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Introduction  

At this point in the course we have learned how to load X 
file frame hierarchies and traverse and render them. We 
have also learned how to load skinned mesh data from an 
X file and render those skinned meshes such that the 
hierarchy acts as a system of bones that influence the 
world space positions of the skin’s vertices. Of course, 
loading data from an X file is only half the story. We can 
also procedurally generate meshes, hierarchies, bones, and 
skins. This can prove to be handy for lots of things, like 
random generation of terrain or even for vegetation on 
that terrain to cite just two obvious examples. Typically 
such code uses algorithms that generate geometry based 
on both fixed rules and some degree of randomness. How 
the two concepts work together is generally based on 
some set of input parameters and controls to the 
procedure. For example, if we were randomly generating a 
terrain mesh, we might specify some rules to the 
procedure stating that water can only exist below a certain 
altitude, or that snow can only be placed on mountaintops 
above a certain altitude. In both cases, those altitudes are 
likely to be input to the terrain generator via a 
configuration file or through a GUI tool.   
 
Regardless of the example we choose, the important point is that you will undoubtedly reach a point at 
some time in your programming career where you will have to generate meshes and/or texturing 
information from within your code. For some game assets it is just easier to do it this way (versus 
getting your artists to create everything by hand). Trees are a good example. Every tree is different in 
reality, so if you wanted to represent even a small forest of say, 40 unique trees, it would require the 
artist to generate 40 different tree meshes, where each branch and maybe even each leaf would have to 
be carefully hand-crafted and textured. The time involved would be considerable, and most serious game 
development projects would simply not have the resources to spare for such an undertaking. So not 
surprisingly, representing realistic trees within a game world has typically been an area that has fallen to 
tools developers to aid the creative process. There are currently some commercial products (e.g., 
SpeedTree™) available that are designed to do nothing more than generate realistic trees that look 
organic while remaining within a specified polygon budget (the polygon count of a single tree is very 
important as we rarely have just one tree in a given scene – especially an outdoor scene). These products 
produce some incredibly realistic results, but they can also be very expensive.  Since commercial tools 
are generally not in the budget for most students, we decided to introduce code for generating our own 
trees. This will be a great way to conclude our studies of skins and skeletons and it has the added benefit 
of providing you with a useful tool in the short term at no extra cost (other than the time you will have to 
spend writing the code). To be clear, we are not going to claim that our trees are going to exhibit the 
same level of quality or performance as those produced in the commercial tools, but we are sure that you 
will find them to be an adequate substitute in the short term while you are still in training.  

 
Figure 12.1 
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In Figure 12.1 we see a tree that has been generated procedurally using a new class that we will create in 
this chapter (called CTreeActor). What cannot be seen in the image is that this tree is really a 
combination of skinned meshes and bones. The bones are animated to simulate how a tree might move 
in blowing wind.  Our tree class will be derived from CActor and as such we can reuse much of its 
functionality. CActor already has code to represent, animate, and render skinned meshes, so this is code 
we will not have to rewrite in our tree class (thankfully). In fact, CTreeActor will simply add some 
hierarchy and skinned mesh creation functions to the base class that allow us to populate the actor’s 
hierarchy using a different means. As we have seen, currently CActor can be populated only by loading 
an X file. With CTreeActor we will add functions that generate the bone and mesh data for tree meshes 
and add them to the hierarchy manually.  
 

Note: While it is perfectly legitimate to use CTreeActor to generate trees in your code at level load time 
(for example), it is really supposed to be used as tool. That is, usually you will use CTreeActor to generate 
some number of random trees and when it creates a tree you like, you will save that actor to an X file for 
use in your game. This way, your actual game code need only load the trees using a normal CActor just like 
any other X file. You may also wish to save the trees out to X files and then import them into a level editor 
for placement. GILES™ now ships with a tree plug-in to allow you to create trees from within its GUI. The 
GILES™ tree plug-in uses CTreeActor for its tree generation.  

 
A CTreeActor object will represent a single tree in the scene. Its frame hierarchy will describe the bones 
of the entire tree representation (the skeleton of the trunk and all its branches). CTreeActor’s creation 
functions will also generate animation data for this hierarchy programmatically that will animate the tree 
such that its branches and leaves blow from side to side in simulated wind. Sharing this same bone 
hierarchy will be multiple meshes, one skinned mesh for each branch. What we will have at the end of 
this chapter (and associated lab project) is a class that we can use to generate tree meshes with random 
configurations with a single function call. For the most part, using the tree class will be no more 
complicated than calling the CTreeActor::GenerateTree function where we would usually call the 
CActor::LoadActorFromX function.  Therefore, the code that we have added to CTreeActor is strictly 
confined to the creation process as a replacement for loading of X file data. Once the 
CTreeActor::GenerateTree function has built the frame hierarchy and its various branch meshes, we can 
position, animate, and render the tree using the same CActor methods we have always used. 
 
Since this is going to be a fairly complex task, we will break the coverage of CTreeActor into two 
separate lab projects (12.1 and 12.2) which will be covered in two different sections in this textbook. In 
the first section of this book we will write the code that generates the main branch structure of the tree 
(Lab Project 12.1). This will involve procedurally creating multiple skinned meshes (one per branch). 
Once we have our CTreeActor fully capable of creating such a network of animating skinned branch 
meshes, we will add simple leaves to our trees (Lab Project 12.2). Doing it in two steps like this will 
make the code easier to understand and the entire process a little less overwhelming. 
 

Note: This chapter obviously represents a departure from the way we have done things thus far in the 
training series. Generally, source code discussions were limited to our workbooks while the textbooks 
concentrated more on higher level theoretical ideas. So it is worth noting that the line between textbooks 
and workbooks is likely to blur quite a bit as we move forward in this course (and indeed in the 
remainder of the series). As we start to get into more implementation specific topics (such as we will 
here), it will become difficult and impractical to split things up as cleanly as we have done in the past. 
Instead what we will find is that the work will be shared between the two books. For example, there will 
be times when the textbook will cover the implementation details in addition to the design ideas and 
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theory, while the workbook focuses on how to integrate and use the systems developed in the textbook. 
To be sure, this will not happen all the time, and again, the line will be somewhat blurred. Certainly there 
will be times in the future when the old model shows itself again and the code will be confined almost 
exclusively to the workbooks. But when it is not practical to do so, we will approach the topics like you 
will see here in this chapter. Indeed, throughout the rest of this course, you should expect to see this 
approach being used in nearly every chapter.   
 
Also note that since this chapter is essentially just an extension of the ideas introduced in the last 
chapter, there will be no new accompanying presentation. We are going to focus exclusively on writing 
code this time around. Of course, the material in Lecture 11 is completely applicable to what we will do 
here, so please refer to the presentation as the need arises.  

 
 

The tree in Figure 12.1 essentially consists of two geometry building 
techniques. Skinned meshes are used to represent the trunk and branches 
of the tree, while the leaves are represented using a series of criss-crossed 
quads. As we will be discussing the technique used for leaf generation in 
a later section, in this first section we will focus on creating only the 
trunk and branches of the tree. In essence, our first version of CTreeActor 
will only generate “winter” trees. Figure 12.2 shows what the tree shown 
in Figure 12.1 will look like without the leaves. This is what the trees we 
generate in the first section of this chapter will look like.   
 
Of course, while it is essential to have trees at your disposal if you ever 
intend to represent an outdoor environment other than the Sahara Desert 
or the Atlantic Ocean, providing you with organic looking trees was not 
the motivation behind this lesson.  The real goal behind this project was 
to come up with a task that would put to the test everything you have 

learned about since the beginning of the course, but with some new twists. For example, you learned 
how keyframe data is generated back in Chapter Ten, but so far we have only demonstrated how to load 
and playback that data. Similarly, in Chapter Eleven, we discussed the relationship between vertices in a 
skin, the bones that influence them, and the individual animations that animate those bones in the 
hierarchy. But even that material was focused on working with pre-generated data. In short, to really 
understand a skeletal animation system (or arguably, any system for that matter), it will be helpful to 
work on a project where every bit of data is generated from scratch right in your own code. This is 
exactly the educational experience that CTreeActor will provide, as you can see just by glancing at our 
to-do list:  
 

• We will need to generate the meshes for each branch and of course, the bones which those 
meshes attach to.  

 
• We will have to calculate the bone offset matrix for each bone in our hierarchy such that it is 

relative to the bone at which the branch mesh begins and not the root of the entire tree.  
 

• We will have to manually connect the vertices to the bones that animate them. 
 

• We will have to create an animation controller for the actor, which we will then populate with 
keyframe data that we will generate.  

 
 

Figure 12.2 
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It seems that we have quite a bit of work to do, and indeed we do. But believe it or not, the actual code 
we will write to extend CActor into our derived tree class will be fairly small. It is still quite a complex 
process that we will be undertaking however, which is why we will first discuss the system design and 
try to nail down how it will all work. Then we can start dealing with source code and implementation 
details. 

12.1 An Overview of the Tree Generation System 

Our tree will be made up of a number of branches that will be randomly generated using a recursive 
process. Even the trunk of the tree will just be a branch (considered the “root branch” of the tree). Each 
branch will be “grown” using a recursive and random process that may, at any given segment within the 
branch, cause another child branch (or multiple child branches) to be generated. Each child branch 
generated from the root branch (the trunk) will also be built in exactly the same way. As each child 
branch is grown, there is a chance that any given segment within that branch may spawn multiple child 
branches of its own, and so on. Do not worry too much about what a branch segment is at the moment, 
we will get to that in a moment.  
 
We will feed the generator procedure a number of input parameters that will be used to influence the 
growth of the tree and its individual branches. For example, one parameter we will feed in will be a 
growth direction vector that will describe the world space direction in which we wish the tree (the trunk 
branch) to initially start growing. We will also feed in probability variables that describe the odds that a 
branch segment might split into one, two, three or four more child branches at any given segment along 
its length. In addition we will feed in variables that influence the amount that a child branch’s direction 
vector can be randomly deviated from its parent branch (while still maintaining the general overall 
growth direction of the tree as a whole). Further, we provide variables that allow us to specify the size of 
the tree and the resolution at which we place bones within that tree. Other variables will specify the 
resolution of the mesh branches, allowing us to control exactly how many vertices are used to create a 
given branch segment. This will allow us to directly influence the face count of the tree and tailor the 
tree to our specific polygon budget. So before we discuss any code, let us first examine the system that 
we will use at a high level. This way when we discuss the code later on, we will understand the input 
variables and how we are using them. 
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Figure 12.3 : A branch made out of a single 

cylinder 
Figure 12.4: The two rows of vertices created 

triangles that wrap around a cylinder 
 

As mentioned, our tree will essentially just be a hierarchy of branches. If we think in terms of primitive 
objects, a branch could be represented at a very coarse level by a cylinder mesh (see Figure 12.3). 
Already, this image looks like a very rough approximation of the trunk of a tree, especially when it is 
mapped using a tree bark texture. What we are looking at in Figure 12.3 is a single cylinder mesh. It has 
eight vertices arranged in a circle around the top and eight vertices arranged in a circle around the 
bottom of the cylinder. In this image we can only see four of the eight vertices used at the top and the 
bottom of the cylinder as we are only looking at one of its sides. As Figure 12.4 clearly demonstrates, 
we can use these two rows of vertices to create triangles that form the cylinder primitive.  Each pair of 
vertices from the top and bottom rows can be indexed to form a quad (two triangles). When we do this 
for every matching pair of vertices in the top and bottom rows, we have an un-capped cylinder, which 
when textured, would look like the branch shown in Figure 12.3. 
 
Having vertices only at the top and the bottom of each branch (one cylinder), does not afford us much 
flexibility when it comes to shaping the branch into something more interesting. While we could 
decrease the radius of the circle formed by the top row of vertices to make the cylinder get thinner as it 
nears its end, this would still be a perfectly uniform thinning out of the branch from bottom to top. We 
might imagine for example, that we would want the branch to end in a tip, possibly by moving all 
vertices in the top row into a single center point. However, the branch would then become a perfect cone 
and we really cannot have a tree where all the branches are perfectly coned shaped. So instead of 
making each branch using a single cylinder, a branch will be comprised of multiple cylinders stacked on 
top of each other.  
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We will refer to each cylinder as a branch segment as shown in 
Figure 12.5. Our branch will now consist of not just two rows of 
vertices arranged in a circular pattern, but N rows of vertices 
which form multiple branch segments. With the exception of the 
first row of vertices (at the bottom of the branch) and the last row 
of vertices (at the top of the branch), all other rows will consist of 
shared vertices that form the top of one branch segment and the 
bottom of another. In Figure 12.5, we show how our branch mesh 
might look consisting of multiple branch segments. All segments 
still belong to the same mesh, after all, they are all part of the 
same branch and we have already mentioned the fact that each 
branch will be its own skinned mesh. 
 
Now that we have vertices at regular intervals along the branch, 
we can adjust the radius of the circles formed by each row of 
vertices such that the faces that form the branch get thinner and 
thicker as we desire. In our code, we will use the index of the 
branch segment within the branch we are currently building to 

determine the radius of its vertices (with some degree of randomness thrown in) such that all branches 
generally get thinner until they end in a point at their tip. It would be a waste representing the tip of any 
branch using a row of eight vertices that essentially exist in the same position, so when adding the final 
row of vertices to a branch (to complete the final segment of a branch), we will insert just a single vertex 
that exists at the center of the circle. Every vertex in the penultimate row of vertices will be indexed 
along with this final vertex to turn the final branch segment into a cone. 
 

 
Figure 12.6 

 
Figure 12.6 shows how a branch might look with uniform scaling applied to the vertices at each segment 
boundary. It also demonstrates how the final branch segment of any branch is terminated using a single 
vertex at its tip. While this shows a uniform scaling making the branch appear cone shaped, this is not 
something we are limited to doing. By changing the radius of the circle formed by each ring of vertices 
we can make the branch mesh swell or contract at the segment boundaries. The circular inset in figure 

 
Figure 12.5 : A branch mesh 

constructed from multiple branch 
segments 
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12.6 also reminds us that all branch segments (except the top segment) are essentially uncapped 
cylinders that slot together as a natural product of the fact that they share the same vertices at the 
segment boundaries. The top segment is obviously an exception to this rule where the faces of this 
segment will each be generated using the final ‘tip’ vertex and each pair of vertices from its base row of 
vertices. 
 
So, each branch will be a mesh made up from a number of branch segments. Furthermore, each tree will 
be made from a number of branch meshes. In Figure 12.7 we see a tree that is made up of 7 branches. 
Admittedly it is a poor looking tree and there is much left to be done, but the relationship shown here is 
the important concept to understand.  
 
When we grow the tree, we initially start out with the 
root branch; more specifically, the root segment of the 
branch. We build the branch up segment by segment, at 
each step determining how big or wide that segment 
should be. We will also make a choice at each branch 
segment whether a new child branch (or multiple child 
branches) should be spawned from that segment. We can 
see in Figure 12.7, that at segment 2 of the trunk branch, 
a child branch was spawned off to the left, which itself 
set in motion a recursive procedure of building the child 
branch segment by segment in the same way. In this 
child branch we can see that while generating its third 
segment, another (smaller) child branch was spawned. 
After the recursive process ends for the child branches, 
the flow once again returns to the root branch, which is 
still half way through being built. On the third segment 
of the root branch it is determined again that another 
child branch should be spawned (this time off to the right), which itself spawns its own child branch 
during the construction of its second segment. When flow returns back to the root branch, and its fourth 
segment is added, the decision to split into a child branch is made yet again. This child also splits off 
into a separate child branch some way along its length. 
 
We can definitely see the hierarchical pattern here. If we think about how we might represent this 
concept in a hierarchy (much like our frame hierarchy), in a way that is totally abstracted from any type 
of mesh data, we can think of the root segment of the trunk branch as being the root node in the 
hierarchy. The root node would have a child that would be the second segment in the root branch. This 
second level child would also have a child which would represent the third segment of the trunk branch, 
and the third segment would have a child that pointed at the data for the fourth and final branch segment 
in the trunk. So, each individual branch would be represented in the hierarchy as a list of N nodes 
arranged in a strict parent-child relationship that represented the N segments of that branch.  
 
Now let us think about how the child branches could be stored. The first child node of the trunk branch 
in the hierarchy (which represents the second segment of the trunk) could have a sibling that is the first 
segment in the first child branch (the one that branches to the left).  After all, the second segment of the 
trunk and the first segment of the child branch exist at the same level in the tree and should also exist at 

 
Figure 12.7 
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the same level in the hierarchy. We then recur with that sibling pointer, such that each of its segments 
would be added in a parent-child relationship. So segment N of any branch is the parent of segment N+1 
in the same branch.  
 
In Figure 12.8, we see how this hierarchy might look in memory. To reduce clutter, we have only fully 
shown the trunk branch and the first child branch (protruding from the second segment of the trunk out 
to the left) in their entirety. When studying this image, do not concern yourself with meshes or bones for 
now; we are simply constructing a ‘virtual tree’ tree at this stage, where each branch segment has its 
own node in the hierarchy and the first segment in any child branch is connected as a sibling of the 
parent branch segment from which it was spawned. 
 

 
Figure 12.8 

 
In Figure 12.8 we have inverted the diagram so that it reads bottom up. While this is not the typical way 
to draw a hierarchy, it corresponds better visually with the tree we saw in Figure 12.7. At the bottom of 
the image we see the root node of the hierarchy. This represents the first segment of the trunk branch. 
The parent/child relationship is depicted by vertical lines connecting the nodes, while the horizontal 
lines depict where a sibling relationship exists between two nodes. We can see that the root segment 
actually has two children arranged in a sibling list. The first child (S2) represents the second segment of 
the trunk branch, while a horizontal line connects node S2 to the root segment of a child branch. S2 of 
the root branch also has a child S3. S3 would also have a sibling but that is not shown here. The S3 node 
of the root branch has a child also (S4), which once again, would also have a sibling to the start of a 
child branch which is not shown here. 
 
If we backtrack to node S2 of the root branch, we can see that it is in a sibling list with node S1 of a 
child branch. This tells us that at node S2 in the root branch, a new child branch was spawned. Node S1 
in the child branch has one child (S2), but node S2 of the child branch has two children arranged in a 
sibling list. It points to node S3 (the third segment) in the child branch and node S1 in a new child that is 
spawned from this child branch at this third segment. 
 
Study the diagram and make sure you understand the relationships as this will all be very important 
moving forward. If our tree was a single branch with four segments for example, this would create a four 
level deep hierarchy where each child (except the root) would be a child of the previous node. Each 
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level in the hierarchy would contain a single node. Any child branches that are spawned at a given 
branch segment, are arranged in a sibling list with that parent branch’s segment node. 
 
It is very important that you consider the node hierarchy shown in Figure 12.8 abstracted from the 
concept of meshes, vertices, or bones. We are currently just generating a hierarchy of data structures 
(nodes) that will describe to us the shape of the tree we need to generate. We might consider each node 
in the tree containing such information as the tree space position of that node and the direction it is 
facing. In fact, this is exactly how we will build our tree. We will essentially do it in two phases.  
 
In the first phase, we will grow (node by node) a hierarchy of data structures describing the virtual tree. 
Then, once the shape of the virtual tree has been created, we will traverse this node hierarchy in a 
second phase and use the information to build the meshes and add the bones. This approach is preferable 
because it allows us to abstract the shape of the tree that we generate from the procedure used to skin it. 
After we have built the node hierarchy, we will traverse it in a second phase, and insert a ring of vertices 
at each node adding another segment to the branch. Of course, at a later time, you could decide to build 
the mesh data in a completely different way still using the same virtual tree information. For example, 
you might decide to use the node information to build the tree out of curved surfaces or even decide to 
drop the resolution such that a ring of vertices is only inserted every three nodes. These are just 
examples, but hopefully you understand why it is helpful to abstract the virtual tree generation process 
from the process that turns that virtual representation into a discrete polygonal representation.  
 
As stated above, in our code, when we build the mesh, we will insert a ring of vertices at every node we 
generated in the virtual tree creation process. This means, with the exception of the first node of every 
branch, every other node we encounter will cause another branch segment (cylinder) to be generated. 
Obviously, the first node in a branch cannot possibly add another segment by itself as we need two rings 
of vertices to create a cylinder. Therefore, it is not until the second node is encountered and another ring 
of vertices is inserted that the first segment of the branch is complete. The ring of vertices we add at the 
second node however, also forms the bottom row of vertices for the next branch segment. So when we 
encounter the third node and add a third ring of vertices to the branch, this (along with the vertices from 
the second node) forms the second branch segment of the current branch being built.  
 
Thus, our recursive procedure will initially grow a virtual tree out of a hierarchy of nodes, where each 
node contains data about that node. What information would we need to store in each node? First we 
will need to store the position of the node in tree space. In tree space, the root node of the trunk branch 
would be positioned at (0, 0, 0) in the coordinate system. However, what might not seem obvious at first 
is that in order to grow this node and spawn child nodes, we will need each node to also have a direction 
vector. This direction vector is a vector pointing in the direction of where the next node will be placed. 
More importantly, the direction vector can be thought of as a normal to a plane that passes through that 
node. When we generate the actual mesh for the branch, this is the plane upon which we will place the 
ring of vertices generated by that node. 
 
To better understand the need to store the direction of a node, let us first just consider a four segment 
branch that forms the trunk of a tree growing directly upwards. In this case, the direction vector of each 
branch would simply point straight up to the next node (0,1,0). When we generate the mesh for the 
vertical tree, this direction vector also describes the normal to the plane on which the node is sitting. In 
this instance, each node would sit on an XZ aligned plane offset some distance vertically from the origin 
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of the coordinate system (except the first node which would exist on the XZ plane). As Figure 12.9 
demonstrates, when we generate the mesh for a branch, the direction vector describes the normal of a 
plane. The node is assumed to be positioned at the center of a circle defined on that plane. Using the 
plane normal we can also generate two tangent vectors (vectors that lay on the plane forming an 
orthogonal axis with the normal vector). Essentially, once we have the three axes of the node, we can 
generate the N vertices at the node position and then push them out along the tangent vectors by some 
radius to form a circle of vertices that lay on the node’s plane. 
 

 
Figure 12.9 

 
You might be wondering why each node would need its own direction vector if the tree is going to grow 
straight up most of the time anyway? Well, let us consider child branches that are spawned from a node 
of the trunk branch. They will almost certainly need to have their direction vectors deviated from the 
parent node’s direction vectors, otherwise, all branches spawned would grow vertically straight up 
inside the trunk of the tree ( we would not even see them ).  
 
One of the major aspects of the virtual tree generation process will involve deviation of a child’s 
direction vector from that of its parent. For example, let us assume we start at the root node and assign it 
an initial ‘straight up’ direction vector of (0, 1, 0). Imagine that we continue to add child nodes with the 
same direction vector to the same branch, but then we hit a node where a random calculation says we 
need to add a new child branch. We know that this child branch must not share the same direction vector 
as the parent, so we will take the parent node’s direction vector and rotate it (deviate it) by some 
amount. The maximum and minimum angles by which we deviate the child node’s direction vector from 
its parent will be controlled by input parameters to the system. We will essentially use two angles to 
define a deviation cone. When a child branch is spawned and a new node is added to the parent node’s 
child list, its direction vector will be generated by randomly deviating the parent direction vector within 
a specified range. As we have control over the deviation range via its input parameters, we can use fairly 
small ranges such that the child branches, while deviating from the parent direction, still follow the 
overall growth direction of the tree (appropriate for most trees). Alternatively, by specifying a larger 
random deviation range, we can have child branches growing off at wild angles and even coming back 
down against the initial growth direction of the root branch (useful for modeling some tree types). 
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Figure 12.10 : Deviated Direction Vectors 
 
Do not worry about how we deviate a vector within certain restraints as we will get to that in a moment. 
Figure 12.10 clearly shows why the nodes of each branch will need to have deviated direction vectors 
from that of its parent branch segments.  
 
Looking at the tree in Figure 12.10, we see that it still is not quite there yet. While the branches shoot 
out at their own directions, the individual segments within a given branch are all still far too uniform. 
That is, all nodes within a given branch share the same direction vector. If we study the branch of a real 
tree, we know it is far from perfectly straight. Usually, it bends multiple times along its length. As we 
have already added the functionality to deviate a branch node’s direction vector, we can widen the 
application of this technique to deviate every node in the tree from its parent’s direction vector. 
 
We will want to control the deviation such that, the deviation applied to a normal branch node’s vector 
is not as strong as the one applied to a node that is the start of an entirely new branch. After all, if every 
single node in every single branch could deviate by a large amount, we might end up with branches that 
look more like springs. We can control this with two sets of deviation input parameters to the system. 
The first pair of input parameters describes the deviation cone that can occur between segments within 
the same branch. The second pair of parameters describes the deviation cone that can occur for the root 
node (the starting segment) of any branch. Typically, we will want the deviation cone used for segment 
deviation within the same branch to be quite small, as shown in Figure 12.11. 
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Figure 12.11 Figure 12.12 

 
Note: Figure 12.11 and 12.12 show two different branches. They are not intended to depict the same 
vector deviations at each segment. 

 
Figure 12.11 shows how a single branch mesh would be constructed if per-node direction vector 
deviation was used during the creation of the virtual tree hierarchy. In this diagram, you can see that the 
initial node had a direction vector (0,1,0) and thus a ring of vertices was inserted and aligned to the XZ 
plane. However, when a new node is generated to extend the branch, its direction vector is calculated by 
deviating the parent node by some random amount (within a range specified by input parameters). In 
this example, you can see that the second node deviated the parent node direction about 35 degrees to 
the left. Notice that when we come to insert the vertices for this node, the direction vector (along with 
the two tangent vectors), describes the plane on which the vertices must be positioned.  Once again, we 
can imagine that the node position describes the initial point on the plane at which we add vertices, 
before then translating them out along the plane (using the tangent vectors) into their positions in the 
ellipse shape (see Figure 12.12). Looking at the third node (third row of vertices) in Figure 12.11, we 
can see that this node was deviated from its parent about 45 degrees to the right. This process is repeated 
for every node of every branch.  
 
So we have learned that when we build our node hierarchy, we will start with the initial growth direction 
vector of the root node. This vector will be passed through a recursive procedure and deviated for the 
next node, which will pass its new direction vector onto its child node where it will be further deviated, 
and so on. Each iteration of the node hierarchy building process will involve, in simple terms, 
positioning a new child node, and calculating a direction vector for that node by deviating the parent 
vector.  
 



 

 14 

 

When we combine the lesser per-segment deviation with the more extreme deviation performed to 
calculate the direction vector for each starting node in a new branch, we end up with a virtual tree 
representation that. when converted to mesh form, is a lot more pleasing (see Figure 12.13). 

 
Figure 12.13 

 
Figure 12.14 depicts how the node hierarchy for this tree might look after it has been created. For 
reasons of image clarity, we have slightly offset the nodes that start new branches from the position of 
their sibling nodes. In reality however, they would occupy the same position. 
 

 
Figure 12.14 

 
If you examine Figure 12.14 you will notice that each node contains a direction vector depicted by the 
green arrows, and a right vector that is perpendicular to the direction vector. We will also pass the right 
vector of the initial segment into the system in addition to the direction vector. Why do we need to pass 
this right vector through the tree? We need it in order to deviate the direction vector of each node during 
the recursive process. This will be explained in the next section. 
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12.2 Direction Vector Deviation 

Before we examine the source code, we have one major process left to discuss on a theoretical level. 
Given a vector A, how do we generate a new random vector B that is contained within a specified cone 
set up around the original vector? It is easy in the two dimensional case since we merely have to rotate 
the new vector either left or right of the original vector by a random number of degrees. However, when 
working in three dimensions,  simply rotating the vector left or right, or backwards or forwards will not 
allow us to generate a new vector that is anywhere within the specified cone. 
 

Figure 12.15 demonstrates the problem we need to solve. The green 
arrow running down the center of the cone is assumed to be the parent 
vector (i.e., the vector we wish to deviate). The cone itself represents 
the range over which the vector can deviate. The goal is to generate a 
totally random vector anywhere within this deviation cone (the red 
arrow is one example of a possible solution). As can be seen, simply 
rotating the original vector clockwise or counter clockwise about a 
single axis will not provide us with a means to accomplish our 
objective. 
 
You will see in a moment, when we discuss the structures that we are 
going to use in our code, how the size of this cone is specified using an 
angle. However, we will also have another variable that influences 
vector deviation called deviation rotation. Describing what this variable 
is will allow us to also understand the question at hand, “How do I 
generate a random vector with a cone?” The answer to this question 
will explain why we need to calculate a right vector at the root node and 
pass it through the recursive process. Each node will have its own right 
vector which will be used in the deviation process of its child nodes.  

 
We will use a simple example to demonstrate the process of deviating the vector. While the same 
deviation function is used for the deviation of normal segment nodes and for nodes starting new child 
branches, in this example, we will show how a new branch is spawned from a node and how that node’s 
direction vector is deviated to create the direction vector of the new branch start node. To give clarity to 
these examples, we will show the mesh data that will eventually be created from the virtual node. 
However, just remember that the node hierarchy that we generate will not contain any mesh data; it will 
be a hierarchy of data structures containing positional and directional information that will later be used 
to describe a tree shape to the mesh building process. 

 
Figure 12.15 : 

We need to generate a 
random vector anywhere 
within the deviation cone. 
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Figure 12.16 

 
In Figure 12.16 we see a single node that is situated at some arbitrary position along a branch. We will 
assume this is a node in the root branch. Notice how the node stores a direction vector (the local Z axis 
of the node) and a right vector (the node’s local X axis).  
 

Next, let us assume that while processing this node we determine that we 
would like to create a new branch at this node. In Figure 12.17, the new node 
is added at the position of the parent node and currently has inherited its 
direction vector. In the diagram the red cylinder mesh sticking out of the top 
of the parent segment would not actually exist at this point, but will make 
our explanation easier. We can think of this for now as being the branch 
segment that will eventually be built from the branch start node we have just 
created. 
 
In this diagram, the right vector of the parent node is assumed to be coming 
out of the page. You will notice that this provides an axis around which we 
can rotate the new branch node’s direction vector. For example, if the cone 
deviation angle was 90 degrees, then we could generate a matrix that will 
rotate the new node’s direction vector about the parent node’s right vector by 
some angle between 0 and 90 degrees (to allow randomness). In fact, that 
still is not quite what we want since that would only rotate the vector one 
way (right for example). What we want to do instead is choose a random 
number between –cone angle/2 and +cone angle/2. For example, if our input 
parameters describe to the system that a new child branch node should be 
deviated by 90 degrees, we would generate a random number between –45 

and +45 and use this value to build an axis rotation matrix around the parent node’s right vector. This 
will allow for counter-clockwise and clockwise rotations within the cone.   
 

 
Figure 12.17 
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After rotating the child node’s direction vector about 
the parent node’s right vector (Figure 11.18), we will 
perform a second random rotation of that vector about 
the parent node’s direction vector. This vector acts as a 
local up vector for the child node allowing us to rotate 
its newly rotated direction vector to any position 
around the circumference of the parent branch (see 
Figure 12.19). This means, our vector deviation 
routine will require an additional angle range that 
describes the permissible rotation that can be applied 
to the child node’s direction vector when generating its 
random position on the branch. Usually, we will want 
to give branches an equal chance of shooting out from 
the parent at any angle, and as such, would set the up 
axis rotation range to 180 degrees. Then, when we 
need to rotate the child direction vector about the 
parent direction vector, we simply choose a random 
angle between 0-180 to rotate the new node into its 
final position. 
 

Why do we only need to rotate 180 degrees 
in the second rotation step instead of 360? 
Remember that in the first step we will 
rotate the branch either counter-clockwise 
or clockwise depending on whether a 
positive or negative angle is used for 
rotation about the right vector of the parent 
node. Therefore, this first step essentially 
rotates the child node’s vector into either 
the negative or positive half of a circle 
surrounding the parent node. Therefore, the 
first step chooses the semi-circle which the 
branch will grow from, and the second step 
allows us to access any random angle 
within that semi-circle. Of course, you can 
limit the rotation angle if you want 
branches limited to a smaller range of 
values on either side of the circle. Usually though, in the case of deviating the vector of a new branch 
start node, you will want to allow full 180 degree rotation on either side so that the branch can grow 
from anywhere. It should be noted that the same deviation procedure is used for deviating both the 
direction vectors of new branch start nodes and for the deviation between nodes within the same branch. 
However, as we will usually want segment to segment deviation within the same branch to more closely 
follow the overall growth direction of the branch, we will generally use much smaller deviation angles 
for both rotation steps in the process. With this two step deviation approach we essentially describe a 
virtual cone with the parent node’s direction vector at the center. The new deviated vector will exist 
somewhere within this cone (Figure 12.20). 

Figure 12.18 

 
Figure 12.19 : Polar Rotation 
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Figure 12.20 

 
In the data structure that we feed into our CTreeActor::SetGrowthProperties function (prior to calling 
the CTreeActor::GenerateTree function), we will specify two sets of ranges. We will set an axis rotation 
range for both up and right vectors for node to node deviation within the same branch, and we will also 
set an axis rotation range for both of the vectors that the deviation process will use when calculating the 
direction vector of the node that is to become the first node in a new branch. By separating these into 
two separate deviation cases, we can easily control new branch and inter-branch deviation. 
 
Looking at Figures 12.18 and 12.19 we can see that having the right vector stored at every node is 
important during the initial growth of the virtual tree as it is needed to deviate the directions of any child 
nodes. Therefore, while we have shown that the direction vector of each node must be deviated from the 
parent to create a new direction vector for the child node, once this has been accomplished, we must also 
calculate the right vector of the new node.  
 
As it happens, updating the right vector in the deviated node is simple since we have already generated 
the matrix to rotate it into its new position. When we performed rotation on the child nodes direction 
vector, we would have rotated about the parent node’s direction vector by some random amount. We 
will use 90 degrees in this example. So all we have to do is rotate the parent node’s right vector around 
the parent node’s direction vector and we have the new right vector for the child node. The basic node 
building process now looks like this: 
 
We start the process by passing in a single growth direction vector for the tree (e.g., <0,1,0>). We will 
perform the cross product with this vector and the world axis that is least aligned to it to create the right 
vector. We now have the growth direction vector and the right vector for the first node in the tree. From 
this point on the recursive process starts and works as follows: 
 

1) Will this node generate another child node in the same branch (another branch segment)? 
a) Generate a new segment node and attach it to the parent as a child 
b) Deviate the parent node’s direction vector and right vector using (small random values) 
c) Store deviated vectors in the child node 
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2) Will this node generate a new branch? 
a) Generate a new branch node and attach it to the child list 
b) Deviate the new node’s direction vector and right vector using (large random values) 
c) Store deviated vectors in new child node 
d) Repeat steps a-c for each new branch generated at this node  

      3)  Repeat steps 1 and 2 for newly generated node(s)  
 
When we set the deviation properties for our system, we will in fact have three range values we can 
specify for each of the two deviation types (segment deviation and new branch deviation). We will have 
a minimum cone angle, a maximum cone angle and the polar rotation angle. The minimum and 
maximum cone angles (which are a pair) are used to influence the first rotation step (the rotation around 
the parent’s right vector). These values instruct the deviation function to generate a random deviation 
angle for the first rotation step that is no greater than the maximum cone angle, but also, no smaller than 
the minimum cone angle. This allows us to set a minimum level of deviation to ensure that we always 
get at least some deviation. When setting the minimum and maximum cone angle for the new branch 
deviation settings, the variables can greatly effect the shape of the tree. For example, by using a large 
minimum angle and only a slightly larger maximum angle, you can generate a tree that has a very 
uniform looking branch growth direction (like a conifer tree).  
 
By introducing a minimum cone angle variable combined with the polar rotation step, we essentially 
specify a region inside the cone where vectors can be produced. It is perhaps more accurate to say that 
we define a region at the center of the cone where random vectors cannot be produced (Figure 12.21). 
 
 

 
 

Figure 12.21 
 
While this might sound like a complicated process, you will see shortly that the 
CTreeActor::DeviateNode method is only a few lines of code long. 
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12.3 Building the Virtual Tree 

We now have all the theoretical knowledge at our disposal to discuss the code to the first part of the tree 
generation process. This will be the process that essentially grows the virtual tree one node at a time. 
Remember, at this point we are not dealing with mesh or bone data at all; we are simply building a 
hierarchy of data structures that contain direction vectors, right vectors, and dimensions. 
 
Let us first see how the application might generate a tree using our new CTreeActor class. 
 
// Create a new CTreeActor 
CTreeActor * pTree = new CTreeActor; 
 
// Fill out a TreeGrowthProperties Structure 
TreeGrowthProperties tgp; 
 
// Fill in the TreeGrowthProperties structure here  
// NOT SHOWN HERE AS WILL DISUCSS THESE PROPERTIES IN A MOMENT 
 
// Send out properties to the actor 
pTree->SetGrowthProperties ( tgp );  
 
// Build everything 
D3DXVECTOR3 RootSegSize( 2.0 ,2.0 ,2.6 ); 
pTree->GenerateTree ( RootSegSize ) 

 
That is all there is to it. We create an instance of CTreeActor and then we fill in a TreeGrowthProperties 
structure. We will look at all the members in this structure in a moment. For now just know that it 
influences the way the nodes of the virtual tree are grown. We then send this structure to our 
CTreeActor so that it will have access to these properties during the tree generation process. Finally, we 
call the one function that makes it all happen: GenerateTree. This function first builds the virtual tree of 
information nodes (which we call branch nodes). Note that we pass in a vector of dimensions that 
describe the three radii of an ellipsoid that will contain the first branch segment (the root node). The X 
and Y components describe a box that will bound the ring of vertices generated for that node. If X and Y 
are equal, the branches will be perfectly circular. However, if we assign X and Y different values such 
as 2 and 5 for example, the thickness of the root segment of the root branch would be two tree space 
units in the X dimension and 5 tree space units in the Y dimension. As tree space is essentially the world 
space coordinate system, but with the tree at the origin, these dimensions directly describe the thickness 
of the root segment in world space (provided you do not transform the actor into world space using a 
scaling matrix). The Z component of the dimension vector describes the length of the root segment of 
the root branch. That is, when building the root branch (the trunk), this is the distance along the root 
node’s direction vector that the second node will be positioned. This equates to the location of the 
second ring of vertices during the mesh building process.  You will see when we examine the recursive 
tree building process, that the dimensions of each branch node are scaled down versions of the 
dimensions inherited from their parent. This ensures that branches get thinner and shorter as they near 
their end. 
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When the virtual tree has been completely built, we will then enter the second phase of tree construction. 
We will traverse the virtual tree hierarchy, creating vertices at each node and adding them to the meshes 
for the branch to which that node belongs. While building the meshes for each branch, we also assemble 
(using the node hierarchy) a D3DXFRAME hierarchy that will be used as the bone system for the tree.  
 
Finally, when the actor’s hierarchy and meshes have been built, we create the actor’s animation 
controller and add optional animations to simulate the tree branches swaying in the wind. Once the 
GenerateTree function returns, the tree is complete and we can use it in our application just like a 
regular actor, or we can save it out to an X file for import it a world editor. Using the CTreeActor class 
within your application (should you wish not to save the generated tree out to an X file and load it in as a 
regular actor) is no different from using a normal actor. That is, you call its AdvanceTime method to 
update its animations each frame update and use its DrawSubset methods to render it. The virtual tree 
hierarchy is no longer needed at this time since it was only used to generate the frame hierarchy of bones 
and the mesh data for each branch. 

12.3.1 The TreeGrowthProperties Structure 

So that we get a better feel for the system, the best place to start is the TreeGrowthProperties structure 
since it defines the behavior of the CTreeActor during the virtual tree building process. This structure is 
pretty large as the system has many variables that you can tweak to provide you with a means to 
generate a vast number of different tree configurations. Not all of the members of this structure will 
make immediate sense until we see them being used. So a detailed discussion of some of them may be 
deferred until the actual mesh building process is covered. 
 
typedef struct _TreeGrowthProperties 
{ 
    USHORT      Max_Iteration_Count;         
    USHORT      Initial_Branch_Count; 
    USHORT      Min_Split_Iteration;         
    USHORT      Max_Split_Iteration;         
    float       Min_Split_Size;              
    float       Max_Split_Size;              
 
    float       Two_Split_Chance;            
    float       Three_Split_Chance;          
    float       Four_Split_Chance;           
    float       Split_End_Chance; 
            
    float       Segment_Deviation_Chance;    
    float       Segment_Deviation_Min_Cone;  
    float       Segment_Deviation_Max_Cone;  
    float       Segment_Deviation_Rotate;    
 
    float       Length_Falloff_Scale; 
 
    float       Split_Deviation_Min_Cone;    
    float       Split_Deviation_Max_Cone;    
    float       Split_Deviation_Rotate;      
     
    float       SegDev_Parent_Weight;     
    float       SegDev_GrowthDir_Weight;     
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    USHORT      Branch_Resolution;           
    USHORT      Bone_Resolution;             
 
    float       Texture_Scale_U;             
    float       Texture_Scale_V; 
             
    D3DXVECTOR3 Growth_Dir; 
} TreeGrowthProperties; 

 
This structure may seem a little daunting at first, so we will examine the members one at a time. You 
will see that many of them relate to the concepts we have already discussed. They act as a means for 
setting ranges in which certain behaviors can and cannot happen during the growth process. 
 
USHORT      Max_Iteration_Count 
The maximum iteration member allows us to control the overall depth of the virtual tree hierarchy we 
create. We start at the root node with an iteration count of 1. Every time a new segment/node is 
generated for a branch, the iteration count is increased and assigned to the child node. This recursive 
process continues such that, with every node within a given branch, the segment count is increased. As 
soon as (or if) the iteration count of the current node reaches the Max_Iteration_Count, no new 
segments/nodes will be generated along the branch and the branch will be capped and ended. One thing 
to watch out for is that when new child branches are spawned, the first node in that branch inherits the 
same segment count as the sibling node of the parent branch. Remember, if a node spawns three child 
nodes, there will be a sibling list of four nodes in the hierarchy -- three branch start nodes and the node 
that spawned the branches (the next segment of the current branch being processed). All nodes within 
the sibling list will contain the same iteration number (see Figure 11.22). 
 

Figure 12.22 shows an example hierarchy for a tree that is 
constructed from four branches. The first branch is, of course, 
the trunk; but notice that when we add the second node of the 
trunk we also decide to start a new child branch. The second 
node of the trunk and the first node of the child branch are in a 
sibling list, both with an iteration count of 2. This iteration 
count is then continued down each branch. As you can see, the 
fourth branch starts with an iteration count of 5 and terminates 
at 8, being only four segments in length. In this example, we 
use a maximum iteration count of 8, so the virtual tree 
hierarchy will never be deeper to traverse than eight levels. 
 

 
Figure 12.22 
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Figure 12.23 

 
Figure 12.23 shows the tree in mesh form so that we can see how the iteration counts apply to the 
various segments. We are using a bit of artistic license here since we are placing the node iteration count 
values in the branch segments. We know that in reality however, the nodes that will contain those 
iterative values will be positioned at the branch segment boundaries (two of which create a branch 
segment). Nevertheless, this should provide an easy way to see how the iteration count can be used to set 
a maximum tree depth on the recursive procedure during the generation of the virtual tree. 
 
It should be noted, that while Figure 12.22 clearly shows each branch terminating at the maximum 
iteration count threshold, this will not always be the case. There are many factors that are considered 
when deciding to add another segment/node to a branch or whether to terminate the branch at the current 
node. Such factors are the current branch thickness and of course a random element thrown in for good 
measure. Therefore, if we set the maximum iteration count to 20, we will not generate a tree where all 
branches end at the 20th level in the hierarchy. Some branches may be terminated much sooner due to 
other factors. However, it is one of the many limiting factors that we will place on the procedure to 
control the depth of our hierarchy and the ultimate the size and complexity of our tree. There will never 
be a single path of branch segments from the root segment in the root branch to any branch’s terminating 
segment that will cross segment boundaries more times than the value we set here.     
 
USHORT      Initial_Branch_Count 
In all the example trees we have examined so far, we have assumed that the tree had a single initial 
branch (the trunk) from which all others were spawned. However, there is no reason why this has to be a 
strictly followed rule. While it is clear that your trees will require one initial branch (the trunk), you may 
wish to model trees that have multiple trunks (Figure 12.24). This parameter allows us to specify the 
number of initial branches we would like to tree to have. 
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Figure 12.24 

 
When multiple initial branches are enabled, all initial branches start at the same position (0,0,0) in tree 
space. Normally, when a single initial branch is being used, the direction vector we pass into the 
CTreeActor::GenerateTree function will be used ‘as is’ for the direction of the first node in that branch. 
When multiple initial branches are being used, each initial node in each trunk branch we create will be 
randomly deviated from the initial vector passed in. For example, we might imagine when looking at 
Figure 12.24, that when GenerateTree was called, an initial growth direction vector of <0,1,0> was 
specified. However, we cannot assign this same initial vector to the first node in each root branch or they 
would be created in exactly the same position and facing the same direction (thus, we would only see 
one branch). So instead, the passed vector is randomly deviated to create the actual initial direction 
vectors of each branch root node. In Figure 12.24 you can see that the node direction vector for both root 
branches has been rotated left or right to some degree from the initial direction vector passed in. 
 
From the perspective of our virtual tree hierarchy, it simply means that there will no longer be only a 
single root node in the first level of the hierarchy (describing the start node of the only trunk). Instead, 
the first level of the hierarchy may consist of a sibling list of nodes, where each node in the list describes 
the start node of a trunk branch. By default, the Initial_Branch_Count member is set to 1 (in the 
constructor). By setting it to higher values, we are able to model foliage that grows in a more clustered 
manner (e.g., a rhubarb plant). 
   

