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Introduction 

In this lesson we will study various hierarchical spatial partitioning techniques and use them to 
implement a broad phase for the collision detection and response system developed in the previous 
chapter. The techniques we learn in this lesson and the next will also be used to speed up the rejection of 
non-visible polygon data from the rendering pipeline. 
 
The concepts you learn in this chapter are some of the most important you will ever learn as a game 
developer, or even as a general programmer. Indeed you will find yourself using them at many points 
throughout your programming career to optimize a particular task your application has to perform. 
Although we will apply the tree traversal techniques discussed in this lesson to the area of 3D graphics 
programming, the usefulness of the ideas we will introduce reach far beyond game creation. For 
example, such techniques are used by image processing routines to optimize the mapping of true color 
images to a limited palette of colors.  Hierarchical tree structures are also used to perform quick word 
searches in databases and efficiently sort values into an ascending or descending order. This lesson will 
be the first of four studying spatial partitioning. It will eventually lead to the implementation of a broad 
phase for our collision system and an efficient hardware friendly PVS rendering system. 
 
Fortunately, many of the concepts we discuss will not require us to cover a lot of new ground since we 
already have a fair understanding of the two areas that hierarchical spatial partitioning essentially 
borrow from: parent/child relationships and bounding volumes. Combined, they allow us to spatially 
divide our scene into a hierarchically ordered set of bounding volumes that contain all of the scene 
geometry. These spatial trees can be quickly traversed and entire branches of the tree (along with child 
bounding volumes and the polygon/mesh data they contain) can be rejected from consideration with 
only a few simple bounding volume intersection tests.  
 
Over the next few chapters we will be implementing spatial hierarchies in a variety of different flavors. 
We will implement a base tree class that can be used by the application to interface with all our spatial 
tree types. We will discuss and implement quad-trees, oct-trees, kD-trees and the famous (or infamous) 
BSP tree. These four tree types all provide a different way for the scene to be spatially subdivided and 
each has its uses in certain situations. The BSP tree (Chapters 16 and 17) will be vitally important as it 
will be used to aid us in the calculation of a Potential Visibility Set (PVS); this is a process that involves 
pre-computing what polygons can be seen from any point within the level at development time. The 
calculation of a PVS will allow our application to render scenes of an almost unlimited size (memory 
permitting) while keeping our frame rates fast and interactive. But before we get ahead of ourselves, let 
us focus on the basics, since there is a lot to cover. 
 
This chapter will be focused on examining some of the common tree types that are used in games and 
the theory behind how they partition space and how they can be used. Later in this lesson and in our lab 
project, we will implement a broad phase for our collision system that will significantly speed up 
polygon queries on the collision system’s geometry database. We will also discuss the usefulness of 
such systems for rendering, although this will not be implemented or demonstrated until the following 
lesson where a hardware friendly system will be introduced. Furthermore, in this chapter we will discuss 
the various utility techniques which typically accompany spatial partitioning algorithms: polygon 
clipping and T-junction repair, for example. So why don’t we get started?   
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14.1 Introducing Spatial Partitioning 

It is difficult to overstate the importance of spatial partitioning in today’s computer games. Every game 
you currently play will undoubtedly use spatial partitioning as the core of its collision system and 
rendering logic. We learned in Chapter 4 of Module I how the frustum culling of a mesh’s bounding 
volume could be used to prevent its polygon data from being passed through the transformation pipeline 
unnecessarily. Although the DirectX pipeline does perform a form of frustum rejection on our behalf, it 
does so at the per-polygon level, and worse still, only after the vertices of that polygon have undergone 
the calculations needed to transform them into the homogenous clip space.  
 
We discovered that by surrounding a mesh with an axis aligned bounding box, we could test this box 
against the frustum to introduce a broad phase rejection pass in our mesh rendering logic. If we 
determined that the mesh’s bounding box was outside the frustum, then we knew we did not have to 
bother passing its polygon data through the transformation pipeline. If that mesh was comprised of 
20,000 polygons, we just avoided needlessly transforming them at the cost of a simple AABB/Frustum 
test. Of course, the same logic can be applied when performing any query on the scene that is required at 
the per-polygon level, such as we find with collision detection. We know that if our swept sphere does 
not intersect the bounding volume of a mesh then we do not have to test any of its individual triangles. 
We might perceive this to be a very simple broad phase implementation when added to our collision 
system. However, we do not always have our scenes comprised of multiple meshes, such as the internal 
geometry loaded from an IWF file for example. In such cases the entire scene is represented as a single 
mesh, so surrounding this with a single AABB would not help at all. That is, it would not allow us to 
reject portions of that mesh during frustum tests or collision queries. Spatial partitioning is the next level 
in bounding volume rejection and it works just as well for polygon soups as it does for scenes comprised 
of individual meshes.  
 
In the first section of this lesson we will bias the demonstrations of spatial partitioning towards 
performing pure collision queries from the perspective of game physics, such as those discussed in the 
last chapter. But later we will discuss and implement a rendering system that will also benefit from 
spatial partitioning while remaining hardware friendly. We will also slant our early discussions toward 
the spatial partitioning of a polygon soup, although later we will discuss how spatial trees can also be 
built that partition complete meshes. In fact, the spatial trees we implement will be capable of managing 
both. That is, we can divide space into bounding volumes that contain both a list of polygons and a list 
of mesh objects that exist in that area of space. This allows our system to handle cases where the core 
geometry might be comprised of a huge list of static polygons but the dynamic objects are individual 
meshes or actors. We want both types to be supported by our tree so that we can quickly reject not only 
the core scene geometry that lay outside the frustum for example, but any dynamic objects (such as 
skinned characters) which are also not visible.  
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Let us begin our journey by 
imagining a simple town scene 
(Figure 14.1) consisting of 100,000 
polygons. Assume that the blue 
bounding box in the figure 
represents an AABB that has been 
compiled around the source and 
destination positions that our swept 
sphere will move between in the 
current update. We used a similar 
technique when collecting the 
terrain polygons for our collision 
system in the previous chapter. 
You will recall that rather than 
trying to test the awkward shape of 

the swept sphere against the terrain to get a list of potential colliders, we simply built an AABB around 
the swept sphere and collected any terrain geometry that fell inside it. We will assume that the same 
logic is being applied here. After all, we are only interested in quickly finding which polygons will 
possibly intersect our swept sphere so that they can be passed on to the narrow phase. Only polygons 
that are contained partially or completely inside the bounding volume will need to be tested in the 
computationally expensive narrow phase of our collision system. 
 
A naïve approach to a broad phase implementation might be to test every polygon in the scene against 
the AABB surrounding the swept sphere and reject all polygons that do not intersect it. This would 
certainly work and at the end of the process we would have compiled a list of polygons which intersect 
the AABB and thus have the potential to be a collider with the swept sphere. This list of potential 
colliders would then be passed to the narrow phase where the swept sphere intersection tests are 
performed on each polygon. Remembering that this scene is assumed to be comprised of 100,000 
polygons, the pseudo-code to such a broad phase implementation would be as shown below. 
 

Note: We will assume for now that we have a function called ‘AABBIntersectPolygon’ which determines 
whether a polygon intersects an axis aligned bounding box. The function in this example is passed the 
minimum and maximum extents of the axis aligned bounding box and a pointer to the polygon that is to be 
tested. 

 
for (i = 0; i < 100000; i++)                 // Loop through every poly 
{ 
    CPolygon *Poly = CScenePolygonList[i];              // Get current poly to test  
 
    if (AABBIntersectPolygon( BoxMin , BoxMax , CPoly ))  // Does it intersect AABB 
    { 
         PotentialColliderList.Add ( CPoly );             // Add to List that will 
    }             // be passed to narrow 
}             // phase 
 
NarrowPhase ( PotentialColliderList );  

 

Figure 14.1 
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In this example CPolygon is assumed to be the structure used to contain an individual polygon and 
CScenePolygonList is assumed to be an array that contains the list of polygons comprising the scene. 
BoxMin and BoxMax are the minimum and maximum extents of an AABB that encompasses the swept 
sphere’s movement in this update. PotentialColliderList is some type of container class that manages a 
list of polygons and exposes methods allowing us to add polygons to its internal list. Whenever a 
polygon is found to be intersecting or totally inside the bounding box, it is added to this list. At the end 
of the loop the broad phase is complete and we have compiled a list of potential colliders. This list is 
then passed to the narrow phase where each polygon would have to be inspected against the swept 
sphere as described in the previous chapter. 
 
This is a broad phase implementation to some degree, however any broad phase that requires 100,000 
bounding volume tests just to find the potential colliders is obviously not very efficient. When we 
consider the incredible geometric detail in today’s games, testing every individual polygon (even against 
a simple AABB) every time we wish to perform a query on the scene data is not going to suffice when it 
comes to performance. The idea of the broad phase is to quickly reject large blocks of polygon data from 
consideration very quickly. The number of tests needed to find the potential colliders in the broad phase 
should not come anywhere close the polygon count of the scene as is the case in the above example 
implementation. We need to be able to say, “My bounding volume is not located within this entire area, 
so all polygons in this area should be dismissed right away”. 
 
So let us start with a naïve approach to spatial partitioning, but one that will serve to solidify certain 
concepts in less obfuscated way before moving on to the subject of more common spatial hierarchies. 
 
Let us imagine the same scene again, only this time, when the level was first loaded, we built an axis 
aligned bounding box around the entire level. Let us also imagine that with this information in hand, we 
divided the area of the scene’s bounding box into a 7x7 grid (an example) of bounding boxes as shown 
in Figure 14.2. 
 
Generating these 49 bounding boxes would be 
trivial. Once we had the bounding volume of 
the scene we could just divide its width and 
depth by 7 giving us a value of N and M for the 
width and depth deltas, respectively. We would 
then set up a loop to step through along the 
width of the scene’s bounding box in steps of N 
and along the depth of the scene’s bounding 
box in steps of M. In the inner loop (M), the 
coordinate (N*Column, M*Row) describes the 
minimum extent of the current bounding box 
being calculated and vector (N*Column + N, 
M*Row + M) describes its maximum extent.  
 
We might imagine that in this simple example, we could employ a scene class that contains an array of 
CBoxNode structures. 
 

 
Figure 14.2 
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Note: The code we discuss in this first section is purely for teaching purposes and will not be used by any 
of our applications. It is used to solidify concepts. Later in the lesson we will develop the actual code that 
our applications will use. 
 

class CScene 
{ 
    public:  
    CScene ( CPolygon **ppPolygons , long PolygonCount); 
    CBoxNode  BoxNode [49] ;     
}; 

 
In this very simple example, the scene has a constructor that accepts an array of CPolygon pointers and 
the number of pointers in this array. This is where we would pass in the array of 100,000 polygons we 
have loaded from our town file. This function would be responsible for calculating the bounding box of 
the entire scene and then generating the 7x7 (49) CBoxNode structures. 
 
The CScene class has an array of CBoxNode structures, one for each bounding box we will create to 
represent the level. This structure might be defined like so: 
 
class CBoxNode 
{ 
   public: 
   D3DXVECTOR3       m_vecBoxMin; 
   D3DXVECTOR3     m_vecBoxMax; 
   CPolygonContainer m_PolyContainer; 
}; 

 
This simple class stores the minimum and maximum extents of the bounding box this node will 
represent, and a polygon container. We might imagine this to be a simple class that wraps an array of 
polygon pointers and exposes member functions for adding and retrieving polygon pointers to/from that 
array. We provided many classes that did similar things in Module I and of course, STL vectors could be 
used for the same task. This container will initially be empty for each box node. We will discuss why we 
will need this container stored in the box node class in a moment. 
 
The job of the scene’s constructor would be to compile a bounding box for the entire scene. This is done 
by simply testing the vertices of every polygon passed in and recording the maximum and minimum x, 
y, and z components found. The first section of such a function is shown below. 
 
CScene::CScene ( CPolygon **ppPolygons, long PolygonCount ) 
{ 
   // Set master scene bounding box to dummy values 
   D3DXVECTOR3 vecBoundsMin(  FLT_MAX,  FLT_MAX,  FLT_MAX ); 
   D3DXVECTOR3 vecBoundsMax( -FLT_MAX, -FLT_MAX, -FLT_MAX ); 
   int i , k , j;  
   
   // Loop through each polygon in list and calculate bounding box of entire scene 
   for ( i = 0;  i < PolygonCount; i++ ) 
   { 
     // Get pointer 
     CPolygon * pPoly =  ppPolygons[ i ]; 
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     // Calculate total scene bounding box. 
     for ( k = 0; k < pPoly->m_nVertexCount; k++ ) 
     { 
       // Store info 
       CVertex * pVertex = &pPoly->m_pVertex[k]; 
 
       // Test if this vertex pierces the current maximum or minimum  
       // extents if adjusting extents if necessary 
       if ( pVertex->x < vecBoundsMin.x )  vecBoundsMin.x = pVertex->x; 
       if ( pVertex->y < vecBoundsMin.y )  vecBoundsMin.y = pVertex->y; 
       if ( pVertex->z < vecBoundsMin.z )  vecBoundsMin.z = pVertex->z; 
       if ( pVertex->x > vecBoundsMax.x )  vecBoundsMax.x = pVertex->x; 
       if ( pVertex->y > vecBoundsMax.y )  vecBoundsMax.y = pVertex->y; 
       if ( pVertex->z > vecBoundsMax.z )  vecBoundsMax.z = pVertex->z; 
 
     } // Next Vertex 
             
   } // Next Polygon  

 
At this point we have the bounding box for the entire scene. We will now carve this box into 49 boxes (7 
rows of 7 columns) and assign the resulting bounding boxes to the 49 CBoxNode objects of the scene 
class. This code first divides the width and depth of the scene’s bounding box (calculated above) by 7 
along the X and Z extents to carve the bounding box into 49 sub-boxes in total. 
 

Note:  In this example we are subdividing the scene along the X and Z extents, which can be seen if you 
look at the previous diagram and imagine that we are looking down on the scene from a bird’s eye view.  
 

The two loops shown below are used to loop through each row (i) and each column (k) and calculate the 
index of the current CBoxNode object that we are processing. We use the formula (i * 4) + k. If i is the 
number of rows of boxes that we want (7) and k is the number of columns we want on each row (7) then 
we can see that when i=2 and k=1 we are calculating the bounding box for the ((2*7)+1) = 15th 
CBoxNode object in the scene’s array. Remembering that arrays use zero-based indexing, we can see 
how this CBoxNode object would represent the 2nd box (k) in the 3rd row (i) of our scene. 
 
  float StepX  = ( vecBoundsMax.x - vecBoundsMin.x)  / 7.0f ; // Seven Columns 
  float StepZ  = ( vecBoundsMax.z – vecBoundsMax.z)  / 7.0f ; // Seven Rows  
         
  for ( i = 0; i < 7; i++ ) 
  { 
    for ( k = 0 ; k < 7 ; k++ ) 
    { 
 // Get the index of the Box Node we are currently calculating 
      int nBi = ( i * 7 ) + k ; 
 
      BoxNode[ nBi ].m_vecBoxMin.x  =  ( k * StepX ); 
 BoxNode[ nBi ].m_vecBoxMax.x  =  BoxNode[nBi].m_vecBoxMin.x + StepX; 
      BoxNode[ nBi ].m_vecBoxMin.z  =  ( i * StepZ ); 
 BoxNode[ nBi ].m_vecBoxMax.z  =  BoxNode[nBi].m_vecBoxMin.z + StepZ; 
 BoxNode[ nBi ].m_vecBoxMin.y  =  vecBoundsMin.y; 
  BoxNode[ nBi ].m_vecBoxMax.y  =  vecBoundsMax.y; 
    } 
  }     
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At this point in the scene’s constructor we have uniformly subdivided the bounding volume of the entire 
scene into 49 separate bounding volumes that together represent the space that was described by the 
scene’s original bounding box. These bounding volumes are now stored in the scene’s CBoxNode array. 
 

Because we are only dividing the 
scene along the X and Z axes in this 
example, we assign the minimum and 
maximum Y axis extents of the 
bounding box recorded for the entire 
scene to each of the CBoxNode 
objects. This means that all 49 sub-
boxes generated will all have identical 
heights along the Y axis. Those Y axis 
extents are inherited from what we 
can refer to as the parent bounding 
box (i.e., the bounding box calculated 
for the entire scene at the top of the 
function). Figure 14.3 illustrates the 
spatial partitioning that has been 
applied to the scene’s original 
bounding box (albeit for a 4x4 
example in this case).  

 
Having 49 empty bounding boxes is fairly useless until the next aspect of our scene preparation is 
performed. We must now loop through each bounding box and, for each box, loop through each polygon 
in the scene and test which ones intersect it. For a given bounding box, any polygons that intersect it or 
are contained completely inside it have their pointers added to the CBoxNode’s polygon container.  At 
the end of the following code, our constructor will be complete and when the scene is initialized, we will 
not only have 49 bounding boxes, in each box node structure we will have a list of polygons that are 
contained (or partially) contained within that region of space. 
 
  for ( k = 0 ; k < 49 ; k++ )  // 49 box nodes in this example 
  { 
    // loop through each box 
    CBoxNode * pNode = &BoxNode[ k ]; 
 
    // Loop through each polygon and test for intersection with box 
    for ( j = 0;  j <  PolygonCount; j++ ) 
    { 
      // Get pointer 
      CPolygon pPoly =  ppPolygons[ j ]; 
   
      // If polygon intersects add its pointer to the box node’s container  
      if ( AABBIntersectPolygon(   pNode->m_vecBoxMin ,  
                                   pNode->m_vecBoxMax 
                                   pPoly )) 
 { 
    pNode->m_PolyContainer.AddPolygonPointer( &pPoly ); 
   
     }  // End if Intersect  

 
Figure 14.3 
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    } // End Each Polygon 
  } // End Each box 
} // End function ‘CScene::Constructor’  

 
Note: Again you are reminded that this code is not used by any of our applications. It is being used to 
demonstrate a concept and nothing more. We are using classes with methods here that we have never 
written, nor do we intend to. Please view these listings as being semi-pseudo code for the time being.  
 

As you can see by examining the final piece of the function code, it involves nothing more than testing 
each bounding box node to see whether or not any of the scene polygons intersect with it. If so, then a 
pointer to that polygon is added to the polygon list in the box node. This code assumes that the polygons 
are stored in each box in a container class that has a member function called AddPolygonPointer, which 
simply adds the passed pointer to the end of polygon pointer array maintained by the container.  
 
In this particular example, if a polygon is found to be contained in multiple boxes, we store a copy of its 
pointer in each. This causes no real harm, although when performing subdivision in this way we often 
wish to make sure that we do not test the same polygon more than once. For example, if we performed a 
collision query and found that three boxes were intersected by the bounding volume of our swept sphere, 
we might collect all the polygons from all those boxes and add them to a potential colliders list that is 
then passed onto the narrow phase. However, it is possible that a large polygon may have intersected all 
three of those box nodes and as such would be added to the potential colliders list three times. We can 
certainly work around this in the intersection testing case by testing to see if the given polygon has 
already been tested for collision so that we do not test it again. However, we must bear in mind that if 
we have to employ complex loop logic to determine such things, this could possibly outweigh a lot of 
the savings that the broad phase has introduced.  
 
A common technique when using such a scheme is to allow the polygon structure to store a ‘current 
time’ member.  When the narrow phase steps through the list, it will process a polygon and set its time 
member to the current time of the application. If it encounters a polygon in the list with the same time as 
the current application time, then this must be a pointer to a polygon it has already processed and will 
skip it. However, this still adds a per-polygon conditional test in the case where the bounding volumes 
contain polygon data. Under certain circumstances, this can harm performance as well. However, this 
might be a good strategy for dynamic objects that are assigned to nodes and can have this test performed 
on the per object level where the conditional tests would introduce negligible overhead. Things are also 
less simple when spatial partitioning for your rendering pipeline. We desire the vertices of the 
renderable versions of the geometry to be stored in vertex buffers (static buffers, preferably) rather than 
CPolygon structures. As such, we have no good way of setting a variable on a per-polygon basis like this 
and neither would want to. In this case, we may be forced to render the same polygon multiple times. 
 
You will see later that one way to get around this problem is by clipping our scene polygons during the 
compilation of the spatial tree. In this scenario, a bounding volume will contain only polygons that fit 
fully inside its volume. If, during the compilation of the bounding volumes, a polygon is found to be 
inside two boxes at the same time, the polygon will be split into two pieces at the box boundary and the 
separate fragments will be stored in the respective bounding box. We will also implement an elegant 
solution for the case when you do not wish clip the polygon data and increase the polygon count of the 
scene, which will be explained later. For the sake of this current discussion, we will just assume that we 
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have assigned any polygon spanning multiple nodes to all nodes in which it is contained and will just 
live with the cost of having it exist multiple times in the potential colliders list. 
 
The kind of spatial subdivision we have shown above would be performed once when the scene is first 
loaded. Alternatively, the compilation could be done at development time and the scene saved out to file 
in its subdivided format. Compiling the scene organization at development time is often necessary when 
we start subdividing scenes with hundreds of thousands or more polygons into thousands of bounding 
boxes. In these instances, the subdivision of the scene can take quite a long time. Remember, if we are 
testing hundreds of thousands of polygons against thousands of AABBs, even on today’s 
microprocessors, compilation time will not be instant. If performed at run time when the level is first 
loaded into the computer’s memory, this might subject the user of our application to an unacceptable 
delay. Therefore, it is often common for a file containing scene data to also contain the information in a 
subdivided format. Using our simple 49 box subdivided scene, we might store the data in the file such 
that the file contains 49 bounding box data structures and a list of polygons with accompanying 
bounding box index values describing which bounding boxes each polygon belongs in. The loading code 
could simply pull the bounding box data out of the file and use it to create the box nodes. The polygon 
data could then be extracted and its box index list for each polygon examined and used to assign the 
polygon to its pre-determined bounding box(es). 

14.1.1 Efficient Polygon Queries 

Let us now return to the problem of trying to determine which polygons in our level should be 
considered for the narrow phase during a collision test. Recall that we had assumed the compilation of 
an AABB around our swept sphere and now wish to calculate the polygons that intersect that bounding 
box and thus should be added to a potential colliders list. Figure 14.4 reminds us of the current location 
of our bounding volume within the scene. 
 
We have assumed a level size of 100,000 
polygons which each originally had to be 
tested against the AABB. Now our scene 
had been divided into 49 bounding boxes 
and as such, the broad phase requires 
nothing more than performing an 
AABB/AABB intersection test between our 
swept sphere’s bounding volume and the 49 
bounding volumes of the level. 
AABB\AABB tests are very cheap to 
perform and we can narrow down the 
number of polygons that need to be passed 
to the narrow phase to just the relative 
handful of polygons that have been assigned 
to the bounding boxes that our swept sphere’s bounding box intersects.  
 

Figure 14.4 
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As Figure 14.5 demonstrates, after performing only 49 AABB\AABB tests, we find that only two of the 
scene’s bounding volumes intersect our swept sphere’s AABB. We can then quickly fetch the polygons 
assigned to each of these two box nodes and add them to the potential colliders list. 
 

 
If we assumed for the sake of demonstration that the polygons were evenly distributed throughout the 
level, each box would contain 100,000 / 49 = 2040 polygons.  
 

Thus with only 49 very efficient AABB/AABB tests, we have just rejected 
47 of these boxes and the 2040*46 = 95,880 polygons contained within. Not 
bad! Only 2*2040 = 4080 polygons would need to be passed to the narrow 
phase for closer inspection by the collision routines. 
 
As far as the narrow phase is concerned, the world is only as large as those 
two boxes since these are the only polygons it will need to test. Through the 
‘eyes’ of our narrow phase, the world would look what is shown in Figure 
14.6. 
 
Below we see the code to a function that would implement a broad phase in 
this manner called GetPotentialColliders.  
 
This function could be called by the collision system as its broad phase when 
the sphere has moved. It would be passed a pointer to the scene and the 
minimum and maximum extents of the AABB that is bounding the swept 
sphere. As its final parameter it takes a pointer to an object of type 
CPolygonContainer. We will assume for now that this is a simple class that 
encapsulates a polygon array and allows polygon pointers to be added to its 

array via its member functions. The container is assumed to be empty when this function is called and 
will be used to store the potential colliders it collects. When the function returns, the collision system 
will be able to pass this container to the narrow phase. 
 

Figure 14.5 

 
Figure 14.6 
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The function has been deliberately hardcoded for our 49 box example for the purpose of demonstration 
(again, we will not be using any of this code in practice). It also uses a function called 
AABBIntersectAABB which is an intersection testing function which we will discuss shortly. The 
AABBIntersectAABB function takes the extents of the two bounding boxes that are to be tested as its 
parameters and returns true if the two are intersecting. 
 
void GetPotentialColliders( CScene *pScene,  
             D3DXVECTOR3 BoxMin, 
             D3DXVECTOR3 BoxMax,  
                            CPolygonContainer *pContainer) 
{ 
     for ( ulong i = 0; i < 49 i++ ) 
     { 
          CBoxNode *pNode = &pScene->BoxNode[i]; 
          if ( AABBIntersectAABB( BoxMin, BoxMax,  
                                  pNode->m_vecBoxMin,  
                                  pNode->m_vecBoxMax ) 
     { 
      for ( ulong k = 0; k < pNode->m_PolyContainer.GetSize(); k++ ) 
    { 
   pPoly = pNode->m_PolyContainer.GetPolygonPointer(k); 
                  pContainer->AddPolygonPointer( pPoly ); 
              } 
          }  
     }     
} 

 
As you can see, this function simply tests the bounding volume passed in against the bounding volumes 
for the scene. If any scene bounding volume is intersecting, the polygons are fetched from the box 
node’s container and added to the potential collider container. When the function returns, the passed 
container will contain all the polygons that should be more closely examined in the narrow phase. 
 
The application of spatial partitioning is obvious when discussed in the context of running polygon 
queries such as those often required to be performed by a collision detection system. But does spatially 
partitioning the scene provide us with any other benefits? Does it possess the ability to speed up 
rendering as well? It certainly does. 
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14.1.2 Efficient Frustum Culling 

In Module I we learned how to 
perform AABB/frustum culling and 
used it to reject non-visible meshes 
prior to being passed through the 
rendering pipeline. Rather than 
passing a mesh containing thousands 
of polygons to the DirectX pipeline 
and allowing DirectX to determine 
which polygons are visible and which 
are not, we decided to help the process 
along by performing mass polygon 
culling using bounding boxes.  
 
While the Direct X pipeline is good at 
what it does and has some very 
efficient code to reject polygons from 
the pipeline as soon as they are found 
to lay outside the view frustum, this 
culling still has to be performed on a 
per-polygon basis. If your scene consists of 100,000 polygons, the pipeline will need to perform 100,000 
polygon/frustum tests each time the scene is rendered. Even worse is the fact that these polygons all 
need to be transformed into homogeneous clip space before the culling can commence. While hardware 
is very fast, this can become a bottleneck with scenes comprised of a large number of polygons.  
 
In Module I we also learned that we could greatly increase our rendering performance if we assign each 
mesh an AABB and test it against the world space frustum planes prior to rendering that mesh. If we can 
detect that a mesh’s AABB is completely outside the view frustum, we do not have to bother rendering 
it. Figure 14.7 shows four meshes and a camera along with its frustum. In this example we can see that 
only two of the four meshes need to be rendered, as the cylinder and the sphere are positioned well 
outside the camera’s frustum.  
 
Let us now return to our little town scene consisting of 100,000 polygons. We are assuming for the time 
being that this data is loaded as one big polygon soup. It should now be obvious that since we have 
subdivided our scene into AABBs, the same frustum culling strategy can be employed for our scene’s 
bounding boxes, allowing us to frustum cull geometry in (theoretically) even bigger chunks than the 
mesh based approach covered in Chapter 4. Any one of our scene’s bounding boxes may contain many 
polygons or perhaps many separate meshes, all of which could be frustum culled from the rendering 
pipeline with a single AABB / Frustum test. 
 

 
Figure 14.7 
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Using a 16 box scene example, this 
time we can see that in Figure 14.8 
the camera is positioned and 
oriented such that only the polygons 
in 4 of the 16 boxes could possibly 
be visible. The frustum is shown as 
the red lines extending out from the 
camera and we can see that only the 
four top left boxes intersect the 
frustum in some way. 
 
Using exactly the same frustum/ 
AABB code we covered in Chapter 
4 of Module I, we have the ability to 
mass reject quite a bit of scene 
geometry. If the depicted scene 
consisted of 100,000 polygons 
equidistantly spaced such that each 
of the 16 boxes contained 6250 
polygons, we can see that before we 
render the scene, we would test the 
16 AABBs (box nodes) of our scene 
against the camera’s frustum and 
find 12 of the boxes to be 

completely outside of it. With just 12 efficient tests, we have rejected 12 * 6250 = 75,000 polygons. 
Since only four of the boxes intersect the frustum we would only need to transform and render 4 * 6250 
= 25,000 polygons (1/4th of the scene). 
 
The following function shows a strategy that might be used to render the 16 box scene shown above. 
Assuming the scene has already been compiled into its 16 box format and that we are using an AABB / 
Frustum function which is a member of the camera class called IsAABBInFrustum (the code of which 
was covered in Module I), the rendering strategy might look something like this: 
 
void CScene::Render( CCamera *pCamera ) 
{ 
 // Loop through each box 
      for ( int i = 0 ; i < 16 ; i++ ) 
      { 
         // Is this box inside the frustum or partially inside the frustum    
    if ( pCamera->IsAABBInFrustum( &BoxNode[i].m_vecBoxMin , 
                                        &BoxNode[I].m_vecBoxMin ) ) 

   { 
  // It’s a visible box so render all the polygons stored here 
            for ( k = 0 ; k < BoxNode[i].m_PolyContainer.GetPolygonCount(); k++ ) 
       {   
          // Get a point to the current polygon we wish to test 
          CPolygon * pPoly = BoxNode[i].m_PolyContainer.GetPolygon( k ); 
 
   // Render Polygon 

Figure 14.8 
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   RenderPolygon ( pPoly ); 
  } 
        } 
    } 
}  
 
Of course, the above code is for example only and you certainly would not want to render all the 
polygons assigned to a given box one at a time as that would negate any performance gained from batch 
rendering. Later we will implement a system that will provide our code the benefits of spatial rejection 
during rendering but do so in a way that makes it hardware efficient (in fact, this will be the main focus 
of the next lesson). Hopefully though, even this simple code demonstrates the benefits of spatial 
partitioning, not only for performing per-polygon queries on the scene’s data set such as intersection 
testing, but also for efficiently rendering that dataset when much of the scene lay outside the frustum.  
 
Indeed it may have occurred to you as you were considering this concept that frustum culling is simply 
another form of intersection testing. That is, we are colliding one volume (our frustum) with some other 
volume (the boxes) to collect a set of potentially visible polygons. Those polygons are then passed on to 
a narrow phase (the DirectX pipeline) where the actual visible polygons will be rendered and the others 
fully or partially clipped away. 
 
Finally, it should be noted that this same system can be used whether your scene is represented as a 
single mesh or comprised of multiple meshes or both. For example, a box node could contain a list of 
mesh pointers instead of a list of polygons. Assigning a mesh to bounding boxes could be done by 
simply figuring out which scene bounding boxes it intersects during the compile process. Later on, we 
will provide support for both of these systems. That is, the static geometry we load from an IWF file will 
be spatially partitioned and stored in bounding volumes at the per-polygon level, while dynamic objects 
such as actors will be assigned to bounding volumes at the object level. In our case, the nodes of our 
spatial tree will have an understanding of what polygons are contained inside them and our 
dynamic/detail objects will have knowledge of which spatial nodes they are contained within (more on 
this later). 
 
Although we have seen how vital spatial partitioning is and how it can improve polygons querying 
efficiency, the system described so far is really quite inadequate. We have been using very simple 
numbers to demonstrate the point, but in reality, game scenes tend to be quite large and we ultimately 
wish to send as few polygons to the narrow/rendering phases as possible. This means that we generally 
wish to have far fewer polygons stored in each box node. Logically this also means subdividing the 
scene into many more box nodes. It is more probable that we would want to divide the average scene 
into thousands of boxes so that each box only contains a handful of polygons. This would mean for 
example, that if our swept sphere’s AABB was found to be intersecting two box nodes, we would only 
be sending a handful of polygons to the narrow phase, instead of 4000 as in our previous example.  
 

Note: To be fair, given the performance of today’s rendering hardware, larger node sizes are not 
necessarily going to be a bad thing. However, for CPU oriented tasks like collision detection, smaller 
batch sizes are definitely preferable. 

 
Now that we basically understand what spatial portioning is and how bounding volumes can have scene 
polygon/mesh data assigned to them, we can take this conversation to the next level and discuss 
hierarchical spatial partitioning.  



 

16 

14.2 Hierarchical Spatial Partitioning 

While the strategy discussed in the last section was great for demonstrating the basic process, it left 
much to be desired. In our previous example we simply used the value 49 as the number of boxes to 
divide our scene into, but in reality you would probably want to divide your scene into many more 
regions than this. If a level contained 100,000 polygons for example, each box would contain 2040 
polygons. Even if the query volume only intersected a single box, that is still far too many polygons to 
send to the narrow phase of our collision system. Remember, given all that must be accomplished in any 
given game frame, our polygon queries will need to be executed within mere microseconds if frame 
rates are to remain acceptable.  
 
It would seem that in order to make this strategy more efficient, we would want to divide a typical scene 
into many more boxes than this. For example, we might decide that we do not want any more than 100 
polygons to be contained within a single box node. This would require the scene to be divided into 1000 
boxes in our previous example. While this obviously means the initial scene would take much longer to 
compile (as we would now have to test each polygon against 1000 AABBs instead of just 49) this is not 
a problem since this can be done as a pre-process at development time and the information saved out to 
file as discussed earlier. The real problem now is that the broad phase has now been made much more 
expensive because it would have to test 1000 AABBs instead of just 49 to collect potential colliders for 
the narrow phase. This is obviously going to be quite a good bit slower. Also, it means that the rejection 
of a single box now only rejects 100 polygons instead of 2040 polygons, so each AABB/AABB test has 
less bulk rejection impact. On the bright side, after we have performed all the AABB/AABB tests in the 
broad phase, we would be left with a considerably smaller polygon list that needs to be passed to the 
narrow phase. 
 
So while the dividing of the scene into many more smaller boxes has reduced the number of potential 
colliders that are collected and passed to the narrow phase of our collision system (or rendered in the 
case of frustum culling), much of CPU savings is lost to the larger number of AABB/AABB tests we 
have to perform. To be sure, this would still be much faster than just passing every polygon to the 
narrow phase, but unfortunately it is still nowhere near fast enough.  
 
So how can we divide the scene into many more boxes with small clusters of polygons stored in each 
box while still maintaining the ability to reject the individual boxes from queries extremely quickly? We 
use a spatial hierarchy. 
 
We discussed hierarchies in Chapter 9 when we learned how to load in hierarchical X files. The 
hierarchies in that chapter established spatial relationships between meshes in an X file. The hierarchy 
could be thought of as a tree structure where each node of the tree was a D3DXFRAME which had 
pointers (or branches) to other sibling and child frames in the tree. Some of the frames actually 
contained meshes (via mesh containers) and using the tree analogy, we can think of these nodes as being 
the leaves of the tree. When we examined the D3DXFrame hierarchy, the parent-child relationship 
between the frames in the tree established how meshes in the scene were related. If rotation was applied 
to a node in the tree, the children of that node also inherited the rotational change. This allowed us to 
store a car model as separate meshes, where the wheel meshes could be rotated independently from the 
car body stored in a parent node (frame). Any movement or rotation applied to the car body node was 
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also inherited by the wheel nodes so that when the car body was moved, the wheels always moved with 
the car body and maintained their correct spatial relationship. 
 
Hierarchies are used so often in game development and in so many different areas that it is hard to 
imagine creating a 3D application without them. Spatial partitioning data can also be represented as a 
hierarchy which makes finding the regions of the scene that need to be queried or rendered extremely 
efficient. If we think back to our D3DXFrame hierarchy from Chapter 9, we can easily imagine that we 
could assign each frame in the hierarchy a bounding box which was large enough to contain all the 
meshes below it in the hierarchy (i.e., meshes belonging to direct and indirect child frames). If we were 
to do this, then the frame hierarchy could be traversed from the root node down during a frustum culling 
pass and as soon as a frame was found that had a bounding box that was situated outside of the frustum, 
we could stop traversing down that section of the hierarchy and reject the frame along with all of its 
descendants from rendering consideration. This rejected frame may have had many child frames which 
each had many child frames of their own with meshes attached. By simply rejecting the parent frame of 
the hierarchy, we reject all of the children and grandchildren, etc. with one simple test at the parent 
node. Of course, this strategy assumes that the parent node’s bounding volume has been calculated such 
that it encompasses the bounding volumes of all its child nodes, and so on right down the hierarchy (i.e., 
bounding volumes are propagated up through the tree, getting larger as more children join in). 
 
It might have occurred to you that this same hierarchical technique could be employed with spatial 
partitioning. Rather than simply divide the scene into 49 bounding boxes and store all 49 boxes in the 
scene class, we could instead recursively divide the level, creating a tree or hierarchy of bounding 
volumes. In this example, the bounding volume being used is an AABB, but we could use other 
bounding volumes also (spheres are another popular choice). 
 
The following images demonstrate the division of our same example scene hierarchically. The end result 
in this example is actually a scene that will be divided into 64 bounding boxes (at the leaves of the tree). 
Because these bounding volumes are connected in a tree like structure, queries can be done extremely 
quickly. 
 
Forgetting about how we might represent this subdivision technique in code for the moment, let us just 
analyze the properties of the images. The scene is as before, a large rectangular region of polygon data. 
The bounding box of this entire region would be considered the bounding box of the entire scene.  
 
When the scene constructor is called we might 
imagine calculating this bounding box node and 
storing it in the scene class. This will be the 
root node of the tree and the only node pointer 
the scene will store. This concept is not new to 
us. Recall that our CActor class stores only the 
root frame of the hierarchy. The rest of the 
frames in the hierarchy can be reached by 
traversing the tree from the root. We are now 
imagining a similar relationship between our 
spatial nodes. To accommodate this 
arrangement we can upgrade BoxNode to store 
pointers to child BoxNode structures.  

 
Figure 14.9 
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class CBoxNode 
{ 
   public: 
   D3DXVECTOR3       m_vecBoxMin; 
   D3DXVECTOR3     m_vecBoxMax; 
   CPolygonContainer m_PolyContainer; 
   CBoxNode *        m_Children[4];   
}; 

 
Notice that we have now added an array of four CBoxNode pointers to the CBoxNode class. This means 
each node will have four child nodes.  
 

Note: A spatial tree that divides the parent node space into four at each node is called a quad-tree. 
Thus, what we are looking at above is a Quad-tree node. You will discover later how the only real 
difference between an oct-tree, quad-tree, and kD-tree is simply how many children each node in the 
tree has. For the sake of explaining hierarchical spatial partitioning in this section, we will use a Quad-
tree in our examples. 

 
As Figure 14.9 shows, the first step in compiling our spatial tree is to compute the bounding box of the 
entire scene. The bounds calculated will be stored in a CBoxNode structure whose pointer is stored in 
the scene class. This will be the root node of our tree. 
 
In our example we will be using a quad-tree to partition space which essentially means each node in our 
tree has four direct child nodes and therefore, at any given node in the tree, its immediate children 
partition its bounding volume into four equal sub-volumes (called quadrants). 
 
With the root node created, we enter a recursive process to build the rest of the tree. At each recursive 
step (starting at the root) we are passed a list of polygons contained in that node’s volume and have to 
decide whether or not we wish to partition this space any further. If we do decide that the bounding 
volume of the current node is sufficiently small or that the number of polygons that have made it into 
this volume are so low in number that further spatial subdivision of this region would be unnecessary, 
we can simply add the polygons in the list to the node’s polygon container and return. We do not bother 
creating any children for this node. It is essentially a node at the end of a branch and is therefore referred 
to as a leaf node. Leaf nodes are the nodes at the ends of branches which contain polygon/mesh data. 
The branch nodes are sometimes called normal nodes or internal nodes or inner nodes or simply just 
nodes (versus leaves).  
 
However, if we do wish to further partition the space represented by the node’s bounding box, we divide 
the node’s bounding box into four sub-boxes. We then create four child nodes and assign them the 
bounding boxes we have just calculated. We then classify all the polygons in the list of polygons that 
made it to this node against the four bounding boxes of the child nodes. This allows us to create four 
sub-polygon lists (one per child). We then recur into each of the four child nodes, sending it its polygon 
list so that this same process can occur all the way down the tree. Notice that when a node has children, 
it stores no polygon data (at least in this vanilla implementation) and is considered to be a normal node 
(as opposed to a leaf node at the end of a branch of the tree). 
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In Figure 14.9 we generated the root node and its bounding volume. Let us step through the process of 
building the quad-tree with images to solidify our understanding. Please note that in these examples we 
are still only carving up the scene into 49 boxes at lowest level of the tree since this makes the images 
much easier to decipher. You can imagine however that this same process can be performed to divide 
the scene into 1000s of boxes which are hierarchically arranged.  
 

We would first process the root node, being 
passed the list of polygons for the entire 
scene. We would determine that the node’s 
bounding box is very large and therefore its 
space should be further partitioned. The 
polygon list would contain a large number of 
polygons and we will not be creating a leaf at 
this node. Remember, we generally want to 
store only a handful of polygons in the leaf 
nodes so that we minimize the number of 
polygons that are collected and sent to the 
narrow phase when a leaf node’s volume is 
intersected. 
 
Thus, we create four child nodes and attach 
them to the root node. We would then divide 

the bounding box of the root node uniformly into four sub-boxes, each of which describes a quadrant of 
the parent volume (Figure 14.10). Each child node would be assigned one of these child bounding 
volumes. The list of polygons would then be tested against the four bounding volumes and a list 
compiled of the polygons contained in each box (four lists). It is at this stage that any polygons found to 
be spanning a box boundary could be clipped so that the polygon list compiled for each child will 
contain only the exact polygons that are contained inside its volume. If clipping is being used, a child 
node will never be sent a polygon list that contains polygons that span the boundary of its bounding box. 
We would then recur into each child passing in the polygon list that was compiled for it by the parent. 
 
Remembering that this is a recursive process, Figure 14.11 shows what our tree would look like after we 
have stepped into each child of the root and subdivide their space into four, with polygon lists created 
for each child node. In reality, the repeated subdivision of each child branch will typically be performed 
at one time, but we took a bit of artistic license here to demonstrate the subdivision. 
 

 
Figure 14.10 
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If the children of the root node’s children are where 
our recursive process was to end, Figure  14.11 
would show the total level of subdivision. As we 
can see, the root node’s bounding box have been 
divided into four quadrants representing the volume 
of its four immediate children. Then, each child 
node of the root, has four children of its own which 
further partition its volume into four more sub 
volumes. The blue bounding boxes in Figure 14.11 
show the bounding volumes for nodes positioned at 
the 3rd level in the hierarchy. If we decided to stop 
partitioning here, then each blue box would be a 
leaf node and would store a list of polygons that are 
contained within its volume; the nodes at the first 

and second level would not. They would just store a bounding volume and pointer to the child nodes. 
However, in this example we will not stop partitioning at the 3rd level, but will stop at the 4th level 
instead. 
 
This means that each blue box 
node in Figure 14.11 would 
also have four children of its 
own as shown by the red boxes 
in Figure 14.12. In our 
example we are going to stop 
subdividing here at the 4th 
level in the hierarchy (3rd level 
of partitioning). This means, 
the 4th level of our hierarchy 
will contain the leaf nodes 
where the polygon data will be 
stored. 
 
Of course, in reality we would 
subdivide this level to a much 
greater degree than just 64 bounding boxes, but this subdivision is easy to illustrate in diagrams and 
subsequently discuss. An actual level that contained 100,000+ polygons would need to be partitioned 
into hundreds of bounding boxes in order to get optimal collision query performance. 
 
It is also worth noting that in our example we are uniformly partitioning space to get certain sized 
bounding volumes at the leaf nodes. When this is the case, the quad-tree built will be balanced and every 
child node at a certain level of the tree will have the same number of children. This is because the scene 
would be uniformly divided into equal sized leaf nodes. However, often we will not want to subdivide 
space further if, at any level in the hierarchy, a node contains no polygon data. When this is the case we 
will generally just make the node an empty leaf (i.e., a node with no children or polygon data). An 
example of this is shown in Figure 14.13 

 
Figure 14.11 

 
Figure 14.12 
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Figure 14.13 

 
On the left side of the image we see the top down view of some shapes being compiled into a quad-tree. 
At the root node we store the entire bounding box which is then divided into four child nodes 
representing the four quadrants of the original bounding box. We can see that when building the second 
level of the hierarchy, the top left and bottom right child of the root contain polygon data and therefore, 
they are further subdivided (we step into the child nodes and continue our recursion). However, the top 
right and bottom left children of the root node have no polygon data contained in them so we will not do 
anything here and return. The fact that we have not created any children for these nodes makes them leaf 
nodes. Since they have no polygon data, they are empty leaf nodes. On the right of the image we show 
the shape of the quad-tree. The root has four children and two of those have four children of their own. 
At the third level, subdivision stops and some of the nodes at this level are empty leaf nodes and some 
are actual leaf nodes containing polygon data. Notice that we also have empty leaf nodes in the second 
level too (TR and BL). It would be wasteful in most circumstances to subdivide empty space as these 
empty volumes will have to be traversed and tested when collision queries are made even though we 
know that no polygon data will ever be found. The spatial tree shown in Figure 14.13 is not perfectly 
balanced as the leaf nodes are not all contained at the same level in the hierarchy. Does this matter? 
 
Ideally it would be nice if our tree could be completely balanced so the situation does not arise where 
some queries may take substantially longer to perform than others merely because the queries are being 
performed in a section of the tree where the leaf nodes go very deep and more nodes must be traversed 
before the queried data is located. In a perfectly balanced tree where all leaf nodes existed in the same 
level of the tree, scene queries would take almost identical times to execute, giving us a consistent query 
time. We would also use a consistent amount of stack space during the traversal. However, while a 
balanced tree is a nice thing to achieve, that does not mean we should needlessly subdivide sparse 
regions of the scene simply to push the sparsely populated or empty leaf nodes down to a uniform level 
(i.e., alongside leaves from densely populated regions of the scene). After all, making the tree deeper 
than it need be in many places would essentially be forcing all tree queries to operate under the worst 
case performance scenario. Tree balance is a more important factor to consider when dealing with kD-
trees or BSP trees, as we will discuss in time, but is still something you should bear in mind with all tree 
implementations. If you find that your scene is taking much longer to query in some area versus others, 
it may be a balance issue, and in some cases the tree can be made shallower in the troubled areas by not 
subdividing to such a large degree. It is generally preferable to have you frame rate run consistently at 
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50 frames per second rather than being at 100 frames per second in some regions and 10 frames per 
second in others. So consistent query times are certainly desirable where possible. 
 
Using the example quad-tree generated in Figure 14.12, let us see how we might efficiently query the 
tree for collision information. Once again, at the moment our focus is very much on the implementation 
of a broad phase for our collision system. We will discuss using spatial trees to speed up rendering later 
in this lesson and flesh this theory out in the next lesson with a hardware friendly rendering solution. 

14.2.1 Hierarchical Queries using Spatial Trees 

For this demonstration we will once again assume that we are testing an AABB (surrounding the swept 
sphere) against the tree starting at the root node. We are interested in finding any polygons in the level 
that have the potential to collide with the swept sphere. Ideally, we wish to reject all non-potential 
colliders from consideration as quickly as possible. 
 

The query function would be a simple recursive 
function which steps through the tree performing 
intersection tests between the query volume and the 
bounding boxes of the child nodes of the current node 
being tested. When an intersection occurs with a 
child node, the function recursively calls itself to step 
into that child and continues down the tree. So 
whenever we find a child node that does not intersect 
the query volume, we can immediately reject it and 
all its child nodes (and all the data they contain) 
instantly.  
 

 
If at any point we visit a node that has polygon data, we add the data contained in that leaf node to the 
container being used to collect the polygons for the narrow phase. In Figure 14.14 we show our query 
volume positioned somewhere within the root node’s bounding volume. The first thing we would do is 
test this bounding volume against the bounding volumes of the root node’s four children. 
 

 
Figure 14.14 
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As Figure 14.15 illustrates, the query volume would 
be found to be inside only one of the bounding 
volumes of the root’s children. In this example we 
can see that it is contained in only the bottom left 
child node. At this point, we can ignore the other 
child nodes completely and they do not have to be 
further traversed. So with four AABB/AABB tests 
we have just rejected ¾ of the entire scene 
(assuming even polygon distribution). We know that 
nothing in the other three child nodes can possibly 
intersect our query volume, so we ignore those child 
nodes and their children, and their children, and so 
on, right down that branch of the tree. If we assume 
that our level contains 100,000 evenly distributed 
polygons, we have just rejected 75,000 of them with 
four simple AABB/AABB tests.  Bear in mind that 
we are only performing very light spatial 

subdivision here (four levels), but in reality, that step would have probably rejected 100’s if not 1000’s 
of leaf nodes and all the polygon data contained within them. 
 
In this instance of the recursive query routine we 
discovered that the bottom left child of the root was 
intersected, so the function will now traverse into 
that node. In the next step we do the same thing all 
over again. That is, we test the query volume 
against the four child nodes of the bottom left child 
of the root. The children of the bottom left child of 
the root are shown as the blue boxes in Figure 
14.16. As you can see, we discover an intersection 
with only one of the children and the other three 
child nodes can be ignored. In the first step we 
whittled away ¾ of the scene, in this second step, 
we have whittled it down to just a ¼ of that again. 
With just eight AABB tests, we have rejected 
15/16ths of the entire scene. Not bad at all.   
 
At this point we are located at the bottom left child 
of the root and have determined that only its top 
right child is intersected by our query volume. 
Therefore, the function would call itself recursively 
again stepping into this child (the highlighted blue 
box in Figure 14.16) 
 

Figure 14.15 

Figure 14.16 
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Next we would step into the top right blue child (Figure 14.16) 
and would see that it too has four children of its own. Once 
again, we would test the query volume against its four children 
(the four red boxes highlighted blue in Figure 14.17) and 
determine that the query volume is contained in only two of 
them. When we traverse down into both of these child nodes 
we find that they have no children and we have reached the 
leaf nodes of the tree. We then collect the polygon/mesh data 
stored in those two leaves and add them to the potential 
colliders container. We can now return from the function, 
unwinding the call stack back up to the initial function call 
made to the root by the application. We would have a 
container filled with only the potential colliders which can 
then be passed into the narrow phase. We achieved our goal 
with only 12 AABB tests. Imagine the savings when the 
geometry has been divided many levels deep and has created 
100’s of leaf nodes instead of just 64. For example, if the scene 
was compiled had 1000 leaf nodes, the first four AABB tests at the root would have instantly rejected 
750 of those leaves. This is exactly why hierarchical spatial subdivision is so powerful. 

14.2.2 Hierarchical Frustum Culling  

Let us quickly discuss scene rendering as another example of the benefits of hierarchies. This will only 
be lightly discussed in this lesson since implementing a hardware friendly rendering system for our 
spatial trees will be the core subject of the next lesson. 
 
Figure 14.18 shows the first phase of the rendering of this spatial 
hierarchy. Starting at the root node and traversing down the tree, 
we can see that at the root node we test its four child nodes (the 
four quadrants of the entire scene) against the view frustum using 
AABB / Frustum tests. After these four simple tests we can see 
that only one of the child nodes of the root intersects the frustum, 
so the other three child nodes are ignored along with all their 
children. We have just rejected ¾ of our scene’s polygon data 
from being rendered with these four tests. 
 
The top left child of the root does contain the frustum however, so 
we will need step down into this node and narrow the set further 
by testing its four child nodes against the view frustum. 
 

Figure 14.17 

Figure 14.18 
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When we visit the top left child of the root we must then test to see 
whether any of that node’s child nodes are within the frustum. 
Once again, we test the frustum against the four bounding boxes of 
the child nodes, which are shown in Figure 14.19 as the four blue 
boxes. 
 
One thing that should be obvious looking at Figure 14.19 is that at 
this level in the tree, all four of the blue child nodes are partially 
inside the frustum, so we are unable to reject any child nodes at this 
point. All four child nodes of the top left child of the root will need 
to be visited to further refine the polygon set that needs to be 
rendered.  

 
For each of the four blue nodes, we step down and visit their four child nodes. One at a time we 
determine which of its child nodes have bounding boxes that intersect the frustum. In our simple 
example scene (Figure 14.20), the children of the blue nodes are also the leaf nodes at the bottom of the 
tree. These leaf nodes contain the polygon data, so once we find that a leaf node is inside the frustum, 
we can render the polygons contained there. Alternatively, if you are doing a deferred rendering pass 
(such as storing the polygons in a queue for sorting purposes) then these are the polygons that should be 
collected and added to your rendering list. 
 

As we visit each blue node we determine which of its 
children are inside the frustum and need to be rendered. 
We can see in Figure 14.20 that if we start by visiting the 
top left blue node, only its bottom right child intersects 
the frustum and it is the only one of its four leaf nodes 
that needs to be rendered. Then we visit the top right blue 
node and determine that its top left and bottom left child 
nodes partially intersect the frustum and need to be 
rendered. When we visit the bottom left blue node, we 
see that only one of its four child leaf nodes intersect the 
frustum (its top right child node). Finally, when we visit 
the final blue child node on the bottom right, we see that 
the only child leaf node that is visible is its top left leaf 
node. 
 

Thus, with the camera positioned as shown in this diagram, only five leaf nodes from a scene comprised 
of sixty four leaf nodes need to be rendered. By stepping through the hierarchy and performing 24 
AABB / Frustum intersection tests, we have rejected 92% of our scene polygons from having to be 
rendered.  
 
Unfortunately, coming up with a hardware friendly rendering solution is not as trivial as it may appear to 
be. Even with such large scale rejection of polygon data at our disposal, the strategy of collecting the 
visible polygons and rendering them must be well thought out so that CPU burden is kept to a minimum. 
On modern graphics cards, the GPU is very, very fast and you may easily find cases where brute force 
rendering beats a naïve implementation of hierarchical spatial partitioning. A system that burdens the 

 
Figure 14.19 

 
Figure 14.20 
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CPU will suffer greatly when compared to its brute force counterpart when the entire scene is contained 
inside the frustum and nothing can be culled. If the entire scene is contained inside the frustum, then 
everything will need to be rendered anyway. In that case, brute force will always be faster due to the fact 
that it does not need to perform any tree traversals. So what are our options?  
 
One implementation you might come across in your research steps through the tree and collects the 
polygon data from the visible leaves into a dynamic vertex and index buffer for rendering. 
Unfortunately, for large polygon datasets this technique is fairly useless. The memory copying of the 
vertex and index data into this dynamic buffer set will kill performance. An improvement to this method 
maintains a static vertex buffer and collects only indices during the traversal. This is a much better 
design, but still not quite optimal since memory copying is a costly operation no matter what, even if 
you are only dealing with 16-bit indices. We will examine an alternative approach in the next lesson that 
does not require a dynamic buffer (although they will be handy for specific tasks as we will discover 
later on).   
 
Other strategies can also be employed to speed up the frustum rejection pass of the tree by reducing the 
number of plane/box tests that must be performed.  
 
One of the most popular is called frame coherence (or sometimes temporal coherence). It works by 
having each node remember the first frustum plane that caused the node to be rejected so that in the next 
frame update, we can test the failed plane first and hopefully benefit from the fact that the node is still 
outside the frustum. This takes advantage of the fact that between any two given frames (a small time 
step), a node that was invisible last time is likely to be invisible again as a result of the same plane 
failure. The basic idea is that the node says, “The last time I was tested, I failed against frustum plane N, 
so let me check plane N first this time because it is likely that in the short amount of time that has 
elapsed, I will fail again against this plane and get rejected straight away”. This reduces the number of 
plane/box tests down from 6 to 1 when all goes well.   
 
Just as we can reject large swaths of the tree when a node is outside the frustum, another important 
optimization can be implemented when a node’s bounding volume is found to be contained completely 
inside the frustum. If a node is totally inside the frustum then we know for certain that all of its child 
nodes must also be contained inside the frustum also. Thus, once we find a node fully contained in the 
frustum, we no longer have to test the bounding volumes of its children -- we can traverse immediately 
to its leaf nodes and render them. If we do not allow for node spanning polygons (i.e., they were clipped 
to the nodes during compilation), hardware clipping can also be disabled since we know that none of the 
polygons contained within the frustum will require clipping. This is not really a major savings these 
days since hardware clipping is quite fast, but it is worth noting nonetheless. If you ever need to 
implement a software renderer, this would be something to factor in.    
 
Finally, another common optimization to reduce plane testing involves the child nodes benefiting from 
information that was learned during the parent node’s frustum tests. This works for cases where there 
was partial intersection. We know for example that if a node is found to be inside a frustum plane, then 
all of its children must also be inside that frustum plane. Therefore, there is no need to test that frustum 
plane against any of the child nodes. We can always assume that the child currently being tested against 
the frustum is inside that plane without performing any test. 
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All of the above techniques and optimizations will be fully explained and implemented in the next 
lesson when we discuss rendering our spatial trees in more detail. They have been introduced only 
briefly here to make you aware of the complexities of such a system and the various optimizations that 
can be performed. 

14.2.3 Hierarchical Ray Intersection 

One of the most common intersection routines used in games and related applications is the intersection 
test of a ray with a polygon. Such techniques are used to calculate light maps, form the narrow phase of 
our collision detection system, and determine whether line of sight exists between two objects in the 
game world. For example, we often wish to determine whether a ray cast from one location in the scene 
to another is free from obstruction (line of sight). The only way to know that without performing spatial 
partitioning is to intersection test the ray with every polygon in the scene. Only when we reach the end 
of the polygon list with no intersections found do we know that the ray is free from obstruction and a 
clear line of sight exists. Unfortunately, if our scene is comprised of many thousands of polygons, that 
query is going to be unsuitable for real-time applications. Furthermore, we may often want to perform 
such tests many times in a single frame update. Spatial partitioning speeds up such ray/scene intersection 
tests by reducing the per-polygon component. The only polygons that need to be individually tested 
against the ray are the ones inside the leaf nodes whose bounding boxes are intersected by the ray. To 
demonstrate this, in this next example we will assume that a scene has been spatially divided into a tree, 
resulting in 16 leaf nodes.  
 

Figure 14.21 
 
In Step 1 we see the ray end points (the two red spheres) and a purple line joining them. We can also see 
that the scene contains many polygons. 
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To find the polygons our ray intersects, we need to feed the ray through the tree and find which leaf 
nodes it eventually pops out in. We would start by feeding in the ray to the root node and testing it 
against the bounding volumes of each child of the root. As shown in Step 2, in this first stage, two of the 
root’s children would be rejected because the ray does not intersect them. The rejected quadrants are 
highlighted in red. 
 
Since we have found children of the root whose bounding volumes are intersected by the ray (the bottom 
two quadrants of the scene) we must send our ray into each child node. We will follow the path of the 
bottom left child node first. In Step 3 we can see that once in the bottom left quadrant of the root, we 
would then test the ray against the four child quadrants of this node. The ray is only found to be 
intersecting one of its children, so three are rejected from further consideration. These are highlighted in 
blue in the image.  
 
From the blue children in the bottom left quadrant, only its bottom right quadrant node was intersecting 
the ray so we send it down to that node (Step 3). In Step 4 we show our ray visiting this node and being 
tested against that node’s four children. Of its children, only one of them intersects the ray and three are 
rejected. The three rejected children are highlighted black in Step 4. At this point we send the ray into 
that child and find it is a leaf node which contains polygon data. We add the polygon data to a container 
so that we will have access to it when traversal is complete. 
 
We have now traversed to the bottom of the tree entered via the bottom left child node of the root, so 
now it is time to send the ray down the root node’s bottom right child. In Step 5 we see that as we visit 
the bottom right child of the root and test against its four children, two of them are not intersecting the 
ray (the blue ones). Two of the children are however, so we must traverse with our ray into each. First 
we start with the top left child where the ray is tested against its four child nodes and found to be 
contained in only one (Step 6). This one is also a leaf node, so the polygons are added to the polygon 
container. The rejected children are highlighted black. We have now finished with that branch of the tree 
so we step up a level and visit the other node our ray intersected -- the bottom left child of the bottom 
right child of the root (Step 7). Once again, we pass our ray into this node and test against its four 
children and find our ray is only in one of them. The ones that are rejected are highlighted in black. At 
this point we have reached the bottom of the tree, so we return. The recursive process unwinds right up 
to the root node and we have a container with polygons that were contained in the three intersected leaf 
nodes. These polygons can then be tested one at a time to see if an intersection really does occur. 
 
In this simple example we have used a scene divided up into 16 leaf nodes so only 13/16th of our 
polygon data would have to be tested at the per-polygon level. However, in a real situation we would 
have the scene divided up into many more leaves and the polygon data collected would be a mere 
fraction of the overall polygon count of the scene. To prove its efficiency, we can see that by performing 
four ray/box intersections tests at the root node we immediately reject half the total number of polygons 
in the scene regardless of the size of that scene.  
 
Remember that although the spatial partitioning examples given here are partitioning polygon soups and 
storing individual polygons at the leaf nodes, this need not be the case. If your scene is represented as 
series of meshes for example, you could modify the node structure to contain a linked list of meshes 
instead of an array of polygons. Assigning a mesh to the tree would involve nothing more than sending 
its bounding volume down the tree and storing its pointer in the leaf nodes its bounding volume ends up 
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intersecting. You will often have a single mesh assigned to multiple leaf nodes, so you will have to make 
sure you do not render it twice during your render pass. In Lab Project 14.1 we will actually implement 
a spatial tree that manages both static polygon soups and dynamic meshes/actors. The static world space 
geometry loaded from the IWF file will be (optionally clipped and) assigned to the leaf node’s polygon 
array. Each dynamic object (actor) will contain a list of leaves in which it is contained. When a dynamic 
object’s position is updated, we will send its bounding volume through the tree and get back the list of 
leaves it intersected. We will store these leaf indices in the object structure. Before rendering any object, 
we will instruct the spatial tree to build a list of visible leaves. The object will ask the tree whether any 
of the leaves it is contained in are visible and if so, we can render the object. To be sure, there are other 
ways to manage this relationship, and we will talk more about it in the next lesson. For now, this gives 
you a fairly high level view of what is to come.  
 
Now that we basically understand what spatial partitioning is, we will now look at some of the more 
common choices of spatial partitioning data structures (trees) that are used in commercial game 
development. There are many different types of trees used to spatially partition scenes into a hierarchy 
and the tree type you use for your application will very much depend on the scene itself and the type of 
partitioning it requires. In this lesson and the next we will discuss and implement quad-trees, oct-trees, 
and kD-trees. In Chapters 16 and 17 we will examine BSP trees. Keep in mind that there are a variety of 
different ways that each of these trees can be implemented. In this chapter we will discuss the vanilla 
approaches that tend to be the most common for each tree type. We will begin our exploration with 
quad-trees since we have already laid some foundation in the prior section. 

14.3 Quad-Tree Theory 

A quad-tree is essentially a two dimensional spatial partitioning data structure. This does not mean that 
it cannot be used to spatially partition three dimensional worlds, only that it spatially subdivides the 
world into bounding volumes along the (typically) XZ axis of the world. In a vanilla implementation 
where polygon data is only assigned to the leaf nodes, each one of these leaves contains all the geometry 
that falls within the X and Z extents of its bounding volume. No spatial subdivision is done along the 
third axis (traditionally, the Y axis). That is, the Y extents of every leaf node will be the same; the 
maximum and minimum extents of the entire scene, which creates bounding volumes with identical 
heights. As discussed in the last section, each node in the tree has four children that uniformly divide its 
space into quadrants.  
 
Because of the two dimensional subdivision scheme used by the quad-tree, it is ideally suited for 
partitioning scenes that do not contain many polygons spread over a wide range of altitudes. For terrain 
partitioning, a quad-tree is a logical choice since a terrain’s polygon data is usually aligned with the XZ 
plane. During a frustum culling pass, there will not be many times when parts of the terrain that are not 
visible will be situated above or below the frustum. Because every leaf node shares the same height, we 
will never be frustum culling geometry that is above or below the camera in a given location on the 
terrain. We might say that the quad-tree allows us to frustum cull data that is either in front or behind us 
and to the left or right of us. It is very unlikely that you will be standing on a terrain square and have 
parts of the terrain located nearby but very far above you or below you. Of course, there may be times 
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when you might be standing at the foot of a hill and perhaps the top of that hill could be culled because 
it is situated above the top frustum plane, but in general quad-trees work fairly well for terrains. 
  

As you can see in Figure 14.22, a terrain like this 
has much larger dimensions along the X and Z axes 
of the world, so little would be gained from 
subdividing space vertically as well. This would 
introduce many more nodes into the tree and make 
traversals slower for very little (if any) benefit. 
 
Figure 14.22 shows a terrain compiled into a quad-
tree and although in reality this terrain would be 
compiled into many more leaf nodes than 
illustrated here, it should be obvious why this 
would be an efficient partitioning scheme for a 
terrain.  
 
The height of each of the leaf node’s bounding 
volumes can either be the max Y extents of the 

polygons that exist in that leaf node or it can be taken from the Y extents of the bounding box compiled 
for the entire scene at the root node. In the previous examples and in Figure 14.22, we have used the Y 
extents of the bounding box compiled for the entire scene for each leaf node’s Y extents. We can see in 
Figure 14.22 that this generates nodes of identical height throughout the entire tree.  In certain cases, leaf 
nodes may be more efficiently frustum culled or rejected from polygon queries earlier if the Y extents of 
each node’s bounding box is not inherited from the bounding volume for entire scene but is instead 
calculated at node creation time from the polygon data in that node. Calculating the Y extents for a node 
would be easy -- we could just loop through each polygon that made it into that node during the compile 
and record the maximum and minimum Y coordinates of the polygon set. This will yield the minimum 
and maximum Y coordinates of any polygons stored at that node (or below it) which can then be used as 
the Y extents of its bounding box. This type of quad-tree (which we will refer to as a Y-variant quad-
tree) generates children at each node which may not fill the space of the entire parent node, but will still 
always be totally contained inside it. 
 
Figure 14.23 shows a how a quad-tree node normally has its space uniformly subdivided for each of its 
children. The height of all child nodes is equal to the height of the parent, even if there is no polygon 
data stored at that height. The circular inset shows how the children of the quad-tree node might look if, 
when each child node is created, the Y extents of its bounding volume are calculated from the polygon 
data that made it into that node. The Y-variant quad-tree is a favourite of ours here at the Game Institute 
as it performs consistently well in all of our benchmarks. 
 

 
Figure 14.22 
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Before we discuss how to create a quad-tree, we 
should look at situations where it might not be the 
best choice of spatial manager due to its two 
dimensional spatial partitioning. A space-combat 
scene is one such scenario where the quad-tree 
might not be the best choice.  
 
In such a scene, you could (for example) have a 
hundred complex spaceship meshes all situated at 
exactly the same X and Z coordinates in space but 
at different positions along the Y axis of the 
coordinate system. We can think of these spaceship 
models as being positioned in the world such that 
they would look like they were on top of each other 
when the scene was viewed from above. If we were 
using a quad-tree to spatially manage this scene of 
dynamic objects, all one hundred space ship models would exist in a single leaf node. When the camera 
entered this leaf node, all of the spaceships in this node would be rendered. This would be true even if 
all the ships were positioned far above and below the frustum. Essentially, we would be sending one 
hundred space ship models through the transformation pipeline even if none of them can be seen. 
Therefore in this example, where the scene has large Y extents, we would rather use a spatial 
partitioning technique that allows for the scene to be subdivided vertically as well. Although the 
examples given are associated with efficient frustum culling, the same is true for collision queries. If our 
swept sphere’s bounding volume intersected that same leaf node, the polygons of all one hundred space 
ships would be collected by the broad phase and sent to the narrow phase as potential colliders 
(assuming we did no further bounding volume tests). However, the space ships could be positioned 
nowhere near the swept sphere. 
  

Another example where a quad-tree might not be the best choice is when 
representing a scene that models a cityscape with towering skyscrapers. 
We will use a very simple example to demonstrate why this is the case.  
 
In the Figure 14.24 we see a scene consisting of seven tall buildings 
compiled into a quad-tree. In this first image we are looking at the scene 
from the top down perspective and at first glance this scene appears to fit 
nicely into a quad-tree. 
 
In this example the scene has been divided into 16 leaf nodes along the 
X and Z axes of the world. What cannot be seen from this two 

dimensional representation is how high each building is, and thus how tall the bounding boxes are. In 
Figure 14.25 we see another view of the scene rendered three dimensionally to better demonstrate this 
point. 
 

 
Figure 14.23 

 
Figure 14.24 
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Figure 14.25 
 

In this example, the Y extents of each quad-tree node are the same as the Y extents of the entire scene’s 
bounding box, generating leaf nodes of identical size along the Y axis. Now let us imagine that the 
camera is located in front of the first two buildings at ground level with a rather narrow frustum. 
 

The red highlighted area in Figure 14.26 illustrates the 
section of the two front buildings that are actually inside 
the frustum and would need to be rendered. The camera 
can only see the bottom section of the two front buildings 
and therefore it is only the polygons comprising the 
bottom sections of each building that need to be 
rendered. However, because the polygons in each 
building are assigned to a single leaf node, when the leaf 
node is partially visible all of the polygons in that leaf are 
rendered. In this image we can see that the front three 
leaf nodes (with respect to the camera) can be partially 
seen from the camera position and as two of those leaf 
nodes contain buildings, these building will be rendered 
in their entirety. This is a shame as there are many 
polygons in each building which are situated well above 

the range of the frustum and they would be needlessly transformed and rendered (or collected as 
potential colliders). If you imagine a large cityscape scene consisting of hundreds of tall skyscrapers and 
imagine that the camera is usually situated at the ground level, using a quad-tree to partition the scene 
would result in many polygons in the upper regions of these buildings being rendered when they cannot 
even be seen. An oct-tree (discussed later) might prove to be a better choice of partitioning scheme in 
this instance. 
 
You may be thinking that the simple answer is to always use an oct-tree instead of a quad-tree when 
working in three dimensions, but that is not a wise rule to live by. In our terrain example, nothing would 
be gained (or very little) by spatially subdividing the scene vertically. All we would achieve is a larger 
tree that is slower to traverse. More AABB/Frustum tests would need to be performed to reject a section 
of terrain that, in a quad-tree, would fit in a single leaf node and be rejected with a single 
AABB/Frustum test. 

 
Figure 14.26 
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Note: Do not assume that an oct-tree is the best solution even if your scene does contain a large 
distribution of objects along the Y axis. Oct-trees create many more nodes which makes them slower to 
traverse and causes the polygons to be rendered in smaller batches. On modern hardware this might cause 
it to underperform with respect to the quad-tree. In most of our tests performed with the partitioning and 
rendering of static polygon data, the Y variant quad-tree outperformed the oct-tree in almost every case. 
However, this might not be true for a mesh based tree and would certainly not be true for our collision 
system’s broad phase. We would not want to send polygon data to the expensive narrow phase which is 
above or below our swept sphere’s volume. However, for rendering purposes, the quad-tree has been 
consistently hardware friendly. The lesson is to always to test the tree types on a variety of different scenes 
and machine configurations before deciding which one to use. Of course, you do not have to use the same 
tree for your collision geometry as you do for your render geometry. For example, you could compile your 
collision data using an oct-tree but render the scene data using a quad-tree. 

14.3.1 Partitioning a Quad-Tree Node 

When building a quad-tree node, we will essentially have a list of polygons that are contained in the 
parent node volume that need to be assigned to its four child nodes. The parent volume will be 
subdivided into four equally sized volumes along the X and Z axes. The centerpoint of the parent node’s 
bounding box describes the position where the edges of each of the four child node’s bounding boxes 
will meet. Each child node is created and is assigned a bounding volume representing a quadrant of the 
parent node (top left, top right, bottom left or bottom right). Once we have the child nodes and their 
bounding volumes calculated, we can start to test which child node(s) a given polygon in the parent 
node’s polygon list is in. It is possible that a polygon in the list passed down from the parent might span 
the bounding volumes of multiple child nodes. In such a case we can either choose to add the polygon to 
the polygon list of each child it intersects, or we can clip the polygon to the bounding volumes and store 
each polygon fragment in the child for whose bounding volume it will now be totally contained.  
 
Placing the polygon in multiple leaf nodes does come with its fair share of problems. We will need to 
make sure that we do not render or query the polygon multiple times if more than one of the leaves in 
which it exists is being rendered or queried. This can add some traversal overhead, although not much. 
Another problem with not clipping the polygons is that when a leaf node is rendered or queried, the node 
no longer describes the polygons exactly stored in that volume. For example, we might assign a polygon 
to a leaf node that is much larger than the node. When that node is visible, we have a looser fit for the 
exact data that can be seen and should be processed. Of course, the problem with clipping is that we 
essentially perform a process that creates two polygons from one. If this happens hundreds of times 
during the building procedure it is not uncommon for the polygon count to grow between 50 to 90 
percent depending on the type of tree you are using and the size of the leaf nodes. The larger the leaf 
nodes, the less clipping will occur but more polygons will be contained in a single leaf. 
 
In our implementation, we will provide options for clipping the static polygon data to the bounding 
volumes of the tree and will also implement a system that elegantly handles the sharing of polygons 
between multiple nodes when clipping is not being used.  
 
We will store in our node its bounding volume and two clip planes that are used for the classification 
and clipping of polygon data during the tree building process. We will discuss how to clip polygons to 
planes later in this lesson. The benefit of clipping is that any node in the tree will contain an exact fit of 
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the data contained inside it and more importantly, no polygon will ever belong to multiple leaf nodes. Of 
course, it does mean that whenever a split happens we introduce more polygons into the scene. 
 

Note: Until otherwise stated, we will assume for the sake of the next discussion that we are clipping our 
polygon data to the nodes in which they belong. Later we will discuss the non-clip option.  

 
Please note that in this section we are currently talking about the assigning of static world space polygon 
data to the tree, such as the internal geometry loaded from a GILES™ created IWF file. As this data 
never changes throughout the life of the application, we will clip it exactly to the tree at compile time 
and store the polygon data in the leaves. Later we will discuss how we can also link dynamic objects to 
leaf nodes in the tree. These objects are not clipped and are linked to the leaf nodes implicitly by storing 
a list of leaves they are contained within. Meshes and actors do not have their polygon data stored in the 
tree. Instead we will maintain an internal array of leaf indices in which the object currently resides. The 
spatial tree will expose a method that will allow dynamic objects to pass their bounding volume down 
the tree and get back a list of leaf indices in which they are currently contained. The dynamic object can 
optionally store these indices and only render itself if any of these leaves are visible (although the 
system will maintain this information internally for later querying if desired). 
 
