the software engine would have been unthinkable, the latest graphics cards do their 
jobs very well and require less help from the application than in days gone by. As mentioned, when 
rendering simple scenes, trying to help the card instead of letting it just render everything can actually 
hinder performance in many cases. The visibility system we choose to implement then has to be one that 
prepares the visible data so efficiently that the time requirements are negligible in such situations. A 
classic example of why this is so important can be understood when we imagine the player located in the 
bottom left corner of the scene looking towards the top right corner of the scene with a wide FOV and a 
near infinite far plane. In such cases, the entire scene would most likely be visible, so the quickest 
solution would always be to perform an optimized brute force render of the entire scene, batched by 
subset. However, our visibility system would have to perform a tree traversal and collect the data at each 
leaf just to determine that the entire scene should ultimately be rendered anyway, just as in the brute 
force case. The issue is that our visibility system had to run some form of logic to ascertain this fact 
before it could start rendering anything. The brute force approach had no CPU processing to perform 
and could start rendering straight away. In such situations, the brute force approach is generally going to 
beat a basic frustum visibility system hands down. What we need to do is make sure that we implement 
a system that minimizes the damage to frame rate in these situations, but that when the player is 
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positioned at a location within the scene such that only a few leaves are visible (the general case), the 
visibility system will outperform the brute force system. 
 
To sum up, we are going to try to design a system that significantly speeds up our rendering on both low 
and high end systems in the best case; in the worst case, where the scene could easily be brute force 
rendered by a high end graphics card, we want our implementation to speed up rendering on a low end 
machine but not under-perform brute force rendering on a high end system by any significant degree. 

15.1.1 Different Rendering Schemes 

There are many different schemes ranging from easy to difficult that can be employed to collect and 
render the visible data from a spatial tree. Unfortunately, the performance of such algorithms tends to 
vary from poor to good in that same order. In this section we will discuss some of the approaches that 
one might consider employing. We will discuss techniques that span the naïve to the complex and end 
with a discussion of the system that we ultimately ended up going implementing in CBaseTree. 

The UP Approach 

The simplest way to render the visible the data is to draw the system memory polygon data stored at 
each visible leaf. DirectX has the IDirect3DDevice9::DrawPrimitiveUP method that allows us to render 
data directly using a system memory user pointer. With such an approach we do not need to make a 
copy of the polygon data in vertex or index buffers; we can pass a pointer to each CPolygon’s vertex 
array directly into the DrawPrimitiveUP method. One approach would be to have an empty vertex array 
allocated for each subset used by the tree’s static data prior to performing a visibility pass. These vertex 
arrays would be populated with the vertex data from each CPolygon from every currently visible leaf 
when the tree is traversed. After the visibility traversal is complete, this collection of vertices could be 
rendered. This array would then be flushed before the next visibility pass is performed. 
 
As an example, if we imagine the static data in the tree contains polygons that use five different 
attributes in total, our tree would use five vertex arrays as bins in which to collect the vertex data from 
the visible leaves and add them to the array that matches their attribute ID. These arrays/bins would be 
emptied prior to the visibility process being performed each frame. We could implement a 
ProcessVisibility method that would be called by the application prior to rendering each subset of the 
tree. This method would traverse the tree, testing each node’s bounding box against the camera’s 
frustum so that any node that is currently outside the frustum will not have its children traversed into. 
Any child nodes and leaves underneath that node in the tree will not be traversed or processed and as 
such, any polygon data contained down that branch of the tree will be quickly and efficiently rejected 
from the collection process. 
 
When a leaf is found that is visible, its visible Boolean will be set to true and a loop through each 
polygon stored there will be performed. For each polygon, we will check its attribute and copy its vertex 
data into the matching vertex bin. So if the current polygon we are processing in a leaf had an attribute 
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ID of 4, we would copy its vertices (one triangle at a time) into the 5th vertex array (VertexArray[4]). 
After the tree has been traversed, we would have built five vertex arrays and flagged each visible leaf. 
At this point, the ProcessVisibility method would return program flow back to the application.  
 
The next stage for the application would be to loop through each subset and call the tree’s DrawSubset 
method after setting the correct device states for that attribute. For example, the application would set 
the texture and material for subset 0 and call the tree’s DrawSubset method, passing in this attribute ID. 
As the vertex array has already been compiled for all visible triangles that use this subset, this method 
can just call the IDirect3DDevice9::DrawPrimitiveUP method passing in VertexArray[0] and the 
number of triangles stored in this array. We would also state that we would like it rendered as a triangle 
list. Once the application had called DrawSubset for each attribute used by the tree, all visible triangles 
would have been rendered. By collecting the visible triangles into arrays first, we minimize the number 
of draw calls which would otherwise be in the tens of thousands if we rendered each polygon’s vertices 
as and when it was located in a visible leaf during the visibility pass. 
 
So we can see that using this approach, it is the ProcessVisibility method that actually traverses the tree 
and collects the triangle data for each subset. The DrawSubset method would simply render the vertex 
bin/array that matches the passed attribute that was compiled during the visibility pass. 
 
What is wrong with this approach?  
Although this method sounds delightfully easy to implement, it is a definite example of the wrong way 
to design this system. Performance would be simply terrible for a variety of reasons. First, as we traverse 
the tree, we have to perform a system memory copy of the vertex data from each CPolygon into the 
appropriate vertex bin. This would need to be done for every polygon currently visible. As vertex 
structures can often be pretty large, these memory copies really drain performance. When the entire 
scene is visible, we will be copying hundreds or thousands of vertices each frame and seriously tying up 
the CPU. The brute force approach in such situations would have none of this overhead and could 
simply just render the scene prepared in static vertex and index buffers with just five draw calls. 
 
The second major flaw with this system is the use of the DrawPrimitiveUP method. Although it looks 
like the use of this function handily avoids the need to employ vertex buffers, the real concern is what 
happens behind the scenes. When we call the DrawPrimitiveUP method, a temporary vertex buffer will 
be created and locked and the vertex data we pass will then have to be copied into this vertex buffer (yet 
more copying of memory) before it is unlocked. After unlocking this vertex buffer, the pipeline may 
then have to commit this data to video memory, involving yet another copy of the vertex data over the 
bus into video memory. Transforming all the vertex data for the currently visible scene could mean a 
huge number of vertices will have to be passed over the bus each time. 
 
As you can see, although this system it simple to implement, the performance would be quite poor. With 
an outrageous amount of memory copying to perform, this system is typically outperformed by brute 
forcing even on low end hardware. Memory copying is performance killer and in this case we are 
implementing three major copy stages. This is clearly not the way to go. 
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The Dynamic Index Buffer Approach 

The dynamic index buffer method is discussed in many published texts and as such is worth discussing 
here. With this approach we would invoke a process just after the tree is built which prepares the render 
data. It would allocate a static vertex buffer for maximum performance which will typically be allocated 
in video memory on T&L capable cards. We will also allocate a dynamic index buffer for each attribute 
used by the static scene stored in the tree. These index buffers will be flushed prior to each 
ProcessVisibility call.  
 
The additional build process that is employed only once just after the tree is first built would loop 
through each leaf in the tree and copy the vertex data for each polygon into the static vertex buffer. As 
all the vertices of all polygons in all leaves will be stored in this vertex buffer we will also need to store 
the indices of each polygon in the leaves themselves. This is so we know for a given visible polygon, 
which section of the vertex buffer it is contained in and the sections that should be rendered or skipped. 
As each polygon is added to the vertex buffer, we will store the indices of its vertices in the leaf. After 
the post-build process is performed, we would have a single vertex buffer containing all the vertices of 
the static scene, and in each leaf we would have the indices for all the vertices of each polygon so that 
we know where they exist in the vertex buffer. We will also have an array of empty dynamic index 
buffers (one for each subset) which will be filled with the visible polygon indices during the 
ProcessVisibility call. 
 
When the ProcessVisibility call is made by the application prior to rendering the tree’s subsets, this 
function will first make sure that all the dynamic index buffers are empty. Then it would traverse the 
tree searching for visible leaves as in the previously described method. For each visible leaf we find, we 
would loop through each of its polygons and add its indices to the dynamic index buffer that is mapped 
to the attribute for that polygon. For example, if a given polygon had an attribute ID of 4, we would 
copy its indices into the fifth index buffer (indexbuffer[4]). When the ProcessVisibility method returns 
program flow back to the application, the tree would have the indices of all the visible triangles for a 
given attribute in each index buffer. The application would then bind the appropriate texture and 
material, set the appropriate states, and then call the tree’s DrawSubset method to draw the required 
polygons. This method would simply call the IDirect3DDevice9::DrawIndexedPrimitive method for 
each dynamic index buffer it contains. We would pass DrawIndexedPrimitive the vertex buffer used by 
the entire scene and the index buffer of the current subset we are rendering. That index buffer would 
describe the indices of all the triangles in the vertex buffer that are visible for the current subset being 
rendered. After this has happened for each subset, all visible triangles will have been rendered. Thus, the 
number of DrawIndexedPrimitive calls would be equal to the number of subsets used by the polygons in 
the tree. 
 
What is wrong with this approach? 
This design does perform much better than the previously discussed approach due to the fact that the 
vertex data was already contained in a video memory static vertex buffer. This meant that the sizable 
vertex structures did not have to undergo the multitude of copy phases. The vertex data was created just 
once at application startup and committed to video memory. However, on simple levels, brute force 
rendering significantly outperformed this technique on high-end hardware even when half the scene was 
being rejected in the visibility pass. This was especially true in the case of a clipped tree where the 
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polygon count was raised between 30% and 80% due to the polygon splitting performed in the build 
process. We can see for example that in the extreme case where there was an 80% increase in the 
polygon count, even when half the scene was being rejected, the polygon count had almost doubled and 
as such, half of our visible scene contained nearly as many polygons as brute force rendering the original 
polygon data. Therefore, brute force was still able to render the original scene faster than our clipped 
spatial tree could render only half of its split scene. 
 
When using a non-clipped tree, things were better, but we still found that the memory copies performed 
at each visible leaf (polygon indices copied into the index buffer) are a bottleneck. Although index data 
is much smaller than vertex data and not nearly as expensive to copy or commit to video memory, when 
the entire scene was within the frustum, we were still dealing with tens (even hundreds) of thousands of 
indices to copy into the index buffer during each visibility determination pass. Combined with the fact 
that a dynamic index buffer typically performs a little slower than a static index buffer and we still had a 
system that, while much improved over the previous method, suffered poor performance compared to 
brute force when there was medium to high visibility in non-trivial, but not overly complex, scenes.   
 
What was clear was that in order to get better performance we needed to eliminate the copying of vertex 
and index data and instead store the renderable data in static vertex and index buffers in the post build 
phase. This would allow our vertex and index data to reside in optimal memory using an optimal format 
for the driver. In the next section, we will discuss the rendering system we finally wound up 
implementing, which provided much better performance than the previous systems. 

15.2 The CBaseTree Rendering System 

The CBaseTree rendering system is not as complicated as it may first seem when looking at the code. 
Unfortunately, the code is made significantly less trivial by the fact that multiple vertex buffers may 
have to be used if the vertex count of the static scene exceeds the maximum vertex buffer size supported 
by the hardware. This necessitates the introduction of an additional level of structures that makes things 
a little difficult to follow at first. Because this reduces clarity of what is essentially a rather simple 
system, we will first discuss the system with this complication removed. That is, we will discuss this 
system assuming that we can use an infinitely large vertex buffer and as such, all the static geometry in 
the tree can always be contained within it. Once we understand the system, we will discuss how it needs 
to be adapted to cope with multiple vertex buffers. 
 
The system operates in three stages much like the previous method we discussed. The first is executed 
only once when the tree is first built. It is this component that copies the vertex data of every leaf into a 
tree owned vertex buffer and the indices of every polygon into static index buffers (one for each subset). 
You will recall from our previous lesson that prior to the Build function of a derived class returning, it 
makes a call to the CBaseTree::PostBuild method to calculate the bounding boxes for CPolygons in the 
tree. This method also issues a call to a new CBaseTree member called BuildRenderData as shown 
below. 
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bool CBaseTree::PostBuild(  ) 
{ 
    // Calculate the polygon bounding boxes 
    CalculatePolyBounds( ); 
 
    // Build the render data 
    return BuildRenderData( ); 
} 

 
It is the CBaseTree::BuildRenderData method that will build the static vertex buffer containing all the 
vertices of the tree’s static geometry. It will also create an index buffer for each subset used by the tree 
and store the indices of each triangle in these buffers in leaf order. Let us discuss how our system will 
work and what processing this initial stage will have to perform. 
 
This function will create a static vertex buffer to contain the vertex data and N static index buffers, 
where N is the number of attributes used by the static tree geometry. It will then loop through each leaf 
in the tree. For each leaf it is currently processing it will loop through all the CPolygon structures stored 
there. For each polygon, it will add its vertices to the vertex buffer and will test the attribute ID of the 
polygon so that its indices are generated and added to the correct index buffer. For example, if we are 
processing a polygon that uses attribute 4, we will add its vertices to the vertex buffer and then generate 
the indices for each triangle in the polygon based on the position it has been placed within the vertex 
buffer. Once we have the indices generated for each of its triangles we will add them to the fifth index 
buffer (index buffer 4) since this is the index buffer that will contain the indices of all triangles that use 
attribute 4.  
 
The next bit is vitally important. When we add the indices of each polygon in the leaf to their respective 
index buffers, we will store (in the leaf) the first index where the triangles for this leaf start in each index 
buffer it uses. For example, if we are processing a leaf and we find that there are 6 triangles that use 
subset 2, we will add the indices of those six triangles to index buffer [1] and the leaf will be given the 
index where its indices begin in that index buffer and the number of primitives it contains for that leaf. 
As we process each leaf, we know for example that for a given subset that has polygons in leaf A, all of 
leaf A’s indices will be added to that subset’s associated index buffer in a continuous block. Going back 
to our previous example, if we find that a leaf has 6 triangles that use attribute 2 and the index buffer 
already contains 100 indices that were added when processing other leaves, the leaf will keep track of 
the fact that for subset 2, its polygons start at index 100 and the next 6 triangles from that point in this 
index buffer are its primitives. We will see why this is important in a moment. 
 
Therefore, after this process is complete, if a given leaf contains polygons that use 4 subsets for 
example, that leaf will store an array of four RenderData structures (one for each subset it contains). 
Each RenderData structure contains the index at which this leaf’s indices begin for a given subset in the 
associated index buffer and the number of triangles in that subset contained in the leaf. Thus, each 
RenderData structure stored in the leaf describes an index buffer range for a given subset. If the 
RenderData item stored in a leaf has an attribute ID of 5, it will describe a block of indices in the 6th 
index buffer (the static index buffer for triangles of subset 5) where this leaf’s triangles start and end. 
We know then that if this leaf is visible, this section of that index buffer will need to be rendered.  
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We will also introduce a new class called CLeafBin. CLeafBin is really a wrapper class around an index 
buffer for a given subset containing methods to render its index buffer efficiently. As we need to run the 
collection of our render data as fast as possible, each RenderData item stored in a leaf will also store a 
pointer to the leaf bin for which it is associated. This way, during the traversal, when a visible leaf is 
found, for each RenderData structure stored (one for each subset contained in that leaf) in the leaf we 
can access the pointer to the associated leaf bin and inform it of a range in its index buffer that will need 
to be rendered.   
 
Figure 15.1 shows a simplified diagram of the rendering system. In this example we will assume the tree 
contains only four leaves and uses only three attributes (the texture images describe the attributes). 
Study the image and then we will discuss its components. 
 
In this example the tree contains only four leaves and these leaves can be seen in the top left corner of 
the image. Leaves 1 through 3 contain polygon data from two different subsets and leaf 4 contains 
polygon data from only one. The line dividing leaves 1 through 3 down their center is being used to 
indicate that these leaves have two RenderData structures because these leaves contain polygons from 
two different subsets. The fourth leaf contains polygon data from only the second subset and as such 
contains only one RenderData structure. At the bottom of the image we can see that as the tree’s 
polygon data uses only three subsets, we allocate three leaf bins. Each leaf bin contains the static index 
buffer that will contain the indices of all the triangles in the tree that use that subset. Just like the tree’s 
vertex buffer, these index buffers will also be populated just once after the tree has first been built. Do 
not worry about what the RenderBatch structures in each leaf bin are for at the moment; we will see how 
these will be used a little later to collect runs of visible triangles during the visibility determination 
process. 
 
When the tree is first compiled, the leaf bin index buffers and the tree’s vertex buffer will be empty. At 
this point, no leaves will contain RenderData structures. It is the job of the CBaseTree::BuildRenderData 
function to allocate these structures and populate the index buffers of each leaf bin and the vertex buffer 
of the spatial tree with data. 
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Figure 15.1 
 
When the BuildRenderData function is first called, let us assume that it processes leaf 1 first. As it loops 
through each polygon, it finds that it contains 5 triangles that use subset 1 (the brick texture). It knows 
that it has to add the vertices of each of these triangles to the vertex buffer and the indices of each 
triangle (15 indices in total) to the index buffer stored in leaf bin 1 (the leaf bin associated with the first 
subset). It then notices as it adds these 15 indices to the index buffer that there are currently no indices in 
this index buffer. This means that this leaf’s indices for subset 1 will be stored at the beginning of the 
index buffer contained in leaf bin 1. A new RenderData structure is allocated and added to the leaf 
which contains the subset ID of the leaf bin this data has been added to, the index into the index buffer 
of this leaf bin where the leaf’s indices begin, and the number of triangles it has added to this index 
buffer. We can see if we look at the left half of leaf 1 in the diagram that its RenderData structure for 
leaf bin 1 contains an index count of 0, which describes where this leaf’s subset 1 polygons begin in leaf 
bin 1 index buffer. It also contains a primitive count of 5. If we look at leaf bin 1, we can see that all 15 
indices for the 5 triangles in leaf 1 have been stored at the beginning leaf 1’s index buffer, exactly as 
described by the leaf’s RenderData structure for this leaf bin. 
 
Next we find that leaf 1 also contains 10 triangles which use subset 2. The vertices of each of these 
triangles are added to the vertex buffer and the indices of each vertex in the leaf that uses this subset are 
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generated and added to the index buffer of leaf bin 2. We are assuming in this example that these 
polygons are all triangles and as such this would add 30 indices to the index buffer in leaf bin 2. Once 
again, we create a new RenderData structure and store in it the leaf. This second RenderData structure 
will contain the leaf’s information for leaf bin 2. We also notice that as this is the first time this subset 
has been encountered, there are currently no indices in the index buffer of leaf bin 2, so the RenderData 
structure for this leaf bin will store an index count of 0 and a primitive count of 10. At this point, leaf 1 
has been processed. We know that it contains a RenderData structure for each subset it uses and each of 
these structures describes where its triangles exist in the associated leaf bin’s index buffer. We can see 
for example that if this leaf is visible, when the application calls ISpatialTree::DrawSubset and passes in 
a subset ID of 1, we must make sure that the 5 triangles described by the first 15 indices in leaf bin 1’s 
index buffer are rendered since these contain the triangles in leaf 1 for this subset. Likewise, when the 
application calls the DrawSubset method again to ask the tree to render subset 2, we know that if leaf 1 
is visible, we must render the first 30 indices in leaf bin 2’s index buffer.  
 
We then move on to leaf two where we find 20 triangles that use subset 1 and 5 triangles that use subset 
3. We add the vertices of each triangle to the vertex buffer and generate the indices for each triangle so 
that they correctly index into that vertex buffer. The 60 indices generated for the 20 triangles that belong 
to subset 1 are added to leaf bin 1’s index buffer and a new RenderData structure is created and linked to 
this leaf bin via an attribute ID. Because there are already 15 indices in this index buffer, we know that 
the 60 indices for leaf 2’s triangles must start at index 15 in leaf bin 1’s index buffer. Therefore, we store 
an index count of 15 and a primitive count of 20 in this leaf’s RenderData structure. This structure now 
tells us that the indices for the subset 1 triangles stored in this leaf begin at position 15 in leaf bin 1’s 
index buffer and that there are 20 of them. We then process the other polygons in leaf 2 which in this 
example use subset 3. As this leaf bin has not yet had any data added to its index buffer, we know that it 
was empty before we added our indices for this leaf and therefore, a new RenderData structure is 
allocated and linked to this leaf bin via the subset ID. The index count of this structure is set to 0 as this 
leaf’s indices for subset 3 polygons start at the beginning of this index buffer, and the primitive count is 
set to 5. The two RenderData structures stored in leaf 2 tell us that it contains polygons from two 
subsets, subsets 1 and 3. The indices of the triangles in this leaf that use subset 1 begin at index 15 in 
leaf bin 1’s index buffer and there are 20 of them. We know that we can render this block of triangles if 
this leaf is visible. The second RenderData structure in leaf 2 tells us that this leaf also contains 5 
triangles from subset 3 that start at position 0 in leaf bin 3’s index buffer.  
 
After this process has been repeated for all polygons in all leaves we will have the following: 
 

• A static vertex buffer containing the vertices of all triangles in the tree. 
• A Leaf Bin for every subset used by the tree’s static data. Each leaf bin contains a static index 

buffer containing the indices of the tree’s polygon data assigned to this subset. 
• Each leaf will contain a RenderData structure for every subset its polygons use. 
• Each RenderData structure stored in a leaf will describe where that leaf’s indices start in its 

associated leaf bin and the number of triangles stored there (starting at that index). 
 
If you refer back to Figure 15.1 you should be able to see how the index counts are calculated for each 
RenderData structure in each leaf. We can see for example leaf 4 contains only triangles that use subset 
3. The indices of these triangles start at position 75 in the index buffer of leaf bin 2 and there are 10 
triangles * 3 indices = 30 of them. The reason this leaf’s indices start at 75 in leaf bin 2’s index buffer is 
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that leaf 1 added 5*3=30 indices to this buffer first, followed by leaf 3 which added a further 15*3=45, 
taking the number of indices stored in this buffer up to 75 prior to leaf 4 being processed. 
 
If you examine the contents of the three leaf bins in Figure 15.1 this should further clarify the 
relationship. At the end of the render data building process in this example, leaf bin 1 would contain 75 
indices. The first 15 would describe the 5 triangles in leaf 1 which should be rendered if leaf 1 is deemed 
visible during the visibility processing pass. The indices from 15 to 75 describe the 20 triangles added to 
this index buffer from leaf 2. Therefore, we know that if leaf 2 is visible, indices 15 through 75 in leaf 
bin 1 should be rendered (when DrawSubset is called and passed a subset ID of 1). Furthermore, we can 
see that the RenderData structures in leaves 1 and 2 linked to this leaf bin describe these index ranges. 
 
If we look at leaf bin 2 we can see that its index buffer contains triangles from three leaves and 
therefore, three leaves will contain RenderData structures linked to this leaf bin. Leaf 1 has added 30 
indices to the beginning of this leaf bin to describe its 10 triangles that use subset 2. Leaf 3 also added 
45 indices to this index buffer (starting at position 30) which describes its 15 triangles that use this 
subset. Finally, we can see that leaf 4 added a further 30 indices to this leaf bin describing the 10 
triangles that it contains that belong to subset 2. Before continuing, study the diagram and make sure 
you understand the relationship between the leaf bins and the RenderData structures stored in each leaf. 
 
The process described above is all performed by the CBaseTree::BuildRenderData method. This 
function is called once the tree is compiled and it builds and populates the RenderData structures stored 
at each leaf, the leaf bins for each subset, and the global vertex buffer that the index buffers in all leaf 
bins index into. The logical next question is, with this static data at our disposal, how do we efficiently 
collect and process it during the ISpatialTree::ProcessVisiblity call in a way that it can be efficiently 
rendered during a call to the ISpatialTree::DrawSubset method? 

15.2.1 Render Batches 

The heart of the rendering system lies in the leaf bin’s ability to dynamically generate and store 
RenderBatch structures every time a visibility pass is performed on the tree (via a call to the 
ProcessVisibility function). A render batch essentially describes a list of triangles in a given leaf bin 
which are visible and stored consecutively in its index buffer. We can see in Figure 15.1 that render 
batch structures are generated and stored in the leaf bins (this takes place during the visibility pass). 
Each RenderBatch structure will describe a single call to the IDirect3DDevice9::DrawIndexedPrimitive 
method. Let us just take a look at that method to refresh our memory about its parameters. We will then 
be able to more easily see why a single RenderBatch structure represents a single call to this function. 
 
HRESULT DrawIndexedPrimitive 
(       
    D3DPRIMITIVETYPE Type, 
    INT BaseVertexIndex, 
    UINT MinIndex, 
    UINT NumVertices, 
    UINT StartIndex, 
    UINT PrimitiveCount 
); 
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The important parameters to focus on, at least with respect to the current topic being discussed, are the 
last two. We pass in the location of the first index of a block of triangles we wish to render as the 
StartIndex parameter. The last parameter describes how many triangles (starting at StartIndex) we would 
like to render. Therefore, every time we call this method to render a series of triangles, the indices of 
those triangles must be consecutively ordered in the index buffer. For example, if we have an index 
buffer and we wish to render triangles 0 to 10 and triangles 40 to 50, we will have to issue two calls to 
this method, as shown below. 
 
pDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST,  
                               0,  
                               0,  
                               NumOfVertices,  
                               0,  
                               10 ); 
 
pDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST,  
                               0,  
                               0,  
                               NumOfVertices,  
                               120,            // 40*3   
                               10 ); 

 
In the above example, NumOfVertices is assumed to contain the number of vertices in the vertex buffer 
bound to the device for these calls. 
 
What is apparent by looking at the above example is that because our vertex and index buffers are static, 
when collecting the indices that need to be rendered from each visible leaf, we will not be able to render 
the triangles from multiple visible leaves with a single draw call unless these indices have been added to 
the index buffers of each leaf bin such that their indices follow on consecutively in the index buffer. 
Therefore the job of the leaf bins during a visibility pass will be to allocate RenderBatch structures to try 
to maximize the number of primitives that can be rendered in a single batch by detecting adjacent runs 
of visible triangles in the index buffer from different leaves. This will minimize the number of draw 
calls that will need to be made. 
 
A RenderBatch structure is a very simple structure at its core that simply stores a start index and a 
primitive count as shown below. Essentially, each RenderBatch structure just represents a block of 
adjacent triangles in the index buffer that are currently considered visible and can be rendered via a 
single draw call. 
 
struct RenderBatch 
{ 
    ulong IndexCount; 
    ulong PrimitiveCount; 
};  

 
To understand how it works, let us go back to the example tree illustrated in Figure 15.1 and assume for 
now that all four leaves are visible and that all the render data has been constructed as previously 
described. When the ProcessVisibility function is called by the application to determine leaf visibility, 
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the first thing it does is clear each leaf bin’s RenderBatch list. That is because the job of the visibility 
pass will be to construct a list of render batch structures which can be executed to render the visible data. 
 
The ProcessVisibility method will traverse the hierarchy searching for visible leaves. When a leaf is 
encountered which is visible, it will loop through each RenderData structure stored in that leaf. 
Remember, the number of RenderData structures stored in the leaf will be equal to the number of 
attributes/subsets used by the polygons in that leaf. Each RenderData structure would also store a pointer 
to the leaf bin to which it is assigned.  
 
In the above example we would visit leaf 1 first and would determine that it is visible. We would then 
loop through the number of RenderData structures stored there, which in this example would be two. 
The first RenderData structure describes the index start and primitive count of all the triangles in leaf 1 
that are stored in leaf bin 1. Therefore, we would call the leaf bin’s AddVisibleData method, passing it 
the index count of the RenderData item and the number of primitives (shown in the following pseudo 
code). That is, we are informing the leaf bin of a run of visible triangles in its index buffer. 
 
if (pLeaf->IsVisible) 
{ 
   // Loop through each Render Data structure in this leaf 
   for ( i = 0; i < pLeaf->RenderDataCount; i++  ) 
   { 
       // Get current Render Data structure 
       pRenderData = pLeaf->RenderData[i]; 
          
       // Fetch the leaf bin this Render Data structure is linked to 
       pLeafBin = pRenderData.LeafBin; 
 
       // Pass the index start location and primitive count into leaf bin 
       pLeafBin->AddVisibleData( pRenderData->IndexCount ,  
                                 pRenderData->PrimitiveCount ); 
   } 
}  

 
The above code essentially describes the visibility determination process. For each leaf we loop through 
the number of render data structures stored there. We fetch each one and retrieve a pointer to the leaf bin 
that this structure is defined for. We then pass in the index count and primitive count members of the 
render data item into the leaf bin so that it knows this block of triangles needs to be rendered.  
 
Of course, it is the leaf bin’s AddVisibleData method which is responsible for either creating a new 
render batch or adding the passed triangle run to a render batch that has been previously created. The 
latter can only be done if the value of IndexCount passed into the function carries on consecutively from 
the indices of the last visible leaf that was visited and added to that render batch. The following code 
snippet shows what the basic responsibility of this function will be. 
 
In this code, certain member variables of CLeafBin are assumed to exist. There is assumed to be an un-
initialized array of RenderBatch structures large enough to store the maximum number of render batches 
that could be created during a visibility pass for a given subset. This allows us to avoid the need to resize 
the RenderBatch array of the leaf bin every time it needs to have more elements added or emptied at the 
start of a new visibility pass. We simply reset the leaf bin’s  m_nBatchCount member to zero at the 
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beginning of each visibility pass and increment it each time a new render batch needs to be created. A 
new render batch only needs to be created if the block of triangles described by the input parameters to 
the function does not follow on from those stored in the current render batch being compiled. Look at 
the code first and then we will discuss its basic operation. Understanding this logic is vitally important 
as it is the key collection process in our rendering system. It is our means of rendering as many 
consecutively arranged triangles in a single draw call as possible.  
 
void CLeafBin::AddVisibleData( unsigned long IndexStart,  
                               unsigned long PrimitiveCount ) 
{ 
     
    ULONG LastIndexStart  = m_nLastIndexStart,  
          LastPrimitiveCount  = m_nLastPrimitiveCount; 
 
    // Build up batch lists 
    if ( LastPrimitiveCount == 0 ) 
    { 
        // We don't have any data yet so just store initial values 
        LastIndexStart     = IndexStart; 
        LastPrimitiveCount = PrimitiveCount; 
 
    } // End if no data 
    else  
    if ( IndexStart == (LastIndexStart + (LastPrimitiveCount * 3)) ) 
    { 
        // The specified primitives were in consecutive order,  
        // so grow the primitive count of the current render batch 
        LastPrimitiveCount += PrimitiveCount; 
 
    } // End if consecutive primitives 
    else 
    { 
        // Store any previous data for rendering 
        m_pRenderBatches[pData->m_nBatchCount].IndexStart     = LastIndexStart; 
        m_pRenderBatches[pData->m_nBatchCount].PrimitiveCount = LastPrimitiveCount; 
        m_nBatchCount++; 
 
        // Start the new list 
        LastIndexStart     = IndexStart; 
        LastPrimitiveCount = PrimitiveCount; 
    } // End if new batch 
 
    // Store the updated values 
    m_nLastIndexStart     = LastIndexStart; 
    m_nLastPrimitiveCount = LastPrimitiveCount; 
} 

 
The leaf bin object is assumed to have member variables that are used temporarily by the visibility pass 
to track the last index start and primitive count passed into the function. These will be set to zero at the 
start of the visibility determination process for a given frame. At the end of the function the parameters 
passed in are stored in these member variables so that they are accessible to us when the next visible leaf 
is encountered and this method is called again. These variables represent our means of determining 
whether the index start parameter passed in describes the start of a run of triangles that follows on 
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consecutively from the data that was added to the render batch in the previous call. If so, these triangles 
can be added to the current render batch simply by incrementing the primitive count of the render batch 
currently being compiled. Otherwise, the new triangles we wish to add do not follow on consecutively in 
the leaf bin’s index buffer, so we will need to end our current batch and start compiling a new render 
batch. Let us analyze the above function a few lines at a time so that we are sure we really understand 
how it works. 
 
This function is called from a visible leaf when processing its render data structures. For example, if the 
RenderData structure for a visible leaf is linked to leaf bin 1, then the index count and primitive count 
stored in that structure are passed into the AddVisibleData method of the relevant leaf bin during the 
visibility pass for the tree. We are essentially informing the leaf bin that the current leaf has triangle data 
which is relevant to the leaf bin’s attribute ID and should therefore be rendered. 
 
void CLeafBin::AddVisibleData( unsigned long IndexStart,  
                               unsigned long PrimitiveCount ) 
{ 
     
    ULONG LastIndexStart  = m_nLastIndexStart,  
          LastPrimitiveCount  = m_nLastPrimitiveCount; 

 
The IndexStart parameter will contain the position in the leaf bin’s index buffer where this leaf’s 
triangles begin and the primitive count will describe the number of triangles (starting from the 
IndexStart parameter) in the leaf bin’s index buffer that belong to the calling leaf.  
 
The first thing we do in the above code is fetch the LastIndexStart and LastPrimitiveCount members into 
local variables. These will both be set to zero at the start of the visibility pass and as such, will be zero 
when this function is first called when the first visible leaf is encountered for a given leaf bin. If these 
are zero, then it means we have not yet created any render batch structures in this visibility pass and this 
is the first time the function has been called. If this is the case, we simply store the passed index start 
and primitive count in the LastIndexStart and LastPrimitiveCount members. We are essentially starting a 
new batch collection process. At the bottom of this function we will then store these values in the 
m_nLastIndexCount and the m_nLastPrimitiveCount members so that when the next leaf which is found 
to be visible sends its data into this function, we have access to the information about the batch we are 
currently compiling. No other action is taken if this is the first time this function has been called for a 
given visibility pass, as shown in the following conditional code block. 
 
    // Build up batch lists 
    if ( LastPrimitiveCount == 0 ) 
    { 
        // We don't have any data yet so just store initial values 
        LastIndexStart     = IndexStart; 
        LastPrimitiveCount = PrimitiveCount; 
    } // End if no data 

 
However, if LastPrimitiveCount does not equal zero then it means this is not the first time this method 
has been called for this leaf bin during the current visibility pass. In other words, this is not the first 
visible leaf that has been encountered that contains triangle data for this subset. If this is the case, then 
LastIndexStart will contain the location of the index that starts a consecutive run of triangles we are 
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currently collecting and LastPrimitiveCount will contain the number of triangles we have collected in 
the adjacent run so far. If the index start that has been passed into the function is equal to that of the start 
of the current batch we are building (LastIndexStart) plus the number of adjacent indices we have 
collected for this run so far (LastPrimitiveCount), it means the triangles of the leaf that called this 
method are arranged in the leaf bin’s index buffer such that they continue the adjacent run of triangles 
we are currently trying to collect (i.e., the current batch we are compiling). When this is the case, we can 
simply increase the current primitive count for the current batch. 
 
    else  
    if ( IndexStart == (LastIndexStart + (LastPrimitiveCount * 3)) ) 
    { 
        // The specified primitives were in consecutive order,  
        // so grow the primitive count of the current render batch 
        LastPrimitiveCount += PrimitiveCount; 
 
    } // End if consecutive primitives 

 
Finally, if none of the above cases are true it means that the index start passed in describes the location 
of a run of triangles for the leaf that does not exist immediately after the run of triangles we have 
compiled for the current batch. Thus, we have reached the end of a run of triangles that can be rendered 
in one batch. At this point, LastIndexStart and LastPrimitiveCount (with their values set in the previous 
call) will contain the start index and primitive count of a block of adjacent triangles that were being 
collected up until this call and therefore describe a block of triangles that can be rendered. We can add 
no more triangles to this batch. The current leaf data that was passed into this function cannot be added 
to this batch, so the previous index start and the primitive count collected so far are stored in a new 
RenderBatch structure, added to the leaf bin’s RenderBatch array, and the number of render batches is 
increased. The LastIndexStart and LastPrimitiveCount members are then set to those values that were 
passed into the function, thus beginning a new cycle of trying to collect adjacent runs for a new batch. 
The remainder of the logic is shown below. 
 
    else 
    { 
        // Store any previous data for rendering 
        m_pRenderBatches[pData->m_nBatchCount].IndexStart     = LastIndexStart; 
        m_pRenderBatches[pData->m_nBatchCount].PrimitiveCount = LastPrimitiveCount; 
        m_nBatchCount++; 
 
        // Start the new list 
        LastIndexStart     = IndexStart; 
        LastPrimitiveCount = PrimitiveCount; 
    } // End if new batch 
 
    // Store the updated values 
    m_nLastIndexStart     = LastIndexStart; 
    m_nLastPrimitiveCount = LastPrimitiveCount; 
} 

 
Understanding this process of collecting render batches is easier if we use some examples. Figure 15.2 
shows the example arrangement we discussed earlier. We will now discuss the visibility processing step 
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performed when ProcessVisibility is called. In this example we will assume that all leaves except leaf 3 
are visible. Just remember that no render batches exist in any leaf bins at the start of a visibility pass. 
 
Leaf 1 is visited first 
and its first render data 
structure is processed. 
As this describes 
triangles that are 
contained in leaf bin 1, 
this leaf bin’s 
AddVisibleData 
method is called and 
passed an index start of 
0 and a primitive count 
of 5. As leaf bin 1 has 
not yet had this method 
called for any other 
leaf during the current 
visibility pass, we 
simply store 0 and 5 in 
its LastIndexStart and 
LastPrimitiveCount 
members. We then 
process the second 
render data structure in 
this leaf for leaf bin 2 and call its AddVisibleData method as well. An index start value of 0 is passed 
and a primitive count of 10 is passed. Since this is the first time leaf bin 2’s AddVisibleData method has 
been called, the same thing happens. We simply store the passed index start and primitive count values 
in the LastIndexStart and LastPrimitiveCount members. At this point, no render batches have been 
created in any leaf bin, but in leaf bins 1 and 2, we have started compiling a batch. 
 
Next we find that leaf 2 is visible, so we process its two render data structures. The first one is for leaf 
bin 1 again, so its AddVisibleData method is called and passed an index start of 15 and a primitive count 
of 20. However, this time when the method is called we detect that the index start passed in 15, is equal 
to the LastIndexStart value recorded (0) plus the last primitive count recorded (5) multiplied by 3. 
Therefore, we know that the triangles of leaf 2 stored in this leaf bin’s index buffer follow on exactly 
from the triangles of leaf 1 that were passed in the previous call to this function. In this case, we can 
simply leave the LastIndexStart value of the leaf bin at its previous value (0) (which describes the 
starting location for the batch we are compiling) and increase the LastPrimitiveCount by the primitive 
count passed in. The value of LastPrimitiveCount is therefore increased from 5 (leaf 1’s triangles) to 25 
(adding leaf 2’s 20 triangles). The current batch we are compiling now describes 25 triangles that can be 
rendered with a single draw call.  
 
At this point in the discussion we will skip ahead to the end of the process as we can see that no further 
visible leaves exist that contain triangle data for this leaf bin. Therefore, at the end of the process we will 
simply create a single render batch for leaf bin 1 that has an index start of 0 and a primitive count of 25. 

 
Figure 15.2 
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This render batch can be rendered with a single DrawIndexedPrimitive call and we can see that we have 
been able to merge the triangles from leaf 1 and leaf 2 that use this subset into a single render batch. 
Later, when the application calls ISpatialTree::DrawSubset and passes in the subset ID assigned to the 
first leaf bin, we can simply extract the index start and primitive count values from the leaf bin’s only 
render batch and pass them as parameters to the DrawIndexedPrimitive call. This system of collecting 
adjacent runs into render batches allows us to lower the number of draw calls that will have to be made 
to render the triangles of a single leaf bin by consolidating adjacent runs into render batch instructions. 
Let us now continue with our example so that we can see where and why multiple render batches will 
sometimes need to be created for a given leaf bin. 
 
When we left off in our example, we had just processed the first render data structure in leaf 2. When we 
process the second render data structure in this leaf (for leaf bin 3) we call leaf bin 3’s AddVisibleData 
method and pass in an index start of 0 and a primitive count of 5. As this is the first leaf we have 
encountered that has data for leaf bin 3, this method simply copies the values of the past index start and 
primitive count parameters into leaf bin 3’s LastIndexStart and LastPrimitiveCount members, thus 
starting the compilation of a new render batch.. 
 
Now we get to leaf 3 and determine that it is outside the frustum and therefore not visible. So we can 
skip it and its triangle data is never added to any leaf bins. We can once again skip ahead to the end of 
the process and see that in this instance, leaf bin 3 will have a single render batch generated for it with 
an index start of 0 and a primitive count of 5. 
 
Finally, we get to the next visible leaf (leaf 4). This leaf contains 10 triangles that are stored in leaf bin 2 
starting at location 75 in the index buffer. Therefore, we pass the values of 75 and 10 into leaf bin 4’s 
AddVisibleData function. Now for the important part! 
 
Leaf bin 2 has already been called during this visibility pass when leaf 1 was processed. Leaf 1 passed in 
a primitive count of 10 and a starting index 0. Therefore, the LastIndexStart member in this leaf bin will 
currently hold a value of 0 and the LastPrimitiveCount member will currently hold 10.  We can see just 
by looking at the index buffer for leaf bin 2 in Figure 15.2 that leaf 4’s triangles do not follow on from 
leaf 1’s triangles. Leaf 3’s triangles are inserted between them, but these triangles are not to be rendered 
because leaf 3 is not visible. In the code we just showed, we tested if the passed index start value 
described a consecutive run by testing to see if multiplying LastPrimitiveCount by 3 and adding it to 
LastIndexStart was equal to the index start value passed in. If they are the same, then the triangles we 
pass in continue on from those last added to the current batch we are compiling. Let us just perform a 
dry run of the function code shown above to make sure that this is definitely not considered an adjacent 
run: 
 
if ( IndexStart == LastIndexStart + (LastPrimitiveCount * 3) ) ) 
{ 
   Increase LastPrimitiveCount 
}  
 
When this function is called by leaf 4, a value of 75 will be passed as the IndexStart parameter since this 
is where this leaf’s triangles start in the index buffer for leaf bin 2. Furthermore, LastIndexStart will 
currently be set to 0 and LastPrimitiveCount will currently be set to 10 (leaf 1’s primitive count) so this 
equates to the following test: 



 
 
 

22 

if ( 75 == 0 + (5 * 3)) ) 
{ 
   Increase LastPrimitiveCount 
}  
 
This equates to:- 
 
if ( 75 == 15 ) 
{ 
   Increase LastPrimitiveCount 
}  
 
Clearly we can see that the above condition is not true and the triangles in leaf 4 cannot be rendered in 
the same draw call as those already collected from leaf 1. Therefore, the current value of LastIndexStart 
and LastPrimitiveCount will be stored as a new render batch in leaf bin 2 and LastIndexStart and 
LastPrimitiveCount will be set to the values stored in leaf 4’s render data structure. When the process is 
over, these will also be added as a new render batch so that when visibility processing is complete, leaf 
bin 1 will have one render batch which renders the triangles from leaves 1 and 2 in a single draw call. 
Leaf bin 2 will have two render batches. One will render the triangles from leaf 1 and the other will 
render the triangles from leaf 4. This will have to be done with two separate draw calls. Leaf bin 3 will 
also contain a single render batch describing the triangles from leaf 2 that are visible and can be 
rendered with a single draw call.   
 