Note: CTreeActor can be used to model foliage types beyond trees (bushes, shrubs, etc.) using the same 
methodology. If you did not want to include the overhead of all of the hierarchy and animation and 
skinning for small shrubs, you can still use CTreeActor to generate the shrub and then save it as an X file. 
When you load it back in, you can load it as a standard mesh (CTriMesh) rather than as an actor. We will 
talk more about this later.  
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USHORT      Min_Split_Iteration 
USHORT      Max_Split_Iteration         
These two members provide us with a means to control the range in 
which child branches are allowed to be spawned. For example, we 
will often not want a child branch to be spawned at the first segment 
of the trunk (during the first iteration of the recursive process).  
 
As discussed above (see Max_Iteration_Count), the iteration value is 
increased as each child node is added to the virtual tree hierarchy and 
it is directly related to the current branch segment that will be added to 
the mesh. We can think of the iteration count of a given node as 
indirectly describing the level in the hierarchy at which it resides. 
Figure 12.25 shows an example where we have set the minimum split 
iteration count quite near to the maximum iteration count of the tree 
such that splits into child branches only occur at the very top of the 
tree. Simply put, when a new node is added to the virtual tree 
hierarchy, we will decide whether or not we should split at this node 
and create multiple child branches. Splits will never happen if the 
iteration count of the current node being processed is smaller than 
Min_Split_Iteration or larger Max_Split_Iteration. Therefore, a node 
will only be considered for splitting if its iteration count (its depth in 
the hierarchy) is within the range described by these two members. 
 
float       Min_Split_Size              
float       Max_Split_Size              
These two values allow us to further define a range of branch sizes with which child 
branches can be spawned from a node. When we call CTreeActor::GenerateTree, we 
will pass in a vector describing the size of the initial root node.  As previously 
discussed, the X and Y components of this vector will describe the radii of the 
circle/ellipse that will be used to position the vertices at that node when we build the 
mesh. With each iteration, when we add new child node, we will subtract a small 
amount from this vector so that the vertices placed at each node define a smaller 
ellipse the further along the branch we move. This will produce a tapering effect. At 
the very end of a branch, the ellipse becomes a single point defining the tip of the 
branch. Essentially, by dividing the dimensions vector of the root branch node by the 
maximum number of iterations of the tree, we have a value that we can subtract from 
the dimensions of a parent node to generate the dimensions of the new child 
segment. By using this value, we can be sure that any branch will get progressively 
smaller as its length is traversed, with the final end node in a branch being the tip. 
 
Near the end of a branch, its segments will typically be very thin, and as such, 
generating new child branches from these would result in extremely slim branches. 
They would be so thin that it would be a waste of time rendering them, especially 
when we consider that we will eventually add leaves to this tree that will completely 
obscure such microscopic detail. These two values allow us to define a thickness 

Figure 12.25 

 
Figure 12.26 
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range. If a node’s dimensions are within this range, then it is possible for it to split into a child branch at 
this node. However, if the node thickness is smaller than the minimum split size or larger than the 
maximum split size, splitting the node will not be considered.  
 
Figure 12.26 shows an example of a very simple tree where the Min_Split_Size and Max_Split_Size 
properties have been set to a very limited range in the center of the tree. As you can see, the 
Max_Split_Size variable allows us to control child branches not being spawned too close to the base of a 
branch, while the Min_Split_Size allows us to cease splitting the branch once its thickness has decreased 
past a sensible level.  
 
These two members and the previous two members can be used together to provide a very flexible 
control mechanism for determining when and where child branches are spawned (and thus, control the 
shape and complexity of the tree). 
 
float       Two_Split_Chance            
float       Three_Split_Chance          
float       Four_Split_Chance           
When building our virtual tree hierarchy, at every node we will need to decide whether or not we wish to 
introduce a new child branch. Of course, if the current iteration (tree depth) is such that it is outside the 
range described by the Max_Split_Iteration and Min_Split_Iteration members, then the node will not be 
considered for splitting. Furthermore, if the thickness of the node (its X and Y dimensions) is outside the 
range described in the Min_Split_Size and Max_Split_Size members, then once again, the node will not 
be considered for splitting. If however, the node is within the specified ranges for a possible split to 
occur, then we will use a random procedure to decide whether a split will occur at this node. In fact, we 
will perform three tests to decide whether the node should spawn two, three, or four branches (or just the 
one default). 
 
These three properties each contain a percentage score that describe the probability of each node 
splitting into two, three, or four branches respectively. The tests are actually performed in order; we first 
perform a test to see if two branches should be spawned, then we perform a test to see if three branches 
should be spawned and finally we test to see if four branches should be spawned. The following pseudo 
code should give you the basic idea until we get the actual code. 
 
// Generate Random Number Between 0 and 100 
if ( RandomNumber < Two_Split_Chance)    NewNodeCount=2; 
if ( RandomNumber < Three_Split_Chance)  NewNodeCount=3;  
if ( RandomNumber < Four_Split_Chance)   NewNodeCount=4; 

 
A random number will be generated between 0 and 100. Our three split chance members should be 
defined in that range too. Note above that all tests are always performed, so we always fall back to the 
highest number of splits should more than one of the tests succeed. For example, assume that we set our 
Four_Split_Chance member to 40 (40% chance) and our Two_Split_Chance to 80 (80% chance) and 
that at a given node the random number generated is 10. 10 is smaller than 80 so we have passed the two 
split chance and NewNodeCount is set to 2. However, when we perform the last test we also find that 10 
is smaller than 40 so the Four_Split_Chance case wins out and we introduce four new branch nodes 
(three new branch segments plus the next branch segment of the current branch we currently 
processing). A different random number is generated for each test, so this is not as redundant as it 
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sounds. The reason we have ordered the test such that the highest number of splits takes precedence if 
multiple tests pass, is because typically we will set the probabilities of the four split case much lower 
than the two split case. Therefore, the two split case will often succeed when no others do. In the rare 
cases where the four split test does succeed, we want it to override the results of any previous tests. 
 
By setting these values to different percentage values, we can influence how many branches are 
generated at each node. If all the tests fail, then no split will happen at this node and just the one node 
(the continuation of the branch) will be added. 
 
float       Split_End_Chance 
This member is another percentage [0, 100] that describes the probability that each node has of ending 
the branch to which it belongs if it spawns one or more child branches. When it is determined that a 
branch node we are adding to the current branch will also spawn new child branches, we will generate a 
random number between 0 and 100 to determine whether the current branch we are adding should be 
terminated when the new branches are spawned. If the random number we generate is smaller than the 
Split_End_Chance probability, the current node will terminate the current branch, allowing the new 
child branches it spawned to continue. This value is not considered when a branch node is added that 
does not spawn new child branches. It really is just used to determine what the chances are of a branch 
terminating at the point where it forks into multiple child branches. We can think of it as the probability 
that the branch has been pruned at that node. 
        
float       Segment_Deviation_Chance    
float       Segment_Deviation_Min_Cone  
float       Segment_Deviation_Max_Cone  
float       Segment_Deviation_Rotate    
These members control the range of random vector deviation that is applied to a child node’s direction 
vector. As previously discussed, when a new node is added to continue a branch (not a branch start 
node), we will typically want to randomly deviate the direction of the new node so that all the segments 
in the branch do not end up sharing a perfectly uniform direction. The Segment_Deviation_Chance 
member should be set between 0 and 100 and will be used to determine the probability that a given node 
will deviate from its parent node’s direction. If you set this to 100 for example, then a child node’s 
direction vector will always be deviated from its parent node’s direction vector making the branches of 
the tree look much more organic. Setting this to a value of 0 will generate a tree where all segments 
within the same branch share the same direction and no deviation will occur between segments within 
that branch.  
 
Once it is determine that a child node’s vector will be deviated, we will deviate it in two steps as 
discussed earlier in this lesson. First, we will rotate the child node’s direction vector (initially inherited 
from the parent node) around the parent node’s right vector. The amount we rotate this vector is 
described in degrees by the Segment_Deviation_Min_Cone and Segment_Deviation_Max_Cone 
properties. For example, if we set the minimum cone angle to 60 and the maximum cone angle to 110, 
then a random deviation angle will been chosen between 60 and 110 degrees. However, we do not 
always want the rotation to happen in the same direction around the parent node’s right vector, 
otherwise our trees will have a tendency to all lean one way. So we convert the random angle into either 
a negative or positive number based on a random decision. This would allow us in this example to create 
a rotation between either –60 and –90 degrees or +60 to +90 degrees. Below we see the code that would 
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generate the rotation angle used in the first step. It generates a rotation angle between the minimum cone 
angle and the maximum cone angle in either the clockwise or counter-clockwise direction. 
 
float fAzimuth = (float)rand() / (float)RAND_MAX; 
 
fAzimuth = Segment_Deviation_Min_Cone +  
    ((Segment_Deviation_Max_Cone – Segment_Deviation_Min_Cone) * fAzimuth); 
 
if ( RandomNumber > 50% ) fAzimuth = -fAzimuth; 

 
The first line generates a random number between 0.0 and 1.0. The second line essentially uses this 
value to scale the delta value between the minimum cone angle and maximum cone angle which is then 
added to the minimum cone angle. At this point we have a positive angle in the correct range, so the 
third line generates a random number between 0 and 100 and basically flips the sign if the random 
number is in the second half of its range. This ensures we have a 50/50 chance that each deviation will 
be either positive or negative in direction. 
 
Let us plug in some values to see how that works. Let us imagine that we have set the minimum cone 
angle to 40 degrees and the maximum cone angle to 110 degrees. Let us also imagine that the initial 
random value (fAzimuth) is 0.5. This essentially means we wish to perform either a positive or negative 
rotation to a position halfway between 40 and 110 degrees (+/- 75 degrees). 
  
float fAzimuth = 0.5; // Half way between min and max 
 
fAzimuth = 40 +(( 110 – 40) * 0.5); 
//       = 40 +(( 70) * 0.5 ) 
//       = 40 +( 35  ) 
//       = 75 degrees                     
 
if ( RandomNumber>50% ) fAzimuth = -fAzimuth; 

 
That works perfectly. Once we have a value of 75 degrees in the above example, the second random 
number would be generated to decide whether or not to flip the sign and make this a +75 rotation or a    
–75 rotation. 
 
As another example, if the random fAzimuth value we initially generated was 0.0, this means we wish to 
apply the minimum deviation. The minimum deviation we can perform is defined by the 
Segment_Deviation_Min_Cone angle. Using the same example values above, this was set to 40, which 
means the minimum we should deviate is 40 degrees. Let us plug it in and see if it works. 
 
float fAzimuth = 0.0; // Apply minimum deviation 
 
fAzimuth = 40 +(( 110 – 40) * 0.0); 
//       = 40 +(( 70) * 0.0 ) 
//       = 40 +( 0  ) 
//       = 40 degrees                     
 
if ( RandomNumber>50% ) fAzimuth = -fAzimuth; 

 
As you can see this would generate a rotation of either –40 degrees or + 40 degrees. 
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With the first deviation phase out of the way, our next task (having rotated the new node’s direction 
vector left or right) is to rotate it in a circular fashion about the parent node’s direction vector. This 
allows us to rotate the direction vector of the child so that is can protrude from the parent branch at any 
angle. Setting this value to 180 degrees will allow for a vector with total freedom of deviation in a 360 
degree circle about the parent node. 
 

Figure 12.27  
Phase 1: Random +/- rotation about 

parent node’s right vector in the range 
defined by the minimum and maximum 

cone angles. 

Figure 12.28 
Phase 2: Random +/- rotation about the parent node’s 
direction vector within the range:  – (Polar Angle/2 ) to        

+(Polar Angle/2) 

 
Once again, if this polar angle was set to 40 degrees, it would mean a random angle would be generated 
between 0 and 40. However, we do not always want to rotate about the parent node’s direction vector in 
the same direction, so we will map it into the -/+ range. In this instance, we would want to generate a 
value between –20 and +20 instead of 0 to 40 using the code shown below. 
 
fPolar  = (float)rand() / (float)RAND_MAX; 
fPolar  = (Segment_Deviation_Rotate * fPolar) - (Segment_Deviation_Rotate / 2.0f);  

 
To generate the random polar rotation angle we first generate a random number in the range of 0.0 to 
1.0. We then use this value to generate an angle that is mapped into a -/+ range. 
 
For example, let us imagine that we had set Segment_Deviation_Rotate to 30 degrees. Let us also 
assume that we generated an initial random number of 0.0. This should perform a negative rotation 15 
degrees left as shown below.  
 
fPolar  = 0.0; 
fPolar = (Segment_Deviation_Rotate * fPolar) - (Segment_Deviation_Rotate / 2.0f);  
// = ( 30 * 0.0 ) – ( 30 / 2 ) 
//      = 0.0 - 15  
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//      = -15 degrees    

 
Likewise, an initial random number of 1.0 will generate a positive 15 degree rotation. 
 
fPolar  = 1.0; 
fPolar = (Segment_Deviation_Rotate * fPolar) - (Segment_Deviation_Rotate / 2.0f);  
// = ( 30 * 1.0 ) – ( 30 / 2 ) 
//      =  30 - 15  
//      =  15 degrees    

 
Finally, an initial random number of 0.5 is halfway between the range and should therefore generate a 
rotation of 0.0 degrees (no polar rotation). 
 
fPolar  = 0.5; 
fPolar = (Segment_Deviation_Rotate * fPolar) - (Segment_Deviation_Rotate / 2.0f);  
// = ( 30 * 0.5 ) – ( 30 / 2 ) 
//      =  15 - 15  
//      =  0 degrees    

 
And that is all there is to node deviation. We then use these two rotation values to build the rotation 
matrices with which to rotate the direction and right vectors of the child node. 
 
float       Length_Falloff_Scale 
This member is one of those members that will make more sense when we 
look at the code. It controls how the length of each segment gets smaller as 
the segments near the end of the branch (the tapering effect). As discussed 
above, as we add each new node to our hierarchy, each node inherits the 
dimensions of its parent node which then has some small value subtracted 
from it. In the case of the X and Y dimensions of a node, these describe the 
radii of an ellipse on the plane described by the node, and thus the size of the 
ring of vertices that will be generated there. We also discussed how the value 
we subtract from each node is the dimensions of the root node divided by the 
maximum iteration count. This allows us to scale the radii of each node such 
that the ellipse of vertices inserted at each node will get progressively smaller 
towards the end of the branch (and thus the overall tree). We also do the same 
for the Z dimension of each node, which essentially describes the length of 
the cylinder segment formed by that node and its child node (the length of a 
branch segment). This means branch segments will not only get thinner as the 
tree approaches its branch tips, but also shorter. 
 
However, if you look at Figure 12.29, you can see that while we usually wish 
the thickness of the branch to get smaller towards its end quite quickly, usually we will not wish to scale 
the length of each segment at quite the same rate. In Figure 12.29 you can see that the length of each 
segment diminishes only slightly from segment to segment while the thickness of the each segment (the 
X and Y dimensions) falls off quite quickly.  
 
The Length_Falloff_Scale allows us to control how the length of each segment (the Z dimension) gets 
decreased from node to node with respect to how the X and Y dimensions are scaled. For example, if we 

Figure 12.29 
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set this value to 1.0, then the length of each segment in a branch will get smaller by the same ratio as the 
reduction in the thickness from segment to segment. A value of 0.5 would mean that the reduction in 
length from segment to segment would be half the reduction in branch thickness from segment to 
segment. Lower values in this member make the tree more spindly looking (long and thin) while higher 
values will result in tree with shorter, stumpy looking branches.     
 
float       Split_Deviation_Min_Cone    
float       Split_Deviation_Max_Cone    
float       Split_Deviation_Rotate      
These values should look familiar to you. They define the cone and polar rotation used to deviate the 
vector of a node that is the first node in a new branch. The exact same deviation technique is used as has 
been previously described, and as such, these parameters are used in exactly the same way as the 
Segment_Deviation_Min_Cone, Segment_Deviation_Max_Cone and the Segment_Deviation_Rotate 
members discussed earlier. These values are used when deviating the vectors for start nodes of a new 
branch. This allows us to provide a much larger deviation range for new child branches which will 
usually sprout off from the parent at quite arbitrary angles. Contrast this with segment to segment 
deviation within the same branch where we usually keep vector deviation more conservative. 
 
float       SegDev_Parent_Weight     
This member is used to set a weight (usually between 0.0 and 1.0) which describes how much the 
deviated vector of a child node should be influenced by the direction vector of its parent. Essentially, 
once we have deviated the vector of a node, we will add to that vector the direction vector of the parent 
scaled by this weight, before normalizing that vector. 
 
DeviatedVector    = This is the vector that has just been randomly deviated 
pNewNode->Direction   = DeviatedVector+( pParentNode->Direction*SegDev_Parent_Weight );  
D3DXVec3Normalize    ( &pNewNode->Direction, &pNewNode->Direction ); 

 
If this value is set to zero then segment to segment vector deviation will be completely random and 
sporadic (within the specified ranges). By assigning this weight a value, we allow each new segment 
added to a branch to be randomly deviated while still following the overall direction of the branch.  
 
It is very important to realize that the parent nodes direction vector and this weight are only used to 
influence the deviated vector of a child node during segment to segment deviation within the same 
branch. Whenever a new branch is generated, the direction vector of the first node in that branch (the 
root node of the branch) is not influenced by its parent node’s direction vector at all. This makes sense 
as we often want new branches to shoot off at random angles from the parent branch. However, once the 
new random vector for a branch start node has been generated, all child segments/nodes of that branch 
will have their vectors influenced by their parent direction vectors, the first of which is the direction 
vector of the branch’s root node. Therefore, new branch nodes are the links where parent influence is 
temporarily discarded (for the generation of that node only).  
 
If you were to set this weight value to 1.0, the final vector for a new node would be the average of the 
deviated vector (generated in the steps discussed previously) and the parent node’s direction vector. 
 
 
 



 

 32 

 

D3DXVECTOR3    Growth_Dir 
float                SegDev_GrowthDir_Weight     
These two members further allow us to control the overall growth direction of the tree. When we call 
CTreeActor::GenerateTree we pass in a vector describing the direction of the first node in that tree. 
From this point on, the direction vectors are passed from parent to child and deviate at each step. 
Therefore, even if you passed in an initial direction vector of <0, 1, 0>, this does not mean that your tree 
would grow in that direction at all. This only tells us that the first segment will point in that direction. As 
discussed in the previous parameter, we can certainly factor in the parent vector of any node into the 
generation of its child node’s vector, however this does not always do what we want. 
 

For example, if we used an initial direction vector of <0,1,0> for the 
root node and also set the SegDev_Parent_Weight to some non-zero 
value, we know that the direction vector would influence all the other 
segments in the root branch to some degree. This means, the root 
branch would generally grow in an upwards direction as described by 
our initial direction vector. However, what we must consider is that as 
soon as a new branch is spawned, the influence of the root parent 
branch direction vector is lost. That is, if a new branch is generated, 
the first node in that branch will have a totally random deviation 
applied to it (not influenced by its parent). From that point on, all the 
child nodes of that branch will be influenced by that direction vector 
and not the vector that we initially passed in. This is not a design flaw, 

since we absolutely want branches to have directions independent of their parent branches. But it would 
be nice if we had another level of control; a direction vector that could globally influence the direction 
of all nodes in the hierarchy. That is what the Growth_Dir and the SegDev_GrowthDir_Weight 
properties are for. These values are very useful for shaping the overall growth direction of a tree.   
 
If you take a look at Figure 12.30 you can see a tree that has been generated with a growth direction 
vector of <-1,0,0> to make the tree segments generally grow in the direction of the negative X axis of 
tree space. In this example, a SegDev_GrowthDir_Weight of 0.2 was used. As you can see, even though 
we passed in an initial direction vector of <0,1,0> for the root node, as the segments are generated, the 
growth direction vector is still influencing the direction of every branch node. Once again, the only time 
that the growth direction does not influence the vector generated for a node is when the node is a root 
node of a branch. For example, you can see in Figure 12.30 how initially, new branches deviate in a 
totally random direction. As we begin to add nodes to those branches however, those child nodes are 
influenced by the growth direction vector and as such, the branches begin to curl round in the direction 
of the growth vector specified. 
 
Let us say for example that you wanted to model a tree growing out of the side of cliff face. The growth 
direction for the tree could be set to <0,1,0> but the initial direction vector of the root node of the entire 
tree set to <1,0,0>. The tree would start growth horizontally out of the cliff face and then gradually start 
to grow upwards. How quickly this change in growth direction takes place depends on how you set the 
SegDev_GrowthDir_Weight member and the SegDev_Parent_Weight members.  These members 
directly control, at each node, how strongly the parent node influences the node direction, and how 
strongly the overall growth direction of the tree does. 
 
 

 
Figure 12.30 
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USHORT      Branch_Resolution           
This member is used to control how many vertices will be used in our node rings (and thus, our whole 
tree). As mentioned previously, after we have generated our virtual node tree, we will traverse that tree 
and insert a ring of vertices at each node. How many vertices we insert into this ring directly controls 
smoothness of the branches. Figure 12.31 shows the circle of vertices inserted for two nodes with a 
branch resolution setting of 8.  As you can see, the Branch_Resolution member defines how coarse and 
angular the cylinder of each branch segment will be.  

 
Figure 12.31 

 
The default value is 8, which means each branch segment cylinder will be using 16 vertices -- 8 vertices 
at each node that form its bottom and top boundaries. Note however that vertices are shared between 
segments. For example, the ring of vertices inserted at node 2, form the top of cylinder 1 (Node1              
->Node2) and the bottom of cylinder 2 (Node2->Node3).  
 
USHORT      Bone_Resolution     
Once we have completed the first phase of tree creation, we will have a 
Virtual Tree described by a hierarchy of branch node structures. This tree 
representation is abstracted from mesh or bone data at this point. The 
second phase of tree creation will involve generating the meshes for the 
branches themselves and building the actor’s internal D3DXFRAME 
hierarchy which will describe the bones of the tree used to render and 
animate the actor.  
 
When building the meshes for the tree, we have decided that every node 
in the virtual tree should describe a plane that will contain a ring of 
vertices that both end and begin each branch segment. Therefore, each 
node in our virtual tree represents the actual location where vertices will 
be placed. We could take the same approach when building the actor’s 
frame hierarchy, although having bones placed at every node is probably 
overkill for what will simply be an animation that gently moves the tree back and forth in the wind. The 
more bones we create for the tree, the more traversal and transformation will have to be done when 
rendering the tree and animating the hierarchy. Therefore, this member allows us to define the bone 
resolution of the tree. 
 
The bone resolution is simply a value N that describes to the tree creation process that bones should be 
inserted every N nodes. The default bone resolution is 3 which means, starting from the root node, bones 

Figure 12.32 
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will be inserted every third node that is encountered along a branch. If you look at Figure 12.32 you can 
see how the bones might look if placed at every third node. We have found during testing that this 
provides more than enough joints to move the tree in a convincing manner. In fact, the tree will still 
move nicely even with fewer bones than this, so you could set this member based on the end user’s 
system to get better performance if you intended to use CTreeActor in your actual game code. As you 
can see by looking at Figure 12.32, the actor’s frame hierarchy will contain a lot fewer frames than the 
node hierarchy of the virtual tree that we create. Therefore, we can think of the actor’s frame hierarchy 
as being a discrete version of the virtual node hierarchy. This is similar to how curved surfaces are 
eventually turned into a discrete polygonal representation based on a continuous curve. The more 
polygons you allow to model the curve, the more closely the final mesh will resemble the mathematical 
model of that curve. While our virtual tree hierarchy is not nearly as abstract as a curved surface, it does 
allow us to de-couple the virtual tree generation process from the bone and mesh resolutions we 
ultimately end up using the build the final representation.   
 
float       Texture_Scale_U             
float       Texture_Scale_V 
The final two members in our structure will be used to set the scale of the texture used to map the branch 
meshes. We learned in Module I of this series how we can assign texture coordinates values outside the 
[0.0, 1.0] range to allow us to repeat a texture image multiple times over the face of an object. For 
example, we know that if we have a texture mapped to a quad that has its texture coordinates in the 0.0-
4.0 range along both its U and V axes, the texture will be mapped to the surface of the polygon sixteen 
times. It will be mapped four times along the U axis and four times along the V axis.  
 
In Figure 12.33 we can see a 
quad that has a texture mapped 
to it once because its UV range 
is in the [0.0, 1.0] range both 
horizontally and vertically. In 
Figure 12.34, the same quad has 
texture coordinates in the range 
of [0.0, 4.0] which tiles four 
rows and four columns of the 
texture image. 
 
The Texture_ScaleU and 
Texture_Scale_V properties of 
our tree allow us to apply the same scaling of the texture that we use for the branches of our tree. That is 
to say, the higher we set these values, the more times the texture will be tiled over the entire range of the 
tree. In order to understand how these properties work, we need to discuss how we will in fact generate 
the texture coordinates for the vertices of the tree. 
 
Calculation of the U texture coordinate for a vertex in our branches is delightfully easy because it is a 
function of the branch resolution (the number of vertices we will use to form the ring at each node in our 
virtual tree). If the branch resolution is 8 for example, then we simply wish to assign each vertex in the 
ring one of 8 positions across the U axis of the texture. If we forget about the texture scaling members 
for the time being, we could see that the calculation of the U texture coordinate for a vertex in the ring is 
simply its position within that ring divided by the total number of vertices in the ring (branch resolution) 

  
Figure 12.33 ( UV range 0-1) 

Texture mapped once to a quad. 
Figure 12.34 ( UV range 0-4) 

Texture mapped sixteen times 
to quad 



 

 35 

 

generating a value in the [0.0. 1.0] range. For example, if we have a branch resolution of 8, then we 
simply have to do the following calculation for each vertex in a ring: 
 
for (int i=0; i< BranchResolution; i++) 
{ 
     Vertex[i].U = i / BranchResolution-1; // zero based vertices 
} 
 
Let us have a look at the values this generates for each vertex in the ring. 
 
Vertex[0].u = 0 / 7 = 0.0 
Vertex[1].u = 1 / 7 = 0.142 
Vertex[2].u = 2 / 7 = 0.285 
Vertex[3].u = 3 / 7 = 0.428 
Vertex[4].u = 4 / 7 = 0.571 
Vertex[5].u = 5 / 7 = 0.714  
Vertex[6].u = 6 / 7 = 0.857 
Vertex[7].u = 7 / 7 = 1.0 
 
As you can see, we have essentially unrolled the ring of vertices at that node and laid them flat across 
the texture. If you imagine those vertices then being pulled back into the shape of a cylinder, we have in 
fact wrapped the texture around the cylinder’s width exactly once. 
 
Calculating the V coordinate for each vertex is a slightly different matter but certainly no more difficult. 
We decided that the V coordinates should be mapped over the entire range of the tree. Essentially, 
vertices at the bottom of the tree will have V coordinates of 0.0 while vertices at the ends of branches 
will have V coordinates approaching 1.0.  
 
We decided to do this because it 
allows us control over changing the 
color of the tree as a function of 
height. We could for example, have a 
bark texture that is very dark brown at 
the bottom but slowly faded to a light 
brown near the top. When mapped to 
the tree, the segment at the bottom of 
the tree would receive the dark brown 
texture colors, but as we move up the 
tree, the branch segments would 
receive the lighter portions of the 
texture. This might be to simulate that 
the branch tips are in direct sunlight 
and their color has been bleached. 
You could also generate a texture such 
that at the top of the texture, the bark 
texture has little green shoots or 
leaves, which once again, when 
mapped to the tree, the greener areas 
would only show up towards the branch ends. 

 
Figure 12.35 

  U Scale =1 : V Scale =1 : Max Iteration Count=13  
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In order to achieve the mapping of vertices such that the texture is mapped vertically over all segments 
of the tree, the generation of the V coordinate for each ring of vertices at a node, should be a function of 
that node’s iteration count (its level in the virtual hierarchy) divided by the total hierarchy depth 
(maximum iteration count of the tree). Figure 12.35 shows this relationship clearly, which currently 
assumes a U and V texture scale of 1.0 (no scaling).  
 
In Figure 12.35 we are shown the mapping of a texture to the first two rings of vertices (the first two 
nodes in the tree) which form the first segment in the root branch of the tree. For simplicity, we will also 
assume this tree consists of just a root branch which is constructed of 13 nodes (12 segments). If you 
look at the base of the bark texture, you can see how the two rings of vertices are mapped horizontally 
across the face of the texture using the U calculation texture we described previously. However, we can 
see that each node’s vertices should be assigned different V coordinates which increase as the iteration 
of the node approaches the maximum iteration count of the tree. Using this technique, the V coordinates 
of the two rings of vertices forming the root segment are assigned low V values. It is also clear by 
looking at the segment boundaries marked on the texture that as we move up and calculate the V 
coordinates for the nodes deeper in the hierarchy (higher in the tree) the higher portion of the texture is 
mapped to the vertices of these nodes. 
 

Note: We have inverted the direction of the texture coordinate system V axis in the diagram so that it is 
more intuitive for this explanation. As we know, the V axis from runs top to bottom and not from bottom 
to top as shown here, so lower branch segments in the tree would actually be assigned the higher 
portions of the texture shown in this diagram, and the opposite is true.  

 
By studying what we wish to achieve in Figure 12.35, the solution is easy. The V coordinate of any 
vertex is simply the iteration value of the node divided by the maximum iteration count of the tree (a 
property that we discussed earlier). The following snippet of pseudo code demonstrates the calculation 
of texture coordinates for a ring of vertices at an arbitrary node. In this example, the vertex structure is 
assumed to have a pointer to the branch node from which it was created. We will not implement it in this 
way, but this is to clearly establish the relationship between the node in the virtual tree and the vertices 
that are being created for it. In a moment when we look at the BranchNode structure, you will see how 
each node contains the iteration value that was generated during the virtual tree creation process and 
describes the level of that node in the virtual tree hierarchy. 
 
for (i=0; i< BranchResolution; i++) 
{ 
   Vertex[i].U = i / BranchResolution-1;     
   Vertex[i].v = Vertex.pNode->Iteration / Max_Iteration_Count; 
}  
 
So we now know how to generate the texture coordinates for the vertices of all the branches in our tree. 
But what are the Texture_Scale_U and Texture_Scale_V members of the TreeGrowthProperties 
structure used for?  
 
As you might imagine, they are simply used to multiply the result of the two texture coordinate 
calculations shown above so that we can tile the texture over the tree with a desired regularity. This 
upgrades our calculation code to the following final UV calculation. 
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for (i=0; i< BranchResolution; i++) 
{ 
   Vertex[i].U = (i / BranchResolution-1) * Texture_Scale_U;     
   Vertex[i].v = (Vertex.pNode->Iteration/Max_Iteration_Count) * Texture_Scale_V; 
}  
 
If both scaling factors are set to 1.0 then no texture scaling is done; a ring of vertices is simply mapped 
once horizontally across the face of the texture, and all the vertices comprising the tree are mapped once 
vertically along the face of the texture. By multiplying the texture coordinates by some scale value, we 
push them outside the 0.0 to 1.0 range, which we know will cause the texture to tile (unless texture tiling 
has been disabled in the API). 
 
For example, we know that if we set the Texture_Scale_U property to 3.0, then each segment of a 
branch would have the texture’s width wrapped around it not once, but three times. Obviously, for this 
to look good you must use a seamless tile-able texture. By performing scaling in this manner, the tree 
texture will look much higher resolution. If we were to set the Texture_Scale_V property to 2.0, then the 
texture would be mapped twice over the entire height of the tree. In other words, if we had a tree 
consisting of a single branch of 16 nodes, the entire vertical range of the texture would be mapped in its 
entirety to the first 8 nodes of the tree and repeated again for the second 8 nodes. 
 

Figure 12.36 shows a simple example of tiling a 
bark texture with a Texture_Scale_U value of 3 and 
a Texture_Scale_V value of 1 (no scaling 
vertically). Once again, we are showing the vertex 
mapping for the first two rings of vertices (first 
segment) of the root branch. Notice how the 8 
vertices now span three copies of the bark texture.   
 
Figure 12.37 shows screenshots of the same section 
of the root branch of a tree mapped with this 
texture using different U and V texture coordinate 
scale values. Notice that the texture being used here 
is not a great texture for tiling but actually aids us 
in teaching this subject as it is clear that the texture 
is repeating across the width and height of the tree. 

 

 
Figure 12.36 
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We can certainly see while examining the three 
example mappings in figure 12.37 how the 
U_Scale value is wrapping the texture multiple 
times around the section of the branch we are 
looking at. Of course, we are only looking at 
one side of the tree so we cannot see all the 
repeats. However, if you look at the center 
image, we can see a pattern starting to repeat 
which is much more obvious in the rightmost 
image. As mentioned, this texture is not ideal 
for tiling. But what should be clear is the extra 
detail that tiling seems to give the surface of our 
branches.  The left most image, with no scaling 
being performed, looks quite blurry and out of 
scale by comparison. Of course, setting the 
correct texture scaling values in the 
TreeGrowthProperties structure will often only 
bear fruit by experimentation. Some textures 
look great when applied with no scale and some textures look awful when repeatedly tiled. Detail 
mapping can also be used to significantly improve the look and feel of the tree (see Module I).  
 
We have now discussed the members of the TreeGrowthProperties structure. While that may have 
seemed daunting, remember that most of the last section was spent discussing how the tree will use these 
values in its construction. So by discussing this structure in such detail, we have also learned a great deal 
about how the tree will be built. This will make our job a lot easier when we examine the code. 
Remember, these values are set via the CTreeActor::SetGrowthProperties function, which simply 
assigns them to internal member variables which are accessible during tree creation. It is important that 
we set any tree properties before we issue the call to CTreeActor::GenerateTree since it is this function 
that builds the tree using the growth property information. Calling CTreeActor::SetGrowthProperties 
will have no effect if called after the CTreeActor::GenerateTree function.     

12.3.2 The BranchNode Structure 

When our application calls CTreeActor::GenerateTree method, the first task of this function is to build 
the virtual tree hierarchy. The nodes of this hierarchy will be arranged like D3DXFRAME structures in 
a frame hierarchy in that each node will contain a pointer to a linked list of children and another pointer 
to a linked list of sibling nodes that share the same parent. We are certainly used to this hierarchical 
arrangement by now. What is very important to grasp is that the hierarchy will not contain any mesh or 
bone data. Each node in the hierarchy is simply a packet of information, describing the position, 
orientation and scale of the tree at certain points. Later, this hierarchy of nodes will be used to build the 
actual meshes of the tree. As previously discussed, each node in this hierarchy will represent a branch 
segment boundary where a ring of vertices will be placed. Each node in our hierarchy will be 
represented by a BranchNode structure (defined in CTreeActor.h) whose members we will discuss 
momentarily. 
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It might strange that we would not build our virtual tree hierarchy out of D3DXFRAME derived 
structures. After all, this is the structure we are used to using and it has the child and sibling pointers that 
we need. It would at first seem an ideal choice to use for the nodes of this hierarchy. It is true that we 
will need to store much more information than a vanilla D3DXFRAME structure, but we could derive a 
class from this structure and add the extra members. So why do we not do this? There are several 
reasons we have decided to use a completely new structure for the building of our virtual tree.  
 
The first reason is clarity. After our virtual tree has been constructed, we will traverse this hierarchy and 
build the actor’s skeleton. We already know the actor’s skeleton is just a D3DXFRAME hierarchy 
where each frame structure represents a bone. Therefore, we will be using one hierarchy (the virtual 
tree) to build another hierarchy (the actor’s skeleton). If we implemented both of these as 
D3DXFRAME hierarchies, we might introduce confusion as to which hierarchy a given frame belongs 
to. By using two completely different hierarchy types, we eliminate the potential for bugs that could 
arise from accidentally connecting a D3DXFRAME structure to the wrong hierarchy.  
 
The second reason is consistency. Although we can use the D3DXFRAME structure to store whatever 
information we choose, typically the matrix of this structure describes the position and orientation of 
that frame as a parent relative transformation. In order to convert that into an absolute transformation we 
must combine the matrices of all frames that precede it in the path down the hierarchy. We will be 
building our virtual tree hierarchy one node at a time using a random process and we certainly do not 
want to be adding nodes in parent relative space at this point. It makes much more sense to assign all the 
nodes a position and direction in a space shared by all nodes (tree space) so we are not constantly having 
to traverse the tree and perform transformations from one node’s space to another. In short, we wish to 
store absolute positions and orientations at each node (not parent relative ones). Now it is true that we 
could simply use the matrix of each D3DXFRAME structure in the virtual tree hierarchy to store 
absolute transformations in this instance; but that is not consistent with what an application would 
usually expect the matrix of this structure to contain and may lead to incorrect assumptions about the 
matrices stored in this hierarchy if accessing frames directly. 
 
The third and final reason is ease of use. It makes a little extra work for ourselves if we represent the 
position and direction of each node in matrix form during the building process. We have seen how we 
often need to work with the direction and right vectors in isolation when calculating the direction of a 
node and the deviation of its child nodes. Therefore, rather than having to extract the position and 
direction vectors from the matrix, modify them and store them back in the matrix, we will just store 
them in separate vector variables in the branch node structure. 
 
The BranchNode structure also has a constructor and destructor which take care of initializing its 
member variables to zero and deleting its child and sibling lists, respectively. Below, we see the 
BranchNode structure and then discuss its member variables. Each node in our virtual tree will be a 
structure of this type. 
 
typedef struct _BranchNode 
{ 
    D3DXVECTOR3     Position; 
    D3DXVECTOR3     Direction; 
    D3DXVECTOR3     Right; 
    D3DXVECTOR3     Dimensions; 
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    BranchNodeType  Type; 
    _BranchNode    *Parent; 
    _BranchNode    *Child; 
    _BranchNode    *Sibling; 
    USHORT          Iteration;     // The iteration at which this was generated 
    USHORT          BranchSegment; 
    USHORT          VertexStart; 
    ULONG           UID; 
    bool            BoneNode; 
    LPD3DXFRAME     pBone; 
 
    // Auto Hierarchy Destructor 
    ~_BranchNode() { if ( Child ) delete Child; if ( Sibling ) delete Sibling; } 
 
    // Auto clearing constructor 
    _BranchNode()  { ZeroMemory( this, sizeof(_BranchNode) ); } 
 
} BranchNode; 

 
Let us discuss those member variables. 
 
D3DXVECTOR3      Position 
This member is where the tree space position of the node will be stored. We can think of tree space as a 
coordinate system where the root node/nodes of the trunk branch exist at the origin. The position, 
direction vector and right vectors of a node define a plane on which the ring of vertices that the node 
represents will be placed. 
 
D3DXVECTOR3      Direction 
This vector will contain the direction of the node. We can think of this vector as pointing in the direction 
of the next segment (child) in the branch. The direction vector can also be thought of as a normal to a 
plane on which the ring of vertices that this node represents will be placed. 
 
D3DXVECTOR3     Right 
This is where we will store the right vector of the node. This is a vector that is tangent to the plane on 
which the vertices will be placed and describes the direction in which the node’s local X axis is pointing 
in tree space. That is to say, the Direction vector and the Right vector of a node represent the local 
coordinate system of the node (the Z and X axis respectively). By performing the cross product on these 
two vectors we can generate the third axis (the Y axis) of the local coordinate system for that node. This 
is used during mesh creation to position the ring of vertices on the node’s plane.  
 
D3DXVECTOR3      Dimensions 
This vector stores the dimensions of the node. The X and Y components of the vector represent the two 
radii of an ellipse that has the node’s position at its center. This is used to place the ring of vertices in a 
circle surrounding the node’s position. The Z component of the vector describes the distance along the 
node’s dimension vector to its child node (if it exists). We can think of the Z component of node N as 
defining the world space length of the branch segment (cylinder) formed by nodes N and N+1. 
 
BranchNodeType   Type 
Each node in the tree will be one of three types of node which we must distinguish between when 
deviating vectors and building the mesh data. A node can either be a Branch Begin node, which means it 
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is the first node in a new child branch. It may alternatively be a Brand End node which means it is the 
terminating node in a branch and the node at which we will create only a single vertex (instead of a ring 
of vertices) forming the tip of the branch. Most nodes in the tree will be nodes of the third type: Branch 
Segment. These are nodes at some position in a branch between the branch begin and end nodes. It will 
become obvious when we cover the code why we must distinguish between the three node types in 
many places during the tree building process. 
 
This member will be assigned one of three members of the BranchNodeType enumeration, which is 
defined in the CTreeActor namespace as: 
 
enum BranchNodeType { BRANCH_BEGIN = 1, BRANCH_SEGMENT = 2, BRANCH_END = 3 }; 

 
_BranchNode     *Parent 
_BranchNode     *Child 
_BranchNode     *Sibling 
These three pointers are used to connect the branch node to the hierarchy. The Child and Sibling 
pointers mirror the functionality of the D3DXFRAME structure members of the same name. The Child 
pointer points to the first branch node in a linked list of child nodes in the next level of the hierarchy. If 
this node had a child node which had three siblings, this pointer would point to a linked list of four 
branch nodes. The parent node’s Child pointer points to the child node at the head of the linked list, and 
each of the child nodes are connected by their sibling pointers. Likewise, the Sibling pointer will point 
to branch nodes that share the same parent node. The Parent pointer is not available in the 
D3DXFRAME structure and simply points to the node’s parent branch node. This allows us to traverse 
up and down the levels of the hierarchy with ease from any given node. 
 
As shown in Figure 12.22, the child pointer will point to a linked list of sibling nodes in the next level 
down in the hierarchy. This child list contains the next node in the current branch and any Branch Begin 
nodes of branches that start at that child node. The Sibling pointer will point to a list of nodes that exist 
at the same level and share the same parent. For example, let us imagine that node N in a branch has a 
child pointer to node N+1 which represents the next node in the branch. Also imagine, that at node N+1 
two child branches are started. Node N would have a child pointer that would point to a linked list of 
three nodes: Node N+1 in the current branch and the two Branch Begin nodes for the new branches 
spawned at node N+1. These nodes would be connected via their sibling pointers.   
 
USHORT        Iteration      
As discussed previously, as we step through a branch adding child branch nodes, the iteration count will 
be incremented and passed to the child nodes. The iteration basically describes the level in the hierarchy 
that the node exists at. For example, Node N would have an iteration count of N and any child nodes 
would have an iteration value of N+1, and so on down the tree. The Iteration of a node is also used in 
calculating its V texture coordinate as discussed in the previous section. 
 
USHORT       BranchSegment 
This member will contain the Branch Begin relative index of the node. In other words, it stores the zero 
based node index from the start of the branch to which it belongs. Whenever a new branch begins, a new 
Branch Begin node is added with a BranchSegment value of zero. The next node of this branch will 
have a value of 1 assigned to its BranchSegment value, etc. We can think of this in many ways as being 
the branch local equivalent of the node’s Iteration member. The node’s iteration describes the number of 
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nodes that would have to be traversed from the root node of the root branch to reach the current node in 
the tree. The BranchSegment value describes the number of nodes that would have to be traversed from 
the first node (Branch_Begin node) in the current branch to reach the current node.  This value will be 
useful when generating the mesh data for a given branch. Remember, each branch will be a separate 
skinned mesh. 
 
USHORT       VertexStart 
This variable will be used when adding the vertices to at each branch node to aid in the building of 
branch segment indices. It will contain the vertex index where the current node’s ring of vertices begins 
in the branch mesh. Remember that each branch will be a separate mesh, so this value will be the index 
where the ring of vertices starts in the branch mesh’s vertex list. We will need to know this when adding 
branch segments to our mesh. 
 
A branch segment is a cylinder of faces formed from the vertices at the parent node and the vertices at 
this node. To build these indices we will need an easy way of knowing the position at which a node’s 
ring of vertices is placed in the branch mesh’s vertex buffer. If a node had this value set to 50, and the 
branch resolution property of the tree was set to 8, we would know when generating the indices that this 
node’s vertices will be positioned at 50 through 57 in the branch mesh’s vertex buffer. This is a value we 
will generate when adding the vertices to each branch mesh in the second phase of creation.  
 
ULONG         UID 
Every branch node in the virtual tree will contain a unique ID that identifies the node. This will start off 
at a value of zero for the first node of the hierarchy and will be incremented for each new node 
generated. The UID of the Nth node created will simply be N-1 because we start at 0 for the root node. 
So if the UID of a branch node had a value of 45, this would mean it was the 46th branch node created 
during the virtual tree creation process. Why would we need to know this? 
 
We will need this information when we build the skeleton for the actor in the second phase of tree 
creation. Certain nodes in the virtual tree hierarchy will become bones in the actor’s frame hierarchy and 
as we know, frames that we wish to animate must be assigned names. We also need frames to have 
names in order to set up the skinning information. When a branch node is determined to be a candidate 
for a bone, we will need to give that frame a name. We also need to know that the name we assign the 
frame is unique with respect to any other frames in the hierarchy. We will assign a name to each frame 
using the format Branch_N where N is the UID of the branch node from which the bone is being 
created. Therefore, if we determine during the creation of the actor’s skeleton that a branch node with a 
UID of 231 is to be used to create a bone for the actor’s frame hierarchy, the name given to that frame 
will be Branch_231, which is guaranteed to be unique from any other frames we add.  
 
bool             BoneNode 
When we discussed the TreeGrowthProperties structure, we examined a member called 
Bone_Resolution. By default it was set to 3. We discussed how this defines a ratio describing the 
number of bones we should create compared to the number of branch nodes in our virtual tree. The 
default value 3 means that we will create a bone for every third node in the branch node hierarchy.  
When building the actor’s frame hierarchy (after the virtual tree of branch nodes has been constructed), 
we will traverse the branch node hierarchy starting at the root node. The Branch Begin node of every 
branch will always have a bone created for it. From that point on, we will create a bone using every third 
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node in the branch. Branch End nodes will never have a bone constructed from it, as it makes little sense 
to stick a joint at the tip. This second phase is where the frame hierarchy will be constructed. 
 
The bones that we create from branch nodes between the Branch_Begin and Branch_End nodes form the 
skeleton for that mesh. Remember, each branch is a separate mesh and therefore will have its own bones 
connected into a larger hierarchy of bones for the entire actor. That is, the actor will have a skeleton that 
will represent the bones of the entire tree, but any given branch mesh will only use a localized set of 
those bones. 
 