Because a given node is really just an axis aligned bounding 
box, generating the clip planes for a quad-tree node is 
delightfully easy. Two planes will be needed: one that will 
split the node’s volume halfway along its depth (Z) axis and 
another that will split the volume half way along its width (X) 
axis. We know that the normal to a plane that will divide its 
depth in two will be <0, 0, 1>  (or <0, 0, -1> as it represents 
the same clip plane) and that the centerpoint of the node’s 
bounding volume will be a point on that plane as shown in 
Figure 14.27.  
 
In this image we are assuming that the blue arrow is the plane 
normal pointing along the world Z axis and that the red sphere is the centerpoint of the node’s bounding 
volume. Thus, these two pieces of information are all we need to describe the clip plane shown as the 
yellow slab in Figure 14.27.  
 
 

 
Figure 14.27 
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The creation of the second clip plane is equally as easy. Once again, the 
centerpoint of the bounding volume describes the point on the plane and 
this time we use a normal of <1, 0, 0> so that we have a plane that 
divides the volume’s width in two.  
 
Once we have generated the two planes, we take each polygon in the 
node’s list and clip it to each plane. This is done in two passes. For each 
polygon in the list we classify it against the first node plane. If it is 
either in front or behind the node we leave it in the list and continue on 
to the next polygon. If we find that a polygon is spanning the plane we 
split it at the plane. The original polygon in the list is deleted and the 
two new split polygons are added to the list. After every polygon in the 
list for this node has been tested against the first plane, any polygon that 
was spanning the plane will have been removed from the list and 

replaced with two polygons that fit entirely in the front and back half space of the node’s volume.  
 
We then clip this list against the second plane using the same scheme. That is, each polygon is classified 
against the plane and if not spanning, the second plane is left in the list unaltered. If it does span the 
second plane, we split the polygon in two, deleting the original from the list and adding the two split 
fragments in its place. At the end of this process, we will have not yet determined which child nodes 
each polygon should be assigned to, but we know the polygons have been clipped such that every 
polygon will neatly fit into exactly one child node (one quadrant). 
 
The following code shows this step. Do not worry too much about how the actual functions that are 
called work at the moment; we will get to all that later when we implement everything. For now just 
know that this code would be executed during the building of a node. The node is passed an STL vector 
of all the polygons that have made it into that node during the compilation process so far. For the root 
node, this vector will contain all the polygons in the scene. Each polygon is assumed to be represented 
by a CPolygon class that has a method called ‘Classify’ which returns a flag describing whether it is in 
front, behind, or spanning a plane. It also has a method called ‘Split’ which splits the polygon to a plane 
and returns two new CPolygon structures containing the split polygon fragments. Remember, this code 
is not yet trying to determine which polygon in the list should be passed to which child node, it is just 
clipping any polygons that straddle the quadrant borders. 
 
The first thing we do is generate the two clip planes using the D3DXPlaneFromPointNormal method. 
This method accepts as its parameters a point on the plane and a normal and returns (via the first 
parameter) the plane represented as a D3DXPlane structure (in a,b,c,d format). For both planes, the point 
on plane is simply the centerpoint of the node’s bounding box (2nd parameter). For the plane normal of 
the first plane we pass in the vector (0,0,1) which is the world Z axis; for the second plane we pass the 
vector (1,0,0) which is the world X axis.  
 
D3DXPlane ClipPlanes[2]; 
 
D3DXPlaneFromPointNormal( &ClipPlanes[0], &((BoundsMin + BoundsMax) / 2.0f),  
               &D3DXVECTOR3( 0.0f, 0.0f, 1.0f ) ); 
    
D3DXPlaneFromPointNormal(  &ClipPlanes[1], &((BoundsMin + BoundsMax) / 2.0f),  
                           &D3DXVECTOR3( 1.0f, 0.0f, 0.0f ) ); 

 
Figure 14.28 
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Notice in the above code how we have allocated an array of two D3DXPlane structures on the stack 
which will receive the clip planes that we calculate. In the first element we store the XY plane and in the 
second element we store the YZ plane. 
 
Now that we have both planes temporarily calculated for the current node, we will classify the polygons 
in the list against each one. Therefore, we set up an outer loop for each plane and an inner loop that tests 
each polygon against the current plane being processed. 
 
    // Split all polygons against both planes 
    for ( i = 0; i < 2; ++i ) 
    { 
        for(PolyIterator= PolyList.begin();PolyIterator != PolyList.end(); ++PolyIterator) 
        { 
            // Store current poly 
            CurrentPoly = *PolyIterator; 
            if ( !CurrentPoly ) continue; 

 
The first thing we do is test the current polygon being processed to see if its pointer is NULL, and if so, 
we skip it. You will see in a moment why we perform this test. 
 
Now that we have a pointer to the current polygon we want to test we will call its Classify method and 
pass in the current plane. The Classify method of CPolygon simply returns a value that describes the 
position of the polygon with respect to the plane. The four values it can return are 
CLASSIFY_INFRONT, CLASSIFY_BEHIND, CLASSIFY_ONPLANE and CLASSIFY_SPANNING. 
As you can see, these tell us whether the polygon we are testing is in front or behind the plane or 
whether it is spanning the plane. In this loop, we are looking for polygons that are spanning the current 
plane being tested because if we find a polygon spanning a plane, we must spilt it into two new polygons 
at that plane. Here is the remainder of the code. 
 
            // Classify the poly against the first plane 
            ULONG Location = CurrentPoly->Classify( ClipPlanes[i] ); 
          
            if ( Location == CPolygon::CLASSIFY_SPANNING ) 
            { 
            // Split the current poly against the plane,  
              // delete it and set it to NULL in the list 
                CurrentPoly->Split( ClipPlanes[i], &FrontSplit, &BackSplit ); 
              
                delete CurrentPoly; 
                *PolyIterator = NULL; 
 
                // Add these to the end of the current poly list 
                PolyList.push_back( FrontSplit ); 
                PolyList.push_back( BackSplit ); 
             
            } // End if Spanning 
 
        } // Next Polygon 
 
    } // Next Plane 

 
As you can see, if the classification of the current polygon does not return CLASSIFY_SPANNING 
then we leave it in the list and skip on to the next one. That does not mean of course that this same 
polygon will not be clipped when the second plane is tested in the second iteration of the outer loop. If 
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the polygon is spanning the current plane then we call its Split routine. This function takes three 
parameters. The first is the plane we would like to clip the polygon against and the second and third 
parameters are where we pass in the address of CPolygon pointers which on function return will point to 
the new split fragments. 
 
After this function returns, FrontSplit and BackSplit will contain the two polygon fragments that lay in 
front of the plane and behind it, respectively. At this point we no longer want the original polygon in the 
list as it will now be replaced by these two fragments. Therefore, we delete the original CPolygon 
structure and set that element in the STL vector to NULL. We then add the front and back splits to the 
polygon list. Of course, these split fragments may each get clipped again when they are tested against 
the second plane in the second iteration of the outer loop. 
 
Notice in the above code that whenever we split a polygon, that original polygon is deleted and its 
pointer in the STL vector is replaced with a NULL. The two split polygons are added to the end of the 
vector. Now you can see why we did the polygon pointer test for NULL at the top of the list. When 
processing the second clip plane, many of the pointers in the list may be NULL. There will be a NULL 
in the list for every original polygon that was split by the first plane. 
 
Now that we have the polygons such that every polygon is contained in exactly one quadrant of the 
node, it is now time to build four children polygon lists. That is, we need to calculate which polygons 
will need to be passed into each child node. We will build a list for each quadrant which will result in 
four polygon lists which we can then pass into the child nodes during the recursive build process. The 
next section of code shows these four polygon lists (STL vectors) being compiled. 
 
PolygonList             ChildList[4]; 
 
// Classify the polygons and sort them into the four child lists. 
for(PolyIterator = PolyList.begin(); PolyIterator!=PolyList.end(); ++PolyIterator ) 
{ 
 // Store current poly 
 CurrentPoly = *PolyIterator; 
 if ( !CurrentPoly ) continue; 
 
 // Classify the poly against the planes 
 Location0 = CurrentPoly->Classify( ClipPlanes[0] ); 
 Location1 = CurrentPoly->Classify( ClipPlanes[1] ); 
 
 // Position relative to XY plane 
 if ( Location0 == CPolygon::CLASSIFY_BEHIND ) 
 { 
    // Position relative to ZY Plane 
    if ( Location1 == CPolygon::CLASSIFY_BEHIND ) 
         ChildList[0].push_back( CurrentPoly ); 
    else 
         ChildList[1].push_back( CurrentPoly ); 
 
  } // End if behind 
   
 else 
  { 
    // Position relative to ZY Plane 
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    if ( Location1 == CPolygon::CLASSIFY_BEHIND ) 
         ChildList[2].push_back( CurrentPoly ); 
    else 
         ChildList[3].push_back( CurrentPoly ); 
 
  } // End if in-front or on-plane 
 
} // Next Polygon 

 
The code first allocates four empty CPolygon vectors that will contain the polygon lists for each child 
node that we generate. We then loop through each polygon in the clipped list that we just modified. 
Remembering to skip past any polygon pointer that is set to NULL in the array, we then classify the 
polygon against both of the node’s clip planes and store the results in the Location0 and Location1 local 
variables. Finding out which list the polygon should be assigned to is now a simple case of testing these 
results.  
 
We can see in the above code that if the polygon is found to be behind the first clip plane (the Z axis 
split) then the polygon is obviously contained in the back half space. We then test to see what its 
classification against the second clip plane was. Remember the second clip plane is the plane that splits 
the width of the volume and has a normal (1,0,0).  If it is behind then we know that not only is the 
polygon in the back halfspace of the node, but it is also in the left halfspace behind the first clip plane. 
Thus, this polygon must be contained in the top left quadrant. The else case says that if we are not 
behind the second clip plane but we are behind the first clip plane, then this polygon must be contained 
in the top right quadrant of the node. We perform the same tests when the polygon is found to be in front 
of the first clip plane to determine whether it belongs to the bottom left or bottom right quadrant.     
 
As the above code shows, once we find the quadrant a polygon is in, we add it to the relevant polygon 
list. After this code has executed, ChildList[0] will contain the polygons for the top left quadrant and 
ChildList[1] will contain the polygons for the top right. ChildList[2] and ChildList[3] will contain the 
polygons for the bottom left and bottom right quadrants, respectively.  
 
At this point, all that would be left to do is allocate the four child nodes, construct their bounding boxes 
as quadrants of the parent node’s volume and recur into each child sending the list that was compiled for 
it by the parent node and the whole process repeats. Only when the list of polygons is small or the 
bounding box of the child node is small do we decide to stop subdividing and just assign the polygon list 
to the node, making it a leaf. 
 

Note: Do not worry if the above code did not provide enough insight into how to fully create a quad-tree. 
It was intended only to show the clipping that happens at each node during the build process. Later in this 
lesson we will walk through the code to a quad-tree compiler line by line. 

 
Notice that the clip planes will be generated only during the construction of the node’s child lists and 
they will not be stored. The only thing we store in the node (apart from any polygons) is its axis aligned 
bounding box and the child node pointers. Of course, you could decide the store the clip planes in the 
node as well if you think you will need them at a later stage. It is possible that you may wish to perform 
some query routines on the tree using the clip planes instead of the axis aligned bounding boxes, but we 
do not in our lab project. However, we will store the clip planes in the nodes of the kD-tree that we 
implement (and in the BSP tree, as we will see later in the course). 
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We now have a good idea of exactly what a quad-tree is, and this will go along way towards our 
understanding of the other spatial tree types. Later in this chapter we will cover the source code to a 
quad-tree compiler which we can then use in our applications. Each tree type we develop will all be 
derived from an abstract base interface, so we will be able to plug any of them in as the broad phase of 
our collision system. 
 
That concludes our coverage of the quad-tree from a theoretical perspective, so we will now go on to 
discuss the other tree types. After we have discussed the various tree types, we will examine the separate 
processes involved in building them, such as the clipping of polygons and the mending of T-junctions 
introduced in the clipping phase. 

14.4 Oct-Tree Theory 

The great thing about the topic of hierarchical spatial partitioning is that whether we are implementing a 
quad-tree, an oct-tree or a kD-tree, the building and traversal of those trees are almost identical in every 
case. They are all trees consisting of nodes which themselves have child nodes which can be queried for 
intersection and traversed recursively. This is especially true in the case of an oct-tree where the only 
real difference between the quad-tree and the oct-tree is in the number of children spawned from each 
node.  
 
In a quad-tree, each node’s bounding volume is divided into quadrants along the X and Z axes and 
assigned to each of its four children. In an oct-tree, a node’s bounding volume is divided along the X 
and Z axes and also along the Y axis. Therefore, each non-leaf node has its bounding volume divided 
into octants (1/8th) and each non-leaf node of an oct-tree has eight children instead of four. The 
bounding volume of each child node represents 1/8th of the parent node’s bounding volume. Figure 
14.30 shows how a single node’s bounding box is divided into octants within an oct-tree, compared to 
being divided into quadrants for a quad-tree. 
 

Figure 14.29 shows how the bounding volume of a non-terminal quad- 
tree node is subdivided into four smaller bounding volumes along its 
X and Z axes. In this image the child nodes each have the same height 
taken from the Y extents of the entire scene (the root node’s bounding 
box). The circular inset in the image shows a variation of the quad-tree 
where the Y extents of each child node are calculated using the actual 
polygon data that was passed into that node during the building 
process.  

 
Figure 14.29 
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In Figure 14.30 we see how the bounding volume of a non-terminal 
oct-tree node is divided into octants. Not only do we divide the 
parent node’s bounding volume in two along the X and Z axes as 
we do with the quad-tree, but we also divide the parent volume into 
two along the Y axis. This creates eight child bounding volumes 
instead of four. The subdivision of the node’s bounding volume 
resembles a double decked version of the quad-tree subdivision. 
Instead of just having Top Left, Top Right, Bottom Left and Bottom 
Right child nodes, the child nodes can now be described by 
prefixing the label with the deck to which they belong: Upper Top 
Left, Upper Top Right, Upper Bottom Left, Upper Bottom Right, 
Lower Top Left, Lower Top Right, Lower Bottom Left, and Lower Bottom Right as labeled in the 
diagram 
 
As you might imagine, building an oct-tree is a nearly identical process to building a quad-tree. The 
exception being of course that each non-leaf node has eight children instead of four so we have to divide 
our polygons into eight bounding boxes instead of four when building each node. Everything else is as 
before. The leaf nodes are the nodes at the end of a branch of the tree and in our implementation, are the 
only nodes that can contain geometry data. 
 
The process of building an oct-tree requires only small changes to the code we saw earlier. The node 
structure used for an oct-tree will have pointers to eight child nodes instead of four and when building 
the node itself (in our implementation) we will now use three clip planes instead of two to build the 
clipped polygon lists for each child (see Figure 14.31).  
 

Trying to draw an image of what an oct-tree looks like in memory 
on a piece of paper is virtually impossible if the oct-tree is more 
than a few levels deep. Each node has eight children, each of 
which have eight children of their own, and so on right down the 
tree. In fact, if we think about how many leaves a 10 level oct-tree 
would partition our scene into, we would get a staggering result of 
8^10 = 1,073,741,824 nodes at the lowest level of the tree. Not 
surprisingly, it is pretty much never the case that we will compile 
an oct-tree that has anywhere near this many levels. The good 
thing about oct-trees then is that they are typically going to be 
fairly shallow tree structures. Of course, when traversing the tree, 

we have eight child tests to perform at each node (instead of just four in the quad-tree case) to find the 
child nodes we wish to step into. 
 
Figure 14.32 depicts a partial oct-tree that is three levels deep. The gray node represents the root node of 
the tree, the red nodes represented the eight immediate child nodes of the root, and if the width of a 
printed page was not an issue, each one of these nodes would have their own eight blue child nodes 
which in this example are leaf nodes. So that we can fit the image on a piece of paper we have only 
shown the child nodes of two of the red nodes. Remember, each one of these red nodes would have their 
own eight blue leaf nodes. Hopefully, this diagram will illustrate just how much the quad-tree and the 

 
Figure 14.30 

 
Figure 14.31 
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oct-tree are alike at their core. The oct-tree has double the number of branches leaving each node 
obviously, but it has the same arrangement with leaf nodes at the branch tips. 
 

 
Figure 14.32 

 
Rendering the oct-tree would also not be that different from the quad-tree case. The only real difference 
would be that when traversing the nodes of an oct-tree, we now have to perform Frustum/AABB tests 
against eight bounding volumes at each node instead of four, before we traverse down into the visible 
children. 
 
As you can see from examining Figure 14.33, 
with an oct-tree, the scene is also divided 
vertically as well. Looking at the same position 
and orientation of the camera in this image, we 
can see that only the bottom two leaf nodes fall 
within the camera’s frustum so only the 
polygons assigned to those leaf nodes would 
need to be rendered, which in this case would 
be the polygons in the bottom sections of each 
building only. The only time the top sections of 
the buildings would be rendered is when the 
camera is rotated upwards (like a person 
looking up at the sky) because only then would 
the upper leaf nodes intersect the frustum. At 
this point however, there is a good chance that 
the bottom leaf nodes of the building would no 
longer be inside the frustum and therefore when 
rendering the upper portions of the building in 
this example, the lower portions of each building will be frustum rejected and not rendered. Clearly this 
shows the advantages of an oct-tree and the limitations of the quad-tree in certain scenarios. We have 
seen that even if the camera is not rotated upwards, using a quad-tree, the entire building would be 
rendered even if the upper portions of the building cannot be seen. 
 
Of course, the same would also be true of intersection queries, if an object is contained in the lower 
leaves, only the polygons comprising the base of the buildings would need to be tested in the narrow 
phase. So we have discovered that the oct-tree allows us to more finely collect or cull the number of 

 
Figure 14.33 
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polygons that need to be considered. If the scene geometry is distributed over a large vertical range, the 
oct-tree is often a better choice for multi-level indoor environments, cityscapes and areas that have 
immense freedom of movement along all three axes (such as a space scene). That being said, you should 
always benchmark your trees and find out for sure which is the best performer for a given scene. As 
mentioned previously, the oct-tree does suffer from creating more nodes to traverse and clips the 
polygon data much more aggressively. If care is not taken, you could find your polygon count doubling 
during oct-tree compilation.  

14.5 kD-Tree Theory 

A kD-tree is a partitioning technique that partitions space into two child volumes at each node. Each 
node contains a single split plane and pointers to two child nodes. The split planes chosen at each node 
are always axis aligned to the world and alternate with tree depth to carve the world into rectangular 
regions, much like an oct-tree. That is, at the first level of the tree, a split plane that partitions the space 
along the X axis might be chosen to create two child volumes. When each child is partitioned, the split 
plane used would divide their space along the Y axis to create two child volumes for each. For each of 
their children, the split plane used would be one that divides their volume along the Z axis. For their 
children, the process wraps around to the beginning and we start using the plane that divides space along 
the X axis again. This process of alternating between three axis aligned clip planes at each node repeats 
as we step down the tree until we wish to stop our subdivision. That node is then considered a leaf node. 
 
Because the kD-tree partitions space in two at each node, it is a binary tree. Further, because this 
particular binary tree is used to partition space at each node, we might also refer to it as a binary space 
partitioning tree (BSP tree). While this is certainly true, the kD-tree is not normally what people are 
referring to when a BSP tree is referenced. A BSP tree is almost identical to a kD-tree except for the fact 
that at every node an arbitrarily oriented plane can be chosen (instead if using an axis-aligned one). This 
allows the BSP tree to expose very useful properties that allow for the determination of what is solid and 
empty space within the game world, which can then be used to optimize rendering by an order of 
magnitude. Because the kD-tree uses axis aligned planes, a kD-tree is often referred to as an axis aligned 
BSP tree. 
 
The kD-tree allows space to be partitioned arbitrarily at each node as long as the clip plane is still being 
aligned to a world axis. That is, clip planes can exist at variable positions within the node’s volume. The 
clip plane does not always have to divide the node’s volume into two uniformly sized child volumes. 
This allows for the space to be subdivided such that only areas of interest (where geometry exists) get 
divided (more on this in a moment).  
 
To summarize, a kD-tree is a spatial partitioning tree with the following properties. 
 

• Each node represents a rectangular bounding volume. Just like an oct-tree or a quad-tree, the 
faces of each node’s bounding box are aligned with the axes of the coordinate system. 

• Each node stores a single split plane which is aligned to one of the coordinate system axes. This 
split plane does not have to cut the region into two equally child volumes (although we may 
wish it too). 
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• Each node has two child nodes representing the volumes each side of its split plane. 
• The world axis used for the alignment of a node’s split plane alternates with tree depth. 

 
Building the kD-tree is much the same process as for an oct-tree or a quad-tree although there may be 
some differences in how the split plane at the node is chosen. To get across the basic idea of a kD-tree 
we will show images to illustrate the subdivision of a scene during the construction of such a tree. In this 
example we will simply calculate each node’s split plane to cut through the center of the node’s 
bounding volume. This will divide each node’s volume into two equally sized child volumes. As you 
will see in the following examples, because the split plane being chosen partitions each node’s volume 
into two along its center, we partition the scene in the same way as an oct-tree.  
 
In this first image we show the construction of the root node. After creating the node we would loop 
through each of the scene’s polygons and compile a bounding box that encompasses them all. This will 
be assigned to the root node as its bounding volume. At this point we have the root node’s volume and a 
list of polygons that need to be passed into two child nodes. Our next task it to choose a split plane for 
the root. In this image we create a split plane whose normal is aligned with the world X axis (1,0,0). In 
this example we are using the center of the bounding volume as the point which describes the plane 
during plane creation and as such the plane cuts through the center of the box dividing its width in two.   
 

Figure 14.34 
 
At this point we store the split plane in the node and loop through each polygon in the list and classify 
them against this plane. This allows us to build two polygon lists (one for each child node) describing 
the polygons that belong in each list. We will assume for this demonstration that we are once again 
clipping our geometry to the partitions, so any polygon in the root list that straddles the plane will be 
clipped in two by that plane and the each child fragment added to the respective child list. 
  
At this point we have to recur into each of the children and perform exactly the same task (just as in the 
oct-tree/quad-tree case). The difference being now that as we step down to each level of the tree, we 
alternate the normal that we are going to use for the node’s split plane. In Figure 14.34 we can see that at 
the first level in the tree we used a plane normal which is equal to the X axis of the coordinate system. 
This cuts the box’s width in two.  
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In the next level of the tree we have to switch the clip plane to use one that is aligned to the Z axis of the 
system (0,0,1). That is, every node at the second level of the tree will use this same normal for its clip 
planes, as shown in Figure 14.35. 
 

Note: It does not really matter the order in which you alternate the clip planes used at each level of the 
tree, as long as you alternate between the three as you step through the levels of the tree. That is, you 
could use a plane normal equal to the world Y axis at the root, one that is equal to the world Z axis at the 
second level and one that is equal to the world X axis at the third level. As long as you repeat the 
pattern, everything will be fine and you will have a valid kD-tree.   
 

 
Figure 14.35 

 
Figure 14.35 illustrates what happens when we step into each blue child of the root. For each child we 
are passed a list of polygons that are known to fit inside this child. We then compile a bounding box for 
that child based on its list of polygons and store it in the node. A split plane is then chosen which divides 
the child volume in two. Because we have stepped down a level, we alternate the world axis we use as 
our plane normal. In this example, the center point of the box is still used to construct the plane, which 
equates to a plane that splits each child into two equally sized children. In Figure 14.35 a plane aligned 
with the XY plane (the blue plane) of the coordinate system is being used for each child node, which 
carves each of their volumes along the depth coordinate. The polygons passed into each child node are 
then classified against (and clipped to) the split plane to build two child lists for each of its children (the 
white nodes in the hierarchy diagram). 
 
In Figure 14.36 we see the construction of the next level of the tree, where the children of each child of 
the root are constructed. 
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Figure 14.36 

 
In Figure 14.36, when we step into the third level of the tree, the split plane alternates again. This time a 
plane normal aligned with the Y axis of the coordinate system is chosen. This creates a plane that carves 
each orange node in two vertically. Once again, the polygons that made it into each orange node would 
be classified against its plane to create two polygon lists for each of its children. In this diagram, we are 
assuming that when we stepped down to the fourth level of the tree, the child node’s polygon list was 
considered to be so small that it was not worth subdividing further. At this point, we create leaf nodes 
which contain the actual polygon data. A leaf node is just a node like any other, with respect to 
representing an area of space. It has a bounding volume, no children, and it has polygon or mesh data 
associated with it. 
 
We will see later that building and querying a kD-tree is even easier than both the oct-tree and the quad-
tree since we have only one plane and two children to worry about at each node and we are simply 
trying to determine in which of the two children our query volume belongs. Performing a ray 
intersection test on a kD-tree is extremely simple since we can essentially just perform a ray/plane 
intersection test at each node.  
 
Although the splitting strategy used above carves the space up in a uniform way like an oct-tree, this 
need not be the case for the kD-tree. At any given node we must always choose the correct axis aligned 
plane to split with, but that plane need not cut the volume into two equally sized child volumes. This is 
where a kD-tree generalizes the oct-tree, by allowing the world to be carved up into arbitrarily sized 
AABBs. 
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Figure 14.37 shows the same tree but with varying split 
plane positions being used for each child of a node. We can 
see that the root node (the red plane) splits its volume into 
two equal volumes as before. Both of its children split their 
volumes (the blue planes) at arbitrary positions along the 
depth of their volumes. We can also see that all the 
children at the 3rd level of the tree (the orange planes) have 
split planes at different heights from one another.  
 
A useful characteristic of the kD-tree is that it allows us to 
favor subdivision in areas of the level that are more 
densely populated with geometry while still maintaining a 
balanced tree.  
 
We now have a basic understanding of what a quad-tree, oct-tree, and kD-tree is, even if we are not yet 
intimate with the concepts behind coding each of these tree types. We are almost ready to start studying 
the implementation of our tree system, but before we do we will discuss the importance of tree balance, 
how to clip and split polygons to nodes, and explore exactly what T-junctions are and how we can repair 
them. Once done, we will be ready to start examining the code to all our tree types.  

14.6 Mesh Trees and Polygon Trees  

Whether you decide to store raw polygon data at the leaves of a spatial tree or just store whole meshes 
(or even clusters of meshes) is a decision you will have to make based on what the needs of your 
application are. Let us first have a quick discussion of the options. 

14.6.1 Polygon Trees (Clipped/Unclipped) 

If the geometry you intend to store in your tree is a totally static scene (e.g., a large static indoor level), 
then subdividing the scene at the polygon level might prove advantageous. This is especially true when 
using the tree in the broad phase of a collision system. A single leaf node will more accurately describe 
only the polygons that are contained within it, providing the ability to reject trivial data during polygon 
queries. A leaf node will contain only the polygons that are stored within the bounds of that leaf and the 
only polygons you are interested in intersection testing if the swept sphere is contained inside that leaf 
during a collision test. For rendering purposes, when a leaf is inside the frustum, the data we render 
associated with that leaf contains very few potentially non-visible polygons, even if the polygon data has 
not been clipped to the leaf nodes.  
 
Obviously, if the polygon data has been clipped to the planes of the leaf node, then a leaf node will 
always contain an exact set of polygon data that fits inside that leaf node. Building the tree at the 
polygon level is obviously much slower than at the mesh level because every individual polygon has to 
be sent down the tree until it pops out in a leaf node and is added to its polygon buffer. If clipping is 

 
Figure 14.37 
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being used then this process is slower again, and more polygons will be produced as a result. Certainly, 
the per-polygon approach is not ideal if the scene is largely dynamic because whenever geometry is 
moved, the tree will need to be rebuilt from scratch. This could potentially take an unacceptably long 
time and will not be practical to do in real-time between frame updates. If the scene is static however, 
then this is not a concern and we can benefit from the more exact fitting of the polygon dataset. 

14.6.2 Mesh Trees 

When building trees at the mesh level, tree construction is much quicker. We are no longer concerned 
with the individual polygons that a mesh is constructed from, but instead, we just use its world space 
bounding volume to determine which leaf nodes the mesh belongs in. This is extremely quick to do 
because even if a mesh contained 10,000 polygons, when traversing the tree to determine which leaf 
nodes the mesh belongs in, we are simply doing an AABB/AABB test at each node until we locate all 
the leaves the AABB intersects. The bounding volume test we perform when classifying the mesh 
against the child nodes depends on the bounding volume we are using to represent our meshes. If we are 
representing the bounds of our meshes with a bounding sphere for example, then determining whether a 
mesh intersects the bounding volume of a child node becomes a simple Sphere/AABB test. If the mesh’s 
bounding volume is represented as an AABB (as ours will be), then the mesh/node test is an 
AABB/AABB test. As you might image, this is quite a bit faster than performing a Polygon/AABB test 
for each node and for every polygon in the mesh.  
 
As an example, we might have a level constructed from 100 meshes, each containing 1000 polygons. If 
we were to compile our oct-tree or quad-tree at the polygon level, compiling the tree would mean 
traversing the tree with 100,000 polygons until they all eventually ended up being stored in their 
respective leaf nodes (perhaps with lots of clipping being performed). This is the approach we used in 
the quad-tree example earlier and as you can imagine, an awful lot of Polygon/AABB tests have to be 
performed at each node before the tree is fully compiled. If we decided instead to simply build the tree 
as a mesh tree, then all we would need to do to build the tree is send in the 100 bounding volumes of our 
meshes. It is the bounding volumes that would be classified against the nodes of the tree and would 
eventually end up in leaf nodes. In a tree used purely for the partitioning of mesh data, the leaf structure 
could contain a linked list or array of all the meshes stored in it.  
 

Note: It is common for a mesh that is large or just situated very close to the split planes to be assigned 
to multiple leaf nodes. There are strategies that exist to minimize this problem and guarantee that a 
mesh fits completely in a single node. Thatcher Ulrich’s discussion of ‘loose’ oct-trees in Game 
Programming Gems 1  (2001) would be a worthwhile read if you are interested in exploring this further.    

 
A mesh tree is ideal for entities that are constantly having their position updated in the scene. If a mesh 
moves in our scene, we can simply unhook it from the leaf nodes to which it is currently assigned and 
feed it in at the top of the tree, and traverse the tree again with its bounding volume until we find the 
new leaf nodes that its bounding volume intersects. A mesh oct-tree for example might be ideal for a 
space combat game for example, where space could be uniformly subdivided into cubes (leaf nodes) and 
as a space ship mesh moves around the game world, the tree is traversed again to find the new leaf nodes 
it is contained within. A mesh is only rendered if one of the leaves it is contained in exists inside the 
frustum; otherwise it (along with all its polygons) is rejected from the rendering pipe.  
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When performing intersection queries on the tree (e.g., testing our swept sphere against the tree) the 
polygons of a mesh only have to be individually tested for intersection if the intersection volume 
intersects the bounding volume one of the leaf nodes in which the mesh is assigned. Since an entire 
mesh might exist in many leaf nodes simultaneously, it is important that the system establish some logic 
to avoid rendering the mesh more than once or checking its polygons for intersection more than once 
during a single query. As mentioned, this can also be a problem with a polygon tree when the polygons 
have not been clipped to the nodes. However, this is a relatively smaller problem with the polygon based 
tree since it would typically be only a handful of polygons here and there that would be rendered or 
queried multiple times. This might be something we are prepared to accept since it would probably not 
impact performance by a significant amount in the typical case. For a mesh tree however, it is crucial 
that this problem be resolved. The bounding volume for an entire mesh may well span dozens of leaf 
nodes, and if all those leaf nodes were visible, we certainly would not want to render the entire mesh 
with its thousands of polygons multiple times. The same is true for polygon queries. If our swept sphere 
intersected dozens of leaf nodes which all contained the same 20,000 polygon mesh, we certainly would 
not want to perform the swept sphere/polygon intersection tests for 20,000 polygons more than once, let 
alone dozens of times. Suffice to say our game would become less than interactive at that point. 

14.6.3 Mesh Trees vs. Polygon Trees 

It is easy to be seduced by the ease with which a mesh tree can be constructed and the speed at which the 
tree can be dynamically updated when objects in the scene move. To be sure, in many cases it will 
absolutely be the right choice for the job, whether you are creating a quad-tree, oct-tree or kD-tree (or 
any other type of tree – like a sphere tree, which is also very popular for dynamic objects). Of course, 
this decision will also be based on the format of your input data. If the scene is built from a set of mesh 
objects then the mesh tree would be much easier to implement. If the scene is represented as a static 
world space polygon soup (a little like the static geometry imported from an IWF file) a polygon tree is 
probably the best bet.  
 
We do have to be aware of the disadvantages of a mesh tree however, since it may not always be a better 
choice than a polygon tree if the scene is comprised of multiple static meshes. Ease of construction and 
update speed does not always come without a cost. Whether that cost is significant depends of the 
specifics of your application. When you have dynamic objects in your scene, they absolutely have to be 
connected to the tree at the mesh level, so that they can have their positions within the tree updated in an 
efficient manner. When you have a scene represented as a static polygon soup, that will most likely fit in 
well with the polygon level subdivision techniques we have discussed. However, when the scene is 
comprised of multiple static meshes which do not need to have their positions updated, should a mesh 
tree or a polygon tree strategy be used? 
 
To understand the disadvantages of a mesh tree, let us imagine a situation where a single large mesh 
consisting of 20,000 polygons spans dozens of leaf nodes (perhaps a terrain mesh). To be sure, this is a 
worst case example, but it will help to highlight the potential disadvantages of the mesh tree at 
performing frustum culling and polygon queries. Now, let us also imagine that we have a ray that spans 
only two leaf nodes which we wish to use to query the tree. In other words, when the ray is sent down 
the tree to retrieve the closest intersecting polygon, ideally only the polygons that exist in those two leaf 
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nodes would need to be tested. With the mesh tree, the leaf nodes might contain indices or pointers to 
the mesh objects that are attached to that leaf. When a leaf is found to be relevant to a query, every 
polygon in every mesh attached to that leaf will need to be queried at the polygon level. In the case of 
our large example mesh, only a very small subset of polygons (say 100) actually reside within those two 
leaf nodes, but we have no way of knowing that with a mesh tree. We simply know that some of the 
mesh’s polygons may intersect the ray. Therefore, we would have to perform per-polygon intersection 
tests on the entire mesh (all 20,000 polygons) even though only a handful are within the space 
represented by the leaf nodes in which our ray currently resides. That certainly is not good for 
performance, and if this mesh was not dynamic, it would probably be wise for a broad phase collision 
implementation to partition this mesh at the per-polygon level.  
 

Note: The mesh itself could also be internally managed using some form of partitioning structure, even 
though it exists in a higher level scene mesh tree as single object.  

 
In the case of a polygon tree where we have not performed clipping of the polygons, things are certainly 
a whole lot better as only a very small subset of polygons of the original mesh will be assigned to those 
two leaf nodes. This might not be an exact set of polygon data that fits inside the leaf nodes because 
some polygons may only be partially inside, but as long as we test those polygons and make sure that we 
do not test a single polygon multiple times if it exists in multiple leaf nodes, we only have to query the 
polygons that are (to some extent) inside the bounding volumes represented by the leaf nodes.  
 
In the case of a polygon tree where clipping has been performed, we only ever query or render polygons 
that are completely contained within the leaf nodes that are intersected by the ray. The following 
diagram illustrates the disadvantages of using a mesh tree in such a situation where a ray/polygon query 
is being performed on the tree and the mesh is large enough to span multiple leaf nodes. 
 

 
Figure 14.38 

 
In this example we show a quad-tree as it is easier to represent on a 2D sheet of paper, but the same 
logic holds true for all trees. On the left we can see a single mesh of a cylinder consisting of our 20,000 
polygons. As you can see, it spans a large region of the overall scene and therefore, is assigned to 
multiple leaf nodes. In this particular example the mesh is partially inside every single leaf node so 
would be assigned to each. The two blue connected spheres represent the ray being used to query the 
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scene and we can see in all three examples that it only ever intersects two leaf nodes in the top left 
corner of the scene. Ideally, only the polygons of the mesh that exist in those two leaf nodes should be 
queried. In the case of the mesh tree, we would have to test all the polygons of the cylinder for 
intersection, even though we can see that only a very small number of the mesh’s polygons exist inside 
the two queried leaf nodes. If we were to render this mesh tree, the entire mesh would be transformed 
and rendered by the pipeline every single frame because the cylinder exists in every leaf node. This 
obviously means that this mesh would never be frustum culled and would always be rendered in full. 
 
The middle image shows a non-clipped polygon quad-tree.  Because the leaf nodes contain only the 
polygon data that are either inside or partially inside those nodes, only a very small portion of the mesh 
would need to be queried for collision detection with our ray. As you can see in this example, although 
the polygon data does not always exactly fit the leaf nodes (notice the overspill in the diagram) this does 
not affect the efficiency of our collision detection routines because only polygons that have some of 
their area inside the leaf nodes are tested. This would obviously be a lot quicker than querying every 
polygon in the entire mesh as was the case with the mesh tree. We can also see that during the frustum 
culling pass through the tree, most of the mesh’s polygons will be rejected and only a very small subset 
would be rendered if the camera was positioned such that only a handful of leaf nodes existed inside the 
frustum. Some of those polygons may lie partially outside the frustum and would need to be clipped by 
the pipeline, but this would be negligible to performance in the typical case.  
 
In the rightmost image we see the clipped version of the quad-tree where the leaf nodes contain only 
polygons that fit exactly inside them. If any polygon was found to be spanning multiple leaf nodes 
during tree compilation, the polygon would be clipped to those nodes and the fragments assigned to their 
relevant leaf nodes. This provides very little benefit during the polygon query phase as the same number 
of polygons would still need to be queried. The fact that those polygons have been clipped and are 
smaller has no affect on the speed of the ray/poly intersection routines. That is assuming of course that 
in the case of the non-clipped tree, provisions are made so that a polygon that spans multiple leaf nodes 
is not queried multiple times. We will use an application timer to assure that this is the case, which we 
will explain later in this lesson. 
 
It is true when looking at the clipped polygon tree that less of the scene would need to be rendered 
because only polygon data that exactly fits inside the leaf nodes would be rendered if that leaf node is 
visible. The same number of polygons would still need to be rendered in the typical case and more 
polygons in the worst case where everything is visible (because of the splitting of polygons). We can 
imagine that if a triangle spanned a leaf node during the tree building process, that polygon could be 
clipped into two fragments, a triangle and a quad. We have now created three triangles where one 
previously existed. Frankly, on today’s hardware, we would probably see little to no benefit from this 
type of tree versus the non-clipped case. In some cases, we may even see a decrease in performance due 
to the larger polygon count and increased number of DrawPrimitive calls. A clipped tree still provides 
benefits in other areas where we absolutely must know which section of a polygon lay inside a bounding 
volume, and you will see later that this is definitely the case when we create a node based polygon 
aligned BSP tree. For example, a non-clipped tree means that a single polygon may be assigned to 
multiple leaves. Thus, during a rendering pass we may render it multiple times. Sure, we can embed 
some logic that prevents a polygon that has already been rendered from being rendered again during a 
single traversal, but then this would introduce a per-polygon test. We want to render polygons in huge 
batches as quickly as possible and certainly do not want to be doing a per-polygon test to determine if 
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we should render each one. On modern hardware, it would generally be quicker just to render those 
polygons again. However, what about collision queries? 
 
If we are using a non-clipped polygon tree for our broad phase collision system then we still have this 
problem to overcome. We certainly do not want to test the same polygon in the expensive swept 
sphere/polygon test more than once. This involves the costly transformation of the polygon into eSpace 
and the various intersection routines to determine if an intersection occurs. As discussed, we will 
implement a system so that the collision system can query non-clipped polygon trees without querying a 
single polygon multiple times. 
 
So we have seen that while the mesh tree has some advantages, it certainly has disadvantages over its 
polygon based counterpart in other areas. The examples given above are somewhat extreme because if 
your meshes are of a size such that they fit inside a leaf node in their entirety, this situation will not 
arise. This situation only becomes problematic on a dramatic scale when the meshes in your scene can 
span many leaf nodes and have high polygon counts. 

Object/Object Collision Testing 

Spatial hierarchies can also speed up the collision detection between multiple dynamic objects in our 
scene. Let us imagine that we have created a space combat game and the region of space that our meshes 
will occupy has been spatially divided into uniform sized leaf nodes using an oct-tree. Our scene might 
very well have many spaceships all flying around in space, and while the polygon queries we have 
examined in this chapter show how a spatial hierarchy can be used to determine which polygons are 
intersected by rays or bounding volumes or swept spheres, what about the fact that every dynamic object 
in our scene might collide with every other dynamic object in our scene? In other words, collision 
detection does not have be performed only between our player and the static scene and any dynamic 
objects it may contain, but collisions can also be performed to make sure that the dynamic objects in our 
scene to not collide with one another.  
 
It is quite common for dynamic objects to use simplified bounding volume collision detection in a game. 
In the interests of speed, when two objects collide in our world, we are very rarely interested in which 
polygons from each mesh intersected one another. Usually we will perform collision tests between 
meshes using bounding volumes such as spheres, OBBs or AABBs. Testing collision detection between 
two bounding volumes is generally much cheaper than testing two objects at the polygon level, which 
makes it ideal for a broad phase collision step for dynamic objects. If the bounding volumes of two 
objects do intersect, then you have two choices: you can either treat this as a collision and allow the 
meshes to respond to the collision accordingly, or you can use the intersection result as a test to see 
whether the meshes should be queried at the polygon level to make sure that an actual polygon/polygon 
intersection occurred between the two objects. You will usually find that using the bounding volume 
intersection result as a test for inter-object collision will suffice. Even if the objects did not physically 
collide (i.e., their polygons did not physically touch), everything is usually happening so quickly in a 3D 
game that the player will rarely notice the difference. Of course, the success of this approach depends on 
the bounding volume being used and how tightly it fits the actual object.  
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The quickest bounding volumes to test for intersection are spheres, but these are usually the bounding 
volumes that least accurately fit the shape of the object. When using a bounding sphere around a non- 
spherical object or an object that is much longer along one of its dimensions, the player may see two 
meshes respond to a collision of their spheres, even though it was quite visible to the player that the 
objects did not actually collide. If you are simply using the result of the bounding volume test to 
progress to the more accurate per-polygon testing process, then this is not so much of an issue. In this 
case, the sphere tests act more like a broad phase for objects that cannot possibly collide and therefore 
do not need to be tested at the polygon level. 
 
A generally better fitting volume with fast intersection testing is the AABB. Therefore, one approach is 
to use an AABB for each of your objects and calculate it each time the player’s position/orientation 
changes. While this might sound extremely slow this does not involve having to compile the AABB 
from scratch by testing each of the mesh’s vertices whenever it rotates. This step only has to be 
performed when the AABB is first constructed and from that point on we can use some very quick and 
efficient math to recalculate a new AABB for the object in its new orientation. We will discuss such a 
technique later in the lesson but for now, let us assume that we are using AABBs for our dynamic 
objects for the remainder of this discussion.  
 
One of the best fit bounding volumes is the Oriented Bounding Box (OBB). It is similar to an AABB in 
that it is also a box, but it differs in that it is calculated to try to fit the general shape of the object. Rather 
than be restricted to using the primary world axes, OBBs use a system closer to object local space to 
calculate the size and orientation of the box based on the general spatial distribution of vertices in the 
model. OBBs are a very popular choice for collision systems, especially ones that only wish to respond 
to collisions between bounding volumes and not perform actual polygon collision detection (although it 
can obviously be done if desired). Testing collisions between two OBBs is a fair bit slower than 
intersection testing two spheres or AABBs, but the results are going to be more accurate since the 
bounding volume is a better fit. They can certainly be worth it when the situation calls for it. Indeed an 
OBB (or multiple OBBs arranged hierarchically) can be constructed to bound a mesh so tightly that it 
allows us to do away with Polygon/Polygon’ testing altogether in many cases and therefore greatly 
speeds up our ability to do more realistic collisions. Of course, there will still be times when the objects 
will react to a collision that did not actually happen between their physical geometry, even though their 
bounding boxes collided. However, this will likely go unnoticed by the player if the OBBs fit nicely. 
OBB construction and OBB intersection testing is fairly complicated from a mathematical perspective 
and takes more cycles to perform than simple AABB/AABB intersections. For the moment, we will hold 
off on discussing OBBs and revisit them a little later in the training series.  
 
Now, let us imagine that we have decided that our space game is going to use a mesh tree and will use 
AABB/AABB intersection testing for the collision detection of its dynamic objects. Let us also imagine 
that in our space combat game a mighty battle is taking place between 500 ships. One approach to 
dealing with their collision status might say that for every frame, we loop through all 500 meshes and 
perform an AABB/AABB intersection test with the other 499 meshes in the scene.  This seems to be a 
rather non-optimal approach since typically only a handful at most will actually be colliding. In fact, it is 
likely that most of these meshes will not even be in the same leaf nodes as any other ships and could not 
possibly collide at all. 
 



 

53 

This is where the hierarchy system can begin to show its true colors. The leaf structures in a mesh tree 
could contain a list of meshes that are inside it (or partially inside it) and depending on how much we 
subdivide our scene and the size of our final leaf nodes, there is a good chance that at most, a single leaf 
will contain only a few meshes. There is also a good chance that many leaves may contain only one 
mesh. Therefore, instead of naively testing every dynamic object against every other dynamic object, we 
could instead just test it against the mesh lists for the leaves the source mesh is contained within. For 
example, if the dynamic object structure could retrieve a list of leaves it is currently contained within, 
then we know the object could not possibly collide with anything that is not in one of those leaves. 
Therefore, we just have to access each of those leaves and test against the meshes stored in the mesh 
lists of those leaves.  
 
Although we will be implementing our mesh tree strategy in a different way, the following code snippet 
demonstrates this concept. pDynamicObject is assumed to be an object that we wish to test for collision 
against other dynamic objects that exist in the same leaves. It is assumed to contain an array (LeafArray) 
of all leaf indices it is currently assigned to. Obviously, if any of these leaves contain only one mesh 
then this must be the only mesh in that leaf so no collision can occur there and we move on to process 
the next leaf it is contained within. Otherwise, we loop through and test the mesh’s volume against every 
other mesh in the leaf using the ProcessCollision function. We might imagine how such a function 
would compare the AABBs of both meshes and perform some response if both objects collide. This is a 
very simple example using pseudo structures and functions and exists to give you a basic understanding 
of the way the information stored in a spatial hierarchy (especially a spatial tree that has the ability to 
also link dynamic objects to leaves) can be used to accelerate a multitude of processes.  
 
for ( int i = 0 ; i < pDynamicObject->LeafCount; i++ ) 
{ 
  if ( pDynamicObject->LeafArray[i].DynamicObjectCount > 1 ) 
  { 
        pLeaf = &DynamicOject->LeafArray[i]; 
     
        for ( int i = 0; i < pLeaf->DynamicObjectCount; i++ ) 
   { 
            CDynamicObject *pTestObject = pLeaf->DynamicObjects[i]; 
             
            if (pTestObject!=pDynamicObject) ProcessCollision( pDynamicObject, 
                         pTestObject ); 
  
        } // End for each object in current leaf 
    
   } // If more than one object in leaf 
 
} End for each leaf the dynamic object is currently in 

  
Using the system described above, even if you had 10,000 meshes in your scene, if none of the meshes 
shared a single leaf node, no bounding volume collision tests need to be done. That is obviously much 
quicker than just blindly testing every object with every other object for collision. How much quicker? 
Well in the 10,000 mesh case you would have to do 49,995,000 tests! This is because you are 
calculating an addition series that amounts to the following formula:  
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#tests = 
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If there are n objects, you do not test an object against itself and you only test between objects once (i.e., 
after testing A against B, there is no need to test B against A since the result is the same), thus cutting 
the number of tests in half. Even still, with a modest 50 objects in your scene, that is 1,225 tests that will 
need to be run. Granted, you will also have to weigh the cost of object insertion into the hierarchy versus 
the linear approach to determine which is more efficient for your system. However, if you are running 
the objects through the tree anyway (e.g., for their static collision testing) then you would not have to 
worry about adding overhead for traversals since that cost has already been incurred. In that case, the 
hierarchy will win out since you will only test objects that share leaves.     

14.6.4 Combining Polygon Trees and Mesh Trees 

So with the differences between the various tree types distinguished, which are we going to use in our 
lab project? Are we going to use a mesh tree, a clipped polygon tree, or a non-clipped polygon tree? 
Actually, we are going to allow our application to support all three tree types. We will have a single tree 
(such as a quad-tree for example) that compiles any static polygon/mesh data such that it is stored in the 
leaf nodes at the polygon level (polygon tree), but will also keep track of which leaves contain our 
dynamic objects (mesh tree). The basic building strategy will be as follows… 
 
First we will load the data in from an IWF file. Any static data that is loaded from the IWF file 
(GILES™ internal mesh geometry stored in world space) will be added polygon by polygon to the 
spatial tree we are currently using. Once we have added all the polygons to the tree, the tree object will 
have a big list of all the static polygons we wish to have compiled into a spatial tree. The application 
will then call the tree’s Build function which will instruct the tree to partition the space described by its 
polygon list. At the end of the build process, the space containing the polygon data will have been 
subdivided into a number of leaf nodes and each leaf will contain an array of the polygon pointers 
contained inside it. Further, we will allow the application to set a flag that instructs whether this polygon 
tree should be compiled using clipping. If not, then during the build process, a polygon will always be 
assigned to any leaf nodes it spans. If clipping is enabled, a polygon will be split if it spans leaf 
boundaries so that each leaf will only contain pointers to polygons that exactly fit within their volume. 
 
It sounds like we have basically just decided to build a polygon tree, but that is not the full story. The 
leaf nodes of the tree itself will also be allowed to store pointers to dynamic objects (in actuality, a more 
generic structure will be used so that literally anything can be stored, but the end result will be the 
same). We can simply send the bounding volume of the dynamic object down the tree and store its 
pointer in any leaf nodes it is found to be contained within. We can also add some functionality to 
retrieve a list of these objects from the leaves as needed for various purposes (collision detection, 
rendering, etc.).  
 
So we can see that our tree is basically both a mesh tree and a polygon tree although the tree will only 
directly store the static polygon data (meshes and other objects will simply be stored as pointers). In our 
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next chapter we will learn that the tree will even know how to render the polygon data. That is, in our 
main scene render function we can just call the ISpatialTree::DrawSubset function and it will only 
render the polygons contained in the leaves which are visible and have polygon data belonging to that 
subset. Since the objects can easily find out which leaves they are contained within, determining their 
visibility prior to rendering will also be quite straightforward. 
 
Although this might all sound a little complicated you will see when we examine the code that it really 
is not that bad. In prior applications we had a single rendering pool, an array of CObjects which had to 
be rendered. Now, we essentially have two pools. We have a tree to render (which will contain all the 
static polygon data) and the array of CObjects (although they are ultimately linked into the tree as well, 
in a manner of speaking). However, only dynamic objects will be stored in the scene’s CObject array 
from now on. All static geometry will be contained inside the tree and rendered/queried using the tree’s 
rendering/querying methods. The tree will know how to render its polygon data efficiently and in a 
hardware friendly manner. 
 
The tree will also expose methods such as ISpatialTree::CollectLeavesAABB. This method when passed 
an axis aligned bounding box will return a list of leaves intersected by that AABB. Functions like this 
can be called to run queries on any number of external objects to query their position within the tree 
even if the tree is not aware of their existence. Dynamic objects and terrain blocks will all use this 
function to determine whether or not the regions of space they are contained within are currently visible 
without their geometry ever having to be compiled into the tree. We could build a pure mesh tree (a 
space scene for example) by compiling an empty tree (subdividing empty space into a fixed number 
leaves) and then associate dynamic objects and terrain blocks with their leaves using this function.  
 

Note: The lab project that ships with this chapter imports its data from an IWF. The internal mesh data is 
treated as static polygon data and is compiled directly into the tree. Any external X file references will (as 
always) be treated as dynamic objects, loaded into CActors and stored in the scene’s CObject array as 
usual. However, they will still be tracked by the tree itself. If you have a static X file that you would like to 
have compiled into a tree at the polygon level, then simply import it into GILES™ and export it as an IWF 
file. The X file data will become static geometry in the IWF file. If you have dynamic X file objects that you 
would like to place in the scene then place them in GILES™ as reference entities. Our application loading 
code will then know not to compile them into the tree at the polygon level and they will be treated as 
dynamic objects.  

14.7 Areas of Interest 

Before we start to examine the code there is one more matter that we must discuss and make provisions 
for if we are to make our tree classes as useful as possible. We must allow for the spatial tree to be 
instructed to partition space where perhaps no geometry exists during the compilation process. 
 
Up until now we have discussed that during the recursive building process we will decide to stop 
subdividing nodes down a given branch of the tree if that node’s bounding volume is very small or if 
only a small number of polygons exist there. These settings are all going to be configurable, so you may 
decide that you wish to have leaves with the capacity to store 1000s of polygons or perhaps only a few 
dozen. The same is true with the minimum node size setting. You may decide that you would only like 
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to only modestly subdivide your scene and set the minimum leaf size (the size at which a node is no 
longer further partitioned) to be a rather large volume of space. Alternatively you may instead decide to 
make the tree partition space is to lots of very small leaves. The choice is yours and trial and error will 
often be as good as any deductive reasoning when deciding for a given level what you strategy should 
be. However, there is still a problem with this procedure which, if nothing was done to remedy it, would 
make our tree classes useless as mesh only trees.  
 
The problem is that the bounding boxes of the nodes (including the root node) are computed during the 
build process by finding the tightest bounding box that fits around the polygon data living in that node. 
In the case of the root node, this means that the bounding box will be calculated using the static polygon 
data that will be stored in the tree itself. We do not bother factoring the positions of any dynamic objects 
at this point for a few reasons. First, building the tree based on the positions of objects that will change 
in the very next frame makes little sense. Second, it is quite common in a game level for dynamic 
objects to be spawned on the fly in response to some game event, which means the dynamic objects 
would not even be available during the building of the tree. Finally, we have also stated that with our 
design, the tree will have no knowledge of what polygons a dynamic object contains. We will provide a 
means for determining which leaves an object is in, but those objects will manage their own polygon 
information.  
 
Of course, we do not always want our spatial tree to be as small as the static polygon data that will be 
fed in. This is definitely the case if we wanted to build an empty tree (i.e., partition empty space) and 
then use it to manage the collision querying and rendering of dynamic objects. The root node would 
have been passed no static polygon data, its bounding box would have zero volume, and it would be the 
only node in the tree because it has no polygon data and is infinitesimally small. 
 
Consider once again the creation of a space combat simulation where ships will be flying around and 
attacking each other. Imagine that there are no planetary bodies, so all we have is an area of space that 
will, at some point, contain many dynamic objects. The obvious thing to do here would be to first 
partition the empty region of space into an oct-tree, for example. Essentially, we wish to create a tree 
that will subdivide the space that the ships will be permitted to fly around in, but at build time we wish 
this tree to be empty. That is, none of the leaf nodes will contain any static polygon data. Why? Because 
in this example there is no static polygon data; we simply want to partition space for the benefit of our 
dynamic objects. Once the tree was built, each time a dynamic objects position is updated, we can feed 
its AABB into the tree (using the ISpatialTree::CollectLeavesAABB method). This method determines 
which leaf nodes contain the dynamic object and store this information internally (as well as export it to 
the caller). 
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Figure 14.39 shows how 
three dynamic objects 
might look when placed 
within the region of 
space subdivided by the 
oct-tree. Remember, the 
oct-tree itself would still 
think it was an empty 
tree as it has no polygon 
data stored at its leaf 
nodes, but it does update 
itself each frame and 
determines which leaves 
are currently inside the 
frustum and are therefore 
visible. Once the 
dynamic objects are 
introduced, it can keep track of this information internally using some generic data structures and return 
the list of visible leaves as needed, or even return the list of visible dynamic objects if desired. 
Incidentally, as Figure 14.39 also shows, there would be no need to test the dynamic objects against each 
other for collision as none of them exist in the same leaves. 
 
So we can see that we need the ability to create empty trees of a specific spatial size specifically so that 
we can control the region of space that will become part of the tree, even if that region is not described 
(or fully described) by the static polygon data from which the tree is generally built. Even if there is 
static data with which to build the tree, we might not want to simply compile only this exact region into 
the tree. We still may want the sky above a cityscape model to be partitioned and stored in the tree so 
that flying objects can enter the cityscape’s airspace and benefit from the tree as well.  
 
In the example shown in Figure 14.39 we might pass a large AABB into the tree building function 
which specifies a region of space that must become part of the tree and be spatially subdivided. We refer 
to these in our system as detail areas (or areas of interest). The tree can then continue to carve this 
space just as if there was polygon data contained in it. Only in this instance, the leaf nodes would 
contain no polygon data. 
 
Another example where this is useful is when using a scene that contains a CTerrain object. As we 
know, a CTerrain object is constructed from a series of CTerrainBlocks where each block is a separate 
mesh. As terrain blocks could be quite efficiently frustum culled by testing their bounding boxes against 
the frustum it would be wasteful to store copies of the every triangle in the terrain in a tree. We saw in 
the previous lesson how our collision system essentially avoided doing the same thing by converting the 
swept sphere’s AABB into terrain space and building only the relevant triangle data on the fly that 
needed to be tested. The same should also be true for our rendering; it would be overkill to store the 
triangle data for each terrain block in the tree when we could instead treat each terrain block as a 
dynamic/detail object. That is, we could pass the AABB of the of the terrain blocks down the tree and 
have pointers to them stored in the leaf nodes in which they belong. Only when those leaf nodes are 
visible does the terrain block render itself. 

 
Figure 14.39 
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Figure 14.40 
 
This is a good example of why we need the ability to add areas of interest (detail areas) to the tree. In 
Figure 14.40 we see a scene that contains a terrain (composed of multiple terrain blocks), a dynamic 
object in the sky above the terrain, and a small settlement made using static geometry. Because we do 
not wish to assign the terrain triangle data to the tree and we do not wish to factor in any temporary 
position of the detail object during the tree building process, the only polygons initially input to the tree 
building phase would be the static polygons labelled on the image. However, using the building strategy 
we have discussed thus far, the root node of the tree would have its bounding volume calculated only to 
be large enough to contain those static polygons. In Figure 14.41 we show that this would create an oct-
tree that actually subdivides only a small section of the overall space in the scene we wish to use. 
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Figure 14.41 

 
Now imagine that after the tree has been built, we decide to send the bounding volumes of each terrain 
block down the tree to find out in which leaf nodes they belong. We have a problem -- most of the 
terrain blocks are not even within the bounds of the root node’s volume, so they would be found to be 
outside the tree and would not be able to benefit from the tree’s various properties. The same is true 
once we place our spaceship (dynamic object) in the skies above the terrain. The detail object would 
have its AABB passed down the tree each time it is updated and we would find that it is contained in no 
leaf nodes since it is not within the area of space occupied by our partitioning scheme. This might mean 
the object does not get rendered at all (because it is technically not inside a visible leaf) or that such 
objects must be individually tested and rendered (depending on the rendering strategy you are using). 
 
Alternatively, using the same detail area example seen above, we could pass into our tree building 
function a large bounding box that encompasses not only the stone settlement but also the terrain and all 
the sky above the terrain we intend to use for our dynamic objects. This would force the root node of the 
tree to be of a size that is large enough to contain the entire scene and each level in the tree would 
further subdivide this space. 
 
If we imagine that we have done just that and that our tree building strategy is updated to calculate the 
correct size of a node’s bounding box (not only on the static polygon data in its list, but also any detail 
area AABBs that have be registered with the tree object prior to the commencement of the build 
process), we can see the results would be exactly as needed as shown in Figure 14.42. 
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Figure 14.42 
 
This really does solve all of our problems and allows us to build trees that either completely partition 
empty space or that partition space that is not necessarily fully occupied with static input polygon data.  
 
Of course, this does not mean that we are restricted to passing only a single AABB as an area of interest. 
We might pass in multiple areas of interest at different positions in the level identifying areas where 
nodes should be partitioned even if no polygon data currently exists there. During the building process 
the condition used to determine whether a given node should be made a leaf node is now either of the 
following: 
 

1. The bounding volume of the node is sufficiently small. 
2. The bounding volume contains a small amount of polygon data and no area of detail. 

 
The second condition (polygon count) has subtly changed, but it is an important one. Before we said that 
we would make a node a leaf if the number of polygons in that node’s list is below a certain threshold 
amount. But now, even if there are no polygons in the node, but there is a detail area intersecting that 
node and the node has not been subdivided down to our minimum leaf size, we will continue to 
subdivide. This means that not only do these detail areas allow us to include space in the tree that is 
outside the region described by the static polygon set, but they also allow us to specify areas at any point 
in the level where we would want the space to be more finely partitioned down to the minimum leaf 
size.  
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It will be easy to add these areas of interest to our tree system. Our tree classes will expose a function 
called AddDetailArea which allows the application to register any bounding volumes with the tree as 
areas of interest. These areas must be registered prior to the Build function being called so that the 
construction of the tree can them in to its computations when determining the bounding boxes of each 
node and figuring out whether or not a node should be further subdivided. Further, we will also provide 
the ability to register a context pointer with the detail area which can point to application specific data. 
This could, for example, point to a terrain block that needs to be rendered or a sound that should be 
played whenever the player is in that leaf (or if that leaf is visible). Although we will actually have no 
need to use this context pointer in our first implementation, it is handy to have around and is something 
we will undoubtedly find useful moving forward.  

14.8 Tree Balance 

Before we begin to code, we must be aware of the implications of creating a wildly unbalanced tree. A 
perfectly balanced tree is a tree where all leaf nodes exist at exactly the same level in the hierarchy. 
Although it is rarely possible to achieve a perfectly balanced tree (while not subdividing empty space 
and introducing unnecessary nodes) it is something we wish to strive for as much as possible in many 
cases because it allows us to keep tree traversal times consistent during queries. The last thing we want 
is one part of our tree to be many levels deep and another section of the tree to be only a few levels deep. 
This will cause inconsistent frame rates when querying the deepest parts of the tree. Figure 14.43 shows 
an unbalanced quad-tree.   

 
Figure 14.43 : Unbalanced Quad-tree 

 
In this example we can see that only two of the four children of the root node have geometry to 
subdivide and as such, nodes TR and BL (which have no geometry passed to them) become empty leaf 
nodes (terminal nodes). However, the polygon data passed into the TL and BR children of the root do 
have geometry that falls within their bounds, so their volumes are further divided. Although this is a 
simple and small example, we can see that queries would take longer to perform in the top left and 
bottom right quadrants of the scene than in the top right and bottom left quadrants. That is, we would 
reach the terminal nodes quicker for the top right and bottom left quadrants. The difference in query 
times in the real world is much greater when we deal with trees that are many levels deep. It is better to 
have a scene that can be rendered/queried at a consistent 60 frames per second than it is to have a scene 
where the frame rate runs at 150 frames per second in some areas and at 10 frames per second in others. 
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This is a somewhat drastic example but the point is that the application will benefit from smoother 
physics, collision response, and general movement if the frame rate can stay relatively consistent 
throughout.   
 
If we imagine that we had the ability in the quad-tree to slide the clip planes to arbitrary positions at 
each level, we might imagine that we could end up reducing this to a two level tree where all four 
children of the root (2nd level) has mesh/polygon data of its own. This is essentially what can be 
achieved using a kD-tree -- choosing a split plane at any given node that is positioned such that it splits 
any remaining geometry into exactly two pieces, even if all that geometry is located on one side of the 
parent nodes volume.  
 

Note: One possible method for choosing a split plane is to divide the polygon data into two equal sets at a 
given node. If splitting along the X axis at a given node for example, we could sort all the vertex data by 
their X component and then build a plane that passes through the median vertex.  

 
kD-trees are generally much deeper trees than oct-trees if you intend to get the same level of spatial 
partitioning because they only divide space into two spaces at each node, so we will usually have to 
traverse deeper into a kD-tree. However, each level in the tree has fewer child nodes assigned to it than 
its equivalent level in an oct-tree, so traversal is cheaper at each level. In the above example, we see a 
quad-tree that has four nodes on its second level and eight nodes on its third level. The kD-tree on the 
other hand would have only two nodes on its second level and four nodes on its third level. Therefore, 
the deeper tree traversal required in the kD-tree case is offset by the speed at which the kD-tree can 
traverse its tree (to some extent). For example, we may find when testing a bounding volume against the 
split plane stored in the root that the query volume is contained in the front halfspace of the clip plane. 
With one plane/volume test we have just rejected half of the entire scene. In an oct-tree, each 
AABB/AABB test we perform will reject only 1/8th of the parent node’s volume. 
 
Choosing a split plane at a kD-tree node is not simply about finding the plane that best balances the tree 
since we sometimes have other considerations (perhaps more important ones) that we wish to factor in. 
For example, a common goal when choosing a split plane is to find one that produces the least number 
of polygons that will have to be split (if we are building a clipped tree) in order to fit into the child 
nodes. Every time we split a polygon into two pieces we increase the polygon count of our scene and 
this could grow significantly if split planes are being chosen arbitrarily. Furthermore, clipping polygons 
arbitrarily also often introduces a nasty visual artifact called a T-junction in the polygon data. We will 
discuss T-junctions later, but for now just know that due to the rounding errors accumulated in the 
rendering pipeline, two polygons that are neighbors (i.e., they look like one polygon), but that do not 
have their vertices in identical places along the shared edge, can produce a sparkling effect. Essentially, 
because their vertices are not in identical places, there are sub-pixel gaps produced during rendering. 
This results in odd pixels between the two polygons (along the seam) that do not get rendered and 
anything rendered behind it can show through. You have probably seen this artifact in some video 
games -- it is commonly referred to as sparkling. T-junctions also wreak havoc with vertex lighting 
schemes as we will find out later. 
 
T-junctions often occur whenever a great deal of polygon clipping is employed on a scene, so these 
artifacts can manifest themselves with all the tree types we have discussed thus far (or indeed with any 
clipping process). However, when we are using uniform partitioning (such as with the quad-tree or oct-
tree) we generally create many fewer T-junctions in our geometry (this will make sense later when we 
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cover T-junction repair). When using a kD-tree that is allowed to arbitrarily position its split plane, T-
junctions artefacts are common. Although T-junctions can be repaired after the tree has been compiled 
(we will cover how to do this later in the lesson) the repair of a single T-junction introduces an 
additional triangle into the scene. Therefore, in the case of a kD-tree that is using non-uniform split 
planes, hundreds or maybe thousands of T-junctions could be produced by the tree building process. The 
repair of these T-junctions would introduce hundreds or thousands of additional triangles in our scene, 
which is far from ideal. The existence of T-junctions are only a concern if the polygon data contained in 
the tree is intended to be collected and rendered. If the tree polygon data is only being used for collision 
queries, we can typically leave the T-junctions alone since they will not affect our collision queries.  
 
Because our tree class will also be used as a render tree in addition to a collision query tree, we will 
force our kD-tree to always split into two equally sized child volumes at any given node. This will 
hopefully reduce the number of T-junctions produced during the building of the tree and keep our 
polygon count from growing too large during the T-junction repair.  
 

Note: Do not worry too much about what T-junctions are for now as they will be discussed over the next 
few sections. They are only mentioned now as a justification for why our kD-tree implementation will 
always use a split plane at each node which partitions the node’s volume into two uniformly sized children. 

 
So the balance of a tree is important but as noted, it is not our only goal when compiling our trees. Often 
trial and error will produce the best results and this is where benchmarking your code is very important. 
You may find for example that using an arbitrary split plane at a kD-tree node creates a more balanced 
tree at the cost of many triangles being inserted into the scene to repair the T-junctions produced. This 
increase in polygons could create a consistently deeper tree and undo much of what you were trying to 
achieve by balancing the tree in the first place.  
 
We have now discussed the theory behind the oct-tree, the quad-tree, and the kD-tree and we are ready 
to start looking at the code to both the tree building processes as well as the support structures, routines, 
and intersection queries that will need to be implemented. We will delay our discussion of the BSP tree 
until Chapter 16, after we have stepped through the source code needed to build the three tree types we 
have already discussed. We will also discuss some of the core mathematical routines we will need to run 
queries on our tree. The BSP tree, although constructed in a similar way, ultimately exhibits very 
different characteristics due to the fact that it divides space arbitrarily. The application of a BSP tree is 
often done to achieve a different goal than just spatial subdivision as we will see later in the course.  
 
In the remainder of this textbook, we will cover all the code that builds the quad-tree, oct-tree, and kD-
tree. Ultimately we will integrate them into our collision system as a broad phase suite. Building a tree 
rendering system that is hardware friendly is rather complex and will be discussed in its own chapter. 
Lab Project 14.1 uses the rendering system that will be discussed in the following lesson, so you should 
probably ignore most of the tree rendering code for now.  
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14.9 Polygon Clipping 

Several times throughout this chapter we have mentioned that our system will have the optional ability 
to create clipped trees. That is, trees that are constructed such that the polygon data stored in each leaf 
fits completely in its volume. This means that the tree building process will involve a good amount of 
clipping of the original polygon data to the split planes that subdivide the node into its children. This 
section will discuss the process of clipping polygons.  
 
If you have never implemented code that clips a polygon to a plane, you will probably be pleased to 
learn how simple it actually is. The basic process is one of stepping around each edge of the polygon and 
classifying its vertices against the plane in order to build two vertex lists that will describe the front and 
back split polygons (i.e., the polygon fragments that lay on each side of the plane). If the current vertex 
being processed is in front of the plane and the following vertex is also in front of (or on) the plane, then 
the current vertex belongs in the front split polygon and is added to its vertex list. Likewise, if the 
current vertex being processed is behind the plane and the next vertex in the list is also either behind or 
on the plane, then the current vertex being processed is added to the vertex list of the back split polygon.  
 
If however, the current vertex being processed and the next vertex in the list are on opposing sides of the 
plane, then we have found an edge in the original polygon where an intersection occurs with the plane.  
In this instance we use the two vertices in the edge to create a ray and perform a Ray/Plane intersection 
test with the split plane. The result of this intersection test will be the position on the plane at which the 
ray intersects it. The vertex in the edge that was in front of the plane is added to the front split polygon 
and the other vertex in the edge located on the back side of the plane is added to the back split polygon. 
The intersection point where the ray intersected the plane is made into a new vertex and is added to both 
the front split and the back split polygons.  
 
After having done this for every vertex/edge in the original polygon, will have two new polygons and 
the original polygon can be discarded. Obviously, if you do not intend to the split the polygon into two 
fragments, but are instead interested only in clipping polygons to a plane, you can simply discard the 
vertices on the half space of the plane that you are clipping away and return only a single polygon. Thus, 
a polygon splitting function could easily double as a polygon clipping function by simply being 
instructed to discard any vertices located in a certain plane halfspace. We do a similar thing in our 
polygon clipping function. The function will accept as parameters the original polygon that is to be 
split/clipped and will also be passed pointers to two polygons that, on function return, will be filled with 
the front split and back split polygons. Passing NULL as one of these parameters will turn the splitter 
function into a clipper function. If you pass NULL as the parameter where you would normally pass a 
pointer to a polygon that will receive the back split data, the function will recognize that you have no 
interest in the vertex data that is behind the plane and simply clip the polygon to the plane and return 
only the section of the polygon that is in the plane’s front halfspace. 
 
Figure 14.44 shows how a pentagonal polygon would be split into two by an arbitrary split plane. 
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Let us step through this example 
using the technique described above. 
The original polygon has five 
vertices labelled v1 – v5 as shown. 
The plane can be seen as the red line 
in the diagram clearly carving the 
polygon into two parts. We would 
set up a loop starting at the first 
vertex v1. We would classify this 
point against the plane and discover 
it is in the back space of the plane. If 
v2 is also in the plane’s back space, 
then a new polygon structure is 
allocated for the back split and v1 is 

added to its vertex list.  
 
In the next loop iteration we check vertex v2 which is also in the plane’s back space. If v3 is also in the 
plane’s back space, then v2 would be added to the back split polygon also. However in this case we can 
see that v3 is actually in the plane’s front space so we know for sure that the polygon edge (v2,v3) 
intersects the plane. Therefore, we create a ray from v2 to v3 and perform a ray/plane intersection test. 
This will return the position at which the ray intersects the plane, shown as N2 in the diagram. We add 
v2 and N2 to the vertex list of the back split polygon and add the vertex N2 to the vertex list of the front 
split polygon as well.  The back split polygon now has vertices v1,v2, and N2 in its vertex list and the 
front split polygon so far has a single vertex, N2.  
 
Next we test vertex v3 and find it is in the plane’s front space. Because v4 is also in the front space, v3 
is added to the vertex list of the front split polygon so that now it contains two vertices, N2 and v3. Next 
we test vertex v4 which is in the plane’s front space also. v4 is added to the front split polygon’s vertex 
list because the next vertex v5 is also in front of the plane. The front split polygon now has vertices n2, 
v3, and v4 in its vertex list.  
 
Finally, in the last iteration of the loop we classify vertex v5 against the plane and discover it is in the 
plane’s front space. However, vertex v5 is the last vertex in the original polygon and it forms an edge 
with the first vertex v1, so we must test that this edge does not span the plane. We discover that v1 is in 
the back space of the plane and therefore the edge (v5 ,v0) does indeed span the plane. Thus, we create a 
ray from v5 to v1 and perform a ray/plane intersection calculation to return to us the intersection point 
N1 where the ray intersects the plane. v5 and N1 are added to the front split polygon and N1 is also 
added to the back split polygon and we are done. In this example, the front split polygon would have 
vertices N2, v3, v4, v5, and N1. The back split polygon would have vertices v1, v2, N1, and N2. We 
now have two polygons with a clockwise winding order which can be returned from our polygon 
splitting function. At this point, the original polygon can be discarded. 
 
 
 
 
 

 
Figure 14.44 
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14.10 Implementing Hierarchical Spatial Partitioning  

In order to split and clip polygons, certain utility functions will be added to our CCollision class as static 
methods. We will add methods to help our clipping routines as well as new bounding volume 
intersection methods that will be used by the tree during traversals. The CCollision class has very much 
become our core library of intersection and plane classification routines. 
 
