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Introduction 

Games that use 3D graphics often have several source code modules to handle tasks such as: 
 

• user input 
• resource management 
• loading and rendering graphics 
• interpreting and executing scripts 
• playing sampled sound effects  
• artificial intelligence 

 
These source code modules, along with others, collectively form what is referred to as the game engine. 
One of the key modules of any 3D game engine, and the module that this series will be focusing on, is 
the rendering engine (or renderer). The job of the rendering engine is to take a mathematical three 
dimensional representation of a virtual game world and present it as a two dimensional image on the 
monitor screen.  
 
Before the days of graphics APIs like DirectX and OpenGL, developers did not have the luxury of being 
handed a fully functional collection of code that would, at least to a certain extent, shield them from the 
mathematics of 3D graphics programming. Developers needed a thorough understanding of designing 
and coding a robust 3D graphics pipeline. Those who have worked on such projects previously have 
little trouble starting to use APIs like DirectX Graphics. Most of the functionality is not only familiar, 
but is probably something they had to implement by hand at an earlier time.  
 
Unfortunately, novice game developers have a tendency to jump straight into using 3D APIs without any 
basic knowledge of what the API is doing behind the scenes. Not surprisingly, this often leads to 
unexpected results and long debugging sessions. 3D graphics programming involves a good deal of 
mathematics. Without a firm grasp of these critical concepts you will never fully understand nor likely 
have the ability to exploit the full potential of the popular APIs.  
 
This is a considerable stumbling block for students just getting started with 3D graphics programming. 
So in this lesson we will examine some basic 3D programming concepts as well as some key 
mathematics to help create a foundation for later lessons. We will have only one Lab Project in this 
lesson. In it, we will build a rudimentary software rendering application so that you can see the 
mathematics of 3D graphics firsthand.  
 
Those of you who already have a thorough understanding of the 3D pipeline may wish to take this 
opportunity to refresh your memory or simply move on to another lesson.  
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1.1 Geometric Modeling 

During the process of developing a three-dimensional game, artists and modelers will create 3D objects 
using a modeling package like 3D Studio MAX™, Maya™, or even GILES™. These models will be 
used to populate the virtual game world. If you wanted to design a game that took place along the street 
where you live, an artist would likely create separate 3D models for each house, a street model and 
sidewalk model, and a collection of various models to represent such things as lamp posts, automobiles 
or even people. These would all be loaded into the game software and inserted into a virtual 
representation of the world where each model is given a specific position and orientation.  
 
Non-complex models can also be created programmatically using basic mathematics techniques. This is 
the method we will use during our initial examples. It will provide you with a better understanding of 
how 3D models are created and represented in memory and how to perform operations on them. While 
this approach is adequate for creating simple models such as cubes and spheres, creating complex 3D 
models in this way would be extraordinarily difficult and unwise.  
 

Note: 3D models are often referred to by many different names. The most common are: objects, models 
and meshes. In keeping with current standard terminology we will refer to a 3D model as a mesh. This 
means that whenever we use the word mesh we are really referring to an arbitrary 3D model that could 
be anything from a simple cube to a complex alien mother ship. 

 
A mesh is a collection of polygons that are joined together to create the outer hull of the object being 
defined. Each polygon in the mesh (often referred to as a face), is created by connecting a collection of 
points defined in three dimensional space with a series of line segments. If desired, we can ‘paint’ the 
surface area defined between these lines with a number of techniques that will be discussed as we 
progress in this course. For example, data from two dimensional images called texture maps can be 
used to provide the appearance of complex texture and color (Fig 1.1).  
 

 
Figure 1.1 

 
The mesh in Fig 1.1 is constructed using six distinct polygons. It has a top face, a bottom face, a left 
face, a right face, a front face and a back face. The front face is of course determined according to how 
you are viewing the cube. Because of the fact that the mesh is three dimensional, we can see at most 
three of the faces at any one time with the other faces positioned on the opposite side of the cube. Fig 
1.2 provides a better view of the six polygons: 
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Figure 1.2 
 
To create a single polygon we will plot a series of points within a 3D coordinate system. The actual 
shape of the polygon will become clear when we join those points together with lines (Fig 1.3).  
 

 
 

Figure 1.3 
 

Plotting points within a coordinate system and joining these points together to create more complex 
shapes is an area of mathematics known as Geometry. We begin by looking at some two dimensional 
geometry and later move on to three dimensions. 
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1.1.1 Geometry in Two Dimensions  

A coordinate system is a set of one or more number lines used to characterize spatial relationships. 
Each number line is called an axis. The number of axes in a system is equal to the number of dimensions 
represented by that system. In the case of a two dimensional coordinate system there will typically be a 
horizontal axis and a vertical axis labeled X and Y respectively. These axes extend out from the origin 
of the system. The origin is represented by the location (0, 0) in a 2D system. All points to be plotted are 
specified as offsets along X or Y relative to this origin.  
 
Fig 1.4 shows one example of a 2D coordinate system that we will be discussing again later in the 
lesson. It is called the screen coordinate system and it is used to define pixel locations on our viewing 
screen. In this case the X axis runs left to right, the Y axis runs from top to bottom, and the origin is 
located in the upper left corner.   

 
Figure 1.4 

 
Fig 1.5 shows how four points could be plotted using the screen system and how those points could have 
lines drawn between them in series to create a square geometric shape. The polygon looks very much 
like one of the polygons in the cube mesh we viewed previously, with the exception that it is viewed two 
dimensionally rather than three. 
 

 
 

Figure 1.5 
 
We must plot these points in a specific sequence so that the line drawing order is clear. We see that a 
line should be drawn between point 1 and point 2, and then another between point 2 and point 3 and so 
on until we have connected all points and are back at point 1. 
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It is worth stating that this screen coordinate system is not the preferred design for representing most 
two dimensional concepts. First, the Y values increase as the Y axis moves downward. This is contrary 
to the common perception that as values increase, they are said to get ‘higher’. Second, the screen 
system does not account for a large set of values. In a more complete system, the X and Y axes carry on 
to infinity in both positive and negative directions away from the origin (Fig 1.6). 
 

 
 

Figure 1.6 
 
Only points within the quadrant of the coordinate system where both X and Y values are positive are 
considered valid screen coordinates. Coordinates that fall into any of the other three quadrants are 
simply ignored.  
 
Our preferred system will remedy these two concerns. It will reverse the direction of the Y axis such that 
increasing values lay out along the upward axis and it will provide the full spectrum of positive and 
negative values. This system is the more general (2D) Cartesian coordinate system that most everyone 
is familiar with.  Fig 1.7 depicts a triangle represented in this standard system: 
 

 
 

Figure 1.7 
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1.1.2 Geometry in Three Dimensions 

The 3D system adds a depth dimension (represented by the Z axis) to the 2D system and all axes are 
perpendicular to one another. In order to plot a point within our 3D coordinate system, we need to use 
points that have not only an X and a Y offset from the origin, but also a Z offset. This is analogous to 
real life where objects not only have width and height but depth as well. 
 
 

 
 

Figure 1.8 
 
Fig 1.8 is somewhat non-intuitive. It actually looks like the Z axis is running diagonally instead of in and 
out of the page (perpendicular to the X and Y axes).  But if we ‘step outside’ of our coordinate system 
for a moment and imagine viewing it from a slightly rotated and elevated angle, you should more clearly 
be able to see what the coordinate system looks like (Fig 1.9). 
 

 
 

Figure 1.9 
 
There are two versions of the 3D Cartesian coordinate system that are commonly used: the left-handed 
system and the right-handed system. The difference between the two is the direction of the +Z axis. In 
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the left-handed coordinate system, the Z axis increases as you look forward (into the page) with negative 
numbers extending out behind you. The right handed coordinate system flips the Z axis. Some 3D APIs, 
like OpenGL use a right-handed system. Microsoft’s DirectX Graphics uses the left-handed system and 
we will also use the left-handed system in this course. 
 

 
 

Figure 1.10 
 
 

Note: To remember which direction the Z axis points in a given system:  
 

1) Extend your arms in the direction of the positive X axis. (towards the right). 
2) Turn both hands so that the palms are facing upwards towards the sky. 
3) Fully extend both thumbs. 

 
The thumbs now tell you the direction of the positive Z axis. On your right hand, the thumb should be 
pointing behind you, and the thumb on your left hand should be pointing in front of you. This informs us 
that in a left handed system, positive Z increases in front of us and in a right handed system positive Z 
increases behind us. 

 
 
To plot a single point in this coordinate system requires that we specify three offsets from the origin: an 
X, a Y and a Z value. Fig 1.11 shows us where the 3D point (2, 2, 1) would be located in our left-handed 
Cartesian coordinate system. 
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Figure 1.11 
 
A coordinate system has infinite granularity. It is limited only by the variable types used to represent 
coordinates in source code.  If one decides to use variables of type float to hold the X, Y and Z 
components of a coordinate, then coordinates such as (1.00056, 65.0234, 86.01) are possible. If 
variables of type int are used instead, then the limit would be the whole numbers like (10, 25, 2). In most 
3D rendering engines variables of type float are used to store the location of a point in 3D space. A 
typical structure for holding a simple 3D position looks like this: 
 
struct 3Dpoint 
{ 
     float x; 
     float y; 
     float z; 
}; 
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1.1.3 Creating Our First Mesh 

A mesh is a collection of polygons. Each polygon is stored in memory as an ordered list of 3D points. In 
Fig 1.12 we see that in order to create a 3D cube mesh we would need to specify the eight corner points 
of the cube in 3D space. Each polygon could then be defined using four of these eight points. The 
following eight points define a cube that is 4x4x4 where the extents of the cube on each axis range from 
–2 to +2.  
 

 
 

Figure 1.12 
 
We have labeled each of the 3D points P1, P2, P3, etc. The naming order selected is currently 
unimportant. What is significant is the order that we use these points in to create the polygons of the 
cube. The front face of the cube would be made up of points P1, P4, P8 and P5. The top face of the cube 
would be constructed from points P1, P2, P3 and P4. And so on. You should be able to figure out which 
points are used to create the remaining polygons. 
 
Notice that the center of the cube (0,0,0) is also the origin of the coordinate system. When a mesh has its 
3D points defined about the origin in this way it is said to be in model space (or object local space). In 
model space, coordinates are relative to the center of the mesh and the center of the mesh is also the 
center of the coordinate system. Later we will ‘transform’ the mesh from model space to world space 
where the coordinate system origin is no longer the center of the mesh. In world space all meshes will 
coexist in the same coordinate system and share a single common origin (the center of the virtual world).  
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Very often you will want to rotate an object around its center point. For example you might want a game 
character to rotate around its own center point in order to change direction. We will cover the 
mathematics for rotating an object later in the lesson, but for now just remember that in order to rotate a 
mesh you will have to rotate each of the points it contains.  In Fig 1.12, we would rotate the cube 45 
degrees to the right by rotating each of the eight corner points 45 degrees around the Y axis. When we 
rotate a point in a coordinate system, the center of rotation will always be at the origin of the coordinate 
system.  
 
 
Note: Game World Units 
 
It is up to you, the developer, working with your artists to decide game unit scale. For example, you may decide 
that 1 unit = 1 meter and ask your artist to design 3D meshes to the appropriate size to make this appear true. 
Alternatively you might decide that 1 unit = 1 kilometer and once again, create your geometry to the appropriate 
size. It is important to bear in mind that if you choose such a small scale, you may encounter floating point 
precision problems. 
 
A mesh could be 4x4x4 units like our cube or even 100x100x100 and look exactly the same from the viewer’s 
perspective. It depends on factors like how fast the player is allowed to move and how textures are applied to the 
faces. In the next image you can see two identically sized polygons with differently scaled textures. The polygon 
on the right would probably look much bigger in the game world than the one on the left. As long as all the 
objects in your world are designed to a consistent scale relative to each other, all will be fine.  
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1.1.4 Vertices 

The vertex (the plural of which is vertices or vertexes depending on your locale) is a data structure used 
to hold 3D point data along with other potential information. From this point on we will refer to each 
point that helps define a polygon in a mesh as a vertex. Therefore, we can say that our cube will have 24 
vertices because there are 6 polygons each defined by 4 vertices (6 x 4 = 24). 
 
If you examine Lab Project 1.1, you will see that our vertex structure is defined as: 
 
class CVertex 
{  
public: 
   // Constructors 
   CVertex( float fX, float fY, float fZ); 
   CVertex(); 
    
   // Public Variables for This Class 
   float       x;          // Vertex X Coordinate 
   float       y;          // Vertex Y Coordinate 
   float       z;          // Vertex Z Coordinate 
}; 

 
 
 

1.1.5 Polygon Winding Order 

3D models will not usually be created programmatically but will be created within a modeling package 
such as GILES™ or 3D Studio Max™. This allows us to create scenes with thousands or even millions 
of polygons. Very high polygon counts often correlate to a reduction in application performance due to 
the increased volume of calculations that need to be performed when drawing them. As a graphics 
developer you will use a number of techniques to keep the number of polygons that need to be drawn in 
a given frame to a minimum. Certainly you would not want to render polygons that the user could not 
possibly see from their current position in the virtual world. One such optimization discards polygons 
that are facing away from the viewer; this technique is called back face culling. It is assumed that the 
player will never be allowed to see the back of a polygon. You should notice in our example that 
regardless of the direction from which you view the cube, you will only be able to see three of the six 
faces at one time. Three will always be facing away from you. For this reason, 3D rendering engines 
normally perform a fast and cheap test before rendering a polygon to see if it is facing the viewer. When 
it is not it can be discarded. 
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 Figure 1.13 

 
Using Figure 1.13 as a reference you should be able to see how each vertex of every face is one of the 
eight 3D positions of the cube stored in our code. The coordinate P1 is used to create a vertex in the left 
face, the top face and the front face. And so on for the other coordinates. Also note that the vertices are 
specified in an ordered way so that lines can be drawn between each pair of points in that polygon until 
the polygon is finally complete. The order in which we specify the vertices is significant and is known 
as the winding order. 
 

 
Figure 1.14 

 
So how does one determine which way a polygon is facing? After all, in our cube example, a face is 
simply four points; we do not provide any directional information. 
 
The answer lies in the order in which we store the vertices within our polygons. If you look at Fig 1.13 
and then reference it against the code in LP 1.1, you will notice that the polygon vertices are passed in 
using a clockwise order. 
 



 

 14 

For example, the front face is made up of points P1, P4, P8 and P5. When viewed from in front of that 
face this is a clockwise specification. It does not matter which vertex in the face begins the run. We 
could have created the front face in this order: P8, P5, P1 and P4 and it would still work perfectly 
because the order remains clockwise. This order is referred to as the polygon winding order. In DirectX 
Graphics, polygons are assumed to have a clockwise winding by default (Fig 1.14) -- although you can 
change this if desired. 
 
Now look at the back face. It uses the vertex order P6, P7, P3 and P2. This is clearly counter-clockwise 
so we will not draw it. Of course if we were to rotate the cube so that the back face was now facing us, 
you would notice that the vertex order would then be clockwise. In this instance the back face would 
now be rendered and the old front face would not.  
 
 
 

1.2 The Transformation Pipeline 

1.2.1 Translation 

We can add offsets to the positions of the vertices of a polygon such that the entire polygon moves to a 
new position in our world. This process is called translation. We translate an entire mesh by translating 
all of its polygons by equal amounts. 
 
In Fig 1.15 we define a 4x4 polygon around the center of the coordinate system (model space). We 
decided to place our mesh in the virtual game world so that the center of the mesh is at world position 
(0, 5, 0). If we add this value set to all vertices in the mesh then the center of our mesh is indeed moved 
to that position.  
 

 
 

Figure 1.15 
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 In pseudo-code: 
 
PositionInWorld.x = 0; PositionInWorld.y = 5; PositionInWorld.z = 0; 
for ( Each Polygon in Mesh ) 
    for ( Each Vertex in Polygon ) 
    { 
        Vertex.x += PositionInWorld.x; 
        Vertex.y += PositionInWorld.y; 
        Vertex.z += PositionInWorld.z; 
    } 
} 
 
This is a transformation. We are transforming data from model (relative) space to world (relative) space. 
The mesh center (and in turn, its entire local coordinate system) is now positioned at (0, 5, 0) in the 
game world. You can assign each mesh its own position in the 3D world using this approach.  
 
Note that this is not how we will implement a transformation in code. Rather than altering the polygon 
data directly we will store the results of the operation in temporary vertices prior to rendering each 
polygon. We will use a single mesh object defined in model space which never has its data changed. 
This mesh can be shared by multiple objects types in a process called instancing (Fig 1.16).  
 
class CObject 
{ 
public: 
    CMesh *m_pMesh; 
    float PositionX; 
    float PositionY; 
    float PositionZ; 
}; 
 
Assuming we wanted to have three cubes in our world we would simply create three separate CObject 
instances. We will specify a position for each object by setting the PositionX, PositionY and PositionZ 
member variables. The CMesh pointer can point to the same CMesh object in all three instances. For 
each object in our scene we would do the following prior to rendering: 
 

a) For each polygon of the mesh referenced by the object 
b) Add the PositionX, PositionY and PositionZ values to the X, Y and Z vertex values. 
c) Store the results in a temporary vertex list. 
d) Render the polygon using the temporary vertices. 
 

CMesh *MyMesh; // Pointer to the mesh containing our 4x4 polygon 
CObject ObjectA, ObjectB, ObjectC; 
 
ObjectA.m_pMesh = MyMesh; 
ObjectB.m_pMesh = MyMesh; 
ObjectC.m_pMesh = MyMesh; 
 
ObjectA.PositionX =  0; ObjectA.PositionY = 5; ObjectA.PositionZ =  0; 
ObjectB.PositionX = -6; ObjectB.PositionY = 0; ObjectB.PositionZ =  0; 
ObjectC.PositionX =  4; ObjectC.PositionY = 0; ObjectC.PositionZ = -5; 
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At the center of Fig 1.16 we see a ghosted image of the model space mesh data. By adding the positional 
offset of the object to the mesh vertices, we translate the object to the desired position in the 3D world. 
Notice that it is the center of each object that moves to the resulting position. The vertices retain their 
relationship to that center point. We have effectively moved the origin of the model space coordinate 
system to a new position in the 3D world. Note as well the distinction between a mesh and an object. 
The mesh is simply the geometry an object uses to represent itself. The object is responsible for 
maintaining its own position in the 3D world.  
 

 
Figure 1.16 

 
The following functions demonstrate how object transformations might occur during each frame so that 
we can redraw all of the objects in our world. DrawObjects loops through each object, and for each 
polygon in the mesh, calls the DrawPrimitive function to transform and render it.  

 
void DrawObjects () 
{ 
    // transform vertices from model space to world space  
    for ( ULONG i = 0; i < NumberOfObjectsInWorld; i++) 
    { 
        CMesh *pMesh = WorldObjects[i]->m_pMesh; 
        for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
        { 
            // Store poly for easy access 
            CPolygon *pPoly = pMesh->m_pPolygon[f]; 
 
            // Transform and render polygon 
            DrawPrimitive ( WorldObjects[i] , pPoly )          
        } 
    } 
} 
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void DrawPrimitive ( CObject* Object , CPolygon *pPoly ) 
{ 
    // Loop round each vertex transforming as we go 
    for ( USHORT v = 0; v < pPoly->m_nVertexCount ; v++ )  
    { 
        // Make a copy of the current vertex 
        CVertex vtxCurrent = pPoly->m_pVertex[v]; 
                 
        // Add world space position to transform to world space 
        vtxCurrent.x += Object->PositionX; 
        vtxCurrent.y += Object->PositionY; 
        vtxCurrent.z += Object->PositionZ; 
 
           // Do further pipeline transformations here which we have  
           // not covered yet but will shortly. 
        ... 
        ... 
           // By this point we will have 2D screen vertices so render  
           // to screen which we have not yet covered.  
    }     
} 

 
The transformation from model to world space occurs during every frame for each polygon that we 
render. By adjusting the position of an object between frames we can create animation. For example, 
one might make a space ship move through space by incrementally adding or subtracting offsets from 
the CObject’s PositionX, PositionY and PositionZ variables each frame. 
 

 

1.2.2 Rotation 

To rotate a set of two dimensional points we will use the following formula on each point of the 2D 
polygon: 
 

)cos()sin(
)sin()cos(

θθ
θθ

×+×=
×−×=

OldYOldXNewY
OldYOldXNewX

 

 
In these equations, OldX and OldY are the two dimensional X and Y coordinates prior to being rotated. 
cos and sin are the standard abbreviation for the cosine and sine trigonometric functions. The theta 
symbol θ  represents the angle of rotation for the point specified in radians and not in degrees (most 3D 
APIs, including DirectX Graphics, use radians for angle calculations). 

 
Note: A radian is used to measure angles. Instead of a circle being divided into 360 degrees, it is 
divided into 2 * pi radians. Pi is approximately 3.14159 and is equivalent to 180 degrees in the radian 
system of measurement. Therefore there are approximately 6.28 radians in a full circle. 90 degrees is 
equivalent to pi / 2 (1.1570796 radians) and so on.  
 
Because many programmers prefer working with degree measurements, a macro can be created that will 
convert a value in degrees to its radian equivalent: 

             
            #define DegToRad( x ) ( x *( pi/180 ) ) 



 

 18 

 
 

Figure 1.17 
 
We will need to feed each of the four vertices in Fig 1.17, one at a time, through the above rotation 
formula to receive back our rotated vertices (Fig 1.18). The following code snippet demonstrates this: 
 
float angle = DegToRad( 45 ); 
... 
for ( USHORT v = 0; v < pPolygon->m_nVertexCount; v++) 
{ 
    CVertex OldVtx = pPolygon->Vertex[v];  
    CVertex NewVtx; 
       
    // Rotate the vertex 45 degrees 
    NewVtx.x = OldVtx.x * cos(angle) - OldVtx.y * sin(angle); 
    NewVtx.y = OldVtx.x * sin(angle) + OldVtx.y * cos(angle); 
 
    // Vertex is now rotated and stored in NewVtx     
    // Use to draw polygon in rotated position      
} 
... 
 
You might think of this rotation as rotating a point around the Z axis. While technically true that we do 
not see a Z axis in the image, you can contemplate the 2D image in 3D. In this case the Z component of 
each point is zero and the Z axis is pointing into the page as it was in the 3D Cartesian system discussed 
earlier. Fig 1.18 shows the resulting points after rotating the polygon by 45 degrees: 
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Figure 1.18 
 
The key point to remember is that in a given coordinate system, rotations are relative to the coordinate 
system origin. You can see in Fig 1.18 that the vertices are rotated about the origin (the blue circle). This 
is the center of rotation.  
 
Notice that when we rotate a vertex around an axis, the vertex component that matches the axis is 
unchanged in the result. If we rotate a vertex about the Y axis, only the X and Z values of the vertex are 
affected. If we rotate about the X axis, only the Y and Z values are affected. If we rotate around the Z 
axis, only the X and Y values are affected.  
 
The following formulas are used to rotate a 3D point around any of the three principal axes: 
 
X Axis Rotation 
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Y Axis Rotation 
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Z Axis Rotation 
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Because rotations are always relative to the coordinate system origin, we have to be careful about the 
order in which we perform the rotation and the translation operations in our pipeline. Let us imagine that 
we want to place a mesh into our world at position (0, 5, 0) and that we want it rotated by 45 degrees 
about the Z axis. We might initially try something like this: 
 

1) Apply translation to the vertices to move the object to position (0, 5, 0) in world space. 
2) Apply 45 degree rotation about the Z axis so it is rolled in world space. 
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Figure 1.19 
 
Fig 1.19 might not display what you were expecting. The object was first moved to the world space 
position (0, 5, 0) and then rotated about the Z axis relative to the world space origin. More often than 
not, we want to perform the rotation before the translation. Here the object would first be rotated in 
model space about its own center point (the model space origin) and then translated to the final position 
in world space (Fig 1.20). 
 

 
 

Figure 1.20 
 
By performing the rotation transformation first we were able to achieve the expected world space 
position with a 45 degree roll about the mesh center point. Of course translating before rotating can be 
useful too. If you had a planet object at the coordinate space origin then you might use this approach to 
make an object rotate around that planet at a constant distance (like an orbit).  
 
We can add some rotation members to our CObject class to allow for object rotations relative to axes:  
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class CObject 
{ 
public:    
    CMesh *m_pMesh; 
    
    float PositionX; 
    float PositionY; 
    float PositionZ; 
    float RotationX; 
    float RotationY; 
    float RotationZ; 
} 

 
 

All of these transformations will take place when we render our meshes. They are performed at the per-
polygon level for every frame before those polygons are drawn.  
 
 

1.2.3 Viewing Transformations 

Before we can render anything we must create a virtual camera through which to view our world. All of 
our world space vertices must then be defined relative to this camera. This requires a new coordinate 
system called camera space (or view space) and as we saw earlier, transformations will be required to 
get our vertices into this new space. We will specify camera properties such as the current position, 
viewing direction, and field of view (FOV).  
 
We should also be able to move and orient a camera in our world in real-time. In effect, this is 
accomplished in a rather interesting and perhaps not immediately obvious manner:  

 
1) When player moves the camera forward, we translate the whole world backward 
2) When player moves the camera backward, we translate the whole world forward 
3) When player rotates left around the Y axis, we rotate the entire world right around the Y axis 
4) And so on… 

 
As you can see, whatever we want our virtual camera to do, we must make the opposite happen to every 
scene object. This gives the appearance that we are moving through the world when, in fact, it is the 
world that is moving around us. simple camera class might hold only the camera world position and 
rotation. 
 
class CCamera 
{ 
public:    
    float PositionX; 
    float PositionY; 
    float PositionZ; 
    float RotationX;  // Pitch 
    float RotationY;  // Yaw 
    float RotationZ;  // Roll 
}; 
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One could add input routines to convert mouse or joystick data into rotations for the camera. Moving left 
on the joystick might store a rotation of 1 degree in the RotationY member to make the camera yaw. If 
the joystick is pushed forward you might update the position of the camera to make it travel forward 
along the current heading.  
 