After the branch node hierarchy has been constructed in the initial phase, we can traverse that hierarchy 
and easily calculate which branch nodes should become bones and add them to the actor’s frame 
hierarchy. This second phase is where the actor’s frame hierarchy gets constructed from the virtual tree. 
Whenever we decide to make a bone from a branch node, we will set its BoneNode boolean member to 
true. This will be useful later on when building the skins for the various branches because we will need 
the original information stored in the branch node to calculate the bone offset matrix for a given bone in 
the hierarchy. It allows us to easily traverse a branch and find the branch nodes that have been used to 
construct bones.  
 
As the BranchSegment member of a branch node contains the zero based index of that node within a 
given branch (a mesh), we can easily determine if a branch node will be a bone during the building of 
the actor’s frame hierarchy. Simply put, every time the modulus of the branch node’s BranchSegment 
member and the BoneResolution member equals zero, we have skipped the correct number of bones and 
it is time to mark the next new node as a bone node and create the accompanying frame in the hierarchy. 
Example code to determine if a newly created node (pNode) is a bone node is shown below. 
 
if ( pNode->Type == BRANCH_BEGIN || 
   ((pNode->BranchSegment % m_Properties.Bone_Resolution)==0 && pNode->Type!=BRANCH_END)) 
{ 
 pNode->BoneNode = true; 
 … 
 … 
} 

   
As you can see, if this is a Branch_Begin node, then it is a node that starts a new branch and will 
become the first (root) bone of that branch mesh. In such a case we always make it a bone node. 
Otherwise, the only time we make a node a bone node is when the modulus of the local branch index of 
the node and the bone resolution wraps back around to zero (i.e., we have skipped the correct number of 
nodes). Notice as well that this is only true if the node in question is not a Branch_End node. 
 
LPD3DXFRAME     pBone 
This member is also used during the creation of the actor’s frame hierarchy in the second phase, and as 
such, is related and set using the same conditions as described for the previous member. As discussed, 
after building the virtual tree, we will enter the second phase where we construct the frame hierarchy 
(the skeleton) of the actor. We will traverse the branch node hierarchy and determine that certain nodes 
are bone nodes.  For each one that we find, we will allocate a new D3DXFRAME, calculate its relative 
matrix based on the information stored in the branch node, and assign the frame (bone) a name before 
attaching it to the actor’s hierarchy. We will then assign the new frame pointer to the source branch 
node’s pBone member and set the branch node’s BoneNode boolean to true. This establishes a 
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connection between the frame we have just added to the hierarchy and the branch node it was originally 
created from. This connectivity information will be used later when we manually build the 
ID3DXSkinInfo object for the branch mesh. 
 
We have now discussed all there is to discuss about the structures used by CTreeActor and the 
properties that the tree generation process will use. While this has been an awful lot to take in without 
any code to look at, it is important that you understand the process overall before viewing the highly 
recursive code. 

12.4 Source Code Walkthrough - CTreeActor 

It is now time to look at our CTreeActor class, which is derived from CActor. Below you can see how 
the class is defined in CTreeActor.h. We will discuss the various new member variables of the actor in a 
moment. We will not immediately discuss the various methods of the class now as we will cover each 
one when we encounter it in the general flow of explaining the tree creation process.  
 
class CTreeActor : public CActor 
{ 
public: 
     
    enum BranchNodeType { BRANCH_BEGIN = 1,BRANCH_SEGMENT = 2,BRANCH_END = 3 }; 
  
    // Constructors & Destructors for This Class. 
             CTreeActor( ); 
    virtual ~CTreeActor( ); 
 
     
    // Public Functions for This Class 
    void        SetGrowthProperties (const TreeGrowthProperties & Prop ); 
    TreeGrowthProperties GetGrowthProperties ( ) const; 
    void         SetBranchMaterial ( LPCTSTR strTexture,  
              D3DMATERIAL9 * pMaterial = NULL ); 
 
    HRESULT   GenerateTree( ULONG Options,  
            LPDIRECT3DDEVICE9 pD3DDevice, 
        const D3DXVECTOR3 & vecDimensions, 
        const D3DXVECTOR3 & vecInitialDir  
        = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ),  
        ULONG BranchSeed = 0 ); 
     
 
    HRESULT                 GenerateAnimation   ( D3DXVECTOR3 vecWindDir,  
          float fWindStrength,  
          bool bApplyCustomSets = true ); 
 
    virtual void            Release             ( ); 
 
private: 
    
    // Private Functions for This Class 
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    HRESULT     GenerateBranches    ( const D3DXVECTOR3 & vecDimensions,  
        const D3DXVECTOR3 & vecInitialDir  
       = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ),  
        ULONG Seed = 0 ); 
    void        BuildBranchNodes    ( BranchNode * pNode,  
        ULONG & BranchUID, ULONG Iteration = 0 ); 
 
    bool        ChanceResult        ( float fValue ) const; 
    void        DeviateNode         ( BranchNode * pNode,  
        float fAzimuthThetaMin,  
        float fAzimuthThetaMax,  
        float fPolarTheta = 360.0f ) const; 
 
    HRESULT     BuildFrameHierarchy ( ID3DXAllocateHierarchy * pAllocate ); 
    HRESULT     BuildNode           ( BranchNode * pNode,  
        D3DXFRAME * pParent,  
        CTriMesh * pMesh,  
        const D3DXMATRIX & mtxCombined, 
        ID3DXAllocateHierarchy * pAllocate ); 
 
    HRESULT     BuildSkinInfo       ( BranchNode * pNode, 
        CTriMesh * pMeshData  
        LPD3DXSKININFO * ppSkinInfo ); 
 
    HRESULT     BuildNodeAnimation  ( BranchNode * pNode,  
        const D3DXVECTOR3 & vecWindAxis,  
        float fWindStrength, 
        LPD3DXKEYFRAMEDANIMATIONSET pAnimSet ); 
    HRESULT     AddBranchSegment    ( BranchNode * pNode, CTriMesh * pMesh ); 
     
     
   // Private Variables for This Class 
    ULONG                   m_nBranchSeed;       
    TreeGrowthProperties    m_Properties;        
    BranchNode             *m_pHeadNode;         
     
    D3DMATERIAL9            m_Material;          
    LPTSTR                  m_strTexture;        
}; 

 
While the list of new member variables we have added is extremely small (only five), do bear in mind at 
all times that this class is derived from CActor and thus has access to all of its member variables and 
functionality as well. That is why you cannot see (for example) a member variable that points to the root 
frame of the tree’s frame hierarchy. As you know, the frame hierarchy member variables (and the 
method to traverse them) are all inherited from the base class (CActor). Let us now discuss these new 
member variables one at a time. 
 
ULONG m_nBranchSeed 
As you certainly aware by now, the assembling of our tree will call for a lot of randomly generated 
numbers. For example, we will generate random angles for direction vector deviations between nodes in 
a branch and we will also use random numbers to decide whether or not a branch node currently being 
processed should spawn a new child branch. You will see when we cover the code in a moment that 
random number generation is used literally throughout the entire tree generation process. 
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We generate random numbers using the rand function (part of the standard C runtime libraries). Of 
course, a computer cannot generate a truly random number since this is essentially like asking the 
computer to make a real choice. Only sentient beings that are self aware can make random choices. So, 
the rand function (and its sibling function, srand) just generates and returns numbers using a simple 
calculation that returns a string of numbers that seem random to a human being. All the rand function is 
actually doing is performing a calculation where the srand function is used to set an initial value (a seed) 
that is used in that calculation. Each time the rand function is called, the initial seed value we set is 
updated to new value which is then used to influence the value returned in the next rand call. For 
example, lets us imagine that the C runtime library stores some global value called ‘next’ which is 
initially set to 1. That is, the default seed for the rand function is 1.  
 
unsigned long int next = 1; 
 
/* rand: return pseudo-random integer on 0..32767 */ 
int rand(void) 
{ 
    next = next * 1103515245 + 12345; 
    return (unsigned int) (next/65536) % 32768; 
} 

 
As you can see, the rand function does not generate anything randomly. The first time it is called the 
‘next’ variable will be set to the seed value (1 by default). The rand function simply multiplies this value 
by a very large number. Notice however that the ‘next’ value is updated with the result so that each time 
the rand function is called a different value will be returned. It then simply returns the number divided 
by 65536 and has a modulus performed with 32768 to snap the value into the correct range of an 
unsigned integer.   
 
We use the srand function to seed the C random number generator (i.e., change the initial value of the 
‘next’ variable in the above code). What is vitally important to note is that this list of pseudo-random 
numbers generated will never change. So if we use the same seed at the start of our application, the 
random numbers generated will be exactly the same every time the application is run. After all, every 
time the application is run, the same starting point in that list of random numbers is used. Thus ten calls 
to the rand function will generate the same ten random numbers every time the application is run. In 
terms of our tree, this means regardless of how many times we use the rand function in our generation 
process, our GenerateTree function will create the same tree each time the application is run. This may 
or may not be desirable.  
 
Often it is not desirable. If a game uses random numbers to generate random events, we do not want 
these events to happen on cue every single time at the exact same place every time the application is run. 
Therefore, usually the value used to seed the random number generator is taken from a value that is 
unique every time the application is run (e.g., the timestamp of the current system time or the number of 
microseconds that have passed since the computer was switched on). We take such a value and use the 
srand function to seed the random generation process. Below we can see that the call to srand simply 
sets the initial value of the ‘next’ value used in the rand calls. If we use a different seed every time the 
application runs (system time for example), the random numbers generated will be different every time 
also. 
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/* srand: set seed for rand() */ 
void srand(unsigned int seed) 
{ 
    next = seed; 
} 

 
That fact that using the same seed will generate the same string of pseudo-random numbers can actually 
be beneficial in our tree creation process. When the application calls the CTreeActor::GenerateTree 
method we can optionally pass in a seed value that will be used to seed the random number generator 
prior to tree creation. We will use the timeGetTime function call to seed the random number generator if 
the application passes no seed. As this value will change each time a tree is generated, we will get 
different trees every time the function is called. However, you also have the option to pass in any seed 
value that you like so that the same tree is generated. This allows you to continually generate trees using 
different seed values until you find a tree that you really like. You can then remember those seeds and 
use them to generate the trees for your game, knowing exactly what the trees that will be generated will 
look like.  
 
The m_nBranchSeed member of the class will contain the seed that was used to generate the tree. This 
will be either the seed value passed in by the application or the value returned from timeGetTime. If you 
see a tree that was randomly generated that you really like, you can examine the contents of this member 
and use this seed in the future to create that same tree. 
  
TreeGrowthProperties    m_Properties        
This member contains the creation properties used to generate the tree. We set the members of this 
structure using the CTreeActor::SetGrowthProperties and can also retrieve it using the 
CTreeActor::GetGrowthProperties methods. We have already discussed all the members of this structure 
in detail.. 
 
BranchNode                  *m_pHeadNode 
This member stores a pointer to the root branch node of the virtual tree hierarchy that was generated 
during tree creation. Remember, this is not the root frame of the actor’s hierarchy (stored in a base class 
member variable). The hierarchy of branch nodes is used to grow a virtual tree representation and then 
used to build the frame hierarchy and meshes of the actor.      
 
D3DMATERIAL9  m_Material          
LPTSTR                  m_strTexture        
Our branches will need to have a texture and material applied to them. We set these values using the 
CTreeActor::SetBranchMaterial function. Notice that we do not pass in an actual texture, only the 
filename. Essentially, this is the same information our actor is passed by D3DX when we load a material 
from an X file. This is certainly by design because from the CActor’s perspective, there will be no 
difference. What do we mean by this? 
 
After we have generated our virtual tree we will step through that hierarchy and generate the frame 
hierarchy similarly to how D3DX does it when we call D3DXLoadMeshHierarchyFromX. Every time 
we wish to allocate a new frame for example, we will call the actor’s CAllocateHierarchy::CreateFrame 
method, just as D3DX does during the loading process. Our CAllocateHierarchy object is already 
written, so we use it again in exactly the same way. Similarly, every time D3DX encounters a mesh 
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during the loading process, it will call our CAllocateHierarchy::CreateMeshContainer method which is 
responsible for loading textures and materials (via registered callbacks) and for generating the actual 
skinned mesh. We will follow this exact same technique so that all the code we have developed in that 
function can be re-used without modification to generate our tree meshes.  
 
When we traverse the virtual tree hierarchy generating mesh data, we will do two things. We will 
generate a regular mesh and we will also populate an ID3DXSkinInfo object with bone information. 
Once we have done that, we will simply call the CAllocateHierarchy::CreateMeshContainer method 
passing the regular mesh we have generated for the branch being processed and its skin info. We will 
also pass it the material and the texture filename that has been set for the tree. As we know, the 
CreateMeshContainer method will generate a skinned mesh from the regular mesh passed in and will 
also take care of calling any callback functions to handle the loading and processing of textures and 
materials. From the perspective of CreateMeshContainer, nothing is different from the case where the 
mesh data is being loaded by D3DX. We still pass it a regular mesh, texture filename and material 
structures, the same format in which the D3DXLoadMeshHierarchyFromX provides the mesh 
information.  
 
It is actually quite a complex relationship when you examine it. In our application, our CTreeActor is set 
to non-managed mode prior to tree generation (the application registers an attribute callback function). 
As we know, this callback function is responsible for loading textures from filenames and storing those 
textures and their accompanying materials in the scene database. We also set the texture filename and 
the material the tree should use immediately afterwards. Next we make the call to the GenerateTree 
method to generate the actual meshes. So, for each branch mesh we create, the texture filename is passed 
to the CreateMeshContainer method which then sends that same texture filename back to the application 
defined callback which loads the actual texture used by the actor. So, the application supplied the actor 
with a texture filename which is later passed back to its callback function where it will load that texture.   

Constructor - CTreeActor 

The constructor of CTreeActor simply initializes the tree’s growth properties to some default values that 
will be overridden as soon as the application calls the SetGrowthProperties method. It also sets a default 
material in case the application does not call the SetBranchMaterial method to specifically set one. The 
constructor is shown below. Please note that the values assigned to each of the tree growth properties 
may differ in the actual source code. At the time of this writing, the development team was still 
experimenting with their preferred defaults. 
 
CTreeActor::CTreeActor() 
{ 
    // Call base constructor 
    CActor::CActor(); 
 
    // Reset all required values 
    m_nBranchSeed = 0; 
    m_pHeadNode   = NULL; 
    m_strTexture  = NULL; 
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    // Setup some useful initial growth properties 
    m_Properties.Max_Iteration_Count        = 21; 
    m_Properties.Initial_Branch_Count       = 1; 
    m_Properties.Min_Split_Iteration        = 2; 
    m_Properties.Max_Split_Iteration        = 20; 
    m_Properties.Min_Split_Size             = 0.8f; 
    m_Properties.Max_Split_Size             = 20.0f; 
     
    // 25% Chance of splitting in two 
    m_Properties.Two_Split_Chance           = 15.0f;         
    
    // 25% Chance of splitting in three 
    m_Properties.Three_Split_Chance         = 5.0f; 
  
    // 1% Chance of splitting into four 
    m_Properties.Four_Split_Chance          = 1.0f;        
     
    // 5% Chance that a branch will end when a split occurs. 
    m_Properties.Split_End_Chance           = 5.0f;      
 
    m_Properties.Segment_Deviation_Chance   = 60.0f;    // 60% chance of deviation 
    m_Properties.Segment_Deviation_Min_Cone = 0.0f;     // Min Cone Angle   
    m_Properties.Segment_Deviation_Max_Cone = 30.0f;    // Max Cone angle 
    m_Properties.Segment_Deviation_Rotate   = 10.0f;    // Max Polar rotation  
 
    m_Properties.Length_Falloff_Scale       = 0.1f;     // Segment Length falloff 
           // happens 10 times slower 
           // than branch thickness 
           // fall off  
 
    // Deviation properties for new child branch   
    m_Properties.Split_Deviation_Min_Cone   = 10.0f;    // Min Cone Angle 
    m_Properties.Split_Deviation_Max_Cone   = 70.0f;    // Max Cone Angle 
    m_Properties.Split_Deviation_Rotate     = 360.0f;   // Max Polar rotation  
 
    m_Properties.SegDev_Parent_Weight       = 0.0f;     // Weight with which the 
           // original direction of 
           // the segments parent is 
           // averaged with the 
           // deviation 
 
    m_Properties.SegDev_GrowthDir_Weight    = 0.4f;     // Weight with which the 
           // growth direction vector 
           // is averaged with the 
           // deviated segment 
           // direction 
 
    m_Properties.Branch_Resolution          = 8;        // Number of vertices used 
           // for each branch mesh 
           // segment ring 
 
    m_Properties.Bone_Resolution            = 3;        // One bone every 3 nodes 
 
    m_Properties.Texture_Scale_U            = 1.0f;    
    m_Properties.Texture_Scale_V            = 1.0f; 
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    // Growth direction of tree 
    m_Properties.Growth_Dir                 = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
 
    // Setup default material properties 
    m_Material.Diffuse   = D3DXCOLOR( 0.8f, 0.8f, 0.8f, 0.8f ); 
    m_Material.Emissive  = D3DXCOLOR( 0.0f, 0.0f, 0.0f, 1.0f ); 
    m_Material.Ambient   = D3DXCOLOR( 0.0f, 0.0f, 0.0f, 1.0f ); 
    m_Material.Specular  = D3DXCOLOR( 0.0f, 0.0f, 0.0f, 1.0f ); 
    m_Material.Power     = 0.0f; 
 
} 

 
What is important to note is that the first thing we do in this constructor is issue a call to the base class 
constructor so that CActor can perform its own initialization. Remember, the base class sets a default 
skinning method and initializes the actor’s callback array. It also sets some default parameters for the 
animation controller.  

Destructor – CTreeActor 

Like all of our destructors, this destructor is also very simple due to the fact that it hands off the clean-up 
to its Release method (which can also be called by the application to force a clean up). What we do 
release in this function is any texture filename string that may exist.  
 
When we look at the CTreeActor::SetBranchMaterial method in a moment, you will see that the texture 
filename passed in is duplicated and stored in the m_strTexture member variable (using _tcsdup). 
Therefore, we must make sure on destruction that we clean that memory up in the appropriate way. We 
then issue a call to the CTreeActor::Release method to do any final clean up. 
 
CTreeActor::~CTreeActor() 
{ 
    // Release any allocated memory 
    Release(); 
 
    // Release the properties. 
    if ( m_strTexture ) free( m_strTexture ); // Allocated by _tcsdup 
 
    // Reset variables 
    m_strTexture = NULL; 
} 

Release – CTreeActor 

The Release method is small because the derived class has very few resources to clean up. What we 
must do however is call the base class Release method so that the frame hierarchy and meshes managed 
by the base class are released.  We know the CActor base class performs quite a bit of clean up, such as 
releasing interfaces to animation controllers, destroying CTriMesh objects, and de-allocating the entire 
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frame hierarchy. Once we have called the base class’s Release method, the only additional information 
that needs to be released in CTreeActor is the virtual tree hierarchy. When we looked at the BranchNode 
structure earlier, we also saw how its constructor took care of deleting its sibling and child pointers. 
Therefore, all we have to do is delete the root branch node (m_pHeadNode), which will delete its child, 
which will delete its child, and so on, causing a traversal and deletion of the entire branch node 
hierarchy. 
 
void CTreeActor::Release() 
{ 
    // Call base release 
    CActor::Release(); 
 
    // Destroy the tree hierarchy data 
    if ( m_pHeadNode  ) delete m_pHeadNode; 
     
    // Clear variables. 
    m_pHeadNode  = NULL; 
} 

SetGrowthProperties / GetGrowthProperties – CTreeActor  

One task that the application will want to perform before generating the actual tree, is setting the growth 
properties that will influence the tree generation process. This function takes as its only parameter a 
TreeGrowthProperties structure whose values will be stored in the CTreeActor’s m_Properties member. 
We also supply a function for retrieving the properties of a CTreeActor. Both the ‘Set’ and ‘Get’ 
functions are shown below. 
 
void CTreeActor::SetGrowthProperties( const TreeGrowthProperties & Prop ) 
{ 
    // Store the properties 
    m_Properties = Prop; 
} 
 
TreeGrowthProperties CTreeActor::GetGrowthProperties( ) const 
{ 
    // Return the properties 
    return m_Properties; 
} 
 
It is important that you set the growth properties of the tree prior to calling the GenerateTree method 
since it uses the values stored in the m_Properties structure to influence tree generation. Setting the 
properties after the tree has been generated will have no effect. 
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SetBranchMaterial – CTreeActor 

Another task that you will probably want to perform before calling GenerateTree is informing the tree 
about the texture and material you would like to have applied to its mesh faces. We do this using the 
CTreeActor::SetBranchMaterial function. The function accepts two parameters. The first should be a 
string containing the filename of the texture you wish to use and the second parameter should be a 
pointer to a D3DMATERIAL9 structure containing the light reflectance properties that should be 
applied to the faces of the tree. 
 
void CTreeActor::SetBranchMaterial( LPCTSTR strTexture, D3DMATERIAL9 * pMaterial ) 
{ 
    // Free any previous texture name 
    if ( m_strTexture ) free( m_strTexture ); 
    m_strTexture = NULL; 
 
    // Store the material 
    if ( pMaterial ) m_Material = *pMaterial; 
 
    // Duplicate the texture filename if any 
    if ( strTexture ) m_strTexture = _tcsdup( strTexture ); 
} 

 
If the tree already has a texture name set, then its memory is released. The material passed is then copied 
into the m_Material member variable, replacing the default values we assigned to it in the constructor. 
Finally, we use the _tcsdup function to make a copy of the texture filename. A pointer to this copy is 
stored in the m_strTexture member variable. 

GenerateTree - CTreeActor 

We are now ready to examine the GenerateTree method, which is invoked by the caller to build the 
entire tree. We can think of this method as being the replacement to the regular actor’s 
LoadActorFromX method in that on function return, the actor will have a fully populated frame 
hierarchy (and potentially even some animation data). This function is actually just a front end function 
for the caller since the tree building mechanism is mostly done through helper functions called from this 
method. We will examine each of the helper functions one at a time afterwards. However, by looking at 
the GenerateTree function first, we will be able to see the overall order in which the various processes 
are invoked. 
 
GenerateTree accepts five parameters (the final two are optional). The first parameter is a combination 
of one or more D3DXMESH flags which instruct the tree in which of the device’s resource pools the 
vertex and index buffers for the branch meshes should be allocated. The second parameter is a pointer to 
the device that will essentially own the actor and its meshes. The third parameter is the initial 
dimensions for the root node in the branch node hierarchy. For example, passing a vector of (2, 3, 6) 
means the thickness of the root branch segment is defined as an ellipse that has radii X=2 and Y=3 in 
world space. These values are used to place the ring of vertices at the root branch node of the correct 
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size. The size of each branch segment will get smaller as we step along the branch. That is why we only 
pass in the size of the root branch node which will then be automatically downsized in each recursive 
step. The Z component of this vector describes the length of the root branch segment. Using the vector 
specified above, this means after the root node has been inserted, we will move a distance of 6 units 
along the root node’s direction vector before placing the next node in that branch. As both these nodes 
define the bottom and top of the same cylinder, this Z value really defines the length of the root branch 
segment.  The fourth (optional) parameter is another 3D vector describing the initial direction vector of 
the root node of the virtual tree. If we were to pass a vector of <1,0,0> the initial segment of the root 
branch would grow horizontally along the X axis (e.g., out of a cliff face). If the growth vector of the 
tree has been set (in the tree properties) to <0,1,0>, the tree would start to grow upwards as each new 
node was added. If you omit this parameter, a default vector of <0,1,0> will be used. This is a very 
sensible default since you will usually want your tree to grow vertically upwards. The final (optional) 
parameter is an unsigned long integer that will be used to seed the random number generator. If omitted, 
the current system time will be used to seed the random number generator. 
 
In the first section of the function, we allocate an instance of our CAllocateHierarchy class. This will be 
used later so that we can call its CreateFrame and CreateMeshContainer methods to generate the frames 
of the hierarchy and the skinned meshes. We return if a valid device was not passed. 
 
HRESULT CTreeActor::GenerateTree( ULONG Options, LPDIRECT3DDEVICE9 pD3DDevice, 
         const D3DXVECTOR3 & vecDimensions,  
         const D3DXVECTOR3 & vecInitialDir ,   
         ULONG BranchSeed ) 
{ 
    HRESULT            hRet; 
    CAllocateHierarchy Allocator( this ); 
 
    // Validate parameters 
    if ( !pD3DDevice ) return D3DERR_INVALIDCALL; 
 
    // Release previous data. 
    Release(); 
 
    // Store the D3D Device here 
    m_pD3DDevice = pD3DDevice; 
    m_pD3DDevice->AddRef(); 
 
    // Store options 
    m_nOptions = Options; 
 

 
Provided the device is valid we call the CTreeActor::Release method to release any previous data that 
may have been generated for this tree object. This allows us to use the same object to generate another 
tree simply by calling its GenerateTree method again. Remember, the Release method also passes the 
request to the base class Release method, ensuring that all frames, mesh, and attribute data is released 
before generating a new tree from scratch.  Next we make a copy of the device interface, increment the 
interface’s reference count, and store the mesh creation options in the m_nOptions member. 
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The final section of the function code builds the entire tree through the invocation of three other 
methods, each of which is responsible for one phase of the tree generation. We will look at the code to 
each of these three functions as we go along.  
 
    // Generate the branches 
    hRet = GenerateBranches( vecDimensions, vecInitialDir, BranchSeed ); 
    if (FAILED(hRet)) return hRet; 
 
    // Build the frame hierarchy 
    hRet = BuildFrameHierarchy( &Allocator ); 
    if (FAILED(hRet)) return hRet; 
 
    // Build the bone matrix tables for all skinned meshes stored here 
    if ( m_pFrameRoot ) 
    { 
        hRet = BuildBoneMatrixPointers( m_pFrameRoot ); 
        if ( FAILED(hRet) ) return hRet; 
 
    } // End if no hierarchy 
 
    // All is well. 
    return D3D_OK; 
} 

 
The GenerateBranches function is called first and completes the first phase of the tree building process. 
It is responsible to building the branch node hierarchy that contains our virtual tree representation. When 
the GenerateBranches method returns, we will have a virtual tree hierarchy, the root branch node of 
which will be pointed to by the m_pHeadNode member variable. At this point, the actor will not yet 
have had its frame hierarchy built and no mesh data will have been generated. That is what the next 
function BuildFrameHierarchy does. It accomplish phase two of the tree generation process. 
 
BuildFrameHierarchy is responsible for building the actor’s D3DXFRAME hierarchy and generating all 
skinned meshes. It does so by traversing the virtual tree hierarchy assembled in phase one and inserting 
vertices and frames for the relevant branch nodes. Once the BuildFrameHierarchy function returns, the 
actor’s frame hierarchy will have been created and all the skinned meshes will have been created and 
attached to that hierarchy as well. However, at this point there is still one final step to perform which 
you should recall from the last chapter. During the building of the frame hierarchy, we cannot store the 
bone pointers needed for our mesh containers until the frame hierarchy has been created in its entirety. 
Therefore, just as we do in the CActor::LoadActorFromX function, after the frame hierarchy has been 
created, we traverse it and calculate the absolute matrices at each frame (the bone matrices) before 
storing all the bone matrices used by a given mesh container in its bone matrix pointer array. We looked 
at the code to the CActor::BuildBoneMatrixPointers function in the previous chapter’s workbook.  
 
Now we are ready to look at the first function called in the above code which implements phase one 
(i.e., the building of the virtual tree branch node hierarchy). 
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GenerateBranches - CTreeActor 

This function is called from the GenerateTree method and is passed the dimensions of the root branch 
node, the direction of the root branch node, and (optionally) the random seed. The first thing the 
function does is seed the random number generator. The default value of the Seed parameter is zero if 
omitted from the parameter list, so the first thing we do if this is the case is set the seed value to the 
value returned from the timeGetTime function. We then store either the passed seed value or the seed 
value just calculated in the m_nBranchSeed member variable. Finally, we seed the random number 
generator via a call to srand. 
 
HRESULT CTreeActor::GenerateBranches( const D3DXVECTOR3 & vecDimensions,  
        const D3DXVECTOR3 & vecInitialDir ,  
        ULONG Seed ) 
{ 
    ULONG i; 
    ULONG BranchUID = 0; 
 
    // Seed the random number generator with current time if not specified 
    if ( Seed == 0 ) Seed = timeGetTime(); 
 
    // Store the seed value 
    m_nBranchSeed = Seed; 
 
    // Seed the generator 
    srand( Seed ); 
 

 
This function is responsible for creating the root node of the branch node hierarchy. It will then pass this 
node to the BuildBranchNodes function (a recursive function that will repeatedly call itself to create new 
branch nodes for the hierarchy). However, as mentioned earlier, we do have the option of creating a tree 
that has multiple initial branches (multiple trunks), so we may have multiple nodes in the root level of 
the tree. While we will usually expect a value of 1 to be stored in the Initial_Branch_Count member of 
the tree’s growth properties structure, this may not always be the case. Therefore, we will set up a loop 
that counts up to the value stored in the Initial_Branch_Count member and create a new branch node for 
each root branch. As we may be creating multiple branch nodes at the root level (one for each initial 
branch) we will connect these as siblings at the root level. Each root branch node will be passed into the 
BuildBranchNodes recursive function to generate the entire tree for that branch recursively. 
 
In the next section of code we show the start of that loop. Each iteration allocates a new branch node. If 
a previous node has been created in a previous iteration then we attach the new branch node to the 
previous node’s sibling pointer. If not, then this is the first node we have generated and will assign the 
m_pHeadNode member variable to point at this node. In other words, if the initial branch count was set 
to 3, in the first iteration we would generate a new branch node and assign it to the m_pHeadNode 
pointer. In the second iteration we would create a new branch node and assign it to the head node’s 
sibling pointer. In the third and final iteration we would create a new branch node and assign it to the 
sibling pointer of the node we created in loop iteration 2, and so on. Thus, we are creating a sibling list 
of Branch_Begin nodes at the root level of the hierarchy. 
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    BranchNode * pPrevNode = NULL; 
 
    // Generate the required set of head branches 
    for ( i = 0; i < m_Properties.Initial_Branch_Count; ++i ) 
    { 
        BranchNode * pNewNode = new BranchNode; 
        if ( !pNewNode ) continue; 
 
        // Store in the appropriate place 
        if ( pPrevNode ) 
            pPrevNode->Sibling = pNewNode; 
        else 
            m_pHeadNode = pNewNode; 
 
        // Setup the node 
        pNewNode->UID        = BranchUID++; 
        pNewNode->Type       = BRANCH_BEGIN; 
        pNewNode->Direction  = vecInitialDir; 
        pNewNode->Dimensions = vecDimensions; 
        pNewNode->Iteration  = 0; 

 
In the above code, you can see that for each root node we create we assign it a unique branch node ID 
(BranchUID). This value was set to 0 at the start of this function and is incremented with each new node 
we add. We also know that any branch nodes we create at the root level will be the start nodes of trunk 
branches, so we set the type of each branch node created in this loop to the type Branch_Begin. When 
building the meshes later, we will know that each of these nodes starts a new branch mesh. We also 
store the direction vector and the dimension vector passed into the function in the node. Finally, we set 
the iteration of the nodes to zero. This iteration will be passed down the branches and incremented at 
each level. Every branch node added at the root level however will be set to zero since they exist at the 
same level in the hierarchy and for all intents and purposes are the start nodes of separate trees linked at 
the root level. The position of each node is not set here as this will have been set to 0 in the constructor 
of the branch node structure. We wish each trunk branch to be positioned at (0,0,0) in tree space. 
 
We know the direction vector of the nodes we are creating because it was passed into the function. 
However, we learned earlier that each node also needs a right vector. The right vector of the root node(s) 
will be passed down the tree and modified at each node so that it remains correctly orthogonal to the 
node’s deviated direction vector. We do not require the application to pass in the right vector of the root 
node(s) as we can calculate that easily. All we have to do is find the coordinate system axis (X, Y or Z) 
that is least aligned to the direction vector. This will allow us to find a vector that is definitely not the 
same as the direction vector. We find this axis simply by taking the absolute values of the direction 
vector’s components and searching for the smallest component. For example, we know that if the 
direction vector has a Z component of 0, then we can use the Z axis of the coordinate system since this is 
definitely not close to being aligned to the direction vector. All we are doing here is safely picking an 
axis which is not the direction vector. Once we have that axis vector, we can perform the cross product 
between the direction vector and that axis vector to create the right vector for the node. The following 
code shows how we find this axis vector and cross it with the direction vector to generate the right 
vector. The right vector is then stored in the branch node. 
 
        // Get absolute normal vector 
        float x = fabsf( pNewNode->Direction.x ); 
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        float y = fabsf( pNewNode->Direction.y ); 
        float z = fabsf( pNewNode->Direction.z ); 
        float fNorm = x; 
 
        // Find the best vector to use as right vector 
        D3DXVECTOR3 vecCross = D3DXVECTOR3( 1.0f, 0.0f, 0.0f ); 
        if ( fNorm > y )  
 { fNorm = y; vecCross = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); } 
        
  if ( fNorm > z )  
 { fNorm = z; vecCross = D3DXVECTOR3( 0.0f, 0.0f, 1.0f ); } 
         
  D3DXVec3Cross( &pNewNode->Right, &pNewNode->Direction, &vecCross ); 

 
At this point we have successfully populated the new branch node with its information. However, if we 
are generating multiple branches at the root level (Initial_Branch_Count > 1) then we cannot simply 
assign the same direction and right vectors to each branch node; otherwise, each root branch node we 
create will be placed in the exact same position and with the same orientation as the other nodes in its 
sibling list. So, if we are only creating a single node, then our job is done and we pass this node into the 
BuildBranchNodes function to start the recursive branch building process. The branch node will have 
the exact direction vector that we passed into the function. However, if we are creating multiple root 
branch nodes, then we must deviate the direction vector of each node so that they are slightly different. 
This will allow us to generate a tree where multiple trunks sprout from the same location but with 
different directions. If deviation is needed, we call the DeviateNode function to perform that deviation. 
This function (which will be covered in a moment) is passed the node, the min and max cone angles and 
a rotation angle. This will deviate the vector a random angle about its right vector with a range of –180 
to +180 degrees.  It will also rotate the new deviated direction vector a random angle of 180 degrees 
about the original direction vector. Finally, it will rotate the node’s right vector so that it stays 
orthogonal to the new deviated direction vector.  
 
We covered how vector deviation is performed in theory earlier on in the chapter, so refer back if you 
need to brush up. After the DeviateNode function returns, we have modified the root node direction and 
right vectors and are ready to pass this node into the BuildBranchNodes function. This function is a 
recursive process that repeats until all the branch segments of the root node and any child branches it 
spawns are calculated. Suffice to say, when BuildBranchNodes returns program flow back to this 
function, the entire virtual tree for the current root node we are processing will have been created.  
 
        // Deviate if we're starting with more than one branch 
        if ( m_Properties.Initial_Branch_Count > 1 )  
             DeviateNode( pNewNode, 0.0f, 180.0f, 180.0f ); 
 
        // Start the recursive build for this branch 
        BuildBranchNodes( pNewNode, BranchUID ); 
 
        // Store previous node 
        pPrevNode = pNewNode; 
     
    } // Next Initial Branch 
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At the end of the loop shown in the above code, we assign the pPrevNode pointer to point at the node we 
have just generated. This way, in the next iteration (assuming multiple roots) of the loop, we have access 
to the node generated in the previous iteration so that we can add a new root node to its sibling list. 
 
When the loop finishes, the entire virtual tree hierarchy will have been created. We will examine the 
BuildBranchNodes recursive function in detail shortly, as this is where all of the work happens for phase 
one.  
 
In the next and final section of the code we test to see that the root node of the tree is valid and if not we 
return E_OUTOFMEMORY.  If this is NULL, then the very first root node could not be allocated so we 
must return failure. Otherwise, we return success. 
 
    // Fail if we failed. 
    if ( !m_pHeadNode ) return E_OUTOFMEMORY; 
 
    // Success!! 
    return D3D_OK; 
} 

 
There are three functions called from the previous function that we need to discuss. The first one called 
is DeviateNode. It will be used many times throughout the tree building process to randomly deviate the 
direction vector of a child node from that of its parent node. Let us have a look at that function next. 

DeviateNode - CTreeActor 

DeviateNode is a small function that is called many times throughout the tree generation process to 
randomly deviate the vector of a child node from that of its parent over some given a range. It takes four 
parameters. The first parameter is the node whose direction vector we wish to deviate. The direction 
vector of a newly created node that is passed into this function will initially have its direction vector 
inherited from the parent node (or in the case of the GenerateBranches function, explicitly set to the 
direction vector passed by the application). Therefore, there is no reason to also pass in the parent node’s 
vectors (direction and right) which we wish to rotate around, as initially, the vectors stored in the child 
node we pass will be equal to its parent vectors. 
 
The second and third parameters specify the minimum and maximum deviation angles in degrees. This 
is the amount we wish to rotate the direction vector clockwise or counter-counter clockwise about the 
parent node’s right vector. This forms a minimum and maximum cone of rotation.  We can initially 
perform this rotation of the direction vector about the node’s right vector, since at this point the right 
vector of the node will be equal to the right vector stored in its parent node. The final parameter is the 
maximum polar rotation angle we wish to rotate the (now rotated) direction vector around the parent’s 
direction vector. Passing a value of 180 degrees will allow us to swing the direction vector to any 
position around the branch (90 degrees left or right from the rotated position). Here is the first section of 
the code followed by an explanation.  
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void CTreeActor::DeviateNode( BranchNode * pNode,  
     float fAzimuthThetaMin,  
     float fAzimuthThetaMax,  
     float fPolarTheta ) const 
{ 
    // Cache direction 
    D3DXVECTOR3 vecNormal = pNode->Direction; 
 
    // Generate Azimuth / Polar angles 
    float fAzimuth = (float)rand() / (float)RAND_MAX; 
    float fPolar   = (float)rand() / (float)RAND_MAX; 
    fAzimuth = fAzimuthThetaMin +  
    ((fAzimuthThetaMax - fAzimuthThetaMin) * fAzimuth); 
     
    fPolar   = (fPolarTheta * fPolar) - (fPolarTheta / 2.0f); 

 
First we make a copy of the node’s direction vector. This is important as this currently holds the 
direction vector of the parent node. Once we rotate this vector it will be overwritten and we will have 
lost our ability to rotate the rotated direction vector about the original direction vector of the parent. 
 
We then generate two random rotation values for the fAzimuth and fPolar local variables. The rand 
function generates a random integer in the range [0, RAND_MAX], so dividing the result of rand by 
RAND_MAX gives a random float in the range [0.0, 1.0]. We calculate the fAzimuth angle using the 
[0.0, 1.0] random number to find the angle between the minimum cone angle and the maximum cone 
angle using interpolation. That is, to calculate the first rotation angle (around the parent’s right vector), 
we the minimum cone angle with the difference between the min and max cone angles multiplied by our 
random float. 
 
We now have an angle in degrees between the minimum and the maximum cone angle. Next we 
calculate the polar rotation angle. The 0.0 to 1.0 range random number represents an angle between 0 
and the maximum polar rotation angle passed into the function. Therefore, scaling the maximum polar 
rotation angle by the random float will produce an angle value in degrees, in the range [0.0, Max Polar 
Rotation Angle]. If the passed polar rotation limit was 180 degrees for example, this means we wish to 
map it into the [–90, +90] range so that we have a random chance of rotating the direction vector 
clockwise or counter clockwise. Therefore, we subtract from the angle the maximum angle passed 
divided by two. This maps a value of (Polar Angle / 2) to a zero degree rotation, a value of 0 to –(Polar 
Angle/2) and a value of Polar Angle to (Polar Angle / 2). This is exactly what we want.  
 
Now that we have our two rotation angles, we need to decide whether the first rotation angle (fAzimuth) 
is going to rotate the direction vector of the node clockwise or counter-clockwise around the parent’s 
right vector. The following code uses a member function called ChanceResult to generate a number 
between 1 and 100. This function returns true if it generated a random number smaller than the value 
passed in (typically a value in the range of 0 to 100 also). We use this function frequently through the 
tree generation process to decide whether a branch node should be deviated or whether it should spawn 
child branches. Because we want an equal probability for each direction, we pass in a value of 50. The 
function will return true if it generates a random number between 0 – 49, otherwise, it will return false. 
As you can see, the parameter we pass into this function is really a probability value; the lower the value 
we pass in, the less chance the function has of returning true.   
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// Deviate in both directions to prevent a tendency to lean, whilst still 
    // providing support for our 'dead zone' of rotation. 
    if ( ChanceResult( 50 ) == true ) fAzimuth = -fAzimuth; 

 
If the function returns true, we negate the rotation angle so that rotation happens in the opposite 
direction. 
 
Now we have two final rotation angles, and it is time to perform the rotations. In the first step, we build 
a rotation matrix that will rotate vectors about the node’s right vector (currently equal to the parent’s 
right vector) by fAzimuth degrees. We then rotate the node’s direction vector about the right vector by 
transforming it using this matrix. This step rotates the local Z axis of the new node into either the left or 
right semi-circle surround the parent node direction vector. 
 
    // Rotate the normal 
    D3DXMATRIX mtxRot; 
    D3DXMatrixRotationAxis( &mtxRot, &pNode->Right, D3DXToRadian( fAzimuth ) ); 
    D3DXVec3TransformNormal( &pNode->Direction, &vecNormal, &mtxRot ); 

 
The first rotation has been performed and our node’s direction vector will now be rotated either 
clockwise or counter-clockwise about the parent’s right vector. Next we want to perform the polar 
rotation. In order to do this we must rotate the node’s direction vector around the parent’s direction 
vector (which is why we made a copy in vecNormal at the start of the function) by an angle of fPolar 
degrees. We build a matrix that performs this rotation and multiply both the node’s direction vector and 
right vector by this matrix. This rotates the direction vector into its final position and also rotates the 
right vector by the same amount such that it remains orthogonal to the direction vector.  
 
    D3DXMatrixRotationAxis( &mtxRot, &vecNormal, D3DXToRadian( fPolar ) ); 
    D3DXVec3TransformNormal( &pNode->Direction, &pNode->Direction, &mtxRot ); 
    D3DXVec3TransformNormal( &pNode->Right, &pNode->Right, &mtxRot );    
} 

 
Finally, we run some vector generation code to ensure that the right vector and direction vector are 
completely orthogonal. We discussed a similar technique in Chapter Four of Module I when dealing 
with vector re-generation for the camera class. Because we are passing a direction and right vector down 
through the recursive process and are repeatedly applying rotations to it, without this next step, floating 
point accumulation errors would build quite quickly and we would lose orthogonality. Since these 
vectors represent our node coordinate system which is used in many places during tree and mesh 
creation, we must not let this happen. 
 
   // Ensure that these new vectors are orthogonal 
   D3DXVec3Cross( &vecNormal, &pNode->Direction, &pNode->Right ); 
   D3DXVec3Cross( &pNode->Right, &vecNormal, &pNode->Direction ); 
   D3DXVec3Normalize( &pNode->Right, &pNode->Right ); 
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ChanceResult - CTreeActor 

Before continuing to cover the other functions called by GenerateBranches, let us have a look at the 
ChanceResult function which was called from DeviateNode (and called from various other places 
throughout the tree generation process). 
 
The function generates a value between 0.0 and 1.0 by dividing the value returned from rand by 
RAND_MAX. We then multiply this float by 100 so that we have a value between 0.0 and 100.0. If this 
value is smaller than the probability value passed in (itself a value between 0.0 and 100.0) the function 
returns true (simulating that the probability has come true in this instance). Otherwise, false is returned. 
 
bool CTreeActor::ChanceResult( float fValue ) const 
{ 
    // REALLY simple percentage chance prediction 
    if ( (((float)rand() / (float)RAND_MAX) * 100.0f) < fValue ) return true; 
    return false; 
} 

BuildBranchNodes – CTreeActor 

Recall that after GenerateBranches has deviated the direction vector for each root node (in the multiple 
root branch case) it passes the root node into the BuildBranchNodes function. This function is called 
once by GenerateBranches for each root node. The BuildBranchNodes function is really the heart of the 
tree generation process. Not surprisingly, it is a recursive function. When the initial call made from 
GenerateBranches returns, the entire branch node hierarchy for that root branch will have been created. 
 
While recursive functions are often tricky to follow along with in your head, the tasks that this function 
must perform are really quite simple. The function is passed a branch node that has already been 
generated and it must create a new child node for that node. It must also decide whether the new child 
node (which continues the branch) should be a normal branch node or whether it should be a 
Branch_End node. It must also decide whether the child node it has generated will spawn additional 
child branches (new Branch_Begin nodes). Of course, when making these decisions, it will use the 
growth properties structure that the application passed in when starting the process. 
 
When the function creates and attaches the new child node, it fills out all its information and then sends 
that new node into the BuildBranchNodes function with a recursive call. Therefore, each call to this 
function will generate a new node, attach it to the parent node (i.e., the node passed in) and recursively 
call itself passing in the new node as the parent node in the next recursive call. This process continues 
until an instance of the function determines the end of the branch as been reached and returns. 
 
Recall from our discussion of GenerateBranches that this function was passed two parameters. The first 
was a root node of a root branch and the second was the current value of the BranchUID variable. The 
BranchUID variable was local to the GenerateBranches function and was incremented every time a root 
node was created. However, we want this value to be incremented for every node that is created, so we 
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pass this value by reference into the BuildBranchNodes call. This means that with each recursive call to 
BuildBranchNodes when a new branch node is created and attached to the tree, the same physical 
variable is accessed from each level of the recursion. The value will be increased with every node 
created and then assigned to that node as its unique ID. 
 