When discussing the process of polygon splitting in the last section it became apparent that much of the 
process involves the classification of each vertex in the source polygon against the split plane. This is so 
we can determine whether a given vertex belongs to the front split or the back split fragment. Although 
we have discussed several times in past lessons how the classification of a point against a plane is a 
simple dot product and an addition in order to compute the plane equation, we have wrapped this 
operation in a method called PointClassifyPlane in our CCollision object. Instead of just returning the 
result of the dot product, the function returns one of four possible members of the CLASSIFYTYPE 
enumerator shown below (defined in the CCollision namespace): 
 
Excerpt from CCollision.h 
// Enumerators 
enum CLASSIFYTYPE { CLASSIFY_ONPLANE = 0,  
                    CLASSIFY_BEHIND = 1,  
                    CLASSIFY_INFRONT = 2,  
                    CLASSIFY_SPANNING = 3 }; 
 
As you can see, it is much nicer during our building routines to get back a result that clearly is behind, in 
front, on plane, or spanning the plane rather than us having to determine this ourselves using the sign of 
the dot product result. The PointClassifyPlane function will only ever return either 
CLASSIFY_ONPLANE, CLASSIFY_BEHIND or CLASSIFY_INFRONT as it is impossible for a 
single point in space to be spanning a plane. However, the CLASSIFY_SPANNING member will be 
returned by other classification functions that we will discuss shortly. Let us now look at this new 
function (which is really just a dot product wrapper). 

14.10.1 PointClassifyPlane – CCollision (static) 

The PointClassifyPlane method accepts three parameters. The first is the vector describing the point we 
would like to classify with respect to the plane, the second is the normal of the plane, and the third is the 
distance to the plane from the coordinate system origin. The function then evaluates the plane equation 
by performing the dot product between the point and the plane normal (two 3D vectors) and then adding 
the resulting distance. This is obviously equivalent to performing AX+BY+CZ+D where ABC is the 
plane normal, D is the plane distance, and XYZ is the point being classified. The result of the plane 
equation is stored in the local variable fDistance.  
 
CCollision::CLASSIFYTYPE CCollision::PointClassifyPlane 
                         ( const D3DXVECTOR3& Point, 
                           const D3DXVECTOR3 &PlaneNormal,  
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                           float PlaneDistance ) 
{ 
    // Calculate distance from plane 
    float fDistance = D3DXVec3Dot( &Point, &PlaneNormal ) + PlaneDistance; 
 
    // Retrieve classification 
    CLASSIFYTYPE Location = CLASSIFY_ONPLANE; 
    if ( fDistance < -1e-3f ) Location = CLASSIFY_BEHIND; 
    if ( fDistance >  1e-3f ) Location = CLASSIFY_INFRONT; 
 
    // Return the classification 
    return Location; 
} 
 
Be default we assume that the point is on the plane by setting the local Location variable to 
CLASSIFY_ONPLANE and then go on to test the sign of the result of the plane equation. If fDistance is 
less than zero (with tolerance) then the point is behind the plane. If fDistance is greater than zero then 
the point is in the plane’s front halfspace. At the bottom of the function the local Location variable will 
contain either CLASSIFY_ONPLANE, CLASSIFY_BEHIND or CLASSIFY_INFRONT which is then 
returned to the caller.  
 
The above function will be used by our polygon splitting routine, but the following routine will be used 
by the core tree building functions to determine if a given polygon needs to be split. It is this next 
routine that can be used to determine whether a given polygon is in front or behind a plane, lying on the 
plane, or spanning the plane. In the spanning case we know we have a polygon that has vertices on both 
sides of the plane, which tells us the polygon needs to be split.  

14.10.2 PolyClassifyPlane – CCollision (static) 

This is another very useful function that you will likely find yourself using many times as you progress 
in your 3D programming career. For this reason, we have not built it into the tree code, but have added it 
to our collision library where we can continue to use it in the future without any dependency on anything 
else. Remember, these static members always exist even when an instance of the CCollision object does 
not. Thus CCollision represents a handy collection of intersection routines that can be used by the 
application even if the application is not using the actual collision system. 
 
This function has a fairly simple task in that it is really just performing the test described in the above 
function for each vertex in the passed polygon. That is, we classify each point in the polygon against the 
plane and keep a record of how many points were found behind the plane, in front of the plane, and on 
the plane. After testing each vertex we can then examine these results to get our final outcome. For 
example, if the number of vertices found in front of the plane is equal to the vertex count of the polygon, 
then it must mean the entire polygon is in front of the plane. Likewise, if the number of vertices found 
behind the plane is equal to the vertex count of the passed polygon then the entire polygon must lay 
behind the plane. If all points lay on the plane then the polygon is obviously on the plane and we return 
that result. Finally, we know that if none of the above conditions are true then it must mean some 
vertices were behind the plane and some were in front of it and therefore, we return 
CLASSIFY_SPANNING. 
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Although our spatial trees will all store their static polygon data at the leaves of the tree in CPolygon 
structures (something we will look at in a moment) we really do not want any generic and potentially 
reusable routine that we add to our collision namespace to be so reliant on external structures. For 
example, in a future lab project we might not store our polygon data in a CPolygon object, or we may 
change the format of its internal vertices, which would mean in either case that we would not be able to 
use this function. Therefore, we have kept this function as generic as possible by allowing the 
application to pass the vertex data of the polygon being classified as three parameters.  
 
The first parameter is a void pointer which should point to an array of vertices which define the polygon. 
This is a void pointer so that it can be used to point to any arbitrary array of vertex components. For 
example, this could be a pointer into a locked system memory vertex buffer or the vertex array of a 
CPolygon structure. As this function is only interested in the positional data of each vertex and has no 
interest in other vertex components, we could also just pass an array of 3D position vectors. The second 
parameter is the number of vertices in this array so that the function knows how many vertices it has to 
test. The third parameter is a stride value describing the size of each vertex in the array (in bytes). 
Remember, this function has no idea how many vertex components you have in your structure, so it has 
no idea how large each one is and how many bytes a pointer must be advanced to point to the next 
vertex in the array. Passing a stride value solves this problem and allows the function to step from vertex 
to vertex in the array without caring about what other data follows the positional data.  As the fourth and 
fifth parameters we pass the normal and the distance of the plane which we wish to classify the polygon 
against. Below we present the complete code listing to the function, which you should be able to 
understand with very little explanation. 
 
CCollision::CLASSIFYTYPE CCollision::PolyClassifyPlane(  
                                                  void *pVertices, 
                                                  ULONG VertexCount,  
                                                  ULONG Stride,  
                                                  const D3DXVECTOR3& PlaneNormal, 
                                                  float PlaneDistance ) 
{ 
    ULONG   Infront  = 0, Behind = 0, OnPlane=0, i; 
    UCHAR   Location = 0; 
    float Result   = 0; 
    UCHAR  *pBuffer  = (UCHAR*)pVertices; 
 
    // Loop round each vector 
    for ( i = 0; i < VertexCount; ++i ) 
    { 
        // Calculate distance from plane 
        float fDistance = D3DXVec3Dot((D3DXVECTOR3*)pBuffer,  
                                       &PlaneNormal ) + PlaneDistance; 
        pBuffer += Stride; 
 
        // Retrieve classification 
        Location = CLASSIFY_ONPLANE; 
        if ( fDistance < -1e-3f ) Location = CLASSIFY_BEHIND; 
        if ( fDistance >  1e-3f ) Location = CLASSIFY_INFRONT; 
 
        // Check the position 
        if (Location == CLASSIFY_INFRONT ) 
            Infront++; 
        else if (Location == CLASSIFY_BEHIND ) 



 

69 

            Behind++; 
        else 
        { 
            OnPlane++; 
            Infront++; 
            Behind++; 
 
        } // End if on plane 
 
    } // Next Vertex 
 
    // Return Result 
    if ( OnPlane == VertexCount ) return CLASSIFY_ONPLANE;     // On Plane 
    if ( Behind  == VertexCount ) return CLASSIFY_BEHIND;      // Behind 
    if ( Infront == VertexCount ) return CLASSIFY_INFRONT;     // In Front 
    return CLASSIFY_SPANNING; // Spanning 
} 
 
In the above code we first cast the void pointer to a byte pointer so that the stride value will describe 
exactly how much we need to increment this pointer to step to the next vertex. We then set up a loop to 
loop through each vertex of the polygon. For each vertex we compute the plane equation for that vertex 
and the plane and store the result in fDistance. We then increment the vertex pointer by the stride value 
so that it is pointing at the next vertex in the array. Next we test the value of fDistance and set the value 
of Location to either CLASSIFY_ONPLANE, CLASSIFY_INFRONT or CLASSIFY_BEHIND 
depending on the result. Then we test the value of the Location variable and increment the relative 
counter. For example, if the vertex is behind the plane, then we increment the Behind counter. If it is in 
front of the plane we increment the InFront counter. Otherwise it means the vertex is on the plane and 
we increment the OnPlane, InFront, and Behind counters. It is very important that in the on plane case 
we also increment the InFront and Behind counters because these counters are trying to record how 
many vertices would exist in a front split and back split polygon were we actually creating one. 
Obviously, if a point is on the plane, it could belong to either a front split or a back split polygon. Using 
this strategy allows us to perform simple tests at the bottom of the function to determine if the polygon 
is considered in front or behind the plane. Remember, a polygon may still be considered to be behind a 
plane even if some of its vertices are touching the plane. 
 
At the bottom of the main for loop we can see that we have stored the values of how many vertices to be 
found in each condition in the OnPlane, Behind and InFront local variables. If the OnPlane value is 
equal to the vertex count for example, then we know the polygon is completely on the plane. If the 
vertex count is equal to the number vertices found to be in front or behind the plane then it must mean 
the polygon lay in front or behind the plane, respectively. Finally, if none of these cases are true we 
return CLASSIFY_SPANNING since there were obviously vertices found in both plane halfspaces. 

 
 
 
 
 



 

70 

14.10.3 CPolygon – Our Static Geometry Container  

Earlier we noted that our spatial tree objects will store static polygon data in the leaves of the tree. 
Therefore, we need a data structure that we can use to pass this data into our tree (prior to the build 
process being called). This same structure will also be used once the tree is compiled to store the 
polygon data at the leaf nodes. The object we use for this is defined in CObject.h and CObject.cpp and is 
called CPolygon.  
 
CPolygon is a simple class that essentially just contains a list of CVertex structures and has two methods 
that allow us to add vertices to its list or insert vertices in the middle of its list. We will not be showing 
the code to these functions as they are simple array resize and manipulation functions the likes of which 
we have seen many times before. However, this object also has a method called Split which allows us to 
pass in a plane and it will clip/split the polygon to that plane. The CPolygon object’s vertex array is not 
altered by this process as this function allocates and returns two new CPolygon objects containing the 
front and back split fragments. After calling this function and retrieving the two split polygon fragments 
the caller will usually delete the original polygon as it is probably no longer needed. Below we show the 
class declaration in CObject.h. 
 
class CPolygon 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
             CPolygon(); 
    virtual ~CPolygon(); 
 
    // Public Functions for This Class 
    long            AddVertex           ( USHORT Count = 1 ); 
    long            InsertVertex        ( USHORT nVertexPos ); 
    bool            Split               ( const D3DXPLANE& Plane,  
                                          CPolygon ** FrontSplit = NULL,  
                                          CPolygon ** BackSplit = NULL,  
                                          bool bReturnNoSplit = false ) const; 
 
    // Public Variables for This Class 
    ULONG       m_nAttribID;            // Attribute ID of face 
    D3DXVECTOR3 m_vecNormal;            // The face normal. 
    USHORT      m_nVertexCount;         // Number of vertices stored. 
    CVertex    *m_pVertex;              // Simple vertex array 
    D3DXVECTOR3 m_vecBoundsMin;    // Minimum bounding box extents of this polygon 
    D3DXVECTOR3 m_vecBoundsMax;    // Maximum bounding box extents of this polygon 
    ULONG       m_nAppCounter;     // Automatic 'Already Processed' functionality 
    BOOL        m_bVisible;        // Should it be rendered 
}; 
 
When our application loads static geometry from an IWF file (inside CScene::ProcessMeshes) we will 
store each face we load in a new CPolygon object and pass it to the spatial tree for storage. After the 
spatial tree’s Build function has been called, the tree will contain a number of leaf structures, each 
containing an array of the CPolygon pointers that exist in that leaf. A CPolygon structure will contain a 
convex clockwise winding N-gon which means a single polygon may represent multiple triangles. 
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The member variables are fairly self-explanatory but we will briefly explain them here since some new 
ones have been added since the introduction of this class in some of our Module I lab projects. 
 
ULONG       m_nAttribID            
Each polygon will store an attribute ID that has some meaning to our application (e.g., which textures 
and materials will need to be set when this polygon is rendered). Therefore, when we create a CPolygon 
object during the loading of an IWF file, we will store the global subset ID of the polygon in this 
member. As with our previous lab projects, this will actually be an index into the scene’s attribute array 
where each element in that array describes the texture and material that should be bound to the device 
prior to rendering this polygon. Although we will not discuss our rendering strategy until the next 
lesson, this member is used by the tree so that it can render all polygons from all visible leaves together 
so that efficient batch rendering is maintained. 
 
D3DXVECTOR3 m_vecNormal             
This member will contain the normal of the polygon. 
 
USHORT      m_nVertexCount          
This member contains the number of vertices currently stored in this polygon and contained in the 
m_pVertex array described next. 
 
CVertex    *m_pVertex              
This is a pointer to the polygon’s vertex array. Each element in this array is the now familiar CVertex  
object, which contains the positional data of the vertex, its normal, and its texture coordinates.  
 
D3DXVECTOR3 m_vecBoundsMin     
D3DXVECTOR3 m_vecBoundsMax     
In these two members we will store the world space axis aligned bounding box of the polygon. That is, 
each polygon in our spatial tree will contain an AABB that will be used to speed up collision testing 
against the spatial tree’s geometry database.  
 
Our collision system will now store its static geometry in a spatial tree instead of just in a polygon array. 
When collision queries are performed, the collision system will ask the spatial tree for a list of all the 
leaves that the swept sphere’s AABB intersects (broad phase). Once the collision system is returned a 
list of leaves that contain the potential colliders, we could just collect the polygons from each returned 
leaf and send them to the narrow phase process. However, the actual intersection tests performed 
between the swept sphere and the polygon are very expensive, and even though we have rejected a large 
number of polygons by only fetching polygon data from the leaves that intersect the swept sphere 
AABB, many of the polygons contained in these leaves may be positioned well outside this AABB. 
Therefore, once we have the list of leaves which the swept sphere’s AABB intersects, we will loop 
through each polygon in those leaves and test its bounding box against the bounding box of the swept 
sphere. This way we avoid transforming polygons into eSpace and performing the full spectrum of 
intersection tests on it when we can quickly tell beforehand that the polygon and the sphere could not 
possibly intersect because their AABBs do not intersect. Although this might sound like a small 
optimization to the broad phase which would hardly seem worth the memory taken up by storing an 
AABB in each polygon, the speed improvements to the broad phase on our test machines were very 
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dramatic. Using the spatial tree and this additional broad phase step in our collision system, queries on 
large scenes increased in performance by a significant amount. 
 

Note: We tested our collision system using a fairly large level Quake III™ level (on a relatively low end 
machine) prior to adding the broad phase. Due to the fact that the collision system had to query the entire 
scene each frame at the polygon level, a collision query was taking somewhere in the region of 10 to 12 
seconds. With the spatial tree added, the time was reduced to a few milliseconds, allowing us to achieve 
interactive frame rates well above 60 frames per second. What a difference, 60 frames per second versus 1 
frame every 12 seconds. Even on a simple level such as colony5.iwf, frame rate jumped from 30 frames per 
second to over 300 frames per second with the introduction of the broad phase. Proof for sure that the 
broad phase component of any collision system is vitally important. Also proof that hierarchical spatial 
partitioning is an efficient way to get access to only the areas of the scene you are interested in for a given 
query.   

 
 
ULONG       m_nAppCounter     
This member is used to avoid testing a polygon for collision multiple times if a non-clipped spatial tree 
is being used. As we know, if a non-clipped tree is constructed, a single polygon may span multiple 
leaves. This means its CPolygon pointer will be stored in the polygon array of multiple leaf structures. 
When the collision system fetches the list of intersecting leaves from the spatial tree it has to make sure 
that if a polygon exists in multiple leaves it is not tested twice. 
 
To get around this problem we decide to add an application counter member variable to our CGameApp 
class. This is a simple DWORD value that can be incremented via the 
CGameApp::IncrementAppCounter method and retrieved via the CGameApp::GetAppCounter. In other 
words, this is a simple value that can be increment by external components. 
 
Our collision system uses the app timer in the following way:  Prior to a collision test, the app counter is 
incremented and then fetched so that we now have a new unique counter value for this update. When we 
fetch the intersecting leaves from the spatial tree and find a polygon that needs to be tested at the narrow 
phase level, we will store the app counter value in this member of the CPolygon. If a little later, when 
testing the polygons from another leaf, we find that we are about to test a polygon that has an 
m_nAppCounter value which is equal to the current value of the CGameApp’s application counter, it 
must mean that this polygon has already been processed in this update because it belonged in a leaf that 
we have previously tested. Therefore, we do not need to test it again. 
 
This is a much nicer and more efficient solution than simply storing a ‘HasBeenTested’ boolean in the 
polygon structure because this would involve us having to reset them all back to false prior to 
performing another collision test. We would certainly not want to have to do that for every polygon in 
the scene. By storing the application counter in the polygon, as soon as we wish to perform another 
query, we can just increment the application timer which will immediately invalidate all the polygons 
because their m_nAppCounter variables will no longer match the current value of the application 
counter.  
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bool m_bVisible 
We will see this member of the polygon structure being used in the following lesson when we 
implement the rendering system. Essentially, it allows us to flag a polygon as being invisible when 
added to the tree. This is useful if we wish to add a polygon to the collision system but would not like to 
have it rendered The collision system will ignore this member and will test the swept sphere against any 
polygons in its vicinity. The rendering system however (which will use the same tree) will only render a 
polygon if it has this boolean set to true. This boolean is set to true by default in the CPolygon 
constructor.   

Split - CPolygon 

The only method of CPolygon that we have to discuss is an important one since it is the key to creating a 
clipped tree. The CPolygon::Split method implements the splitting strategy discussed in the last section. 
Unfortunately, the code may at first seem a little confusing due to two reasons. First, we want the 
function to also double as a clipper, so there are several conditional blocks in the code that only get 
executed if the caller has requested that it is interested in getting back the relevant split fragment. For 
example, if the caller passes NULL as the FrontSplit parameter the function will discard any portion of 
the polygon that lies in front of the plane and will only return the back split fragment. Second, the 
function is ordered in a way that means we only allocate the memory for the new polygon data when we 
know we actually need it.  
 
We have also added a fourth parameter to this function, which is a boolean that allows us to specify 
what should happen when the passed plane does not intersect the polygon. When this boolean is set to 
false, the polygon data will always be created and returned in either the front or back split. That is, if the 
polygon is completely in front of the passed plane, a new front split polygon will be returned which 
contains a copy of all the data from the original polygon. This way we will always get back either a front 
split polygon or a back split polygon even if the polygon is not spanning the plane. Although this might 
sound like a strange way for the function to behave, it can be useful during a recursive clipping process 
to always assume that the original polygon is no longer needed after its Split method has been called. 
However, it is also often the case that if the polygon does not span the passed plane, then you do not 
want any front split or back split polygon created and would rather just continue to work with the 
original polygon. This is what the final parameter to this function is for. If set to true, it will only return 
front split and back split polygons if the original polygon is spanning the plane. If not, it will just return 
immediately and essentially will have done nothing. If set to false, it will always return a polygon in 
either the front or back split polygons even if the polygon was completely in front or completely behind 
the plane. In other words, the function will always create a new polygon in this instance allowing you to 
discard the original one.   
 
Let us have a look at the code to this function a section at a time. There are four parameters. The first is 
the clip/split plane and it is expected in the form of a D3DXPLANE structure which describes the plane 
in AX+BY+CZ+D format. The second and third parameters are the addresses of CPolygon pointers 
which on function return will point to the new front and/or back polygon fragments. The caller does not 
have to allocate the CPolygon objects to contain the front and back splits, it simply has to pass the 
address of two CPolygon pointers. The Split function will allocate the CPolygon objects and assign the 
pointers you pass to point at them, so the caller can access them on function return. The fourth parameter 



 

74 

is the boolean parameter describing whether the function should only create new polygons if the 
polygon is spanning the plane or whether it should do nothing. 
 
bool CPolygon::Split( const D3DXPLANE& Plane,  
                      CPolygon ** FrontSplit,  
                      CPolygon ** BackSplit,  
                      bool bReturnNoSplit ) const 
{ 
    CVertex    *FrontList  = NULL, *BackList = NULL; 
    USHORT      CurrentVertex = 0, CurrentIndex = 0, i = 0; 
    USHORT      InFront  = 0, Behind  = 0, OnPlane = 0; 
    USHORT      FrontCounter  = 0, BackCounter  = 0; 
    UCHAR      *PointLocation = NULL, Location; 
    float       fDelta; 
 
    // Bail if no fragments passed (No-Op). 
    if (!FrontSplit && !BackSplit) return true; 
 
    // Separate out plane components 
    D3DXVECTOR3 vecPlaneNormal = (D3DXVECTOR3&)Plane; 
    D3DXVECTOR3 vecPlanePoint  = vecPlaneNormal * -Plane.d; 

 
The first section of the function is fairly simple. First, if the caller has not passed a front split or a back 
split pointer then we have no way of returning any clipped/split polygon data back anyway so we may as 
well just immediately return. It is ok to pass only one pointer (either a front split pointer or a back split 
pointer) which will turn the function into a clipper instead of a splitter. However, if no pointers are 
passed, there is no point continuing. 
 
We can also see how we use the passed D3DXPlane structure to separate the plane into two components, 
a plane normal and a point on that plane. Getting the plane normal is easy as the first three members of 
the plane structure (a, b, and c) are the plane normal. So we can do a straight cast of these three members 
into a 3D vector. Calculating a point on the plane is also easy as we know that the d member contains 
the distance to the plane from the origin. That means that if we moved a point from the origin of the 
coordinate system in the direction of the plane normal for this distance we would have a point on that 
plane. As we are using the AX+BY+CZ+D version of the plane equation, D is a negative value for 
points behind the plane. Therefore, we just have to negate its sign and use it to scale the normal and we 
will have created that point on the plane. 
 
In the next section of code we prepare the memory that will be needed for performing the split operation 
and the various tests. First we will need to know the location of each vertex in the polygon with respect 
to the plane, so we will allocate an array of unsigned chars (one for each vertex in the original polygon). 
In a moment, we will loop through each vertex and use the CCollision::PointClassifyPlane method we 
implemented earlier. This will return either CLASSIFY_FRONT, CLASSIFY_BACK or 
CLASSIFY_ONPLANE. We will store the results in the array. 
 
    try  
    { 
        // Allocate temp buffers for split operation 
        PointLocation = new UCHAR[m_nVertexCount]; 
        if (!PointLocation) throw std::bad_alloc(); // VC++ Compat 
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As you can see, this array is called PointLocation and it must be large enough to hold the classification 
result of each vertex in the original polygon. In a moment we will fill this array with the classification 
results of each vertex with respect to the plane. 
 
What we will do now is also allocate two arrays of vertices. These two arrays will be used to collect the 
vertices that get added to the front split and back split polygons respectively. Of course, if the caller did 
not pass in either a front split or a back split pointer, then it means we do not have to allocate a vertex 
array to deal with vertices in that halfspace of the plane. That is, if only the address of a CPolygon 
pointer has been passed for the FrontSplit parameter, there is no need to allocate a vertex array to collect 
vertices that are in the back split. Also, if the user as passed true as the bReturnNoSplit parameter, then 
it means this function should only create a front split and back split polygon if the polygon is spanning 
the plane. Therefore, if true has been passed, we will not allocate those vertex arrays here; we will 
allocate them later when we know we definitely have a split case. It would be wasteful to allocate the 
memory for either a front split or a back split polygon only to find that we do not need it because the 
caller has requested that no polygons be created in the no split case.  
 
        // Allocate these only if we need them 
        if (FrontSplit && !bReturnNoSplit)  
        { 
            FrontList = new CVertex[m_nVertexCount + 1]; 
            if (!FrontList) throw std::bad_alloc(); // VC++ Compat 
        } // End If 
 
        if ( BackSplit && !bReturnNoSplit ) 
        { 
            BackList = new CVertex[m_nVertexCount + 1]; 
            if (!BackList) throw std::bad_alloc(); // VC++ Compat 
        } // End If 
 
    } // End Try 
 
    catch (...)  
    { 
        // Catch any bad allocation exceptions 
        if (FrontList)      delete []FrontList; 
        if (BackList)       delete []BackList; 
        if (PointLocation)  delete []PointLocation; 
        return false; 
    } // End Catch 

 
Notice that when we allocate the front and back split vertex arrays we make them large enough to hold 
one more than the number of vertices in the original polygon that is being clipped.  
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We do this because when we clip or split a polygon to a 
plane, although new vertices are introduced along the edges 
that intersect the plane (for both fragments), none of the 
fragments can ever have its vertex count increased beyond 
the original number of vertices plus one. This is shown in 
Figure 14.45 where a triangle in split to an arbitrary plane 
creating two polygons. One has four vertices and the other 
has three. It should be noted that this rule is only applicable 
to convex polygons. Since we are always dealing with 
convex polygons this is just fine. 
 
In this image we can see that the triangle to be clipped 
originally consisted of vertices v1, v2, and v3. However, 
during the testing of the edges, two were found to be 
spanning the plane and the vertices nva and nvb are generated and added to both the front and back 
vertex lists. This generates a front split vertex list of v1, nva, nvb and v3 and a back split vertex list of 
nva, v2 and nvb. No matter how we rotate the plane and regardless of the shape of the original polygon 
being clipped, we will never generate a new split polygon that has more than one additional vertex 
beyond the original polygon from which it was clipped/split from. So we can see in Figure 14.45 that if 
we allocate both the front and the back vertex lists to hold four vertices (number of vertices in the 
original triangle plus one) we definitely have enough room to store the vertices for each fragment. 
 
At this point we have front and back vertex lists allocated (only if bReturnNoSplit equals false) and we 
also have a PointLocation array large enough to child a classification result for each vertex in the 
original polygon. Let us now fill out the point location array by looping through each vertex in the 
polygon and classifying it against the plane (using our new PointClassifyPlane function). We store the 
result for each vertex in the corresponding element in the PointLocation array as shown below. 
 
    // Determine each points location relative to the plane. 
    for ( i = 0; i < m_nVertexCount; ++i )  
    { 
        // Retrieve classification 
        Location = CCollision::PointClassifyPlane( (D3DXVECTOR3&)m_pVertex[i], 
                                                   (D3DXVECTOR3&)Plane,  
                                                    Plane.d ); 
 
        // Classify the location of the point 
        if (Location == CCollision::CLASSIFY_INFRONT ) InFront++; 
        else  
        if (Location == CCollision::CLASSIFY_BEHIND ) Behind++; 
        else  
        OnPlane++; 
 
        // Store location 
        PointLocation[i] = Location; 
 
    } // Next Vertex 

 

 
Figure 14.45 
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Now we have an array that stores whether each vertex is in front, behind, or on the plane. Note that we 
maintain three counters (InFront, Behind, or OnPlane) so that at the end of the above loop we know 
exactly how many vertices (if any) are in each classification pool. 
 
In the following code section we test the value of the InFront counter and if it is not greater than zero 
then it means no vertices were located in the front halfspace. If the caller passed true for 
bReturnNoSplit, then there is nothing to do other than release the PointLocation array and return. This is 
because if the InFront counter is set to zero, the polygon cannot possibly span the plane. Thus in the 
bReturnNoSplit=true case, this means we just wish the function to return. 
 
    // If there are no vertices in front of the plane 
    if (!InFront )  
    { 
        if ( bReturnNoSplit ) { delete []PointLocation; return true; } 
        if ( BackList ) 
        { 
            memcpy(BackList, m_pVertex, m_nVertexCount * sizeof(CVertex)); 
            BackCounter = m_nVertexCount; 
        } // End if 
 
    } // End if none in front 

 
Notice that if the InFront counter is zero but the caller did not pass true as the bReturnNoSplit 
parameter, all the vertices in the polygon belong to the back split fragment. When this is the case we 
copy all the vertex data from the source polygon into the vertex list being compiled for the back split. 
We also set the BackCounter variable equal to the number of vertices in the source polygon so we know 
how many vertices we have collected in the BackList vertex array. 
 
In the next snippet of code we do exactly the same thing again only this time we are handling the case 
where no vertices were found to lie behind the plane. When this is the case we simply return if 
bReturnNoSplit was set to true, or we consider all the vertices of the source polygon to belong to the 
back split polygon and copy over its vertices into the front split vertex list. 
 
    // If there are no vertices behind the plane 
    if (!Behind )  
    { 
        if ( bReturnNoSplit ) { delete []PointLocation; return true; } 
        if ( FrontList ) 
        { 
            memcpy(FrontList, m_pVertex, m_nVertexCount * sizeof(CVertex)); 
            FrontCounter = m_nVertexCount; 
        } // End if 
 
    } // End if none behind 

 
If both the InFront and Behind counters are set to zero then it must mean that every vertex in the source 
polygon lies on the split plane. This means no splitting is going to occur and the polygon does not 
belong in any halfspace. When this is the case we return. 
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    // All were onplane 
    if (!InFront && !Behind && bReturnNoSplit )  
       { delete []PointLocation; return true; } 

 
Earlier in the function we allocated arrays to hold the front and back vertex lists but only if the 
bReturnNoSplit parameter was set to false. This is because one way or another we knew we would 
definitely need them even if the polygon was not spanning the plane because the function will always 
return a copy of the source polygon in either the front or back split polygons. However, we did not 
allocate these arrays if the bReturnNoSplit boolean was set to true since we would only need the front 
and back split vertex lists compiled if the source polygon is spanning the plane. Otherwise the function 
would have simply returned by now and done nothing. 
 
In the next section of code we perform the front and back vertex list allocations for the bReturnNoSplit 
is true case. The memory will have already been allocated for these arrays earlier in the function if 
bReturnNoSplit was false.  
 
    // We can allocate memory here if we wanted to return when no split occurred 
    if ( bReturnNoSplit ) 
    { 
        try  
        { 
            // Allocate these only if we need them 
            if (FrontSplit)  
            { 
                FrontList = new CVertex[m_nVertexCount + 1]; 
                if (!FrontList) throw std::bad_alloc(); // VC++ Compat 
            } // End If 
 
            if ( BackSplit ) 
            { 
                BackList = new CVertex[m_nVertexCount + 1]; 
                if (!BackList) throw std::bad_alloc(); // VC++ Compat 
            } // End If 
 
        } // End Try 
 
        catch (...)  
        { 
            // Catch any bad allocation exceptions 
            if (FrontList)      delete []FrontList; 
            if (BackList)       delete []BackList; 
            if (PointLocation)  delete []PointLocation; 
            return false; 
        } // End Catch 
 
    } // End ReturnNoSplit case 

 
This is all pretty familiar stuff. We know at this point that if bReturnNoSplit is true that the polygon 
must be spanning, otherwise we would have returned by now. So, provided the caller passed valid front 
and back CPolygon pointers, we allocate the vertex arrays for the front and back lists just as we did 
earlier for the case when bReturnNoSplit did not equal true. 
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At this point, regardless of the mode of the function being used, we have two empty vertex arrays that 
will be used to hold the vertex lists for the front and back split polygons. It is now time to look at the 
core piece of the function that populates the vertex lists for the front and back splits and creates new 
vertices when an edge is found to be spanning a plane. The code is only executed if the InFront and 
Behind counters are both non zero since this will only be the case when the polygon is spanning the 
plane. Remember, earlier in the function, if the polygon was found to be totally on one side of the plane 
then the source polygon’s vertices were copied over into the vertex array for either the front or back 
split.  
 
The following code loops through each vertex in the polygon and compares the classification result we 
stored for it earlier with the classification result of the next vertex in the list (the other vertex sharing the 
edge). If the entire edge is on one side of the plane then the vertex being tested is added to the front or 
back list. If however, the vertex being tested and the next vertex in the list are on opposing sides of the 
plane, the edge formed by those two vertices spans the plane and a new vertex is generated on the plane. 
This new vertex is added to both the front and the back lists. 
 
    // Compute the split if there are verts both in front and behind 
    if (InFront && Behind)  
    { 
        for ( i = 0; i < m_nVertexCount; i++)  
        { 
            // Store Current vertex remembering to MOD with number of vertices. 
            CurrentVertex = (i+1) % m_nVertexCount; 
 
            if (PointLocation[i] == CCollision::CLASSIFY_ONPLANE )  
            { 
                if (FrontList) FrontList[FrontCounter++] = m_pVertex[i]; 
                if (BackList)  BackList [BackCounter ++] = m_pVertex[i]; 
                continue; // Skip to next vertex 
            } // End if On Plane 
 
            if (PointLocation[i] == CCollision::CLASSIFY_INFRONT )  
            { 
                if (FrontList) FrontList[FrontCounter++] = m_pVertex[i]; 
            }  
            else  
            { 
                if (BackList) BackList[BackCounter++] = m_pVertex[i]; 
 
            } // End if In front or otherwise 

 
In the first section of the loop shown above we set up a loop to iterate through the PointLocation results 
for each vertex. Loop variable i contains the index of the current vertex being processed and local 
variable CurrentVertex contains the index of the next vertex in the list. Notice we do the modulus 
operation to make sure that this wraps back around to vertex zero which forms the end vertex for the 
final edge.  
 
First, we test to see if the classification result for the vertex we are currently testing is 
CLASSIFY_ONPLANE. If it is, then the vertex itself should be added to both of the vertex lists. On 
plane vertices will belong to both of the split polygons as shown in Figure 14.46. You can see in the 
above code that when this is the case, we copy the vertex into both the front and back vertex lists. Notice 
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that as we do we increment the FrontCounter and BackCounter local variables that are initialized to zero 
at the head of the function and are incremented in this loop every time we add a vertex to a list. This is 
so we can keep a count of the number of vertices in each list which we will need at the bottom of the 
function when we allocate the back split and front split polygons.  
 
If the current vertex is not on the plane then we test to see if it is in front of the plane and if so add the 
vertex to the front list. Otherwise, the vertex is behind the plane so we add it to the back list. 
 

 
Figure 14.46 : On Plane vertices are added to both splits 

 
We now correctly added the vertex to the front or back split but we cannot just progress to the next item 
in the list. If the vertex we just added and the next vertex in the list are on opposite sides of the plane we 
will need to treat these two vertices (the spanning edge) as a ray and intersect it with the plane.  
 
The next section code does just that. If the next vertex in the list (CurrentVertex = i +1) is on the plane 
or is on the same side of the plane as the vertex we just added, then we can just continue to the next loop 
iteration where it will be added to its respective list. 
 
         // If the next vertex is not causing us to span the plane then continue 
         if (PointLocation[CurrentVertex]== CCollision::CLASSIFY_ONPLANE|| 
                                            PointLocation[CurrentVertex] == 
                                            PointLocation[i] ) 
             continue; 

 
However, if we make it this far through the loop then the vertex we just added and the next vertex in the 
source polygon are on opposite sides of the plane and a new vertex will have to be added to both lists. 
This will be the vertex at the point of intersection between the edge and the plane. 
 
We do this by making the vertex we just processed (i) the ray origin and then subtract the ray origin 
from the position of the next vertex in the list (CurrentVertex) which gives us our ray delta vector. We 
then use our CCollision::RayIntersectPlane function to calculate the t value of intersection. 
 
            // Calculate the intersection point 
            D3DXVECTOR3 vecOrigin  =(D3DXVECTOR3&)m_pVertex[i]; 
            D3DXVECTOR3 vecVelocity=(D3DXVECTOR3&)m_pVertex[CurrentVertex] 
                                     - vecOrigin; 
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            CCollision::RayIntersectPlane( vecOrigin,  
                                           vecVelocity,  
                                           vecPlaneNormal,  
                                           vecPlanePoint,  
                                           fDelta,  
                                           true ); 
 
            // create new vertex position 
            CVertex NewVert; 
            (D3DXVECTOR3&)NewVert = vecOrigin + (vecVelocity * fDelta); 

 
When this function returns, local variable fDelta will contain the intersection point parametrically. This 
will be a value between 0.0 and 1.0 describing the position of intersection between the first and second 
vertex. You can see at the bottom of the above code that by scaling the ray delta vector (vecVelocity) by 
the t value of intersection (fDelta) and adding the result to the ray origin we have the position of the new 
vertex that we need to add. 
 
Of course, we do not just need to calculate the new position of the vertex; we also have to interpolate the 
values of any other components that might be stored in the vertices, such as color and/or UV 
coordinates. 
 
Figure 14.47 shows how a triangle polygon might be mapped to a 
given texture. Note the texture coordinates for v1 and v2. The red 
line shows where an intersection with the plane has occurred with 
this polygon and this is the point where a new texture coordinate 
needs to be created ( percent = 0.5 ). 
  
First we will subtract the first vertex texture coordinates from the 
second and end up with the vector length of the line between v1 
and v2 in texture space. You can see that <0.8,0.7> - <0.4,0.2> =  
<0.4,0.5>. This is the direction and the length between texture 
coordinates v1 and v2. The great thing is that our 
RayIntersectPlane function returned a t value from the start of the 
line to the point where the intersection occurred. We can now use 
this value for texture coordinate interpolation, color interpolation, and even normal interpolation to 
generate all the other data we need for the newly created vertex. For example, imagine that the fDelta 
values returned from RayIntersectPlane was 0.5. This tells us that the edge intersects the plane exactly 
halfway between vertex v1 and vertex v2. If we multiply the texture coordinate delta vector by the t 
value (0.5 in this example) we get a vector of 
  

<0.4*0.5, 0.5*0.5> = <0.2, 0.25>  
 
Now we just have to add this scaled texture coordinate delta vector to the texture coordinates of the first 
vertex in the edge (v1) and we have the new texture coordinate of the vertex inserted at the intersection 
point.  

 
New Texture Coordinates = <0.4, 0.2> + <0.2, 0.25> = <0.6, 0.45> 

 
Figure 14.47 
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Incidentally, we use this same linear interpolation to generate a normal for the newly created vertex. 
Below we see the next section of the code that generates the normal and texture coordinate information 
for the new vertex. 
 
            // Interpolate Texture Coordinates 
            D3DXVECTOR3 Delta; 
            Delta.x    = m_pVertex[CurrentVertex].tu - m_pVertex[i].tu; 
            Delta.y    = m_pVertex[CurrentVertex].tv - m_pVertex[i].tv; 
            NewVert.tu = m_pVertex[i].tu + ( Delta.x * fDelta ); 
            NewVert.tv = m_pVertex[i].tv + ( Delta.y * fDelta ); 
 
            // Interpolate normal 
            Delta          = m_pVertex[CurrentVertex].Normal - m_pVertex[i].Normal; 
            NewVert.Normal = m_pVertex[i].Normal + (Delta * fDelta); 
            D3DXVec3Normalize( &NewVert.Normal, &NewVert.Normal ); 
 
            // Store in both lists. 
            if (BackList)  BackList[BackCounter++]   = NewVert;    
            if (FrontList) FrontList[FrontCounter++] = NewVert; 
 
        } // Next Vertex 
 
    } // End if spanning 

 
Notice how the newly created vertex is added to both vertex lists. And that is the end of the loop. 
 
At this point we have built the vertex lists for both of the polygons if applicable. Now it is time to 
actually allocate the new CPolygon objects (again, where applicable). In this first section we allocate the 
new polygon that will contain the front split vertex list. Obviously we only do this if the caller passed a 
valid FrontSplit pointer as a function parameter and if we have more than 2 vertices in the front list. 
Once the new polygon is allocated, we call its AddVertex method so that the CPolygon can reserve 
enough space in its vertex array for the correct number of vertices that we have compiled in the front 
vertex list. We then copy over the vertices that we have compiled in the temporary front list into the 
vertex array of CPolygon.  
 
    // Allocate front face 
    if (FrontCounter >= 3 && FrontSplit)  
    { 
        // Allocate a new polygon 
        CPolygon * pPoly = new CPolygon; 
 
        // Copy over the vertices into the new poly 
        pPoly->AddVertex( FrontCounter ); 
        memcpy(pPoly->m_pVertex, FrontList, FrontCounter * sizeof(CVertex)); 
 
        // Copy over other details 
        pPoly->m_nAttribID   = m_nAttribID; 
        pPoly->m_vecNormal   = m_vecNormal; 
 
        // Store the poly 
        *FrontSplit = pPoly; 
 
    } // End If 
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Notice in the above code that after we have copied the vertex data into the polygon, we also copy over 
the attribute ID and the normal of the source polygon. However much we split the polygon, every 
fragment will always exist on the same plane as the parent, so the normal can be safely inherited. The 
attribute id is also inherited into the child splits. This makes good sense because if we have a polygon 
with a wood texture applied and we split it, we get two polygons with that same wood texture applied. 
Finally, we assign the FrontSplit pointer passed by the caller to point to this newly created polygon so 
that when the function returns the caller will have access to it. 
 
In the next section of code we do the same thing all over again for the back split polygon. 
 
    // Allocate back face 
    if (BackCounter >= 3 && BackSplit)  
    { 
        // Allocate a new polygon 
        CPolygon * pPoly = new CPolygon; 
 
        // Copy over the vertices into the new poly 
        pPoly->AddVertex( BackCounter ); 
        memcpy(pPoly->m_pVertex, BackList, BackCounter * sizeof(CVertex)); 
 
        // Copy over other details 
        pPoly->m_nAttribID   = m_nAttribID; 
        pPoly->m_vecNormal   = m_vecNormal; 
 
        // Store the poly 
        *BackSplit = pPoly; 
 
    } // End If 

 
At this point our job is done so we release the temporary memory we used for the clipping/splitting 
process before returning true. 
 
    // Clean up 
    if (FrontList)      delete []FrontList; 
    if (BackList)       delete []BackList; 
    if (PointLocation)  delete []PointLocation; 
 
    // Success!! 
    return true; 
} 
 
Although that was a somewhat tricky function, the core process it performs is delightfully easy. It has 
been made much less reader friendly because it has many early out conditionals so that memory is not 
allocated unnecessarily, but nevertheless, it is still a pretty straightforward algorithm. You will see the 
Split method being used quite a lot during the construction of the clipped spatial tree. 
 
We have now covered every thing we need to know about CPolygon; the structure used by our spatial 
trees to store static polygon data. We are now ready to look at ISpatialTree, the abstract base class for all 
of our new tree types and the interface our application will use to communicate with our trees. 
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14.11 The Abstract Base Classes 

In the file ISpatialTree.h you will find the declaration of the ISpatialTree class. This is an abstract 
interface which exists to provide a consistent means of communication between our application and our 
various trees. As long as our quad-tree, oct-tree and kD-tree classes are derived from this interface and 
implement its methods, our application can use the same code to interface with any of these tree types. 
All the trees we have discussed share a lot of common functionality. For example, regardless of how 
they are built, they all contain an array of leaf nodes and an array of CPolygons assigned to each leaf 
node.   
 
The ISpatialTree interface exposes all the methods an application will need to communicate with a 
spatial tree. We can think of it as defining a minimum set of functionality that must be implemented in 
our derived classes. It enforces for example that each of the trees we implement has an AddPolygon 
method so that an application can add CPolygons to its static geometry data. It enforces that our derived 
classes must implement an AddDetailArea method so that the application can register areas of interest 
for use during the build process. Another example of a method that must be implemented is the Build 
method which an application can use to instruct the spatial tree to compile its spatial information using 
the polygon data and detail areas that have been assigned to it. Further, in the ISpatialTree.h file, you 
will also see several structures and typedefs defined that will be used by all of our derived classes. Let us 
start to have a look at what is inside this file now.  
 
The first structure defined in this file is the one that is used to pass detail information to and from the 
tree. This structure is very simple and has three members. The first two should contain the minimum and 
maximum extents of its world space AABB and the second is a context pointer that can be used by the 
application to point at any data it so chooses. Beyond the examples discussed earlier, this context pointer 
might point to some structure that contains settings to configure fog on the device. The detail area in this 
instance would be used to represent an area within the scene where fog should be enabled during 
rendering. The TreeDetailArea structure is shown below and is something we will see being used in a 
moment. 
 
Excerpt From ISpatialTree.h 
typedef struct _TreeDetailArea 
{ 
    D3DXVECTOR3     BoundsMin;      // Minimum AABB extents of the area 
    D3DXVECTOR3     BoundsMax;      // Maximum AABB extents of the area 
    void          * pContext;       // A context pointer that can be assigned. 
 
} TreeDetailArea; 
 
Because all our various tree types will have support for the registration of detail areas, we have defined 
this structure in the main header file and have made the AddDetailArea and GetDetailAreaList methods 
members of the base class. 
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14.11.1 ILeaf – The Base Class for all Leaf Objects 

Another thing that all of our trees will have in common is that they will all need the ability to store leaf 
information at terminal nodes in the tree. There are certain methods that we will want a leaf object to 
expose so that the tree (or application) can interface with a leaf more easily. For example, we will 
usually want a leaf to have an IsVisible method so that the application can query whether a given leaf is 
visible and should have its contents rendered. We will also want the ability to get back a list of all the 
detail areas and polygons that are assigned to a leaf. Furthermore, we know that each leaf will also need 
to store an AABB describing the region of space it occupies. Obviously, the leaf is only visible if this 
bounding box is contained either fully or partially inside the camera frustum. 
 
Although we may want a leaf to contain much more information than this, the abstract ILeaf class is 
shown below and defines the base interface that our application will use to access and query a leaf. As 
with the ISpatialTree class, it is abstract, so it can never be instantiated directly. It must be derived from 
so that the function bodies can be implemented. These base interfaces force us to support and implement 
all the function in the base class when writing any tree type now or in the future. If we do not, we will 
get a compiler error. As long as we implement the functions specified in the base classes our application 
will happily work with the tree as its spatial manager with no changes to the code. This is because our 
application will only ever work with the ISpatialTree and ILeaf. As long as we derive our classes from 
these interfaces and implement the specified methods, we are in good shape to plug in whatever tree 
types we like down the road. 
 
Below we see the class declaration for ILeaf. 
 
class ILeaf 
{ 
public: 
    // Constructors & Destructors for This Class. 
    virtual ~ILeaf() {};  // No implementation, but forces all derived classes  
                             to have virtual destructors 
 
     
    // Public Pure Virtual Functions for This Class. 
    virtual bool            IsVisible           ( ) const = 0; 
    virtual unsigned long   GetPolygonCount     ( ) const = 0; 
    virtual CPolygon *      GetPolygon          ( unsigned long nIndex ) = 0; 
    virtual unsigned long   GetDetailAreaCount  ( ) const = 0; 
    virtual TreeDetailArea *GetDetailArea       ( unsigned long nIndex ) = 0; 
    virtual void            GetBoundingBox      ( D3DXVECTOR3 & Min,  
                                                  D3DXVECTOR3 & Max ) const = 0; 
}; 
 
All of the methods shown above must be implemented in any derived leaf objects we create since they 
will be used by the spatial tree. Let us first discuss what these methods are supposed to be used for and 
what information they should return.  
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virtual bool            IsVisible           ( ) const = 0; 
It is very important that a leaf expose this method as it is the application’s means of testing whether a 
given leaf was found to be inside the frustum during the last update. This is very useful for example 
when performing queries on the tree such as testing to see if a dynamic object should be rendered.  
 
 
virtual unsigned long   GetPolygonCount     ( ) const = 0; 
This method returns the number of polygons contained in the leaf. This is very important and will be 
used often by our collision system. For example, whenever the player’s position is updated, an AABB 
will be constructed and fed into the spatial tree’s CollectLeavesAABB method. This method will 
traverse the tree and compile a list of all the leaves the passed AABB was found to intersect. In the case 
our broad phase collision pass, this will allow us to get back a list of leaf pointers after having passed the 
swept sphere’s bounding box down the tree. We know that only the polygons in those leaves need to 
tested in the narrow phase. Of course, in order to test each polygon in the leaf we must set up a loop to 
count through and retrieve these polygons from the leaf. This method would be used to retrieve the 
number of polygons in the leaf that will need to be extracted and passed to the narrow phase. 
 
 
virtual CPolygon *      GetPolygon          ( unsigned long nIndex ) = 0; 
This method is used by the collision system (for example) to retrieve the CPolygon object in the leaf’s 
polygon array at the index specified by the parameter. For example, if the GetPolygonCount function 
returns 15, this means that you will have to call GetPolygon 15 times (once for each index between 0 
and 14) to extract each polygon pointer. 
 
 
virtual unsigned long   GetDetailAreaCount  ( ) const = 0; 
Each leaf may also contain an array of detail areas. That is, when the tree is built, any detail areas that 
had been registered with the tree prior to the build process commencing will have their pointers copied 
into a leaf’s DetailArea array for any leaf whose bounding box intersects the bounding box of the detail 
area. A detail area will typically span many leaves, so it is quite typical during the build process for the 
same detail area to have its pointer stored in the DetailArea array of multiple leaf nodes. 
 
 
virtual TreeDetailArea *GetDetailArea       ( unsigned long nIndex ) = 0; 
This method allows the application to fetch a detail area from the leaf. The input index must be between 
0 and one less than the count returned from GetDetailAreaCount method. 
 
 
virtual void GetBoundingBox( D3DXVECTOR3 & Min, D3DXVECTOR3 & Max ) const = 0; 
It can prove handy to be able to retrieve the AABB of a leaf, so this function provides that service. 
When passed two vectors, it will fill them with the minimum and maximum extents of the leaf’s AABB. 
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14.11.2 ISpatialTree – The Base Tree Class 

The ISpatialTree class is the abstract base class from which our spatial trees will be derived. It specifies 
the core functions that our derived classes must implement in order to facilitate communication with the 
application. Provided our derived classes (quad-tree, kD-tree, oct-tree, etc.) are all derived from this 
class and implement all the pure virtual functions specified, our application can work with all our tree 
objects using this common interface. This means that our application code will never change even if we 
decide to switch from a quad-tree to an oct-tree. The class also defines some types that the derived 
classes can use to declare polygon lists, leaf lists, and detail area lists. ISpatialTree contains no member 
variables and no default functionality, so we can never instantiate an object of this type. However, it 
does provide a consistent API that our derived tree classes must support in order for our application to 
effortlessly switch between tree types and build and query the given tree. How these functions are 
actually implemented in the derived classes is of no concern to the application, just so long as they 
perform the desired task. 
 
ISpatialTree is contained in the file ISpatialTree.h, along with ILeaf, and its declaration is shown below. 
 
class ISpatialTree 
{ 
public: 
     
    // Typedefs, Structures and Enumerators. 
    typedef std::list<ILeaf*>           LeafList; 
    typedef std::list<CPolygon*>        PolygonList; 
    typedef std::list<TreeDetailArea*>  DetailAreaList; 
 
    // Constructors & Destructors for This Class. 
    virtual ~ISpatialTree() {};     // No implementation, but forces all derived  
                                       classes to have virtual destructors 
 
    // Public Pure Virtual Functions for This Class. 
    virtual bool            AddPolygon       ( CPolygon * pPolygon ) = 0; 
    virtual bool            AddDetailArea    (const TreeDetailArea & DetailArea)=0; 
    virtual bool            Build               ( bool bAllowSplits = true ) = 0; 
    virtual void            ProcessVisibility   ( CCamera & Camera ) = 0; 
    virtual PolygonList    &GetPolygonList      ( ) = 0; 
    virtual DetailAreaList &GetDetailAreaList   ( ) = 0; 
    virtual LeafList       &GetLeafList         ( ) = 0; 
    virtual bool            GetSceneBounds      ( D3DXVECTOR3 & Min,  
                                                  D3DXVECTOR3 & Max ) = 0; 
    virtual bool            CollectLeavesAABB   ( LeafList & List,  
                                                  const D3DXVECTOR3 & Min,  
                                                  const D3DXVECTOR3 & Max ) = 0; 
    virtual bool            CollectLeavesRay    ( LeafList & List,  
                                                  const D3DXVECTOR3 &RayOrigin, 
                                                  const D3DXVECTOR3 &Velocity)= 0; 
     
    // Public Optional Virtual Functions for This Class. 
    virtual bool            Repair              ( ) { return true; } 
    virtual void            DebugDraw           ( CCamera & Camera ) {}; 
    virtual void            DrawSubset          ( unsigned long nAttribID ) {}; 
}; 
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The class contains a lot of function declarations and some typedefs which define how the system should 
work. Before moving on and examining how these methods are implemented in the derived class, let us 
first discuss what each method is expected to do so that we understand what is required of us in our 
derived class implementations. 
 
typedef std::list<ILeaf*>                   LeafList 
typedef std::list<CPolygon*>            PolygonList 
typedef std::list<TreeDetailArea*>  DetailAreaList 
These three type definitions are conveniences that the derived class can use to allocate variables of a 
certain type. For example, all of our trees will maintain a list of CPolygon pointers. Although you can 
feel free to store these polygon pointers in any format you choose in your derived class, the base class 
defines some handy type definitions allowing us to easily declare an STL list of polygons using the 
variable type ‘PolygonList’. You can also see that there are type definitions that describe variables of 
type LeafList and DetailAreaList to be STL lists of those respective structures. Remember, these are just 
type definitions, so this class has no members and you can feel free not to use these types to store your 
polygon, leaf, and detail area data. However, we use variables of the types shown above in our derived 
classes to store the three key data elements managed by the tree (polygons, leaves, and detail areas).   
 
virtual bool            AddPolygon       ( CPolygon * pPolygon )  
virtual bool            AddDetailArea    (const TreeDetailArea & DetailArea) 
It makes sense that all of our derived tree classes will need to implement a function that will allow the 
application to add polygon and detail area data to its internal lists prior to its Build function being called. 
The two functions shown above must be implemented in the derived class so that the application has a 
means to do that. For example, when the application loads a static polygon from an IWF file, it will store 
it in a CPolygon structure and call the tree’s AddPolygon method to register that polygon with the tree. 
This method will be implemented such that it stores the passed polygon pointer in its internal polygon 
pointer list (a variable of type PolygonList). The AddDetailArea is expected to be implemented in the 
same way so that the application can register areas of interest with the tree class. They will be used later 
in the build process to include areas that contain no polygon data (for example) within the volume of 
space partitioned by the tree. 
 
virtual bool            Build               ( bool bAllowSplits = true )  
Every tree class that we develop will certainly need to expose a build function that allows the 
application to instruct the object to build its spatial hierarchy once it has registered all the polygon data 
and detail area data with the object. The build function of the derived class will be implemented 
differently depending on the type of tree being built. When the build function returns control back to the 
application, the spatial hierarchy will have been constructed and it will be ready for collision querying 
and visibility testing. 
 
All of our trees will also have the option during creation to build a clipped on non-clipped tree. Thus, 
conditional logic will need to be put in place to determine what action should be taken if a polygon 
spans the bounds of a leaf in which it is partially contained. The bAllowSplits parameter to this function 
is the application’s means of letting the tree know which type of build strategy should be employed. If 
the parameter is set to true, a clipped tree will be built. Any polygons that span multiple leaf nodes will 
be clipped to the bounds of each leaf in which it is contained and every leaf will ultimately contain a list 
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of polygons that are contained totally within its bounds. If this parameter is set to false, then any 
polygon that spans multiple leaf nodes will have its pointer stored in each of those leaf nodes.  
 

Note: Remember that clipping the polygons to the leaf nodes increases the polygon count of the level, 
potentially by a considerable amount. This means more polygons need to be rendered and more draw 
primitive calls have to be made. In our test level, this was a major problem with the oct-tree, where the 
polygon count increased between 60% and 90% when clipping was being used (depending on leaf size). 

 
virtual void            ProcessVisibility   ( CCamera & Camera )  
Our application will also expect every tree class to implement the ProcessVisibility method, which 
exists to perform a hierarchy traversal with the passed camera and set any leaves that exist inside or 
partially inside the frustum as visible. This function, along with much of the rendering system of our tree 
classes, will be discussed in detail in the next chapter since this chapter is going to focus on the core 
building code. For now, just know that this function will be called by the scene prior to the tree being 
rendered. When this function returns, each leaf in the tree will know whether it is visible or not. When 
the application then issues a call to the ISpatialTree::DrawSubset method, the tree will know that it only 
has to render polygons that are contained in leaves that currently have their visible status set to true. 
Obviously, this will allow us to reject a lot of the geometry from being rendered most of the time.  
 
virtual PolygonList        &GetPolygonList      ( )  
virtual DetailAreaList  &GetDetailAreaList   ( ) 
virtual LeafList               &GetLeafList         ( )  
These three methods must be implemented to allow the application to retrieve the polygon list, the detail 
area list and the list of leaves being used by the tree. This might be useful is the application would like to 
save the compiled tree data to file or would like to perform some custom optimization on the data. The 
GetPolygonList method is essential, since after the build process has completed, the internal list of 
polygons used by the tree might be quite different from the list the application originally registered with 
the tree. If clipping is being used, many of the polygons from the original list added by the application 
will have been deleted and replaced by the fragments they were divided into. Therefore, these functions 
are usually called after the build process so that the application has some way to access the data stored in 
the tree. Of course, the leaf list is not even compiled until the tree is built, so it would serve no purpose 
to call this function prior to calling the Build function. 
 
virtual bool            GetSceneBounds      ( D3DXVECTOR3 & Min,   D3DXVECTOR3 & Max )  
This method allows the application to retrieve an axis aligned bounding box that bounds the entire area 
of space partitioned by the tree. This is essentially the bounding box of the root node of the tree. Of 
course, this is not necessarily an AABB bounding only the static polygon data, it will also account for 
detail areas. Our derived classes will implement this method by simply returning the bounding volume 
of the root node. 
 
virtual bool            CollectLeavesAABB   ( LeafList & List, const D3DXVECTOR3 & Min,  
                                                                                                         const D3DXVECTOR3 & Max ) 
This key method is one that the collision system uses to run queries on the tree. When this function is 
called, the application will pass an axis aligned bounding box and an empty leaf list (an STL list of ILeaf 
structures). This function should be implemented such that it will traverse the tree from the root node 
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and collect the leaves whose volumes are intersected by the passed AABB, attaching them to the input 
list. We can think of two situations where this function will be useful immediately. 
 
When implementing the broad phase of our collision system we will wish to pass only polygons in the 
immediate area of the swept sphere’s AABB to the narrow phase. In order to do this we will want to 
pass the swept sphere’s AABB into the tree and get back a list of leaves that intersect it. It is only the 
polygons in those leaves that will have to be further checked at a lower level. Any polygons not 
contained in those leaves will never be considered by the collision system. This function will speed up 
our collision system by an order of magnitude.  
 
Another time when our application will need to use this method is when determining in which leaves a 
dynamic object is located. Whenever a dynamic object has its position updated, we can pass its AABB 
into the tree and get back a list of intersected leaves. These are the leaves the dynamic object is currently 
contained within. This leaf list will be maintained internally for the object, but we can retrieve it via an 
ID prior to executing any draw calls. Before the scene renders any geometry, it will call the 
ISpatialTree::ProcessVisibility method which will determine which leaves are visible and which leaves 
are not.  Since we know what leaves a dynamic object resides in, we can quickly test whether any of 
them were visible and take appropriate measures. 
 
This function will be implemented as a simple recursive procedure that traverses the tree from the root 
node and performs and AABB/AABB intersection test between the passed AABB and the bounding 
volume of the node currently being visited. Once again, this is very fast because as soon as we find a 
node whose volume does not intersect the query volume, we never have to bother stepping into its child 
nodes, thus rejecting huge portions of the tree from having to be tested. 
 
This function will need to be implemented differently in each derived class because the layout of the 
node structure and the way the tree is traversed will differ between tree types. For example, in a quad-
tree we will need to step into four children at each node, while the oct-tree would recur into eight 
children. Of course, the underlying algorithm will be the same: perform AABB/AABB tests at each 
node and determining whether traversing into the children is necessary. Whenever we traverse into a 
leaf, it means that leaf is contained inside the query volume and it is added to the passed leaf list so that 
the caller will have access to it. We will discuss how to perform AABB/AABB intersections tests in a 
moment when we add that functionality to our CCollision class. 
 
virtual bool            CollectLeavesRay    ( LeafList & List,     const D3DXVECTOR3 &RayOrigin, 
                                                                                                         const D3DXVECTOR3 &Velocity) 
This function has an almost identical purpose to the previously described function, only this time the 
query object is a ray instead of an AABB. There will be several times when we may wish to determine 
which polygons in the scene a ray intersects, and this function will allow us to do this efficiently.      
 
The function is passed the ray origin and delta vectors along with an empty leaf list. The function should 
be implemented such that it will traverse the tree and return a list of leaves whose bounding volumes 
were intersected by the ray. Once again, this will have to be implemented slightly differently in each 
derived class as the way in which the tree is traversed is dependant on the node type (i.e., different 
numbers of children).  
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The function will step through each node in the tree and perform a ray/AABB intersection test with the 
node’s bounding volume. If the ray does not intersect a volume then its child nodes do not have to be 
tested. For any node whose bounding box intersects the ray, we step into its children and perform the 
same process. Whenever we reach a leaf node, it means the ray must be partially contained  within that 
leaf and the leaf structure is added to the leaf list so it can be returned to the caller. 
 
virtual bool            Repair              ( ) { return true; } 
The repair function is not an abstract function as it does have an implementation in ISpatialTree that 
essentially does nothing. This means that we do not have to bother implementing this function in the 
derived classes. However, it does give us an opportunity to perform some optimizations on the tree 
polygon data after the tree has been built. We will implement this function in our derived classes to 
perform a weld operation on the polygon vertices allowing to get rid of any redundant vertices (i.e., 
vertices that share the same position in 3D space and have the same attributes). This allows us to cut 
down on the number of vertices used by our scene quite dramatically in certain cases. In the case of 
GILES™, every face will have its unique vertices, so a cube constructed from 6 faces will actually 
contain 6*4=24 vertices. If the attributes of each face are identical, then at each corner of the cube there 
will be three vertices sharing the same space that have the same attributes (1 for each face that forms 
that corner). By performing a weld operation, we can collapse these three vertices at each corner into a 
single vertex that each of the three faces will index. 
 
Another task that we will perform inside our Repair function will be the repair of T-junctions. T-
junctions will be explained later, but as mentioned earlier, they frequently occur when lots of clipping 
has been performed. Since they cause very unsightly visual artefacts, we will definitely wish to repair 
them if we have built a clipped tree and intend to use the tree for rendering. Even if a non-clipped tree is 
being used, it is not uncommon for the source geometry to contain T-junctions that the artist may have 
inadvertently created, so we can repair those too.  
 
If you do decide to derive your own tree types from ISpatialTree, you do not have to implement this 
step. Everything will still work fine because the default implementation will do nothing and just return. 
This method will be called by the scene after the Build function has returned and the tree has been 
completely built.  
 
virtual void            DebugDraw           ( CCamera & Camera ) {} 
This function is another function that has a default implementation that does nothing, so you do not have 
to implement it in your derived classes. However, it is often very useful for the application to be able to 
get some debug information about how the tree was constructed. As you have no doubt become aware, 
finding potential problems in recursive code can be very difficult, so if your spatial tree is not behaving 
in quite the way it should, it is useful to have this function available so that some rendering can be done 
to help you visualize how space has been partitioned. It is also useful when you are trying to configure 
the settings for your scene, such as the minimum leaf size (i.e., the size at which we make a node a leaf 
regardless of how much data it contains). As the leaf size will be directly related to the scale of your 
scene, you will likely want a way to see how the space has been partitioned. 
 
In each of our derived tree classes we implement this method so that we can render the bounding boxes 
around each leaf node. Figure 14.51 shows a screen shots from Lab Project 14.1 with debug drawing 
enabled for a kD-tree (available via a menu option). On the code side, all the CScene::Render method 
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does after rendering the tree polygons and any dynamic objects, is call the tree’s DebugDraw method. 
This method traverses the tree searching for visible leaf nodes. Once a leaf node is found it fetches the 
bounding box of the leaf and draws it using a line list primitive type.  
 

With debug draw enabled we can 
easily see the size of each leaf node 
and how the space is partitioned 
which, as mentioned, is very useful 
indeed when diagnosing various 
issues. In Figure 14.51 you can see 
that the bounding box of the leaf in 
which the camera is currently 
located is rendered in red instead of 
blue like all other leaf nodes. When 
the debug draw renders a red box it 
means that you are currently located 
in a leaf that contains something; 
either geometry or a detail area. 

However, if the leaf in which the camera is currently located is an empty leaf node the box is rendered in 
green as shown in Figure 14.52. 
 
The DebugDraw method is a 
method that will have to be 
implemented slightly differently 
in each derived tree class. 
Although the output will be the 
same in all versions of this 
function (for the quad-tree, oct-
tree and kD-tree) it is a function 
that needs to traverse the tree 
hierarchy and therefore, is 
dependant on the node structure 
of the tree being used and the 
number of children spawned 
from each node. However, each 
version of this function (for each 
tree type) will be almost identical. They will all traverse the tree looking for leaf nodes and then render 
bounding boxes using the bounding volume information. We will look at the code to these functions 
later in the lesson. 
 
virtual void            DrawSubset          ( unsigned long nAttribID ) {} 
In theory, rendering a spatial tree is very easy. For example, we could just traverse the hierarchy and 
collect the polygons from the visible leaf nodes and copy them into dynamic index and vertex buffers. 
Unfortunately, with such a scheme, memory copying really hampers performance when we are building 
those render buffers. Using a dynamic index buffer only approach is certainly much better, but still not 
optimal. Rendering a tree efficiently in a way that does not hamper the performance of powerful 3D 

Figure 14.51 

Figure 14.52 
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graphics cards is not so easy and in the next chapter we will discuss the rendering system that we have 
put in place that all of our spatial trees will use to collect and render their geometry.  
 

Note: Since the spatial tree rendering system will be rather involved, we will dedicate a good portion of 
the next chapter entirely to this one topic. Although this rendering system is used in Lab Project 14.1, 
note that this same lab project will be discussed over these two chapters. In this chapter we will discuss 
building the spatial tree and the upgrade of the collision system to use the spatial tree during its broad 
phase pass. In the next lesson we will discuss exactly how the tree data is converted into hardware 
friendly render batches so that we can minimize draw primitive calls and maximize batch rendering. 
When examining the code to Lab Project 14.1, it may be best for you to ignore how the tree is rendered 
for now. 

 
The DrawSubset function will need to be implemented by each tree class so that the application can 
instruct the tree that it needs to render all visible polygons belonging to the passed subset. As we know, 
our scene is responsible for setting textures and materials and it does not want to set the same one more 
than once if it can be avoided. That is, we wish to setup a given attribute and then render all the 
polygons in the scene that use it. This minimizes render state changes and DrawPrimtive calls, which 
can really help performance. The CScene::Render method will first call the 
ISpatialTree::ProcessVisibility method prior to any rendering taking place. This instructs the tree to 
traverse its hierarchy and mark any leaves that are inside the view frustum as being visible. Our scene 
will then loop through each attribute used by the scene and call this method, each time passing in the 
current attribute/subset being processed. This will instruct the tree to render any polygon in any of the 
currently visible leaves that belong to this subset. As you will see in the next lesson, doing this 
efficiently means putting quite a complex system in place. 
 
Although we have not yet discussed the implementation details of any of the functions declared in the 
base class, discussing ISpatialTree and the methods it exposes has given us an understanding of how our 
tree will work, the functions that we are expected to implement in our derived classes, and the way in 
which our application will communicate with our trees both when querying it and rendering it. With that 
said, let us start coding.  

14.11.3 CBaseTree & CBaseLeaf – Base Functionality Classes 

For the most part, in this course we have not really had to implement chains of derived classes. At most 
we have sometimes implemented a base class and a derived class as this makes the code clearer to read, 
easier to learn, and it makes program flow easier to follow (and of course, it is often good OOP). 
However, sometimes it makes sense to have an additional layer of inheritance when all your derived 
classes will share many properties and would need to have identical code duplicated for each. For 
example, regardless of the tree types we implement, they will all share a lot of common ideas. Each tree 
type will store a list of polygons, leaves, and detail areas, and will need to implement methods that allow 
the application to add and retrieve elements to/from these lists.  
 
Likewise, the leaf structure used by each tree will essentially be the same and will have the same tasks to 
perform. Each will store a bounding box and will need to implement methods to add polygons and detail 
areas to its internal lists and expose functions which allow the tree to set its visible status during a 
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visibility update. Furthermore, although we will not discuss the rendering subsystem in this chapter, the 
same system will be used by each of the derived tree classes. If we were simply going to derive our 
quad-tree, kD-tree, and oct-tree classes directly from ISpatialTree, we would have to implement this 
code in each of our derived classes. This is wasteful since we would be duplicating identical code in 
each derived class. For example, the AddPolygon method will be implemented identically in each tree 
type; it will be a simple function that accepts a CPolygon pointer and stores that pointer in the tree’s 
polygon list. 
 
To minimize redundancy across these common tasks, we will include a middle layer called CBaseTree. 
CBaseTree will be derived from ISpatialTree and will implement many of the functions that are 
common to all tree types. It will also implement all the code to the rendering system which will be used 
by each derived tree class. Although we will never be able to instantiate an object of type CBaseTree (as 
it does not implement all the method from ISpatialTree) it will provide all of the housekeeping code. We 
will derive our quad-tree, oct-tree, and kD-tree classes from CBaseTree. 
 
Due to the fact that CBaseTree contains a lot of code that is common to all tree types, implementing our 
actual tree classes will involve just the implementation of a few functions. For example, when 
implementing a quad-tree class, we essentially just have to implement the methods from ISpatialTree 
that are not implemented in CBaseTree. One such method is the Build method which will obviously be 
different for each tree type. The only other method we will have to implement in the lower level tree 
classes are the query routines such as CollectLeavesAABB, CollectLeavesRay, and ProcessVisibility. 
As these methods are tree traversal methods, they must be implemented by the actual types. Thus, if you 
open up the CQuadTree.cpp file for example, you will see that very little code is contained in there, as 
most of the common functionality is contained inside CBaseTree. 
 
In this next section we will discuss the implementation of the CBaseTree methods that are used during 
the building phase. The rendering system contained in CBaseTree will be discussed in the following 
lesson, so its methods will be removed from the class declaration at this time. In this lesson, we are just 
concentrating on the CBaseTree methods used by the tree building process and the methods associated 
with querying the tree (such as the method used by our collision system). The code to CBaseTree and 
CBaseLeaf are stored in the files CBaseTree.h and CBaseTree.cpp. 

14.11.4 CBaseLeaf – The Source Code 

CBaseLeaf is derived from ILeaf and implements all the functionality of the base class. That is, all of 
our trees will store leaves of type CBaseLeaf. The class declaration is shown below and we will discuss 
it afterwards. Notice how the first pool of function declarations are those from ILeaf that will be 
implemented in this class. This is followed by some functions which CBaseTree will need to 
communicate with a leaf. 
 
class CBaseLeaf : public ILeaf 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
    virtual ~CBaseLeaf( ); 
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             CBaseLeaf( CBaseTree *pTree ); 
 
    // Public Virtual Functions for This Class (from ISpatialTree). 
    virtual bool            IsVisible           ( ) const; 
    virtual unsigned long   GetPolygonCount     ( ) const; 
    virtual CPolygon *      GetPolygon          ( unsigned long nIndex ); 
    virtual unsigned long   GetDetailAreaCount  ( ) const; 
    virtual TreeDetailArea* GetDetailArea       ( unsigned long nIndex ); 
    virtual void            GetBoundingBox      ( D3DXVECTOR3 & Min,  
                                                  D3DXVECTOR3 & Max ) const; 
 
    // Public Functions for This Class. 
    void                    SetVisible          ( bool bVisible ); 
    void                    SetBoundingBox      ( const D3DXVECTOR3 & Min,  
                                                  const D3DXVECTOR3 & Max ); 
    bool                    AddPolygon          ( CPolygon * pPolygon ); 
    bool                    AddDetailArea       ( TreeDetailArea * pDetailArea ); 
     
protected: 
     
    // Protected Structures, Enumerators and typedefs for This Class. 
    typedef std::vector<CPolygon*>          PolygonVector; 
    typedef std::vector<TreeDetailArea*>    DetailAreaVector; 
 
    // Protected Variables for This Class 
    PolygonVector       m_Polygons;     // Array of polygon pointers in this leaf. 
    DetailAreaVector    m_DetailAreas;  // Array of detail area pointers in leaf. 
    bool                m_bVisible;     // Is this leaf visible or not? 
    D3DXVECTOR3         m_vecBoundsMin; // Minimum bounding box extents 
    D3DXVECTOR3         m_vecBoundsMax; // Maximum bounding box extents.     
    CBaseTree          *m_pTree;        // The tree that owns this leaf 
}; 
 
Looking at the above class declaration we can see that it implements those methods from the base class 
that allows the application to perform queries on the leaf such as retrieving the leaf’s visible status or 
retrieving its bounding volume. Following these declarations are the functions that are new to this class 
which CBaseTree and any class derived from it can use to add detail areas or polygons to the leaf’s 
arrays. It also exposes methods which CBaseTree (or any class derived from it) can use to set the 
visibility status of a leaf (inside the ProcessVisibility function) and methods allowing the tree building 
functions to set the leaf’s AABB. 
 
Following that are two type definitions called PolygonVector and DetailAreaVector. These are STL 
vectors which the leaf will use to store the polygon pointers and detail area pointers assigned to it. 
Unlike the CBaseTree which stores its polygon and detail area data in STL lists (linked lists) for 
efficient manipulation during the tree building process, the data that ends up being assigned to a leaf 
remains static once the leaf has been built. Therefore, we use vectors for faster access.   
 
Finally, at the bottom of the declaration we can see the member variables that each leaf structure 
contains. They are discussed below, although their meaning will most likely be self-explanatory given 
their names. 
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PolygonVector         m_Polygons 
This member is an STL vector that will be used to store the polygons assigned to this leaf. During the 
build process, once a node has been reached which suits the criteria for being a terminal node (such as 
its bounding volume is sufficiently small or the number of polygons is below a certain threshold) a new 
CBaseLeaf object will be created and added to the tree’s leaf list. The leaf structure will also be attached 
to the node in the tree and the polygon data that made it into that node will be added to the leaf via the 
CBaseLeaf::AddPolygon method. This method will store the passed CPolygon pointer in this vector. 
 