Although this is a simple example, it is easy to imagine that during the tree traversal we will find many 
leaves that are visible and that have their triangle data arranged consecutively in the index buffers of the 
leaf bins to which they pertain. When such cases occur, we can render the triangles from multiple leaves 
with a single draw call instead of having to issue a DrawIndexedPrimitive call for each visible leaf that 
contains renderable data. 
 
One thing that is immediately obvious about this system is that its success is dependant on the order in 
which we add the indices to the index buffer of each leaf bin during the BuildRenderData method. We 
can see in Figure 15.2 for example that because we process each leaf in the tree and add their indices to 
each leaf bin in the same order that we traversed those leaves during the visibility pass, we maximize the 
chance of collecting adjacent runs of triangles in multiple leaves. If we added leaf 2 to the index buffer 
first, followed by leaves 4, 3 and 1 (in that order) but still traversed the tree during the visibility pass in 
the 1,2,3,4 leaf order, we would get no adjacent runs and would end up having to perform a draw call for 
each leaf. That is, the number of render batches stored in each leaf bin would be equal to the number of 
leaves that contain polygons that use that leaf bin’s attribute. This could be a very costly number of draw 
calls if every leaf was visible. 
 
Luckily, we know that if every leaf is visible then our traversal methods will traverse that tree in the 
same order every time. Therefore, in the BuildRenderData method, one of the first things we will do is 
feed the entire scene’s bounding box into the CollectLeavesAABB method. As we have passed the 
scene’s bounding box to this function which encompasses all child leaves, the entire tree will be 
traversed and a list of all the leaves returned. However, the CollectLeavesAABB method would have 
added the leaves to the passed leaf list in the order in which the tree is traversed. That is, if the entire 
scene is visible during the ProcessVisibility call, this is the exact order in which the leaves will be 
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visited. Therefore, we will populate the leaf bins in that order by simply iterating through the leaf list 
returned from CollectLeavesAABB so that the indices of a leaf in the index buffer follow the indices of 
the previous leaf that will be visited during the traversal. In the case where the entire scene is visible, we 
will be adding visible data to each leaf bin’s render batch system in the exact order that they are stored 
in the leaf bin’s index buffer during the build phase. In this scenario, each leaf bin would create only one 
render batch that describes all the triangles stored in its index buffer. This means in the case where 
everything is visible, the number of draw calls will be reduced to the number of subsets/leaf bins in use 
by the tree. 
 
Of course, when only some of the tree is visible there will be entire branches of the tree that are rejected 
from being further traversed and therefore, this will essentially end the render batch currently being 
compiled for each leaf. This is because the branch of the tree we have just rejected will describe a large 
section of the index buffer that we do not want to render and therefore ends any block of adjacent 
triangles we are trying to find. However, we at least know that if an entire branch of the tree is visible, 
because the visibility traversal order is the same order in which we added to the leaves to the index 
buffer of each leaf bin, all the leaves down that visible branch will be contained in the leaf bins as a 
continuous block of indices that can be represented as a single render batch and rendered with a single 
draw call.   

15.2.2 Rendering the Tree 

After the CBaseTree::ProcessVisibility call has been made by the application for a given frame update, 
the render batches for each leaf bin will have been constructed and will contain the triangles that need to 
be rendered for each leaf bin/subset. The application renders a given subset of the tree by calling the 
ISpatialTree::DrawSubset method. The code to such a function is shown below. Basically, it passes the 
drawing request on to the leaf bin’s Render function. This is not the actual code from our lab project and 
all error checking has been removed. We only introduce it at this time to provide some insight into how 
the code will work. In the following function, the GetLeafBin method is exposed by CBaseTree and 
fetches the pointer to the leaf bin for the passed subset ID. 
 
void CBaseTree::DrawSubset( unsigned long nAttribID ) 
{ 
    // Retrieve the applicable leaf bin for this attribute 
    CLeafBin * pLeafBin = GetLeafBin( nAttribID ); 
     
    // Render the leaf bin 
    pLeafBin->Render( m_pD3DDevice ); 
} 

 
As the tree stores a leaf bin for each subset, this function simply fetches the leaf bin from its leaf bin 
array for the passed subset ID (attribute ID) and then issues a call to its Render function. Since the leaf 
bin has already compiled the render batches during the ProcessVisibility call, all it has to do is loop 
through each currently stored render batch and call the DrawIndexedPrimitive function to render the 
adjacent triangles described by each batch. 
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The code to such a function is shown below. Once again, this is not the actual code we will be using and 
it has had some error checking removed, but it does provide insight into the simple task assigned to the 
CLeafBin::Render method. 
 
void CLeafBin::Render( LPDIRECT3DDEVICE9 pDevice ) 
{ 
    ULONG j; 
 
    // Bin leaf bins index buffer to the device 
    pDevice->SetIndices( pData->m_pIndexBuffer ); 
 
    // Render the leaves 
    for ( j = 0; j < m_nBatchCount; ++j ) 
    { 
          RenderBatch &Batch = m_pRenderBatches[j]; 
 
          // Render any data 
          pDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST,  
                                         0,  
                                         0,  
                                         m_nVertexCount,  
                                         Batch.IndexStart,  
                                         Batch.PrimitiveCount ); 
    } // Next Batch 
} 

 
As you can see, this function is delightfully short and easy to follow. When the application requests that 
the tree render one of its subsets, we can see that it is really asking one of the leaf bins to render all of its 
visible triangles. The function first binds the leaf bin’s index buffer to the device and then loops through 
each RenderBatch structure compiled during the ProcessVisibility pass for that leaf bin. For each render 
batch, it calls the DrawIndexedPrimitive method of the device passing in the start index and primitive 
count stored in the current render batch being processed. This describes the block of adjacent triangles in 
the index buffer represented by that render batch. In this example we will assume that m_nVertexCount 
is a member variable of CLeafBin and that it contains the number of vertices in the tree vertex buffer 
(i.e., the vertex buffer indexed into by all leaf bins). 
 
Hopefully, you now see that our basic system is fairly logical and easy to understand. It is also fast 
because it allows us to work with static vertex and index buffers. Of course, this comes at the expense of 
potentially many more draw calls having to be issued than in the dynamic index buffer method, but it 
eliminates the abundance of memory copies that had to be performed to fill the dynamic index buffers 
during the visibility traversal. This proved to be more than a worthwhile tradeoff as our render batch 
system far outperformed the dynamic buffer approach in every test we ran.  

15.2.3 Multiple Vertex Buffers 

Thus far, we have been able to keep our system very simple with only a few structures needed to 
accomplish our goal. Essentially, we have leaves that contain information which describe their run of 
adjacent triangles in each leaf bin’s index buffer, we have a leaf bin for each subset in use by the tree, 
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and we have RenderBatch structures that are built and collected in each leaf bin during a visibility pass. 
Finally, rendering a subset of the tree simply means asking the leaf bin associated with that subset to 
execute all its render batch instructions that were generated during the last visibility pass. Up until now 
we have assumed that all the vertices of all the polygons compiled into the tree can be stored in a single 
vertex buffer which is owned by the tree and indexed into by the single index buffer stored in each leaf 
bin. Unfortunately, vertex buffers cannot be of infinite size and furthermore, the maximum size of a 
vertex buffer which we can index into depends on the capabilities of the 3D device on which the 
application is running. One graphics card might be perfectly happy with using indices that reference 
vertices in a single buffer up to and beyond 16,000,000 (for example), while another card may insist on 
using vertex buffers containing less that 125,000. At the end of the day, we will need to make sure that 
the number of vertices we store in any vertex buffer is not greater than the maximum vertex index 
supported by the card. Therefore, if we find for example that we have 128,000 vertices comprising the 
static geometry of our spatial tree, but the system on which the application is currently running supports 
a maximum vertex buffer size of 64,000, we will have to store our 128,000 vertices in two vertex buffers 
(each holding 64,000). Each smaller vertex buffer is within the scope of the device’s capabilities and as 
such, when we render the tree, we will have to render each vertex buffer (and their associated index 
buffers) separately. 
 
This obviously has some ramifications for our system and forces us to add an additional layer of 
structures that we would rather not have to add. However, as we have discussed the system in the first 
part of this lesson without the multiple vertex buffer complication, adding it to our discussion now and 
discussing the changes that will have to be made will be much simpler to follow. 
 
Because our tree may be using multiple vertex buffers to store its static geometry, we will have to make 
some fairly serious modifications to our system. First, during the BuildRenderData phase we will have 
to detect when the vertex buffer we are currently adding vertices to is full (i.e., it exceeds the maximum 
vertex indexing capabilities of the device) and create a new vertex buffer. To keep things simple, we 
will also create new index buffers for each leaf bin when this happens so that in each bin, we have 
separate index buffers for every vertex buffer being used by the tree. That is, if the tree is using five 
vertex buffers to store its geometry and a particular leaf bin contains triangles from each of these five 
vertex buffers, it will have five index buffers generated for it. So we will keep a logical pairing between 
vertex buffers and index buffers. We know when rendering the leaf bin that if it has five index buffers, 
we will have to loop through each, set the corresponding vertex and index buffers, and then render the 
triangles in that index buffer. 
 
We will also need to know which vertex buffer a given leaf’s RenderData structure is relative to. For 
example, we know that the RenderData structure in a leaf describes the index start and primitive count 
of one of its subsets. If its AttributeID is 2, this means it describes triangles in leaf bin 2. The problem is, 
leaf bin 2 may now have multiple index buffers, so we will need to store which index buffer / vertex 
buffer combination should be bound to the device in order to render the batch of triangles stored at that 
leaf. For example, we might imagine a case where leaf 1 has a RenderData structure that describes 
triangles in vertex buffer 1 and index buffer 1, but leaf 100’s RenderData structure could contain exactly 
the same index start and primitive count values for the exact same subset but describe a run of adjacent 
triangles in the leaf bin’s second vertex / index buffer pair. So we can see that each leaf’s RenderData 
structure will have to store the numerical index of the vertex/index buffer pair that contains the vertices 
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of the triangles it describes. We might imagine at this stage then that the RenderData structure would 
look something like this: 
  
struct RenderData   
{ 
   unsigned long IndexCount; 
   unsigned long PrimitiveCount 
   unsigned long VBIndex; 
   unsigned long AttributeID; 
   CLeafBin     * pLeafBin; 
} 

 
Looking at this structure we can see that it contains not only the start index of where its indices start in 
the associated leaf bin’s index buffer and the number of triangles stored there, but also contains the 
numerical index of the vertex buffer/index buffer combination that store the triangle data. We can see in 
this example how it might also contain the attribute ID which describes the subset/leaf bin this 
RenderData structure is associated with and a pointer to the leaf bin that stores triangles for this subset.  
 
Storing the leaf bin pointer in the RenderData structure is very useful for speeding up the visibility 
process. When processing the RenderData structure for a given visible leaf, we have to pass its index 
count and primitive count into the leaf bin’s AddVisibleData method so that it can be added to an 
existing render batch or used to start a new batch. By having this pointer stored in the data structure, we 
negate the need to search for the leaf bin with a matching attribute ID. We really need to make the tree 
traversal and visible polygon collection process as quick as possible, so we do not want to waste time 
looping through the leaf bin array finding the leaf bin the triangles in this RenderData structure should 
be added to. Therefore, we will find this during the building process and store the leaf bin’s pointer in 
the RenderData structure for immediate access. 
 
We can now see that the RenderData structure not only describes the number of triangles in a leaf bin 
and their location within the leaf bin’s index buffer, it also describes to the leaf bin which vertex buffer 
should be bound to the device and which of the leaf bin’s index buffers the triangle run is contained in. 
For example, if VBIndex were set to 3, this would inform the leaf bin that the vertices of these triangles 
are stored in the third vertex buffer in the tree’s vertex buffer array and that its indices are stored in the 
leaf bin’s third index buffer.  
 
Unfortunately the provisions made here for the multiple vertex buffer case do not cover all scenarios we 
may encounter. For example, imagine the following situation during the BuildRenderData method: 
 
We are currently visiting leaf 10 and we are processing the polygons in that leaf that use subset 6. 
Assume that there are 20 polygons in this leaf that use subset 6 and that up until this point we have been 
adding the vertex data to a single vertex buffer. Now imagine that as we add the first 10 triangles of this 
leaf’s subset 6 polygons to the vertex buffer (and its indices to leaf bin 6’s index buffer) we discover that 
we have filled up the vertex buffer. We have encountered a situation where we have to switch to a new 
vertex buffer (and create a new index buffer to go with it in leaf bin 6) halfway though processing the 
polygons for a single subset. Although this might happen only rarely, it is certainly possible that 
triangles from the same leaf that share the same subset are split over multiple buffers. In such a case, the 
RenderData structure should describe not only the vertex and index buffer to use for a given subset in 



 
 
 

27 

that leaf, but should describe all the vertex buffers/index buffers that contain subset 6 in that leaf. If we 
take this into account, we end up with a RenderData structure stored at each leaf that looks like so: 
 
struct RenderElement 
{ 
  unsigned long IndexStart; 
  unsigned long PrimitiveCount 
  unsigned long VBIndex; 
}; 
 
 
struct RenderData   
{ 
   RenderElement *pRenderElements; 
   unsigned long ElementCount;      
   unsigned long AttributeID; 
   CLeafBin     * pLeafBin; 
} 

 
Let us stop and think about what information we are actually storing here. The RenderElement structure 
now stores the index count and primitive count for a single vertex/index buffer combination for a given 
subset. In the above example where the 20 polygons that used subset 6 in a leaf were spread over two 
vertex/index buffers, the RenderData structure in that leaf for subset 6 would contain two render 
elements in its array and would describe two runs of triangles in two of the leaf bin’s index buffers. The 
VBIndex of the first would be 0 describing the first vertex buffer and the VBIndex of the second would 
be 1. When we reach a visible leaf during the visibility process, the leaf bin would now need to be 
passed the VBIndex of the render element alongside the index start index and primitive count of each 
element stored there. This is because, now that the leaf bin maintains an array of index buffers (one for 
each primary vertex buffer being used by the system), an array of RenderBatch lists will now need to be 
stored also. That is, the leaf bin will need to compile a render batch list for each vertex/index buffer pair 
in use by the leaf bin. 
 
The following code shows what happens when a visible leaf is encountered during the ProcessVisibility 
call and the leaf’s SetVisible function is called. 
 
void CBaseLeaf::SetVisible( bool bVisible ) 
{ 
    ULONG                 i, j; 
    RenderElement       * pElement; 
    CLeafBin            * pLeafBin; 
    RenderData          * pData; 
 
    // Flag this as visible 
    m_bVisible = bVisible; 
 
    // If we're being marked as visible, inform the renderer 
    if ( m_bVisible && m_nRenderDataCount > 0 ) 
    { 
        // Loop through each renderable set in this leaf. 
        for ( i = 0; i < m_nRenderDataCount; ++i ) 
        { 
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            pData    = &m_pRenderData[i]; 
            pLeafBin = pData->pLeafBin; 
 
            // Loop through each element to render 
            for ( j = 0; j < pData->ElementCount; ++j ) 
            { 
                pElement = &pData->pElements[j]; 
                if ( pElement->PrimitiveCount == 0 ) continue; 
 
                // Add this to the leaf bin 
                pLeafBin->AddVisibleData( pElement->VBIndex,  
                                          pElement->IndexStart,  
                                          pElement->PrimitiveCount ); 
            } // Next Element 
 
        } // Next RenderData Item 
 
    } //  End if visible   
} 

 
The function first stores the passed visibility Boolean in the leaf’s member variable which describes the 
leaf as either being visible or non visible. If the leaf has been flagged as visible then we need to add the 
triangles of every RenderData item stored there (one for each subset contained in the leaf) to their 
associated leaf bins. Notice how we loop through each RenderData structure stored in the leaf’s array to 
add its data to its attached leaf bin. However, the triangles described by a single RenderData structure 
may be split over multiple vertex buffers (and multiple index buffers in the leaf bin). Therefore, for each 
RenderData structure we then loop through each RenderElement stored there. There will usually only be 
a single RenderElement structure stored in a RenderData structure. The exception to the rule occurs 
when, during the adding of this subset’s polygon data to the vertex buffer, a new buffer had to be created 
such that the RenderData of a leaf for a given subset spanned vertex buffer boundaries. For each render 
element, we then call the leaf bin’s AddVisibleData member. We looked at a single vertex buffer 
version of this function earlier, but let us now see how that function might look now that multiple lists of 
render batches will need to be maintained in the leaf bin for each vertex/index buffer pair. 
 
Because the leaf bin no longer contains only a single index buffer and a single render batch list, we will 
need to introduce an additional structure in the leaf bin, which in this code is called CLeafBinData. This 
is a simple structure that pairs an index buffer with one of the tree’s vertex buffers and stores its 
associated RenderBatch list during the visibility traversal. The CLeafBin class would now have just the 
following members (methods not shown):  
 
class CLeafBin 
{ 
    unsigned long  m_nAttribID;     
    CLeafBinData **m_ppBinData;     
    unsigned char  m_nVBCount;      
}; 

 
The first member would describe the subset ID for which this leaf bin houses indices and compiles 
render batches for. The second is a pointer to an array of CLeafBinData objects. It is a CLeafBinData 
object that contains the pointers to an index buffer and vertex buffer pair and contains the RenderBatch 
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list for that buffer pair. As an example, if this leaf bin stored triangles for subset 6, and the vertices of 
polygons in the tree that use subset 6 are distributed across five vertex buffers, this leaf bin’s 
m_nVBCount member would be set to 5 and would describe the number of elements in the 
CLeafBinData array. Each CLeafBinData structure then describes the index buffer and render batches 
used to render the triangles from those buffers. 
 
The members of the CLeafBinData object would be as follows: 
 
class CLeafBinData 
{ 
   LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer;  
   LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer;          
   unsigned long           m_nLastIndexStart;       
   unsigned long           m_nLastPrimitiveCount;   
   RenderBatch            *m_pRenderBatches;        
   unsigned long           m_nBatchCount;           
}; 

 
There is an important distinction to make between the vertex buffer pointer and the index buffer pointer 
in this structure. The vertex buffers are created and managed by the tree, not the leaf bins, so this is a 
pointer to a tree owned vertex buffer. There may be CLeafBinData items in multiple leaf bins that all 
point to this same vertex buffer as they all have triangles stored within it. The index buffers however are 
created and managed by the leaf bin and will not be shared by any other bins. That is, an index buffer 
contains the triangles for a specific leaf bin that are contained in a specific vertex buffer. Notice also that 
in our original discussion it was the leaf bin that managed the list of RenderBatch structures during the 
visibility pass. This is now stored in the CLeafBinData structure as we will need to compile render batch 
lists for each index/vertex buffer used by the bin. This is because we will have to execute the render 
batches for each index buffer only after we have bound it to the device along with its associated vertex 
buffer. Finally, the m_nLastPrimitiveCount and m_nLastIndexStart members have also been moved 
from the leaf bin into the CLeafBinData structure. These members were used during render batch 
building to remember the settings for the current batch being compiled between function calls. As we 
now have multiple index buffers in a single leaf bin, we will have to maintain multiple render batch lists 
and therefore, will need to store these ‘m_nLast…’ members on a per batch list basis. 
 
We saw just a moment ago how the CBaseLeaf::SetVisible method calls the CLeafBin::AddVisibleData 
method to add the triangles of each RenderElement in each RenderData structure stored in the leaf. We 
had a look at a single vertex buffer version of this function earlier. Let us now see what it might look 
like with multiple vertex buffer support in the leaf bins. 
 
void CLeafBin::AddVisibleData( unsigned char VBIndex,  
                               unsigned long IndexStart,  
                               unsigned long PrimitiveCount ) 
{ 
   CLeafBinData * pData = m_ppBinData[ VBIndex ]; 
 
   ULONG LastIndexStart  = pData->m_nLastIndexStart,  
         LastPrimitiveCount  = pData->m_nLastPrimitiveCount; 
 
   // Build up batch lists 
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   if ( LastPrimitiveCount == 0 ) 
   { 
        // We don't have any data yet so just store initial values 
        LastIndexStart     = IndexStart; 
        LastPrimitiveCount = PrimitiveCount; 
 
   } // End if no data 
   else if ( IndexStart == (LastIndexStart + (LastPrimitiveCount * 3)) ) 
   { 
        // The specified primitives were in consecutive order 
        LastPrimitiveCount += PrimitiveCount; 
 
   } // End if consecutive primitives 
   else 
   { 
   // Store any previous data for rendering 
   pData->m_pRenderBatches[pData->m_nBatchCount].IndexStart= LastIndexStart; 
   pData->m_pRenderBatches[pData->m_nBatchCount].PrimitiveCount=LastPrimitiveCount; 
   pData->m_nBatchCount++; 
 
        // Start the new list 
        LastIndexStart     = IndexStart; 
        LastPrimitiveCount = PrimitiveCount; 
 
   } // End if new batch 
 
   // Store the updated values 
   pData->m_nLastIndexStart     = LastIndexStart; 
   pData->m_nLastPrimitiveCount = LastPrimitiveCount; 
}  

 
As you can see, the changes are subtle as the render batches are now compiled in the CLeafBinData 
structures instead of the CLeafBin object’s themselves. The function’s first parameter is the index of the 
tree’s vertex buffer that the passed index start and primitive count value pertain to. We use the vertex 
buffer index to fetch the correct CLeafBinData structure from the leaf bin’s array (there will be one for 
each vertex buffer being used by the tree) and from that point on, we are simply growing or starting new 
render batches in the CLeafBinData structures instead of in the leaf bin itself. 
 
After the visibility process has been performed on the tree, each leaf bin may contain multiple render 
batches in each CLeafBinData structure. Each structure in this array describes the batches of the visible 
triangles that need to be rendered for a specific vertex/index buffer pair. 
 
At this point, the application will choose to render the subsets of the tree. We saw earlier that the 
CBaseTree::DrawSubset call really just forwards the render request on the leaf bin that matched the 
passed subset ID. We did examine a version of a CLeafBin->Render function, but it lacked multiple 
vertex buffer support. Here is the new version of the function that instructs the leaf bin to render all 
render batches associated with all vertex/index buffers it contains. 
 
void CLeafBin::Render( LPDIRECT3DDEVICE9 pDevice ) 
{ 
    ULONG i, j; 
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    // Loop through each vertex buffer 
    for ( i = 0; i < m_nVBCount; ++i ) 
    { 
        CLeafBinData * pData = m_ppBinData[ i ]; 
        if ( !pData ) continue; 
 
        // Set the stream sources to the device 
        pDevice->SetStreamSource( 0, pData->m_pVertexBuffer, 0, sizeof(CVertex) ); 
        pDevice->SetIndices( pData->m_pIndexBuffer ); 
 
        // Set the FVF 
        pDevice->SetFVF( VERTEX_FVF ); 
 
        // Render the leaves 
        for ( j = 0; j < pData->m_nBatchCount; ++j ) 
        { 
            RenderBatch & Batch = pData->m_pRenderBatches[j]; 
 
            // Render any data 
            pDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST,  
                                           0,  
                                           0,  
                                           pData->m_nVertexCount,  
                                           Batch.IndexStart,  
                                           Batch.PrimitiveCount ); 
 
        } // Next element 
 
    } // Next Vertex Buffer 
} 

 
This function has the task of looping through each CLeafBinData structure in its array, binding its vertex 
and index buffers to the device and then looping through its render batches and rendering each one. 
Remember, the leaf bin’s m_nVBCount member describes the number of vertex buffers in use by the 
tree and therefore describes the size of each leaf bin’s CLeafBinData array. If the tree stored its 
geometry in five vertex buffers, but the leaf bin only contained triangles stored in the first vertex buffer, 
there would still be five CLeafBinData objects in its array, although the other four would have no render 
batches and no index buffers created or stored in them. 
 
So, we loop through each CLeafBinData structure and for each one we process, we bind its vertex and 
index buffer pair to the device. We then loop through its render batches and call DrawIndexedPrimtive 
to render each batch. At the end of the outer loop we will have rendered all visible geometry in this leaf 
bin. 
 
Although this sounds like a complicated system, it will become easier to grasp when we start to cover 
the actual code in the next section. Seeing how the leaf bins are constructed during the BuildRenderData 
call should clear up a lot of unanswered questions you may have at this point. The goal of this first 
section has been to provide you with some insight as to how the system will work and the various 
structures that will be used to implement it. This should make covering the rather tedious source code a 
lot easier. 
 



 
 
 

32 

It is now time to start discussing the real source code in the CBaseTree render system. As we have often 
done, we will cover the source code from a bottom up perspective. That is, we will look at the changes 
we will have to make at the CBaseLeaf level and filter those changes up until we finally cover the code 
changes to CBaseTree itself. To not do so would be pointless. For example, if we were to cover the 
CBaseTree::BuildRenderData method first, you will see that it spends most of its time calling member 
functions of CBaseLeaf and CLeafBin to accomplish its tasks. By looking at these support objects first, 
we can make sure that when we do finally get to examining the CBaseTree code, we understand all the 
function calls it is making and the support structures used. 

15.3 CBaseLeaf - Adding Rendering Support 

In the previous lesson we discussed much of the CBaseLeaf implementation and we listed and examined 
all code that related to building and querying the tree. In this section we will look at CBaseLeaf methods 
and member variables that were not discussed in the previous lesson as they pertained to the render 
system. 
 
As the previous section indicated, part of the job of the CBaseTree::BuildRenderData method will be to 
store at each leaf a RenderData structure for each subset contained in that leaf. That is, if the polygon 
data in a given leaf uses three attributes (i.e., belongs to three different subsets), there will be an array of 
three RenderData items stored at that leaf. 
 
We also saw that because we need to support multiple vertex buffers, each RenderData item cannot just 
store a single index start and primitive count since the associated leaf bin will also need to know in 
which of the tree’s vertex buffers the triangles are contained. This also indicates which index buffer that 
the leaf will have stored these triangles in within the leaf bin. The RenderData structure represents a 
single subset within a leaf. It contains a pointer to the associated leaf bin that collects triangles for that 
subset and also contains an array of render elements (Element structures).   

15.3.1 The RenderData Structure 

The RenderData structure is shown below along with the Element structure which is contained within its 
namespace. Its definition is contained in CBaseTree.h. The RenderData structure is actually defined 
inside the CBaseLeaf namespace, but for the sake of clarity in this discussion, we show it outside that 
namespace. 
 
struct RenderData 
{ 
        struct Element 
        { 
            unsigned long   IndexStart;         // Index of this leaves first tri 
            unsigned long   PrimitiveCount;     // Number of Tris 
            unsigned char   VBIndex;            // vertex Buffer Index 
        }; 
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        unsigned long AttributeID;    // The attribute ID of this render data item  
        CLeafBin    * pLeafBin;       // Pointer to the actual leaf bin 
        Element     * pElements;      // The actual render data element array 
        unsigned long ElementCount;   // The number of elements stored here. 
}; 

 
Let us discuss the four members of this structure. 
 
 
unsigned long AttributeID 
This member stores the subset ID of the triangles in the leaf that this RenderData structure represents. 
This will match the attribute ID of the leaf bin pointed at by its pLeafBin member. 
 
CLeafBin    * pLeafBin       
This member stores a pointer to the leaf that is to collect the triangles in this RenderData structure 
during a visibility pass if the leaf in which the RenderData structure is contained is deemed visible. We 
store the pointer to the leaf bin in the RenderData structure so that we can easily call its AddVisibleData 
method to send it the render elements of this RenderData structure. 
 
Element     * pElements      
This is a pointer to an array of Element structures. Each element describes a run of triangles that needs 
to be added to the leaf bin during a visibility pass, along with a vertex buffer index. The vertex buffer 
index informs the leaf bin’s AddVisibleData methods which render batch list the triangles in that 
element should be added to. Most of the time, a single RenderData structure will contain only one 
Element in this array which describes (to the associated leaf bin) which vertex buffer/index buffer pair 
these triangles are associated with and therefore, which render batch list the triangles should be added to 
in that leaf bin. 
 
The only time when there will exist more than one Element in a leaf’s RenderData structure will be if, 
during the BuildRenderData method, a vertex buffer switch had to be made partway through adding a 
leaf’s subset to a leaf bin. For example, we know that if we have 50 polygons that use subset 5, during 
the build phase the vertices of these polygons will need to be added to the tree’s vertex buffer and the 
indices of these 50 triangles should be added to the leaf bin’s index buffer. Under normal circumstances 
were no complications to occur, we would then store (inside the RenderData structure for that leaf’s 
subset) a primitive count of 50 and an index start describing where this leaf’s run of triangles start in that 
leaf bin’s index buffer. However, what if after adding only 25 triangles during the build process, the 
vertex buffer becomes full and the remaining 25 of this leaf’s subset 5 polygons have to be added to a 
new vertex buffer? The leaf bin will be informed when the second 25 triangles are added that these exist 
in the second vertex buffer, not the first. The leaf bin would then create a second index buffer that will 
be used to index the triangles in the second vertex buffer. If we go back to the leaf and subset in 
question, we now have a RenderData structure for subset 5 in a leaf that is spread over two vertex and 
index buffers. Therefore, in such a situation two Element structures will be stored in its RenderData 
structure’s pElements array. The first element will describe the array of subset 5 triangles in the first 
vertex/index buffer and the second element will describe the second run of subset 5 triangles in the 
second vertex/index buffer.  As we discussed, during the visibility pass, each element will be passed to 
the leaf bin which will maintain render batch lists for each vertex/index buffer combination it uses. 
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unsigned long ElementCount    
This member describes the number of elements stored in the previously described array. As discussed, 
this will usually be 1 unless the polygons in this leaf that belong to the subset represented by this 
RenderData structure span multiple vertex buffers. 

15.3.2 CBaseLeaf – The Source Code 

CBaseLeaf is no stranger to us as it was covered quite heavily in the previous chapter. In this chapter 
however we will cover its methods and members pertaining to the rendering system. Although we show 
the entire class below contained CBaseTree.h (minus dynamic object support which will be added later 
in the lesson), you will see that there are only a handful of new methods and members that we did not 
cover in the previous lesson. These are highlighted in bold. 
 
class CBaseLeaf : public ILeaf 
{ 
public: 
         
    // Constructors & Destructors for This Class. 
    virtual ~CBaseLeaf( ); 
             CBaseLeaf( CBaseTree * pTree ); 
 
    // Public Virtual Functions for This Class (from base). 
   
    virtual bool            IsVisible           ( ) const; 
  
    virtual unsigned long   GetPolygonCount     ( ) const; 
    virtual CPolygon *      GetPolygon          ( unsigned long nIndex ); 
    virtual unsigned long   GetDetailAreaCount  ( ) const; 
    virtual TreeDetailArea* GetDetailArea       ( unsigned long nIndex ); 
    virtual void            GetBoundingBox      ( D3DXVECTOR3 & Min,  
                                                  D3DXVECTOR3 & Max ) const; 
    
    // Public Functions for This Class. 
    void                    SetVisible          ( bool bVisible ); 
 
    void                    SetBoundingBox      ( const D3DXVECTOR3 & Min,  
                                                  const D3DXVECTOR3 & Max ); 
    bool                    AddPolygon          ( CPolygon * pPolygon ); 
    bool                    AddDetailArea       ( TreeDetailArea * pDetailArea ); 
 
    RenderData            * AddRenderData       ( unsigned long nAttribID ); 
    RenderData::Element   * AddRenderDataElement( unsigned long nAttribID ); 
    RenderData            * GetRenderData       ( unsigned long nAttribID ); 
 
 
protected: 
 
     
    // Protected Structures, Enumerators and typedefs for This Class. 
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    typedef std::vector<CPolygon*>          PolygonVector; 
    typedef std::vector<TreeDetailArea*>    DetailAreaVector; 
 
     
    // Protected Variables for This Class 
     
    PolygonVector       m_Polygons;         // Array of leaf’s polygon pointers 
    DetailAreaVector    m_DetailAreas;      // Array of detail area pointers. 
    bool                m_bVisible;         // Is this leaf visible or not? 
    D3DXVECTOR3         m_vecBoundsMin;     // Minimum bounding box extents 
    D3DXVECTOR3         m_vecBoundsMax;     // Maximum bounding box extents. 
 
    RenderData         *m_pRenderData;      // Renderable data information  
    unsigned long       m_nRenderDataCount; // Number of render data items . 
 
    CBaseTree          *m_pTree;            // The tree to which this leaf belongs. 
}; 

 
There are only three new members that have been added to the leaf which are used to store the 
RenderData structures. 
 
RenderData *m_pRenderData 
This array will contain a RenderData structure for each subset of polygons that exist in the leaf. The 
RenderData structure was discussed above and contains the runs of triangles (called elements) stored in 
the leaf bin’s index buffers. If a leaf contains polygons that belong to five different subsets, the leaf will 
store five RenderData structures in this array. We can think of each RenderData structure as being an 
input of visible triangles into a specific leaf bin when the leaf is found to be visible. 
 
unsigned long m_nRenderDataCount 
This member describes the number the RenderData structures in the above array. This implicitly tells us 
the number of subsets contained in this leaf and the number of leaf bins we will have to provide render 
elements for if this leaf is found to be visible.  
 
bool m_bVisible 
This Boolean is set to either true or false by the visibility determination process. If the ProcessVisibility 
method of the spatial tree determines that this leaf is inside the view frustum, it will be set to true; 
otherwise it will be set to false. 
 
Notice that CBaseLeaf also has several new methods which relate to the visibility system. These 
methods will never be called by the application, as they are used by the tree when building and 
preparing the render data and processing tree visibility. We will discuss each of these methods next. 
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IsVisible – CBaseLeaf 

This method is an exception to the rule with respect to the other leaf visibility methods in that it will 
often be used by the application to query the visibility status of a leaf. For example, the application may 
send an AABB down the tree to collect all leaves that fall within that bounding volume. The 
CollectLeavesAABB method would be used to fill a leaf list with these CBaseLeaf pointers. The 
application could then iterate through the returned leaf list and call the IsVisible method to determine if 
that leaf is currently visible and needs to be processed. 
 
The method itself is a simple one line function that returns the value of its m_bVisible member variable. 
It will contain the visibility status of the leaf as calculated in the last visibility pass through the tree (i.e., 
the most recent call to CBaseTree::ProcessVisibility). 
 
bool CBaseLeaf::IsVisible( ) const 
{ 
    return m_bVisible; 
} 

AddRenderData – CBaseLeaf 

The CBaseLeaf::AddRenderData method should never be called by the application. It is only called by 
the spatial tree during the BuildRenderData call when the data is being prepared in its renderable form. 
It is at this stage (just after the tree has been built) that each leaf is processed and the RenderData 
structures are generated and stored in each leaf (one for each subset contained in that leaf).  
 
Since the leaf stores its RenderData structures in an array, this array will have to be grown every time 
we wish to add a new RenderData structure to it during the building of the render data. Remember, at 
the start of the BuildRenderData call, no leaves will contain any RenderData structures. These will need 
to be allocated and added to a leaf’s RenderData array as and when we examine the polygons of that leaf 
and find a polygons in that leaf with an attribute ID which we have not yet generated a RenderData 
structure for. The CBaseTree::BuildRenderData method will call this method when it would like to 
make room in the leaf’s RenderData array for a new structure. The function is passed the attribute ID of 
the subset that this RenderData structure represents in the current leaf. The function will resize the leaf’s 
RenderData structure array and store the attribute ID in the new RenderData structure. A pointer to this 
new element in the array will then be returned to the function so that it can be used to populate the new 
RenderData structure with render elements. 
 
This code is like most we have seen that resizes arrays. It first allocates a new empty array of 
RenderData structures that is large enough to store the number of elements currently in the RenderData 
array plus the one new element we wish to add. We then copy over all the data from the previous array 
into the new array before releasing the old array and assigning the leaf’s pointer to point at this new 
array instead. We also store the passed attribute ID in the newly added RenderData structure so that we 
know which subset set this RenderData structure will store polygons for. 
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CBaseLeaf::RenderData * CBaseLeaf::AddRenderData( unsigned long nAttribID ) 
{ 
    RenderData * pBuffer, * pData; 
 
    // First allocate space for all the element items 
    pBuffer = new RenderData[ m_nRenderDataCount + 1 ]; 
    if ( !pBuffer ) return NULL; 
 
    // Any old data? 
    if ( m_nRenderDataCount > 0 ) 
    { 
        // Copy over the old data, and release the old array 
        memcpy( pBuffer, m_pRenderData, m_nRenderDataCount * sizeof(RenderData) ); 
        delete []m_pRenderData; 
 
    } // End if any old data 
 
    // Get the element we just created 
    pData = &pBuffer[ m_nRenderDataCount ]; 
 
    // Clear the new entry 
    ZeroMemory( pData, sizeof(RenderData) ); 
 
    // Store the attribute ID, it's used to look up the render data later 
    pData->AttributeID = nAttribID; 
 
    // Store the new buffer pointer 
    m_pRenderData = pBuffer; 
    m_nRenderDataCount++; 
 
    // Return the item we created 
    return pData; 
} 

 
Notice that when this new RenderData structure is added to the array it is initially empty. It contains no 
Elements in its pElements array, which means initially it will be linked to no leaf bin and will not 
contain any triangles. The calling function will use the returned pointer to set its leaf bin pointer and add 
Elements to it. 

GetRenderData - CBaseLeaf 

Although the application should never need to call a function such as this, it will be used by the 
BuildRenderData method when it wishes to retrieve a pointer to one of the leaf’s RenderData structures. 
A classic example of this is when the BuildRenderData method is processing the polygons in a given 
leaf. If it finds a polygon that uses subset 5 for example, it will call the GetRenderData method passing 
in an attribute ID of 5. If a valid pointer is returned, then it means we have already processed triangles in 
this leaf for the same subset and as such, its RenderData structure has already been allocated. When this 
is the case, we can just increment the primitive count of the RenderData structure and continue on to the 
next polygon in the leaf. If a NULL pointer is returned, it tells the BuildRenderData method that we are 
currently processing a polygon in a leaf that belongs to a subset we have not yet found in that leaf. This 
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means that there will not currently be a RenderData structure allocated for it. When this happens, the 
BuildRenderData method can call the CBaseLeaf::AddRenderData method to add a new RenderData 
structure to the leaf’s array. The current index start and primitive count of this polygon (and any future 
ones we find in this leaf which share the same subset as this polygon) can then be appropriately stored.  
 
The key for the search is the subset ID (attribute ID) of the RenderData structure you are looking for 
within this leaf. The function loops through the leaf’s array of RenderData structures searching for one 
with a matching attribute ID. If one is found, its pointer is returned. Otherwise, the loop plays out to its 
conclusion and we return NULL. This indicates that no RenderData item currently exists in the leaf 
which matches the passed attribute ID. 
 
CBaseLeaf::RenderData * CBaseLeaf::GetRenderData( unsigned long nAttribID ) 
{ 
    ULONG i; 
 
    // Search for the correct render data item 
    for ( i = 0; i < m_nRenderDataCount; ++i ) 
    { 
        if ( m_pRenderData[i].AttributeID == nAttribID ) return &m_pRenderData[i]; 
    } // Next RenderData Item 
 
    // We didn't find anything 
    return NULL; 
} 

 
You will see many of these methods being used when we cover the CBaseTree::BuildRenderData 
method later in the lesson. 

AddRenderElement - CBaseLeaf 

This method is another method that will never be called by the application but will be used by the 
CBaseTree::BuildRenderData method while constructing the RenderData structures at each leaf. 
 
As discussed previously, each RenderData structure stored in a leaf will represent that leaf’s polygon 
contribution for a single subset. Each RenderData structure is used to describe a block of triangles in the 
associated leaf bin’s index buffer(s). Usually, each RenderData structure will store a single Element 
where each element represents the block of triangles in a given leaf bin’s index buffer. However, if 
when adding the vertices of a given leaf’s subset, the vertex buffer is found to be full, a new vertex 
buffer will be generated and that leaf’s subset will be split over multiple vertex buffers. When this is the 
case, we must store multiple Elements in the RenderData structure so that we can inform the associated 
leaf bin during the visibility pass about which vertex/index buffers store all the triangles for this leaf. For 
example, if this leaf has polygons that belong to subset 10, but they are spread over three different vertex 
buffers, the leaf’s RenderData structure for subset 10 will contain three Elements. Each Element 
describes the vertex buffer and index buffer this run of triangles is stored in and the location and number 
of indices in those buffers. 
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Because we never know before building how many Elements we will need to store in each leaf, we will 
need a way for the BuildRenderData method to add new Elements to a leaf’s RenderData item structure 
as and when we encounter a situation where one has to be added. The AddRenderElement method 
simply resizes the Element array of the leaf’s RenderData structure that is associated with the passed 
subset ID making room at the end for a new Element structure. A pointer to this new Element is returned 
to the calling function so that it can populate the new Element structure with index start and primitive 
count information for a given vertex buffer. We will see how this function is used later. 
 
The method is passed a subset ID as its only parameter. The Leaf’s GetRenderData method is then 
called to retrieve a pointer to the RenderData structure within the leaf that represents triangles assigned 
with the passed attribute. 
 
CBaseLeaf::RenderData::Element * CBaseLeaf::AddRenderDataElement 
                                            ( unsigned long nAttribID ) 
{ 
    RenderData::Element * pBuffer, * pElement; 
    RenderData * pData = GetRenderData( nAttribID ); 
    if ( !pData ) return NULL; 

 
If the GetRenderData method returned NULL, it means the caller is trying to add an Element to the 
array of a RenderData structure which has not yet been created. In this case, the function returns NULL. 
This informs the caller that there currently exists no RenderData structure in the leaf associated with the 
passed subset ID. 
 
At this point we allocate a new Element array (notice it is within the RenderData namespace) large 
enough to store any Elements that may already be in the array plus the new one we wish to add. If there 
are any elements already in the previous array of the RenderData structure, we copy them over into the 
new array we have just allocated. We then delete the old array previously pointed at by the 
RenderData::pElements pointer. 
 
    // First allocate space for all the element items 
    pBuffer = new RenderData::Element[ pData->ElementCount + 1 ]; 
    if ( !pBuffer ) return NULL; 
 
    // Any old data? 
    if ( pData->ElementCount > 0 ) 
    { 
        // Copy over the old data, and release the old array 
        memcpy( pBuffer,  
                pData->pElements,  
                pData->ElementCount * sizeof(RenderData::Element) ); 
 
        delete []pData->pElements; 
 
    } // End if any old data 

 
At this point we store a pointer to the new Element structure we added at the end of the new array so we 
can return the structure to the caller.  
 



 
 
 

40 

    // Get a pointer to the new element 
    pElement = &pBuffer[ pData->ElementCount ]; 

 
The new Element structure at the end of the array is un-initialized, so we clear its memory.  
 
    // Clear the new entry 
    ZeroMemory( pElement, sizeof(RenderData::Element) ); 

 
We then assign the RenderData structure’s pElements pointer to point at our new array (as the old one 
has been deleted) and increase the RenderData::ElementCount member variable to correctly reflect the 
number of elements in the array. Finally, we return the pointer to the new element at the end of this array 
which the caller will then use to populate with meaningful data. 
 