What was not obvious in the GenerateBranches function is that BuildBranchNodes function accepts a 
third parameter: the current iteration count. Recall that in each node we store the current iteration which 
is incremented with each recursive call. This value represents the current depth of the tree where the 
node is stored. We use this iteration count for both determining when a branch has become too long (and 
should be terminated), and when calculating the texture coordinates for the branch meshes. We saw in 
the GenerateBranches function that each root node was assigned a value of 0. This is as we might expect 
because the nodes in the root level are in the first level of the hierarchy. However, that function did not 
pass in the iteration parameter when it called BuildBranchNodes for each root generated, which means 
the default iteration value of 0 will be used when adding the second node of each root branch to the tree. 
The result is that both the first and second nodes in a branch will have an iteration count of zero. For all 
nodes we add to the branch after that, it is incremented. Thus, the third branch segment will have an 
iteration count of 1 and the fourth will have an iteration count of 2, and so on.  (it will always be 
incremented for all recursive calls from that point on). Is this a mistake? Not at all! 
 
Although we have not discussed this concept previously, we do this because it is more intuitive during 
the tree building process if the iteration count of a branch node actually describes the index of the branch 
segment (cylinder) it creates. When we add the initial node, no segment is created because we need two 
nodes to make a segment. When the second node is added to the branch it is assigned an index count of 
0 since its addition to the branch essentially adds the first segment to the branch. When we add the third 
node to the tree (node 2 because it is zero based), this is assigned an iteration count of 1 since its 
addition to the branch adds the second segment (segment 1), and so on.  
 
Let us have a look at the code a couple of sections at a time.  
 
void CTreeActor::BuildBranchNodes( BranchNode * pNode,  
          ULONG & BranchUID,  
          ULONG Iteration /* = 0 */ ) 
{ 
    ULONG NewNodeCount = 1, i; 
    bool bEnd = false; 
 
    // Bail if this is a branch end 
    if ( pNode->Type == BRANCH_END ) return; 

 
In the first section of code we set a local variable called NewNodeCount to 1. Keep in mind that, 
assuming the parent node we have been passed is not a branch end node, we will always add at least one 
node to this branch (even if it is just a Branch_End node that will cause the processing of this branch to 
terminate in the next recursive call). The reason we use this variable is due to the fact that we may 
increment this number throughout the body of the function if it is determined that the passed parent node 
should not only spawn another branch segment, but also one or more new branch start segments. If we 
decide later in the function that 2 new branches are going to be spawned from this node, this value will 
be set to 3. We can then create a loop that creates these three new nodes as siblings and attaches them to 
the parent node’s (the node passed in) child list. 
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Notice how we initially set a boolean variable called bEnd to false. Provided the parent node is not 
already a branch end node, we will continue the branch by at least one more node. If at some point we 
determine that the child node we create should end the branch, we will set this boolean to true. This will 
be used to setup a branch end node instead of a normal branch node and ensure that when the next 
recursive call happens, and the parent branch node passed in is an end node, the recursive path will 
terminate all the way back to the last un-processed fork along the recursive road. 
 
We can see this termination process being performed at the bottom of the code shown above. It tests the 
parent node to see if it is of type BRANCH_END. If it is, then the branch has ended and we should not 
add any more branch segments to that branch. In this case, we simply return. This terminates the 
recursive process of adding nodes to that branch. 
 
If program flow gets past the code shown above, then it means the parent node passed into the function 
is not an end node and we need to continue this branch by at least one more node. What we must 
determine however is if this new node we are about to add to the branch is an end node. We perform a 
series of tests to determine this, and if any of these tests pass, the bEnd local boolean is set to true so that 
we know the new node we are about to create and add to this branch should be an end node. 
 
First we test if the iteration value passed into the function (which is incremented every time the function 
is called and we step down another level in the hierarchy) is equal to the Max_Iteration_Count member 
of the tree’s growth properties. This is a fixed termination level and our way of limiting the depth of the 
hierarchy that is ultimately created. If this is the case, then the recursive process has generated a tree that 
is of the maximum depth and the next branch node we add should be a branch end node. Thus, we set 
the branch end boolean to true, as shown below. Remember, the Iteration variable is a parameter to the 
function that is increased as the function repeatedly calls itself to step along the branch. 
 
    // We've reached our end point here. 
    if ( Iteration == m_Properties.Max_Iteration_Count ) bEnd = true; 

 
Next we test to see if there is any chance of the node we are about to create spawning new child 
branches. In the TreeGrowthProperties structure we have several members that help us control the 
circumstances under which splits in the branch might happen.  
 
First, we will definitely not want to create any splits if the iteration count passed is already larger than 
the maximum iteration count set for the tree. Otherwise, we would be generating a new branch at a level 
in the hierarchy that is deeper than we want the hierarchy to be. Therefore, we will certainly only 
consider splitting from this node if the current iteration count (tree depth) is smaller than the maximum 
iteration count set for the tree. Additionally, we only introduce new child branches at this node if the X 
and Y dimensions of the parent node (which are tapered as we step along the branch) are within the size 
ranges specified by the Min_Split_Size and Max_Split_Size tree growth properties. If either the X or Y 
dimensions fall outside this range, then the thickness of the branch is currently such that the application 
does not wish splits to happen. These properties are great for making sure that we do not spawn 
branches from very slim parent branches or that we do not spawn them from the base of a trunk branch 
where the branch is the thickest. The following code shows the conditional and the code block that will 
be executed only if we are allowed to spawn child branches from this node. 
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    // Chance of splitting into N ? 
    if (  Iteration <  m_Properties.Max_Iteration_Count &&  
          Iteration >= m_Properties.Min_Split_Iteration && 
          Iteration <= m_Properties.Max_Split_Iteration && 
          pNode->Dimensions.x >= m_Properties.Min_Split_Size &&  
          pNode->Dimensions.x <= m_Properties.Max_Split_Size && 
          pNode->Dimensions.y >= m_Properties.Min_Split_Size &&  
          pNode->Dimensions.y <= m_Properties.Max_Split_Size ) 
    { 
        if ( ChanceResult( m_Properties.Two_Split_Chance ) )   NewNodeCount = 2; 
        if ( ChanceResult( m_Properties.Three_Split_Chance ) ) NewNodeCount = 3; 
        if ( ChanceResult( m_Properties.Four_Split_Chance ) )  NewNodeCount = 4; 
 
        // Are we splitting here 
        if ( NewNodeCount > 1 ) 
        { 
            // Chance that a split will terminate this branch. 
            if ( ChanceResult( m_Properties.Split_End_Chance ) ) bEnd = true; 
 
        } // End if split here 
 
    } // End if we've reached our limit 

 
So what is happening inside the code block above? For starters, the fact that we are in the code block 
means that a new branch can be spawned from this node. Of course, it does not mean a new branch will 
be spawned since this will be decided using the split probability values stored in the tree growth 
properties structure.  
 
Notice that we make three calls to the ChanceResult function (covered earlier). First we call it for the 
two split case. The chances of this test succeeding depend on the value stored in the Two_Split_Chance 
tree growth property. The higher the probability value we pass in, the better the odds that it will return 
true. We perform the two split, three split, and four split tests in that order such that higher branch splits 
(which typically have much lower probabilities assigned by the application) take precedence. As shown 
above, at the end of these tests, the NewNodeCount local variable will have been updated to contain the 
exact number of nodes that should be created at this level of the branch and attached to the parent node 
passed in as child nodes. This number is the sum of the new child branches we wish to add, plus one for 
the node that continues the current branch. 
 
In the final section of the code above, you can see that provided we have introduced at least one new 
child branch at this node (NewNodeCount > 1), we will perform another probability test to see if the 
normal branch node we are about to add to the parent node (to continue the current branch) should be an 
end node terminating the current branch being processed. The Split_End_Chance growth probability 
variable is used for this test. This allows the application to control the likelihood that a branch will 
terminate at a node where new child branches are spawned (i.e., a fork in the branch). 
 
At this point in the function, we know we have to create at least one new node to continue the branch, 
even if that node is an end node. In addition, we may also have to create one Branch_Begin nodes for 
each new branch starting at this new node. Forgetting about the new child branch nodes for now, let us 
first create a node that will be the continuation of the branch we are currently processing. 
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Before we create our new child branch node, we must calculate the size of this node. As discussed 
previously, every node in a branch will be smaller than the node before it (the parent node) so that our 
branches gradually taper off into tips by the time we reach the end node of that branch. In the next step 
we will calculate the dimensions of the new node we are about to create. How do we calculate the size 
of each node so that we have a gradual tapering from segment to segment such that the dimensions of 
the end node of the branch are zero? 
 
We know that the dimensions of the root node describe the thickest part of the tree. That is, the X and Y 
dimensions of the root node describe the largest ring of vertices we will create. We also know that the 
TreeGrowthProperties::Max_Iteration_Count member contains the maximum depth of the hierarchy. 
Essentially, this tells us the iteration where the branch should have zero dimensions. Therefore, if we 
divide the X and Y dimensions of the root node by the maximum iteration count, we have a value that 
we can subtract from each node during each iteration. For example, if the root X dimension was 100 and 
the maximum iteration count was 25, we would calculate the amount to subtract from the dimensions of 
each node as follows: 
 
SubtractAmount = 20 / 5 = 4; 
 
So we would need to subtract 4 in each recursion from the X dimensions of the parent node when 
calculating the child node’s dimensions. Remembering that in the next iteration, the child node will be 
the parent that will be reduced by another 4 units when calculating the dimensions of its child, we can 
see that the X dimension at each recursion would be: 
 
Node 0 : X = 20 
Node 1 : X = 16 
Node 2 : X = 12 
Node 3 : X = 8 
Node 4 : X = 4 
Node 5 : X = 0 ( end node with single vertex ) 
      
As you can see, using this calculation we can recursively reduce the size of the nodes in each level of the 
hierarchy such that at the maximum iteration count, we have a branch tip node with zero size. We do 
this for both the X and Y dimensions since they may have different radii.  We also do the same with the 
Z dimension since we want the length of each segment to get smaller as we traverse the length of the 
branch. However, we normally do not want the same level of downscaling from node to node as this 
would create very small stumpy segments at the ends of the branches. Unlike the X and Y dimensions, 
we are not aiming to get the length of the branch segment to be zero at the end node. To control the 
falloff in Z, we introduce an additional property (Length_Falloff_Scale) which can be used to allow the 
reduction in length from node to node to happen at a reduced rate. For example, if we set this property to 
0.25, the length of the nodes will get smaller at a ratio of ¼ of the size reduction in branch thickness.  
 
This next section of code calculates the three reduction values we need to subtract from the parent 
node’s dimensions in order to calculate the dimensions of the new node.   
 
    // Scale Ratio 
    float ScalarX = (m_pHeadNode->Dimensions.x / 
     (float)m_Properties.Max_Iteration_Count); 
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    float ScalarY = (m_pHeadNode->Dimensions.y / 
     (float)m_Properties.Max_Iteration_Count); 
     
    float ScalarZ = ((m_pHeadNode->Dimensions.z / 
     (float)m_Properties.Max_Iteration_Count) * 
      m_Properties.Length_Falloff_Scale ); 
 
    // Do we have enough room for another segment? 
    if ( pNode->Dimensions.x < ScalarX) bEnd = true; 
    if ( pNode->Dimensions.y < ScalarY) bEnd = true; 
    if ( pNode->Dimensions.z < ScalarZ) bEnd = true; 

 
As the above code demonstrates, after we have calculated the three reduction amounts (ScalarX, ScalarY 
and ScalarZ) we next test to see if any of these values are larger than the current dimensions of the 
parent node. If this is the case then it means the parent node is either too thin or too short to reduce by a 
suitable amount. When this happens, the child node we are about to add should end the branch (notice 
that we set the bEnd boolean to true).  
 
At this point, we are ready to create the new child node that continues the current branch. We will deal 
with any new branch start nodes we may have decided to create in a moment. All we are dealing with 
here is the node that will continue the branch to which the parent node belongs. Here is the code that 
allocates a new child branch node and populates its members with the correct information. 
 
    // Generate segment node (continuation of the branch) 
    BranchNode * pNewNode  = new BranchNode; 
 
    if ( !pNewNode ) return; 
 
    // Store node details 
    pNewNode->UID          = BranchUID++;           
    pNewNode->Parent       = pNode; 
    pNewNode->Dimensions.x = pNode->Dimensions.x - ScalarX; 
    pNewNode->Dimensions.y = pNode->Dimensions.y - ScalarY; 
    pNewNode->Dimensions.z = pNode->Dimensions.z - ScalarZ; 
    pNewNode->Position     = pNode->Position +  
         (pNode->Direction * pNode->Dimensions.z); 
    pNewNode->Direction    = pNode->Direction; 
    pNewNode->Right        = pNode->Right; 
    pNewNode->Type         = bEnd ? BRANCH_END : BRANCH_SEGMENT; 
    pNewNode->BranchSegment= pNode->BranchSegment + 1; 
    pNewNode->Iteration    = (USHORT)Iteration; 
    pNode->Child           = pNewNode; 
 
    // Clamp to minimum size, this is an end of branch 
    if ( pNewNode->Dimensions.x < 0.0f ) pNewNode->Dimensions.x = 0.0f; 
    if ( pNewNode->Dimensions.y < 0.0f ) pNewNode->Dimensions.y = 0.0f; 
    if ( pNewNode->Dimensions.z < 0.0f ) pNewNode->Dimensions.y = 0.0f; 

 
We increment the passed BranchUID member before assigning it to the node so that this node has a 
unique ID. We then store the address of the parent node (the node passed into this function) in the new 
node’s Parent pointer. We also subtract the three scalar values we calculated previously from the parent 
node’s dimensions before assigning them as the new dimensions of the child node.  
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Notice how we assign the new node its position. Its position is the product of adding the parent node’s 
direction vector scaled by the parent node’s Z dimensions (the length of the parent node) to the position 
of the parent node. Essentially, we are generating the new position by placing the child at the position of 
the parent, then sliding the child node along the direction vector of the parent by the Z length. This is an 
important concept to grasp. The Z dimension of any node actually describes the length of the segment 
for which that node forms its base ring of vertices. Next (in the above code) we copy the direction vector 
and the right vector of the parent into the child; we will deviate these in a moment.  
 
The value we assign to the node’s Type member depends on whether the local bEnd boolean was set to 
true in our tests. If it was, then the new node becomes a BRANCH_END type and will be the last node 
in that branch. Otherwise, it is assigned the BRANCH_SEGMENT type which means it is just another 
normal segment added to the current branch. We also store in the node’s BranchSegment member the 
value stored in the parent node increased by one. Remember, this value will start off at zero in every 
BRANCH_BEGIN node so that it contains the local index of the node within the branch. The iteration 
value passed into the function (which would have been incremented in a previous call) is also stored in 
the node and then the parent node’s child pointer is assigned to point at this new node. Finally, we test to 
see if any of the node’s dimensions are smaller than zero and clamp them to zero if this is the case. This 
could only potentially be the case for a node that was already determined to be a branch end node. 
 
The new node which continues the current branch has now been populated and attached to its parent, 
adding another segment to the branch and another level to this portion of the hierarchy. We now decide 
whether the child node should be randomly deviated using our ChanceResult function and the 
TreeGrowthProperties::Segment_Deviation_Chance member. This property holds the probability that 
segments within the same branch will deviate. The code that performs the deviation is shown below. 
 
    // Chance of changing direction 
    if ( ChanceResult( m_Properties.Segment_Deviation_Chance ) )  
    { 
        // Deviate the node 
        DeviateNode( pNewNode,  
      m_Properties.Segment_Deviation_Min_Cone, 
      m_Properties.Segment_Deviation_Max_Cone, 
      m_Properties.Segment_Deviation_Rotate); 
 
        // Weight with parent 
        pNewNode->Direction += pNode->Direction *  
      m_Properties.SegDev_Parent_Weight; 
 
        // Weight with growth direction 
        pNewNode->Direction += m_Properties.Growth_Dir * 
      m_Properties.SegDev_GrowthDir_Weight; 
 
        // Normalize 
        D3DXVec3Normalize( &pNewNode->Direction, &pNewNode->Direction ); 
 
    } // Change direction 

 
If the ChanceResult function returns true, we enter the code block that deviates the child node’s 
direction vector. We first call the DeviateNode method passing in the minimum cone angle, the 
maximum cone angle, and the rotation properties for node deviation within the same branch. When this 
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function returns, the new node’s direction vector will have been randomly deviated from its parent. 
However, we also have other properties to configure to restrain that deviation. For example, next we 
calculate how much the parent node’s direction vector should be factored into the deviated vector. We 
add the new node’s direction vector and the parent node’s vector multiplied by the 
SegDev_Parent_Weight property (usually a value between 0.0 and 1.0). The lower this weight value, the 
less influence the parent node’s direction vector will have over the direction vector generated for the 
child. Next, we add the Growth_Dir vector to the new node’s direction vector. Growth_Dir is a tree 
growth property describing a general growth direction for the tree. The influence it will have is 
determined by the SegDev_GrowthDir_Weight property. After we have added these two vectors to the 
deviated direction vector, we renormalize it. The vector is now deviated and influenced to some degree 
by the parent node’s vector and the general growth direction. 
 
At this point, our child node is complete. All we have to do is continue to process the branch to which it 
belongs by calling the BuildBranchNodes function again in a recursive call. This time, the new child 
node we have just created is passed as the parent node. The current value of the BranchUID variable is 
also passed so that it can continue to be incremented and assigned to nodes in this branch when they are 
generated in future recursions. It is at this point that we also increment the current Iteration value before 
passing it into the next recursion. With each call into the recursive process, the Iteration value will be 
incremented so that as we step down the hierarchy from branch node to child branch node, the iteration 
values of the nodes stored at that level in the hierarchy are increased. 
 
    // Generate this new branch segment 
    BuildBranchNodes( pNewNode, BranchUID, Iteration + 1 ); 
 
    // Reduce NewNode Count 
    NewNodeCount--; 

 
One thing to bear in mind is that this function is recursively called until the parent node passed in is a 
branch end node, at which point it exits. When the function returns to the current iteration, all the child 
nodes (and any child branches spawned from those child nodes) will have been generated.  
 
Of course, our job is not yet done for this node. We may have determined earlier in the function that 
additional child branches should be spawned from the node we have just created. Notice in the above 
code that after we have added our new node, we decrement the local NewNodeCount variable to account 
for the fact that we have already processed one of the new nodes we needed to add. 
 
If the NewNodeCount value is still non-zero after the previous decrement, it means that one or more 
child branches (branch start nodes) will be spawned from this node. Note that these will need to be 
added to the node’s sibling list since the new branch nodes we are about to create and the child node we 
just added all share the same parent. 
 
Before we add these new branch child nodes, we must determine whether the thickness of the current 
branch can accommodate child branches which may be protruding at extreme angles. When we create a 
new node to continue a branch, we shrink its size from its parent by one step (where a step is the value 
contained in ScalarX, ScalarY, and ScalarZ). However, when a root node of a new child branch is about 
to be placed, it is likely to be deviated by a much greater angle than the deviation performed on nodes 
within the same branch. Since the ring of vertices at the start node of a new branch will essentially be 
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placed inside the parent branch (i.e., positioned at the same position as the child node we just generated) 
we want to make sure that the child branch is thin enough such that when rotated by 45 degrees for 
example, the vertices placed at its first node do not pierce the skin of the parent branch (Figure 12.38). 
 

 
Figure 12.38 

 
As you can see, our tree is a collection of disjoint meshes (one per branch). It is only the fact that we 
position the start nodes of those branches inside their parent branches that it looks like a single tree. 
However, as Figure 12.38 demonstrates, we need to make sure that any child branches we add are 
reduced enough in size with respect to the parent that we have room to rotate without the ring of vertices 
breaking the through the skin of the parent branch. 
 
After some trial and error in the labs, we learned that by reducing the size of a new child branch by four 
steps (instead of one) we can generate children that can be freely rotated without much cause for 
concern. Therefore, instead of subtracting ScalarX, ScalarY, and ScalarZ from the size of the parent 
node as we did above when adding a node to continue the branch, when a new branch start node is 
spawned, we reduce its dimensions by four times that amount. So if we are at node N within a parent 
branch and a new branch is started at that node, the dimensions of that first node in the new branch will 
be equal to the thickness of node N+4 in the parent branch. 
 
In the following code we assign this multiplier to a variable called fStepScale. We then perform tests to 
see if the dimensions of the parent node are smaller than the ScalarX, ScalarY, and ScalarZ values 
multiplied by the step scale. If the parent node is too thin to step down four levels in size, then we set the 
bEnd boolean to true.  
 
    // Do we have enough room to split ? 
    float fStepScale = 4.0f; // Reduce size by 4 times usual amount 
     
    if ( pNode->Dimensions.x < (ScalarX * fStepScale) ) bEnd = true; 
    if ( pNode->Dimensions.y < (ScalarY * fStepScale) ) bEnd = true; 
    if ( pNode->Dimensions.z < (ScalarZ * fStepScale) ) bEnd = true; 
     
    if ( bEnd ) NewNodeCount = 0;  
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If any of the dimensions of the parent node are so small that we would not be able to sufficiently reduce 
the size of the branch start nodes we are about to create, we set the NewNodeCount to zero. In this case, 
regardless of whether we determined a need to spawn child branches, no new branches will be started at 
this node. 
 
If NewNodeCount is still larger than zero then we need to add one or more nodes to the parent node’s 
child list in a loop. Each new node we are about to add in this step should be of the type 
BRANCH_BEGIN. For each node we allocate, we will assign it to the sibling pointer of the node that 
came before it in the loop, so we use the local pPrevNode pointer to store the address of the branch node 
that was allocated in the previous iteration of the loop. Initially we set the pPrevNode pointer to 
pNewNode, which is the node we allocated previously when adding another segment to the current 
branch. This node was assigned to the child pointer of the parent node, so any new nodes we add now 
should be attached to its sibling list. 
 
    // Generate new split off branches ? 
    BranchNode * pPrevNode = pNewNode; 
     
    for ( i = 0; i < NewNodeCount; i++ ) 
    { 
 
        BranchNode * pNewNode = new BranchNode; 
        if ( !pNewNode ) continue; 
 
        // Store node details 
        pNewNode->UID          = BranchUID++;     
        pNewNode->Parent       = pNode; 
        pNewNode->Dimensions.x = pNode->Dimensions.x - (ScalarX * fStepScale); 
        pNewNode->Dimensions.y = pNode->Dimensions.y - (ScalarY * fStepScale); 
        pNewNode->Dimensions.z = pNode->Dimensions.z - (ScalarZ * fStepScale); 
        pNewNode->Position     = pNode->Position +  
        (pNode->Direction * pNode->Dimensions.z); 
        pNewNode->Direction    = pNode->Direction; 
        pNewNode->Right        = pNode->Right; 
        pNewNode->BranchSegment= 0; 
        pNewNode->Iteration    = (USHORT)Iteration; 
        pNewNode->Type         = BRANCH_BEGIN; 
 
        // Deviate the node 
        DeviateNode( pNewNode,  
      m_Properties.Split_Deviation_Min_Cone, 
      m_Properties.Split_Deviation_Max_Cone, 
      m_Properties.Split_Deviation_Rotate ); 
 
        // Link the node 
        pPrevNode->Sibling = pNewNode; 
 
        // Generate this new branch 
        BuildBranchNodes( pNewNode, BranchUID, Iteration + 1 ); 
 
        pPrevNode = pNewNode; 
 
    } // Next New Branch Node 
} 
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That was the final section of the BuildBranchNodes function. Notice that we assign each node a unique 
ID before incrementing the BranchUID variable. The dimensions we assign to each branch start node are 
the dimensions of the parent node reduced by four times the step reduction value used for inter-branch 
nodes. As before, the position of each node is simply calculated by sliding the new node from the parent 
node’s position along the parent node’s direction vector by the distance described in the parent node’s Z 
dimension. The direction and right vectors are also copied straight from the parent node, and they will 
be deviated in a moment. 
 
For each node we add in this loop we assign the BranchSegment member of that node to zero, because 
this member describes the index of the node relative to the start of the branch. Since we are adding 
branch start nodes here, the index of each new node we create will be zero. Of course, we also assign the 
type BRANCH_BEGIN to each node we create, as each one will begin a new branch mesh. 
 
After we have assigned all the properties, we deviate the direction vector. We will usually want new 
branches to have a more obvious change in direction with respect to their parent branches so that we can 
see them sprouting out from the tree. When DeviateNode is called, we send in different minimum and 
maximum cone angles and polar rotation angles that we did before. These values specify the deviation 
range for nodes that start a new branch. Note that after we have deviated the direction vector of a new 
branch start node, we do not factor in the parent node’s direction or the growth direction of the entire 
tree. The direction vector for this node will become the initial parent direction for the rest of the branch. 
The overall growth direction vector for the tree will be factored in eventually for the other nodes in the 
branch we are just starting. So even if the initial direction vector of the branch was (1,0,0), an overall 
growth direction of (0,1,0) would still make the other segments in the new branch start to grow upwards 
as they grow out. 
 
Once the node has been created and populated, we attach it to the previous node’s sibling pointer before 
the function calls itself recursively passing in the new node as the parent. When program flow returns 
back to the current instance of the function, the entire branch of nodes will have been created.  
 
Before moving on, please make sure that you understand how the above function works by calling itself 
recursively to generate an entire tree of branches. 

Phase One Complete 

We have now covered all the code needed to implement phase one -- the building of the virtual tree. You 
will recall that phase one was initiated by CTreeActor::GenerateTree which was invoked by the 
application. The GenerateTree method called the GenerateBranches function to complete stage one. 
GenerateBranches called the recursive function BuildBranchNodes to build a virtual tree for each root 
branch node.  
 
The GenerateTree function oversees the entire tree building process and we have only covered the first 
phase. Let us have another look at the GenerateTree method to remind ourselves of the functions it calls 
which we have yet to cover. 
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HRESULT CTreeActor::GenerateTree(  ULONG Options,  
      LPDIRECT3DDEVICE9 pD3DDevice,  
      const D3DXVECTOR3 & vecDimensions,  
      const D3DXVECTOR3 & vecInitialDir ,   
      ULONG BranchSeed /* = 0 */ ) 
{ 
    HRESULT            hRet; 
    CAllocateHierarchy Allocator( this ); 
 
    // Validate parameters 
    if ( !pD3DDevice ) return D3DERR_INVALIDCALL; 
 
    // Release previous data. 
    Release(); 
 
    // Store the D3D Device here 
    m_pD3DDevice = pD3DDevice; 
    m_pD3DDevice->AddRef(); 
 
    // Store options 
    m_nOptions = Options; 
 
    // Generate the branches 
    hRet = GenerateBranches( vecDimensions, vecInitialDir, BranchSeed ); 
    if (FAILED(hRet)) return hRet; 
 
    // Build the frame hierarchy 
    hRet = BuildFrameHierarchy( &Allocator ); 
    if (FAILED(hRet)) return hRet; 
 
    // Build the bone matrix tables for all skinned meshes stored here 
    if ( m_pFrameRoot ) 
    { 
        hRet = BuildBoneMatrixPointers( m_pFrameRoot ); 
        if ( FAILED(hRet) ) return hRet; 
 
    } // End if no hierarchy 
 
    // All is well. 
    return D3D_OK; 
} 

 
After we have the virtual tree from phase one, it is time to move onto the phase two. Phase two is the 
construction of the actor’s skeleton and branch skins and is initiated with a call to BuildFrameHierarchy  
 
Notice how BuildFrameHierarchy accepts one parameter -- a pointer to an ID3DXAllocateHierachy 
interface. The CAllocateHierarchy class we developed has not been changed since our previous 
discussions. It contains both the CreateFrame and CreateMeshContainer methods that we need to 
allocate frames for our actor’s hierarchy and convert any regular meshes we create for the branches into 
API compliant skinned meshes.  Let us now follow the path of execution into the BuildFrameHierarchy 
function. 
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BuildFrameHierarchy – CTreeActor 

The BuildFrameHierarchy function is the gateway to the recursive process for phase two of the tree 
generation process. It has only one task -- to call the BuildNode function with parameters that initialize 
the recursive process. 
 
HRESULT CTreeActor::BuildFrameHierarchy( ID3DXAllocateHierarchy * pAllocate ) 
{ 
    D3DXMATRIX mtxRoot; 
     
    // Initial frame is identity 
    D3DXMatrixIdentity( &mtxRoot ); 
 
    // Build the nodes 
    return BuildNode( m_pHeadNode, NULL, NULL, mtxRoot, pAllocate ) ; 
} 

 
The BuildNode function is passed the root node of the branch node hierarchy constructed in phase one. 
This function also needs to be passed a combined frame matrix that is initially set to identity (as the root 
node has no parent and we have not generated any frames yet). We also pass in the CAllocateHierarchy 
interface pointer so that the BuildNode function will be able to use its methods to generate meshes and 
frames. When this function returns, the entire frame hierarchy will have been constructed and populated 
with skinned meshes (one per branch). 

BuildNode – CTreeActor 

The BuildNode function is a function that recurses until the frame hierarchy and all its meshes have 
been created. Before we look at the code, let us briefly examine the design specifications so that we 
know what this function must do. 
 

      Frame Hierarchy Creation  
 

This function will need to recursively step through the branch node hierarchy (the virtual tree) 
and examine each node. If a BRANCH_BEGIN node is encountered then we know that this node 
will be the root bone of a given mesh. Also, if we reach any type of node (except 
BRANCH_END) that has an iteration where Node->BranchSegment % Bone Resolution = 0, we 
know that we have skipped the correct number of nodes and it is time to add another bone. 
Remember, the bone resolution property tells this procedure how frequently it should convert 
branch nodes into actual bones. The BranchSegment member of a node contains its zero based 
index relative to the start of the branch. 
 
Once the function determines that the current branch node is one that should be a bone, we have 
to allocate a new D3DXFRAME and attach it to the actor’s frame hierarchy. Obviously, in the 
very first iteration the actor will have no hierarchy, so the first frame we create will be the root 
frame of the actor (the actor’s m_pRootFrame member will point at this frame). 
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Once we have created a frame for a given node, we will also set that branch node’s BoneNode 
boolean to true so that we will know later on that this node is a node that created a bone. This 
will be needed when building the skin and mesh data. We will also store a pointer to the frame 
we have just created in the branch node’s pBone pointer. Once again, this is so we can access it 
later and pair branch nodes with frames. 
 
Now that a frame has been allocated for this branch node, we need to populate it with 
information. Obviously, we wish this bone to be stored in the exact same position as the branch 
node it was created from. However, we cannot just copy over the position and orientation from 
the branch node into the frame’s matrix. The branch node stores the position and orientation of 
the node as an absolute transformation from the origin of tree space, but we know that the frames 
must have their matrices defined in parent relative space. To address this, we will pass through 
the recursive process a combined frame matrix and the process will work as follows… 
 
If we are currently adding a fifth frame to the actor’s hierarchy, we will have a matrix that 
contains the combined transformations of the first four. We will also create a matrix for the 
current frame that contains the absolute position and orientation information copied over from 
the branch node. We now have matrix A (a combined matrix of frames 1 to 4) and matrix B (the 
absolute position of the current frame as taken from the branch node). We can calculate the 
relative matrix by inverting matrix A and multiplying with matrix B. 
 

Relative Matrix = AB 1−
   

  
Essentially, we are subtracting the absolute position of the 4th frame (the parent) from the 
absolute position of the 5th frame (copied from the branch node) which leaves us with a matrix 
describing the transformation of the fifth frame relative to the fourth. Now you know how to 
construct relative matrices. Once we have this relative matrix, we will store it in the matrix of the 
frame. 
 
Of course, we will need to pass the current combined matrix up to the point of the current branch 
node down to the child nodes. Therefore, using the above example, once we have calculated the 
relative matrix for frame 5, we will multiply that matrix with the combined matrix of frames 1-4 
(passed into the function) so that we now have a combined matrix of transformations for frames 
1 through 5. We will then pass that matrix into the next recursion so that it can be ‘subtracted’ 
from the absolute position of the 6th frame to generate the relative matrix with respect to its 
parent, frame 5. Because not all branch nodes will become bones, we need to make sure that 
even when we do not add a frame to the hierarchy for a node that we are processing, we still pass 
the combined matrix into the next recursion.  
 
For example, imagine we have a bone resolution of 5. At the first frame, we hit a 
BRANCH_BEGIN node, so we add a frame (the first frame) to the actor’s hierarchy. Given the 
bone resolution, we will not be adding another frame for this branch until we traverse another 
five branch nodes. However, when we hit that next branch node where a frame must be added, 
we will need access to the combined matrix that was generated at the last branch node a frame 
was created for. We need it so that we can calculate the relative matrix for the new frame. 
Therefore, each time the function is called, we will pass in a combined frame matrix containing 
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the concatenation of all the frames we have added to the hierarchy up to that point. When the 
branch node we are processing is one that we will create another frame in the hierarchy for, that 
combined matrix will be updated by combining it with the relative matrix generated for the new 
frame. This updated combined matrix can then be passed down to the children and used further 
down the branch when another frame is added. If the branch node we are currently processing is 
a non-bone branch node, we will simply pass along the combined matrix un-modified to the 
children.  

 
      Mesh Creation  
 

The function will do more than just create frames for the actor’s frame hierarchy; it will also 
build a CTriMesh for each branch. Once again, the action taken by the function is slightly 
different depending on whether we are processing a BRANCH_START node or a normal branch 
node. 
 
1. If the branch node is of type BRANCH_BEGIN, we have to create a new empty mesh. We 
then add the initial ring of vertices to this mesh before passing this mesh down to the child 
branch nodes. 
 
2. If the branch node is not of type BRANCH_BEGIN then we are currently stepping down a 
branch for which a mesh has already been created. All we have to do is add another ring of 
vertices to that mesh at the position represented by the branch node.  
 
Every time the function calls itself for a non-BRANCH_BEGIN node, it will be passed a pointer 
to the mesh that was allocated when the BRANCH_BEGIN node was encountered. Therefore, 
we use a similar transport mechanism for the mesh as we do for the combined matrix. The 
branch begin node allocated the mesh, and from that point on this mesh is passed down to each 
child node where rings of vertices are added. By the time the BRANCH_END node has been 
created, we will have added a ring of vertices to the mesh for every node in that branch.  
 
Of course, when stepping through branch child nodes and building the mesh, we may find that a 
node exists in a child’s sibling list. This tells us that one or more BRANCH_BEGIN nodes (new 
child branches) start at this node. For each of these BRANCH_BEGIN nodes, we must do the 
same thing as before -- create a new mesh and then recursively pass it down to each of its 
children so that they can add their vertices. So you can imagine that as the recursive process is 
underway, there can be many meshes allocated but only partially built. 
 
For example, imagine a simple case where we have a root branch with six nodes. At the first 
node (BRANCH_BEGIN) we create a new CTriMesh and pass it down to each of the five 
children in the list. By the time we have reached the branch end node, the branch will have had 
five rings of vertices added and one tip vertex. However, let us also assume that this root branch 
has a child branch that starts at node 3 (another BRANCH_BEGIN node in a sibling list with 
node 3 of the root branch). We would travel into that branch and process its BRANCH_BEGIN 
node. This would mean allocating a new mesh for this second branch and stepping through its 
children adding their vertex rings. 
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At some point we will reach the branch end node of this second branch and all vertices will have 
been added. The initial mesh for the root branch is still only partially complete because we took 
a detour after processing node 3. When the recursive process returns, we find ourselves back in 
the instance of the function that was originally processing node 3 of the root branch. We would 
now continue down to the remaining branch nodes in the root branch and complete our adding of 
vertices to the root branch mesh. 
 
Figure 12.39 shows the flow of the recursive process when walking the branch node hierarchy 
and building and populating branch meshes.  

 

 
Figure 12.39 

 
Regardless of how many branches your tree has and how many meshes it ultimately creates, the root 
mesh (the mesh of the trunk) will always be the first mesh allocated and the last mesh completed. 
We can see in Figure 12.39 that Mesh A was allocated first, but Mesh B was completed first. If you 
imagine more levels of recursion (child branches coming off of branch B), then you should be able 
to see that the last meshes to be allocated and the first to be completed are always the meshes for the 
smaller branches at the deepest levels of the tree. 
 
When we add vertices to a mesh at a given node we will also add the indices to the mesh index 
buffer to create the branch segment (a cylinder of triangles) between the ring of vertices added at the 
current node and the ring of vertices added at the previous node. Remember, after the initial branch 
begin node, every node thereafter inserts vertices that create a new branch segment. Each ring of 
vertices inserted at a node (excluding the BRANCH_BEGIN node) forms the top row of vertices of 
the current segment being added and the bottom row of vertices for the next segment added when the 
child node is processed.  
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At the end of the BuildNode function we will once again test to see if the node we are currently 
processing is a BRANCH_BEGIN node. We know that if it is, then this instance of the function will 
have already recursively visited the child node, which would have visited its child node, and so on. 
Suffice to say, at this point, the recursive process has returned back to this instance of the function 
and the entire child branch will have had its vertices and indices added.  
 
Recall that when we add vertices and indices to a CTriMesh, it stores them temporarily in its internal 
system memory arrays. Once we are sure that we have added all the vertices and index data, we call 
CTriMesh::BuildMesh to copy these arrays into vertex and index buffers and create the underlying 
D3DX mesh. Once done, we can pass the ID3DXMesh into the 
CAllocateHierarchy::CreateMeshContainer function to convert it into a proper skinned mesh before 
attaching it to the BRANCH_BEGIN frame in the hierarchy.  
 
Of course, we must send other parameters into CreateMeshContainer, such as the material and 
texture lists the mesh uses. This list has only one element -- the material and the texture filename set 
by the application in the call to CTreeActor::SetBranchMaterial. CreateMeshContainer will take care 
of executing the relevant callbacks to load and store this texture and material combination. 
 
When we covered the CAllocateHierarchy::CreateMeshContainer function, we also learned that if an 
intended skinned mesh is being passed in, we will also be supplied with a pointer to an 
ID3DXSkinInfo interface. It is this interface that provides the information needed to create the skin, 
such as which vertices are influenced by which bones and by what weight. It also contains the name 
of each bone and its accompanying bone offset matrix. For our tree, we will have to calculate all of 
this data ourselves, store it in an ID3DXSkinInfo object, and pass it to CreateMeshContainer. 
Therefore, before we call the CAllocateHierarchy::CreateMeshContainer method, we will issue a 
call to a helper function called CTreeActor::BuildSkinInfo to create this object for us. That allows us 
to treat this function like a black box until we have finished discussing the BuildNode function. We 
will then take a look at the BuildSkinInfo method and see exactly how we build the mapping 
information between vertices and bones and how we calculate the bone offset matrices for each 
frame used as a bone by the branch. 
 

We are now ready to cover the CTreeActor::BuildNode function. First, let us have a look at its 
parameter list and describe what each parameter will be used for. This will make it much easier to then 
explain the code itself. The function accepts five parameters, which are listed below. 
 
BranchNode *pNode 
This is a pointer to the branch node that the instance of the BuildNode function will process. When the 
BuildNode function is initially called from the BuildFrameHierarchy function, a pointer to the root 
branch node of the virtual tree hierarchy will be passed. The function will recursively call itself using 
this parameter to step down to child nodes and along to sibling nodes. 
 
It is this node that will contain the position and orientation of the ring of vertices that needs to be placed 
in this iteration of the function. If the node is of type BRANCH_BEGIN, the position and orientation of 
this node will be used to add a new frame to the actor’s frame hierarchy. 
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D3DXFRAME * Parent 
This parameter will be NULL in the initial call. For all other recursive steps it will contain a pointer to 
the previous frame that was generated for the current branch (i.e., the frame that was last added to the 
hierarchy) and thus serves as the parent to the next frame being built along the branch. Not all nodes will 
create frames, so we must pass this pointer down to child nodes even if no frame was created for the 
current node.  
 
CTriMesh * pMesh 
This member will be set to NULL when the function is initially called from the BuildFrameHierarchy 
function. For all other iterations it will contain a pointer to the mesh that has been allocated for the 
current branch being constructed.  
 
D3DXMATRIX  &mtxCombined 
This parameter will be set to an identity matrix when the function is initially called from the 
BuildFrameHierarchy function. For all other instances of the function, it will contain the combined 
(absolute) matrix of all the frames we have created so far along that path of the frame hierarchy.  
 
When the function is processing a node that does not result in the generation of a new frame, this pointer 
should simply be passed unaltered into the child nodes. This allows us to continually pass the current 
combined matrix down through the branch node until it reaches a node where a new frame is to be 
generated. It is then used as part of the process to calculate that frame’s relative matrix as discussed 
earlier in the chapter. 
 
When the function recursively calls itself to process a sibling, it should also simply pass along the same 
combined matrix to the sibling that was passed into the function. The sibling frames will all share the 
same parent frame and therefore need to use the same parent absolute matrix to calculate their relative 
matrices. 
 
ID3DXAllocateHierarchy * pAllocate 
As we saw when we looked at the BuildFrameHierarchy function, this parameter always contains a 
pointer to an instance of our CAllocateHierarchy class. We use this object to call its CreateFrame and 
CreateMeshContainer callback methods whenever we wish to create a new frame in the hierarchy or 
build a (skinned) mesh. 
 
With the parameter list now behind us, let us now look at the code a section at a time. 
 
The first section of the code tests to see if the current node being processed is a node that should 
generate a new frame in the actor’s hierarchy. The test for this is quite simple: if the node is of type 
BRANCH_BEGIN then this node represents the start of a new branch mesh and the initial bone of the 
branch. In this case, we definitely want to add a bone to the actor’s hierarchy at this location. The other 
case in which we decide to create a new bone is if the modulus of the branch node’s BranchSegment 
member with the tree’s Bone_Resolution property is zero. Bear in mind that the BranchSegment 
member of a node contains the zero-based local index of the node within its branch. If a branch has 10 
nodes, the BranchSegment member for each node would be in the range of 0-9, respectively. If the bone 
resolution was 3 for example, we would only add bones at the following nodes:  
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Node 1   BRANCH_BEGIN       ( Bone Created ) 
 
Node 2   = BranchSegment  Mod  Bone_Resolution   
   = 1    Mod  3 = 1 
 
Node 3   = BranchSegment  Mod  Bone_Resolution 
   = 2    Mod  3 = 2 
 
Node 4  = BranchSegment  Mod  Bone_Resolution  ( Bone Created ) 
   = 3    Mod  3 = 0 
 
Node 5   = BranchSegment Mod  Bone_Resolution 
   = 4    Mod  3 = 1 
 
Node 6   = BranchSegment  Mod  Bone_Resolution 
   = 5    Mod  3 = 2 
 
Node 7   = BranchSegment  Mod  Bone_Resolution  ( Bone Created ) 
   = 6    Mod  3 = 0 
    
Node 78  = BranchSegment  Mod  Bone_Resolution 
   = 7    Mod  3 = 1 
 
Node 9  = BranchSegment  Mod  Bone_Resolution 
   = 8    Mod  3 = 2 
 
Node 10 = BranchSegment  Mod  Bone_Resolution ( Branch End = No Bone ) 
   = 9    Mod  3 = 0 
 
Remember that modulus operation returns the remainder of A divided by B as an integer. So as you can 
see, only when the modulus returns zero (evenly divisible) have we hit the bone resolution boundary 
where a new bone should be added. Of course, we always create a bone at the start of a branch. Notice 
that when we add the 10th node, the modulus does indeed return zero, but we do not add a bone here. 
That is because it is the end of the branch and a bone would be unnecessary. 
 
Let us have a look at the first section of the function and then we will discuss it. 
 
HRESULT CTreeActor::BuildNode( BranchNode * pNode,  
      D3DXFRAME * pParent,  
      CTriMesh * pMesh,  
      const D3DXMATRIX & mtxCombined, 
      ID3DXAllocateHierarchy * pAllocate ) 
{ 
    HRESULT     hRet; 
    CTriMesh   *pNewMesh  = NULL, *pChildMesh  = NULL; 
    LPD3DXFRAME pNewFrame = NULL,  pChildFrame = NULL; 
    D3DXMATRIX  mtxBranch, mtxInverse, mtxChild; 
    D3DXVECTOR3 vecX, vecY, vecZ; 
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    TCHAR       strName[1024]; 
     
    // What type of node is this 
      
     bool bIgnoreNodeForBone = (pNode->Type == BRANCH_END); 
    if ( pNode->Type == BRANCH_BEGIN ||  
 ((pNode->BranchSegment % m_Properties.Bone_Resolution) == 0 && 
  !bIgnoreNodeForBone) ) 
        { 
        // We get here if either this is a new branch node, OR the 
        // bone resolution is such that a new bone based frame is being 
        // created here. Note: We don't drop here if this is an END node 
        // since creating a new bone frame here would be pointless. 
         
        // Generate frame name 
        _stprintf( strName, _T("Branch_%i"), pNode->UID ); 
 
        // Allocate a new frame 
        hRet = pAllocate->CreateFrame( strName, &pNewFrame ); 
        if ( FAILED(hRet) ) return hRet; 
 
        // If there is a parent, store the new frame as a child. 
        if ( pParent ) 
        { 
            // Attach to head of parent's linked list 
            pNewFrame->pFrameSibling  = pParent->pFrameFirstChild; 
            pParent->pFrameFirstChild = pNewFrame; 
         
        } // End if has a parent 
        else 
        { 
            // Store at the actor's root 
            pNewFrame->pFrameSibling = m_pFrameRoot; 
            m_pFrameRoot             = pNewFrame; 
 
        } // End if no parent found 

 
In the above code we first determine whether a bone should be created for the current node using the 
techniques previously discussed. If it is determined that we should, we first build a name for that frame. 
Remember that in order for our frames to be animated, they must have names that will eventually match 
the animations inside an animation set. We need each frame in the hierarchy to have a name that is 
unique from any other frame, which was why we took the trouble to assign each branch node a unique 
numerical ID during the building of the branch node hierarchy. Thus, we build a name for the frame in 
the format Branch_n , where n is the ID of the branch node. We use the _stprintf (C standard runtime 
library) function to format the string and store the result in the local char array strName.  
 