DetailAreaVector     m_DetailAreas   
In an almost identical manner to the method described above, this vector will be used to store pointers to 
any detail objects that exist inside or partially inside the leaf.  
 
bool                   m_bVisible      
This member is used internally by the leaf to record its current visibility status. If, during the last 
ProcessVisibility test, its bounding box was found to be inside or partially inside the frustum, the tree 
would have set this boolean to true through the use of the CBaseLeaf::SetVisible method. The 
application (or the tree itself) can query the visibility status of a leaf using the CBaseLeaf::IsVisible 
method, which simply returns the value of this boolean.  
 
D3DXVECTOR3     m_vecBoundsMin  
D3DXVECTOR3     m_vecBoundsMax  
Each leaf will store a bounding volume (an AABB) which will be set by the tree during the build 
process. When a leaf is created, the bounding box of the polygon data and the detail area data that made 
it into that node is computed. The tree will then use the CBaseLeaf::SetBoundingBox method to set the 
bounding box for the leaf. 
 
CBaseTree *    m_pTree 
Each leaf will store a copy of the pointer to the tree which owns it. We will see how this pointer is used 
in the next chapter when we discuss rendering. 
 
Let us now take a look at the method implementations shown above. Remember, if you are following 
along with the lab project source code files open, you will see many other method in CBaseTree that we 
have not discussed here. These are methods related to the rendering system which will be fully 
explained in the next lesson. 

Constructor - CBaseLeaf 

The CBaseLeaf constructor could not be simpler. We just initialize its visibility status to true. We will 
assume that the default state of any node/leaf in the tree is visible so that if for some reason we do not 
wish to perform the ProcessVisibility pass, all leaves will be rendered. 
 
CBaseLeaf::CBaseLeaf( CBaseTree *pTree ) 
{ 
    // Reset required variables 
    m_bVisible          = true; 
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     .. render data .. 
 
    // Store the tree 
    m_pTree = pTree 
} 
 
When the leaf is first created its polygon and detail area vectors will be empty and its bounding box will 
be uninitialized. Note that the leaf also accepts and stores a pointer to the base tree to which it belongs.  

Setting/Getting the Leaf’s Visibility Status - CBaseLeaf 

The method that allows the application to query the visibility status of a leaf with a simple one line 
function that returns the value of the leaf’s visibility flag. 
 
bool CBaseLeaf::IsVisible( ) const 
{ 
    return m_bVisible; 
} 

 
Likewise, the method that allows our tree classes to set the visibility status of a leaf (during the 
ProcessVisibility pass) is a one line function that sets the boolean member equal to the boolean 
parameter passed.  
 
void CBaseLeaf::SetVisible( bool bVisible ) 
{ 
    // Flag this as visible 
    m_bVisible = bVisible; 
} 

AddPolygon – CBaseLeaf 

The AddPolygon method is called by the tree building process whenever a terminal node is encountered. 
A new CBaseLeaf object is allocated and its pointer is stored in the terminal node. The AddPolygon 
method will then be called for each polygon that made it into the terminal node. The method adds the 
passed CPolygon polygon pointer to the leaf’s polygon vector (with exception handling to return false 
should an error occur in the process). 
 
bool CBaseLeaf::AddPolygon( CPolygon * pPolygon ) 
{ 
    try 
    { 
        // Add to the polygon list 
        m_Polygons.push_back( pPolygon ); 
 
    }  
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    catch ( ... ) 
    { 
        return false; 
 
    }  
 
    // Success! 
    return true; 
} 

AddDetailArea – CBaseLeaf 

When a leaf is created and added to a terminal node during the building process, any detail area that 
made it into that node will also be added to the leaf. The AddDetailArea adds the passed TreeDetailArea 
pointer to the leaf’s internal detail area vector. The function code is shown below. 
 
bool CBaseLeaf::AddDetailArea( TreeDetailArea * pDetailArea ) 
{ 
    try 
    { 
        // Add to the detail area list 
        m_DetailAreas.push_back( pDetailArea ); 
 
    } // End Try Block 
 
    catch ( ... ) 
    { 
        return false; 
 
    } // End Catch Block 
 
    // Success! 
    return true; 
} 

Retrieving the Polygon Data from a Leaf – CBaseLeaf 

It will often be necessary for the application to retrieve the polygon data stored in a leaf. This is certainly 
true in our broad phase collision step when we will send the swept sphere’s AABB down the tree and 
get back a list of intersecting leaves using the tree’s CollectLeavesAABB method. Once this list of 
leaves is returned, the broad phase can fetch each polygon from each returned leaf and test it more 
thoroughly (first with an AABB/AABB test between the AABB of the swept sphere and the AABB of 
the polygon and then with the more expensive narrow phase if the prior test returns true for an 
intersection).  
 
For the collision system to get this information, it must know how many polygons are stored in a leaf 
and have a way to access each polygon in that leaf. Below we see the implementations of the 
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CBaseLeaf::GetPolygonCount and CBaseLeaf::GetPolygon methods which are part of the ISpatialTree 
interface. The GetPolygonCount method simply returns the size of the leaf’s internal CPolygon vector. 
 
unsigned long CBaseLeaf::GetPolygonCount( ) const 
{ 
    // Return number of polygons stored in our internal vector 
    return m_Polygons.size(); 
} 
 

The GetPolygon method accepts an index (in the range of zero to the value returned from 
GetPolygonCount - 1) and returns the CPolygon pointer stored at that location in the vector.  
 
CPolygon * CBaseLeaf::GetPolygon( unsigned long nIndex ) 
{ 
    // Validate the index 
    if ( nIndex >= m_Polygons.size() ) return NULL; 
 
    // Return the actual pointer 
    return m_Polygons[nIndex]; 
} 

Retrieving the Detail Area Data from a Leaf – CBaseLeaf 

An application may also wish to retrieve the information about which detail areas are stored in a leaf. 
For example, perhaps you have inserted a specific detail area that has a context pointer that points to a 
structure filled with fog settings. Whenever the camera is in a leaf which contains such a detail area, the 
pipeline’s fog parameters could be set and enabled as described by the detail area’s context pointer. 
Such a task could be performed by finding the leaf the camera is currently in and then fetching the 
number of detail area areas assigned to this leaf. You could then set up a loop to extract and test each 
detail area. If a detail area is found which has a context pointer that points to a fog structure, fog could 
be enabled. 
 
In order to do this we would need to be able to fetch the number of detail areas in a leaf and expose a 
means for those detail areas to be retrieved and examined. The CBaseLeaf::GetDetailAreaCount is a 
simple function that returns the size of the leaf’s detail area vector: 
 
unsigned long CBaseLeaf::GetDetailAreaCount( ) const 
{ 
    // Return number of polygons stored in our internal vector 
    return m_DetailAreas.size(); 
} 
 

The CBaseLeaf::GetDetailArea method is passed an index between 0 and the value returned by the 
GetDetailAreaCount function minus 1. It returns the TreeDetailArea pointer stored at that position in the 
vector.  
 
TreeDetailArea * CBaseLeaf::GetDetailArea( unsigned long nIndex ) 
{ 
    // Validate the index 
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    if ( nIndex >= m_DetailAreas.size() ) return NULL; 
 
    // Return the actual pointer 
    return m_DetailAreas[nIndex]; 
} 

Setting and Retrieving a Leaf’s Bounding Box - CBaseLeaf 

The application may want to retrieve the leaf bounding box for custom intersection routines. The 
CBaseLeaf::GetBoundingBox method accepts two 3D vector references and populates them with the 
minimum and maximum extents of the leaf’s AABB. 
 
void CBaseLeaf::GetBoundingBox( D3DXVECTOR3 & Min, D3DXVECTOR3 & Max ) const 
{ 
    // Retrieve the bounding boxes 
    Min = m_vecBoundsMin; 
    Max = m_vecBoundsMax; 
} 
 

The application will never need to set the bounding box of a leaf since that is the responsibility of the 
tree building process. Therefore, the SetBoundingBox method is not a member of ILeaf (the API used 
by the application); it is added to CBaseLeaf instead. The derived tree classes will call this method when 
the leaf is created at a terminal node and pass it the minimum and maximum extents of an AABB which 
represents the area of the terminal node (the leaf). Below we see the code to the function that will be 
called by the tree building process after a leaf has been allocated at a terminal node. 
 
void CBaseLeaf::SetBoundingBox( const D3DXVECTOR3 & Min, const D3DXVECTOR3 & Max ) 
{ 
    // Store the bounding boxes 
    m_vecBoundsMin = Min; 
    m_vecBoundsMax = Max; 
} 
 
We have now covered all of the housekeeping methods in our CBaseLeaf class (the class that will be 
used to represent polygon and detail area data at terminal nodes in the tree). This object will be used by 
all of our derived tree classes to represent leaf data. 
 
There are some additional members and methods that are not shown here as they relate to the rendering 
subsystem of CBaseTree. These will be discussed in the following lesson. For now, we have covered all 
the important code that will be needed to understand the construction and configuration of leaf data both 
during the build process and during collision queries. 

14.11.5 CBaseTree – The Source Code 

CBaseTree is the class that our other tree classes will be derived from. It implements many of the 
methods required by the ISpatialTree interface and as such, by deriving our tree classes from this class, 
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we avoid having to duplicate such housekeeping functionality. As discussed earlier, with CBaseTree in 
place, we can easily create almost any tree type we want simply by deriving a new class from it and 
implementing its build and query traversal functions. CBaseTree will be responsible for managing the 
polygon, leaf, and detail area lists and implementing the methods from ISpatialTree that allow the 
application to register data with the tree prior to the build process.  
 
CBaseTree will also implement other methods that our derived classes will not want to worry about, 
such as the repair method from ISpatialTree. The CBaseTree::Repair method will repair T-junctions in 
the geometry and can be called after the tree has been built. Although we will not discuss the rendering 
logic in this chapter, this class also implements the DrawSubset method responsible for rendering the 
various subsets of static polygons stored within the tree. It also has an implementation of a 
ProcessVisibility method, although this method must be overridden in your derived class. The derived 
version must call the CBaseTree version prior to performing its visibility traversal. Although the 
meaning of the CBaseTree version of this method will not be fully understood until the next lesson, this 
method essentially gives CBaseTree a chance to flush its render buffers before they get refilled by the 
derived class. This will be explained later, so do not worry too much about it for now. 
 
Finally, CBaseTree implements some utility methods that can be called by the derived class to make life 
easier. An example of this happens when implementing the DebugDraw method in your derived classes. 
As discussed earlier, the DebugDraw method traverses the hierarchy and renders a bounding box for any 
visible leaf node. This allows us to see each leaf’s volume when running our application. However, 
although this function essentially has the same task to perform for each tree type, the method must be 
implemented for each tree type due to the fact that we traverse an oct-tree differently from how we 
traverse a quad-tree. But the traversal code is very small; it is really the rendering of the bounding box 
which takes a bit more code and will be identical for each tree type.  
 
Because of this fact, CBaseTree will expose a method called DrawBoundingBox which can be called 
from a derived class and passed an AABB. This method will take case of the actual construction and 
rendering of the bounding box to the frame buffer. Therefore, all we have to do when we implement the 
DebugDraw method in our derived tree classes is write code in there that traverses the tree looking for 
visible leaf nodes. As we find each one, we just call the CBaseTree::DrawBoundingBox method and 
pass it the AABB of the leaf in question. This function will then render the bounding box and we 
minimize redundant code. This class also implements another DebugDraw helper function called 
CBaseTree::ScreenTint that can be passed a color and will alpha blend a quad over the entire frame 
buffer. We use this in our derived class’s DebugDraw method to tint the screen red when the camera 
enters a leaf that has data contained in it (a non-empty leaf). 
 
Below we see the class declaration of CBaseTree. We have removed any functions, structures, and 
member variables related to its rendering subsystem since we will introduce these in the following 
lesson. 
 
class CBaseTree : public ISpatialTree 
{ 
public: 
     
    // Friend list for CBaseTree 
    friend void CBaseLeaf::SetVisible( bool bVisible ); 
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    // Constructors & Destructors for This Class. 
    virtual ~CBaseTree( );it easily 
    CBaseTree( LPDIRECT3DDEVICE9 pDevice, bool bHardwareTnL ); 
 
    // Public Virtual Functions for This Class (from base). 
    virtual bool            AddPolygon       ( CPolygon * pPolygon ); 
    virtual bool            AddDetailArea    ( const TreeDetailArea& DetailArea ); 
    virtual bool            Repair              ( ); 
    virtual PolygonList    &GetPolygonList      ( ); 
    virtual DetailAreaList &GetDetailAreaList   ( ); 
    virtual LeafList       &GetLeafList         ( ); 
    virtual void            DrawSubset          ( unsigned long nAttribID ); 
    virtual void            ProcessVisibility   ( CCamera & Camera ); 
 
protected: 
    bool  PostBuild         ( ); 
     void           DrawBoundingBox    ( const D3DXVECTOR3 & Min,  
                                          const D3DXVECTOR3 & Max,  
                                          ULONG Color, bool bZEnable = false ); 
      
    void            DrawScreenTint      ( ULONG Color ); 
    void          CalculatePolyBounds ( ); 
    void          RepairTJunctions    ( CPolygon * pPoly1,  
                                        CPolygon * pPoly2 ); 
 
    // Protected Variables for This Class. 
    LPDIRECT3DDEVICE9           m_pD3DDevice;       
    bool                        m_bHardwareTnL;      
    LeafList                    m_Leaves;            
    PolygonList                 m_Polygons;          
    DetailAreaList              m_DetailAreas;       
}; 
 
A few things in the above declaration are worthy of node. First, notice how the CBaseLeaf::SetVisible 
method is made a friend, so that we can access it from within this class. The tree will need to be able to 
set the visible status of a leaf when it is performing its visibility pass. Also notice that it has a method 
called PostBuild. This method will be called by the derived class after the tree has been constructed. For 
example, our CQuadTree class will call this method at the very end of its Build function after the tree 
has been constructed. The PostBuild method does two things. The first thing it does is call the 
CBaseTree::CalculatePolyBounds method which will loop through each CPolygon stored in the tree, 
calculate its bounding box, and store that bounding box in the polygon structure. The polygon bounding 
boxes will be used by our broad phase collision step so that only polygons whose bounding boxes 
intersect the AABB of the swept sphere get passed onto the narrow phase. This is another example of a 
function that would otherwise need to be implemented in each of the derived classes if it were not for 
CBaseTree managing such functionality. The second thing the CBaseTree::PostBuild method does is 
call CBaseTree::BuildRenderData. This method is not shown above because we will discuss it in the 
next chapter (basically, it configures the rendering subsystem for CBaseTree).  
 
We can see in the above declaration that the CBaseTree also has a method called RepairTJunctions. It is 
called from the CBaseTree::Repair method to mend any T-junctions which were introduced during the 
building phase. If the tree is not being used for rendering and you wish to repair T-junctions introduced 
in the build phase, then the application should call the Repair method after the tree has been built. If the 
tree is being used for rendering then there is no need, because the BuildRenderData method will 
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automatically call this method before preparing the render data. Keep in mind that if a tree is being used 
for rendering, we definitely want to always repair T-junctions to remove unsightly artifacts. We will 
examine what T-junctions are and how they can be repaired later in this lesson. 
 
Let us now discuss the member variables declared in CBaseTree which will be used for storage by the 
derived classes. 
 
LPDIRECT3DDEVICE9           m_pD3DDevice       
If the application wishes to use the tree for rendering, it should pass a valid pointer to a Direct3D device 
into the constructor of the derived class, which will pass it along to the base class for storage in this 
member. If NULL is passed to the derived class constructor then NULL will be passed to the constructor 
of CBaseTree as well and this parameter will be set to NULL. If this parameter is NULL, no render data 
will be built when PostBuild is called at the end of the derived class’s Build method.  
 
bool                        m_bHardwareTnL     
This boolean will also be set via the application passing its value to the derived class constructor, which 
in turn will be passed to the CBaseTree constructor and stored in this member. We have used a boolean 
value like this many times before to communicate to a component whether the device being used is a 
hardware or software vertex processing device. We will see in the following chapter how the base tree 
class will need to know this information when building the vertex and index buffers for its render data. 
 
LeafList    m_Leaves            
PolygonList    m_Polygons          
DetailAreaList   m_DetailAreas       
Earlier we saw that the types LeafList, PolygonList, and DetailAreaList were defined in ISpatialTree as 
STL lists (linked lists) of ILeaf, CPolygon, and TreeDetailArea objects, respectively. These linked lists 
store the leaves, polygons, and detail areas when they are added to the tree. At any point (even pre-
build) the m_Polygons and m_DetailAreas lists will contain all the polygons and details areas registered 
and in use by the tree at that time. m_Leaves will only contain valid data after the tree has been built and 
the leaves have been created. 
 
Before the tree is built, the application will need a way to register detail areas and polygons with the tree 
so that they can be used in the building process. For example, every time we load a polygon from an 
IWF file we will call the AddPolygon method that will add it to the above list. After all the data has been 
added to the tree, but prior to the Build function being called, this list will contain all the polygon data 
that will be partitioned by the build process. After the build process has completed however, the 
polygons stored in the m_Polygons array (and in the leaf polygon arrays) may be different from the 
original list that existed prior to tree compilation. This is certainly true if a clipped tree is being 
constructed since many of the polygons in the original list will be deleted and replaced by two split 
fragments. Likewise, even if the lists are the same post-build, if you call the Repair function to mend T-
junctions, additional triangles will be inserted to repair those T-junctions. The important point is that 
whether post-build or pre-build, the m_Polygons and m_DetailAreas lists will always contain all the 
polygons and detail areas being used by the tree. In the post-build case, we will also have pointers to all 
the polygons and detail areas in these lists stored in the polygon and detail area vectors of the leaves as 
well.  
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Constructor – CBaseTree 

The CBaseTree constructor is called from the constructor of the derived class and is passed two 
parameters supplied by the application. If pDevice is not NULL then it means that the application 
wishes to use this tree for rendering and the rendering subsystem will be invoked (described in the next 
chapter). The device pointer and the boolean describing the hardware/software status of the device are 
stored in the base class variables and the reference count of the device is incremented.  
 
CBaseTree::CBaseTree( LPDIRECT3DDEVICE9 pDevice, bool bHardwareTnL ) 
{ 
    // Store the D3D Device and other details 
    m_pD3DDevice    = pDevice; 
    m_bHardwareTnL  = bHardwareTnL; 
 
    // Add ref the device (if available) 
    if ( pDevice ) pDevice->AddRef(); 
} 

 
There are a few additional lines to this constructor not shown here since they concern the rendering 
system which we will introduce later. 

AddPolygon - CBaseTree 

All of our derived classes will have a few things in common. One is the need for the application to add 
polygon data to its internal arrays in preparation for the build process. The AddPolygon method will be 
called by the application every time it loads a static polygon which it would like to be part of the data set 
that is to be spatially partitioned. If you look in the CScene::ProcessVertices function of Lab Project 
14.1, you will see that a new line has been inserted that adds the vertices of the polygon currently being 
processed to the spatial tree being used by the scene. This is the function it calls, and as you can see, it 
simply adds the passed polygon pointer to its internal polygon list. 
 
bool CBaseTree::AddPolygon( CPolygon * pPolygon ) 
{ 
    try 
    { 
        // Add to the polygon list 
        m_Polygons.push_back( pPolygon ); 
 
    } // End Try Block 
    catch ( ... ) 
    { 
        return false; 
 
    } // End Catch Block 
 
    // Success! 
    return true; 
} 
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Only after the application has called the AddPolygon method for every static polygon it wishes to be 
stored in the tree should it call the tree’s Build method. We will see later how the derived class’s Build 
function will use the polygon list to build its spatial hierarchy. 

AddDetailArea - CBaseTree 

The application will also need the ability to register detail areas with the tree prior to the Build method 
being executed. This method is passed a TreeDetailArea structure which will be added to the tree’s 
detail area list. 
 
bool CBaseTree::AddDetailArea( const TreeDetailArea & DetailArea ) 
{ 
    try 
    { 
        // Allocate a new detail area structure 
        TreeDetailArea * pDetailArea = new TreeDetailArea; 
        if ( !pDetailArea ) throw std::bad_alloc(); 
 
        // Copy over the data from that specified 
        *pDetailArea = DetailArea; 
 
        // Add to the area list 
        m_DetailAreas.push_back( pDetailArea ); 
 
    } // End Try Block 
 
    catch ( ... ) 
    { 
        return false; 
 
    } // End Catch Block 
 
    // Success! 
    return true; 
} 

 
This method should be called by the application for each detail area (AABB) it would like to register 
with the tree prior to tree compilation. These detail areas can be used to force the tree to partition space 
that contains no static polygon data or not partition space that contains much polygon data. We will 
understand exactly how this is achieved later when we look at the Build methods for the various derived 
classes.  

Retrieving Data from the Tree - CBaseTree 

There may be times after the build process has been completed (or pre-build with respect to the polygon 
and detail area lists) when an application would like to retrieve a list of all the polygons, leaves, and 



 

106 

detail areas being used by the entire tree. The following three methods are simple access functions 
which return the leaf list, polygon list, and the detail area list back to the caller.  
 
CBaseTree::LeafList & CBaseTree::GetLeafList() 
{ 
    return m_Leaves; 
} 
 
CBaseTree::PolygonList & CBaseTree::GetPolygonList() 
{ 
    return m_Polygons; 
} 
 
CBaseTree::DetailAreaList & CBaseTree::GetDetailAreaList() 
{ 
    return m_DetailAreas; 
} 

AddLeaf - CBaseTree 

Our derived classes will need a way to add leaves to their arrays during the build process. When a 
terminal node is encountered and a new CBaseLeaf is allocated and attached to the terminal node, we 
will also want to store that leaf’s pointer in the tree’s leaf list. Since this functionality will be the same 
for each tree type we will implement, this method in CBaseTree will save us the trouble of reinventing 
the wheel in each of our derived classes. The code simply adds the passed leaf pointer to the tree’s 
internal leaf list. 
 
bool CBaseTree::AddLeaf( CBaseLeaf * pLeaf ) 
{ 
    try 
    { 
        // Add to the leaf list 
        m_Leaves.push_back( pLeaf ); 
 
    } // End Try Block 
 
    catch ( ... ) 
    { 
        return false; 
 
    } // End Catch Block 
 
    // Success! 
    return true; 
} 
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PostBuild - CBaseTree 

The PostBuild method of CBaseTree should be called by the derived class after the tree has been 
constructed. In our derived classes, we will call this function at the very bottom of their Build method. 
PostBuild first calls the CBaseTree::CalculatePolyBounds method (which we will discuss next) which 
loops through each polygon in the tree’s polygon list and calculates and stores its AABB. It then calls 
the CBaseTree::BuildRenderData method which allows the CBaseTree to initialize the render system 
with the tree data that has just been constructed.  Many of you used to working with MFC might 
recognize this type of relationship, as it is much like creating a window. In MFC, methods can be 
overridden that allow your application to perform some default processing either just before or just after 
the window has been created. In this case, we are letting the base tree know that the tree building 
process is complete so that it can be prepared for rendering. The code to the function is shown below. 
 
bool CBaseTree::PostBuild( ) 
{ 
    // Calculate the polygon bounding boxes 
    CalculatePolyBounds( ); 
 
    // Build the render data 
    return BuildRenderData( ); 
} 
 
The CalculatePolyBounds method will be discussed next but we will defer our discussion of the 
BuildRenderData method until the next lesson where we discuss the rendering system. If the application 
did not pass a 3D device pointer into the derived tree’s class constructor, this function will simply return 
without doing anything. In this case, the tree’s rendering functionality will not be available but it can 
still be queried by the collision system.  

CalculatePolyBounds - CBaseTree 

The CalculatePolyBounds function will be used by all of our derived tree types. It will particularly 
important for an efficient broad phase collision step. Rather than ask the tree to return a list of leaves 
that intersect the swept sphere’s AABB and the send the polygons in those leaves immediately on to the 
narrow phase, we will introduce an intermediate broad phase step which will be cheap but very 
effective. After we have retrieved the leaves that the swept sphere intersects, we will test each polygon 
in those leaves against the swept sphere AABB using their respective bounding boxes. Only polygons 
whose bounding boxes intersect the bounding box of the swept sphere will need to be passed to the more 
expensive narrow phase. This is an inexpensive test that gives us a very impressive performance 
enhancement.  
 

Note: Performing the polygon bounding box test in our lab testing really did increase speed by an 
impressive amount. For example, on one of the levels we were testing with the collision system, even 
when using the tree to collect only the relevant leaves, but without performing the polygon bounding box 
tests, our frame rates fell to ~30fps when querying a particularly dense leaf (i.e., a leaf with many 
polygons in it). After adding the polygon bounding box test, many polygons were rejected and did not get 
sent to the narrow phase and our frame rate in that same leaf increased to a solid 560fps. That is 
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obviously quite a savings and well worth the small amount of additional memory the bounding boxes add 
to each polygon. 

 
This method is called from the CBaseTree::PostBuild method, which itself is called from the Build 
function of the derived class after the tree has been fully constructed. The job of the function is 
straightforward enough; loop through each static polygon stored in the tree (the m_Polygons STL linked 
list) and compile a bounding box for each one. 
 
The firsts section of the function (shown below) creates an STL list iterator (a PolygonList iterator) 
which it uses to step through the elements in the polygon list. For each polygon, it aliases its bounding 
box minimum and maximum extents vectors with local variables Min and Max (for ease of use) and 
then sets the bounding box of the polygon to initially bogus values.  
 
void CBaseTree::CalculatePolyBounds( ) 
{ 
    ULONG                   i; 
    CPolygon               *pCurrentPoly; 
    PolygonList::iterator   Iterator; 
 
    // Calculate polygon bounds 
    for ( Iterator = m_Polygons.begin(); Iterator != m_Polygons.end(); ++Iterator )  
    { 
        // Get poly pointer and bounds references for easy access 
        pCurrentPoly = *Iterator; 
        if ( !pCurrentPoly ) continue; 
        D3DXVECTOR3 & Min = pCurrentPoly->m_vecBoundsMin; 
        D3DXVECTOR3 & Max = pCurrentPoly->m_vecBoundsMax; 
 
        // Reset bounding box 
        Min = D3DXVECTOR3( FLT_MAX, FLT_MAX, FLT_MAX ); 
        Max = D3DXVECTOR3( -FLT_MAX, -FLT_MAX, -FLT_MAX ); 

 
Since FLT_MAX contains the maximum number that we can store in a float, and we set the maximum 
extents vector initially to the minimum possible value and the minimum extents vector to the maximum 
possible values, we create an initial huge “inside-out” box. 
 
In the next section of the loop we test the position of each vertex in the polygon to see if it is contained 
within the box we have currently compiled. If not, the box will be adjusted to contain the vertex (this 
will always be the case for the first vertex due to the initial starting values of the box). 
 
        // Build polygon bounds 
        for ( i = 0; i < pCurrentPoly->m_nVertexCount; ++i ) 
        { 
            CVertex & vtx = pCurrentPoly->m_pVertex[i]; 
            if ( vtx.x < Min.x ) Min.x = vtx.x; 
            if ( vtx.y < Min.y ) Min.y = vtx.y; 
            if ( vtx.z < Min.z ) Min.z = vtx.z; 
            if ( vtx.x > Max.x ) Max.x = vtx.x; 
            if ( vtx.y > Max.y ) Max.y = vtx.y; 
            if ( vtx.z > Max.z ) Max.z = vtx.z; 
 
        } // Next Vertex 
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Finally, before moving on to process the next polygon in the list, we will grow the box by 0.1 units in 
each direction to create a small buffer around the polygon. The reason we do this is to provide us a 
safety buffer when performing floating point tests. If two boxes (the polygon box and swept sphere box) 
were next to each other such that they were exactly touching, we risk the polygon being rejected for the 
narrow phase due to floating point accumulation/rounding errors. We certainly want to make sure that 
we do not reject a polygon from the narrow phase that we may be colliding with or we might be allowed 
to pass straight through it. By growing the box just slightly, we make this a fuzzy test where their boxes 
would overlap and the polygon would definitely be included in the case just mentioned.  
 
        // Increase bounds slightly to relieve this operation during 
        // intersection testing 
        Min.x -= 0.1f; Min.y -= 0.1f; Min.z -= 0.1f; 
        Max.x += 0.1f; Max.y += 0.1f; Max.z += 0.1f; 
 
    } // Next Bounds 
} 
 

When this function, returns every polygon in the tree will contain a world space bounding box that the 
collision system (or any external component) can use to further refine the number of polygons in a leaf 
that get passed to the narrow phase. 

14.11.6 Utility Methods - CBaseTree 

These last two methods are not used by the application or by any other function in CBaseTree. They 
exist to make your life easier should you choose to implement the DebugDraw method in your derived 
classes. It is purely optional that you implement this method since ISpatialTree provides a default 
implementation that does nothing. Therefore, the application can always call this method even if you 
have not implemented it and no harm will be done. 
 
The DebugDraw method will be implemented in all our derived classes in a very similar way. As 
discussed earlier, it will traverse the tree searching for visible leaf nodes. When a leaf node is found, we 
will draw a bounding box around the area represented by the leaf. We will also tint the screen red if the 
camera is currently contained in a leaf that contains polygon data. Since most of the code is geared 
towards generating and rendering the bounding box and handling the screen tinting, we decided to add 
the two functions that perform these tasks to CBaseTree (DrawBoundingBox and DrawScreenTint) and 
avoid duplicating code unnecessarily.  

DrawBoundingBox – CBaseTree 

The CBaseTree::DrawBoundingBox method will be called by the DebugDraw method in each of our 
derived classes (assuming the scene is calling ISpatialTree::DebugDraw). It will be passed the world 
space bounding box (the minimum and maximum extent vectors) of the leaf and (as its third parameter) 
the color we would like to render the wireframe box. The fourth parameter is a boolean that will indicate 
whether we would like the box to be rendered using the depth buffer.  
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When our DebugDraw routines call this method for a visible leaf which the camera is not currently in, 
the box will be rendered normally with depth testing enabled. For the current camera leaf we will pass 
false as this parameter and render it to the screen without depth testing. This ensures that it will always 
be rendered on top of anything already in the frame buffer, making it easier to see the box for the leaf we 
are currently standing in without it being obscured by nearby geometry. 
 
The function has two static members. The first is an array of 24 vertices that will define the four vertices 
of each face of the cube (6 faces * 4 vertices = 24). We will also use a static boolean called BoxBuilt to 
indicate whether we have already built the box in the previous call. Since these are static methods they 
will retain their values each time the function is called. We do this so that the box mesh is only ever built 
the first time the method is ever called. If this method has never been called before, then the static 
BoxBuilt will be set to false and code will be executed to generate the box vertices and add them to the 
static vertex array. The BoxBuilt boolean will then be set to true so that the next time the method is 
called it will know that the box mesh has already been constructed and we will not have to do it again. 
Since the box we wish to draw will be a wireframe box, the vertices in this array will describe a list of 
line primitives which will be rendered using the D3DPT_LINELIST primitive type. The line list mesh 
will be stored in the vertices array as a 1x1x1 cube and it will be transformed and scaled to the size and 
position of the current leaf node. Let us look at this function in a few sections. 
 
In the first section of the function we can see that a local structure is defined to describe what a box 
vertex looks like. Basically, it contains a position and a color. We can also see that if the tree does not 
currently store a pointer to a 3D device, then this is not a tree that is intended to be rendered and we 
return. 
 
void CBaseTree::DrawBoundingBox( const D3DXVECTOR3 & Min, 
                                 const D3DXVECTOR3 & Max,  
                                 ULONG Color,  
                                 bool bZEnable /* = false */ ) 
{ 
    struct BoxVert 
    { 
        D3DXVECTOR3 Pos; 
        ULONG       Color; 
    }; 
 
    ULONG          i; 
    static BoxVert Vertices[24]; 
    static bool    BoxBuilt = false; 
    D3DXMATRIX     mtxBounds, mtxIdentity; 
    D3DXVECTOR3    BoundsCenter, BoundsExtents; 
    ULONG          OldStates[6]; 
 
    // If there is no device, we can't draw 
    if ( !m_pD3DDevice ) return; 

 
Next we create an identity matrix (which will be used in a moment) and if the BoxBuilt boolean is false, 
we fill in the elements of the static vertex array. Notice that we position the 24 vertices such that they 
describe the vertices of each face in a unit sized cube; a cube of 1 unit in size in each direction which is 
centered at (0, 0, 0). This means the cube vertices are in the -0.5 to +0.5 range along each axis. We can 
think of this cube at this point as being in model space. 
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    // We need an identity matrix later 
    D3DXMatrixIdentity( &mtxIdentity ); 
 
    // Build the box vertices if we have not done so already 
    if ( !BoxBuilt ) 
    { 
        // Bottom 4 edges 
        Vertices[0].Pos  = D3DXVECTOR3( -0.5f, -0.5f, -0.5f ); 
        Vertices[1].Pos  = D3DXVECTOR3(  0.5f, -0.5f, -0.5f ); 
 
        Vertices[2].Pos  = D3DXVECTOR3(  0.5f, -0.5f, -0.5f ); 
        Vertices[3].Pos  = D3DXVECTOR3(  0.5f, -0.5f,  0.5f ); 
 
        Vertices[4].Pos  = D3DXVECTOR3(  0.5f, -0.5f,  0.5f ); 
        Vertices[5].Pos  = D3DXVECTOR3( -0.5f, -0.5f,  0.5f ); 
 
        Vertices[6].Pos  = D3DXVECTOR3( -0.5f, -0.5f,  0.5f ); 
        Vertices[7].Pos  = D3DXVECTOR3( -0.5f, -0.5f, -0.5f ); 
 
        // Top 4 edges 
        Vertices[8].Pos  = D3DXVECTOR3( -0.5f,  0.5f, -0.5f ); 
        Vertices[9].Pos  = D3DXVECTOR3(  0.5f,  0.5f, -0.5f ); 
 
        Vertices[10].Pos = D3DXVECTOR3(  0.5f,  0.5f, -0.5f ); 
        Vertices[11].Pos = D3DXVECTOR3(  0.5f,  0.5f,  0.5f ); 
 
        Vertices[12].Pos = D3DXVECTOR3(  0.5f,  0.5f,  0.5f ); 
        Vertices[13].Pos = D3DXVECTOR3( -0.5f,  0.5f,  0.5f ); 
 
        Vertices[14].Pos = D3DXVECTOR3( -0.5f,  0.5f,  0.5f ); 
        Vertices[15].Pos = D3DXVECTOR3( -0.5f,  0.5f, -0.5f ); 
 
        // 4 Side 'Struts' 
        Vertices[16].Pos = D3DXVECTOR3( -0.5f, -0.5f, -0.5f ); 
        Vertices[17].Pos = D3DXVECTOR3( -0.5f,  0.5f, -0.5f ); 
 
        Vertices[18].Pos = D3DXVECTOR3(  0.5f, -0.5f, -0.5f ); 
        Vertices[19].Pos = D3DXVECTOR3(  0.5f,  0.5f, -0.5f ); 
 
        Vertices[20].Pos = D3DXVECTOR3(  0.5f, -0.5f,  0.5f ); 
        Vertices[21].Pos = D3DXVECTOR3(  0.5f,  0.5f,  0.5f ); 
 
        Vertices[22].Pos = D3DXVECTOR3( -0.5f, -0.5f,  0.5f ); 
        Vertices[23].Pos = D3DXVECTOR3( -0.5f,  0.5f,  0.5f ); 
 
        // We're done 
        BoxBuilt = true; 
 
    } // End if box has not yet been built 

 
At this point all 24 model space box vertices have been placed in the vertex array and the BoxBuilt 
boolean will be set to true. Thus, the above code will not be performed the next time this function is 
called to render another leaf box. 
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In the next section we loop through each of the 24 vertices and set their color value to the color 
parameter passed by the caller (the DebugDraw method of the derived class).  
 
    // Set the color to that specified. 
    for ( i = 0; i < 24; ++i ) Vertices[i].Color = Color; 

 
In the next section we need to create a matrix that, when set on the device as a world matrix, will 
transform and scale the model space vertices such that the box is transformed into a box that is equal in 
size to the passed box vectors (the leaf’s bounding box) and positioned in the world such that its center 
point is at the center point of the leaf. 
 
First we need to find the world space center point of the leaf bounding box, which we can calculate by 
adding the leaf’s world space minimum and maximum box vector and dividing the result by 2. We then 
calculate the size of the box (the diagonal size of the leaf’s bounding box) by subtracting the minimum 
extent vector from the maximum vector.  
 
    // Compute the bound's centre point and extents 
    BoundsCenter  = (Min + Max) / 2.0f; 
    BoundsExtents = Max - Min; 

 
At this point BoundsExtents contains the diagonal length of the leaf bounding box. Since our box mesh 
is defined to be a 1x1x1 unit square (0.5 units in each dimension), if we store the BoundsExtents in the 
diagonal of a matrix, we will have a scaling matrix that will transform the vertices of the box mesh so 
that it becomes the same size as the leaf box in world space.  
 
For example, let us imagine that the world space leaf bounding box extents are the two vectors (50, 50, 
50) and (60, 60, 60). In this case, BoundsExtents will be: 
 

(60, 60, 60) - (50, 50, 50) = (10, 10, 10) 
 
If we store the x, y, and z components of the resulting vector in the diagonal of a matrix, we will get a 
matrix which will scale any x, y, and z vertex components by 10. Since the box is defined in the -0.5 to 
0.5 range along each axis, we can see that when the box vertices are multiplied by this scaling matrix, it 
will result in vertices in the -0.5*10=-5 to 0.5*10=5 range (i.e., a box in the range of [-5, 5] along each 
axis). This is exactly as it should be as it matches the size of the leaf bounding box.  All we have to do 
now is place the world space position vector of the center of the leaf (BoundsCenter) in the translation 
row of the matrix and we will have a world matrix that will properly scale and position the model space 
box mesh to match the leaf. 
 
    // Build the scaling matrix 
    D3DXMatrixScaling( &mtxBounds,  
                       BoundsExtents.x,  
                       BoundsExtents.y,  
                       BoundsExtents.z ); 
 
    // Translate the bounding box matrix 
    mtxBounds._41 = BoundsCenter.x; 
    mtxBounds._42 = BoundsCenter.y; 
    mtxBounds._43 = BoundsCenter.z; 
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    // Set the bounding box matrix 
    m_pD3DDevice->SetTransform( D3DTS_WORLD, &mtxBounds ); 

 
At this point we have the world matrix set on the device and we are almost ready to render, but first we 
will need to set some render states. We will start by disabling Z buffer writing (we do not want our box 
lines to obscure real geometry) and enable or disable depth testing based on the boolean parameter 
passed in. We will also want to disable lighting (our lines are constructed from pre-colored vertices) and 
set the first texture/color stage so that only the diffuse color of the vertex is used. Of course, we had 
better retrieve and backup the current state settings because we would not want to change something that 
will cause the rest of the application to render incorrectly. So we will retrieve the current states that we 
intend to change and store them in a local states array (OldStates) as shown below. 
 
    // Retrieve old states 
    m_pD3DDevice->GetRenderState( D3DRS_ZWRITEENABLE, &OldStates[0] ); 
    m_pD3DDevice->GetRenderState( D3DRS_ZENABLE, &OldStates[1] ); 
    m_pD3DDevice->GetRenderState( D3DRS_LIGHTING, &OldStates[2] ); 
    m_pD3DDevice->GetRenderState( D3DRS_COLORVERTEX, &OldStates[3] ); 
    m_pD3DDevice->GetTextureStageState( 0, D3DTSS_COLORARG1, &OldStates[4] ); 
    m_pD3DDevice->GetTextureStageState( 0, D3DTSS_COLOROP, &OldStates[5] ); 

 
With the current states currently backed up we will setup the render states we wish to use to render our 
box edges. 
 
    // Setup new states 
    m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, bZEnable ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_COLORVERTEX, TRUE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_DIFFUSE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_SELECTARG1 ); 

 
With the pipeline now configured, we set the FVF of our box vertices and render. Since our box vertices 
contain positional information and a diffuse color we will inform the pipeline by using the 
D3DFVF_XYZ | D3DFVF_DIFFUSE flag combination. We will then render the vertices straight from 
the box vertex array using the DrawPrimitiveUP function. UP stands for ‘User Pointer’ and it allows us 
to render straight from system memory without having to store the vertices in vertex buffers. This is a 
highly inefficient way to render primitives, but it is acceptable in this case since it is only a debug 
routine and it makes the implementation a lot easier.  
 
    // Draw 
    m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 
    m_pD3DDevice->DrawPrimitiveUP( D3DPT_LINELIST, 12, &Vertices, sizeof(BoxVert)); 

 
As you can see in the above code, we ask DrawPrimitiveUP to draw 12 lines, where each line consists of 
two vertices (start and end points). Thus the vertex array we pass in as the third parameter must contain 
at least 12*2=24 vertices, which we know ours does. The fourth parameter is the stride of the vertex 
structure we are using so the pipeline knows how many bytes to advance when stepping from vertex to 
vertex during the transformation process. 
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With all lines rendered for the currently passed leaf node, we restore the render states we backed up 
earlier and reset the world matrix to identity. 
 
    // Reset old states 
    m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, OldStates[0] ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, OldStates[1] ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, OldStates[2] ); 
    m_pD3DDevice->SetRenderState( D3DRS_COLORVERTEX, OldStates[3] ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, OldStates[4] ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, OldStates[5] ); 
 
    // Reset the matrix 
    m_pD3DDevice->SetTransform( D3DTS_WORLD, &mtxIdentity ); 
}  

DrawScreenTint – CBaseTree 

This is utility function tints the screen a red color when the camera is positioned inside a populated leaf 
node. It accepts one parameter: a DWORD containing the color to tint the screen. 
 
This technique should be familiar to you since we did the same thing in Chapter 7 of Module I when we 
implemented our underwater effect. We just create four transformed and lit vertices (screen space 
vertices with diffuse color components) and position them at the four corners of the viewport. We then 
render the quad to the screen with alpha blending enabled (and with the depth buffer disabled so that it is 
definitely rendered on top of everything else) to blend the color of the quad over the entire scene stored 
in the frame buffer.. 
 
The first part of the function is shown below. Note that we define a vertex structure (TintVert) which is 
laid out as a transformed and lit vertex. We know that when we pass a pre-transformed (viewport space) 
vertex to the pipeline, its positional vector is 4D, not 3D. The first two positional components of the 
vertex (x and y) describe the position on the viewport where the vertex is positioned. The third 
component (z) contains the depth buffer value in the range of 0.0 to 1.0. Since we are going to disable 
depth testing and writing when we render this quad, we will just set this to zero. The fourth positional 
component is called RHW by DirectX and should contain the reciprocal of homogenous W (i.e., 1 
divided by the viewspace vertex Z component). This is all designed to work if you are performing your 
own transformation of geometry and merely wish DirectX to render the screen space polygons. 1/W gets 
closer to 1 the closer to the near plane the vertex is. It describes the depth of the vertex with respect to 
the camera. Recall that this value is used during rendering by the DirectX fog engine. However, we just 
wish to draw a quad on the screen without fog, so we will just set this to 1 which simulates a vertex very 
close to the near plane. However, since we are not using fog and the depth buffer is disabled, we could 
actually this value to anything without any ill effect.  
 
void CBaseTree::DrawScreenTint( ULONG Color ) 
{ 
    struct TintVert 
    { 
        D3DXVECTOR4 Pos; 
        ULONG       Color; 
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    }; 
 
    ULONG        i; 
    TintVert     Vertices[4]; 
    ULONG        OldStates[10]; 
    D3DVIEWPORT9 Viewport; 
 
 
    // If there is no device, we can't draw 
    if ( !m_pD3DDevice ) return; 
 
    // Retrieve the viewport dimensions 
    m_pD3DDevice->GetViewport( &Viewport ); 
 
 
    // 4 Screen corners 
    Vertices[0].Pos=D3DXVECTOR4((float)Viewport.X, (float)Viewport.Y, 0.0, 1.0f ); 
     
    Vertices[1].Pos=D3DXVECTOR4((float)Viewport.X + Viewport.Width, 
                                (float)Viewport.Y, 0.0, 1.0f ); 
 
    Vertices[2].Pos  = D3DXVECTOR4( (float)Viewport.X + Viewport.Width,  
       (float)Viewport.Y + Viewport.Height, 
                                    0.0, 1.0f ); 
 
    Vertices[3].Pos  = D3DXVECTOR4( (float)Viewport.X,  
                                    (float)Viewport.Y + Viewport.Height,  
                                    0.0, 1.0f ); 
 
    // Set the color to that specified. 
    for ( i = 0; i < 4; ++i ) Vertices[i].Color = Color; 

 
The above code shows how we fetch the device viewport and retrieve the viewport rectangle. We will 
use this rectangle to position the vertices of our quad in the frame buffer. As you can see, the four 
vertices are positioned at the top left, top right, bottom right, and bottom left of the viewport. The z 
component of each vertex is set to 0.0 and the RHW component is set to 1.0. We then loop through each 
of the vertices and set its color properties to the color value passed into the function. 
 
Next we will backup and set the render states and texture states we wish to use to render our screen 
effect. We will disable Z writing and testing, disable lighting, and enable alpha blending. We will set the 
source and destination color blending results to use the alpha component of the passed color to weight 
the blending between the color of the quad and the color already in the frame buffer. This means we 
need to set the source and destination blend render states to D3DBLEND_SRCALPHA and 
D3DBLEND_INVSRCALPHA and configure texture stage zero to take its alpha and color components 
from the diffuse vertex color. This will generate a final color for each pixel at the end of the texture 
stage cascade which has color and alpha components equal to the diffuse and alpha components of the 
passed color, respectively. We then pass this to the renderer where the alpha component will be used as 
the weighting factor with the blending modes we have configured. 
 
Below we see the code that makes a backup of all the states we intend to change, sets all the new states, 
renders the quad, and then restores the original device states.  
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    // Retrieve old states 
    m_pD3DDevice->GetRenderState( D3DRS_ZWRITEENABLE, &OldStates[0] ); 
    m_pD3DDevice->GetRenderState( D3DRS_ZENABLE, &OldStates[1] ); 
    m_pD3DDevice->GetRenderState( D3DRS_LIGHTING, &OldStates[2] ); 
    m_pD3DDevice->GetRenderState( D3DRS_COLORVERTEX, &OldStates[3] ); 
    m_pD3DDevice->GetRenderState( D3DRS_ALPHABLENDENABLE, &OldStates[4] ); 
    m_pD3DDevice->GetRenderState( D3DRS_ALPHATESTENABLE, &OldStates[5] ); 
    m_pD3DDevice->GetTextureStageState( 0, D3DTSS_COLORARG1, &OldStates[6] ); 
    m_pD3DDevice->GetTextureStageState( 0, D3DTSS_COLOROP, &OldStates[7] ); 
    m_pD3DDevice->GetTextureStageState( 0, D3DTSS_ALPHAARG1, &OldStates[8] ); 
    m_pD3DDevice->GetTextureStageState( 0, D3DTSS_ALPHAOP, &OldStates[9] ); 
 
    // Setup new states 
    m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_COLORVERTEX, TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, FALSE ); 
    m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_SRCALPHA ); 
    m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_DIFFUSE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_SELECTARG1 ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
 
    // Draw 
    m_pD3DDevice->SetFVF( D3DFVF_XYZRHW | D3DFVF_DIFFUSE ); 
    m_pD3DDevice->DrawPrimitiveUP(  D3DPT_TRIANGLEFAN,  
            2,  
       &Vertices,  
       sizeof(TintVert) ); 
 
    // Reset old states 
    m_pD3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, OldStates[0] ); 
    m_pD3DDevice->SetRenderState( D3DRS_ZENABLE, OldStates[1] ); 
    m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, OldStates[2] ); 
    m_pD3DDevice->SetRenderState( D3DRS_COLORVERTEX, OldStates[3] ); 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, OldStates[4] ); 
    m_pD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, OldStates[5] ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, OldStates[6] ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, OldStates[7] ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, OldStates[8] ); 
    m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, OldStates[9] ); 
} 
 
We have now covered all the house keeping and utility building code from CBaseTree that needs to be 
covered in this lesson. The one exception is the Repair method that performs T-junction repair, but we 
will come back to that a little later in this lesson and devote an entire section to it. In the next chapter we 
will add a rendering system to this class, but for now we have everything we need in place to create our 
derived tree classes and use them to perform efficient collision queries.  
 
Before we discuss T-junction repair and move on to look at the implementations of each of the derived 
classes, we will need to extend our CCollision library with a few more intersection routines that will be 
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used by the tree building and query functions in the derived classes. For example, we will need to be 
able to determine when a point is inside an AABB, when two AABBs are intersecting, and when a ray 
intersects an AABB. We will discuss the implementations of these functions next, and we will make 
them static members of the CCollision class so that they can be used even if the collision system is not 
being used.  

14.12 Point/AABB Intersection 

One of the simplest collision tests we can perform is determining whether a point is inside an AABB. 
Such a method is used to find out if a certain position is contained inside a leaf node’s bounds, as one 
obvious example. Our DebugDraw routines will use this intersection test to determine whether the leaf 
currently being visited contains the camera position. If it does, then it renders the bounding box of the 
leaf a different color. 
 
The test is easy and cheap to perform and involves nothing more than separately testing the x, y, and z 
components of the passed position vector to see if they fall between the minimum and maximum x, y 
and z extents of the AABB. If any component of the position vector is outside the range of its 
corresponding components in the AABB extent vectors, the point is not contained and we return false. 
That is, the test is essentially stating “If the x component of the point is between the minimum x extent 
and the maximum x extent of the box, we have passed the X axis test and the two other axes must be 
tested, etc.”  
 
The code to PointInAABB is just a few lines long. The function only returns true if none of the three 
axis tests fail. 
 
bool CCollision::PointInAABB( const D3DXVECTOR3& Point,  
        const D3DXVECTOR3& Min,  
      const D3DXVECTOR3& Max,  
      bool bIgnoreX /* = false */,  
      bool bIgnoreY /* = false */,  
      bool bIgnoreZ /* = false */ ) 
{ 
    // Does the point fall outside any of the AABB planes? 
    if ( !bIgnoreX && (Point.x < Min.x || Point.x > Max.x) ) return false; 
    if ( !bIgnoreY && (Point.y < Min.y || Point.y > Max.y) ) return false; 
    if ( !bIgnoreZ && (Point.z < Min.z || Point.z > Max.z) ) return false; 
     
    // We are behind all planes 
    return true; 
} 
 
Notice how this method not only accepts the point and the two AABB extents as parameters, it also 
accepts three booleans allowing us to instruct the function to ignore tests along any axes. For example, if 
we pass in true for the bIgnoreY parameter, the Y component of the point will not be tested against the 
Y components of the AABB extents (i.e., the function will behave as if the Y axis test has not failed and 
that the point always falls within the box with respect to the Y axis). 
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It is quite useful to have the ability to ignore certain components in the test. Indeed, you will see that this 
is a feature we provide in all of our AABB intersection tests. It is particularly handy when performing a 
collision query on a quad-tree. As discussed earlier, the vanilla quad-tree will always have leaf nodes of 
the same height (the max vertical range of the entire level). However, we also discussed (and will 
implement) the Y-variant quad-tree, where the vertical extents of each node fit the contained geometry. 
This can produce certain problems when querying the tree since there may be times when a given 
position is contained inside no leaf node. This is actually true of any tree type but is more easily 
demonstrated with the Y-variant tree. 
 
For example, Figure 14.53 shows a terrain compiled into a Y-variant quad-tree. We also see a space ship 
hovering above the terrain.  
 

 
Figure 14.53 

 
Imagine that our space ship has a spotlight mounted on the bottom of its hull, such that it illuminates the 
terrain immediately below it. In order to find the terrain polygons we need to illuminate, we would 
normally send the bounding box of the space ship down the tree and collect all the leaves it intersects. 
We can then fetch the polygons from those leaves and perform some custom lighting effect. However, in 
this case we can see that if we were to feed the bounding box of the ship into the tree, no leaves would 
be returned because it is not contained in any of the leaves. But, if we did the same test and ignored the 
Y component in each leaf (only testing the X and Z extents of the box), then the leaves beneath the ship 
would be returned even though the ship is not technically contained within their volume.  

14.13 AABB/AABB Intersection 

Another collision query that we will need to use quite a bit in our applications determines whether two 
AABBs intersect. This collision routine will be the heart of the CollectLeavesAABB method in our 
derived classes, which essentially traverses the tree with the passed query volumes and finds which 
leaves the passed bounding box intersects. At each leaf we will perform an AABB/AABB test and only 
add the leaf to the output list if there is an intersection and the collision function returns true. 
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Much like the PointInAABB test described above, the AABBIntersectAABB intersect function performs 
its tests on a per axis basis. If at any point we find an axis on which an overlap does not occur, the boxes 
do not overlap and the function can return false immediately. If there is overlap on each of the three 
axes, then the bounding boxes intersect one another and we return true. The test for an overlap on a 
given axis is very simple when dealing with AABBs as Figure 14.54 shows. 
 

 
Figure 14.54 

 
Figure 14.54 shows the X axis overlap test for two boxes that do indeed overlap. Since we are dealing 
with one axis at a time, the two boxes can be treated component-wise as lines on those axes. If Min1 and 
Max1 are the extent vectors of the first box and Min2 and Max2 are the extent vectors of the second 
box, we can see that if Min1.x is smaller than Max2.X and Max1.x is larger than Min2.x, then the boxes 
overlap on that axis. You should be able to imagine that if we were to move the blue line to the left so 
that they no longer overlapped, min2.x would no longer be smaller than Max1.x and the test would fail. 
That is, we would not have an overlap on the X axis which means the boxes cannot possibly be 
intersecting one another. When this is the case we can return false immediately without performing any 
other axis overlap tests. 
 
The code is shown below. Note that it also supports the axis ignore functionality discussed in the 
previous function. If we choose to ignore any axis, then those axes are assumed to be overlapping. 
 
bool CCollision::AABBIntersectAABB( const D3DXVECTOR3& Min1,  
       const D3DXVECTOR3& Max1,  
       const D3DXVECTOR3& Min2,  
       const D3DXVECTOR3& Max2,  
       bool bIgnoreX /* = false */,  
       bool bIgnoreY /* = false */,  
       bool bIgnoreZ /* = false */ ) 
{ 
    return (bIgnoreX || Min1.x <= Max2.x) && (bIgnoreY || Min1.y <= Max2.y) && 
           (bIgnoreZ || Min1.z <= Max2.z) && (bIgnoreX || Max1.x >= Min2.x) && 
           (bIgnoreY || Max1.y >= Min2.y) && (bIgnoreZ || Max1.z >= Min2.z); 
} 

 
The parameter list to the function includes the minimum and maximum extent vectors of the first AABB 
to test followed by the minimum and maximum extent vectors of the second AABB to test. Following 
this are three optional axis ignore booleans allowing us to ignore any of the axes during the test.  
 

We have decided to also provide an overloaded version of this function that accepts a boolean reference 
as its first parameter that can be used to communicate back to the caller whether or not box 2 was 
completely contained inside box 1. This makes the test slower since it has to perform the containment 
test first, followed by the intersection test described above. However, there are times when dealing with 
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hierarchy traversal that this can prevent many future AABB/AABB intersection tests from needing to be 
performed. 
 
For example, imagine that our application called the CollectLeavesAABB function for one of our 
derived tree classes. We know this function has the task of stepping through the tree and at each node 
testing for an intersection between the passed AABB and the AABB of the node/leaf. If the query 
AABB does not intersect a node’s AABB then we do not have to bother traversing into any of its 
children, allowing us to reject portions of the tree from having to be testing and collected. However, if 
the query volume does intersect the node volume, we will want to step into its children. Whenever a leaf 
node is reached, we add its leaf structure to a list that can be passed back to the caller. However, with 
this new overloaded version of the function we can perform a optimization to our CollectLeavesAABB 
routine. If we know that the bounding box of a node is completely contained inside the query volume, 
then we already know that all of its child nodes (including the leaf nodes) will be contained in it also. 
Thus, we do not need to perform any further AABB intersection tests on any of its child nodes. Instead 
we can just traverse into its children searching for leaf nodes which, once found, are immediately added 
to the leaf list that will be returned.  
 
The overloaded function is shown below with the containment tests performed at the beginning of the 
function. The passed bContained boolean is initially set to true, meaning that box 2 is fully contained in 
box 1 and each of the containment tests tries to find proof that box 2 pierces the bounds of box 1 and is 
therefore not fully contained. This is once again done of a per axis basis, so for example, when testing 
the X axis for containment, but we are essentially just trying to prove that either the minimum extents of 
box 2 are smaller then the minimum extents of box 1 or that the maximum extents of box 2 are larger 
than the maximum extents of box 1. If this is true for any axis, then box 2 is not contained in box1 and 
the containment boolean is set to false. When this is the case, we must perform the intersection test 
described above to test if the boxes even intersect. The intersection test at the end of the function only 
has to be performed if the containment test failed. As soon as we have proof that box 2 is contained in 
box 1 we can return true for intersection with the bContainment boolean set to true.  
 
bool CCollision::AABBIntersectAABB( bool & bContained,  
       const D3DXVECTOR3& Min1,  
       const D3DXVECTOR3& Max1,  
       const D3DXVECTOR3& Min2,  
       const D3DXVECTOR3& Max2,  
       bool bIgnoreX /* = false */,  
       bool bIgnoreY /* = false */,  
       bool bIgnoreZ /* = false */ ) 
{ 
    // Set to true by default 
    bContained = true; 
 
    // Is box contained totally inside 
    if ( !bIgnoreX && (Min2.x < Min1.x || Min2.x > Max1.x) ) bContained = false; 
    else  
    if ( !bIgnoreY && (Min2.y < Min1.y || Min2.y > Max1.y) ) bContained = false; 
    else  
    if ( !bIgnoreZ && (Min2.z < Min1.z || Min2.z > Max1.z) ) bContained = false; 
    else  
    if ( !bIgnoreX && (Max2.x < Min1.x || Max2.x > Max1.x) ) bContained = false; 
    else  
    if ( !bIgnoreY && (Max2.y < Min1.y || Max2.y > Max1.y) ) bContained = false; 
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    else  
    if ( !bIgnoreZ && (Max2.z < Min1.z || Max2.z > Max1.z) ) bContained = false; 
 
    // Return immediately if it's fully contained 
    if ( bContained == true ) return true; 
 
    // Perform full intersection test 
    return (bIgnoreX || Min1.x <= Max2.x) && (bIgnoreY || Min1.y <= Max2.y) && 
           (bIgnoreZ || Min1.z <= Max2.z) && (bIgnoreX || Max1.x >= Min2.x) && 
           (bIgnoreY || Max1.y >= Min2.y) && (bIgnoreZ || Max1.z >= Min2.z); 
} 

14.14 Ray/AABB Intersection 

We have talked a lot about the usefulness of being able to send a ray through the tree and get back a list 
of intersecting leaves. One example of where such a technique will be used is in Module III when we 
will write a lightmap compiler. Beams of light emanating from a light source will be modelled as rays 
and we will need to determine as quickly as possible whether any polygons in the scene block that ray. 
As our scenes will likely involve of tens of thousands of polygons or more, we will be performing 
literally millions of these tests. To make sure that our lightmap compiler will compile its texture data as 
quickly as possible, the scene will first be compiled into a spatial tree so that we can query the scene 
efficiently by performing the ray query on the tree. There are plenty of other examples, but this should 
give you further indication that spatial partitioning will be an important tool in many areas. 
 
When examining the ISpatialTree interface we saw that our derived tree classes will be expected to 
implement a method called CollectLeavesRay. This method will be passed a ray and will traverse the 
tree testing which leaves the ray intersects. These leaves will then be returned so that the calling 
application can access the polygon data. In the lightmap compiler discussed above, the leaves returned 
will contain the polygons that have the potential to block the ray. This handful of polygons can then be 
tested more closely using ray/polygon intersection tests. 
 
The heart of the CollectLeavesRay function (at least for the derived classes we implement) will be the 
testing of a ray to see if it intersects the bounding box of a given node. If the ray does intersect a node 
then we have to traverse into its children and continue testing. If it does not, then we can abandon that 
branch of the tree and all the leaf data it contains. Whenever we enter a leaf node, the leaf object will be 
added to a list that will be returned to the caller. Thus, the function will return to the application a list of 
the leaves the ray intersected. It is clear then that we must learn how to test for an intersection between a 
ray and an axis aligned bounding box. 

14.14.1 The Slabs Method 

We will be using the slabs method for intersection testing since it will works for both axis aligned 
bounding boxes and oriented bounding boxes. Our implementation of this method however will be 
optimized to take advantage of the fact that we will only be using it for AABB testing. As such, our 
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function is to be used only for the testing of AABBs. Although we will be implementing a faster AABB 
only method, the intersection theory we discuss here should make it a fairly simple matter for you to 
implement a version of the function that works with OBBs as well. 
 
The slabs method works by calculating the intersection between the ray and each set of parallel planes 
described by the cube faces. A slab is therefore a pair of faces that are parallel to one another. If we 
think of an axis aligned bounding box, it would be comprised of three slabs. The first slab might be the 
pair of planes described by the front and back face of the cube, whose normals are aligned to the 
coordinate system Z axis. The second slab might be the planes of the right and left faces whose normals 
are aligned with the coordinate system X axis. The third slab would be comprised of the planes of the 
top and bottom faces whose normals are aligned with the Y axis of the coordinate system. 
 
The test can easily be converted to two dimensions just by dropping tests against the slab whose planes 
are aligned with the coordinate system Z axis. To make visualizing the slabs method a little easier, we 
will discuss the two dimensional case in our images. The only difference is that in the three dimensional 
case, we are testing three slabs instead of two. 
 
Figure 14.55 shows the minimum and maximum extent vectors of an AABB which describe the bottom 
left and top right corners of a 2D axis aligned bounding box. It also shows the ray that we would like to 
test for intersection against the bounding box. As can be clearly seen, the ray does intersect the box; we 
just need some way of determining this. 
 
We can see that the point at the bottom left 
corner of the AABB (Extents Min) describes 
a point that is on the plane of the left face of 
the box. This is a plane whose normal is 
aligned with the coordinate system X axis. 
The top right corner of the box (Extents Max) 
describes a point that is on the same plane as 
the right face of the box and whose normal is 
also aligned to the coordinate system X axis. 
These two planes are parallel to one another 
and share the same normal, and as such, 
comprise a slab. This is the slab for the X axis 
and it contains the planes labelled ‘X Plane 
Min’ and ‘X Plane Max’. They are assigned 
the min and max names based on their 
distance to the ray origin; that is, based on the 
time of intersection between the ray and that 
plane. X Plane Min for example will intersect the ray closer to the ray origin, so it is called the minimum 
plane of the slab. We can see that a slab bounds the AABB along one axis. In this case we are describing 
the X slab which bounds the AABB on its left and right sides. The reason why this is important will 
become clear in a moment. 
 
If we look at the same diagram (Figure 14.55) we can see that the same two extent vectors of the AABB 
also describe points that are on two planes aligned with the coordinate system Y axis, and thus describe 

 
Figure 14.55 
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the Y slab that bounds the box on its top and bottom sides. Thus, Extents Min is also on the Y Plane Min 
plane and Extents Max is also on the Y Plane Max plane. Therefore, these two extents vectors actually 
describe four planes and two slabs. The planes of the Y slabs would each have normals aligned with the 
coordinate system Y axis and are once again labelled using min and max based on their distance from 
ray origin (the t value at which the ray would intersect them). 
 
This means that we have all the information we need to define each plane in each of the slabs. We know 
the plane normals used by each slab since they will be aligned with the coordinate system axis. That is, 
one slab will have normals <1,0,0> and the other will have planes with normals <0,1,0>. In the 3D case 
there will be a third slab consisting of two planes with the normal <0,0,1>. Of course, we know that a 
normal is not enough to describe a plane since there are an infinite number of planes that share the same 
normal but are positioned at different distances from the origin. However, we have the points that are on 
each of the four planes (the two extent vectors) so we have everything we need to test the ray for 
intersection against each of these four planes. 
 
The test is very simple. For each slab, we perform an intersection test between the ray and each of the 
planes comprising that slab. This will return us two t values of intersection. For example, we might 
process the X slab first, which would mean performing two ray/plane intersection tests between the ray 
and each plane in the slab (X Plane Min and X Plane Max). Once we get back these t values, we store 
them in two variables called Min and Max, sorted by value. As we test each slab and retrieve the 
minimum and maximum t values (for each plane) we compare them against two values that are keeping 
a record of the highest minimum t value and the lowest maximum t values found so far. If the minimum 
t value we have just calculated for the current slab is higher than the highest minimum t value we have 
found for a previous slab, we overwrite it with the new t value. Likewise, if the maximum t value for the 
current slab is lower than the lowest maximum t value we have recorded from all previously tested slabs, 
we overwrite the value with this new lowest maximum t value.  
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After all slabs have been evaluated, we 
will have two variables that contain the 
lowest maximum t value and the highest 
minimum t value we have found. If the 
highest minimum t value is larger than 
the lowest maximum t value then the ray 
does not intersect the box.  
 
That might sound a little complicated, so 
let us have a look at an example that 
shows us computing the t values for each 
slab, one step at a time. In this first 
example, the ray does intersect the box, 
so the highest minimum t value we find 
for all the slabs must be lower than the 
lowest maximum t value we found from 
any slab according to the statement we 
just made a moment ago. 
 
 
 

Let us step through the process of calculating the t values for the X slab first. 
 
In Figure 14.56 we start with the X slab and calculate the t value of intersection between the ray and the 
plane that contains the minimum extents vector with a normal aligned to the coordinate system X axis 
(X Plane Min). The t value returned is shown on the diagram as tMin(x). This is the point at which the 
ray intersects the first plane of the X slab. Although we have already called this the minimum plane, we 
do not always know that this is the case. If the ray was intersecting the box from the right hand side 
instead, the second plane in the slab (X Plane Max) would be the first (minimum) plane of intersection. 
 

 Figure 14.56 
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Next we calculate the t 
value for the other 
plane of the slab (see 
Figure 14.57). This is 
the plane that contains 
the point ExtentsMax 
and shares the same 
normal (1,0,0).  
 
At this point we have 
the two t values for 
this slab, so we test 
which is greater and 
store them in the 
temporary variables 
tMin(x) and tMax(x). 
That is, we store in 
tMin(x) the plane in 
the slab that the ray 
intersects first (the 
smallest t value). In 
this example, we 
actually calculated the 
t values in this order 
but if the ray was 
intersecting from the 
right side of the cube, 
tMin(x) would contain the intersection with the X Max plane instead, and vice versa since the 
intersection order would be reversed.  
 

Figure 14.57 
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Now it is time to process the next slab 
(the Y slab). First we calculate the 
point of intersection between the ray 
and the first plane in the Y slab (Y 
Plane Min). This is shown in Figure 
14.58 and is labelled tMin(y). 
 
Our next task is to calculate another 
ray plane intersection test between the 
ray and the second plane in the Y slab 
(Y Plane Max). The point of 
intersection between the ray and 
second plane in the Y slab is shown in 
Figure 14.59 and is labelled tMax(y). 
 
Once we have both t values for the Y 
slab, we sort them into two temporary 
variables as before so that tMin stores 

the lowest t value in the slab and tMax holds the highest t value in the slab. 
 
The next bit of logic makes it all 
work. Once we have calculated the 
two t values for a slab, we see if the 
minimum t value for that slab is 
greater than the largest minimum t 
value we have found so far. If so, we 
record it. We can see in Figure 14.59 
that the highest minimum t value from 
both slabs is tMin(x), which was the 
minimum t value we recorded for the 
first slab. In other words, this is the 
minimum t value that intersects the 
ray furthest from the origin compared 
to any other minimum t value 
calculated for other slabs. Also, when 
we get the maximum t value for a 
slab, we test to see if it is lower in 
value than any t value we have found 
so far. If it is, then we record it. At the 
end of testing all slabs we will have 
the lowest maximum t value found and the lowest minimum t value found.  
 
In Figure 14.59 we can see that when we calculate the maximum t value for the Y slab (tMax(y)), this 
intersection happens closer to the ray origin than the maximum t value found for the previous slab 
(yMax(x)) so we record that this is the lowest maximum t value we have found so far. 
 

 
Figure 14.58 

 
Figure 14.59 
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At the end of testing each slab we will have recorded the highest minimum value and the lowest 
maximum value as shown below. 
 
tMin  = tMin(X) 
tMax = tMax(Y) 
 
tMin and tMax were the temporary variables used to record the highest minimum t value and the lowest 
maximum t value during slab testing. We have highlighted the tMin and tMax values in Figure 14.60 
below. As tMin is smaller than tMax, this means the ray intersects the box and we can return true for 
intersection. 
  

 
Figure 14.60 

 
To understand why this means an intersection took place, imagine taking the red ray in the above 
diagram and moving it diagonally up and to the left.  
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As you imagine slowly moving it, you 
should be able to see that tMin(X) would 
move up its plane and tMax(Y) would 
move left along its plane and they would 
be identical values at the point where the 
ray just touches the top left corner. If we 
continue to move the ray up and to the left 
we can see that tMin(X) and tMax(Y) 
would swap around and the intersection 
with tMax(Y) would happen before the 
intersection with tMin(X). Thus we have a 
situation where the highest minimum t 
value is greater than the lowest maximum 
t value and thus, we have no intersection. 
 
Let us try this out to make sure we are 
correct. Figure 14.61 shows a new 
example where the ray does not intersect 
the box. We will now quickly step through 
the same process and we should find that 
tMin is larger than tMax at the end of 
testing all the slabs. 
 

 
Figure 14.62 

 
As before, we process each slab one at a time. Figure 14.62 shows the results of intersection testing the 
ray with the two planes comprising the X slab. Again, we test the two returned t values and sort them so 
that tMin(X) holds the first point of intersection and tMax(X) stores the second point of intersection. 

Figure 14.61 
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Obviously, because we have only tested one slab at this point, the highest minimum t value we have 
found is tMin(X) and the lowest maximum t value we have found is tMax(X). 
 
Next we move on to the Y slab and calculate the minimum and maximum intersection t values for both 
planes of that slab. These are shown in Figure 14.63 as tMin(y) and tMax(y). Notice this time however 
that the lowest maximum value we have found is tMax(y) which intersects the ray closer to the origin 
than the highest minimum t value (tMin(x)). As such, tMin > tMax and we know that the ray does not 
intersect the box. The t values that would end up in tMin and tMax at the end of testing all slabs are 
highlighted green in Figure 14.63. 
 

 
Figure 14.63 

 
Notice that in this second example (Figure 14.63) the minimum t value for the Y slab (tMin(y)) is 
actually behind the ray origin and will thus be a negative value. This works fine since we are only 
interested in recording the highest minimum value found so far (so this t value would therefore be 
ignored). 
 
Now it might not be clear why, but the process we have just described work for both OBBs and AABBs. 
Regardless of the orientation of the planes, as long as we have the two corner points of the box, we have 
points that lay on all slab planes and calculating the t values for each slab can be done using the 
CCollision::RayIntersectPlane method discussed in the previous chapter.  
 
Next we will discuss some optimizations that can be performed that will allow our code to perform the 
plane intersections much quicker with axis aligned bounding boxes. Unfortunately, this will come at the 
cost of having a function that will not work with OBBs. However, you should be able to write your own 
Ray/OBB code should you need it based on the above theory.  
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To understand the optimizations that can be made in the case of an AABB, we will concentrate on 
calculating the t values for just one of the slabs. We will focus on the X slab for now and initially 
concentrate on calculating the t value for just one of its planes.  Figure 14.64 shows the earlier example 
of a ray intersecting an AABB and the first plane in the X slab we need to calculate the t value for. As 
we can see, ExtentsMin describes a point on this plane and the plane normal is assumed to be aligned 
with the coordinate system X axis <1,0,0>. 
 

 
Figure 14.64 

 
In order to find the point of intersection along the ray we first need to find the distance to the plane from 
the ray origin. We would normally do this by subtracting from the point known to be on the plane 
(ExtentsMin) from the ray origin, giving us the vector EV1 shown in Figure 14.65. 
 
Once we have the vector EV1 we would dot it 
with the plane normal. Since the plane normal 
is unit length and the two vector origins are 
brought together for the dot product 
operation, this will scale the length of vector 
EV1 by the cosine of the angle between the 
two vectors, returning a single scalar value 
that describes the length of vector EV1 
projected along the direction of the plane 
normal (the length of the green dashed line 
shown in Figure 14.65). This is the distance to 
the plane. However, why bother doing a dot 
product between the normal and the vector 
EV1 when we know that two of the 
components of an axis aligned plane normal will always be zero and the other will always be one? In 
fact, we do not have to perform a dot product between EV1 and the normal to find the distance to the 
plane; it is simply the value stored in EV1’s x component, as shown below. 
 
 
 
 

 
Figure 14.65 
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Distance To Plane  = EV1•Normal 
         = EV1.x*Normal.x + EV1.y*Normal.y + EV1.z*Normal.z 
         = EV1.x*1 + EV1.y*0 + EV1.x*0 
         = EV1.x*1 
         = EV1.x 
 
Once we have calculated vector EV1, its x component will tell us the distance to the first plane in the 
slab. We have just saved ourselves three multiplies and two additions per plane test. 
  

After we have found the distance from the 
ray origin to the plane, the next step is to 
project the ray length along the plane 
normal as shown in Figure 14.66. The ray 
delta vector is a vector describing the ray’s 
direction and length from the ray origin to 
its end point. If we dot this with the plane 
normal, we will project it onto the line of 
the plane normal which will tell us the 
projected ray length. This is the length of 
the black dashed line at the bottom of 
Figure 14.66. Note that it tells us the 
length of the adjacent side of a triangle 
with the ray delta vector as the hypotenuse 
and the plane normal describing the 

direction of the adjacent side. Because we have projected the ray length along the plane normal, we can 
just divide the distance to the plane from the ray origin by the projected ray length to get the t value of 
intersection. In the above diagram it would be somewhere near to 0.5 as the plane intersects the ray 
roughly halfway along. In the last chapter we learned that we can calculate the t value of intersection 
between a ray and a plane as follows: 
 

t = 
NV

Plane To Distance
•

 

t = 
NV
xEV

•
.1

 

 
Where V is the ray delta vector and N is the plane normal. Once again, because we know that the plane 
normal of axis aligned plane will be a unit length vector with two of its components set to zero, the full 
dot product is not needed. This simplifies the denominator in the above equation to the following (for 
the X axis): 
 
V•  N          = V.x*Normal.x + V.y*Normal.y + V.z*Normal.z 
         = V.x*1 + V.y*0 + V.x*0 
         = V.x*1 
         = V.x 

Figure 14.66 
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The final equation for calculating the t value for the ray and the plane shown in the above diagrams (the 
first plane of the X slab) has been simplified to the following: 
 

t = 
xV

xEV
.