    // Store the new buffer pointer 
    pData->pElements = pBuffer; 
    pData->ElementCount++; 
 
    // Return the element we created 
    return pElement; 
} 

SetVisible - CBaseLeaf 

We have seen a few simplified versions of this function during our initial discussions of the render 
system, but now we will see the real thing. Before we look at the code, you should be aware of a new 
member that has been added to CBaseTree. 
 
We will see later that CBaseTree now has an additional LeafList member variable which is declared as 
shown below: 
 
Excerpt from CBaseTree.h ( CBaseTree class ) 
LeafList                    m_VisibleLeaves; 

 
Remembering that LeafList is a type definition for an STL list that contains ILeaf pointers, the name of 
this member should imply what it is used to store.  
 
When the visibility pass is performed on the tree, a traversal method in the derived class will be used to 
walk through the tree finding visible leaves. At the very start of this visibility traversal (which is 
performed with each frame update), the m_VisibleLeaves list will be emptied. Once a visible leaf has 
been found during traversal, the leaf’s SetVisible method will be called. This function will set the leaf’s 
visibility Boolean to true. It will also loop through every RenderData structure stored in the leaf and add 
each one’s Elements to their associated leaf bins as we discussed earlier. All of this code has been 
covered earlier and is shown below. 
 
void CBaseLeaf::SetVisible( bool bVisible ) 
{ 
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    ULONG                 i, j; 
    RenderData::Element * pElement; 
    CLeafBin            * pLeafBin; 
    RenderData          * pData; 
 
    // Flag this as visible 
    m_bVisible = bVisible; 
 
    // If we're being marked as visible, inform the renderer 
    if ( m_bVisible && m_nRenderDataCount > 0 ) 
    { 
        // Loop through each renderable set in this leaf. 
        for ( i = 0; i < m_nRenderDataCount; ++i ) 
        { 
            pData    = &m_pRenderData[i]; 
            pLeafBin = pData->pLeafBin; 
 
            // Loop through each element to render 
            for ( j = 0; j < pData->ElementCount; ++j ) 
            { 
                pElement = &pData->pElements[j]; 
                if ( pElement->PrimitiveCount == 0 ) continue; 
 
                // Add this to the leaf bin 
                pLeafBin->AddVisibleData( pElement->VBIndex, 
                                          pElement->IndexStart,  
                                          pElement->PrimitiveCount ); 
            } // Next Element 
 
        } // Next RenderData Item 
 
    } //  End if visible 

 
However, the final part of this function is new. If the visibility status of the tree is set to true, the leaf 
adds its own pointer to the tree’s m_VisibleLeaves list using a new method of CBaseTree called 
AddVisibleLeaf. This is a simple method which just wraps the adding of the passed leaf pointer to the 
tree’s visible leaf list. The remainder of this function is shown below. 
 
    // Update tree object's if we're visible 
    if ( m_bVisible ) 
    { 
        // // Add this leaf to the tree's visible leaf list 
        m_pTree->AddVisibleLeaf( this ); 
   
    } // End if we are visible 
} 

 
After the visibility process has been performed for a given frame update, and the SetVisible method has 
been called for all visible leaves, the spatial tree’s m_VisibleLeaves list will contain pointers for all 
leaves which are currently visible. The application can fetch this list by calling the spatial tree’s 
GetVisibleLeaves method.  
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It is very useful for the application to be able to ask the tree for a list of currently visible leaves. For 
example, the application can loop through these leaves and only bother rendering the dynamic objects 
contained in those leaves. Any dynamic object which is stored in non-visible leaves will simply be 
ignored by the rendering loop. After we have discussed the rendering system for the static geometry of 
the spatial tree, we will discuss how the application can assign its own dynamic objects to leaves within 
the spatial tree and update their positions as they moves around the world. 
 
We have now discussed all the changes to CBaseLeaf that have been added to facilitate the needs of the 
rendering system. Most of the methods that we have added are utility methods that will be used by the 
tree’s BuildRenderData method to add and retrieve RenderData structures and Element structures to the 
leaves as the data is being added to leaf bins.  

15.3.3 Leaf Bins 

When we cover the rendering enhancements to CBaseTree in a moment, we shall see that one of its new 
members is an array of CLeafBin structures. A leaf bin is an object that stores the indices of all triangles 
in the tree that use a specific subset. If multiple vertex buffers are being used by the tree to contain the 
entire scene, and the subset for a specific leaf bin has geometry spread over those multiple buffers, the 
leaf bin will contain an index buffer for each vertex buffer being used by that subset. The number of 
index buffers being used is not necessarily equal to the number of vertex buffers being used by the tree. 
If the tree’s static geometry is contained in five vertex buffers, but subset 6 (for example) had triangles 
contained in only two of those buffers, the leaf bin for subset 6 will contain only two index buffers. 
Although the leaf bin need not necessarily use a separate index buffer for each vertex buffer containing 
triangles of its associated subset, it makes the system cleaner and easier to understand. We know for 
example that if a leaf bin has triangles in vertex buffers 1 and 3, when the leaf bin is rendered, we will 
need to set vertex buffer 1 first and its associated index buffer and execute the render batches stored for 
that buffer combination. Then we will then have to set the second index/vertex buffer pair and execute 
the render batches relative to that buffer set. 
 
In our earlier discussions, we also discovered that a leaf bin is not just a place where all the static index 
buffers used by a given subset of polygons reside; it also has methods and structures used during the 
visibility pass to construct a list of render batches for each buffer combination. These render batches 
describe which triangles in that leaf bin are currently considered visible by the system and should be 
rendered when the application wishes to render that subset of the tree. 
 
Each render batch structure represents a block of continuous visible triangles in one of the leaf bin’s 
index buffers, and as such describes a block of triangles in that leaf bin that can be rendered with a 
single draw call. Because the currently visible triangles stored in a leaf bin may not all be arranged in 
consecutive order in the leaf bin, many render batches will typically be created representing all the 
visible sections of the index buffer that need to be rendered. Furthermore, because a leaf bin may have to 
manage multiple index buffers due to the fact that its triangle data is spread over multiple vertex buffers, 
a render batch list will need to be constructed for each buffer combination. The render batch lists are 
destroyed and rebuilt for each leaf bin every time a visibility pass of the tree is performed. We can just 
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think of a render batch list as simply being a list of drawing instructions for a given buffer pair inside the 
leaf bin. 
 
CBaseTree will now manage a list (actually an STL map, but more on this in a moment) of leaf bins. 
The number of leaf bins allocated for the tree will be equal to the number of subsets used by the static 
polygon data stored in the tree. That is, if the polygon data in the tree belongs to a combination of 15 
subsets, the BuildRenderData method will create 15 leaf bins, one for each subset. The BuildRenderData 
method will then proceed to fill those leaf bins with the indices of the triangles that belong in each leaf 
bin. 
 
We have already seen the CLeafBin::AddVisibleData method being used by the CBaseLeaf::SetVisible 
method and we will see many of its other methods being used later during the building of the render 
data. For now though, we will examine the CLeafBin object, look at the structures and support objects it 
uses, the methods it exposes and the code to those methods.   

15.3.4 The RenderBatch Structure 

During the visibility pass, the leaf bin will build a list of RenderBatch structures for each buffer 
combination used by the leaf bin’s triangles. Each RenderBatch structure simply describes a block of 
triangles in one of the leaf bin’s index buffers that can be rendered with a single draw call. 
 
    struct RenderBatch 
    { 
        unsigned long IndexStart; 
        unsigned long PrimitiveCount; 
    }; 

 
There will be a RenderBatch list constructed during the visibility pass for each index buffer in use by the 
leaf bin.  
 
unsigned long IndexStart 
This value will contain the position in the associated index buffer of the first index in this run of visible 
triangles. 
 
unsigned long PrimtiveCount 
This describes how many triangles starting at IndexStart are contained in this visible continuous section 
of the index buffer. 
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15.3.5 CLeafBinData – The Source Code 

A CLeafBin object contains an array of CLeafBinData structures. Each CLeafBinData structure houses a 
vertex/index buffer combination, information about those buffers, and the RenderBatch list for that 
vertex and index buffer pair. Rendering a leaf bin involves looping through its CLeafBinData array and 
setting the vertex and index buffers stored in the current CLeafBinData element being processed before 
looping through the CLeafBinData’s render batch list calling DrawIndexedPrimitive for each one.  
 
If the spatial tree is using five vertex buffers, every leaf bin will contain an array of five CLeafBinData 
objects as this is the maximum number of vertex/index buffers that could ever be needed by a leaf bin. 
However, not all the elements in the CLeafBinData array are necessarily used by the leaf bin. If the leaf 
bin represents geometry that is spread over only two of the five vertex buffers in use by the tree, that leaf 
bin will only use the first two elements in its CLeafBinData array. Each element in that array would 
contain the index buffer and vertex buffer to set on the device in order to render the batches for that 
buffer combination.  
 
The CLeafBinData class is really just a structure with a constructor that initializes its members to zero. 
Although it has a fair number of members, they really just describe a vertex buffer and an index buffer 
and information about those buffers (e.g., the amount of data that is contained in them).  
 
This object is declared in CBaseTree.h and is shown below followed by a description of its members. 
 
class CLeafBinData 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
    virtual ~CLeafBinData( ); 
             CLeafBinData( ); 
 
    // Public Variables for This Class. 
    LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer;    
    LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer;      
                                             
    unsigned long           m_nFaceCount;        
    unsigned long           m_nVertexCount;      
    unsigned char           m_nVBIndex;          
    bool                    m_b32BitIndices;    
    unsigned long           m_nLastIndexStart;  
    unsigned long           m_nLastPrimitiveCount; 
    RenderBatch            *m_pRenderBatches;      
    unsigned long           m_nBatchCount;         
}; 

 
 
LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer 
This member stores a pointer to the tree’s vertex buffer for which this object is applicable. The tree is 
responsible for allocating and releasing this vertex buffer; this is just a pointer to it so that we can easily 
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bind it to the device before rendering the RenderBatch instructions stored here. The vertex buffer is not 
specific to any one leaf bin and may be shared by many leaf bins. All leaf bins that have geometry in one 
of the tree vertex buffers will all have a CLeafBinData structure that has a pointer to that buffer.   
 
LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer      
This is a pointer to an index buffer that contains all the triangles in the above vertex buffer that use the 
subset associated with the parent leaf bin. This index buffer is not shared by any other leaf bins or even 
any other CLeafBinData structures within the same leaf bin. This is a static index buffer that is built at 
leaf bin creation time and it contains all geometry (not just visible geometry) that uses the applicable 
subset of the leaf bin. 
                                             
unsigned long           m_nFaceCount       
Describes how many triangles are in the above index buffer. 
 
unsigned long           m_nVertexCount      
Describes how many vertices are contained in the vertex buffer pointed to by the first member of this 
structure. 
 
unsigned char           m_nVBIndex          
This member describes the vertex buffer pointed to by the first member of this structure as a numerical 
index in the spatial tree’s vertex buffer array. For example, if the spatial tree has stored its geometry in 
five vertex buffers, but this CLeafBinData structure was representing triangle data stored in the second 
vertex buffer, this value would be set to 1 (the index of the second vertex buffer in the spatial tree’s 
vertex buffer array). 
 
bool                          m_b32BitIndices    
This member is set to true or false when building the leaf bins to determine whether the index buffer 
stored here uses 32-bit indices (rather than 16-bit indices). This is certainly useful information to have if 
we ever wish to lock the index buffer and access the data.  
 
unsigned long           m_nLastIndexStart  
We saw this member being used when we looked at a simplified version of the leaf bin’s 
AddVisibleData method. It records the first index in a batch of adjacent triangles currently being 
collected. This value is first set when the AddVisibleData method is called and must start collecting for 
a new render batch. Every time the function is called after that, if the passed run of adjacent triangles 
follows on from the ones added to the batch in the previous function call, this value remains unaltered. 
When we do finally get passed some render data which does not form a continuous block with all the 
triangles we have collected so far (starting at m_nLastIndexStart), we have collected all we can for that 
batch and the triangles are committed to a new RenderBatch structure. m_nLastIndexStart is then set to 
the location of the new run of triangles we are starting to collect. 
 
In short, this value is used as temporary storage during the visibility pass by the leaf bin to record the 
start of the current batch of adjacent indices collected so far. 
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unsigned long           m_nLastPrimitiveCount 
This member is also used as temporary storage during the visibility pass by the 
CLeafBin::AddVisibleData method. It is used to record, with each function call, the number of adjacent 
triangles we have collected so far for the current batch being compiled. We discussed this process in 
some detail earlier when we examined the construction of the RenderBatch lists. 
 
RenderBatch            *m_pRenderBatches      
This member is an array of RenderBatch structures that will be flushed and filled every time a visibility 
pass is executed on the tree. This array is allocated (when the CLeafBinData item is first created) to be 
large enough to hold the maximum number of render batches that we could ever need to create. 
Although this admittedly wastes some memory, it does allow us to forego any array resizing overhead 
when building and storing the render batches. As this should be a critically fast process, we want to do 
everything we can to eliminate such overhead. 
 
This array describes a list of draw instructions for the vertex and index buffers referenced by this 
structure. Each element in this array represents one DrawIndexedPrimitive call using the above vertex 
and index buffers.  
 
unsigned long           m_nBatchCount         
The member stores the number of valid RenderBatch structures contained in the above array. 
Remember, the size of the above array never changes, as discussed above. It is allocated once when the 
leaf bin first creates this CLeafBinData item and is made large enough to contain the maximum number 
of render batches that could possibly be created (more on this in a moment). Therefore, this member 
really describes the number of elements in the above array that are currently considered valid with 
respect to the last visibility pass. Whenever a new visibility pass is performed, this member is initially 
set to zero and then incremented every time we add new RenderBatch information. Therefore, this value 
describes not only the number of batches in the above array that will need to be executed to draw all the 
visible data in the associated index buffer, but it will also describe the number of DrawIndexedPrimitive 
calls that will need to be performed to render that data.  

15.3.6 CLeafBin – The Source Code 

The object that binds this whole system together is CLeafBin. This class has very few member variables 
as it is really just a wrapper around an array of CLeafBinData structures for a given subset ID. It also 
has methods that allow you to retrieve the subset/attribute ID of the leaf bin, add and retrieve 
CLeafBinData structures from its array, and a method that renders the bin. The leaf bin also has the now 
familiar AddVisibleData method that is called by the CBaseLeaf::SetVisible method to add a leaf’s 
polygon contribution to a render batch. The leaf bins themselves will be created by CBaseTree during 
the BuildRenderData method.  
 
Below we show the class declaration for CLeafBin which is contained in CBaseTree.h. This is followed 
by an explanation of its member variables. 
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class CLeafBin 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
    virtual ~CLeafBin(); 
    CLeafBin( unsigned long nAttribID, unsigned long nLeafCount ); 
 
    // Public Functions for This Class. 
    unsigned long   GetAttributeID      ( ) const; 
    CLeafBinData  * GetBinData          ( unsigned long Index ) const; 
    bool            AddLeafBinData      ( CLeafBinData * pData ); 
    void            AddVisibleData      ( unsigned char VBIndex,  
                                          unsigned long IndexStart,  
                                          unsigned long PrimitiveCount ); 
    void            Render              ( LPDIRECT3DDEVICE9 pDevice ); 
 
private: 
     
    // Private Variables for This Class. 
    unsigned long  m_nAttribID;     // The attribute ID of the faces stored here 
    unsigned long  m_nLeafCount;    // Total number of leaves in the tree 
    CLeafBinData **m_ppBinData;     // An array containing all the information 
                                    // we need to render all the data in this bin 
                                    // for each vertex bubber (one per primary VB). 
    unsigned char  m_nVBCount;      // Number of vertex buffers in use by system 
}; 

 
unsigned long m_nAttribID 
This value of this member will be passed into the constructor when the leaf bin is first created by the 
tree. It contains the subset ID assigned to this leaf bin. That is, all the triangles in the tree that have a 
matching attribute ID will have their indices stored in this leaf bin. 
 
unsigned long m_nLeafCount 
The value of this member is also passed into the constructor when the leaf bin is first created by the tree. 
It contains the number of leaves in the tree. You will see why we need this value in a moment when we 
look at the remaining code. 
 
CLeafBinData **m_ppBinData      
This is a pointer to an array of CLeafBinData pointers. The size of this array will be equal to the number 
of vertex buffers being used by the tree. That is, it will hold enough pointers in each leaf bin for the 
possibility that the leaf bin might have triangles contained in every one of the vertex buffers and would 
therefore need to represent these triangles with a CLeafBinData structure for each. 
 
Of course, this does not mean that we always allocate a CLeafBinData object for every vertex buffer for 
each leaf bin, since a given leaf bin might only use two of the vertex buffers and would therefore only 
need to have two CLeafBinData structures allocated for it. If a leaf bin does not have geometry in one or 
more of the tree’s vertex buffers, the elements in this array that correspond to that vertex buffer will 
simply be set to NULL. For example, if the tree uses five vertex buffers to store its geometry, the 
m_ppBinData array in each leaf bin would be allocated large enough to store five pointers. However, if 
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a leaf bin only has geometry in the first and third vertex buffer, it would have only two CLeafBinData 
objects allocated for it and have their pointers stored in elements [0] and [2] in this array. The rest of the 
elements would be set to NULL for the other vertex buffers. 
 
unsigned char  m_nVBCount       
This value describes the number of vertex buffers in use by the parent tree. This is useful because it also 
describes the size of the above array. We need this value so that when we render the leaf bin, we know 
how many element we have to loop through in the above array testing for valid pointers. 
 
 
Let us now take a look at the methods for this class, which are for the most part, all rather small and 
straightforward. We will start with the constructor. 

Constructor - CLeafBin 

The constructor is called by the tree during the generation of its renderable data. The application should 
never want to allocate a leaf bin. The constructor takes two parameters; the attribute ID of the subset this 
leaf bin will contain indices for, and the total leaf count of the tree for which the leaf bin is being 
created. These are stored in the corresponding member variables. 
 
CLeafBin::CLeafBin( unsigned long nAttribID, unsigned long LeafCount ) 
{ 
    // Store passed values 
    m_nAttribID  = nAttribID; 
    m_nLeafCount = LeafCount; 
    m_ppBinData  = NULL; 
    m_nVBCount   = 0; 
} 

 
Notice that when the leaf bin is first created, the CLeafBinData pointer array is set to NULL and the 
vertex buffer count member is set to zero. The CLeafBinData structures will be added to the leaf bin (via 
the CLeafBin::AddLeafBinData method) once the leaf bin has been constructed. 

GetAttributeID – CLeafBin 

This is a simple accessor function that allows the caller to query the attribute ID of the leaf bin to 
determine which subset of polygons it contains.  
 
unsigned long CLeafBin::GetAttributeID( ) const 
{ 
    return m_nAttribID; 
} 
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AddLeafBinData - CLeafBin 

This method is called by the BuildRenderData method when it wishes to add a CLeafBinData object to 
the leaf bin’s internal array. You will see in a moment when we discuss the 
CBaseTree::BuildRenderData method that it essentially loops through each leaf and then through each 
polygon in those leaves to build an array of vertices and an array of indices into those vertices for each 
leaf bin. Once the number of vertices we have collected exceeds the number supported in the single 
vertex buffer by the hardware, we will create the vertex buffer and fill it with the vertices we have 
collected so far. We will then create index buffers for each leaf bin that index into that vertex buffer. It is 
at this point that we will inform each leaf bin that we would like to add a new CLeafBinData item to its 
array which we will populate with the new vertex buffer and index buffer pointers. 
 
The method itself is fairly routine. We pass in a pointer to a pre-allocated CLeafBinData object and the 
function will resize the leaf bin’s array to make room for this pointer at the end.  The first part of the 
function is like every other array resizing method we have discussed, so this should need no explanation. 
 
bool CLeafBin::AddLeafBinData( CLeafBinData * pData ) 
{ 
    CLeafBinData ** ppBuffer; 
 
    // First allocate space for all the data items 
    ppBuffer = new CLeafBinData*[ m_nVBCount + 1 ]; 
    if ( !ppBuffer ) return false; 
 
    // Any old data? 
    if ( m_nVBCount > 0 ) 
    { 
        // Copy over the old data, and release the old array 
        memcpy( ppBuffer, m_ppBinData, m_nVBCount * sizeof(CLeafBinData*) ); 
        delete []m_ppBinData; 
 
    } // End if any old data 
 
    // Set the new entry 
    ppBuffer[ m_nVBCount ] = pData; 
 
    // Store the new buffer pointer 
    m_ppBinData = ppBuffer; 
    m_nVBCount++; 

 
At this point we have resized the array and added the passed CLeafBinData pointer to the end of the 
array. However, what this function will also be responsible for is allocating the passed CLeafBinData 
structure’s RenderBatch array. You will recall from our coverage of the CLeafBinData structure that the 
RenderBatch array will be allocated just once when the CLeafBinData structure is first added to the leaf 
bin. It will be made large enough to store the maximum possible number of render batches that could 
ever be generated for a leaf bin. This way, we will not have to suffer array resizes and flushes as the 
number of visible leaves fluctuates with each visibility update. 
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Because the indices of our triangles will be added to the leaf bin index buffers in tree traversal order to 
help minimize the number of render batches needed, the worst case is that our queue will contain 
batches where one leaf is visible and the next is invisible, repeating over the entire set. In such a 
scenario we would need to create a RenderBatch structure for every visible leaf, which in this scenario 
would half of them. This means that the highest number of batches we will ever need to store in a leaf 
bin is simply the total number of leaves divided by two. However, as we are performing a division using 
integer math, we will add one to the total leaf count prior to performing the division. This is to ensure 
that the result is rounding up and not down. We want 5/3=1.666 to be rounded up to 2 not down to 1. 
This will make sure the render batch array in each CLeafBinData structure is large enough to cope with 
the worst case visibility scenario. 
 
Here is the remaining code that allocates the RenderBatch array for the passed CLeafBinData structure 
before returning. 
 
    // Note: We add '1' to ensure that we don't have any rounding issues. 
    pData->m_pRenderBatches = new CLeafBinData::RenderBatch[(m_nLeafCount+1) / 2 ]; 
 
    if ( !pData->m_pRenderBatches ) return false; 
 
    // Success! 
    return true; 
} 

GetBinData - CLeafBin 

This method is a simple function that allows the caller to retrieve one of the leaf bin’s CLeafBinData 
pointers. The caller simply passes the index of the element in the array it would like to retrieve the 
CLeafBinData item for. This may be NULL if the leaf bin does not contain data for the tree’s vertex 
buffer with the same index.  
 
This function essentially allows the tree to say to the leaf bin, “Give me your index data and render 
batches for a specific vertex buffer index”. 
 
CLeafBinData * CLeafBin::GetBinData( unsigned long nIndex ) const 
{ 
    // Validate parameters 
    if ( nIndex >= m_nVBCount ) return NULL; 
 
    // Retrieve the item 
    return m_ppBinData[ nIndex ]; 
} 
 

As you can see, as long as the passed index is within the bounds of the array (i.e., less than 
m_nVBCount), the pointer contained in the passed index of the CLeafBinData array is returned. 
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AddVisibleData – CLeafBin 

This method should be familiar since we looked at various versions of this type of function as a means 
to initially understand the render batch system.  
 
We saw earlier that it is called from the CBaseLeaf::SetVisible method. When a leaf is deemed to be 
visible during the update pass, a loop is made through the RenderData items stored in that leaf (one 
exists for each subset in the leaf). An inner loop was then used to iterate through the (possible) multiple 
Elements stored in that RenderData item. There was an Element in RenderData structure for each vertex 
buffer that contains geometry from that leaf for the given subset. Each Element describes a run of 
triangles in that leaf that use the subset along with the index of the vertex buffer in which the run of 
triangles is contained. The AddVisibleData method of CLeafBin is then called and passed the Element 
information: the vertex buffer index in which the run is stored, the start index in the leaf bin’s index 
buffer associated with that vertex buffer, and the number of triangles in the run. 
 
void CLeafBin::AddVisibleData( unsigned char VBIndex,  
                               unsigned long IndexStart,  
                               unsigned long PrimitiveCount ) 
{ 

     
The vertex buffer index of the render element information passed in also describes the index of the 
CLeafBinData structure in the leaf bin’s array of the index buffer and render batch list associated with 
this vertex buffer. Therefore, we fetch the pointer to the relevant CLeafBinData structure from the bin’s 
array. 
 
    CLeafBinData * pData = m_ppBinData[ VBIndex ]; 
    if ( !pData ) return; 

 
We then fetch the values of the CLeafBinData item’s m_nLastIndexStart and m_nLastPrimitiveCount 
members into local variables. m_nLastIndexStart will currently contain the first index of the first 
triangle in the current render batch we are trying to build for this index buffer. The 
m_nLastPrimitiveCount member will contain the number of adjacent triangles we have been able to 
pack into the batch so far. Hopefully, the range of triangles passed in will follow on exactly where 
m_nLastPrimitiveCount ends in the index buffer, allowing us to add the new triangle range to the 
current batch being compiled.   
 
    ULONG LastIndexStart  = pData->m_nLastIndexStart,  
          LastPrimitiveCount  = pData->m_nLastPrimitiveCount; 

 
If LastPrimitiveCount equals zero, it means that we have not yet collected any triangles for the current 
batch and therefore the triangle range passed in should be used to start the beginning of a new render 
batch. When this is the case, we simply copy the passed IndexStart and PrimitiveCount into the 
LastIndexStart and LastPrimitiveCount variables. Hopefully, the next time this function is called for 
another visible leaf, we can add the passed triangle range to the end of this batch we have just started. 
 
    // Build up batch lists 
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    if ( LastPrimitiveCount == 0 ) 
    { 
        // We don't have any data yet so just store initial values 
        LastIndexStart     = IndexStart; 
        LastPrimitiveCount = PrimitiveCount; 
 
    } // End if no data 

 
If this is not the case then we must be currently in the middle of compiling a batch of adjacent triangles 
for the CLeafBinData’s index buffer. Therefore, we test to see if the start index passed into the function 
follows on immediately after the current batch we are compiling ends 
(LastIndexStart+(LastPrimitiveCount*3)). If it does, then the passed triangles continue the adjacent run 
of triangles we have already recorded and we can just add them to the current batch by increasing the 
primitive count to compensate for the number of primitives passed into the function. 
 
    else if ( IndexStart == (LastIndexStart + (LastPrimitiveCount * 3)) ) 
    { 
        // Just grow the primitive count 
        LastPrimitiveCount += PrimitiveCount; 
 
    } // End if consecutive primitives 

 
If none of the above cases are true then it means that we are in the middle of compiling a render batch 
but the triangle(s) we have just been passed do not follow on continuously from the current batch we are 
compiling. This essentially ends the current batch we are compiling and the new triangles we have just 
been passed will be used to start a new batch collection process.  
 
   else 
   { 
   // Store any previous data for rendering 
   pData->m_pRenderBatches[pData->m_nBatchCount].IndexStart= LastIndexStart; 
   pData->m_pRenderBatches[pData->m_nBatchCount].PrimitiveCount=LastPrimitiveCount; 
   pData->m_nBatchCount++; 
 
   // Start the new list 
   LastIndexStart     = IndexStart; 
   LastPrimitiveCount = PrimitiveCount; 
 
   } // End if new batch 

 
As you can see, because LastIndexStart and LastPrimitiveCount describe the block of adjacent triangles 
we managed to collect until this function was called, we store them in the CLeafBinData object’s render 
batch array and increase its render batch count. This render batch is now finished and we need to start a 
new collection process. We do this by assigning the start index and primitive count of the range of 
triangles passed in to the LastIndexStart and LastPrimitiveCount local variables which will be used from 
this point on. Finally we store the local LastIndexStart and LastPrimitiveCount values in the 
CLeafBinData member variables so that they are available the next time this method is called. 
 
    // Store the updated values 
    pData->m_nLastIndexStart     = LastIndexStart; 
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    pData->m_nLastPrimitiveCount = LastPrimitiveCount; 
} 

Render - CLeafBin 

The CLeafBin::Render method is called by the tree to render all the triangles contained in the leaf bin. 
This method will not typically be called by the application, as it will use the CBaseTree::DrawSubset 
method for each subset that it wishes to render instead. DrawSubset simply issues the render call to the 
leaf bin with the matching attribute.  
 
The Render function is shown below. It essentially loops through each pointer in the leaf bin’s 
CLeafBinData array to process and render the data contained in each. 
 
void CLeafBin::Render( LPDIRECT3DDEVICE9 pDevice ) 
{ 
    ULONG i, j; 
 
    // Loop through each vertex buffer 
    for ( i = 0; i < m_nVBCount; ++i ) 
    { 
        CLeafBinData * pData = m_ppBinData[ i ]; 
        if ( !pData ) continue; 

 
As you can see in the above code, the current iteration of the loop is skipped if this leaf bin does not 
have a CLeafBinData item for a given vertex buffer.  
 
The next function call requires some explanation. You will recall that in the AddVisibleData method we 
used the m_nLastIndexStart and m_nLastPrimitiveCount members of the CLeafBinData item to record 
the start and triangle count of the batch of triangles being compiled. Only when we are passed triangles 
that do not continue the current batch is the batch data copied into a RenderBatch data structure. This 
means that at the end of the visibility process, we may be in the middle of compiling a batch of triangles 
that have not yet been committed to the render batch list. For example, consider the last leaf processed 
for a given subset. Even if it starts a branch new batch, because no further triangles are passed, the 
AddVisibleData function is never passed triangles that break the batch, and therefore it is never aware 
that the batch ever ended. This means that the m_nLastIndexStart and m_nLastPrimitiveCount members 
of each CLeafBinData structure describe their final batches, but they are not yet committed to a render 
batch structure. Therefore, before we draw the CLeafBinData render batches, we must call 
AddVisibleData for this item one last time, passing in both an index start and primitive count of zero.  
 
        // Commit any last piece of data to the render queue and reset "Last" 
        // values back to 0 
        AddVisibleData( (unsigned char)i, 0, 0 ); 

 
As the first parameter, we pass the current vertex buffer index we are processing which describes (to the 
AddVisibleData method) which CLeafBinData object we are adding triangles for. Also, because we pass 
0 in as the IndexStart parameter, which could not possibly continue any batch that has been compiled, 
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the function will recognize that the last batch has ended and will store it in the CLeafBinData object’s 
render batch list. Finally, this will cause the function to start a new batch to be compiled with an index 
start and primitive count set to the values passed in. Since we pass zero for both of these values, this 
essentially resets the CLeafBinData’s m_nLastIndexStart and m_nLastPrimitiveCount members back to 
zero for the next visibility pass.  
 
At this point, we have the CLeafBinData pointer, so we send its vertex and index buffers to the device 
and set the FVF for the vertex type being used. 
 
        // Set the stream sources to the device 
        pDevice->SetStreamSource( 0, pData->m_pVertexBuffer, 0, sizeof(CVertex) ); 
        pDevice->SetIndices( pData->m_pIndexBuffer ); 
 
        // Set the FVF 
        pDevice->SetFVF( VERTEX_FVF ); 

 
Finally, we loop through every RenderBatch structure stored in the CLeafBinData’s render batch list and 
render the triangles described by each. 
 
        // Render the leaves 
        for ( j = 0; j < pData->m_nBatchCount; ++j ) 
        { 
            CLeafBinData::RenderBatch & Batch = pData->m_pRenderBatches[j]; 
 
            // Render any data 
            pDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST,  
                                           0,  
                                           0,  
                                           pData->m_nVertexCount,  
                                           Batch.IndexStart,  
                                           Batch.PrimitiveCount ); 
        } // Next element 
    } // Next Vertex Buffer 
} 

 
We have now covered all of the rendering code for CBaseLeaf, CLeafBin, and CLeafBinData and you 
should have a fairly good understanding of how these components work. We will now cover the new 
rendering code in the top level object (CBaseTree) that brings all of these components together under 
one system.  

15.4 CBaseTree – Adding Rendering Support 

Adding the code that actually performs the visibility pass and renders the data in the tree is relatively 
trivial. The CBaseTree methods that perform these tasks will be small and simple as they just pass the 
requests on to the leaf bins. As we have seen, it is the leaf bins that contain the triangles and have 
knowledge of how to render them.  
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The majority of work we will have to do in CBaseTree is the implementation of the BuildRenderData 
method. As you will soon see, this method is responsible for building all the vertex buffers used by the 
tree, allocating the leaf bins for each attribute used by the tree, building the index buffers for each leaf 
bin, and a host of other tasks. Most of our discussion of CBaseTree will be spent describing how this 
function works. If you have already looked at the source code to this function, you might have noted that 
it seems a little intimidating. Do not worry though; we will break this function down (and the functions 
it calls) piece by piece so that we understand everything that is going on when building the render data.  

15.4.1 CBaseTree – The Source Code 

Surprisingly few methods and members have to be added to CBaseTree in order to implement the 
rendering system. The upgraded class declaration is shown below. The new methods and members that 
pertain to the rendering system are highlighted in bold. This declaration will be followed by a detailed 
description of the new members and an examination of each new method. 
 
class CBaseTree : public ISpatialTree 
{ 
public: 
     
    // Friend list for CBaseTree 
    friend void CBaseLeaf::SetVisible( bool bVisible ); 
 
    // Constructors & Destructors for This Class. 
    virtual ~CBaseTree( ); 
             CBaseTree( LPDIRECT3DDEVICE9 pDevice, bool bHardwareTnL ); 
 
     
    // Public Virtual Functions for This Class (from base). 
    virtual bool            AddPolygon        ( CPolygon * pPolygon ); 
    virtual bool            AddDetailArea     ( const TreeDetailArea &DetailArea ); 
 
    virtual bool            Repair              ( ); 
 
    virtual PolygonList    &GetPolygonList      ( ); 
    virtual DetailAreaList &GetDetailAreaList   ( ); 
    virtual LeafList       &GetLeafList         ( ); 
    virtual LeafList       &GetVisibleLeafList  ( ); 
 
    virtual void            DrawSubset          ( unsigned long nAttribID ); 
    virtual void            ProcessVisibility   ( CCamera & Camera ); 
     
 
    // Public Functions for This Class 
    CLeafBin *              GetLeafBin          ( unsigned long nAttribID ); 
    bool                    AddLeaf             ( CBaseLeaf * pLeaf ); 
    bool                    AddVisibleLeaf      ( CBaseLeaf * pLeaf ); 
    bool                    BuildRenderData     ( ); 
 
protected: 
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    // STL Typedefs 
    typedef std::map<ULONG,CLeafBin*>       LeafBinMap; 
     
    // Protected Functions for This Class. 
public: 
    void   DrawBoundingBox     ( const D3DXVECTOR3 & Min,  
                                 const D3DXVECTOR3 & Max,  
                                       ULONG Color,  
                                       bool bZEnable = false ); 
 
protected: 
    void   DrawScreenTint      ( ULONG Color ); 
    void                    CalculatePolyBounds ( ); 
 
    void                    RepairTJunctions    ( CPolygon * pPoly1,  
                                                  CPolygon * pPoly2 ); 
 
    ULONG                   WeldBuffers ( ULONG VertexCount,  
                                          CVertex * pVertices, 
                                          std::map<ULONG,ULONG*> & BinIndexData, 
                                          std::map<ULONG,ULONG> & BinSizes,  
                                          ULONG * pFirstVertex = NULL,  
                                          ULONG * pPreviousVertex = NULL ); 
 
    bool                    CommitBuffers( ULONG VertexCount,  
                                           CVertex * pVertices, 
                                           std::map<ULONG,ULONG*> & BinIndexData, 
                                           std::map<ULONG,ULONG> & BinSizes,  
                                           bool b32BitIndices ); 
 
    bool                    PostBuild           (  ); 
 
     
    // Protected Variables for This Class. 
    LPDIRECT3DDEVICE9           m_pD3DDevice;       
    LPDIRECT3DVERTEXBUFFER9    *m_ppVertexBuffer;   
    unsigned char               m_nVBCount;         
    bool                        m_bHardwareTnL;     
 
    LeafBinMap                  m_LeafBins;         
     
    LeafList                    m_Leaves;           
    PolygonList                 m_Polygons;         
    DetailAreaList              m_DetailAreas;      
 
    LeafList                    m_VisibleLeaves;    
}; 

 
Let us discuss a new type definition we have in this namespace: 
 
// STL Typedefs 
   typedef std::map<ULONG,CLeafBin*>  LeafBinMap; 
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We will store the tree’s leaf bins in an STL map. You will recall from our C++ programming course 
(Module II) that an STL map is basically a hash table that allows us to store key/value pairs in a manner 
that makes it very efficient to look up that value by specifying the key. We type define LeafBinMap to 
be an STL map that stores a ULONG as the key and a CLeafBin pointer as the value paired with that 
key. The key will by the attribute ID of the leaf bin pointed to by the value assigned to that key. 
Therefore, the tree would be able to very efficiently fetch the leaf bin for subset 6’s triangles (for 
example) by doing something like this: 
 
CLeafBin = LeafBinMap [ 6 ]; 
 
This looks like a simple array look up, so why do we not just use an array to store the leaf bin pointers 
where the attribute ID is the index into the array where the associated leaf bin is stored? 
 
What we must remember is that our scene uses global attribute IDs and that the static geometry 
compiled in the tree may only use some of these. For example, assume that after loading our scene and 
all of our dynamic objects that the scene has created 120 attributes. Imagine however, that the static 
polygons in the spatial tree only use subsets 6, 40, and 120 out of the 120 possible scene attributes. The 
leaf bin array would need to be 120 elements in size when only 3 of the elements would contain valid 
pointers to leaf bins. That is a waste of memory. Alternatively, the map would only have three rows in 
its hash table. Of course, you could use an array that is the exact size of the number of attributes used by 
the tree but that would mean the array indices no longer match the attribute IDs of the leaf bins stored 
there. In this case, whenever you need to fetch the leaf bin pointer for a given subset, you would have to 
loop through the array searching for the leaf bin with the attribute ID you are looking for. This will 
hamper performance when the tree contains a lot of attributes (which would have to be searched through 
every time the DrawSubset method is called). This is especially true if the tree data requires multiple 
render passes. A map is definitely a better choice of data structure here since it conserves memory and 
performs efficient value lookups. 
 
Let is now take a look at the new member variables in CBaseTree that have been added to support the 
render system. 
 
LPDIRECT3DDEVICE9           m_pD3DDevice       
This pointer is passed into the constructor of CBaseTree (called by the constructor of the derived 
classes) and represents the device which the tree will use to render. If this is set to NULL, the 
BuildRenderData method will perform no action and will return immediately. This is very useful if you 
intend to use the tree only for collision queries. Passing NULL in as this parameter to the constructor of 
a derived class allows you to prevent the render system from being activated and avoid the unnecessary 
memory consumption. No vertex buffers, index buffers, or leaf bins will be generated in this instance. 
By setting this to point at a valid device, we inform CBaseTree that we intend to use its render system. 
 
LPDIRECT3DVERTEXBUFFER9    *m_ppVertexBuffer   
This will be set to NULL until CBaseTree::BuildRenderData executes. At the end of the renderable data 
building process is will point to an array of vertex buffer pointers. That is, if it was determined during 
the building of the render data that the static scene needs to be contained in three vertex buffers, this will 
point to an array of three vertex buffer pointers currently containing the vertex data of the tree’s static 
geometry. 
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unsigned char               m_nVBCount         
After the render data building process has been completed, this member will contain the number of 
vertex buffers being used by the render system and the number of elements in the above vertex buffer 
pointer array. 
 
bool                        m_bHardwareTnL     
This Boolean is also passed into the constructor of CBaseTree (called from the derived classes) and tells 
the render system whether the graphics hardware on the current system on which the application is 
running supports transformation and lighting of vertices in hardware. This Boolean will ultimately 
determine the vertex buffer creation flags that need to be passed to DirectX when the tree needs to create 
a new vertex buffer. 
 
LeafBinMap                  m_LeafBins         
This is an STL map containing the leaf bin pointers used by the tree. This map will be empty until 
CBaseTree::BuildRenderData is called. As the leaf bins are created, their pointers are added to this map. 
The key for each row in the table is the attribute ID of the leaf bin. The value assigned to that key will be 
the leaf bin pointer.     
 
LeafList                    m_VisibleLeaves    
We discussed this new leaf list when we discussed the CBaseLeaf source code. This leaf list is emptied 
just before a new visibility determination pass is performed on the tree. As each visible leaf is 
encountered, its pointer is added to this list. We saw the code that added the leaf pointers to this list in 
the CBaseLeaf::SetVisible method earlier in the lesson. At the end of each 
ISpatialTree::ProcessVisibility call, this list will contain the pointers for all the leaves that are currently 
deemed visible by the render system (i.e., leaves that are currently inside the camera frustum). 
 
We will now discuss the new methods in CBaseTree that pertain to the rendering system. 

AddVisibleLeaf – CBaseTree 

We saw this method being called earlier in the lesson when we examined the code to 
CBaseLeaf::SetVisible. It is passed the pointer of a leaf which it then adds to the tree’s visible leaf list. 
Remembering that LeafList is just an STL list, we can see that this function simply adds the passed 
pointer to the end of the list. 
 
 
bool CBaseTree::AddVisibleLeaf( CBaseLeaf * pLeaf ) 
{ 
    try 
    { 
        // Add to the leaf list 
        m_VisibleLeaves.push_back( pLeaf ); 
 
    } // End Try Block 
 
    catch ( ... ) 



 
 
 

59 

    { 
        return false; 
 
    } // End Catch Block 
 
    // Success! 
    return true; 
} 

 
The application should never call this function; it should be left to the tree’s visibility system to build 
this list with each visibility pass. In particular, it is only the CBaseLeaf::SetVisible method that ever 
calls this function to add its own pointer to the list. 

GetVisibleLeafList - CBaseTree 

This method is exposed purely for the application’s benefit. The application can call this method to get 
returned the list of currently visible leaves. This is the leaf list that was compiled the last time the 
application called the ISpatialTree::ProcessVisibility method. 
 
CBaseTree::LeafList & CBaseTree::GetVisibleLeafList() 
{ 
    return m_VisibleLeaves; 
} 

 
While it might not seem apparent just yet why the application may want to know which leaves are 
visible (especially when the tree takes care of rendering its visible polygon data), we will see later how 
this information will be important for the efficient rendering of dynamic objects. The application is 
going to be responsible for rendering these objects (not the tree) and thus, retrieving the list of currently 
visible leaves from the tree and then retrieving the dynamic object pointers stored in those leaves, 
provides the application with the list of currently visible dynamic objects that need to be rendered. 

GetLeafBin - CBaseTree 

The GetLeafBin method will generally never be called by the application. It is used by the tree during 
the building of the render data to fetch a leaf bin pointer from the map. For example, if the build process 
finds a polygon with an attribute of 7 it knows that it has to add its indices to leaf bin 7. As this leaf bin 
might have already been created (when processing another polygon with the same attribute ID), this 
method will quickly retrieve the pointer to that leaf bin and return it to the building process. If there is 
currently no key in the leaf bin map that matches the passed attribute ID the function returns NULL. 
This informs the calling function that the leaf bin associated with subset 7 has not yet been created, so it 
should do so now. 
 