Now that we have the name for the frame we are about to allocate, we pass it into the 
CAllocateHierarchy::CreateFrame function. As we know, this is a method of our CAllocateHierarchy 
class that simply allocates a new D3DXFRAME derived structure, safely initializes its members and 
returns it. The new frame is returned to us in the pNewFrame local pointer. 
 
Once we have our new frame, the code determines whether a parent frame currently exists (it will for all 
iterations of the function other than the first). If the pParent parameter is not NULL, then it contains a 
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pointer to the previous frame that was generated during the building process. When this is the case, we 
add our newly created frame to its child list. Of course, the parent frame may already have children 
(other branch start frames for example) so we are careful to simply add our new node to the head of the 
child list thus keeping the child list intact. In this case, we assign the new frame’s sibling pointer to point 
at the current child pointer of the parent (which may point to a list of siblings), and assign the parent’s 
child pointer to point at our new frame. In doing so, we have just added our new frame to the head of the 
list of child frames for the parent. 
 
If the pParent pointer is NULL, then this is our first time through the function and the frame we have 
just allocated is the root frame. In this case we assign the actor’s m_pFrameRoot pointer to point to our 
new frame, which is now the root frame for the actor’s entire hierarchy. Notice however that we are still 
careful even in this case to attach the current value of m_pFrameRoot to the new frame’s sibling pointer. 
Remember, there may be multiple root frames in our hierarchy that exist as siblings at the root level. Just 
because this frame has no parent does not mean that there is nothing useful being pointed to by the 
m_pFrameRoot pointer -- it may be the sibling root frame of another trunk branch -- so we should keep 
this list intact also. 
 
Having created the new frame, we will also set the current branch node’s BoneNode boolean to true so 
that we will know later that this branch node has had a bone created from it. We will also assign the 
branch node’s pBone pointer to point at our new frame so that we have access later on. 
 
        // For skin info building notify that this is the start of a new bone 
        pNode->BoneNode = true; 
 
        // Store which bone we're assigned to in the node 
        pNode->pBone = pNewFrame; 
 
        // Update the frame we will pass to the child with our new frame 
        pChildFrame = pNewFrame; 

 
Notice at the bottom of the above code, we assign a local pointer (pChildFrame) to the new frame we 
have just allocated. Because we have created a new frame, we know that it will be the parent frame of 
the next frame that is created further down the branch. So this pointer will serve as the frame that is 
passed to the child node as its parent. 
 
We have now created a frame and attached it to the hierarchy but it currently requires initialization. Its 
matrix is just an identity matrix, so we need to compute the parent relative matrix. We do not know this 
information at the moment but we do have the absolute position of the current branch node the frame 
was created from, as well as the node’s direction and right vectors. These vectors describe the alignment 
of the branch node’s local Z and X axes with respect to tree space, and if we perform the cross product 
between the branch node’s right and direction vectors we will generate the third axis of the branch 
node’s local coordinate system. 
 
        // Store / generate the vectors used to build the branch matrix 
        vecX = pNode->Right; 
        vecZ = pNode->Direction; 
        D3DXVec3Cross( &vecY, &vecZ, &vecX ); 
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At this point, we now know the orientation of the branch node’s local axes as well as its position in tree 
space. This is all we need to build a tree space (absolute) matrix for the current frame. 
 
        // Generate the frame matrix for this branch 
        D3DXMatrixIdentity( &mtxBranch ); 
        mtxBranch._11 = vecX.x; mtxBranch._12 = vecX.y; mtxBranch._13 = vecX.z; 
        mtxBranch._21 = vecY.x; mtxBranch._22 = vecY.y; mtxBranch._23 = vecY.z; 
        mtxBranch._31 = vecZ.x; mtxBranch._32 = vecZ.y; mtxBranch._33 = vecZ.z; 
        mtxBranch._41 = pNode->Position.x; 
        mtxBranch._42 = pNode->Position.y; 
        mtxBranch._43 = pNode->Position.z;       

 
By placing the three axis vectors and the position into a matrix (using the specified format) we have 
created a single tree space matrix that describes the position and orientation of the branch node. In this 
coordinate system the tree root would be at the origin, but hopefully you can see that this matrix is no 
different from any other world matrix we would generate. Essentially, taking a point at the origin of the 
tree space coordinate system (0,0,0) and multiplying it with this matrix would transform the point to the 
position of the current node. 
 
So, we have a matrix that describes the absolute position of our new frame, but we want it to be a parent 
relative matrix. We also have the combined matrix passed into the function (mtxCombined) which 
describes the absolute matrix of the parent frame. As discussed earlier, if we take the inverse of this 
combined matrix and multiply it with our current matrix, we will essentially subtract from our matrix all 
the combined transformations for all frames up to and including the parent frame. This will leave our 
matrix storing only the transformation ‘difference’ between the parent frame and the current frame’s 
position/orientation. In other words, we have a matrix that describes our new frame as position and 
rotation offsets from the parent frame. In short, we have a parent relative matrix.  
 

Note: For a more technical description of what is happening here, you can refer back to Module I where 
we discussed the relationship between matrices, inverse matrices, and moving into and out of local 
coordinate systems.  

 
        mtxChild = mtxBranch;   
 
        D3DXMatrixInverse( &mtxInverse, NULL, &mtxCombined ); 
        D3DXMatrixMultiply( &mtxBranch, &mtxBranch, &mtxInverse ); 
 
        // Store the parent relative matrix in the frame 
        pNewFrame->TransformationMatrix = mtxBranch; 

 
As you can see in the above code we invert the current combined parent frame matrix and multiply it 
with our current absolute matrix (mtxBranch), storing the parent relative result back into mtxBranch. 
This is the matrix we need, so we assign our new frame’s TransformationMatrix pointer to point at it. 
Our new frame has now been attached to the hierarchy and has received the correct matrix.  
 
Note that the first step we took was making a copy of the absolute frame matrix (mtxBranch) to a local 
variable (mtxChild) before we modify it to become relative. Why? Well, think about what the 
mtxCombined matrix that was passed into this function contains -- the absolute matrix of the parent. 
When we recur down into the child node of the current node and generate a child frame, we will need 
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the combined matrix passed into that function to be the absolute matrix of the current frame we have just 
generated. Therefore, mtxChild will contain the combined matrix of the parent when processing the 
child node. 
 
At this point we have created the new frame, attached it to the hierarchy, and assigned it a parent relative 
transformation matrix. We have also stored a local copy of the absolute transformation for our new 
frame so that it can be passed down to a child as the mtxCombined parameter and used to generate its 
relative matrix. The pChildFrame local frame pointer stores the address of our newly created frame so 
that it can be passed into the children of this branch as the pParent parameter. So between the mtxChild 
and pChildFrame local variables, we are ready for the next level of recursion into the child node. 
 

Note: At this point, please remember that we are still inside the code block that is executed only if a new 
frame is to be generated at this node. 

 
In the next section of code we need to determine two things. If the current node we have just created a 
frame for is of type BRANCH_START then we know that this represents the start of a new branch 
mesh. We also need to determine what mesh we are going to pass down to the child node in the 
recursion. As with the mtxChild and pChildFrame local variables, we use a local variable called 
pChildMesh to store the mesh we need to pass down the branch. 
 
If we are at a branch start node, we will ignore the mesh parameter passed into the function and create a 
new CTriMesh. We assign the pChildMesh local pointer to point at this new mesh. This will be the mesh 
we pass in as the mesh parameter when BuildNode calls itself for the child nodes in this new branch. If 
this is not a branch start node, then no new mesh needs to be created; it is just another node in a branch 
mesh that is already under construction. In this case, the pMesh parameter passed into the function will 
contain the address of the mesh that this node should pass down to its child, and the mesh it should add 
vertices to.   
 
        // We only start creating the 'skin' mesh if this is a beginning branch 
        if ( pNode->Type == BRANCH_BEGIN ) 
        { 
            // We're going to start building a mesh, so create a new one 
            pNewMesh = new CTriMesh; 
            if ( !pNewMesh ) return E_OUTOFMEMORY; 
 
            // Setup the new mesh's vertex format 
            pNewMesh->SetDataFormat( VERTEX_FVF, sizeof(USHORT) ); 
 
            // Update the mesh we will pass to the child with our new mesh 
            pChildMesh = pNewMesh; 
 
        } // End if BRANCH_BEGIN 
        else 
        { 
            // Reuse the mesh we were passed. 
            pChildMesh = pMesh; 
 
        } // End if other branch node type 
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At this point, whether we have allocated a brand new mesh, or are simply continuing the process of 
adding vertices to the mesh passed in for a current branch, the pChildMesh pointer will point to the 
mesh into which we will add the ring of vertices for this node. 
 
Luckily for us in the short term, we use the CTreeActor::AddBranchSegment function to accomplish 
this task. It is passed the current node and the mesh we wish to add another ring of vertices to. We will 
discuss the code for the AddBranchSegment function next. Suffice to say, when it returns, a new branch 
segment will have been added to the branch mesh.   
 
        // Add the ring for this segment in this frame's combined space 
        hRet = AddBranchSegment( pNode, pChildMesh ); 
        if ( FAILED(hRet) ) { if (pNewMesh) delete pNewMesh; return hRet; } 
 
    } // End if adding new frame 

 
The curly brace at the bottom of the above code closes the code block that we have been examining so 
far. This is the code block that is only executed if the current branch node we are processing is a node 
for which a bone must be created and added to the hierarchy. 
 
The next section of code is the else block of that conditional. It is executed if we are processing a node 
that will not add another bone to the frame hierarchy. However, we must still add a ring of vertices since 
every node (not just bone nodes) represents part of the branch. 
 
    else 
    { 
        // Store which bone we're assigned to in the node 
        pNode->pBone = pParent; 
 
        // Add the ring for this segment in this frame's combined space 
        hRet = AddBranchSegment( pNode, pMesh ); 
        if ( FAILED(hRet) ) { return hRet; } 
 
        // Since no new frame is generated here, the child will receive 
        // the same frame, mesh and matrices that we were passed. 
        pChildFrame = pParent; 
        pChildMesh  = pMesh; 
        mtxChild    = mtxCombined; 
 
    } // End if continuing build of previous mesh 

 
As you can see, we call the AddBranchSegment function to add a ring of vertices to the mesh for this 
node. Notice that we pass in the pMesh parameter which contains the pointer to the mesh that has been 
passed into this function by the node’s parent. Also notice how we set the local variables that will 
become the parameters for the child recursion. pChildFrame is set to the pParent frame pointer passed in 
since no new frame has been created and the parent frame should be passed unmodified into the child. 
The only time we ever wish to change the parent frame is when a new frame is inserted into the 
hierarchy. Finally, we set the mtxChild matrix to absolute parent matrix (mtxCombined) passed into the 
function.  Since the parent frame is unchanged, so too is its absolute transformation. Thus, all we are 
doing is taking the input mesh, parent frame, and parent matrix, and preparing them to be passed down 
to the child. 
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At this point, we will now process the sibling list if a sibling exists at the current node. 
 
    // Build the nodes for child & sibling 
    if ( pNode->Sibling ) 
    { 
        hRet = BuildNode( pNode->Sibling, pParent, pMesh,  
      mtxCombined, pAllocate ); 
 
        if (FAILED(hRet)) { if ( pNewMesh ) delete pNewMesh; return hRet; } 
     
    } // End if has sibling 

 
The BuildNode function calls itself recursively for the sibling node. It passes in the same parent and 
parent matrix as the current node (all siblings share the same parent) as well as the mesh pointer that was 
passed into the function.  
 
Because of the way we organized our branch node hierarchy, the node of a branch will always be at the 
head of a sibling list. All other branch nodes in that sibling list (if any exist) will begin new branches. 
Therefore, strictly speaking, the mesh we are passing into the sibling will never be used, because as soon 
as we step into a sibling it will be of type BRANCH_START. This means that it will allocate its own 
CTriMesh for that branch and pass it down to each of its own children. However, just to safeguard 
against the fact that the application may have changed the order of the sibling list, we pass it the mesh. If 
a non-BRANCH_START node were it to exist somewhere in the sibling list, our code would still handle 
it correctly. The important thing to realize at this point is that when the above function call returns, all 
child branches that start at this node will have been fully built. Each sibling branch will have been 
traversed and created and so too will have any child branches of those child branches, and so on. 
 
We still need to step though the remaining nodes of the current branch, so we issue the recursive call to 
the child pointer. 
 
    if ( pNode->Child ) 
    { 
        hRet = BuildNode( pNode->Child, pChildFrame, pChildMesh,  
      mtxChild, pAllocate ); 
         
        if (FAILED(hRet)) { if ( pNewMesh ) delete pNewMesh; return hRet; } 
     
    } // End if has child 

 
Notice this time that when we step into the child node, we pass in the pChildFrame, pChildMesh, and 
mtxChild local variables. What these variables store depends on whether a new frame and mesh was 
created at this node. Below we clarify what these variables will hold depending on the status of the 
current node: 
 
Current Node  = BRANCH_BEGIN node 
pChildFrame  = New frame added in this function 
pChildMesh = New Mesh allocated in this function 
mtxChild = Absolute matrix of the frame added in this function 
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Current Node  = Normal Node ( New Bone Node ) 
pChildFrame  = New frame added in this function 
pChildMesh = pMesh passed into this function from parent   (pMesh) 
mtxChild = Absolute matrix of the frame added in this function 
 
Current Node  = Normal Node ( Non Bone Node ) 
pChildFrame  = Parent frame passed into this function    (pParent ) 
pChildMesh = pMesh passed into this function from parent   ( pMesh ) 
mtxChild = Absolute matrix of the frame added in this function  ( mtxCombined ) 
 
When the call to the child node returns, every remaining child node in the current branch will have been 
visited and will have added their rings of vertices to the mesh.  
 
If the current node is not a BRANCH_BEGIN node then we have nothing left to do in this function. 
However, if the current node was a BRANCH_BEGIN node, then the CTriMesh for this branch will 
have had all the required vertices and indices added to it. It is then time to build the underlying 
ID3DXMesh and pass it to CAllocateHierarchy::CreateMeshContainer to have it converted to a skinned 
mesh. We will attach the returned mesh container to the branch start frame in the hierarchy. 
 
    // If this was a 'begin' node, we can now build the mesh container 
    // since all of the mesh segments should have been created by the 
    // recursive calls. 
    if ( pNode->Type == BRANCH_BEGIN ) 
    { 
        D3DXMATERIAL        Material; 
        D3DXMESHDATA        MeshData; 
        D3DXMESHCONTAINER * pNewContainer       = NULL; 
        DWORD             * pAdjacency          = NULL; 
        LPD3DXBUFFER        pAdjacencyBuffer    = NULL; 
        LPD3DXSKININFO      pSkinInfo           = NULL; 
 
        // Generate mesh containers name 
        _stprintf( strName, _T("Mesh_%i"), pNode->UID ); 
 
        // Generate the skin info for this branch 
        hRet = BuildSkinInfo( pNode, pNewMesh &pSkinInfo ); 
 
        if ( FAILED(hRet) ) { delete pNewMesh; return hRet; } 
 
        // Signal that CTriMesh should now build the mesh in software. 
        pNewMesh->BuildMesh( D3DXMESH_MANAGED, m_pD3DDevice ); 

 
The first thing we do is call the CTreeActor::BuildSkinInfo function. We will look at this function 
shortly, but for now just know that it will create a new ID3DXSkinInfo object and will fill it with the 
vertex/bone mapping data. When the function returns, the pSkinInfo local variable will contain a pointer 
to the interface of this object. After building the skin info, we call CTriMesh::BuildMesh so that the 
vertices and indices we have been adding to the mesh (via the AddBranchSegment function) are used to 
construct the ID3DXMesh. 
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With our regular mesh now complete, we need to send it into the CreateMeshContainer function 
wrapped inside a D3DXMESHDATA structure. We set the Type member of the D3DXMESHDATA 
member to D3DXMESHTYPE_MESH so that the mesh container knows it is being given a regular 
ID3DXMesh. 
         
        // Build the mesh data structure 
        ZeroMemory( &MeshData, sizeof(D3DXMESHDATA) ); 
        MeshData.Type  = D3DXMESHTYPE_MESH; 
         
        // Store a reference to our build mesh. 
        // Note: This will call AddRef on the mesh itself. 
        MeshData.pMesh = pNewMesh->GetMesh(); 
 
        // Build material data for this tree 
        Material.pTextureFilename = m_strTexture; 
        Material.MatD3D           = m_Material; 

 
The CreateMeshContainer function also expects to be passed the texture filename and material for each 
subset. For our tree mesh, we have only one subset so we set up a single D3DXMATERIAL structure to 
store the texture filename and the material that the application set for the CTreeActor (via 
SetBranchMaterial). 
 
Finally, before calling CreateMeshContainer we calculate the adjacency information for the mesh we are 
about to pass. We use the CTriMesh::GenerateAdjacency function, which generates the adjacency 
information and stores it internally inside an ID3DXBuffer object. We then call 
CTriMesh::GetAdjacencyBuffer which returns a pointer to its ID3DXBuffer interface and follow that 
with a call to ID3DXBuffer::GetBufferPointer to get a pointer to the actual adjacency information. We 
pass all this information into the CreateMeshContainer function which then creates a new skinned mesh 
(using the appropriate supported skinning method) and returns the results in the pNewContainer pointer 
passed in as the final parameter. 
 
        // Retrieve adjacency information 
        pNewMesh->GenerateAdjacency( ); 
        pAdjacencyBuffer = pNewMesh->GetAdjacencyBuffer(); 
        pAdjacency       = (DWORD*)pAdjacencyBuffer->GetBufferPointer(); 
 
        // Create the new mesh container 
        hRet = pAllocate->CreateMeshContainer( strName,  
            &MeshData,  
            &Material,  
               NULL,  
            1,  
            pAdjacency,  
            pSkinInfo,  
            &pNewContainer ); 
 
        // Release adjacency buffer 
        pAdjacencyBuffer->Release(); 
 
        // Release the mesh we referenced 
        MeshData.pMesh->Release(); 
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        // Release the skin info 
        if (pSkinInfo) pSkinInfo->Release(); 
 
        // Destroy our temporary child mesh 
        delete pNewMesh; 
 
        // If the mesh container creation failed, bail! 
        if ( FAILED(hRet) ) return hRet; 
 
        // Store the new mesh container in the frame 
        pNewFrame->pMeshContainer = pNewContainer; 
 
    } // End if beginning of branch 
 
    // Success!! 
    return D3D_OK; 
     
} 

 
When CreateMeshContainer returns, this branch will have been created as a skinned mesh and attached 
to a mesh container. We can then delete the original CTriMesh and the adjacency buffer before 
assigning the BRANCH_BEGIN frame’s pMeshContainer pointer to our newly generated mesh 
container (which stores our branch skin).  
 
While this was quite a complex function, remember that it is responsible for the entire hierarchy and 
mesh building process. When the initial instance of the function (called from BuildFrameHierarchy) 
returns the actor’s hierarchy will be complete.  
 
It is now time to look at the helper functions that were called from BuildNode to assist in accomplishing 
its required tasks. The first function we will look at is the AddBranchSegment method. 

AddBranchSegment – CTreeActor  

This method is passed a branch node and a pointer to a CTriMesh and it has two tasks it must perform. It 
must add the ring of vertices to the mesh that this node represents and it must add the indices to the 
mesh which connect vertices of the parent node to the vertices of the current node. This is how we form 
our cylinder (a branch segment) faces between the two nodes.  
 
Things are not quite a simple as they first seem because the position of the node and the orientation of its 
vectors are defined in tree space. All node positions are relative to the root node of the virtual tree and 
therefore we might say that the node’s positions and orientations are specified absolutely throughout the 
tree. The problem we must overcome is that each branch will be a separate mesh and we are going to 
want our vertex positions defined in the mesh’s model space.  
 
In the case of a branch mesh, we should consider the root node of that branch to be the origin of model 
space. Therefore, we want the vertex positions we add to this mesh to be defined relative to the root 
node of the branch, not to the root node of the entire tree. Essentially, we need to drag the root node of a 
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branch back to the origin of the coordinate system (dragging all its child nodes with it) so that the start 
node of the branch is at (0,0,0) and its local axes are aligned with the X,Y, and Z axes of the coordinate 
system. If we can do that, then we will have the positions and orientations of all its child nodes (in the 
same branch) defined in mesh/model relative space. In model space then, the start node of a branch is at 
the origin and all vertices are defined relative to the bottom of that branch (instead of the center of the 
branch which is often more typical). 
 
Let us look at the code one section at a time. 
 
HRESULT CTreeActor::AddBranchSegment( BranchNode * pNode, CTriMesh * pMesh ) 
{ 
    ULONG       i; 
    USHORT      j, Index; 
    D3DXMATRIX  mtxInverse, mtxRot, mtxBranch; 
    D3DXVECTOR3 vecPos, vecAxis, vecRight, vecOrtho, vecNormal, vecVertexPos; 
    D3DXVECTOR3 vecX, vecY, vecZ; 
 
    // Back track until we find the beginning node for this branch 
    BranchNode * pStartNode = pNode; 
     
    while ( pStartNode->Type != BRANCH_BEGIN && pStartNode )  
  pStartNode = pStartNode->Parent; 
     
    if ( !pStartNode ) return D3DERR_INVALIDCALL; 

 
In the first section of the code, we need to backtrack from the current node (which may not be a branch 
start node) to find the start of its branch. We will need access to this branch start node so that we can 
build a matrix that will transform the current node we are processing from tree space into model/branch 
space. As you can see in the above code, we simply start at the current node and use the pStartNode 
pointer to climb up through the parents of each node until we hit the start branch (a branch of type 
BRANCH_BEGIN). We now have the branch start node stored in pStartNode and the current node we 
wish to build a ring of vertices for stored in pNode. 
 
Once we have the branch start node, we want to build a matrix for it like we did before. We perform the 
cross product on the right and direction vectors of the start node to get the third axis of the coordinate 
system. We then store the three axis vectors of the start node in a matrix along with its position. 
 
    // Store / generate the vectors used to build the branch matrix 
    vecX = pStartNode->Right; 
    vecZ = pStartNode->Direction; 
    D3DXVec3Cross( &vecY, &vecZ, &vecX ); 
 
    // Generate the frame matrix for this branch 
    D3DXMatrixIdentity( &mtxBranch ); 
    mtxBranch._11 = vecX.x; mtxBranch._12 = vecX.y; mtxBranch._13 = vecX.z; 
    mtxBranch._21 = vecY.x; mtxBranch._22 = vecY.y; mtxBranch._23 = vecY.z; 
    mtxBranch._31 = vecZ.x; mtxBranch._32 = vecZ.y; mtxBranch._33 = vecZ.z; 
    mtxBranch._41 = pStartNode->Position.x; 
    mtxBranch._42 = pStartNode->Position.y; 
    mtxBranch._43 = pStartNode->Position.z; 
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We now have a matrix (mtxBranch) that describes the position and orientation of the local axis of the 
branch start node relative to the origin of tree space. For example, if we place a vertex at the origin of 
the coordinate system and then multiplied it by this matrix, we would transform that vertex out to the 
position of the branch start node. 
 
What we want is a matrix that does the exact opposite. We want a matrix that will undo the 
transformation of the branch start node from any vector we multiply with it. For example, if the branch 
start node was positioned at 100 units along the X axis and we have a vertex positioned at 110, we want 
a matrix that will subtract the branch start node from the position (and orientation) of the vector. If M 
was our desired matrix and V was our vector, V*M should equal 10. In other words, we need to know 
the position of the current node we are about to process as an offset from the branch start position. 
Likewise, we will also want to know the orientation of the current node’s direction and right vectors as 
rotational offsets from the branch start node’s direction and right vectors. Of course we have seen this all 
before. What we are saying here is that we want our current node defined in the local space of the 
branch start node. And as we learned back in Module I (and mentioned again earlier in the lesson), 
multiplication by the inverse of the matrix will do the trick. 
 
    // Get the inverse matrix, to bring the node back into the frame's space 
    D3DXMatrixInverse( &mtxInverse, NULL, &mtxBranch ); 

 
Now that we have this matrix what will we use it for?  
 
We need to create a ring of vertices and place them on a plane described by the current node. This is a 
plane where pNode->Direction (made unit length) would describe its normal. We will see how we place 
the vertices on this plane in a moment, but for now just know that we will need the direction vector, the 
right vector and a vector orthogonal to the them both in order to slide the vertices from the node center 
point out to their correct positions on the plane. However, as we wish the vertices to be placed in model 
space and not in tree space, it stands to reason that both the current node’s position and its local axis 
vectors (direction and right vector) which will be used to position the vertices, should also be 
transformed into model space (start branch relative space) prior to being used to position those vertices 
 
In the next section of code we transform the current node’s direction and right vectors into model space 
using the inverse matrix. We then store them in the local variables vecAxis and vecRight, respectively. 
We also transform the node’s position into model space and store it in the vecPos local variable. 
   
    // Build the axis in the frame's space 
    D3DXVec3TransformNormal( &vecAxis, &pNode->Direction, &mtxInverse ); 
    D3DXVec3TransformNormal( &vecRight, &pNode->Right, &mtxInverse ); 
    D3DXVec3TransformCoord ( &vecPos, &pNode->Position, &mtxInverse ); 

 
To understand what we have just done take a look at Figure 12.40. The figure shows an arbitrary branch 
defined somewhere in the tree. Concentrate on just the first two nodes (N and N+1) which show the first 
two nodes of the branch as defined in tree space (prior to the transform we have just performed). Notice 
the green arrows at the two nodes showing the direction vector at each node prior to transformation. 
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In Figure 12.40, the blue 
lines indicate the planes 
defined by the nodes in tree 
space. The green arrows 
show the direction vector of 
each node, which essentially 
describes the normal of those 
planes. In this example, the 
first node in the branch is not 
assumed to be the root of the 
entire tree but is instead 
assumed to be a child of 
some other parent branch. 
 
In tree space, the position of 
each node is relative to the origin of the tree. So the position of the branch start node will not be (0,0,0) 
and thus is not the origin of the coordinate system. As discussed earlier, this needs to be rectified 
because we are going to want our children (and the vertices they represent) to be defined in the local 
space of the branch start node. So by applying the inverse matrix of the branch start node that we have 
just created to the position and orientation vectors of the current node we wish to add vertices for, we 
move the position and orientation of the node into the coordinate space defined by the branch start node. 
In Figure 12.41 you can see how all the nodes for the branch shown above look once transformed into 
mesh local (i.e., model) space. 
 

As you can see, in model space the nodes of the 
branch represent a unique mesh. The direction 
and right vectors of the branch start node form 
the Z and X axes of the coordinate system and the 
tree space position of the branch start node is 
mapped to the origin of the coordinate system. 
 
Notice how the orientations and direction vectors 
in each node have changed. Yet while very 
different from their tree space counterparts, they 
still maintain the same inter-branch relationship. 
 
It is the direction and right vector of the current 
node in this space which should be used to 
position the ring of vertices on the model space 
plane defined by each node. After all, when we 
created the start node for this branch we would 
have also added a frame to the actor’s hierarchy. 
Remember, it is the frame matrices in the 
hierarchy that are responsible for ultimately 
transforming this model space branch into its 
proper tree space position at render time. 

 
Figure 12.40 : Branch In Tree Space 

 
Figure 12.41 : Branch Nodes in Model Space 
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At this point, we now have the direction vector and the right vector of the current node in model space. 
The direction vector describes the normal of the plane on which the vertices should be added and the 
right vector is tangent to the plane (it lies on the plane). In order to position our vertices on this plane we 
will also need an additional tangent vector (often referred to as a binormal). If you imagine you are 
staring at a clock (with hands) that is currently showing 3 o’clock, think of the direction vector as an 
arrow coming out of the center of the clock pointing right at you. Now imagine that the little hand that is 
on the 3 is the right vector of the node. Finally, the binormal would be the big hand of the clock pointing 
at the 12 in this particular case. 
 
If we have two tangent vectors, we have the ability to place vertices anywhere on that plane by 
combining those vectors and scaling. This should not surprise you since we are basically talking about a 
standard Cartesian XY plane here (where the direction vector is the Z axis). The X axis (1,0,0) and a Y 
axis (0,1,0) are both tangent vectors for the XY plane and they allow us to position vertices anywhere on 
that plane. If we want to place a point at position (40, 50) on the XY plane, we think of this as 
describing a point 40 units along the X axis and 50 units along the Y axis. However, what we are really 
saying is this: 
 
Position X = 40 * ( 1, 0, 0 )  = (40, 0, 0) 
+ 
Position Y = 50 * ( 0, 1, 0 )  = (0, 50, 0) 
= 
Position XY    = (40, 50, 0)  
 
This is a more mathematically correct way of thinking about what happens when we plot a coordinate. 
The reason we get the expected results is that our transformation matrices store an X axis and a Y axis 
with a length of 1.0 (unit length). But if our transformation matrix stored X and Y axis vectors with a 
length of 3.0 instead, the final position plotted on that plane is obviously entirely different: 
 
Position X = 40 * ( 3, 0 ,0 ) = ( 120 , 0 , 0) 
+ 
Position Y = 50 * ( 0, 3, 0 )  = ( 0, 150, 0 ) 
= 
Position XY   = (120, 150, 0) 
 
This is the mathematics of linear transformations and vector spaces. We do not need to get much more 
technical here in this course since we expect that you will cover such material in the Game Mathematics 
course. If you have not done so already, you should get used to viewing transformations in this way.  
 
The point of this exercise was to demonstrate that if we have two unit length tangent vectors, we can use 
them to plot any point on the plane they define. When we position our vertices on the plane of the node, 
we will not be using the usual X and Y axis vectors as shown above. The plane of the node may be 
rotated and/or tilted in model space, so we will use the tangent vectors instead.  
 
At the moment we currently have one tangent vector -- the node’s right vector. We can think of this as 
the node’s local X axis. We need a local Y axis also so that we can use these two vectors to position the 
ring of vertices on the plane. 
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Calculating this vector is easy and you should already know how to do it. The right vector is tangent to 
the plane and that the direction vector is perpendicular to the plane. The other tangent vector we wish to 
create should be orthogonal to these two, so all we have to do is rotate the model space right vector 
around the model space direction vector by 90 degrees and we have our second tangent vector (the 
binormal). This is shown in Figure 12.42. 
 

 
Figure 12.42 

 
So let us build our node’s third model space axis next: 
 
    // Build the ortho vector which we use for our Y dimension axis 
    D3DXMatrixRotationAxis( &mtxRot, &vecAxis, D3DXToRadian( 90.0f ) ); 
    D3DXVec3TransformNormal( &vecOrtho, &vecRight, &mtxRot ); 

 
We now have the node position and its local axis in model space so it is time to start adding our vertices. 
The second section of the function is divided into two code blocks. The first is executed only if the 
current node is not of type BRANCH_END. It adds a ring of vertices on the model space node plane and 
adds the indices to the mesh to stitch them into faces with the previous node’s ring of vertices. The 
second code block is executed only if we are currently processing the BRANCH_END node. When this 
is the case, only a single vertex is added at the node position (not a ring) and the indices are added to 
stitch this final vertex into faces using the previous node’s ring of vertices. The end result is the branch 
tip. 
 
Let us first have a look at the code block that is executed for nodes that are not BRANCH_END nodes 
(adding rings).  
 
    // If this is a beginning / segment node 
    if ( pNode->Type != BRANCH_END ) 
    { 
        // Add enough vertices for the new branch segment 
        long VIndex = pMesh->AddVertex( m_Properties.Branch_Resolution ); 
 
        // Generate the vertices 
        for ( i = 0; i < m_Properties.Branch_Resolution; ++i ) 
        { 
            CVertex * pVertex = &((CVertex*)pMesh->GetVertices())[ VIndex + i ]; 
      
            // Calculate angle of rotation ((Branch_Resolution - 1)  
  // because we are duplicating one vertex at the seam) 
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            float fAngle =  
  D3DXToRadian( (360.0f / (float)(m_Properties.Branch_Resolution - 1)) 
      * -(float)i ); 
 
            // Plot the points for our 'elliptical' branch hull 
            float x = pNode->Dimensions.x * cosf( fAngle ); 
            float y = pNode->Dimensions.y * sinf( fAngle ); 

 
In the above code, we first tell the mesh that we are about to add a ring of vertices so that it can make 
room for those vertices at the end of its internal vertex arrays. We do this using the 
CTriMesh::AddVertex method and pass the number of new vertices we wish to make space for. The 
number of vertices that will be used to form a ring is stored in the Branch_Resolution member of the 
growth properties structure (8 by default). The AddVertex method returns the index (VIndex) of the first 
vertex in the array of vertices we have just added.  
 
We then entered a loop which iterates through each vertex we wish to add and allows us to calculate the 
position of each new vertex in the ring one at a time. Inside the loop you can see that we retrieve a 
pointer to the vertex structure whose position and normal we will need to set. Notice how we use the 
base index of the first new vertex we allocated (VIndex ) and add that onto that loop variable ‘i’ to allow 
us to step through each of the new vertices. 
 
The next thing we did was calculate a delta angle (fAngle). If we have 8 vertices to place (e.g., 
Branch_Resolution = 8), then we need to step around the model space position of the node and position 
vertices in a circle at uniform intervals. As the first and last vertices have duplicated positions for the 
wrap around, we need to step around a 360 degree circle in increments of (360 / Branch_Resolution - 1). 
Using the default branch resolution of 8, this means for each iteration of the loop, we will need to step 
around the circle surrounding the node a further 360/7 = 51.42 degrees and place another vertex.  
 
As 51.42 degrees describes the size of single wedge formed by two adjacent vertices in the ring (with 
the center point as the apex of the wedge), we can multiply this value with the current loop iteration 
variable ‘i’ so we know exactly where we need to place the vertex. For example, in the first three 
iterations of the loop, fAngle would equal the following: 
 
Iteration 1 : 51.42*0  = 0   ( Vertex placed at zero degrees about circle ) 
Iteration 2 : 51.42*1  = 51.42 ( Vertex placed at 51.42 degrees about circle ) 
Iteration 3 : 51.42*2 = 102.84 ( Vertex placed at 102.84 degrees about circle ) 
 
Once we have the rotation angle for the current vertex, we can calculate a position on the circumference 
of the ellipse with the help of the sine and cosine functions. As we know, the sine and cosine functions 
are 90 degrees apart, so if we wish to place a point on a circle with a radius R at rotation angle A, we 
calculate the X and Y coordinates of that point as: 
 
X Position = R * cosine ( A ) 
+ 
Y Position = R * sine (A )    
= 
(X Position , Y Position , 0 ) 
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Notice that we are ignoring the Z coordinate for the moment since we are essentially defining a 2D 
circle on a plane. At this particular point in time, that plane is actually the XY plane of the model space 
coordinate system. The circle will also be defined about the origin of the coordinate system at this point. 
 
In our code however, the node’s Dimensions.X and Dimenions.Y members define the radii of the 
ellipse. (If these two members are equal then we define a circle.), Since the X radius may be different 
from the Y radius, this turns our calculation into: 
 
X Position = pNode->Dimensions.x * cosine ( A ) 
+ 
Y Position = pNode->Dimensions.y * sine (A )    
= 
(X Position , Y Position , 0 ) 
 
Since the cosine and sine are 90 degrees apart, they allow us to apply scaling factors to the X and Y 
dimensions such that the final result will always lie on the circumference of the ellipse. For example, if 
the angle is 0 degrees (first iteration) then the cosine will return 0 and the sign will return 1. This will 
result in a first vertex position of:  
 
( pNode->Dimensions.x , 0 , 0 ) 
 
The start of the circle is not the top but actually the position of the number 3 in the clock face example 
(along the X axis). However, at 90 degrees, the cosine returns 0 and the sine returns 1, which results in a 
final vector at the top of the circle: 
 
( 0 , pNode->Dimensions.y , 0 ) 
 
At 45 degrees the angle is equidistant from both the X and Y axis and the result of both will be 
~0.707106. In this instance we are scaling both the X and Y radii of the ellipse to produce a point that is 
between both axes, but still the correct distance from the circle center point (on the circumference of the 
circle). 
 
If we imagine that we are calculating the position of a vertex at 45 degrees around the circle of a node 
that has both an x and y dimension of 1, this will result in the following X and Y coordinates: 
 
X Position = 1 * 0.707106 
+ 
Y Position = 1 * 0.707106    
= 
(0.707106 , 0.707106 , 0 ) 
 
As you can see, this is exactly the same vector you would get if you normalized the vector (1, 1, 0), 
which we know would result in a 45 degree vector describing a position that is halfway between the X 
and Y axes but still has a length of one. 
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At the moment we are simply defining the positions of each vertex as if it was being projected onto the 
XY plane of the model space coordinate system. The center of the circle would be the coordinate system 
origin. Although we process each vertex one at a time, if we were to imagine the positions of every 
vertex in the ring at this point in the loop, we would see a result like Figure 12.43. 
 
As Figure 12.43 shows, the dimensions of the 
current node define the radius of the ring of 
vertices around its center point. However, at the 
moment, the vertex positions are not defined 
relative to the node’s plane. That is to say, the 
center of this circle is currently (0,0,0) and not 
the node’s model space position. Furthermore, the 
vertices currently lay flat on the XY plane of the 
coordinate system and not the plane of the current 
node. 
 
The first thing we must do now that we have our 
vertex position defined with respect to the center 
of the ellipse is position that vertex on the node plane. The thing to remember is that the node plane may 
be oriented quite differently from the XY plane of the model space coordinate system. It will most likely 
be rotated and/or tilted in some way. So given a vertex position on the XY plane of the model space 
coordinate system, how do we place it in its corresponding position on another plane with a totally 
different orientation? 
 
A little while ago, we said that when we specify a coordinate in a Cartesian coordinate system, we are 
really stating that these components should be multiplied with the X, Y, and Z axes of the coordinate 
system in which we are trying to plot them. Because we usually mean to plot such points in a coordinate 
system with the axes (1,0,0), (0,1,0) and (0,0,1), the resulting multiplication with each axis does not alter 
the input position of the vector. Therefore, while there was no need to perform the calculation explicitly, 
mathematically speaking, we calculated the position of our vertex as follows: 
 
X Position = pNode->Dimensions.x * cosine ( A ) )  * ( 1,0,0 ) 
+ 
Y Position = pNode->Dimensions.y * sine (A )  )  * ( 0,1,0 )  
= 
(X Position , Y Position , 0 ) 
  
Of course, the result is the same, so there was no need to supply the additional model space axis 
multiplications on the end. However, Figure 12.45 shows how we might want the circle of vertices to 
look on the actual node plane. Remember it may be tilted or rotated with respect to the XY plane of the 
coordinate system shown in Figure 12.44. 
 

 
Figure 12.43 : Circle of Vertices in model space 
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Figure 12.44 : Vertices multiplied by Model 

Space X and Y axis 
Figure 12.45 : Vertices multiplied by node 

tangent vectors 
 
So let us piece together some of what we already know. When we positioned the vertices on the XY 
plane of the coordinate system, we were actually multiplying the X and Y position with the X and Y 
axes of the coordinate system shown in figure 12.44. We did not have to perform this calculation 
explicitly and the lack of such a calculation means that it was implied.  
 
In Figure 12.45 we see that our node plane also has its own X and Y axes which are tangent to the plane 
(vecRight and vecOrtho). Therefore, all we have to do is multiply the vertex position that is currently on 
the model space XY plane with the node’s local axes and we can move each vertex onto the plane.   
 
            // Set and scale the vertex position based on the chosen dimension. 
            vecVertexPos = (vecRight * x) + (vecOrtho * y); 
 
      // Generate our normal from this position 
            D3DXVec3Normalize( &vecNormal, &vecVertexPos ); 

 
As you can see, we multiply the node’s right vector (X axis) with the vertex X position and the node’s 
other tangent vector (the Y axis) with the vertex Y position and then sum the resulting vectors.  
 
At this point, the plane the vertex is on is not really the node plane; it is just has the same orientation as 
the node plane. It still passes through the origin of the coordinate system (it has a distance of zero). In a 
moment we can fix this by simply adding the model space position of the node to the vertex position to 
move it into place on the node plane.  
 
But before we do this, notice that in the above code we calculate a normal for the vertex simply by 
taking the position of the vertex and normalizing it. Remember, at this point, although we have oriented 
the plane (and its vertices) the origin of the coordinate system is still the center of the ellipse. Therefore, 
the vertex position itself represents a vector from the center of that circle out to the vertex. 
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Figure 12.46 illustrates this concept for a single vertex 
defined on the oriented plane with the origin of the 
coordinate system still at the center of the circle. 
 
The black arrow pointing from the center of the circle is 
the vector that is represented by the vertex position at 
this time. If we normalize this vector, it actually serves as 
a fairly good vertex normal for our purposes. After the 
mesh is complete, if you prefer, you could do an 
averaging sweep through the mesh such that the vertex 
normal is actually the average of both the face normals to 
the left and right of it. Actually, most vertices will belong 
to four faces as it will form the top row of vertices for 
one cylinder and the bottom row of vertices for the next 
cylinder. However, we do not perform this averaging 
step and simply use this normal ‘as is’ which seems to 
give fairly good results when lighting the tree. 
 
As mentioned, the vertex is oriented on the plane correctly but the center of the circle is still the origin 
of the coordinate system, not the node position. That is easily fixed by adding our current vertex position 
and the position of the node and storing the result (along with the normal) in our vertex structure. 
 
            // Push out to it's final position, relative to the branch node 
            vecVertexPos += vecPos; 
 
            // Store the values in the vertex 
            pVertex->x = vecVertexPos.x; 
            pVertex->y = vecVertexPos.y; 
            pVertex->z = vecVertexPos.z; 
 
            // Store the vertex normal 
            pVertex->Normal = vecNormal; 

 
Before finishing this vertex we have to assign it a pair of UV texture coordinates. We discussed the 
technique used for UV calculation earlier in this lesson. The U coordinate is assigned a position across 
the width of the texture which is a product of the vertex index ‘i’ within the ring divided by the total 
number of vertices comprising a ring. This assures that vertex[0] in the ring is mapped to a U coordinate 
of [0] and vertex [N] is mapped to a U coordinate of 1.0 (where N is the branch resolution). All other 
vertices between the start and end vertices of the ring will be uniformly mapped across the width of the 
texture. We also scale the final result by the Texture_Scale_U growth property to allow tiling and/or 
texture sizing. If left at 1.0, the width of the texture will be wrapped around the cylinder/branch segment 
once.  
 
Notice that we use Branch_Resolution - 1 because the first and last vertices are in the same position. We 
want the first vertex to have a U coordinate of 0.0 and the last vertex to have a U coordinate of 1.0 even 
though they are at the same position in the ring. If we do not, our mapping will be incorrect in the area 
between the last and first vertex. For example, if we had a ring of 10 vertices where each had its own 
unique position in the ring (no duplicates), the U coordinates assigned to the last two vertices would be 

 
Figure 12.46 : 

Normalized Vertex Pos = Vertex Normal 
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0.9 and 1.0. We can see that when mapping the face between the last two vertices, the texture would 
have its final 1/10th (the interval 0.9 to 1.0) copied between vertices 9 and 10 in the ring. This is 
absolutely correct. However, when the texture is mapped to the final face in the ring between vertex 10 
and vertex 1 (to wrap around) we would be mapping between a vertex with a texture coordinate of 1.0 
and the first vertex with a texture coordinate of 0.0 which gives us a mapping interval of 1.0 - 0.0.  In 
other words, the entire width of the texture (in reverse) would be mapped into the space between the last 
and first vertex.  
 
By duplicating the first and last vertex positions and assigning them different texture coordinates, we 
can rest assured that we have two U texture coordinates at that initial vertex position in the ring. For the 
first two vertices in the ring in our current example the U interval would be 0.0 – 0.1 and for the last the 
two vertices the interval would be 0.9 - 1.0 (instead of 1.0 - 0.0 which would otherwise be the case if the 
first vertex was used to complete the last face).  
 
            // Generate texture coordinates 
            pVertex->tu = ((float)i / (float)(m_Properties.Branch_Resolution - 1)) 
        * m_Properties.Texture_Scale_U; 
             
  if ( !pNode->Parent ) 
                pVertex->tv = 0.0f; 
            else 
                pVertex->tv = ((float)(pNode->Iteration + 1) / 
      (float)m_Properties.Max_Iteration_Count)  
      * m_Properties.Texture_Scale_V; 
         
        } // Next Vertex 

 
Notice when calculating the V coordinate, if the current node has no parent then it is simply set to 0 (the 
bottom/top of the texture). Remember from our earlier discussion that unlike the U coordinate, the V 
coordinate is not local to the ring. In fact, when the Texture_Scale_V growth property is at its default 
value of 1.0, the height of the texture is mapped to the entire height of the tree. Thus, its level in the 
virtual tree hierarchy determines the node’s V texture coordinate. This is just a simple case of dividing 
the node’s iteration (depth in the hierarchy) by the maximum iteration (maximum depth of the 
hierarchy) to map its iteration into the 0.0 to 1.0 range. Notice that we actually use Iteration + 1. This is 
because (as discussed earlier) the first two levels of the branch node hierarchy have the same iteration of 
zero. As the first iteration will have no parent and will always be assigned a V value of 0 in the above 
code, we want the second node to be 1 not 0, and the third node to be 2 not 1, and so on. 
 
And there we have it. We have now positioned all the vertices in the ring for this node, assigned them 
normals and texture coordinates, and added this information to the CTriMesh.  
 
Unfortunately, our work is still not done. We still have to add indices to the mesh also so that we form a 
band of triangles that join all the vertices in the ring we have just added with the vertices added by the 
parent node (in a previous AddSegment call). Of course, we only perform this step if the current node is 
not a BRANCH_BEGIN node, as this would mean we would have only added one ring/row of vertices. 
We need at least two rings of vertices to create a branch segment, so the following code will only be 
executed for the second node and beyond in a given branch. Therefore, if the current node is a 
BRANCH_BEGIN node, we would have nothing left to do in this function.  
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Let us have a look at the code block that starts to add the indices to the mesh. 
 