.1
 

 
We can do exactly the same for the second slab in the X plane, only this time we calculate EV1 by 
subtracting the ray origin from Extents Max instead of Extents Min. 
 
This same logic works for all slabs that are axis aligned. Thus, to calculate the t values for the Y slab: 
 

t = 
yV

yEV
.

.1
 

 
When we introduce the third dimension and a new Z aligned slab: 
 

t = 
zV

zEV
.

.1
 

 
Remember that for each plane, we must calculate EV1 by subtracting the ray origin from either 
ExtentsMin or ExtentsMax depending on whether we are intersection testing the minimum or maximum 
plane of the slab. 
 
Let us now look at the code to our new RayIntersectAABB function. The function is passed the ray 
origin and delta vector (Velocity) and is also passed the minimum and maximum extents of the AABB. 
As the fourth parameter we pass a variable by reference that will contain the t value of intersection 
between the ray and the box on function return. As with all of our AABB routines, we also offer the 
option to ignore any axis (slab) test. This allows us to (for example) consider a ray to intersect a box if it 
passes through the box in the X and Z dimensions but is above or below the box (useful when running 
queries against a Y-variant quad-tree).  
 
bool CCollision::RayIntersectAABB(  const D3DXVECTOR3& Origin,  
       const D3DXVECTOR3& Velocity,  
       const D3DXVECTOR3& Min,  
       const D3DXVECTOR3& Max,  
       float& t,  
       bool bIgnoreX /* = false */,  
       bool bIgnoreY /* = false */,  
       bool bIgnoreZ /* = false */ ) 
{ 
    float tMin  = -FLT_MAX, tMax =  FLT_MAX, t1, t2, fTemp; 
    D3DXVECTOR3 ExtentsMin, ExtentsMax, P, RecipDir; 
    ULONG       i; 
     
    // Calculate required values 
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    ExtentsMin  = Min - Origin; 
    ExtentsMax  = Max - Origin; 
    RecipDir = D3DXVECTOR3( 1.0f/Velocity.x, 1.0f/Velocity.y, 1.0f/Velocity.z); 

 
For efficiency we will be testing one slab at a time (two planes simultaneously), so we subtract the ray 
origin from both the minimum extents and maximum extents of the box. In this code, we can think of 
the variable ExtentsMin as describing the vector EV1 in our diagrams (the vector from the ray to the 
minimum plane in the slab) and we can think of ExtentsMax as describing a vector from the ray origin 
to the point on the second plane in the slab. At this point, the ExtentsMin <x, y, z> components contain 
the distances from the ray origin to the three minimum planes of each slab and ExtentsMax contains the 
three distances from the ray origin to the second plane in each slab. As we discussed earlier, we will 
calculate the t value by dividing the component in the ExtentsMin and ExtentsMax vectors that matches 
the plane we are currently testing by the matching component in the ray delta vector (Velocity). As we 
may have to test six planes in all, this means six divisions. Since divisions are slower than 
multiplications, we perform three divisions to create a reciprocal delta vector which we can then 
multiply with this vector. This will have the same effect as dividing by the ray’s delta vector.  
 
Now it is time to test each slab by setting up a loop to count three times. Each iteration of this loop will 
calculate the two t values from the planes forming that slab. As you can see below, if the slab we are 
currently testing is one we have chosen to ignore, we just skip any processing and advance to the next 
iteration. 
 
    // Test box 'slabs' 
    for ( i = 0; i < 3; ++i ) 
    { 
        // Ignore this component? 
        if ( i == 0 && bIgnoreX ) continue; 
        else if ( i == 1 && bIgnoreY ) continue; 
        else if ( i == 2 && bIgnoreZ ) continue; 

 
If we get this far then this is a slab we wish to process. If we are on iteration zero then we are processing 
the X slab. If the matching component in the ray delta vector is zero (with tolerance) then the ray is 
running parallel to the current slab and could not intersect any of its planes, so we skip this slab. 
Therefore, the t value calculations for each plane in the current slab are only executed when the ray’s 
delta vector does not have a zero in the component that matches the slab currently being tested. So if 
Velocity.x=0 then there is no point trying to calculate a point of intersection with the plane’s comprising 
the X slab as the ray does not get any closer or further from the slab with distance.  
 
        // Is it pointing toward? 
        if ( fabsf(Velocity[i]) > 1e-3f ) 
        { 

 
If we get inside this code block then we need to calculate the two t values for the planes of this slab. As 
discussed, this is a simple case of dividing the matching components in each of the extents vectors by 
the matching component in the ray delta vector. 
 
            t1 = ExtentsMax[i] * RecipDir[i]; 
            t2 = ExtentsMin[i] * RecipDir[i]; 
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At this point we have the t values between the ray and the planes of this slab stored in t1 and t2. We 
want to make sure that t1 holds the smallest t value, so we swap their values if this is not the case. 
 
            // Reorder if necessary 
            if ( t1 > t2 ) { fTemp = t1; t1 = t2; t2 = fTemp; } 

         
Next we test to see if t1 (the minimum t value) is greater than any other minimum t value we have stored 
so far (tMin). If so, we overwrite its value with the new t value. Also, if the maximum t value (t2) is less 
than any maximum t value we have found so far (tMax), we also record its value. 
     
            // Compare and validate 
            if ( t1 > tMin ) tMin  = t1; 
            if ( t2 < tMax ) tMax = t2; 

 
At this point tMin will contain the highest minimum t value found so far for all previous slabs, and tMax 
will contain the lowest maximum t value. If we find (even if we are testing only the first slab) that tMin 
is ever greater than tMax, it means the ray cannot possibly intersect the box and we can return false 
immediately without testing any other slabs. Also, if we ever find that tMax is smaller that zero, then it 
means the box is behind the ray and we can also return false immediately. Here is the rest of the slab 
testing loop. 
 
            if ( tMin  > tMax ) return false; 
            if ( tMax < 0 ) return false; 
         
        } // End if toward 
 
    } // Next 'Slab' 

     
If we reach this point in the function without returning then we know we have an intersection between 
the ray and box. All we wish to do now is return the first point of intersection. This should always be the 
value contained in tMin, unless it is a negative value, in which case the plane is behind the ray origin 
and tMax should be returned. 
 
    // Pick the correct t value 
    if ( tMin > 0 ) t = tMin; else t = tMax; 
 
    // We intersected! 
    return true; 
} 
 
That was quite a lot of explanation for what turned out to be a very small function. However, this is 
exactly the sort query you may have to explain at a job interview so it is good that we explored it fully. 
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14.15 AABB/Plane Intersection 

The algorithm for classifying an AABB against a plane is not really new to us since it is something we 
have been doing since we first introduced frustum culling in Module I. You will recall that we 
introduced code to detect whether an AABB was outside a frustum plane and if so, the object which the 
AABB approximates was not rendered.  
 
In this section we will cover a more generic implementation of a routine that will classify an AABB with 
respect to a plane and return a member of our CCollision::CLASSIFYTYPE enumeration (i.e., 
CLASSIFY_INFRONT, CLASSIFY_BEHIND or CLASSIFY_SPANNING). We will require a 
function such as this during the tree building phase where we wish to test the AABB of a detail area 
against the node split planes to determine which children it should be assigned to. 
 
Classifying an AABB with respect to a plane is a simple case of finding the two corner points of the 
AABB that would be closest to the plane and furthest from the plane if the AABB was in front of the 
plane. We refer to these as the near and far points. We know for example that as the near point is the 
closest point to the plane in a scenario where the box is in front of the plane, if this point is in front of 
the plane, then the whole AABB must be in the front space also. Furthermore, the far point describes the 
point on the box that would be farthest from the plane in the scenario (where the box was in front of the 
plane). If this point is behind the plane, the whole box must be behind the plane also. Finally, if the near 
and far points are on opposing sides of the plane, the box is spanning the plane. 
 

Calculating the near and far point is a simple 
case of analyzing the plane normal and 
picking the components from the AABB 
extents vectors to construct the point based on 
that normal. For example, if the x component 
of the normal is negative (the normal is facing 
in the direction of the negative X axis) then 
the x component of the near point will be the x 
component of the AABB max extents vector. 
If the normal is facing in the positive x 
direction, the x component of the AABB min 
extents vector describes the face of the cube 
that would intersect the front of the plane first 
were it in front of that plane. We do the same 
for each component of the normal. That is, for 
each component of the normal, if it is negative 
we use the maximum extents vector 
component for the near point and the 

minimum extents vector component for the far point. After doing this for each normal component, we 
will have constructed our two required points. In Figure 14.67 we demonstrate how this works. 
 
Figure 14.67 depicts an AABB which is clearly in front of the plane. We also see the near and far points 
that have been generated based on the plane normal. Min and Max are the extent vectors of the AABB. 

Figure 14.67 
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We can see that in this situation, if we were to move the box towards the plane, the near point would 
intersect the plane first and the far point would intersect the plane last. Let us examine how we 
generated the near and far points in this example. 
 
The plane normal faces down the negative X axis and the Y component of the normal is positive (it is 
pointing up). We will keep things two dimensional for ease of illustration. Because the x component of 
the normal is negative, it means we use the x component from the max extents vector for the near point’s 
x component (MaxX). Because the y component of the normal is positive, we use the y component of 
the AABB’s minimum extents vector as the component for the near point. This gives us the point at the 
bottom right corner of the box shown in Figure 14.67. This is the point that would be closest to the plane 
if the box is in front of the plane. We can see that the reverse logic is true for the far point. If a normal 
component is negative, then the component from the far point is taken from the minimum extents vector 
of the box, otherwise it is taken from the maximum extents vector. As we can see in Figure 14.67, 
because the normal has a negative x component, we use MinX for its x component. Because the y 
component of the plane normal is positive, we take the y component from MaxY. This gives us the far 
point shown. Because the near point is in front of the plane, the entire box must be in front of the plane 
also, so we can return CLASSIFY_INFRONT. 
 
It is important to realize that the near and far 
points are always calculated in this way 
regardless of the orientation of the plane or the 
position of the box. Therefore, the near point 
is not always the point that is nearest to the 
plane; it is the point that would be nearest to 
the plane if the box was in front of the plane. 
 
In Figure 14.68 we show the same plane being 
used but we have moved the box so that it is 
now behind the plane. Since the plane normal 
is the same, the near and far points of the box 
are calculated in exactly the same way. 
However, notice that because the box is 
behind the plane, the near point is no longer 
the point that is closest to the plane. We can 
see in this example that as the far point would 
be the last position on the cube to pass the 
plane if the cube was being moved from the planes front halfspace to its back halfspace, if the far point 
is behind the plane, the entire AABB must be behind the plane also and we can return 
CLASSIFY_BEHIND. 
 
Of course, it is also clear to see when looking at Figures 14.67 and 14.68 that if, after calculating the 
near and far points, we find that they are on different sides of the plane, the box must be spanning the 
plane and we can return CLASSIFY_SPANNING.  
 
The spanning case is illustrated in Figure 14.69. It demonstrates the fact that because we are now using a 
different plane normal, the near and far points are calculated completely differently. In this example, 

Figure 14.68 
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because the plane normal has a negative x and y component, the near point is simply the AABB’s 
minimum extents vector and the far point is the AABB’s maximum extents vector. 
 

 
Figure 14.69 

 
Below we see the code to the CCollision::AABBClassifyPlane function which implements the steps we 
have just discussed. Its parameters are the extent vectors of the AABB and the plane. The plane is 
passed in using ABCD format (a normal, ABC, and a distance from the plane to the origin of the 
coordinate system, D).  
 
After calculating the near and far points, we classify the near point against the plane. If it is in front of 
the plane we can return CLASSIFY_INFRONT immediately since the whole box must be in front of the 
plane as well. If not, it means the near point is behind the plane so we test the far point. If the far point is 
in front of the plane, it means the box must be spanning the plane because the near and far points are in 
different half spaces. If this is the case, we return CLASSIFY_SPANNING. If not, the box must be 
behind the plane, so we can return CLASSIFY_BEHIND.  
 
CCollision::CLASSIFYTYPE CCollision::AABBClassifyPlane( const D3DXVECTOR3& Min, 
                 const D3DXVECTOR3& Max, 
                                                    const D3DXVECTOR3& PlaneNormal, 
                                                        float PlaneDistance ) 
{ 
    D3DXVECTOR3 NearPoint, FarPoint; 
 
    // Calculate near / far extreme points 
    if ( PlaneNormal.x > 0.0f ) { FarPoint.x  = Max.x; NearPoint.x = Min.x; } 
    else                        { FarPoint.x  = Min.x; NearPoint.x = Max.x; } 
 
    if ( PlaneNormal.y > 0.0f ) { FarPoint.y  = Max.y; NearPoint.y = Min.y; } 
    else                        { FarPoint.y  = Min.y; NearPoint.y = Max.y; } 
 
    if ( PlaneNormal.z > 0.0f ) { FarPoint.z  = Max.z; NearPoint.z = Min.z; } 
    else                        { FarPoint.z  = Min.z; NearPoint.z = Max.z; } 
 
    // If near extreme point is outside, then the AABB is totally outside the plane 
    if ( D3DXVec3Dot( &PlaneNormal, &NearPoint ) + PlaneDistance > 0.0f )  
         return CLASSIFY_INFRONT; 
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    // If far extreme point is outside, then the AABB is intersecting the plane 
    if ( D3DXVec3Dot( &PlaneNormal, &FarPoint ) + PlaneDistance > 0.0f )  
         return CLASSIFY_SPANNING; 
     
    // We're behind 
    return CLASSIFY_BEHIND; 
} 

 
Yet another function has now been added to our intersection library that we will find ourselves using 
time and time again as we progress with our studies. This concludes our discussion of the new 
intersection and classification routines we need to add to our library in order to build spatial hierarchies. 

14.16 T-Junctions 

Earlier in the lesson, we learned that any extensive clipping procedure will likely introduce T-junctions 
in the geometry. In this section we will examine what T-junctions are, the displeasing visual artifacts 
they exhibit, and a way to fix them. Since all of our trees will have the ability to produce clipped trees, 
all of our derived tree classes will want to have their T-junctions fixed after the build process has 
completed (if the tree is intended to be used for rendering). Since fixing T-junctions is exactly the same 
algorithm regardless of the tree type being used (it is just a repair pass on the polygons in the tree’s 
polygon list), we have decided to place the T-junction removal code inside the Repair method of 
CBaseTree. This way, the same function can be used to fix the geometry built by any of our derived tree 
classes. 
 
As T-junctions exhibit themselves only when the data that contains the T-junctions is being rendered, 
the derived class (or the application) will not have to issue the Repair call after the tree has been built as 
it will happen automatically. That is, the CBaseTree::PostBuild method, which is called from the 
derived class Build function after the tree has been built, will issue a call to the 
CBaseTree::BuildRenderData method. Although this method will be discussed in the following lesson, it 
essentially prepares the tree polygon data so that it is ready to be rendered. This includes making a call 
to the CBaseTree::Repair function. Of course, the BuildRenderData method returns immediately if the 
tree has not been given a valid 3D device pointer which means the CBaseTree::Repair method will only 
be called automatically for trees that you intend to render. If you are not using the tree for rendering (just 
collision queries) and you have not passed a 3D device pointer into the tree’s constructor (avoiding the 
render data being built), but would still like to have the T-junctions repaired, your application can issue 
a call to the Repair method after the Build method has returned. Once again, remember that if a device 
pointer was passed to the constructor, the render data would have been built and the T-junction repair 
function called automatically. 
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14.16.1 What are T-Junctions? 

A T-Junction is the meeting of geometry along a shared edge where the vertices along that shared edge 
are not equal in each object. This can happen a lot when clipping is being performed. A quad for 
example might be split into two pieces vertically at one node, and then one of those splits later gets split 
into two pieces horizontally at another node (see Figure 14.70). We can see in this example that the 
polygons (which may have originally been one quad before clipping was performed) all share a common 
edge. That is, the right edge of the left polygon would be butted up against the left edges of the two 
smaller polygons to its right. This is a classic T-junction scenario. 
 

In this image we have deliberately 
separated the three neighboring polygons 
so that you can clearly see the polygon 
boundaries, but you should be able to 
recognize that if we were to slot all three 
polygons together so that there were no 
longer any gaps between them, they 
would look like a single large quad. 
Perhaps these three polygons were a 
single quad to begin with, but clipping 
broke it into three pieces. Nevertheless, 
we still want it to look like a single quad 
when rendered. 

 
Of course, this same situation may arise simply because the artist has designed the geometry that way 
instead of it having been introduced by a clipping process. Either way, we have ourselves a T-junction to 
deal with and our scene may contain many of them.  
 
While looking at the above image, if you tilt your head to the left, you should be able to see that the 
white gaps between the polygons form the letter ‘T’, which is where such a geometric configuration gets 
its name. If these polygons are neighbors (i.e., if their edges are touching) we would certainly have a 
problem that would cause lighting anomalies and other visual artifacts. In Figure 14.71 we have 
connected the polygons together to better show the problem. The polygon boundaries causing the T-
junction are highlighted with red dashed lines. 
 
Recall that a vertex lighting system using gouraud shading records lighting samples at the vertices for 
interpolation over the surface. We can see that while Polygon 1 shares its right hand edge with both 
Polygons 2 and 3, Polygons 2 and 3 have a vertex (shown as the red sphere) in the center of polygon 1’s 
right hand edge. But Polygon 1 does not have a vertex in that position since its vertices are the four 
corner points of the quad. 

 
Figure 14.70 
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Figure 14.71 

 
The problem occurs when a light source affects the center point of this construct where these three 
polygons meet. If we used a tightly focused beam (such as a small spot light for example), we would 
fully expect the influence of the light to affect all three polygons in the same way. However, as Figure 
14.72 clearly shows, if we shine a small spot light at the center point of this construct, the bottom left 
vertex of Polygon 2 and the top left vertex of Polygon 3 are very close to the light source and as such, a 
high intensity light sample is recorded at those vertices. If Polygon 1 had a vertex in the same position, 
then it too would receive that same light sample which would be interpolated over its entire surface. The 
problem is that it does not have a vertex located there. In fact, Polygon 1’s vertices are some distance 
from the light source. So although this construct of three polygons might seem to the user to be a large 
single wall polygon (for example), we have the lighting suddenly cut off as the light passes into Polygon 
1’s area because it does not have a vertex in a correct position to sample the light in the same way as its 
neighbors. This causes the lighting discontinuity illustrated in Figure 14.72. 

 

 
Figure 14.72 

 
In Figure 14.73 we see the result is made much worse if the polygons are connected as they are 
supposed to be in this example. This is an obvious lighting discontinuity that would stick out like a sore 
thumb to even the most casual gamer. 
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Figure 14.73 

 
Whenever a T-junction occurs within a game level, we have the potential for a vertex lighting system to 
suffer these visual glitches. In fact, T-junctions are not just undesirable for a vertex lighting system; they 
also cause visual anomalies during rasterization. Many of you may have seen T-junctions in commercial 
games that did not even use a vertex lighting system. They can manifest themselves in the rasterization 
phase as a phenomenon called “sparklies”. Sparklies are sub-pixel gabs that appear when polygons that 
share edges with T-junctions are being rendered. In a T-junction scenario, rounding errors caused during 
rasterization occur differently along the edge that is missing the vertex versus the shared edges that have 
the additional vertex. The polygons appear to come apart at the shared edge ever so slightly at certain 
pixels, causing a gap. The difference in floating point rounding errors between the edges that do and do 
not contain the vertex causes a situation where neither edge renders a pixel into the frame buffer, thus 
allowing the background to show through. These gaps are often seen as a sparkle effect as lots of little 
oddly colored pixels shimmer in and out of existence on the display. These colored pixels are actually 
the colors of more distant polygons or the color that the frame buffer was initially cleared to before the 
frame was rendered.  
 
In Figure 14.74 we see a screenshot from Lab Project 14.1 with the T-junction repair step turned off. 
Although it is hard to take a good screenshot of sparklies (they look much worse when the camera is 
actually moving), even in this image we can see some cyan colored pixels (the color the frame buffer 
was cleared to before the scene was rendered) showing through sub-pixel gaps on the floor. 
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Figure 14.74 

 
When the player is actually walking along the floor and the level is fully animated, many of these little 
blue dots shimmer in and out of existence. This is very distracting to the player to say the least. In fact, it 
is for this reason, more so than the lighting discontinuities, that we must fix these T-junctions before the 
scene is rendered. Since we will be moving away from vertex lighting systems in Module III of this 
series and begin to favor more advanced techniques, T-junctions will no longer affect our lighting 
system. However, these sub-pixel gaps that occur during the rasterization of shared edges that contain T-
junctions are clearly unacceptable. 
 
As mentioned, T-junctions are not just caused by clipping geometry. They can be very easily introduced 
by the artist during level design. T-junctions can even exist between neighboring objects/meshes that 
will cause lighting anomalies (see Figure 14.75). 
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In Figure 14.75 we see how 
the project artist might 
innocently place three crates 
on top of each other in a 
staggered fashion. Because 
these are separate meshes, we 
will not have the sparklies 
problem, but this would still 
cause lighting discontinuities if 
a vertex lighting system was 
being employed.  
 
Assuming the front face of 
each create is a single quad 
with the vertices in its four 
corners, we can see that top 

right vertex of the bottom left crate and the top left vertex of the bottom right crate partially share an 
edge with the bottom edge of the top crate.  
 
Because the crates are staggered, 
the vertices in the bottom two 
crates that share the edge with the 
top crate have vertices in different 
positions versus those of the 
bottom edge of the top crate (and 
vice versa). We can also see that 
the bottom left and right vertices 
of the top crates are positioned in 
the middle of the top edges of the 
bottom crates and as such, we 
have four vertices that share an 
edge which do not each belong to 
both the polygons that share the 
edge. Take a look at Figure 14.76 
and see how the vertex lighting system would light these crates if two tightly focused spot lights were 
set to illuminate the top left vertex of the bottom right crate and the top right vertex of the bottom left 
crate. 
 
As you can see, the tightly focused beam illuminates only the points in space where the top right vertex 
of the bottom left crate and the top left vertex of the bottom right crate are located. The lighting color is 
sampled at this point and interpolated over the surfaces of the bottom two crates. However, the bottom 
edge of the top crate does not have vertices in these locales and its vertices (the bottom left and bottom 
right vertices of its quad) fall just outside the influence of the light source. As a result, the topmost crate 
has no vertices located in positions that receive light contributions and the create remains unlit. This has 
caused a very unnatural lighting result.  
 

 
Figure 14.75 

 
Figure 14.76 
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14.16.2 Fixing T-Junctions 

Fixing T-junctions in our level is actually much simpler than you might assume. We essentially need to 
test the edges of each polygon in our scene, with the edges of every other polygon in the scene, 
searching for vertices in the edge of one polygon that exist along the edge of the first polygon. If such a 
vertex is found, we make a copy of the vertex and insert it into the polygon edge that has missing the 
vertex. Essentially, we are just finding any vertices in any polygon that may live in the middle of an 
edge and if found, we insert that vertex into the edge. The insertion of this extra vertex introduces 
another triangle primitive that will be needed to render the N-gon, so our primitive count will have 
grown after the T-junction repair process is complete. The basic pseudo code (lacking any 
optimizations) is: 
 
For Each Polygon (PolygonA) 
 For Each Edge (EdgeA) 
  For Each Polygon (PolygonB) 
   For Each Vertex (VertexB) 
 
    D= Calc Distance from VertexB to EdgeA 
    ( If D !=0 [with epsilon] ) continue; 
 
    If  (VertexB is not between EdgeA.vertex1 and EdgeA.vertex2) continue; 
 
    // Vertex B is causing T junc with this EdgeA so inside it into polygon 
    PolygonA.InsertVertex( just after Edge1.vertex1); 
 
   End For Each Vertex 
  End For Each Polygon 
 End For Each Edge 
End For Each Polygon  
 
As you can see, we process each polygon and its edges one at a time. For each edge we test the vertices 
of every other polygon in the scene to see if that vertex causes a T-junction along the current edge. If it 
does, then we need to insert that vertex into the current edge so that both polygons have vertices in the 
same places, thus repairing the T junction. The key here is finding out whether the vertex we are 
currently testing is on the current edge we are testing because if it is not, it cannot possibly cause the T- 
junction with the current edge and we can skip it.  
 
You can see in the above pseudo-code that for each vertex we calculate D, the shortest distance from the 
vertex to the infinite line on which the edge lives. If this is not zero (with tolerance) then the vertex 
cannot be on the edge. Obviously, if a point is on an edge, the distance from that point to the edge would 
be zero. If it is zero then we know that the vertex lies on the infinite line on which the edge/ray exists, 
but we do not know whether it lies within the line segment defined by the edge’s two vertices. If it does 
not, then the vertex is not sharing an edge and we can ignore it. If it is between the two vertex positions 
then we definitely have found a vertex from another polygon that is on the edge we are currently testing 
in a position where the current edge does not have a vertex. When this is the case, we repair the T- 
junction by inserting this vertex into the edge just after the edge start vertex. This creates a new edge and 
a new triangle in the polygon and fixes the problem. Of course, when we insert this new vertex into the 
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polygon edge we must also generate its normal and texture coordinate. We can do this using 
interpolation based on its position between the two original vertices of the edge. Notice that testing 
Polygon A against Polygon B is not enough, we must also test Polygon B against Polygon A performing 
the same logic. The above algorithm will make sure this happens. The loops ensure that every polygon 
will be tested against every other polygon, so we will do ultimately perform n2 tests (where n is the 
number of polygons). 
 
It should be clear looking at the above code that the heart of this process is simply determining whether 
the vertex of a polygon lies on the edge of another. This process is reliant on us being able to calculate 
the distance from a vertex to a line segment (the edge). So we will need a function that will not only tell 
us the distance from a vertex to an infinite line, but will also inform us whether the point is inside the 
vertices of the line segment (the edge) assuming this distance is zero. Only if the distance from the 
vertex to the line is zero and if the point is positioned between the two edge vertices (contained within 
the line segment) do we wish our function to return a valid distance. So let us have a look at how we 
might calculate the distance from a point to a line segment. 

14.16.3 Distance from a Point to a Line Segment 

 
Figure 14.77 illustrates the problem we are trying to solve. The 
blue sphere labeled Point is an arbitrary point that we would like 
to calculate the distance for. The line segment (the polygon edge 
in our example) has its two vertices shown as the red spheres 
labeled Start and End. The length of the red dashed line labeled 
Distance is what we are trying to find. If the distance is zero, then 
the point must lay on the same line as the edge. It may or may not 
be between the two vertices, but we will worry about that in a 
moment. For now, we are just interested in calculating the 
distance from the point to the infinite line on which the edge is 
contained. 
 
What we are actually trying to do is calculate the position of the 
small green sphere in the diagram. This vector describes the 
projection of the point onto the line and thus, by subtracting this 
position from the original position, we get a vector matching the 

red dashed line in the diagram. The length of this vector is the distance we are seeking. 
 
Finding the position of the green sphere is easy given the projection properties of the dot product. We 
first subtract the start of the line segment (the first vertex in the edge) from the point in question. This 
gives us vector C in the diagram. The length of this vector would tell us the distance from the origin of 
the ray/line segment to the point. Vector V in the diagram is calculated by the subtracting the edge start 
from the edge end position. V is essentially the ray delta vector with the start of the edge as the ray 
origin. If we normalize vector V, we can perform the dot product between unit length V and vector C to 
get t, the distance to travel in the direction of V from the ray start point to reach the green sphere.  

 
Figure 14.77 
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All we have done is projected the length of vector C along the direction of V, which we know scaled it 
by the cosine of the angle between them. t now tells us how far we would have to travel along V from 
the start point to reach the green sphere. Therefore, we can calculate the position of this sphere simply 
by scaling unit length V by t and adding the resulting scaled V vector to the start of the edge. Now we 
have the position vector of the green sphere which we subtract from the position vector of the original 
point, which gives us the vector shown as the red dashed line in the diagram. We can then just return the 
length of this vector.  
 
However, we also want our function to let the caller know when the point does exist on the infinite line 
for the edge, but is outside the boundaries of the edge vertices. That is no problem because we will know 
this as soon as we calculate t. Since V is unit length at this point, we know that t will be equal to zero at 
the edge start point and the pre-normalized length of V at the edge end point. Thus, as soon as we 
calculate t, we will return the highest possible distance value (FLT_MAX) if t is smaller than zero or 
greater than the original length of the edge. As our T-junction code will only take any action if the 
distance returned is zero, the function will only return zero if the point is indeed on the edge (and not 
just the infinite line on which the edge lies). 
 
Next we see the code to the function. Because this is not a collision function, and would not really fit 
well in our CCollision namespace, we decided to add such a math utility function to a new cpp file 
called MathUtility.cpp. As we progress with our studies, we will place any functions we write which are 
general math utilities in this file. This function is contained in the MathUtility namespace defined in 
MathUtility.h. 
 
MathUtility.h 
namespace MathUtility 
{ 
    float DistanceToLineSegment (  const D3DXVECTOR3& vecPoint,  
       const D3DXVECTOR3& vecStart,  
       const D3DXVECTOR3& vecEnd ); 
};  
 
 

MathUtility.cpp – DistanceToLineSegment function code 
float MathUtility::DistanceToLineSegment(  const D3DXVECTOR3& vecPoint,  
         const D3DXVECTOR3& vecStart,  
         const D3DXVECTOR3& vecEnd ) 
{ 
    D3DXVECTOR3 c, v; 
    float       d, t; 
    
    c = vecPoint  - vecStart; 
    v = vecEnd - vecStart;    
    d = D3DXVec3Length( &v ); 
 
    // Normalize V 
    v /= d; 
 
    // Calculate final t value 
    t = D3DXVec3Dot( &v, &c ); 
 
    // Check to see if ‘t’ is beyond the extents of the line segment 
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    if (t < 0.01f)     return FLT_MAX; 
    if (t > d - 0.01f) return FLT_MAX; 
 
    // Calculate intersection point on the line 
    v.x = vecStart.x + (v.x * t); 
    v.y = vecStart.y + (v.y * t); 
    v.z = vecStart.z + (v.z * t); 
 
    // Return the length 
    return D3DXVec3Length( &(vecPoint - v) ); 
} 
 

The function above mirrors Figure 14.77. It is passed the two position vectors of the line segment (the 
start and end points) and the point we wish to classify. We first calculate c and v as discussed, then store 
the length of the line segment (edge) in d. We will need this value later and we are just about to 
normalize it. We then normalize vector V by dividing it by its length and calculate t by dotting unit 
length vector v with c. This projects the length of c onto v (scaled by the cosine between them), 
returning a t value in the range [0, d] for points that are contained between the two end points.  
 
If t is less than zero or larger than the length of the line segment, then it does not matter what the 
distance to the infinite line is; this point could not possibly be contained in the line segment. Its 
projection places it on the infinite line either prior to the start vertex or after the end vertex. When this is 
the case we return a distance of FLT_MAX (the maximum value that can be stored in a float). If this is 
not the case, then we know that the projection of the point onto the line segment did indeed produce a 
point (the green sphere in Figure 14.77) that is on the edge. However, we have no idea how far it is from 
that edge; only if it is at a distance of zero is the point truly on the edge. 
 
Next we calculate the position of the green sphere in Figure 14.77 and store the result in v. We calculate 
it by scaling v by t and adding the result to the start vector of the edge. Now that we have the projected 
position stored in v, we can simply subtract it from the position of the original point and return the 
length of the resulting vector. If this length is zero, the point is on the edge and we have ourselves a T- 
junction that needs repair.  

14.16.4 The T-Junction Repair Code 

We now have everything we need to write our T-junction repair code. However, when we examine the 
pseudo-code discussed previously, we realize immediately that it will be an incredibly slow operation. In 
that vanilla description of the algorithm, we had to test each edge of every polygon against every vertex 
in every other polygon. Since most of us will be reluctant to wait for an extended amount of time for our 
T-junctions to be repaired, we need to speed this up as much as possible. 
 
As it happens, by the time the repair process is invoked, the spatial tree will have already been built. 
Therefore we can reduce the time it takes to compute this process down to a mere fraction of the time it 
would otherwise take if we incorporate a spatial hierarchy into the process. At the point the repair 
process is called, each polygon will have already been assigned to its leaves and each polygon will have 
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a bounding box of its own. Therefore, much like we will implement the broad phase collision step, we 
will only have to test a mere handful of vertices during the repair process for each polygon’s edge. 
 
For each polygon, we will call the CollectLeavesAABB function which will be discussed in detail 
shortly. This is the function we will implement in our derived classes that will traverse the tree and 
return any leaves whose AABB intersects the query AABB. In this instance, the query AABB will be 
the AABB of the polygon we are currently repairing. The CollectLeavesAABB function will return a list 
of all leaves that intersect the polygon’s AABB, allowing us to reject virtually every other polygon in 
the scene from consideration. Only the polygons in the returned leaves will need to be tested against 
each other. These are the polygons that are in close proximity to the polygon currently being repaired 
and might possibly share an edge with it. We will then loop through each polygon in the returned leaves 
and compare the bounding box of the polygon with the bounding box of the polygon we are currently 
repairing. Only when the two bounding boxes intersect will we test each vertex in that polygon against 
each edge in the polygon currently being repaired. 

Repair - CBaseTree 

The CBaseTree::Repair function is actually a wrapper around the core T-junction repair process. It takes 
care of looping through each polygon and collecting the leaves that intersect its bounding box. It also 
takes care of comparing the AABBs of the two polygons to determine whether a T-junction repair test 
should be done on them. Once it finds two polygons that have intersecting AABBs (and thus the 
potential to share an edge), it calls the CBaseTree::RepairTJunctions function to actually repair it. We 
will look at this method after we have examined the code to the main Repair function. This code is an 
excellent example of how hierarchies can speed up virtually any task done at the scene level.  
 

In the first section of the code we set up a loop to iterate through all the CPolygon pointers stored in the 
tree’s m_Polygons linked list. Remember, this list will contain every polygon being used by the tree. For 
each polygon in the list we will then extract its AABB. This is our current polygon being tested for 
repair. 
 
bool CBaseTree::Repair( ) 
{ 
    ULONG                   SrcCounter, DestCounter, i; 
    CPolygon               *pCurrentPoly, *pTestPoly; 
    PolygonList::iterator   SrcIterator, DestIterator; 
    LeafList::iterator      LeafIterator; 
    LeafList                LeafList; 
 
    // No-Op ? 
    if (m_Polygons.size() == 0 ) return true; 
 
    try 
    { 
        // Loop through Faces 
        for ( SrcCounter = 0,  
              SrcIterator = m_Polygons.begin();  
              SrcIterator != m_Polygons.end();  
              ++SrcCounter,  
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              ++SrcIterator )  
        { 
            // Get poly pointer and bounds references for easy access 
            pCurrentPoly = *SrcIterator; 
            if ( !pCurrentPoly ) continue; 
            
            D3DXVECTOR3 & SrcMin = pCurrentPoly->m_vecBoundsMin; 
            D3DXVECTOR3 & SrcMax = pCurrentPoly->m_vecBoundsMax; 

 
At the head of the function we declared a local variable LeafList, which is a variable of an STL list that 
stores ILeaf pointers. We make sure this list is empty and then send this list along with the AABB of the 
current polygon into the CollectLeavesAABB method. 
 
            // Retrieve the list of leaves intersected by this poly 
            LeafList.clear(); 
            CollectLeavesAABB( LeafList, SrcMin, SrcMax ); 

 
The CollectLeavesAABB code will be discussed in a moment since it is implemented in the derived 
classes. The method fills the passed leaf list with any leaves in the tree which intersect the bounding box 
of the polygon. On function return, LeafList will contain a list of ILeaf pointers which contain polygons 
that have the potential to cause T-junctions with the current polygon (i.e., a broad phase). 
 
We will now loop through each leaf in the returned list and extract its pointer so that we can access its 
data. Notice how LeafList is defined to store ILeaf pointers, but we know that they will contain pointers 
to CBaseLeaf objects because this is the type of leaf we will allocate and store during the build process. 
Therefore, we cast the current ILeaf pointer to a CBaseLeaf. 
 
            // Loop through each leaf in the set 
            for ( LeafIterator = LeafList.begin();  
                  LeafIterator != LeafList.end(); ++LeafIterator ) 
            { 
                CBaseLeaf * pLeaf = (CBaseLeaf*)(*LeafIterator); 
                if ( !pLeaf ) continue; 

 
For the current leaf, we will set up a loop that allows us to retrieve each of its polygon pointers one at a 
time and perform an AABB/AABB test between it and the current polygon being repaired. Notice how 
we use our new CCollision::AABBIntersectAABB function to perform the AABB test between the two 
polygons. If it returns true, the polygon do have intersecting bounding volumes and we will have to feed 
them both into CBaseTree::RepairTJunctions where they will be tested at the edge/vertex level. The 
remaining code of the Repair method is shown below. 
 
                // Loop through Faces 
                DestCounter = pLeaf->GetPolygonCount(); 
        
                for ( i = 0; i < DestCounter; ++i )  
                { 
                    // Get poly pointer and bounds references for easy access 
                    pTestPoly = pLeaf->GetPolygon( i ); 
                    if ( !pTestPoly || pTestPoly == pCurrentPoly ) continue; 
                    D3DXVECTOR3 & DestMin = pTestPoly->m_vecBoundsMin; 
                    D3DXVECTOR3 & DestMax = pTestPoly->m_vecBoundsMax; 
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                    // Do polys intersect 
                    if ( !CCollision::AABBIntersectAABB( SrcMin,  
                                                         SrcMax,  
                                                         DestMin,  
                                                         DestMax ) ) continue; 
 
                    // Repair against the testing poly 
                    RepairTJunctions( pCurrentPoly, pTestPoly ); 
                   
 
                } // Next Test Face 
 
            } // Next Leaf 
 
        } // Next Current Face 
 
    } // End Try Block 
 
    catch ( ... ) 
    { 
        // Clean up and return (failure) 
        return false; 
 
    } // End Catch Block 
 
    // Success! 
    return true; 
} 
 
So we have seen that While the CBaseTree::Repair method is called post-build to repair T-junctions, the 
actual function code really just implements a broad phase testing process for the real T-junction repair 
code. Our collision system will use the hierarchy in a very similar way. The only polygons we have to 
test at the edge/vertex level are polygons that have intersecting bounding volumes. This will typically be 
a few polygons at most for each polygon being tested. That is certainly a lot more efficient than testing 
every single vertex and every single polygon against every edge of every other polygon in the scene. 

RepairTJunctions - CBaseTree 

The code to this function is quite small and straightforward. It is passed two polygon pointers. The first 
polygon is the polygon currently having its edges tested for T-junctions. It is the polygon that will have 
vertices added to it if a T-junction is identified. The second polygon is the polygon that is going to have 
each of its vertices tested against each of the edges of the first polygon to see if any of them share that 
edge and cause a T-junction. 
 
The function begins by setting up a loop to iterate through every edge in the polygon. The loop will step 
through each vertex and the vertex ahead of it in the array for the edge that is currently being tested. 
 
 
void CBaseTree::RepairTJunctions( CPolygon * pPoly1, CPolygon * pPoly2 ) 
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{ 
    D3DXVECTOR3 Delta; 
    float       Percent; 
    ULONG       v1, v2, v1a; 
    CVertex     Vert1, Vert2, Vert1a; 
 
    // Validate Parameters 
    if (!pPoly1 || !pPoly2) return; 
 
    // For each edge of this face 
    for ( v1 = 0; v1 < pPoly1->m_nVertexCount; v1++ ) 
    { 
        // Retrieve the next edge vertex (wraps to 0) 
        v2 = ((v1 + 1) % pPoly1->m_nVertexCount); 
 
        // Store verts (Required because indices may change) 
        Vert1 = pPoly1->m_pVertex[v1]; 
        Vert2 = pPoly1->m_pVertex[v2]; 

 
v1 is always the index of the current vertex and v2 is the index of the next one in the winding of the 
polygon. These two vertex indices form the current edge that is to be tested against. Notice that v2 is 
calculated using the modulus operator so that when v1 is equal to the last vertex in the winding, v2 will 
wrap around to vertex 0 (the final edge in a polygon is formed by vertex N and vertex 0, where N is the 
number of vertices in the polygon). In the above code you should notice that once these indices are 
calculated, we use them to fetch the actual vertex data from the CPolygon’s vertex array. 
 
We now have the two vertices of the edge we wish to test, so now we need to loop through each vertex 
in the second polygon and calculate its distance from the edge. If the DistanceToLineSegment method 
that we just wrote is passed the two vertices of the edge and the vertex from polygon 2, and it returns 
zero (with tolerance), the vertex of the second polygon causes a T-junction with the edge and steps must 
be taken to repair it. 
 
        // Now loop through each vertex in the test face 
        for ( v1a = 0; v1a < pPoly2->m_nVertexCount; v1a++ )  
        { 
            // Store test point for easy access 
            Vert1a = pPoly2->m_pVertex[v1a]; 
 
            // Test if this vertex is close to the test edge 
            if ( MathUtility::DistanceToLineSegment(  (D3DXVECTOR3&)Vert1a, 
          (D3DXVECTOR3&)Vert1,  
          (D3DXVECTOR3&)Vert2 )<0.01f ) 
            { 

 
In this next code block we repair the T-junction. This is done by simply inserting a new vertex in the 
polygon immediately after the first vertex in the edge we are testing (v1). That is, we must insert it at the 
position in the vertex array currently occupied by the second vertex v2. This will nudge all vertices in 
the winding order up by one position in the array, creating the current edge between v1 and the new 
vertex we have just inserted. It also adds a new edge to the polygon between the new vertex and what 
used to be the second vertex in the current edge. 
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The following code demonstrates inserting a new vertex into the polygon and setting its position equal to 
the vertex in the second polygon that caused the T-junction.  
              
                // Insert a new vertex within this edge 
                long NewVert = pPoly1->InsertVertex( (USHORT)v2 ); 
                if (NewVert < 0) throw std::bad_alloc(); 
 
                // Set the vertex pos 
                CVertex * pNewVert = &pPoly1->m_pVertex[ NewVert ]; 
                 
       pNewVert->x = Vert1a.x;  
       pNewVert->y = Vert1a.y;  
       pNewVert->z = Vert1a.z; 

 
Because our polygon has a vertex in exactly the same position as the one that caused the T-junction in 
the second polygon, we have repaired it. However, we also have to generate the texture coordinate 
information and normal for this newly inserted vertex.  
 
Just as we did in the polygon splitting routine, we create the new normal and texture coordinates for the 
vertex by interpolating the texture coordinates and normal vectors stored in the original edge vertices 
based on the distance along that edge where we have inserted the new vertex. In the following code we 
divide the length of the new edge (vert1 to new vertex) by the length of the original edge (Vert1 to 
Vert2) to get a t value back that describes the position of the new vertex parametrically along the 
original edge. We use this to weight the interpolation as we have done so many times before. Below we 
see the remainder of the function. 
 
                // Calculate the percentage for interpolation calcs 
                Percent = D3DXVec3Length( &(*(D3DXVECTOR3*)pNewVert –  
            (D3DXVECTOR3&)Vert1) )  
       / 
        D3DXVec3Length( &((D3DXVECTOR3&)Vert2 –  
           (D3DXVECTOR3&)Vert1) ); 
 
                // Interpolate texture coordinates 
                Delta.x      = Vert2.tu - Vert1.tu; 
                Delta.y      = Vert2.tv - Vert1.tv; 
                pNewVert->tu = Vert1.tu + ( Delta.x * Percent ); 
                pNewVert->tv = Vert1.tv + ( Delta.y * Percent ); 
 
                // Interpolate normal 
                Delta            = Vert2.Normal - Vert1.Normal; 
                pNewVert->Normal = Vert1.Normal + (Delta * Percent); 
                D3DXVec3Normalize( &pNewVert->Normal, &pNewVert->Normal ); 
 
                // Update the edge for which we are testing 
                Vert2 = *pNewVert; 
 
            } // End if on edge 
        } // Next Vertex v1a 
    } // Next Vertex  v1 
} 
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Not only have we learned how to fix T-junctions, we have also finished our coverage of CBaseTree for 
this chapter. In the next chapter we will add a few more functions and variables to CBaseTree so that it 
offers an efficient rendering strategy. For now though, we will remain focused on tree building and 
using trees to perform collision queries.  
 
With the base functionality in place, we can now finally look at the code to the derived classes. For the 
most part, these classes will contain only a few methods. This is due to the fact that, apart from the 
building and traversal functions, everything else has already been implemented in CBaseTree. 
 
In the following sections of the textbook we will cover the source code to the quad-tree, the oct-tree and 
the kD-tree, one at a time and in that order. Most of their implementations will be identical, with only 
slightly different traversal and build logic. Thus, covering the building process for each tree should be a 
relatively painless affair after we have covered the build function for the first. Let us start by looking at 
our first derived class, CQuadTree. This is the class that implements the vanilla quad-tree and it is the 
first tree class we have developed so far that is designed to be instantiated by the application.  

14.17 CQuadTree - Implementation 

Contained in the source files CQuadTree.cpp and CQuadTree.h is the code for our vanilla quad-tree 
implementation. It is derived from CBaseTree as all tree classes will be and as such, there are several 
functions that we must implement because they are required by ISpatialTree but not implemented in 
CBaseTree. For example, we must implement the Build method. This method will recursively build a 
tree of quad-tree nodes using the polygon and detail area data that has been registered with the tree and 
populate the leaf lists with CBaseLeaf objects. After the Build function has returned, the quad-tree will 
be complete and we will have a tree of quad-tree nodes. Each node will contain a bounding box large 
enough to contain the polygon data and detail areas that are assigned to any of its child nodes. At each 
point during the build process, a node will be divided into four equal quadrants and each quadrant 
assigned to a child of that node.  
 
Other functions that are specified in ISpatialTree but not implemented in CBaseTree are the collision 
functions, such as CollectLeavesAABB and CollectLeavesRay. These must also be implemented in this 
class to provide the traversal logic that steps through the nodes of a quad-tree searching for leaf nodes. 
These will be small and simple methods since the collision code and much of the core logic resides in 
CBaseTree and CCollision. 

14.17.1 CQuadTree Node – The Source Code 

Although CBaseTree implements the CBaseLeaf object that all trees will use to contain the polygon and 
detail area data at a leaf node, it does not implement a node object that will be used to link the nodes of 
the hierarchy together. This is because the node structure of each derived class will be different since 
they have different child counts. A quad-tree for example must store pointers to four child nodes, an oct-
tree must store pointers to eight children, and a kD-tree will store only two child node pointers. This 
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means it is up to the programmer who implements the derived class to also define the node structure the 
tree will use. The structure we use for the quad-tree nodes is shown below. 
 
class CQuadTreeNode 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
     CQuadTreeNode( ); 
    ~CQuadTreeNode( ); 
 
    // Public Functions for This Class 
    void SetVisible( bool bVisible ); 
     
    //Public Variables for This Class 
    CQuadTreeNode * Children[4];        // The four child nodes 
    CBaseLeaf     * Leaf;               // If this is a leaf, store here. 
    D3DXVECTOR3     BoundsMin;          // Minimum bounding box extents 
    D3DXVECTOR3     BoundsMax;          // Maximum bounding box extents 
    signed char     LastFrustumPlane;   // The frame-to-frame coherence plane 
}; 
 
This very simple structure contains pointers to four children and a CBaseLeaf pointer. The only nodes 
that will not have NULL assigned to their leaf pointer will be terminal nodes (nodes at the ends of 
branches that have been made into leaf nodes). When traversing the tree searching for leaf nodes, we 
know that a leaf node is any node that does not have NULL assigned to its leaf pointer. If it is leaf node, 
the attached CBaseLeaf object will contain all the polygon data and detail area data assigned to that 
terminal node. Following the leaf pointer in the declaration are two vectors in which the node’s 
bounding box will be stored and a fifth member that will be explained in detail in the next lesson. 
 
Finally, notice that this class has a method called SetVisible which the tree can call to make all its 
children visible. A node does not hold a visible status but this function is a recursive function that 
traverses the children of the node and sets the visibility status of any leaves underneath it to true. This 
will be used in our visibility testing methods. For example, if a node’s volume is completely contained 
inside the frustum, then all direct and indirect children of that node must also be inside it. When this is 
the case, we no longer have to perform frustum/AABB tests on each of its children since we know the 
entire branch starting at that node must be contained in the frustum. When this is the case, this method is 
called to immediately set the visibility status of all child leaves to true.  

Constructor - CQuadTreeNode 

The quad-tree node constructor makes sure that its leaf and child pointers are set to NULL and that the 
last frustum plane index is set to -1 (no plane).  
 
CQuadTreeNode::CQuadTreeNode() 
{ 
    unsigned long i; 
 
    // Reset / Clear all required values 
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    Leaf             = NULL; 
    LastFrustumPlane = -1; 
 
    // Delete children 
    for ( i = 0; i < 4; ++i ) Children[i] = NULL; 
} 

Destructor - CQuadTreeNode 

The destructors for all of our derived node types will work the same way. When a node is destroyed, it 
deletes its child nodes, which causes their destructors to trigger, which then deletes their child nodes, 
and so on down the tree. This causes a cascade effect that removes every node of the tree from memory. 
Thus, the tree just has to delete the root node to kick off this process. The code is shown below. 
 
CQuadTreeNode::~CQuadTreeNode() 
{ 
    unsigned long i; 
 
    // Delete children 
    for ( i = 0; i < 4; ++i ) 
    { 
        if ( Children[i] ) delete Children[i]; 
        Children[i] = NULL; 
 
    } // Next Child 
 
    // Note : We don't own the leaf, the tree does, so we don't delete it here 
 
    // Reset / Clear all required values 
    Leaf = NULL; 
} 
 

Note that if the node is a terminal node and has a leaf attached to it, we do not delete the leaf from 
memory, we simply set its pointer to NULL. The reason we do not worry about the node deleting its leaf 
is because the leaf pointers are also stored in the tree’s m_Leaves STL list. The tree can delete all the 
leaves in one go afterwards simply by emptying this list. 
 
Since the constructor and destructor for all of our various node types will be the same as this one (just 
with more or less children to delete) we will not show the code to the constructors and destructors of 
other node types from this point forwards. 

SetVisible - CQuadTreeNode 

Although we will not see the SetVisible method being used until we cover the rendering system of 
CBaseTree (in the next lesson), its code is very simple so we will cover it here. As you can see, it first 
tests to see if its leaf pointer is non NULL. If it is, then this is a leaf and we set the leaf’s visible status to 
that of the boolean passed. This means this recursive function can be used to turn on or off the visibility 
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status of all leaves down a given branch of the tree (using the boolean parameter). If the current node is 
a leaf node then our job is done and we return. If the current node is not a leaf, then the function calls 
itself recursively for each of its children.   
 
void CQuadTreeNode::SetVisible( bool bVisible ) 
{ 
    unsigned long i; 
 
    // Set leaf property 
    if ( Leaf  ) { Leaf->SetVisible( bVisible ); return; } 
 
    // Recurs down if applicable 
    for ( i = 0; i < 4; ++i ) 
    { 
        if ( Children[i] ) Children[i]->SetVisible(bVisible); 
 
    } // Next Child 
} 

14.17.2 CQuadTree – The Source Code 

Below we see the CQuadTree class declaration (see CQuadTree.h) which shows the functions and 
members we added beyond those inherited from CBaseTree. In the following listing you can see that the 
first group of methods are those that must be implemented to support the ISpatialTree interface. For 
example, we know that every derived class must provide the implementation for the Build, 
CollectLeavesAABB, and the CollectLeavesRay methods since these are the application’s only means to 
build and query the tree. Even methods in CBaseTree, such as the Repair method, rely on the 
CollectLeavesAABB method being implemented in the derived class so that polygon neighbors can be 
quickly determined.  
 
Let us look at the public methods implemented to the support the base class first.    
 
class CQuadTree : public CBaseTree 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
    virtual ~CQuadTree( ); 
             CQuadTree( LPDIRECT3DDEVICE9 pDevice, bool bHardwareTnL ); 
 
    // Public Virtual Functions for This Class (from base). 
    virtual bool Build                  ( bool bAllowSplits = true ); 
    virtual void ProcessVisibility      ( CCamera & Camera ); 
 
    virtual bool CollectLeavesAABB      ( LeafList & List,  
                                          const D3DXVECTOR3 & Min,  
                                          const D3DXVECTOR3 & Max ); 
 
    virtual bool CollectLeavesRay       ( LeafList & List,  
                                          const D3DXVECTOR3 & RayOrigin,  
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                                          const D3DXVECTOR3 & Velocity ); 
    virtual void DebugDraw              ( CCamera & Camera ); 
  
    virtual bool GetSceneBounds         ( D3DXVECTOR3 & Min, D3DXVECTOR3 & Max ); 

 
The ProcessVisibility method is specified in ISpatialTree and should be called by the application prior to 
calling the ISpatialTree::DrawSubset method. Although we will not discuss the rendering system until 
the next chapter, the purpose of this function is to traverse the quad-tree with the passed camera and set 
the visible status of any leaves according to whether they are currently inside or outside the frustum. The 
GetSceneBounds function should return the bounding box of the entire area compiled into the quad-tree 
(which is the bounding volume of the root node). Finally, the DebugDraw method does not have to be 
implemented in any derived class as it has a default implementation in ISpatialTree which does nothing. 
However, each of our derived classes will override this method so that we can traverse the tree and 
render their leaf node bounding boxes to visualize what we have created. 
 
Below we see the private class methods. These are basically the methods that the public methods shown 
above use to accomplish their tasks. The functions listed above are really just doorways to the private 
recursive procedures. For example, the Build method creates the root node and builds the initial polygon 
list for that node and then calls the BuildTree function which recursively calls itself until the tree is 
complete. The same is true of the CollectLeavesAABB method which is really a one line function that 
makes sure the CollectAABBRecurse method is first called using the root node.  
 
private: 
     
    // Private Functions for This Class 
    bool         BuildTree              ( CQuadTreeNode * pNode,  
                                          PolygonList PolyList,  
                                          DetailAreaList AreaList,  
                                          const D3DXVECTOR3 & BoundsMin,  
                                          const D3DXVECTOR3 & BoundsMax ); 
     
    void         UpdateTreeVisibility   ( CQuadTreeNode * pNode,  
                                          CCamera & Camera,  
                                          UCHAR FrustumBits = 0x0 ); 
    
    bool         DebugDrawRecurse       ( CQuadTreeNode * pNode,  
                                          CCamera & Camera,  
                                          bool bRenderInLeaf ); 
 
    bool         CollectAABBRecurse     ( CQuadTreeNode * pNode,  
                                          LeafList & List,  
                                          const D3DXVECTOR3 & Min,  
                                          const D3DXVECTOR3 & Max 
                                                bool          bAutoCollect = false 
); 
 
    bool         CollectRayRecurse      ( CQuadTreeNode * pNode,  
                                          LeafList & List,  
                                          const D3DXVECTOR3 & RayOrigin,  
                                          const D3DXVECTOR3 & Velocity ); 
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Because CBaseTree provides us with the leaf list, detail area list, and polygon list in which to store our 
data, we only need to add a few more members in this class. The first is a CQuadTreeNode pointer 
which will point to the root node of the tree once it has been built. Given our extensive exposure to 
hierarchies in this course, we know that we only need to store the root node to a tree/hierarchy for its 
methods to be able to perform a complete traversal of every node in the tree. We also add a boolean 
member called m_bAllowSplits which simply stores whether a clipped tree is being built. This is 
determined by the value of the boolean parameter passed into the build function, which is stored in this 
member. The remainder of the class declaration is shown below. 
 
     //------------------------------------------------------------------------- 
     // Private Variables for This Class 
     //------------------------------------------------------------------------- 
     CQuadTreeNode * m_pRootNode;      // The root node of the tree 
     bool            m_bAllowSplits;   // Is splitting allowed? 
    
     // Stop Codes 

float           m_fMinLeafSize;     // Min leaf size stop code 
      ULONG           m_nMinPolyCount;    // Min polygon count stop code 
      ULONG           m_nMinAreaCount;    // Min detail area count stop code 
}; 
 
Notice that we now have three members at the very bottom which store a minimum leaf size, a 
minimum polygon count, and a minimum detail area count. The values of these members will be passed 
in as parameters to the constructor by the application to provide a degree of control over the way the tree 
is built.  When the tree is being compiled, a decision must be made at each node as to whether the node 
satisfies the requirements to become a leaf node. We implement three stop codes to that can be set by the 
application to influence this decision. If any of these stop codes are reached, the current node will have 
no children generated for it and will be made a leaf node. The three stop codes we use for the quad-tree 
are defined in CQuadTree.h and are discussed next. 
 
The first stop code is the size of the leaf. We currently set our default such that, if the bounding volume 
of a node is determined to have a diagonal length (e.g., bottom left to top right) of less than 300 world 
space units, we decide that this node’s volume is so small that we do not wish to further subdivide and 
create any more children down that branch of the tree. When this is the case, the node’s child pointers 
are set to NULL and a new CBaseLeaf object is created and attached to the node. The leaf is also added 
to the tree’s leaf list and the leaf itself has the pointers for all polygons and detail areas that made it into 
that node added to its internal arrays. 
 
The second stop code occurs during the creation of a node when we determine that less than a specified 
number of polygons have made it into that node. The default value for this is 600. This means that 
regardless of how large a node’s volume might be, if it contains less than 600 polygons we decide that 
further subdividing this polygon set would be futile and the node is made a leaf, exactly as described in 
the previous paragraph. 
 
The third stop code is one that allows us to stop subdividing a node’s volume if less than a certain 
number of detail areas exist in that node. By default we set this to zero so that detail areas play no part in 
determining whether a node should be made a leaf node. However, if you were to set this value to 1 (for 
example) then whenever a node was encountered that had only one detail area in it and the polygon list 
was lower than the polygon count stop code, a leaf node will be created. This stop code may be a little 
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hard to understand, and most of the time it will go unused and be set to zero. However, it can become 
very useful when you are building a tree that has no polygon data and consists only of detail areas, since 
it allows us to control the size of the leaf nodes under those conditions. For example, consider what 
happens if we compiled our terrain into a quad-tree. As discussed previously in this lesson, we will not 
want to compile every terrain polygon into the tree since the terrain data is already organized into a 
series of render ready terrain blocks (sub-meshes). What we might decide to do instead is just build a 
tree of detail areas. We could for example create a bounding box around each terrain block and register 
each of these volumes as detail areas with the tree. When the tree is compiled (which contains no 
polygon data) the only stop code would be the leaf size. However, this might carve up the space into 
many more leaves than necessary such that a given terrain block’s volume could be contained in many 
leaves. If all we are using the tree for is quickly querying which terrain block is visible, we would rather 
have each terrain block fit into a single leaf equal to its size. Ideally, if the terrain was divided into a 
10x10 grid of terrain blocks, we would like that space divided up into a grid of 10x10 terrain block sized 
leaf nodes. In this situation we could set the detail area count stop code to 1, and as soon as a node had 
only one detail area assigned to it, it would be made into a leaf node containing that single detail object. 
This means our tree would contain a leaf node for each terrain block allowing us to keep the tree as 
shallow as possible and therefore speeding up tree traversals.  

The Constructor - CQuadTree 

The CQuadTree constructor accepts two required parameters and three optional parameters. The first is 
a pointer to a Direct3D device which the rendering system will use to render the tree. The second is a 
boolean describing whether this is a hardware or software device. This information will be needed by 
the rendering system when creating the index and vertex buffers that will store the geometry for the 
render system.  
 
CQuadTree::CQuadTree( LPDIRECT3DDEVICE9 pDevice,  
                      bool bHardwareTnL  
                      float fMinLeafSize /* = 300.0f */,  
                      ULONG nMinPolyCount /* = 600 */,  
                      ULONG nMinAreaCount /* = 0 */ ) : CBaseTree( pDevice, bHardwareTnL ) 
{ 
    // Clear required variables 
    m_pRootNode = NULL; 
 
    // Store stop code values 
    m_fMinLeafSize  = fMinLeafSize; 
    m_nMinPolyCount = nMinPolyCount; 
    m_nMinAreaCount = nMinAreaCount; 
} 
 
The device pointer and its boolean hardware status are immediately sent to the CBaseTree constructor 
where they are stored in CBaseTree member variables. These will be used after the tree is built to set up 
the render system. The final three parameters contain the stop codes that the application can pass to 
influence which nodes are candidates for becoming leaf nodes during a build. We simply store these 
values in their corresponding member variables. 
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In our coverage of CBaseTree we learned that the CBaseTree::PostBuild method was to be called after 
the derived class’s Build method completed its task and built the tree (CBaseTree::PostBuild will be 
called from the CQuadTree::Build function just before it returns). The PostBuild method issues a call to 
the CBaseTree::BuildRenderData method which we will cover in the next lesson. This method will build 
the render data if NULL was not passed as the device pointer. Therefore, we can inform the tree that it 
will not be used for rendering by passing NULL as the first parameter and save the memory that would 
otherwise be allocated to prepare and contain the tree data in a renderable format. 

Destructor – CQuadTree 

At first glance, the CQuadTree destructor appears to neglect to free a lot of its memory. It simply deletes 
the root node, which triggers the deletion of every node in the tree. 
 
CQuadTree::~CQuadTree() 
{ 
    // Release any resources 
    if ( m_pRootNode ) delete m_pRootNode; 
 
    // Clear required variables 
    m_pRootNode = NULL; 
} 
 
What about the leaves, the polygons and the detail area? Keep in mind that our classes all have virtual 
destructors, so the base class’s destructor will automatically be called. CBaseClass actually manages the 
polygon, detail area, and leaf list data, so it is this destructor that releases them (shown below). 
 
As you can see, the base class destructor first loops through the linked list of polygons used by the tree 
and deletes each one before emptying the pointer list and freeing up its memory. 
 
CBaseTree::~CBaseTree() 
{ 
    PolygonList::iterator       PolyIterator = m_Polygons.begin(); 
    LeafList::iterator          LeafIterator = m_Leaves.begin(); 
    DetailAreaList::iterator    AreaIterator = m_DetailAreas.begin(); 
    ULONG                       i; 
 
    // Iterate through any stored polygons and destroy them 
    for ( ; PolyIterator != m_Polygons.end(); ++PolyIterator ) 
    { 
        CPolygon * pPoly = *PolyIterator; 
        if ( pPoly ) delete pPoly; 
 
    } // Next Polygon 
 
    m_Polygons.clear(); 

 
We then iterate through every detail area in the tree’s detail area STL list, delete each one and empty 
that list too. 
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    // Iterate through any stored detail area objects and release 
    for ( ; AreaIterator != m_DetailAreas.end(); ++AreaIterator ) 
    { 
        TreeDetailArea * pDetailArea = *AreaIterator; 
        if ( pDetailArea ) delete pDetailArea; 
 
    } // Next detail area 
    m_DetailAreas.clear(); 

 
And of course, we do the same for the list of leaves. 
 
    // Iterate through the leaves and destroy them 
    for ( ; LeafIterator != m_Leaves.end(); ++LeafIterator ) 
    { 
        CBaseLeaf * pLeaf = (CBaseLeaf*)(*LeafIterator); 
        if ( pLeaf ) delete pLeaf; 
 
    } // Next Leaf 
 
    m_Leaves.clear(); 

 
We then release the 3D device that the base tree render system will use. This device was passed in and 
stored in the constructor. We will see it being used in the following lesson. 
 
    // Release other D3D Objects 
    if ( m_pD3DDevice ) m_pD3DDevice->Release(); 
 
    // Clear required variables 
    m_pD3DDevice        = NULL; 
} 
 
Just remember later when examining the destructors of each derived class, that this base class 
constructor will always be called too. This is how the main memory for much of the tree gets released. 
All the derived class has to do in its destructor is delete the root node. 

Build - CQuadTree 

We finally find ourselves at the point where we can discuss the code that actually builds a tree. The 
application should call the CQuadTree::Build function only after it has registered all static polygon and 
detail area data with the tree (using the AddPolygon and AddDetailArea methods inherited from the 
base class). It is important that at the time this function is called, the object’s m_Polygons STL list 
contains all of the static polygon data we wish to compile into the tree and the  m_DetailAreas array 
contains all of the detail areas that we would like compiled into the tree. 
 
This function is not the recursive function that calls itself until the tree is fully built, but it is the function 
that allocates the root node and prepares the scene data for the recursive process (invoked by a call to the 
CQuadTree::BuildTree method). This function has the following tasks to perform: 
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1. Allocate a new CQuadTreeNode for the root node of the tree. 
 
2. Loop through each polygon in its list and compile an AABB for the data. 
 
3. Loop through each detail area and possibly adjust the AABB computed in step 2 so that all 

polygon data and detail areas are contained inside the bounding box (this will be the bounding   
      box of the root node). 
 
4. Build a list of all the polygons contained in this node (which will actually be a new temporary 

list containing all the polygons in the entire scene). Since this is the root node, this list will 
initially be a copy of the complete m_Polygons list (more on this in a moment). It is this list that 
will be passed down the tree and divided into four child lists at each node. 

 
5. Compile a list of all the detail area in the root node. This list will initially be an exact copy of the 

m_DetailAreas list to begin with since this is the root node. As this list is passed down the tree, it 
will be divided into four lists at each node, one for each child. 

 
6. Call the recursive BuildTree function passing the node pointer (step 1), the list of polygons and 

detail areas (steps 4 and 5) and the bounding box (steps 2 and 3). The recursive function will 
then store that passed AABB in the node and will sort the passed polygon and detail area lists 
into four lists, one for each child it creates. Then it will call itself recursively for each child, 
passing in the child node and the polygon and detail area lists for that node. 

 
7. When the recursive function returns, call the CBaseTree::PostBuild method. This will instruct 

the base class to calculate the polygon bounding boxes and initialize the render system. If a valid 
device pointer was passed to the constructor, the initialization of the render system will be 
triggered which will also issue a call to the CBaseTree::Repair method to repair all T-junctions 
that exist in the tree’s polygon set. 

 
Before we look at the code, we have one more small matter to address. If a clipped tree is not being 
compiled, then after the build is finished, the m_Polygons list should and will contain the same polygon 
pointers that were originally registered with the tree (i.e., the building process will not alter the polygons 
stored in this list). The CPolygon pointers stored in this list will be passed down the tree and a copy of 
each polygon pointer will be stored in the leaves in which it is contained. As the polygon data is never 
clipped or altered, the m_Polygons array will not be altered by the build process and will always contain 
the polygons contained in the tree even after the build process.  
 
However, if we pass true as the (only) parameter into the Build function, we are informing the tree that 
we would like the polygon data clipped to the leaf nodes so that no polygon will ever be stored in more 
than one leaf. We know that when we clip a polygon, we get back two new polygons and the original 
polygon is deleted and replaced by the two new clips. After the build process has completed in the case 
of a clipped tree, we do not want the m_Polygons array to contain the same polygons that were 
registered with the scene as these will no longer describe the polygons being used by the tree. Several 
polygons in that list will have been deleted the moment they were split, and many new polygons would 
have been added.  
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Fortunately there is not much to worry about. As we discussed in the steps above, we copy the polygon 
pointers into a temporary polygon list for the root node anyway, and it is this list that is passed down the 
tree. Therefore, in the clipped case, once we have made that temporary copy of the list, we will empty 
the m_Polygons list so that it contains no data. During the build process, polygons in the temporary list 
that gets passed to each node will be deleted and split into two new polygons which will all be added to 
these temporary lists. However, as soon as we find a leaf node, we will be passed a list of clipped 
polygons that fit exactly inside that leaf. We will then add these pointers to the m_Polygons list as and 
when they make it into a leaf. That way, as each leaf is created, its new split polygons are added back 
into the m_Polygons list, leaving us with an m_Polygons list at the end of the build process which 
contains all the polygons actually being used by the tree. This will be a very different list versus the 
original polygon set prior to the build process.  
 
Let us now look at the code a section at a time. 
 
The function is passed a single parameter which determines whether a clipped or non-clipped tree 
should be built. If this boolean is set to false (the default) a non-clipped tree will be built. Take a look at 
the variables we declare on the stack at the head of the function. 
 
bool CQuadTree::Build( bool bAllowSplits /* = false */ ) 
{ 
    PolygonList::iterator       PolyIterator = m_Polygons.begin(); 
    DetailAreaList::iterator    AreaIterator = m_DetailAreas.begin(); 
    PolygonList                 PolyList; 
    DetailAreaList              AreaList; 
    unsigned long               i; 
 
        // Reset our tree info values. 
    D3DXVECTOR3 vecBoundsMin( FLT_MAX, FLT_MAX, FLT_MAX ); 
    D3DXVECTOR3 vecBoundsMax( -FLT_MAX, -FLT_MAX, -FLT_MAX );  

 
We declare two iterators that will be used to step through the m_Polygons and m_DetailAreas lists. 
These lists contain the data we wish to compile. However, we also instantiate a local scope polygon list 
and detail area list that will be used to contain copies of the m_Polygons and m_DetailAreas lists 
respectively. We then set the vecBoundsMax and vecBoundsMin vectors which will be used to record 
the size of the root node’s volume (an inside out box initially). 
 
Next we allocate the root node of the tree and store its pointer in the CQuadTree member variable. We 
also copy the value of the bAllowSplits boolean into the m_bAllowSplits member variable. 
 
    // Allocate a new root node 
    m_pRootNode = new CQuadTreeNode; 
    if ( !m_pRootNode ) return false; 
 
    // Store the allow splits value for later retrieval. 
    m_bAllowSplits = bAllowSplits; 

 
Our next task is to loop through every polygon in the m_Polygons list and adjust the extents of the 
bounding box such that it is large enough to contain the vertices of all polygons in the scene. At the end 
of the following loop, vecBoundsMin and vecBoundsMax will represent a box that bounds all the 
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polygon data in the root node. Note that as we process each CPolygon pointer in m_Polygons and adjust 
the box to fit it, we add its pointer to the local polygon list declared at the top of the function. Therefore, 
at the end of this loop, we will have also made a copy of all the polygon pointers contained in 
m_Polygons into the local PolyList.  
 
    // Loop through all of the initial polygons 
    for ( ; PolyIterator != m_Polygons.end(); ++PolyIterator ) 
    { 
        // Retrieve the polygon 
        CPolygon * pPoly = *PolyIterator; 
        if ( !pPoly ) continue; 
 
        // Calculate total scene bounding box. 
        for ( i = 0; i < pPoly->m_nVertexCount; ++i ) 
        { 
            // Store info 
            CVertex * pVertex = &pPoly->m_pVertex[i]; 
            if ( pVertex->x < vecBoundsMin.x ) vecBoundsMin.x = pVertex->x; 
            if ( pVertex->y < vecBoundsMin.y ) vecBoundsMin.y = pVertex->y; 
            if ( pVertex->z < vecBoundsMin.z ) vecBoundsMin.z = pVertex->z; 
            if ( pVertex->x > vecBoundsMax.x ) vecBoundsMax.x = pVertex->x; 
            if ( pVertex->y > vecBoundsMax.y ) vecBoundsMax.y = pVertex->y; 
            if ( pVertex->z > vecBoundsMax.z ) vecBoundsMax.z = pVertex->z; 
 
        } // Next Vertex 
 
        // Store this polygon in the top polygon list 
        PolyList.push_back( pPoly ); 
 
    } // Next Polygon 
 
    // Clear the initial polygon list if we are going to split the polygons  
    // as this will eventually become storage for whatever gets built 
    if ( bAllowSplits ) m_Polygons.clear(); 

 
Notice what we do in the very last line of code show above. If a clipped tree is being built, we empty 
m_Polygons so that it no longer contains any polygon data. We can do this because we now have a copy 
of each pointer in the local list. m_Polygons will be repopulated with the clipped polygon data as each 
leaf node is encountered and created. If a clipped tree is not being built, we do not empty this list since it 
will be unchanged during the build process.  
 
We now have a bounding box for the root node polygon data but we must also make sure that it is large 
enough to also bound any registered detail areas. So we now loop through each registered detail area and 
adjust the root node’s bounding box to contain the bounding boxes of all detail areas. As with the above 
loop, as we process each detail area, we also copy its pointer into the local detail area list (DetailList) so 
that we have a complete list of detail areas which can be passed into the recursive process.  
 
    // Loop through all of the detail areas 
    for ( ; AreaIterator != m_DetailAreas.end(); ++AreaIterator ) 
    { 
        // Retrieve the detail area 
        TreeDetailArea * pDetailArea = *AreaIterator; 
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        if ( !pDetailArea ) continue; 
 
        // Calculate total scene bounding box. 
        D3DXVECTOR3 & Min = pDetailArea->BoundsMin; 
        D3DXVECTOR3 & Max = pDetailArea->BoundsMax; 
 
        if ( Min.x < vecBoundsMin.x ) vecBoundsMin.x = Min.x; 
        if ( Min.y < vecBoundsMin.y ) vecBoundsMin.y = Min.y; 
        if ( Min.z < vecBoundsMin.z ) vecBoundsMin.z = Min.z; 
        if ( Max.x > vecBoundsMax.x ) vecBoundsMax.x = Max.x; 
        if ( Max.y > vecBoundsMax.y ) vecBoundsMax.y = Max.y; 
        if ( Max.z > vecBoundsMax.z ) vecBoundsMax.z = Max.z; 
 
        // Store this in the top detail area list 
        AreaList.push_back( pDetailArea ); 
 
    } // Next Polygon 

 
At this point we have a root node pointer, a bounding box large enough to contain all the data contained 
in that node, and a complete list of all the registered polygons and detail areas stored in the PolyList and 
AreaList local lists. We are now ready to start the internal build process, so we pass this information into 
the BuildTree recursive function. 
 
    // Build the tree itself 
    if ( !BuildTree(m_pRootNode, PolyList, AreaList, vecBoundsMin, vecBoundsMax )) 
         return false; 

 
This function call will store the passed bounding box in the passed node, which means in its first 
iteration it will store the bounding box we have just compiled in the root node. It will then divide this 
bounding box into four quadrants creating the bounding boxes for each of the four child nodes. Then it 
will classify the polygon list and the detail area list against each bounding box, creating four separate 
polygon and detail area lists for each child. The four child nodes are then created and the BuildTree 
function calls itself recursively for each child and the process repeats until the function determines it has 
been passed a node that should be made into a leaf. This function will be covered in a moment, but for 
now just know that when it returns program flow back to CQuadTree::Build, the entire hierarchy of 
nodes will have been created and m_Polygons will contain the polygon data being used by the tree.  
 