CLeafBin * CBaseTree::GetLeafBin( unsigned long nAttribID ) 
{ 
    LeafBinMap::iterator Item = m_LeafBins.find( nAttribID ); 
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    // We don't store this attrib ID 
    if ( Item == m_LeafBins.end() ) return NULL; 
 
    // Return the actual item 
    return Item->second; 
} 

 
Although it might seem strange that we have not just indexed into the map using the attribute ID (using 
an array style approach), if we do this and the key/value pair does not exist in the table, this new row 
will be added with a value of NULL. However, we want this function to return the pointer only if it does 
exists and not create the row in the hash table if it does not. For this reason, we use the STL map’s find 
method. 
 
The find method does not perform a search through the entire table row by row as its name would 
perhaps imply. It efficiently jumps straight to the row in the table with the matching key and returns the 
iterator to that item in the table. If the key (attribute ID) did not exist in the map, then the iterator will 
point to the end of the map (like a hash table’s equivalent of a NULL return). If this is the case, we 
return NULL from the function. Otherwise we fetch the leaf bin pointer stored in the returned iterator’s 
‘second’ member and return it (the key itself is stored in the ‘first’ member of the iterator). 
 
We have now looked at the small utility functions in CBaseTree which we will need during the render 
data building process. In the next section, we will discuss the new methods in CBaseTree that are 
executed once, just after the tree has been built, to compile the tree’s static polygon data into vertex and 
index buffers, and leaf bins. 

15.4.2 The Building Phase – Compiling the Render Data 

The entire building phase is invoked from the CBaseTree::PostBuild method introduced in the previous 
lesson. This method is called by the derived classes just after the tree has been built (at the very bottom 
of their Build functions). We discussed how and why this function calls the CalculatePolyBounds 
function in the previous lesson to build and store the AABBs for each CPolygon in the tree. What we 
have not yet seen are the contents of the second method that it calls. The BuildRenderData method is the 
method that compiles the data into a renderable format. It creates all the vertex and index buffers used 
by the tree and creates and populates the leaf bins. 
 
bool CBaseTree::PostBuild(  ) 
{ 
    // Calculate the polygon bounding boxes 
    CalculatePolyBounds( ); 
 
    // Build the render data 
    return BuildRenderData( ); 
} 
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BuildRenderData - CBaseTree 

This function is a very large and seemingly complex function. The function could be made shorter by 
moving multiple processes into a single loop (instead of doing a separate loop for each process), but this 
would have made the function must harder to break into components for the purpose of explanation. 
Before we dive into the code, we will discuss what purpose of this function is, the tasks it must perform, 
and the way those tasks will be implemented. We will then find that this code is not nearly as 
intimidating as it first seems. 
 
When the function is first called, no vertex buffers or index buffers will have been created. The function 
will allocate a temporary array of vertices that will be used to collect the vertices of each polygon it 
processes. We can think of this array initially as collecting the vertices for the first (and possibly only) 
vertex buffer that will be created. Likewise, the function will also allocate an array of temporary buffers 
to create the indices for each leaf bin. That is, if the scene contains polygon data for 15 subsets, we will 
create an array to store 15 sets of indices, one for each leaf bin. We can think of these initial index arrays 
as being used to collect the indices that are associated with the first vertex buffer.  
 
The thing the function will do is call the CBaseTree::Repair method. We discussed this function in the 
previous lesson and saw how removes T-junctions in the polygon dataset. We call this automatically in 
the case of this particular function because we know this data is being used for rendering and we 
certainly do not want any T-junctions in our renderable data (they cause lighting artifacts and generate 
sparklies). After the Repair function returns, we have our data ready to be compiled for rendering with 
all T-junctions removed. 
 
The next step will be to call the CollectLeavesAABB method passing in the bounding box of the root 
node. This will collect all the leaves of the tree into a leaf list in the exact order in which the tree would 
be traversed if every leaf was visible. This is very important as it allows us to add the triangles from 
each leaf into the leaf bin index buffers in the order in which they will be traversed. This greatly 
increases our changes of creating large render batches during the visibility pass. 
 
Once we have the leaf list, we will loop through and process each leaf. For each leaf we will process the 
polygons in that leaf. For each polygon we will retrieve its attribute ID and fetch the associated leaf bin 
for that subset. If a leaf bin has not yet been created for that subset, we will create a new leaf bin for it. 
The whole point of this process is to make sure that at the end of the loop we have a leaf bin created and 
stored in the tree for every subset used by the tree. As we process each polygon, we will also calculate 
the number of indices that should be generated for it and add it to the temporary index array for that leaf 
bin. Therefore, at the end of the leaf loop we will have made sure that a leaf bin has been created for 
every subset used by the tree, and we will have recorded exactly how many indices we will need to 
allocate the temporary index arrays (for each leaf bin) to hold.  
 
Before we go any further, let us cover the first sections of the code that perform these steps. First we will 
look at the local variables allocated at the top of the function as some of them are extremely significant. 
 
bool CBaseTree::BuildRenderData(  ) 
{ 
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    LeafList::iterator LeafIterator; 
    map<ULONG,ULONG>   BinSizes; 
    map<ULONG,ULONG*>  BinIndexData; 
    LeafList           Leaves; 
    ULONG              nMaxVertexCount, nPolygonCount, nTotalVertices; 
    ULONG              nVertexCount, i, j; 
    D3DCAPS9           Caps; 
    CBaseLeaf        * pLeaf; 
    CLeafBin         * pLeafBin; 
    CVertex          * pVertices = NULL; 
    bool               b32BitIndices = false; 
    D3DXVECTOR3        Min, Max; 
 
    CBaseLeaf::RenderData          * pRenderData; 
    CBaseLeaf::RenderData::Element * pElement; 

 
Notice the two local variables that are highlighted in bold in the above code. These two STL maps are 
vital to the building process. The first stores ULONGs as both its keys and values and will be used in the 
initial loop (just described) to record the number of indices we found for each subset/leaf bin. The key of 
each row in the hash table will be the attribute ID and the value will be the number of indices we 
recorded that will need to be generated for it. The second STL map is the partner of the previous one and 
will be used to store the temporary index arrays being collected for each leaf bin. The key is a ULONG 
which once again stores the attribute ID that its value is relative to. The value is a ULONG pointer that 
will be allocated to store as many indices as is described by the row in the BinSizes map with the 
matching key (attribute ID).  
 
For example, imagine that after looping through the leaf list and processing however many indices will 
be generated by all the polygons, we find that the tree uses subsets 3, 6, and 9. Let us also assume that 
the number of indices recorded for each subset was 100, 200, and 300, respectively. At the end of the 
first loop, the following key/value pairs will be stored in the BinSizes map. 
 
BinSizes [ 3 ] = 100 
BinSizes [ 6 ] = 200 
BinSizes [ 9 ] = 300 
 
The three rows in the map now tell us that we will need to create a temporary index array to collect the 
100 indices for the first leaf bin (subset 3), an array to collect 200 indices for the second leaf bin (subset 
6) and an array of 300 to collect the indices for the third leaf bin (subset 9). 
 
After the loop, we can then allocate these temporary arrays in the BinIndexData map with code like the 
following: 
 
    // Allocate temporary buffers for each of the bin items 
    map<ULONG,ULONG>::iterator BinSizeIterator = BinSizes.begin(); 
    for ( ; BinSizeIterator != BinSizes.end(); ++BinSizeIterator ) 
    { 
        ULONG AttribID = BinSizeIterator->first; 
        ULONG Size     = BinSizeIterator->second; 
 
        if ( Size > 0 ) 
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            BinIndexData[ AttribID ] = new ULONG[ Size ]; 
        else 
            BinIndexData[ AttribID ] = NULL; 
 
        // Reset sizes back to 0, we're going to tally as we go 
        BinSizes[ AttribID ] = 0; 
 
    } // Next Bin 
 
As you can see, we loop through each row in the BinSizes table (one per subset used by the tree) and 
extract the key (attribute ID) and the indices size. We then use this size to allocate an array of indices 
which is assigned to the row in the BinIndexData map with a matching attribute. The function would 
then proceed to fill up these index arrays with the indices intended for each leaf bin. 
 
Now that we know how these two maps will be used in tandem to represent the index arrays being 
compiled for each leaf bin, let us examine the first section of the function that creates the leaf bins and 
records the number of indices that will be needed for each subset. 
 
The first thing we do is test to see if the device pointer is valid. If not, there is no point in initializing the 
render system and we simply return. Also, if the tree has no leaves we also have no polygon data so we 
return false. Provided the device and the leaf array are valid, we then call the CBaseTree::Repair method 
to remove any T-junctions that may exist in the polygon data. 
 
    // Instructed not to build data? 
    if ( !m_pD3DDevice ) return true; 
 
    // Anything to do ? 
    if ( m_Leaves.size() == 0 ) return false; 
 
    // First thing we need to do is repair any T-Junctions created during the build 
    Repair( ); 

 
We will now need to fetch the list of leaves contained in the tree. However, as this leaf list will be 
iterated through in order and each leaf’s polygons added to the leaf bins, we want this leaf list ordered in 
the same way that the leaves will be encountered when the visibility traversal is performed. This will 
ensure that we get the most optimal render batches during visibility traversal. To do this we simply fetch 
the bounding box of the scene (i.e., the root node’s bounding box) and feed this box into the 
CollectLeavesAABB method. When the function returns, the local leaf list passed in as the first 
parameter will be filled with all the leaves contained in the tree in traversal order. 
 
    // Retrieve the leaf list in TRAVERSAL order to ensure that the  
    // render batching works as efficiently as possible 
    GetSceneBounds( Min, Max ); 
    CollectLeavesAABB( Leaves, Min, Max ); 

 
We will now set up a loop that will loop through each leaf and record the total number of indices that 
will be generated for each subset. We will also allocate the leaf bins for each subset.  
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For each leaf we fetch its polygon count and then loop through each polygon in the leaf.  Notice also 
that at the top of the next section of code, we set the local variable nTotalVertices to zero. This will be 
used to also record the total number of vertices stored in the tree (from all polygons). 
 
    // Iterate through all of the polygons in the tree and allocate/add to  
    // leaf bins.  In addition, total up the index counts required for each bin. 
    nTotalVertices = 0; 
 
    for ( LeafIterator = Leaves.begin();  
          LeafIterator != Leaves.end();  
          ++LeafIterator ) 
    { 
        // Retrieve leaf 
        pLeaf = (CBaseLeaf*)(*LeafIterator); 
        if ( !pLeaf ) continue; 
 
        // Loop through each of the polygons stored in this leaf 
        nPolygonCount = pLeaf->GetPolygonCount(); 
 
        for ( i = 0; i < nPolygonCount; ++i ) 
        { 

 
In this loop we fetch a pointer to each polygon in the leaf. If for some reason its vertex count is smaller 
than 3, then this is an invalid triangle and we skip it. We also skip the polygon if its m_bVisible Boolean 
is set to false. The application can set a CPolygon’s visibility status to false prior to registering it with 
the tree. This will allow the application to register polygons that will still be used for collision detection 
queries but will not be rendered. You will see later when we discuss the changes to our application that 
we set this flag to false for transparent polygons before they are registered with the tree. Transparent 
polygons will be rendered by our BSP tree (discussed in the next chapter) so that we can get perfect 
back to front ordering. However, we still want to register such polygons with the spatial tree so that a 
‘Glass’ polygon for example is still considered a solid polygon by the collision system. Therefore, this 
flag allows our application to say to the tree, “Here is a static polygon for collision purposes, but do not 
render it as I will render it on my own using a different methodology.” 
 
            CPolygon * pPoly = pLeaf->GetPolygon( i ); 
 
            // Skip if it's invalid 
            if ( !pPoly || pPoly->m_nVertexCount < 3 ) continue; 
 
            // Skip if it's not visible 
            if ( !pPoly->m_bVisible ) continue; 
 
            // Retrieve the leaf bin for this attribute 
            pLeafBin = GetLeafBin( pPoly->m_nAttribID ); 

 
In the code above, we see that once we have a pointer to a valid renderable CPolygon, we pass its 
attribute ID into the CBaseTree::GetLeafBin function. If a leaf bin has already been created for this 
subset, a pointer to the leaf bin will be returned and stored in the pLeafBin local variable pointer. If we 
have encountered a polygon which belongs to a subset that we have not yet encountered and created a 
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leaf bin for, the GetLeafBin method will find no such leaf bin and the returned value of NULL will be 
stored in pLeafBin.  
 
If pLeafBin is NULL then it means we have found a polygon that a leaf bin does not yet exist for, so we 
had better create one. In the next section of code, we allocate a new leaf bin (passing in the attribute ID 
the leaf bin is intended to store triangles for and the total leaf size of the tree) and store the leaf bin’s 
pointer in the CBaseTree’s m_LeafBins map with a key equal to the attribute ID.  
 
            // Determine if there is a matching bin already in existance 
            if ( !pLeafBin ) 
            { 
                try 
                { 
                    // Allocate a new leaf bin 
                    pLeafBin = new CLeafBin( pPoly->m_nAttribID, m_Leaves.size() ); 
                    if ( !pLeafBin ) throw std::bad_alloc(); // VC++ Compat 
 
                    // Add to the leaf bin list 
                    m_LeafBins[ pPoly->m_nAttribID ] = pLeafBin; 
 
                } // End Try Block 
 
                catch ( ... ) 
                { 
                    // Clean up and fail 
                    if ( pLeafBin ) delete pLeafBin; 
                    return false; 
 
                } // End Catch Block 
 
            } // End if no bin existing 

 
At this point we have either confirmed that a bin exists that will accept this polygon or we have created a 
new one that will collect polygons of this type. We will now increment the value stored in the row of the 
BinSizes map that has a key equal to the current polygon’s subset. This allows us to record the indices 
for each subset in the BinSizes map as we go. We will need to break our clockwise winding polygons 
into a series of triangles to store in a triangle list (for the index buffer), and we have previously 
discovered that the number of triangles produced will be equal to the number of vertices in the polygon 
minus 2 (see Figure 15.3). 
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Figure 15.3 

 
In this example we can see that the 8 vertices describe 6 triangles (vertex count - 2). Therefore, as each 
triangle will be described by three indices in the index buffer, the total number of indices that will be 
generated by the current polygon will be (VertexCount - 2) * 3. 
 
In the following code you can see that we perform this calculation and add the resulting index count to 
the value of the row in the map with a key that matches the attribute ID of the polygon. We also add the 
vertex count of the polygon to the nTotalVertices local variable so that we record the total number of 
vertices in the entire tree after the entire leaf loop completes.   
 
            // Add each of the triangles to the total index count. 
            BinSizes[ pPoly->m_nAttribID ] += (pPoly->m_nVertexCount - 2) * 3; 
 
            // Total up vertices 
            nTotalVertices += pPoly->m_nVertexCount; 
 
        } // Next Polygon 
    } // Next Leaf 

 
At this point we are no longer in any loops and we have created the leaf bins for every subset in the tree. 
We have also recorded the total number of vertices stored in the tree in the nTotalVertices variable. 
Finally, we have recorded, for each subset, the total number of indices that will be generated for that 
subset. These index counts are stored in the BinSizes map, keyed by subset/attribute ID. At this point we 
have collected no vertices or indices and we have not yet added any data to any leaf bins. 
 
What we know is how many vertices we are going to need to store, which allows us to find out two 
things. First, if the vertex count is larger than the maximum number of vertices the device allows to be 
stored in one vertex buffer, we know we will need multiple vertex buffers. Second, if the number of 
vertices we have exceeds 65,535 (0xffff), we know that we will need 32-bit indices to reference them as 
we cannot fit values greater than this size into a 16-bit index. 
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First we get the capabilities of the device and retrieve the value of the maximum vertex index capability. 
This is stored in the D3DCAPS9::MaxVertexIndex member. As the maximum vertex index tells us the 
maximum index of a vertex that is allowed on the current device, adding one to this amount 
(remembering that indices are zero based) tells us the total number of vertices that can be placed in a 
single vertex buffer on this device. We store this value in the nMaxVertexCount local variable.  
 
    // Calculate the maximum vertex count the card is capable of storing 
    m_pD3DDevice->GetDeviceCaps( &Caps ); 
    nMaxVertexCount = Caps.MaxVertexIndex + 1; 

 
Now that we know the maximum number of vertices that can be stored in a vertex buffer, we should test 
to see if this is smaller than the total number of vertices used by our tree’s static geometry. If it is not, 
then it means the current device can handle all the vertices we have in a single vertex buffer. When this 
is the case we simply modify the value of nMaxVertexCount to equal the total number of vertices in the 
scene. We can think of the nMaxVertexCount member as containing the vertex count at which we will 
have to create a new vertex buffer during the vertex collection process.  
 
    // If it's more than capable, just clamp it to the scene vert count 
    if ( nMaxVertexCount > nTotalVertices ) nMaxVertexCount = nTotalVertices; 

 
At this point, nMaxVertexCount will contain either the total number of vertices in our tree (if the 
hardware can handle them all) or the maximum number of vertices that can fit in a single vertex buffer 
on this device. If this is larger than 65,535 (0xffff) then we will need to create 32-bit index buffers, so 
we set the local b32BitIndices Boolean to true so we will know this when creating leaf bin index buffers 
later.  
 
    // Determine if we need to use 32 bit indices or not 
    b32BitIndices = ((nMaxVertexCount - 1) > 0xFFFF) ? true : false; 

 
Since nMaxVertexCount describes the maximum size that the vertex buffers we create will be, we only 
create a vertex buffer once we have collected this many vertices. Therefore, we create a temporary 
vertex array of this size that will be used to collect the vertices for each vertex buffer. Once this buffer is 
full, a hardware vertex buffer will be created, the data copied over, and the array’s count set back to zero 
again. The array will then be reused to collect vertices for the next vertex buffer, and so on.  
 
    // Allocate temporary vertex array 
    pVertices = new CVertex[nMaxVertexCount]; 
    if ( !pVertices ) return false; 
 
    nVertexCount = 0; 

 
The BinSizes map contains the total number of indices that will be generated for each leaf bin’s index 
buffers. Just as with the temporary vertex array, we will use the BinIndexData map to store pointers to 
temporary index buffers that will be used to collect the indices for each leaf bin for the current vertex 
buffer. Once the pVertices array is full and the vertices are committed to a vertex buffer, index buffers 
will be created for each subset that we collected indices for and the contents of these temporary index 
arrays will be copied into the index buffers. Each new index buffer will then be added to a leaf bin and 
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the temporary index arrays stored in the BinIndexData map will be reused to collect the indices for each 
subset for the next vertex buffer, and so on. 
 
The next section of code loops through every row in the BinSizes map and fetches each key/value pair 
into the AttribID and Size local variables. If the size of a given row is greater than zero then it means 
that there are some indices that will be generated for this leaf bin during the index collection process 
(shown in a moment). Therefore, we allocate an array of indices for each leaf bin used by the scene that 
is large enough in size to store all the indices recorded for that leaf bin in the above code. After this loop 
is finished, the LeafIndexData map will store a pointer to an index array for each leaf bin.   
 
    // Allocate temporary buffers for each of the bin items 
    map<ULONG,ULONG>::iterator BinSizeIterator = BinSizes.begin(); 
    for ( ; BinSizeIterator != BinSizes.end(); ++BinSizeIterator ) 
    { 
        ULONG AttribID = BinSizeIterator->first; 
        ULONG Size     = BinSizeIterator->second; 
 
        if ( Size > 0 ) 
            BinIndexData[ AttribID ] = new ULONG[ Size ]; 
        else 
            BinIndexData[ AttribID ] = NULL; 
 
        // Reset sizes back to 0, we're going to tally as we go 
        BinSizes[ AttribID ] = 0; 
 
    } // Next Bin 

 
Notice that the BinSizes map which had its values recorded in the first loop has only been used for the 
allocation of the temporary index arrays for each subset. As we allocate the index array for each leaf bin, 
we reset its associated BinSize value to zero. That is because we will use the BinSize map later to record 
how many indices we have currently added to each leaf bin, which will be used in the generation of the 
leaf RenderData structures (more on this in a moment). 
 
In the next section of code we will loop through the leaf list again, and through each leaf’s polygon list 
and actually collect the indices and vertices of the polygons into their respective arrays. We will also 
create and populate the RenderData structures at each leaf (one for each subset contained in that leaf) 
and create the Elements for each RenderData structure. Remember, each Element in a RenderData 
structure contains a triangle range (index start and primitive count) for the current vertex buffer being 
compiled. If all the vertices fit in a single buffer, this loop will only ever create one render element in 
each leaf’s RenderData structure(s). We shall also see two calls to CBaseTree member functions we 
have not yet covered. The first is called CBaseTree::CommitBuffers and is called once the vertex buffers 
are filled. It is this function which takes the vertices collected in the temporary vertex array and copies 
them into a newly allocated vertex buffer. It is also this function that copies the data stored in the index 
arrays for each subset and copies them into newly allocated index buffers. These index buffers are then 
stored in newly allocated CLeafBinData structures and added to the leaf bins. We will look at the code 
to this function in a moment. For now just know that this function is called when we have collected 
enough vertices and need to create actual Direct3D vertex and index buffers. It is called CommitBuffers 
because it is this function that takes the data stored in the temporary vertex and index arrays and 
commits them to static vertex and index buffers. After the CommitBuffers function returns, the data in 
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the temporary vertex and index arrays are discarded and the current vertex buffer count will have been 
increased from zero to one. If there are still more leaves or polygons left to the process, the cycle repeats 
and vertex and index data continues to get collected for the next round of vertex and index buffers that 
will be created the next time CommitBuffers is called. The code to this function will be covered after we 
have finished discussing the BuildRenderData method.  
 
The second new CBaseTree method called inside this loop is the WeldBuffers method. This function 
will be called whenever we fill up the temporary vertex array in an effort to compact the data and get rid 
of duplicated vertices. We have discussed welding many times throughout this course and understand 
that it will collapse multiple vertices that share identical properties into a single vertex. This potentially 
reduces the vertex count and will allow us to fit more vertices in the buffer. Of course, if the vertices are 
altered or compacted, the weld operation will also need to update the indices so that triangles that 
indexed vertices that have been removed are now mapped to the vertex they were collapsed onto. Once 
we find that we cannot add any more polygon vertices to the temporary vertex array without exceeding 
the maximum vertex count of the hardware, we will call the weld function to try to compact the vertex 
data in this array and make room for some more vertices. This function will need to be passed not only 
the temporary vertex array that will be compacted, but also the map of index buffers containing the 
indices currently collected for each subset that index into this vertex array. These index arrays will also 
have to be updated so that they correctly index into the compacted vertex array. The contents of this 
function will also be discussed shortly. 
 
Continuing where we left off, we are now at the point where we have allocated an array to hold the 
vertices we are going to collect for the vertex buffer we are about to build. We have also allocated an 
array of indices to record the indices generated for each leaf bin (stored in the BinIndexData map). 
 
We will now loop through each leaf and through each polygon in that leaf. If the current polygon being 
processed is either invalid or invisible, we skip it and continue to the next iteration of the polygon loop. 
 
    // Now we actually build the renderable data for the TRAVERSAL ordered  
    // leaf list. 
    for ( LeafIterator = Leaves.begin();  
          LeafIterator != Leaves.end();  
          ++LeafIterator ) 
    { 
        // Retrieve leaf 
        pLeaf = (CBaseLeaf*)(*LeafIterator); 
        if ( !pLeaf ) continue; 
 
        // Loop through each of the polygons stored in this leaf 
        nPolygonCount = pLeaf->GetPolygonCount(); 
 
        for ( i = 0; i < nPolygonCount; ++i ) 
        { 
            CPolygon * pPoly = pLeaf->GetPolygon( i ); 
 
            // Skip if it's invalid 
            if ( !pPoly || pPoly->m_nVertexCount < 3 ) continue; 
 
            // Skip if it's not visible 
            if ( !pPoly->m_bVisible ) continue; 
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At this point we have a pointer to the current polygon we are going to process. First we will assign a 
ULONG pointer to point at the index array in the BinIndexData map for the polygon’s subset. We will 
also assign a pointer to point at the BinSizes value for this subset. This will be set to 0 if this is the first 
polygon with the current subset we have found so far in the loop. 
 
            ULONG * pIndexData = BinIndexData[ pPoly->m_nAttribID ]; 
            ULONG * pBinSize   = &BinSizes[ pPoly->m_nAttribID ]; 

 
Just so we understand these variables, pIndexData points to the index buffer we allocated earlier for the 
leaf bin with the same attribute ID as the current polygon. This pointer will be used to store the indices 
of the polygon in the array. pBinSize will point to the value in the size map for this polygon’s subset so 
that we can increment the size as we add indices to the index array. This means, with each polygon we 
add, pBinSize will always tell us how many indices we have currently collected in this subset’s index 
array and therefore, at what location to place the new indices. 
 
Our next task is to fetch the leaf bin that the polygon will be assigned to. We pass the polygon’s attribute 
ID into the GetLeafBin method to retrieve a pointer to the leaf bin that is assigned to the polygon’s 
subset and will ultimately receive its indices.  
 
            // Retrieve the render data item for this leaf / attrib ID 
            pLeafBin    = GetLeafBin( pPoly->m_nAttribID ); 
            pRenderData = pLeaf->GetRenderData( pPoly->m_nAttribID ); 

 
Notice in the above code how we also call the leaf’s GetRenderData method to fetch the RenderData 
structure in the leaf for the current subset. Remember, there will ultimately be a RenderData structure 
stored in the leaf for every subset contained in that leaf as it is inside the RenderData structure that the 
leaf’s triangle range (for that subset) is stored. Of course, at this point, the leaf may not have a 
RenderData structure allocated for it if this is the first polygon we have encountered in the current leaf 
that has this subset. Therefore, if a RenderData structure exists in the leaf for the passed subset, its 
pointer will be stored in pRenderData. If not, pRenderData will be assigned a value of NULL, which 
means we had better allocate one.  
 
            // If we were unable to find a render data item yet built for this 
            // leaf / attribute combination, add one. 
            if ( !pRenderData ) 
            { 
                pRenderData = pLeaf->AddRenderData( pPoly->m_nAttribID ); 
                if ( !pRenderData ) return false; 
 
                // Store the leaf bin for later use 
                pRenderData->pLeafBin = pLeafBin; 
 
            } // End if no render data 

 
As you can see in the above code, if the current leaf being processed does not yet have a RenderData 
structure allocated for it for the subset of the current polygon being processed, we allocate a new one in 
that leaf by using the CBaseLeaf::AddRenderData method and passing in the subset ID/leaf bin we 
would like it associated with. The function will return a pointer to a new RenderData structure which we 
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will store in the pRenderData local pointer. We will then use this pointer to assign the RenderData’s 
pLeafBin member to point at the leaf bin that will contain its indices (which was fetched above)  
 
At this point we have the polygon we are currently processing and we also have the RenderData 
structure associated with its subset for the current leaf we are processing. The m_nVBCount local 
variable describes the index of the vertex buffer we are currently collecting vertices and indices for. This 
will obviously be 0 at the start of the function since we are collecting vertices for vertex buffer[0] in the 
tree’s vertex buffer array. Every time the vertex array is filled up and the CommitBuffers method is 
called to create the vertex and index buffers, this value will be incremented. For example, after the first 
set of buffers has been created, it will contain an index of 1 and we will know that any vertices we 
collect are going to be assigned to the tree’s second vertex buffer. We also know that the next set of 
index buffers we create for the leaf bins will index into this second buffer. 
 
Each RenderData structure in a leaf (remember, there will be one for each subset stored in that leaf), will 
contain an array of one or more Element structures. For example, if a leaf has a series of polygons 
belonging to the same set that ultimately ends up getting spread over two vertex buffers, the RenderData 
structure for that subset (in that leaf) will have two Element structures. Each Element contains the run of 
triangles for one of those vertex buffers. 
 
So now that we know which RenderData item this polygon’s triangles need to be added to, we have to 
get the Element structure within it for the current vertex buffer being compiled. In the next section of 
code we loop through each Element in the RenderData’s element array to search for the one that has a 
vertex buffer index assigned to it that is equal to the vertex buffer we are currently compiling data for 
(m_nVBCount). When we find the correct element to add the polygon’s triangles to, we break from the 
loop as shown below.  
 
            // Search for element associated with the current vertex buffer 
            for ( j = 0; j < pRenderData->ElementCount; ++j ) 
            { 
                pElement = &pRenderData->pElements[j]; 
                if ( pElement->VBIndex == m_nVBCount ) break; 
 
            } // Next Element 

 
If, at the end of the above loop, the loop variable j is equal to the RenderData’s current element count, it 
means the loop did not break early. This tells us that the RenderData structure does not currently have an 
Element for the vertex array currently being compiled. This also means the current polygon is the first 
we have found in this leaf that uses this subset since collecting data for the current vertex buffer. Thus 
we will have to add a new Element to the RenderData’s element array. 
 
The following code adds a new Element structure to the leaf’s RenderData structure that matches the 
attribute ID of the polygon currently being processed. This is all handled in the 
CBaseLeaf::AddRenderDataElement function. It finds the RenderData structure in its array with an 
attribute that matches the polygon’s and adds a new Element structure to the end of its element array. It 
then returns a pointer to this new element.  
 
            // If we reached the end, then we found no element 
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            if ( j == pRenderData->ElementCount ) 
            { 
                // Add a render data element for this vertex buffer 
                pElement = pLeaf->AddRenderDataElement( pPoly->m_nAttribID ); 
                pElement->IndexStart     = *pBinSize; 
                pElement->PrimitiveCount = 0; 
                pElement->VBIndex        = m_nVBCount; 
 
            } // End if no element for this VB 

 
Notice in the above code how once we get back the new Element for the current vertex buffer, we set its 
primitive count to 0 as no triangles have been added to it yet. We also set its VBIndex member to the 
current value stored in m_nVBCount. This tells us the number of vertex buffers we have created so far 
and therefore, the index of the current vertex buffer we are collecting data for.  
 
What requires a little explanation is why we set the IndexStart value of this element to the value 
currently contained in pBinSize. We saw just inside the polygon loop that this is used to point at the 
value in the row of the BinSizes map that records the current number of indices that have been collected 
so far for this attribute. This was set to zero for every subset at the beginning of the leaf loop and will be 
incremented every time we add indices to the corresponding index array. Therefore, the value pointed at 
by this pointer will always contain the number of indices we have added to that subset’s temporary 
index array so far. Therefore, we know that the indices we are about to add for the current polygon we 
are processing will begin at that location in the buffer. To clarify, if the pBinSize pointer points to a 
value of 6 and the polygon we are currently processing belongs to subset 20, it means we have current 
added 6 indices to the temporary index array stored at BinIndexData[20]. When we add the current 
polygon’s indices to this same array, and because we only enter the above section of code if we have just 
created a new element, this triangle must be the first triangle we have found in the leaf so far for the 
current vertex buffer being compiled. Thus, its first index will be the start index for the run of triangles 
that use this subset and may exist in this leaf. 
 
At this point we have the polygon itself, the leaf bin in which it is contained, the RenderData structure 
within that leaf that pertains to the subset of the polygon, and the Element structure in that RenderData 
structure that references the current vertex buffer being compiled. We are now ready to start adding the 
vertices and indices in this polygon to their respective buffers. 
 
Before we can add the vertices of any of the polygon’s triangles to the vertex array (pVertices), we first 
make sure that there is room enough to do so. If the current number of vertices we have collected in the 
vertex array so far (nVertexCount) is greater than the maximum number of vertices we will be able to 
store in a single vertex buffer (nMaxVertexCount) minus 3 (we need at least three spare slots to add the 
next triangle), it is time to commit the vertex array and all the index arrays we have compiled for each 
leaf bin to Direct3D vertex and index buffers.  
 
However, before we do, we will perform a weld on the vertex array just to make sure that we cannot 
compact the vertex data and make some more room in there. Therefore, in the next section of code, once 
we realize there is no more room left in the vertex array for another triangle, we call the 
CBaseTree::WeldBuffers method. As the job of this method is to remove duplicated vertices (and remap 
the indices accordingly), the function returns the new vertex count describing how many vertices are in 
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the passed vertex array after the weld has been performed. Since the function will also have the job of 
remapping all the index arrays that reference vertices that get collapsed in the weld process, we must 
also pass this function the map of index arrays (for each leaf bin). 
 
            if ( nMaxVertexCount != nTotalVertices &&  
                 nVertexCount > nMaxVertexCount - 3 ) 
            { 
                // Weld the data built so far 
                nVertexCount = WeldBuffers( nVertexCount,  
                                            pVertices,  
                                            BinIndexData,  
                                            BinSizes ); 

 
We will look at the code to this function later, so for now just know that when it returns, the pVertices 
array may have had vertices removed. The return value (which we store in nVertexCount) describes the 
new number of vertices in this array. On function return, any index arrays stored in the BinIndexData 
map will have had some of their indices remapped to new vertex positions in the array if these indices 
referenced vertices that were collapsed during the weld operation. 
 
After the weld has been performed it is entirely possible that we may have made more space in the 
vertex buffer and may now have enough space to add the triangles in this polygon. However, if the 
vertex count of the pVertices array is still too large and we cannot add another triangle, we must commit 
the buffers using the CBaseTree::CommitBuffers method as shown below.  
 
                // If there is still not enough room commit buffers 
                if ( nVertexCount > nMaxVertexCount - 3 ) 
                { 
                    CommitBuffers( nVertexCount,  
                                   pVertices,  
                                   BinIndexData,  
                                   BinSizes,  
                                   b32BitIndices ); 
 
     
                   nVertexCount = 0; 
 
                    // Add a new render data element and prepare it 
                    pElement = pLeaf->AddRenderDataElement( pPoly->m_nAttribID ); 
                    pElement->IndexStart     = 0; 
                    pElement->PrimitiveCount = 0; 
                    pElement->VBIndex        = m_nVBCount; 
 
                } // End if start a clean buffer. 
 
            } // End if not enough room for even a single triangle. 

 
The CommitBuffers method is passed the vertex array that we have compiled so far and the map 
containing all the index arrays we have compiled for this vertex array so far. It is also passed the size of 
the vertex array and the map describing the size of the index arrays contained in the BinIndexData map. 
Note that we also pass the Boolean that describes to this function whether or not it should create 32-bit 
or 16-bit index buffers. 
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The CommitBuffers method is not a large method, but it has a very important job. For starters, it creates 
a new vertex buffer and populates it with the data in the passed vertex array and then adds this vertex 
buffer to the tree’s vertex buffer array. It will also loop through every row in the BinIndexData map and 
extract the index arrays compiled for each leaf bin (for the current vertex buffer). For each index array, it 
will create a new index buffer and populate it. Then it will add each index buffer to the correct leaf bin 
which should own it. After the index buffer for each leaf bin has been created, its corresponding size 
value in the BinSizes map will be reset to zero so that we can start collecting new indices for the next 
vertex buffer. This function will also increase the tree’s m_nVBCount variable so that it reflects the new 
number of vertex buffers stored in the tree. 
 
When the function returns, we wish to start the collection process all over again (the index array 
counters have already been reset back to zero in the BinSizes map by the CommitBuffers function). 
Therefore, we set the current vertex count back to zero so that the vertex array can be used again to 
collect vertices for the next vertex buffer. This means that any Elements we create from this point on (in 
the RenderData structures of each leaf) will describe triangle runs in the new vertex buffer we are about 
to build. 
 
Finally, notice in the above code that once we have committed the buffers, we have essentially deduced 
that the polygon being processed will be added to a new Element in the leaf’s RenderData structure 
(describing triangle runs in the new vertex buffer we are just about to compile). Therefore, we add a new 
Element to the RenderData structure that is linked to the new vertex buffer we are about to create. 
Remember, the CommitBuffers method would have incremented the value of m_nVBCount so that it 
now contains the index of the next vertex buffer we will create the next time CommitBuffers is called. 
We still have not added the polygon’s indices to this Element yet, so we set the primitive count of this 
new structure to 0. Further, because we have just committed the buffers, we know this polygon’s 
triangles will be positioned at the start of the index buffer that will be created for the new vertex buffer 
(for the leaf bin associated with the polygon attribute). Therefore, we can set the index start to zero as 
well.  
 
As discussed many times before, we will add the polygon triangles to the index buffer by stepping 
around each vertex in the polygon. For each vertex we will add it to the vertex array and for every vertex 
beyond the second one, we will create indices for the first vertex in the polygon, the previous vertex in 
the edge, and the current vertex.  These three indices will be added to the index array associated with 
this leaf bin and the pBinSize pointer will have the value it points at (the number of indices in the array) 
incremented each time an index is added.  
 
In the first section you will see us setting up a loop to step through each vertex in the edge. Notice just 
above the loop that we store the number of vertices currently in the vertex array in the FirstVertex local 
variable. This is important because we will need to keep track of where this polygon’s vertices are being 
added from so that we can construct the right indices that index them. 
 
            // Store triangle pre-requisites 
            ULONG FirstVertex    = nVertexCount; 
            ULONG PreviousVertex = 0; 
 
            // For each triangle in the set 
            for ( j = 0; j < pPoly->m_nVertexCount; ++j ) 
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            { 
                // Add this vertex to the buffer 
                pVertices[ nVertexCount++ ] = pPoly->m_pVertex[ j ]; 

 
If the current loop variable j is greater then or equal 
to 2, it means we have added at least three vertices 
from this polygon so far and we can start generating 
indices to describe its triangles. As Figure 15.4 
illustrates, at vertex 3 we will add the indices for 
vertices 1, 2, and 3. At vertex 4 we will increment the 
previous vertex and the current vertex so that the next 
triangle indexes vertices 1, 3, and 4, and so on around 
the edges of the polygon. 
 
For every three indices we add to the index buffer we also know that we have just added a triangle 
(primitive) to the current element, so we increment the primitive count for that element. We then adjust 
the previous vertex by 1 so that it now points at the current vertex so that in the next iteration of the 
loop, we will have the next pair of vertices in the edge. 
 
                // Enough vertices added to start building triangle data? 
                if ( j >= 2 ) 
                { 
                    // Add the index data 
                    pIndexData[ (*pBinSize)++ ] = FirstVertex; 
                    pIndexData[ (*pBinSize)++ ] = PreviousVertex; 
                    pIndexData[ (*pBinSize)++ ] = nVertexCount - 1; 
 
                    // Update leaf element, we've added a primitive 
                    pElement->PrimitiveCount++; 
 
                } // End if add triangle data 
 
                // Update previous vertex 
                PreviousVertex = nVertexCount - 1; 

 
Because we are adding the polygons to our index buffers one triangle at a time, we may find that we 
might be only part of the way through adding its triangles when we fill up the vertex buffer. Looking at 
Figure 15.4 for example, we can see how the first vertex might be v1, the previous vertex might be v4 
and the current vertex might be v5, which collectively describe triangle 3. However, after adding 
triangle 3, we might find that the vertex buffer is full and we have to switch buffers. If this is the case, 
we will first call the weld function to try compacting the vertex array, hopefully making enough room to 
add all the vertices in this polygon to the vertex array. Notice this time that we pass in two additional 
parameters to the WeldBuffers function. 
 
                if ( nMaxVertexCount != nTotalVertices &&  
                     nVertexCount == nMaxVertexCount ) 
                { 
                    // Weld the data built so far 
                    nVertexCount = WeldBuffers( nVertexCount,  
                                                pVertices,  

 
Figure 15.4 
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                                                BinIndexData,  
                                                BinSizes,  
                                                &FirstVertex,  
                                                &PreviousVertex ); 

 
Because we are in the middle of stepping around the vertices of a triangle when we perform the weld, 
we will need to know where the position of the first vertex and the previous vertex in the edge got 
moved to during the weld. This tells us which vertices to use for the next triangle. For example, imagine 
we have just added triangle 3 in Figure 15.4 where the first vertex (v1) was at position 20 in the vertex 
buffer and the previous vertex (which was v4 when the triangle was added and was then increased to v5) 
was set to 24. We know that if the weld had not been performed, the next triangle added would consist 
of vertices 20, 24, and 25. However, after the weld, vertices 20 and 24 might get repositioned in the 
buffer to locations 10 and 14, in which case we will need to update the values stored in FirstVertex and 
PreviousVertex to these values so that the next triangle added will use vertices 10 and 14 and the next 
vertex in the edge. That is what the last two values to the weld function are for. The weld function will 
return the new positions of these vertices using these output parameters. That is, FirstVertex and 
PreviousVertex tell the weld function the two vertices we wish to track the changes for. After the weld is 
complete, these values will be updated with the new vertex positions. 
 
Of course, if the weld function did not successfully make enough room in the vertex array for the next 
vertex in the polygon, we will need to commit the buffers and start collecting vertices and indices for the 
next vertex buffer.   
 
                    // If there is still not enough room, commit the changes 
                    if ( nVertexCount == nMaxVertexCount ) 
                    { 
                        // Commit the changes 
                        CommitBuffers( nVertexCount,  
                                       pVertices,  
                                       BinIndexData,  
                                       BinSizes,  
                                       b32BitIndices ); 
 
                        nVertexCount = 0; 

 
What we have to remember is that if a polygon spans multiple buffers, we will need to also add the first 
vertex and previous vertex to the new buffer as well. For example, imagine in Figure 15.4 we have 
added triangle 1 and then we start a new buffer. The next vertex in the polygon to be processed would be 
v4 and the triangle that should be added to the new buffer would be <v1, v3, v4>.  However, v1 and v3 
exist in the previous vertex buffer so they cannot possibly be indexed by the new index buffers we are 
about to create. Therefore, we must make sure that these vertices exist in the new buffer as well. 
 
In the next section of code we can see that if we do change buffers mid-polygon, we add a new element 
for that vertex buffer in the RenderData structure associated with the polygon’s subset. We also assign 
its VBIndex member so that it describes the next vertex buffer that will be created the next time 
CommitBuffers is called. As we have not added any primitives yet, we will set its index start and 
primitive count to zero. 
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                        // If the polygon spans multiple VB's,  
                        // then we need a new element 
                        if ( (signed)j < pPoly->m_nVertexCount - 1 ) 
                        { 
                            // Add a new render data element and prepare it 
                          pElement=pLeaf->AddRenderDataElement(pPoly->m_nAttribID); 
                          pElement->IndexStart     = 0; 
                          pElement->PrimitiveCount = 0; 
                          pElement->VBIndex        = m_nVBCount; 

 
We will now add the first vertex in the polygon and the current vertex (which will become the previous 
vertex in the next iteration) to the first element of the new vertex array. We will then set this vertex 
array’s count to 2 since we have only collected two vertices for this vertex array so far. We then assign 
the FirstVertex and PreviousVertex variables to contain the indices of the first and second vertices in the 
new vertex array so that in the next loop, the vertices we just duplicated in the new buffer are used to 
construct the next triangle. The remainder of the entire process is shown below.  
 
                            // Since this polygon data is now split over multiple 
                            // vertex buffers, we're going to need to re-add the 
                            // first and previous vertices to the 
                            // new buffer as well. This is so that we can form a 
                            // valid triangle next time assuming there is any 
                            // triangle data left to be processed for this polygon, 
 
                            pVertices[0]   = pPoly->m_pVertex[ 0 ]; 
                            pVertices[1]   = pPoly->m_pVertex[ j ]; 
                            nVertexCount   = 2; 
                            FirstVertex    = 0; 
                            PreviousVertex = 1; 
 
                        } // End if more triangles to come 
 
                    } // End if not enough room. 
 