        // If this is not the start of a new branch, add indices 
        if ( pNode->Type != BRANCH_BEGIN ) 
        { 
            ULONG FaceIndex=pMesh->AddFace((m_Properties.Branch_Resolution-1)*2); 

 
The first thing we do is call the CTriMesh::AddFace method to 
reserve space to add indices to the mesh’s indices array. Two rings of 
N vertices allow us to create N-1 quads because there are N-1 pairs of 
vertices in an N vertex ring with which to form the base of a quad. We 
also know that if we have two rows of vertices with 8 vertices in each, 
then by stepping around the ring of vertices a vertex at a time and 
using two vertices from each ring, we could construct 7 quads to form 
the hull of the cylinder segment. Furthermore, as each quad would 
need to be constructed from 2 triangles, we know that with a default 
branch resolution of 8 we would need to create 7*2=14 triangles to 
wrap a ring of faces around our rings of vertices and form another 
branch segment. 
 
In Figure 12.47 we see two rings of vertices with a branch resolution of 8 (which actually creates 8 
unique vertex positions that can be seen). While we have not filled in all the faces, you should be able to 
fill in the blanks yourself and see that in this case we would need to allocate space for 8*2 = 16 
triangles. Node N+1 is actually the current node that we are processing and Node N is the ring of 
vertices that was added to the mesh when the previous/parent node was processed. 
 
Remember that the CTriMesh::AddFace method returns the index of the first face in the array of new 
triangles that have been added to the mesh. We can use the CTriMesh::GetFaces method to get a pointer 
to the indices array and offset a pointer to the first new index we just allocated and now must populate. 
For example, let us assume we have just added 16 faces to the mesh (via the above call) and it returned 
us a face index of 80. This means that face 80 in the mesh is the first face of the 16 that we just allocated 
in the face array (80 have been added in previous function calls). Therefore, faces 80 through 95 will be 
the faces that represent the segment we are about to add. 
 
Although we can use the CTriMesh::GetFaces method to fetch a pointer to the indices array, we only 
want to alter the indices used by faces 80 through 95. That is no problem since we already know the 
index of the first new face we added. Since all faces are triangles with three vertices, we just have to 
make our index pointer offset (80 * 3) into the array in this example. That is exactly why 
CTriMesh::GetFaces returns that useful ‘first new face’ index.  
 
  // Retrieve the face index array 
            USHORT * pIndices = &((USHORT*)pMesh->GetFaces())[FaceIndex * 3]; 
 
            USHORT Row1 = (pNode->Parent) ? pNode->Parent->VertexStart : 0; 
            USHORT Row2 = (USHORT)VIndex; 
       
            // Store this nodes vertex start 
  pNode->VertexStart = Row2 

 
Figure 12.47 
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What are the Row1 and Row2 locals doing in the above code? We need to access two rings of vertices in 
order to build this new branch segment. We need to know the indices for the vertices we have just added 
for the current node’s ring as well as the indices of the parent node’s ring so that we can stitch them 
together to make faces. Earlier in the function when we called CTriMesh::AddVertex to make room for 
our ring of vertices at the current node we were returned VIndex. VIndex describes the start location 
(first vertex) in our mesh’s vertex array for the ring of vertices we have just added. This will be the 
second row of vertices that will form the top of the branch segment we are about to create. Notice in the 
above code how the node also stores the index of the first vertex used by this ring. When another branch 
segment is added to this branch, when we visit the child node, we can simply fetch this value from the 
parent node to know where its vertices start. You see this happening in the calculation of Row1 in the 
above code.  
 
If the current node we are processing has no parent, then this is the first segment we have added (second 
node of the entire tree) and we know that the vertices for the previous node (the branch begin) must start 
at zero. If it does have a parent node then we fetch the index at which its vertices start in the current 
mesh (via its VertexStart member). As this code is only executed when we are not processing a branch 
start node, the VertexStart member for a branch start node will be left at its default value of zero. This is 
as it should be, because for any individual branch, its first ring of vertices will be created from the 
branch start node and will be at the very beginning of its vertex buffer. 
 
At this point, we have an index telling us where the parent node’s ring of vertices start in the vertex 
array and an index telling us where the current node’s vertices have been added in that same array. All 
that is left to do now is loop around the ring of vertices and add the indices of the triangle. With each 
iteration of this loop we will add a quad to the index buffer (i.e., two triangles, 6 indices). Since pIndices 
currently points to the position in the mesh’s index array where we want to start adding this index data, 
we can simply increment a counter variable (Index) by 6 during each iteration of the loop. 
 
Hopefully, the following code will make sense to you (you may need to review it a few times and work 
through it on paper). For the first triangle of the quad we index two vertices from the previous node’s 
ring and one vertex from the current node’s ring. For the second triangle of the quad we use two vertices 
from current ring of vertices and one from the previous node’s ring. 
 
            // For each new face 
            for(j=0, Index=0; j<m_Properties.Branch_Resolution-1;++j, Index+= 6 ) 
            { 
                // Add the indices for the first triangle 
                pIndices[ Index     ] = Row1 + j; 
                pIndices[ Index + 1 ] = Row2 + j; 
                pIndices[ Index + 2 ] = Row1 + j + 1; 
 
                // Add the indices for the second triangle 
                pIndices[ Index + 3 ] = Row2 + j; 
                pIndices[ Index + 4 ] = Row2 + j + 1; 
                pIndices[ Index + 5 ] = Row1 + j + 1; 
 
            } // Next Face 
        } // End if not beginning of branch 
    } // End if not end node 
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As you can see, we are adding six indices (two triangles) with each iteration of the loop and using loop 
variable ‘j’ to step through the vertices in the top and bottom rows each time. 
 
We have now seen all the code that is executed to add a segment when the current node is not a node of 
type BRANCH_END. When the current node is an end node things have to be done a little differently. 
We no longer add a ring of vertices at the current node; instead, we just add one vertex at the model 
space node position. This vertex is essentially being positioned at the center of the ring of vertices that 
would have been generated for this node were it not an end node.  
 
    else 
    { 
        // Add just the one tip vertex. 
        long VIndex = pMesh->AddVertex( 1 ); 
 
        CVertex * pVertex = &((CVertex*)pMesh->GetVertices())[ VIndex ]; 
 
        // Same as the node position 
        vecVertexPos = vecPos; 
 
        // Store the values in the vertex 
        pVertex->x = vecVertexPos.x; 
        pVertex->y = vecVertexPos.y; 
        pVertex->z = vecVertexPos.z; 
 
        // Store the vertex normal 
        pVertex->Normal = vecAxis; 

 
The normal calculation is also different for this vertex since we can no longer create a normal using a 
vector from the center of the circle to the vertex. This is obviously because the vertex is at the center of 
this circle. Instead, we just use the model space direction vector of the end node as calculated in the 
virtual tree generation process. 
 
Generating texture coordinates for this vertex is simple also. The U coordinate is always set to 0.5 so 
that it will be mapped to a point exactly half way across the width of the texture (if no scaling is being 
used). This seems logical if you consider that this is a tip in the center of where the circle would be, and 
as such is halfway between both sides of that circle. The V texture coordinate is calculated the same way 
as before (i.e., a function of node hierarchy depth).  
 
        // Generate texture coordinates 
        pVertex->tu  = 0.5f; 
        pVertex->tv  = ((float)(pNode->Iteration + 1) / 
         (float)m_Properties.Max_Iteration_Count)  * 
     m_Properties.Texture_Scale_V; 

 
 
 



 

 103 

 

Now it is time to add the faces for this end segment. Although we added only 
one vertex, we still need to form a triangle between this vertex and every 
vertex in the ring inserted at the previous branch node. This allows us to end 
the branch using a cone shape (Figure 12.48). 
 
If we have a ring of N vertices at the previous node then we know that these 
can be used to build the base of N-1 faces. We can see that the number of 
faces we wish to add to the CTriMesh in order to add this cone would be the 
branch resolution minus 1.  As before, we will use the CTriMesh::AddFace 
function to allocate this many faces (essentially just multiplies the desired 
face count by three and allocates that many indices in the mesh’s indices 
array). 

 
        // Creating pointed tip 
        ULONG FaceIndex = pMesh->AddFace( m_Properties.Branch_Resolution - 1 ); 
 
        // Retrieve the face index buffer 
        USHORT * pIndices = &((USHORT*)pMesh->GetFaces())[FaceIndex * 3]; 
         
        USHORT  Row1 = (pNode->Parent) ? pNode->Parent->VertexStart : 0; 
        USHORT Row2 = (USHORT)VIndex; 
          
        // Store the vertex start 
         pNode->VertexStart = Row2; 

 
Notice that once again, after allocating space for the new indices, we use the CTriMesh::GetFaces 
function to return a pointer to the start of the index array. We then multiply the index of the first new 
face we have allocated by 3 to offset the indices pointer so that it points to the first new index position 
we must fill in.  
 
In the following and final section of code for this function, we loop around each vertex in the ring 
forming a triangle with the tip vertex (Row2) and each pair of vertices from the previous ring (Row1 and 
Row1+1).  
 
        // For each new face 
        for (j=0, Index=0; j<m_Properties.Branch_Resolution - 1; ++j, Index+= 3 ) 
        { 
            // Add the indices for the first triangle 
            pIndices[ Index     ] = Row1 + j; 
            pIndices[ Index + 1 ] = Row2; 
            pIndices[ Index + 2 ] = Row1 + j + 1; 
 
        } // Next Face 
     
    } // End if end node 
 
    // Success!! 
    return D3D_OK; 
} 

 

 
Figure 12.48 
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We have now covered the complete AddBranchSegment function. Remember that it was called with 
each iteration of the BuildNode function to add a ring of vertices and indices at the current node being 
processed. Although on first read the function may seem quite intimidating, you should notice after 
further study that it really is rather intuitive (although admittedly a little long). 
 
There is one more function we must cover before we have essentially covered the entire tree generation 
process. You will recall from our coverage of the BuildNode method that the BuildSkinInfo method was 
called whenever we were processing a branch start node (BRANCH_BEGIN). Let us have a look at this 
function next.   

BuildSkinInfo - CTreeActor 

The CTreeActor::BuildSkinInfo function is called towards the end of the BuildNode function only if the 
current node being processed is of type BRANCH_BEGIN. At this point in the BuildNode function, the 
child nodes of the BRANCH_BEGIN node will have already been visited and all the vertices and 
indices of each node in this branch added to the new CTriMesh.  
 
Recall that after our CTriMesh has been built, we pass it into the 
CAllocateHierarchy::CreateMeshContainer function to convert it into a skinned mesh. However, this 
function requires that we send it an ID3DXSkinInfo object containing the information about each bone 
in the hierarchy that influences this mesh and the vertices in the mesh that they influence. Traditionally, 
we have had the ID3DXSkinInfo created for us by D3DX when loading skinned meshes from X files, 
but because we have hand-crafted this branch mesh ourselves, we are going to be responsible for 
creating the ID3DXSkinInfo object. Of course, we will also have to populate it with skinning 
information before passing it along with the mesh into the CreateMeshContainer function.  
 
So what does an ID3DXSkinInfo object contain? Well, when we create a new object of this type using 
the global D3DX function D3DXCreateSkinInfoFVF, we must pass in the total number of bones that 
influence the mesh. In our case, this will be the number of bones created for nodes belonging only to this 
branch. We must also inform the creation function about the number of vertices in the mesh which this 
object will contain skinning information for. 
 
Once this function returns, we will have an ID3DXSkinInfo object that will have an empty table of bone 
slots. Each row of this internal table will eventually need to store the information for one bone that 
influences the mesh. For example, if we have a branch that uses five bones, the empty ID3DXSkinInfo 
would have a table with five slots. Each element of this table will be used to store a bone name, its bone 
offset matrix (which we will have to calculate) and an array of vertex indices describing which vertices 
in the branch mesh are influenced by this bone. It will also contain an array of weights describing the 
strength at which the bone influences the transformation of each vertex referenced in the bone’s vertex 
index array. 
 
Ultimately, this function will require allocating a  new ID3DXSkinInfo for N bones, and then looping N 
times and setting the bone name, offset matrix, vertex indices and vertex weights for each bone using the 
following methods of the ID3DXSkinInfo interface: 
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HRESULT SetBoneName( DWORD Bone, LPCSTR pName ); 
 
HRESULT SetBoneOffsetMatrix( DWORD Bone,  
                             const D3DXMATRIX *pBoneTransform ); 
 
HRESULT SetBoneInfluence( DWORD Bone,  
        DWORD numInfluences,  
        CONST DWORD *vertices, 

           CONST FLOAT *weights ); 
 
The three methods shown above are the only ones we will need to populate the ID3DXSkinInfo with the 
information about each of the branch bones. Remember, we are only interested in the bones that 
influence this mesh, which is a single branch. Since the BuildSkinInfo function will only be called for 
BRANCH_BEGIN nodes (and passed a pointer to that node), we simply have to traverse through the 
child nodes of the branch, adding bones to the ID3DXSkinInfo object as we encounter them between the 
start and end nodes of the branch. 
 
The SetBoneName method is used to set the name of the bone we are currently processing. The first 
parameter describes the zero based index of the bone along the branch and the second parameter is 
where we pass in a string containing the name we would like to assign to the bone. Obviously this 
should match the name that we gave to the actual bone/frame in the hierarchy. For example, if this is the 
bone at the start node of the branch, this will have an index of zero and the name passed will match the 
name of the frame we created for this node and attached to the hierarchy. Now you know why we stored 
a frame pointer in the branch node structure when we created the bone hierarchy; it allows us to easily 
access the bone created from a given branch node here in this function. 
 
As you undoubtedly remember from the previous chapter, the ID3DXSkinInfo object will also store a 
bone offset matrix for each bone in the hierarchy. We will need to calculate the bone offset matrix 
ourselves. As discussed in Chapter 11, the offset matrix for a given bone is used to transform its attached 
vertices into the space of that bone so that local rotation of the vertices about that bone can be achieved 
when combined with the absolute bone matrix. The bone offset matrix is usually calculated by taking the 
inverse of the absolute bone matrix in its default pose. This way, when the bone matrix is rotated to 
some degree and is combined with the bone offset matrix, we are essentially subtracting the reference 
pose bone matrix from the new absolute bone matrix, leaving us with only the relative rotation to apply. 
 
Normally, when loading a skeletal construct from an X file, the frames of the hierarchy will compose a 
single skeleton (a character for example). As such, the bone offset matrix for each bone is simply 
calculated by traversing the hierarchy from the root frame and combining matrices as we step through 
the levels of the hierarchy, generating the absolute (not parent relative) bone matrix for each frame. We 
can then invert this matrix and have a matrix that will transform that bone and its vertices into a space 
where the bone itself is at the origin of the coordinate system during the transformation of the vertex by 
that bone (i.e., bone local space.) 
 
Things are slightly different in our tree case because our frame hierarchy does not represent the skeleton 
of a single mesh. Rather, our hierarchy represents multiple mini-skeletons connected together, where 
each mini-skeleton is the skeleton for a single branch mesh. When calculating bone offset matrices, we 
are only interested in transforming the bone (and any influential vertices) back to the position of the root 
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bone of the skeleton for the current mesh. Therefore, we do not wish the bone offset matrix we generate 
for a bone to be the inverse of the complete concatenation of parent-relative matrices from the root 
frame of the entire hierarchy right down to that bone. Instead, we wish the bone offset matrix to be only 
the inverse of the concatenation of matrices from the bone that begins that branch (the root bone of the 
branch) to the current bone being processed. In short, when calculating the bone offset matrices, we will 
only be interested in the skeleton of the current branch mesh and not all the bones in the entire tree. 
Thus, this function will traverse through the child nodes of the branch (starting at the branch start node) 
and at each bone it visits, concatenate the relative matrices before passing the result down to the child. 
For any given bone, this matrix will contain the absolute transformation of the bone in the reference 
pose. All we have to do is invert this matrix and we have the bone offset matrix for the current bone 
being processed. We can then assign it to the bone using the ID3DXSkinInfo::SetBoneOffsetMatrix 
method. 
 
The next step is collecting the indices of all vertices that are influenced by the bone we are currently 
processing so that we can send them into the ID3DXSkinInfo::SetBoneInfluence function. This function 
accepts as its first parameter the index of the bone we wish to set the vertex influences for. This will be 
the bone we are currently processing. We also inform this function about the number of vertices it will 
influence, which we will count when collecting those vertices (more on this in a moment). As the final 
two parameters to this function we send in pointers to two arrays. The first is the array of vertex indices 
describing the vertices influenced by this bone. The second is an array of weight values describing how 
strongly the bone influences the vertices in the previous array. As you will see in a moment, all vertices 
are influenced by only one bone in our branch mesh, so we will always pass in an array filled with a 
weight value of 1.0 for each vertex.  
 
Additionally, since no vertex will ever be influenced by more than one bone and the vertices will be 
added to the ID3DXSkinInfo in the same order that they were added to our CTriMesh when traversing 
the tree, the indices we pass into this array will always have a 1:1 mapping with the order in which the 
vertex data was added to the mesh.  For example, if the first bone influences the first 3 rings of vertices 
(starting from the branch start node) and the branch resolution is 8, when setting the first bone we would 
pass in an array of 8*3=24 indices where the indices in this array range from 0 to 23. Similarly, if the 
second bone in the branch influences the following 3 rings of vertices, we will be passing another 24 
indices into this array when adding the second bone’s data, which goes from 24 to 47, and so on. The 
number of rings of vertices that are influenced by a bone is the same for all bones (except the last). This 
value is always Bone_Resolution*Branch_Resolution. In other words, if the bone resolution is set to 3 
then we know this means that, starting from the beginning of the branch, a bone will be inserted every 3 
nodes. A bone is always inserted at the branch start node. Therefore, all rings of vertices inserted from 
that bone node up to, but not including the next bone node, are considered to be influenced by that bone. 
If the bone resolution was 3 and the branch resolution was 8 this means that every bone would influence 
3 rings of vertices (including the vertices inserted at the bone node). If the branch resolution was 8, then 
each bone would influence 8*3 = 24 vertices. Therefore, we would have to assign 24 vertex indices and 
24 weights (all set to 1.0) to each bone we create. The exception is the final bone in the branch which 
may have ended prematurely by some random calculation during the tree calculation process and 
because the final node will contain just a single tip vertex. 
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Figure 12.49 : Bone Vertex Influences for : Bone Resolution=3 
 
Figure 12.59 shows the section of a branch where the bone resolution is set to 3. The blue boxes are the 
bones that are positioned every three ring’s of vertices. The green boxes show the vertices which will be 
mapped to the bone and the bone’s influence range over the branch. 
 
Looking at this diagram and remembering that the pNode parameter passed into the BuildSkinInfo 
function will always be a node of type BRANCH_BEGIN, our strategy becomes clear: 
 

1. Calculate the total number of vertices and bones in the branch. 
2. Use the information from step 1 to allocate a new ID3DXSkinInfo of the correct size. 
3. Step through each node in the branch starting at the branch start node. 

a. If this node is a bone node then add the name of the bone to the ID3DXSkinInfo and 
calculate its bone offset matrix. This will be an identity matrix for the start node of the 
branch. 

b. Add the indices of vertices at this node to a temporary index array. 
c. Step down into child node. 

i. If this node is a bone node, then assign all currently collected vertex indices 
which reference the previous bone created in step 3a, to the ID3DXSkinInfo 
object. Empty the temporary vertex index array. 

ii. If this is not a bone node then append the ring of vertex indices at this node to the 
temporary vertex index array. 

4. Repeat steps 3a through 3c until last node is processed 
 
As outlined above, we need to step through the nodes of the branch starting at the root branch node. 
When we find a bone node, we add this bone’s information (name and offset matrix) to the 
ID3DXSkinInfo object. We then continue to traverse until the next bone is reached, collecting vertex 
indices in a temporary buffer along the way. As soon as we hit a new bone node, we know that the 
vertex indices currently stored in our temporary array belong to the previous bone, so we call the 
SetBoneInfluence method to assign them to that bone. We then empty the temporary vertex array so that 
it can be used to collect indices between the next two bones. We create a new bone at the current node 
and continue the process. 
 
Let us now look at the code one section at a time. The function accepts three parameters that are passed 
to it by the BuildNode function. The first is a pointer to the BRANCH_BEGIN node of the branch mesh 
we are about to calculate the bone influences for. The second is a pointer to the branch mesh, which at 
this point contains all its vertex and index data. The third parameter is the address of an ID3DXSkinInfo 
interface pointer which on function return should point to a valid ID3DXSkinInfo interface containing 
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the bone influences for the mesh. The BuildNode method can then pass this interface into the 
CreateMeshContainer function for final skinning. 
    
HRESULT CTreeActor::BuildSkinInfo( BranchNode *pNode,  
          CTriMesh * pMeshData, 
           LPD3DXSKININFO *ppSkinInfo ) 
{ 
    HRESULT hRet; 
    ULONG  BoneCount   = 0, InfluenceCount=0, Counter=0,IndexCounter = 0, i; 
    ULONG  VertexCount = pMeshData->GetNumVertices(); 
     
    ULONG      * pIndices    = NULL; 
    float      * pWeights    = NULL; 
    BranchNode * pSearchNode = NULL; 
    BranchNode * pSegmentNode= NULL;  
    TCHAR        strName[1024]; 
    D3DXMATRIX   mtxOffset, mtxInverse; 
 
    // Set offset to identity. 
    D3DXMatrixIdentity( &mtxOffset ) 

 
In the above code we calculate the number of vertices in the mesh and store it in the VertexCount 
parameter. We will need to know how many vertices our branch mesh contains so that we can feed it 
into the ID3DXCreateSkinInfoFVF function. We also initialize the local matrix variable (mtxOffset) to 
an identity matrix. This will be used to store the bone offset matrix for each bone we add to the 
ID3DXSkinInfo object. However, as the first bone we will add will be the bone at the branch start node, 
this is the base frame of reference for the entire mesh and the bone offset matrix should be an identity 
matrix. 
 
In the next section of code we will use the pSearchNode pointer to count all the bones we have added to 
this branch in the hierarchy. We will need to supply D3DX with this information when it creates the 
ID3DXSkinInfo object. 
 
Note that the current node may have multiple children if other branch nodes begin at the next node. That 
is, the next node in the current branch might be in a sibling list with multiple BRANCH_START nodes 
which we are not interesting in processing. Therefore, to locate the next child node we will step down to 
the first child node of the current node and then search for the one (and only) node in that list that is not 
a BRANCH_BEGIN node. That is the node in that sibling list that is the continuation of this branch and 
the next node we must process. Essentially, the next section of code steps through every node in the 
branch looking for bone nodes (nodes that had bones attached to them) and for each one it finds it 
increments the BoneCount local variable. This will allow us to count all the bones used by this mesh so 
that we can allocate the ID3DXSkinInfo to manage that many bones. 
 
    // Navigate our way through the branch, setting bone details 
    BoneCount   = 1; 
    pSearchNode = pNode; 
 
    while ( pSearchNode = pSearchNode->Child ) 
    { 
        // We're not interested in other branches, so shift us through until 
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        // we find a node that is our segment, or end node. 
        while ( pSearchNode->Type == BRANCH_BEGIN && pSearchNode )  
      pSearchNode = pSearchNode->Sibling; 
 
        // If we couldn't find a node, we have an invalid hierarchy 
        if ( !pSearchNode ) return D3DERR_INVALIDCALL; 
 
        // Was a frame created here? 
        if ( pSearchNode->BoneNode ) BoneCount++; 
         
    } // Next child segment 

 
At the start of the above code we initially set the bone count to 1. This is because the first node is a 
branch start node and will always have a bone. Also, when we enter the while loop that steps through the 
child branch nodes, we start at the child of the BRANCH_BEGIN node. Therefore, the initial bone at the 
start of the branch would not be accounted for when keeping the count. Notice that with each iteration of 
the outer while loop, we step down one level in the hierarchy into the current node’s sibling list. The 
inner while loop searches that sibling list for the only non-BRANCH_BEGIN node, if multiple nodes 
exist in that list. Essentially, the above code is just stepping down the branch each time, finding the next 
child node that continues the current branch, and notching the score up for each bone node that is found. 
 
We now have everything we need to allocate a new ID3DXSkinInfo object. We know the number of 
bones that influence our mesh and the number of vertices in this mesh. 
 
    // Create the skin info object ready for building. 
    hRet = D3DXCreateSkinInfoFVF(VertexCount, VERTEX_FVF, BoneCount, ppSkinInfo ); 
    if (FAILED(hRet)) return hRet; 
 
    // Get dereferenced skin info for easy access 
    LPD3DXSKININFO pSkinInfo = *ppSkinInfo; 

 
When the D3DXCreateSkinInfoFVF function returns, the ID3DXSkinInfo interface pointer (the final 
parameter) will point to a valid interface. In this case, we pass in the ID3DXSkinInfo interface pointer 
that was passed into the function by BuildNode so that it will be able to access it on function return. We 
then assign this interface pointer to a local variable for ease of access so we do not have to de-reference 
the original pointer each time.  
 
At this point we have our new ID3DXSkinInfo interface but it contains no data. It has empty slots where 
the bone information should be, so we will spend the remainder of this function setting the information 
for each bone in the branch mesh. 
 
As mentioned previously, we will need to step through the nodes of this branch and collect the indices of 
all vertices that are influenced by the bone we are processing. All vertices between two bones will be 
influenced by the previous bone (see Figure 12.49). Therefore, while stepping between two bones, we 
will need a temporary vertex indices buffer where we can store the data we have collected at each node 
as we traversed from one bone to the next. We will also need a temporary array of the same size to store 
the weights of each of these vertices (one weight for each vertex). We allocate these temporary buffers 
to be large enough to hold all the vertices in the mesh, just to be safe (e.g., if one bone in the mesh 
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directly influenced all its vertices, we will still be covered). The next code block allocates the vertex 
index array and the vertex weights array.  
 
    // Allocate enough space to hold all indices and weights 
    pIndices = new ULONG[ VertexCount ]; 
    if ( !pIndices) return E_OUTOFMEMORY; 
 
    pWeights = new float[ VertexCount ]; 
    if ( !pWeights ) { delete []pIndices; return E_OUTOFMEMORY; } 

 
We will step through the nodes of this branch using a while loop, but this loop will start at the child node 
of the branch start node. Therefore, before we enter the loop we will give the ID3DXSkinInfo object the 
information (vertices and weights) for the bone stored at the branch start node. We know that the branch 
start node will always have a bone and that the bone will always by the first bone in the mesh (index 0). 
 
In the next section we setup the first bone in the ID3DXSkinInfo object. We build the name of this bone 
in the same way we built the name of the bone when we added it to the hierarchy. We must make sure 
that the name we add here matches the name of the bone in the frame hierarchy it represents. Once we 
have the name stored in a string, we set it along with the bone offset matrix for this bone (identity for the 
branch start bone) as shown below. 
 
    // Generate root bone name (matches frame) 
    _stprintf( strName, _T("Branch_%i"), pNode->UID ); 
 
    // Set it to the skin info 
    pSkinInfo->SetBoneName( Counter, strName ); 
    pSkinInfo->SetBoneOffsetMatrix( Counter, &mtxOffset ); 
    Counter++; 

 
The first parameter to both the SetBoneName and SetBoneOffsetMatrix functions is the index of the 
bone we wish to set. Since the branch start bone is the first bone in the branch it should have an index of 
0. This is the initial value of the Counter variable which was initialized at the top of the function. We 
then increment Counter so that when we add another bone later we know this next bone will be at index 
1 in the ID3DXSkinInfo object’s internal bone table. 
 
Now we need to add the indices and weights for the vertices that are influences by this bone. We will 
collect this information in a while loop starting from the child node of the branch start node. This means 
we must make sure that we add the first ring of vertices that were inserted at the branch start node so 
that they are not forgotten. The next section of code loops around every vertex in the first ring 
(Branch_Resolution) adding the index of each vertex to the pIndices temporary array and a value of 1.0 
in the corresponding temporary pWeights array.  
 
    // Fill in the values so far for the root of the branch 
    for ( i = 0; i < m_Properties.Branch_Resolution; ++i ) 
    { 
        pIndices[ InfluenceCount ] = IndexCounter++; 
        pWeights[ InfluenceCount ] = 1.0f; 
        InfluenceCount ++; 
    } // Next index 
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The IndexCounter variable will start off at zero and be incremented for every vertex we add; it is not 
reset when we encounter a new bone. If our mesh has 400 vertices, then we know that the order in which 
we added them to the mesh is the same order in which they are assigned to their bones. Therefore, we 
will essentially add vertices 0-399 in exactly that order. Of course, here, we are just adding the first ring 
of vertices. If the branch resolution was 8 for example, we would add the values 0-7 to the indices array. 
When we visit the next child node and add that ring of vertices, the index counter will have not been 
reset, so we will be adding values 8 through 15 to the indices array, and so on. 
 
What is InfluenceCount in the above code? In the pIndices array we are collecting the influenced vertex 
indices for one bone. Therefore, influence count will be reset to zero each time we start collecting 
vertices for a new bone. It is simply used to place the vertex index in the correct zero based location in 
the indices array for the current bone. For example, if a bone is influenced by 40 vertices, while 
collecting those vertices, influence count will count from 0 to 39. When a new bone is encountered, we 
will add all currently collected vertices to the ID3DXSkinInfo for the previous bone, reset the 
InfluenceCount back to zero, and start collecting vertex indices all over again using the same buffer for 
the next bone (overwriting any previous data). 
 
At this point we have added the first bone’s name and offset matrix and have collected the first ring of 
vertices from the BRANCH_BEGIN node and stored them in the indices buffer. We will now enter a 
while loop that will start at the child node and continue to make its way down to the end of the branch. It 
will collect the vertices from each node exactly as we did above and add them to the indices buffer. 
When we finally hit another bone node, we know that the indices buffer will contain all the vertex 
indices influenced by the previous bone, so we can add them to the ID3DXSkinInfo and attach them to 
the previous bone. We then flush the indices buffer, reset the influence count and start collecting vertices 
for this new bone, and so on.  
 
Let us now examine the while loop which comprises the rest of the function and adds the remaining 
bone information for the branch. 
 
As before, we start by stepping down into the child node of the BRANCH_BEGIN node. This is the first 
node we process in this loop. We then use the same inner while loop mechanism we used before to make 
sure that if the child node is in a sibling list with other nodes, we locate the correct node that is the 
continuation of the branch (not a BRANCH_START that spawns from that node). 
 
    // Now we make our way through and build the skin info 
    pSearchNode = pNode; 
    while ( pSearchNode = pSearchNode->Child ) 
    { 
      // Reset the segment node (we must find one at each level) 
        pSegmentNode = NULL; 
 
        // Loop through all siblings of this node 
        for ( ; pSearchNode; pSearchNode = pSearchNode->Sibling ) 
        { 
            // If this is a begin node, skip it. We aren't interested in other branches 
            if ( pSearchNode->Type == BRANCH_BEGIN ) continue; 
 
            // If this is the segment node, store it, we want to continue down from here 
            if ( pSearchNode->Type == BRANCH_SEGMENT ) pSegmentNode = pSearchNode;   
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If we find any node in the sibling list that is a BRANCH_BEGIN node, we skip it and advance to its 
sibling. We are searching for the node that is a continuation of the current branch; the only node in the 
sibling list which is of type BRANCH_SEGMENT. 
 
If we get this far then pSearchNode points at the child node (i.e., the next node we will process). We 
also store a copy of this node’s pointer in the pSegmentNode local variable for later use.  
 
The first thing we will do is test to see if this is a bone node. If it is, then it is time to calculate the bone 
offset matrix for this new bone, build its name, and set the name and bone offset matrix in the next row 
of the ID3DXSkinInfo bone table. 
 
        // Was a frame created here? 
        if ( pSearchNode->BoneNode ) 
        { 
            // Combine the bone matrix, and inverse for the reference pose offset  
            D3DXMatrixMultiply( &mtxOffset,  
       &pSearchNode->pBone->TransformationMatrix, 
       &mtxOffset ); 
 
            D3DXMatrixInverse( &mtxInverse, NULL, &mtxOffset ); 
 
            // Generate bone name (matches frame) 
            _stprintf( strName, _T("Branch_%i"), pSearchNode->UID ); 
 
            // Set it to the skin info 
            pSkinInfo->SetBoneName( Counter, strName ); 
            pSkinInfo->SetBoneOffsetMatrix( Counter, &mtxInverse ); 
 
        } // End if bone created 

 
Notice that every time we encounter a bone we combine its parent relative matrix (the frame matrix) 
with the current contents of the mtxOffset matrix (which will be set to identity at the start node of the 
branch). This means that whenever we reach a bone, it will always contains the absolute transformation 
of that bone in its reference pose relative to the start node of the branch. As discussed earlier, inverting 
this matrix gives us our bone offset matrix. Also remember that when we added the first bone we 
incremented the Counter variable, so if this was the first bone we encountered after the branch start 
node, Counter would be set to 1 and we would be setting the properties of the second bone in the 
ID3DXSkinInfo bone table. 
 
As discussed, when a new bone is encountered, we need to take the current vertex indices we have 
collected between the previous bone and this new bone and assign them as influences for the previous 
bone. We also have to perform this same step if the current node is a BRANCH_END node as we have 
reached the end of the line. In the case when the node is an end node, we also add the final tip vertex 
index to the index array before we assign the influences. 
 
        // If we're about to switch to a new bone, or we have completed 
        // this branch, fill in the PREVIOUSLY started bone's influence details 
        if ( pSearchNode->BoneNode || pSearchNode->Type == BRANCH_END ) 
        { 
            // If this is the end of the branch, just add the last influence 
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            if ( pSearchNode->Type == BRANCH_END ) 
            { 
                // There is only one tip vertex on branch ends 
                pIndices[ InfluenceCount ] = IndexCounter++; 
                pWeights[ InfluenceCount ] = 1.0f; 
                InfluenceCount++; 
 
            } // End if end 
 
          // Set the bone influence details 
          pSkinInfo->SetBoneInfluence(Counter-1,InfluenceCount,pIndices,pWeights ); 
 
            // Reset to start again 
            InfluenceCount = 0; 
 
            // Move on to next bone 
            Counter++; 
 
        } // End if switching 

 
Notice that when we call SetBoneInfluence function we use the index Counter - 1 to assign everything 
accumulated to the previous bone. Because Counter always contains the index of the next bone we hope 
to encounter, subtracting 1 from it gives us the index of the previous bone we processed. This is the 
bone which the vertices we have accumulated in the pIndices buffer should be assigned to. When we add 
the new bone and assign the collected indices to the previous bone, we reset InfluenceCount to zero to 
start collecting indices at the beginning of the array again for the next bone. We also increment the 
Counter variable so that we know the index of the next bone we encounter and which slot it should 
occupy in the ID3DXSkinInfo object’s bone table. 
 
The final section of code shows what happens when the node is not a bone node or branch end node. If 
for example, your branch had a bone resolution of 5, the code in the above code block would only be 
executed every 5 nodes of the branch. For all nodes in between bone nodes, the following code would be 
executed. It simply adds the vertex indices for the next ring of vertices to the pIndices buffer. 
 
        // Add influences to the previous bone 
        if ( pSearchNode->Type == BRANCH_SEGMENT ) 
        { 
            for ( i = 0; i < m_Properties.Branch_Resolution; ++i ) 
            { 
                pIndices[ InfluenceCount ] = IndexCounter++; 
                pWeights[ InfluenceCount ] = 1.0f; 
                InfluenceCount ++; 
 
            } // Next index 
 
        } // End if segment 
    
       } // Next Node Sibling 
 
       // If we couldn't find a segment node in the sibling list 
        // we've reached the end of the branch 
        if ( !pSegmentNode ) break;  
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    } // Next child segment 
 
    // Clean up 
    delete []pIndices; 
    delete []pWeights; 
 
    // Success!! 
    return D3D_OK; 
} 

 
At the end of the function you can see that we release the temporary index and weight arrays and return. 
 
We have now covered the entire tree generation process and program flow returns to 
CTreeActor::GenerateTree. If we look at the code for that function again we can see that there is only 
one more task that must be performed before program flow goes back to the caller (the application in our 
case) and the tree is considered complete. 
 
HRESULT CTreeActor::GenerateTree( ULONG Options, LPDIRECT3DDEVICE9 pD3DDevice, 
                                  const D3DXVECTOR3 &vecDimensions, 
                                  const D3DXVECTOR3 &vecInitialDir, 
                                  ULONG BranchSeed ) 
{ 
    HRESULT            hRet; 
    CAllocateHierarchy Allocator( this ); 
 
    // Validate parameters 
    if ( !pD3DDevice ) return D3DERR_INVALIDCALL; 
 
    // Release previous data. 
    Release(); 
 
    // Store the D3D Device here 
    m_pD3DDevice = pD3DDevice; 
    m_pD3DDevice->AddRef(); 
 
    // Store options 
    m_nOptions = Options; 
 
    // Generate the branches 
    hRet = GenerateBranches( vecDimensions, vecInitialDir, BranchSeed ); 
    if (FAILED(hRet)) return hRet; 
 
    // Build the frame hierarchy 
    hRet = BuildFrameHierarchy( &Allocator ); 
    if (FAILED(hRet)) return hRet; 
 
    // Build the bone matrix tables for all skinned meshes stored here 
    if ( m_pFrameRoot ) 
    { 
        hRet = BuildBoneMatrixPointers( m_pFrameRoot ); 
        if ( FAILED(hRet) ) return hRet; 
 
    } // End if no hierarchy 
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    // All is well. 
    return D3D_OK; 
} 

 
Just as we did in CActor::LoadActorFromX, as soon as the mesh hierarchy has been constructed we 
must call the base class BuildBoneMatrixPointers function. Hopefully you will recall from Lab Project 
11.1 that this function traverses the entire hierarchy searching for mesh containers. For each mesh 
container found that stores an ID3DXSkinInfo object, it extracts each of the bone names, searches for 
the matching frame in the hierarchy, and adds the pointer to each frame’s absolute matrix to the mesh 
container’s bone matrix pointer array. When this function returns, each mesh container will contain an 
array of bone matrix pointers and an array of matching bone offset matrices that can be easily accessed 
and combined when rendering the mesh. 

12.5 Animating CTreeActor 

The CTreeActor class includes a function that creates animation data for the frame hierarchy. The 
GenerateAnimation function should be called by the application after the call to the GenerateTree 
function. This function is not automatically called by GenerateTree since you might want to generate a 
tree that does not animate, or perhaps you want to animate the tree using your own algorithms. 
Furthermore, if you intend to simply save the tree data out to disk and import it into GILES™ for 
placement purposes, the animation data will be lost anyway. 
 
However, we felt that it would be helpful to go through the process of creating some simple animations. 
It should provide you with some additional insight into the animation system as a whole and hopefully 
spark some of your own creative ideas regarding animation. If you wish to use the feature, the 
GenerateAnimation function can be called to build keyframes for each bone in the tree. The animation 
we will create will simulate wind and the tree branches will sway back and forth. 
 
To get an idea of the overall process, below we see how some code may look in an application that has 
created a CTreeActor and would like it to animate.  
 
// Allocate new Tree Actor 
CTreeActor *pTree = new CTreeActor; 
 
// Set actor skinning mode 
pTree->SetSkinningMethod( CActor::SKINMETHOD_AUTODETECT ); 
 
// Register global texture/material callback for non-managed mode 
pTree->RegisterCallback( CActor::CALLBACK_ATTRIBUTEID, CollectAttributeID, this ); 
 
// Set the texture and material to use for the branches 
pTree->SetBranchMaterial( _T("LondonPlaneBark.dds"), NULL ); 
 
// Generate skinned tree 
pTree->GenerateTree( D3DXMESH_MANAGED,  
      m_pD3DDevice,  
      D3DXVECTOR3( 2.0f, 2.0f, 2.5f ),  
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      D3DXVECTOR3( 0.0f, 1.0f, 0.0f ));  
 
// We wish to animate so generate animation data and controller for actor 
pTree->GenerateAnimation( D3DXVECTOR3( 0.0f, 0.0f, 1.0f ), 30.0f, true ); 

 
For completeness, we see the actor being allocated and its skinning method being set to auto-detection 
mode. We then see the scene registering a callback function that will be used by the actor to process the 
textures and materials needed by the actor. The application then calls the SetBranchMaterial method to 
supply the actor with the filename of the texture it would like mapped to its branches. Notice that the 
second material parameter, which can be used to pass a pointer to a D3DMATERIAL9 structure, is set 
to NULL in this example. We have elected to let the tree use the default material it creates in its 
constructor. 
 
The call to the GenerateTree method is then made with the final two vectors describing the dimensions 
of the root node and the direction vector for that node. When this function returns, the actor will have a 
final frame hierarchy and every branch will be represented by a skinned mesh. 
 
On the final line we call the CTreeActor::GenerateAnimation method, which will create the actor’s 
animation controller and populate it with animation data. The function takes three parameters. The first 
is the wind direction vector which will be used to calculate how the bones of the tree will animate. This 
vector describes the direction that the wind is blowing and is used to calculate a rotation axis for the 
bones. The second vector is the strength of the wind, which is used to scale the rotation of each branch 
with respect to the rotation axis. The third parameter is a boolean which specifies whether the 
CActor::ApplyCustomSets function of the base class will be called after the sets have been created. As 
you will recall, this function converts each ID3DXKeyframedAnimationSet into one of our custom 
CAnimationSets to overcome the GetSRT bug. Since the GenerateAnimation function will only create 
one animation set for the entire tree, only this one animation set will have to be converted in the 
ApplyCustomSets method. However, we have left this parameter as a Boolean so that should this bug be 
fixed in the future, you can pass false and use the ID3DXKeyframedAnimationSets that are initially 
created. Lets us now examine the code to this function and discuss the animation it is trying to 
implement. 

GenerateAnimation - CTreeActor 

The animation we will create will be very simple. Given a wind direction vector, we will perform the 
cross product between that vector and the world up vector <0, 1, 0> to get a vector that is perpendicular 
to the wind direction vector. We can think of this new vector as being a rotation axis which the direction 
vector is blowing directly against. If we create a scenario where the axis exists at each bone in the tree, 
we can rotate the branches about this axis by a small amount determined by the fWindStrength 
parameter passed into the function. 
 
By default, we will create 20 keyframes for each bone in the hierarchy. For each of those keyframes (for 
a given frame) we will rotate the frame by some amount. Each keyframe for every frame will contain a 
rotation around the same axis, but at varying degrees. The pattern we want to simulate is not simply for 
the branches to always be blowing away from the wind, as this would simply bend the tree away from 
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the wind direction vector. Rather, we wish to rotate the bones away from the wind vector but also let 
them move back again so that the branches sway back and forth. Admittedly, this is not particularly 
realistic, nor is it going to be physically correct, but the end result will be close enough to what we want 
to work for our purposes in this lesson.  
 
As an example of how things will work, the animation stored in each keyframe for a given frame might 
slowly rotate the bone an angle of 30 degrees away from the wind vector around the rotation axis in 
keyframes 1 – 10. It might then spend the next 10 keyframes rotating it back again to its initial position. 
Our animation will not be quite that simplistic, but hopefully you understand that each frame will have 
an array of 20 keyframes and that at each keyframe, we store the rotation angle of the bone around the 
rotation axis at that particular time. To make things more realistic, we will also introduce the concept of 
a height delay, so that the further up the tree we move, the bones rotate slightly behind the bones 
beneath them in the tree. This will generate a whip-like effect, where the bottom of branches will start to 
move first and the end of the branch will be dragged along with it a short time later. At the midway 
point, the bottom section of a branch may be rotating back to its initial pose while it top part is still on its 
way out to full extension (the position at which the bottom section starts to pull the top section of the 
branch back with it). 
 
The actual creation of the keyframe data is done using a recursive function called BuildNodeAnimation. 
It is called from the GenerateAnimation function to traverse all the nodes in the tree and build the 
keyframes for each one. We will discuss this all shortly. First though, let us have a look at the parent 
function and the doorway to this recursive process. 
 
One of the first things this function must do is create the actor’s ID3DXAnimationController. Because 
we did not load our actor’s data using the D3DXLoadMeshHierarchyFromX function, our actor will 
currently have no animation controller assigned. However, before allocating this new controller, the 
function will release the previous controller interface if one exists. This is done for safety as it lets the 
application call this function even if the actor has previously had animation defined for it. It is possible 
that the application may wish to call this function again to generate animation data with a different wind 
direction vector or wind strength than that specified the first time the function was called. 
 
Once we have released the controller interface we must create a new one. Recall that when we use the 
D3DXCreateAnimationController function to create a new controller we must pass in the limits. We 
only need one animation set and we may as well specify the default number of tracks (2) and the default 
number of key-events (30) even though we do not need them.  
 
However, you will recall from our discussion of the animation controller in Chapter 10, that when 
creating one, we must know how many animation outputs (i.e., frame matrices) to make room for inside 
the controller. Luckily, we can use the D3DXFrameNumNamedMatrices helper function to traverse the 
actor’s frame hierarchy and count the number of named frames. We will then reserve this many 
animation outputs so that we reserve enough room for every frame in the hierarchy to be manipulated by 
the animation controller. Furthermore, once we have created the animation controller, we still have to 
register each frame matrix in our hierarchy with the controller so that the controller can cache a pointer 
to it for animation updates. We can use the other D3DX global function 
D3DXFrameRegisterNamedMatrices function to automate that process too. We simply pass this 
function the root frame of our hierarchy and it will traverse it and register the parent-relative matrix for 
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each named frame as an animation output in the controller. The first section of the function that 
performs these tasks is shown next.  
 