A render loop that includes camera data might look something like the following: 
 
void DrawObjects() 
{ 
    for (each object) 
    { 
        for (Each Polygon in Object) 
        { 
            DrawPrimitive (Object , Polygon , Camera); 
        } 
    } 
} 

 
void DrawPrimitive (CObject * Object , CPolygon *Poly , CCamera * Cam) 
{ 
    for (each Vertex in Poly) 
    { 
      // convert polygon to world space (Already discussed) 
      Perform any object Rotations on vertices of polygon 
      Perform Translation on vertices of polygon to move polygon into world space 
               
      // convert polygon to view space 
      Perform inverse camera rotations on vertices of polygon 
      Perform inverse camera translations on vertices of polygon  
             
      // Convert polygon to Projection Space  
      Not Yet Covered 
            
      // Render 2D polygon 
      Not Yet Covered 
    } 
} 

 
If the camera had an X axis rotation of 45 degrees, the following code would rotate all of the vertices of 
every object in the world -45 degrees about the X axis (i.e. 45 degrees in the opposite direction).  
 
if (m_pCamera.RotationX) 
{ 
    VSVertex.y = Vertex.y * cos(-m_pCamera.RotationX) –  
                 Vertex.z * sin(-m_pCamera.RotationX); 
 
    VSVertex.z = Vertex.y * sin(-m_pCamera.RotationX) + 
                 Vertex.z * cos(-m_pCamera.RotationX); 
 
} // End if X Axis Rotation 
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Y and Z axis rotations would follow along similar lines: 
 
if (m_pCamera.RotationY) 
{ 
    VSVertex.x = Vertex.x * cos(-m_pCamera.RotationY) – 
                 Vertex.z * sin(-m_pCamera.RotationY); 
 
    VSVertex.z = Vertex.x * -sin(-m_pCamera.RotationY) +  
                 Vertex.z * cos(-m_pCamera.RotationY); 
 
} // End if Y Axis Rotation 
 
if (m_pCamera.RotationZ) 
{ 
    VSVertex.x = Vertex.x * cos(-m_pCamera.RotationZ) +  
                 Vertex.y * sin(-m_pCamera.RotationZ); 
 
    VSVertex.y = Vertex.x * sin(-m_pCamera.RotationZ) + 
                 Vertex.y * cos(-m_pCamera.RotationZ); 
 
} // End if Z Axis Rotation 
 
In the above code, Vertex is assumed to be in world space and is being converted into camera space (i.e. 
view space). The same rotation formulas are used as before with the exception that we are negating the 
angle passed into the function so that the objects are rotated in the opposite direction. If the camera has a 
position in the world other than (0, 0, 0) then this would also have to be taken into account which we 
will look at in a later section.  
 
It is worth pointing out that we devote an entire chapter to camera systems later in the course, so do not 
be especially concerned if some of these concepts are not immediately obvious to you. 
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1.2.4 Perspective Projection 

 
 

 
Perspective is an important aspect of how we process distance and scale in the world around us. In real 
life, as things move further away from us they appear to grow smaller and vice versa. The same will 
hold true for our scene geometry. As we move the camera away from our meshes, the meshes should 
‘shrink’. When we move it closer they should ‘grow’.   
 
Things also tend to move toward the center of your field of view as distance increases and away from 
the center as distance decreases. Most objects in your field of view will appear to be either left or right 
or up or down relative to the center of your field of vision. You can refer to these left/right positions 
using X coordinate values and up/down positions using Y coordinate values relative to that center. In the 
last section, we discussed converting our vertices to camera space where vertices are offsets relative to a 
camera coordinate system. We call the distance from the viewer position to any object a Z coordinate 
relative to that position (a view space Z coordinate).  
 
As the Z coordinate increases between the viewer and a given mesh, the X and Y coordinates of each 
vertex in that mesh can be scaled by that Z amount (the distance) to produce the perspective effect: 
 

ViewSpaceZViewSpaceYDY
ViewSpaceZViewSpaceXDX

/2
/2

=
=

  

 
We divide each vertex view space x and y components by their view space z component. The result is a 
2D point in projection space. 
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Imagine that we have a coordinate that is 5 units to the right of the camera, 20 units up from the camera 
and 100 units in front of the camera. This vertex would have a view space coordinate of         (5, 20, 
100).  Performing the perspective projection: 
 

005.0
100

5
===

ViewSpaceZ
ViewSpaceX

projectedX
 

100
20

==
ViewSpaceZ
ViewSpaceY

projectedY = 0.2 

 
We end up with the 2D point (0.005, 0.2).  Note that these are not screen coordinates (since we know 
that those must be discrete integer values). These new coordinates are actually called viewport space 
coordinates (sometimes called clip-space coordinates or projection space coordinates).  
 
The 3D coordinates have been projected onto a 2D infinite plane. On this plane there is a projection 
window. If the x and y values are within this projection window then they are visible to the camera and 
should be rendered. It is at this point that 3D APIs often perform tests to see if the polygon is facing 
away from the viewer (back face culling) and may also clip any polygons that are only partially in view.  
 

 
 
The projection window is a square 2D window that is 2 units wide and 2 units high with an origin at the 
center. Thus a projection space point of (0, 0) would map directly to the center of the projection 
window. Valid coordinates in projection space are in the range of –1 to +1 on both the x and y axes. 
These are the coordinates generated after dividing by z in the equations shown above. 
 
Both components of the sample projected point (x = 0.005, y = 0.2) are within the –1 to +1 range so in 
this particular case the point would be considered within the bounds of the projection window and 
therefore visible to the camera (within the field of view).  
 

 
2D projection space coordinates have been 
mapped to the projection plane using the x/z and 
y/z technique.  
 
Point P is not within the projection window 
because one of its coordinates is not within the   -
1 to +1 range. 
 
Point Q will be visible from the camera position 
because its projected coordinates fall within the -
1 to +1 range. 
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Fig 1.21 shows a side view of the camera in view space prior to the divide by Z operation. Please note 
that the X axis is assumed to be going into the page and can not be seen and that the same logic would 
also apply to the X coordinate projections. 
 

 
 

Figure 1.21 
 
As Z increases, Y is scaled in direct proportion. Given that the projection window maximum coordinate 
along the Y axis is +1.0, if Y = Z then our projection formula becomes: 
 

1===
y
y

z
yprojectedY  

 
If Y = Z in view space then that point will be projected at the very top of the projection window. As Z 
increases, the maximum Y point that will fall within the projection window is Y=Z or Y=-Z. The same 
is also true for the X projection.  
 
So, if at any point Y > Z or Y < -Z or X > Z or X <- Z in view space, when this point is projected, it will 
fall outside the –1 to +1 range (and therefore outside the projection window).  
 
If we have a Z coordinate of 4 then the range of Y coordinates that are visible are [–4, +4] in view space 
as shown in figure 1.21. The maximum range of Y values that can be seen at a distance of Z=6 is in the 
range [–6, +6]. And so on. (Once again, exactly the same holds true for the X coordinate projection.) 
 
Thus, for any point in view space where (x>-z) and (x<z) and (y>-z) and (y<z) that point is visible.  
When we scale the x and y components of the vertex in proportion to z, we are in effect creating an 
imaginary view cone that extends out at a 90 degree angle across both the x and y axes (45 degrees up 
and 45 degrees down on the Y axis and 45 degrees left and 45 degrees right for X). Where the two red 
lines meet in Fig 1.21 (at the camera position) there is a perfect right angle. Any points falling within 
this cone are considered visible because their divided x and y coordinates will fall within the bounds of 
the projection window.  
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Thus our virtual camera has a 90 degree field of view because the ratio described above will always 
produce values that are consistent with this.   
 
Although the 90 degree view cone does not really exist, as there is no physical camera in our game 
world, it is a useful way to think about how functions that convert vertices from 3D to 2D space work. 
Dividing x and y by z stretches or squashes geometry as it gets closer or further away from the camera 
respectively. Looking at the view cone in Fig 1.21 we note that the total range between the bottom red 
cone line and the top red cone line at any given z position, is mapped into the  –1 to +1 range. As Z 
increases, a larger portion of the cone is mapped to the [–1, +1] range and things get squashed more 
towards the center of the projection window. 
 
Fig 1.22 shows a series of points plotted at the same y position in view space, each with increasing z.  
 
 

 
 
 
 

Figure 1.22 
 
The formula squashes the two red cone lines so that they become parallel with each other with a 
separating distance equal to the size of the projection plane (Fig 1.22). The blue lines show what the 
cone looks like after it has been squashed/projected into what is essentially a box. Larger z values 
produce greater squashing ratios.  
 
In Fig 1.22 there are five points in view space (green circles). Each has a y value of +2 and increasing z 
values are assigned. The effect of our projection formula can be seen when we look at the projected 
points (blue dots). All of these have been squashed into the [–1, +1] range. Although the points had 
identical y values in view space, when mapped to projection space they receive different y values.  
 
 
 

Diagram is not to scale.
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In many math textbooks perspective projection formulas are listed as:  
 

dz
xXp
/

=  
dz

yYp
/

=  
 
The problem with the projection formula we have been using is that it always projects with a field of 
view of 90 degrees. We would prefer to use an arbitrary field of view to give complete control over 
exactly how much of the scene can be viewed by the camera. In order to accommodate this, a new 
variable is introduced (d). This allows the projection window to be moved further from or closer to the 
camera. Because the size of the projection window remains the same (–1 to +1), moving the projection 
window further away from the camera reduces the cone size. Moving the projection window nearer to 
the camera increases the cone size. This new formula allows us to alter the camera FOV in a manner 
similar to the way a photographer might adjust the lens of his camera to capture more or less of a scene 
in his photo. In Fig 1.23 you can see why moving the projection window affects the FOV: 
 

 
Figure 1.23 

 
The cone is much smaller when the projection window is at a distance of 5 units from the camera than 
when it is when it is at a distance of 1 unit. This distance is labeled d in the above formula. 
 
While this technique works quite well, in DirectX Graphics (and in our software renderer) the projection 
window is always set at a fixed distance of 1.0 unit from the camera. The pipeline performs the x/z, y/z 
mapping into 2D space as was the case in our old formula: 
 

z
xXp =  

z
yYp =  
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But we can achieve the effect of the d value using a different strategy. Our code (and DirectX Graphics) 
will continue to use a 90 degree FOV behind the scenes but will use a projection matrix to deform 
geometry prior to the divide by z to accommodate the appearance of arbitrary FOV. We will examine 
the projection matrix in detail later in the lesson. For now we will proceed with a 90 degree FOV. 
 

1.2.5 Screen Space Mapping 

The final stage is finding a screen space pixel coordinate for our projected vertex. Transforming a 2D 
projection space point to a 2D screen space point requires mapping the –1 to +1 coordinates to the width 
and height of the current render window. The formula is:  
 
ScreenX =  projVertex.x * ScreenWidth  / 2 + ScreenWidth  / 2 
ScreenY = -projVertex.y * ScreenHeight / 2 + ScreenHeight / 2 
 
Let us assume our window is 640x480 pixels in size and that we have a vertex which has been mapped 
to (0, 0) in projection space. This should mean that it is in the center of the screen:  
 
ScreenX = 0 * (640/2) + (640/2) 
ScreenX = 0 * (320) + (320) 
ScreenX = 320 
 
Another example would be x = -1 in projection space. It should wind up on the far left hand side of the 
projection window (and thus the screen): 
 
ScreenX = -1 *(640/2) + (640/2) 
ScreenX = -1 *(320) + (320); 
ScreenX = -320 + 320 
ScreenX = 0; 
 
The Y value is projected into screen coordinates using the same approach but with one exception. In 
projection space (as with model space, world space and view space) the Y axis is positive running up 
and negative running down. In screen space (as we discussed earlier in this lesson) the Y axis would be 
0 at the top of the screen and increase toward the bottom. So we will need to invert it by negating the 
projection space Y coordinate to ensure conformity.  
 
Let us look at an example using a projection Y value of Y = 1 in projection space. We saw earlier that 
this value was at the very top of the projection window. We need it to be at the top of the screen too: 
ScreenY = -1 * (480/2) + (480/2) 
ScreenY = -1 * (240) + (240) 
ScreenY = -240 + 240 
ScreenY = 0 
 
Once all of the vertices of our polygon are in screen space we can draw lines between each point. The 
result is a wire frame rendition of our scene geometry.  
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1.2.6 Draw Primitive Pseudo-code 

 
 
The pseudo-code to an updated DrawPrimitive function follows. In the example, we pass the object we 
are processing and the polygons we wish to render. The object is needed for its position and rotation 
information which is necessary to transform the polygons into world space. We pass a pointer to a 
camera so that we can access the camera position and rotational information in order to do a view space 
transformation after the world space transformation: 
 
void DrawPrimitive( CObject *pObject , CPolygon *pPoly , CCamera *pCamera ) 
{ 
    CVertex CurrVertex; 
    CVertex PrevVertex; 
 
    // Retrieve object angles; 
    float Opitch = pObject->RotationX; 
    float Oyaw   = pObject->RotationY; 
    float Oroll  = pObject->RotationZ; 
  
    // Retrieve Camera angles 
    float Cpitch = pCamera->RotationX; 
    float Cyaw   = pCamera->RotationY; 
    float Croll  = pCamera->RotationZ; 
 
    // Loop round each vertex transforming as we go 
    for ( USHORT v = 0; v < pPoly->m_nVertexCount + 1; v++ )  
    { 
       // Store the current vertex 
        CurrVertex = pPoly->m_pVertex[ v % pPoly->m_nVertexCount ]; 
 
        // WORLD SPACE TRANSFORMATION   
        // Apply any object rotations if applicable 
        if (Opitch) // rotate object about its x axis like pitching up and down 
        { 
            currVertex.y = currVertex.y * cos(Opitch) – currVertex.z * sin(Opitch); 
            currVertex.z = currVertex.y * sin(Opitch) + currVertex.z * cos(Opitch);  
 
        } // End if Pitch 
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        if (Oyaw) // rotate object about its Y axis like yawing left/right 
        { 
            currVertex.x = currVertex.x * cos(Oyaw) + currVertex.z * sin(Oyaw); 
            currVertex.z = currVertex.x * -sin(Oyaw) + currVertex.z * cos(Oyaw); 
 
        } // End if Yaw 
 
        if (Oroll) // rotate object about its Z axis like rolling left or right 
        { 
            currVertex.x = currVertex.x * cos(Oroll) + currVertex.y * sin(Oroll); 
            currVertex.y = currVertex.x * sin(Oroll) + currVertex.y * cos(Oroll); 
 
        } // End if Roll 
  
        // Now move the vertex into its world space position 
        currVertex.x += pObject.PositionX; 
        currVertex.y += pObject.PositionY; 
        currVertex.z += pObject.PositionZ;   
                  
 
        // VIEW SPACE TRANSFORMATION 
        // subtract the camera position from the vertex so its position is relative 
        // to the camera with the camera at the origin 
        currVertex.x -= pCam->PositionX; 
        currVertex.y -= pCam->PositionY; 
        currVertex.z -= pCam->PositionZ; 
          
        // if the camera is rotated, rotate the world the opposite way 
        // but the only difference  
        // from the object rotation is the negated parameter 
        if (Cpitch) // rotate camera about its x axis like pitching up and down 
        { 
            currVertex.y = currVertex.y * cos(-Cpitch) – currVertex.z * sin(-Cpitch); 
            currVertex.z = currVertex.y * sin(-Cpitch) + currVertex.z * cos(-Cpitch);  
 
        } // End if Pitch 
 
        if (Cyaw) // rotate cam around its Y axis 
        { 
            currVertex.x = currVertex.x * cos(-Cyaw) + currVertex.z * sin(-Cyaw); 
            currVertex.z = currVertex.x * -sin(-Cyaw) + currVertex.z * cos(-Cyaw); 
         
        } // End if Yaw 
  
        if (Croll) // rotate camera about its Z axis like rolling left or right 
        { 
            currVertex.x = currVertex.x * cos(-Croll) + currVertex.y * sin(-Croll); 
            currVertex.y = currVertex.x * sin(-Croll) + currVertex.y * cos(-Croll); 
 
        } // End if Roll 
 
        // PERSPECTIVE PROJECTION TRANSFORMATION 
        // divide x and y by z to project point onto 2D projection  
        // window in the –1 to +1 range 
        currVertex.x /= currVertex.z; 
        currVertex.y /= currVertex.z;  
 
        // SCREEN SPACE TRANSFORMATION  
        // Convert to screen space coordinates 
        vtxCurrent.x =   vtxCurrent.x * SCREENWIDTH  / 2 + SCREENWIDTH  / 2; 
        vtxCurrent.y =  -vtxCurrent.y * SCREENHEIGHT / 2 + SCREENHEIGHT / 2; 
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        // If this is the first vertex, continue. This is the first  
        // point of our first line. 
        if ( v == 0 ) { vtxPrevious = vtxCurrent; continue; } 
 
        // Draw the line  between this one and the previous vertex in the loop 
        DrawLine( vtxPrevious, vtxCurrent, 0 ); 
 
        // Store this as new line's first point 
        vtxPrevious = vtxCurrent; 
 
    } // Next Vertex 
 
} 

 
After the above function has been called for each polygon of every object in the world we would be left 
with a 2D visual representation of our 3D world from the point of view of our virtual camera.  
 
 

1.3 3D Mathematics Primer 

1.3.1 Vectors  

A vector is a mathematical construct that describes a physical point or a direction and magnitude. We 
can represent a 3D vector using a C++ class: 
 
class Vector 
{ 
public: 
    float x; 
    float y; 
    float z; 
}; 

 
Vectors are very important to the 3D graphics programmer. You might have noticed the similarity to 3D 
Cartesian points. In fact, a 3D point is a vector. To be more precise it is a 3D vector. There are also 2D 
vectors and so on for other dimensions.  
 
Although many people use the terms vector and point interchangeably there is a distinction; a point is 
always a vector but the reverse is not always true. It depends on how we intend to interpret the values 
stored in the vector: either as an actual location in space (where the vector does indeed describe an 
absolute point) or as an indicator of direction with magnitude (which can be used relative to some other 
point in space). 
 
Point vectors can be defined via a direction from some origin (the origin of our coordinate system) and a 
magnitude (the distance to travel in that direction). If we travel out from the origin in a given direction 
for a specified distance we end up at a location described in 3D space. 
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In Fig 1.24 we see points plotted in a 2D Cartesian coordinate system. Although each point can be 
described as a collection of offsets from the origin along each major axis, each point also describes a 
vector from the origin to that point (the green arrows):  
 

 
 

Figure 1.24 
 

The vector A<5, 5> can be described as a location 5 units right of the origin and 5 units up from the 
origin. It also describes the line shown by the green arrow which has a definite direction and a length. 
  
 
Vector Magnitude 

We can use the Pythagorean Theorem to determine the length of a vector. This length is the distance 
from the origin to the point (the length of the green arrows in Fig 1.24). 
 
2D 22 YXitudeVectorMagn +=  
 
Everything is identical when working with 3D vectors; we simply have an extra axis. To find the length 
of a 3D vector we would use the extended formula: 
 
3D 222 ZYXitudeVectorMagn ++=  
 
 
We could write a function that returned the length of a 3D vector like so: 
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float VectorLength3D( CVector * v ) 
{ 
     return sqrtf( (v->x * v->x) + (v->y * v->y) + (v->z * v->z)); 
} 

 
If we use the 2D vector A<5, 5>: 
 
Length = sqrtf( (5*5)+(5*5) ) 
       = sqrtf( 50 ) 
       = 7.0710 
 
If we travel a distance of 7.0710 units from the origin and disperse that motion evenly in both the 
positive X and Positive Y directions (because the x and y vector components are equal in this example) 
we will arrive at the location (5, 5).  
 
We calculate the length of vector C<1, -8>: 
 
Length = sqrtf( (1*1) + (-8*-8)) 
       = sqrtf( 65) 
       = 8.06225 
 
If we travel from the origin down the positive X axis and the negative Y axis at a ratio of 8:1 for a 
distance of 8.06225 units we would arrive at location C. The distance is dispersed over the ratio of the 
X:Y components in a 2D vector or the X:Y:Z components in a 3D vector.  
 
Vector magnitude is represented using two uprights on either side of the vector name: 
 
Length of C = |C|. 
 
While we can and will use vectors for representing the vertices of our objects in 3D space, they can also 
be used for many other tasks in 3D graphics programming, from representing the direction the camera is 
facing, to representing the way that light reflects off a polygon or a vertex. Vectors will be used within 
collision detection systems and to make objects move around your game world.  
 
Vector Addition and Subtraction 

Vector addition is performed by adding like components together to create a new vector. We can write 
vector addition using the short hand (C = A + B).  
 
CVector AddVectors3D( CVector A , CVector B) 
{ 
    CVector C; 
   
    C.x = A.x + B.x; 
    C.y = A.y + B.y;  
    C.z = A.z + B.z; 
   
    return C; 
} 
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To add two 2D vectors together simply remove the addition of the Z components. 
 
Adding two 2D vectors (A and B) we can visualize the resulting vector (C) by taking the tail of B and 
placing it at the head of A and then drawing a new vector between the tail of A and the head of B (Fig 
1.25). The second vector (B) is now relative to first vector (A).  
 

 
 

Figure 1.25 
 
The circular inset in Fig 1.25 shows the vectors A and B and their relationship to one another prior to the 
addition. During addition, A begins at the origin and B is added to this vector. So its tail starts at the tip 
of A. The resulting vector is the red vector C. 
 
Vector subtraction is similar to addition: 
 
CVector SubtractVector3D( CVector A , CVector B ) 
{  
    CVector C;  
   
    C.x = A.x – B.x; 
    C.y = A.y – B.y; 
    C.z = A.z – B.z; 
 
    return C; 
} 
 
Because subtracting B from A is the same as negating B and then adding it to A, we could represent this 
as:  
 
C = A – B 
 
OR (the negated version) 
 
C = A + (-B) 
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We can visualize the resulting vector (C) by placing the tail of B at the tip of A as we did with addition. 
This time we flip (negate) the direction of B so that it is facing in the opposite direction. Fig 1.26 shows 
the same two 2D vectors A and B. B is subtracted from A to produce the red vector C. 
 

 
 

Figure 1.26 
 
Vector subtraction is quite useful. It allows us to gain an understanding of the relationship between the 
objects in our scene. Let us say, for example, that we have two fighter planes (Fighter Plane A and 
Fighter Plane B) in our game world. One of them is at position A, and the other at position B. If we 
subtracted position B from position A we would end up with a vector that told us both the direction 
Fighter Plane A would have to fly to get to Fighter Plane B’s position as well as the distance between 
the two -- by calculating the vector length (Fig 1.27). 
 

 
 

Figure 1.27 
 

In Fig 1.27 there are two points (A and B) representing our fighter planes. If we subtract B from A we 
would end up with Vector B-A = (8, 3) shown as the green arrow above pointing right and up. We could 
then go on to calculate the length of the vector as follows 
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MagnitudeB-A = 22 38 +  

             = 964 +  

             =  8.544 
 
So the distance between fighter plane A and fighter plane B is 8.544 units. In order for fighter plane A to 
reach fighter plane B it must travel that distance in a ratio of 8:3 along the positive X and Y axes, 
respectively.  

 
Vector Scalar Multiplication 

Vectors can be multiplied by scalar values. In this case the scalar is multiplied with each component of 
the vector. A function that performs scalar multiplication on a 3D vector might look like the following: 
  
CVector VectorMultiply3D (CVector A , float scalar) 
{ 
    CVector C; 
    C.x = A.x * scalar; 
    C.y = A.y * scalar; 
    C.z = A.z * scalar; 
    return C; 
}  

 
Fig 1.28 shows the visual effect of multiplying Vector A by 2.0.  
 

 
 
 

Figure 1.28 
 
 
 

Vector Normalization 

A special type of vector that is incredibly useful in 3D graphics programming is the unit vector. A unit 
vector is a vector with a magnitude of 1. The process of taking a non-unit vector and making it a unit 
vector is called normalizing the vector (or normalization). This is done by dividing each component of 
the vector by the length of the vector.  
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VectorC     = (8,3,10) 

|C|         = 222 1038 ++  
|C|         = 13.152946 
 

UnitVectorC = ⎥
⎦
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UnitVectorC = ( 0.60822 , 0.2280 , 0.7602859 ) 

 
Vector C should now have a length of 1. To prove this let us run the distance calculation on the resulting 
vector: 
  

 UnitVectorC  = ( 0.60822, 0.2280, 0.7602859 ) 

|UnitVectorC| = 222 7602859.02280.060822.0 ++  
|UnitVectorC| = 0.9999... 

 
This is about as close to 1.0 as we can generally expect using limited-precision floating point math. 
Note that while the length becomes 1.0 the directional information remains the same. This is due to the 
fact that all vector components are scaled equally by the length. Next we see a function that could be 
called to normalize a vector. It uses one of our earlier functions (VectorLength3D) to initially calculate 
the length of the vector. 
 
CVector VectorNormalize3D ( CVector A) 
{ 
         float length = VectorLength3D ( A ); 
         A.x = A.x / length; 
         A.y = A.y / length; 
         A.z = A.z / length;  
 
         return A; 
} 
 
We mentioned that unit vectors can be used for object movement. Let us assume that we have a 
spaceship facing down the X and Z axes of our world in equal proportions. This direction could be 
represented with a single vector (we will call this DirectionVector) and might be (1, 0, 1). Imagine that 
we want to move our space ship forward based on a velocity of 100 world space units per frame.  
 
DirectionVector = (1,0,1) 
Speed           = 100 
 
Movement.x = DirectionVector.x * speed 
Movement.y = DirectionVector.y * speed 
Movement.z = DirectionVector.z * speed 
=  
Movement.x = 1 * 100 = 100 
Movement.y = 0 * 100 = 0 
Movement.z = 1 * 100 = 100 
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Is this correct? We said the space ship could travel 100 units so let us check the length of the movement 
vector: 
 

|movement| = 222 1000100 ++  
|movement| = 141.42135 
 
That is obviously incorrect as we moved the ship 141 units. The problem is that the direction vector 
specified (1, 0, 1) is not a unit vector. If we calculate the length of that initial direction vector we can see 
that we would end up with: 
 
|DirectionVector| = 222 101 ++  = 1.4142135 
 
The error is the result of the ship moving a total of 100 units along the X axis and 100 units along the Z 
axis (which is not the same as moving 100 units diagonally as we would expect). Before we use our 
direction vector to calculate the new movement vector we must normalize the vector: 
 

DirectionVector = ⎥⎦
⎤

⎢⎣
⎡

4142135.1
1,

4142135.1
0,

4142135.1
1

 = ( 0.7071068 , 0 , 0.7071068 ) 

 
Let us calculate the ship’s movement vector again with the normalized direction vector. 
 