                } // End if buffer full 
 
            } // Next Triangle 
 
        } // Next Polygon 
 
    } // Next Leaf 

 
At this point in the function we have processed every leaf and every polygon in the tree. We will have 
constructed vertex buffers and added them to the tree and we will have added (potentially) multiple 
index buffers to each leaf bin. Every leaf will contain a RenderData structure for each subset it contains, 
which in turn will contain an array of elements for every vertex buffer that subset (within that leaf) is 
contained within. 
 
Of course, as the buffers are only committed once they are full, unless the very last vertex we added 
caused the buffers to be committed, there will still be vertices in the pVertices array and index arrays in 
the BinIndexData map that have not yet been committed. Therefore, as our final step, we weld any 
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vertices we have not yet committed before committing them too, creating one last vertex buffer and one 
last set of index buffers (one per leaf bin which has indices in the index arrays for this vertex buffer).    
 
    // Build any remaining data 
    if ( nVertexCount > 2 ) 
    { 
        // Weld any remaining data and commit it 
        nVertexCount = WeldBuffers( nVertexCount,  
                                    pVertices,  
                                    BinIndexData,  
                                    BinSizes ); 
 
        CommitBuffers( nVertexCount,  
                       pVertices,  
                       BinIndexData,  
                       BinSizes,  
                       b32BitIndices ); 
 
    } // End if any data left to commit 
 

 
With our render data constructed we must release all temporary memory that was not allocated on the 
stack. So we will iterate through each row in the BinSize map (one for each leaf bin) and extract its 
attribute ID and index array size. If this size if greater then zero, it means there is a corresponding index 
array in the BinIndexData map that needs to be deleted from memory. Thus we fetch the index array 
from the BinIndexData map with the matching attribute ID and call delete on its pointer. 
 
    // Release temporary index buffer arrays 
    BinSizeIterator = BinSizes.begin(); 
    for ( ; BinSizeIterator != BinSizes.end(); ++BinSizeIterator ) 
    { 
        ULONG AttribID = BinSizeIterator->first; 
        ULONG Size     = BinSizeIterator->second; 
        if ( Size > 0 && BinIndexData[ AttribID ] )  
            delete []BinIndexData[ AttribID ]; 
 
    } // Next Bin 

 
We now delete the vertex array that was used to collect the vertices for each vertex buffer before 
returning a successful build indicator. 
 
    // Release temp vertex array. 
    if ( pVertices ) delete []pVertices; 
 
    // Success! 
    return true; 
} 

 
This was some very complicated code to try to absorb in one read, so fully expect to have to make a few 
passes over the source code to this function (and the explanations included here) to fully understand the 
relationships between the various components. 
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One of the major processes in the above function that we have yet to cover is the call to the 
CommitBuffers method. The code to this method will be discussed next. 

CommitBuffers - CBaseTree 

The function is passed an array of vertices which must be used to create a new vertex buffer for the 
render system. It will also be passed two STL maps. The first map’s rows will contain an index array for 
each leaf bin. The number of rows in this map will be equal to the number of leaf bins used by the tree. 
This function will create an index buffer for each of these index arrays and store each index buffer in the 
relevant leaf bin. The second map that is passed (parameter four) describes the number of indices 
contained in each of the index arrays. The final parameter is a Boolean which tells the function whether 
the index buffer it creates for each leaf bin should use 16 or 32-bit indices.  
 
The first thing the function does is grow the tree’s vertex buffer array making room for an extra vertex 
buffer pointer at the end of the array. If there are current vertex buffer pointers in this array, this 
involves the allocation of a new array large enough to hold all the old buffer pointers plus the space at 
the end for the new buffer. The buffer pointers are then copied over from the old array into the new one 
and the old array is released. The tree’s pointer to its vertex buffer array is then updated to point at this 
new array and the vertex buffer count is then increased. 
 
bool CBaseTree::CommitBuffers( ULONG VertexCount,  
                               CVertex * pVertices,  
                               map<ULONG, ULONG*> & BinIndexData,  
                               map<ULONG, ULONG> & BinSizes,  
                               bool b32BitIndices ) 
{ 
    ULONG                     ulUsage = D3DUSAGE_WRITEONLY; 
    LPDIRECT3DVERTEXBUFFER9 * ppVBBuffer, pVB; 
    CVertex                 * pDestVertices; 
    UCHAR                   * pDestIndices; 
    ULONG                   * pIndices; 
    HRESULT                   hRet; 
    ULONG                     i; 
 
    // First allocate space for a new vertex buffer 
    ppVBBuffer = new LPDIRECT3DVERTEXBUFFER9[ m_nVBCount + 1 ]; 
    if ( !ppVBBuffer ) return false; 
 
    // Any old data? 
    if ( m_nVBCount > 0 ) 
    { 
        // Copy over the old data, and release the old array 
        memcpy( ppVBBuffer,  
                m_ppVertexBuffer,  
                m_nVBCount * sizeof(LPDIRECT3DVERTEXBUFFER9) ); 
 
        delete []m_ppVertexBuffer; 
 
    } // End if any old data 
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    // Set the new entry to NULL 
    ppVBBuffer[ m_nVBCount ] = NULL; 
 
    // Store the new buffer pointer 
    m_ppVertexBuffer = ppVBBuffer; 
    m_nVBCount++; 

 
Notice in the above code that we assign the ulUsage variable the value of D3DUSAGE_WRITEONLY. 
This variable will be used for the vertex buffer creation flags. We will inform Direct3D to create the 
vertex buffer in write only mode so that memory placement of the vertex buffer is chosen based on the 
best performance. If the current device is a software device (which will be stored in the tree’s 
m_bHardwareTnL member passed into its constructor), the D3DUSAGE_SOFTWAREPROCESSING 
flag will need to be combined with ulUsage so that the vertex buffer is created in system memory (for 
efficient CPU transformation and lighting). 
 
Next we allocate a new vertex buffer large enough to hold the number of vertices contained in the 
passed array. Allocation will be in the managed resource pool. We then store the newly create vertex 
buffer’s pointer in the tree’s vertex buffer array, as shown below. 
 
    // Should we use software vertex processing ? 
    if ( !m_bHardwareTnL ) ulUsage |= D3DUSAGE_SOFTWAREPROCESSING; 
 
    // Create the actual vertex buffer ready to store the data 
    hRet = m_pD3DDevice->CreateVertexBuffer( VertexCount * sizeof(CVertex), 
                                             ulUsage,  
                                             VERTEX_FVF,  
                                             D3DPOOL_MANAGED,  
                                             &pVB,  
                                             NULL ); 
    if ( FAILED(hRet) ) return false; 
 
    // Store the vertex buffer in the array 
    // (so that it's released if anything goes wrong) 
    m_ppVertexBuffer[ m_nVBCount - 1 ] = pVB; 

 
With the new vertex buffer allocated and added to the tree’s vertex buffer array, we then lock the vertex 
buffer and copy in all the vertices in the input vertex array before unlocking it. 
 
    // Lock the vertex buffer ready to copy 
    hRet = pVB->Lock( 0, 0, (void**)&pDestVertices, 0 ); 
    if ( FAILED(hRet) ) return false; 
 
    // Copy over the data that we were passed 
    memcpy( pDestVertices, pVertices, VertexCount * sizeof(CVertex) ); 
 
    // Unlock the buffer, we're done with VB creation 
    pVB->Unlock(); 

 
The vertex buffer has now been dealt with. Next we have to create the index buffers for each leaf bin. 
First we set up a loop to iterate though each row in the BinIndexData map (one row for each leaf bin) 
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and extract the attribute ID for that row. This tells us what leaf bin the index array should be assigned to. 
We also extract the size of the index array (stored in the BinSizes map with the same key) and fetch a 
pointer to the leaf bin assigned to that attribute using the CBaseTree::GetLeafBin function. 
 
    // Now that we've built the VB, we need to propogate the index data 
    map<ULONG, ULONG*>::iterator DataIterator = BinIndexData.begin(); 
    for ( ; DataIterator != BinIndexData.end(); ++DataIterator ) 
    { 
        ULONG AttribID = DataIterator->first; 
        ULONG Size     = BinSizes[ AttribID ]; 
 
        // Retrieve the leaf bin 
        CLeafBin * pLeafBin = GetLeafBin( AttribID ); 
        if ( !pLeafBin ) { BinSizes[AttribID] = 0; continue; } 

 
Every index buffer added to a leaf bin is contained inside its own CLeafBinData structure inside the leaf 
bin’s internal array of these structures. Thus, we allocate a new CLeafBinData structure. 
 
        // Allocate a new LeafBinData structure 
        CLeafBinData * pData = new CLeafBinData; 
        if ( !pData ) return false; 

 
We now instruct the leaf bin to add this CLeafBinData pointer to its internal array of CLeafBinData 
pointers. 
 
        // Add to leaf bin, so that the data is released if something goes wrong 
        if ( !pLeafBin->AddLeafBinData( pData ) ) { delete pData; return false; } 

 
It is time to fill out the information for the CLeafBinData structure, including whether or not it uses 32-
bit indices, the number of triangles that will be in the index buffer assigned to this CLeafBinData 
structure, and the index of the vertex buffer in the tree’s vertex buffer array that this index buffer will 
index into. We also store the number of vertices in that vertex buffer in the structure. 
 
        // Fill out the data items for this leaf bin. 
        pData->m_b32BitIndices = b32BitIndices; 
        pData->m_nFaceCount    = Size / 3; 
        pData->m_nVBIndex      = m_nVBCount - 1; 
        pData->m_nVertexCount  = VertexCount; 

 
If the index array inside the BinIndexData map for this leaf bin has no indices, we will just skip 
generating an index buffer for this leaf bin (for this vertex buffer) and continue on to process the next 
leaf bin. 
 
        // If there is no data here,  
        // we'll just continue (but we must have allocated the leaf bin data) 
        if ( Size == 0 ) continue; 

 
If we get this far, it indicates that there are indices for the current leaf bin, so we will need to create an 
index buffer.  
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        // Create the index buffer ready to store the data 
        UCHAR     IndexStride = ( b32BitIndices ) ? 4 : 2; 
        D3DFORMAT Format      = (b32BitIndices) ? D3DFMT_INDEX32 : D3DFMT_INDEX16; 
 
        hRet = m_pD3DDevice->CreateIndexBuffer( Size * IndexStride,  
                                                ulUsage,  
                                                Format,  
                                                D3DPOOL_MANAGED,  
                                                &pData->m_pIndexBuffer,  
                                                NULL ); 
        if ( FAILED(hRet) ) return false; 

 
With the index buffer for this leaf bin/vertex buffer combination allocated, we will now lock it and copy 
over all the index data from the index array for this leaf bin contained in the BinIndexData map. 
 
        // Lock the index buffer ready to copy 
        hRet = pData->m_pIndexBuffer->Lock( 0, 0, (void**)&pDestIndices, 0 ); 
        if ( FAILED(hRet) ) return false; 
 
        // Copy over the buffer data 
        if ( b32BitIndices ) 
        { 
            // We can do a straight copy if it's a 32 bit index buffer 
            pIndices = DataIterator->second; 
            memcpy( pDestIndices, pIndices, Size * IndexStride ); 
 
        } // End if 32bit 
        else 
        { 
            pIndices = DataIterator->second; 
            for ( i = 0; i < Size; ++i ) 
            { 
                // Cast everything down to 16 bit 
                ((USHORT*)pDestIndices)[i] = (USHORT)pIndices[i]; 
 
            } // Next Index 
 
        } // End if 16bit 
 
        // Unlock the buffer, we're done with IB creation 
 
        pData->m_pIndexBuffer->Unlock(); 

 
Notice in the above code that when we create the index buffer, we store the returned pointer in the leaf 
bin’s CLeafBinData structure.  
 
Next we assign the address of the vertex buffer we have just created to the CLeafBinData’s vertex buffer 
pointer so that this structure now contains pointers to both the vertex buffer and the index buffer that 
should be bound to the device in order to draw its render batches. Since we are making a copy of the 
vertex buffer pointer, we also increase its reference count.  
 
        // Store a reference to the VB in the data area to make it easy to process 
        pData->m_pVertexBuffer = pVB; 



 
 
 

83 

        pVB->AddRef(); 

 
Finally, having committed the index array for the current leaf bin to an index buffer, we set the size of 
this array back to zero so that when the function returns we can start collecting indices from the 
beginning of this array for the next vertex buffer. That ends the loop that is performed for each leaf bin. 
 
        // Reset bin size to 0, we've commited the data 
        BinSizes[ AttribID ] = 0; 
 
    } // Next set of index data 
 
    // Success! 
    return true; 
} 

 
When the loop ends, every leaf bin that had indices collected for it for the current vertex buffer will have 
had an index buffer created for it and assigned to it. With the job done, the function then returns a 
success flag. 

WeldBuffers - CBaseTree 

We saw this method being called from the BuildRenderData method discussed previously. It is used to 
perform a weld on the passed vertex array to (hopefully) compact the data and make some more room in 
the buffer for additional vertices. We call this function whenever the buffer is found to be full so that we 
are able to squeeze as many triangles into a single vertex buffer as possible. Fewer vertex buffers results 
in reduced vertex T&L and a smaller number of index and vertex buffer changes during rendering. 
 
The function accepts six parameters. The first two parameters describe the size and contents of the 
passed vertex array that is going to be welded by this function. The second two parameters are maps that 
contain the index arrays collected for each leaf bin which indexed into the vertex array and the size of 
each leaf bin’s index array. We must pass the index arrays collected for each leaf bin because they index 
into the passed vertex array. If the vertex array is going to be compacted and have duplicated vertices 
collapsed into a single vertex, the index arrays must also be updated so that any indices in any leaf bins’ 
array that reference these deleted vertices are properly updated to reference the new vertices that the 
original vertices were collapsed onto. The final two parameters are optional. They allow us to pass the 
address of two vertex indices that will have their values tracked and remapped by the weld and returned 
to the caller. For example, if we passed in variables that held the values 12 and 24 respectively, this tells 
the weld function that we would like to know where the 12th and 24th vertex were repositioned in the 
vertex array after the weld. If these two vertices were relocated to slots 5 and 6 in the vertex buffer after 
the weld, on function return, the variable passed as the fifth parameter would contain 5 and the variable 
passed as the sixth parameter would contain the value 6. We saw why we needed to track the remapping 
of certain vertices during the BuildRenderData function. If a weld was performed partway through 
adding the triangles of a polygon to the vertex buffer, we needed to track where the two vertices used in 
the last triangle (that will also be used in the next triangle) will be positioned after the weld. This allows 
us to reference these vertices as we add the rest of the triangles in the polygon using their new vertex 
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buffer positions. All other times that a weld is performed in the BuildRenderData method, NULL is 
passed for the final two parameters since we only need to track the vertex positions when the weld 
happens mid-way through adding a single polygon.  
 
Performing a weld seems like it would involve a good amount of code as you can imagine the various 
conditional tests that would be needed and we would certainly want a fast way of determining which 
vertices are candidates for collapse. While it would not be very difficult to code from scratch, 
fortunately D3DX includes a welding function that works with D3DX meshes and it is quite fast. All we 
will have to do is temporarily build a D3DX mesh using the vertex and index data passed in, and 
perform a weld on the mesh and extract the vertex and index data back out again into their original 
arrays which can then be returned to the caller. The mesh can then be released since it was only used 
temporarily so that we would get access to the D3DX weld functionality. Because the vertex array will 
be welded and all the index arrays (one for each leaf bin) describe triangles in that vertex array, we can 
think of the vertex array and all the index arrays combined as describing a single mesh. Therefore, what 
we will do is create a mesh into which we will copy all the vertex data in the vertex array into its vertex 
buffer and all the indices from all the index arrays (collected for each leaf bin in the BinIndexData map) 
into its index buffer. This means we will need to know how large and allocation we will for the 
temporary mesh’s index buffer so that we can inform the mesh creation function of how many triangles 
it will need to store.  
 
The first thing we do in this function is loop through all the rows in the BinSize map and sum up the 
sizes of each index array (one per leaf bin). We divide the total size by three (# indices per triangle) so 
that at the end of the loop we know the total number of triangles we will need to store in the mesh. 
Remember, this mesh will contain all of the triangles contained in all of the index arrays we have 
collected for each leaf bin/subset that reference the passed vertex buffer. 
  
ULONG CBaseTree::WeldBuffers( ULONG VertexCount,  
                              CVertex * pVertices,  
                              map<ULONG,ULONG*> & BinIndexData,  
                              map<ULONG,ULONG> & BinSizes,  
                              ULONG * pFirstVertex /* = NULL */,  
                              ULONG * pPreviousVertex /* = NULL */ ) 
{ 
    ULONG       i; 
    HRESULT     hRet; 
    LPD3DXMESH  pMesh; 
    ULONG       TotalTriangles = 0; 
    ULONG       nFirstIndex = 0xFFFFFFFF, nPreviousIndex = 0xFFFFFFFF, Counter = 0; 
 
    // Total the full amount of triangles in the bin data so far 
    map<ULONG,ULONG>::iterator SizeIterator = BinSizes.begin(); 
    for ( ; SizeIterator != BinSizes.end(); ++SizeIterator ) 
    { 
        TotalTriangles += (SizeIterator->second / 3); 
 
    } // Next Index Buffer 
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At this point the TotalTriangles local variable will contain all the triangles described by every index 
array. We now create a D3DXMesh that is large enough to store the correct number of vertices and 
triangles. 
 
    hRet = D3DXCreateMeshFVF( TotalTriangles,  
                              VertexCount,  
                              D3DXMESH_SYSTEMMEM |  
                              D3DXMESH_SOFTWAREPROCESSING | D3DXMESH_32BIT, 
                              VERTEX_FVF,  
                              m_pD3DDevice,  
                              &pMesh ); 
 
    if ( FAILED( hRet ) ) return false; 

 
Notice that since we are using this mesh for CPU bound operations (we do not intend to render it) we 
pass in the D3DXMESH_SYSTEMMEM and D3DXMESH_SOFTWAREPROCESSING flags so that 
we have a mesh created in system memory. 
 
Next, we lock its vertex buffer, its index buffer, and its attribute buffer because we will need to fill the 
mesh with the data from our vertex and index arrays. 
 
    ULONG   *pDestIndices, *pAttributes; 
    CVertex *pDestVertices; 
 
    // Lock the vertex, index and attribute buffers ready for population 
    if ( FAILED( pMesh->LockIndexBuffer( 0, (void**)&pDestIndices )))  
         { pMesh->Release(); return VertexCount; } 
 
    if ( FAILED( pMesh->LockVertexBuffer( 0, (void**)&pDestVertices )))  
         { pMesh->Release(); return VertexCount; }; 
 
    if ( FAILED( pMesh->LockAttributeBuffer( 0, &pAttributes )))  
         { pMesh->Release(); return VertexCount; } 

 
We copy the vertices in the passed array into the mesh’s vertex buffer and then set every entry in the 
mesh’s attribute buffer to zero.  
 
    // Copy over the vertices 
    memcpy( pDestVertices, pVertices, VertexCount * sizeof(CVertex) ); 
 
    // Zero out the attribute buffer 
    memset( pAttributes, 0, TotalTriangles * sizeof(ULONG) ); 

 
Why do we fill the attribute buffer with zeros? We do this because the D3DX weld function may 
perform operations on the indices that cause them to be moved around in the index buffer. For example, 
triangles may be shuffled around so that they are grouped by subset. The problem is, although we wish 
the vertex data to be compacted and the indices to have their values updated to correctly use these 
vertices, we must be absolutely sure that the weld function never changes the location of the triangles 
within the mesh’s index buffer. We need to know that the triangles stay exactly where they are so that 
we can extract them out again into the index arrays for each leaf bin. Imagine for example that we added 
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10 triangles from leaf bin 1 followed by 10 triangles from leaf bin 2 to the mesh’s index buffer. Provided 
the triangles never have their positions within the index buffer changed, we know that after the weld we 
can extract the first 10 triangles back out into leaf bin 1’s array and the second 10 back out into leaf bin 
2’s index array. However, if these triangles were repositioned, we would lose all knowledge of which 
triangles in the welded index buffer need to be copied back out into their original index array. By 
placing all zeros in the mesh’s attribute buffer, we trick the mesh into thinking that all the triangles 
belong to a single subset (subset zero) and therefore, the optimization that moves triangles for better 
subset batching will not be performed. 
 
Our next task is to loop through every row in the BinIndexData map and extract the index pointer for 
each subset/leaf bin. We then copy the indices stored in each index array into the mesh’s index buffer. 
The next section of code starts the beginning of this loop. 
 
    // Now we need to update the indices 
    map<ULONG,ULONG*>::iterator BinIterator = BinIndexData.begin(); 
    for ( ; BinIterator != BinIndexData.end(); ++BinIterator ) 
    { 
        ULONG AttribID = BinIterator->first; 
        ULONG Size     = BinSizes[ AttribID ]; 
 
        // Skip if there is no data 
        if ( Size == 0 ) continue; 
 
        // Copy over the indices 
        ULONG * pIndices = BinIterator->second; 
        memcpy( pDestIndices, pIndices, Size * sizeof(ULONG) ); 

 
At this point in the current iteration of the loop we have copied over all the indices of the current index 
array we are processing into the mesh’s index buffer (pDestIndices). 
 
The next section of the loop code may look a little strange, so let us quickly explain why it is needed. As 
the final two input parameters, the caller can pass the address of two unsigned longs that describe vertex 
indices into the original vertex array passed. We know that the weld function will automatically update 
all the indices in the index buffer so that the triangles correctly index the updated vertices in the post-
weld vertex buffer (even if many of the original vertices were deleted/collapsed). However, if we call 
the weld function partway though adding the triangles of a single polygon to the vertex array (which we 
might do in the BuildRenderData method), we will need to track the position changes made to two of the 
polygons vertices. This way, when the weld function returns, we can continue to add another triangle 
using the two vertices used in the previous triangle that was added before the weld function was called. 
We explained where and why we need this functionality when we covered the BuildRenderData method 
earlier, so refer back to that discussion if you are fuzzy on the details. 
 
If either pFirstVertex or pPreviousVertex are not NULL, it means they point to variables assigned by the 
caller that contain the indices of two vertices. It also means that the caller would like to know where 
these two vertices end up in the vertex array after the weld. Unfortunately, the weld function does not 
give us this information, so we will have to do a little work beforehand. Essentially, as we add each 
index array to the index buffer, we will loop through those indices searching for an index that references 
the vertex we are interested in tracking the position changes for. For example, if *pFirstVertex=10 it 
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means the caller would like to know the new index for vertex 10 if it got moved in the vertex array 
during the weld. In order to do this, we test each index array as we add it and search for the first index 
we find that references this vertex. We then record the location of this index. After the weld, the vertices 
may have changed, but the index we recorded will still be in the same location in the index buffer, so we 
can read back the value it now contains. This will tell us the vertex that index has been updated to use 
and the new position of the original vertex 10 in the new vertex buffer. 
 
Let us just step through an example so that the logic is clear. Let us say that the caller would like to 
know the post-weld positions of vertex 10 and vertex 12. They would pass in as the pFirstVertex and 
pPreviousVertex parameters pointers to two variables that contain the values 10 and 12, respectively. In 
this next section, we will search for the first index in any index buffer that currently indexes vertices 10 
and 12 in the vertex array and we will record the locations of these indices in the index buffer. Let us 
imagine that we found that the first index that references vertex 10 is in leaf bin 2’s index array at 
location 100 in the mesh’s main index buffer. We will record this index location. Let us also assume that 
we find the first reference to vertex 12 in leaf bin 5 and record the location where it has been added to 
the mesh’s index buffer as well. Assume that it has been placed at index 500 in the mesh’s index buffer. 
So we have the following. 
 
*pFirstVertex = 10 
*pPreviousVertex = 12 
 
nFirstIndex = 100 
nPreviousIndex =  500 
 
Just to be clear, we have determined that there is an index that references vertex 10 stored at location 
100 in the mesh’s index array and an index that references vertex 12 at location 500 in the mesh’s index 
array. Once we have recorded these values, we no longer need to search for it anymore; we are just 
interested in finding the first occurrence of these two vertices in the index buffer. After the weld is 
performed, vertices 10 and 12 may be in completely different locations. However, the triangles (and thus 
their indices) in the mesh index buffer will not have changed position at all, but they will have had their 
values updated by the weld function so that they correctly reference the updated vertex buffer. 
Therefore, all we have to do is read back the values now stored in the index buffer at locations 100 and 
500 and we will have the new locations of vertex 10 and 12 in the vertex buffer. We can then return this 
information to the caller. 
 
Let us look at the code in this loop that searches and records the index locations prior to the weld being 
performed. Notice that we only perform the search if we have not already found the first index that 
references each vertex.    
 
        if ( (pFirstVertex && nFirstIndex == 0xFFFFFFFF) ||  
             (pPreviousVertex && nPreviousIndex == 0xFFFFFFFF) ) 
        { 
            // Loop through the indices 
            for ( i = 0; i < Size; ++i ) 
            { 
                if ( (pFirstVertex &&  
                      nFirstIndex == 0xFFFFFFFF)  
                      && pIndices[i] == *pFirstVertex ) nFirstIndex = Counter + i;  
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                if ( (pPreviousVertex &&  
                      nPreviousIndex == 0xFFFFFFFF)  
                      && pIndices[i] == *pPreviousVertex) nPreviousIndex=Counter+i; 
 
            } // Next Index 
 
        } // End if search for remap 

 
At the start of the code, nFirstIndex and nPreviousVertex are set to 0xFFFFFFFF which means we have 
not yet found the location of an index that references the vertex. Notice we only step into this code block 
if we have not yet found both nFirstVertex and nSecondVertex and if the application did not pass NULL 
as the pFirstVertex and pPreviousVertex parameters. Inside the code block we loop through every index 
in the index array we are about to add and test to see if its value is equal to pFirstVertex. If it is, then we 
have found an index that references the first vertex we are interested in tracking, so we record the 
location of that index in the nFirstIndex variable. As this variable will no longer be set to 0xFFFFFFFF, 
the search for this index will not be performed again when adding any other vertex arrays. We do 
exactly the same thing for the pPreviousVertex and record the location of the first index we find that 
references it in nPreviousVertex. Notice above that the Counter variable starts at zero and is incremented 
at the bottom of the loop by the size of the index array we just added to the mesh’s index buffer. 
Therefore, at the beginning of each loop iteration, it contains the location of first index in the index 
buffer of the index array we just added. Thus, Counter + i describes exactly where the index we have 
just found will be located in the mesh’s index buffer (pre- and post-weld). 
 
Finally, at this point in the loop we have added the current index array to the index buffer and have 
performed a search through those indices for the tracked vertices, so we increment the index buffer 
pointer past the new indices we just added so that it points at the location where the next index array that 
we process in the next iteration of the loop should be added. We also increment the Counter variable by 
the size of the index array so that it always describes (at the beginning of each loop iteration) the 
location in the index buffer where the index array that has just been added begins.   
 
        // Move the destination index array on for the next batch 
        pDestIndices += Size; 
        Counter      += Size; 
 
    } // Next Index Buffer 

 
Once this has been done, we unlock all the buffers in the mesh since it now contains all the vertex and 
index data needed to perform the weld. 
 
    // Unlock the buffers 
    pMesh->UnlockIndexBuffer(); 
    pMesh->UnlockVertexBuffer(); 
    pMesh->UnlockAttributeBuffer(); 

 
You will recall from Chapter 8 that the D3DXWeld function must be passed a D3DXWELDEPSILONS 
structure that allows us to control how fuzzy the comparison is between two vertices. This allows us 
some control over what are considered duplicate vertices. We can assign the various vertex components 
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different epsilons so that two vertices that are almost the identical, but have positions that vary by as 
little as 0.01 (for example) are considered to be the same and are collapsed into a single vertex. Another 
example would be two vertices that share the exact same location and have normals that are similar 
enough to warrant welding them into a single vertex. 
 
The D3DXWELDEPSILONS structure is shown below as a reminder. The larger the epsilon we assign 
to a vertex component, the more fuzzy the compare will be when determining whether two vertices are 
the same for that component. 
 
typedef struct _D3DXWELDEPSILONS 
 { 
    FLOAT Position; 
    FLOAT BlendWeights; 
    FLOAT Normal; 
    FLOAT PSize; 
    FLOAT Specular; 
    FLOAT Diffuse; 
    FLOAT Texcoord[8]; 
    FLOAT Tangent; 
    FLOAT Binormal; 
    FLOAT Tess Factor; 
} D3DXWELDEPSILONS; 
 
We will set all the members of this structure to a standard epsilon of 0.001. Rather than assign each 
value of the structure to 0.001 individually, we know that it really is just a block of memory representing 
10 floats, so we will just instantiate the structure, access it via a float pointer, and loop through the 10 
floats assigning each location a value of 0.001 (1e-3). 
 
    // Set all epsilons to 0.001;  
    D3DXWELDEPSILONS WeldEpsilons; 
    float * pFloats = (float*)&WeldEpsilons; 
    for ( i = 0; i < sizeof(D3DXWELDEPSILONS) / sizeof(float); i++ )  
         *pFloats++ = 1e-3f; 

 
Now we pass this structure, along with the mesh pointer itself, into the D3DXWeldVertices method to 
perform the weld. 
 
    // Weld the vertex data 
    hRet = D3DXWeldVertices( pMesh,  
                             D3DXWELDEPSILONS_WELDPARTIALMATCHES | 
                             D3DXWELDEPSILONS_DONOTSPLIT,  
                             &WeldEpsilons, NULL, NULL, NULL, NULL ); 
 
    if ( FAILED(hRet) ) { pMesh->Release(); return VertexCount; } 

 
The D3DXWELDEPSILONS_WELDPARTIALMATCHES flag instructs the function that we would 
like duplicated vertices removed. The D3DXWELDEPSILONS_DONOTSPLIT flag instructs the 
function to never split (i.e., duplicate) vertices that are in separate attribute groups. This is passed just to 
be safe, since splits should never happen because we have zeroed out the attribute buffer. As far as the 
mesh is concerned, it only has a single subset. 
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With the weld performed, we now need to exact the mesh data back out into the vertex and index arrays 
that were passed into the function so that the modified data is returned to the caller. The first step is to 
lock the mesh vertex and index buffers and update the VertexCount parameter so that it now reflects the 
number of vertices in the welded mesh. 
 
    // Lock the vertex and index buffers ready for extraction 
    if ( FAILED( pMesh->LockIndexBuffer( 0, (void**)&pDestIndices )))  
         { pMesh->Release(); return VertexCount; } 
 
    if ( FAILED( pMesh->LockVertexBuffer( 0, (void**)&pDestVertices )))  
         { pMesh->Release(); return VertexCount; }; 
 
    // Store updated vertex count 
    VertexCount = pMesh->GetNumVertices(); 

 
In the next section we copy the vertices from the mesh’s vertex buffer into the passed pVertices array. 
This overwrites the old vertex data contained there. We then access the indices in the index buffer at 
locations nFirstIndex and nPreviousIndex to retrieve the new locations of vertices described by the 
pFirstVertex and pPreviousVertex parameters. The variables addressed by these two pointers have their 
values updated to contain the new post-weld position of these vertices, which will be accessible to the 
caller on function return.  
 
    // Copy over the vertices 
    memcpy( pVertices, pDestVertices, VertexCount * sizeof(CVertex) ); 
 
    // Update remap information if it was requested 
    if ( pFirstVertex    ) *pFirstVertex    = pDestIndices[ nFirstIndex ]; 
    if ( pPreviousVertex ) *pPreviousVertex = pDestIndices[ nPreviousIndex ]; 

 
Finally, all that is left to do is iterate through each index array in the BinIndexData map and overwrite 
their indices with the modified mesh indices. 
 
    // Now we need to copy back the index buffers 
    BinIterator = BinIndexData.begin(); 
    for ( ; BinIterator != BinIndexData.end(); ++BinIterator ) 
    { 
        ULONG AttribID = BinIterator->first; 
        ULONG Size     = BinSizes[ AttribID ]; 
 
        // Skip if empty 
        if ( Size == 0 ) continue; 
 
        // Copy over the indices 
        memcpy( BinIterator->second, pDestIndices, Size * sizeof(ULONG) ); 
 
        // Move the destination index array on for the next batch 
        pDestIndices += Size; 
 
    } // Next Index Buffer 
 
    // Unlock the buffers and release the mesh 
    pMesh->UnlockIndexBuffer(); 
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    pMesh->UnlockVertexBuffer(); 
    pMesh->Release(); 
 
    // Return new vertex count. 
    return VertexCount; 
} 

 
At the end of this process, we unlock the mesh’s buffers and release the mesh before returning the new 
modified vertex count of the passed vertex array back to the caller. 
 
We have now covered all the code involved in preparing the data for rendering and all of the processes 
invoked by the CBaseTree::BuildRenderData function. When the BuildRenderData method returns, all 
the tree’s vertex buffers and leaf bins will have been constructed and are ready for use. In the next 
section we will examine the code that manages the visibility pass on the tree and the code for rendering 
that visible data. 

15.4.3 Processing Tree Visibility / Rendering the Static Data 

Before the application instructs the spatial tree to draw any of its subsets, it should first tell it to perform 
a visibility pass by calling the ISpatialTree::ProcessVisibility method. Because this method is a traversal 
method that is dependant on node type and the number of children each node has, it must be 
implemented in the derived classes. That is, the quad-tree’s version of this method will step into four 
children at each node while the oct-tree’s version will step into eight.  
 
Although this method must be implemented in the derived class, all that is really in the derived class is 
the traversal logic that determines whether a given node is within the frustum or not and therefore, 
whether the children should be traversed. For each leaf that is found to have its bounding box inside the 
camera’s frustum, the ProcessVisibility method will issue a call to the leaf’s SetVisible method. As we 
have seen, it is this method that adds the leaf’s triangles to render batches in their respective leaf bins. 
Thus, we have already done the hard work. All that is left to do in the derived class is the tree traversal 
and frustum tests at each node. 
 
Because the CBaseTree object must make sure that the render batch lists for each leaf bin are reset prior 
to the visibility traversal taking place, the derived class’s ProcessVisibility method must call the 
CBaseTree::ProcessVisibility method before starting the visibility pass. Below we show the code to the 
CQuadTree::ProcessVisibility method.   
 
void CQuadTree::ProcessVisibility( CCamera & Camera ) 
{ 
    CBaseTree::ProcessVisibility( Camera ); 
 
    // Start the traversal. 
    UpdateTreeVisibility( m_pRootNode, Camera ); 
} 
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As you can see it is passed (by the application) the CCamera object whose frustum will be used for the 
visibility pass. It first calls the base class version of the function prior to calling its own 
UpdateTreeVisibility method. The UpdateTreeVisibility method is the recursive function that traverses 
the tree and performs the frustum tests at each node. The ProcessVisibility method in the derived classes 
is really just a wrapper. In fact, the ProcessVisibility method in all derived classes will look identical to 
this one so we will not show them all. Each derived class’s version of this method will first call the 
CBaseTree::ProcessVisibility method to reset the batch lists in each leaf bin. Then it will call its version 
of the UpdateTreeVisibility method to perform the visibility traversal starting at the root node. 
Throughout this section we will only discuss the implementation in the CQuadTree derived class and 
you can check the source code for the implementations in the other cases.  

ProcessVisibility – CBaseTree 

This function is called from the derived class’s version of the function to reset the batch lists in each leaf 
bin. The batch lists are compiled in the CLeafBinData structures in each leaf bin and represent a 
vertex/index buffer pair. The function loops through each leaf bin and then loops through each 
CLeafBinData pointer in its internal array. It then resets the CLeafBinData::m_nBatchCount member of 
each CLeafBinData structure in the leaf bin to zero.  
 
void CBaseTree::ProcessVisibility( CCamera & Camera ) 
{ 
    LeafBinMap::iterator        BinIterator  = m_LeafBins.begin(); 
    ULONG                       i; 
 
    // Iterate through the leaf bins and destroy them 
    for ( ; BinIterator != m_LeafBins.end(); ++BinIterator ) 
    { 
        CLeafBin * pBin = BinIterator->second; 
        if ( !pBin ) continue; 
 
        // For each buffer 
        for ( i = 0; i < m_nVBCount; ++i ) 
        { 
            CLeafBinData * pData = pBin->GetBinData( i ); 
            if ( !pData ) continue; 
 
            // Reset the batch count 
            pData->m_nBatchCount = 0; 
 
        } // Next Buffer 
 
    } // Next Leaf Bin 
 
    // Clear the visible leaf list. 
    m_VisibleLeaves.clear(); 
} 
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15.4.4 Traversing the Tree to Ascertain Leaf Visibility 

It is clear from the previous discussion that the visibility traversal will be performed in the derived 
class’s UpdateTreeVisibility method. In theory, this method could be extremely simple and just traverse 
through all the nodes in the tree calling the CCamera::BoundsInFrustum method to test if the current 
node’s bounding volume is within the frustum. If it is not, then it calls the node’s SetVisible method to 
traverse down the rest of that tree and set the visible status all leaves below it to false. If the node is 
inside the frustum (or partially inside the frustum) we can traverse into its children and test their 
volumes against the frustum in the same manner. Eventually, we will traverse to all leaves that are inside 
the frustum, at which point the leaf’s SetVisible method will be called. As we have seen, this will cause 
the triangles in those leaves to be added to the render batches in the leaf bins in which they are 
contained. 
 
While there is certainly nothing wrong with such a strategy, it does not take full advantage of the 
hierarchical nature of the tree to reduce the number of plane tests that will need to be performed at each 
node. Furthermore, it does not take into account the fact that if node was found to be outside a frustum 
plane in the previous visibility update (outside the frustum), because the movement of the camera will 
typically be very small between frame updates, the node will probably still be outside that frustum plane 
in the next update. Therefore, when testing the bounding box of a node against the frustum, we should 
test the plane it failed on in the last update first in the hopes of rejecting the node immediately without 
having to perform tests for the rest of the frustum planes. This is referred to as frame coherence. It is 
essentially the concept of using information collected on a previous frame update to optimize the 
process in the current one. Let us discuss the frame coherence optimization first. 

15.4.5 Frustum Culling with Frame to Frame Coherence 

Figure 15.5 depicts a 2D representation of a node’s AABB and the current world space position of the 
camera’s frustum planes. As this is a 2D representation, the frustum has four planes instead of the usual 
six. We can clearly see that the node is not visible because its bounding box is outside the frustum. This 
obviously means the node’s children are also invisible and there is no need to test them against the 
frustum. Thus, we can immediately mark this node and all its children as invisible. 
 
The planes of the frustum are labeled 1 through 
4 and describe the order in which the frustum 
planes will be tested against the bounding box. 
  

Note: Frustum culling AABBs was discussed 
in Module I and will not be discussed again 
here. 

 
If we walk though the frustum test, we will see 
that it is only when the polygon box is tested 
against the fourth plane that we know it is 
outside the frustum.  

 
Figure 15.5 



 
 
 

94 

For example, we can see that when plane 1 is tested, the box is not totally in front of the plane. Since it 
spans this plane, the box could very well be in the frustum at this point. Next we test the box against 
frustum plane 2 where we once again discover the box is totally in its backspace and therefore may still 
be within the frustum. Remember, we only know that an AABB is inside the frustum if the box is behind 
all planes (plane normals are assumed to be facing outwards in this example). So far we have tested two 
planes and have not found a plane the box is totally in front of, so next we move on to plane 3. Once 
again, the box is not totally in front of this plane, so we know at this point that the box is at least 
partially contained behind the three planes tested and may well be in the frustum. Finally, we test 
frustum plane 4 where we discover that the box is totally in its front space and therefore could not 
possibly be visible. At this point we set the visibility status of all leaves underneath that node to false. 
 
Although this works fine, it took us four plane tests to determine that the box was outside. However, if 
we knew in advance that we would fail against plane 4, we could have rejected the node with one plane 
test. Although this might sound like a minimal savings at the node level, just remember that your spatial 
tree might have thousands of nodes, and the 3D frustum will have six planes. In the worst cases, you 
could end up having to perform six frustum plane tests at a great many nodes. 
 
If we examine Figure 15.5 again we can imagine that during the next frame update, where the camera 
will likely only be moved by a very small amount (say, vertically), it would fail on the same plane again. 
So if we know the plane that we failed on last time, which in this case was frustum plane 4, we could 
store the index of that plane in the node and make sure that when this node is encountered in the next 
visibility pass, we test plane 4 first. Although our first visibility pass would require that we test all four 
planes to learn that the fourth plane was the one that caused the rejection, the next visibility pass (next 
iteration of the game loop) can be potentially optimized when we visit that node, by reading back the 
index of the plane we failed on last time and making sure that the CCamera::BoundsInFrustum function 
test this plane first. In a great many cases, this will lead to immediate rejection of large portions of the 
tree using a single plane test. Again, if a node was outside a certain frustum plane during one frame 
update, it will probably be outside that same frustum plane during the next frame update (camera 
changes are generally minimal between frames when an application is running at 30+ frames per 
second). 
 
We will implement this frame-to-frame coherency in our visibility system. You now know why each of 
the node classes we developed in the previous lesson stored that signed char member variable called 
LastFrustumPlane. As a reminder, we show the CQuadTree node class declaration below. 
 
class CQuadTreeNode 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
     CQuadTreeNode( ); 
    ~CQuadTreeNode( ); 
 
     
    // Public Functions for This Class 
    void SetVisible( bool bVisible ); 
 
    // Public Variables for This Class 
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    CQuadTreeNode * Children[4];        // The four child nodes 
    CBaseLeaf     * Leaf;               // If this is a leaf, store here. 
    D3DXVECTOR3     BoundsMin;          // Minimum bounding box extents 
    D3DXVECTOR3     BoundsMax;          // Maximum bounding box extents 
    signed char     LastFrustumPlane;   // The frame coherance 'last plane' index. 
}; 

 
When the node is first created, its LastFrustumPlane index will be set to -1 in the constructor. This is 
because we do not yet have the index of a frustum plane at which this node failed. It will also be set 
back to -1 for any node that was found to be visible in the previous visibility update. However, for nodes 
that are currently outside the frustum, or were found to be outside the frustum in the previous visibility 
update, this member will store a value between 0 and 5, describing the index of the first frustum plane 
that generated the outside the frustum result. When this node is visited in the next visibility update, and 
the CCamera::BoundsInFrustum method is called to test the bounding box of the node against the 
frustum planes, we will pass this plane index into that function to instruct it to test this plane first. 
Hopefully, the BoundsInFrustum method will immediately determine that the node is still outside this 
plane and will return the invisible status. If the camera has been moved from the previous position and 
the node is no longer totally in front of this plane, we will just perform a test on the rest of the planes as 
normal. If one of the other planes is found to have the AABB totally in its front space, the node’s 
LastFrustumPlane member is updated to store the index of that plane. If the box is not in front of any 
planes and is therefore inside (or partially inside) the frustum, the node’s LastFrustumPlane member is 
set to -1 and a visible status is returned for the node. The next time this node is encountered in the next 
visibility process, it will have -1 in its LastFrustumPlane member which means the BoundsInFrustum 
test will just loop through and test all 6 planes in the usual way. 
 