HRESULT CTreeActor::GenerateAnimation( D3DXVECTOR3 vecWindDir,  
         float fWindStrength,  
         bool bApplyCustomSets /* = true */ ) 
{ 
    HRESULT                     hRet; 
    D3DXTRACK_DESC              Desc; 
    ULONG                       FrameCount; 
    D3DXVECTOR3                 vecWindAxis; 
    LPD3DXKEYFRAMEDANIMATIONSET pAnimSet = NULL; 
 
    // If there is already an animation controller, release it. This allows 
    // the application to call this function again, specifying different  
    // properties without having to rebuild the tree itself. 
    if ( m_pAnimController ) m_pAnimController->Release(); 
    m_pAnimController = NULL; 
 
    // Count the number of frames in our hierarchy 
    FrameCount = D3DXFrameNumNamedMatrices( m_pFrameRoot ); 
 
    // Create a new animation controller 
    hRet = D3DXCreateAnimationController(FrameCount,1,2,30,&m_pAnimController ); 
    if ( FAILED(hRet) ) return hRet; 
 
    // Register all of our frame matrices with the animation controller 
    hRet = D3DXFrameRegisterNamedMatrices( m_pFrameRoot, m_pAnimController ); 
    if ( FAILED(hRet) ) return hRet; 

 
We now have an empty animation controller that has room for one animation set. Let us now create that 
animation set and call it ‘SwaySet’ (it is the only set we will use).  We will work using a ticks-per- 
second ratio (timing resolution) of 60 for our keyframe timestamps and set the animation to loop. 
 
    // Create a new animation set 
    hRet = D3DXCreateKeyframedAnimationSet( _T("SwaySet"),  
         60.0f,  
         D3DXPLAY_LOOP,  
         FrameCount,  
         0,  
         NULL,  
         &pAnimSet ); 
    if ( FAILED(hRet) ) return hRet; 

 
The fourth parameter in the above code is where we specify the number of animations we would like to 
store in this animation set. Remembering that an Animation is a collection of keyframes for a single 
frame in the hierarchy, we know that we wish to have an animation for every hierarchy frame. Therefore 
we pass in the value FrameCount, which is the total number of frames in our hierarchy as calculated 
earlier in the function. The fifth and sixth parameters are set to zero and null as we have no need to 
register callback keys. As the final parameter, we pass the address of an 
ID3DXKeyframedAnimationSet interface pointer which, on function return, will point to our new and 
empty animation set. The animation set is still not registered with the controller at this point. 
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We now have an animation set that we will use to store the keyframes for each frame in the hierarchy. 
Before we calculate those keyframes however, we need to know the axis of rotation we will use for the 
bones of our tree. The wind direction vector was passed into the function and describes the exact 
direction the wind is blowing in tree space. As such, we know that this vector is perpendicular to the 
axis we actually wish to rotate about. For example, imagine a player mounted on a pole in a table 
football game (also called Foosball in some places). The wind direction can be thought of as the vector 
hitting the player head on, while the pole on which the player is mounted is actually the rotation axis the 
player will rotate around in response to that wind. Therefore, provided our wind direction vector is not 
equal to the world up vector <0,1,0>, which should never realistically be the case, we can cross these 
two vectors to get the rotation axis by which we will rotate each bone. 
 
    // To make things a little more user friendly we accept a wind direction to 
    // this function, however BuildNodeAnimation requires an axis about which   
    // the branches will rotate. We convert this here. 
    D3DXVECTOR3 vecCross = D3DXVECTOR3( 0.0f, 1.0f, 0.0f ); 
    D3DXVec3Cross( &vecWindAxis, &vecCross, &vecWindDir ); 

 
We now have the rotation axis stored in the vecWindAxis member, so it is time to walk through the 
nodes of the tree and generate the keyframe data. This step is handled with a single call to the recursive 
function BuildNodeAnimation, whose code we will discuss next. This function is passed the root node 
of the branch node hierarchy, the rotation axis we just calculated, the wind strength, and the interface of 
our new animation set, which will be the recipient of the keyframe information calculated by this 
function. 
 
    // Build the animations 
    hRet = BuildNodeAnimation( m_pHeadNode, vecWindAxis, fWindStrength, pAnimSet); 
    if ( FAILED(hRet) ) { pAnimSet->Release(); return hRet; } 

 
When this function returns, every frame in the actor’s hierarchy will have had its animation generated 
and added to the animation set. Next we must register this animation set with our animation controller 
and assign it to the first track on the mixer. 
 
    // Register the animation set with the controller 
    hRet = m_pAnimController->RegisterAnimationSet( pAnimSet ); 
    if ( FAILED(hRet) ) { pAnimSet->Release(); return hRet; } 
 
    // Set this in track 0 to ensure it plays 
    SetTrackAnimationSet( 0, pAnimSet ); 

 
We must be careful to initialize the properties of any track we use, especially when creating the 
animation controller manually. D3DX will not perform any track property initialization (we learned the 
hard way in our tests that the initial properties of a track are all zero -- which generates no visual 
output). In the following section of code we set the properties of the first and only mixer track we will 
use such that it is enabled, has a speed of 1.0 (the default), a weight of 1.0 (the default) and has a track 
position of 0.0 (the start).  
 
    // Setup the track description (defaults to disabled) 
    ZeroMemory( &Desc, sizeof(D3DXTRACK_DESC) ); 
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    Desc.Enable   = true; 
    Desc.Weight   = 1.0f; 
    Desc.Speed    = 1.0f; 
    Desc.Position = 0.0f; 
 
    // Set the track description 
    m_pAnimController->SetTrackDesc( 0, &Desc ); 

 
At this point we can release the pAnimSet set interface since it has been registered with the controller 
and had its reference count increased.   
 
    // We can release the animation set now (controller owns it) 
    pAnimSet->Release(); 

 
As a final step we see whether the application would like the ID3DXKeyframedAnimationSet we have 
just created replaced with our custom CAnimationSet object. If true is passed as this parameter, we call 
the base class method ApplyCustomSets, which we know from the previous lesson performs this task. 
 
    // Apply custom animation sets if requested 
    if ( bApplyCustomSets ) ApplyCustomSets(); 
 
    // Success!! 
    return D3D_OK; 
 
} 

 
The function then returns to the application with a completely valid animation controller that can be 
used by the application to update the animation (via AdvanceTime). 
 
There was nothing too challenging happening in that function, but then again, the real work is performed 
in the BuildNodeAnimation call. This function recursively visits every frame in the hierarchy, 
generating animation data for it. Let us have a look at that final function now. 

BuildNodeAnimation - CTreeActor 

When this function is first called, it is passed the root node of the branch node hierarchy. The function 
will recursively call itself visiting all child and sibling nodes in the tree. However, only significant 
action is taken when the node we are visiting is a bone node. If it is a bone node then we know this node 
has a corresponding frame in the hierarchy and it must have an animation built for it and registered with 
the passed animation set. 
 
Virtually all the code in this function is placed within the “if(pNode->BoneNode)” code block. The only 
code that is not in that block comes at the end of the function when the function calls itself recursively if 
child and/or sibling nodes exist. Let us take a look at the first section of this function. 
 
HRESULT CTreeActor::BuildNodeAnimation( BranchNode * pNode,  
          const D3DXVECTOR3 & vecWindAxis,  
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          float fWindStrength, 
          LPD3DXKEYFRAMEDANIMATIONSET pAnimSet ) 
{ 
    ULONG       i; 
    HRESULT     hRet; 
    D3DXVECTOR3 vecChildWindAxis = vecWindAxis; 
     
    // If this is a bone node, build animation for us. 
    if ( pNode->BoneNode ) 
    { 
        D3DXKEY_VECTOR3    pTranslation[2]; 
        D3DXKEY_QUATERNION pRotation[20]; 
        D3DXQUATERNION     quatRotate, quatValue; 
 
        // Transform the wind axis by this frame 
        D3DXMATRIX  mtxInverse; 
        D3DXMatrixInverse(  &mtxInverse, 
        NULL, 
        &pNode->pBone->TransformationMatrix ); 
         
 
        D3DXVec3TransformNormal(&vecChildWindAxis,&vecChildWindAxis,&mtxInverse ); 

 
The above code block is only executed for bone nodes. First it allocates space for two translation 
keyframes and 20 rotation keyframes. We have decided that each node will need 20 rotational keyframes 
to get good looking rotation results on screen. Although we never wish to actually translate any bone 
directly, unfortunately, we must always include two translation keyframes; one at the start one at the 
end. We do this is because the SRT data stored in the keyframes overwrites the data in the frame’s 
transformation matrix when we call AdvanceTime. If no translation vectors are specified at all, then a 
translation vector of <0,0,0> will be assumed and will overwrite the actual parent-relative positional 
offset of the frame stored in its matrix.  
 
For example, if we have a frame with a parent-relative matrix translation vector of <10,10,10>, we know 
that this offsets it from the position of the parent frame <10,10,10> units in parent space. However, 
when the animation has no translation or scale keyframes, <0,0,0> is used. In the case of our matrix, the 
<10,10,10> translation vector in the frame matrix would be overwritten each time with a translation 
value of <0,0,0>. This would essentially translate the child frame back to the position of the parent bone 
and cause a huge mess. As long as we supply at least two translation keyframes, the animation system 
will happily interpolate between them. The result of the interpolation will be used to replace the 
translation vector in the frame matrix.  
 
Therefore, we extract the position vector stored in the frame matrix (<10,10,10> for example) and store 
that same position vector in a translation keyframe at the start of the animation (time 0) and a keyframe 
at the end of the animation (time = max time).  Every time AdvanceTime is called by the application, the 
GetSRT function will interpolate between <10,10,10> and <10,10,10> and of course, generate the 
parent-relative position of <10,10,10>. Simply put, by inserting two translation keyframes at the start 
and end of the periodic position of the animation set, we retain the position vector of the frame in its 
default pose throughout the interpolation process. You will see us setting up these two translation frames 
in a moment. 
 



 

 122 

 

Notice in the above code that we multiply the rotation axis (ChildWindAxis) by the inverse parent 
relative matrix of the current frame. This is because the rotation axis was originally defined in tree space 
and we need to perform the rotation in bone space. This is the same as multiplying the vector with the 
frame’s bone offset matrix, although done slightly differently. In this case, we are multiplying it by the 
inverse of the parent relative matrix instead of using the inverse of the absolute matrix of the frame. 
However, notice the transformed rotation vector is passed by reference to its child node; therefore, 
instead of accumulating relative matrices and using the inverse as the bone offset matrix, we are instead 
accumulating the transformations applied to the wind vector from inverse parent relative matrices, which 
equates to the same thing. Suffice to say, at this point, we have the tree space wind vector transformed 
into the space of the bone’s local coordinate system.  
 
We do not want all nodes in our tree to rotate back and forth at the same time since this would look a 
little unnatural (like rotating a cardboard cut-out of a tree on a pivot). Instead, we would like the base of 
the tree to start rotating first. Then, the higher nodes in the tree will have a slight delay on them as if 
trying to catch up, but never quite doing so. Rather than a straight pivot motion, it causes a sweeping 
motion and the rotation applied to the lower branches is filtered slowly up to the branch end segments.  
 
In order to accomplish this, we calculate a delay value that is a function of the current node’s depth in 
the tree. By dividing the node’s iteration value by the maximum iteration count of the virtual tree, we are 
essentially mapping the iterations of all nodes into the 0.0 to 1.0 range (much like when calculate the V 
texture coordinates of each vertex). So a node at the deepest level of the hierarchy (branch end nodes) is 
assigned a delay value of 1.0, and a node at the lowest level of the hierarchy is assigned a delay value of 
0.0. Any nodes in between these hierarchy levels are mapped a value in the 0.0 to 1.0 range. Notice 
however, that we negate the calculation such that the branch end nodes will have a delay of –1 and the 
root would have a delay value of zero. Do not worry about how this is used at the moment, just be aware 
that the delay value describes the position of the node in the tree as a number from 0 (base of tree) to –1 
(tips of branches). 
 
  // Higher Up bigger animation delay causes a sweep motion  
        float fDelay = -((float)pNode->Iteration /  
    (float)m_Properties.Max_Iteration_Count); 

 
Not only do we need a delay such that bones positioned higher up the tree rotate slightly after bones 
placed towards the bottom of the tree, we also need another scalar that will be used to scale the amount 
of rotation we apply to a bone. If we think about a tree swaying in the wind, we know that thinner lighter 
branches experience much more motion than thicker heavier branches. So we can see that even if the 
base of the tree was swaying slightly from side to side by let us say –4 to +4  degrees, this same 
movement filtered up to the branch ends would result in much more movement. We might imagine the 
upper branches rotating between –15 and +15 degrees.   
 
Thus, we will create a scalar in the 0.0 to 1.0 range that acts as a way to dampen the amount of rotation 
applied to each bone. Dampening will be a function of that node’s depth in the branch node hierarchy. 
Once we calculate a rotation angle, it will be scaled by this value. A bone at the top of the tree would 
have no dampening (1.0) and the full angle value will be used in its rotation (Angle * 1.0). Bones at the 
base of the tree would have full dampening (Angle * 0.0). Bones in between these two extremes would 
be scaled appropriately. The nearer to the end of a branch a bone is located, the less dampening will 



 

 123 

 

occur. We calculate this dampening value for the current node by dividing the position of the node in the 
hierarchy by the total depth of the hierarchy (much like above, only this time the value is not negated). 
 
        // The amount of motion applied at this node. Simple calculation which 
 //  increases the overall movement of the branch the higher up we get. 
        float fMovement = ((float)pNode->Iteration / 
      (float)m_Properties.Max_Iteration_Count); 

 
This is a simple way to calculate the dampening factor, but not necessarily the most realistic. You might 
decide to include other factors in your implementation (actual branch thickness for example). 
 
It is now time to loop around and build the 20 keyframes for this node. We will set the maximum time of 
the animation to run for 600 ticks. In this loop, each keyframe we add will be for a time between 0 and 
600 ticks (evenly spaced) and will be a rotation keyframe. 
         
        // Retrieve the frame for the bone 
        D3DXFRAME_MATRIX * pFrame = (D3DXFRAME_MATRIX*)pNode->pBone; 
 
        // Generate rotation over n keys 
        ULONG KeyCount = 20; 
        float MaxTime  = 600.0f; 
         
 for ( i = 0; i < KeyCount; ++i ) 
        { 
            // Set the key time 
            pRotation[i].Time = (MaxTime / (float)(KeyCount - 1)) * (float)i; 
 
            // Retrieve initial rotation from transform matrix 
            D3DXQuaternionRotationMatrix( &quatValue,  
       &pFrame->TransformationMatrix ); 

 
At the start of the loop we calculate the time for the current keyframe we are adding for this node. To 
evenly space out our keyframes we divide the maximum time (600) by the total keycount - 1 (remember 
that keys are zero index based) to get a value of 31.57. This tells us we need a space of 31.57 ticks 
between each keyframe we add. As you can see, we then multiply this value by the current value of loop 
iteration variable ‘i’ (the current key we are processing) to generate the value for the current keyframe’s 
timestamp. For example, if we are adding the second keyframe, the timestamp is 1*31.57 = 31.57. 
Remember, the first keyframe would have been at position 0.0. 
 
In the next step, we fetch the initial orientation of the frame’s parent-relative matrix as a quaternion 
representation using the D3DXQuaternionRotationMatrix function. Since rotation keyframes are stored 
as quaternions we can get the orientation of the frame in its reference pose as a quaternion and apply the 
rotation to that.  We can then store the rotated quaternion in the keyframe to represent the orientation of 
the frame at this time. We know that later, the animation controller will fetch the quaternion and 
translation vectors for each keyframe and use them to rebuild the matrix for the frame. At this point, we 
need to do it the other way around. That is, we need to disassemble the matrix and store its orientation as 
a quaternion keyframe. In a moment, we will also apply a rotation to this quaternion so that it correctly 
represents the bone at the current time.  
 



 

 124 

 

In the next three lines we will calculate how much rotation we wish to apply to the bone. It may look a 
little obfuscated, but just remember that all we are trying to do is find the correct rotation angle for this 
keyframe for the current node. 
 
Although the next three lines of code are quite small, we will discuss each line one at a time so as we do 
not lose anybody along the way. 
 
The first part of the calculation looks like this. 
 
            // Calculate the angle of rotation 
            float fInput = (((float)i / (float)(KeyCount - 1))  
       + fDelay) * (D3DX_PI * 2.0f); 

 
When looking at the line above remember that ‘i/(keycount-1)’ is calculating the time of the current 
keyframe for this node in the 0.0 to 1.0 range. For example, we know there are 20 keyframes in total for 
this node, so if ‘i’ was currently 9, this would generate a parametric time value of 9/19 = 0.47 
(approximate halfway through the 600 tick cycle). If we imagine this part in isolation, when calculated 
for every keyframe for this node, we are generating 20 parametric time values for each of the keyframes 
for the current bone. Obviously we will want each keyframe for this node to have a different rotation 
angle so that our branch sways backwards and forwards over time. It is intuitive then that the parametric 
time of the keyframe will need to play some part in its rotation angle. 
 
We then add a Delay factor to this value. The Delay is in the range of –1.0 to 0.0 and will be closer to    
–1.0 the nearer to the ends of the branches the current bone we are processing is situated. Essentially, 
before the delay is added, we are calculating the actual time value parametrically for the current 
keyframe in the sequence for this bone. By adding the delay, we are effectively setting back the time 
(delaying) based on the position of the bone in the tree. While perhaps still not clear at this point, we 
have discussed how we wish the movement of bones nearer the top of the tree to seem more delayed 
than those near the bottom. So we are offsetting the parametric value by 0.0 to –1.0 based on the bone’s 
position up the tree.  
 
At this point that we have a possible range of values between –1.0 and 1.0 depending on the value of ‘i’ 
(the current keyframe being calculated for the node) and the delay (the iteration of the node in the tree). 
We will now map this –1 to +1 possible range of values into the –360 to +360 range by multiplying by 
360 degrees ( π * 2). Of course, we will work in radians, so the range of fInput after the above line will 
be [–6.28, +6.28]. 
 
Why would we want the position of the keyframe (with the appropriate delay added) mapped over the 
range of two circles (-360 to +360)? The reason is that we are going to use the shape of the cosine 
waveform to generate a scalar value which will be used to scale the wind strength value and the 
fMovement value we calculated earlier. At the top of the function, the fMovement value was calculated 
as a value between 0.0 and 1.0, based on the distance of the node from the base of the tree. 
 
How does the cosine help us? To understand that, let us have a look at a graph of what the cosine 
function looks like if we plot its values over a large range of degrees (Figure 12.50). 
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Figure 12.50 

 
The output from the cosine function is between –1 and +1 over the range of a 360 degree circle. 
Furthermore, we can feed it values outside of this range and it will automatically wrap around to 
continue the shape of the waveform.  
 
We can see for example that if we were to feed it values between 0 degrees (where the cosine is 1.0) to 
180 degrees (where the cosine is –1) and then continue up to 360 degrees, the curve climbs back up 
again to a value of 1.0. This pattern is repeated as we increase or decrease values. 
 
We can use the shape of this waveform to influence the angle by which we rotate a bone, such that the 
rotation pattern for the tree follows the cosine shape.  For example, let us imagine that we are currently 
processing the first node in the tree, which would have a delay of zero. Also assume that there is a 
maximum of five keyframes for this frame. We know that in this case the value of fInput in the above 
calculation (for each keyframe) would be in the range [0, 360] degrees or [0, 6.28] radians. If we send 
each of these five values into the cosine function, we essentially plot five positions on the cosine 
waveform as shown in Figure 12.51. 
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Figure 12.51 

 
As you can see, the value assigned to each of the five nodes would be plotted on the graph and would 
return a value in the –1 to +1 range. This is not quite what we want at the moment, we want a value in 
the 0 to 1 range to act as our rotation scaling factor, but we will perform that mapping in a moment.  
 
We see that the first node would have an input value of 0 and would therefore be assigned a height of 1 
on the cosine graph. The next node would have an input of 90 degrees and would be assigned a height of 
0. The third would have an input value of 180 and would be assigned a height of –180, and so on. By the 
time we get to the fifth node, the values start to repeat themselves.  
 
If we imagine these values in the range of 0.0 to 1.0 (instead of –1 to +1) we can see that the result of the 
cosine function would return a scaling value, such that the first node would have full rotation applied, 
the second node half rotation, the third node no rotation, the fourth half rotation and the fifth full 
rotation, and the pattern continues. In other words, if we imagine these values being used to scale a 
rotation angle, we can see that the node would start at time zero in its fully rotated position, and over the 
five nodes, would rotate back to a rotation of zero and back out to a position of full rotation at the final 
node. Thus it is obvious why we are not happy with using the direct result from the cosine function -- it 
would be in the –1 to +1 range and we never want to invert the rotation angle, only scale it from zero to 
full rotation. The following code feeds in the input value into the cosine function and maps the result 
into the 0.0 to 1.0 range. 
 
  float fCycle = (cosf( fInput ) + 1.0f) / 2.0f; 

 
So using the above technique we essentially generate unique rotation values for each keyframe for a 
node. The pattern follows the shape of the cosine waveform to create a cyclical template for us to use 
(perfect for swaying our branches back and forth). But how did the initial fDelay value play a part? 
While the keyframes of the root node will always generate an fInput parameter in the range of 0-360 
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degrees (when fDelay=0), we must remember that the delay member can be in the range of 0.0 to –1.0. 
For the final node this would generate keyframes in the range of –360 to 0 degrees, which comes a 
whole cycle earlier on the cosine waveform. Therefore, what we are doing with this delay is moving all 
the nodes back from zero into the previous cosine cycle based on distance from the root node of the tree. 
For example, in Figure 12.52 we see how a node that is not the root node has had its cosine input value 
offset by the negative delay value. Note that the plotted points on the cosine graph lag behind the root 
node’s plotted points. 
 

 
Figure 12.52 

 
Hopefully you get the idea. The second node will have a different scaling value for each of its 
keyframes, but the pattern by which those angle scaling values transition from 0.0 to 1.0 will be the 
same. It will just be offset to some degree and mapped to a different interval of the waveform. Each 
node in the tree will still have the angle scaled by a complete 360 degree interval of the cosine 
waveform; it is just that for nodes further from the root, their initial start position on the waveform is 
shifted back to some position between 0 to –360. 
 
We now have a local variable called fCycle which contains a value in the [0.0, 1.0] range. It describes 
how the rotation angle that we apply to this bone should be scaled based on the position of the node in 
the tree and the position of the keyframe we are currently processing in the keyframe list. What happens 
next? 
 
Well, we know that the fWindStrength variable describes the strength of rotation in some way. Actually, 
we can think of this value as being the base rotation angle. For example, if a value of 30.0 was passed as 
the wind strength, this essentially describes a maximum rotation of 30 degrees at the branch end nodes 
(since the fCycle value we just calculated ranges from 0.0 to 1.0). So, we could just do                   
fCycle * fWindStrength to get a rotation angle in the range of 0 to 30 degrees (in this example) that 
describes the rotation of the current keyframe. However, let us not forget that we calculated the 
fMovement value earlier (range = [0.0, 1.0]) which parametrically describes the distance from the 
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current node to the root node (0.0 = root node). As discussed, we definitely do not want the root nodes 
of the tree blowing back and forth nearly as much as the branch end nodes. 
 
The fMovement value can be used to scale the wind strength angle (fMovement * fWindStrength) such 
that at the end nodes the rotation angle will be (1.0 * fWindStrength = Full Rotation) and at the root 
node it will be (0.0 * fWindStrength = No Rotation). So, we have the rotation angle for each node based 
on its position in the tree. This describes the maximum amount it will rotate through the sequence. We 
then must scale this by the fCycle value to account for the position of the current keyframe on the cosine 
waveform. 
 
Angle = fCycle *  ( fMovement * fWindStrength ) 
 
If fWindStrength was 30 degrees and the node currently being processed was halfway up the tree from 
the root node, the fMovement value would be 0.5 and the maximum rotation angle for this node would 
be 15 degrees. Then, for each keyframe, fCycle would be a value in the range of 0.0 to 1.0, scaling the 
15 degree rotation angle based on the position of the keyframe in the sequence and the delay for that 
node. Essentially, we generate a sequence where the bone will rotate between 0.0 and 15 degrees over its 
initial animation cycle and then rotate back to zero.  
  
We are almost done, but not quite just yet. It will look unnatural if the wind is blowing our branches 
only to and from their default orientations. In real life, if we were to bend a branch and let it go, it would 
not neatly snap back to zero deviation, but likely overshoot the original center point (because of inertia) 
by some amount and oscillate. Perhaps it would bend 5 degrees in the negative direction before resetting 
itself. We will want to simulate the same thing at a simplistic level. Therefore, we will subtract 0.25 
from the fCycle value to map it from [0.0, 1.0] to [–0.25, +0.75]. If a bone has a maximum rotation of  
80 degrees, instead of rotating 80 degrees in one direction and then 80 degrees back to its starting 
position, it will actually rotate between –20 and +60 degrees. This means it will sway either side of its 
original starting position but with a ¾ bias in the wind direction. The final line that calculates the 
rotation angle is shown below.  
 
  float fAngle = (fCycle - 0.25f) * (fMovement * fWindStrength); 

 
We now have the angle, so our next task is to generate a rotation quaternion that represents a rotation 
angle equal the one we have just calculated for the wind rotation axis. To do this we will use the 
D3DXQuaternionRotationAxis function. We pass it an angle in radians and a rotation axis vector, and it 
will return a quaternion that represents the angle/axis rotation. 
 
            // Rotate quaternion 
            D3DXQuaternionRotationAxis( &quatRotate,  
          &vecChildWindAxis,  
          D3DXToRadian( fAngle ) ); 

   
Now all we have to do is multiply this rotation quaternion with the original quaternion we extracted 
from the frame matrix. This results in a quaternion that describes the orientation of the bone at this 
keyframe. Notice how we use the D3DXQuaternionMultiply function to rotate the original quaternion 
and then perform a quaternion conjugate on this quaternion to make it right handed. For some reason (as 
we discussed in Chapter 10), the D3DX animation system expects right handed quaternions even though 
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the D3DX quaternion functions generate left handed ones. The Conjugate function simply negates the 
axis of the quaternion so that it is pointing positive in the opposite direction ( -x , -y , -z ). We store the 
result of the conjugate directly in the keyframe’s value. That completes the inner loop code and the 
process used to generate each of the 20 rotation keyframes for the current node. 
           
  D3DXQuaternionMultiply( &quatValue, &quatValue, &quatRotate ); 
             
            // Conjugate quat into storage. 
            D3DXQuaternionConjugate( &pRotation[i].Value, &quatValue ); 
         
        } // Next Key 

 
As discussed earlier, we need to store at least two translation keyframes or GetSRT will interpolate 
between <0,0,0> and <0,0,0> (which will always return a result of <0,0,0>) and overwrite the true 
position of the frame when we call AdvanceTime. Therefore, for each node, we create two translation 
keyframes, one at the start of the timeline and one at the end, that both store the same frame position. 
This position is extracted from the translation vector of the frame matrix. The animation system will 
simply interpolate the translation value between the start position and the end position, which are the 
same, leaving the position of the frame constant. 
 
       // Generate two bounding translation keys from original matrix 
       pTranslation[0].Time  = 0.0f; 
       pTranslation[0].Value = D3DXVECTOR3( pFrame->TransformationMatrix._41, 
          pFrame->TransformationMatrix._42, 
          pFrame->TransformationMatrix._43 ); 
         
 pTranslation[1].Time  = MaxTime; 
 pTranslation[1].Value = D3DXVECTOR3( pFrame->TransformationMatrix._41, 
          pFrame->TransformationMatrix._42, 
          pFrame->TransformationMatrix._43 ); 
         
        // Register the animation keys 
        hRet = pAnimSet->RegisterAnimationSRTKeys( pFrame->Name,  
           0,  
           KeyCount,  
           2,  
           NULL,  
           pRotation,  
           pTranslation, NULL ); 
         
    } // End if this is a bone node 

 
In the above code, you can then see that after we have built the two translation vectors, we have all the 
information we need to build the animation for this frame in the hierarchy. We have an array of 20 
rotation keyframes and 2 positional keyframes. We then register those keyframes with the animation set. 
Notice how we are careful to assign the name of the animation the same as the frame it is intended to 
animate. Remember, the animation controller uses this as its means for linking frames to animations. 
That ends the entire code block that is executed if the current node we are processing is a bone node. If 
not, all of the above code will be skipped and no animation will be created. 
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Finally, at the bottom of the function we see the common code that is executed for all nodes and not just 
bone nodes. It recurses along the sibling list if it exists and then down into the child list. 
 
    // Build the nodes for child & sibling 
    if ( pNode->Sibling ) 
    { 
        hRet = BuildNodeAnimation( pNode->Sibling,  
          vecWindAxis,  
          fWindStrength,   
          pAnimSet ); 
 
        if (FAILED(hRet)) return hRet; 
 
    } // End if has sibling 
     
    if ( pNode->Child ) 
    { 
        hRet = BuildNodeAnimation(  pNode->Child,  
      vecChildWindAxis,  
      fWindStrength,  
      pAnimSet ); 
 
        if (FAILED(hRet)) return hRet; 
 
    } // End if has child 
 
    // Success!! 
    return D3D_OK; 
} 

 
When the root iteration of this function (called from GenerateAnimation) returns, the animations for 
every bone in the hierarchy will have been constructed and added to the animation set. We saw earlier 
that when program flow returns, the GenerateAnimation function then registers the animation set with 
the controller and assigns it to an active mixer track. 
 
That brings us to the end of our first tree discussion. Granted, there was quite a lot to take in, but it really 
did provide some very good insight into how skeletons and skins and animation all tie together.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 131 

 

12.6 Results 

Lab Project 12.1 implements everything we have 
discussed so far in this chapter. Our tree class does not yet 
support adding leaves to the branches, but that is what the 
second part of this chapter will discuss. An example of a 
tree generated by Lab Project 12.1 is shown in Figure 
12.53.  
 
Admittedly, this does not look very impressive at the 
moment, but when we add leaves to this tree there will be 
a vast improvement. Since we will essentially just be 
adding new code to what we have already developed, it is 
recommended that, before reading any further, you 
examine the source code to Lab Project 12.1 and make 
sure that you understand the previous section of this 
textbook.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.53 
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12.7 Adding Leaves to our Trees 

 
For the remainder of this textbook we will discuss an upgrade to 
our tree system that allows us to significantly increase both detail 
and realism. Figure 12.54 shows a screenshot of a CTreeActor 
generated using the techniques we will discuss in this section. 
Looking at the image in Figure 12.54 it would seem as if our 
current code is a long way from creating trees of such detail. But 
as it happens, all that will be needed are a few (small) extra 
functions and a few minor tweaks to some existing code. After 
that, our CTreeActor class will be generating lush green trees as 
illustrated here. 
 
The process of adding leaves to our tree will be one of adding a 
new branch node type to the virtual tree building process. 
Currently, a branch node can either be a BRANCH_BEGIN node 
which means it starts a new branch, a BRANCH_SEGMENT 
node which means it is just another segment in the branch, or a 
BRANCH_END node which means it ends the branch and 
represents the insertion of the tip vertex. We also know that any 
node in our virtual tree can have any of these nodes as its 

children. For example, we know that a given branch node might have three child nodes: a segment node 
that continues the branch and two branch start nodes that spawn new branches from that point. We will 
now introduce a new node type into our virtual tree referred to as a frond node. 
  
Whenever a frond node is generated, we will insert special geometry 
into its parent branch mesh that will create leaves and the tiny little 
stalks that connect those leaves to their parent branch. You will see 
in a moment that while this might sound complicated, we represent a 
frond as two, two-sided quads criss-crossed and textured with a 
frond texture (see Figure 12.55). 
 

Note: The botanical meaning of the word “frond” is literally a leaf and 
its supporting structure (its stalk). So we will be adding not just 
leaves, but full fronds. That is, the leaves and the tiny twigs which 
connect them to their parent branch.   

 
In Figure 12.55 we see the geometry that will be added to the branch 
mesh for a single frond node. The texture we apply to the 
intersecting quads is obviously going to be very important. In our 
application, we use a texture that contains not both the leaves and the stalk that will attach to the parent 
branch. This is important because when a frond node is randomly generated along a branch during the 
virtual tree building process, the position assigned to the frond node will be the same as the parent node 
that spawned it. That is, the base of the criss-crossed polygons shown in Figure 12.55 will actually begin 

 
Figure 12.54 

 
Figure 12.55 
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inside the branch mesh (at the center of the parent branch segment). As such, the stalk of the frond will 
be seen sticking out of the parent branch (like little branches flourishing into leafy tips). 
 
With regards to the virtual tree building process, frond nodes are like normal branch nodes. They have a 
position and a direction vector which is deviated from the parent just like normal branch nodes. There is 
only one real difference between a frond node and a normal branch node; a frond node will never have 
any child nodes of its own. We can think of them as being child branches that are always one node in 
length. In this way, we can think of a frond node as being a little like a child branch being spawned in 
the traditional sense, where its first branch node is a branch end node. Frond nodes can be spawned from 
any other branch node, and although it is possible to have any given branch node spawn multiple frond 
nodes, in our implementation we found that this was not necessary. By giving each node a chance to 
create a single child front node we get trees with plenty of foliage. When the frond geometry created at 
one branch node overlaps the frond geometry created at its neighboring branch node we get a jumbled 
mix of leaves that can look very full and bushy.  
 
In Figure 12.55 we can see that by adding four quads for a given frond node (remember that both the 
intersecting quads must be two-faced, which equates to four quads in total) we are able to simulate a lot 
of detail with a very low polygon count. Of course, much depends on how detailed the frond texture is. 
If the texture contained a single leaf, many more frond nodes would have to be created to build up a 
busy looking tree (and probably would not look very good anyway). The texture image we used in our 
demonstration actually contains multiple leaves and their stalks, connected by a central thin branch. The 
frond geometry created in Figure 12.55, if added to our tree and rendered in the way illustrated, would 
look quite terrible because we can clearly see the black background of the texture. This makes it a little 
too obvious that we are just mapping textures to quads and randomly scattering them through the tree.  
 

Not surprisingly, our frond texture has an alpha channel so 
that we can enable alpha testing in the pipeline and filter 
out the black background pixels. Only the branch and leaf 
pixels will be rendered to the frame buffer. This allows 
other branches and frond constructs to be seen through the 
gaps in those leaves. We will set the pipeline alpha testing 
mechanism to reject any pixels from the texture that are 
below a certain alpha value. This will stop nearly all the 
background pixels being rendered. 
 
The problem with just performing this test however is that 
if you study the alpha channels for such textures, they 
usually blend from transparent to opaque around the 
outside of the leaves. Therefore, even with alpha testing 
enabled, we can still see a dark silhouette around the leaf 
boundaries where the pixels are slightly darker and have 

alpha values that are just above the rejection value set as the alpha testing reference. If we enable alpha 
blending, we can remedy this using the SRC_ALPHA and INV_SRCALPH blend modes from the 
source and destination blend modes respectively. This will cause what was once a dark silhouette around 
the main image to blend with the contents of the frame buffer. With alpha blending and alpha testing 
enabled, the boxes around the frond texture image are removed, the quads are no longer visible, and we 

 
Figure 12.56 
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end up with quite organic looking foliage (see Figure 12.56). This is a very common technique in real-
time games and it is used to produce all manner of foliage, not just fronds. 

12.7.1 The Frond Node 

Our virtual tree building function (BuildBranchNodes) will have to be modified so that at any given 
branch node, it also has the ability to spawn child frond nodes. It is important to realize at this point that 
the frond node is not really any different from a normal branch node. The node’s direction and right 
vector will still be deviated from its parent and the direction vector of the frond node will be used in the 
mesh building process to construct the direction of the frond construct. Just as in the normal branch 
building process, where the branch node position and direction vector describe a plane on which a ring 
of vertices will be placed, the frond node normal and position describe the orientation of a plane on 
which the base of the frond quads will be mounted (Figure 12.57).  
 
In Figure 12.57 the large brown arrow describes the direction of 
the node which was randomly deviated during node creation. 
The yellow slab represents the plane described by the node 
position and the direction vector. If this was a normal branch 
node, this the plane on which the ring of vertices would be 
placed. However, because this is a frond node, during the mesh 
building process we will build the two intersecting two-sided 
quads where the bottom vertices of each quad lay on the plane 
and the top vertices of each quad are offset from the plane in the 
direction of the node plane normal. That way, whichever way the 
plane is facing, the quads will always have their bottom vertices 
attached to the plane and the fronds will always point in the 
direction described by the node direction vector. As you have no 
doubt gathered by now, the only real difference between a 
normal branch node and a frond branch node is how each is treated during the mesh creation phase. The 
building of the virtual tree of branch node structures will require very few modifications. All it needs is 
the ability to randomly create frond nodes, just like it creates any other child node. 
 
So that we are clear on how these nodes will be placed and how the geometry for these frond nodes will 
be generated, before we discuss the code let us just look at an example of how multiple frond nodes may 
be created to provide a nice combined visual effect. 
 
In Figure 12.58 we see a tree that has a branch that contains a single frond node between its second and 
third branch segment. The position of the frond node will be inherited from its parent. Therefore, we can 
see that the frond node is the child of the branch node that forms the end of segment two and the 
beginning of segment three in the parent branch. We can also see that at the exact same spot the frond 
node is spawned, a new child branch is also spawned. 
 

 
Figure 12.57 
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As discussed, the frond node is assigned an 
arbitrary direction just like any other node. 
The direction vector of this particular frond 
node, along with its position, would describe 
the orientation of the yellow plane in the 
diagram. Notice how the orientation of the 
frond quads is such that they are aligned to 
this plane. It is like the plane forms the base 
on which the quads are mounted and as such, 
the orientation of this plane determines the 
orientation of the frond construct. Therefore, 
we can think of the direction vector of the 
frond node as not just describing the normal 
to this plane, but also describing the 

orientation of the central spine of the frond construct where the quads intersect one another. So 
generating a frond node is identical to generating any other node during the virtual tree building process. 
We just generate a new node of type frond and assign it the direction and right vectors as normal.  
 
The position and frequency at which frond nodes are generated will 
be controlled by some additional members in our 
TreeGrowthProperties structure. Of course, we will generally want 
to spawn frond nodes much more frequently than branch nodes so 
that we get satisfactorily dense foliage. We will often wish to spawn 
many child frond nodes from each parent. For example, Figure 12.59 
shows the same parent node in the branch now spawning multiple 
frond nodes. Notice how each frond node (just like a branch start 
node) is randomly deviated so that we have multiple frond constructs 
originating from the same position in the branch but having arbitrary 
directions. In this example, the branch node has spawned four frond 
nodes as children, and also exists in a sibling list with a branch start 
node.  
 
When we couple the fact that every node that meets the frond growth requirements (specified in the 
TreeGrowthProperties structure) can spawn multiple child frond nodes with the fact that most branch 
nodes will spawn child frond nodes, we have a situation where neighboring branch nodes spawn 
multiple fronds which all collide and overlap with each other making for a very busy looking tree. 
Figure 12.60 demonstrates this concept by showing just two branch nodes in close proximity that have 
each spawned multiple frond nodes. Even in this example, the tree is starting to look pretty busy. 
Imagine the same number of frond nodes being generated at most branch nodes and we can image how 
full our foliage will look. Because fronds from neighboring branch nodes collide and overlap it actually 
adds to the chaotic realism of the tree. 
 

 
Figure 12.58 

Figure 12.59 
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Figure 12.60 

 
If we take the example shown in Figure 12.60 and add alpha testing and alpha blending, we can see that 
the results are starting to look quite pleasing even in this example where only two branch nodes are 
spawning fronds. The alpha tested/blended result is shown in Figure 12.61. 
 

 
Figure 12.61 

 
Note: In our demo implementation we only generate one child frond node for any given parent. That is, a 
branch node will either have zero or one child frond nodes and never any more. However, this is certainly a 
behavior you can change to generate trees with more dense foliage. At the moment we are talking 
generically about the technique. 

  
Now that we know exactly where frond nodes should exist and we understand the geometry they use, we 
can discuss the additions to the CTreeActor class that will need to be made to add frond support to the 
code developed in Lab Project 12.1. As we will, for the most part, simply be discussing additions to pre-
existing functions, it is highly recommended that while reading this next section you open up the source 
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code to lab project 12.2 so that you can follow along with the code changes made in this section of the 
textbook. In most cases, we will not be showing all of the function code again, but only discussing the 
changes that have been made. 

12.7.2 Updating the Virtual Tree Generation Process 

As we know from the coverage of Lab Project 12.1, the first phase of the tree generation process is the 
construction of the virtual tree (the tree of BranchNode structures). Phase one is activated from the 
GenerateTree method (called by the application) via a call to the function GenerateBranches. You will 
recall that this function simply created the root branch node (or multiple root nodes if applicable) and 
then called the BuildBranchNodes function to kick off the recursive process for each root. The 
BuildBranchNodes function recursively called itself, adding branch nodes to the virtual tree hierarchy 
until it had been completely built.  
 
For any given instance of the BuildBranchNodes method there was a simple task. The underlying 
question was, using the probabilities specified in the TreeGrowthProperties structure, should the current 
node being processed spawn a child node that continues the branch or an end node that ends it? Apart 
from this, it also decided how many BRANCH_BEGIN nodes should be generated as children of the 
current node. Recall that a BRANCH_BEGIN node signifies the beginning of a new child branch 
spawning from the parent. 
 
This function will have to be modified so that it now has the option to randomly generate child frond 
nodes. Previously the strategy was simply: 
 

1. Does this branch continue?  
      Yes: Create child BRANCH_SEGMENT node and recur into Child Node 
      No : Create child BRANCH_END node and recur into Child Node 
 
2. Do we wish to create any child branches? 

Yes: Decide how many and create each child BRANCH_BEGIN node and recur into each 
No : Do nothing and just return 

 
Of course, any given instance of the function returned if it had stepped into an end node. This logic will 
not change, but it will be supplemented. As you can see, the first step was to determine what type of 
node the next node in the current branch will be and to process it. The second step was to determine if 
child branches should also be started at this node and have the relevant child nodes created.  
 
Now, after recursively processing the node that continues the branch and any child branch start nodes, 
we will add a third section that decides whether we would like to add a child frond node. Currently, each 
branch node can be one of three types: BRANCH_BEGIN, BRANCH_SEGMENT, or BRANCH_END. 
Now we will add a fourth type to the BranchNodeType enumeration called BRANCH_FROND. The 
updated enumeration, which is part of the CTreeActor namespace, is shown below. 
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Excerpt from CTreeActor.h 
enum BranchNodeType {  BRANCH_BEGIN = 1,  
    BRANCH_SEGMENT  = 2,  
    BRANCH_END   = 3,  
    BRANCH_FROND      = 4 }; 

 
Whether we create a frond node at any given parent node will once again be a random decision within 
limits given by the probabilities set in the TreeGrowthProperties structure. We will add five members to 
this structure which will be used by the virtual tree generation process to decide if a frond node should 
be created at a given node in the tree. Below we see the five new members of the TreeGrowthProperties 
structure (as defined in CTreeActor.h) followed by a description of each member and how it is used by 
the BuildBranchNodes method.  
 
TreeGrowthProperties Structure (additions) 
bool        Include_Fronds;             // Include fronds in the build 
USHORT      Min_Frond_Create_Iteration; // Min iteration fronds can be created. 
float       Frond_Create_Chance;        // Chance frond will be created at a node  
D3DXVECTOR3 Frond_Min_Size;             // The smallest size a frond can be 
D3DXVECTOR3 Frond_Max_Size;             // The largest size a frond can be  

 
bool        Include_Fronds   
This boolean is used as a frond switch. Setting it to false will disable the generation of frond nodes and 
we will get trees identical to the ones from Lab Project 12.1. Setting this to true (default) will enable 
frond generation. 
            
USHORT      Min_Frond_Create_Iteration 
We want to be able to control the node iteration at which frond nodes are created. The concept of a 
node’s iteration is not new to us; it describes depth in the hierarchy (the number of branch segments that 
would need to be traversed from the root of the tree to reach that node). This value describes how many 
nodes deep in the hierarchy we must be before frond nodes are created. We do not usually want this to 
be set to a low number (or zero) or we will see frond nodes at the root of the tree. Usually, we want the 
fronds to start only when we get a certain way up the tree and out along the branches. The default value 
is 6. So fronds will not be generated at a given node while its depth in the hierarchy is smaller than 6 
levels below than the root.    
 
float       Frond_Create_Chance         
This property which (range = [0.0, 100.0] describes the probability that a frond node will be created as a 
child of the current node being processed (assuming the hierarchy depth test passes). For any given non-
frond node that we are processing we will generate a random value between zero and one hundred. If the 
value is less than this probability, a new child frond node will be generated. Higher values for this 
property create more fronds and bushier trees. 
 
D3DXVECTOR3 Frond_Min_Size 
D3DXVECTOR3 Frond_Max_Size              
We will usually want our fronds to become smaller in size as they progress up the tree. These two 
vectors describe the minimum and maximum sizes that a frond can fall between. These vectors actually 
describe the half-lengths of the intersecting quads (x,y) that will be generated. The z components of 
these vectors describe the height range for the quads (i.e., the height with respect to the node plane they 
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are mounted on). Larger z values will essentially create longer fronds. We will see how these values are 
used in the branch mesh creation phase (phase 2). 
 
Although these properties (along with all the other tree growth properties) can be set by the application 
using the CTreeActor::SetGrowthProperties method, default values are specified in the constructor, as 
shown below. 
 
Excerpt from CTreeActor.cpp : CTreeActor::constructor 
// Setup frond defaults 
m_Properties.Include_Fronds             = true; 
m_Properties.Min_Frond_Create_Iteration = 6; 
m_Properties.Frond_Create_Chance        = 25.0; 
m_Properties.Frond_Min_Size             = D3DXVECTOR3( 7.5f, 7.5f, 11.25f ); 
m_Properties.Frond_Max_Size             = D3DXVECTOR3( 10.5f, 10.5f, 15.75f ); 

 
Let us now take a look at the code that has been added to the end of the BuildBranchNodes function to 
allow for the random generation of a child frond node.  

CTreeActor::BuildBranchNodes - Updated 

It is advisable to load up the source code to the BuildBranchNodes function in Lab Project 12.2. This 
function was covered in a lot of detail in the first section of this chapter and should be fully understood. 
We are now going to add a new conditional code block to the bottom of this function to create a new 
child BRANCH_FROND node. We will show only the new code. 
 