Movement.x = 0.7071068 * 100 = 70.71068 
Movement.y = 0.7071068 * 0   = 0 
Movement.z = 0.7071068 * 100 = 70.71068 
 
This movement vector (70.71068, 0, 70.71068) gets added to our ship’s previous position. 
 
NewPosition.x = OldPosition.x + Movement.x 
NewPosition.y = OldPosition.y + Movement.y 
NewPosition.z = OldPosition.z + Movement.z 
 
Let us check our results: 
 
|Movement| = 222 71068.70071068.70 ++   
|Movement| = 100 
 
We now have a space ship located at a new position having traveled exactly 100 units from its previous 
position in the direction of the unit vector. This is the equivalent of moving 70.7 units along the X axis 
and 70.7 units along the Z axis. If unit vectors are used to represent the direction an object is facing in 
your game world, using the above technique allows you to easily move that object forward (no matter 
which direction it is facing).  
 
Object movement is just one of the many uses of unit vectors. Unit vectors are also used to describe the 
direction your polygons are facing; something which is used extensively during lighting calculations. 
You will come to discover that unit vectors are seen all the time in 3D graphics programming and we 
will cover a lot of these situations throughout the coming lessons. 
 



 

 40 

Vector Cross Product 

The cross product operation between two vectors results in a third vector perpendicular to the two input 
vectors. The ‘× ’ symbol is used to represent a cross product between two vectors. 
 
Input vectors 
A = (0, 1, 0) 
B = (1, 0, 0) 
 
Cross product calculation 
C = A×B = ((A.y*B.z) - (A.z*B.y), (A.z*B.x) - (A.x*B.z), (A.x*B.y) - (A.y*B.x)) 
C = ((1*0) - (0*1), (0*1) - (0*0), (0*0) - (1*1)) 
C = (0, 0, -1) 
 
The resulting vector C is perpendicular (90 degrees) to vectors A and B. The two green vectors in Fig 
1.29 show the input vectors and the resulting vector C is shown in red.  
 

 
Figure 1.29 

 
In this example we used two unit vectors as input and the vector returned is also a unit vector. The cross 
product does not require that the input vectors be unit vectors. If the two input vectors are not unit length 
then the resulting vector will also not be unit length but it will still be perpendicular. If you require a unit 
length vector then you will need to normalize the resulting vector. 
 
The order in which we pass the vectors into the cross product operation is significant. If we had 
performed B×A instead of A×B, the resulting vector C above would still be perpendicular to the input 
vectors but would be facing in the opposite direction. Try this out for yourself on paper using the above 
calculations.  
 
The cross product works with any two arbitrarily orientated vectors and will always return a vector that 
is perpendicular to them.  
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CVector VectorCrossProduct (CVector A , CVector B) 
{ 
    CVector C; 
     
    C.x = (A.y*B.z) – (A.z*B.y); 
    C.y = (A.z*B.x) – (A.x*B.z); 
    C.z = (A.x*B.y) – (A.y*B.x); 
 
    return C;  
} 
 
 
 

Vector Normalization 

One very useful application of the cross product is generating what is known as a normal. A normal is a 
unit length vector that describes the direction that something (a polygon for example) is facing.  
 
In Fig 1.30 we see a triangular polygon consisting of three vectors (v0, v1, v2). If we were to subtract v0 
from v1 the result would be a vector which describes Edge 1. If we do the same again, this time 
subtracting v0 from v2 we get Edge 3. The cross product of these two edges yields a vector which, after 
normalization, is the polygon normal:  

 
 

Figure 1.30 
 
The following code snippet assumes that the polygon structure has already been initialized with the 
vertex data and uses some of our previously created vector functions to accomplish this task. This code 
can also safely cast our polygon vertex structure to a CVector because at this point our vertex structure 
simply contains an x, y and z position.  
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CVector GeneratePolygonNormal( CPolygon P ) 
{ 
    CVector Edge1, Edge3, Normal; 
 
    Edge1 = SubtractVector3D(Polygon.Vertices[1], Polygon.Vertices[0]); 
    Edge3 = SubtractVector3D(Polygon.Vertices[2], Polygon.Vertices[0]); 
  
    Normal = VectorCrossProduct(Edge1, Edge3); 
    Normal = VectorNormalize3D(Normal); 
 
    return Normal; 
} 

  
If the polygon is rotated, the normal would have to be regenerated in order to correctly describe the new 
orientation.  
 

Vector Dot Product 

The •  symbol is commonly used to express the dot product (inner product) operation between two 
vectors. The dot product calculation between two 3D vectors A and B can be expressed as follows: 
 
A• B = (A.x * B.x) + (A.y * B.y) + (A.z * B.z) 
 
The results of each component multiply are added to create a single scalar value and not another vector. 
The significance of the result can be appreciated when we look at an alternative formula for the dot 
product: 
 
A• B = cos(θ )|A||B| 
 
The value returned by the dot product of two vectors is equal to the cosine of the angle between those 
two vectors multiplied by their magnitudes. So we can find the cosine of the angle between two vectors 
by doing the following: 
 
cos(θ ) = A• B / |A||B| 
 
When the two vectors are unit vectors then the equation is simplified because the length of both vectors 
equates to 1. This allows us to eliminate the magnitudes and simplify the procedure: 
 
cos(θ ) = A• B 
 
Plugging the cosine of the angle into the acos (inverse cosine) function, we quickly find the actual angle 
between the two vectors (expressed in radians).  
 
We can now write a generic angle determination function which accepts two vectors and returns the 
angle between them. Unfortunately finding the angle between two vectors in this way involves first 
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finding the length of the vectors. This is not a particularly fast process because it involves three 
multiplies, three additions and a square root. For this reason we generally try to use unit vectors 
wherever possible because it simplifies and speeds up the calculation. The function below shows how 
one might implement a dot product procedure: 
 
float VectorDotProduct3D (CVector A , CVector B) 
{ 
    return (A.x * B.x + A.y * B.y + A.z * B.z); 
} 

  
If the two vectors are of unit length, this function will return the cosine of the angle between them. 
 
If you need to find the angle between two vectors and they are not assured to be unit length then you 
could write an angle finding function which automatically handles the division of the dot product by the 
vector magnitudes: 
 
float FindVectorAngles3D (CVector A, CVector B) 
{ 
    float LengthOfA = VectorLength3D ( A ); 
    float LengthOfB = VectorLength3D ( B );       
    return acos ( (A.x*B.x + A.y*B.y + A.z+B.z) / (LengthOfA * LengthOfB) ); 
} 

 
Fig 1.31 shows how the dot product works when determining the angle between two 2D vectors. 
 

 

 
 

Figure 1.31 
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|A| = 22 103 +  = 10.440306 

|B| = 22 411 +  = 11.704699 
 
cos (θ ) = (3*11) + (10*4) / (10.440306 * 11.704699) 
cos (θ ) = 73 / 122.20063 
 

θ  = acos(0.5973782)   
θ  = 0.93056 radians 
θ  = 53.31   degrees 
 

One thing to remember is that the vectors share the same origin during the dot product operation. Think 
of the process as placing the tail points of each vector at the origin of the coordinate system.  
 
Often we only need to know whether an angle between two vectors is larger or smaller than 90 degrees. 
If we do not need to know the actual angle, then we do not need to use unit vectors or divide by the 
magnitude. The sign of the result will not change because vector magnitudes are always positive. 
 
There are some important points to note about the dot product between two vectors: 

a. if the angle < 90 degrees the result will be a positive number 
b. if the angle = 90 degrees the result will be zero 
c. if the angle > 90 degrees the result will be a negative number 

 

 

 
This diagram on the left outlines the different 
relationships between two vectors and the result 
returned by the dot product operation. 
 
 
If both of the vectors are unit vectors then the 
result will be the cosine of the angle between the 
two vectors. You can pass that result into the acos 
function to determine the actual angle in radians. 
 
Remember that both of the source vectors are 
moved to the origin during the dot product so that 
their tails share a single point.  
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1.3.2 Planes 

A plane is an infinitely thin slice of 3D space that stretches out to infinity in all directions. It is the 3D 
equivalent of an infinite line in 2D. To visualize a plane, pick up a piece of paper and rotate it to some 
arbitrary angle (making sure not to bend it). Now imagine that the paper had no edges and in fact went 
on forever in all directions. Although the plane is infinite it does have an orientation in the 3D space.  
 
Rotating your piece of paper to different angles shows you an infinite number of different planes. Each 
orientation change defines a new plane. You could draw a polygon in the center of that piece of paper 
and you will see that as you rotate the paper the polygon changes orientation too. But it is always on that 
plane. In fact, polygons are subsets of planes. If you imagine a polygon without any edges so that its 
area expanded forever in all directions, you would have the plane the polygon is said to lay on. 
 
Planes are useful for many things in 3D graphics development. For example, if we know that a point 
(say, our camera location) is behind a certain plane then we know that the polygons on that plane are 
facing away from us and cannot be seen. This allows us to quickly reject polygons that do not need to be 
rendered. 
 
Fig 1.32 shows an infinite plane in the 3D Cartesian coordinate system. The red plane is technically 
infinite but we have taken some liberties to make our plane finite in size for easier viewing. Also 
depicted is a point that lies on that plane and a vector describing the orientation of the plane (shown in 
green). This vector is called the plane normal. Like the polygon normal discussed earlier, the plane 
normal is also a unit length vector. It describes the orientation of the plane.  
 
 

 
 

Figure 1.32 
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A typical class which might be used to store a plane is: 
 
class CPlane 
{ 
public:  
 
    CVector PlaneNormal; 
    float   DistanceToPlane;  
}; 

 
The PlaneNormal member variable is a unit length vector that describes the orientation of the plane. The 
DistanceToPlane variable is the distance to the plane as measured from the origin to the closest point on 
the plane (the black dotted line in the Fig 1.33). It can be determined by tracing a line from the origin to 
the plane in the direction of the plane normal (Fig 1.33). 
 

 
Figure 1.33 

 
 
Fig 1.33 represents a cross section of the 3D world as if we were looking at the plane from the ‘side’. In 
two dimensions the plane looks like an infinite line, but it would have an infinite depth coming out and 
going into the page.  
 
Because the plane normal is facing away from the origin, the origin is said to be behind the plane. In this 
case the distance to the plane will be a positive distance value. If the plane is facing the origin then the 
origin is said to be in front of the plane and the distance will be negative.  
 
To find the plane on which a polygon lies and determine the plane normal we would calculate a normal 
for the polygon using the cross-product of the edges as described earlier. We could then copy this data 
directly into the plane structure. To calculate the distance the dot product will be used. 
 
Recall that the dot product of two unit vectors is equal to the cosine of the angle between them. 
However, when one of the two vectors is a non-unit vector then the outcome of the dot product will 
equal the cosine of the angle between them multiplied by the length of the non-unit vector.  
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Figure 1.34 
 
In Fig 1.34 the non-unit vector (v1) forms the hypotenuse of a right angled triangle and the unit vector 
(v2) forms the adjacent leg with a length of 1.0. The cosine is also the length of the adjacent leg of a 
right-angled triangle.  
 
The result of the dot product of any non-unit vector with a unit vector is the length of the first vector 
projected onto the unit vector. The length of v1 is projected onto v2 in the diagram and results in the 
length of the adjacent side ((0, 0) to p1). Imagine that the opposite leg of the triangle above is a plane on 
which the polygon lies and that the (5, 5) coordinate is some point on that plane (any vertex belonging to 
a polygon will do). v1 is the direction vector from the origin of our coordinate system to the vertex at 
position (5, 5). Vector v2 is the same as the polygon/plane normal. The result of the dot product is the 
shortest distance to the plane (p1). Note that this does not tell us the distance to the polygon necessarily, 
only the distance to the infinite plane on which it lies.  
 
CVector PointOnPlane = (5.0, 5.0, 0.0);  // Vector from origin to point on plane          
CVector Normal       = (1.0, 0.0, 0.0);  // Unit vector (the plane normal) 
 
// p1=distance to the plane 
float DistanceToPlane = VectorDotProduct3D( PointOnPlane, Normal ); 
 
The result of the dot product is 5. The length of PointOnPlane (v1 in diagram) is: 
 
length = sqrtf(5*5,0*0,5*5) ; // we get the answer 7.0710678. 
 
We can see in Fig 1.34 that the angle is 45 degrees (it climbs in equal steps along each axis. To be sure 
this is true we can divide the result of our dot product (which was 5) by the length of the non-unit 
vector): 
 
5 / 7.0710678 = 0.7071067; // gives us the cosine of the angle 
 
float angle = acosf(0.7071067) = 0.7853981; // 0.78539181 radians = 45 degrees 
 
The dot product returns the result we expect by finding the cosine of the angle first which it then 
multiplies by the length of the non-unit vector. 
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DotProduct = (Cosine of 45 Degrees) * (Length of v1) 
DotProduct = 0.7071067 * 7.0710678 
DotProduct = 5 
 
So in order to calculate the distance from the origin to the plane we need two vectors. The first is the 
plane normal. The second vector is a non-unit vector that starts from the origin and extends to any point 
known to be on that plane (Fig 1.35). The dot product between these two vectors is our plane distance. 
 

 
Figure 1.35 

 
 
We can now write a function that would construct a plane from a polygon. Later we will be using 
DirectX Graphics helper functions to perform all of these calculations but it is worth understanding the 
mathematics happening under the hood. 
 
CPlane GetPolygonPlane( CPolygon & P ) 
{ 
    CPlane Plane; 
      
    // Calculate polygon Normal by performing cross product on two of the 
    // polygon’s edges  
    CVector Edge1  = P.Vertices[1] – P.Vertices[0]; 
    CVector Edge2  = P.Vertices[3] – P.Vertices[0]; 
    CVector Normal = VectorCrossProduct( Edge1, Edge2 ); 
      
    // normalize this so it is unit length. We now have our plane normal 
    Plane.PlaneNormal = VectorNormalize3D (Normal); 
      
    // Perform dot product between ANY vertex in the polygon and the plane normal 
    // to get distance 
    Plane.DistanceToPlane = VectorDotProduct3D( P.Vertices[0], Plane.PlaneNormal);   
    return Plane; 
} 
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Knowing the plane of a polygon also allows us to determine whether it is facing away from the viewer. 
We can do this test in world space and thus avoid transforming the vertices through the entire pipeline 
only to be rejected in screen space (where it would have a counter-clockwise vertex winding order). 
 

 
Figure 1.36 

 
Fig 1.36 shows the dot product between the camera position in world space and a polygon plane. We 
create a vector from the camera position to any point on the polygon plane (any vertex of the polygon 
will do) and perform the dot product on this vector and the polygon plane normal. This gives us the 
distance from the camera to the polygon plane.  
 
In the circular inset above polygon A, when the polygon normal and the vector V1 (created by 
subtracting any vertex in the polygon from the camera’s position) have the dot product performed 
between them the two vectors create an angle that is larger than 90 degrees. Since the n1•  V1 result is a 
negative number the polygon is facing the camera. This holds true with Polygon B as it is clearly facing 
away. The two vectors n2•V2 create an angle smaller than 90 degrees and the result is a positive 
number. 
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1.3.3 Matrices 

Matrices are a fundamental mathematical concept in 3D graphics programming. Not only do they play a 
central role in the DirectX transformation pipeline, but they will be used in many other places outside 
the vertex pipeline as well. Throughout this course series we will encounter matrices for managing all 
types of transformation requirements and it is very important that you understand what matrices are and 
how they are used, so make sure careful attention is paid as you work your way through this section.   
 
A matrix is a table of values arranged in rows and columns. The table can be of any dimensions. Below 
we can see an example of a 3x3 matrix: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

2711
2950

145
 

 
Access to the matrix (and indeed all matrices) must be done in a consistent manner. Some math texts use 
a row major addressing approach. A matrix position of [2][3] means that we are referring to the value 
in [Row 2][Column 3]. In the above example you can see that this is the number ‘29’. Others use a 
column major system where the same [2][3] reference would describe the element in the above table 
that contains ‘-7’ as its value. Interpreting a matrix element description using the wrong system returns 
an incorrect result.  
 

Note: DirectX Graphics uses the row major system for accessing matrix elements. 
 
The matrix in the above example is a special type of matrix called a square matrix. This means that it 
has as many rows as it does columns. Matrices can be of any size however. The following matrix is an 
example of a 3x1 matrix, because it has 3 rows but only one column: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3
9
3

 

 
The following matrix is a 1x3 matrix: 

 
[ ]393  

 
We can replace the numbers in each element with some variables. For example: x, y and z: 
 

[ ]zyx  
 

This matrix looks identical to our 3D vector. In fact, you can think of a 3D vector as being a matrix of 
dimensions 1x3. 
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A matrix having m rows and n columns is referred to as an m x n matrix (order m x n). 
 
A matrix is usually referred to with a capital letter such as ‘M’ or ‘A’. Each element in that matrix has 
its own address that describes the location of the element using double suffix notation. Each address 
contains three parts: a letter that describes the matrix, the first number indicating the row, and the second 
number indicating the column: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231
232221
131211

mmm
mmm
mmm

 

 
Note:  In some textbooks and in some code implementations the labeling scheme is zero based for both 
rows and columns. This means that m11 would be referred to as m00 and m32 would be m21. If you are 
converting code from source that uses the m00 based convention, you will need to add ‘+1’ to each 
label: m00 = m(0+1)(0+1) = m11. 

 

Matrix/Matrix Multiplication 

Two matrices can be multiplied together if and only if they share the same inner dimension.  
 
Matrix A (3x3)  * Matrix B (3x6). The inner dimensions are A 3x3 * B 3x6 (OK) 
 
Above you see that when we line up the four matrix dimensions we get: 3x3 3x6. The inner dimensions 
of both matrices do indeed match and these matrices can be multiplied. The following matrices could 
not be multiplied together: 
 
Matrix A (3x3) * Matrix B (6x3). The inner dimensions are A 3x3 * B 6x3 (NOT OK) 

 
Note: Matrices can only be multiplied when the number of columns in the first is equal to the number of 
rows in the second. This is called the Inner Dimension Rule. 

 
If two matrices have a matching inner dimension they can be multiplied to create a resulting matrix with 
dimensions equal to their outer dimensions.  A 5x8 * B 8x16 would result in a matrix of dimensions 
5x16.   
 
Matrix multiplication is easier to understand when we look at some reference tables. In the next 
example, we want to multiply two square matrices A and B: 
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Matrix A 
a11  a12  a13   
a21  a22  a23   
a31  a32  a33     

           Matrix B 
b11 
b21 
b31 

b12 
b22 
b32 

b13 
b23 
b33 

  
 

We treat each row in the Matrix A as a vector and each column in Matrix B as a vector. In this example 
since we are using 3x3 matrices each vector is a 3D vector. Again, vectors can be 4D, 5D….nD, etc. so 
this works with any size matrices that can be multiplied. Matrix A consists of 3 row vectors: Vector 1 
(a11, a12 ,a13), Vector 2 (a21 , a22 , a23) and Vector 3 (a31, a32 , a33). Matrix B also consists of 3 
vectors: Vector 1 (b11, b21, b31), Vector 2 (b12, b22, b32) and Vector 3 (b13, b23, b33). In order to 
calculate our resultant matrix we need to calculate the value for each element in the output matrix. Our 
resulting matrix will be called M as shown below: 

 

M = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231
232221
131211

mmm
mmm
mmm

 

 
We begin by calculating the value that will be stored at position m11. Because this element is in row 1 
and column 1 of the resultant matrix the value stored here will be the dot product •  of Vector 1 (1st row) 
in Matrix A with Vector 1 (1st column) in Matrix B. The double suffix notation of the element you are 
calculating in the resultant matrix describes which rows from Matrix A to dot with the columns from 
Matrix B. So the value of m32 would be calculated like this: 

 
Blue Row (A) •  Green Column (B) 

 
Since we are calculating the result of address [3][2], we dot the [3] vector of Matrix A with the [2] 
vector of matrix B. This same multiplication is carried out to compute every cell in the resulting matrix.  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

•••
•••
•••

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

332313
322212
312111

333231
232221
131211

333231
232221
131211

bColaRowbColaRowbColaRow
bColaRowbColaRowbColaRow
bColaRowbColaRowbColaRow

bbb
bbb
bbb

aaa
aaa
aaa

 

 
The dot product notation allows us to write the entire multiplication for the resulting 3x3 matrix in a 
shorthand way. Look at element [1][1] in the resulting matrix. We can write 

 
 

aRow1• bCol1 
 

-or- 
 

a11* b11 + a12 * b21 + a13 * b31 
 
Some source examples do matrix multiplication using only a couple of lines of code. This is possible by 
nesting for/next loops. We will not do that here. Matrix multiplication should be fast because it may be 
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done hundreds of times per frame. We prefer to avoid the loop logic processing so we will unroll the 
loops to create a longer but typically faster function. This will also make it easier to see the dot products 
being performed between the columns and rows. The following source code multiplies two 4x4 matrices 
together. As we will discuss later, DirectX Graphics works almost exclusively with 4x4 matrices.  
 
void MatrixMultiply(MATRIX &result, MATRIX &a, MATRIX &b ) 
{ 
   result.m11 = a.m11*b.m11  +  a.m12*b.m21  +  a.m13*b.m31  +  a.m14*b.m41; 
   result.m12 = a.m11*b.m12  +  a.m12*b.m22  +  a.m13*b.m32  +  a.m14*b.m42; 
   result.m13 = a.m11*b.m13  +  a.m12*b.m23  +  a.m13*b.m33  +  a.m14*b.m43; 
   result.m14 = a.m11*b.m14  +  a.m12*b.m24  +  a.m13*b.m34  +  a.m14*b.m44;  
 
 
   result.m21 = a.m21*b.m11  +  a.m22*b.m21  +  a.m23*b.m31  +  a.m24*b.m41; 
   result.m22 = a.m21*b.m12  +  a.m22*b.m22  +  a.m23*b.m32  +  a.m24*b.m42; 
   result.m23 = a.m21*b.m13  +  a.m22*b.m23  +  a.m23*b.m33  +  a.m24*b.m43; 
   result.m24 = a.m21*b.m14  +  a.m22*b.m24  +  a.m23*b.m34  +  a.m24*b.m44; 
 
   result.m31 = a.m31*b.m11  +  a.m32*b.m21  +  a.m33*b.m31  +  a.m34*b.m41; 
   result.m32 = a.m31*b.m12  +  a.m32*b.m22  +  a.m33*b.m32  +  a.m34*b.m42; 
   result.m33 = a.m31*b.m13  +  a.m32*b.m23  +  a.m33*b.m33  +  a.m34*b.m43; 
   result.m34 = a.m31*b.m14  +  a.m32*b.m24  +  a.m33*b.m34  +  a.m34*b.m44; 
 
   result.m41 = a.m41*b.m11  +  a.m42*b.m21  +  a.m43*b.m31  +  a.m44*b.m41; 
   result.m42 = a.m41*b.m12  +  a.m42*b.m22  +  a.m43*b.m32  +  a.m44*b.m42; 
   result.m43 = a.m41*b.m13  +  a.m42*b.m23  +  a.m43*b.m33  +  a.m44*b.m43; 
   result.m44 = a.m41*b.m14  +  a.m42*b.m24  +  a.m43*b.m34  +  a.m44*b.m44; 
} 

 
 

Vector/Matrix Multiplication 

A 3D vector can be treated like a 1x3 matrix. When we multiply a 3D vector with a 3x3 matrix the result 
is another 1x3 matrix. That is, we get back another 3D vector. 
 
          Matrix A             Matrix B                                             Matrix C 
 

[ ] [ ] [ ]ZYXbColaRowbColaRowbColaRow
mmm
mmm
mmm

zyx =•••=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
× 312111

333231
232221
131211

 

 
Vector <x, y, z> is transformed into vector <X, Y, Z> by the multiplication.  
 
When a vector is multiplied by a matrix we are actually feeding that vector into an equation and getting 
back a transformed result. This is very useful because we will need to perform transformations on our 
3D vertices. We need to scale them, translate them and rotate them to transform them from one 
coordinate system to another (ex. model space to world space). If we have the equations required to do 
these operations then we simply need to set up some matrices to hold them.  
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We will give each object in our game world a matrix to describe its orientation about all three axes and 
its position in the world. The local space vertices of the object mesh can then be transformed into world 
space by multiplying each by this matrix. This will clean up our pipeline a fair bit, from a coding 
perspective, and it will be much faster to execute.  
 
Let us suppose that we have a 2D vector <x, y> that we want to rotate by an arbitrary angle θ  around 
the origin to get a transformed 2D vector <X, Y>. Recall from our earlier discussion that we can 
imagine a Z axis running through the origin for rotation purposes.  
 

Formula for Rotation around the Z Axis 
 

)cos(*)sin(*
)sin(*)cos(*

θθ
θθ

yxY
yxX

+=
−=

 

 
These input values could be represented by a [1][2] matrix called V. 
 

V = [ ]yx  
 
Because two values are calculated (x and y) our output vector will be a 2D vector as well (consisting of 
X and Y). We will call this vector C. 

 
C = [X  Y] 

Our input vector has 2 columns so we know that our multiplication matrix must have 2 rows (the Inner 
Dimension rule). Because we need the output matrix C to contain 2 columns, our multiplication matrix 
must then be a square [2][2] matrix. We will call this matrix M. 
 

M= ⎥
⎦

⎤
⎢
⎣

⎡
2221
1211

mm
mm

 

 
Then V * M = C using the above matrices: 
 
     V                M                              C 

[ ] [ ]21
2221
1211

mColVYmColVX
mm
mm

yx •=•==⎥
⎦

⎤
⎢
⎣

⎡
×  

 
The long-hand form sheds more light on how we might represent our rotation. X and Y below are the X 
and Y elements of the 2D output vector (matrix C). Remember that column 1 is used for calculating the 
X component of the output vector and column 2 is used to calculate the Y component in the output 
vector. 
 