At this point, the tree is fully constructed.  Before we return program flow back to the application, we 
issue a call to the CBaseTree::PostBuild function which instructs the base class to calculate the 
bounding boxes of each polygon and prepare the data for rendering (which includes T-junction repair). 
 
    // Allow our base class to finish any remaining processing 
    return CBaseTree::PostBuild(); 
} 

 
The recursive CQuadTree::BuildTree function is true core of this system, so let us cover that next. 
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BuildTree – CQuadTree 

BuildTree is the main tree compilation function. It is passed a node, a list of polygons and detail areas 
that fit in the bounding volume of that node, and the extent vectors of its volume. The function will first 
assign the passed volume to the passed node. Thus, the first time this function is called, BoundsMin and 
BoundsMax will be assigned to the root node as its bounding volume. It also means that the first time it 
is called, PolyList and AreaList will contain the entire scene since the root node’s volume bounds 
everything (assuming you are using the tree for an entire scene of course). In the case of the root node, 
its bounding volume was calculated in the previously discussed function and passed in along with the 
node. For all other nodes however, this function will generate the bounding boxes and polygon lists for 
each of its child nodes and call itself recursively. Therefore, the second time this function is called it will 
be called by the previous instance of the function. The node pointer passed will not be the root, it will be 
the first child of the root. The PolyList and AreaList will contain only the geometry that was contained 
in the root node’s first child, and BoundsMax and BoundsMin will be the bounding volume of that child 
node quadrant. 
 
Let us first look at the variables that are allocated on the stack. We will need to be able to iterate through 
the passed polygon and detail area lists so that we can divide them into four sub-lists (one per child), so 
we instantiate two iterators for this purpose. We will also need four temporary lists to hold the polygon 
data for each child node and the detail areas for each child node, so you can see that we instantiate an 
array of four PolygonLists (an STL list of CPolygons) and four DetailAreaLists (an STL list of detail 
area structures). We allocate two D3DXPLANE structures that will be used to create and store the two 
split planes at this node that divide the node into four quadrants. We will see these being used in a 
moment. 
 
Again, the first thing we do in the following code is assign the passed volume to the passed node.  
 
bool CQuadTree::BuildTree( CQuadTreeNode * pNode,  
        PolygonList PolyList,  
        DetailAreaList AreaList,  
        const D3DXVECTOR3 & BoundsMin,  
                           const D3DXVECTOR3 & BoundsMax ) 
{ 
    D3DXVECTOR3                 Normal; 
    PolygonList::iterator       PolyIterator; 
    DetailAreaList::iterator    AreaIterator; 
    CPolygon                  * CurrentPoly, * FrontSplit, * BackSplit; 
    PolygonList                 ChildList[4]; 
    DetailAreaList              ChildAreaList[4]; 
    CCollision::CLASSIFYTYPE    Location[2]; 
    D3DXPLANE                   Planes[2]; 
    unsigned long               i; 
    bool                        bStopCode; 
 
    // Store the bounding box properties in the node 
    pNode->BoundsMin = BoundsMin; 
    pNode->BoundsMax = BoundsMax; 
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Before we start subdividing space we need to determine whether or not the leaf is so small or its polygon 
list contains so few polygons that this node should be made a terminal node (a leaf). We discussed 
earlier that there are three stop codes that if true, prevent us creating any more children. We simply store 
the passed polygon data in the node, making it a leaf. Therefore, we first calculate the diagonal length of 
the current node’s bounding box and test this against the m_fMinLeafSize stop code.  
 
    // Calculate 'Stop' code 
    D3DXVECTOR3 vecLeafSize = D3DXVECTOR3( BoundsMax.x - BoundsMin.x,  
         0,  
         BoundsMax.z - BoundsMin.z ); 
     
    bStopCode  = (AreaList.size() == 0 && PolyList.size() == 0) || 
                 (AreaList.size() <= m_nMinAreaCount  &&  
    PolyList.size()<= m_nMinPolyCount ) ||  
                  D3DXVec3Length( &vecLeafSize ) <= m_fMinLeafSize; 

 
Let us analyze the multiple conditionals being used above. First, if there are no detail areas in the passed 
area list and no polygons in the passed polygon list, the node is totally empty and the boolean 
bStopCode will be set to true. In that case, we will create a leaf here. This boolean is also set to true if 
the number of detail areas is less then or equal to the m_nMinAreaCount stop code or if the number of 
polygons is less than or equal to the minimum polygon count amount. So, if we have too few polygons 
and too few detail areas in this node (as defined by the stop codes), we set bStopCode to true since we 
wish to halt subdivision and make this node a leaf. The final test that sets bStopCode to true happens 
when the length of the diagonal vector from the node’s extents is less than or equal to the minimum leaf 
size stop code. Notice that because we are using a quad-tree, all nodes will have the same height and we 
do not factor in the y components of the extents (we set the vecLeafSize vector’s Y component to zero). 
For a quad-tree, the diagonal vector projected on to the XZ plane is all we are concerned with.  
 
At this point we have a boolean that tells us whether we should continue to divide this node into four 
children or whether we should just make a new leaf here and return.  
 
In the next section of code we see what happens if this node is to become a leaf. We first allocate a new 
CBaseLeaf structure, passing in a pointer to the current tree instance, and then loop through every 
polygon in the passed list and add it to the leaf’s polygon array using the CBaseLeaf::AddPolygon 
function. At the end of this loop all the polygons that made it into the node will be stored in a new 
CBaseLeaf.  
 
    // If we reached our stop limit, build a leaf here 
    if ( bStopCode ) 
    { 
        // Build a leaf 
        CBaseLeaf * pLeaf = new CBaseLeaf( this ); 
        if ( !pLeaf ) return false; 
 
        // Store the polygons 
        for ( PolyIterator = PolyList.begin();  
     PolyIterator != PolyList.end();  
     ++PolyIterator ) 
        { 
            // Retrieve poly 
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            CurrentPoly = *PolyIterator; 
            if ( !CurrentPoly ) continue; 
 
            // Add to full tree polygon list ONLY if splitting is allowed 
            if ( m_bAllowSplits ) AddPolygon( CurrentPoly ); 
 
            // Also add a reference to the leaf's list 
            pLeaf->AddPolygon( CurrentPoly ); 
 
        } // Next Polygon 

 
Notice something very important in the above code. If a clipped tree is being built, we need to 
repopulate the tree’s m_Polygons array which was emptied at the start of the build process. We do this 
using the CBaseTree::AddPolygon function. This way, when all leaves have been created for the tree, 
the m_Polygons list will be fully populated with all the polygon fragments that made it into each clipped 
leaf. Obviously, we do not add the polygons to the tree’s list if we are not building a clipped tree as they 
are already stored there.  
 
Our next task is to loop through each detail area that made it into this node’s list and add each of those to 
the new leaf’s detail area array. The CBaseLeaf::AddDetailArea method which we covered earlier will 
be used to perform this task. 
 
        // Store the area lists 
        for ( AreaIterator = AreaList.begin();  
     AreaIterator != AreaList.end(); ++AreaIterator ) 
        { 
            // Retrieve detail area item 
            TreeDetailArea * pDetailArea = *AreaIterator; 
            if ( !pDetailArea ) continue; 
 
            // Add a reference to the leaf's list 
            pLeaf->AddDetailArea( pDetailArea ); 
 
        } // Next Polygon 

 
At this point we have a new leaf and it contains (in its internal arrays) a list of all the CPolygon pointers 
and detail area pointers that made it into this node. We will now assign the node’s Leaf pointer to point 
at our new leaf object and set the bounding box of the leaf to be the same as the node’s bounding box 
(using the CBaseLeaf::SetBoundingBox method to perform this task). Finally, with the leaf attached the 
node and its internal structures populated with the node’s data, we add this leaf object’s pointer to the 
tree’s leaf list for easier access and cleanup. We implemented the CBaseTree::AddLeaf method earlier 
to take care of adding a leaf pointer to the tree’s leaf list.  
 
At this point the leaf has been created and the node’s child pointers will still be NULL, and that is how 
they should remain. This is an end of branch of the tree and we can simply return because our terminal 
node has been created. This halts the recursive process down this particular branch of the tree. 
 
        // Store pointer to leaf in the node and the bounds 
        pNode->Leaf = pLeaf; 
 
        // Store the bounding box in the leaf 
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        pLeaf->SetBoundingBox( pNode->BoundsMin, pNode->BoundsMax ); 
 
        // Store the leaf in the leaf list 
        AddLeaf( pLeaf ); 
 
        // We have reached a leaf 
        return true; 
 
    } // End if reached stop code 

 
If we reach this point in the code, then it means we are not in a leaf node and as such, we need to divide 
the node’s volume into four quadrants so that we can build appropriate polygon and detail area lists as 
well as new bounding volumes. 
 
These four quadrants describe the bounding volumes of the four child 
nodes we will create and attach to this node. 
 
As discussed earlier in the lesson, we will determine which quadrant 
each polygon is in by creating two split planes that are aligned with the 
world X and Z axes and pass through the center point of the current 
node’s bounding volume. The two split planes are shown in Figure 
14.78. We will classify each polygon in this node’s list against these two planes to determine in which 
quadrants they exist and to which child polygon list they should be assigned. 
 
The next section of code generates the two split planes and stores them in the two element local Planes 
array. Plane[0] has its normal pointing in the direction of the Z axis (XY plane) and Plane[1] is aligned 
with the world YZ plane with its normal pointing down the X axis. The point on each plane which helps 
fully describe the plane to the D3DXPlaneFromPointNormal function is the same for each plane: the 
center point of the node’s volume calculated by adding its maximum extents to its minimum extents and 
dividing the result by two. The D3DXPlaneFromPointNormal function will return a D3DXPLANE 
structure that describes the plane, not in point/normal format, but in normal/distance format. 
 
    // Generate the two split planes 
    D3DXPlaneFromPointNormal( &Planes[0], &((BoundsMin + BoundsMax) / 2.0f), 
        &D3DXVECTOR3( 0.0f, 0.0f, 1.0f ) ); 
     
    D3DXPlaneFromPointNormal( &Planes[1], &((BoundsMin + BoundsMax) / 2.0f), 
        &D3DXVECTOR3( 1.0f, 0.0f, 0.0f ) ); 

 
Note: Because we have to give some descriptive names to the quadrants of our node to make things a 
little easier to explain, we will refer to each quadrant using a name that is relative to an imaginary 
individual positioned at the center of the node looking in the direction of Plane[0]’s normal. As Plane[0] 
faces down the positive Z axis, the quadrants behind this plane will be referred to as ‘BehindLeft’ and 
‘BehindRight’. The two quadrants in front of Plane[0] will be labelled ‘InfrontLeft’ and ‘InfrontRight’. 

 
If we were only supporting non-clipped trees, then our next task would be to loop through each polygon 
in the node’s list, classify it against both planes and use the two results to determine which quadrants the 
polygon falls into. The polygon would then have its pointer added to the appropriate lists for those 
quadrants (remember that we allocated an array of four empty polygon lists on the stack which we will 

 
Figure 14.78 



 

170 

fill in this function with the polygon contained in each quadrant). However, if the m_bAllowSplits 
member is set to true, it means the application would like this tree built so that no polygon is ever 
spanning node boundaries. As such, all the polygons in the node’s list that are spanning any of the two 
node planes should be split. The original polygon that was spanning the plane should then be deleted 
from the list and replaced with the two new polygons that it was split into.   
 
The next section of code is executed only in the case when a clipped tree is being built. It loops through 
each polygon in this node’s list and classifies each polygon against the current plane being tested. If a 
polygon is found to be spanning the current plane we are testing, we split it into two, delete it, set its 
pointer entry in the list to NULL and then add the two new child polygons to the list. These child 
polygons will possibly be split again when the second plane is tested. We discussed code almost 
identical to this at the beginning of this lesson, so you should have no problem understanding how it 
works. Notice that the task is made very easy due the functions we have previously written 
(CPolygon::Split and CCollision::PolyClassifyPlane). 
 
    // Split all polygons against both planes if required 
    if ( m_bAllowSplits ) 
    { 
        for ( i = 0; i < 2; ++i ) 
        { 
            for ( PolyIterator = PolyList.begin();  
    PolyIterator != PolyList.end(); ++PolyIterator ) 
            { 
                // Store current poly 
                CurrentPoly = *PolyIterator; 
                if ( !CurrentPoly ) continue; 
 
                // Classify the poly against the first plane 
                Location[0] = CCollision::PolyClassifyPlane 
                             (  
        CurrentPoly->m_pVertex,  
                                CurrentPoly->m_nVertexCount,  
                                sizeof(CVertex), 
                                (D3DXVECTOR3&)Planes[i],  
                                Planes[i].d  
          ); 
 
 
                if ( Location[0] == CCollision::CLASSIFY_SPANNING ) 
                { 
                    // Split the current poly against the plane,  
                    // delete it and set it to NULL in the list 
                    CurrentPoly->Split( Planes[i], &FrontSplit, &BackSplit ); 
                    delete CurrentPoly; 
                    *PolyIterator = NULL; 
 
                    // Add these to the end of the current poly list 
                    PolyList.push_back( FrontSplit ); 
                    PolyList.push_back( BackSplit ); 
                 
                } // End if Spanning 
 
            } // Next Polygon 
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        } // Next Plane 
 
    } // End if allow splits 

 
At this point, if we are building a clipped tree, any polygons in the list that were spanning the node 
planes will have been deleted and replaced with polygons that fit neatly into each leaf. If this is not a 
clipped tree, then it does not matter if a polygon is spanning a node plane as we will just assign it to all 
the child node lists in which it belongs. 
 
Our next task is to loop through each polygon in the list and classify it against both of the node’s split 
planes. We store the classification results in a local ClassifyType array called Location. 
 
    // Classify the polygons and sort them into the four child lists. 
    for ( PolyIterator = PolyList.begin();  
          PolyIterator != PolyList.end(); ++PolyIterator ) 
    { 
        // Store current poly 
        CurrentPoly = *PolyIterator; 
        if ( !CurrentPoly ) continue; 
 
        // Classify the poly against the planes 
        Location[0] = CCollision::PolyClassifyPlane( CurrentPoly->m_pVertex, 
              CurrentPoly->m_nVertexCount, 
               sizeof(CVertex), 
                                                     (D3DXVECTOR3&)Planes[0], 
                                                     Planes[0].d ); 
 
        Location[1] = CCollision::PolyClassifyPlane( CurrentPoly->m_pVertex, 
                                                     CurrentPoly->m_nVertexCount, 
                                                     sizeof(CVertex), 
                                                    (D3DXVECTOR3&)Planes[1], 
                                                     Planes[1].d ); 

 
At this point we know the current polygon’s relationship to both the split planes and have the results 
stored, so we can figure out which quadrant it is in and which of the child polygon lists to add it to. 
Location[0] tells us whether it is in the back or front halfspace of the node, while Location[1] tells us in 
which halfspace within that halfspace (left or right) the polygon belongs.  
 
Since the first plane split plane is aligned to the world XY plane, we know that if it is spanning the plane 
(only possible in the non-clipped tree case) or it is behind this plane, then it will need to have its pointer 
assigned to either the BehindLeft or BehindRight lists.  Once we know it is behind the XY plane, we 
then test its classification against the YZ plane. If it is behind this plane then it must be in the 
BehindLeft quadrant; otherwise it must be in the BehindRight quadrant. In either case, we add it to the 
relevant list. ChildList[0] will contain the polygons found to be in the BehindLeft quadrant and 
ChildList[1] is assigned polygons that are contained in the BehindRight quadrant. 
 
        // Position relative to XY plane 
        if ( Location[0] == CCollision::CLASSIFY_BEHIND ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
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            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildList[0].push_back( CurrentPoly ); 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                   Location[1] == CCollision::CLASSIFY_ONPLANE || 
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildList[1].push_back( CurrentPoly ); 
 
        } // End if behind or spanning 

 
Notice in the above code that if a polygon is found to lie on the plane YZ plane we assign it to the node 
in front of the plane. An on plane polygon is essentially on the border between two nodes and we need 
to assign it somewhere. It does not really matter which node we choose to assign it to because if that 
polygon is visible, it would mean that the leaves both in front and behind that node would always be 
collected anyway. Likewise, if a collision query is performed and the swept sphere did intersect that 
polygon, it would automatically mean that it is spanning those leaves and those leaves would be 
collected.   
 
If the above code was not executed it must mean the polygon is in front of the XY node plane 
(Plane[0]), so we must include similar code that will add the polygon to either front left or right 
quadrants. However, the next section of code is also executed in the spanning case as well, just as the 
above code was. This means that in the case of a non-clipped tree where we have a polygon spanning the 
XY plane, both code blocks will be executed and the polygon will be added to nodes both in front and 
behind this plane. This is correct, because if a polygon spans the boundaries of two nodes (which is only 
possible at this point in the non-clipped tree), we wish to add it to both nodes.  
 
The next section of code handles the list assignments for polygons that are either spanning or are 
contained in the front halfspace of the XY plane. It is executed if the polygon is in front of the XZ plane 
or (as discussed above) if the polygon is on the plane. For our spatial trees, we can safely treat the on 
plane case as being identical to the in front case. 
 
        if ( Location[0] == CCollision::CLASSIFY_INFRONT ||  
               Location[1] == CCollision::CLASSIFY_ONPLANE || 
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildList[2].push_back( CurrentPoly ); 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT || 
                   Location[1] == CCollision::CLASSIFY_ONPLANE ||   
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                 ChildList[3].push_back( CurrentPoly ); 
 
        } // End if in-front or on-plane 
 
    } // Next Triangle 
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We can see above that ChildList[2] is the list compiled for the quadrant that is in front of the XY plane 
and behind the YZ plane (the back left quadrant) and ChildList[3] is for polygons that are in front of 
both planes (the back right quadrant). 
 
At this point we have four polygon lists (one for each quadrant) and we now need to do the same thing 
with the node detail areas. Notice that the following code is identical to that we saw above with the 
exception that we are using our new CCollision::AABBClassifyPlane method to calculate the 
classification between the AABB and each plane. 
 
    // Classify the areas and sort them into the child lists. 
    for ( AreaIterator = AreaList.begin();  
          AreaIterator != AreaList.end(); ++AreaIterator ) 
    { 
        // Store current area 
        TreeDetailArea * pDetailArea = *AreaIterator; 
        if ( !pDetailArea ) continue; 
 
        // Classify the area against the planes 
        Location[0] = CCollision::AABBClassifyPlane( pDetailArea->BoundsMin, 
                                                     pDetailArea->BoundsMax, 
                                                     (D3DXVECTOR3&)Planes[0], 
                                                     Planes[0].d ); 
 
        Location[1] = CCollision::AABBClassifyPlane( pDetailArea->BoundsMin, 
                                                     pDetailArea->BoundsMax, 
                                                     (D3DXVECTOR3&)Planes[1], 
                                                     Planes[1].d ); 

 
Once again, the same logic is used to determine in which quadrant the AABB is contained and to which 
list it should be added. 
 
        // Position relative to XY plane 
        if ( Location[0] == CCollision::CLASSIFY_BEHIND ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildAreaList[0].push_back( pDetailArea ); 
             
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildAreaList[1].push_back( pDetailArea ); 
 
        } // End if behind or spanning 
        if ( Location[0] == CCollision::CLASSIFY_INFRONT ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildAreaList[2].push_back( pDetailArea ); 
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            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildAreaList[3].push_back( pDetailArea ); 
 
        } // End if in-front or on-plane 
 
    } // Next Detail Area 

 
We are very nearly done. We have four lists of polygons that describe the polygons that fit in each 
quadrant of the node, and we have four lists of detail objects that also are contained (or partially 
contained) in each quadrant. We know at this point that we want each quadrant in this node to be 
represented by four new child nodes. As the BuildTree function will be called for each of these nodes 
and expects to be passed the node’s bounding volume, we will have to create the AABB for each child 
node in this function. 
 
In the next and final section of code, we set up a loop that will iterate for each child. Depending on 
which iteration of the loop we are on we will calculate the bounding box for that node and store it in 
temporary vectors NewBoundsMin and NewBoundsMax. The box computation is simple since the mid-
point of the parent node will describe the location where all child volumes meet in the center of the 
node. We can see for example that in the first iteration of the loop we are building the volume for the 
BehindLeft child. Its minimum extents vector is simply the minimum extents vector of the parent node 
and its maximum extents vector is in the center of the parent node along the x and z axes. All quad-tree 
nodes inherit their height from the root node, so we can see that all nodes will always have a maximum 
y extents component of BoundsMax.y and will always have a minimum y extents component of 
BoundsMin.y. Once we have the bounding box for the current node we are processing, we allocate a 
new CQuadTreeNode structure and store its pointer in the parent node’s child pointer list. The function 
then calls itself recursively passing in the new child node, the bounding box of that node that we have 
just calculated, and the polygon and detail area lists we compiled for its quadrant. 
 
    // Build each of the children here 
    for( i = 0; i < 4; ++i ) 
    { 
        // Calculate child bounding box values 
        D3DXVECTOR3 NewBoundsMin,  
                    NewBoundsMax,  
                    MidPoint = (BoundsMin + BoundsMax) / 2.0f; 
        switch( i ) 
        { 
            case 0: // Behind Left 
                NewBoundsMin = BoundsMin; 
                NewBoundsMax = D3DXVECTOR3( MidPoint.x, BoundsMax.y, MidPoint.z); 
                break; 
 
            case 1: // Behind Right 
                NewBoundsMin = D3DXVECTOR3( MidPoint.x, BoundsMin.y, BoundsMin.z ); 
                NewBoundsMax = D3DXVECTOR3( BoundsMax.x, BoundsMax.y, MidPoint.z); 
                break; 
 
            case 2: // Infront Left 
                NewBoundsMin = D3DXVECTOR3( BoundsMin.x, BoundsMin.y, MidPoint.z ); 
                NewBoundsMax = D3DXVECTOR3( MidPoint.x, BoundsMax.y, BoundsMax.z ); 
                break; 
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            case 3: // Infront Right 
                NewBoundsMin = D3DXVECTOR3( MidPoint.x, BoundsMin.y, MidPoint.z ); 
                NewBoundsMax = BoundsMax; 
                break; 
         
        } // End Child Type Switch 
         
        // Allocate child node 
        pNode->Children[i] = new CQuadTreeNode; 
        if ( !pNode->Children[i] ) return false; 
 
        // Recurs into this new node 
        BuildTree( pNode->Children[i],  
                   ChildList[i],  
                   ChildAreaList[i],  
                   NewBoundsMin,  
                   NewBoundsMax ); 
 
        // Clean up 
        ChildList[i].clear(); 
        ChildAreaList[i].clear(); 
 
    } // Next Child 
 
    // Success! 
    return true; 
} 
 
In each iteration of the node generation loop above, the BuildTree function is passed a child node. As 
this function will perform all the same steps on the child node, and so on down the tree, until a leaf is 
located, we can imagine that once this function returned for the first child node, the entire branch of the 
tree that starts at that node will have been created. We then process the remaining three nodes in the loop 
and our job is done. Notice at the bottom of the node loop that once the BuildTree method returns for a 
given child, the polygon list and detail area list we compiled for it earlier in the function are no longer 
needed, so we release them. When this loop exits, every node and leaf under the current node being 
processed will have been built, so we can return. If we are in the instance of the BuildTree method that 
was called for the root node for example, the tree will have been completely built and program flow will 
pass back to the Build method which we saw previously.  
 
You have just written a quad-tree compiler and implemented all the steps involved in the build process. 
The really nice thing about this is that the build functions for our oct-tree and kD-tree are almost 
identical. The only difference is that they split the node with a different number of planes and create a 
different number of child nodes. This means that we will be able to examine the build methods of the 
other tree with very little explanation. 
 
Although we have covered all the code involved in the build process, there are still several query 
methods we must implement in the derived class to allow the application (or any user) to collect leaves 
based on intersections. We will examine these queries next before moving on to the other tree types. 
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14.17.3 The Quad-Tree Query Methods 

The query functions for any spatial tree are what make the tree useful. The CollectLeavesAABB method 
for example is used by the application to link dynamic objects to leaves. The application can simply pass 
the bounding volume of the dynamic object into the CollectLeavesAABB method and have a list filled 
with pointers to all the leaves the volume intersected. This is obviously very handy for tasks like 
visibility processing since the dynamic object only has to be rendered if the IsVisible method of one of 
these leaves returns true. 
 
The CollectLeavesAABB method is not just used by the application. Recall that CBaseTree demands 
that it is implemented in the derived class because it is called to speed up the T-junction repair process. 
For each polygon currently being repaired, it was used to return a list of leaves whose volumes intersect 
the AABB of the polygon. Only the polygons contained in these leaves would need to be tested against 
each other at the edge/vertex level. 
 
For each of our tree classes we will implement two query functions which allow us to collect leaves 
from the tree using different primitives. The CollectLeavesAABB method sends an AABB down the 
tree and adds the pointer of any leaf it intersects to the passed list. The CollectLeavesRay method passes 
a ray down the tree and adds the pointers to any leaves the ray intersects to the passed leaf list. 
Fortunately, both functions are quite small due to the fact that they use the collision routines we added to 
CCollision earlier in this lesson. You should feel free to add query routines of your own for different 
primitive types (spheres would be another good choice) and extend the ISpatialTree interface as needed.  

CollectLeavesAABB – CQuadTree 

The CollectLeavesAABB method is a wrapper around the first call to the CollectAABBRecurse method 
(the recursive method that steps through the tree and adds any leaves it encounters to the passed leaf 
list). The CollectLeavesAABB method just starts the recursive process at the root node of the quad-tree. 
Here is the code.  
 
bool CQuadTree::CollectLeavesAABB( LeafList & List,  
                                   const D3DXVECTOR3 & Min,  
                                   const D3DXVECTOR3 & Max ) 
{ 
    // Trigger Recursion 
    return CollectAABBRecurse( m_pRootNode, List, Min, Max ); 
} 
 
The method is passed three parameters. The first should be of type LeafList, which you will recall is a 
type definition for an STL linked list that contains ILeaf pointers. The list is passed by reference and is 
assumed to be empty, since it will be the job of the CollectAABBRecurse method to fill it with leaves. 
The second and third parameters are the extents of the AABB we would like to query the tree with (e.g., 
the AABB of a dynamic object). 
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When the CollectAABBRecurse method returns, the leaf list will contain all the pointers to leaves that 
were intersected by the passed AABB. Of course, the core of the query process is found inside the 
CollectAABBRecurse method, which we will examine next. 

CollectAABBRecurse - CQuadTree 

This function is passed a pointer to the node it is currently visiting, which will be a pointer to the root 
node the first time it is called by CollectLeavesAABB. It is also passed a leaf list which it should fill 
with any leaves found to be intersecting the query volume described by parameters Min and Max. The 
function also accepts a final boolean parameter (set to false by default) called bAutoCollect. Because 
this parameter is optional, and is not passed by the previous function, this will always be set to zero 
when it is first called for the root node. This boolean will be tracked as the tree is traversed and will be 
set to true once we find a node that is completely contained in the query volume.  
 
You will recall from earlier in the lesson that we wrote a CCollision::AABBIntersectAABB method 
which took a boolean reference as its first parameter. The function returns true if the two boxes intersect 
but the boolean passed in the first parameter will also be set to true if the second box is fully contained 
in the first. We use this to optimize our leaf collection process because, if we find at any node in the tree 
that has its box fully contained inside the query volume, there is no point in performing the same 
AABBIntersectAABB test as we visit each of its children. Since all the children will be contained in the 
parent node’s box, which is itself fully contained in the query volume, we know that all nodes and leaves 
under that node must be contained in the query volume as well. Therefore, as soon as the boolean is set 
to true, any further AABB tests on the children of that node will be abandoned; we will simply traverse 
down that branch of the tree and add leaves to the list as we find them. 
 
The function uses the CCollision::AABBIntersectAABB method we wrote earlier in this lesson to test if 
the passed AABB intersects the AABB of the node currently being visited. If it does not, then this node 
and all of its child cannot possibly intersect the query volume, so we can return false immediately and 
stop traversing down this branch of the tree.  Again, we only do the AABB intersection test if the 
bAutoCollect parameter is not set to true. If it is, then we can just proceed to collect leaves without 
further testing. 
 
bool CQuadTree::CollectAABBRecurse( CQuadTreeNode * pNode,  
                                    LeafList & List,  
                                    const D3DXVECTOR3 & Min,  
                                    const D3DXVECTOR3 & Max, 
                                    bool bAutoCollect /*=false*/ ) 
{ 
    bool  bResult = false; 
    ULONG i; 
 
    // Validate parameters 
    if ( !pNode ) return false; 
 
    // Does the specified box intersect this node? 
    if ( !bAutoCollect && !CCollision::AABBIntersectAABB( bAutoCollect, 
                                                          Min, 
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                                                          Max, 
                                                          pNode->BoundsMin,  
                                                          pNode->BoundsMax,  
                                                          false,  
                                                          true,  
                                                          false ) ) return false; 

 
Notice that we pass our boolean variable as the first parameter to the AABB intersection method so that 
the function can set its value to true in the event of box 2 being completely contained in box 1. As this 
boolean will be passed into the child node traversals this will allow us to avoid needlessly performing 
AABB tests at those child nodes. The extents vectors of the query volume are passed as the next two 
parameters followed by the extents of the node’s bounding box in the second pair of parameters. 
Remember that the three boolean parameters at the end of this method’s parameter list indicate whether 
we would like to ignore any axes during the test. For a quad-tree, where every node has the same height, 
we pass true as the bIgnoreY parameter so that the AABB intersection test is performed only on the XZ 
plane. It assumes that the quad-tree nodes are infinitely tall since there is no vertical partitioning in a 
vanilla quad-tree. 
 
If the above collision code did not force an early return from the function, it means the query volume 
does intersect the node’s volume. If the node’s Leaf member is not set to NULL then this node is a leaf 
node and we add its leaf pointer to the passed list. As a leaf is a terminal node, it has no children for us 
to traverse and as such, our job is done and we can return. 
 
    // Is there a leaf here, add it to the list 
    if ( pNode->Leaf ) { List.push_back( pNode->Leaf ); return true; } 

 
If the above condition was not true then it means the node intersects the query volume but the node is 
not a leaf node. In this case, we want to traverse into each of its four children. The function recursively 
calls itself for each child, making sure that it passes the original list and query volume extents down to 
the children. Notice in the following code how we pass the bAutoCollect boolean value into the child 
nodes so that if it is set to true, the AABB tests will not be performed on the child nodes (they are 
assumed to be inside the query volume). The remainder of the function is shown below. 
 
    // Traverse down to children 
    for ( i = 0; i < 4; ++i ) 
    { 
        if ( CollectAABBRecurse( pNode->Children[i], List, Min, Max, bAutoCollect))  
        bResult = true; 
 
    } // Next Child 
 
    // Return the 'was anything added' result. 
    return bResult; 
} 
 
It is hard to believe that such a small function could be so powerful and useful. But thanks to spatial 
partitioning this is indeed the case. The function to query a ray against the tree is equally as simple, as 
we will see next. 
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CollectLeavesRay – CQuadTree 

The CollectLeavesRay method can be called by the application to fill a list of all the leaves intersected 
by the passed ray. The method is a wrapper around the call to the CollectRayRecurse method for the 
root node. It is the CollectRayRecurse method which performs the traversal and collision logic. 
 
bool CQuadTree::CollectLeavesRay( LeafList & List,  
                                  const D3DXVECTOR3 & RayOrigin,  
                                  const D3DXVECTOR3 & Velocity ) 
{ 
    return CollectRayRecurse( m_pRootNode, List, RayOrigin, Velocity ); 
} 

 
The method is passed three parameters, the leaf list that we would like to have filled with leaves which 
intersect the ray, the ray origin, and the ray delta vector. 

CollectRayRecurse – CQuadTree 

This method is almost identical to the CollectLeavesRecurse method discussed above. It recursively 
calls itself visiting each node. At the current node being visited it performs a ray/box intersection test 
between the passed ray and the node’s AABB. We use our new CCollision::RayIntersectAABB method 
for this and once again pass in a boolean parameter to indicate that we would like to ignore the y 
dimensions in the test and assume the box to be infinitely high. Although the RayIntersectAABB 
method returns the t value of intersection in its fourth parameter, we are only interested in a true or false 
result in this case and as such, the t value is ignored. 
 
bool CQuadTree::CollectRayRecurse(  CQuadTreeNode * pNode,  
       LeafList & List,  
       const D3DXVECTOR3 & RayOrigin,  
       const D3DXVECTOR3 & Velocity ) 
{ 
    bool  bResult = false; 
    ULONG i; 
    float t; 
 
    // Validate parameters 
    if ( !pNode ) return false; 
 
    // Does the ray intersect this node? 
    if ( !CCollision::RayIntersectAABB( RayOrigin, Velocity,  
                                        pNode->BoundsMin,  
                                        pNode->BoundsMax,  
                                        t,  
                                        false,  
                                        true,  
                                        false ) ) return false; 
 
    // Is there a leaf here, add it to the list 
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    if ( pNode->Leaf ) { List.push_back( pNode->Leaf ); return true; } 
 
    // Traverse down to children 
    for ( i = 0; i < 4; ++i ) 
    { 
        if ( CollectRayRecurse( pNode->Children[i],  
                                List,  
                                RayOrigin,  
                                Velocity ) ) bResult = true; 
 
    } // Next Child 
 
    // Return the 'was anything added' result. 
    return bResult; 
} 
 

As you can see, if the ray does not intersect the box, then it also means it cannot possibly intersect any 
children of the node, so we can return false are reject the rest of this branch of the tree. If the ray does 
intersect the box and the node is a leaf, we add its pointer to the leaf list and return. Finally, if the node 
is intersected by the ray but it is not a leaf node, we traverse into each of the node’s children. 

14.17.4 The Quad-Tree DebugDraw Routines 

As discussed earlier, we have implemented some deliberately simple debug drawing routines that allow 
an application to request that the bounding boxes of the leaf nodes be rendered. These routines are far 
from optimal and are not designed to ship in commercial code. They are written help you solve any 
problems or choose a nice leaf size for your tree. These functions are small since we included the code 
that renders a box in a CBaseTree method so that all derived classes can easily implement their debug 
routines. We also implemented a screen tint function in CBaseTree which is called to tint the screen red 
when the camera enters a leaf that contains polygon or detail area data. 

DebugDraw - CQuadTree 

The only debug routine the application has to call is the DebugDraw routine. It should be called only 
after the entire scene has been rendered. It is passed the camera the application is currently using, which 
it passes along to the recursive function, DebugDrawRecurse. It is this function which walks the tree and 
renders the bounding boxes. The code to the CQuadTree::DebugDraw method is shown below. 
 
void CQuadTree::DebugDraw( CCamera & Camera ) 
{ 
    // Simply start the recursive process 
    DebugDrawRecurse( m_pRootNode, Camera, false ); 
 
    if ( DebugDrawRecurse( m_pRootNode, Camera, true ) )  
         DrawScreenTint( 0x33FF0000 ); 
} 
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Notice that the DebugDrawRecurse method is called twice since we wish to render the boxes in two 
passes through the hierarchy. In the first pass, we want to render all the leaf nodes the camera is not 
currently contained in, which is why we pass false as the final parameter. These leaf nodes will be 
rendered blue, with Z testing enabled. This means the rendered boxes will be obscured by any geometry 
that is closer to the camera, just like normal scene rendering. The second time the method is called we 
pass true as this final parameter, which means we are only interested in rendering the leaf the camera is 
currently contained in. For these leaves, Z testing will be disabled so that the lines of the box overwrite 
anything already in the frame buffer, even if that geometry is closer to the camera. This allows us to 
always see all the lines of the bounding box of the leaf in which you are currently contained. If the 
current camera leaf has no geometry or detail areas assigned to it (it is an empty leaf) the box is rendered 
in green and the function return false. If it does have geometry or detail area data, the box lines are 
rendered in red and the function returns true. We can see in the above code that when this is the case, we 
also call the CBaseTree::DrawScreenTint function (covered earlier in the lesson) to tint the screen red 
(alpha value of 0x33).   

DebugDrawRecurse - CQuadTree 

This method visits each node in the tree and determines whether its box should be rendered and if so, in 
what color. If the boolean parameter is set to false, the function will render a leaf box when the camera 
position is not contained in it. If the boolean parameter is set to true, the method will traverse the tree 
searching only for the camera leaf node and render that box in a different manner than the other boxes. 
The method will also return true if the boolean parameter is set to true and the camera is contained in a 
leaf that has either polygon data or detail area assigned to it. 
 
As this method is only interested in rendering leaf nodes, it first tests to see if the node it is currently 
visiting is a leaf node. If it is, then it uses our new CCollision::PointInAABB test to see if the camera 
position is contained inside the AABB of the leaf. We once again pass true for the bIgnoreY parameter 
in the quad-tree case so that the test is essentially performed using only the x and z components of the 
box and the point. We store the result of this test in the bInLeaf local variable. It will be set true only if 
the node this function is currently visiting is a leaf and the camera position is within its AABB. 
 
bool CQuadTree::DebugDrawRecurse( CQuadTreeNode * pNode,  
                                  CCamera & Camera,  
                                  bool bRenderInLeaf ) 
{ 
    ULONG i; 
    bool  bDrawTint = false; 
 
    // Render the leaf 
    if ( pNode->Leaf ) 
    { 
        ILeaf * pLeaf = pNode->Leaf; 
        bool bInLeaf = CCollision::PointInAABB( Camera.GetPosition(),  
                                                pNode->BoundsMin,  
                                                pNode->BoundsMax,  
                                                false, true, false ); 
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At this point, if bInLeaf is set to true and the bRenderInLeaf parameter was also set to true, it means this 
method is in the mode that renders only the leaf the camera is in. As bInLeaf is true, we have found that 
leaf so we must render it. We first fetch the polygon count and the detail area count from the leaf. If both 
are set to zero then it means the camera is in an empty leaf and we set its color to green. Otherwise, we 
set the color of the box lines to red. If the leaf is not empty, we also set the bDrawTint value to true. This 
is the value that will be returned from the function. It is set to false at the start of the function by default, 
so this function will only ever return true if the camera is in a non-empty leaf node and if the function is 
in the mode that renders only the camera leaf. We then call the CBaseTree::DrawBoundingBox method 
to render the lines of the leaf’s box. 
 
        if ( bRenderInLeaf && bInLeaf ) 
        { 
            ULONG Color = 0xFFFF0000; // Red by default 
 
            // Is there really anything in this? 
            if ( pLeaf->GetPolygonCount() == 0  
                 && pLeaf->GetDetailAreaCount() == 0 ) 
                Color = 0xFF00FF00; 
            else 
                bDrawTint = true; 
 
            // Draw the bounding box 
            DrawBoundingBox( pNode->BoundsMin, pNode->BoundsMax, Color, false ); 
 
        } // End if we should draw a red (inside) box here 

 
Notice in the above call to DrawBoundingBox that we pass in the extents of the node’s bounding box 
and the color we calculated based on the leaf’s empty status. We also pass in false as the final parameter 
which instructs the method to render this box without Z testing enabled. This means all the visible lines 
of the box (those in the frustum) will always be rendered over the top of anything contained in the frame 
buffer. This will make it much easier to see the extents of the box the camera is currently in without 
worrying about the lines of the box being obscured by nearby geometry.  
 
We have handled the case for when the function is in ‘draw camera leaf only’ mode. The next section of 
code is executed for the ‘draw everything except the camera leaf’ mode and the current node is not a 
node the camera is contained in. It uses the CBaseTree::DrawBoundingBox method to draw a blue box, 
only this time we pass true as the final parameter so that the depth buffer is enabled and the box is 
rendered in the normal way.  
 
        // Draw blue box? 
        if ( !bRenderInLeaf && !bInLeaf ) 
        { 
            DrawBoundingBox( pNode->BoundsMin, pNode->BoundsMax, 0xFF0000FF,true ); 
 
        } // End if we should draw a blue box (outside) here 

 
Finally, as detail areas are not something we can usually see, we will also render a box around any detail 
areas that might be contained in the current leaf node. As you can see, we simply set up a loop to extract 
each detail area assigned to the current leaf and render a blue box using the detail area’s bounding box. 
For detail areas, we render with depth testing disabled so that they are not obscured by nearby geometry. 
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        for ( i = 0; i < pLeaf->GetDetailAreaCount(); ++i ) 
        { 
            TreeDetailArea * pDetailArea = pLeaf->GetDetailArea( i ); 
            if ( !pDetailArea ) continue; 
 
            // Now let's render the detail area 
            DrawBoundingBox( pDetailArea->BoundsMin,  
                             pDetailArea->BoundsMax,  
                             0xFF00FF00,  
                             false ); 
 
        } // Next Detail Area 
 
    } // End if not a leaf 

 
We have now seen all the code that is executed if the current node is a leaf node. If it is not, then this is a 
non-terminal node that will have four children, so we better visit those too. 
 
    // Step down to children. 
    for ( i = 0; i < 4; ++i ) 
    { 
        if ( pNode->Children[i] ) 
        { 
            if ( DebugDrawRecurse( pNode->Children[i], Camera, bRenderInLeaf ) ) 
                 bDrawTint = true; 
 
        } // End if child exists 
 
    } // Next child 
 
    // Return whether we should draw the tint 
    return bDrawTint; 
 
} 
 
If this function returns true, it means the camera is in a leaf that contains geometry or detail areas and 
the parent function (DebugDraw) tints the screen slightly red when this is the case. 

14.17.5 Quad-Tree Conclusion 

We have now covered all the code to build and query the quad-tree for collision and spatial queries. In 
the next lesson we will add code to CBaseTree (and one or two small functions to the derived classes) 
that will exist to implement an efficient hardware rendering system. The focus of this lesson however 
has been on using the tree for spatial queries and we have now successfully created a quad-tree. We will 
now move on to discuss the implementation of the other tree types, which should be quite easy now that 
we have covered the quad-tree code and the concepts are all very similar.  
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14.18 The Y-Variant Quad-Tree 

An alternative approach to working with quad-trees is to factor in the Y component at each node such 
that the bounding box has a better fit around the geometry set (i.e., it is not assumed to be infinitely tall). 
Figure 14.79 reminds us what a Y-variant quad-tree node might look like with each of its children not 
filling the entire volume of the parent node. 
 

Because the bounding boxes are now built to the fit 
the size of the geometry contained at each node 
along the vertical extent, we get nodes with smaller 
boxes that provide more accurate querying versus 
the vanilla quad-tree case. 
 
We can imagine a situation for example where a 
spacecraft might be hovering in the skies above a 
cityscape. In the vanilla quad-tree case, the leaf in 
which the cityscape is contained would be infinitely 
tall (or as tall as the tallest thing in the scene) and 
as such, the spacecraft would be considered to be in 
the same leaf node as the cityscape even though it 
was far above it. This would lead to the cityscape 
being rendered even if the plane was so far above it 
that that the geometry of the cityscape was well 
below the frustum of the camera mounted on that 

craft. In the Y-variant quad-tree case, the leaf in which the cityscape is contained would only be as tall 
as the tallest building in that city, which would mean the spacecraft would be outside that leaf and it 
would not be rendered. Of course, the savings are a lot less obvious when we are compiling indoor 
scenes. 
 
While an oct-tree is one obvious way to solve this problem, we can make a modification to the quad-tree 
implementation and derive a new class called CQuadTreeYV that will be built slightly differently. At 
each node, the bounding box’s Y extents are not inherited from the root node, but are calculated based 
on the polygon data in that node. This will allow us to more effectively frustum cull leaves that might 
not be culled in the vanilla quad-tree implementation. 
 
Although it might seem that the Y-variant quad-tree would also introduce similar savings in collision 
queries (which is technically true), we will not be able to do this with our implementation. You will 
recall that the CollectLeavesAABB used by our collision system is implemented in the vanilla quad-tree 
case to assume infinitely tall leaves by way of ignoring the Y component of the node’s box during 
AABB/AABB intersection tests (the CollectLeavesRay method does the same). Although we could 
easily re-implement these in our Y-variant version of the quad-tree, this design does not cooperate well 
with our dynamic object system. 
 
Looking at Figure 14.79 we can see that at any given node, if the child volumes do not totally consume 
the parent volume, we have a situation where locations within the quad-tree do not fall within any leaf 

 
Figure 14.79 
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node. In the circular inset we can see some children have a very small Y extent while the Y extent of the 
parent node would be equal to the green child. What happens if we feed an AABB into the tree which 
happens to fall in the space just above the blue child node? It would clearly be contained inside the 
parent node’s volume, but it would not fall into any of its children. Thus, it would essentially be in no-
man’s land and the function would simply return and no leaf would be added to the leaf collection list.  
 
Now, if this was a collision query being performed, we would really benefit from the Y-variant tree’s 
smaller boxes. If we passed the swept sphere’s AABB down the tree and it ended up in an area that is 
not bounded by a leaf, the returned list would be empty and we would know that the swept sphere does 
not intersect any geometry. However, the same CollectLeavesAABB method is also used by our 
application to determine which leaves a dynamic object is in. The object is only rendered if at least one 
of its leaves is visible. However, in the Y-variant case we might find that when we feed in the dynamic 
object’s bounding volume, it exists in no leaves. What do we do?  
 
We would have no choice in such situations other than to always render those dynamic objects. That is, 
if a dynamic object is not currently in a leaf, we do not know whether or not it is visible, so we should 
render it to be safe. We could end up rendering many objects which are nowhere near the camera and 
not even close to being visible, and this would certain hinder performance in many cases. Of course, 
there are ways around such problems; we could store dynamic object pointers at nodes as well as leaves 
and when traversing the tree, render any objects that are contained at that node before moving on. 
However, that really does not fit our design very well, where we make a clear distinction between nodes 
and leaves. So we have made the design decision to ignore the y extents of a node’s box during the leaf 
collection functions. This means that, just as in the case of the vanilla quad-tree, during the leaf 
collection process the node volumes are assumed to have infinite Y extents. The savings we get from 
implementing the YV quad-tree will be purely during the frustum culling pass of the tree for static 
objects. 
 
Note that this tree will behave almost exactly like the vanilla quad-tree -- even the CollectLeavesAABB 
method will be the same since we are choosing to ignore the Y components. In fact, the only difference 
(frustum culling aside, as this will be discussed in the next lesson) between the quad-tree and the YV 
quad-tree will be a small section of code in the recursive BuildTree function that fits the bounding box 
of the node to the polygon set along the Y extents, instead of inheriting it from the root node’s volume. 
As the BuildTree method of CQuadTree is virtual, we can simply derive CQuadTreeYV from 
CQuadTree and just override it. 
 
Below we show the class declaration for CQuadTreeYV which is contained in CQuadTreeYV.h. 
 
class CQuadTreeYV : public CQuadTree 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
    CQuadTreeYV( LPDIRECT3DDEVICE9 pDevice,  
                 bool bHardwareTnL,  
                 float fMinLeafSize = 300.0f,  
                 ULONG nMinPolyCount = 600,  
                 ULONG nMinAreaCount = 0 ) : CQuadTree( pDevice,  
                                                        bHardwareTnL,  
                                                        fMinLeafSize, 
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                                                        nMinPolyCount, 
                                                        nMinAreaCount ) {}; 
 
protected: 
    // Protected virtual Functions for This Class 
     
    virtual bool BuildTree ( CQuadTreeNode * pNode,  
                             PolygonList PolyList,  
                             DetailAreaList AreaList,  
                             const D3DXVECTOR3 & BoundsMin,  
                             const D3DXVECTOR3 & BoundsMax ); 
}; 

 
As you can see, with the exception of the constructor which is empty and simply passes the data on to 
the base class (CQuadTree), we have to implement just one function. The BuildTree method is a method 
we are now very familiar with. We will override it in this class due to the fact that we need to calculate 
the bounding box of each node a little differently. We will now cover the BuildTree method and 
highlight the small differences in the YV version. 

BuildTree – CQuadTreeYV 

Although we will see the complete function code listing below, most of it is unchanged from the 
CQuadTree::BuildTree method. Recall that this is the method that is called from the Build method and 
passed the root node and its polygon and detail area data along with the bounding box of the root node. 
This function will then recursively build the entire tree.  
 
Because this code has already been thoroughly discussed, we will move quickly and only stop to 
examine the changes from the function that it overrides. 
 
bool CQuadTreeYV::BuildTree( CQuadTreeNode * pNode,  
                             PolygonList PolyList,  
                             DetailAreaList AreaList,  
                             const D3DXVECTOR3 & BoundsMin,  
                             const D3DXVECTOR3 & BoundsMax ) 
{ 
    D3DXVECTOR3                 Normal; 
    PolygonList::iterator       PolyIterator; 
    DetailAreaList::iterator    AreaIterator; 
    CPolygon                  * CurrentPoly, * FrontSplit, * BackSplit; 
    PolygonList                 ChildList[4]; 
    DetailAreaList              ChildAreaList[4]; 
    CCollision::CLASSIFYTYPE    Location[2]; 
    D3DXPLANE                   Planes[2]; 
    unsigned long               i; 
    bool                        bStopCode; 
 
    // Store the bounding box properties in the node 
    pNode->BoundsMin = BoundsMin; 
    pNode->BoundsMax = BoundsMax; 
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    // Calculate 'Stop' code 
    D3DXVECTOR3 vecLeafSize = D3DXVECTOR3( BoundsMax.x - BoundsMin.x,  

                                     0,  
                                     BoundsMax.z - BoundsMin.z ); 
 

    bStopCode  = (AreaList.size() == 0 && PolyList.size() == 0) || 
                 (AreaList.size() <= m_nMinAreaCount &&  
                  PolyList.size() <= m_nMinPolyCount) ||  
                  D3DXVec3Length( &vecLeafSize ) <= m_fMinLeafSize; 

 
The first section code stored the passed bounding box in the passed node and calculated the 2D size of 
the node (vecLeafSize). Although this is a YV quad-tree we still do not want the y extents of the node to 
play any part in whether or not we subdivide. Unlike the oct-tree where we intend to subdivide space 
vertically, the YV quad-tree does not have leaves stacked on top of each other. So a leaf must still 
contain the entire vertical range of geometry that exists in the XZ space. The only difference is that 
when we do create a node/leaf bounding box, we will calculate the extents of the actual geometry that 
made it into that node. After we have calculated the leaf size, we compute the bStopCode boolean. This 
code is all unchanged. 
 
As before, if the stop code is set to true then we have found a node that should become a leaf so we 
allocate a new CBaseLeaf object. We then loop through each polygon in the passed list (the polygons 
that made it into this node) and add their pointers to the leaf. Remember that if this is a clipped tree, we 
also add the polygons to the tree’s polygon list.  
 
    // If we reached our stop limit, build a leaf here 
    if ( bStopCode ) 
    { 
        // Build a leaf 
        CBaseLeaf * pLeaf = new CBaseLeaf( this ); 
        if ( !pLeaf ) return false; 
 
        // Store the polygons 
        for ( PolyIterator = PolyList.begin();  
              PolyIterator != PolyList.end();  
              ++PolyIterator ) 
        { 
            // Retrieve poly 
            CurrentPoly = *PolyIterator; 
            if ( !CurrentPoly ) continue; 
 
            // Add to the polygon list ONLY if splitting was allowed 
            if ( m_bAllowSplits ) AddPolygon( CurrentPoly ); 
 
            // Also add a reference to the leaf's list 
            pLeaf->AddPolygon( CurrentPoly ); 
 
        } // Next Polygon 

 
Of course, we do the same for any detail area that made it into this leaf.  
 
        // Store the area lists 
        for ( AreaIterator = AreaList.begin();  
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              AreaIterator != AreaList.end(); ++AreaIterator ) 
        { 
            // Retrieve detail area item 
            TreeDetailArea * pDetailArea = *AreaIterator; 
            if ( !pDetailArea ) continue; 
 
            // Add a reference to the leaf's list 
            pLeaf->AddDetailArea( pDetailArea ); 
 
        } // Next Polygon 

 
We then assign the node’s leaf pointer to point at the newly populated CBaseLeaf and set the leaf 
object’s bounding box to that of the node it represents. We then add the leaf pointer to the tree’s leaf 
array and return. That takes care of the leaf case. 
 
        // Store pointer to leaf in the node and the bounds 
        pNode->Leaf = pLeaf; 
 
        // Store the bounding box in the leaf 
        pLeaf->SetBoundingBox( pNode->BoundsMin, pNode->BoundsMax ); 
 
        // Store the leaf in the leaf list 
        AddLeaf( pLeaf ); 
 
        // We have reached a leaf 
        return true; 
 
    } // End if reached stop code 

     
The next piece of code is new for the Y-variant quad-tree. Remember that we only reach this part of the 
function if the current node is not a leaf. Although we already know the X and Z extents of the node’s 
bounding box because they were passed into the function, the y extents will currently represent the y 
extents of the parent node’s volume. We want to set the height of this node’s volume so that it matches 
the y range of vertices it stores. Therefore, we first set the y extents of the node’s AABB to impossibly 
small (inside out) values. We then loop through every polygon in the passed list (the polygons contained 
in this node) and test the y extents of each of its vertices against the y extents of the node’s box. 
Whenever we find a vertex that has a y component that is outside the box, we grow the box extents to 
contain it. At the end of the following section of code, the current node’s bounding box will be an exact 
fit (vertically) around the polygon data passed into this node.  
 
    // Update the Y coordinate of the bounding box for the 'Y Variant'  
    // quad-tree information 
     
    pNode->BoundsMin.y = FLT_MAX; pNode->BoundsMax.y = -FLT_MAX; 
     
    for ( PolyIterator = PolyList.begin();  
          PolyIterator != PolyList.end(); ++PolyIterator ) 
    { 
        // Store current poly 
        CurrentPoly = *PolyIterator; 
        if ( !CurrentPoly ) continue; 
 



 

189 

        // Loop through each vertex 
        for ( i = 0; i < CurrentPoly->m_nVertexCount; ++i ) 
        { 
            CVertex * pVertex = &CurrentPoly->m_pVertex[i]; 
            if ( pVertex->y < pNode->BoundsMin.y ) pNode->BoundsMin.y = pVertex->y; 
            if ( pVertex->y > pNode->BoundsMax.y ) pNode->BoundsMax.y = pVertex->y; 
 
        } // Next Vertex 
 
    } // Next Polygon 

 
Of course, we must make sure that the box is also large enough to contain any detail areas that made it 
into this node. In the next section of code we loop through each detail area in this node and grow the y 
extents of the node’s AABB if any detail area is found to not be fully contained. 
 
    for ( AreaIterator = AreaList.begin();  
          AreaIterator != AreaList.end(); ++AreaIterator ) 
    { 
        // Store current detail area 
        TreeDetailArea * pDetailArea = *AreaIterator; 
 
        if ( pDetailArea->BoundsMin.x < pNode->BoundsMin.x )  
             pNode->BoundsMin.x = pDetailArea->BoundsMin.x; 
         
        if ( pDetailArea->BoundsMin.y < pNode->BoundsMin.y )  
             pNode->BoundsMin.y = pDetailArea->BoundsMin.y; 
         
        if ( pDetailArea->BoundsMin.z < pNode->BoundsMin.z )  
             pNode->BoundsMin.z = pDetailArea->BoundsMin.z; 
         
        if ( pDetailArea->BoundsMax.x > pNode->BoundsMax.x )  
             pNode->BoundsMax.x = pDetailArea->BoundsMax.x; 
         
        if ( pDetailArea->BoundsMax.y > pNode->BoundsMax.y )  
             pNode->BoundsMax.y = pDetailArea->BoundsMax.y; 
        
        if ( pDetailArea->BoundsMax.z > pNode->BoundsMax.z )  
             pNode->BoundsMax.z = pDetailArea->BoundsMax.z; 
 
    } // Next Detail Area 

 
With the node’s bounding volume now a tight fit around its data, we create the two split planes as 
before. 
 
    // Generate the two split planes 
    D3DXPlaneFromPointNormal( &Planes[0],  
                              &((pNode->BoundsMin + pNode->BoundsMax) / 2.0f), 
                              &D3DXVECTOR3( 0.0f, 0.0f, 1.0f ) ); 
    
    D3DXPlaneFromPointNormal( &Planes[1],  
                              &((pNode->BoundsMin + pNode->BoundsMax) / 2.0f), 
                              &D3DXVECTOR3( 1.0f, 0.0f, 0.0f ) ); 
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If we are building a clipped tree then we will first need to split all the polygons in this node’s list to the 
planes so that we end up with a list of polygons that will each fit into exactly one child. 
 
    // Split all polygons against both planes if required 
    if ( m_bAllowSplits ) 
    { 
        for ( i = 0; i < 2; ++i ) 
        { 
            for ( PolyIterator = PolyList.begin();  
                  PolyIterator != PolyList.end(); ++PolyIterator ) 
            { 
                // Store current poly 
                CurrentPoly = *PolyIterator; 
                if ( !CurrentPoly ) continue; 
 
        // Classify the poly against the first plane 
        Location[0] = CCollision::PolyClassifyPlane( CurrentPoly->m_pVertex, 
                                                     CurrentPoly->m_nVertexCount, 
                                                     sizeof(CVertex), 
                                                     (D3DXVECTOR3&)Planes[i], 
                                                     Planes[i].d ); 
                 
                if ( Location[0] == CCollision::CLASSIFY_SPANNING ) 
                { 
                    // Split the current poly against the plane 
                    CurrentPoly->Split( Planes[i], &FrontSplit, &BackSplit ); 
                    delete CurrentPoly; 
                    *PolyIterator = NULL; 
 
                    // Add these to the end of the current poly list 
                    PolyList.push_back( FrontSplit ); 
                    PolyList.push_back( BackSplit ); 
 
                } // End if Spanning 
 
            } // Next Polygon 
 
        } // Next Plane 
 
    } // End if allow splits 

 
As before, the next section of code adds each polygon to the appropriate child list. It is unchanged from 
the normal quad-tree case. 
 
    // Classify the polygons and sort them into the four child lists. 
    for ( PolyIterator = PolyList.begin();  
          PolyIterator != PolyList.end(); ++PolyIterator ) 
    { 
        // Store current poly 
        CurrentPoly = *PolyIterator; 
        if ( !CurrentPoly ) continue; 
 
        // Classify the poly against the planes 
        Location[0] = CCollision::PolyClassifyPlane( CurrentPoly->m_pVertex, 
                                                     CurrentPoly->m_nVertexCount, 
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                                                     sizeof(CVertex), 
                                                     (D3DXVECTOR3&)Planes[0], 
                                                     Planes[0].d ); 
         
        Location[1] = CCollision::PolyClassifyPlane( CurrentPoly->m_pVertex, 
                                                     CurrentPoly->m_nVertexCount, 
                                                     sizeof(CVertex), 
                                                     (D3DXVECTOR3&)Planes[1], 
                                                     Planes[1].d ); 
 
        // Position relative to XY plane 
        if ( Location[0] == CCollision::CLASSIFY_BEHIND || 
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildList[0].push_back( CurrentPoly ); 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_ONPLANE ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING )                   
                                 ChildList[1].push_back( CurrentPoly ); 
 
        } // End if behind or spanning 
 
        if ( Location[0] == CCollision::CLASSIFY_INFRONT ||  
             Location[0] == CCollision::CLASSIFY_ONPLANE ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND || 
                 Location[1] == CCollision::CLASSIFY_SPANNING )  
                                ChildList[2].push_back( CurrentPoly ); 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_ONPLANE ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
                                ChildList[3].push_back( CurrentPoly ); 
 
        } // End if in-front or on-plane 
 
    } // Next Triangle 

 
At this point, the polygon data at this node has been sorted into four lists (one per quadrant). We now 
have to sort the detail areas into four lists also so that we know which children they should be assigned 
to. This code is also unchanged from the normal quad-tree code. 
 
    // Classify the areas and sort them into the child lists. 
    for ( AreaIterator = AreaList.begin();  
          AreaIterator != AreaList.end(); ++AreaIterator ) 
    { 
        // Store current area 
        TreeDetailArea * pDetailArea = *AreaIterator; 
        if ( !pDetailArea ) continue; 
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        // Classify the poly against the planes 
        Location[0] = CCollision::AABBClassifyPlane( pDetailArea->BoundsMin, 
                                                     pDetailArea->BoundsMax, 
                                                     (D3DXVECTOR3&)Planes[0], 
                                                     Planes[0].d ); 
         
        Location[1] = CCollision::AABBClassifyPlane( pDetailArea->BoundsMin, 
                                                     pDetailArea->BoundsMax, 
                                                     (D3DXVECTOR3&)Planes[1], 
                                                     Planes[1].d ); 
 
        // Position relative to XY plane 
        if ( Location[0] == CCollision::CLASSIFY_BEHIND ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING )  
                                ChildAreaList[0].push_back( pDetailArea ); 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING )  
                                ChildAreaList[1].push_back( pDetailArea ); 
 
        } // End if behind or spanning 
 
        if ( Location[0] == CCollision::CLASSIFY_INFRONT ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING )  
                                ChildAreaList[2].push_back( pDetailArea ); 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT || 
                 Location[1] == CCollision::CLASSIFY_SPANNING )  
                                ChildAreaList[3].push_back( pDetailArea ); 
 
        } // End if in-front or on-plane 
 
    } // Next Detail Area 

 
We now have four lists of polygons and four lists of detail objects, so we create the four child nodes to 
which they belong and calculate the bounding box of each child. As before, we set up a loop where a 
single child node is created with each iteration. In each of the four iterations, we allocate a new quad-
tree node and store its pointer in the parent node’s child list and then calculate the bounding volume of 
that node by assigning the associated quadrant of the parent node’s bounding volume. We then step into 
the child node by issuing the recursive call. 
 
    // Build each of the children here 
    for( i = 0; i < 4; ++i ) 
    { 
        // Calculate child bounding box values 
        D3DXVECTOR3 NewBoundsMin, NewBoundsMax,  
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                    MidPoint = (pNode->BoundsMin + pNode->BoundsMax) / 2.0f; 
      
        switch( i ) 
        { 
        case 0: // Behind Left 
            NewBoundsMin = pNode->BoundsMin; 
            NewBoundsMax = D3DXVECTOR3( MidPoint.x,  
                                        pNode->BoundsMax.y,  
                                        MidPoint.z); 
            break; 
 
        case 1: // Behind Right 
            NewBoundsMin = D3DXVECTOR3( MidPoint.x,  
                                        pNode->BoundsMin.y,  
                                        pNode->BoundsMin.z ); 
 
            NewBoundsMax = D3DXVECTOR3( pNode->BoundsMax.x,  
                                        pNode->BoundsMax.y,  
                                        MidPoint.z); 
            break; 
 
 
        case 2: // InFront Left 
            NewBoundsMin = D3DXVECTOR3( pNode->BoundsMin.x,  
                                        pNode->BoundsMin.y,  
                                        MidPoint.z ); 
 
            NewBoundsMax = D3DXVECTOR3( MidPoint.x,  
                                        pNode->BoundsMax.y,  
                                        pNode->BoundsMax.z ); 
            break; 
 
        case 3: // InFront Right 
            NewBoundsMin = D3DXVECTOR3( MidPoint.x,  
                                        pNode->BoundsMin.y,  
                                        MidPoint.z ); 
 
            NewBoundsMax = pNode->BoundsMax; 
            break; 
 
        } // End Child Type Switch 
 
 
        // Allocate child node 
        pNode->Children[i] = new CQuadTreeNode; 
        if ( !pNode->Children[i] ) return false; 
 
        // Recurse into this new node 
        BuildTree( pNode->Children[i],  
                   ChildList[i],  
                   ChildAreaList[i],  
                   NewBoundsMin,  
                   NewBoundsMax ); 
 
        // Clean up 
        ChildList[i].clear(); 
        ChildAreaList[i].clear(); 
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    } // Next Child 
 
    // Success! 
    return true; 
} 

 
Note how quickly we were able to create new tree behavior. In the case of the Y-variant quad-tree, it 
meant overriding a single method. That is all the code we need to cover for the YV Quad-tree. 

14.19 Oct-Tree Implementation 

The source files COctTree.cpp and COctTree.h contain the code for our oct-tree implementation. This 
tree is derived from CBaseTree and as such, we must implement the same methods from ISpatialTree 
that are not implemented in CBaseTree. Just as with the quad-tree, we will only need to implement the 
Build, CollectLeavesAABB, CollectLeavesRay and a few others in order to create our oct-tree because 
CBaseTree provides all the housekeeping tasks. 
 
The oct-tree implementation will be so similar to that of the 
quad-tree that examining its code will be trivial for the most 
part. The only real difference in each version of the method 
implemented for the oct-tree is that each node has eight 
children to visit/create instead of four. In the Build function we 
will now have three planes to clip and classify against instead 
of two. These three planes will divide the node’s volume in 
octants (instead of quadrants) as shown in Figure 14.80. 
 
Although CBaseTree provides the leaf structure that all our 
trees will use, the node structure is dependant on the tree being 
built. For example, in the quad-tree case we implemented the 
CQuadTreeNode object to represent a single node in the tree. This node has four child pointers as we 
would expect. The Y-variant quad-tree also shared this same node structure. The oct-tree will need its 
own node structure that is capable or storing pointers to eight child nodes instead of four. That is really 
the only difference between the node objects used by all of our tree types; the varying number of 
children.  
 
 
 
 
 
 
 
 

 
Figure 14.80 
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14.19.1 COctTreeNode – The Source Code 

Each node in our oct-tree will be represented by an object of type COctTreeNode which is declared and 
implemented in COctTree.h and COctTree.cpp. It contains the same SetVisible member function as its 
quad-tree counterpart and also stores the same members. It stores a pointer to a CBaseLeaf object that 
will be used only by terminal nodes and contains two vectors describing the extents of the node’s 
bounding volume. It also contains the same LastFrustumPlane member which we will discuss in the 
following lesson as it is used to speed up visibility processing. Finally, you will notice that the only 
difference (except the name) between this object and the CQuadTreeNode object is that each node stores 
an array of 8 COctTreeNode pointers instead of an array of 4 CQuadTreeNode pointers. 
 
class COctTreeNode 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
     COctTreeNode( ); 
    ~COctTreeNode( ); 
 
     
    // Public Functions for This Class 
    void SetVisible( bool bVisible ); 
 
     
    // Public Variables for This Class 
    COctTreeNode  * Children[8];        // The eight child nodes 
    CBaseLeaf     * Leaf;               // If this is a leaf, store here. 
    D3DXVECTOR3     BoundsMin;          // Minimum bounding box extents 
    D3DXVECTOR3     BoundsMax;          // Maximum bounding box extents 
    signed char     LastFrustumPlane;   // 'last plane' index. 
}; 

SetVisible – COctTreeNode 

Each of our node types supports the SetVisible method which is used by the tree to set the visibility 
status of all leaves below the node for which it is called. It works in exactly the same way as its quad-
tree node counterpart. How this function is used will become clearer in the following lesson when we 
implement the rendering and visibility code for our trees. 
 
The method is passed a boolean parameter indicating whether the node is considered visible or not. If 
the node is a leaf then the attached leaf object has its visibility status set to true. If this is not a leaf we 
simply traverse into the eight children performing the same test. As a node has no member to store its 
visibility status, what we are actually doing here is just traversing down to find any leaf nodes and 
setting their status to the parameter passed to the top level instance of the function. 
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void COctTreeNode::SetVisible( bool bVisible ) 
{ 
    unsigned long i; 
 
    // Set leaf property 
    if ( Leaf  ) { Leaf->SetVisible( bVisible ); return; } 
 
    // Recurse down if applicable 
    for ( i = 0; i < 8; ++i ) 
    { 
        if ( Children[i] ) Children[i]->SetVisible(bVisible); 
 
    } // Next Child 
} 

 
Notice that the only difference between this code and the quad-tree node’s method is that we now have a 
loop that visits eight children instead of four. 

14.19.2 COctTree – The Source Code 

The COctTree class is derived from CBaseTree and therefore must implement oct-tree versions of the 
methods we implemented in CQuadTree. The class declaration is contained in COctTree.h and is shown 
below. Notice that it implements the exact same set of methods we had to implement for our quad-tree 
class.   
 
class COctTree : public CBaseTree 
{ 
public: 
 
       // Constructors & Destructors for This Class. 
       virtual ~COctTree( ); 
       COctTree( LPDIRECT3DDEVICE9 pDevice,  
                 bool bHardwareTnL,  
                 float fMinLeafSize = 300.0f,  
                 ULONG nMinPolyCount = 600,  
                 ULONG nMinAreaCount = 0 ); 
 
     
    // Public Virtual Functions for This Class (from base). 
    virtual bool Build                  ( bool bAllowSplits = true ); 
    virtual void ProcessVisibility      ( CCamera & Camera ); 
    virtual bool CollectLeavesAABB      ( LeafList & List,  
                                          const D3DXVECTOR3 & Min,  
                                          const D3DXVECTOR3 & Max ); 
    virtual bool CollectLeavesRay       ( LeafList & List,  
                                          const D3DXVECTOR3 & RayOrigin,  
                                          const D3DXVECTOR3 & Velocity ); 
 
    virtual void DebugDraw              ( CCamera & Camera ); 
    virtual bool GetSceneBounds         ( D3DXVECTOR3 & Min, D3DXVECTOR3 & Max ); 
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protected: 
     
    // Protected virtual Functions for This Class 
    virtual bool BuildTree              ( COctTreeNode * pNode,  
                                          PolygonList PolyList,  
                                          DetailAreaList AreaList,  
                                          const D3DXVECTOR3 & BoundsMin,  
                                          const D3DXVECTOR3 & BoundsMax ); 
 
    // Protected Functions for This Class 
    void         UpdateTreeVisibility   ( COctTreeNode * pNode,  
                                          CCamera & Camera,  
                                          UCHAR FrustumBits = 0x0 ); 
 
    bool         DebugDrawRecurse       ( COctTreeNode * pNode,  
                                          CCamera & Camera, bool bRenderInLeaf ); 
 
    bool         CollectAABBRecurse     ( COctTreeNode * pNode,  
                                          LeafList & List,  
                                          const D3DXVECTOR3 & Min,  
                                          const D3DXVECTOR3 & Max,  
                                          bool bAutoCollect = false ); 
 
    bool         CollectRayRecurse      ( COctTreeNode * pNode,  
                                          LeafList & List,  
                                          const D3DXVECTOR3 & RayOrigin,  
                                          const D3DXVECTOR3 & Velocity ); 
 
    // Protected Variables for This Class 
    COctTreeNode * m_pRootNode;         // The root node of the tree 
    bool           m_bAllowSplits;      // Is splitting allowed? 
    float          m_fMinLeafSize;      // Min leaf size stop code 
    ULONG          m_nMinPolyCount;     // Min polygon count stop code 
    ULONG          m_nMinAreaCount;     // Min detail area count stop code 
 
}; 

 
The member variables are exactly the same in both name and purpose to those we discussed when 
implementing the quad-tree. The only slight difference in member variables is that the root node pointer 
stored by the tree is now of type COctTreeNode instead of CQuadTreeNode. The methods are also 
exactly the same as their quad-tree counterparts with the exception that the recursive methods that 
accept node parameters now accept nodes of type COctTreeNode. 
 
Let us now cover the methods of COctTree and discuss how they differ from their quad-tree 
counterparts. 

Build - COctTree 

As we know, the Build method is the method called by the application to build the tree. It is called after 
all geometry and detail areas have been registered. It is not the recursive function that builds the tree but 
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is instead a convenient wrapper around the top level call to the recursive BuildTree method. Because the 
code is almost unchanged from its quad-tree counter part we will progress through it quickly. 
 
The first bit of the function initializes the vectors that will be used to record the size of the root node’s 
bounding box to impossibly small values before allocating a new COctTreeNode object that will become 
the root node of the tree. We also store the value of the boolean parameter in the m_bAllowSplits 
member variable so that we know during the recursive build process whether we should be clipping the 
polygon data at each node. 
 
bool COctTree::Build( bool bAllowSplits /* = false */ ) 
{ 
    PolygonList::iterator       PolyIterator = m_Polygons.begin(); 
    DetailAreaList::iterator    AreaIterator = m_DetailAreas.begin(); 
    PolygonList                 PolyList; 
    DetailAreaList              AreaList; 
    unsigned long               i; 
 
    // Reset our tree info values. 
    D3DXVECTOR3 vecBoundsMin( FLT_MAX, FLT_MAX, FLT_MAX ); 
    D3DXVECTOR3 vecBoundsMax( -FLT_MAX, -FLT_MAX, -FLT_MAX ); 
 
    // Allocate a new root node 
    m_pRootNode = new COctTreeNode; 
    if ( !m_pRootNode ) return false; 
 
    // Store the allow splits value for later retrieval. 
    m_bAllowSplits = bAllowSplits; 

 
Now we need to calculate the size of the root nodes bounding volume by looping through every polygon 
in the tree’s polygon list and testing each of its vertices against the current box extents. If we find any 
vertex is outside these extents, we grow the box. At the end of the loop we will have a bounding box that 
contains all the vertices of all the polygons. 
 
    // Loop through all of the initial polygons 
    for ( ; PolyIterator != m_Polygons.end(); ++PolyIterator ) 
    { 
        // Retrieve the polygon 
        CPolygon * pPoly = *PolyIterator; 
        if ( !pPoly ) continue; 
 
        // Calculate total scene bounding box. 
        for ( i = 0; i < pPoly->m_nVertexCount; ++i ) 
        { 
            // Store info 
            CVertex * pVertex = &pPoly->m_pVertex[i]; 
            if ( pVertex->x < vecBoundsMin.x ) vecBoundsMin.x = pVertex->x; 
            if ( pVertex->y < vecBoundsMin.y ) vecBoundsMin.y = pVertex->y; 
            if ( pVertex->z < vecBoundsMin.z ) vecBoundsMin.z = pVertex->z; 
            if ( pVertex->x > vecBoundsMax.x ) vecBoundsMax.x = pVertex->x; 
            if ( pVertex->y > vecBoundsMax.y ) vecBoundsMax.y = pVertex->y; 
            if ( pVertex->z > vecBoundsMax.z ) vecBoundsMax.z = pVertex->z; 
 
        } // Next Vertex 
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        // Store this polygon in the top polygon list 
        PolyList.push_back( pPoly ); 
 
    } // Next Polygon 
 
    // Clear the initial polygon list if we are going to split the polygons  
    // as this will eventually become storage for whatever gets built 
    if ( bAllowSplits ) m_Polygons.clear(); 

 
Just as before, at the bottom of the outer loop, as we test each polygon, we add it to the temporary 
PolyList. It is this list that will be passed into the recursive process. As we are currently at the root node, 
PolyList will contain a complete copy of all the pointers that were registered with the tree and stored in 
the m_Polygons list. Outside the loop you can see that just as before, if we are going to build a clipped 
tree, we clear the tree’s polygon list since we will need to rebuild it from scratch with the clipped 
polygon data that makes it into each leaf node. 
 