In a moment we will see how the CCamera::BoundsInFrustum method has been updated to test against 
the chosen frustum plane first if such a plane index is passed into the function. We will also see how it 
will update the value of the node’s LastFrustumPlane member if a new ‘first’ rejection plane is found. 
But before we discuss the code for the frame-to-frame coherence optimization, we will talk about a 
second optimization that can be introduced to make use of the spatial hierarchy and further reduce the 
number of frustum plane tests that have to be performed at each node. 
 

15.4.6 Hierarchical Frustum Culling  

In the previous chapter we discussed hierarchical frustum culling as the process of stepping through the 
nodes of the tree and rejecting any node (and all its children) that is outside the frustum from our 
rendering pipeline without further testing. However, we can further exploit the parent/child relationship 
of nodes in the tree to introduce another means for frustum plane test reduction in the typical case. 
 
This technique is used to speed up the case where the node is not totally inside or outside the frustum, 
but is intersecting in such a way that the node’s volume is totally behind/inside one or more of the 
frustum planes. Although we know that in the intersecting case, the children of the node must also be 
tested against the frustum, we also know (because of the child/parent relationship) that if the parent node 
is totally behind/inside one of the frustum planes, all of its child nodes/leaves will be as well. Therefore, 
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when testing the children, we no longer need to test this plane against their volumes because we know 
that they will always be found to be in the plane’s back space. 
 
Figure 15.6 demonstrates this idea in two dimensions by showing a parent node’s AABB and the 
AABBs of its four immediate children. 
 

The important frustum plane to 
look at in this example is 
frustum plane 4. We can see 
that the parent node’s volume 
intersects frustum planes 1, 2, 
and 3 and is totally behind 
frustum plane 4. This tells us 
that part of the parent node is 
behind all frustum planes so the 
node is visible. As the node is 
not completely inside the 
frustum, this does not mean 
that we should set all child 
nodes to visible automatically. 
We can see for example, that 
although the parent node 
intersects the frustum, three of 
its children do not. Indeed they 
are fully outside the frustum. 

Therefore, if the frustum is intersecting the node, the child nodes must also be tested to determine their 
visibility status. This means that in a worst case scenario, we have to do six frustum plane tests against 
the node’s volume and perform the same six tests for each of its children, and so on.  
 
If we look at frustum plane 4 in Figure 15.6 we can see that the parent node is completely behind 
(inside) this plane. But because the parent node is behind plane 4, so are all of its children. This is clear 
from just looking at the diagram. So we recognize that there is no need to test this plane against the 
children. The parent can essentially say to the child nodes, “I am behind this plane, so all of you are too. 
Do not bother performing a test against this plane; just assume that you are behind it and test the other 
planes instead”.  
 
The recursive visibility process will pass an array of bits from parent to child as it traverses the tree. 
Each bit will represent one of the six frustum planes. The CCamera::BoundsInFrustum function will be 
updated to take an unsigned char whose first six bits will be used to represent the status of the frustum 
planes. This unsigned char will be set to zero at the beginning of the traversal. 
 
When a node is reached, its bounding box will be passed into the CCamera::BoundsInFrustum function 
along with this unsigned char. When this function finds any plane that the AABB of the node is 
completely behind, it will set the bit to 1 in the unsigned char corresponding to that plane. When the 
function returns back to the node, the node flag will have the corresponding bits set to 1 for any planes 
the node’s volumes is totally behind. This unsigned char is then passed down to the children. The child 

Figure 15.6 
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nodes will then pass this unsigned char of frustum plane bits into their CCamera::BoundsInFrustum calls 
so that that any planes at this node which result in the fully behind case can also have their bits set to 1. 
The important point here however, is that the CCamera::BoundsInFrustum test will only test planes 
which have not had their bits set to 1 in the passed unsigned char.    
 
Now that we know the two optimizations we will apply during the frustum culling traversal of the tree, 
we are ready to look at an example of the UpdateTreeVisibility method. Since these methods are the 
same in all derived classes (with the exception of having to step into a varying number of children), we 
will only show the CQuadTree::UpdateTreeVisibility method here. 

UpdateTreeVisibility - CQuadTree 

This method is called from the CQuadTree::ProcessVisibility function to start the recursive process for 
the root node. It repeatedly calls itself until all leaves in the tree which intersect the camera’s frustum 
have there visible status set. The function is very simple as nearly all the optimizations are performed 
inside the modified CCamera::BoundsInFrustum method, which we will discuss in a moment. 
 
The function is passed three parameters. The first is the node currently being visited by the function. 
This will be the root node of the tree when this function is first called from the 
CQuadTree::ProcessVisibility method. The second parameter is the camera whose frustum will be used 
for the visibility test. The third parameter is the function’s means of passing the array of ‘Totally Inside’ 
frustum bits from one node to the next. Since this parameter is not passed for the root node, the value of 
the FrustumBits unsigned char will be set to 0 when tree traversal begins at the root. 
 
The first thing the function does is call the CCamera::BoundsInFrustum method, passing in the node’s 
bounding box extents, the unsigned char of frustum plane bits, and the node’s LastFrustumPlane 
member.  
 
void CQuadTree::UpdateTreeVisibility( CQuadTreeNode * pNode,  
                                      CCamera & Camera,  
                                      UCHAR FrustumBits /* = 0x0 */ ) 
{ 
    unsigned long i; 
    CCamera::FRUSTUM_COLLIDE Result=Camera.BoundsInFrustum( pNode->BoundsMin, 
                                                            pNode->BoundsMax,  
                                                            NULL,  
                                                            &FrustumBits,  
                                                         &pNode->LastFrustumPlane); 
 

 
The third parameter to this function is an optional world matrix that can be used to transform the input 
bounding box into world space prior to performing the test. As our node’s bounding box is already in 
world space, no transformation is required so we set the matrix pointer to NULL. 
 
Before examining the rest of this function, let us just make sure we understand what may have happened 
when the above function has returned. Any bits set to 1 in the passed FrustumBits char will not be tested 
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against the frustum. Instead, the function will assume that the node’s box is totally behind these planes 
and will progress to the next plane that needs to be tested. If any of the planes that did require testing 
(their bits were set to 0) are found to contain the bounding box completely in its back space, that plane 
will have its bit set to 1 in the FrustumBits char and will also not need to be tested again for any children 
of this node. Finally, if the BoundsInFrustum method did determine that the node is outside the frustum, 
the LastFrustumPlane member of the node will have its value altered such that it contains the index of 
the first plane it failed on. This will be the first plane that is tested by this function the next time the 
BoundsInFrustum function is called for this node. 
 
The BoundsInFrustum method will return one of three values which are members of the 
FRUSTUM_COLLIDE enumerated type defined inside the CCamera namespace. This enumerated type 
is shown below with an explanation of its members. 
 
enum FRUSTUM_COLLIDE 
{ 
        FRUSTUM_OUTSIDE     = 0, 
        FRUSTUM_INSIDE      = 1, 
        FRUSTUM_INTERSECT   = 2, 
        FRUSTUM_FORCE_32BIT  = 0x7FFFFFFF 
}; 
 
FRUSTUM_OUTSIDE 
The node’s bounding volume is totally outside the frustum (the node is not visible). This means we will 
not perform any more frustum tests down this branch of the tree and we can immediately set the 
visibility status of any leaves stored under this node to false. If the parent node is completely outside the 
frustum, so too must be all of its children. 
 
FRUSTUM_INSIDE 
The node’s bounding volume is contained completely within the frustum (the node is visible). This also 
means that we do not have to perform any more frustum tests down that branch of the tree and we can 
immediately set the visibility status of all leaves stored under that node to true. If the parent node is fully 
contained within the frustum, so too must be all of its children. 
 
FRUSTUM_INTERSECT 
The node’s bounding volume is partially contained within the frustum (the node is visible). This means 
we must traverse into the children and continue to perform frustum tests for each child. If the parent 
node is partially intersecting the frustum, one of more of its children will be visible. 
 
Now that we know what the results mean, let us see the code that processes them in a switch statement. 
 
    // Test result of frustum collide 
    switch ( Result ) 
    { 
    case CCamera::FRUSTUM_OUTSIDE: 
        // Node is not at all visible 
        pNode->SetVisible( false ); 
        return; 
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If the frustum test returned FRUSTUM_OUTSIDE then the node’s bounding volume is completely 
outside the frustum, so the node is not visible and neither are any of its children. When this is the case 
we simply call the node’s SetVisible method passing a visibility parameter of false. This method 
performs no frustum tests and simply traverses the rest of the branch setting the visible status of any 
leaves found there to false. The function then returns so that the rest of this branch of the tree avoids 
further frustum testing. 
 
If the frustum test returned FRUSTUM_INSIDE then the node’s bounding volume is entirely contained 
inside the frustum and therefore, this node and all child nodes are visible and no further frustum tests 
need to be done down this branch of the tree. Instead we just call the node’s SetVisible method passing a 
visibility status of true. This function will quickly traverse to find all the leaf nodes underneath this 
current node and will set their visibility status to true. We then return from the function so that we do not 
perform any more frustum tests down this branch of the tree.  
 
    case CCamera::FRUSTUM_INSIDE: 
        // Node is totally visible 
        pNode->SetVisible( true ); 
        return; 

 
Finally, if the frustum test returned FRUSTUM_INTERSECT it means that the current node is visible 
but some of its children might not be, so we will need to perform further frustum tests along this branch 
of the tree. If the current node is a leaf, we set its visible status to true (which we know will cause its 
triangles to be added to their leaf bin’s render batch lists). 
 
    case CCamera::FRUSTUM_INTERSECT: 
        // We need to resolve this further, unless this is a leaf 
        if ( pNode->Leaf ) 
        { 
            pNode->SetVisible( true ); 
            return; 
        } // End if leaf 
        break; 
 
    } // End Switch 

 
Remembering that the function will have returned already in any case other than 
FRUSTUM_INTERSECT, this last section of code is also only executed in the intersection case. It 
simply loops through each child node and recurs into it.  
 
    // The remaining case (FRUSTUM_INTERSECT) means we need to test further 
    for ( i = 0; i < 4; ++i ) 
    { 
        if ( pNode->Children[i] ) UpdateTreeVisibility( pNode->Children[i],  
                                                        Camera,  
                                                        FrustumBits ); 
     
    } // Next Child 
} 
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You will find that the UpdateTreeVisibility method in all the derived classes will be identical to the code 
shown above, with the exception of the number of children traversed. 

SetVisible - CQuadTreeNode 

Although we took a brief look at this method in the previous lesson, we will take a quick look at it again 
now that we have seen it being called in the FRUSTUM_INSIDE and FRUSTUM_OUTSIDE cases in 
the above function.  
 
void CQuadTreeNode::SetVisible( bool bVisible ) 
{ 
    unsigned long i; 
 
    // Set leaf property 
    if ( Leaf  ) { Leaf->SetVisible( bVisible ); return; } 
 
    // Recurse down if applicable 
    for ( i = 0; i < 4; ++i ) 
    { 
        if ( Children[i] ) Children[i]->SetVisible(bVisible); 
 
    } // Next Child 
} 

 
As you can see, if the node is a leaf it calls its SetVisible method to instruct it to add its polygon data to 
the render batches in each leaf bin. As we now know, this will also instruct the leaf to add its ‘this’ 
pointer to the tree’s visible leaf list. 
 
Of course, the final piece of the puzzle is the CCamera::BoundsInFrustum method. Although this 
method has been in use since Module I in this series, we have now modified it to accept some additional 
parameters that optimize the frustum rejection for a spatial tree. After we have look at the code to that 
function, we will have covered all of the code that is executed when the application calls the 
ISpatialTree::ProcessVisibility method. Thus we will have completely explored how the visibility pass 
on the tree is performed. 

BoundsInFrustum - CCamera 

The frustum culling of AABBs and the extraction of the frustum planes in world space was explained in 
detail in Module I. This function has been with us for quite some time now and we have seen it used in 
nearly all our lab projects since its inception. Therefore we will not be covering how frustum culling 
works when discussing this code. If you do not remember how the frustum culling of AABBs can be 
done, please refer back to Chapter 4 in Module I for the details. 
 
The first thing this function does is call the CCamera::CalcFrustumPlanes method to extract the world 
space planes for the view frustum and store them in the camera object’s m_Frustum planes array (which 
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contains 6 elements). We then make a copy of the passed FrustumBits unsigned char into the nBits local 
variable for ease and speed of access. We also copy the value stored in the passed LastOutside char 
which will contain the index of the plane which the node that called this function failed on the last time 
this function was called. 
 
CCamera::FRUSTUM_COLLIDE CCamera::BoundsInFrustum( const D3DXVECTOR3 & vecMin, 
                                                   const D3DXVECTOR3 & vecMax, 
                                                   const D3DXMATRIX * mtxWorld , 
                                                   UCHAR * FrustumBits ,  
                                                   signed char * LastOutside ) 
{ 
    // First calculate the frustum planes 
    CalcFrustumPlanes(); 
 
    ULONG           i; 
    D3DXVECTOR3     NearPoint, FarPoint, Normal, Min = vecMin, Max = vecMax; 
    FRUSTUM_COLLIDE Result  = FRUSTUM_INSIDE; 
    UCHAR           nBits = 0; 
    signed char     nLastOutside = -1; 
 
    // Make a copy of the bits passed in if provided 
    if (FrustumBits) nBits = *FrustumBits; 
 
    // Make a copy of the 'last outside' value to prevent us having to dereference 
    if ( LastOutside ) nLastOutside = *LastOutside; 

 
If the caller passed a matrix into the function, then it means we were passed a model space bounding box 
which should be transformed into world space using this matrix before the frustum planes are tested. 
That is no problem because we wrote a function in the previous lesson that did exactly that.  
 
    // Transform bounds if matrix provided 
    if ( mtxWorld ) MathUtility::TransformAABB( Min, Max, *mtxWorld ); 

 
If the node’s LastFrustumPlane value (now stored in nLastOutside) is not set to -1, it contains a valid 
index for a frustum plane and we will test that plane first. However, we will only test it if that plane does 
not have its bit set to 1 in the nBits array. If it does, then regardless of the fact that the node was found to 
be outside the plane in the previous visibility pass, it must be inside it now, because one of its parent 
nodes higher in the tree was found to be completely inside it and set this bit to 1. Alternatively, if a valid 
last plane index is passed which does not currently have its bit set, we will perform the test. 
 
As the nLastOutside variable contains the index of the plane we want to test first, we will extract the 
plane normal from the camera’s m_Frustum array. This array stores the planes in <a,b,c,d> format so we 
know that the normal is contained in members a, b, and c. 
 
    // If the 'last outside plane' index was specified, test it first! 
    if ( nLastOutside >= 0 && ( ((nBits >> nLastOutside) & 0x1) == 0x0 ) ) 
    { 
        // Store the plane normal 
        Normal = D3DXVECTOR3( m_Frustum[nLastOutside].a,  
                              m_Frustum[nLastOutside].b,   
                              m_Frustum[nLastOutside].c ); 
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We then use the plane normal to calculate the near and far points on the bounding box with respect to 
the plane.  
 

Note: Remember from our Plane/AABB intersection discussion that the near point is the point that would 
intersect the plane first were it located totally in the plane’s front space and slowly moved towards the 
plane until the point of intersection. The far point the last point on the AABB that would cross the plane in 
the same scenario. 

 
        // Calculate near / far extreme points 
        if ( Normal.x > 0.0f ) { FarPoint.x  = Max.x; NearPoint.x = Min.x; } 
        else                   { FarPoint.x  = Min.x; NearPoint.x = Max.x; } 
 
        if ( Normal.y > 0.0f ) { FarPoint.y  = Max.y; NearPoint.y = Min.y; } 
        else                   { FarPoint.y  = Min.y; NearPoint.y = Max.y; } 
 
        if ( Normal.z > 0.0f ) { FarPoint.z  = Max.z; NearPoint.z = Min.z; } 
        else                   { FarPoint.z  = Min.z; NearPoint.z = Max.z; } 

 
If the near point is found to be in front of the plane, the entire box must be in front of the plane. 
Consequently, if the box is totally in front of any of the planes, then it must be completely outside the 
frustum. As soon as such a plane is found, we return FRUSTUM_OUTSIDE 
 

Note: Our frustum planes normals face outwards.  
 
        // If near extreme point is outside, then the AABB is totally outside 
        if ( D3DXVec3Dot( &Normal, &NearPoint ) + m_Frustum[nLastOutside].d>0.0f ) 
           return CCamera::FRUSTUM_OUTSIDE; 

 
If we have not returned from the function yet, it means the near point is in the backspace of the plane, so 
we next test to see if the far point is in the front space. If it is, the box is spanning the frustum plane and 
we return FRUSTUM_INTERSECT.  
 
        // If far extreme point is outside, then the AABB is intersecting  
        if ( D3DXVec3Dot( &Normal, &FarPoint ) + m_Frustum[nLastOutside].d > 0.0f ) 
            Result = CCamera::FRUSTUM_INTERSECT; 

 
If we have still not returned from the function, it must mean that both the near and far points of the box 
are behind the frustum plane. This means the box is completely contained in the backspace of the plane 
and we must test the rest of the frustum planes. However, if the box is completely contained in the 
backspace of this plane, it also means all of the node’s children will be too. Therefore, when this 
function is called for the child nodes, we should skip testing this plane and assume that they are in the 
backspace also. To do this, we set the bit for this plane in the nBits char to update the bit set that is 
passed down to the child nodes. We set the bit that corresponds to this plane by shifting the value 1 by 
the appropriate number of bits to the right (the number of bits to shift is equal to the index of the plane 
we are setting the bit for) and OR’ing it with the current bit set.   
 
        else 
            nBits |= (0x1 << nLastOutside); // We were inside, update our bit set 
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    } // End if last outside plane specified 

 
If we reach this part of the function, it means that either no valid LastFrustumPlane value for the node 
was passed or that it was tested first, but the node is now found to be intersecting or behind that plane.  
 
In the next section we simply create a loop from 0 to 6 to loop through the 6 frustum planes so that we 
can test the rest of them. We will skip a plane if its bit is already set to 1 in the nBits array and also skip 
the plane that was tested first in the above section of code (whose index is contained in nLastOutside). 
 
    // Loop through all the planes 
    for ( i = 0; i < 6; i++ ) 
    { 
        // Check the bit in the uchar passed to see if it should be  
        // tested (if it's 1, it's already passed) 
        if ( ((nBits >> i) & 0x1) == 0x1 ) continue; 
 
        // If 'last outside plane' index was specified,  
        // skip if it matches the plane index 
        if ( nLastOutside >= 0 && nLastOutside == (signed char)i ) continue; 

 
If we get this far in the loop code, it means the current plane being processed has not yet had its bit set to 
1 in the frustum bits char and it is not the plane we have already tested.  As with the first plane we 
tested, we extract the normal of the current plane and calculate the near and far points. 
 
        // Store the plane normal 
        Normal = D3DXVECTOR3( m_Frustum[i].a, m_Frustum[i].b, m_Frustum[i].c ); 
 
        // Calculate near / far extreme points 
        if ( Normal.x > 0.0f ) { FarPoint.x  = Max.x; NearPoint.x = Min.x; } 
        else                   { FarPoint.x  = Min.x; NearPoint.x = Max.x; } 
 
        if ( Normal.y > 0.0f ) { FarPoint.y  = Max.y; NearPoint.y = Min.y; } 
        else                   { FarPoint.y  = Min.y; NearPoint.y = Max.y; } 
 
        if ( Normal.z > 0.0f ) { FarPoint.z  = Max.z; NearPoint.z = Min.z; } 
        else                   { FarPoint.z  = Min.z; NearPoint.z = Max.z; } 
 

 
Next we calculate the distance from the near point to the plane. If it is found to be in the frontspace of 
the plane, we know the entire box must be outside the frustum so we can return FRUSTUM_OUTSIDE. 
However, before we return, we also store the index of this plane in the node’s LastFrustumPlane 
member (pointed to by LastOutside) so that this function will test this plane first when the node is 
frustum tested again in the next visibility pass. We also copy the contents of the nBits char which 
currently contains all the frustum planes that the node is totally inside of. This is assigned to the 
FrustumBits pointer so that it is returned from the function to the node, where it can be passed down to 
its children. 
 
        // If near extreme point is outside, then the AABB is totally outside  
        // the frustum 
        if ( D3DXVec3Dot( &Normal, &NearPoint ) + m_Frustum[i].d > 0.0f ) 
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        { 
            // Store the 'last outside' index 
            if ( LastOutside ) *LastOutside = (signed char)i; 
 
            // Store the frustm bits so far and return 
            if (FrustumBits) *FrustumBits = nBits; 
            return CCamera::FRUSTUM_OUTSIDE; 
 
        } // End if outside frustum plane 

 
If the near point is not in front of the plane but the far point is, it means the box is spanning the plane so 
we return FRUSTUM_INTERSECT. 
 
        // If far extreme point is outside, then the AABB is intersecting  
        // the frustum 
        if ( D3DXVec3Dot( &Normal, &FarPoint ) + m_Frustum[i].d > 0.0f ) 
            Result = CCamera::FRUSTUM_INTERSECT; 

 
Otherwise, it means the current plane being processed has the box contained totally in its backspace. 
Since this means that all of the node’s children will also share this relationship with the plane, we set the 
bit that corresponds to this plane so that the children know they do not have to process it.  
 
        else 
            nBits |= (0x1 << i);  
           // We were totally inside this frustum plane, update our bit set 
 
    } // Next Plane 

 
If we have not yet returned from the function it means the box is inside the frustum. Since there was no 
plane that rejected it, we set the node’s last plane index (pointed to by LastOutside) to -1. We then copy 
the nBits array into the FrustumBits parameter so that they are accessible to the caller on function return. 
We then return a result of FRUSTUM_INSIDE. 
 
    // Store none outside 
    if ( LastOutside ) *LastOutside = -1; 
 
    // Return the result 
    if (FrustumBits) *FrustumBits = nBits; 
    return Result; 
} 

 
We have now seen all of the code involved in the visibility processing procedure for the tree. This is all 
invoked when the application calls the ISpatialTree::ProcessVisibility function.  In the last and final 
section covering the CBaseTree rendering system, we will examine how the visible data is rendered. 
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15.4.7 Rendering the Visible Static Polygon Data  

After the application has called the ISpatialTree::ProcessVisibility method to flag the visible leaves and 
build the render batches in each leaf bin, all it has to do is loop through each subset in use by the scene 
and call the ISpatialTree::DrawSubset method. This method is shown below and is the final function of 
CBaseTree we will cover that pertains to its internal rendering system.   

DrawSubset - CBaseTree 

This method is called by the application to draw a particular subset in the tree. The application will 
typically set the texture and material required to render this subset prior to making this call. This 
function essentially just calls other functions which we have already covered. 
 
Provided the device is valid, we use the CBaseTree::GetLeafBin method to fetch a pointer to the leaf bin 
for the associated subset ID. If a leaf bin does not exist for this subset ID, it means the tree contains no 
polygon data that uses this subset. In such situations, the GetLeafBin function returns NULL and we 
return from the function without taking any further action. 
 

Note: Since the scene is using global attribute IDs for all objects, it is entirely possible that the tree’s 
polygon data will only use a handful of those attributes. As the application will essentially call DrawSubset 
for each global attribute, this function may be called many times with an attribute ID for which no polygon 
data exists in the tree for and for which no leaf bin has been created. 

 
void CBaseTree::DrawSubset( unsigned long nAttribID ) 
{ 
    // Can draw? 
    if ( !m_pD3DDevice ) return; 
 
    // Retrieve the applicable leaf bin for this attribute 
    CLeafBin * pLeafBin = GetLeafBin( nAttribID ); 
    if ( !pLeafBin ) return; 
 
    // Render the leaf bin 
    pLeafBin->Render( m_pD3DDevice ); 
} 

 
After a valid leaf bin has been retrieved, its Render method is called. We looked at this function earlier 
and saw how it rendered all the render batches for each index/vertex buffer combination it contains 
triangles for. 
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15.5 Rendering the Tree – Application Perspective 

Rendering the tree’s static geometry could not be easier. Below we see the CScene::Render method from 
Lab Project 14.1. Because this function is now getting quite large (given all of the code to set up render 
states, enables lights and fog, rendering the CObject array, etc.), we have snipped a good amount of the 
code out to condense the listing. 
 
You will recall that the first part of this function sets up certain render states, renders the sky box and 
enables lighting and fog. In this lab project we have added a new function call to the 
ISpatialTree::ProcessVisibility method at the bottom of the next section of code.   
 
void CScene::Render( CCamera & Camera ) 
{ 
    ULONG i, j; 
    long  MaterialIndex, TextureIndex; 
 
    if ( !m_pD3DDevice ) return; 
 
    //……SNIP : Set up Global Render states here 
 
    // Render the skybox first ! 
    RenderSkyBox( Camera ); 
 
    //……SNIP : Set up lights and fog here…… 
 
    // Allow the spatial tree to process visibility 
    m_pSpatialTree->ProcessVisibility( Camera ); 

 
Now that the visibility status of the tree has been updated using the camera’s current position and 
orientation, we set the device world matrix to an identity matrix because the static geometry stored in the 
tree is already in world space. 
 
    // Loop through each scene owned attribute 
    D3DXMATRIX mtxIdentity; 
    D3DXMatrixIdentity( &mtxIdentity ); 
 
    m_pD3DDevice->SetTransform( D3DTS_WORLD, &mtxIdentity ); 

 
Now it is time to render the subsets of the spatial tree. We do this by looping through the array of 
attributes used by the scene. For each attribute, we set its texture and material on the device and call the 
ISpatialTree::DrawSubset method, passing in the respective attribute ID. If the tree has any data for this 
attribute, its associated leaf bin will render its triangles.  
 
    for ( j = 0; j < m_nAttribCount; j++ ) 
    { 
        // Retrieve indices 
        MaterialIndex = m_pAttribCombo[j].MaterialIndex; 
        TextureIndex  = m_pAttribCombo[j].TextureIndex; 
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        // Set the states 
        if ( MaterialIndex >= 0 ) 
            m_pD3DDevice->SetMaterial( &m_pMaterialList[ MaterialIndex ] ); 
        else 
            m_pD3DDevice->SetMaterial( &m_DefaultMaterial ); 
 
        if ( TextureIndex >= 0 && m_pTextureList[ TextureIndex ] ) 
            m_pD3DDevice->SetTexture( 0, m_pTextureList[ TextureIndex ]->Texture ); 
        else 
            m_pD3DDevice->SetTexture( 0, NULL ); 
 
        // Render all faces with this attribute ID 
        m_pSpatialTree->DrawSubset( j ); 
 
    } // Next Attribute 

 
At this point the tree has been rendered in its entirety, so next we loop though the scene’s CObject array 
(which will now store only the dynamic objects in use by the scene, like CActors) and render each one. 
We will discuss how this works in the next section. Then we can iterate through our terrain array and 
render any terrains in use. We do not show the code for this as it has not changed from previous demos 
(we will cover dynamic object rendering in the next section).   
 
Finally, our CGameApp class now includes a new member called m_bDebugDraw. This is a Boolean 
that has its state toggled by a ‘Debug Draw’ menu option. The CGameApp::GetDebugDraw method 
returns the state of this Boolean. As you can see in the following code, if this function returns true, it 
means the user would like to enable debug drawing and thus the spatial tree’s DebugDraw method is 
called. We discussed the code to this function in the previous lesson and saw how it traverses the tree 
and draws the bounding boxes at each node. 
 
    // …… SNIP : Render all CObjects here (dynamic actors and tri mehses) 
 
    // …… SNIP : Render any terrains here 
     
    // Draw the spatial tree's debug data if requested 
    if ( GetGameApp()->GetDebugDraw() ) m_pSpatialTree->DebugDraw( Camera ); 
 
} 

 
And there we have it. That is all of the code involved in render our spatial tree from the application’s 
perspective. All it took was two function calls to ISpatialTree member functions. 
 
We have now covered the complete rendering system used by CBaseTree. In the end, we have built 
ourselves a very useful set of spatial managers that optimize both collision queries and scene rendering. 
In the final section of this chapter we will examine how our dynamic objects can also benefit from the 
visibility information in our tree. This will enable us to render only the actors that are currently 
considered visible by the tree. 
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15.6 Managing Dynamic Objects 

So far we have implemented spatial trees that compile static polygon data and we have examined the 
methods used to prepare and render that data in an efficient manner. We have also added the concept of 
linking external objects to the leaves of the tree using the concept of detail areas. You will recall that a 
detail area is a bounding volume that helps shape the tree as it is being built. It is assigned during the 
compilation phase to the leaves in which it is fully or partially contained. Because each detail area 
compiled into the tree can also store a context pointer, they allow us to store any type of external object 
in the tree. A detail area may represent a series of render states, for example, that must be set on the 
device when the player enters the same leaves as the detail area. This might be handy if you wanted to 
use detail areas to represent regions of fog within the level or to represent an area where lights should be 
enabled/disabled. A detail area might also be used to represent a mesh or an actor that we do not want 
compiled into the tree at the per-polygon level, although we still want it to use the tree’s visibility 
system to inform the application if that object should be rendered. The tree has no understanding of what 
a detail area represents internally. It just sees it as a bounding volume that has its pointer stored in the 
leaves in which it is contained. However, the application will know exactly what that detail area 
represents as it was responsible for registering it with the tree and assigning its context pointer. This 
context pointer will likely point to some structure or object that has meaning to the application. 
 
The application is ultimately responsible for when and how to process detail areas. If we think about a 
detail area that represents an external mesh for example, the application would be responsible for 
rendering that mesh. However, if the detail area is not in any currently visible leaves, the application 
then knows it does not need to be rendered. In this situation the application can simply query the tree for 
a list of visible leaves and process only the detail areas in those leaves. 
 
As useful as detail areas are, they do not provide us with coverage for all situations. Since they are 
compiled directly into the tree, they are totally static concepts. We can link an external mesh or actor to 
the tree at compile time by registering it as a detail area, but if the application plans on animating or 
updating the position of that object, detail areas will not suffice. Therefore, a system will have to be 
added to our tree that works in a similar manner to the detail area idea, but allows for an entity to have 
its position within the tree dynamically updated.  
 
We will only need to add a handful of methods to CBaseTree in order for our trees to support dynamic 
objects. The system we will use to register dynamic objects with the tree will be similar to the system we 
used to register dynamic objects with the collision system. The ISpatialTree::InsertTreeObject method 
will be used for this purpose. It will store the object internally in the tree and return an ID (a handle) 
back to the caller. The caller can then use this handle to query for information about that object (such as 
what leaves is it currently in). 
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15.6.1 The TreeObject Structure 

When a dynamic object is registered with the tree, a TreeObject structure is used as the transport 
mechanism to pass information about the object to the InsertTreeObject method. This structure is 
defined in ISpatialTree.h and is shown below.  
 
Excerpt from ISpatialTree.h 
typedef struct _TreeObject 
{ 
    void          * pContext;            
    bool          * pbVisible;           
    long            nTreeObjectIndex;    
} TreeObject; 

 
When we pass a structure of this type into the InsertTreeObject method, only the first two members are 
used to describe the object. On function return, the third member (nTreeObjectIndex) will contain the 
handle assigned to the object by the spatial tree. The application can then store this returned handle in 
the object and use it for later querying. 
 
void  *pContext 
This member is a pointer to some object that the application would like associated with the dynamic 
object in the tree. This could be a pointer to a CActor object for example. In our lab project code, we 
will pass a pointer to a CObject, which will contain either a dynamic CTriMesh or CActor object. 
 
bool  *pbVisible 
This member allows the application to store a Boolean pointer that the tree will automatically update if 
the object is inside a visible leaf. That is, during the visibility pass, if a leaf is encountered that is visible, 
any tree objects (dynamic objects) that have been assigned to that leaf will have their Booleans set to 
true. This provides an alternative way for the application to query the visibility status of a dynamic 
object rather than fetching the visible leaves and searching them for the object currently being 
processed. 
 
In Lab Project 14.1, we extend our CObject structure to store a Boolean member called m_bVisible. We 
will pass a pointer to this Boolean in this member of the TreeObject structure when we register the 
CObject with the spatial tree. Later, when the ProcessVisibility process is performed and a leaf which 
contains this object is found to be visible, the value of this Boolean will automatically be set to true by 
the tree even though it is stored in a CObject structure which has nothing to do with the tree. When 
rendering dynamic objects, the application can just loop through each one and only render it if the tree 
has set its Boolean visibility status to true (more on this later)  
 
long   nTreeObjectIndex 
This is not an input parameter to ISpatialTree::InsertTreeObject; it will be set on function return so that 
the application can retrieve and store this value in the CObject structure.  Just like our collision system, 
this is a unique ID that the tree has given to this pair of context and Boolean pointers inside its internal 
arrays. 
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15.6.2 The CObject Structure 

Our CObject structure has been updated to include two new members. The new version of this structure 
is shown below with the new members highlighted in bold. 
 
class CObject 
{ 
public: 
     
      // Constructors & Destructors for This Class. 
    CObject( CTriMesh * pMesh  ); 
         CObject( CActor   * pActor ); 
 
        CObject( ); 
    virtual ~CObject( ); 
 
       
    // Public Variables for This Class 
    D3DXMATRIX                  m_mtxWorld;             
    CTriMesh                   *m_pMesh;                
    CActor                     *m_pActor;               
    LPD3DXANIMATIONCONTROLLER   m_pAnimController;      
    CActionStatus              *m_pActionStatus;        
    long                        m_nObjectSetIndex;      
 
    long                        m_nTreeObjectIndex;     
    bool                        m_bVisible;             // Is this object visible? 
}; 

 
m_nTreeObjectIndex 
This member will contain the handle (unique ID) assigned to the object by the spatial tree in response to 
the ISpatialTree::InsertTreeObject method being called for this object. Whenever we wish to update the 
position of the object or remove it from the spatial tree, it is this handle that we pass into the 
ISpatialTree::UpdateTreeObject and the ISpatialTree::RemoveTreeObject methods so that the tree 
knows exactly which tree object we are referring to. 
 
m_bVisible 
This member is a Boolean that describes the visibility status of the object. The address of this Boolean 
will be passed into the ISpatialTree::InsertTreeObject method (via the TreeObject structure) when the 
object is first registered. The spatial tree will automatically set this Boolean to true when the object is 
found to be in a visible leaf. The scene now has visibility information for the external object 
automatically with having to intersect with the tree itself. The tree will automatically set the m_bVisible 
Booleans of any CObjects in use by the application that have been registered with the spatial tree and are 
currently in visible leaves.  
 
Before we discuss the ISpatialTree management of dynamic objects, we will take a look at how the 
application registers and updates the positions of dynamic objects using the ISpatialTree member 
functions. This will give us a better understanding of the system we need to implement and the way our 
application will expect that system to behave. 
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15.6.3 Registering a Dynamic Object with the Spatial Tree 

As was the case with our collision system, any dynamic object that we create is registered with the 
spatial tree and returned a unique ID for that object within the system. In Lab Project 14.1 we load our 
scenes from IWF files and, as we have seen, the static geometry stored in the IWF file is added to the 
tree as static polygon data inside the CScene::ProcessVertices function. We have also seen in nearly all 
previous lab projects, that our dynamic objects are usually stored in the IWF file as external references 
to X files which are loaded into actors and stored in the scene’s CObject array. It is the 
ProcessReference method that has always been the function used to create and load such X files into 
actors. It is in this function that the newly created CObject structure is registered with our collision 
system. It is also the function where we will register the object with the spatial tree. 
 
The following snippet of code has been added to the very bottom of the CScene::ProcessReference 
function. It is responsible for adding the newly created CObject (which at this point may store a pointer 
to a CActor or a CTriMesh) with the spatial tree.  In this code, which is only executed if the scene has a 
spatial tree, the new CObject which has been created earlier in the function (and populated accordingly) 
has been assigned to the pNewObject pointer. 
 
// Add to the spatial tree's object list if applicable 
if ( m_pSpatialTree ) 
{ 
  TreeObject Object; 
  Object.pbVisible = &pNewObject->m_bVisible; 
  Object.pContext  = NULL; 
 
  // Add to the tree 
  pNewObject->m_nTreeObjectIndex = m_pSpatialTree->InsertTreeObject( Object ); 
 
} // End if has spatial tree 

 
As you can see, a new TreeObject structure is instantiated as our means of describing the dynamic object 
to the tree. The TreeObject’s Boolean pointer is assigned to point at the m_bVisible Boolean member in 
our CObject structure for later updates during visibility testing. Notice how we set the context pointer of 
the TreeObject structure to NULL as we do not need to use it. You could assign this to point at the 
CObject structure itself, which would be useful if your means for determining dynamic object visibility 
was to loop through the currently visible leaves searching for TreeObjects that are then rendered. 
However, our current application only needs to know whether any of the CObjects in its array need to be 
rendered. Since we have registered the object’s Boolean, this will be adequate for our purposes. All our 
application will need to know when looping through the CObject array is which ones need to be 
rendered. How you choose to do it is up to you as both methods suit different situations. Using the 
Boolean means that the application is not required to perform queries into the tree to determine visibility 
status. 
 
After we have set up the TreeObject structure we then call ISpatialTree::InsertTreeObject passing in 
TreeObject structure so that this object can be stored in the tree’s dynamic object array. The return value 
from this function is the handle (ID) of the new dynamic object we have just added which has been 
assigned by the spatial tree. We store this in the CObject’s m_nTreeObjectIndex member so that when 
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our application alters the position of this object in the scene, it can pass this ID into the 
ISpatialTree::UpdateTreeObject to inform the tree that the object has been updated and that the leaves in 
which it is currently contained need to be recalculated. 
 
Note that all we have done here is register a single Boolean pointer with the tree. We have not even 
assigned the object a bounding volume. So how can the tree know which leaves the object should be 
assigned to? The answer is that it does not; at least not currently. All the above function does is create an 
entry in the tree’s dynamic object array where the passed Boolean pointer and context data pointer are 
stored. At this point, it is not assigned to any leaves. This is what the ISpatialTree::UpdateTreeObject 
method is for. 

15.6.4 Updating Dynamic Tree Objects 

When the application updates the position of an object (i.e., changes its world matrix), we must inform 
the tree so that it can remove that object’s pointer from any leaves in which it is currently contained and 
assign it to the appropriate new leaves. This is all done automatically when the application makes a call 
to the ISpatialTree::UpdateTreeObject function. It is this function that is passed the ID of the object we 
would like to update and a world space AABB. This function will first remove the object from any 
leaves in which it is currently assigned. It will then pass the AABB of the object down the tree (using 
the CollectLeavesAABB method) to collect a list of leaves in which the bounding box is contained. The 
object then has its pointer added to each leaf in which it is contained. This same list of leaves is then 
stored inside the tree in a structure that pairs the tree object with its intersected leaf list. 
 
Each leaf in our tree will now potentially store a list of TreeObject pointers and each TreeObject stored 
in the tree will also be stored alongside a list of leaves in which the object is currently contained. This 
provides yet more convenient ways to use dynamic objects with the system.  As each tree object is 
stored in an array paired with a list of leaves in which it is currently contained, this means the 
application can quickly access the leaf list for an object using the ISpatialTree::GetTreeObjectLeaves 
method. This method is passed the ID of a tree object and will simply look up that object in the tree’s 
internal array and return the leaf list that is stored alongside it. Additionally, because the leaves 
themselves also store a list of tree object pointers describing the list of dynamic objects contained within 
them, the application can call the ISpatialTree::GetVisibleLeafList method and then parse the returned 
visible leaves to see if the object in which it is interested is stored there. These few methods provide the 
application with choices about the way it would like to work with and query the status of its dynamic 
objects. 
 
The following section of code is taken from the CScene::AnimateObjects method in Lab Project 14.1. 
This function is certainly familiar to us at this point, but now a few new lines have been added so that 
the spatial tree is informed about object position updates so that it can rebuild the leaf lists for that 
object. 
 
The first section of the function is unchanged from our previous lab projects. It sets up a loop to iterate 
though every object in the scene’s CObject array and fetches the CActor and CTriMesh pointers into 
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local variables. If the actor pointer is valid, we attach the object’s controller to the actor and call the 
actor’s AdvanceTime method to advance the timeline of any animation it may be playing. 
 
void CScene::AnimateObjects( CTimer & Timer ) 
{ 
    ULONG i; 
     
    // Process each object for coll det 
    for ( i = 0; i < m_nObjectCount; ++i ) 
    { 
        CObject * pObject = m_pObject[i]; 
        if ( !pObject ) continue; 
 
        // Get the pointers 
        CActor   * pActor = pObject->m_pActor; 
        CTriMesh * pMesh  = pObject->m_pMesh; 
        if ( !pActor && !pMesh ) continue; 
 
        // Update actor? 
        if ( pActor ) 
        { 
            if ( pObject->m_pAnimController )  
                 pActor->AttachController( pObject->m_pAnimController,  
                                           false,  
                                            pObject->m_pActionStatus ); 
 
            // Advance time 
            pActor->AdvanceTime( Timer.GetTimeElapsed(), false ); 
 
        } // End if actor 

 
The next section of code is only executed is the current object being processed has been registered with 
the collision system or the spatial tree. If so, then we will set the actor’s matrix and force its absolute 
matrices to be updated. This is important because we shall see later that this is used to calculate the 
world space bounding box for the actor which we will need in order to update its position in the tree. 
 
        if ( pObject->m_nObjectSetIndex > -1 || pObject->m_nTreeObjectIndex > -1 ) 
        { 
            // Set world matrix and update combined frame matrices. 
            if ( pActor ) pActor->SetWorldMatrix( &pObject->m_mtxWorld, true ); 

 
If the CObject has a valid collision system handle, we call the collision system’s ObjectSetUpdated 
method to allow it to recalculate information about its dynamic object array. 
 
            // Notify the collision system that this set of dynamic objects 
            // positions, orientations or scale have been updated. 
            if ( pObject->m_nObjectSetIndex > -1 )  
                 m_Collision.ObjectSetUpdated( pObject->m_nObjectSetIndex ); 

 
The next bit is new. If the application is using a spatial tree and the current CObject being processed has 
a valid spatial tree handle stored in its m_nTreeObjectIndex structure, it means that this object has been 
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registered with the tree and therefore (as its position may have been updated by the AdvanceTime call) 
we should inform the spatial tree to recalculate the leaves in which this object is situated. 
 
To instruct the spatial tree that the position of our object might have changed, we have to send the 
object’s spatial ID and its world space bounding box into the ISpatialTree::UpdateTreeObject method. 
Until now, we have had no methods exposed from either CTriMesh or CActor that return the world 
space bounding box; we will add them to these classes at the end of this lesson. For now, let us just 
assume that both CTriMesh and CActor have a method called GetBoundingBox which is passed two 
vectors that will be filled with the world space extents of the object’s bounding box. 
 
            // Update the tree information 
            if ( m_pSpatialTree && pObject->m_nTreeObjectIndex > -1 ) 
            { 
                D3DXVECTOR3 vecMin, vecMax; 
                 
                // Retrieve the bounding box 
                if ( pActor )  
                    pActor->GetBoundingBox( vecMin, vecMax ); 
                else 
                    pMesh->GetBoundingBox( vecMin, vecMax, &pObject->m_mtxWorld ); 

 
The CActor::GetBoundingBox method takes only two output parameters for the purposes of retrieving 
the world space box extents that encompass the entire actor hierarchy. The CTriMesh object (which may 
alternatively be stored in a CObject) has no way of returning a world space bounding box unassisted. It 
is typically an object space mesh and has no knowledge of its world space position. Therefore, the 
CTriMesh object will store a model space bounding box which can be converted into world space by 
passing a transformation matrix as the third parameter to its GetBoundingBox function. This function 
will simply use our handy TransformAABB method to convert the mesh’s model space AABB into a 
world space AABB. The extents will then be returned using the first two output parameters. 
 