X = x * m11 + y * m21 
Y = x * m12 + y * m22 
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Now look again at our rotation formula: 
X = x * cos(θ ) – y * sin(θ ) 
Y = x * sin(θ ) + y * cos(θ ) 
 
The similarities should be clear. Let us look at the Y calculation first: 
 
Y = x * m12     + y * m22    // Matrix Calculation of Y 
Y = x * sin(θ ) + y * cos(θ ) // Rotation Formula for Y 
 
We can replace m12 in our matrix with sin(θ ) and m22 with cos(θ ): 
 

M= ⎥
⎦

⎤
⎢
⎣

⎡
)cos(21
)sin(11

θ
θ

m
m

 

 
The same is also true for X. We calculate X (in vector C) by doing this: 
 
X = x * m11 + y * m21 
 
Compare this to our rotation formula of: 
 
X = x * cos(θ ) – y * sin(θ ) 
 
Because the signs are different we can rearrange terms to get: 
 
X = x * cos(θ ) + y * -sin(θ ) 
 
Thus: 
 
X = x * m11    + y * m21          // Matrix Calculation of X 
X = x * cos(θ ) + y * -sin(θ )     // Rotation Formula for X 

 

We can now replace m11 with cos(θ ), and m21 with -sin(θ ). The final matrix M contains both of our 
transformations (X and Y): 
                                                                             
                                                                             X           Y 

M= ⎥
⎦

⎤
⎢
⎣

⎡
− )cos(sin(

)sin()cos(
θθ
θθ

 

 
Matrix M will transform the x and y coordinates of an input vector to a rotated X and Y in an output 
vector. One important benefit here is that we can initialize the matrix once, calling cos twice and sin 
twice (or once if we use a local variable) and storing the values in the matrix. Then we could multiply 
thousands of vectors by this matrix to transform them without having to call cos and sin to transform 
every vertex as we did in our earlier code examples.  
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Rotation is the same in 3D. The only difference is that we use a 3D vector and a 3x3 matrix: 
 

Matrix to Rotate 3D Vector V around the Z axis by θ Radians. 
 

[ ] [ ]321
100
0)cos()sin(
0)sin()cos(

mColVmColVmColVCMzyxV •••==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=×= θθ

θθ
 

 
Very little has changed going to 3D because when a rotation around the Z axis occurs, only the X and Y 
values of a vector are actually modified by the rotation. This means that we want C[Z] to be the same as 
V[z]. You can think of the 3rd column of the matrix M above, as being the vector that produces the 
transformed Z component in the output vector. 
 

3D Rotation Matrices 

                                                                          X Axis Rotation 

)cos()sin(
)sin()cos(

θθ
θθ

×+×=
×−×=

OldZOldYNewZ
OldZOldYNewY

   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− )cos()sin(0
)sin()cos(0

001

θθ
θθ  

 
                                                                         Y Axis Rotation 

)cos()sin(
)sin()cos(
θθ

θθ
×+−×=
×+×=

OldZOldXNewZ
OldZOldXNewX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

)cos(0)sin(
010

)sin(0)cos(

θθ

θθ
 

 
                                                                          Z Axis Rotation 

)cos()sin(
)sin()cos(

θθ
θθ

×+×=
×−×=

OldYOldXNewY
OldYOldXNewX

   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

100
0)cos()sin(
0)sin()cos(

θθ
θθ
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Identity Matrices 

You might think that because we did not need Z to change during the previous rotation transformation 
example that we could simply fill the 3rd column of M with zeros. This is not so. The Z component in 
the output vector is computed as follows: 
 
Z = x*m13 + y*m23 + z*m33 
 
If the input vector contained a value of z = 10 then we would want to make sure that this value made it 
through the z axis rotation transformation unmodified. The output vector must also have Z = 10. If we 
had filled the last column of matrix M with zeros, we would have computed the output as follows: 
 
Z = x*0 + y*0 + z*0 = 0 
 
What we really want to do is copy the value into the output vector. By placing a ‘1’ in m33, the Z 
calculation now becomes: 
 
Z = x * 0 + y * 0 + z * 1 = z ∴  
Z = x * 0 + y * 0 + 10 * 1 = 10 
 
 
This new column in the matrix is called an identity column because the value it outputs is the same as its 
input. Using this knowledge we can create a special type of matrix known as an identity matrix which is 
the matrix equivalent of the number 1: 
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Given a vector V=[x y z] and an Identity Matrix I, by multiplying V * I we should get a resulting vector 
C[X Y Z] such that C = V:  
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Losing the zeroed out values we are left with: 
 

C=[ x*1 , y*1 , z*1] 
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Scaling and Shearing Matrices 

The identity matrix is a matrix that multiplies an input vector by one. We can expand this concept to 
build a matrix that multiplies vectors by other values as well. The result is a uniform scaling matrix 
that replaces the 1’s for some other amount by which you wish to scale the vector. For example, if you 
wanted to scale all vectors by 10, the scaling matrix looks like this: 
 

10X ScaleMatrix=
1000
0100
0010

 

 
If you multiplied all of the vertices of a mesh by the above matrix, the object would become 10 times 
bigger. Note that we can also create a matrix for non-uniform scaling along individual axes. It is called 
a shearing matrix:  
 

3500
0200
005

 

 

Matrix Concatenation 

Matrix multiplication is associative (A(BC) = (AB)C). So if matrix A rotates points around the Z axis 
and matrix B rotates points around the Y axis, they can be combined (concatenated) into a single matrix 
M that does the work of both. Thus for vector V to have both transformations applied to it, rather than 
doing V *A = C and then C * B = D, we will take a different approach. Instead we will do M = A * B 
first. This allows us to use V * M = D and get the same effect as V*A=C, C*B=D. Concatenating 
matrices like this means that you can have many different matrices, each of which performs its own 
transformation, and combine them into a final matrix using matrix multiplication. We can now multiply 
a vector by this final matrix and it is completely transformed in one pass. This is very efficient as it 
significantly reduces the number of operations required to transform a vertex. 
 
For example, imagine that we had a 10,000 vertex model that needed to be taken from model space to 
projection space. If we assume that we might apply a number of different transformations (e.g. local 
rotations and scaling in model space, perhaps translation in world space, our inverse translations and 
rotations in camera space, etc.) to these vertices along the way, it becomes clear that by concatenating all 
of these transformations into a single matrix, we reduce our mathematical operations down to a fixed 
cost. Once the concatenated matrix is created, all 10,000 vertices need only be multiplied by this one 
matrix to complete all of the transformations described. Contrast this with the manual transformation 
approach we studied earlier in the lesson and you will find that this is a major savings in terms of total 
number of multiplications and additions.  
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While the matrix concatenation step itself includes the overhead of matrix setup and potentially even 
some number of matrix/matrix multiplications, this is a one-time setup cost that takes place before the 
vertices are introduced to be transformed. Under most circumstances, even including this cost will still 
result in a massive gain in efficiency. However, it is also important to note that while it can theoretically 
be faster to do a one-off transformation (like a translation that requires only a few additions) directly to 
vertices, a matrix based system, which uses concatenation when multiple transforms are needed, 
provides us the opportunity to reduce our costs in the overall sense as well as keep our code clean and 
free of special cases that branch based on individual transform requirements.  Matrices generally result 
in an overall net gain in efficiency in the system, even if there are some individual cases that may arise 
where an on-the-spot transform would be quicker. Of course, these can still be done in software to 
individual 3D points (like a world translation of a player position vector for example), but in the vertex 
transformation pipeline we are focused on in this lesson, matrices are the key to efficient operations (and 
not surprisingly, are required when using the DirectX Graphics transformation pipeline as we will see in 
Lesson Two). 

 
Matrix multiplication is not commutative (A * B) != (B * A) and thus, multiplication order is 
significant. This should sound familiar since earlier in this chapter we saw the effects of rotating vertices 
before translating them and the very different results when translating first and then rotating. Rotating 
the mesh before translating it gave the appearance that the object was rotating around its own center 
point (often the desired effect). When we translated the object into world space first and then followed 
with a rotation, the vertices were rotated around the world space origin rather than its own (Fig 1.37). 
Since we will use matrices to store these types of transformations, the order in which matrix 
multiplication is performed will be significant to us.  
 

  
  

 
Figure 1.37 
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The Translation Problem 

We know that a vector/matrix multiplication is essentially a series of row/column dot products. This of 
course means that the input vertex components are multiplied by the matrix components during the 
process. But what if we wanted to build a matrix that always produced an X component in the output 
vector with a value of 5 regardless of the value originally contained in the input vector? 

 

[ ] [ ]ZYX
mmm
mmm
mmm

zyx =
⎥
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⎦
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⎡
×

333231
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Ignore the Y and Z components of the output vector for now, and just concentrate on how the X 
component in the output vector is calculated: 

 
 
 

Because x, y and z are all used to create the resulting X component, there is no way to fill in an element 
of our matrix that would always result in X = 5.  
 
So, if our object is supposed to be positioned at world space coordinates (50, 70, 10) we would need to 
build a matrix that translates all the vertices in its mesh by 50 along the x axis, 70 along the y axis and 
10 along the z axis.  
 
It would appear that the only solution would be to handle the other transformations first using a 3x3 
matrix and then translate that result separately, like so: 
 
V’ = MV + T 
 
Where V and V’ represent the input and output vectors respectively, M is a 3x3 rotation/scaling matrix, 
and T is a translation vector (a 1x3 matrix).  
 
While this approach would certainly work, we would much prefer to get the job done with a single 
matrix multiplication. But how do we build a matrix that will add 50 to the X, 70 to the Y and 10 to the 
Z of the input vector, regardless of the vector’s initial input value? In the matrix above you should be 
able to see that this is just not possible. Take a look at column 1 in the matrix, which is responsible for 
the output of the X component. There is no way to substitute m11, m21 or m31 for any value that would 
simply add 50 to the x value for example.  
 
Of course, there is a solution. It involves changing our perspective a bit and introducing a new 
dimension to the equation. 
 
Although human beings have difficulty visualizing more than three dimensions, in mathematics many 
dimensions can and do exist. These ‘hidden’ dimensions (specifically the fourth dimension in this case) 

X= x*m11 + y*m21 + z*m31 
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provide us with an interesting mathematical method for solving the translation problem. Have a look at a 
four dimensional vector. A 4D vector is perhaps very much like you would expect -- a 1x4 matrix: 

 
[ ]wzyx  

 
The 4D vector above has an x, y and z component just like our 3D vector and it also has a fourth 
component labeled w. If we divide a 4D vector by its own w component like so we can map back into 
3D space: 

[ ]wwwzwywx ////  
 

In fact any 4D vector where w=1, maps directly to 3d space: 
 

[ ]11/1/1/ ==== wzzyyxx  
 

This type of vector is known as a homogeneous coordinate. The operation of dividing x, y and z by w 
projects a vector from dimension N to dimension N-1. Homogeneous coordinates do not apply to 4D 
vectors only. They exist in every dimension N. If we wanted to project a 3D vector V: 
 
V = (x , y , z) 
 
We can do this by dividing x and y by z like so: 
 
V = (x/z , y/z , z/z)  
 
This resulting vector R looks like:  
 
R = (X , Y , 1) 
 
The operation projected the vector from 3D space into 2D space. You may recall this technique from our 
earlier discussion. Dividing the X and Y components of a 3D point by the Z component was the formula 
we used to perspective project a 3D point onto a 2D plane located at z = 1.  
 

Note: A vector of dimension N can be projected back into a space of dimension N-1 by dividing its 
components by the Nth component of that vector.  

 
Using a homogeneous 4D vector we can ignore the w component since it always equals 1. To be sure, 
there will be times when we will work with 4D coordinates where the w component does not equal 1, 
and we will discuss those cases later in the course.  
 
So how does this help us solve the problem of representing a non-linear translation transformation in a 
matrix? The key is found in the idea that w = 1. Below, we see a 4D vector V multiplied with a 4x4 
identity matrix I to create resulting 4D vector R. Notice that a new column is needed to compute w in 
the matrix. If w=1 (as we know it does) then multiplying by this matrix also results in an output vector 
where w=1. 
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With this knowledge we can create a new 4x4 matrix storing the equation for rotation around the Z axis: 
 

Matrix for Rotation around the Z Axis 

⎥
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00)cos()sin(
00)sin()cos(
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The matrix is essentially the same as it was before with the exception being that the last two columns 
now have been set to identity columns. Remember that we only want the x and y values of the input 
vector to be affected by the rotation operation. The z and w values of the input vector should be copied 
over into the output vector unchanged. The new identity column above would copy the w component 
from the input vector into the W component of the output vector unchanged as expected: 
 

W= x * 0 + y* 0 + z * 0 + w*1 = w 
 

Note as well that we have added an extra row to our matrix. This is done firstly in order to allow us to 
multiply vector[1][4] with the matrix[4][4] (the inner dimension rule). It will also allow us to represent 
translation in our matrices. Take a look at the two matrices below, which demonstrate the multiplication 
of our vector V with a matrix M: 
 

[ ] [ ]1

44434241
34333231
24232221
14131211

1 ZYXR
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To calculate element X in output vector R: 
 

X= Vx*m11 + Vy*m21 + Vz*m31 +  1*m41 
 
We know that w=1 so the last portion of the calculation for X will always be “+ 1*m41”. In other words, 
whatever value we put into element m41 will be used in an addition operation: 
 
The same also holds true for both the y and z columns in the matrix. Any value we store in m42 will be 
directly added to the y component of the input vector V and any value we store in element m43 will be 
added to the z component of input vector V. So the fourth row, along with the homogeneous coordinate, 
lets us represent translation in a matrix because together they give us the required addition operation. 
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You should think of the fourth row as a separate section of the matrix that does not scale the input vector 
like the upper 3x3 portion does. It will be used to add to or subtract from the values contained in the 
input vector. 
 
With this knowledge, we can now create a matrix that would translate a vector TX along the X axis, TY 
along the Y axis and TZ along the Z axis like so: 
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For example: TX=200, TY=0 and TZ=-50. Input vector V=( 200 , 70 , 500 ). We will need to represent 
this vector as a 4D homogeneous coordinate so V= ( 200 , 70 , 500 , 1 ). 
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Calculating vector R ourselves: 
 
Rx = 200 * 1 + 70 * 0 + 500 * 0 + 1 * 200 = 200 * 1 + 1*200 = 400 (Rx=400) 
Ry = 200 * 0 + 70 * 1 + 500 * 0 + 1 * 0     = 70 *1     =70    (Ry=70) 
Rz = 200 * 0 + 70 * 0 + 500 * 1 + 1 * -50 =  500*1 + 1*-50   =450  (Rz=450) 
Rz = 200 * 0 + 70 * 0 + 500 * 0 + 1 * 1     = 1* 1     =1      (Rw=1) 

 
[ ]145070400=∴R  

 
Our point has been successfully transformed by the matrix. This 4x4 translation matrix can be combined 
with other matrices. We can concatenate a rotation matrix and a translation matrix into a single matrix 
and pump all of our vectors through it.  
 
 

Matrix for Z Axis Rotation and Translation 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1
0100
00)cos()sin(
00)sin()cos(

TZTYTX

θθ
θθ

 

 

Translation Matrix 
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We can hardcode the fact that input vector W components will always equal 1 in a function. This is a 
shortcut we can safely make for a function that works explicitly with 3D vectors and matrices that 
consist of translations, rotations and scaling. Below, we see a function called VectorMatrixMultiply that 
takes a 3D vector and stores it as a 4D vector internally in order to carry out the calculation. The result is 
then homogenized to make sure we return a 3D vector. This is why we are dividing x, y and z by w. This 
is a handy function for multiplying the mesh’s model space vertices to world space or view space when 
we know that we want a resulting vector where w = 1. 
 
BOOL VectorMatrixMultiply( VECTOR3D& vDest, VECTOR3D& vSrc, MATRIX& mat) 
{ 
    FLOAT x = vSrc.x*mat.m11  +  vSrc.y*mat.m21  +  vSrc.z* mat.m31  +  mat.m41; 
    FLOAT y = vSrc.x*mat.m12  +  vSrc.y*mat.m22  +  vSrc.z* mat.m32  +  mat.m42; 
    FLOAT z = vSrc.x*mat.m13  +  vSrc.y*mat.m23  +  vSrc.z* mat.m33  +  mat.m43; 
    FLOAT w = vSrc.x*mat.m14  +  vSrc.y*mat.m24  +  vSrc.z* mat.m34  +  mat.m44; 
     
    // Prevent Divide by 0 case. 
    if( fabsf( w ) < g_EPSILON ) return FALSE; 
 
    // Homogenize the coordinate. 
    vDest.x = x / w; 
    vDest.y = y / w; 
    vDest.z = z / w; 
 
    return TRUE; 
} 

 
Some matrix functions ( such as he one shown above ) seem to multiply a 3D vector with a 4D matrix 
but we know this can not be done because of the inner dimension rule. Of course, what these functions 
are doing is similar to what we are doing here: explicitly treating the 3D vector as a 4D vector where w 
always equals 1 therefore always adding the 4th row of a column to the result. There are times when you 
do not want a function to homogenize the result and therefore the more generic 4D vector/4D matrix 
multiplication would be used. 
 
For each component calculated in the output vector we add the 4th row values from the matrix. We then 
homogenize the 4 components back into 3D space by dividing by w. This allows us to return a 3D space 
vector. You could alter this code to return a 4D vector instead where the divide by w could be performed 
elsewhere. Another point to note is that if you know for sure that the 4th column (the w column) of the 
matrix being multiplied is an identity column, then the resulting w will still equal 1 and the divisions by 
w are not needed. This is often the case when dealing with vertex positions. 
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1.4 D3DX Math  

The DirectX9 SDK ships with a DirectX Graphics helper API called the Direct3D Extensions (D3DX). 
Among just some of its components it includes numerous mathematical structures and functions that will 
be of value to us. We can include this functionality in our source code modules by adding   #include 
<d3dx9.h> near the top of the source file. Most D3DX classes have overloaded operators and various 
constructors to make operations easy and intuitive. Lab Project 1.1 will be using D3DX for its math 
functions and its matrix and vector structures. This will be advantageous since D3DX math functions 
may take advantage of CPU capabilities like MMX™ or 3DNow™ when available. As the course 
progresses we will use the D3DX library for many other important tasks. This section will examine 
some of the D3DX data types and functions that we will use on a frequent basis. 

 

1.4.1 Data Types 

D3DXMATRIX  

DirectX Graphics works exclusively with 4x4 matrices (16 floats). Matrix elements in this class can be 
accessed in two ways: via a 4x4 array or by using the double suffix notation we are already familiar 
with. Each member of the matrix can be accessed using the .row_column method.  This means that we 
can assign a value to the 3rd row and the 2nd column using the following code: 
 

D3DXMATRIX Mat; 
Mat._32 = f; //f = float value 
 
With operator overloading we can perform matrix multiplication, addition and subtraction: 
 
D3DXMATRIX mat1, mat2, mat3; 
 
mat3 = mat1 * mat2;    // matrix multiplication 
mat3 = mat1 + mat2; // matrix addition 
mat3 = mat1 - mat2; // matrix subtraction 

 
There are two constructors worthy of mention. The first initializes the matrix using another matrix 
passed as a parameter. The second allows us to pass in each of the 16 float values we want placed in 
each element of matrix. Their definitions are: 
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Constructor 1 
D3DXMATRIX( CONST D3DMATRIX& ); 
 
 
Constructor 2 
D3DXMATRIX( FLOAT _11, FLOAT _12, FLOAT _13, FLOAT _14, 
            FLOAT _21, FLOAT _22, FLOAT _23, FLOAT _24, 
            FLOAT _31, FLOAT _32, FLOAT _33, FLOAT _34, 
            FLOAT _41, FLOAT _42, FLOAT _43, FLOAT _44 ); 
 
 
 

D3DXVECTOR3 

The D3DXVECTOR3 stores 3D vectors (3 floats). There are structures for 2D (two floats) and 4D (four 
floats) vectors also. All contain overloaded operators and constructors for easy initialization. This means 
we can perform addition, subtract, multiplication, etc. with the standard operators as shown below. 
 
//Construction 
D3DXVECTOR3 MyVector   ( 20.0f,   50.0f, -10.0f);  
D3DXVECTOR3 YourVector (  0.0f, -200.0f,  35.0f); 
 
MyVector  = MyVector + YourVector  ; // Vector Addition 
MyVector  = MyVector * 5;   // Vector scalar multiplication 
MyVector  = MyVector – YourVector;  // Vector subtract 
MyVector  = (YourVector*2) + MyVector; // Combination 

 
We can access and modify the individual vector elements x, y, or z as follows: 
 
MyVector.x += 10.0f; 
MyVector.y  = YourVector.y; 

 
Of course with a D3DXVECTOR2 structure there are only x and y member variables and with the 
D3DXVECTOR4 structure we have x, y, z and w member variables. The latter can be used to store 
homogeneous coordinates. 
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D3DXPLANE 

D3DX also provides a structure for holding plane information (four floats). The first three floats will 
store the plane normal (x, y and z components). The fourth float will be assigned the distance to the 
plane from the origin.  
 
D3DXPLANE MyPlane; 
MyPlane.a = Normal.x; 
MyPlane.b = Normal.y; 
MyPlane.c = Normal.z; 
MyPlane.d = dist;     // Distance to plane from origin. 
 
We can make use of the constructor for easy initialization: 
 
D3DXPLANE MyPlane(Normal.x, Normal.y , Normal.z , DistanceToPlane); 

 
D3DX has many helper functions that can be used to create planes. Using the 
D3DXPlaneFromPointNormal function you could, for example, create a plane simply by passing in the 
plane normal and any point known to be on the plane. In the case of using a polygon’s plane, we could 
pass in a plane normal and any one of the polygons vertices. 
 
D3DXPlaneFromPointNormal(  D3DXPLANE* pOut, CONST D3DXVECTOR3* pPoint, 

                     CONST D3DXVECTOR3* pNormal); 
 
We pass in a pointer to a D3DXPLANE structure that will receive the final plane and also pointers to 
two 3D vectors, the plane normal and a point known to be on the plane. 
 
If you do not have access to the polygon normal and want it calculated on your behalf, use the 
D3DXPlaneFromPoints function. This function can be used to create a plane from any three points 
known to be on the plane. For example, if you were creating a plane for a polygon, you could pass in 
three of the polygon’s vertices. D3DX would calculate the plane normal and the distance for you, 
returning the information via the D3DXPLANE structure passed in the pOut parameter. 
 
D3DXPlaneFromPoints( D3DXPLANE* pOut,  CONST D3DXVECTOR3* pV1, 
                     CONST D3DXVECTOR3* pV2, CONST D3DXVECTOR3* pV3 ); 
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1.4.2 Matrix and Transformation Functions 

D3DXMatrixMultiply  

D3DX provides a function to multiply two 4x4 matrices: 
 
D3DXMATRIX* D3DXMatrixMultiply( D3DXMATRIX* pOut,  
                                CONST D3DXMATRIX* pM1,  
                                CONST D3DXMATRIX* pM2 ); 
 
The function takes the addresses of the two 4D matrices to be multiplied and the address of a matrix 
which will receive the result of the operation. The multiplication will take advantage of any hardware 
(CPU) features or optimizations available.  
 
 
D3DXMatrixRotation{XYZ}  

D3DX provides three functions for building specific rotation matrices: 
 
D3DXMatrixRotationX (D3DXMATRIX* pOut, FLOAT Angle); 
D3DXMatrixRotationY (D3DXMATRIX* pOut, FLOAT Angle); 
D3DXMatrixRotationZ (D3DXMATRIX* pOut, FLOAT Angle); 
 
The functions accept a pointer to a D3DXMATRIX structure and float values that describe the amount 
of rotation (in radians) we require about that particular axis. For example, if we want to build a matrix 
that rotates vectors 1.3 radians about the world Y axis we can do the following: 
 
D3DXMATRIX RotationMatrixY; 
D3DXMatrixRotationY ( &RotationMatrixY , 1.3 ); 
 
When the function returns, the matrix passed via the pOut parameter will contain the correct values. In 
this case, the matrix returned internally would look like so: 
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D3DXMatrixTranslation  

There is also a function to create a translation matrix for positioning our objects in the world: 
 
D3DXMatrixTranslation ( D3DXMATRIX* pOut, FLOAT x, FLOAT y, FLOAT z); 
 
If we wanted to translate our mesh so that it was positioned at (10, 40, 50) in world space we could do 
the following: 
 
D3DXMATRIX TranslationMatrix; 
D3DXMatrixTranslation (&TranslationMatrix , 10 , 40 , 50); 

 
Using these functions, we can give each object its own world matrix. When that object is rendered for 
each frame, its vertices are multiplied by this matrix to transform it into world space. For example, let us 
say that we have an object that we want to be rotated 2 radians about the Z axis and positioned at (10, 
50, 2) in world space. We could build a matrix that would perform this operation by first building the 
translation matrix, and then combining it with a rotation matrix in order to generate the concentrated 
matrix. The code to do this is shown below: 
 
CObject    Object; // assumed to have two members, a mesh and a world matrix 
D3DXMATRIX RotMat, TransMat; 
 
// Build the matrices 
D3DXMatrixTranslation ( &TransMat , 10, 50, 2); 
D3DXMatrixRotationZ   ( &RotMat , 2 ); 
 
// Set the combined matrix as the object’s world matrix 
Object.WorldMatrix = RotMat * TransMat; 

 
The object now has a single world matrix which completely describes its orientation and position within 
the 3D world.  Using that matrix to transform the vertices into world space, we can move the object 
around the world simply by altering the matrix values. We might have a function that is called every 
time the left arrow key is pressed, that builds a rotation matrix around the Y axis by 0.2 radians and then 
multiplies this with the object’s current world matrix. This would cause the object to rotate each time by 
a further 0.2 radians. 
 