Our root node’s bounding box is currently large enough to contain all the polygon data but we need to 
make sure it is large enough to contain any detail areas that may have been registered with the tree as 
well. In the next section of code we loop through each detail area and extend the bounding box extents if 
any detail area is found not to be fully contained inside it. Notice also that as we process each detail 
area, we also add its pointer to the temporary detail area list. This is the detail area list we will send into 
the recursive build process. 
 
    // Loop through all of the detail areas 
    for ( ; AreaIterator != m_DetailAreas.end(); ++AreaIterator ) 
    { 
        // Retrieve the detail area 
        TreeDetailArea * pDetailArea = *AreaIterator; 
        if ( !pDetailArea ) continue; 
 
        // Calculate total scene bounding box. 
        D3DXVECTOR3 & Min = pDetailArea->BoundsMin; 
        D3DXVECTOR3 & Max = pDetailArea->BoundsMax; 
        if ( Min.x < vecBoundsMin.x ) vecBoundsMin.x = Min.x; 
        if ( Min.y < vecBoundsMin.y ) vecBoundsMin.y = Min.y; 
        if ( Min.z < vecBoundsMin.z ) vecBoundsMin.z = Min.z; 
        if ( Max.x > vecBoundsMax.x ) vecBoundsMax.x = Max.x; 
        if ( Max.y > vecBoundsMax.y ) vecBoundsMax.y = Max.y; 
        if ( Max.z > vecBoundsMax.z ) vecBoundsMax.z = Max.z; 
 
        // Store this in the top detail area list 
        AreaList.push_back( pDetailArea ); 
 
    } // Next Polygon 

 
Finally, with the root node’s bounding volume calculated and with PolyList and AreaList containing 
copies of all the polygon and detail area pointers, we can now step into the recursive BuildTree method 
starting at the root node and let it build the entire tree from the root node down. 
 
    // Build the tree itself 
    if (!BuildTree( m_pRootNode, PolyList, AreaList, vecBoundsMin, vecBoundsMax ))  
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   return false; 

 
At this point the tree will be completely built so we call the CBaseTree::PostBuild method and let it do 
any final preparation on the tree data. We will see in the next lesson how this method not only calculates 
and stores the bounding boxes for each polygon stored in the tree (as we have already shown) but also 
initializes CBaseTree’s render system.  
 
    // Allow our base class to finish any remaining processing 
    return CBaseTree::PostBuild( ); 
} 

BuildTree - COctTree 

The BuildTree method has the task of dividing the current node’s polygon and detail area lists into eight 
children instead of four and creating eight child nodes. However, with the exception that we must now 
carve the node into octants using three split planes and creating eight child lists of both polygon and 
detail area data, the function is essentially the same as the quad-tree version. 
 
Notice in this first section of code how we now instantiate local arrays of eight polygon lists and eight 
detail area lists and also allocate an array to hold three split planes instead of two. 
 
bool COctTree::BuildTree( COctTreeNode * pNode,  
                          PolygonList PolyList,  
                          DetailAreaList AreaList,  
                          const D3DXVECTOR3 & BoundsMin,  
                          const D3DXVECTOR3 & BoundsMax ) 
{ 
    D3DXVECTOR3                 Normal; 
    PolygonList::iterator       PolyIterator; 
    DetailAreaList::iterator    AreaIterator; 
    CPolygon                  * CurrentPoly, * FrontSplit, * BackSplit; 
    PolygonList                 ChildList[8]; 
    DetailAreaList              ChildAreaList[8]; 
    CCollision::CLASSIFYTYPE    Location[3]; 
    D3DXPLANE                   Planes[3]; 
    unsigned long               i; 
    bool                        bStopCode; 
 
    // Store the bounding box properties in the node 
    pNode->BoundsMin = BoundsMin; 
    pNode->BoundsMax = BoundsMax; 
 
    // Calculate 'Stop' code 
    D3DXVECTOR3 vecLeafSize = BoundsMax - BoundsMin; 
 
    bStopCode  = (AreaList.size() == 0 && PolyList.size() == 0) || 
                 (AreaList.size() <= m_nMinAreaCount &&  
                  PolyList.size() <= m_nMinPolyCount ) ||  
                  D3DXVec3Length( &vecLeafSize ) <= m_fMinLeafSize; 



 

201 

Just as before we store the passed bounding box extents in the node and then calculate the leaf size. 
Notice that this time when calculating the leaf size variable; we also take the y extents into account. 
Remember, in the quad-tree case we only subtracted the x and z extents of the bounding box to get the 
diagonal node length. This was because in a quad-tree, we do not partition space vertically. However, in 
the case of the oct-tree, we take the full diagonal length of the box into account so that the height of a 
node’s bounding box is also a factor in whether or not it becomes a terminal node.  As you can see, by 
simply subtracting the minimum box extents from the maximum box extents, we get a vector whose 
length describes the minimum size a node can be before it automatically becomes a leaf.  
 
If the stop code variable is true, it means there are two few polygons or detail areas in this node or that 
the node is too small. Either way, we no longer wish to further partition the space of this node and 
instead wish to make it a leaf. The following conditional code that makes the node a leaf is completely 
unchanged from the quad-tree case. It creates a new CBaseLeaf and loops through every polygon and 
detail area in the node’s list and adds them to the leaf. If clipping is being used it is at this point that the 
pointer of each potentially clipped polygon is also added back to the tree’s main polygon list. The node’s 
leaf pointer is then assigned to point at this new leaf and the leaf’s bounding box is set to be the same as 
the node. At this point the node has been successfully turned into a leaf and we return. 
 
    // If we reached our stop limit, build a leaf here 
    if ( bStopCode ) 
    { 
        // Build a leaf 
        CBaseLeaf * pLeaf = new CBaseLeaf( this ); 
        if ( !pLeaf ) return false; 
 
        // Store the polygons 
        for ( PolyIterator = PolyList.begin();  
              PolyIterator != PolyList.end(); ++PolyIterator ) 
        { 
            // Retrieve poly 
            CurrentPoly = *PolyIterator; 
            if ( !CurrentPoly ) continue; 
 
            // Add to full tree polygon list ONLY if splitting was allowed 
            if ( m_bAllowSplits ) AddPolygon( CurrentPoly ); 
 
            // Also add a reference to the leaf's list 
            pLeaf->AddPolygon( CurrentPoly ); 
 
        } // Next Polygon 
 
        // Store the area lists 
        for ( AreaIterator = AreaList.begin();  
              AreaIterator != AreaList.end(); ++AreaIterator ) 
        { 
            // Retrieve detail area item 
            TreeDetailArea * pDetailArea = *AreaIterator; 
            if ( !pDetailArea ) continue; 
 
            // Add a reference to the leaf's list 
            pLeaf->AddDetailArea( pDetailArea ); 
 
        } // Next Polygon 
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        // Store pointer to leaf in the node and the bounds 
        pNode->Leaf = pLeaf; 
 
        // Store the bounding box in the leaf 
        pLeaf->SetBoundingBox( pNode->BoundsMin, pNode->BoundsMax ); 
 
        // Store the leaf in the leaf list 
        AddLeaf( pLeaf ); 
 
        // We have reached a leaf 
        return true; 
 
    } // End if reached stop code 

 
If we make it this far in the function then it means the node is not a leaf and we will further divide its 
space and its data into eight children. To divide an oct-tree node, we create three planes with which to 
split and assign the polygon and detail area data to each child list. The first two planes are identical to 
the planes of the quad-tree node (a plane facing down the positive Z axis and a plane facing down the 
positive X axis). Now we add a third plane whose normal faces along the positive Y axis and splits 
space vertically. All three planes intersect at the center of the node and therefore the point on plane used 
to create each plane is simply the center point of the box. 
 
    // Generate the three split planes 
    D3DXPlaneFromPointNormal( &Planes[0],  
                              &((BoundsMin + BoundsMax) / 2.0f),  
                              &D3DXVECTOR3( 0.0f, 0.0f, 1.0f ) ); 
 
    D3DXPlaneFromPointNormal( &Planes[1],  
                              &((BoundsMin + BoundsMax) / 2.0f),  
                              &D3DXVECTOR3( 1.0f, 0.0f, 0.0f ) ); 
 
    D3DXPlaneFromPointNormal( &Planes[2],  
                              &((BoundsMin + BoundsMax) / 2.0f),  
                              &D3DXVECTOR3( 0.0f, 1.0f, 0.0f ) ); 

 
If we are building a clipped tree then we will need to loop through each of these three planes, and for 
each plane we will need to classify every polygon in the node’s list against it. If we find any polygon 
spanning a plane, it is split by the plane, the original polygon is deleted from the list, and the two new 
split polygons are added. This code is exactly the same as the previous versions of the function we have 
seen with the exception that the outer loop now iterates through three planes instead of two. 
 
    // Split all polygons against all three planes if required 
    if ( m_bAllowSplits ) 
    { 
        for ( i = 0; i < 3; ++i ) 
        { 
            for ( PolyIterator = PolyList.begin();  
                  PolyIterator != PolyList.end(); ++PolyIterator ) 
            { 
                // Store current poly 
                CurrentPoly = *PolyIterator; 
                if ( !CurrentPoly ) continue; 
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           // Classify the poly against the first plane 
           Location[0] = CCollision::PolyClassifyPlane(CurrentPoly->m_pVertex, 
                                                       CurrentPoly->m_nVertexCount, 
                                                       sizeof(CVertex), 
                                                       (D3DXVECTOR3&)Planes[i], 
                                                       Planes[i].d ); 
 
                if ( Location[0] == CCollision::CLASSIFY_SPANNING ) 
                { 
                    // Split the current poly against the plane 
                    CurrentPoly->Split( Planes[i], &FrontSplit, &BackSplit ); 
                     
                    delete CurrentPoly; 
                    *PolyIterator = NULL; 
 
                    // Add these to the end of the current poly list 
                    PolyList.push_back( FrontSplit ); 
                    PolyList.push_back( BackSplit ); 
 
                } // End if Spanning 
 
            } // Next Polygon 
 
        } // Next Plane 
 
    } // End if allow splits 

 
At this point if clipping was desired all the polygons in the node’s list will have been clipped and will fit 
neatly into one of the octants of the node. Our task is to loop through every polygon in the list and find 
out in which octant it is contained. This is done by classifying the polygon against the three planes and 
analyzing the result. For example, we know that if it is behind the first plane it must lay in the back 
halfspace of the node. If it is in front of the second plane we know that it is somewhere in the back right 
area of the node. Finally, if it is in front of the third plane we know that it is contained in the upper back 
right octant of the node. The strategy in this code is exactly the same as in the quad-tree version except 
now we have an extra plane to classify each polygon against, adding a few more conditionals. 
 
    // Classify the polygons and sort them into the child lists. 
    for ( PolyIterator = PolyList.begin();  
          PolyIterator != PolyList.end(); ++PolyIterator ) 
    { 
        // Store current poly 
        CurrentPoly = *PolyIterator; 
        if ( !CurrentPoly ) continue; 
 
        // Classify the poly against the planes 
        Location[0] = CCollision::PolyClassifyPlane( CurrentPoly->m_pVertex, 
                                                     CurrentPoly->m_nVertexCount, 
                                                     sizeof(CVertex), 
                                                     (D3DXVECTOR3&)Planes[0], 
                                                     Planes[0].d ); 
 
        Location[1] = CCollision::PolyClassifyPlane( CurrentPoly->m_pVertex, 
                                                     CurrentPoly->m_nVertexCount, 
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                                                     sizeof(CVertex), 
                                                     (D3DXVECTOR3&)Planes[1], 
                                                     Planes[1].d ); 
 
        Location[2] = CCollision::PolyClassifyPlane( CurrentPoly->m_pVertex, 
                                                     CurrentPoly->m_nVertexCount, 
                                                     sizeof(CVertex), 
                                                     (D3DXVECTOR3&)Planes[2], 
                                                     Planes[2].d ); 

 
With the classification results for the current polygon stored in the three element Location array, let us 
now analyze the three results and work out in which octants the polygon is contained and to which child 
lists the polygon’s pointers should be added.  
 
        // Position relative to XY plane 
        if ( Location[0] == CCollision::CLASSIFY_BEHIND ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
            { 
                // Position relative to XZ plane 
                if ( Location[2] == CCollision::CLASSIFY_BEHIND ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)   
                                    ChildList[0].push_back( CurrentPoly ); 
                 
                if ( Location[2] == CCollision::CLASSIFY_INFRONT ||  
                     Location[2] == CCollision::CLASSIFY_ONPLANE ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)   
                                     ChildList[4].push_back( CurrentPoly ); 
 
            } // End if behind 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_ONPLANE ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
            { 
                // Position relative to XZ plane 
                if ( Location[2] == CCollision::CLASSIFY_BEHIND ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildList[1].push_back( CurrentPoly ); 
 
                if ( Location[2] == CCollision::CLASSIFY_INFRONT ||  
                     Location[2] == CCollision::CLASSIFY_ONPLANE ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildList[5].push_back( CurrentPoly ); 
 
            } // End if in-front or on-plane 
 
        } // End if behind 
 
        if ( Location[0] == CCollision::CLASSIFY_INFRONT ||  
             Location[0] == CCollision::CLASSIFY_ONPLANE ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
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        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
            { 
                // Position relative to XZ plane 
                if ( Location[2] == CCollision::CLASSIFY_BEHIND ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildList[2].push_back( CurrentPoly ); 
 
                if ( Location[2] == CCollision::CLASSIFY_INFRONT ||  
                     Location[2] == CCollision::CLASSIFY_ONPLANE ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildList[6].push_back( CurrentPoly ); 
 
            } // End if behind 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_ONPLANE ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
            { 
                // Position relative to XZ plane 
                if ( Location[2] == CCollision::CLASSIFY_BEHIND ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildList[3].push_back( CurrentPoly ); 
 
                if ( Location[2] == CCollision::CLASSIFY_INFRONT ||  
                     Location[2] == CCollision::CLASSIFY_ONPLANE ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildList[7].push_back( CurrentPoly ); 
 
            } // End if in-front or on-plane 
 
        } // End if in-front or on-plane 
 
    } // Next Triangle 

 
At this point we have added all the polygon pointers for this node to the child lists so we must also do 
the same for the detail areas. The next section of code classifies the detail areas of this node against the 
three node planes to find out which child lists the detail areas should be added to. The code is almost the 
same as the quad-tree version with the exception that we now have an extra plane to classify against and 
more results to analyze. 
 
    // Classify the areas and sort them into the child lists. 
    for ( AreaIterator = AreaList.begin();  
          AreaIterator != AreaList.end(); ++AreaIterator ) 
    { 
        // Store current area 
        TreeDetailArea * pDetailArea = *AreaIterator; 
        if ( !pDetailArea ) continue; 
 
        // Classify the area against the planes 
        Location[0] = CCollision::AABBClassifyPlane( pDetailArea->BoundsMin, 
                                                     pDetailArea->BoundsMax, 
                                                     (D3DXVECTOR3&)Planes[0], 
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                                                     Planes[0].d ); 
 
        Location[1] = CCollision::AABBClassifyPlane( pDetailArea->BoundsMin, 
                                                     pDetailArea->BoundsMax, 
                                                     (D3DXVECTOR3&)Planes[1], 
                                                     Planes[1].d ); 
 
        Location[2] = CCollision::AABBClassifyPlane( pDetailArea->BoundsMin, 
                                                     pDetailArea->BoundsMax, 
                                                     (D3DXVECTOR3&)Planes[2], 
                                                     Planes[2].d ); 
 
        // Position relative to XY plane 
        if ( Location[0] == CCollision::CLASSIFY_BEHIND ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
            { 
                // Position relative to XZ plane 
                if ( Location[2] == CCollision::CLASSIFY_BEHIND ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildAreaList[0].push_back( pDetailArea ); 
 
                if ( Location[2] == CCollision::CLASSIFY_INFRONT ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildAreaList[4].push_back( pDetailArea ); 
 
            } // End if behind 
             
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
            { 
                // Position relative to XZ plane 
                if ( Location[2] == CCollision::CLASSIFY_BEHIND ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildAreaList[1].push_back( pDetailArea ); 
 
                if ( Location[2] == CCollision::CLASSIFY_INFRONT ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildAreaList[5].push_back( pDetailArea ); 
 
            } // End if in-front or on-plane 
 
        } // End if behind 
         
 
        if ( Location[0] == CCollision::CLASSIFY_INFRONT ||  
             Location[0] == CCollision::CLASSIFY_SPANNING ) 
        { 
            // Position relative to ZY plane 
            if ( Location[1] == CCollision::CLASSIFY_BEHIND ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
            { 
                // Position relative to XZ plane 
                if ( Location[2] == CCollision::CLASSIFY_BEHIND ||  



 

207 

                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildAreaList[2].push_back( pDetailArea ); 
 
                if ( Location[2] == CCollision::CLASSIFY_INFRONT ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildAreaList[6].push_back( pDetailArea ); 
 
            } // End if behind 
 
            if ( Location[1] == CCollision::CLASSIFY_INFRONT ||  
                 Location[1] == CCollision::CLASSIFY_SPANNING ) 
            { 
                // Position relative to XZ plane 
                if ( Location[2] == CCollision::CLASSIFY_BEHIND ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildAreaList[3].push_back( pDetailArea ); 
                 
                if ( Location[2] == CCollision::CLASSIFY_INFRONT ||  
                     Location[2] == CCollision::CLASSIFY_SPANNING)  
                                    ChildAreaList[7].push_back( pDetailArea ); 
 
            } // End if in-front or on-plane 
 
        } // End if in-front or on-plane 
 
    } // Next Detail Area 

 
At this point we have the eight polygon lists and the eight detail area lists, so it is time to create each 
child node, compute its bounding box, and store a pointer to each child node in the parent node’s child 
list. 
 
    // Build each of the children here 
    for( i = 0; i < 8; ++i ) 
    { 
        // Calculate child bounding box values 
        D3DXVECTOR3 NewBoundsMin, NewBoundsMax,  
                    MidPoint = (BoundsMin + BoundsMax) / 2.0f; 
        switch( i ) 
        { 
            case 0: // Bottom Behind Left 
                NewBoundsMin = BoundsMin; 
                NewBoundsMax = D3DXVECTOR3( MidPoint.x, MidPoint.y, MidPoint.z); 
                break; 
 
            case 1: // Bottom Behind Right 
                NewBoundsMin = D3DXVECTOR3( MidPoint.x, BoundsMin.y, BoundsMin.z ); 
                NewBoundsMax = D3DXVECTOR3( BoundsMax.x, MidPoint.y, MidPoint.z); 
                break; 
 
            case 2: // Bottom InFront Left 
                NewBoundsMin = D3DXVECTOR3( BoundsMin.x, BoundsMin.y, MidPoint.z ); 
                NewBoundsMax = D3DXVECTOR3( MidPoint.x, MidPoint.y, BoundsMax.z ); 
                break; 
 
            case 3: // Bottom InFront Right 
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                NewBoundsMin = D3DXVECTOR3( MidPoint.x, BoundsMin.y, MidPoint.z ); 
                NewBoundsMax = D3DXVECTOR3( BoundsMax.x, MidPoint.y, BoundsMax.z ); 
                break; 
 
            case 4: // Top Behind Left 
                NewBoundsMin = D3DXVECTOR3( BoundsMin.x, MidPoint.y, BoundsMin.z ); 
                NewBoundsMax = D3DXVECTOR3( MidPoint.x, BoundsMax.y, MidPoint.z); 
                break; 
 
            case 5: // Top Behind Right 
                NewBoundsMin = D3DXVECTOR3( MidPoint.x, MidPoint.y, BoundsMin.z ); 
                NewBoundsMax = D3DXVECTOR3( BoundsMax.x, BoundsMax.y, MidPoint.z); 
                break; 
 
            case 6: // Top InFront Left 
                NewBoundsMin = D3DXVECTOR3( BoundsMin.x, MidPoint.y, MidPoint.z ); 
                NewBoundsMax = D3DXVECTOR3( MidPoint.x, BoundsMax.y, BoundsMax.z ); 
                break; 
 
            case 7: // Top InFront Right 
                NewBoundsMin = D3DXVECTOR3( MidPoint.x, MidPoint.y, MidPoint.z ); 
                NewBoundsMax = BoundsMax; 
                break; 
 
        } // End Child Type Switch 
 
        // Allocate child node 
        pNode->Children[i] = new COctTreeNode; 
        if ( !pNode->Children[i] ) return false; 
 
        // Recurse into this new node 
        BuildTree( pNode->Children[i],  
                   ChildList[i],  
                   ChildAreaList[i],  
                   NewBoundsMin,  
                   NewBoundsMax ); 
 
        // Clean up 
        ChildList[i].clear(); 
        ChildAreaList[i].clear(); 
 
    } // Next Child 
 
    // Success! 
    return true; 
} 

 
At the end of the child creation loop, once the node has been attached to the parent, we traverse into that 
node by passing its pointer, its polygon and detail area lists, and its bounding box into another recursion 
of the BuildTree method. 
 
We have now covered all the code to build an oct-tree. It should be clear to you that having the class 
hierarchy and the housekeeping methods tucked away in CBaseTree and CBaseLeaf, makes creating 
new tree types simple and requires very little code. 
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14.19.3 The Oct-Tree Query Methods 

The methods to query the oct-tree are almost identical to their quad-tree counterparts, so we will cover 
them only briefly. Each function works in exactly the same way with the exception that eight children 
will need to be tested and traversed into instead of four. 

CollectLeavesAABB - COctTree 

The CollectLeavesAABB method is actually identical to its quad-tree counterpart. It is passed an empty 
leaf list and a bounding box describing the query volume. The function simply wraps a call to the 
CollectAABBRecurse method for the root node. 
 
bool COctTree::CollectLeavesAABB( LeafList & List,  
                                  const D3DXVECTOR3 & Min,  
                                  const D3DXVECTOR3 & Max ) 
{ 
    // Trigger Recursion 
    return CollectAABBRecurse( m_pRootNode, List, Min, Max ); 
} 

CollectAABBRecurse – COctTree 

This recursive method steps through every leaf in the tree that is contained or partially contained in the 
passed query volume. For a leaf found inside the query volume, its pointer is added to the passed leaf list 
so it can be returned to the application. If it is determined at any node that its volume does not intersect 
the query volume we can refrain from further traversing that branch of the tree. Otherwise, we must 
traverse into any child nodes that do intersect the query volume. As soon as a leaf is found, its pointer is 
added to the passed leaf list. If at any point the query volume is found to completely contain the node 
volume, we know that all the children of that node must also be contained. In such a situation the 
bAutoCollect boolean is set to true and for every child node under the contained node, we no longer 
perform AABB tests and automatically step into each of its children until the leaf nodes are encountered. 
 
bool COctTree::CollectAABBRecurse( COctTreeNode * pNode,  
                                   LeafList & List,  
                                   const D3DXVECTOR3 & Min,  
                                   const D3DXVECTOR3 & Max,  
                                   bool bAutoCollect /* = false */ ) 
{ 
    bool  bResult = false; 
    ULONG i; 
 
    // Validate parameters 
    if ( !pNode ) return false; 
 
    // Does the specified box intersect this node? 
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    if ( !bAutoCollect && !CCollision::AABBIntersectAABB( bAutoCollect,  
                                                          Min,  
                                                          Max,  
                                                          pNode->BoundsMin,  
                                                          pNode->BoundsMax ) ) 
                                                          return false; 
 
    // Is there a leaf here, add it to the list 
    if ( pNode->Leaf ) { List.push_back( pNode->Leaf ); return true; } 
 
    // Traverse down to children 
    for ( i = 0; i < 8; ++i ) 
    { 
        if ( CollectAABBRecurse( pNode->Children[i],  
                                 List,  
                                 Min,  
                                 Max,  
                                 bAutoCollect ) ) bResult = true; 
 
    } // Next Child 
 
    // Return the 'was anything added' result. 
    return bResult; 
} 
 

So the only difference between this method and its quad-tree counterpart is the fact that it loops through 
eight children instead of four. You should be able to see a pattern forming here that will allow you to 
create any tree type you desire by implementing only a few core functions. 

CollectLeavesRay - COctTree 

The CollectLeavesRay method is called by the application to query the oct-tree for any leaves that 
intersect the passed ray. This method is simply a wrapper around a call to the CollectRayRecurse 
method for the root node. It is unchanged from its quad-tree counterpart. 
 
 
bool COctTree::CollectLeavesRay( LeafList & List,  
                                 const D3DXVECTOR3 & RayOrigin,  
                                 const D3DXVECTOR3 & Velocity ) 
{ 
    return CollectRayRecurse( m_pRootNode, List, RayOrigin, Velocity ); 
} 
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CollectRayRecurse - COctTree 

This method is almost unchanged from its quad-tree counterpart with the exception that it steps into 
eight children at each non-terminal node instead of four.  
 
bool COctTree::CollectRayRecurse( COctTreeNode * pNode,  
                                  LeafList & List,  
                                  const D3DXVECTOR3 & RayOrigin,  
                                  const D3DXVECTOR3 & Velocity ) 
{ 
    bool  bResult = false; 
    ULONG i; 
    float t; 
 
    // Validate parameters 
    if ( !pNode ) return false; 
 
    // Does the ray intersect this node? 
    if ( !CCollision::RayIntersectAABB( RayOrigin,  
                                        Velocity,  
                                        pNode->BoundsMin,  
                                        pNode->BoundsMax,  
                                        t ) ) return false; 
 
 
    // Is there a leaf here, add it to the list 
    if ( pNode->Leaf ) { List.push_back( pNode->Leaf ); return true; } 
 
 
    // Traverse down to children 
    for ( i = 0; i < 8; ++i ) 
    { 
        if ( CollectRayRecurse( pNode->Children[i],  
                                List,  
                                RayOrigin,  
                                Velocity ) ) bResult = true; 
 
    } // Next Child 
 
    // Return the 'was anything added' result. 
    return bResult; 
} 

 
And there we have it. We have implemented the query methods for the oct-tree with only a few changes 
to the code for the quad-tree.  

14.19.4 The Oct-Tree Debug Draw Routine 

As you have seen, most of the oct-tree functions were essentially the same as their quad-tree 
counterparts with the exception that eight children have to be processed at each node instead of four. 
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Because of this, we will not spend time showing the code to the COctTree::DebugDraw method even 
though it has been implemented in the source code. If you examine the code you will see that it is almost 
identical to its quad-tree counterpart with the exception that it steps into eight children. 
 
This concludes our discussion and implementation of oct-trees for this lesson. We now have three tree 
types (quad-tree, YV quad-tree, oct-tree) to choose from for use as a spatial manager in our future 
applications. We have just one more tree type to create in this lesson: the kD-tree. 

14.20 kD-Tree Implementation 

The kD-tree is really the simplest tree to implement due to the fact that we only have a single plane used 
to partition space at each node. Implementing the kD-tree will once again involve deriving a class from 
CBaseTree and implementing the core functions to build and query the tree. The kD-tree class 
declaration and implementation can be found in the project source files CKDTree.h and CKDTree.cpp. 
As with all tree types, we will implement a node type specific to the tree type.  
 
Although the kD-tree object’s query function could be implemented in exactly the same way as the 
quad-tree and oct-tree versions (only with two children instead of one) we will use the 
CKDTree::CollectLeavesRay method to implement a traversal strategy closer to what we will see when 
we introduce the BSP tree. You will recall that while, technically speaking, a kD-tree is a BSP tree 
because it partitions space into two halfspaces at each node, the kD-tree carves the world into axis 
aligned bounding boxes that fit neatly into each leaf node. Therefore, with a kD-tree, just like an oct-tree 
and a quad-tree, the query methods that traverse the tree can locate the leaves that a ray intersects by 
performing ray/box intersection tests if desired. However, there is an alternative that we will explore that 
does not use box testing.  
 
A BSP tree (see Chapters 16 and 17) is a binary tree that partitions space into two halfspaces at each 
node just like the kD-tree. However, the split planes of a BSP tree do not have to be axis aligned; in fact 
they are usually based on the polygon data being compiled. While this will all make a lot more sense 
later in the course (and beyond, when we really get into using BSP trees), just know for now that the 
leaves of a BSP tree will not all be box shaped. The leaves can be arbitrarily shaped convex hulls which 
cannot be neatly represented with an AABB. Therefore, we cannot actually traverse a BSP tree in quite 
the same way when we want to find the leaves. The CollectLeavesRay method of the kD-tree will be a 
more BSP-centric version that traverses the tree performing a series of ray/plane tests instead of ray/box 
tests. This will give us some early insight into the BSP traversals we will be performing in later chapters. 
However, it is worth noting that in the case of the kD-tree, where the leaves are all box shaped, you 
could replace our CollectLeavesRay method with a version that is almost identical to the ones we have 
seen for other tree types. 
 

 



 

213 

14.20.1 CKDTreeNode – The Source Code 

Each node in our KD-tree will be an object of type CKDTreeNode which is implemented in the project 
source files CKDTree.h and CKDTree.cpp. Just like the other node types we have seen it stores a 
bounding box and a pointer to a CBaseLeaf object which will be used only by terminal nodes. Because a 
kD-tree only has two children, we will not store the child pointers in an array but will instead simply 
have two pointers called Front and Back. The names of these children obviously describe its position 
relative to the parent node’s single split plane. Like all other node types, we implement the recursive 
SetVisible method so that the tree can inform a node to start a recursive process that will flag all child 
leaves of the node as either visible or invisible. Finally, notice in the following class declaration that 
unlike the quad-tree and oct-tree implementations, where the node split planes were created temporarily 
and then discarded, in the case of the kD-tree, we have decided to store the single split plane used to 
partition the node’s space during the build process. 
 
class CKDTreeNode 
{ 
public: 
      
    // Constructors & Destructors for This Class. 
     CKDTreeNode( ); 
    ~CKDTreeNode( ); 
 
    // Public Functions for This Class 
    void SetVisible( bool bVisible ); 
 
    // Public Variables for This Class 
    D3DXPLANE       Plane;              // Splitting plane for this node 
    CKDTreeNode *   Front;              // Node in front of the plane 
    CKDTreeNode *   Back;               // Node behind the plane 
    CBaseLeaf   *   Leaf;               // If this is a leaf, store here. 
    D3DXVECTOR3     BoundsMin;          // Minimum bounding box extents 
    D3DXVECTOR3     BoundsMax;          // Maximum bounding box extents 
    signed char     LastFrustumPlane;   // The 'last plane' index. 
}; 

 
The reason we have decided to store the node plane in the kD-tree case is because this is more in 
keeping with the traditional BSP approach. In a BSP tree, each node stores a single split plane and 
pointers to two children that represent the halfspaces of that plane. By storing the plane in the kD-tree 
node, we enable our kD-tree to have the ability to work more like a traditional BSP tree if we so desire 
(again, in many respects they are basically the same type of tree, so this works quite well).  
 
For example, in the CollectLeavesAABB method we will implement it using the same style as the quad-
tree and oct-tree. The tree will be traversed with a query volume that will be tested for intersection 
against the bounding box of each child. However, in the CollectLeavesRay method we will implement 
the method just as we would for a BSP tree. We will assume that we have no AABB stored at each node; 
only a split plane. This method will send the ray down the tree and at each node test to see if the ray is 
spanning the node. If it is, the ray is split in two and each half of the ray is sent into the respective child 
for the halfspace the ray segment is contained within. Eventually, all of our split ray fragments will pop 
out in leaf nodes. At that point, the leaves are added to the collection list (more on this later). In order for 
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such a method to be implemented we need to have a tree where each node represents a split plane, just 
like a BSP tree. By storing the split plane in the kD-tree node and implementing our ray query method as 
a BSP method, we draw attention to the similarities between the kD-tree and the BSP tree. This should 
prove to be helpful when we move on to examine BSP trees.  

SetVisible - CKDTreeNode 

The SetVisible method of the kD-tree’s node object is the simplest we have seen so far. If the current 
node being visited points to a leaf object, then this is a terminal node and we set the visibility status of 
the attached leaf and return. Otherwise, we are in a normal kD-tree node and we must traverse into both 
children. 
 
void CKDTreeNode::SetVisible( bool bVisible ) 
{ 
    // Set leaf property 
    if ( Leaf  ) { Leaf->SetVisible( bVisible ); return; } 
 
    // Recurse down front / back if applicable 
    if ( Front ) Front->SetVisible( bVisible ); 
    if ( Back  ) Back->SetVisible( bVisible ); 
} 

 
This function is simpler than the oct-tree and quad-tree case because we have only two children to 
process and no need to loop. 

14.20.2 The CKDTree Source Code 

The CKDTree class looks almost identical to the quad-tree and oct-tree class declarations due to the fact 
that it is derived from CBaseTree and has to implement all the same building and querying methods. 
 
class CKDTree : public CBaseTree 
{ 
public: 
 
    // Constructors & Destructors for This Class. 
    virtual ~CKDTree(); 
             CKDTree( LPDIRECT3DDEVICE9 pDevice,  
                      bool  bHardwareTnL,  
                      float fMinLeafSize = 300.0f,  
                      ULONG nMinPolyCount = 600,  
                      ULONG nMinAreaCount = 0 ); 
 
    // Public Virtual Functions for This Class (from base). 
    virtual bool Build                  ( bool bAllowSplits = true ); 
 
    virtual void ProcessVisibility      ( CCamera & Camera ); 
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    virtual bool CollectLeavesAABB      ( LeafList & List,  
                                          const D3DXVECTOR3 & Min,  
                                          const D3DXVECTOR3 & Max ); 
 
    virtual bool CollectLeavesRay       ( LeafList & List,  
                                          const D3DXVECTOR3 & RayOrigin,  
                                          const D3DXVECTOR3 & Velocity ); 
 
    virtual void DebugDraw              ( CCamera & Camera ); 
 
    virtual bool GetSceneBounds         ( D3DXVECTOR3 & Min, D3DXVECTOR3 & Max ); 
 
protected: 
    
    // Protected virtual Functions for This Class 
    virtual bool BuildTree              ( CKDTreeNode * pNode,  
                                          PolygonList PolyList,  
                                          DetailAreaList AreaList,  
                                          const D3DXVECTOR3 & BoundsMin,  
                                          const D3DXVECTOR3 & BoundsMax,  
                                          ULONG PlaneType = 0 ); 
     
     
    // Protected Functions for This Class 
    void         UpdateTreeVisibility   ( CKDTreeNode * pNode,  
                                          CCamera & Camera,  
                                          UCHAR FrustumBits = 0x0 ); 
 
    bool         DebugDrawRecurse       ( CKDTreeNode * pNode,  
                                          CCamera & Camera,  
                                          bool bRenderInLeaf ); 
 
    bool         CollectAABBRecurse     ( CKDTreeNode * pNode,  
                                          LeafList & List,  
                                          const D3DXVECTOR3 & Min,  
                                          const D3DXVECTOR3 & Max,  
                                          bool bAutoCollect = false ); 
 
    bool         CollectRayRecurse      ( CKDTreeNode * pNode,  
                                          LeafList & List,  
                                          const D3DXVECTOR3 & RayOrigin,  
                                          const D3DXVECTOR3 & Velocity ); 
     
     
    // Protected Variables for This Class 
     
    CKDTreeNode * m_pRootNode;          // The root node of the tree 
    bool          m_bAllowSplits;       // Is splitting allowed? 
    float         m_fMinLeafSize;       // Min leaf size stop code 
    ULONG         m_nMinPolyCount;      // Min polygon count stop code 
    ULONG         m_nMinAreaCount;      // Min detail area count stop code 
 
}; 

 
As you can see, the only difference in the member variable list is that it now stores a root node pointer of 
type CKDTreeNode. 
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Build - CKDTree 

We now know that the Build function of our derived classes is responsible for allocating the root node 
and calculating its bounding box. It then begins the recursive building process, starting at the root, with a 
call to the BuildTree method.  
 
The Build method of the kD-tree is almost identical to the others we have seen, so we will cover it only 
briefly here. 
 
The function first allocates a new CKDTreeNode object and assigns the tree’s root node pointer to point 
at it. We then store that passed boolean parameter so that we know during the building process whether 
or not we are creating a clipped tree. 
 
bool CKDTree::Build( bool bAllowSplits /* = true */ ) 
{ 
    PolygonList::iterator       PolyIterator = m_Polygons.begin(); 
    DetailAreaList::iterator    AreaIterator = m_DetailAreas.begin(); 
    PolygonList                 PolyList; 
    DetailAreaList              AreaList; 
    unsigned long               i; 
 
    // Reset our tree info values. 
    D3DXVECTOR3 vecBoundsMin( FLT_MAX, FLT_MAX, FLT_MAX ); 
    D3DXVECTOR3 vecBoundsMax( -FLT_MAX, -FLT_MAX, -FLT_MAX ); 
 
    // Allocate a new root node 
    m_pRootNode = new CKDTreeNode; 
    if ( !m_pRootNode ) return false; 
 
    // Store the allow splits value for later retrieval. 
    m_bAllowSplits = bAllowSplits; 

 
We now need to calculate the bounding box for the root node so we loop through every vertex of every 
polygon registered with the tree and expand the box to fit all vertices. As we process each polygon, its 
pointer is also copied into the local polygon list (PolyList). After we have resized the box for every 
polygon and made a copy of the original tree’s polygon list, we test to see if a clipped tree is being built. 
If so, we empty the tree’s polygon list since it will be populated with polygon fragments during clipping. 
 
    // Loop through all of the initial polygons 
    for ( ; PolyIterator != m_Polygons.end(); ++PolyIterator ) 
    { 
        // Retrieve the polygon 
        CPolygon * pPoly = *PolyIterator; 
        if ( !pPoly ) continue; 
 
        // Calculate total scene bounding box. 
        for ( i = 0; i < pPoly->m_nVertexCount; ++i ) 
        { 
            // Store info 
            CVertex * pVertex = &pPoly->m_pVertex[i]; 
            if ( pVertex->x < vecBoundsMin.x ) vecBoundsMin.x = pVertex->x; 
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            if ( pVertex->y < vecBoundsMin.y ) vecBoundsMin.y = pVertex->y; 
            if ( pVertex->z < vecBoundsMin.z ) vecBoundsMin.z = pVertex->z; 
            if ( pVertex->x > vecBoundsMax.x ) vecBoundsMax.x = pVertex->x; 
            if ( pVertex->y > vecBoundsMax.y ) vecBoundsMax.y = pVertex->y; 
            if ( pVertex->z > vecBoundsMax.z ) vecBoundsMax.z = pVertex->z; 
        } 
 
        // Store this polygon in the top polygon list 
        PolyList.push_back( pPoly ); 
 
    } // Next Polygon 
 
    // Clear the initial polygon list if we are going to split the polygons  
    // as this will eventually become storage for whatever gets built 
    if ( bAllowSplits ) m_Polygons.clear(); 

 
The bounding box is large enough to contain all registered polygons, but we also need to factor in any 
registered detail areas. 
 
    // Loop through all of the detail areas 
    for ( ; AreaIterator != m_DetailAreas.end(); ++AreaIterator ) 
    { 
        // Retrieve the detail area 
        TreeDetailArea * pDetailArea = *AreaIterator; 
        if ( !pDetailArea ) continue; 
 
        // Calculate total scene bounding box. 
        D3DXVECTOR3 & Min = pDetailArea->BoundsMin; 
        D3DXVECTOR3 & Max = pDetailArea->BoundsMax; 
        if ( Min.x < vecBoundsMin.x ) vecBoundsMin.x = Min.x; 
        if ( Min.y < vecBoundsMin.y ) vecBoundsMin.y = Min.y; 
        if ( Min.z < vecBoundsMin.z ) vecBoundsMin.z = Min.z; 
        if ( Max.x > vecBoundsMax.x ) vecBoundsMax.x = Max.x; 
        if ( Max.y > vecBoundsMax.y ) vecBoundsMax.y = Max.y; 
        if ( Max.z > vecBoundsMax.z ) vecBoundsMax.z = Max.z; 
 
        // Store this in the top detail area list 
        AreaList.push_back( pDetailArea ); 
 
    } // Next Polygon 

 
At this point we call the BuildTree method to start the tree building process from the root node. The 
function is passed the root node pointer and a list of polygons and detail areas that are contained in the 
root node’s bounding box. The final two parameters represent the AABB that bounds all data contained 
in the root node. 
 
    // Build the tree itself 
    if ( !BuildTree( m_pRootNode, PolyList, AreaList, vecBoundsMin,vecBoundsMax)) 
         return false; 
 
    // Allow our base class to finish any remaining processing 
    return CBaseTree::PostBuild( ); 
} 
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When the BuildTree method returns and the entire tree has been compiled, we remember to call the 
CBaseTree::PostBuild method to give the base class a chance to initialize the rendering system and 
calculate the AABBs for each polygon in the tree. 

BuildTree - CKDTree 

This function is a little different from the others we have seen so far. Not only does it split the node 
using a single plane and compile two lists of polygon and detail area data (one for each child), the plane 
used to split the node is actually switched between iterations. That is, at the first node we split the node 
using a plane whose normal faces down the world Z axis. When we step into each of the children, we 
flip the plane so that it is now aligned with the world X axis. For each of its children the plane is flipped 
again so that its normal is facing along the world Y axis. Therefore, although at each node we are 
partitioning space into only two children, the scene is carved up in a very similar way to an oct-tree. As 
we step through the levels of the kD-tree, the plane is continuously alternated between the three world 
axis aligned planes, wrapping around to the first plane used after every three levels of depth.  
 

Note: You can also use a kD-tree to partition 2D space. Simply transition between the two planes you 
are interested in rather than three planes.  

 
The Build function is actually a bit simpler than the others we have seen, although at first glance it may 
not appear so because it is a little larger. The only reason why this is the case is because we are not 
generating the child nodes in a loop since there are only two children.  
 
The kD-tree BuildTree method accepts an additional plane flag parameter which defaults to zero the first 
time it is called for the root node. Every time this method calls itself recursively, this parameter will be 
set in the range [0, 2] describing which of the three world aligned planes should be used to partition the 
node. The first time it is called from the Build method no value is passed, which means it is set to zero 
for the root node. This tells the function that the root node should be divided using the first of the three 
split planes; the split plane whose normal is pointing down the world z axis. Every time this method 
calls itself to traverse into children, it will increment this value (wrapping around to zero once it is 
greater than 2)  such that the next world aligned plane will be used for its children. For example, the root 
node will use plane 0 which is the plane aligned with the world Z axis. Its children will be passed a 
plane value of 1 describing that they should be partitioned using the plane aligned with the world X axis, 
and so on. 
 
The first section of the code stores the passed bounding box in the passed node and calculates the size of 
the node’s bounding box. It then uses this box and the number of polygons and detail areas passed into 
the node to determine if this node should become a leaf.  
 
bool CKDTree::BuildTree(  CKDTreeNode * pNode,  
      PolygonList PolyList,  
      DetailAreaList AreaList,  
      const D3DXVECTOR3 & BoundsMin,  
      const D3DXVECTOR3 & BoundsMax,  
      ULONG PlaneType /* = 0 */ ) 
{ 
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    D3DXVECTOR3                 Normal; 
    PolygonList::iterator       PolyIterator; 
    DetailAreaList::iterator    AreaIterator; 
    CPolygon                  * CurrentPoly, * FrontSplit, * BackSplit; 
    PolygonList                 FrontList, BackList; 
    DetailAreaList              FrontAreaList, BackAreaList; 
    bool                        bStopCode; 
 
    // Store the bounding box properties in the node 
    pNode->BoundsMin = BoundsMin; 
    pNode->BoundsMax = BoundsMax; 
 
    // Calculate 'Stop' code 
    D3DXVECTOR3 vecLeafSize = BoundsMax - BoundsMin; 
    bStopCode  = (AreaList.size() == 0 && PolyList.size() == 0) || 
                 (AreaList.size() <= m_nMinAreaCount &&  
    PolyList.size() <= m_nMinPolyCount) ||  
                 D3DXVec3Length( &vecLeafSize ) <= m_fMinLeafSize; 

 
As with all other tree types, if the stop code boolean gets set to true, we know we have reached a 
terminal node. The code for creating the leaf is exactly the same as all other tree types. We create a new 
CBaseLeaf object and then add every polygon and detail area that made it into this node to the leaf. If a 
clipped tree is being built, then we also re-add the polygon data that made it into this node to the tree’s 
main polygon list. We then attach the leaf to the node, store the node’s bounding box in the leaf, and add 
the leaf to the tree’s leaf list before returning.  
 
    // If we reached our stop limit, build a leaf here 
    if ( bStopCode ) 
    { 
        // Build a leaf 
        CBaseLeaf * pLeaf = new CBaseLeaf( this ); 
        if ( !pLeaf ) return false; 
 
        // Store the polygons 
        for (  PolyIterator = PolyList.begin();  
    PolyIterator != PolyList.end(); ++PolyIterator ) 
        { 
            // Retrieve poly 
            CurrentPoly = *PolyIterator; 
            if ( !CurrentPoly ) continue; 
 
            // Add to full tree polygon list ONLY if splitting was allowed 
            if ( m_bAllowSplits ) AddPolygon( CurrentPoly ); 
 
            // Also add a reference to the leaf's list 
            pLeaf->AddPolygon( CurrentPoly ); 
 
        } // Next Polygon 
 
        // Store the area lists 
        for ( AreaIterator = AreaList.begin();  

    AreaIterator != AreaList.end(); ++AreaIterator ) 
        { 
            // Retrieve detail area item 
            TreeDetailArea * pDetailArea = *AreaIterator; 
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            if ( !pDetailArea ) continue; 
 
            // Add a reference to the leaf's list 
            pLeaf->AddDetailArea( pDetailArea ); 
 
        } // Next Polygon 
         
        // Store pointer to leaf in the node and the bounds 
        pNode->Leaf = pLeaf; 
 
        // Store the bounding box in the leaf 
        pLeaf->SetBoundingBox( pNode->BoundsMin, pNode->BoundsMax ); 
 
        // Store the leaf in the leaf list 
        AddLeaf( pLeaf ); 
 
        // We have reached a leaf 
        return true; 
 
    } // End if reached stop code 

 
If we reach this point in the function, we know we are not at a leaf node and we will have to further 
partition this node into two halfspaces using the split plane. Which of the three axis aligned split planes 
we use to create the split plane is determined by the PlaneType parameter passed in. Notice in the next 
code block that this time we actually store the split plane in the node’s Plane member. 
 
    // Otherwise we must continue to refine. Choose a plane. 
    if ( PlaneType == 0 ) 
        Normal = D3DXVECTOR3( 0.0f, 0.0f, 1.0f ); 
    else if ( PlaneType == 1 ) 
        Normal = D3DXVECTOR3( 1.0f, 0.0f, 0.0f ); 
    else if ( PlaneType == 2 ) 
        Normal = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
 
    // Generate the actual plane 
    D3DXPlaneFromPointNormal( &pNode->Plane,  
      &((BoundsMin + BoundsMax) / 2.0f),  
      &Normal ); 

 
Now that we have determined which split plane to use at this node, we will loop through every polygon 
in the node’s polygon list and classify it against the plane. If it is in front of the plane we will add it to 
the front polygon list (the list that will be passed to the front child) and if it is behind the plane we will 
add it to the back list. In the case where the polygon is on the plane, it does not really matter which child 
we assign it to (we will add it to the front list). 
 
    // Classify all polygons 
    for (  PolyIterator = PolyList.begin();  
   PolyIterator != PolyList.end(); ++PolyIterator ) 
    { 
        // Store current poly 
        CurrentPoly = *PolyIterator; 
 
        // Classify the poly against the plane 
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        CCollision::CLASSIFYTYPE Location = CCollision::PolyClassifyPlane 
                   (CurrentPoly->m_pVertex,  
                                                      CurrentPoly->m_nVertexCount, 
                                                      sizeof(CVertex), 
                                                      (D3DXVECTOR3&)pNode->Plane,  
                                                      pNode->Plane.d ); 
 
        // Decide what to do 
        switch ( Location ) 
        { 
            case CCollision::CLASSIFY_BEHIND: 
                 
                // Add straight to the back list 
                BackList.push_back( CurrentPoly ); 
                break; 
 
            case CCollision::CLASSIFY_ONPLANE: 
            case CCollision::CLASSIFY_INFRONT: 
                 
                // Add straight to the front list 
                FrontList.push_back( CurrentPoly ); 
                break; 

 
If the polygon is spanning the plane and we are building a clipped tree, we will split the polygon into 
two new child polygons and delete the original polygon. We will then add the front split polygon to the 
front list and the back split polygon to the back list. If the polygon is spanning but we are not building a 
clipped tree, we will simply assign the polygon to the front and back lists to that it gets assigned to both 
child nodes in which it is partially contained. 
 
            case CCollision::CLASSIFY_SPANNING: 
                 
                // Is splitting allowed? 
                if ( m_bAllowSplits ) 
                { 
                    // Split the current poly against the plane and delete it 
                    CurrentPoly->Split( pNode->Plane, &FrontSplit, &BackSplit ); 
                    delete CurrentPoly; 
 
                    // Add the fragments (if any survived) to the appropriate lists 
                    if ( BackSplit  ) BackList.push_back( BackSplit ); 
                    if ( FrontSplit ) FrontList.push_back( FrontSplit ); 
                }  
                else 
                { 
                    // Add to both lists! 
                    FrontList.push_back( CurrentPoly ); 
                    BackList.push_back( CurrentPoly ); 
                } 
                break; 
         } 
    } 

 
With the polygon lists compiled for both children, we will classify the detail areas against the plane and 
add them to either the front or back list (or both). If the detail area is behind the plane it is added to the 



 

222 

back list of detail objects and if it is in front of the plane it is added to the front detail list. If the detail 
area’s AABB is spanning the plane, it is added to the detail area list of both children. 
 
    // Classify all detail areas 
    for ( AreaIterator = AreaList.begin();  
          AreaIterator != AreaList.end(); 
        ++AreaIterator ) 
    { 
        // Store current area 
        TreeDetailArea * pDetailArea = *AreaIterator; 
 
        // Classify the area against the plane 
        CCollision::CLASSIFYTYPE Location = CCollision::AABBClassifyPlane 
                                                       (pDetailArea->BoundsMin, 
                                                        pDetailArea->BoundsMax, 
                                                        (D3DXVECTOR3&)pNode->Plane, 
                                                        pNode->Plane.d ); 
 
        // Decide what to do 
        switch ( Location ) 
        { 
            case CCollision::CLASSIFY_BEHIND: 
 
                // Add straight to the back list 
                BackAreaList.push_back( pDetailArea ); 
                break; 
 
            case CCollision::CLASSIFY_INFRONT: 
 
                // Add straight to the front list 
                FrontAreaList.push_back( pDetailArea ); 
                break; 
 
            case CCollision::CLASSIFY_SPANNING: 
 
                // Add to both the front and back lists 
                BackAreaList.push_back( pDetailArea ); 
                FrontAreaList.push_back( pDetailArea ); 
                break; 
 
        } // End Switch 
 
    } // Next Detail Area 

 
At this point we have the polygon lists and the detail area lists compiled for each child node that we are 
about to create. Unlike the same method from previous tree types, we will not perform child creation in 
a loop (we will unroll that loop). This next section of code builds the front child first. It calculates its 
bounding volume based on the split plane being used by the parent node and then allocates a new 
CKDTreeNode object which is assigned to the front child pointer of the parent node. We then recur into 
that node by calling the BuildTree function again for the front child.  
 
    D3DXVECTOR3 NewBoundsMin, NewBoundsMax, MidPoint; 
 
    // Calculate box midpoint 
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    MidPoint = (BoundsMin + BoundsMax) / 2.0f; 
     
    // Calculate child bounding box values 
    NewBoundsMax = BoundsMax; 
 
    if ( PlaneType == 0 ) // XY Plane 
        NewBoundsMin = D3DXVECTOR3( BoundsMin.x, BoundsMin.y, MidPoint.z); 
    else if ( PlaneType == 1 ) // XZ Plane 
        NewBoundsMin = D3DXVECTOR3( MidPoint.x, BoundsMin.y, BoundsMin.z); 
    else if ( PlaneType == 2 ) // YZ Plane 
        NewBoundsMin = D3DXVECTOR3( BoundsMin.x, MidPoint.y, BoundsMin.z); 
 
    // Allocate child node 
    pNode->Front = new CKDTreeNode; 
    if ( !pNode->Front ) return false; 
 
    // Recurse into this new node 
    BuildTree( pNode->Front,  
               FrontList,  
               FrontAreaList,  
               NewBoundsMin,  
               NewBoundsMax,  
              (PlaneType + 1) % 3 ); 
 
    // Clean up 
    FrontList.clear(); 
    FrontAreaList.clear(); 

 
As you can see, the above code is calculating the bounding box for the child that is in the front half 
space of the node. This basically means the child node’s bounding volume will be one half of the parent 
node’s volume. If the parent node split its space using the XY plane, the minimum extent of the 
bounding box will be minx, miny and minz as this describes the minimum extents of a box that starts 
halfway along the parent node’s Z axis (see Figure 14.81). In the case of the YZ plane, the front child’s 
bounding box will be the right half of the parent node, where the minimum X extent will be in the center 
of the box. In each case, because of the way the normals of the planes are facing, the maximum extents 
of the front child will always be the maximum extents of the parent node (see Figures 14.81 through 
14.83). Figure 14.83 similarly shows how the minimum and maximum extents of the front child’s 
AABB would be calculated using the parent node’s bounding box if the parent node partitioned space 
using the XZ plane. 
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Figure 14.81 

Front child of the XY plane. 
Figure 14.82 

Front child of the YZ plane. 
Figure 14.83 

Front Child of the XZ Plane. 
 
After we determine which plane was used in the above code we calculate the bounding box for the front 
child and allocate the new node. The node is then attached to the parent node’s front pointer. The 
BuildTree function then calls itself to step into the front child node and continue the build process down 
that branch of the tree. Notice that when we call the BuildTree function, we increment the current value 
of the PlaneType parameter so that the child node will use the next plane in the list of three to partition 
its space. Also note that we mod this with the number 3 so that as soon as we increment PlaneCount 
beyond a value of 2, it wraps around to 0 again to start the plane selection process from the beginning. 
That is, in the child node, the XY plane will be chosen as the split plane. 
 
When the BuildTree method returns above, the front child and all its child nodes and leaves will have 
been created. Now it is time to build the back child (i.e., the child that is positioned in the back halfspace 
of the parent node’s split plane). 
 
The first thing we do is calculate the bounding box extents of the back child based on the plane that was 
used as a splitter for the parent node. Because this child is on the back of the parent node’s split plane, 
the bounding box extents of the child will range from min to midpoint on the axis aligned with the plane. 
The minimum extents of the back child will always be equal to the minimum extents of the parent 
node’s volume for all components, regardless of the split plane being used. 
 
    // Calculate child bounding box values 
    NewBoundsMin = BoundsMin; 
 
    if ( PlaneType == 0 ) // XY Plane 
        NewBoundsMax = D3DXVECTOR3( BoundsMax.x, BoundsMax.y, MidPoint.z); 
    else if ( PlaneType == 1 ) // XZ Plane 
        NewBoundsMax = D3DXVECTOR3( MidPoint.x, BoundsMax.y, BoundsMax.z); 
    else if ( PlaneType == 2 ) // YZ Plane 
        NewBoundsMax = D3DXVECTOR3( BoundsMax.x, MidPoint.y, BoundsMax.z); 

 
If you are having trouble picturing what we are doing then take a look at Figures 14.84 through 14.86. 
The figures depict how the bounding box of the back child is calculated using the components of the 
parent node’s volume based on chosen split plane.  
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Figure 14.84 

Back child of the XY plane. 
Figure 14.85 

Back child of the YZ plane. 
Figure 14.86 

Back child of the XZ plane 
 
With the bounding box calculated for the back child we allocate a new CKDTreeNode and attach it to 
the parent node’s Back child pointer. We then call the BuildTree method and recur into the back child 
passing in the polygon and detail area lists for that node along with its bounding volume. Once again, we 
increment the PlaneType value that was passed into this instance of the function so that in the next level 
of the tree we use the next split plane. The modulus is performed so that we wrap this value around to 0 
should it exceed 2. 
 
    // Allocate child node 
    pNode->Back = new CKDTreeNode; 
    if ( !pNode->Back ) return false; 
 
    // Recurse into this new node 
    BuildTree( pNode->Back,  
               BackList,  
               BackAreaList,  
               NewBoundsMin,  
               NewBoundsMax,  
               (PlaneType + 1) % 3 ); 
 
    // Clean up 
    BackList.clear(); 
    BackAreaList.clear(); 
 
    // Success! 
    return true; 
} 

 
This completes the build code for the kD-tree, the last tree type we will have to compile in this lesson. 
We have now learned how to build quad-trees, oct-trees and kD-trees. These trees should turn out to be 
very useful throughout your game making career. Indeed, we will be using such trees in virtually all of 
our lab projects moving forward.  

14.20.3 The kD-Tree Query Methods  

Querying the kD-tree can be done in a nearly identical manner to quad-trees and oct-trees, with the 
exception that only two children will need to be tested and traversed during leaf collection. However, 
although CollectLeavesAABB (and its recursive helper function) will be implemented in an almost 
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identical manner to the previous versions we have covered for other trees, we have chosen to implement 
the CollectLeavesRay method (and its recursive helper function) to test using the node split plane 
instead of the bounding box. This need not be done this way because the box could be used instead, but 
it does give us an opportunity to introduce a strategy that will be used by its BSP counterpart (BSP trees 
are generally traversed using the node planes). This will help prepare you for the querying operations we 
will perform on BSP trees, where the leaves do not fit neatly into axis aligned bounding boxes as we 
have seen with the trees in this lesson. 

CollectLeavesAABB - CKDTree  

This method is identical to those implemented in all other tree classes. It simply wraps the call to the 
recursive CollectAABBRecurse method for the root node. It is called by the application to start the 
traversal at the root node, finding and collecting all leaves that intersect the query volume. 
 
bool CKDTree::CollectLeavesAABB( LeafList & List,  
                                 const D3DXVECTOR3 & Min,  
                                 const D3DXVECTOR3 & Max ) 
{ 
    // Trigger Recursion 
    return CollectAABBRecurse( m_pRootNode, List, Min, Max ); 
} 

CollectAABBRecurse – CKDTree 

This method is called by the previous method to visit the nodes of the tree and step into any children that 
are inside (or partially inside) the query volume. It is implemented in an identical manner to the other 
versions of this method for the other tree types with the exception that when a node is not a leaf, we step 
into only two children. 
 
bool CKDTree::CollectAABBRecurse( CKDTreeNode * pNode,  
                                  LeafList & List,  
                                  const D3DXVECTOR3 & Min,  
                                  const D3DXVECTOR3 & Max,  
                                  bool bAutoCollect /* = false */ ) 
{ 
    bool bResult = false; 
 
    // Validate parameters 
    if ( !pNode ) return false; 
 
    // Does the specified box intersect this node? 
    if ( !bAutoCollect && !CCollision::AABBIntersectAABB( bAutoCollect,  
                                                          Min,  
                                                          Max,  
                                                          pNode->BoundsMin,  
                                                          pNode->BoundsMax )) 
           return false; 
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    // Is there a leaf here, add it to the list 
    if ( pNode->Leaf ) { List.push_back( pNode->Leaf ); return true; } 
 
    // Traverse down to children 
    if ( CollectAABBRecurse( pNode->Front, List, Min, Max, bAutoCollect ))  
         bResult = true; 
    
    if ( CollectAABBRecurse( pNode->Back , List, Min, Max, bAutoCollect ))  
         bResult = true; 
 
    // Return the 'was anything added' result. 
    return bResult; 
} 
 

Once again we use the bAutoCollect boolean to initiate immediate collection of children without further 
AABB testing. 

CollectLeavesRay - CKDTree 

The CollectLeavesRay method is also identical to previous versions. It wraps the call to the 
CollectRayRecurse method for the root node. The function is passed an empty leaf list and a ray origin 
and delta vector. On function return the passed leaf list will contain a list of all the leaves intersected by 
the ray.  
 
bool CKDTree::CollectLeavesRay( LeafList & List,  
                                const D3DXVECTOR3 & RayOrigin,  
                                const D3DXVECTOR3 & Velocity ) 
{ 
    return CollectRayRecurse( m_pRootNode, List, RayOrigin, Velocity ); 
} 

CollectRayRecurse - CKDTree 

Unlike prior versions, we will implement this query using the split plane stored at each node instead of 
the bounding box. These are the types of queries we will be implementing when we start relying on BSP 
trees in the later lessons of this course. It also tends to be more efficient to perform a single ray plane 
test rather than a ray box test. 
 
The basic process is to send a ray into a node and perform a ray/plane intersection with the split plane 
stored there. If the ray is contained completely in the front space of the plane, the function calls itself 
recursively passing the ray into the front child. If the ray is contained in the back space of the node we 
send the ray into the back child. However, if the ray is spanning the node we do not simply pass it down 
both the front and back children since this would certainly return leaves that the ray is not intersecting. 
Instead we will split the ray on the plane and send each ray fragment into its respective child node. Of 
course, the ray may get split into many fragments during its journey through the tree, but eventually 
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these ray fragments will pop out in leaf nodes for all leaves that were intersected by the original ray. 
Figure 14.87 depicts the basic ray splitting concept. 
 

 
Figure 14.87 

 
In this simple example, the kD-tree consists of seven nodes in total, with four of them being leaf nodes. 
The ray is assumed to intersect all leaf nodes in this example. Let us step through what is happening. 
 
At the root node, the ray is classified against the plane and is found to be spanning that plane. The ray is 
split into two segments by this split plane creating two new rays, one in the plane’s back space and the 
other in the front space. The ray fragment in the root node’s front space is passed down into the front 
node (node 1). The ray fragment in node 1 is also found to be spanning its plane, so is further split into 
two new fragments. One fragment is passed to its front child (node 2) and the other is passed into its 
back child (node 3). When we reach node 2 and node 3, we find that the ray fragment has been passed 
into leaf nodes, so the original ray must intersect these leaves. The leaves for both nodes would thus be 
added to the leaf collection list. At this point the function would return and the recursive process will 
unroll back up the root node’s traversal into its front child. Now the root node has to pass the other ray 
fragment (the back space fragment) into its back child (node 5). The ray fragment passed into node 5 is 
also spanning node 5’s plane, so it is further split into two ray fragments which end up being passed into 
leaf nodes 6 and 7 for the front and back fragment, respectively. These are leaves are also added to the 
leaf collection list. 
 
The above example had the ray was spanning the plane at every node to get across the idea of the 
recursive splitting process. However, if at any node the ray is found to be in either the front or back 
space, the ray is not split; it is simply passed into the respective child unaltered. In the end, we are 
essentially just sending the ray down the tree and collecting any leaves that contain any portion/fragment 
of the ray. 
 
Clipping a ray that spans a plane into two fragments is very easy to do using the 
CCollision::RayIntersectPlane method we added to our collision library in the previous chapter. This 
function returns a t value of intersection that can be multiplied with the ray delta vector and added to the 
origin to calculate the actual point of intersection. Once we have the ray start and end points and the ray 
intersection point, it is easy to see which points define each ray fragment (see Figure 14.88). 
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In this example we see a plane that intersects a ray. 
Once the intersection point with the plane is 
calculated, the ray in the left halfspace in this image 
is formed by the ray origin and the intersection point, 
and the ray fragment in the right halfspace is formed 
by the ray intersection point and the ray end point. 
That is, the ray intersection point forms the end of 
one fragment and the beginning of another. These 
two ray fragments would then be passed into the 
child nodes. 
 

While splitting the ray and sending the fragments down the tree is pretty simple to implement, what 
might not be so obvious is why we need to split the ray at all. One might imagine that if the ray spans 
the plane we could simply send it in its entirety into both children. However, this will actually return 
incorrect leaves as shown in Figure 14.89. 
 
Figure 14.89 shows a very simple kD-tree consisting of 
four leaf nodes and a ray that intersects three of those 
four leaves. In this example, we can assume that the split 
plane stored at the root node is labeled ‘A’. During the 
building process it was determined that the child node 
attached to the front of the root (plane A) no longer 
needed to be subdivided, so the node was made a leaf. 
This leaf is labeled Leaf 1. When the building process 
processed the back child of the root (the space down the 
back of plane A) it was decided that this space should be 
further subdivided and as such a non-terminal node was 
created whose split plane is labeled ‘B’. Down the front 
of B it was decided that we no longer needed to partition 
space, so Leaf 2 was created there. Down the back of B, 
another non-terminal node was created with the split plane labeled ‘C’, which further partitioned the top 
right quadrant of the tree into Leaf 3 and Leaf 4. 
 
We can clearly see that the ray is contained in only three of the four leaf nodes (1, 3, and 4). However, 
let us see what would happen if we did not split the ray in the spanning case and just sent it through the 
tree unaltered. What we will learn is that Leaf 2 will be added to the collection list even though the ray 
does not intersect it. If Leaf 2 contains tens of thousands of polygons, that is a lot of polygons we would 
need to send to a narrow phase unnecessarily. Let us see why this is the case. 
 
First we send the ray into the root node where it is classified against plane A. We find that it is spanning 
plane A (remember, we are not splitting in this example to demonstrate the flaw in that approach) so we 
send the ray into the front and back child of A. Down the front of A the ray ends up in Leaf 1 and it gets 
added to the list. So far, so good. Down the back of A we find we are at node B and once again classify 
the ray against plane B. Remembering that planes are infinite, we can see that the ray is actually 
spanning plane B (imagine B extending infinitely to the left and right). Because it is spanning B, we 
need to pass it into both children of B. Unfortunately, the front child of B is Leaf 2. Thus, we have just 

 
Figure 14.88 

 
Figure 14.89 
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allowed the ray to fall into Leaf 2 even though it does not intersect this leaf. We need go no further; 
already we can see that our approach is flawed.  
 
Let us now see what happens if we split the ray at every spanning plane. 
 
Looking again at Figure 14.89 we can see that when the ray is first passed into the root node, it is found 
to be spanning node plane A. We calculate the intersection point with the plane and create two child 
rays. The first ray is in the plane’s front space and has the original ray’s origin as its origin and the 
intersection point as its end point. The second ray is the ray contained in the plane’s back space and has 
the intersection point as its origin and the original ray end point as its end point. We can see this 
relationship in Figure 14.90. 
 
 
Figure 14.90 shows the intersection point between the 
ray and plane A. We create two new rays at this node. 
The ray fragment in the plane’s front half space is fed 
into Leaf 1 and Leaf 1 is added to the list. The ray in 
the plane’s back space is created from the ray 
intersection point with plane A and the original ray end 
point at the top right of the ray. When we feed this ray 
fragment into the back space of plane A, we find 
ourselves at the non-terminal node containing plane B. 
The important point here is that when we test the ray 
fed into node B, whose origin is the intersection point 
between the original ray and plane A, we see that the 
ray is completely behind plane B and therefore, we 
never traverse into the front space of B. Therefore, the 
ray never reaches Leaf 2 and Leaf 2 is never added to the collection list.    
 

 
In Figure 14.90 the ray fragment was found to be 
completely behind plane B so it is passed into its 
child where it enters the non-terminal node 
containing node C. At node C, the ray spans its plane 
so the fragment is further clipped into two more ray 
fragments (see Figure 14.91).  
 
The ray fragment in the back space of C is 
constructed from the original intersection point 
between the ray and node A and the intersection of 
the current fragment with node C. This is passed into 
the back node of C where it enters Leaf 3 and is 
added to the leaf collection list. The ray fragment in 
the front space of C is created from the intersection 

point of the ray fragment with the split plane of node C and the end point of the ray fragment passed into 
that function (the original ray end point).  

 
Figure 14.90 

 
Figure 14.91 
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So we have seen why the ray must be split at each node plane. This is a practice that we will see used 
again when working with BSP trees. Let us now look at the recursive function called by the 
CKDTree::CollectLeavesRay method to perform this ray splitting traversal through the tree. 
 
Just like the ray traversal method for the other tree types, the parameters are the current node being 
visited, the leaf list for collection, and the ray origin and delta vectors.  
 
bool CKDTree::CollectRayRecurse( CKDTreeNode * pNode,  
                                 LeafList & List,  
                                 const D3DXVECTOR3 & RayOrigin,  
                                 const D3DXVECTOR3 & Velocity ) 
{ 
    CCollision::CLASSIFYTYPE PointA, PointB; 
    D3DXVECTOR3 RayEnd, Intersection; 
    bool        bResult; 
    D3DXPLANE   Plane; 
    float       t; 
     
    // No operation if the node was null 
    if ( !pNode ) return false; 
 
    // If this node stores a leaf, just add it to the list and return 
    if ( pNode->Leaf ) 
    { 
        // Add the leaf to the list 
        List.push_back( pNode->Leaf ); 
 
        // We collected a leaf 
        return true; 
 
    } // End if stores a leaf 

 
The section of code above shows what happens when the node being visited is a leaf node. This can only 
happen if a fragment of the original ray has made it into a leaf. When this is the case the node’s leaf 
pointer is simply added to the leaf collection list and the function returns true so that the caller knows 
that at least part of the ray was found to exist in at least one leaf. 
 
The remainder of the code is executed only when a non-terminal node is entered. The first thing we do is 
add the ray delta vector to the ray origin to calculate the ray end position. We also use a local variable to 
point to the node plane for ease of access. We then classify the ray origin and ray end points against the 
split plane and store the classification results in the PointA and PointB local variables. 
 
    // Calculate the end point of the ray 
    RayEnd = RayOrigin + Velocity; 
     
    // Retrieve the plane, and classify the ray points against it 
    Plane  = pNode->Plane; 
  
    PointA = CCollision::PointClassifyPlane( RayOrigin,  
                                             (D3DXVECTOR3&)Plane,  
                                             Plane.d ); 
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    PointB = CCollision::PointClassifyPlane( RayEnd   ,  
                                             (D3DXVECTOR3&)Plane,  
                                             Plane.d ); 

 
If both points of the ray lay on the plane then the ray lies exactly on that plane. In this case, we will pass 
the ray into the front and back children. If a ray is on the plane, it is on the boundary of both nodes, so 
we should pass it into both nodes. Notice that we initially set the result boolean to false and set it true if 
any of the front and back recursions return true. We then return this boolean from the function so that 
the intersection status is returned back up to the root. 
 
    // Test for the combination of ray point positions 
    if ( PointA == CCollision::CLASSIFY_ONPLANE &&  
         PointB == CCollision::CLASSIFY_ONPLANE ) 
    {     
        // Traverse down the front and back 
        bResult = false; 
        if ( CollectRayRecurse( pNode->Front,  
                                List,  
                                RayOrigin,  
                                Velocity ) ) bResult = true; 
 
        if ( CollectRayRecurse( pNode->Back,  
                                List,  
                                RayOrigin,  
                                Velocity ) ) bResult = true; 
        return bResult; 
     
    } // End If both points on plane 

 
If the ray origin is in front of the plane and the ray end point is behind the plane (i.e., we have a 
spanning case), we perform a ray/plane intersection to calculate the t value from the ray origin. Once we 
have the t value we calculate the intersection point by scaling the ray delta vector by t and adding the 
result to the ray origin. Once we have the intersection point we recurs into the front child with the sub- 
ray constructed from the ray origin and the intersection point and recurs into the back child using the 
sub-ray constructed from the ray intersection point and the ray end point. If either function returns true, 
we set the boolean result to true and return. 
 
    else  
 
    if ( PointA == CCollision::CLASSIFY_INFRONT &&  
         PointB == CCollision::CLASSIFY_BEHIND ) 
    { 
        // The ray is spanning the plane, with the origin in front.  
        CCollision::RayIntersectPlane( RayOrigin,  
                                       Velocity,  
                                       (D3DXVECTOR3&)Plane,  
                                       Plane.d,  
                                       t,   
                                       true ); 
 
        Intersection = RayOrigin + (Velocity * t); 
 
        // Traverse down both sides passing the relevant segments of the ray 
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        bResult = false; 
 
        if ( CollectRayRecurse( pNode->Front,  
                                List,  
                                RayOrigin,  
                                Intersection - RayOrigin ) ) bResult = true; 
 
        if ( CollectRayRecurse( pNode->Back,  
                                List,  
                                Intersection,  
                                RayEnd - Intersection ) ) bResult = true; 
        return bResult; 
 
    } // End If Spanning with origin in front 

 
The next case is almost identical to the previous spanning case but is executed if the ray origin is behind 
the plane and the ray end point is in front of the plane. The same basic steps are taken, but the sub-ray 
fed into each halfspace is constructed differently due the different orientation of the plane with respect to 
the ray. This time, the sub-ray that we feed into the front node starts at the original ray end point and has 
the intersection point as its end. The ray we feed into the back child starts at the intersection point and 
has the original ray origin as its end point.  
 
    else  
     
    if ( PointA == CCollision::CLASSIFY_BEHIND &&  
         PointB == CCollision::CLASSIFY_INFRONT ) 
    { 
        // The ray is spanning the plane, with the origin in front.  
        CCollision::RayIntersectPlane( RayOrigin,  
                                       Velocity,  
                                       (D3DXVECTOR3&)Plane,  
                                       Plane.d,  
                                       t,  
                                       true ); 
 
        Intersection = RayOrigin + (Velocity * t); 
 
        // Traverse down both sides passing the relevant segments of the ray 
        bResult = false; 
 
        if ( CollectRayRecurse( pNode->Front,  
                                List,  
                                Intersection,  
                                RayEnd - Intersection ) ) bResult = true; 
 
        if ( CollectRayRecurse( pNode->Back,  
                                List,  
                                RayOrigin,  
                                Intersection - RayOrigin ) ) bResult = true; 
        return bResult; 
 
    } // End If Spanning with origin in front 
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The next cases are easier. If both points are in front of the plane, then the ray is totally contained in the 
plane’s front space and we just pass the ray down the front child. Notice that we are actually saying that 
if Point A or Point B is in front of the plane, we send the entire ray down the front. Remember though, 
we only get here if the ray is not spanning the plane, so this tells us that if Point A or Point B is in the 
front space then the other must be in the front space too or on the plane (which also counts as the ray 
being fully contained in the front space). 
 
    else  
 
    if ( PointA == CCollision::CLASSIFY_INFRONT ||  
         PointB == CCollision::CLASSIFY_INFRONT ) 
    { 
 
        // Either of the points are in front (but not spanning), pass down front 
        return CollectRayRecurse( pNode->Front, List, RayOrigin, Velocity ); 
 
    } // End if either point in front 

 
Finally, the last code block only gets executed if the ray is behind the plane. That is, if one of the points 
is definitely behind the plane and the other is either behind the plane or situated on it. When this is the 
case we pass the entire ray down to the back child. 
 
    else 
    { 
        // Either of the points are behind (but not spanning), pass down  back 
        return CollectRayRecurse( pNode->Back, List, RayOrigin, Velocity ); 
 
    } // End if either point behind 
} 

 
Although the coverage of that function might have seemed more laborious than the simple box test, it 
was good practice to work with a recursive ray splitting procedure like this. We will see such ideas again 
when working with BSP trees in the coming lessons, so it was worth reviewing. Of course, functions 
like this can be hard to follow along with in your head (or even on paper) once the tree gets more than a 
few levels deep, but just remember that all we are doing here is a ray/plane test and creating two rays 
using the three points at our disposal (the ray origin, the ray intersection point, and the ray end point). 
We then pass these rays down to the children and eventually all fragments will pop out in the leaves in 
which they belong. Whenever a fragment enters a leaf, we add the leaf to the list and thus, track and 
return all leaves that are intersected by the ray. 