At this point, whether the CObject contains a mesh or an actor, we have a world space bounding box 
which we can pass into the tree. 
 
                // Update the spatial tree object 
                m_pSpatialTree->UpdateTreeObject( pObject->m_nTreeObjectIndex, 
                                                  vecMin,  
                                                  vecMax ); 
 
            } // End if has object index 
 
        } // End if actor exists 
 
    } // Next Object 
} 

 
As you can see, we pass the UpdateTreeObject method the bounding box of the object and its spatial ID, 
which was issued at the time of registration. Later in the lesson we will see exactly how the bounding 
boxes are calculated for meshes and actors and how all these new spatial tree methods work. 
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15.6.5 Rendering Dynamic Objects 

In the following code we see a section of the CScene::Render method. Since this is a large method we 
will only show the new additions which pertain to the rendering of the scene’s objects. Remember that 
they have all been registered with the spatial tree as dynamic objects, 
 
As we discussed in the previous section, situated near the top of the CScene::Render function, the 
ISpatialTree::ProcessVisibility function is called to traverse the tree and set the visible leaves based on 
the input camera’s frustum. Earlier in the lesson we also learned that this function also builds the render 
batches for the static data stored in each leaf bin. We will see in a moment that this method can be 
updated to handle dynamic objects as well. When any leaf is found to be visible, any TreeObject 
structures stored in that leaf will have their Boolean pointers set to true. We know that the Boolean 
pointer in each TreeObject structure is actually a pointer to the CObject::m_bVisible member variable, 
so when the ProcessVisibility method returns, any CObjects that are in visible leaves will have their 
m_bVisible members set to true.  
 
In the next section of code we show the call to the ProcessVisibility method followed by the loop that 
iterates through the CScene’s CObject array and renders any that have had their visibility Booleans set 
to true by the spatial tree.  
 
    // Update the leaf visibility  (sets CObject Booleans) 
    m_pSpatailTree->ProcessVisibility( pCamera); 
 
     … SNIP : Render spatial tree’s static data here 
     
    // Process each object 
    for ( i = 0; i < m_nObjectCount; ++i ) 
    { 
        CObject  * pObject = m_pObject[i]; 
        if ( !pObject ) continue; 
 
        // Skip if this object is listed as not visible 
        if ( !pObject->m_bVisible ) continue; 
 
        // Flag this object as *not* visible for the next call to ProcessVisibility 
        // but only if it has been registered with the tree 
        if ( pObject->m_nTreeObjectIndex >= 0 ) pObject->m_bVisible = false; 
        
        // Retrieve actor and mesh pointers 
        CActor   * pActor = pObject->m_pActor; 
        CTriMesh * pMesh  = pObject->m_pMesh; 
        if ( !pMesh && !pActor ) continue; 
 
        … SNIP : Set Object matrix 
        … 
        … For Each  Subset 
        … 
        …    pActor/pMesh -> DrawSubset ( … ) 
        … 
        … End For Each Subset 
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    } 
 
    // SNIP : Render any terrains here 

 
The important point to notice in the above code snippet is that once we find a CObject that is in a visible 
leaf, we reset its visibility Boolean back to false prior to rendering it. This is so the Boolean will be 
returned to its default state when the ISpatialTree::ProcessVisibility method is called during the next 
frame render. 
 
Now that we have had a high level look at how the spatial tree’s dynamic object system will work, it 
should be clear that, from the application’s perspective, things could not be easier. The application really 
only ever has to call two methods for each dynamic object. The InsertTreeObject method is called once 
(at load time in our example) to register the object with the tree, and the UpdateTreeObject method is 
called to update the position of the object inside the spatial tree when required. Let us now have a look 
at the changes we have had to make to both the ISpatialTree and ILeaf interfaces in order to add support 
for these concepts. 

15.6.6 ILeaf - Adding Dynamic Object Support 

The ILeaf abstract base class from which CBaseLeaf is derived only requires one extra method to be 
implemented in the derived classes so that application can query the list of TreeObjects for a given leaf. 
This method is called GetTreeObjectList and is highlighted in bold below. 
 
Excerpt from ISpatialTree.h 
class ILeaf 
{ 
public: 
     
    // Typedefs, Structures and Enumerators. 
    typedef std::list<TreeObject*> TreeObjectList; 
 
     
    // Constructors & Destructors for This Class. 
    virtual ~ILeaf() {};     // forces derived classes to have virtual destructors 
 
     
    // Public Pure Virtual Functions for This Class. 
    virtual bool            IsVisible           ( ) const = 0; 
    virtual unsigned long   GetPolygonCount     ( ) const = 0; 
    virtual CPolygon *      GetPolygon          ( unsigned long nIndex ) = 0; 
    virtual unsigned long   GetDetailAreaCount  ( ) const = 0; 
    virtual TreeDetailArea *GetDetailArea       ( unsigned long nIndex ) = 0; 
     
    virtual TreeObjectList& GetTreeObjectList   ( ) = 0; 
 
    virtual void            GetBoundingBox      ( D3DXVECTOR3 & Min,  
                                                  D3DXVECTOR3 & Max ) const = 0; 
 
}; 
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Notice that this method accepts no parameters and will return a list of all the TreeObject structures 
stored in this leaf. The return type TreeObjectList is a type definition for an STL list which stores 
TreeObject structure pointers. You can see this typedef at the top of the code shown above. 
 
As you can see, from the application’s perspective (which always works with the ISpatialTree interface), 
only one method has been added that allows it to retrieve the entire list of dynamic objects stored in that 
leaf. An application might, for example, employ a totally different rendering strategy than the one we 
have chosen. It might prefer to fetch the list of visible leaves from the tree and then loop through each of 
them individually. For each leaf, it can use this new method (GetTreeObjectList) to get the list of 
dynamic objects stored in that leaf and then fetch the context pointer from each TreeObject structure for 
further processing. This is an alternative to the Boolean pointer method we have chosen to use in Lab 
Project 14.1. 

15.6.7 ISpatialTree - Adding Dynamic Object Support 

Four new methods have been added to the ISpatialTree interface to allow the application to add, insert, 
and remove dynamic objects from the tree. There is also a method that allows the application to retrieve 
a list of all the leaves a given object is currently contained in. 
 
We will not show the entire ISpatialTree class here since we have only added four methods. These are 
shown below. 
 
Excerpt from ISpatialTree.h 
virtual long            InsertTreeObject    ( TreeObject & Object ) = 0; 
 
virtual void            UpdateTreeObject    ( long nObjectIndex,  
                                              const D3DXVECTOR3 &BoundsMin, 
                                              const D3DXVECTOR3 &BoundsMax)= 0; 
 
virtual void            RemoveTreeObject    ( long nObjectIndex ) = 0; 
 
virtual bool            GetTreeObjectLeaves ( long nObjectIndex,  
                                              LeafList & List ) = 0; 

 
These are all pure virtual methods which serve to define the functionality that must be implemented in 
the derived classes.  

15.6.8 CBaseTree/CBaseLeaf - Adding Dynamic Object 
Support 

The full implementation for dynamic object support will be contained within CBaseTree and 
CBaseLeaf. The derived classes will not require any additional code. We will start by examining the 
members and methods that will need to be added to CBaseLeaf first. 
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15.6.9 CBaseLeaf – The Source Code 

CBaseLeaf will need three new member functions and a single member variable. In the following listing 
we do not show the entire declaration of CBaseLeaf, only the new members.  
 
public: 
 
    // Public Virtual Functions for This Class (from base). 
    virtual TreeObjectList& GetTreeObjectList   ( ); 
 
     
    // Public Functions for This Class. 
    void                    InsertTreeObject    ( TreeObject * pObject ); 
    void                    RemoveTreeObject    ( TreeObject * pObject ); 
 
protected: 
  
    // Protected Variables for This Class 
    TreeObjectList      m_TreeObjects;      // List of objects 
 

 
m_TreeObjects     
This member will be used to store a list of TreeObject structures. This list represents all the tree objects 
that are currently considered to be in this leaf by the CBaseTree. A dynamic object (a TreeObject) will 
be assigned to a leaf (or multiple leaves) when the application issues a call to the 
CBaseTree::UpdateTreeObject method. This method will traverse the tree with an input world space 
bounding box and collect a list of all leaves intersecting that box. The CBaseLeaf::InsertTreeObject 
method will then be called for each leaf in this list so that the tree object is added to each leaf’s tree 
object list. 

InsertTreeObject – CBaseLeaf 

This method will never be called by the application. It is used during a tree object update by CBaseTree 
when it determines that the tree object should be added to a leaf. The tree will issue a call to this method 
for each leaf in which the tree object is contained. This method is a simple function that just adds the 
passed TreeObject pointer to the leaf’s internal list of tree objects.  
 
void CBaseLeaf::InsertTreeObject( TreeObject * pObject ) 
{ 
    // Push this context pointer onto the end of the list 
    m_TreeObjects.push_back( pObject ); 
} 
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RemoveTreeObject – CBaseLeaf 

This is another method that will never be called by the application, but is called by the tree during the 
update of a tree object. When the application issues a call to the CBaseTree::UpdateTreeObject method, 
the first thing this method will do is remove the tree object from any leaves to which it is currently 
assigned. We will see in a moment that, inside CBaseTree, each tree object is stored along with a list of 
leaves in which it is currently contained. Therefore, when its position needs to be updated, this leaf list is 
traversed and the CBaseLeaf::RemoveTreeObject method will be called to unhook the tree object from 
all its current leaves. The update method will then pass the bounding box of the tree object (in its new 
world space position) down the tree and collect a new list of leaves in which the object is now 
considered to be contained. This new leaf list is then traversed and the CBaseTree::InsertTreeObject 
method called for each. This will add the tree object to each of the new leaves as discussed above. 
Therefore, updating a tree object will essentially involve removing it from all its current leaves, finding 
a new list of leaves its bounding box intersects, and then adding the object to this new list of leaves. The 
code to CBaseLeaf::RemoveTreeObject, which is used in this process, is shown below. 
 
void CBaseLeaf::RemoveTreeObject( TreeObject * pObject ) 
{ 
    // Remove this context pointer from the list 
    m_TreeObjects.remove( pObject ); 
} 

 
As you can see, it simply removes the passed TreeObject pointer from the leaf’s tree object list. At that 
point, the tree object will no longer be considered to be in that leaf. 

GetTreeObjectList - CBaseLeaf 

This method is required by the base class (ILeaf) and allows the application to retrieve the list of tree 
objects currently contained in the leaf. This method just returns the leaf’s m_TreeObjects list. 
 
ILeaf::TreeObjectList& CBaseLeaf::GetTreeObjectList( ) 
{ 
    // Just return the list. 
    return m_TreeObjects; 
} 

 
As mentioned, this might prove useful if the application chooses a different rendering strategy than the 
one we are using.  
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SetVisible – CBaseLeaf 

We have examined this function a few times in this lesson in one form or another. You will recall that it 
is called by a derived class’s UpdateTreeVisibility method every time a visible leaf is found during the 
visibility traversal. It is called to flag leaves as either invisible or visible. 
 
As we know, this function sets the visible status of the leaf. If the leaf is visible, its triangle runs are 
added to the relevant leaf bins. After that, the leaf then adds its ‘this’ pointer to tree’s visible leaf list. 
This is all unchanged from the previous version. All we have added to the bottom of the function is a 
couple of lines that loop through the list of tree objects stored in this leaf and sets their registered 
Booleans to true. The new lines of code are highlighted in bold at the bottom of the function listing. 
 
void CBaseLeaf::SetVisible( bool bVisible ) 
{ 
    ULONG                 i, j; 
    RenderData::Element * pElement; 
    CLeafBin            * pLeafBin; 
    RenderData          * pData; 
 
    // Flag this as visible 
    m_bVisible = bVisible; 
 
    // If we're being marked as visible, inform the renderer 
    if ( m_bVisible && m_nRenderDataCount > 0 ) 
    { 
        // Loop through each renderable set in this leaf. 
        for ( i = 0; i < m_nRenderDataCount; ++i ) 
        { 
            pData    = &m_pRenderData[i]; 
            pLeafBin = pData->pLeafBin; 
 
            // Loop through each element to render 
            for ( j = 0; j < pData->ElementCount; ++j ) 
            { 
                pElement = &pData->pElements[j]; 
                if ( pElement->PrimitiveCount == 0 ) continue; 
 
                // Add this to the leaf bin 
                pLeafBin->AddVisibleData( pElement->VBIndex,  
                                          pElement->IndexStart,  
                                          pElement->PrimitiveCount ); 
            } // Next Element 
        } // Next RenderData Item 
    } //  End if visible 
 
 
    // Update tree object's if we're visible 
    if ( m_bVisible ) 
    { 
        // // Add this leaf to the tree's visible leaf list 
        m_pTree->AddVisibleLeaf( this ); 
 



 
 
 

121 

        TreeObjectList::iterator Iterator = m_TreeObjects.begin(); 
        for ( ; Iterator != m_TreeObjects.end(); ++Iterator ) 
        { 
            TreeObject * pObject = *Iterator; 
            if ( pObject->pbVisible ) *pObject->pbVisible = true; 
 
        } // Next tree object 
     
    } // End if we are visible 
} 

 
As you can see, we iterate through the TreeObject list stored in this leaf only if the leaf is visible. For 
each tree object, if it has a non-NULL Boolean pointer (pbVisible), then it means that the application 
would like this Boolean set to true when the object is visible. As we saw earlier, in our application, the 
Boolean pointer in each tree object will actually point to a CObject’s visibility Boolean. This means that 
although the tree itself has no knowledge that this tree object actually represents a CObject structure, it 
still has the ability to set its visibility status to true so that the application knows it has to render this 
CObject during the CScene::Render function.  
 
We have now looked at the minor changes to CBaseLeaf that provide support for the containment of 
dynamic objects. Next we will discuss the changes to the CBaseTree class where most of our dynamic 
object support functionality will be contained. 

15.6.10 CBaseTree – The Source Code 

We have seen that our leaves will maintain a list of TreeObject structures, so every leaf will know which 
dynamic objects it contains. However, CBaseTree will also store an array (STL vector) of all 
TreeObjects currently registered with the system, along with a list of leaves that object is currently 
contained within. This means that each leaf will have immediate access to the objects it contains, and 
each object will have immediate access to the list of leaves in which it is contained. This allows us to 
very efficiently return a list of leaves when the application issues a call to the 
ISpatialTree::GetTreeObjectLeaves method. This method is passed the ID of a tree object and returns its 
leaf list. The leaf list for each tree object is updated during the call to the CBaseTree::UpdateObject 
method, which we will see the code for in a moment. 

15.6.11 The TreeObjectData Structure 

A new structure will be needed so that CBaseTree can maintain a list of TreeObject structures paired 
with the object leaf lists. This new structure is defined in the CBaseTree namespace but is shown below 
on its own. It is called TreeObjectData and there will be an array of these structures stored in 
CBaseTree. Each element in this array will store the information for a tree object that is currently 
registered with the system. 
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Excerpt from CBaseTree.h 
struct TreeObjectData             // Stores the data relating to a tree object 
{ 
        TreeObject   Object;      // The 'context' for the tree object 
        LeafList     Leaves;      // List of leaves in which the object exists 
        bool         bInUse;      // This element is currently in use? 
} 

 
TreeObject      Object 
This member stores the TreeObject structure itself. This is the TreeObject that this TreeObjectData 
structure represents. Recall that the TreeObject structure has three members: a spatial ID that identifies 
the object to the system, a Boolean pointer that will be set to true when the object is visible, and a 
context pointer that can be used by the application to store any arbitrary data. 
 
LeafList  Leaves 
This is a list of leaves in which the above TreeObject is currently considered contained. This leaf list is 
used to update the position of a tree object very efficiently. Because we store the list of leaves the object 
is currently contained in, when we wish to update the position of a tree object (which first involves 
removing it from all current leaves), we can iterate through this list calling the 
CBaseLeaf::RemoveTreeObject method before emptying the list. This will allow us to quickly empty 
this list and remove the object from all the leaves prior to an update. Then, the 
CBaseTree::UpdateTreeObject method will send the AABB of the tree object down the tree to build a 
new leaf list which is then stored in this member. We can then iterate through this list and call the 
CBaseLeaf::InsertTreeObject method for each leaf to add the TreeObject to each new leaf in which it is 
now contained. 
 
Of course, the other useful thing about this member, beyond speeding up the tree object updates, is that 
it allows the application to retrieve a list of leaves for a given tree object. As this information is already 
compiled for every tree object, when  the application requests the leaf list for a tree object by passing its 
spatial ID, the CBaseTree::GetTreeObjectLeaves method can simply search the TreeObjectData array 
for a TreeObject data structure with the matching ID and, if found, return the leaf list stored there. 
     
bInUse 
This is a Boolean that will tell the tree whether this particular TreeObjectData structure currently 
contains a tree object or whether it is empty and can be reused. This minimizes array resizing every time 
a tree object is removed. When a tree object is removed from the system (at the application’s request), 
we do not delete its TreeObjectData structure and resize the array; we simply set this Boolean to false so 
that we know the next time we wish to add a new object, this TreeObjectData element can be used and 
its current data overwritten.  
 
Below we see the new members and methods in CBaseTree that have been added to manage dynamic 
objects. As you can see, it implements the four methods required by ISpatialTree to allow the 
application to add, remove, and update dynamic objects within the tree. It contains only one new 
member, which is an array of TreeObjectData structures. 
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Excerpt from CBaseTree.h 
public: 
     
    virtual long            InsertTreeObject    ( TreeObject & Object ); 
    virtual void            UpdateTreeObject    ( long nObjectIndex,  
                                                  const D3DXVECTOR3 & BoundsMin, 
                                                  const D3DXVECTOR3 & BoundsMax ); 
 
    virtual void            RemoveTreeObject    ( long nObjectIndex ); 
 
    virtual bool            GetTreeObjectLeaves ( long nObjectIndex,  
                                                  LeafList & List ); 
 
protected: 
 
    // STL Typedefs 
    typedef std::vector<TreeObjectData>     TreeObjectVector; 
     
    // Protected Variables for This Class. 
    TreeObjectVector            m_TreeObjects;     
}; 

 
TreeObjectVector   m_TreeObjects 
This is an STL vector that stores TreeObjectData structures. Therefore, this array is basically used to 
store all of the tree’s currently registered dynamic objects. 

InsertTreeObject – CBaseTree 

This is the method that the application uses to register a dynamic object with the system. The caller fills 
out a TreeObject structure and passes it in and the function will look for a place to store it in the 
TreeObjectData array. It first searches though the m_TreeObjects vector to see if there are any 
TreeObjectData structures that are not currently in use by the system. If one if found, we break from the 
loop so that the loop variable i contains the index of this element.  
 
long CBaseTree::InsertTreeObject( TreeObject & Object ) 
{ 
    ULONG i; 
 
    // Loop through the vector and determine if there is a free slot 
    for ( i = 0; i < m_TreeObjects.size(); ++i ) 
    { 
        // Is this in use? 
        if ( m_TreeObjects[i].bInUse == false ) break; 
     
    } // Next Tree Object 

 
If we could not find a free slot, then the loop would have run to completion. Either way, loop variable i 
will now contain the new index for where we wish to store the passed tree object. We store this index in 
the object’s nTreeObjectIndex member so that on function return the application will have access to this 
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ID and can store it. This is a unique ID for this object within the system and the handle the application 
will use to refer to it when it wants to update its position within the tree. 
 
    // Update the object's index to the new slot 
    Object.nTreeObjectIndex = i; 

 
If i equals the current size of the array, then it means that there was no free slot that can be reused, and 
we will need to instantiate a new TreeObjectData structure, store the passed TreeObject in it, and set its 
bInUse Boolean to true. We then add it to the end of the array.  
 
    // Did we reach the end? 
    if ( i == m_TreeObjects.size() ) 
    { 
        TreeObjectData Data; 
 
        // Populate a new data element 
        Data.bInUse   = true; 
        Data.Object   = Object; 
 
        // Add a new element to the array 
        m_TreeObjects.push_back( Data ); 
 
    } // End if no free slot 

 
If we did find a free slot in the array, we will reuse it by storing the passed TreeObject in it and setting 
its bInUse Boolean to true.  Notice in the following code that because this TreeObjectData structure was 
used previously by another object that has since be un-registered, the leaf list stored there will need to be 
emptied as it will not be valid for our new object. 
 
    else 
    { 
        // Just re-use the free slot 
        m_TreeObjects[i].bInUse                  = true; 
        m_TreeObjects[i].Object                  = Object; 
        m_TreeObjects[i].Leaves.clear(); 
         
     
    } // End if free slot found 
 
    // Return the new object's index 
    return i; 
} 

 
Finally, the function returns the ID that was assigned to the new tree object. This ID is just the position 
of the TreeObjectData structure in the tree’s object list. 
 
What is important to remember is that although this function is used to add a new dynamic object to the 
tree, when the function returns it will have not yet be assigned to any leaves. That is what the 
UpdateTreeObject method does, which we will examine next. 
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UpdateTreeObject – CBaseTree 

We saw earlier that this function is called by the application in the CScene::AnimateObjects method. It 
should be called whenever the world matrix of an object has been changed, or in the case of an animated 
actor, whenever its animation has been advanced. In the case of an animated actor, even if the 
application never changes its position in the scene, the individual meshes contained in its hierarchy may 
move or rotate. This would ultimately change the size of the actor’s bounding box (the box that bounds 
all meshes in the actor) and if the bounding box has gotten bigger or smaller with respect to the previous 
frame update, the actor may now exist in more or less leaves than before. 
 
The function is actually quite straightforward even though it would seem to have a difficult task to 
perform. It is passed the ID identifying the object that needs its leaves recalculated, and the world space 
bounding box of that object. The function uses the passed ID to fetch a pointer to the relevant 
TreeObjectData structure to update. 
 
void CBaseTree::UpdateTreeObject( long nObjectIndex,  
                                  const D3DXVECTOR3 & BoundsMin,  
                                  const D3DXVECTOR3 & BoundsMax ) 
{ 
    LeafList::iterator Iterator; 
    TreeObjectData *   pData = NULL; 
 
    // Valid the specified data item. 
    if ( nObjectIndex < 0 || nObjectIndex >= (signed)m_TreeObjects.size() ) return; 
    if ( !m_TreeObjects[ nObjectIndex ].bInUse ) return; 
 
    // Store pointer to object to save lookups     
    pData = &m_TreeObjects[ nObjectIndex ]; 

 
As the object may have moved, we will first remove it from all leaves in which it is currently stored. As 
each TreeObjectData structure contains the TreeObject and its current leaf list, we just have to loop 
through that leaf list calling the CBaseLeaf::RemoveTreeObject method for each. 
 
    // Loop through the leaves and remove this from the object list 
    for ( Iterator = pData->Leaves.begin();  
          Iterator != pData->Leaves.end(); ++Iterator ) 
    { 
        CBaseLeaf * pLeaf = (CBaseLeaf*)(*Iterator); 
        if ( !pLeaf ) continue; 
 
        // Request that this object is removed from the leaf 
        pLeaf->RemoveTreeObject( &pData->Object ); 
 
    } // Next Leaf 
 
    // Clear the list 
    pData->Leaves.clear(); 
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We saw the code to the CBaseLeaf::RemoveTreeObject function a moment ago. It simply removes the 
passed TreeObject pointer from its list. After this loop ends, we will have visited every leaf that 
currently contains the object and removed its pointer from those leaves. After that, we empty the leaf list 
in the TreeObject as well. At this point our object has the same status as a newly registered object; it is 
not stored in any leaves and it does not have any leaves in its leaf list. 
 
Now it is time to rebuild this information. We start by passing the TreeObject’s empty leaf list into the 
CollectLeavesAABB method, along with the world space bounding box of the object. When this 
function returns, the object will have an updated leaf list. 
 
    // Collect the new leaves 
    CollectLeavesAABB( pData->Leaves, BoundsMin, BoundsMax ); 

 
Of course, our job is not quite done. Although the object now has an updated list of leaves, the leaves in 
this list still do not know that they contain the object. Therefore, we will loop through the new leaf list 
and call the CBaseLeaf::InsertTreeObject method to add the object to the object lists for each leaf in 
which it is currently contained. 
 
    // Loop through the leaves and add this back to the newly discovered leaves 
    for ( Iterator = pData->Leaves.begin();  
          Iterator != pData->Leaves.end(); ++Iterator ) 
    { 
        CBaseLeaf * pLeaf = (CBaseLeaf*)(*Iterator); 
        if ( !pLeaf ) continue; 
 
        // Request that this object is removed from the leaf 
        pLeaf->InsertTreeObject( &pData->Object ); 
 
    } // Next Leaf 
} 

GetTreeObjectLeaves - CBaseTree 

This function can be used by the application to fetch the list of leaves (both visible and invisible) in 
which a tree object is currently contained. The application passes in the ID of the tree object it would 
like to retrieve a leaf list for and a leaf list to store the results. 
 
bool CBaseTree::GetTreeObjectLeaves( long nObjectIndex, LeafList & List ) 
{ 
    // Valid the specified data item. 
    if ( nObjectIndex < 0 || nObjectIndex >= (signed)m_TreeObjects.size() )  
         return false; 
 
    if ( !m_TreeObjects[ nObjectIndex ].bInUse ) return false; 
 
    // Populate the list 
    List = m_TreeObjects[ nObjectIndex ].Leaves; 
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    // Success! 
    return true; 
} 

 
This method uses the passed ID to fetch the TreeObjectData structure from the array and, provided this 
element is in use (i.e., it is a valid object), it returns the TreeObjectData’s leaf list. 

RemoveTreeObject - CBaseTree 

This method can be called by the application to remove a dynamic object from the tree. It is the mirror 
function to the InsertTreeObject method. Its single parameter is the ID of the tree object you would like 
to unregister from the system. 
 
The first thing the method does is use the passed ID to fetch the corresponding TreeObjectData structure 
from the tree’s object data array. 
 
void CBaseTree::RemoveTreeObject( long nObjectIndex ) 
{ 
    LeafList::iterator Iterator; 
    TreeObjectData *   pData = NULL; 
 
    // Valid index? 
    if ( nObjectIndex < 0 || nObjectIndex >= (signed)m_TreeObjects.size() ) return; 
 
    // Store pointer to object to save lookups     
    pData = &m_TreeObjects[ nObjectIndex ]; 

 
Now we loop through this tree object’s leaf list and call the CBaseLeaf::RemoveTreeObject method for 
each one. This removes it from the object list in each leaf currently containing the object. 
 
    // Remove it from any leaves it currently exists in 
    for ( Iterator = pData->Leaves.begin();  
          Iterator != pData->Leaves.end(); ++Iterator ) 
    { 
        CBaseLeaf * pLeaf = (CBaseLeaf*)(*Iterator); 
        if ( !pLeaf ) continue; 
 
        // Request that this object is removed from the leaf 
        pLeaf->RemoveTreeObject( &pData->Object ); 
 
    } // Next Leaf 

 
Finally, we set this TreeObjectData structure’s bInUse Boolean to false and empty its leaf list. 
 
    // Just re-use the free slot next time someone inserts 
    pData->bInUse = false; 
    pData->Leaves.clear(); 
} 
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We have now covered all the new methods and code that are involved in adding dynamic object support 
to CBaseTree.  

15.6.12 Conclusion – Dynamic Objects 

After an admittedly arduous journey, we have completed the code for our ISpatialTree derived classes. 
Along the way we have seen that CBaseTree provides nearly all of the core functionality for any tree 
type we might care to derive from it in the future. 
 
One interesting item we encountered in this last section was that CBaseTree views dynamic objects in a 
very abstract way. It has no idea what the TreeObject structure represents and does not need to. We do 
not even use the context pointer of this structure in our lab project, only its Boolean pointer. Therefore, 
we have discovered that a dynamic object used in this way is really just a Boolean pointer with an 
assigned ID.  It is ultimately attached to some number of leaves every time the UpdateTreeObject 
method is called, but it remains quite a separate concept. The TreeObject does not even store a bounding 
volume for the object it represents, as one might suspect. Instead, this bounding volume is passed into 
the UpdateTreeObject method by the application whenever it wishes to inform the tree that the object 
has moved and its Boolean pointer should now be assigned to a new set of leaves. 
 
Of course, the dynamic object system we have developed does place a particular burden on the 
application. In order for the application to update the position of a CObject, it must have access to the 
world space bounding box of the object it contains (either a CTriMesh or a CActor). Up until this point 
in the course however, CTriMesh and CActor have never exposed a method for retrieving any world 
space bounding box, so we will need to add these now before concluding the lesson. 

15.7 CTriMesh Revisited – World Space Bounding 
Boxes 

CTriMesh will now have two new members added to it. These will be 3D vectors that describe the 
object space AABB of the mesh. As a mesh is by its very nature an object space concept, there is no 
way it can know about its world space position or size and therefore, the object space box will be created 
and stored instead. CTriMesh will then expose a method called GetBoundingBox which allows for a 
world transformation matrix to be passed. This function will transform the object space bounding box 
into world space before returning it to the application. We saw CTriMesh::GetBoundingBox being used 
earlier when we examined the changes to the CScene::AnimateObjects method. This method would 
fetch the world space bounding box from the CTriMesh (if one was stored in the current CObject 
structure being updated) and pass it into the ISpatialTree::UpdateTreeObject. When the 
CTriMesh::GetBoundingBox method was called, it was passed the world matrix of the owner object. 
This meant we would get back the world space AABB for the mesh.  
 
Here are the new members and methods added to CTriMesh. 
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protected: 
D3DXVECTOR3         m_vecBoundsMin;    
D3DXVECTOR3         m_vecBoundsMax; 
 
public: 
 
HRESULT UpdateBoundingBox(); 
 
void    GetBoundingBox(D3DXVECTOR3 &BoundsMin, 
                       D3DXVECTOR3 &BoundsMax,  
                       D3DXMATRIX * pMatrix = NULL ) const; 

UpdateBoundingBox - CTriMesh 

Our application will never call this function (although it can if it would like to rebuild the object space 
bounding box of the mesh for some reason) as it is called automatically by the 
CTriMesh::LoadMeshFromX function just before returning. The function is like many we have seen 
before. The first thing it does is query the D3DXMesh managed by the CTriMesh object for an 
ID3DXBaseMesh interface. This allows us to work with both regular and progressive meshes using the 
base interface. 
 
HRESULT CTriMesh::UpdateBoundingBox( ) 
{ 
    HRESULT            hRet; 
    UCHAR            * pVertices  = NULL; 
    ULONG              nVertexStride, nVertexCount; 
    D3DXVECTOR3        vecPos; 
    ULONG              i; 
 
    // Retrieve the mesh 
    LPD3DXBASEMESH pMesh = NULL; 
     
    // What type of mesh? 
    if ( m_pMesh ) 
    { 
        // Query the interface to get back the base mesh. 
        hRet = m_pMesh->QueryInterface( IID_ID3DXBaseMesh, (void**)&pMesh ); 
        if ( FAILED( hRet ) ) return hRet; 
 
    } // End if standard mesh 
    else if ( m_pPMesh ) 
    { 
        // Query the interface to get back the progressive mesh 
        hRet = m_pPMesh->QueryInterface( IID_ID3DXBaseMesh, (void**)&pMesh ); 
        if ( FAILED( hRet ) ) return hRet; 
     
    } // End if progressive mesh 
    else 
    { 
        // Just return 
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        return D3D_OK; 
 
    } // End if no mesh 

 
We initialize the mesh’s bounding box to extreme starting values (an inside-out box). 
 
 
    // Reset the bounding box 
    m_vecBoundsMin = D3DXVECTOR3(  FLT_MAX,  FLT_MAX,  FLT_MAX ); 
    m_vecBoundsMax = D3DXVECTOR3( -FLT_MAX, -FLT_MAX, -FLT_MAX ); 

 
We then get the number of vertices and the number of bytes each vertex consumes in memory before 
locking the mesh’s vertex buffer to get a pointer to its vertex data.  
    
    // Retrieve additional info we need for processing 
    nVertexStride = pMesh->GetNumBytesPerVertex( ); 
    nVertexCount  = pMesh->GetNumVertices( ); 
 
    // Lock the vertex buffer 
    hRet = pMesh->LockVertexBuffer( D3DLOCK_READONLY, (void**)&pVertices ); 
    if ( FAILED(hRet) ) { pMesh->Release(); return hRet; } 

 
Now we will iterate through every vertex in the vertex buffer and copy the positional data into a 
D3DXVECTOR3 called vecPos. 
 
    // Compute this frame's bounding box 
    for ( i = 0; i < nVertexCount; ++i, pVertices += nVertexStride ) 
    { 
        // Retrieve the position of this vertex in it's reference pose 
        vecPos = *(D3DXVECTOR3*)pVertices; 

 
We then test the components of this vertex against the currently recorded maximum and minimum box 
extents and adjust them accordingly. 
 
        // Test it against the frame bounding box and update if necessary 
        if ( vecPos.x < m_vecBoundsMin.x ) m_vecBoundsMin.x = vecPos.x; 
        if ( vecPos.y < m_vecBoundsMin.y ) m_vecBoundsMin.y = vecPos.y; 
        if ( vecPos.z < m_vecBoundsMin.z ) m_vecBoundsMin.z = vecPos.z; 
        if ( vecPos.x > m_vecBoundsMax.x ) m_vecBoundsMax.x = vecPos.x; 
        if ( vecPos.y > m_vecBoundsMax.y ) m_vecBoundsMax.y = vecPos.y; 
        if ( vecPos.z > m_vecBoundsMax.z ) m_vecBoundsMax.z = vecPos.z; 
 
    } // Next Vertex 

 
After this loop finishes, the bounding box will fit every vertex in the mesh and our job is complete. All 
we have to do now is unlock the vertex buffer and return. 
 
    // Unlock the vertex buffer 
    pMesh->UnlockVertexBuffer(); 
 
    // Release the pointer to the mesh we retrieved 
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    pMesh->Release(); 
 
    // Success!! 
    return D3D_OK; 
} 

 
It should be noted that while this method need never be called if you are populating the CTriMesh using 
its CTriMesh::LoadMeshFromX method (it calls this method automatically), if you are procedurally 
building a CTriMesh then you will want to call this method after you have added all the vertex data and 
built its underlying D3DXMesh. Another time you will want to call this method is if you detach the 
underlying D3DXMesh and attach a new one.  

GetBoundingBox - CTriMesh 

Although the CTriMesh object stores its model space bounding box, we want a function that can 
optionally return the world space bounding box if needed. A CTriMesh object has no information about 
where the mesh lives in the world, so we will add a matrix pointer parameter to its GetBoundingBox 
function. This allows the application to pass a world matrix that will be used to transform the model 
space bounding box into world space before returning it to the caller. Luckily, we have already written 
the TransformAABB method that performs this very task and as such, the CTriMesh::GetBoundingBox 
uses it to optionally perform the world space transformation. 
 
void CTriMesh::GetBoundingBox( D3DXVECTOR3 & BoundsMin,  
                               D3DXVECTOR3 & BoundsMax,  
                               D3DXMATRIX * pMatrix /* = NULL */ ) const 
{ 
    BoundsMin = m_vecBoundsMin; 
    BoundsMax = m_vecBoundsMax; 
 
    // Transform if a matrix is provided 
    if ( pMatrix ) MathUtility::TransformAABB( BoundsMin, BoundsMax, *pMatrix ); 
} 

 
As you can see, the function is passed the 3D vectors that will receive the resulting AABB extents. First 
we copy the model space bounding box of the mesh into these vectors. If the caller passed a matrix, this 
bounding box is then transformed by that matrix prior to the function returning.  

15.8 CActor Revisited – World Space Bounding Boxes 

Adding a function to our actor that will return its world space bounding box will not be quite as simple 
as it was for our mesh. The bounding box it returns must be large enough to encompass all the meshes 
contained in its hierarchy. At first we might think that this could be done at actor creation time by 
traversing the tree to find all mesh containers and then building a box to contain the vertices in those 
meshes. That would certainly work if the actor was not animated, but as we know, actors can be 
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animated and this changes things. If we imagine an actor that has been created to store a hierarchy of 
meshes that all rotate and move, we can see that the size of the actor’s bounding box would changed 
during animation updates. Imagine a skinned character for example. It would have one bounding box 
when its arms are by its side and a different one when it holds its arms out to each side. An even better 
example of the drastic size changes that can occur to an actor’s bounding box would be an actor that 
models a space ship on a launching pad (like our lab project in Chapter 9). At the start of the animation, 
the craft would be on the launch pad with a small bounding box encompassing the launch pad and the 
spaceship. As the animation plays, the spaceship takes off and flies off into the distance. As both the 
launch pad and the actor are mesh containers within the same actor in this example, the bounding box of 
the actor would have to dynamically grow to contain the craft as it flies off into the distance. 
 
Traversing the actor hierarchy whenever its animation is updated and calculating a new world space 
bounding box at the per-mesh level is out of the question if we want to do this quickly. Instead, we will 
use an approach that will take advantage of the fact that the actor has a spatial tree of its own that can be 
traversed and updated. Our design approach will be very familiar to you since it is identical in concept to 
the way we generate the world matrices (combined matrices) for each frame. 
 
Each frame in the tree will now store two sets of bounding box extents (four vectors).  Our new 
D3DXFRAME_MATRIX structure is shown below.  
 
struct D3DXFRAME_MATRIX : public D3DXFRAME  
{ 
    D3DXMATRIX   mtxCombined;    // Combined matrix for this frame. 
    D3DXVECTOR3  vecBoundsMin;   // Bounding box (in world space) 
    D3DXVECTOR3  vecBoundsMax;   // Bounding box (in world space) 
 
    D3DXVECTOR3  vecObjectMin;   // Bounding box (in object space) 
    D3DXVECTOR3  vecObjectMax;   // Bounding box (in object space) 
    bool         bObjectBounds;  // This bounding box describes the extents  
                                 // of a physical object? 
}; 

15.8.1 The Model Space Bounding Boxes 

vecObjectMin and vecObjectMax will be calculated automatically when the actor’s data is first loaded 
from the X file (via a call from the LoadActorFromX method to the BuildBoundingBoxes method). It 
will store the model space bounding box of any frame that directly stores mesh data. But what does the 
bounding box of a frame represent? In our case it will represent a bounding box that is large enough to 
contain all the mesh containers directly attached to a given frame. Only frames in the hierarchy that have 
mesh containers attached will store a model space bounding box, so there will not yet be any 
parent/child relationship as we see in a spatial tree of bounding volumes.  
 
During the building phase of these boxes, the tree will be traversed and any frame that has a mesh 
container attached will have a bounding box generated for that mesh (or list of meshes if multiple mesh 
containers are assigned to the same frame). That model space box with be stored in the owner frame. 
You will notice that our updated frame structure also stores a new Boolean called bObjectBounds. This 
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will be set to true only for frames that store a model space bounding box in the vecObjectMin and 
vecObjectMax members (i.e., frames that have mesh data directly attached to them). However, we must 
also remember that the actor may contain a skinned mesh, in which case things are a little different.  
 
Up until now we have been talking about the actor and its model space bounding boxes in the simplest 
form. That is, any frame that has a mesh container attached will also store a model space bounding box 
describing the position and size of that mesh in the actor’s reference pose. However, if we think about 
the bones of an actor, they do not have mesh containers attached to them (usually the entire skin is 
stored in the tree attached to an arbitrary frame; most often the root) so does that mean bones should not 
store model space bounding boxes either? It certainly does not!  
 
Although a bone may not have a mesh container structure attached 
to it, it does represent some portion of a mesh. For example, imagine 
a bone that has all the vertices of a skinned character’s elbow 
mapped to it. That bone should contain a bounding box that 
describes the position and size of the elbow in the default pose. 
Therefore, we have two cases where a frame will store a model 
space bounding box. The first is when the frame has a mesh 
container attached and the second is when the frame is being used as 
a bone by a skinned mesh. In the latter case, its model space 
bounding box will bound the section of vertices (in their model 
space reference pose) in the skin that it influences. 
 
For a skinned character, we can easily imagine having bounding 
boxes surrounding all the bones in the reference pose (see Figure 
15.8). The black box shows what we are trying to ultimately achieve 
-- a bounding box that encompasses the entire actor, in world space.   
 
So we have determined that the object space bounding boxes of any frame that contains (or is attached 
to) vertex data will be calculated in a single function called once when the actor is first created. This 
function is called CActor::BuildBoundingBoxes and it is called from the bottom of the 
CActor::LoadActorFromX function.  
 
The calculation of these boxes will not be fast enough for real-time work, which is why we are lucky it 
only has to be performed once. We will have to traverse the tree searching for frames that contain mesh 
containers and need to have an object space box created for them. When a mesh container is found, we 
then test to see if the mesh is a skin. If it is not a skin, our task is simple: we lock the mesh’s vertex 
buffer and iterate through each vertex, adjusting the size of the frame’s object space box extents until it 
is large enough to encompass all vertices of that mesh. If multiple mesh containers are attached to the 
frame, they must all be tested in this way and the bounding box of the frame will grow to fit all these 
attached meshes. 
 
When the mesh container stores a skin, things are a little bit different. We have to loop through each 
bone and retrieve the vertices that are influenced by it. Once we have a list of vertices for the current 
bone we are processing we must transform those vertices into bone space. Remember, the skin itself will 
be in its own model space at this point and we want its vertices in the space of the actor. After 

 
Figure 15.8 
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transforming the vertices attached to the current bone into bone space, we compute its bounding box and 
grow the extents of the frame’s box if it is not large enough to contain it. We do this same step for each 
bone that influences the mesh. 
 
We will now look at the code to the CActor::BuildBoundingBoxes method. One thing to bear in mind 
when you see this code is that it never initializes the bounding boxes of any frames to default values. 
This is done when the frame is first created in the CAllocateHierarchy::CreateFrame callback. This is 
quite important because a single bone may influence more than one skin. Resetting its bounding box 
before calculating the extents of any particular skin’s vertices would cancel out the contribution of other 
skins.  

BuildBoundingBoxes - CActor 

This method is a recursive function that is called from the CActor::LoadActorFromX function. It is 
passed a pointer to the root frame and then traverses the frame hierarchy looking for frames that contain 
meshes or that influence the vertices of a skinned mesh. Once found, it grows the model space bounding 
box of the owner frame to contain any meshes/vertices it directly influences. We will cover the code one 
section at a time. 
 
The first thing we do is loop through the list of mesh containers stored at the frame. If there are no mesh 
containers attached to this frame, no action is taken and the frame does not have a model space bounding 
box calculated for it. At the end of the function, it simply steps into the sibling and child lists. 
 
At the start of the mesh container traversal loop, we determine whether the mesh stored in this container 
is a progressive mesh or a regular mesh, so that we can access the correct pointer in the 
D3DXMESHDATA structure. We then query the mesh for a D3DXBASEMESH interface so that we 
can work with both mesh types through a single interface for the remainder of the function. 
 