Note that in the above code the matrix multiplication order is significant. Here we are rotating the object 
about its local origin first and then translating the object into its final world space position. Reversing the 
order of the multiplication would produce a translation into the world space position followed by a 
rotation about the world origin. 
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D3DXMatrixRotationYawPitchRoll  

The next function allows you to specify the rotations about the X, Y and Z axes with a single call. This 
would otherwise have to be built using three separate rotation matrices about each of the X, Y and Z 
axes respectively and then multiplying each of them together.  
 
D3DXMatrixRotationYawPitchRoll( D3DXMATRIX* pOut, FLOAT Yaw, FLOAT Pitch, 
                                FLOAT Roll); 
  
To build a single matrix that rotates 1 radian about the X axis, 2 radians about the Y axis and 0.5 radians 
about the Z axis and then positions our object at (100,50,-20), we would use the following code: 
 
D3DXMATRIX OrientationMat , TranslationMat; 
 
D3DXMatrixRotationYawPitchRoll( &OrientationMat , 2 , 1 , 0.5); 
D3DXMatrixTranslation         ( &TranslationMat , 100 , 50 , -20 ); 
 
Object.WorldMatrix = OrientationMat * TranslationMat; 

 
If you maintain three floats (Yaw, Pitch, Roll) for each object, these can be altered in response to user 
input and used to build the object’s new orientation matrix each time it needs to be updated. 
 

D3DXVec3Transform{…} 

The D3DX library also has functions that allow us to multiply a vector with a matrix. We will need to do 
this multiply on each of the mesh’s vertices using the object’s world matrix. There are three functions 
that concern us and each behaves somewhat differently: 
 
1. D3DXVec3TransformCoord( D3DXVECTOR3* pOut,  CONST D3DXVECTOR3* pV, 
                           CONST D3DXMATRIX* pM ); 
 
This function multiplies a 3D vector with a 4x4 matrix. As we know from our earlier discussion, the 
function treats the input vector as a homogenous 4D vector in the form (x, y ,z , 1). The 4D vector is 
multiplied by the 4x4 matrix which creates another 4D vector. This function takes care of homogenizing 
the resulting vector back into 3D space. 
 
This is the function we will use to multiply our object vertices by our object world matrix.  
 

 
2. D3DXVec3TransformNormal(D3DXVECTOR3* pOut, CONST D3DXVECTOR3* pV, 

                     CONST D3DXMATRIX* pM ); 
This function is provided when the result vector needs to be normalized. For example, let us say that we 
have a polygon facing down the positive Z axis. The normal for this polygon equals (0, 0, 1). If the 
polygon were rotated 45 degrees about the Y axis, the normal would also have to be updated. We can 
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rotate normal vectors just as we do ordinary vectors as long as the unit vector remains a unit vector after 
the matrix multiplication. 
 
When the matrix contains translation information (which will most likely be the case with the object’s 
world matrix) then the normal will also be translated. As a result, its tip would no longer necessarily be 
one unit from the origin. So we want to ignore the bottom row of the matrix which stores the translation 
and only multiply the normal using the upper 3x3 section storing the orientation. The D3DX function 
does just this.  
 
3. D3DXVec3Transform ( D3DXVECTOR4* pOut,  CONST D3DXVECTOR3* pV, 

                 CONST D3DXMATRIX* pM); 
 

This function takes a 3D input vector and a matrix and returns a 4D vector. The input vector is treated as 
a 4D vector in the form (x, y, z, 1). This output vector is in the form (x, y, z, w) where w does not equal 
1. Unlike D3DXVec3TransformCoord, this function does not homogenize the result by dividing x, y and 
z by w. You may need this function if you are required to use a matrix where the fourth column is not an 
identity column. 
 
 

1.4.3. Vector Functions 

The D3DX library also provides functions for performing normalization of vectors, dot products, cross 
products and functions for returning the length of a vector. Some of these are listed below. 
 
 
Cross Product 

D3DXVec3Cross ( D3DXVECTOR3* pOut, CONST D3DXVECTOR3* pV1, CONST D3DXVECTOR3* pV2 ); 
 
Returns a vector perpendicular to A and B in pOut result. 
 
D3DXVECTOR3 Result, A, B; 
D3DXVec3Cross( &Result , &A , &B ); 

 
 
Dot Product 

D3DXVec3Dot ( CONST D3DXVECTOR3* pV1,  CONST D3DXVECTOR3* pV2 ); 
 
Returns cosine of the angle between A and B scaled by vector magnitudes. 
 
D3DXVECTOR3 A, B; 
float CosAngle = D3DXVec3Dot( &A , &B );         
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Magnitude 

D3DXVec3Length( CONST D3DXVECTOR3* pV ); 
 
Returns the length of the passed vector. 
 
D3DXVECTOR3 A; 
float Length = D3DXVec3Length ( &A ); 

 
 
Normalization 

D3DXVec3Normalize (  D3DXVECTOR3* pOut, CONST D3DXVECTOR3* pV ); 
 
This function takes a vector pV and makes it unit length. 
 
D3DXVECTOR3 A; 
D3DXVec3Normalize ( &A , &A ); 

 
The functions that return a vector result allow an output vector to be specified. This vector can be used 
to specify a vector other than the one used for input. This is useful if you do not want the normalized 
vector to overwrite the input vector. However, in the above example we have passed vector A as both 
the input and the output, thus normalizing vector A and storing the result back in vector A. 
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1.5 The Transformation Pipeline II 

 
In our first Lab Project, three key matrices are used. These matrices combine to perform the initial phase 
of the transformation pipeline from model space to projection space. After a polygon has passed through 
each of these three matrices its vertices are ready to be scaled from 2D projection space to 2D screen 
space as discussed earlier. We will now cover each of the three matrix types, their use, and some 
interesting facts about them. 
 
 

1.5.1 The World Matrix 

Each object in our scene will have a world matrix. The world matrix is used to position, scale and orient 
the object in world space. The first thing our pipeline will do is multiply each of the polygon’s vertices 
with the current object’s world matrix. This will transform the polygon from model space into world 
space. By applying new rotations and translations during each frame of our game, we can animate a 3D 
object. Our object structure looks like this: 
 
class CObject 
{ 
     CMesh     *pMesh; 
     D3DXMATRIX WorldMatrix; 
}; 

 
If an object’s world matrix has been set as an identity matrix, then we know that the object will not be 
translated or rotated at all, it will positioned in the world at position (0, 0, 0) and is assumed to face 
straight down the positive Z axis. Let us look at an identity matrix again for a moment: 
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Ignoring row 4 and column 4 for the moment, we can see that the first three rows are actually unit 
vectors which are identical to that of the world X, Y and Z axes. The third row for example is a vector of 
(0, 0, 1) which is a unit vector describing the world Z axis. You should think of these three rows as the 
object’s local coordinate system. They describe the orientation of the model space X, Y and Z axes in 
relation to the world space X, Y and Z axes. We can see that the local coordinate system exactly matches 
the world space coordinate system when using an identity matrix.  
 
In Fig 1.38, the X and Y rows in the identity matrix are unit vectors pointing in the same direction as the 
world axes. We know that the input vector will be unchanged by this matrix since the matrix used is 
constructed with identity columns.  
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Figure 1.38 
 

Regardless of whether the world matrix of an object is an identity matrix or not, we can still think of the 
first three rows of the matrix as unit vectors describing the local coordinate system x, y and z axes.  
 
Let us see what happens when we combine our identity initialized world matrix with a Z axis rotation 
matrix. In the next example we will build a rotation matrix that rotates our points by 45 degrees 
(0.785398 radians). 
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We see in Fig 1.39 that the axes of the local space coordinate system are now rotated 45 degrees: 
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Figure 1.39 
 
If we have a unit vector describing the way an object is pointing, we can use it to update its position in 
the world (by moving along this vector). Our object matrix contains all of the information we need to 
move it along a local axis even though it is now in world space. For example, the 3rd row of the matrix is 
referred to as the look vector. It is a unit vector describing the way the object is facing. It is actually the 
model space Z axis and it retains exactly the same relationship to the model in world space as it did in 
model space. If we want to move our object a certain distance forward, we can use the 3rd row of the 
matrix to do this: 
 
// move spaceship forward 
void MoveForward( float distance ) 
{ 
   D3DXVECTOR LookVector; 
 
   // Extract the Look vector (local z axis) from the world matrix 
   LookVector.x = SpaceShip.WorldMatrix._31; 
   LookVector.y = SpaceShip.WorldMatrix._32; 
   LookVector.z = SpaceShip.WorldMatrix._33; 
 
    
   SpaceShip.WorldMatrix._41 += LookVector.x * distance; 
   SpaceShip.WorldMatrix._42 += LookVector.y * distance; 
   SpaceShip.WorldMatrix._43 += LookVector.z * distance; 
} 

 
MoveForward extracts the look vector from the 3rd row of the matrix and then scales it by the forward 
distance we wish to move. We add the resulting vector to the current position -- which we know is 
stored in the 4th row of the matrix. Because LookVector is a unit vector, the distance is dispersed over 
the X, Y and Z axis in their correct proportions and the world matrix now contains the new world space 
position. This new position is exactly distance units from its previous position in the direction of the 
look vector. So whatever the orientation of the object in world space, we now have the means to move it 
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forward in the desired direction. If MoveForward was passed a negative distance value, it would move 
the object backwards in world space. 
 
We also have the object local Y axis (called the up vector) in the second row of the matrix and the local 
X axis (called the right vector) in the first row. This means that we could, for example, make our 
spaceship strafe left or right by using a function that uses the first row of the matrix. A negative distance 
value would cause the object to move left instead of right: 
 
// Strafe spaceship left or right 
void MoveStrafe( float distance) 
{ 
   D3DXVECTOR RightVector; 
 
   // Extract the Right vector (local x axis) from the world matrix 
   RightVector.x = SpaceShip.WorldMatrix._11; 
   RightVector.y = SpaceShip.WorldMatrix._12; 
   RightVector.z = SpaceShip.WorldMatrix._13; 
 
 
   // update position in matrix 
   SpaceShip.WorldMatrix._41 += LookVector.x * distance; 
   SpaceShip.WorldMatrix._42 += LookVector.y * distance; 
   SpaceShip.WorldMatrix._43 += LookVector.z * distance; 
} 

 
With these two examples it should be no problem for you to write a third function called MoveUpDown.  
The world matrix can be summarized as follows: 
 
World Matrix 
Right Vector.x Right Vector.y Right Vector.z 0 
Up Vector.x Up Vector.y Up Vector.z 0 
Look Vector.x LookVector.y Look Vector.z 0 
Position.x Position.y Position.z 1 
 
This matrix will serve as our entire world transformation module. Multiplying our object vertices with a 
world matrix will convert those vertices from model space to world space: 
 
WorldSpaceVertex = ModelSpaceVertex * WorldMatrix 
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1.5.2 The View Matrix 

The next task is to transform our world space vertices to view space (relative to some virtual camera 
position). The camera orientation and position information can also be stored in a single matrix. We 
refer to this matrix as the view matrix. 
 
The view matrix works a little differently than our world matrix. As we saw earlier, in order to transform 
vertices into view space, we have to perform the opposite operations on them. When the camera is 
rotated to the right, we need to rotate the vertex left. If the camera is moved forward, we need to move 
the vertex backwards, and so on. In order to accomplish this we will use the inverse matrix. 
 
Let us assume that we have three vectors describing the Up, Look and Right vectors of the camera, and 
that we also have a camera position in our 3D world. 
 
// Assumed to be later initialized to meaningful values… 
D3DXVECTOR3 CLook;  // Camera Look Vector 
D3DXVECTOR3 CRight; // Camera Right Vector 
D3DXVECTOR3 CUp;    // Camera Up Vector   
D3DXVECTOR3 CPos;   // Camera World space Position      
 
If we were to build a standard local to world matrix for the camera it would look like so: 
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However this matrix would not have the desired effect. In fact it would take a vertex that is already in 
view space and transform it so that the result is back in world space! This can actually be handy in 
certain situations we will encounter later, but it is not what we need at the moment. We need to use the 
inverse of this matrix: 

 
View Matrix 
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This is the matrix we will use to convert vertices from world space into view space. The virtual camera 
in our game can be represented using this single matrix. D3DX has a function that will take a 4x4 matrix 
and invert it: 

 
D3DXMatrixInverse(D3DXMATRIX* pOut,FLOAT* pDeterminant, CONST  D3DXMATRIX* pM); 
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 The mathematics involved in inverting arbitrary matrices can be complex and is covered in detail in the 
Game Mathematics course here at the Game Institute. For our purposes, we can simply pass in a 
transformation matrix and set the determinant value to NULL (as we will not need it). Also notice that 
the output matrix need not be the same as the input matrix. 

 
 There will be times when you will need to call the above function to invert a matrix but it is certainly not 

the way we would recommend creating the view matrix each time the camera moves and the view matrix 
needs to be updated. Storing the camera position and orientation as a normal transformation matrix and 
calculating the inverse each time the camera moves is an expensive operation. Instead, the camera is 
usually managed by having Up, Right, Look and position vectors and building the view matrix 
manually; inserting the vectors into the matrix as shown above. The matrix will only need to be rebuilt 
when the camera moves or rotates. We could for example replace our previous CCamera class with a 
new one that looked like the following: 
 
class Camera 
{ 
public: 
    D3DXVECTOR3 LookVector; 
    D3DXVECTOR3 Up Vector; 
    D3DXVECTOR3 RightVector; 
    D3DXVECTOR3 Position; 
}  

 
At the start of your application you might set the camera to its correct starting position and set the look, 
up and right vectors so they are aligned with the world axes using vectors (0,0,1) , (0,1,0) and (1,0,0) 
respectively. Then when the player presses an arrow key, you could rotate the vectors with a rotation 
matrix that rotates them so they are now facing in a new direction. Finally the view matrix would be 
rebuilt by inserting these vectors manually into the view matrix.  
 
In LP 1.1 we will not be moving the camera and we will be leaving the view matrix set as an identity 
matrix. This means that the camera can be visualized as being at position (0,0,0) in the world, with its 
local coordinate system aligned with the world axes so that it is looking down the positive Z axis. 
 
View Matrix 
Right Vector.x Up Vector.x Look Vector.x 0 
Right Vector.y Up Vector.y Look Vector.y 0 
Right Vector.z UpVector.z Look Vector.z 0 
- (Position•RightVector) - (Position•UpVector) - (Position• LookVector) 1 
 
There are D3DX matrix functions which aid in the setting up of a view matrix. We will discuss using the 
view matrix in Chapter 4 in much more detail. We will see how to get it to behave like a first person 
shooter game camera or even a space ship game camera. 
 
A D3DX view matrix helper function of interest to us is shown below. It takes a camera position in 
world space, a point in that we want the camera to look at, and a vector describing the UP vector of the 
camera (often <0, 1, 0>  at startup) and builds the matrix for us: 
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D3DXMatrixLookAtLH(  D3DXMATRIX* pOut,  CONST D3DXVECTOR3* pEye, 
               CONST D3DXVECTOR3* pAt, CONST D3DXVECTOR3* pUp); 
 

The parameters are shown below: 
 
pOut  - The address of a D3DXMATRIX structure that will contain the calculated view matrix.  
pEye – World space position of the camera, referred to here as the eye point 
pAt   -  World space position that we want the camera to be looking at 
pUp  -  Orientation of the camera up vector 
 
It should be noted that the ‘LH’ at the end of the function call is short for ‘Left Handed’. This function 
builds a view matrix suitable for a left handed coordinate system, which DirectX Graphics (and we) will 
use. D3DX does contain a right handed version of the function called D3DXMatrixLookAtRH so make 
sure that you do not accidentally call the wrong one.  
 

Note: Inverting a matrix produces the opposite effect of a normal transformation matrix. Thus, by 
inverting an object’s world matrix, we get a matrix that would transform world space vectors into model 
space vectors.  
 
This technique is often used in collision detection routines where you may have to check each vertex of a 
mesh against a world space bounding box or a bounding sphere. In these cases it is much cheaper to 
back transform a single world space sphere into model space and perform the test there than to 
transform every vertex in the mesh into world space and then test. 
 
If you think of a transformation matrix as transforming points from one space to another, you can think 
of the inverse of that matrix as performing a canceling or reversing transformation into the original space. 

 
Remember that we can multiply matrices together to create a single combined transformation matrix that 
will transform any vectors as if they had been multiplied by all the original matrices. We could combine 
each object’s world matrix with the current view matrix prior to rendering that object, and thus transform 
all vertices from model space to view space with one vector/matrix multiplication. This saves us a fair 
amount of work as each vertex would otherwise need to be multiplied by the object world matrix, and 
then again by the view matrix.  
 
D3DXMATRIX ComboMatrix = Object.WorldMatrix * ViewMatrix; 
D3DXVECTOR ViewSpaceVertex = ModelSpaceVertex * ComboMatrix;  
 
In LP 1.1 we will not do this. At this point we would like to keep the World, View and Projection 
matrices separate to better demonstrate each stage of the pipeline. 
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1.5.3 The Perspective Projection Matrix 

We spent a good deal of time earlier in this lesson discussing how to project a 3D view space point into a 
2D projection space point. You may recall that the resulting point was in the –1 to +1 range on both the 
X and Y axes. This point was later mapped to screen space. You may also recall that the formula we 
used to perspective project the 3D point into a 2D projection space coordinate was simply: 
 

ViewSpaceZ
ViewSpaceXXojectionPoD =intPr2  

 

ViewSpaceZ
ViewSpaceYYojectionPoD =intPr2  

 
As a point gets further away from the camera it is scaled down (and vice versa). This provides the 
illusion of perspective. Recall that the one important characteristic of this formula is that it always uses a 
90 degree FOV. This means that the camera can always see 45 degrees to the left, and 45 degrees to the 
right, and on the other axis, 45 degrees up and 45 degrees down. We could visualize this as a view cone 
spreading out from the camera origin at an angle of 90 degrees.  
 
This is exactly how DirectX Graphics (and our own software code) perspective projects a 3D view space 
point. But having no choice other than a 90 degree FOV is simply not acceptable to us. First of all, a 90 
degree FOV does not usually look particularly good. Most developers prefer to use a 45 to 65 degree 
FOV. This is not technically correct because humans have a wider FOV than that in real life, but it looks 
correct in the game. Second, the monitor screen is not square and we usually have more pixels 
horizontally than we do vertically. This means we should really have a wider FOV left and right than we 
do Up and Down. If we do not, then the scene will looked squashed because we are doing a SQUARE 
projection onto a rectangular monitor screen. If your application is running in a perfectly square window, 
then no squashing or distortion will appear, but usually, we like our games to run in full screen 
resolution such as 800x600 or 1024x768 which are rectangular video modes. 
 
If all of this is true, then we would appear to have a problem. DirectX Graphics calculates the 
perspective projection using the 90 degree FOV formula we saw earlier (x/z and y/z) yet we wish to use 
arbitrary FOV.  
 
In order to combat this problem we can multiply view space vectors by a third matrix prior to the divide 
by z (the perspective projection process). This matrix will distort the geometry in our world in a 
controlled manner so that the illusion of an arbitrary FOV is maintained. We are still doing a 90 degree 
unit projection, but because the vertices have been deformed, we can control whether or not they fit 
within the 90 degree FOV.  
 
The vertices of a mesh will be multiplied with this new projection matrix after the vertices have been 
converted to view space. This means that we can write the complete transformation from model space 
vertex to projection space vertex as: 
 
ProjectedVertex = ModelVertex * ( WorldMatrix * ViewMatrix * ProjectionMatrix);  
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At this point we can map the [–1, +1] range of the vertex along the x and y axes into the range of the 
current screen resolution as shown earlier in the lesson. 
 

Note: It is perhaps odd that it is called a ‘projection matrix’ since it does not project the vertices at all. 
Rather it swells or shrinks their position values prior to a perspective divide. You could say, then, that the 
projection matrix is a matrix that prepares 3D vertices for projection to 2D. 
 
Refer back to the section on perspective projection if you need to. It is important that you understand 
why the divide by z performs a 90 degree projection if you are to understand this next section. 

 
Let us start our analysis of the projection matrix with an identity matrix and build up from there. We 
know that the projection matrix is a 4x4 matrix and that it will output a 1x4 vector.  The input vector will 
be a homogeneous 4D coordinate in the form of (x, y, z, 1) as we have already discussed. As with all of 
the matrices we have used up until this point, the W column of the matrix is an identity column. Thus the 
output vector will also be in the form of (x, y, z, 1) and we can discard the w component. 
 

Projection Matrix 
 

[ ] [ ]1

1000
0100
0010
0001

1 ==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=×= WZYXPMzyxV  

 
The above projection matrix does absolutely nothing. Because it is an identity matrix, output vector P 
will be identical to input vector V. Once vector P has been calculated we could simply do x/z and  y/z to 
calculate the new 2D projection space position of the vector. This would scale the geometry using a 90 
degree FOV projection. 
 
Note that the projection matrix is the last point at which we have control over the vertex in the DirectX 
Graphics fixed-function transformation pipeline. We will pass DirectX Graphics a World matrix, a View 
matrix and a Projection matrix and call the DrawPrimitive function to render polygons. DirectX 
Graphics will multiply our vertices with the three matrices and will then take care of performing the 
perspective divide on the resulting vector returned from the projection matrix. It will eventually remap 
the coordinate to a screen space coordinate.  The software renderer in LP 1.1 will mimic this behavior to 
a certain extent. Therefore we will set up the projection matrix the same way it will need to be set up 
when using DirectX Graphics. 
 
The first problem we must address with our matrix is that DirectX Graphics requires that the w 
component of the output vector be equal to the z component of the input vector after the projection 
matrix multiply (W=z). The reason is that DirectX Graphics uses the w component of the output vector 
for other calculations (depth-based fog, color interpolation, W–Buffer). It may seem more intuitive to 
copy the input z component into the output Z component and use that, but as you will see later on, we 
need the Z value of the output vector to hold specialized information intended for something called a 
Depth Buffer. Copying the z component of the input vector into the W component of the output vector is 
no big deal, and we can alter our matrix quite easily to ensure that this is so:  
 



 

 82 

Projection matrix 
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By adjusting the 4th column of the projection matrix so that the 1 is no longer in the 4th row but is now 
in the 3rd row, the W component of the output vector will be calculated as follows:  
 

W= x*0 + y*0 + z*1 + 1*0 =z 
 
This matrix has correctly copied over the z component of the input vector V into the W component of the 
output vector P. So if V= ( 20 , 40 , 105 , 1), then P =( 20, 40, 105, 105). 
 
We said before that to move a vertex from view space to 2D projection space (where the divide by z 
happens) we simply do: 
 

zViewSpace
yViewSpaceaceyojectionSpD

zViewSpace
xViewSpaceacexojectionSpD
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And now we have a new coordinate space. This space is the space the vertex is in after it has been 
multiplied by the projection matrix but before it has been projected into 2D projection space (the divide 
by z). This new space is referred to as Homogeneous Clip Space. The only current difference between 
view space and homogeneous clip space is that in homogeneous clip space we have copied the z 
component into w and we have: 
 
ViewSpaceVector                         = (x , y , z , 1) 
HomogneousClipSpaceVector     = (x , y , z , z) 
 
Because the w component holds the z value and because the z value of the output vector will later hold 
something else, DirectX Graphics (and our software engine) does its perspective projection using this 
formula: 
 

wsClipSpaceHomogeneou
yClipSpaceHomogenousaceyojectionSpD

wClipSpaceHomogenous
xClipSpaceHomogenousacexojectionSpD

.
.Pr2

.
.Pr2

=

=
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The formula remains totally unchanged, only now the z value is in W instead of Z. So if we set up our 
projection matrix correctly, it will output a 4D vector P like so:  
 

P(X , Y , Z=depth buffer value , W=z) 
 

Ignore the depth buffer value for now since we will cover it in our next lesson. For now we are only 
interested in finding out how the X and Y columns of the projection matrix can be used to deform 
geometry to give an arbitrary FOV. The W column is already taken care of; it simply copies over the 
input z component into w. So let us now look at what we should do with columns 1 and 2 of the 
projection matrix. 
 
 
Arbitrary Field of View 

If you take a look at the first two columns of the projection matrix, you see that for x and y, it is really 
like a 2x4 scaling matrix. At the moment it is simply scaling x*1 = x and y*1=y -- which is why these 
are not altered. But by changing the values in elements m11 and m22 we can scale the x and y values 
prior to the divide by w. In effect, we still perform a 90 degree FOV projection (x / w and y / w), but we 
can use the m11 and m22 elements in the matrix to scale (squash or enlarge) geometry so that it falls 
either in or out of the 90 degree FOV projection cone.  This is what allows us to have any FOV we 
desire. To understand this concept, take a look at Fig 1.40. It shows us squashing geometry into the view 
cone that would otherwise not be rendered. 
 

 
Figure 1.40 
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Noting that the z value of the input vector is simply copied over into the W value of the output vector, 
any given x or y point in space will only be mapped inside the projection window if the following is 
true:  
 

-W < X < W 
-W < Y < W 

 
In Fig 1.40 there are three view space points (red dots) labeled P1, P2 and P3. These points are outside 
the 90 degree view cone because the Y value of each of these points is greater than the Z value. 
However, if we were to multiply each Y value by, say, 0.4, the Y values would be smaller than their z 
counterparts (green dots in the above diagram). This means that these points would be projected onto the 
projection window when the divide by w is calculated. If we do this to all vertices in our scene, we can 
squash as much or as little geometry into our 90 degree view cone as we want.  
 
In the previous example, we multiplied our y values by 0.4 to create a wider FOV. But we can also scale 
the geometry up as well. For example, if we were to scale each vertex by 1.5, Y values that did fit within 
the 90 degree FOV originally would be increased and would leave the projection matrix greater than W. 
These points would not fall within the projection window and this would simulate a narrower FOV. 
 
Scaling the x and y values is easy. The first two columns of our projection matrix look just like a scaling 
matrix. Therefore, in m11 and m22 where we currently have a value of 1.0, we can replace these values 
with other values that will increase or decrease x and y input vector values.  
  

Projection Matrix 
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Y is calculated as follows: 
 

Y= x*0 + y*0.4 + z*0 + w*0 
 

This simplifies to: 
 

Y=y*0.4. 
 