14.20.4 The kD-Tree Debug Draw Routine 

We will not spend time showing the code to the CKDTree::DebugDraw method even though it has been 
implemented in the source code. If you study the code you will see that it is basically identical to its 
quad-tree and oct-tree counterparts with the exception that it steps into two children rather than of four 
or eight. 
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This concludes our discussion and implementation of spatial trees for this lesson. We now have four tree 
types (quad-tree, YV quad-tree, oct-tree, and kD-tree) to choose from for use as a spatial manager in 
future applications. The remainder of this lesson will discuss the addition of a broad phase to our 
collision system using any of the ISpatialTree derived classes we introduced. As far the collision system 
(and our application) is concerned, these trees are all the same (they are ISpatialTrees) and thus can be 
used interchangeably without the user needing to understand the underlying data types.  

14.21 Adding Spatial Trees to Lab Project 14.1 

Lab Project 14.1 will include the core source code for this lesson and the next. Thus, much of the code 
in this project associated with the rendering system will be explained in the following lesson. In this 
lesson, we will focus our attention on how the spatial tree is populated with polygon data and how the 
collision system uses it to perform very efficient collision queries. Before we discuss the changes to the 
collision system, we will look at some functionality that has been added to other modules to support the 
introduction of spatial trees to our existing framework. 

14.21.1 The CGameApp Class 

Earlier in this lesson we discussed how our collision system will need to make sure that it does not send 
the same polygon into the expensive narrow phase multiple times. It avoids this by storing a value in 
each polygon as and when it processes it. As the value it stores is different every time a new query is 
issued, the collision system knows that if a polygon it is about to test has the same value stored in its 
structure, it must be one that has been processed already in this frame (perhaps it exists in a leaf that has 
been previously tested). 
 
Although the system used will be fleshed out in much more detail when we discuss the change to the 
collision code, we have decided that this functionality might be useful for other modules as well. 
Therefore, we will store this value in CGameApp and expose two functions that return and increment 
this counter. 
 
Excerpt from CGameApp.h 
ULONG                GetAppCounter       () const { return m_nAppCounter; } 
void                 IncrementAppCounter ()       { m_nAppCounter++; } 
 

The application counter is a simple ULONG that can be retrieved and incremented via the two methods 
shown above. Below we see that the current value of the application counter is stored in a new 
CGameApp member variable called m_nAppCounter. 
 

Excerpt from CGameApp.h 
ULONG                m_nAppCounter;      // Simple Application counter 

 
Later you will see why it is useful to have an application global value that can be incremented and 
retrieved in this way.  
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14.21.2 The CScene Class 

The CScene class has now had an ISpatialTree pointer added to its list of members. It is called 
m_pSpatialTree and will contain the pointer to the derived tree class we are currently using in our 
application. Because this is a pointer to a base class, we can make this point at any of our derived tree 
classes (CQuadTree, COctTree, etc.). Thus, we can easily plug in any of our tree classes without 
changing any code. 
 
Excerpt from CScene.h 
ISpatialTree       *m_pSpatialTree;                 // Spatial partitioning tree. 

 
This pointer is set to NULL in CScene’s constructor, as shown below. 
 
Excerpt from CScene::CScene 
m_pSpatialTree     = NULL; 

LoadSceneFromIWF – CScene 

The LoadSceneFromIWF function is the parent function that loads and processes the data loaded stored 
in an IWF file. We will not show all the code again here, so you may want to open the source file to 
check it out for yourself. What we will look at below is a shortened layout of this function just so you 
can see how the spatial tree is allocated, built, and registered with the collision system. 
 
Excerpt from CScene::LoadSceneFromIWF 
m_pSpatialTree = new COctTree( m_pD3DDevice, m_bHardwareTnL ); 
 
… 
… 
… Call Process Functions 
… 
… 
… 
 
if ( !m_pSpatialTree->Build( ) ) return false; 
 
m_Collision.SetSpatialTree( m_pSpatialTree ); 
… 
… 
… Create Sound Manager Here 
… 
… 

 
Near the top of the function we allocate a spatial tree of the type we wish to use. In this example, our 
COctTree class is selected as the spatial manager, but it could have been any one of our derived tree 
types. 
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The next section of the function loads the data and calls a series of processing functions to extract the 
information from the geometry and material vectors populated by the CFileIWF::Load method. One 
such function that has been changed slightly is the CScene::ProcessVertices method, which is called 
from CScene::ProcessMeshes (called from LoadSceneFromIWF) for each face loaded from the IWF 
file. The ProcessVertices method is passed the polygon (as an iwfSurface object) and stores its vertex 
data in a way that the application can parse and use. Our implementation of this function will create a 
new CPolygon and populate it with the vertex data for the face currently being loaded. It will then use 
the ISpatialTree::AddPolygon method to add that polygon to the spatial tree.  
 
After the processing methods have been called, all static polygon data will have been added to the tree, 
so we issue a call to the tree’s Build method, which as we now know, compiles the tree. After the Build 
function returns, our tree is ready to be used by the collision system, so we call the collision system’s 
new SetSpatialTree method which stores a pointer to this tree for later use in collision queries. We will 
discuss how the collision system uses the spatial tree in a moment. The rest of the function is unchanged. 

ProcessVertices - CScene 

We have made some small changes in this function so that the vertex data for the passed face is stored in 
a new CPolygon structure and added to the spatial tree. Let us have a look at the code. 
 
In the first section of the function we allocate a new CPolygon structure and set its normal to the normal 
of the passed face. We also set the attribute ID of the polygon to that passed into the function by 
ProcessMeshes. If the BackFace boolean is set to true, it means we would like to reverse the winding 
order of this polygon before we use it, so we negate the normal. 
 
bool CScene::ProcessVertices( iwfSurface * pFilePoly,  
                              ULONG nAttribID,  
                              bool BackFace /* = false */ ) 
{ 
    // Validate parameters 
    if ( !pFilePoly ) return false; 
 
    long      i, nOffset = 0; 
    CVertex * pVertices = NULL; 
    float     fScale = 1.00f; 
 
    // Allocate a new empty polygon 
    CPolygon * pPolygon = new CPolygon; 
    if ( !pPolygon ) return false; 
 
    // Set the polygon's attribute ID 
    pPolygon->m_nAttribID = nAttribID; 
    pPolygon->m_vecNormal = (D3DXVECTOR3&)pFilePoly->Normal; 
 
    if ( BackFace ) pPolygon->m_vecNormal = -pPolygon->m_vecNormal; 

 
We then extract the number of vertices in the passed face and use this to inform the CPolygon to allocate 
enough space in its vertex array for the correct number of vertices. 
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    // Allocate enough vertices 
    if ( pPolygon->AddVertex( pFilePoly->VertexCount ) < 0 ) return false; 
    pVertices = pPolygon->m_pVertex; 

 
Now we loop through each vertex and copy its data into the CPolygon vertex array. 
 
 
    // If we are adding a back-face, setup the offset 
    if ( BackFace ) nOffset = pFilePoly->VertexCount - 1; 
 
    // Loop through each vertex and copy required data. 
    for ( i = 0; i < (signed)pFilePoly->VertexCount; i++ ) 
    { 
        // Copy over vertex data 
        pVertices[i + nOffset].x      = pFilePoly->Vertices[i].x * fScale; 
        pVertices[i + nOffset].y      = pFilePoly->Vertices[i].y * fScale; 
        pVertices[i + nOffset].z      = pFilePoly->Vertices[i].z * fScale; 
 
        pVertices[i + nOffset].Normal = D3DXVECTOR3&)pFilePoly->Vertices[i].Normal; 
 
        if ( BackFace ) pVertices[i+nOffset].Normal=-pVertices[i + nOffset].Normal; 
 
        // If we have any texture coordinates, set them 
        if ( pFilePoly->TexChannelCount > 0 && pFilePoly->TexCoordSize[0] == 2 ) 
        { 
            pVertices[i + nOffset].tu = pFilePoly->Vertices[i].TexCoords[0][0]; 
            pVertices[i + nOffset].tv = pFilePoly->Vertices[i].TexCoords[0][1]; 
 
        } // End if has tex coordinates 
 
        // If we're adding the backface, decrement the offset 
        // Remember, we decrement by two here because 'i' will increment 
        if ( BackFace ) nOffset -= 2; 
 
    } // Next Vertex 

 
Now that we have a CPolygon representation of the face loaded from the file, we add it to the spatial 
tree. 
 
    // Add this new polygon to the spatial tree 
    if ( !m_pSpatialTree->AddPolygon( pPolygon ) ) {delete pPolygon;  
                                                    return false; } 
 
    // Success! 
    return true; 
} 

 
These are the only changes to the application framework with respect to populating and building the 
tree. Next we will discuss the changes to the collision system that need to be made so that we finally 
have a broad phase in our collision detection code. 
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14.22 Adding a Broad Phase to CCollision 

The collision system will not require significant changes in order to include a broad phase. Most of the 
changes will involve the addition of new functions to collect tree data. You will recall from the previous 
chapter that the application calls the CCollision::CollideEllipsoid method to perform a collision query. 
This method transformed the passed ellipsoid into eSpace and then entered a loop that repeatedly called 
the EllipsoidIntersectScene method to perform collision detection. If the function returned false, then the 
ellipsoid could move to the requested position, otherwise a response vector was generated and the 
collision detection step was called again. 
 
Inside the EllipsoidIntersectScene method is where the detection between the swept sphere and the 
collision geometry was determined. Detection was performed against three pools of geometry using the 
EllipsoidIntersectBuffers method for the core intersection determination in all three cases. The first pool 
we tested was any terrain geometry that may have been registered. We did not store the terrain triangles 
in the collision system’s static geometry array, but instead generated them on the fly using a temporary 
buffer that was passed to the EllipsoidIntersectBuffers method. After recording any intersections with 
terrain triangles, we then iterated through the collision system’s dynamic object array passing the 
geometry buffers of each dynamic object into the EllipsoidIntersectBuffers method to record and store 
any collisions that occurred. Finally, we passed the collision system’s static geometry buffers into the 
EllipsoidIntersectBuffers method so that the static polygon data used by the system was also tested and 
any collisions recorded. 
 
The EllipsoidIntersectScene method will now be updated in two places. First, there will be a fourth pool 
of geometry that needs to be checked -- the geometry in the spatial tree that has been assigned to the 
collision system. As we have seen, the application populates and builds this tree using static scene data 
and then assigns it to the tree using the CCollision::SetSpatialTree method (which just caches the pointer 
in a member variable). During the EllipsoidIntersectScene method, we will test the geometry in the tree 
by sending the AABB of the swept sphere into the spatial tree’s CollectLeavesAABB method. Once all 
intersecting leaves are returned, we will test each polygon in those leaves to see if their bounding boxes 
intersect the bounding box of the swept sphere (an additional broad phase step). We will only perform 
narrow phase intersection for polygons that have a good potential for intersect the sphere’s AABB. This 
is essentially our broad phase implementation for static geometry.  
 
One thing might be bothering you at this point. If the static polygon data that we load will now be stored 
in the tree, what happens to the original static geometry database in the collision system? Well, those 
vectors will no longer be used because we will always choose to use a spatial tree and connect that to the 
collision system. We could still add geometry to the collision system’s static vectors (using the 
CCollision::AddIndexedPrimitive method for example) but as we know, every polygon in these vectors 
will be tested in the narrow phase. Thus, storing static geometry there instead of in our spatial tree would 
force us to give up our extremely efficient broad phase step. So does that mean that all of the functions 
that we wrote to store polygons and collide against the static geometry were a waste of time? Absolutely 
not. Our aim was to create a collision library that can be used in your applications that might rely on 
other technologies. Although we will favor using a spatial tree to store our static geometry, there may 
well be users that wish to use the collision system without those trees. Therefore, while it is 
recommended that you always use a spatial tree to store your static collision data, the collision system 



 

240 

will still do its job even if one is not provided. As we saw in the previous lesson, if somebody just wants 
to quickly add polygon data to the collision system, we have provided a means to do so.   
 
The other area where the EllipsoidIntersectScene method will change slightly will when testing the 
swept sphere against dynamic objects. In the previous chapters we saw that we did this by passing the 
geometry buffers of the dynamic object currently being processed (and its matrix) into the 
EllipsoidIntersectBuffers method. This essentially performed the narrow phase detection step on every 
polygon in the dynamic object’s buffer. Now, we first test the bounding box of the dynamic object 
against the AABB of the swept sphere and only call the EllipsoidIntersectBuffers method if the two 
intersect. Although this may seem like a very crude broad phase for our dynamic objects, AABB/AABB 
intersection tests are so cheap and our project uses so few dynamic objects there is really no point in 
using a tree traversal to determine which objects intersect. Therefore, unlike the rendering system that 
we will cover in the following lesson, our collision system does not use the spatial tree to implement a 
broad phase for dynamic objects, instead it just loops through each performing an AABB/AABB cull. 
 

Note: It would be easy enough to add some code to take advantage of the tree for your dynamic 
objects. After all, they are already stored in the tree and you would already have incurred the cost of 
traversal when you test for static geometry. Thus, there would be only a few extra lines of logic needed 
to extract the dynamic objects from the leaves you collided with.  

 
In order to implement the AABB/AABB broad phase for the dynamic object testing we will need to 
extend our collision system’s DynamicObject structure to make room for two vectors that will store the 
minimum and maximum extents of its bounding box. Remembering from the previous lesson that 
dynamic objects are stored in the collision system as model space geometry with an associated world 
transformation matrix, the bounding box stored in each dynamic object will also be defined in the model 
space of the object too. We will see later that when performing the AABB/AABB test between the swept 
sphere’s AABB and the dynamic object, the dynamic object’s AABB will be transformed into world 
space for the test.  
 
Our updated DynamicObject structure is shown below with the two new members highlighted in bold. 
 
Excerpt from CCollision.h  
struct DynamicObject 
{ 
        CollTriVector  *pCollTriangles;  
        CollVertVector *pCollVertices;   
        D3DXMATRIX     *pCurrentMatrix;  
        D3DXMATRIX      LastMatrix;      
        D3DXMATRIX      VelocityMatrix;  
        D3DXMATRIX      CollisionMatrix; 
        long            ObjectSetIndex;  
        bool            IsReference;     
        D3DXVECTOR3     BoundsMin;      // Minimum bounding box extents 
        D3DXVECTOR3     BoundsMax;      // Maximum bounding box extents 
}; 

 
We just learned that the EllipsoidIntersectScene method will now perform a collision query on the tree. 
That is, it will use the spatial tree’s CollectLeavesAABB method to return a list of all the leaves 
intersected by the AABB of the swept sphere. Two new members have been added to the CCollision 
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class for this purpose. The first is a pointer to an ISpatialTree derived object which the application will 
set using the CCollision::SetSpatialTree. The second is a member of type ISpatialTree::LeafList. 
Remember, when we run an AABB query on the tree, the CollectLeavesAABB method expects to be 
passed an empty leaf list that it will fill with leaf pointers. Therefore, the collision object maintains a leaf 
list of its own which it can empty each time and pass into this function to collect the leaves whenever a 
query is performed. Thus, once our collision system has called the ISpatialTree::CollectLeavesAABB 
method, its m_treeLeafList member will contain a list of all the leaves intersected by the swept sphere’s 
AABB. The new members of CCollision are shown below. 
 
New Members to CCollision 
ISpatialTree           *m_pSpatialTree;          
ISpatialTree::LeafList  m_TreeLeafList; 
D3DXVECTOR3                m_vecEllipsoidMin; 
D3DXVECTOR3                m_vecEllipsoidMax;     

 
Notice that we have also added two new 3D vectors as members in the collision object. Because we will 
need to access the world space bounding box of the ellipsoid during our EllipsoidIntersectScene method, 
we use these new members to cache the extents. For example, we will need the world space AABB of 
the ellipsoid in the methods that send the AABB of the ellipsoid down the tree to collect all intersecting 
leaves. We will also need the world space AABB during the dynamic object tests when we implement a 
broad phase AABB/AABB test between the world space AABB of the dynamic object and the world 
space AABB of the ellipsoid. Rather than continually having to calculate this box each time we need it, 
we will add a function to calculate the ellipsoid bounds. It will generate a bounding box around the 
ellipsoid and store it in these two variables for the life of the query. This will allow any helper functions 
that need this information to be able to quickly access it. 

SetSpatialTree - CCollision 

One of the new methods that we saw being used earlier assigns the collision object’s m_pSpatialTree 
pointer the tree the application would like it to use. This simple function is called once the application 
has created and populated the tree with the required data.  
 
void CCollision::SetSpatialTree( ISpatialTree * pTree ) 
{ 
    // Store the tree 
    m_pSpatialTree = pTree; 
} 

CalculateEllipsoidBounds – CCollision 

This method calculates the bounding box of the query ellipsoid. It tests the x, y, and z components of 
two points, the ellipsoid center position and the ellipsoid center position plus the velocity vector, to find 
the minimum and maximum extents for a bounding box that encompasses both points. We will see this 
method being used in a few of the other collision functions later on. 
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The function is passed the ellipsoid center position, its radius vector, and its velocity vector. It first 
examines the radius vector to determine which of its components is the largest. We will use this extent 
to essentially represent a sphere that bounds the ellipsoid. Notice at the top of the function how we 
reference the member variables m_vecEllipsoidMin and m_vecEllipsoidMax (which will receive the 
resulting AABB) with some local variables for ease of access. 
 
void CCollision::CalculateEllipsoidBounds( const D3DXVECTOR3& Center,  
                                           const D3DXVECTOR3& Radius,  
                                           const D3DXVECTOR3& Velocity ) 
{ 
    float       fLargestExtent; 
 
    D3DXVECTOR3& vecMin = m_vecEllipsoidMin; 
    D3DXVECTOR3& vecMax = m_vecEllipsoidMax; 
 
    // Find largest extent of ellipsoid  
    fLargestExtent = Radius.x; 
    if ( Radius.y > fLargestExtent ) fLargestExtent = Radius.y; 
    if ( Radius.z > fLargestExtent ) fLargestExtent = Radius.z; 

 
At this point we have stored the largest component of the ellipsoid’s radius vector in fLargestExtent. We 
will now initialize the bounding box to impossibly small values before performing the tests. 
 
    // Reset the bounding box values 
    vecMin = D3DXVECTOR3( FLT_MAX, FLT_MAX, FLT_MAX ); 
    vecMax = D3DXVECTOR3( -FLT_MAX, -FLT_MAX, -FLT_MAX ); 

 
The first thing we will do is add the largest extent to the ellipsoid center position and test the result to 
see if it is greater than the value currently stored in the bounding box maximum extent. We do this on a 
per-component basis. We are essentially growing the box if the sphere that surrounds the ellipsoid 
pierces the previously discovered maximum extent along any axis. If it does, that component of the 
maximum extent is updated with the new maximum. 
 
    // Calculate the bounding box extents of where the ellipsoid currently  
    // is, and the position it will be moving to. 
 
    if ( Center.x + fLargestExtent > vecMax.x )  

vecMax.x = Center.x + fLargestExtent; 
 
    if ( Center.y + fLargestExtent > vecMax.y )  

vecMax.y = Center.y + fLargestExtent; 
 
    if ( Center.z + fLargestExtent > vecMax.z )  

vecMax.z = Center.z + fLargestExtent; 

 
We now do exactly the same test for each component to test that the sphere bounding the ellipsoid does 
not pierce any previously found minimum extent for the box along any world axis. Once again, if it 
does, that component of the box is updated to the new minimum. 
 
    if ( Center.x - fLargestExtent < vecMin.x )  
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vecMin.x = Center.x - fLargestExtent; 
 
    if ( Center.y - fLargestExtent < vecMin.y )  

vecMin.y = Center.y - fLargestExtent; 
 
    if ( Center.z - fLargestExtent < vecMin.z )  

vecMin.z = Center.z - fLargestExtent; 

 
Now repeat the same two tests again, only this time we add the velocity vector and the largest radius 
extent to the center position of the ellipsoid. What we are essentially doing is building a sphere that 
bounds the ellipsoid at the very end of its velocity vector.  
 
    if ( Center.x + Velocity.x + fLargestExtent > vecMax.x )  

vecMax.x = Center.x + Velocity.x + fLargestExtent; 
 
    if ( Center.y + Velocity.y + fLargestExtent > vecMax.y )  

vecMax.y = Center.y + Velocity.y + fLargestExtent; 
 
    if ( Center.z + Velocity.z + fLargestExtent > vecMax.z )  

vecMax.z = Center.z + Velocity.z + fLargestExtent; 
 
    if ( Center.x + Velocity.x - fLargestExtent < vecMin.x )  

vecMin.x = Center.x + Velocity.x - fLargestExtent; 
 
    if ( Center.y + Velocity.y - fLargestExtent < vecMin.y )  

vecMin.y = Center.y + Velocity.y - fLargestExtent; 
 
    if ( Center.z + Velocity.z - fLargestExtent < vecMin.z )  

vecMin.z = Center.z + Velocity.z - fLargestExtent; 

 
Finally, just to add a bit of padding to manage limited floating point precision, we extend the box by one 
unit along each axis in both directions. 
 
    // Add Tolerance values 
    vecMin -= D3DXVECTOR3( 1.0f, 1.0f, 1.0f ); 
    vecMax += D3DXVECTOR3( 1.0f, 1.0f, 1.0f ); 
} 

 
We will see this method being used later when discussing the new additions to the collision system. 

14.22.1 Dynamic Object Bounding Box Generation 

When a dynamic object is registered with the collision system, it will now have to calculate its model 
space bounding box so that it can be stored in the DynamicObject structure and used during the dynamic 
object’s broad phase test. Adding such a feature involves simply extending the code of the 
CCollision::AddBufferData method. 
 
You should recall from the previous chapter how the AddBufferData method was a general purpose 
utility function that was used to add a passed array of vertices and indices to the passed geometry 
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vectors. This was useful because the same function could be used to add the vertex data for a static 
polygon to the collision system’s static geometry vectors, or it could be used to add the vertex and index 
data for a dynamic object to the dynamic object’s geometry buffers. The AddBufferData method could 
even be passed an optional matrix pointer parameter that would be used to transform the vertex data 
prior to storing it in the passed geometry buffers. 
 
To jog your memory, below we see an example of how this method was used by the 
CCollision::AddIndexedPrimitive method. This method was called in our previous application for every 
static polygon loaded from the IWF file. As you can see, this method just issues a call to the 
AddBufferData method, passing as the first two parameters the static geometry buffers of the collision 
system. When the function returns, the passed vertices and indices will have been added to the collision 
system’s static vectors. We are also reminded that the current transformation matrix for the collision 
system is also passed in, so that if the application has set this to anything other than an identity matrix 
(its default state) the geometry will be transformed before it is added to the collision system’s static 
geometry vectors. 
 
bool CCollision::AddIndexedPrimitive( LPVOID Vertices,  
                                      LPVOID Indices,  
                                      ULONG VertexCount,  
                                      ULONG TriCount,  
                                      ULONG VertexStride,  
                                      ULONG IndexStride,  
                                      USHORT MaterialIndex ) 
{ 
    ULONG i, BaseTriCount; 
 
    // Store the previous triangle count 
    BaseTriCount = m_CollTriangles.size(); 
 
    // Add to the standard buffer 
    if ( !AddBufferData( m_CollVertices,  
                         m_CollTriangles,  
                         Vertices,  
                         Indices,  
                         VertexCount,  
                         TriCount,  
                         VertexStride,  
                         IndexStride,  
                         m_mtxWorldTransform ) ) return false; 
 
    // Loop through and assign the specified material ID to all triangles 
    for ( i = BaseTriCount; i < m_CollTriangles.size(); ++i ) 
    { 
        // Assign to triangle 
        m_CollTriangles[i].SurfaceMaterial = MaterialIndex; 
 
    } // Next Triangle 
 
    // Success 
    return true; 
} 
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The AddBufferData method was also used to add dynamic objects to the system. In this case, the vertex 
and index data of the object would be passed as the first two parameters, along with the geometry 
buffers for the dynamic object. The vertex and index data would be copied into the geometry buffers of 
the collision system’s representation of that dynamic object as a result. 
 
Because our dynamic objects will now need to have bounding boxes calculated for them, the 
AddBufferData member has had two optional parameters added which are only used when the function 
is being called for dynamic objects. These two parameters are pointers to the dynamic object’s bounding 
box extents. The function will calculate the bounding box extents and store them in the dynamic object 
before returning. 
 
Below we see the AddDynamicOject method of CCollision which the application can use to register a 
single dynamic object with the collision system. This code is virtually unchanged from the previous 
version with the exception that it now passes the addresses of the dynamic object’s bounding box extents 
as the last two parameters to AddBufferData. All of the other code was discussed in detail over the last 
two lessons, and will not be discussed here. 
 
long CCollision::AddDynamicObject( LPVOID Vertices,  
                                   LPVOID Indices,  
                                   ULONG VertexCount,  
                                   ULONG TriCount,  
                                   ULONG VertexStride,  
                                   ULONG IndexStride,  
                                   D3DXMATRIX * pMatrix,  
                                   bool bNewObjectSet /* = true */ ) 
{ 
    D3DXMATRIX      mtxIdentity; 
    DynamicObject * pObject = NULL; 
 
    // Reset identity matrix 
    D3DXMatrixIdentity( &mtxIdentity ); 
 
    // Ensure that they aren't doing something naughty 
    if ( m_nLastObjectSet < 0 ) bNewObjectSet = true; 
 
    // We have used another object set index. 
    if ( bNewObjectSet ) m_nLastObjectSet++; 
 
    try 
    { 
        // Allocate a new dynamic object instance 
        pObject = new DynamicObject; 
        if ( !pObject ) throw 0; 
 
        // Clear the structure 
        ZeroMemory( pObject, sizeof(DynamicObject) ); 
 
        // Allocate an empty vector for the buffer data 
        pObject->pCollVertices  = new CollVertVector; 
        if ( !pObject->pCollVertices ) throw 0; 
        pObject->pCollTriangles = new CollTriVector; 
        if ( !pObject->pCollTriangles ) throw 0; 
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        // Store the matrices we'll need for 
        pObject->pCurrentMatrix  = pMatrix; 
        pObject->LastMatrix      = *pMatrix; 
        pObject->CollisionMatrix = *pMatrix; 
        pObject->ObjectSetIndex  = m_nLastObjectSet; 
        pObject->IsReference     = false; 
        D3DXMatrixIdentity( &pObject->VelocityMatrix ); 
 
        // Add to the dynamic object's database 
        if ( !AddBufferData( *pObject->pCollVertices,  
                             *pObject->pCollTriangles,  
                              Vertices,  
                              Indices,  
                              VertexCount,  
                              TriCount,  
                              VertexStride,  
                               IndexStride,  
                               mtxIdentity,  
                               &pObject->BoundsMin,  
                               &pObject->BoundsMax ) ) throw 0; 
 
        // Store the dynamic object 
        m_DynamicObjects.push_back( pObject ); 
 
    } // End try block 
 
    catch (...) 
    { 
        // Release the object if it got created 
        if ( pObject ) 
        { 
            if ( pObject->pCollVertices  ) delete pObject->pCollVertices; 
            if ( pObject->pCollTriangles ) delete pObject->pCollTriangles; 
            delete pObject; 
 
        } // End if object exists 
 
        // Return failure 
        return -1; 
     
    } // End Catch Block 
 
    // Return the object index used 
    return m_nLastObjectSet; 
} 

 
When AddBufferData returns, it will have calculated the extents of the model space AABB and will 
have stored them in the final two parameters. 
 
You will see this slight modification to the AddBufferData call in all of the methods we discussed which 
register dynamic objects. You will recall for example that when we register an actor with the collision 
system (using the CCollision::AddActor method) and pass the parameter that states that we would like 
the actor to be dynamic, the hierarchy is traversed and a dynamic object is created in the collision 
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system for each mesh container found. However, each dynamic object created from a mesh container is 
created in exactly the same way as shown above and will now have their bounding boxes computed. 
 
The new version of AddBufferData is shown below with the added code that calculates and stores the 
model space AABB of the passed geometry. 
 
The first section of the function is the same, it simply makes room in the passed vertex and triangle 
buffers to add the new data if the buffers are not currently large enough. 
 
bool CCollision::AddBufferData( CollVertVector& VertBuffer,  
                                CollTriVector& TriBuffer,  
                                LPVOID Vertices,  
                                LPVOID Indices,  
                                ULONG VertexCount,  
                                ULONG TriCount,  
                                ULONG VertexStride,  
                                ULONG IndexStride,  
                                const D3DXMATRIX& mtxWorld,  
                                D3DXVECTOR3 * pBoundsMin /* = NULL */,  
                                D3DXVECTOR3 * pBoundsMax /* = NULL */ ) 
{ 
    ULONG        i, Index1, Index2, Index3, BaseVertex; 
    UCHAR       *pVertices = (UCHAR*)Vertices; 
    UCHAR       *pIndices  = (UCHAR*)Indices; 
    CollTriangle Triangle; 
    D3DXVECTOR3  Edge1, Edge2; 
 
    // Validate parameters 
    if ( !Vertices || !Indices || !VertexCount || !TriCount ||  
         !VertexStride || (IndexStride != 2 && IndexStride != 4) ) return false; 
 
    // Catch template exceptions 
    try 
    { 
        // Grow the vertex buffer if required 
        while ( VertBuffer.capacity() < VertBuffer.size() + VertexCount ) 
        { 
            // Reserve extra space 
            VertBuffer.reserve( VertBuffer.capacity() + m_nVertGrowCount ); 
         
        } // Keep growing until we have enough 
 
        // Grow the triangle buffer if required 
        while ( TriBuffer.capacity() < TriBuffer.size() + TriCount ) 
        { 
            // Reserve extra space 
            TriBuffer.reserve( TriBuffer.capacity() + m_nTriGrowCount ); 
 
        } // Keep growing until we have enough 

 
Next we store the current number of vertices in the passed vertex vector so that we know where the 
indices will start indexing (it might not be empty when the function is called, which is certainly the case 
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when the function is called to add triangles to the static geometry vectors). We also initialize the passed 
extent vectors to impossible values. 
 
        // Store the original vertex count before we copy 
        BaseVertex = VertBuffer.size(); 
 
        // Reset bounding box values if provided 
        if ( pBoundsMin ) *pBoundsMin = D3DXVECTOR3( FLT_MAX, FLT_MAX, FLT_MAX ); 
        if ( pBoundsMax ) *pBoundsMax = D3DXVECTOR3( -FLT_MAX, -FLT_MAX, -FLT_MAX); 

 
Now we loop through each vertex in the passed array and transform it by the passed transformation 
matrix. We then test the current bounding box extents against the vertex and grow the box if the vertex 
is found not to be contained in it. We then add the vertex to the passed vertex vector. 
 
        // For each vertex passed 
        for ( i = 0; i < VertexCount; ++i, pVertices += VertexStride )  
        { 
            // Transform the vertex 
            D3DXVECTOR3 Vertex = *(D3DXVECTOR3*)pVertices; 
            D3DXVec3TransformCoord( &Vertex, &Vertex, &mtxWorld ); 
 
            // Calculate bounding box extents 
            if ( pBoundsMin ) 
            { 
                if ( Vertex.x < pBoundsMin->x ) pBoundsMin->x = Vertex.x; 
                if ( Vertex.y < pBoundsMin->y ) pBoundsMin->y = Vertex.y; 
                if ( Vertex.z < pBoundsMin->z ) pBoundsMin->z = Vertex.z; 
             
            } // End if minimum extents variable passed 
 
            if ( pBoundsMax ) 
            { 
                if ( Vertex.x > pBoundsMax->x ) pBoundsMax->x = Vertex.x; 
                if ( Vertex.y > pBoundsMax->y ) pBoundsMax->y = Vertex.y; 
                if ( Vertex.z > pBoundsMax->z ) pBoundsMax->z = Vertex.z; 
 
            } // End if maximum extents variable passed 
 
            // Copy over the vertices 
            VertBuffer.push_back( Vertex ); 
 
        } // Next Vertex 

 
The last section of the function calculates the indices of each triangle and is unchanged.  
 
        // Build the triangle data 
        for ( i = 0; i < TriCount; ++i ) 
        { 
            // Retrieve the three indices 
            Index1 = ( IndexStride == 2 ? (ULONG)*((USHORT*)pIndices) : 
                                        *((ULONG*)pIndices) ); 
            pIndices += IndexStride; 
 
            Index2 = ( IndexStride == 2 ? (ULONG)*((USHORT*)pIndices) : 
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                                        *((ULONG*)pIndices) ); 
            pIndices += IndexStride; 
  
            Index3 = ( IndexStride == 2 ? (ULONG)*((USHORT*)pIndices) : 
                        *((ULONG*)pIndices) ); 
            pIndices += IndexStride; 
 
            // Store the details 
            Triangle.SurfaceMaterial = 0; 
            Triangle.Indices[0]      = Index1 + BaseVertex; 
            Triangle.Indices[1]      = Index2 + BaseVertex; 
            Triangle.Indices[2]      = Index3 + BaseVertex; 
 
            // Retrieve the vertices themselves 
            D3DXVECTOR3 &v1 = VertBuffer[ Triangle.Indices[0] ]; 
            D3DXVECTOR3 &v2 = VertBuffer[ Triangle.Indices[1] ]; 
            D3DXVECTOR3 &v3 = VertBuffer[ Triangle.Indices[2] ]; 
 
            // Calculate and store edge values 
            D3DXVec3Normalize( &Edge1, &(v2 - v1) ); 
            D3DXVec3Normalize( &Edge2, &(v3 - v1) ); 
 
            // Skip if this is a degenerate triangle, we don't want it in our set 
            float fDot = D3DXVec3Dot( &Edge1, &Edge2 ); 
            if ( fabsf(fDot) >= (1.0f - 1e-5f) ) continue; 
 
            // Generate the triangle normal 
            D3DXVec3Cross( &Triangle.Normal, &Edge1, &Edge2 ); 
            D3DXVec3Normalize( &Triangle.Normal, &Triangle.Normal ); 
 
            // Store the triangle in our database 
            TriBuffer.push_back( Triangle ); 
 
        } // Next Triangle 
 
    } // End Try Block 
 
    catch ( ... ) 
    { 
        // Just fail on any exception. 
        return false; 
     
    } // End Catch Block 
 
 
    // Success! 
    return true; 
} 

 
That covers all of the changes involved in registering geometry with the collision system. They are very 
small, but the calculation of the bounding boxes of dynamic objects is a significant step that should not 
be overlooked. We can now move on to discussing the changes to the core collision system. 
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14.22.2 Changes to the Collision Query Engine 

When the application performs a query, it calls the CCollision::CollideEllipsoid method. This method is 
responsible for transforming the ellipsoid into eSpace and then setting up a loop that will call the 
detection method (EllipsoidIntersectScene) and generate a slide vector every time the detection function 
returns true for intersection. Only when the detection phase returns false have we found a new position 
for the ellipsoid that is free from obstruction. 
 
As we have briefly touched on, we need to make sure during a given detection step that we do not send a 
polygon to the expensive narrow phase more than once. If we are using a clipped tree, this will never 
happen since each polygon will be contained in one and only one leaf. However, if a non-clipped tree is 
being used (often the case) we may have a situation where a single polygon is contained in multiple 
leaves. Further, when the collision system calls the ISpatialTree::CollectLeavesAABB method, it may 
get back a list of intersecting leaves that each contains this same polygon. We certainly never want to 
test the same polygon more than once, so we saw earlier how we implemented an application timer to 
allow us to efficiently invalidate polygons in the collision system.  
 
The CPolygon structure stores a member called m_AppCounter that can be used to store the current 
value held in the application counter. Why is this useful? 
 
When our collision system performs a query on the tree, it will get back a list of leaves. Then it will 
iterate through the polygons in each of those leaves and potentially pass them on to the narrow phase if 
we have an AABB/AABB intersection between the polygon’s box and the swept sphere’s box. Once a 
polygon has been tested and is about to be passed to the narrow phase, we will store the current value of 
the application counter in its m_nAppCounter member. We will only send polygons to the narrow phase 
whose m_nAppCounter member is not equal to the current value of the application counter. If the 
application counter matches, it means this polygon has already been processed since the application 
counter was last incremented. This would be the case if we were processing a polygon in a leaf that had 
existed in a previous leaf we had tested. By the end of the collision step, all the polygons in all the 
returned leaves will have had their m_nAppCounter members set to the same value as the current 
application counter. 
 
While we could achieve the same end by storing a boolean in each polygon which is set to true once it 
has been processed, this would leave us with the very unpleasant (and slow) task of looping through 
every polygon and resetting their booleans prior to performing a new query. Since our CollideEllipsoid 
method may perform many detection queries during a single update, it would become prohibitively 
expensive if tens of thousands of polygons had to have their booleans reset dozens of times. Fortunately, 
with our counting logic, all we have to do before performing another detection query is increment the 
application’s main counter. At this point, the application counter will no longer match the 
m_nAppCounter member in any polygon, so they will all be tested in the next update. 
 
Of you open up the source code to the CCollision::CollideEllipsoid method you will see that we have 
added a new function call that increments the application counter with each iteration of the detection 
loop. We will not show the entire function here since we have only added one new line. However, the 
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following listing demonstrates where this new line (actually two new lines which are both the same) 
exists. The new lines are highlighted in bold.     
 
Excerpt from CCollision::CollideEllipsoid 
bool CCollision::CollideEllipsoid( const D3DXVECTOR3& Center,  
                                   const D3DXVECTOR3& Radius,  
                                   const D3DXVECTOR3& Velocity,  
                                   D3DXVECTOR3& NewCenter,  
                                   D3DXVECTOR3& NewIntegrationVelocity, 
                                   D3DXVECTOR3& CollExtentsMin,  
                                   D3DXVECTOR3& CollExtentsMax ) 
{    
     … 

… Calculate ESpace ellipsoid start, end and radius vectors here  
… 
… 

    // Keep testing until we hit our max iteration limit 
    for ( i = 0; i < m_nMaxIterations; ++i ) 
    { 
         
        if ( EllipsoidIntersectScene( eFrom,  
                                      Radius,  
                                      eVelocity,  
                                      m_pIntersections,  
                                      IntersectionCount,  
                                      true,  
                                      true ) ) 
        { 
            … 
  … Calculate Response vector and eFrom here 
  … 
            bHit=true; 
 
        } // End if we got some intersections 
        else 
        { 
            // We found no collisions, so break out of the loop 
            break; 
 
        } // End if no collision 
 
        // Increment the app counter so that our polygon testing is reset 
        GetGameApp()->IncrementAppCounter(); 
 
    } // Next Iteration 
 
    // Did we register any intersection at all? 
    if ( bHit ) 
    { 
        // Increment the app counter so that our polygon testing is reset 
        GetGameApp()->IncrementAppCounter(); 
 
        … 
        … 
        …  If we ran out of iterations to one collision test here and just 
        …  return first intersecting position  
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        … 
          
 
    } // End if intersection found 
 
    // Store the resulting output values 
    NewCenter              = vecOutputPos; 
    NewIntegrationVelocity = vecOutputVelocity; 
 
    // Return hit code 
    return bHit; 
} 

 
As you can see, the application counter is advanced after each collision detection query so that the next 
time it is performed, the polygon counters no longer match the application counter and the polygons are 
considered again in the next test. 

EllipsoidIntersectScene - CCollision 

The EllipsoidIntersectScene method is called by CollideEllipsoid each time a detection test has to be 
performed on a velocity vector (or slide vector). Previously this method tested three pools of data; the 
terrain data, the dynamic objects, and the static geometry vectors. We will now add an additional section 
that performs a collision test on the static geometry stored in the spatial tree (if one has been assigned to 
the collision system). In our application, all static data will be stored in the spatial tree and the static 
geometry vectors of the collision system will be left empty. We also add the AABB/AABB broad phase 
to the dynamic object test. Although most of the code is unchanged, we will still show the entire 
function again, but only spend time discussing the additional code in any detail. 
 
The first section of the function transforms the passed ellipsoid centerpoint and velocity vector into 
eSpace if the caller did not pass these in as eSpace parameters to begin with. It also sets the first 
collision intersect time (t) to 1.0 (i.e., the end of the vector and thus no collision detected). 
 
bool CCollision::EllipsoidIntersectScene( const D3DXVECTOR3 &Center,  
                                          const D3DXVECTOR3& Radius,  
                                          const D3DXVECTOR3& Velocity, 
                                          CollIntersect Intersections[],  
                                          ULONG & IntersectionCount,  
                                          bool bInputEllipsoidSpace /* = false */, 
                                          bool bReturnEllipsoidSpace /* = false */) 
{ 
    D3DXVECTOR3 eCenter, eVelocity, eAdjust, vecEndPoint, InvRadius; 
    float       eInterval; 
    ULONG       i; 
 
    // Vectors for terrain building 
    CollVertVector VertBuffer; 
    CollTriVector  TriBuffer; 
 
    // Calculate the reciprocal radius to prevent the divides we would need  
    InvRadius = D3DXVECTOR3( 1.0f / Radius.x, 1.0f / Radius.y, 1.0f / Radius.z ); 



 

253 

 
    // Convert the values specified into ellipsoid space if required 
    if ( !bInputEllipsoidSpace ) 
    { 
        eCenter   = Vec3VecScale( Center, InvRadius ); 
        eVelocity = Vec3VecScale( Velocity, InvRadius ); 
     
    } // End if the input values were not in ellipsoid space 
    else 
    { 
        eCenter   = Center; 
        eVelocity = Velocity; 
 
    } // End if the input values are already in ellipsoid space 
 
    // Reset ellipsoid space interval to maximum 
    eInterval = 1.0f; 
 
    // Reset initial intersection count to 0 to save the caller having to do this. 
    IntersectionCount = 0; 
 
    // Calculate the bounding box of the ellipsoid 
    D3DXVECTOR3 vecCenter   = Vec3VecScale( eCenter, Radius ); 
    D3DXVECTOR3 vecVelocity = Vec3VecScale( eVelocity, Radius );         
    CalculateEllipsoidBounds( vecCenter, Radius, vecVelocity ); 

 
The new additions to this section are highlighted in bold at the bottom of the code. We transform the 
ellipsoid center position and velocity vector into world space (by scaling it by the radius vector) and 
then pass the world space position, velocity, and radius vector of the ellipsoid into the 
CalculateEllipsoidBounds method (discussed earlier). When this method returns, the 
CCollision::m_vecEllipsoidMin and CCollision::m_vecEllipsoidMax member variables will store the 
extents of the current world space bounding box of the ellipsoid. We will see why we need this later in 
the function. 
 
The next section, which is unchanged from the previous lab project, collects triangles from any terrain 
object in the immediate vicinity of the swept sphere and runs the intersection test.  
 
    // Iterate through our terrain database 
    TerrainVector::iterator TerrainIterator = m_TerrainObjects.begin(); 
    for ( ; TerrainIterator != m_TerrainObjects.end(); ++TerrainIterator ) 
    { 
        const CTerrain * pTerrain = *TerrainIterator; 
 
        // Collect the terrain triangle data 
        if ( !CollectTerrainData( *pTerrain,  
                                  vecCenter,  
                                  Radius,  
                                  vecVelocity,  
                                  VertBuffer,  
                                  TriBuffer ) ) continue; 
 
        // Perform the ellipsoid intersect test against this set of terrain data 
        EllipsoidIntersectBuffers( VertBuffer,  
                                   TriBuffer,  
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                                   eCenter,  
                                   Radius,  
                                   InvRadius,  
                                   eVelocity,  
                                   eInterval,  
                                   Intersections,  
                                   IntersectionCount ); 
 
        // Clear buffers for next terrain 
        VertBuffer.clear(); 
        TriBuffer.clear(); 
 
    } // Next Terrain 

 
The next section is new. It contains the code that performs the intersection test against the geometry 
stored in the spatial tree (if one has been registered with the collision system). The first thing we do is 
pass the world space ellipsoid center position and velocity vector to a new method called 
CCollision::CollectTreeLeaves. This method will simply pass the world space bounding box of the 
ellipsoid into the ISpatialTree::CollectLeavesAABB method. Earlier we learned that the collision system 
now includes a member of type LeafList, which is also passed to the CollectLeavesAABB method and 
used to collect the pointers to the leaves that intersect the ellipsoid AABB. We will look at this method 
in a moment. 
 
When the CollectTreeLeaves method returns, the CCollision::m_TreeLeafList member will currently 
contain all the pointers to all leaves that intersect the swept sphere’s bounding box. We then call another 
new method called EllipsoidIntersectTree which performs the narrow phase test on the polygon data 
stored in those leaves. The EllipsoidIntersectTree method is almost identical to the 
EllipsoidIntersectBuffers method which performs narrow phase detection on other geometry pools. The 
reason we had to make a special version of this function is that the CPolygon data stored in the tree uses 
a different format from what the collision system is used to working with. Rather than incur the costs of 
copying the data over and converting it into the old format on the fly (which can get very expensive!), 
we just added a modified version of the prior code to work with CPolygons. We only want to test 
polygons that have bounding boxes that intersect the ellipsoid’s bounding box and that have not already 
been tested in this update. This is another method we will look at in a moment. 
 
    // Collide against tree if available 
    if ( m_pSpatialTree ) 
    { 
 
        // Collect the leaf list if necessary 
        CollectTreeLeaves( vecCenter, Radius, vecVelocity ); 
 
        EllipsoidIntersectTree( eCenter,  
                                Radius,  
                                InvRadius,  
                                eVelocity,  
                                eInterval,  
                                Intersections,  
                                IntersectionCount ); 
 
    } // Next Tree 



 

255 

 
When the EllipsoidIntersectTree method returns, any intersections found between the swept sphere and 
the polygons stored in the tree will be added to the passed Intersections array and the current intersection 
count will be increased to reflect the number of intersections found at the closest t value. That is the full 
extent of the changes to EllipsoidIntersectScene with respect to using the spatial tree to query the 
polygon data as a broad phase. 
 
The next change to the function is performed when testing the dynamic objects against the swept sphere. 
In our previous implementation we simply looped through every dynamic object and passed its buffers 
to the EllipsoidIntersectBuffers method. This essentially meant that every polygon in every dynamic 
object would have been run through the costly narrow phase. Now we will add a simple broad phase 
early-out test. 
 
For each dynamic object, we transform its model space bounding box into world space using a new math 
utility function called TransformAABB (see MathUtility.cpp). This is a small function that takes an 
AABB and a transformation matrix and generates a new AABB that contains the passed AABB in its 
rotated/transformed form. We will look at the code to this function later.  
 
    // Iterate through our triangle database 
    DynamicObjectVector::iterator ObjIterator = m_DynamicObjects.begin(); 
    for ( ; ObjIterator != m_DynamicObjects.end(); ++ObjIterator ) 
    { 
        DynamicObject * pObject = *ObjIterator; 
 
        // Broad Phase AABB test against dynamic objects 
        D3DXVECTOR3 Min = pObject->BoundsMin, Max = pObject->BoundsMax; 
 
        MathUtility::TransformAABB( Min, Max, pObject->CollisionMatrix ); 

 
As we now have the current dynamic object’s box in world space and we also stored the ellipsoid’s 
world space bounding box extents in the m_vecEllipsoidMin and m_vecEllipsoidMax member variables 
at the start of the function, we can perform the AABB/AABB intersection test and skip all the dynamic 
object collision code that we discussed in the previous lesson. That is, if the boxes do not intersect, we 
skip to the next iteration of the loop and the next dynamic object to test. The remainder of the function is 
identical to the prior version. 
 
        if ( !AABBIntersectAABB( Min,  
                                 Max,  
                                 m_vecEllipsoidMin,  
                                 m_vecEllipsoidMax ) ) continue; 
 
        // Calculate our adjustment vector in world space. This is for our 
        // velocity adjustment for objects so we have to work in the original 
        // world space. 
        vecEndPoint = (Vec3VecScale( eCenter, Radius ) +   
                       Vec3VecScale( eVelocity, Radius )); 
 
        // Transform the end point 
        D3DXVec3TransformCoord( &eAdjust, &vecEndPoint, &pObject->VelocityMatrix ); 
 
        // Translate back so we have the difference 
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        eAdjust -= vecEndPoint; 
 
        // Scale back into ellipsoid space 
        eAdjust  = Vec3VecScale( eAdjust, InvRadius ); 
 
        // Perform the ellipsoid intersect test against this object 
        ULONG StartIntersection =  
              EllipsoidIntersectBuffers( *pObject->pCollVertices,  
                                         *pObject->pCollTriangles,  
                                          eCenter,  
                                          Radius,  
                                          InvRadius,  
                                          eVelocity - eAdjust,  
                                          eInterval,  
                                          Intersections,  
                                          IntersectionCount,  
                                          &pObject->CollisionMatrix ); 
 
        // Loop through the intersections returned 
        for ( i = StartIntersection; i < IntersectionCount; ++i ) 
        { 
            // Move us to the correct point (including the objects velocity) 
            // if we were not embedded. 
            if ( Intersections[i].Interval > 0 ) 
            { 
                // Translate back 
                Intersections[i].NewCenter      += eAdjust; 
                Intersections[i].IntersectPoint += eAdjust; 
             
            } // End if not embedded 
             
            // Store object 
            Intersections[i].pObject = pObject; 
 
        } // Next Intersection 
 
    } // Next Dynamic Object 

 
Once each dynamic object has been tested and the results added to the Intersections array, we call 
EllipsoidIntersectBuffers one more time to perform the narrow phase tests on any geometry stored in the 
collision system’s static geometry buffers. As discussed, now that we will be storing our static geometry 
in the spatial tree, these buffers will be empty when the collision system is being used by our 
applications. However, the logic is still supported for applications that may wish to use the collision 
library without having the implementation of a spatial tree forced upon them. Every polygon in these 
static geometry buffers is passed straight to the narrow phase, so there will be no broad phase 
implementation for geometry stored here. Since we have spatial trees at our disposal now, you will 
probably not want to store geometry in these buffers in future applications. 
 
    // Perform the ellipsoid intersect test against our static scene 
    EllipsoidIntersectBuffers( m_CollVertices,  
                               m_CollTriangles,  
                               eCenter,  
                               Radius,  
                               InvRadius,  
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                               eVelocity,  
                               eInterval,  
                               Intersections,  
                               IntersectionCount ); 

 
As discussed in the previous lesson, if the caller requested that the intersection information be returned 
in world space (instead of ellipsoid space), we loop through each intersection that we have collected and 
transform the new position, collision normal, and intersection point into world space. 
 
    // If we were requested to return the values in normal space 
    // then we must take the values back out of ellipsoid space here 
    if ( !bReturnEllipsoidSpace ) 
    { 
        // For each intersection found 
        for ( i = 0; i < IntersectionCount; ++i ) 
        { 
            // Transform the new center position and intersection point 
            Intersections[ i ].NewCenter =  
                               Vec3VecScale( Intersections[i].NewCenter,  
                                             Radius ); 
 
            Intersections[ i ].IntersectPoint =   
                               Vec3VecScale( Intersections[ i ].IntersectPoint, 
                                             Radius ); 
             
            // Transform the normal  
            D3DXVECTOR3 Normal = Vec3VecScale( Intersections[ i ].IntersectNormal, 
                                               InvRadius ); 
 
            D3DXVec3Normalize( &Normal, &Normal ); 
 
            // Store the transformed normal 
            Intersections[ i ].IntersectNormal = Normal; 
         
        } // Next Intersection 
     
    } // End if !bReturnEllipsoidSpace 
 
    // Return hit. 
    return (IntersectionCount > 0); 
} 

 
As you can see, the changes to this core detection step method have been minimal. We will now discuss 
the new methods used by this function for intersection testing with the spatial tree. 

CollectTreeLeaves – CCollision 

As we saw in the previous function, if a spatial tree has been registered with the collision system, the 
CollectTreeLeaves method is called to fill the collision system’s leaf array with all the leaves which 
intersect the world space bounding box of the swept ellipsoid. This function is extremely small. It first 
makes sure that the leaf list is emptied so that no leaf pointers exist in the leaf from a previous query. 
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Then this leaf list is passed into the spatial tree’s CollectLeavesAABB method along with the world 
space AABB of the swept ellipsoid. 
 
void CCollision::CollectTreeLeaves( ) 
{ 
    // Clear the previous leaf list 
    m_TreeLeafList.clear(); 
 
    // Collect any leaves we're intersecting 
    m_pSpatialTree->CollectLeavesAABB( m_TreeLeafList,  
                                       m_vecEllipsoidMin,  
                                       m_vecEllipsoidMax ); 
} 

 
When this function returns program flow back to the EllipsoidIntersectScene method, the 
CCollision::m_TreeLeafList member will contain a list of pointers for all leaves that were intersecting 
the ellipsoid’s AABB. 

EllipsoidIntersectTree – CCollision 

When the CollectTreeLeaves method returns back to EllipsoidIntersectScene, all the leaves have been 
collected and stored. Next a call is made to the EllipsoidIntersectTree method which iterates through 
every polygon in those leaves and performs the narrow phase test. Although this function code looks 
quite large, for the most part it is an exact duplicate of the EllipsoidIntersectBuffers method used to 
perform the narrow phase test on the other geometry pools. The reason that most of that code has been 
cut and pasted into this function is that we have to do some additional testing and are working with 
slightly different source data. 
 
The ellipsoid’s eSpace center position and velocity vector are passed in along with the ellipsoid radius 
and inverse radius vectors. We are also passed a float reference that is used to return the t value of 
intersection back to the caller. The function also requires an array of CollIntersect structures which it 
will populate when intersections are found that occur at a closer t value that the one passed in the 
eInterval parameter. The final parameter contains the number intersections currently in this array. As 
you have probably noticed, the parameter list is identical to EllipsoidIntersectBuffers, which we 
discussed in detail in the previous lesson. That is because this is essentially the same function. 
 
The first thing we do is store the current number of intersections in the passed array in the FirstIndex 
local variable. This is so we know where we have started adding structures so that we can return this 
information back to the caller. We then store the current value of the application counter in a local 
variable so that we can use it to make sure that polygons that exist in multiple leaves do not get tested 
more than once. 
 
ULONG CCollision::EllipsoidIntersectTree( const D3DXVECTOR3& eCenter,  
                                          const D3DXVECTOR3& Radius,  
                                          const D3DXVECTOR3& InvRadius,  
                                          const D3DXVECTOR3& eVelocity,  
                                          float& eInterval,  
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                                          CollIntersect Intersections[],  
                                          ULONG & IntersectionCount ) 
{ 
    D3DXVECTOR3 ePoints[3], eNormal; 
    D3DXVECTOR3 eIntersectNormal, eNewCenter; 
    ULONG       NewIndex, FirstIndex, CurrentCounter; 
    long        i, j; 
    bool        AddToList; 
 
    // FirstIndex tracks the first item to be added the intersection list. 
    FirstIndex = IntersectionCount; 
 
    // Extract the current application counter to ensure duplicate  
    // polys are not tested multiple times in the same iteration / frame 
    CurrentCounter = GetGameApp()->GetAppCounter(); 

Now we set up a loop to iterate through each collected leaf in the leaf list. For each leaf, we extract its 
polygon count and set up a loop to iterate though every polygon in that leaf. In this inner loop, we fetch 
a pointer to the current CPolygon we are going to test in the current leaf we are processing. 
 
    // Iterate through our triangle database 
    ISpatialTree::LeafList::iterator Iterator = m_TreeLeafList.begin(); 
    for ( ; Iterator != m_TreeLeafList.end(); ++Iterator ) 
    { 
        ILeaf * pLeaf = *Iterator; 
        if ( !pLeaf ) continue; 
 
        // Loop through each polygon 
        for ( i = 0; i < (signed)pLeaf->GetPolygonCount(); ++i ) 
        { 
            // Get the polygon 
            CPolygon * pPoly = pLeaf->GetPolygon( i ); 
            if ( !pPoly ) continue; 

 
Next we test the polygon’s m_nAppCounter member. If we find that it is the same as the current 
application counter value, it means we have already processed this polygon when visiting an earlier leaf 
in the list. Therefore, we skip any further testing on this polygon and go to the next polygon in the list. 
 
            // Skip if this poly has already been processed on this iteration 
            if ( pPoly->m_nAppCounter == CurrentCounter ) continue; 
            pPoly->m_nAppCounter = CurrentCounter; 

 
If we make it this far in the inner loop, it means we have not yet tested the current polygon. We now 
perform an additional broad phase step which is an AABB/AABB intersection test between the 
polygon’s bounding box and the bounding box of the swept ellipsoid. If the bounding boxes do not 
intersect then the swept ellipsoid cannot possibly intersect the polygon, so we skip to the next iteration 
of the loop. With large leaf sizes, this minimizes the number of polygons passed to the narrow phase test 
and generates a considerable performance increase. 
 
            // Are we roughly intersecting the polygon? 
            if ( !AABBIntersectAABB( m_vecEllipsoidMin,  
                                     m_vecEllipsoidMax,  
                                     pPoly->m_vecBoundsMin,  
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                                     pPoly->m_vecBoundsMax ) ) continue; 

 
If we make it this far, then we have a polygon that may well intersect the ellipsoid. Thus it will need to 
be passed on to the narrow phase. 
 
Our next step would usually be to transform the vertices of the triangle into eSpace and then pass this 
triangle into the SphereIntersectTriangle method. However, our tree does not store triangles; it stores 
clockwise winding N-gons that describe triangle fans with an arbitrary number of triangles. For 
example, a polygon might be a clockwise winding of four vertices describing a quad comprised of two 
triangle primitives. Since our SphereIntersectTriangle method only works with triangles and not N-gons 
(as its name certainly suggests), we will need to set up an inner loop that will iterate though every 
triangle in the polygon and send it to the SphereIntersectTriangle method, one at a time. For example, in 
the case of a quad, we would need to call SphereIntersectTriangle twice, once for its first triangle and 
once for its second triangle. 
 
To calculate how many triangles comprise a clockwise winding N-gon we simply subtract 2 from the 
number of vertices. Figure 14.92 demonstrates this relationship by showing a clockwise winding N-gon 
with 8 vertices and 6 triangles. 
 
As you can see, we can find the 
vertices for each triangle by stepping 
around the vertices in a clockwise 
order. The first triangle will be formed 
by the first three vertices, and from 
that point on, we can just advance the 
last two vertices to form the next 
triangle. We can see for example that 
the first vertex V1 forms the first 
vertex for all triangles. The other two 
vertices are found for every triangle 
simply by stepping around the edges. 
For example, the last two vertices of 
the first triangle are v2 and v3. The last two vertices of the second triangle are v3 and v4, and so on. 
 
In the next section of code we start by transforming the polygon’s normal into eSpace. We then set up a 
loop to iterate through every triangle in the polygon. In each iteration we select the three vertices that 
form the current triangle we are processing (see Figure 14.92) and transform them into eSpace before 
sending them into the SphereIntersectTriangle method. 
 
            // Transform normal and normalize  
            eNormal = Vec3VecScale( pPoly->m_vecNormal, Radius ); 
            D3DXVec3Normalize( &eNormal, &eNormal ); 
 
            // For each triangle 
            for ( j = 0; j < pPoly->m_nVertexCount - 2; ++j ) 
            { 
                // Get points and transform into ellipsoid space 
                ePoints[0] = Vec3VecScale( (D3DXVECTOR3&)pPoly->m_pVertex[0], 

 
Figure 14.92 
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                                            InvRadius ); 
 
                ePoints[1] = Vec3VecScale( (D3DXVECTOR3&)pPoly->m_pVertex[ j + 1 ],          
                                            InvRadius ); 
 
                ePoints[2] = Vec3VecScale( (D3DXVECTOR3&)pPoly->m_pVertex[ j + 2 ], 
                                            InvRadius ); 
                 
                // Test for intersection with a unit sphere and the  
                // ellipsoid space triangle 
                 
                if ( SphereIntersectTriangle( eCenter,  
                                              1.0f,  
                                              eVelocity,  
                                              ePoints[0],  
                                              ePoints[1],  
                                              ePoints[2],   
                                              eNormal,  
                                              eInterval,  
                                              eIntersectNormal ) ) 
                { 

 
Note: The above code could be optimized by pre-transforming the vertices once, storing them in a local 
buffer, and then subsequently iterating through the triangles.  

 
If the SphereIntersectTriangle method returns true then the sphere does intersect the triangle and 
eInterval will contain the t value of intersection. If eInterval is larger than zero then the intersection 
happened at some distance along the ray and we can calculate the new non-intersecting position of the 
sphere by adding the velocity vector scaled by the t value to the original centerpoint of the sphere. If 
eInterval is less than zero, then the sphere is embedded inside the triangle and eInterval describes the 
distance to move the sphere position along the direction of the plane normal in order to un-embed it. 
 
                    // Calculate our new sphere center at the point of intersection 
                    if ( eInterval > 0 ) 
                        eNewCenter = eCenter + (eVelocity * eInterval); 
                    else 
                        eNewCenter = eCenter - (eIntersectNormal * eInterval); 

 
The rest of the function is identical to the EllipsoidIntersectBuffers method. If there are currently no 
intersections stored in the intersection array, or if the t value for this intersection is less than the t value 
for the intersections currently stored in this array, we add the intersection information to the first 
element in the intersections array and set the intersection count to zero. 
 
                    // Where in the array should it go? 
                    AddToList = false; 
                    if ( IntersectionCount == 0 ||  
                         eInterval < Intersections[0].Interval ) 
                    { 
                        // We either have nothing in the array yet, or the new 
                        // intersection is closer to us 
                        AddToList         = true; 
                        NewIndex          = 0; 
                        IntersectionCount = 1; 
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                        // Reset, we've cleared the list 
                        FirstIndex        = 0; 
 
                    } // End if overwrite existing intersections 

 
Alternatively, if eInterval is the same as the t value for the intersections stored in the Intersections array, 
then we add it to the end of the list and increase the intersection count member. 
 
                  else if ( fabsf( eInterval - Intersections[0].Interval )< 1e-5f ) 
 
                    { 
                        // It has the same interval as those in our list already, 
                        // append to  
                        // the end unless we've already reached our limit 
                        if ( IntersectionCount < m_nMaxIntersections ) 
                        { 
                            AddToList         = true; 
                            NewIndex          = IntersectionCount; 
                            IntersectionCount++; 
 
                        } // End if we have room to store more 
 
                    } // End if the same interval 

 
If we get to this point in the inner loop and find that the AddToList boolean has been set to true, it 
means the current triangle being tested was either closer or at the same distance along the ray as those 
intersections currently stored in the intersection array. In this case, we fill out the element in the array 
with the eSpace intersection information for the triangle. 
 
                    // Add to the list? 
                    if ( AddToList ) 
                    { 
                        Intersections[ NewIndex].Interval     = eInterval; 
 
                        Intersections[ NewIndex].NewCenter    = eNewCenter + 
                                                                (eIntersectNormal            
                                                                * 1e-3f);  
 
                        Intersections[ NewIndex].IntersectPoint = eNewCenter – 
                                                                 eIntersectNormal; 
            
                        Intersections[ NewIndex].IntersectNormal= eIntersectNormal; 
                        Intersections[ NewIndex].TriangleIndex   = 0; 
                        Intersections[ NewIndex].pObject         = NULL; 
 
                    } // End if we are inserting in our list 
 
                } // End if collided 
 
            } // Next Triangle 
 
        } // Next Polygon 
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    } // Next Leaf 
 
    // Return hit. 
    return FirstIndex; 
} 

  
We have now covered all the changes to the collision system. The end result is a powerful collision 
query engine that we can use in all future lab projects. The difference in query times with the spatial tree 
broad phase is quite significant. You can test this for yourself when you experiment with the lab project 
source code. 

14.23 The TransformAABB Math Utility Function 

In the EllipsoidIntersectScene method we saw a call being made to the MathUtility::TransformAABB 
method. This call transformed the AABB of a dynamic object into world space. The method was passed 
the minimum and maximum extents of a bounding box and a transformation matrix with which to 
transform the AABB. 
Let us be clear about exactly what this function is supposed to do. It does not actually transform the box 
in the traditional sense, as an AABB by its very nature is always aligned with the world axes. If we were 
to rotate the box we would in fact have an OBB (oriented bounding box). The OBB would have to be 
stored in a very different way (position, extents, and orientation of its local axes) and this is not our goal. 
OBBs are much trickier to work with, and generally more expensive (although tighter fitting), and since 
our collision system is currently working with AABBs throughout, we will continue to do that.  
 
What this function will do however is calculate a new AABB that contains the passed AABB post-
rotation. To understand this concept, take a look at the AABB shown in Figure 14.93. In this example 
the box is assumed to be centered at the origin of the coordinate system with a maximum extents 
position vector of (10,10).   
 

We know that an extents vector of <10,10> means the 
box expands to a maximum of 10 units along the world x 
axis and a maximum of 10 units along the world y axis. 
That is, we know that in the case of an AABB, Extents.x 
describes the position on the world X axis where the 
right side of the box intersects it and Extents.y describes 
the position along the world Y axis where the top of the 
box intersects it. For ease explanation we will deal with a 
2D coordinate system, but the same holds true in 3D. 
 
We know that in the case of an axis aligned bounding 
box, its local right and up vectors are aligned with the 
world X and Y axes respectively. However, if we 
perceive the world axes to be the local right and up 

vectors for the box, we can see that Extents.x describes the amount we would need to scale the box’s 
unit length right vector (RV) to create a vector that when added to the box centerpoint describes a point 

 
Figure 14.93 
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on the plane of its right face. Likewise, the unit length up vector for the box (UV), when scaled by the y 
component of the Extents vector and added to the centerpoint of the box, describes a point on the plane 
on which its top face lies. We can see that scaling the right vector and the up vector of the AABB by the 
components of the extents vector essentially just returns the extents vector (just as if we were 
transforming the extents vector by an identity matrix). However, what we want to do is transform the up 
and right vectors of the AABB by the passed matrix and calculate a new AABB that encompasses the 
OBB these new vectors describe.  
 
In Figure 14.94 we show what the box would look like if we 
were to rotate these vectors 45 degrees to the left, simulating 
what would happen if the passed transformation matrix 
contained a 45 degree rotation. We can see that the rotated 
right and up vectors (which were scaled by the extents 
vectors components) still describe the location of the right 
and top planes of the box faces, but they are no longer 
aligned to the world axes. Essentially, these vectors and the 
center point describe an OBB now. 
 
We know that if we rotate an AABB 45 degrees to the left or 
right it will pierce the original extents and a new larger 
AABB will need to be calculated to contain it. It is this new 
AABB (the red dashed box in Figure 14.93) that we want 
this function to efficiently calculate. 
 
The first section of code generates the scaled and rotated right, up, and look vectors (3D) for the box. 
 
First we calculate the center of the box and subtract it from the passed maximum extents vector. This 
gives us the diagonal half length of the box shown as the red arrow in Figure 14.93. We then make a 
copy of the passed matrix into a local variable and zero out its translation vector (we will deal with 
translation separately at the end of the function). 
 
void MathUtility::TransformAABB( D3DXVECTOR3 & Min,  
                                 D3DXVECTOR3 & Max,  
                                 const D3DXMATRIX & mtxTransform ) 
{ 
    D3DXVECTOR3 BoundsCentre = (Min + Max) / 2.0f; 
    D3DXVECTOR3 Extents = Max - BoundsCentre, Ex, Ey, Ez; 
    D3DXMATRIX  mtx = mtxTransform; 
 
    // Clear translation 
    mtx._41 = 0; mtx._42 = 0; mtx._43 = 0; 

 
Our next step is to transform the centerpoint of the box by the transformation matrix which rotates the 
centerpoint into the space described by the passed matrix. 
 
    // Compute new centre 
    D3DXVec3TransformCoord( &BoundsCentre, &BoundsCentre, &mtx ); 

 

 
Figure 14.94 



 

265 

Now we need to compute the scaled and rotated local axes for the box shown as the rotated blue arrows 
in Figure 14.94. We said that we needed to scale the unit length axes by their matching components in 
the extents vector so that the local up, right, and look vectors are grown in length such that they describe 
distances to the planes of the top, right and front faces. However, as the passed transformation matrix 
already contains the rotated (but unit length) right, up, and look vectors in its 1st, 2nd, and 3rd rows 
respectively, we can just scale the rotated unit length axes by their matching components in the extents 
vector to get the rotated axes: 
 
    // Compute new extents values 
    Ex = D3DXVECTOR3( mtx._11, mtx._12, mtx._13 ) * Extents.x; 
    Ey = D3DXVECTOR3( mtx._21, mtx._22, mtx._23 ) * Extents.y; 
    Ez = D3DXVECTOR3( mtx._31, mtx._32, mtx._33 ) * Extents.z; 

 
Let us plug in some example values to see what has happened so far. We will once again use the 2D case 
for our diagrams. 
 
Imagine we pass in a transformation matrix that will rotate our original 2D box (with a half diagonal 
length vector of <10, 10>) 45 degrees to the left. We know in such a case that the first row of the matrix 
which contains the rotated right vector will store the vector <0.707, 0.707> and the up vector stored in 
the matrix will be <-0.707, 0.707>. These describe the unit length vectors <1,0,0> and <0,1,0> rotated 
45 degrees to the left: 
 
RV = [0.707 , 0.707] 
UV = [-0.707, 0.707] 
 
These vectors current describe the directions we would need to travel from the box centerpoint to reach 
the rotated right and top faces of the box. They do not yet describe the distance over which to travel. 
However, in the above code we scale the up and right vectors (and the look vector in our 3D code) by 
their matching components in the Extents vector to generate the up and right vectors shown in Figure 
14.95. These describe the direction and distance to the right and top faces of the rotated AABB (OBB).  
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In Figure 14.95 we see that Ex and 
Ey contain the results of the scaled 
RV and UV vectors (scaled by the 
original extent vector components – 
which are both 10 units). When 
added to the center position of the 
box, they describe points in the 
center of the right and top faces. 
 
Ex = RV*10 = [7.07 , 7.07] 
Ey = UV*10 = [-7.07 ,7.07 ] 
 
So with these two points, how do we 
calculate the new extents of the 
rotated box along the world X and Y 
axes so that we can build a new 
AABB that encompasses it? 
 
It just so happens that summing the 
absolute x components of each 
vector will tell us the size of the box 
along the world X axis and summing the y components of both vectors will tell us the height of the 
rotated box in world aligned space. For example: 
 
NewExtents.x = abs(Ex.x) + abs(Ey.x) = 7.07 + 7.07 = 14.14 
NewExtents.y = abs(Ex.y) + abs(Ey.y) = 7.07 + 7.07 = 14.14 
 
As you can see, by summing the like components of the scaled and rotated vectors, we can compute 
exactly how much of the world X and Y axes this rotated OBB covers. NewExtents.x now describes the 
distance from the center of the box to the tip of the diamond on the right hand side of the rotated box. 
NewExtents.y describes the distance from the center of the box to the tip of the diamond at the top of the 
OBB (see Figure 14.96).   
 
 

Figure 14.95 
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Figure 14.96 

 
Looking at figure 14.96 we can see that the new diagonal half length of the box is therefore: 
 
NewMaxExtents = [ New Extents.x , New Extents.y ] = [14.14 , 14.14] 
 
Let us now take a look at the rest of the code to the function. In the previous section we calculated the 
rotated and scaled up, right, and look vectors of the OBB and stored them in the vectors Ex, Ey and Ez 
(the blue arrows in Figure 14.96). As we just discovered, all we have to do is sum the absolute values of 
the like components in each vector to get the new extents vector for the box. 
 
    // Calculate new extents actual 
    Extents.x = fabsf(Ex.x) + fabsf(Ey.x) + fabsf(Ez.x); 
    Extents.y = fabsf(Ex.y) + fabsf(Ey.y) + fabsf(Ez.y); 
    Extents.z = fabsf(Ex.z) + fabsf(Ey.z) + fabsf(Ez.z); 

 
At this point, Extents holds the diagonal half length vector of the AABB we wish to create (which will 
bound the rotated original AABB). We can calculate the minimum extent position vector for the box by 
subtracting the new extents vector (diagonal half length vector) from the box center, and calculate the 
new maximum extents position vector by adding it to the box center. Finally, we also add the minimum 
and maximum extents vectors of the new AABB to the translation vector stored in the fourth row of the 
passed matrix. This means the new AABB is not only recalculated to encompass the rotation applied to 
the original AABB, but is also translated into the position described by the passed matrix. 
 
    // Calculate final bounding box (add on translation) 
    Min.x = (BoundsCentre.x - Extents.x) + mtxTransform._41; 
    Min.y = (BoundsCentre.y - Extents.y) + mtxTransform._42; 
    Min.z = (BoundsCentre.z - Extents.z) + mtxTransform._43; 
    Max.x = (BoundsCentre.x + Extents.x) + mtxTransform._41; 
    Max.y = (BoundsCentre.y + Extents.y) + mtxTransform._42; 
    Max.z = (BoundsCentre.z + Extents.z) + mtxTransform._43; 
} 
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And there we have it. This is a very handy way to calculate a new AABB for an AABB that you wish to 
transform into another space. The result is an AABB which completely contains the original rotated 
AABB. Keep in mind that this AABB has the potential to be much larger than its untransformed 
predecessor, which means that query accuracy can be decreased as a result of the looser fitting volume.   

Conclusion 

In Lab Project 14.1 you will see a lot of code associated with tree rendering which we have not yet 
covered. That is because this lab project will span two lessons, with the render system being explained 
in the next one. For now, you should focus your attention on the main implementation of our tree classes 
and the changes made to the collision system that allow us to use the spatial tree as a broad phase. 
 
In the next lesson we will see the same spatial tree being used to speed up rendering. This will lay the 
foundation for a rendering system that will be utilized by our spatial trees and by the powerful BSP/PVS 
rendering engine we will create as we wrap up this course.  
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