HRESULT CActor::BuildBoundingBoxes( LPD3DXFRAME pFrame ) 
{ 
    HRESULT            hRet; 
    D3DXFRAME_MATRIX * pMtxFrame  = (D3DXFRAME_MATRIX*)pFrame; 
    D3DXFRAME_MATRIX * pBoneFrame = NULL; 
    UCHAR            * pVertices  = NULL; 
    ULONG              nVertexStride, nVertexCount, nBoneCount; 
    ULONG              nInfluenceCount, i, j; 
    D3DXVECTOR3        vecPos; 
 
    // If this has a mesh container , we'll check for skinning etc. 
    D3DXMESHCONTAINER_DERIVED * pContainer =  
                               (D3DXMESHCONTAINER_DERIVED*)pFrame->pMeshContainer; 
 
    for ( ; pContainer;   
            pContainer=(D3DXMESHCONTAINER_DERIVED*)pContainer->pNextMeshContainer ) 
    { 
        // Retrieve the mesh 
        LPD3DXBASEMESH pMesh = NULL; 
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        switch( pContainer->MeshData.Type ) 
        { 
            case D3DXMESHTYPE_MESH: 
 
                // Skip if no mesh stored here 
                if ( !pContainer->MeshData.pMesh ) continue; 
                 
                // Query the interface to get back the base mesh. 
                hRet =  
                pContainer->MeshData.pMesh->QueryInterface( IID_ID3DXBaseMesh, 
                                                            (void**)&pMesh ); 
                if ( FAILED( hRet ) ) return hRet; 
                break; 
 
            case D3DXMESHTYPE_PMESH: 
 
                // Skip if no mesh stored here 
                if ( !pContainer->MeshData.pPMesh ) continue; 
 
                // Query the interface to get back the progressive mesh 
                hRet =  
                pContainer->MeshData.pPMesh->QueryInterface( IID_ID3DXBaseMesh, 
                                                             (void**)&pMesh ); 
                if ( FAILED( hRet ) ) return hRet; 
                break; 
 
            default: 
 
                // We don't support other types 
                continue; 
 
        } // End mesh type 

 
At this point we have our mesh pointer, so we will retrieve the vertex count of its vertex buffer and the 
stride of each vertex before locking the vertex buffer. 
 
        // Retrieve additional info we need for processing 
        nVertexStride = pMesh->GetNumBytesPerVertex( ); 
        nVertexCount  = pMesh->GetNumVertices( ); 
 
        // Lock the vertex buffer 
        hRet = pMesh->LockVertexBuffer( D3DLOCK_READONLY, (void**)&pVertices ); 
        if ( FAILED(hRet) ) { pMesh->Release(); return hRet; } 

 
Now that we have a pointer to the vertices, we have to figure out if this is a normal mesh attached to this 
frame or if the mesh is a skin that may be influenced by many other bones in the hierarchy. If a skin is 
not stored here then we know that the container’s pSkinInfo pointer will be NULL. In the code snippet 
we see the code that handles the non-skin case. It loops through every vertex in the vertex buffer and 
grows the frame’s bounding box to encompass the vertices. As mentioned previously, notice that we do 
not initialize the frame’s object space bounding box extents. This is done when the frame itself is first 
created in the CAllocateHierarchy::CreateFrame method (called by D3DX during the loading of the 
hierarchy). We must not do that here as this may be one of many meshes attached to this frame. As we 
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know, it is possible for a frame to have a whole list of mesh containers attached via their 
pNextMeshContainer pointers.  
 
        // Skinned mesh? 
        if ( !pContainer->pSkinInfo ) 
        { 
            // Compute this frame's bounding box 
            // Note: This frame may have more than one mesh container,  
            // boxes initialized during the 'CAllocateHierarchy::CreateFrame' call. 
            for ( i = 0; i < nVertexCount; ++i, pVertices += nVertexStride ) 
            { 
                // Retrieve the position of this vertex in it's reference pose 
                vecPos = *(D3DXVECTOR3*)pVertices; 
 
                // Test it against the frame bounding box and update if necessary 
                if ( vecPos.x < pMtxFrame->vecObjectMin.x )  
                     pMtxFrame->vecObjectMin.x = vecPos.x; 
 
                if ( vecPos.y < pMtxFrame->vecObjectMin.y )  
                     pMtxFrame->vecObjectMin.y = vecPos.y; 
 
                if ( vecPos.z < pMtxFrame->vecObjectMin.z ) 
                     pMtxFrame->vecObjectMin.z = vecPos.z; 
 
                if ( vecPos.x > pMtxFrame->vecObjectMax.x ) 
                     pMtxFrame->vecObjectMax.x = vecPos.x; 
 
                if ( vecPos.y > pMtxFrame->vecObjectMax.y )  
                    pMtxFrame->vecObjectMax.y = vecPos.y; 
 
                if ( vecPos.z > pMtxFrame->vecObjectMax.z )  
                    pMtxFrame->vecObjectMax.z = vecPos.z; 
 
            } // Next Vertex 
 
            // Frame has applicable bounding box 
            pMtxFrame->bObjectBounds = true; 
 
        } // End if standard mesh 

 
As you can see in the above code, after every vertex has been tested against the current extents of the 
frame’s bounding box (and adjusted where necessary), we set the frame’s bObjectBounds member to 
true. We will see later that this Boolean is what will tell our CActor::UpdateFrames method that the 
frame contains an object space bounding box which must be transformed into world space and 
propagated up the tree to the root node (more on this later). 
 
The next section of code shows what happens when the mesh container stores a skin. In this case, we 
first use the ID3DXSkinInfo::GetNumBones method to retrieve the number of bones (frames) in the 
hierarchy that influence the vertices in this mesh. We then initiate a loop to step through each bone.  
 
        else 
        { 
            LPD3DXSKININFO pSkinInfo = pContainer->pSkinInfo; 
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            // Loop through each bone in the skin info 
            nBoneCount = pSkinInfo->GetNumBones(); 
 
            for ( i = 0; i < nBoneCount; ++i ) 
            { 

                 
Now that we know the index of the current bone we are processing in the ID3DXSkinInfo’s array of 
bone information, we call its GetBoneName method to retrieve the name of the current frame we are 
processing. This is then passed into the CActor::GetFrameByName method which traverses the 
hierarchy searching for the frame and returns a pointer to that frame when found. 
  
                // Attempt to retrieve the frame for this bone 
                pBoneFrame=(D3DXFRAME_MATRIX*) 
                            GetFrameByName(pSkinInfo->GetBoneName( i ) ); 
 
                if ( !pBoneFrame ) continue; 
 
                // Retrieve the total number of vertices that this bone influences 
                nInfluenceCount = pSkinInfo->GetNumBoneInfluences( i ); 
 
                if ( nInfluenceCount == 0 ) continue; 

 
After we have a pointer to the current frame/bone we are processing, we pass its index into the 
ID3DXSkinInfo::GetNumBoneInfluences method. This will return the number of vertices in this skin 
that are influenced by that bone (which we store in nInfluenceCount). If the return value is zero, then 
this bone does not influence the skin in any way and we can skip to the next iteration of the loop and 
process the next bone. 
 
Now that we know how many vertices in the skin are influenced by this bone, we need to fetch the 
indices of these vertices so that we can adjust the bone’s object space bounding box. Therefore, we 
allocate an array of indices large enough to hold an index for each vertex influenced by the current bone 
and we allocate an array of floats that will be used to store the weight for each vertex. We pass pointers 
to these two arrays, along with the bone index, into the ID3DXSkinInfo::GetBoneInfluence method. 
This function will fill the passed arrays with the indices and weights of all vertices that are influenced by 
the current bone we are processing. 
 
                // Allocate enough space for influences 
                ULONG * pIndices = new ULONG[ nInfluenceCount ]; 
                if ( !pIndices )  
                { pMesh->UnlockVertexBuffer();  
                  pMesh->Release();  
                  return E_OUTOFMEMORY;  
                } 
 
                float * pWeights = new float[ nInfluenceCount ]; 
                if ( !pWeights )  
                {  
                    delete []pIndices;  
                    pMesh->UnlockVertexBuffer();  
                    pMesh->Release();  
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                    return E_OUTOFMEMORY; } 
 
                // Retrieve the influence array 
                hRet = pSkinInfo->GetBoneInfluence( i, pIndices, pWeights ); 
                if ( FAILED(hRet) ) 
                {  
                    // Clean up and continue 
                    delete []pIndices;  
                    delete []pWeights;  
                    pMesh->UnlockVertexBuffer();  
                    pMesh->Release();  
                    continue; 
 
                } // End if failed to get influences 

 
Now that we have the array of indices, we can loop through each one and fetch the position of the vertex 
at the corresponding index from the vertex buffer. We will store this in a temporary 3D vector, as shown 
below. 
 
                // Loop through each influence 
                for ( j = 0; j < nInfluenceCount; ++j ) 
                { 
                    // Retrieve vertex in it's correct reference pose 
                    vecPos = (D3DXVECTOR3&)(pVertices[pIndices[j]*nVertexStride]); 

 
We now have the vertex position, but this in the local space of the skin model itself, not in the local 
space of the frame/bone to which it is attached. Therefore, we retrieve the bone offset matrix for the 
current bone and transform the vertex into bone space. We then test the position of the vertex against the 
object space (bone space) bounding box and grow its extents where necessary. 
 
                    D3DXVec3TransformCoord( &vecPos,  
                                            &vecPos,  
                                            &pContainer->pBoneOffset[i] ); 
 
                    // Test against the frame bounding box and update if necessary 
                    if ( vecPos.x < pBoneFrame->vecObjectMin.x )  
                        pBoneFrame->vecObjectMin.x = vecPos.x; 
 
                    if ( vecPos.y < pBoneFrame->vecObjectMin.y )  
                        pBoneFrame->vecObjectMin.y = vecPos.y; 
 
                    if ( vecPos.z < pBoneFrame->vecObjectMin.z )  
                        pBoneFrame->vecObjectMin.z = vecPos.z; 
 
                    if ( vecPos.x > pBoneFrame->vecObjectMax.x )  
                        pBoneFrame->vecObjectMax.x = vecPos.x; 
 
                    if ( vecPos.y > pBoneFrame->vecObjectMax.y )  
                        pBoneFrame->vecObjectMax.y = vecPos.y; 
 
                    if ( vecPos.z > pBoneFrame->vecObjectMax.z )  
                        pBoneFrame->vecObjectMax.z = vecPos.z; 
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                } // Next Influence 

 
After the index loop ends, we have correctly adjusted the object space bounding box for the current bone 
to contain all the vertices in the skin that are influenced by it. All we have to do now is set the bone’s 
pObjectBounds Boolean to true and delete the temporary index and weight arrays. 
 
                // Frame has applicable bounding box 
                pBoneFrame->bObjectBounds = true; 
 
                // Clean up memory 
                delete []pIndices;  
                delete []pWeights;  
 
            } // Next Bone 
             
        } // End if skinned mesh 
 
        // Unlock the vertex buffer 
        pMesh->UnlockVertexBuffer(); 
 
        // Release the pointer to the mesh we retrieved 
        pMesh->Release(); 
 
    } // Next mesh container 

 
After we have processed every bone that influences the skin and calculated the bounding box for each 
one, we unlock the vertex buffer and release the mesh interface we acquired. 
 
Finally, the function continues its traversal of the tree looking for more mesh containers. 
 
    // Has a sibling frame? 
    if (pFrame->pFrameSibling != NULL) 
    { 
        hRet = BuildBoundingBoxes( pFrame->pFrameSibling ); 
        if ( FAILED(hRet) ) return hRet; 
 
    } // End if has sibling 
 
    // Has a child frame? 
    if (pFrame->pFrameFirstChild != NULL) 
    { 
        hRet = BuildBoundingBoxes( pFrame->pFrameFirstChild ); 
        if ( FAILED(hRet) ) return hRet; 
 
    } // End if has child 
 
    // Success!! 
    return D3D_OK; 
} 

 
Any frames which do not have meshes attached to them or are not used to influence skins do not have an 
object space bounding box. Consequently, they will have their bObjectBounds Booleans set to false. 
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15.8.2 World Space Bounding Boxes 

So far we have an object space bounding box stored at every frame that contains a mesh. The problem is 
that we need our actor to return a world space bounding box for the entire actor that will automatically 
have its size updated when the actor animates.  We can see in Figure 15.9 that when the character is 
animated, the actor’s bounding box changes in size to encompass the world space bounding boxes of all 
its child frames. 
 

In Figure 15.9, the purple bounding boxes are not the 
bounding boxes we have just calculated; they are those 
bounding boxes after they have been transformed into world 
space. These world space bounding boxes (which need to be 
updated every time the actor is animated) are then merged 
together to compute the final world space bounding box for 
the entire actor. 
 
The vecBoundsMax and vecBoundsMin members of our 
frame structure will be updated every time the actor is 
updated inside the CActor::UpdateFrameMatrices call. This 
is the method that traverses the hierarchy, combining 
matrices to ultimately store a world matrix at each frame. In 
many ways, our bounding boxes will work in exactly the 
same way as the relative and absolute matrices we are used 
to working with. 
 
Recall that when the actor is first created, each frame 

contains a matrix that describes its position in parent relative space.  However, each frame also stores 
another matrix that is updated every time the actor is moved. This update happens in the 
UpdateFrameMatrices method. You will recall that this function is passed a world matrix which is 
initially combined with the root frame’s matrix to generate the world matrix of the root frame. This 
world matrix is then passed down to the children, where it is combined with their relative matrices to 
create the world matrices for each frame, and so on right down the tree. When UpdateFrameMatrices 
returns, every frame in the tree will store an absolute world matrix.  
 
Our bounding boxes will basically work the same way. Our actor will store bounding box extents which 
will be used to store the bounding box of the entire actor. These will be updated every time the 
application calls the SetWorldMatrix method, which as we know, calls the UpdateFrameMatrices 
method. The UpdateFrameMatrices method will now have some code added so that as it steps through 
the tree, it will calculate the world space bounding box for every frame in the tree. The world space 
bounding box of a frame will be a box that has been adjusted to contain the world space bounding boxes 
of all frames beneath it in the hierarchy. When this process works its way back up the root, we will have 
a box that is in world space that encompasses every frame in the tree. The following description takes 
you through how it will work… 
 

 
Figure 15.9 
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As we step into a frame we will calculate its absolute world matrix and store it in the frame as normal. 
We will then traverse into the sibling and child lists. When a frame is reached that has its 
bObjectBounds Boolean set to true, we will transform its object space bounding box into world space 
using our TransformAABB method. We will then store the world space bounding box in the frame and 
will pass it back to the parent frame when the function returns. The parent frame, having received the 
world space bounding box of its child(ren) will then adjust the returned box by transforming its own 
object space bounding box into world space (if it contains one) and grow the box to contain both its own 
box and the box returned by its child. The combined world space box will then be returned to its parent 
where the same happens again.  
 
By positioning the bounding box propagation code after the lines that traverse into the child and sibling 
lists, we make sure that we are calculating the bounding box not on the way down the tree (as is the case 
with the frame matrices), but on our way back up the tree. As we begin unwinding the call stack and 
work our way back up the tree, we can combine the world space bounding box returned by the children 
with the current frame’s own world space bounding box. Of course the world space bounding box 
returned by the children will also have been combined with the world space bounding boxes of all their 
children, and so on. What we end up with is a spatial hierarchy; a tree of bounding boxes such that every 
frame in the tree stores a world space bounding box that encompasses the world space bounding boxes 
of all the frames beneath it in the tree. The bounding box finally returned from the 
CActor::UpdateFrameMatrices method back to the CActor::SetWorldMatrix method is the world space 
bounding box of the entire actor in its current pose. We can then store this information away in the 
actor’s bounding box extents member variables. 

 
Note: This bottom-up calculation approach is commonly used when assembling other types of popular 
bounding volume hierarchies like scene graphs, AABB trees, etc. We will examine some of these other 
hierarchy types in Module III of this series.  

 
CActor has had two new members added to store the world space bounding box of the actor in its 
current pose. These two vectors will be populated by the data returned from the UpdateFrameMatrices 
call. 
 
Excerpt From CActor 
D3DXVECTOR3  m_vecBoundsMin;   // Minimum bounding box extents (in world space) 
D3DXVECTOR3  m_vecBoundsMax;   // Maximum bounding box extents (in world space) 
 
void   GetBoundingBox ( D3DXVECTOR3 & BoundsMin, D3DXVECTOR3 & BoundsMax ) const; 
void   UpdateFrameMatrices(        LPD3DXFRAME   pFrame,  
                            const  D3DXMATRIX  * pParentMatrix,  
                                   D3DXVECTOR3 * pFrameMin /* = NULL */, 
                                   D3DXVECTOR3 * pFrameMax /* = NULL */ ) 

 
CActor has also had two new method added, which we will discuss next.  
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GetBoundingBox - CActor 

The GetBoundingBox method returns the world space bounding box for the actor. We saw earlier that 
our CScene::AnimateObjects method called this function to send the box into the 
ISpatialTree:UpdateTreeObject method so that the leaf list for the object could be updated. 
 
void CActor::GetBoundingBox( D3DXVECTOR3 &BoundsMin, D3DXVECTOR3 &BoundsMax ) const 
{ 
    BoundsMin = m_vecBoundsMin; 
    BoundsMax = m_vecBoundsMax; 
} 

 
This method will only be valid once the application has called CActor::SetWorldMatrix or one of the 
other CActor methods that automatically calls the UpdateFrameMatrices method. It will always contain 
the world space bounding box calculated during the last CActor::SetWorldMatrix call.  

SetWorldMatrix – CActor (Updated) 

The application uses the CActor::SetWorldMatrix method to set the world matrix of the actor and 
optionally rebuild the world matrices of each frame in the hierarchy. This new version of the code 
initializes the actor’s bounding box extents and then sends them into the UpdateFrameMatrices method. 
 
void CActor::SetWorldMatrix( const D3DXMATRIX * mtxWorld /* = NULL */,  
                             bool UpdateFrames /* = false */ ) 
{ 
    // Store the currently set world matrix 
    if ( mtxWorld ) 
        m_mtxWorld = *mtxWorld; 
    else 
        D3DXMatrixIdentity( &m_mtxWorld ); 
 
    // Update the frame matrices 
    if ( IsLoaded() && UpdateFrames ) 
    { 
        // Reset the bounding box 
        m_vecBoundsMin = D3DXVECTOR3(  FLT_MAX,  FLT_MAX,  FLT_MAX ); 
        m_vecBoundsMax = D3DXVECTOR3( -FLT_MAX, -FLT_MAX, -FLT_MAX ); 
 
        UpdateFrameMatrices( m_pFrameRoot,  
                             mtxWorld,  
                             &m_vecBoundsMin,  
                             &m_vecBoundsMax ); 
 
    } // End if update frames 
 
} 
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As you can see, the CActor::UpdateFrameMatrices method now supports two additional parameters that 
allow you to pass in two extent vectors to be filled with the world space bounding box of the passed 
frame. As the frame we are passing is the root node, and the vectors we are passing are the actor’s world 
space extent vectors, we know that on function return the CActor’s m_vecBoundsMin and 
m_vecBoundsMax vectors will contain the world space bounding box of the root node. This is the world 
space bounding box that encompasses the entire hierarchy of the actor and all its contained meshes. 

UpdateFrameMatrix - CActor 

This is the function where everything comes together. On top of its original job of calculating the world 
matrices at each frame, it now has to transform the object bounding box of any frame that contains mesh 
data into world space and return it back to its parent. Because we want the boxes to be calculated after 
we have returned from traversing the child list, the code for transforming the box will be at the bottom 
of the function.  
 
The function is now passed pointers two extent vectors which will store the world space bounding box 
for the current frame being visited in any given recursion of the function. 
 
void CActor::UpdateFrameMatrices( LPD3DXFRAME pFrame,  
                                  const D3DXMATRIX * pParentMatrix,  
                                        D3DXVECTOR3 * pFrameMin /* = NULL */, 
                                        D3DXVECTOR3 * pFrameMax /* = NULL */ ) 
{ 
    D3DXFRAME_MATRIX * pMtxFrame = (D3DXFRAME_MATRIX*)pFrame; 
 
    D3DXVECTOR3 vecBoundsMin = D3DXVECTOR3(  FLT_MAX,  FLT_MAX,  FLT_MAX ); 
    D3DXVECTOR3 vecBoundsMax = D3DXVECTOR3( -FLT_MAX, -FLT_MAX, -FLT_MAX );; 
 
    if ( pParentMatrix != NULL) 
        D3DXMatrixMultiply( &pMtxFrame->mtxCombined,  
                            &pMtxFrame->TransformationMatrix, pParentMatrix); 
    else 
        pMtxFrame->mtxCombined = pMtxFrame->TransformationMatrix; 
 
    // Move onto sibling frame 
    if ( pMtxFrame->pFrameSibling ) UpdateFrameMatrices( pMtxFrame->pFrameSibling, 
                                                         pParentMatrix,  
                                                         pFrameMin,  
                                                         pFrameMax ); 
 
    // Move onto first child frame 
    if ( pMtxFrame->pFrameFirstChild )  
         UpdateFrameMatrices( pMtxFrame->pFrameFirstChild,  
                              &pMtxFrame->mtxCombined,  
                              &vecBoundsMin,  
                              &vecBoundsMax ); 
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The first part of the function has hardly changed, with the exception that we now initialize temporary 
bounding box extents vectors and send them into the child recursions. The sibling recursions all share 
the same parent, so they are passed the same bounding box vectors that were passed into this function. 
 
When the child list recursions return, the local bounding box extent vectors vecBoundsMin and 
vecBoundsMax will contain a world space bounding box that encompasses all of the children beneath 
the current frame.  To see why this is the case, we have to look at the new second section of the function 
that calculates a world space bounding box for any mesh data that might be attached to this frame. 
 
If the current frame’s bObjectsBounds member is set to true then it means this frame either has a mesh 
attached or it influences a skin. In either situation, it means we have a frame that contains a model space 
bounding box. When this is the case, we transform the model space AABB using the world matrix of the 
current frame we are visiting.  
 
    // Should we also update our actor's bounding box with the new information 
    if ( pMtxFrame->bObjectBounds ) 
    { 
        D3DXVECTOR3 vecMin = pMtxFrame->vecObjectMin,  
                    vecMax = pMtxFrame->vecObjectMax; 
 
        // Transform the mesh's object bounding box into world space 
        MathUtility::TransformAABB( vecMin, vecMax, pMtxFrame->mtxCombined ); 

 
At this point we now have two world space bounding boxes. The first is the world space bounding box 
of the mesh data stored at this node (which we have just stored in the frame’s world space extent 
vectors). The second, stored in vecBoundsMin and vecBoundsMax, was returned from the child list and 
bounds all the children of this frame. We will now merge these two boxes together by adjusting the 
world space bounding box at this frame so that it also encompasses the bounding box returned from the 
children. 
 
        // Test it against the actor bounding box and update if necessary 
        if ( vecMin.x < vecBoundsMin.x ) vecBoundsMin.x = vecMin.x; 
        if ( vecMin.y < vecBoundsMin.y ) vecBoundsMin.y = vecMin.y; 
        if ( vecMin.z < vecBoundsMin.z ) vecBoundsMin.z = vecMin.z; 
        if ( vecMax.x > vecBoundsMax.x ) vecBoundsMax.x = vecMax.x; 
        if ( vecMax.y > vecBoundsMax.y ) vecBoundsMax.y = vecMax.y; 
        if ( vecMax.z > vecBoundsMax.z ) vecBoundsMax.z = vecMax.z; 
 
    } // End if apply frame's bounding box 

 
The frame now contains the world space bounding box for its mesh data stored and all of the meshes 
stored below it in the tree. Notice in the above conditional code that what we have actually done is 
grown the temporary bounding box that was returned from the child list to contain the bounding box we 
calculated for this frame’s mesh data.  The next line of code describes why we adjusted the local 
temporary box and not the box stored in the frame. 
 
    // Store the bounding box in this frame 
    pMtxFrame->vecBoundsMin = vecBoundsMin; 
    pMtxFrame->vecBoundsMax = vecBoundsMax; 
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As you can see, the next step is to copy the temporary bounding box which we just calculated into the 
frame’s world space box extents. However, this code is not in a conditional code block and will be 
executed even if the frame has no mesh data attached. If the frame has no mesh data, then it is simply 
assigned the world space box that was returned from the child list. This is actually true in both cases, but 
in the case where we have mesh data assigned, we simply adjust it first by the mesh’s world space 
bounds before assigning it. 
 
This function is also expected to return the bounding box of this frame back to the parent so that the 
parent can combine the box with its mesh data, and so on back up to the root. As you can see, that last 
step is to copy this frame’s world space bounding box into the passed vector extents so that the parent 
will have them on function return.   
 
    // Test it against the parent's bounding box and update if necessary 
    if ( pFrameMin ) 
    { 
        if ( vecBoundsMin.x < pFrameMin->x ) pFrameMin->x = vecBoundsMin.x; 
        if ( vecBoundsMin.y < pFrameMin->y ) pFrameMin->y = vecBoundsMin.y; 
        if ( vecBoundsMin.z < pFrameMin->z ) pFrameMin->z = vecBoundsMin.z; 
     
    } // End if frame min extents requested 
     
    if ( pFrameMax ) 
    { 
        if ( vecBoundsMax.x > pFrameMax->x ) pFrameMax->x = vecBoundsMax.x; 
        if ( vecBoundsMax.y > pFrameMax->y ) pFrameMax->y = vecBoundsMax.y; 
        if ( vecBoundsMax.z > pFrameMax->z ) pFrameMax->z = vecBoundsMax.z; 
 
    } // End if frame max extents requested 

 
The final bit of this function is not new; it loops through each mesh container stored at the frame and 
invalidates it. This is important if software skinning is being used as it tells the actor that any skin stored 
here will have to be re-transformed into world space before being rendered again. 
 
    // If this has a mesh container (or set of containers), we must invalidate them 
    D3DXMESHCONTAINER_DERIVED * pContainer =  
                           (D3DXMESHCONTAINER_DERIVED*)pMtxFrame->pMeshContainer; 
 
    for (;pContainer;  
          pContainer = (D3DXMESHCONTAINER_DERIVED*)pContainer->pNextMeshContainer ) 
    { 
        // Flag as invalid 
        pContainer->Invalidated = true; 
 
    } // Next Container 
} 

 
We have now covered all the new actor code that calculates and returns the world space bounding box 
needed in order to use the actor as a dynamic object in our spatial tree. Of course, by implementing the 
hierarchy of bounding boxes the way we have, it means that we now have the ability to hierarchically 
frustum cull an actor even without using our spatial tree system. 
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For example, imagine you have loaded a single X file containing the entire scene. This scene, with 
hundreds of meshes and animations would now be contained in a single actor. Every time we update the 
actor, a world space bounding box is stored at each frame. This box contains the bounding boxes of all 
frames underneath it (just like a quad-tree or an oct-tree), so you could easily write a function that will 
traverse the frames of the hierarchy with a camera and perform hierarchical frustum rejection using the 
techniques we have covered in this chapter (including the optimizations).  At each frame, the recursive 
function could test the world space bounding box of the frame to see if it is within the frustum, if not, 
the child list does not have to be stepped into possible rejecting hundreds of meshes stored below it. The 
actor has now become a bounding volume hierarchy (a spatial tree of sorts). You could even run 
hierarchical bounding volume or ray intersection queries on the actor’s meshes if needed. This might be 
helpful if you wanted to include some form of body part specific damage for example. 

15.9 Adding Visibility Determination to CTerrain 

A few changes have had to be made to the CTerrain class so that it now makes use of the spatial tree. As 
we know, each CTerrain is made up of a series of CTerrainBlocks where each block is a rectangular 
mesh that represents a portion of the terrain. When the terrain blocks are created (in the 
CTerrain::BuildTerrainBlocks method), each terrain block has its world space bounding box registered 
with the spatial tree as a detail object. This forces the tree to compile a tree that is large enough to 
encompass the terrain, even though the terrain polygons are never passed into the tree and compiled into 
the leaves. As discussed in the previous chapter, the last thing we want is for the spatial tree to be only 
as large as the static data contained within it. It makes no sense for us to compile the terrain triangles 
into the tree since each block can be rendered more efficiently as a separate mesh. However, we do want 
the spatial tree to be large enough to encompass the terrain so that a dynamic object that is placed on that 
terrain is never in a position where it is not in a region of space that does not belong to the tree. This 
would mean the dynamic object would not exist in any leaf nodes and as such, could not benefit from 
the visibility system.  
 
Each terrain block will be given a visibility Boolean which will be registered with the spatial tree as a 
dynamic/tree object. Although the terrain blocks are not literally dynamic (they will never move), by 
registering a tree object for each terrain block, we can have the terrain block Boolean pointers stored in 
leaves and set to true by the tree whenever that terrain block is visible. The CTerrain::Render method 
can then loop through each terrain block and skip rendering any that have not had their Boolean set to 
true by the spatial tree. 
 
Below we see the CTerrainBlock member variables and have highlighted the two new ones added in Lab 
Project 14.1.  
 
Excerpt from CTerrain.h 
class CTerrainBlock 
{ 
 public: 
 
    ……Methods Not Shown…… 
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    // Public Variables for This Class 
    ULONG                   m_nVertexCount;     // Number of vertices stored 
    UCHAR                  *m_pVertex;          // Simple temporary vertex array 
    ULONG                   m_nIndexCount;      // Number of indices stored 
    USHORT                 *m_pIndex;           // Simple temporary index array 
    LPDIRECT3DVERTEXBUFFER9 m_pVertexBuffer;    // Vertex Buffer to be Rendered 
    LPDIRECT3DINDEXBUFFER9  m_pIndexBuffer;     // Index Buffer to be Rendered 
    UCHAR                   m_nStride;          // The stride of each vertex 
    ULONG                   m_nFVFCode;         // The flexible vertex format code. 
 
    D3DXVECTOR3             m_BoundsMin;        // Bounding box minimum extents 
    D3DXVECTOR3             m_BoundsMax;        // Bounding box maximum extents 
 
    long                    m_nTreeObjectIndex;     // SpatialID 
    bool                    m_bVisible;             // Is this object visible? 
 
}; 

  
long m_nTreeObjectIndex 
This member will contain the spatial ID returned from the ISpatialTree::InsertTreeObject method. This 
method will be called to register the terrain block with the spatial tree as a dynamic/tree object. 
 
bool m_bVisible 
This is the Boolean whose address will be stored in the TreeObject when it is registered with the spatial 
tree. This Boolean will be set to true by the spatial tree during the visibility pass if any leaf in which the 
terrain block’s bounding volume exists is currently visible. The CTerrain::Render function will loop 
through its array of terrain blocks and only render those which have m_bVisible set to true. 
 
The CTerrain object will also store an ISpatialTree pointer that can be set via a new method called 
CTerrain::SetSpatialTree. This method simply copies that passed pointer and stores it in a CTerrain 
member variable. CTerrain::SetSpatialTree is called in the CScene::ProcessEntities method when it 
encounters a terrain entity and extracts the data to create a new CTerrain object. After the object has 
been created, the scene’s spatial tree pointer will be passed into CTerrain::SetSpatialTree. 
 
The following snippet of code shows a section of the CScene::ProcessEntities function which is called 
by CScene::LoadSceneFromIWF to extract and process any entities stored in the IWF file. You will 
recall from our previous discussions that if the entity currently being processed is a terrain entity, its data 
is extracted into a TERRAINENTITY structure which is then passed to the CTerrain::LoadTerrain 
method. This method loads the heightmap, textures, and any additional information stored in the passed 
TERRAINENTITY structure before calling CTerrain::BuildTerrainBlocks to actually create the vertex 
data for each terrain block.  
 
Excerpt from CScene::ProcessEntities 
If ( THIS IS AN ENTITY WE ARE PROCESSING) 
{ 
   …Snip… : Extract terrain data from file into TERRAINENTTY structure (Terrain) 
 
// Allocate a new terrain object 
pNewTerrain = new CTerrain; 
if ( !pNewTerrain ) break; 
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// Setup the terrain 
pNewTerrain->SetD3DDevice( m_pD3DDevice, m_bHardwareTnL ); 
pNewTerrain->SetTextureFormat( m_TextureFormats ); 
pNewTerrain->SetRenderMode( GetGameApp()->GetSinglePass() ); 
pNewTerrain->SetWorldMatrix( (D3DXMATRIX&)pFileEntity->ObjectMatrix ); 
pNewTerrain->SetDataPath( m_strDataPath ); 
 
// Set the spatial tree, to allow the terrain to build detail areas 
pNewTerrain->SetSpatialTree( m_pSpatialTree ); 
 
// Store it 
m_pTerrain[ m_nTerrainCount - 1 ] = pNewTerrain; 
 
// Load the terrain 
if ( !pNewTerrain->LoadTerrain( &Terrain ) ) return false; 
 
// Add to the collision system 
m_Collision.AddTerrain( pNewTerrain ); 
} 

  
We have snipped out the code that extracts the entity data from the IWF file and stores it in the 
TERRAINENTITY structure, but once this is done, a new CTerrain block is allocated and its device, 
render mode, and world matrix are set.  Notice the new line (highlighted in bold) which sets the spatial 
tree pointer of the CTerrain object to the same spatial tree being used by the application. After this, the 
new terrain object is added to the scene’s CTerrain array before its LoadTerrain method is called to 
actually build the terrain data and all of the terrain blocks. Finally, as we saw several lesson ago, the 
terrain object is registered with the collision system. 

BuildTerrainBlocks – CTerrain (Updated) 

After the terrain information has been loaded from the IWF file and the spatial tree pointer has been set, 
the CTerrain::LoadTerrain method is called to build the entire terrain and all terrain blocks. This method 
will call the CTerrain::BuildTerrainBlocks method to build the vertex data for each terrain block.  
 
The next new section of code we will look at is executed in the BuildTerrainBlocks method. It occurs 
just after the current terrain block being processed has been built. At this point, the spatial tree has not 
been compiled so we can register the block bounding box as a detail area so that the region of space 
taken up by this terrain block will be compiled into the tree. The following section of code is actually 
embedded in a loop that creates each terrain block. 
 
As you can see, we instantiate a TreeDetailArea structure and set its bounding box equal to that of the 
terrain block. We could store the terrain block pointer in the context pointer but we do not need to. We 
are only registering this detail area to shape the spatial tree; we do not need to know where it came from.   
 
// Building for spatial tree? 
if ( m_pSpatialTree ) 
{ 
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   TreeDetailArea Area; 
   TreeObject     Object; 
                 
   // Store detail area bounding box 
   Area.BoundsMax = pBlock->m_BoundsMax; 
   Area.BoundsMin = pBlock->m_BoundsMin; 
   Area.pContext  = NULL; 

  
As the bounding box of the terrain block is in model space we should transform it by the CTerrain’s 
world matrix so that it represents the terrain block in world space. We then add the new detail area to the 
tree to shape the tree during compilation. 
                
   // Transform the bounding box into world (tree) space 
   MathUtility::TransformAABB( Area.BoundsMin, Area.BoundsMax, m_mtxWorld ); 
 
   // Add to the spatial tree 
   m_pSpatialTree->AddDetailArea( Area ); 

 
In order for a terrain block to only be rendered when visible, we will register it as a tree object that has 
its Boolean pointer pointing at the CTerrain::m_bVisible member. In a moment, you will see that once 
the tree is built, we will call the ISpatialTree::UpdateTreeObject method to assign the terrain block’s 
Boolean pointer to the leaves in which the terrain block is contained. We cannot do that just yet, since 
the spatial tree has not been built at this time. All we can do at the moment is create a new tree object in 
the spatial tree and assign it to point at our terrain block’s Boolean pointer. Notice in the following code 
that our CTerrainBlock class now has an m_nTreeObjectIndex member that is used to store the terrain 
block’s spatial ID. 
 
   // Set new tree object details 
   Object.pContext  = NULL; 
   Object.pbVisible = &pBlock->m_bVisible; 
                 
   // Add as a tree object 
   pBlock->m_nTreeObjectIndex = m_pSpatialTree->InsertTreeObject( Object ); 
   
} // End if spatial tree set 

 
That is the only new section of code in the CTerrain::BuildTerrainBlocks method. At this point the 
terrain blocks is registered with the system but does not yet have its Boolean assigned to any leaves in 
the tree (no leaves exist yet since the tree has not been compiled). 
 
After CScene::LoadSceneFromIWF has called all the processing methods to extract the IWF data, all 
objects contained in the file that needed to be created will have been. This means that any terrain entities 
that were in the file will have already been used to create terrains and the terrain blocks of each terrain 
will have been registered as detail areas and as dynamic objects. 
 
It is now time to build the spatial tree as we saw in the previous lesson. However, we have an additional 
step to take with the scene’s CTerrain array. Although the terrain blocks are already registered with the 
spatial tree, we had to wait until the tree was compiled before we could assign the terrain blocks to their 
relevant leaves. Thus, in the small section of code shown below (at the bottom of 
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CScene::LoadSceneFromIWF), you can see that after the spatial tree is compiled, we loop through each 
terrain in the terrain array and call its TreeBuildComplete method (a new method). 
 
Excerpt from CScene::LoadSceneFromIWF 
…SNIP : All Process………… Functions Called Here  
 
// Build the spatial tree and notify the collision engine 
if ( !m_pSpatialTree->Build( ) ) return false; 
 
// Notify terrain that objects the spatial tree has been built 
for ( i = 0; i < m_nTerrainCount; ++i ) m_pTerrain[i]->TreeBuildComplete(); 

 
CTerrain::TreeBuildComplete allows the terrain to perform processing after the spatial tree has been 
compiled. Let us take a look at this simple member function. 

TreeBuildComplete – CTerrain 

For each terrain block, this function exacts its model space bounding box and transforms it into world 
space using the world matrix of the terrain. It then uses the ISpatialTree::UpdateTreeObject method to 
assign the terrain block to its relevant leaves in the tree by passing in the spatial ID of the terrain block 
and its world space bounding box. This is no different from how we update the positions of our dynamic 
CObjects in the CScene::AnimateObjects method. The reason we do it here is so that it only ever has to 
be performed once. Our terrains will never move or be animated, so we make this a one-off leaf 
assignment function that is called post-build. 
 
void CTerrain::TreeBuildComplete( ) 
{ 
    ULONG i; 
 
    // Validate 
    if ( !m_pSpatialTree ) return; 
 
    // Render Each block 
    for ( i = 0; i < m_nBlockCount; i++ ) 
    { 
        D3DXVECTOR3 vecMin = m_pTerrainBlocks[i]->m_BoundsMin; 
        D3DXVECTOR3 vecMax = m_pTerrainBlocks[i]->m_BoundsMax; 
 
        // Transform the bounding box 
        MathUtility::TransformAABB( vecMin, vecMax, m_mtxWorld ); 
 
        // Ask tree to update so that the block is inserted into it's final leaves 
        m_pSpatialTree->UpdateTreeObject( m_pTerrainBlocks[i]->m_nTreeObjectIndex, 
                                          vecMin, vecMax ); 
 
    } // Next Block 
} 
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Finally, although we will not show the code here due to the trivial changes, the CTerrain::Render 
method has now been updated to only render terrain blocks that have their Booleans set to true. These 
Booleans will be set to true for any terrain blocks that are found to be in visible leaves when the 
application issues a call to ISpatialTree::ProcessVisibility.  

Conclusion 

In this chapter we have made significant progress with our rendering technologies and our geometry 
management. We have implemented a rendering system that will perform hierarchical frustum culling 
and efficiently collect and draw the static geometry in visible leaves. The rendering system in 
CBaseTree is certainly complex, and to fully understand the code you will probably need several passes 
through this book and the source code. Fortunately, with this core technology in place, we now have a 
system that will be carried into the remaining chapters of this course where we will take visibility 
processing to the next level.  
 
So far, our visibility system has only partly lived up to its name. After all, it does not render only the 
visible polygons; it actually renders all polygons inside the view frustum, which is not nearly the same 
thing.  If we imagine being in a small room (located within a larger complex) with no windows and 
maybe a small door, all that would actually be visible to us would be the four walls of the room and 
maybe a small section of the corridor we can observe from within the room. Using our current system, if 
we had a frustum with a far plane positioned a long way in the distance, many of the rooms in this 
example which are not visible would still be rendered since they fall within the frustum and are therefore 
considered visible in our system implementation. In truth, all we have really done in this chapter is laid 
the foundation for a proper visibility system. Our final visibility system will be implemented in the next 
two chapters of this course.  
 
While we have learned how to efficiently render only what is within the camera’s FOV, we have not 
taken into account that some portions of the level will be obscured by others. If our camera is located in 
front of a huge wall, ideally we should only render the wall. On the other side of that wall there might be 
a vast terrain or multiple buildings that should never be seen as they are occluded by the wall in front of 
us. Our current visibility system does not make provisions for this scenario. We have taken only a 
preliminary step towards determining a proper potential visibility set. That is, we certainly have 
narrowed things down to a set of polygons that are potentially visible using our frustum tests (and we 
have definitely rejected quite a lot of polygons that definitely are not visible), but many of those 
potentially visible polygons can also be removed from consideration with just a bit more work on our 
part. 
 
The remainder of this course will work towards the goal of building a PVS (Potential Visibility Set) 
calculator that will pre-calculate at compile time exactly which leaves could possibly be visible from 
any other leaf in the scene by factoring in the notion of occlusion. PVS systems have been the backbone 
of commercial computer games since the days of Quake™. They are what allow seemingly massive 
environments comprised of a very high number of polygons to be rendered at real-time interactive frame 
rates. With a PVS system in place, the speed at which your game runs is no longer bound purely by the 
number of polygons in your scene, or even the number of polygons contained in the frustum. Rather, we 
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are dealing with only the polygons that can be physically seen by the viewer, which is obviously going 
to be a far smaller number in the general case. If you consider a room with no windows and closed 
doors, regardless of the size of the level and the number of polygons it contains, our PVS-based system 
would only have to render the four walls, the floor and the ceiling which the camera can currently see 
(the hardware clipping can handle any final bits of actual visibility testing within the room). So the next 
two lessons will open up a wide array of possibilities in terms of the art assets your engine will be able 
to handle. You will soon be able to draw incredibly high polygon count scenes that would otherwise be 
unthinkable, even on today’s cutting edge hardware.  
 
In the next chapter we will introduce BSP trees as they are going to be the foundation tree for the PVS 
system we will implement. We will also learn many other techniques that the BSP tree can be used for, 
such as perfectly sorting alpha polygons and rendering them in the correct order (something that our 
hash table design from Module I could not guarantee in all cases). We will also discover that BSP trees 
can be used to carve meshes from one another or fuse multiple meshes into a single mesh. BSP trees are 
prevalent in computer science and particularly in game development and they will be one of the most 
useful tools you will learn about in your training as a game developer.  
 
Make sure that you fully understand how our rendering system works before moving on to the next 
chapter. We will be using this same system again as we move forward with BSP trees (at least initially), 
so it is important that you devote the necessary time to working through the system. While this was 
undeniably a fairly complex implementation (especially once the multiple vertex buffer support was 
introduced), the underlying logic is still quite straightforward. If you take your time and make sure that 
you are comfortable with the concepts we have covered here, you will be in good shape in the 
discussions to come. 
 
 