The same is true for the x coordinate. X is calculated as follows: - 
 

X=x*0.4 + y*0 + z*0 + w*0 
 

This simplifies to: 
X=x*0.4 
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At this point we can now scale the geometry, calculate the depth buffer output value and copy z into W, 
all by performing one vector/matrix multiplication. 
 

The Co-Tangent 

In the last example we used an arbitrary value of 0.4 in the m11 and m22 elements of the matrix to scale 
the geometry. This provided the appearance of a wider FOV because geometry was scaled down. 
However gaining precise control over the FOV settings requires a trigonometric function: the co-tangent. 

 
Cosine, Sine, and Tangent are functions that return the ratio of two sides of a right triangle. For example 
the Tan function returns the ratio between the Opposite side of a triangle and the Adjacent side of a 
triangle. 
 

 
Figure 1.41 

 
  
In Fig 1.41, the length of the Opposite side of the right triangle is 7 and the length of the Adjacent side 
of the triangle is 15. When we divide the opposite side by the adjacent side we get a result of 
0.466666666. This ratio is called the Tangent (or Tan for short). The tangent is always calculated by 
dividing opposite by adjacent. 
 
All angles of a right angled triangle are mapped to a specific tangent value that describes the ratio 
between the opposite and adjacent sides. For example, let us say that we know the triangle has an angle 
of 25.01689345 degrees and we also know the length of the Adjacent leg of the triangle. If we wanted to 
figure out how long the opposite leg was, we could punch in the angle on our calculator (25.01689345) 
and then press the Tan button (which in this case would return 0.466666666). This value describes the 
ratio of the opposite leg to the adjacent. Thus to find the length of the opposite leg: 
 
Opposite= Tan (25.01689345) * 15 = 0.466666666*15 = 7 (approx, actually 6.999999999999) 
 
If we have the lengths of both the opposite side and the adjacent side, but we do not know the angle 
value, we can use the inverse tangent atan (i.e. Tan-1). First we calculate the tangent: 
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Tan = Opposite/Adjacent = 7/15 = 0.46666666 
 
Punch in this tangent value and press the atan key and the calculator will return the angle for that 
tangent (which in our case we already knew was 25.01689345 degrees or 0.436627159 radians). 
 
If we take a side-on look at our view cone, and split it down the middle, you can see that for any z value 
along the Z axis in view space, we do indeed have a right angled triangle. 
 

 
Figure 1.42 

 
The opposite side of the triangle is represented by the Y value and the Adjacent leg is represented by the 
Z value. The same would also be true in a top-down view of the view cone, where the X axis would 
represent the Opposite leg.  
 
In Fig 1.42, the Opposite side of the Triangle is at a distance of Z=+6. (It should be noted that for any Z 
value, the ratio (tangent) between the Opposite and Adjacent would remain the same and the angle 
would remain the same). Note that the angle of the triangle is FOV/2. Also notice that the Opposite and 
Adjacent sides have the same lengths as each other.  
 

1
6
6
==

Adjacent
Opposite

 

 

If you type 1.0 into your calculator and press the atan function you will be returned an angle of 45 
degrees. Recall that when the Y value at any point is equal to Z, then the FOV is 90 degrees. If we 
change this relationship we could come up with a value that we could put into our projection matrix 
(m11 and m22) to scale the geometry.  
 
Let us suppose that we want a FOV smaller than the default 90 degree projection carried out by the 
divide by w projection (say 60 degrees). Logically we would want a value that would increase our X and 
Y values so that the geometry which was just inside our 90 degree FOV is pushed outwards. This 
simulates a smaller FOV since we should not see as much of our scene as we would be able to see with a 
90 degree FOV. 
 
What happens if we use the tangent function to calculate the ratio for us?  
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Tan(30)=0.577350269 
 
That is clearly not correct. Multiplying our x and y values by 0.577350269 would actually make the 
values smaller and would squash even more geometry into the view cone. It is the opposite effect that we 
want. In order to get the correct ratio to scale our x and y values we need to use the co-tangent function: 
 

 
Figure 1.43 

 
The co-tangent in our example ratio is 2.142857143. This value is exactly what we need to multiply by 
the opposite side in order to make it equal to the adjacent side: 
 
7 * 2.142857143 = 15 
 
More specifically, this is the value that we need to create an opposite side length such that the triangle is 
forced into becoming a 45 degree triangle (where both the opposite side and the adjacent side have 
lengths of 15).  
 
So this is the value we need to multiply by our x and y values in order to simulate a 50.02 FOV (twice 
the angle above for the full view cone). Since the Co-Tangent function is not implemented in many 
programming languages or on many calculators we can use trig functions to figure it out: 
 

co-tan=
)sin(
)cos(

)tan(
1

θ
θ

θ
=  

 
If we want a FOV of 60 degrees, we can scale the x and y values in the projection matrix by filling out 
the m11 and m22 elements of our matrix as follows. 
 
m11 = 1 / tan(60/2) 
m22 = 1 / tan(60/2) 
or 
 
m11 = cos(60/2) / sin(60/2) 
m22 = cos(60/2) / sin(60/2) 
 
Notice above that the FOV (60 degrees) is divided in two (30 degrees) because the trigonometry 
functions use one half of the view cone. 
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047197551.1=θ  radians (60 degrees) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000
1100

00)
2

(/10

000)
2

(/1

θ

θ

Tan

Tan

M  

 
We now have a projection matrix that will scale geometry according to any arbitrary FOV. The 4th 
column simply copies the input z value into W of the output vector for the divide by w. The 3rd column 
maps the input z value into a value that can be used by the DirectX Graphics depth buffer. We are just 
about finished. 
 
 
Aspect Ratio 

When projected into 2D space, we get back a value between –1 and +1 in both the x and y dimensions 
for any point inside the FOV. This is the coordinate system of the Projection Window. The next task is 
to convert those projection coordinates to valid screen coordinates that can be rendered on the display. In 
order to calculate the final screen coordinates, we do something like this:  
 
ScreenX =  Vector.x * ViewportWidth  / 2 + ViewportLeft + ViewportWidth  / 2; 
ScreenY = -Vector.y * ViewportHeight / 2 + ViewportTop  + ViewportHeight / 2; 

 
ScreenX and ScreenY are screen space coordinates. In a resolution of 800x600, ScreenX is in the 
range of 0 to 800 and ScreenY is in the range of 0 to 600. 
 
Vector.x and Vector.y are the clip space coordinates on the projection window (in the range –1 to +1) 
and are the results of the divide by w. 
 
ViewportWidth and ViewportHeight are the dimensions of the viewable area on screen. For example, 
in a full screen window of 800x600, these values would be 800 and 600 respectively. 
 
ViewportLeft and ViewportTop should be set to zero for full screen windows, or should contain the top 
left coordinates of the view window if you only wish to render to a view port that covers part of the 
screen. 
 
The projection window coordinates range from –1 to +1 in both the x and y dimensions and thus the 
window is square (2x2 in size). However, monitor screens are generally not square. Most are rectangular 
(usually wider than they are higher). This is also true for the most common video modes: 800 x 600,   
640 x 480, 1024 x 768. These are all video modes that have more pixels horizontally than they do 
vertically. This presents us with a problem. Suppose we have a polygon in front of the camera that is a 
perfect square. This will be projected onto the projection window as a perfect square also. However, 
when the projection window coordinates are mapped to screen coordinates, they will be stretched to take 
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up the extra width of the video mode. This means that the user of your application will see the square as 
a rectangle (Fig 1.44). 

 
Figure 1.44 

 
In order to counter this unwanted effect we will set a different FOV in the X dimension of our matrix 
(m11). By increasing the FOV in the X dimension, we scale the input x values in our projection matrix 
down. This means a square in camera space will be squashed in X onto the projection window such that 
when the projection window is stretched into screen coordinates, the resulting rectangle is stretched back 
into a square shape (Fig 1.45). 
 

 
Figure 1.45 

 
If we can measure the ratio of Screen Width to Screen Height that our application is using, and set the 
FOV for the x axis (m11) in our projection matrix accordingly, we get a wider FOV along the x axis. 
This is logical; if the monitor is wider in the x dimension than it is in the y, we should be able to see 
more in the x dimension, and therefore have a wider FOV in the x dimension. In order to correct the 
problem, we must first measure the ratio of screen distortion. This ratio is nearly always referred to as 
the Aspect Ratio, and can be calculated like so:  
 

Aspect Ratio = 33333333.1
480
640

600
800

768
1024

====
Height
Width
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With this aspect ratio, we can adjust the m11 element of our matrix to correct for screen space distortion 
by setting up the matrix as follows:  
 
Projection Matrix with 60 Degree FOV and Aspect Ratio Correction 
 

047197551.1=θ  (60 Degree FOV) 
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When we specify a FOV of 60 degrees, the FOV is only 60 degrees with respect to the Y axis. It is 

1781788.752)333333.1)
2

60(( =××TANATAN degrees with respect to the X axis. 

 
Note: In some source implementations you might see Aspect Ratio calculated as 

77777777.0=
Width
Height

. These implementations will MULTIPLY element m11 with 0.77777777 instead 

of DIVIDING m11 by 1.33333333. 
 
 
After that somewhat lengthy discussion on setting up a projection matrix, you will be glad to know that 
you can set-up a projection matrix easily with a single call to a D3DX function: 
 
D3DXMatrixPerspectiveFovLH( D3DXMATRIX* pOut,  FLOAT fovY,  FLOAT Aspect, 

                      FLOAT zn,  FLOAT zf ); 
  
We pass to this function the address of a matrix that will store the final matrix, a FOV for the Y axis, and 
an aspect ratio (ViewportWidth / ViewportHeight). The matrix returned will be calculated in the way 
that we have just described.  
 
The two parameters at the end of the parameter list in the above function (zn and zf) are used to 
configure the 3rd column of the projection matrix to scale the Z value of the input vector into a range that 
can be used by the DirectX Graphics depth buffer. We will not be using a depth buffer in our first lab 
project so we can leave this discussion until the next chapter when we use DirectX Graphics to render 
our geometry. 

Notice how the aspect ratio is the same for all the standard full screen video resolutions (1.3333333). If 
you are not using a standard video mode, or are using a viewable area that is not the full screen, Width 
and Height in the above equation refers to the width and height of the view in which port you are 
rendering (in screen coordinates). 
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Conclusion 

The key points from this lesson are the core processes involved in transforming objects from model 
space to world space to view space to eventual screen coordinates. We also learned that 3D models are 
constructed from polygons and that each polygon is made up of a number of vertices. Finally we 
reviewed the core mathematics techniques that will be invaluable as we progress through the course. At 
this point it is recommended that, if you have not already, you should enroll in the Game Mathematics 
course to continue to reinforce this mathematics knowledge as well as learn new concepts. The two 
courses can be taken in parallel since the foundation math you will need for this course has been 
covered.  
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  Chapter Two: 
 

 
   DirectX Graphics 

Fundamentals 
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Introduction 

DirectX Graphics provides a unified programming interface for multimedia development with integrated 
support for hardware acceleration when available. Since even the most moderately priced PCs on the 
market typically include hardware acceleration for 3D graphics, most end-user systems can be counted 
on to meet minimum requirements. Driver support for the DirectX Graphics API exists for practically 
every video card sold since the mid-90s. If hardware acceleration is not present on an end user system, 
DirectX Graphics provides software based emulation with full support for optimized CPU instruction 
sets (like MMX or 3DNow).  
 
When card manufacturers ship their latest hardware, they release a small high-speed software layer 
called a device driver along with it. Driver software acts as an interpreter, taking requests from the OS 
and turning them into native instructions the hardware can execute. As newer versions of the OS are 
released, the manufacturer can release new drivers to maintain compatibility. Device drivers are 
generally fast and stable and tend to improve with time. Hardware manufacturers like nVidia and ATI 
are constantly working on optimizing their device drivers and you should check their websites’ driver 
downloads sections periodically to ensure optimal application performance.  
 
Most hardware manufacturers package a DirectX Graphics compliant device driver called the 
Hardware Abstraction Layer (HAL). When a HAL is found on the current system, it indicates that the 
graphics hardware has hardware accelerated support for at least some DirectX Graphics functionality. 
DirectX Graphics can talk to hardware in a consistent way because the HAL takes care of translating 
requests into the native instruction set for the 3D hardware. Some adapters provide only hardware 
accelerated polygon rasterization. When this is the case, DirectX Graphics will transform and light 
polygons in software and then pass them to the HAL for rasterization. DirectX will shift the entire 
process to the HAL when transformation and lighting (T&L) support is available.  
 
One of the first things your application will need to do is determine whether or not a HAL is present on 
the current system. If a HAL is available (which is likely the case), then you will generally prefer it over 
software emulation. If a HAL is not provided, then the graphics adapter has no DirectX Graphics 
support. In this case you can choose to use the DirectX Graphics Hardware Emulation Layer (HEL). 
When you use the HEL, all transformation, lighting and rasterization of polygons is done on the CPU. 
The DirectX Graphics software emulation module is called the Reference Rasterizer. It emulates all of 
the DirectX Graphics features but is not viable for commercial purposes due to performance constraints.  
 
The reference rasterizer is useful for testing DirectX features when development hardware does not 
support all of the DirectX Graphics features your game will use. If you were developing an application 
that used bump mapping, and your test hardware did not support bump mapping, you could use the 
reference rasterizer to test your code. This ensures that users who have hardware that supports bump 
mapping can still enjoy it in your game. 
 
Features supported in the HAL vary widely across video hardware. Our application must be flexible 
enough to ensure that it does not attempt to use features that are not available while taking advantage of 
those that are.  
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Fig 2.1 shows the relationship between the application and hardware layers: 
 

 

If no HAL exists on the system, or if the 
application has decided not to make use of 
it, then DirectX Graphics will emulate all 
functionality in software using the HEL 
(reference rasterizer). 
 
The reference rasterizer is slow but is useful 
for testing features not supported in 
hardware on your development machine. 
 
The HAL does not provide emulation of 
DirectX features when a feature is not 
supported by the underlying hardware.  
 

                           Figure 2.1 
 

When graphics hardware supports the entire transformation and rendering pipeline, this frees up the 
system CPU to handle other game tasks like AI and physics. Most users will have cards capable of 
hardware rasterization, but not everyone will have full T&L support. The latest cards from nVidia (the 
geForce™ family) and more recently ATI (the Radeon™ family) support the transformation and lighting 
of vertices in hardware. 
 
The DirectX Graphics environment must be initialized appropriately to ensure that your application can 
take advantage of the best features available on a given system. Failure to properly initialize DirectX 
Graphics could result in significant performance loss or even total software failure. This will be the main 
focus of the first part of this chapter. Using DirectX Graphics to draw 3D shapes will be our focus in the 
second part of this lesson.  
 
Before we begin discussing DirectX Graphics initialization details, we will first take a short detour and 
discuss the Component Object Model (COM). This will set the stage for discussions later in the lesson 
that address proper DirectX Graphics initialization. 
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2.1 The Component Object Model (COM) 

DirectX is implemented using an object oriented programming model called the Component Object 
Model (or COM for short). Although programming with COM and creating your own COM objects can 
be a complex task, we will not have to deal with such things in this course. We only have to learn how to 
use COM objects with our application, which is quite simple since it is similar to using C++ objects. 
Although the COM programming we will need to do will be very straightforward, we will still need to 
have an understanding of the underlying COM technology and how it works in order to interact with 
DirectX in a safe manner. Therefore, we will use this opportunity to take a high-level look at COM. 
 
COM objects are code modules, more correctly called software components, most often although not 
always implemented as dynamic link libraries that can be installed on an end users’ computer system. A 
COM object, like a conventional DLL, exposes functions that applications can call to request 
functionality. Therefore COM objects offer a nice way to extend the functionality of the operating 
system. When COM objects are installed they can be used by all applications that wish to use them – as 
is the case with DirectX. When DirectX is installed, a number of COM objects are installed and 
registered with the operating system, making the functionality provided by those COM objects available 
to any application running on the machine. They can be treated as “black boxes” from the application 
perspective and have their functions called to perform supported tasks.   
 
The goal of COM is to provide a programming model where software components can be created and 
installed on systems with ease. Those same components need to be easily upgraded in the future without 
breaking backwards compatibility with software that used the older version of the object. COM objects 
are also completely portable. 
 
The nice thing about COM objects is that the programming language the software component was 
written in does not limit its use. A visual basic application for example could access functions in a COM 
object that was written in C++. This means that COM can be used in a variety of software development 
environments. This is all achieved by exposing an object's functionality through an interface. 

 

2.1.1 COM Interfaces 

A COM object’s code is completely encapsulated and you will have no direct access to its data. You can 
think of this as a C++ class where all member variables are private. The only way you can communicate 
with a COM object is through one or more interfaces that it supports. An interface is a collection of 
functions that share a common purpose. You can think of an interface as being like an abstract C++ class 
with no code implementations of the functions, but with a class signature. Interfaces provide a way for 
objects to communicate with other objects, and also provide a means for those objects to expose their 
functionality to other objects seeking it. Below we see an example of an interface that has two member 
functions. Interface names are always preceded with an ‘I’ as in IMyIterface or IMyInterface2. 
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typedef struct Interface 
 
Interface IMyInterface 
{ 
    HRESULT  MyFunction1 ( int , int ); 
    HRESULT  MyFunction2 (bool); 
}; 
 
This example interface has no code, but it does tell us that this interface supports two functions: 
MyFunction1 and MyFunction2. If any COM object supports this interface then it must support both of 
these functions. Interfaces can be inherited amongst objects and it is likely that one COM object may 
support many interfaces. Many COM objects may even support the same interface. 
 
The developer of the COM object will typically provide you with header files that can be linked into 
your application. These headers define all of the interfaces supported by this object. If you open up the 
d3d9.h header file that ships with the DirectX9 SDK, you will see the definitions of the interfaces 
supported by the DirectX Graphics objects. This means that our applications will recognize the interface 
names (such as IMyInterface in the above example). 
 
Below we see a code snippet from the DirectX Graphics header file d3d9.h which shows all of the 
interfaces supported by the main DirectX Graphics COM objects. These are the interfaces we will be 
dealing with throughout this course. By including this header file in our CPP files we can, for the most 
part, call the functions of any one of these interfaces just like they were C++ class member functions. 
 
Except from the d3d9.h header file 
 
interface IDirect3D9; 
interface IDirect3DDevice9; 
interface IDirect3DStateBlock9; 
interface IDirect3DResource9; 
interface IDirect3DVDecl9; 
interface IDirect3DVShader9; 
interface IDirect3DPShader9; 
interface IDirect3DBaseTexture9; 
interface IDirect3DTexture9; 
interface IDirect3DVolumeTexture9; 
interface IDirect3DCubeTexture9; 
interface IDirect3DVertexBuffer9; 
interface IDirect3DIndexBuffer9; 
interface IDirect3DSurface9; 
interface IDirect3DVolume9; 
interface IDirect3DSwapChain9; 
 
Once we have an interface to a COM object, we can call its member functions like we would if we were 
using a C++ class. The following example uses the IDirect3D9 interface to a valid COM object to call 
one of its member functions (GetAdapterCount). This call finds out how many graphics adapters are on 
the system on which the application is currently running. 
 
IDirect3D9 pd3d;                       // Assume this links to a valid COM object 
ULONG Count = pd3d->GetAdpaterCount(); // Call one of the interfaces functions 
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Although we have not covered how to get an interface to a COM object yet, you can see in the above 
example that once we have an interface, we can call its member functions just like C++ class member 
functions.  

 

2.1.2 GUIDS 

Every interface and COM object has an ID that is unique so that there can be no confusion as to which 
interface or object your application wants to use. The question then becomes, if you created your own 
COM object, how could you be sure that the ID you gave your COM object was not already be in use by 
other COM objects being developed elsewhere in the world? 
 
In order to assign each COM object or interface a unique ID, globally unique identifiers (GUIDs) are 
used. These GUIDs are 128-bit (16 byte) structures. Although it may at first seem that there is not 
enough scope in a 128-bit structure for guaranteed uniqueness, there actually is plenty. GUIDs can be 
created in such a way that they are guaranteed to be unique. They use an extremely high precision time 
stamp as well as things like the IDs of the specific hardware components installed on the system for 
which the GUID is being created (the COM object developer’s machine for example). GUIDs can be 
created very easily using a tool that ships with Microsoft Visual C++ called GUIDGEN.exe. 
 
GUIDs are used for both COM objects and interfaces. When a COM object is installed on your 
computer system, its GUID is entered into the registry. When an application wants to interact with this 
COM object, it passes in the GUID of the COM object it wants to use and the operating system looks it 
up in the registry. This will tell the OS which DLL module to load (if it is not already loaded). 
 
The GUID assigned to a COM object is called a class identifier (CLSID) and it is this GUID you must 
specify when you want to create an instance of a COM object. If the GUIDs of either interfaces or 
objects are not made publicly available, then applications will not be able to use them. You will usually 
find the GUIDs of an object or an interface in either the reference manual or appropriate header files that 
shipped with the component. 
 
A GUID assigned to an interface is called an interface identifier (IID). Whenever you wish to find out if 
a COM object supports a particular interface, you can pass in the GUID of the interface to validate its 
support for that object. 
 
GUIDs are typically pretty unfriendly things to work with. And although they are technically structures, 
they are often expressed as a string of 32 hexadecimal numbers in the format 8-4-4-4-12. Below we see 
the GUID for a DirectX Graphics COM object interface (the IDirect3D9 interface). 
 
{1DD9E8DA-1c77-4d40-b0cf-98fefdff9512} 
 
Imagine having to type in numbers like that every time you wanted to ask a COM object for a specific 
interface, or worse, trying to remember all of the GUIDs for the many interfaces DirectX Graphics 
supports. Fortunately, when a COM object is installed, its GUID is registered and assigned an alias (an 
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alternative name) which is typically pretty intuitive. It is common practice for the name assigned to the 
GUID of an interface to be the same as the name of the interface with IID_ preceding the name. So 
instead of typing in the above GUID to request the support of the IDirect3D9 interface, we could instead 
use its counterpart: IID_IDirect3D9. 
 
When referring directly to a COM object (versus an interface), you need to precede the name of the 
COM object with CLSID_ .  
 
If we look at the d3d9.h header file, we see the GUIDs listed for each interface. Below we see how the 
GUID for IDirect3DDevice9 has the alias IID_IDirect3DDevice9 assigned to it. The first parameter to 
the DEFINE_GUID macro is the IID_ name we wish to assign to the GUID. The numbers that follow 
are the GUID itself. 
 
DEFINE_GUID(IID_IDirect3DDevice9, 0xd0223b96, 0xbf7a, 0x43fd,  
                      0x92, 0xbd, 0xa4, 0x3b, 0xd, 0x82, 0xb9, 0xeb); 
 
Because this is included in our application source files, whenever we wish to specify this interface to 
work with, we can call it by its intuitive name (IID_IDirect3DDevice9) instead of its GUID. 

 

2.1.3 The IUnknown Interface 

All COM interfaces must derive from an interface called IUnknown. This is an interface that provides 
the core COM object usability. The result is that the first three entries in the vtable of all interfaces are 
the same three functions.  
 
typedef struct Interface 
 
Interface IUnknown 
{ 
   HRESULT   QueryInterface (REFIID *idd , void ** ppbObject ); 
   ULONG     AddRef ( void ); 
   ULONG     Release ( void ); 
}; 

 
These three functions are available through all COM interfaces and together they provide two very 
important concepts that fundamentally define how COM works. 
 
Before we look at how these functions work, let us first examine how one might go about creating an 
instance of a COM object. Imagine for now that you had installed a software component called 
'Aeroplane' (a single COM object) and that this object grouped functions into several interfaces 
depending on there relationship to the plane.  
 
The first thing our application must do before it can work with COM is initialize itself as a COM user 
with the operating system. We use the following CoInitialize function to initialize the application COM 
layer. This would typically be called at the start of an application: 
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CoInitialize (NULL); 

 
Our application is now ready to invoke the services of any COM object that is installed on the system. 
When the application closes, we must remember to match this call with a call to CoUninitialize to clean 
up all resources used by the COM library. This would typically be in your application’s ShutDown() 
function. 
 
CoUninitialize (); 
 
Continuing our example, imagine that the developers of this COM object decided to group the 
functionality of the entire Aeroplane object into three interfaces: 
 

 ICockpit 
 IPassengers 
 ICargo 

 
So this imaginary COM object exposes three interfaces. The ICockpit interface might have functions 
relating to the actual flying of the plane: 
 
Interface ICockpit 
{ 
    HRESULT SetAirSpeed  (ULONG Speed); 
    HRESULT SetAltimeter (ULONG Altitude); 
    HRESULT UnderCarriage(BOOL Down); 
}; 

 
We could have another interface that configures the passenger compartment: 
 
Interface IPassengers 
{ 
    HRESULT SeatBeltsOn    (BOOL Belts); 
    HRESULT SmokingAllowed (BOOL Smoking); 
}; 
 
The third interface allows for loading and unloading of cargo: 
 
Interface ICargo 
{ 
    HRESULT AddCargo     (ULONG Units); 
    HRESULT RemoveCargo  (ULONG Units); 
};  
 
 
Note that we are being very abstract here. As you can see, the one object supports three interfaces. Its 
functions are divided among these three interfaces by relevance to a particular category. Remember that 
we are not worried about how these functions are implemented inside the COM object itself; we only 
need access to the interfaces so that we can request that the COM object perform tasks. 
 
Once the COM layer has been initialized in our application by calling CoInitialize, our next task is to 
create an instance of the object wherever we need it. If we wanted to create an instance of the 
‘Aeroplane’ object, we need to do this by calling the following function: 
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HRESULT hr; 
ICockpit *pCP; 
 
Hr = CoCreateInstance(CLSID_Aeroplane, NULL, CLSCTX_INPROC_SERVER, 
                      IID_ICockpit, (LPVOID*)&pCP); 

   
The first parameter to the above function is the class id (CLSID) of the COM object we wish to create. 
Remember that it is common practice for COM objects to have a CLSID_ as an alternative to specifying 
the actual GUID string. This function will search the registry for the passed class ID and if found (in 
other words, if the ‘Aeroplane’ software component has been installed on the system), it will retrieve the 
dll/module that this object is located in and make sure it is loaded for use. 
 