… 
… 
… 
} // End create child branch nodes 
 
 
// Should a frond be created as a child of this node? 
if ( m_Properties.Include_Fronds && 
     Iteration >= m_Properties.Min_Frond_Create_Iteration  
     && (bEnd || ChanceResult( m_Properties.Frond_Create_Chance )) ) 
    { 

 
In the above code we see that we only enter this new code block if the iteration value of the current node 
being processed is larger or equal to the Min_Frond_Create_Iteration growth property and if the boolean 
growth property bInclude_Fronds has been set to true. If these conditions are true and the ChanceResult 
function returns true (notice we feed in the Frond_Create_Chance growth property as the parameter) or 
if we have just created a child BRANCH_END node, we will create a child frond node. (We will always 
generate a frond node at a branch end node provided its iteration value is larger than 
Min_Frond_Create_Iteration). 
 
If we get into this code block then we wish to create a new frond node. We allocate a new branch node 
and set its properties much like we do any other node.  
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        // If this node was the end of a branch, insert a frond node 
        BranchNode * pFrondNode = new BranchNode; 
        if ( !pFrondNode ) return; 
 
        // Store node details 
        pFrondNode->UID          = BranchUID++;     
        pFrondNode->Parent       = pNode; 
        pFrondNode->Dimensions   = pNode->Dimensions; 
        pFrondNode->Position     = pNode->Position; 
        pFrondNode->Direction    = pNode->Direction; 
        pFrondNode->Right        = pNode->Right; 
        pFrondNode->BranchSegment= 0; 
        pFrondNode->Iteration    = (USHORT)Iteration + 1; 
        pFrondNode->Type         = BRANCH_FROND; 

 
Notice how the position and dimensions are inherited from the parent node and it is assigned its own 
unique ID like all other branch nodes. This time however, the Type member of the BranchNode 
structure is set to BRANCH_FROND. We inherit the direction and right vectors from the parent and 
these will be deviated in the next line of code using the same deviation angle ranges as a normal 
BRANCH_BEGIN node. 
 
        // Deviate the node 
        DeviateNode( pFrondNode,  
      m_Properties.Split_Deviation_Min_Cone, 
      m_Properties.Split_Deviation_Max_Cone, 
      m_Properties.Split_Deviation_Rotate ); 

 
At this point we have created a new frond node and have it located at the position of the parent node, 
pointing in an arbitrary direction (just like the start of a new branch). However, the frond node is not yet 
attached to the parent node’s child list.  
 
We need to make sure we add it to the right place in the child list if the parent node already has child 
nodes. It is important when building the skinning information that if the parent node contains a branch 
end node child, that the frond node be placed before it in the list. The vertices of the frond will be added 
as influences of the previous bone that was created back from it along the branch, so we wish to add 
these vertices before hitting the branch end node, where we add the single tip vertex and abort any 
further processing of the branch. The next section of code makes sure it is added to the child list prior to 
any BRANCH_END node that may exist there. 
 
        // Link the node 
        if ( !pNode->Child ) 
        { 
            // No child already exists, just store 
            pNode->Child = pFrondNode; 
         
        } // End if no child node 

 
As the above code shows, if the parent node has no other children, then we just assign its child pointer to 
point at the new frond node. Our new frond node will be the only node in the child list. Otherwise, the 
next code block is executed.  
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The following code sets up a while loop to traverse the child list and breaks from the loop as soon as a 
BRANCH_END node is found. Because with every iteration of the loop it stores the current child in its 
pPrev pointer before stepping into the next sibling, if the loop breaks because a BRANCH_END node is 
found, the pPrev pointer will point at the sibling node that exists prior to the end node in the list (the 
node to which we wish to add our new frond node as a sibling). That is, we will sandwich our new frond 
node between the branch end node and the node that existed prior to it in the sibling list. 
 
        else 
        { 
            BranchNode * pTemp = pNode->Child, *pPrev = NULL; 
            while ( pTemp )  
            { 
                // Have we found the end of the branch? 
                if ( pTemp->Type == BRANCH_END ) break; 
                pPrev = pTemp; 
                pTemp = pTemp->Sibling; 
             
            } // Next sibling 
                 
            if ( !pPrev ) 
            { 
                // The BRANCH_END is right at the start. 
                pFrondNode->Sibling = pNode->Child; 
                pNode->Child = pFrondNode; 
             
            } // End if no previous item 
            else 
            { 
                // Attach to the 'previous' item. 
                pFrondNode->Sibling = pPrev->Sibling; 
                pPrev->Sibling = pFrondNode; 
             
            } // End if previous item exists 
         
        } // End if child node 
         
    } // End if create frond 
 
} // End function 

 
And that represents all the code changes that had to be made in BuildBranchNode. 
 
What is important to notice in the above code is that unlike normal branch node creation, where after it 
is created we recur into that node, for frond nodes we do not do this. We can think of a frond node as 
being a single node branch. We never recur into a frond node or add other child nodes to it.   
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12.7.3 Setting the Frond Texture and Material 

In our previous incarnation of CTreeActor we had the ability to store the texture and material that would 
be used to render the branches of the tree. We exposed a method to allow the application to set these 
properties prior to the call to the GenerateTree function. We will now need to add two new members to 
CTreeActor that will contain the texture filename and material that will be used for the fronds. An 
accompanying member function will allow the application to set these properties prior to tree 
generation. 
 
Excerpt from CTreeActor  (Additional Member Variables) 
D3DMATERIAL9 m_FrondMaterial;    // The material to apply to the fronds. 
LPTSTR       m_strFrondTexture;  // The texture to apply to the fronds. 

CTreeActor – SetFrondMaterial 

This function accepts two parameters: a string containing the name of the image file we would like to 
use as the texture for the fronds and a pointer to a D3DMATERIAL9 structure. The texture and material 
are copied into the class member variables. 
 
void CTreeActor::SetFrondMaterial( LPCTSTR strTexture, D3DMATERIAL9 * pMaterial ) 
{ 
    // Free any previous texture name 
    if ( m_strFrondTexture ) free( m_strFrondTexture ); 
    m_strFrondTexture = NULL; 
 
    // Store the material 
    if ( pMaterial ) m_FrondMaterial = *pMaterial; 
 
    // Duplicate the texture filename if any 
    if ( strTexture ) m_strFrondTexture = _tcsdup( strTexture ); 
} 

 
In the next section we will discuss the upgrades to the CTreeActor::BuildNode method. We discovered 
in the first section of this textbook that this method implements the second phase where the actor’s 
hierarchy and branch skins are constructed. We will only examine the portions containing the updated 
code, so it is recommended that you open Lab Project 12.2 and follow along in the next section using the 
actual source code. 

Updating CTreeActor::BuildNode 

This function is called once by the BuildFrameHierarchy function and is passed the root node of the 
virtual tree. It steps through the hierarchy recursively from the root node visiting each branch node in the 
tree. For a given node, this function would add a frame to the actor’s hierarchy if it was determined that 
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the current node should generate a bone. If the node is a BRANCH_BEGIN node, a new CTriMesh 
would be created and the branch would be traversed to add the vertex and index data. For any non- 
branch node that is not a BRANCH_BEGIN node the passed mesh is the mesh that is currently being 
built for the current branch being processed (i.e., the mesh that the vertices generated at this node should 
be added to).  
 
In the first section of the code shown below you can see that we have snipped out nearly all the logic 
that generates the new frame if this is a bone node. A bone is never generated for a BRANCH_END 
node and likewise, if it is a BRANCH_FROND node, a bone will also not be created. Therefore, the 
code inside this conditional is completely unchanged (the conditional code never gets executed if the 
current node is a frond node).  
 
We have removed all the code that generates the new frame and attaches it to the hierarchy as well as the 
code that creates the new CTriMesh if the current node is a BRANCH_BEGIN (bones are always added 
to the start of a branch). What we have left in place as a reminder at the bottom of the code block is the 
call to the AddBranchSegment method which was responsible for adding the ring of vertices and their 
indices to the mesh.  
 
HRESULT CTreeActor::BuildNode( BranchNode * pNode,  
      D3DXFRAME * pParent,  
      CTriMesh * pMesh,  
      const D3DXMATRIX & mtxCombined, 
      ID3DXAllocateHierarchy * pAllocate ) 
{ 
    HRESULT     hRet; 
    CTriMesh   *pNewMesh  = NULL, *pChildMesh  = NULL; 
    LPD3DXFRAME pNewFrame = NULL,  pChildFrame = NULL; 
    D3DXMATRIX  mtxBranch, mtxInverse, mtxChild; 
    D3DXVECTOR3 vecX, vecY, vecZ; 
    TCHAR       strName[1024]; 
 
    // What type of node is this 
    bool bIgnoreNodeForBone = (pNode->Type == BRANCH_END ||  
      pNode->Type == BRANCH_FROND); 
 
    if ( pNode->Type == BRANCH_BEGIN ||  
 ((pNode->BranchSegment % m_Properties.Bone_Resolution) == 0 && 
  !bIgnoreNodeForBone) ) 
    { 
 … 
 … 
 … 
 …  --- snip ---   ( Create Frame and Setup Parameters to pass to child) 
 … 
 … 
 … 
 
        // Add the ring for this segment in this frame's combined space 
        hRet = AddBranchSegment( pNode, pChildMesh ); 
        if ( FAILED(hRet) ) { if (pNewMesh) delete pNewMesh; return hRet; } 
 
    } // End if adding a new frame 
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The next section of code was executed if the current node is not a BRANCH_BEGIN node and is not a 
node that should have a bone created for it. You will recall that originally this just meant calling the 
AddBranchSegment function to add a ring of vertices to the current mesh being built (the one passed 
into the function from the parent). Now we have some conditional logic. If the current node is a 
BRANCH_FROND node then we do not call the AddBranchSegment function since we do not wish a 
ring of vertices to be inserted on the frond node plane. Instead, we wish to insert vertices into the mesh 
that will build the intersecting quads for the frond. Therefore, we call a new method called 
AddBranchFrond to add the frond geometry to the current mesh. This function will be discussed in a 
moment.  
 
    else 
    { 
        // Store which bone we're assigned to in the node 
        pNode->pBone = pParent; 
 
         // Is this a frond? 
        if ( pNode->Type != BRANCH_FROND ) 
        { 
            // Add the ring for this segment in this frame's combined space 
            hRet = AddBranchSegment( pNode, pMesh ); 
            if ( FAILED(hRet) ) { return hRet; } 
         
        } // End if not frond 
        else 
        { 
            // Add the frond data in this frame's combined space 
            hRet = AddBranchFrond( pNode, pMesh ); 
            if ( FAILED(hRet) ) { return hRet; } 
 
        } // End if frond 
 
        // Since no new frame is generated here, the child will receive 
        // the same frame, mesh and matrices that we were passed. 
        pChildFrame = pParent; 
        pChildMesh  = pMesh; 
        mtxChild    = mtxCombined; 
 
    } // End if not creating a new frame 

 
Because we only add fronds when we are not processing a bone node you might conclude that there 
would be gaps in the foliage whenever a branch node is a bone node. However, we must remember that 
this function also visits the sibling list of the bone node, so fronds can still exist at the same position as a 
bone node and can exist in the same list of siblings as any node type. At this point we are outside any 
conditional code block and back in the common flow of the function. 
 
The next section of code steps into the child and sibling lists (this is not new code). 
 
    // Build the nodes for child & sibling 
    if ( pNode->Sibling ) 
    { 
        hRet = BuildNode( pNode->Sibling,  
      pParent,  
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      pMesh,  
      mtxCombined,  
      pAllocate ); 
 
        if (FAILED(hRet)) { if ( pNewMesh ) delete pNewMesh; return hRet; } 
     
    } // End if has sibling 
 
    if ( pNode->Child ) 
    { 
        hRet = BuildNode( pNode->Child,  
      pChildFrame,  
      pChildMesh,  
      mtxChild,  
      pAllocate ); 
 
        if (FAILED(hRet)) { if ( pNewMesh ) delete pNewMesh; return hRet; } 
     
    } // End if has child 

     
The final section of code is executed at the bottom of the function when the current node being 
processed is a BRANCH_BEGIN node. Remember, because the child list is traversed before we get to 
this point in the function, if this is a BRANCH_BEGIN node, all the vertices in that child branch will 
have been added to the mesh at this point. What we have to do in this next code block is build the 
CTriMesh’s underlying ID3DXMesh, build its ID3DXSkinInfo object, and pass this information into the 
CAllocateHierarchy::CreateMeshContainer function for skinned mesh creation. Virtually all of this code 
is unchanged, but we will comment after the first altered portion. 
 
    if ( pNode->Type == BRANCH_BEGIN ) 
    { 
        D3DXMATERIAL        Materials[2]; 
        D3DXMESHDATA        MeshData; 
        D3DXMESHCONTAINER * pNewContainer       = NULL; 
        DWORD             * pAdjacency          = NULL; 
        LPD3DXBUFFER        pAdjacencyBuffer    = NULL; 
        LPD3DXSKININFO      pSkinInfo           = NULL; 
        ULONG                 MaterialCount = ( m_Properties.Include_Fronds ) ? 2 : 1;          

 
Notice the new line added to the bottom of the variable declarations. We will have to pass into the 
‘CreateMeshContainer’ function the number of materials/subset in the mesh. If fronds are enabled we 
will have two subsets/materials in the mesh, so we perform this calculation here. The first subset will 
contain the branch faces and the second the fronds. 
 
        // Generate mesh containers name 
        _stprintf( strName, _T("Mesh_%i"), pNode->UID ); 
 
        // Generate the skin info for this branch 
        hRet = BuildSkinInfo( pNode, pNewMesh, &pSkinInfo ); 
         
        if ( FAILED(hRet) ) { delete pNewMesh; return hRet; } 
 
        // Signal that CTriMesh should now build the mesh in software. 
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        pNewMesh->BuildMesh( D3DXMESH_MANAGED, m_pD3DDevice ); 
         
        // Build the mesh data structure 
        ZeroMemory( &MeshData, sizeof(D3DXMESHDATA) ); 
        MeshData.Type  = D3DXMESHTYPE_MESH; 
         
        // Store a reference to our build mesh. 
        // Note: This will call AddRef on the mesh itself. 
        MeshData.pMesh = pNewMesh->GetMesh(); 
 
        // Build material data for this tree 
        Materials[0].pTextureFilename = m_strTexture; 
        Materials[0].MatD3D           = m_Material; 
        Materials[1].pTextureFilename = m_strFrondTexture; 
        Materials[1].MatD3D           = m_FrondMaterial; 

 
The call to the BuildSkinInfo function is not changed although the contents of this function have been 
modified slightly, as we will see in a moment. The BuildSkinInfo function has also been upgraded so 
that any frond vertices also get influenced by the bones of the tree. The two new lines of code in the 
above code snippet are the bolded ones at the very bottom. 
 
You will recall that when we pass our new branch mesh into the CreateMeshContainer function we must 
also pass in an array of materials (texture and material combinations). Originally, we just passed in a 
single structure since we only had one texture and material used by the entire tree. Now we have two 
because we also have a texture and material that will be used for the fronds (the second subset). So as 
you can see, we store both of these in a two element D3DXMATERIAL array before handing it off to 
CreateMeshContainer. Notice that we pass in the material count we calculated earlier so that 
CreateMeshContainer knows how many materials we are passing in the array. 
 
        // Retrieve adjacency information 
        pNewMesh->GenerateAdjacency( ); 
        pAdjacencyBuffer = pNewMesh->GetAdjacencyBuffer(); 
        pAdjacency       = (DWORD*)pAdjacencyBuffer->GetBufferPointer(); 
 
        // Create the new mesh container 
        hRet = pAllocate->CreateMeshContainer( strName,  
            &MeshData,  
                                               Materials,  
                                               NULL,  
                                               MaterialCount,  
            pAdjacency,  
                                               pSkinInfo,  
                                               &pNewContainer ); 
 
        // Release adjacency buffer 
        pAdjacencyBuffer->Release(); 
 
        // Release the mesh we referenced 
        MeshData.pMesh->Release(); 
 
        // Release the skin info 
        if (pSkinInfo) pSkinInfo->Release(); 
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        // Destroy our temporary child mesh 
        delete pNewMesh; 
 
        // If the mesh container creation failed, bail! 
        if ( FAILED(hRet) ) return hRet; 

 
The final change to this function requires some explanation. We will need to override the DrawActor 
and DrawActorSubset methods of the base class in CTreeActor so that we can enable alpha 
testing/blending when rendering the frond subset (subset 1). However, if our actor is in managed mode, 
the CreateMeshContainer function will have remapped the face attribute IDs to use the global IDs issued 
by the CScene class during the creation of the skin. We currently have no way of knowing what the 
frond subset ID will be after the CreateMeshContainer function has altered its attribute buffer. 
Furthermore, we cannot even lock the attribute buffer and try and determine this because the mesh may 
have also been attribute sorted (optimized) so we cannot even be sure that the first subset ID in the 
attribute buffer is the ID of the non-frond subset.  
 
We decided to work around this problem by making a very small tweak to our 
CAllocateHierarchy::CreateMeshContainer function. In the next Module in this series we will examine a 
more comprehensive solution to this problem, but for now, our current strategy will be a lot easier to 
deal with.  
 
You will recall that during the attribute remapping of a non-managed mesh we would build a temporary 
remap array describing what the original attribute IDs were mapped to. We then used this array to remap 
the attribute buffer and then the array was discarded. We will no longer discard it. Instead we store the 
attribute remap array in a new CAllocateHierarchy member variable so that it can be accessed. We 
added a small function to the CAllocateHierarchy class called GetAttributeRemap. This function will 
return the new ID in the remap array for an original subset ID passed in. In the following code you can 
see us using this new function to retrieve the new subset ID for the frond subset (originally subset 1) and 
storing it in a new CTreeActor member variable called m_nFrondAttribute. Our overridden 
DrawActorSubset subset function can then access this attribute ID and only enable the alpha 
blending/testing render states if the frond subset is the one that has been requested to be rendered.   
 
        // Store the final attribute ID (as it was remapped) of the frond data 
         if ( m_Properties.Include_Fronds )  
         m_nFrondAttribute = ((CAllocateHierarchy*)pAllocate)->GetAttributeRemap( 1 );  
 
        // Store the new mesh container in the frame 
        pNewFrame->pMeshContainer = pNewContainer; 
 
    } // End if beginning of branch 
     
    // Success!! 
    return D3D_OK; 
     
} 

 
If you followed along in the last section with your source code project open you will have seen that the 
changes to the code are very small indeed. However, there is now a new function called from the 
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BuildNode function which adds the vertex data to the mesh for a frond node. This function is called 
AddBranchFrond and is a brand new function whose code we will cover next. 

CTreeActor - AddBranchFrond 

The AddBranchFrond function is called by BuildNode whenever a 
frond node is encountered during phase two of the tree building 
process. Just as the AddBranchSegment function is called to add a 
ring of vertices on the node plane of a normal branch node, the 
AddBranchFrond function is called to add the frond vertices. This 
function will create two intersecting quads mounted on the node 
plane and aligned with the node direction vector (see Figure 12.62). 
 
Just as we did in the AddBranchSegment function, we must 
transform the node position and the node plane’s direction, right, 
and ortho vectors from tree space into branch space. This is so the 
vertices we generate will be relative to the beginning of the branch 
(the mesh in which they are contained) and not the root of the entire 
tree.  The process we use to perform this back transformation is the 
same. The function is passed the frond node that needs to have its vertices added and a pointer to the 
CTriMesh to which the vertices should be added (the current branch mesh being built). It first executes a 
while loop that starts at the current node and steps back through the parent list until the 
BRANCH_BEGIN node is encountered. This will be the first node in the branch and the space in which 
we wish to transform our frond node. That is, we wish to define our frond vertices in a space where the 
BRANCH_BEGIN node’s position is located at (0,0,0) in the coordinate system and its right, ortho and 
direction vectors are aligned with the X,Y, and Z axes of that system, respectively. 
 
HRESULT CTreeActor::AddBranchFrond( BranchNode * pNode, CTriMesh * pMesh ) 
{ 
    USHORT      Index; 
    D3DXMATRIX  mtxInverse, mtxRot, mtxBranch; 
    D3DXVECTOR3 vecPos, vecAxis, vecRight, vecOrtho, vecNormal, vecVertexPos; 
    D3DXVECTOR3 vecX, vecY, vecZ; 
    float       fScale, fX, fY, fZ; 
 
    // Back track until we find the beginning node for this branch 
    BranchNode * pStartNode = pNode; 
    while ( pStartNode->Type != BRANCH_BEGIN && pStartNode )  
            pStartNode = pStartNode->Parent; 
 
    if ( !pStartNode ) return D3DERR_INVALIDCALL; 

 
At this point we now have a pointer to the BRANCH_BEGIN node, so let us extract its direction vector 
(it local Z axis) and its right vector (its local X axis) and perform a cross product to generate the third 
axis in its local system (its local Y axis).  Using these three vectors we then build a transformation 
matrix for the branch start node and take its inverse. This gives us a matrix that will transform any 
position or vector into branch space. 

Figure 12.62 
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    // Store / generate the vectors used to build the branch matrix 
    vecX = pStartNode->Right; 
    vecZ = pStartNode->Direction; 
    D3DXVec3Cross( &vecY, &vecZ, &vecX ); 
 
    // Generate the frame matrix for this branch 
    D3DXMatrixIdentity( &mtxBranch ); 
    mtxBranch._11 = vecX.x; mtxBranch._12 = vecX.y; mtxBranch._13 = vecX.z; 
    mtxBranch._21 = vecY.x; mtxBranch._22 = vecY.y; mtxBranch._23 = vecY.z; 
    mtxBranch._31 = vecZ.x; mtxBranch._32 = vecZ.y; mtxBranch._33 = vecZ.z; 
    mtxBranch._41 = pStartNode->Position.x; 
    mtxBranch._42 = pStartNode->Position.y; 
    mtxBranch._43 = pStartNode->Position.z; 
 
    // Get the inverse matrix, to bring the node back into the frame's space 
    D3DXMatrixInverse( &mtxInverse, NULL, &mtxBranch ); 

 
Now that we have a matrix that will transform vectors into the coordinate system of the branch, we will 
transform the direction vector, the right vector, and the position of the frond node into branch space by 
multiplying them with this matrix. 
 
    // Build the axis in the frame's space 
    D3DXVec3TransformNormal( &vecAxis, &pNode->Direction, &mtxInverse ); 
    D3DXVec3TransformNormal( &vecRight, &pNode->Right, &mtxInverse ); 
    D3DXVec3TransformCoord ( &vecPos, &pNode->Position, &mtxInverse ); 

 
At this point we only have the frond node’s branch space position, look vector, and right vector. In order 
to position the vertices on the plane, we also need the second tangent vector (the plane’s Up vector). We 
calculate this simply by rotating the branch space right vector around the direction vector (perpendicular 
to the plane) by 90 degrees. 
 
    // Build the ortho vector which we use for our Y dimension axis 
    D3DXMatrixRotationAxis( &mtxRot, &vecAxis, D3DXToRadian( 90.0f ) ); 
    D3DXVec3TransformNormal( &vecOrtho, &vecRight, &mtxRot ); 

 
Figure 12.63 shows the plane and the two tangent vectors. Actually, 
because of the way we rotated our ortho vector it is actually pointing 
down and not up as shown in Figure 12.63, but hopefully you get the 
idea. As discussed in the AddBranchSegment function, we can 
combine the node position and the right and ortho vectors together 
with some scaling to position points anywhere on this plane. For 
example, we know that if we add the right vector to the node position, 
the resulting vector will be a point on the plane pointed to by the tip of 
the right vector in the diagram. If we add the ortho vector to the node 
position we would describe a position pointed to by the tip of the ortho 
vector in the diagram. If we add the negated right to the node position 

we would generate a point on the left side of the plane and similarly, if we add the negated ortho vector 
to the node position we would get a position at the bottom of the yellow plane shown in Figure 12.63. 
Those four position calculations we have just discussed describe the positions of four vertices on the 

 
Figure 12.63 
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plane in the shape of a perfect cross. That is exactly where we want to base vertices of our intersecting 
quads to be. However, we do yet know how big we want these quads to be, so we will create some 
scaling values that will be multiplied with the ortho and right vectors so that we can create a larger or 
smaller cross on that plane. 
 
In the next section of code we create three scaling values (fX, fY, and fZ) which will be used to scale the 
right, ortho and direction vectors before they are combined to create vertex positions. We will want the 
size of the fronds to get smaller as they are positioned higher up the tree and belong to smaller and 
thinner branches. We defined the minimum and maximum frond sizes as tree growth properties so we 
wish to find a size for the frond that is within this range but still related to the size of its parent branch. 
After all, a huge frond sticking out of a tiny parent branch would look unrealistic and quite bad. The 
technique we use is described next. 
 
We will take the dimensions of the frond node (this was inherited from the parent when the frond node 
was created) and divide by the dimensions of the root node of the tree. As we know, the root node is the 
node in the tree with the largest dimensions, so this will create a value in the 0.0 to 1.0 range. The value 
is closer to zero the higher up the tree the frond is placed and the smaller its parent branch is in relation 
to the root node’s dimensions. We will then use this scaling value to generate a new value between the 
minimum and maximum frond size growth properties that have been set. This is done on a per 
component level, so if we imagine that the variable ScaleValue describes the frond node’s X dimension 
divided by the root node X dimension, fX would be calculated as: 
 
fX = MinFrondSize + (( MaxFrondSize – MinFrondSize) * ScaleValue) 
  
This is a basic interpolation calculation that we have used many times before. We are essentially adding 
the range (MaxFrondSize-MinFrondSize) of values that a frond can be set to, to the minimum frond size. 
This gives a value between MinFrondSize and MaxFrondSize based on ScaleValue (which is closer to 
zero the further from the root it is positioned). fX will then be used to scale the right vector of the frond 
node before it is added to the node position to generate the left and right vertex positions on the plane. 
 
Below we see the code that calculates fX, fY and fZ. 
 
    // If this is a frond node 
    if ( pNode->Type == BRANCH_FROND ) 
    { 
        // Calculate frond dimensions 
        fScale = (pNode->Dimensions.x / m_pHeadNode->Dimensions.x); 
        fX     = m_Properties.Frond_Min_Size.x +  
                ((m_Properties.Frond_Max_Size.x - m_Properties.Frond_Min_Size.x)  
                * fScale); 
 
        fScale = (pNode->Dimensions.y / m_pHeadNode->Dimensions.y); 
        fY     = m_Properties.Frond_Min_Size.y +  
       ((m_Properties.Frond_Max_Size.y - m_Properties.Frond_Min_Size.y) 
   * fScale); 
        
        fScale = ((pNode->Dimensions.x / m_pHeadNode->Dimensions.x) +  
                  (pNode->Dimensions.y / m_pHeadNode->Dimensions.y)) / 2.0f; 
        fZ     = m_Properties.Frond_Min_Size.z +  
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                ((m_Properties.Frond_Max_Size.z - m_Properties.Frond_Min_Size.z)  
                * fScale); 
 
Notice that the scaling value used to create fZ is not calculated in the same way. That is, we do not scale 
the Z dimension of the frond node by the Z dimension of the root node. This is because, the fZ value 
will be used to control the length of the frond (how high the top of the quads are with respect to the node 
plane they are mounted on). We do not want this to be a product of the parent node’s segment length but 
rather an average of the difference in the X and Y dimensions with respect to the root node. We would 
not want to have a really long frond branch if its X and Y dimensions are very small. This would create 
a skinny frond with a squashed texture. 
 
Now that we have our Direction, Ortho, and Right vectors, our scaling values (fX,fY,fZ), and the node 
position, we can start building the vertex positions for those quads. We actually need to create four 
quads because we wish each of the polygons to be visible from both sides. Therefore, we will create four 
vertex positions per quad for a total of 16 vertex positions.  Each quad will be formed from 4 vertices 
where two of the vertices lay on the plane and two are offset from the plane by some amount along the 
direction vector. The quads will be assigned their vertices such that they have a clockwise winding when 
viewed from the front. 
 
In the next line of code we create a local array of 16 CVertex structures. In each element of the array we 
call the CVertex constructor that takes four parameters: 
 
 CVertex( D3DXVECTOR3 &vecPos, const D3DXVECTOR3 &vecNormal, float ftu, float ftv ) 
 
CVertex is defined in CObject.h and as you can see the first parameter is where we pass a 3D vector 
describing its position. The second parameter is where we pass in the normal of the vertex and the last 
two float parameters is where we pass in the texture coordinates. We will cover the first four vertex 
positions we add to this array one at a time so we can see how the quad is constructed. Here is the first 
section of the statement that defines the CVertex array and passes the first vertex. 
 
// Calculate the actual frond vertices. 
CVertex pVertices[16]={ CVertex( (vecPos - (vecRight*fX)), vecOrtho, 0.0f, 1.0f ), 

 
The position of the first vertex in the first quad is calculated 
by subtracting from the node position (shown as the ball in 
the center of the plane in Figure 12.64) the right vector 
scaled by the fX scaling value we calculated earlier. 
Essentially, fX dictates the width of the quad we are 
creating. 
 
The resulting vertex position is situated on the plane and is 
shown as the small blue sphere labeled V1 in Figure 12.64. 
This is the bottom left corner of our first quad.  
 
Notice that we pass in the vecOrtho vector as the vertex 
normal. Why? Because the right vector and the ortho vector 

are perpendicular to each other and therefore, in this diagram we can imagine that the ortho vector is 
actually pointing down towards the bottom edge of the yellow plane. This is the exact direction our quad 

Figure 12.64 
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will be facing and thus its normal. Finally, since this is the bottom left vertex of our quad, we assign it 
the bottom left UV coordinate of the texture (0,1).  
 
Let us see how we define the next (second) vertex in the array declaration. 
 
 CVertex( (vecPos - (vecRight * fX)) + (vecAxis * fZ), vecOrtho, 0.0f, 0.0f ), 

 
Here you can see that the next vertex position we define 
is initially calculated in the same way as before (by 
subtracting a scaled right vector from the node position) 
only this time we add to the resulting position the scaled 
direction vector (vecAxis). This vector is perpendicular 
to the plane and as such describes a position that is 
offset from the plane in the direction of the plane 
normal. This forms the top left corner of our quad. The 
same normal is used for every vertex in this quad. 
 
As this is the top left vertex in the quad we assign it the 
texture coordinate for the top left of the texture (0,0). 
 
It should be clear that in order to generate the top right 
and bottom right vertices we essentially do the same 

thing, only this time adding the right vector to the node position instead of subtracting it. This will form 
two symmetrical vertex positions on the right side of the node position. 
 
CVertex( (vecPos + (vecRight * fX)) + (vecAxis * fZ), vecOrtho, 1.0f, 0.0f ), 
CVertex( (vecPos + (vecRight * fX))                 , vecOrtho, 1.0f, 1.0f ), 

 
Above we can see how the final two vertex positions 
are defined for the quad. These two calculations are 
identical to the previous two only with the addition 
of the right vector to the node position instead of its 
subtraction. 
 
Note that it is the top right vertex we add third and 
the bottom right we add fourth, so that the four 
vertex positions of our quad describe a clockwise 
winding when viewed from the front. 
 
Also notice that the two vertices are provided with 
the same vertex normal -- the ortho vector which is 
pointing toward us in this diagram. You should be 
able to see that the top right vertex’s texture 
coordinate of (1,0) maps it to the top right of the 
texture image and the bottom left texture coordinate 
of (1,1) maps vertex V4 to the bottom right corner 
of the texture image. 
 

Figure 12.65 

Figure 12.66 
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Figure 12.67 

 
The next four vertices we define in the array describe the same quad, but facing in the other direction 
since we want this frond quad to be able to be viewed from both sides. We add the same four vertex 
positions, only this time in a counter-clockwise winding order. We also flip the sign of the vertex 
normals so that they are facing in the opposite direction.  
 
CVertex( (vecPos + (vecRight * fX))                 , -vecOrtho, 1.0f, 1.0f ), 
CVertex( (vecPos + (vecRight * fX)) + (vecAxis * fZ), -vecOrtho, 1.0f, 0.0f ), 
CVertex( (vecPos - (vecRight * fX)) + (vecAxis * fZ), -vecOrtho, 0.0f, 0.0f ), 
CVertex( (vecPos - (vecRight * fX))                 , -vecOrtho, 0.0f, 1.0f ), 

 
We now have the horizontal quads built, so it is time to build the vertical ones so that we form a criss-
cross shape of intersecting quads. 
 
CVertex( (vecPos - (vecOrtho * fY))                 , -vecRight, 0.0f, 1.0f ), 
CVertex( (vecPos - (vecOrtho * fY)) + (vecAxis * fZ), -vecRight, 0.0f, 0.0f ), 
CVertex( (vecPos + (vecOrtho * fY)) + (vecAxis * fZ), -vecRight, 1.0f, 0.0f ), 
CVertex( (vecPos + (vecOrtho * fY))                 , -vecRight, 1.0f, 1.0f ), 
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The vertex positions described above are shown in 
Figure 12.68. As you can see, this creates a quad 
aligned with the ortho vector instead of the right 
vector. As noted earlier, our ortho vector is actually 
pointing down and as such, the calculation of vertices 
V1 and V2 involve the subtraction of the ortho vector 
from the node position, while the calculations of 
vertices V3 and V4 involve its addition. 
 
Notice that the vertex normal in each case we are 
passing is the negated right vector. The right vector is 
at right angles to the ortho vector and as such 
describes the plane of the quad we are building. The 
negated right vector will generate a vector pointing 
toward us in the diagram. 
 
Finally, we want this quad to be two-sided so we add 
the same quad positions again, only this time with a 
reversed winding order and using the positive right 
vector as the vertex normals. 
 
CVertex( (vecPos + (vecOrtho * fY))                 , vecRight, 1.0f, 1.0f ), 
CVertex( (vecPos + (vecOrtho * fY)) + (vecAxis * fZ), vecRight, 1.0f, 0.0f ), 
CVertex( (vecPos - (vecOrtho * fY)) + (vecAxis * fZ), vecRight, 0.0f, 0.0f ), 
CVertex( (vecPos - (vecOrtho * fY))                 , vecRight, 0.0f, 1.0f )  
}; 

 
We now have the 16 vertex positions stored in a CVertex array, so it is time to add them to the mesh. 
First we inform the passed CTriMesh of our intention to add 16 vertices so that it makes room at the end 
of its internal vertex array. We pass a pointer to the vertex array as well so that it can copy them. 
 

 
Figure 12.69 

 
        // Add the frond vertex data 
        long VIndex = pMesh->AddVertex( 16, pVertices ); 
        if ( VIndex < 0 ) return E_OUTOFMEMORY; 

 

Figure 12.68 
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The AddVertex function returns the index (VIndex) of the first new vertex we added so that we know 
where we have to start indexing from when we build the indices. 
 
For each quad we will need to add two triangles, each consisting of three indices (24 indices total). If we 
have a quad defined by vertices V1, V2, V3, and V4 in a clockwise winding order, then the first triangle 
will be created from V1, V2, and V3 and the second from vertices V1, V3, and V4. Below we see the 
code that allocates an array of 24 indices and indexes the vertices for each quad using this scheme. Of 
course, we must add VIndex to each zero based index value so that we index the positions in the mesh’s 
vertex array where the frond vertices have been added. We cannot automatically assume they are the 
first 16 vertices in the mesh (since we know that they will not be because of prior branch vertex rings). 
 
// Generate the index data for this frond 
Index = (USHORT)VIndex; 
 
USHORT pIndices[24] =  
{ Index + 0 , Index + 1 , Index + 2 , Index + 0 , Index + 2 , Index + 3, 
Index + 4 , Index + 5 , Index + 6 , Index + 4 , Index + 6 , Index + 7, 
Index + 8 , Index + 9 , Index + 10, Index + 8 , Index + 10, Index + 11, 
Index + 12, Index + 13, Index + 14, Index + 12, Index + 14, Index + 15 }; 

 
Finally, we inform the CTriMesh that we would like to add eight more triangles to its index buffer and 
pass the indices array so that it can copy them into its internal index array. Notice that in the third 
parameter to this function we pass in the number of the subset as 1 instead of 0. Thus, the branch 
segment faces will be assigned to subset 0 and the frond faces will be in subset 1. It makes perfect sense 
that we would need to put them in separate subsets since they both use different attributes (texture and 
material). 
 
    // Add the frond face data (subset '1' ) 
    if ( pMesh->AddFace( 8, pIndices, 1 ) < 0 ) return E_OUTOFMEMORY; 
 
 
    } // End if frond node 
 
    // Success!! 
    return D3D_OK; 
} 

 
This function will be called to add a frond whenever a frond node is encountered during the mesh 
building process. As you have seen, the code is actually quite easy to follow. 
 
The last function that needs a minor update is the BuildSkinInfo function which is called from 
BuildNode when a branch mesh has been fully populated with its vertex and index data and is about to 
be turned into a skin. This function creates the ID3DXSkinInfo object that will be passed to the 
CreateMeshContainer function and contains the connection between bones in the hierarchy and the 
vertices they influence. 
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CTreeActor::BuildSkinInfo - Updated 

This function has been modified in two places to support fronds, but the modifications are very small. It 
is suggested that you follow this discussion with the source code to Lab Project 12.2 handy so that you 
can see the changes in context. We will not be showing the entire function here since this was a big 
function and very little has changed.  
 
You will recall that this function has a very simple job. It traverses the branch (it is only ever called for 
BRANCH_BEGIN nodes) stepping from node to node within the same branch and adding the vertex 
indices it collects between bone nodes to the skin info object. The first change happens near the start of 
the function, where we execute a while loop to step through the current node’s child list to find the next 
node that is a continuation of the branch. Originally, we just ignored any other BRANCH_BEGIN nodes 
since we were only interested in finding the next node in the current branch we were processing. 
However, now the child list of a node can contain both BRANCH_BEGIN nodes and 
BRANCH_FROND nodes, so an extra check has been added to ensure that we also ignore frond nodes. 
 
    while ( pSearchNode = pSearchNode->Child ) 
    { 
        // We're not interested in other branches or fronds, so shift us through 
        // until we find a node that is our segment, or end node. 
        while ( pSearchNode &&  
     (pSearchNode->Type == BRANCH_BEGIN ||  
      pSearchNode->Type == BRANCH_FROND) )  
      pSearchNode = pSearchNode->Sibling; 
 
        // If we couldn't find a node, we have an invalid hierarchy 
        if ( !pSearchNode ) return D3DERR_INVALIDCALL; 
 
        // Was a frame created here? 
        if ( pSearchNode->BoneNode ) BoneCount++; 
         
    } // Next child segment 

 
The final alteration is at the very bottom of the function’s inner loop. You will recall from our earlier 
discussion that this function, once finding a bone node, will start collecting the indices of all child nodes 
until the point that another bone is encountered. At this point all the indices currently collected in the 
temporary indices array are added for the previous bone in the ID3DXSkinInfo object. A new section 
has now been added which essentially just says, if we are processing a frond node, add the frond vertex 
indices to the temporary indices array also. If you have the source code in front of you, this addition will 
seem perfectly logical. 
 
            else if ( pSearchNode->Type == BRANCH_FROND ) 
            { 
                // Add influences for each of the 16 frond vertices 
                for ( i = 0; i < 16; ++i ) 
                { 
                    pIndices[ InfluenceCount ] = IndexCounter++; 
                    pWeights[ InfluenceCount ] = 1.0f; 
                    InfluenceCount++; 
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                } // Next index 
 
            } // End if frond 
 
        } // Next node sibling 
 
        // If we couldn't find a segment node, we've reached the end of the branch 
        if ( !pSegmentNode ) break; 
 
    } // Next child segment 
 
    // Clean up 
    delete []pIndices; 
    delete []pWeights; 
 
    // Success!! 
    return D3D_OK; 
} 

 
We have now covered all the functions that need to be altered in the tree generation process and our 
CTreeActor class is now capable of creating trees with fronds. This certainly acts to increase our visuals 
by quite a significant margin. 
 
However, we are not quite done yet in terms of our overall support for fronds. In the previous lab 
project, we could just allow the base class (CActor) DrawActor and DrawActorSubset methods to be 
called to render the tree, but this is no longer the case. We will need to override these functions so that 
when rendering frond subsets we can enable alpha blending and alpha testing before calling the base 
class versions of the function. Let us have a look at the CTreeActor::DrawActorSubset function first. 

CTreeActor::DrawActorSubset 

This function is extremely simple since it calls the base class implementation to do the actual rendering. 
All it does is test to see if the passed attribute ID matches the attribute ID of the frond subset (which we 
stored earlier in the m_nFrondAttribute member variable). If so, it enables alpha testing and alpha 
blending.  
 
void CTreeActor::DrawActorSubset( ULONG AttributeID ) 
{ 
    // Is this our frond attribute? 
    if ( m_Properties.Include_Fronds && AttributeID == m_nFrondAttribute ) 
    { 
        // Setup states 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, TRUE ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHAREF, (DWORD)0x000000A0 ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
        m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_SRCALPHA ); 
        m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 
        m_pD3DDevice->SetTextureStageState( 0,D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
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        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE ); 
 
    } // End if frond attribute 
 
    // Call underlying draw 
    CActor::DrawActorSubset( AttributeID ); 
 
    // Reset states if applicable 
    if ( m_Properties.Include_Fronds && AttributeID == m_nFrondAttribute ) 
    { 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, FALSE ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
     
    } // End if frond attribute 
} 

 
We first enable alpha testing because alpha blending by itself will not suffice. We do not want the black 
background pixels to be rendered at all. Although these pixels have zero alpha components and would 
not alter the contents of the frame buffer when rendered, with alpha blending enabled, they would 
actually still be rendered. Although these pixels would be blended with the frame buffer with zero 
weight (leaving the frame buffer unchanged) their depth values would still be written to the depth buffer. 
Therefore, the black space around the leaves would block leaves located behind from being drawn as 
they would be rejected by the depth test. In essence, it would seem as if the leaves were blocked by 
invisible geometry.  
 
By enabling alpha testing we can make sure that these 
background pixels get rejected in the pixel pipeline. This 
means their depth values will not be recorded in the depth 
buffer and therefore, we will not have these issues. We set the 
alpha testing reference value to a rather arbitrary 0xA0 (160) 
so that all pixels with an alpha value of less than 160 get 
rejected. The reason we do not set this to a value such as 1 for 
example (so only totally transparent pixels such as the 
background pixels get rejected) is because, when we generate 
an alpha channel, the pixels between the opaque leaf edges 
and the transparent black background will often also be 
blended from opaque to transparent. Therefore, this makes 
sure that we remove nearly all the pixels that are mostly 
transparent, but leave the ones in place that are partially 
transparent since these pixels may contain part of the leaf 
edge. Setting the alpha reference to a low value (e.g., 1) will 
remove all the background pixels but will leave the partially transparent pixels around the opaque leaves 
in place and their depth values will still be written to the frame buffer. This provides an unattractive 
border around the leaves (see Figure 12.70). As you can see, there is a large number of pixels that are 
not totally transparent that do not get rejected by the alpha testing pipeline, so setting a higher reference 
value helps filter these undesirables out. 
 

Figure 12.70 : Low Alpha Testing 
Reference Value ( Ref = 5 ) 



 

 159 

 

We then enable alpha blending so that the leaves get blended 
with the frame buffer and any partially transparent pixels around 
the leaf edges which did not get rejected from the alpha test will 
allow for objects behind them to show through. If you play 
around with the alpha testing reference value you will see 
exactly why this is necessary. If we do not enable alpha 
blending, the results will not look overly bad, but there will still 
be a hard edge to leaves (see Figure 12.71). Enabling alpha 
blending allows us to keep the outer portions of the leaves that 
are partially transparent but have them blend out smoothly, 

removing the hard edge around the leaves. You can experiment with the settings to find what works best 
for you. Obviously, while alpha blending does seem to produce better results, it adds some additional 
cost.  

CTreeActor::DrawActor    

The CActor::DrawActor function can be used to automate the rendering of managed mode meshes. It is 
called once by the application and will render all of its subsets. It can do this because a managed mode 
mesh contains its own texture and material arrays and can set them before rendering each of its subsets. 
 
We also have to override this function in CTreeActor for the same reason as before (to enable the alpha 
testing and alpha blending render states). Unfortunately, when rendering a managed mode tree we no 
longer have per-subset control to decide whether we should enable the states for the entire rendering of 
the tree or not. This means that if the tree does have fronds, we will have to enable alpha testing and 
alpha blending and then use the base class implementation to instruct the mesh to draw all its subsets. 
Sadly, this does mean that both subsets will be rendered with these states enabled. These states will not 
harm the rendering of the non-frond subset, but it is not ideal to have these states set when we do not 
wish to use them since they introduce overhead in the pixel pipeline.  
 
void CTreeActor::DrawActor( ) 
{ 
    // Fronds included? 
    if ( m_Properties.Include_Fronds ) 
    { 
        // Setup states 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, TRUE ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHAREF, (DWORD)0x000000A0 ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHAFUNC, D3DCMP_GREATEREQUAL ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
        m_pD3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_SRCALPHA ); 
        m_pD3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 
        m_pD3DDevice->SetTextureStageState( 0,D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
        m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE ); 
 
    } // End if fronds included 
 
    // Call underlying draw 
    CActor::DrawActor(); 

 
Figure 12.71 Alpha Blending 

Disabled 
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    // Reset states 
    if ( m_Properties.Include_Fronds ) 
    { 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHATESTENABLE, FALSE ); 
        m_pD3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
 
    } // End if fronds included 
} 

Conclusion 

This concludes our discussion of trees (for now) and also brings us to the end of our skinning 
discussions in this course. There was quite a lot of challenging material to take in at times, but you 
should now have a very strong understanding of frame hierarchies and skinned meshes. We now have an 
actor that fully supports skinning which we can use in all of our applications from this point on. 
Additionally we have a pretty nice derived actor class that allows us to generate trees for our various 
scenes. We recognize that there was a lot to digest in this chapter, so take your time and re-read the 
sections that you found difficult before moving on to the workbook.  
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