The second parameter can safely be set as NULL for our purposes.  
 
The third parameter specifies that the object will run as part of the application’s process space. 
 
The fourth parameter requires some explaining. When the object is created, we will never receive a 
pointer to the object itself. This violates the rules of COM. Instead, we get a pointer to an interface that 
is used to communicate with the underlying COM object. As we have discussed, an object may support 
more than one interface, so when the object is first created, you pass in the interface id (IID_) of the 
interface you want returned. In the above code we have asked to initially have an ICockpit interface 
returned; we specified IID_ICockpit and for the final parameter passed in an address of a pointer to an 
ICockpit interface. This interface will hold a valid pointer to an ICockpit interface if the function is 
successful. We know that our Aeroplane object supports the ICockpit interface, so this function should 
be successfully executed. 
 
Now that we have a pointer to the ICockpit interface, we can call the functions of the ICockpit interface 
to instruct our COM object to perform some bit of work. The following code shows how we could use 
our newly returned interface to instruct the COM object to set the plane’s air speed to 325km, its altitude 
to 800 meters, and retract its wheels. 
 
pCP->SetAirSpeed (325); 
pCP->SetAltimeter (800); 
pCP->UnderCarriage(FALSE); 
 
Now this is all well and good, but we only have the ICockpit interface to hand. We know that the object 
supports two more interfaces (IPassenger and ICargo) which allow us to instruct the Aeroplane object to 
perform other tasks that we may wish to use. However, when we created the instance of the Aeroplane 
object, we only received a pointer to one of its interfaces. We could have requested one of the other 
interfaces just as easily, but that does not help us understand how to access the other interfaces after the 
fact. As it happens, the IUnknown interface (from which all COM interfaces derive) has a member 
function called QueryInterface that will assist us in this task.  
 
HRESULT QueryInterface (REFIID *idd , void ** ppbObject ); 
 

All COM interfaces support this function as a means of querying and obtaining pointers to other 
interfaces that are supported by the parent COM object. Once we have set up the cockpit parameters, we 
could request a pointer to the ICargo or IPassenger interfaces by calling the ICockpit::QueryInterface 
member function: 
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IPassenger *pPassenger; 
ICargo *pCargo ; 
 
pCP->QueryInterface (IID_IPassenger , (LPVOID *)&pPassenger);   
pCP->QueryInterface (IID_ICargo , (LPVOID*)&pCargo); 
 
// Use our two new interfaces 
pPassenger->SeatBeltsOn (TRUE); 
pPassenger->SmokingAllowed (FALSE); 
pCargo->AddCargo(25); 
 
There are some very important concepts to be noted in the previous code snippet. Most importantly, if 
we have any interface to an object, we can query and obtain a pointer to any other interface the object 
supports by calling QueryInterface. For example, we initially only have one valid interface (ICockpit) 
linked to its underlying COM object. By calling ICockpit::QueryInterface we can request another 
supported interface. If this interface is not supported by the underlying COM object then the function 
will return a failure message. But if the requested interface is supported, then a pointer to an interface of 
that type will be returned. In the code we first asked for an IPassenger object, but we could have first 
asked for the ICargo interface instead. Order is not significant here so long as the interface is supported 
by the object. Note that we called ICockpit::QueryInterface both times to query for new interfaces. 
However, once the IPassenger interface was created we could have called IPassenger::QueryInterface 
instead to query the ICargo interface. The result would have been the same because both of these 
interfaces are attached to the same object. These concepts demonstrate why the IUnknown interface 
must serve as the base in all COM interfaces. Without this core functionality, the application would have 
no way to request additional interfaces supported by a COM object. 
 
So we now know how to create an instance of a COM object and also how to get access to any of its 
interfaces in order to call their functions. The next important thing that the IUnknown interface provides 
COM objects is the ability to handle lifetime encapsulation. 

 

2.1.4 Lifetime Encapsulation 

One interesting point about COM objects is that the application does not control their creation or 
destruction. A COM object keeps an internal reference count of how many interface requests it has 
dispatched to an application. This count is set to 1 when the object is first created and the first interface 
is returned via CoCreateInstance. Every time we call QueryInterface from one of the object’s supported 
interfaces to retrieve a different interface, the internal reference count is incremented.  
 
When we no longer need to use an interface, we call the Interface::Release() method. This is another 
IUnknown member function inherited by all interfaces. Release() signals to the COM object that we no 
longer need this interface to be valid and it can therefore be detached from the object. The COM object 
will decrement its internal reference count by one to indicate that one less interface is now actively 
linked to the object. An interface pointer should not be used after it has been released, so it is good 
programming practice to set the pointer to NULL immediately afterwards. This makes it easier to track a 
bug that might be caused by your application trying to use an interface pointer which was already 
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released. Once the object’s reference count drops to zero, it means that there are no interfaces to this 
object in use by any application. The object interprets this as indicating that its services are no longer 
required, and at this point the object destroys itself. This means that our application does not have to 
release the memory for the COM object since it controls its own lifetime through the tracking of active 
interfaces.  
 
This is actually just as well, because we have no idea how the memory for the COM object was 
allocated to begin with. Remember that we did not create it manually and we would hate to mismatch a 
call to free to release memory allocated with new and vice versa. Allowing the object to control its own 
construction and destruction is an elegant solution. Another vital reason for this reference counting 
mechanism is to allow for other applications that may be using the same COM object. If our application 
was allowed to simply destroy the COM object when it was no longer needed, other applications still 
using it -- unaware of its destruction -- would most likely crash. 
 
Let us have a look at this concept in action. In this next example we create an instance of an Aeroplane 
object as before and initially request an ICargo interface. This goes to show that we can request any of 
its supported interfaces to be returned from the CoCreateInstance function. Please note that this code 
would, in a real situation, check error codes returned from each function, but we have not covered the 
values returned from COM member functions yet. 
 
// global interface pointer 
ICockpit *pCockpit; 
 
void ApplicationSetup(){ 
    // Initialize COM layer for application 
    CoInitialize(NULL);  
  
    // Local Interface pointer 
    ICargo * pCargo; 
 
    // Create an instance of IAeroplane with an initial ICargo interface 
 CoCreateInstance( CLSID_Aeroplane , NULL , CLSCTX_INPROC_SERVER, 
                      IID_ICargo , (LPVOID*)& pCargo);  
 
    // We have a valid object and one interface linked to it.  
    // The objects internal reference count is 1 
    // Now we could use the ICargo interface 
    pCargo->AddCargo(35); 
 
    // Now get a pointer to a ICockpit interface that the object 
    // also supports and store in global pointer 
    pCargo->QueryInterface( IID_ICockpit , (LPVOID*)&pCockpit) 
 
    // Objects reference count is now 2 because it has dispatched 2 interface 
    // requests(ICargo and ICockpit) We have no further use for the ICargo 
    // interface here so release it. 
    pCargo->Release() 
    pCargo = NULL; 
 
    // pCargo pointer is no longer valid. the com object has its reference count  
    // decremented. the reference count is now 1 
} 
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In the above function we initialize the COM layer, create an instance of our Aeroplane COM object, and 
retrieve a pointer to an ICargo interface. Behind the scenes, the object’s internal reference counter will 
be incremented to 1 because it has dispatched an interface to the application (ICargo). Next we use the 
ICargo interface member functions to set some states within the object (in this case we set the cargo of 
the object to 35 units) and then call the QueryInterface function to request the COM object to dispatch 
an ICockpit interface. At this point the object’s internal reference count is incremented again. It now 
equals 2 because there are currently two interfaces that the object has dispatched to the application that 
are still active. 
 
We release the pCargo interface because we no longer need it anywhere else. If we did need it 
somewhere else we could always request the interface again so long as we had a surviving interface 
from which to call QueryInterface. We could also store it in a global pointer if we needed its lifetime to 
extend past the scope of the function. At this point the COM object decrements its internal counter from 
2 back to 1 and detaches the interface pointer so that it is no longer valid. The pCargo interface pointer 
should not be used from this point forward. 
 
There is now only one active interface still referencing the object and this brings up an important point. 
In this example we purposely made the ICockpit pointer a global variable. This means of course, that we 
can access it and eventually release this interface from its underlying COM object anywhere in the 
program. If pCockpit was a local pointer we still have to make sure that we Release the interface before 
the pointer itself goes out of scope. This would cause the object to be destroyed because the reference 
count would fall to 0. 
 
In the following function you can see that because we still have our global pointer to an ICockpit 
interface, the COM object remains alive and can be called elsewhere. The reference count of the COM 
object at this point would be 1. 
 
void SomeOtherFunction () 
{ 
 // The COM object is still alive because the ICockpit interface has not bee released. 
       // Because this is a global pointer we can continue to use it else where.  
       // The Object’s reference count is 1 because the  
 // ICockpit interface has not yet been released from the object 
 pCockpit->SetAirSpeed(400); 
 pCockpit->SetAltimeter(1000); 
} 

 
Finally, at application shutdown we release the ICockpit interface. This reduces the reference count of 
the COM object to 0 and causes the COM object to destroy itself and release any resources back to the 
system. As our final act, we uninitialize the COM layer by calling CoUninitialize. 
 
void ApplicationShutdown() 
{ 
    //We should release any interfaces here from their objects.  
    //We still have the ICockpit interface attached so we should release it. 
    //This will drop the objects reference count from one to zero causing the 
    //object to unload itself from memory 
    pCockpit->Release(); 
    pCockpit=NULL; 
     
    //... Other cleanup stuff here 
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    // finally uninitialize the COM layer 
    CoUninitialize() 
} 
 
There is one more key function from the IUnknown interface that all interfaces inherit. It is called 
IUnknown::AddRef() and it allows the application to manually increase the reference count of the COM 
object.  
 
ULONG AddRef (void); 
 
Now why would we want to do this? Does this not render the auto-reference counting system useless? 
 
This function is provided because you will often wish to make a copy of a pointer to an interface and it 
is cleaner to always call Release for every pointer. If we were to make a copy of an interface pointer and 
not increase the reference count, the outcome could be fatal. The following code shows such an error. 
 
In the following example, assume that the Aeroplane COM object currently has one active interface 
(ICockpit) and a pointer to that interface is passed into the function. The reference count of the COM 
object is 1. 
 
void BADfunction( ICockpit *pCockpit)   // COM Object counter = 1 
{ 
 ICockpit * pCockpitCopy; 
  
       pCockpitCopy = pCockpit;        // Make copy of pointer 
 pCockpit->Release();        // Counter = 0 so object is destroyed   
 pCockpit=NULL; 
 
 pCockpitCopy->SetAirSpeed(400);   // ERROR! -- object no longer alive 
 pCockpitCopy->Release(); 
 pCockpitCopy=NULL: 
} 

 
In the code we made a copy of the pCockpit pointer (into pCockpitCopy) but we forget to call AddRef 
to increase the reference count of the object. This is dangerous because the reference count is still 1 but 
we now have two pointers using the object. The problem occurs when we call pCockpit::Release(). This 
causes the COM object to decrement its internal reference count back to 0 -- causing the object to be 
destroyed. However, we now have another pointer to the interface (pCockpitCopy) hanging around 
which we theoretically think is still usable because we have not yet released it. Of course, this causes the 
application to fail because it is a dangling pointer to an interface for an object that is no longer alive.  
 
Therefore, whenever you make an explicit copy of an interface pointer you should call AddRef. Make 
sure that you always call Release() for each interface pointer as well. This makes it much easier and 
tidier to see if the object is still valid. Here is the altered code: 
 
 
 
 
 
 
void GOODfunction( ICockpit * pCockpit)  // COM Object counter =1 
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{ 
 ICockpit * pCockpitCopy; 
  
       pCockpitCopy = pCockpit;   // Make copy of pointer 
 pCockpitCopy->AddRef();      // Increment counter. Now =2 
       pCockpit->Release();              // Counter now = 1  
 pCockpit=NULL; 
 
 pCockpitCopy->SetAirSpeed(400);   // Com object still alive all is well 
 pCockpitCopy->Release();        // counter =0 so object is destroyed 
 pCockpitCopy=NULL: 
} 

 
This is a habit you should adopt immediately since it is a crucial part of good COM programming. It is 
easy to see when debugging if a pointer is used and never had Release called. If you do not properly 
manage the reference counting of your COM object, then your application will have memory leaks or 
perhaps fail if an object is unloaded earlier than it should have been. 
 
 
2.1.5 Return Values 

All COM interface member functions return a 32-bit integer called an HRESULT. For most functions 
this is a structure that contains three bits of vital information about whether or not the function was 
successful. The 32-bit integer is actually divided up into 4 separate fields as shown below. 

 
Severity - Bit 31 of the integer is set to 1 if an error has occurred or 0 if the function was a success.  
 
Reserved – There are four bits of the HRESULT structure which are reserved 
 
Facility – There are eight bits reserved to hold a facility code. This is a number that can be used to 
indicate the responsibility for the error. As an example, all DirectX Graphics functions return an 
HRESULT with a facility code of hex value 0x876. This number makes it easier to track down 
which code module the error was created in for debugging purposes. 
 
Error Code – This is a 16-bit field that the COM object can use to return a meaningful error code. 
For example, if you open up the header file d3d9.h and scroll to the bottom of the file, you will see a 
list of many of the defined error codes being used alongside a macro to create a valid HRESULT. 
 
Excerpt from D3D9.h 
 
#define D3DERR_WRONGTEXTUREFORMAT               MAKE_D3DHRESULT(2072) 
#define D3DERR_UNSUPPORTEDCOLOROPERATION        MAKE_D3DHRESULT(2073) 
#define D3DERR_UNSUPPORTEDCOLORARG               MAKE_D3DHRESULT(2074) 
#define D3DERR_UNSUPPORTEDALPHAOPERATION        MAKE_D3DHRESULT(2075) 
#define D3DERR_UNSUPPORTEDALPHAARG               MAKE_D3DHRESULT(2076) 
#define D3DERR_TOOMANYOPERATIONS                 MAKE_D3DHRESULT(2077) 
#define D3DERR_CONFLICTINGTEXTUREFILTER          MAKE_D3DHRESULT(2078) 
#define D3DERR_UNSUPPORTEDFACTORVALUE            MAKE_D3DHRESULT(2079) 
#define D3DERR_CONFLICTINGRENDERSTATE            MAKE_D3DHRESULT(2081) 
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#define D3DERR_UNSUPPORTEDTEXTUREFILTER          MAKE_D3DHRESULT(2082) 
#define D3DERR_CONFLICTINGTEXTUREPALETTE         MAKE_D3DHRESULT(2086) 
#define D3DERR_DRIVERINTERNALERROR               MAKE_D3DHRESULT(2087) 
#define D3DERR_NOTFOUND                           MAKE_D3DHRESULT(2150) 
#define D3DERR_MOREDATA                           MAKE_D3DHRESULT(2151) 
#define D3DERR_DEVICELOST                         MAKE_D3DHRESULT(2152) 
#define D3DERR_DEVICENOTRESET                   MAKE_D3DHRESULT(2153) 
#define D3DERR_NOTAVAILABLE                     MAKE_D3DHRESULT(2154) 
#define D3DERR_OUTOFVIDEOMEMORY                  MAKE_D3DHRESULT(380) 
#define D3DERR_INVALIDDEVICE                     MAKE_D3DHRESULT(2155) 
#define D3DERR_INVALIDCALL                        MAKE_D3DHRESULT(2156) 
#define D3DERR_DRIVERINVALIDCALL                 MAKE_D3DHRESULT(2157) 
#define D3DERR_WASSTILLDRAWING                   MAKE_D3DHRESULT(540) 
 

What you see in the parentheses above are the actual error codes for each error. The 
MAKE_D3DHRESULT macro takes this error code and embeds it into an HRESULT with the DirectX 
Graphics Severity code. 
 
#define MAKE_D3DHRESULT( code )  MAKE_HRESULT( 1, 0x876, code ) 
 
The first parameter indicates that bit 31 should be set to 1. All HRESULTs have bit 31 set if they are 
reporting errors. All of the codes listed above are error codes, so they all have the 31st bit set. The 
second parameter is the facility code which is used to identify that this is a DirectX Graphics error, as 
opposed to some other COM object being used which is not related to DirectX Graphics. This other 
COM object would have its own facility code to allow us to distinguish between them. Finally, the last 
parameter is the actual error code itself. With it we can identify which of the DirectX Graphics errors 
actually occurred. 
 
HRESULTS are also used to return success, or sometimes just the status of some object state. For 
example, in the same header file you can see that another HRESULT is created which is not an error but 
instead indicates success: 
 

 #define D3DOK_NOAUTOGEN    MAKE_D3DSTATUS(2159) 
 
 Here we use a macro which is almost the same as MAKE_D3DHRESULT with the exception that the 

31st bit is cleared to indicate that this is not an error. 
 

 #define MAKE_D3DSTATUS( code )  MAKE_HRESULT( 0, 0x876, code ) 
 
The D3DOK_NOAUTOGEN success value is one example where the function itself was successful 
BUT the information that was returned could be vital in terms of how you proceed. In this case it is 
successfully reporting that Auto Texture Generation is not supported by the hardware (do not worry 
about what that means for now). 
 
Because an HRESULT can indicate any number of success or failure values, it can make testing the 
result of a function tedious and error prone. For example, imagine that we have called a COM member 
function that returns a number of error codes. We cannot simply test for success or failure as we do with 
a Boolean because we may miss something important: 
HRESULT hr= SomeInterface->SomeFunction() 
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if (hr == E_FAIL) 
{ 

Report and error and handle the error 
} 
else 
{ 

Report success and continue 
} 

 
This approach may seem fine, but what happens if the function can return many different error codes 
and not just an E_FAIL error? The function could also return E_OUTOFMEM or 
E_INVALIDARGUMENT for example, and the above code would not catch these two errors. Although 
you could add a large collection of tests in the above code to test all possible return values, it is often the 
case that you are only interested in whether or not an error occurred. What the error actually was may 
not be as important to you. Certainly if an error has occurred and you have detected it, you could always 
take additional steps to narrow down which error was reported. 
 
To do easy testing of HRESULTS there are two macros we can use: SUCCEEDED and FAILED. With 
them we can test HRESULTs in a Boolean style as shown below. These macros can generically signal 
success or failure simply by testing the severity bit of the HRESULT. 
 
HRESULT hr = SomeInterface->SomeFunction(); 
 
if (FAILED(hr)) 
{ 
 report and handle error 
} 
else 
{ 
 report success 
} 
 
The above code would catch all errors returned by the function. Whether you use SUCCEEDED or 
FAILED or both is totally up to you. The code could instead be written as: 
 
HRESULT hr = SomeInterface->SomeFunction(); 
 
if (SUCCEEDED(hr)) 
{ 
 report success 
} 
else 
{ 
 report and handle error 
} 
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Note as well that the ‘!’ operator works here. !SUCCEEDED is the same as FAILED and !FAILED is 
the same as SUCCEEDED: 
 
if (!SUCCEEDED(hr)) 
{ 
 report and handle error 
} 
else 
{ 
 report success 
} 
 
Another handy DirectX function is included in the header file dxerr9.h and lib file dxerr9.lib. If you 
include and link these with your application then you can call two functions that accept an HRESULT 
and return a string of text explaining the error. For example, you could do the following once an error 
has occurred: 
 
if (FAILED(hr) 
{ 
     Char *Error     = GetErrorString9(hr); 
     Char *ErrDesc = GetErrorDescription9(hr); 
     PrintMyString (Error); 
     PrintMyString (ErrDesc);   
}; 
 
After trapping the error, we retrieve a meaningful error code and a description of the error. These results 
can be output to the screen or to a log file. This is very handy for debugging. 
 
There are alternatives for handling HRESULT errors if you do not wish to include dxerr9.h and 
dxerr9.lib. You could write down the hex value of the entire HRESULT and use the D3DXErr.exe that 
ships with the DX9 SDK to input the value and have the actual error returned.  This application is 
located in the BIN folder inside the folder where you installed the SDK. You can also extract the error 
code from the HRESULT in code by using the following Windows macro, checking the value against 
the definitions in the header files. Windows defines three macros that can be used to extract all 3 bits of 
information from the 32-bit HRESULT. 
 
#define HRESULT_CODE(hr) ((hr) & 0xFFFF) 
#define HRESULT_FACILITY(hr) (((hr) >> 16) & 0x1fff) 
#define HRESULT_SEVERITY(hr) (((hr) >> 31) & 0x1) 
 
So to extract the actual error code we could just do: 
 
int ErrorCode = HRESULT_CODE(hr); 
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Non-HRESULT Return Values 

While an HRESULT can be handled trivially thanks to the FAILED and SUCCEEDED macros, there 
are exceptions to the rule. Some COM functions return an HRESULT as a simple 32-bit integer and this 
is the case with two of the IUnknown interfaces functions: 
 
ULONG     AddRef (void); 
ULONG     Release(void); 
 
These functions return the current reference count of the object after the function call. The value 
returned by these functions are mostly for debugging purposes and should not be relied on as means of 
COM object management.  

 

2.1.6 Backwards Compatibility 

The Component Object Model does have important restrictions. We saw earlier that every interface has 
a unique GUID for identification purposes. Because of this, once an interface has been released to the 
public it must never change. It would seriously undermine COM's design for backwards compatibility if 
a single GUID was the same for many different versions of an interface -- each with different functions 
sets. Even fairly trivial interface changes, such as adding an additional function, is strictly forbidden 
because this could break applications using an older version of the interface. 
 
So the question is, how does one upgrade COM object functionality? Refer back to our Aeroplane COM 
object and its three interfaces. Let us say that we wanted to release a new version of our Aeroplane 
object with extra functionality that allowed the user to set the autopilot. This new COM upgrade would 
replace the old COM object when installed on the user’s machine. Since older applications will want to 
use this COM object as if it was still the older version, we must make sure that the old interfaces are 
supported and implemented within the new object. 
 
Let us say that the logical place for our new function SetAutopilot() would be as a member of the 
ICockpit interface. Although this is true, the ICockpit interface has already been made public and cannot 
be changed. So it is common practice to create a new interface which adds the extra functionality like 
so: 
 
HRESULT Hr; 
ICockpit   *pCP; 
ICockpit2  *pCP2;   
 
CoCreateInstance( CLSID_Aeroplane , NULL , CLSCTX_INPROC_SERVER, 
                  IID_ICockpit , (LPVOID*) &pCP); 
 
// Use old interface as normal, old app don’t break cause its still here 
pCP->SetAirSpeed(325); 
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// New apps can request the addition interface to access extra function 
pCP2->QueryInterface ( IID_ICockpit2 , (LPVOID*)&pCP2); 
pCP2->SetAutopilot (true); 
 
As you can see, the object still supports the older interface, so older applications can request this 
interface and carry on using the newer COM object without incident. Applications that are aware of the 
COM object’s extended features can request the new interface to access the new functionality. In this 
example the ICockpit2 interface would look like this. 
 
Interface ICockpit2 
{ 
    HRESULT SetAutopilot (BOOL on); 
}; 
 
It is customary for newer versions of an interface to have the number appended to the end as shown 
above. This is one way that new interfaces can be created.  
 
Another way is for the developer to support all of the older interface functions in the new interface 
through the use of interface inheritance. This is a much nicer solution in most circumstances because the 
newer applications do not have to request the older interface first and then query again to access the new 
functionality. In this case the two ICockpit interfaces would look like so: 
 
Interface ICockpit 
{ 
    HRESULT SetAirSpeed   (ULONG Speed); 
    HRESULT SetAltimeter  (ULONG Altitude); 
    HRESULT UnderCarriage (BOOL Down); 
}; 
 
Interface ICockpit2 
{ 
    HRESULT SetAirSpeed   (ULONG Speed); 
    HRESULT SetAltimeter  (ULONG Altitude); 
    HRESULT UnderCarriage (BOOL Down); 
    HRESULT SetAutopilot  (BOOL on) 
}; 
 

Newer applications can now forget about the ICockpit interface and simply request an ICockpit2 
interface when the object is initially created. All of the functions of the original interface are supported 
in the new interface so this solution works well: 
 
HRESULT Hr; 
ICockpit2  *pCP2;   
 
CoCreateInstance(CLSID_Aeroplane , NULL , CLSCTX_INPROC_SERVER, 
                 IID_ICockpit2 , (LPVOID*) &pCP); 
 
// Use old interface as normal, old app don’t break cause its still here 
pCP2->SetAirSpeed(325); 
pCP2->SetAutopilot(true); 
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This is not something we have to concern ourselves too much with in the latest versions of DirectX 
Graphics however because it uses all new interfaces, negating the need to query later ones. In the above 
example, older applications still have access to the totally unchanged ICockpit interface and newer 
applications can just forget all about the ICockpit interface and use an ICockpit2 interface for 
everything. 

 

2.1.7 COM and DirectX Graphics 

You might be starting to feel that COM requires too many complex procedures for seemingly simple 
tasks. Fortunately, with each new release of DirectX, the interaction between your application and the 
underlying COM layer becomes more and more encapsulated. In DX9 we no longer have to call 
CoInitialize or CoUninitialize because it is all handled for us by DirectX. Also, we hardly ever have to 
manually create a COM object using CoCreateInstance since this is something DirectX has wrapped for 
us as well. But this is not the case with all modules in DirectX, so the information learned here will 
surely come in handy in the future. When using DirectX Graphics, we rarely need to manually create a 
COM object because DirectX Graphics has a global function to create the main COM object and return 
the top level interface to that object. Once we have an interface to the top level object, we can use its 
member functions to create other DirectX Graphics objects and interfaces automatically. Thus, we will 
hardly ever need to call the QueryInterface function either, as there are helper functions within the 
DirectX Graphics interfaces to wrap the querying of interfaces. These wrappers also increment the 
reference count before returning the interface to the application. However, what is vitally important is 
that you still need to manage your reference count correctly and remember to do the following: 
 

• Always release your interfaces when you have finished using them. 
• If you make an explicit copy of an interface pointer, call AddRef to increase the reference count. 
 

Make a note of this because if you do not release your interfaces after use, the objects will not be 
destroyed. This can lead to significant memory leaks. Also, if you do not call AddRef as you copy 
interface pointers, you could end up with dangling pointers to objects that have already been destroyed.  
 
To better show the COM encapsulation of DirectX Graphics, the following code shows everything we 
need to do to create the top level DirectX Graphics COM object and access its interface. We can then 
use this interface to query the graphics capabilities of the system (among other things) on which the 
application is running, and create other DirectX Graphics objects and interfaces. 
 
LPDIRECT3D9 pD3D; 
pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 

 
Believe it or not, that is it. As you can see, there is no need to initialize the COM layer via CoInitialize 
and no need to call CoCreateInstance to create the Direct3D9 object. We simply call the DirectX 
Graphics global function Direct3DCreate9. It will initiate the COM layer transaction, create the COM 
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object, and return a pointer to an IDirect3D9 interface. We can then use the pointer to this interface to 
call member functions. 
 

NOTE: The variable type LPDIRECT3D9 is defined in the d3d9.h header file as a pointer to an IDirect3D9 
interface. Many people mistakenly call this a pointer to the Direct3D9 object but it is not. We never get a 
pointer to a COM object, only to an interface that the object supports. Therefore, this is actually a pointer 
to an IDirect3D9 interface which is attached to our Direct3D9 object. 
 
typedef struct IDirect3D9 *LPDIRECT3D9 
 
You will find that all interfaces have been typedef’d in a similar way. Another interface that DirectX 
Graphics uses is called IDirect3DDevice9. It has a pointer that is typedef’d in the same way: 
 
typedef struct IDirect3DDevice9 *LPDIRECT3DDEVICE9 
 
Whether you prefer to use LPDIRECT3DDEVICE9 or IDirect3DDevice9 * is up to you. 

 
The next example shows that the Direct3D9 object exposes functions to create other COM objects and 
return interfaces for them. First we call the IDirect3D9::CreateDevice member function. This function 
creates the new COM object (the rendering device) and returns an interface to it (IDirect3DDevice9). 
The only parameter of importance for this discussion is the final one -- the address of a pointer to an 
IDirect3DDevice9 interface. If the function is successful, on function return this will point to a valid 
interface for the device object that was created. This behavior is typical of most of the DirectX Graphics 
objects. Using this approach we can create all of the objects DirectX Graphics provides and gain access 
to the full range of the DirectX Graphics functionality. 
 
LPDIRECT3D9   pD3D; 
LPDIRECT3DDEVICE9  pD3DDevice; 
pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
pD3D->CreateDevice( blah , blah , blah , blah , blah , (LPVOID*)&pD3DDevice); 
pD3DDevice->SomeFunction(); 
 
This encapsulation reduces most of what we have just learned (managing COM objects and interfaces)  
to nothing more than making sure that you release interfaces when you are finished using them and 
calling AddRef if you make an explicit copy of an interface pointer. That is nice to know. 
 

NOTE: The Direct3DCreate9 function is a global function used to kick-start the COM interaction with 
DirectX Graphics. This function is not a COM method, but is used to initialize the COM layer and create 
the initial COM object. Once we have a Direct3D9 object we can either directly or indirectly create all 
other DirectX Graphics COM objects through COM interface member functions. 
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2.2 Initializing DirectX Graphics 

The IDirect3D9 object interface provides access to core DirectX Graphics functionality. Creating this 
interface is typically one of the first things our application will do during initialization. DirectX 
Graphics contains a global function to handle creation: 
 
IDirect3D9 *Direct3DCreate9(UINT SDKVersion); 
 
This is how it would be called from our code: 
 
LPDIRECT3D9 pD3D; 
pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 

 
The function accepts a single unsigned integer parameter. The integer identifier D3D_SDK_VERSION is 
defined in the d3d9.h header file and ensures that the application is built with the correct header file 
versions. The function creates the Direct3D9 COM object, increases its reference count, and returns an 
IDirect3D9 interface to the object. Direct3DCreate9 is the only global non-COM function that DirectX 
Graphics provides (excluding D3DX). All other functionality will be accessed using COM methods 
either directly or indirectly through the IDirect3D9 interface. 
 
IDirect3D9 exposes methods that allow the application to query the hardware capabilities of the current 
system. This interface is also used to create the Direct3DDevice9 object and retrieve a pointer to the 
IDirect3DDevice9 interface. The IDirect3DDevice9 interface provides the functionality our application 
will use most of the time.  
 
In order to create a proper Direct3DDevice9 object, we will need to know the capabilities of the 
hardware installed on the system. For example, cards like the Voodoo 1™ and the Voodoo 2™ are 3D 
accelerators with no 2D support. As a result they exist alongside another graphics card which provides 
that 2D functionality. So there may be two physically separate 3D hardware accelerated devices on the 
system. Since we can only use one of them, which one do we choose? If we choose incorrectly our 
application is not likely to perform as well as it should. We may wind up using the CPU when there was 
hardware acceleration available on the video card. 
 
The IDirect3D9 interface provides functions for querying the number of graphics adapters installed on 
the system as well as functions for querying the capabilities of each of those adapters. So the main 
purpose of this object is to gather information that we can use to create the most optimal 
Direct3DDevice9 object possible on an end user system. Some of the key functions of this interface are 
shown below. This is not a complete list, but it does provide the core functionality we will need in this 
lesson:  
 
UINT    GetAdapterCount    (VOID);  
HRESULT GetDeviceCaps      (UINT Adapter,  D3DDEVTYPE DeviceType, D3DCAPS9* pCaps); 
UINT    GetAdapterModeCount(UINT Adapter , D3DFORMAT Fomat ); 
HRESULT GetAdapterDisplayMode(UINT Adapter,  D3DDISPLAYMODE* pMode ); 
HRESULT CheckDeviceType(UINT Adapter,  D3DDEVTYPE CheckType, 
                        D3DFORMAT DisplayFormat, D3DFORMAT BackBufferFormat, 
                        BOOL Windowed ); 
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HRESULT EnumAdapterModes(UINT Adapter,   D3DFORMAT Format,  UINT Mode, 
                         D3DDISPLAYMODE* pMode); 
HRESULT CreateDevice(UINT Adapter,  D3DDEVTYPE DeviceType,  HWND hFocusWindow, 
                     DWORD BehaviorFlags,           
                     D3DPRESENT_PARAMETERS* pPresentationParameters, 
                     IDirect3DDevice9** ppReturnedDeviceInterface); 
 
The structures and enumerated types used as parameters will be covered later in the lesson. For now we 
will briefly explore some these functions so that we can begin to understand system capability querying.  
 
GetAdapterCount – This function returns the number of physical display adapters available on the 
current system. The value returned will usually be 1; indicating only one display adapter is installed. The 
first graphics card installed is typically referred to as the primary display adapter. 
 
While it is true that only one adapter will exist on the vast majority of systems, we still want our code to 
handle cases where more than one is present. Although we could choose to ignore the other adapters and 
simply use the first adapter found, we risk not selecting the most capable adapter available. The 
Enumeration class that we will build in our final Lab Project for this lesson will let the user choose 
which adapter they wish to use. 
 
GetAdapterDisplayMode – This function returns the current display mode of the adapter identifier. 
Each adapter on the system is assigned an integer index between 0 and AdapterCount – 1. This is 
referred to as the adapter ordinal. If you need to find out information about the current display mode, 
the D3DDISPLAYMODE returned will include this information (resolution, color bit depth, and so on). If 
the adapter is the primary display adapter currently being used to display the Windows desktop, then the 
display mode returned will be equal to the resolution and color depth you have your desktop set to. 
 
typedef struct _D3DDISPLAYMODE  
{ 
    UINT       Width; 
    UINT       Height; 
    UINT       RefreshRate; 
    D3DFORMAT  Format; 
} D3DDISPLAYMODE; 

 
The D3DDISPLAYMODE structure contains the width and height (in pixels) of the current display mode, 
the monitor refresh rate, and the display surface pixel format.  
 
EnumAdapterModes –In DirectX Graphics, there are a number of formats that describe how image 
pixels are represented in memory. The D3DFORMAT enumerated type contains all of the formats 
currently supported by DirectX. When we create our game, we will want it to run in a variety of 
different video resolutions given the wide range of hardware capability across the marketplace. People 
with low-end machines might need to run our game in a resolution of 640x480 for better performance 
while users with high-end machines can run 1600x1200. This function allows us to request a list of 
video resolutions available for a given pixel format.  
 
For example, let us assume that there is one adapter installed in the system (the primary display adapter) 
and that we desire a display mode with a 16 bit color format of D3DFMT_R5G6B5 (5 bits for red, 6 for 
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green, and 5 for blue in every pixel). We could use the following code to find out if this format is 
supported by the adapter: 
 
D3DDISPLAYMODE       Mode; 
UINT                 Adapter = 0; 
D3DFORMAT            Format = D3DFMT_R5G6B5; 
LPDIRECT3D9          pD3D; 
 
pD3D = Direct3DCreate9( D3D_SDK_VERSION );  
if (!pD3D) return FALSE; 
 
UINT NumberOfModes = pD3D->GetAdpaterModeCount (Adapter, Format); 
 
if (!NumberOfModes) return FALSE; 
 
for (UINT I=0; I < NumberOfModes; I++)  
{ 
     pD3D->EnumAdapterModes( Adapter, Format , I , &Mode); 
     FormatModeList->push_back(Mode); 
} 

 
In this example we tested for D3DFMT_R5G6B5 format support (generally available on most cards). We 
use an adapter ordinal of 0 (the number of the default adapter) and do not iterate through all adapters on 
the system. Next we create the Direct3D9 object and use one of its member functions to query the 
number of video modes the adapter supports for that pixel format. For example, the adapter may support 
640x480, 800x600 and 1024x768 video modes -- all using the D3DFMT_R5G6B5 format. If this was the 
case, then the number of modes returned would be 3. More recent hardware may support many more 
modes than this (sometimes going to resolutions beyond 2000 pixels in a single dimension). Of course, 
in a commercial application we would not look for one particular format. We will write some code later 
in the lesson that will search all formats available. If the desired video mode format is not available, we 
will try another until we find the best match. 
 
If the number of modes returned is zero, the graphics card does not support this color format. This is not 
unusual as there are a number of 16 bit color formats available and it may use one of the others instead. 
In a real application we would continue to test other possible 16 bit formats until we found a suitable 
match. 
    
Next, we loop through the number of available modes and call the 
IDirect3D9::EnumAdapterModes function. This function parameter list includes the adapter 
ordinal, the desired pixel format, and the number of modes we wish to retrieve. For each format an 
adapter supports, there is a list of display modes containing 0 to modecount - 1 elements. This function 
asks for details of the display mode at a given index in that list (the third input parameter ‘I’ above). 
Details are returned in the D3DDISPLAYMODE structure whose address is contained in the last 
parameter. This structure will contain the width and height of the mode, the format itself (which we 
passed in) and the refresh rate. Note that it is quite possible that many of the modes returned have 
identical width, height, and format settings, and differ only with respect to refresh rate. This reflects the 
wide range of capabilities present on current monitors. Each is copied into an STL vector called 
FormatModeList and at the end of the loop the vector will contain all display modes available for the 
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D3DFMT_R5G6B5 color format on that system. A brief STL vector tutorial is included in the Appendices 
to this chapter if you are unfamiliar with its usage. 
 

Note: You should always use the format returned in the D3DDISPLAYMODE structure from 
EnumAdapterModes to create your device object. Although we pass in the format that we wish to have 
modes enumerated for, the format returned in the D3DDISPLAYMODE structure is not always guaranteed 
to be the same for certain 16 bit formats. The formats, D3DFMT_X1R5G5B5 and D3DFMT_R5G6B5 are 
two commonly supported 16 bit pixel formats. In some cases an adapter will only support one or the 
other. The EnumAdapterModes function will return the version that the hardware supports in the 
D3DDISPLAYMODE structure. So if you enumerated all modes for D3DFMT_X1R5G5B5 but the graphics 
card only supported D3DFMT_R5G6B5 then the latter format would have its modes enumerated. This is 
the only case where this is true. For all other formats the function will not succeed if the explicit format 
passed is not supported by the graphics adapter. 

 
 

2.3 The Direct3D Device 

Once we have used the IDirect3D9 object to gather information about the current system, we will create 
a device object based on that information. The device object can be thought of as a black box that 
encapsulates the transformation pipeline, rendering to the frame buffer, pixel blending, depth testing and 
texture mapping -- using hardware acceleration when available.  
 
In many respects the device object is a 3D engine. At a very basic level, we tell it to render a polygon by 
passing a collection of vertices to the IDirect3DDevice9::DrawPrimitive function. This very 
much like the way we passed vertices into our software transformation and rendering code in Lab 
Project 1.1. The vertices are passed through a series of computations to arrive at the screen 
representation of the polygon. Unlike our simple software rendering demo, the polygons rendered by the 
device can have lighting effects applied to them, multiple textures blended onto them, and even have 
several color blending operations done at the per-pixel level to allow for transparency. 
 
The device is also a state machine that can be controlled through member functions (e.g. 
IDirect3DDevice9::SetRenderState). These states control the way the device transforms and 
color blends our polygons onto the screen. Any state that is set will remain set until we unset it or set it 
to something else. If we set the device to wireframe render mode for example, every polygon drawn will 
be rendered in wireframe until we set the render state to some other value (such as solid fill mode). 
 
Using the device states to control the transformation and lighting of vertices is referred to as fixed 
function pipeline rendering. There will be times however when even all of the many render states 
available do not provide the results you want. Beginning with DirectX 8, Microsoft exposed the 
rendering pipeline to the developer using something called programmable shaders. Shaders allow the 
developer to create small code modules for transforming and lighting vertices and coloring pixels 
instead of using the fixed function pipeline. We call this the programmable pipeline. Shaders will be 
covered in detail during the next course in this series.  
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Figure 2.2 

 
Fig 2.2 provides a representation of the device object and the software modules that it contains. The 
device is divided into two main sections: the vertex processor (BLUE) and the pixel processor 
(PURPLE). 
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2.3.1 Pipeline Overview 

Vertices are sent to the device using the DrawPrimitive function(s). As we did in Lab Project 1.1, we 
will pass in world, view, and projection matrices so that the device can perform the necessary 
transformations. We set each matrix using the IDirect3DDevice9::SetTransform function 
prior to rendering an object. The function takes as its first parameter a member of the 
D3DTRANFORMSTATETYPE enumerated type. This tells the device which of the matrices is being passed 
(projection, view or world). The second parameter is a pointer to the matrix itself. 

 
HRESULT SetTransform(D3DTRANSFORMSTATETYPE State, CONST D3DMATRIX* pMatrix); 
 
At application startup we might create a projection matrix and send it to the device as follows: 
 
m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &m_mtxProjection); 

 
Each frame we can create a view matrix which would contain the position and orientation of the virtual 
camera in our world. Before rendering any objects we would use the SetTransform function again to 
set the device view matrix: 
 
m_pD3DDevice->SetTransform( D3DTS_VIEW, &m_mtxView); 

 
Finally, before we render each object’s polygons, we send the object world matrix to the device: 
  
for(I = 0; I < NumberOfObjects; I++) 
{ 
  m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[I].m_mtxWorld ); 
  m_pD3DDevice->DrawPrimitive ( All Object[I] Polygons); //pseudo function call 
} 

 
Polygons are transformed by these matrices in a manner similar to what we saw in our software demo.  
 
Once the device has transformed (and lit – see Chapter 5) the vertices, it performs backface culling (if 
enabled) to remove polygons facing away from the viewer. It then performs the divide by w to 
perspective project the vertices into 2D projection space coordinates in the range of –1 to 1.  
 
The transformed vertices now enter the pixel pipeline. The device will set up the outline of the polygon 
in screen space and then draw that polygon one scan line at a time -- and ultimately one pixel at a time. 
Once the device has interpolated the depth and color values for a pixel (using a weighted interpolation 
between the vertices and their depth and color values), the pixel is sent through the rest of the pixel 
pipeline where it may have texture and/or fog effects applied that alter its color. The pixel depth value is 
then tested against the depth buffer (and possibly the stencil buffer if one is being used) to see if it is 
closer to the camera than a previously rendered pixel. If so, if enters the final phase where it may be 
color or alpha blended with a pixel already stored in the frame buffer. If not, it is discarded.  
 
Do not be too concerned if this description is a little overwhelming. We will be dealing with every 
element described above as we progress through this course.  
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2.3.2 Device Memory 

The device owns and maintains memory for a number of important data storage buffers. The frame 
buffer (and usually the depth buffer) memory will be created when we create the device. Device 
memory can also be allocated by our application for assets like texture images and mesh geometry. 
These memory buffers are referred to as device resources. Having these resources available in device 
memory provides maximum speed on T&L hardware. Fig 2.2 shows the memory buffers owned by the 
device for an application that uses four vertex buffers (perhaps to hold the vertices for four different 
meshes), four textures, a depth buffer, and a frame buffer. 
 

 
Figure 2.3 

 
Although it is likely that your application will use all of the memory buffers types in Fig 2.3, only a 
frame buffer is required. Later we will see how our application can configure the device to control where 
resources are stored. 
 

Frame Buffers 

The frame buffer (or back buffer) is a memory buffer where the image of our 3D scene is rendered 
prior to displaying the output on the screen. This approach allows us to minimize or even avoid certain 
artifacts that may occur if we rendered directly to the screen buffer. We discussed some of these artifacts 
in Chapter 1. We saw that a frame buffer was critical because proper scene rendering required that we 
erase the prior frame image before displaying the new one. If we were to try to do this on the physical 
display, the user would see the image flicker as it was erased and then redrawn at high speeds. The 
frame buffer solved this problem by clearing and rendering to an off-screen memory buffer. Only after 
the scene was completely rendered did we copy it to the screen and replace the existing image.  
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Refresh Rate 

The speed at which the monitor screen repaints itself is referred to as the refresh rate. Refresh rate is 
measured in Hertz (1/sec). A refresh rate of 60 Hz means the monitor repaints itself 60 times per second. 
The higher the refresh rate, the more rapidly the monitor can react to changes in the image rendered to 
the screen. There is typically a block of memory on every video card that is used to map images directly 
to the monitor screen. When the screen is repainted by the electron gun, it gets information about how it 
should be painted directly from this display memory. When changes are made within this address space, 
it changes the image seen by the viewer. 
 
The electron gun inside the monitor starts at the top left corner of the display. Each line of the monitor 
display is called a scan line and is refreshed as the electron gun from moves left to right. At the end of 
each scan line, the electron gun is moved to the beginning of the next line to repeat the process until the 
entire screen has been refreshed. 
 

 
 

Figure 2.4 
 
If we copy the frame buffer to the display memory while the electron gun is halfway through repainting 
the screen, the new image will be displayed only on the bottom half of the screen for a fraction of a 
second. This is because the top part of the display has already been repainted by the electron gun using 
the image that was previously in display memory, while the new image is used for the second part of the 
repaint. Although this corrects itself very quickly due to high refresh rates, it is still noticeable to the 
viewer. We call this visual artifact tearing.  
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Figure 2.5 
 
In Fig 2.5 the current frame in the frame buffer is slightly skewed to the right with respect to the 
previous frame’s camera setting (currently being displayed in display memory). When the frame buffer 
is copied to display memory and the electron gun is only half way through a repaint, the bottom half of 
the screen is updated with the new image. The top half of the screen will not be updated until the next 
repaint. 
 
Referring back Fig 2.4 we notice that there is a time at which the electron gun reaches the bottom right 
corner of the screen and has to stop repainting and return to the top left corner for the next repaint. 
During this time the electron gun is not painting the screen, so this will be an ideal time for us to copy 
the frame buffer to display memory. This period of time during which the gun retraces from bottom right 
to top left is called the vertical retrace period (sometimes called the vertical blank). While the vertical 
retrace time is indeed quite short, we can be assured with modern hardware that we can copy the entire 
frame buffer to the display memory within that time block to prepare for the next monitor repaint. 
 
We will tell the device that we want to synchronize our frame buffer with the vertical retrace period. 
This is called VSYNC. When given a command to present the frame buffer, the device will wait until 
the vertical retrace starts before it performs the copy operation from the frame buffer to display memory.  
 

Note: Some commercial games allow the user to disable VSYNC in order to increase the responsiveness 
of the game and increase the frame rate slightly. This usually comes at the cost of visual artifacts such as 
screen tearing. When VSYNC is disabled in such games, the frame buffer is copied to display memory as 
soon as the scene is rendered and no waiting for the vertical retrace occurs. 

 
 

 



 

  
 

123

The Front Buffer 

The display memory used by the electron gun to repaint the monitor is sometimes called the front 
buffer. DirectX Graphics enforces the use of a frame buffer by denying the application access to the 
front buffer -- all rendering must be done to the frame buffer. When the frame buffer is complete, we 
call IDirect3DDevice9::Present to tell the device object to copy or promote the frame buffer to 
display memory.  
 
It should be noted that while you cannot directly access or alter the image in the front buffer, the 
IDirect3DDevice9 interface does have a function called IDirect3DDevice9::GetFrontBuffer. 
This function will return a copy of the image in the front buffer only. Altering this returned image will 
not alter display memory. This can be useful for taking a screen shot of your application.  

 
Note:  IDirect3DDevice9::GetFrontBuffer is the only way to take a screen shot of an anti-aliased scene. 

 
 
Swap Chains 

It is possible to create more than one frame buffer for a device. When more than one frame buffer is 
used, this is called a swap chain.  Consider a scenario where your application tells the device to present 
the frame buffer to display memory. The device may have to wait until the vertical retrace period before 
it can present the frame buffer. Your application will essentially wait for the all clear signal to render the 
next frame; which it cannot do until the current frame buffer has been presented. If a swap chain is used, 
you can continue to render the next frame into the next frame buffer in the swap chain. This can speed 
things up under certain circumstances and may even smooth out erratic frame rates, but it comes at a 
cost. At high screen resolutions (especially in 32 bit color) each frame buffer can take up a considerable 
amount of precious video memory. This is memory often best reserved for resources that need to be 
accessed frequently by the device (like textures or vertex buffers). 
 
The process of using two frame buffers (plus the front buffer) is called triple buffering. The more 
typical approach uses just one frame buffer and is called double buffering. We will be using double 
buffering for most of the demo applications in this course. DirectX allows swap chains with as many as 
four frame buffers. 
 
Fig 2.6 shows the relationship between the front buffer, the frame buffer, and the physical display. All 
polygon rendering is done through the device to the frame buffer. When we have finished rendering the 
frame, we tell the device to present the frame buffer to the user. The device then takes the current image 
in the frame buffer and puts it into the front buffer when the next vertical retrace period starts. If we 
have disabled synchronization with the vertical retrace period, then the device will put the frame buffer 
image into the front buffer immediately. Each time the monitor is repainted, it takes the information 
about what to display from the front buffer. Notice that even though the frame buffer and the front 
buffer are both located in memory on the video card, sometimes referred to as local video memory, 
only the front buffer memory is used to repaint the physical display: 
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Figure 2.6 
 

2.3.3 Screen Settings 

When we create a Direct3DDevice9 object at the start of our application, we also have to choose a 
windowing mode to operate under. Most commercial games use a fullscreen mode. In fullscreen mode, 
the 3D image covers the entire display area. Alternatively, windowed mode games run alongside other 
applications on your desktop. As you will discover for yourself, this mode is critical during the 
development phase of your application.  

 
 

Fullscreen Mode 

When we create the device object, we query the current hardware to see which fullscreen video modes it 
supports. Once we select a resolution and color depth (or let the user choose from a list) we create a 
fullscreen device that physically puts the graphics hardware into this video mode. The Windows desktop 
will no longer be visible and the front buffer will take up the entire screen.  
 
In fullscreen mode, the frame buffer created for the device must be exactly the same size and color depth 
as the front buffer. If we choose to create our device so that it operates in a video mode of 640x480 in 16 
bit color (640x480x16), the frame buffer should also be created to these specifications.  
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In this mode the device can perform a fast presentation from the frame buffer to the front buffer using a 
technique called flipping -- a feature available on virtually all current graphics hardware. Flipping 
essentially amounts to a pointer swap. The video card has two pointers; one to the current frame buffer 
and the other to the front buffer. The monitor is repainted by the image pointed to by the front buffer 
pointer. Drawing commands issued by the application to the device take place in the area of video 
memory pointed to by the frame buffer pointer. Once we have rendered the scene in the frame buffer 
and it is ready for presentation, the device (in a double buffer system) just swaps the pointers. Now the 
front buffer pointer points at the old frame buffer and the frame buffer pointer points at the old front 
buffer. This is much faster than the alternative which is called blitting, where every pixel would need to 
be copied between the buffers.  
 
Once the swap has taken place, the new frame buffer replaces the old front buffer and all drawing 
commands are directed to the current frame buffer (the old front buffer). When the next image is 
complete the device will once again swap the two pointers. Fig 2.7 shows this concept in action over two 
consecutive frames: 
 

 
 

Figure 2.7 
 
The blue arrows show the buffer arrangement during frame one. The device draws directly to Buffer 2 
(the current frame buffer). Buffer 1 is the front buffer and contains the image currently being displayed 
on the monitor. When the device is told to present the image in the frame buffer, the pointers are 
switched so that Buffer 2 is now the front buffer. Its contents (the image we just rendered) are painted by 
the electron gun. When we render frame two, the pointers have been swapped. The device now draws 
directly to Buffer 1 while Buffer 2 is used as the front buffer. When the device is told to present the 
frame buffer, the pointers are switched again, and Buffer 1 is promoted to the front buffer, with Buffer 2 
becoming the frame buffer for the next frame. And so it goes for the lifetime of the application. 
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Windowed Mode 

In windowed mode the desktop is not hidden and it shares the current video mode with other 
applications that may be running, including yours. Thus the video mode cannot be changed. Flipping 
cannot be used because the front buffer is mapped directly to the client area of the application window. 
In windowed mode, the frame buffer is copied to the client area pixel-by-pixel each time we present the 
scene. Although this blitting process is handled by the device, it is likely to be slower than flipping.  
 
Movement of the application window by the user is handled automatically by DirectX Graphics. 
However, until the release of DirectX 9.0, resizing the window was not. Until now, when the user 
resized the window (WM_SIZE) our message handler would need to tell the device to rebuild its swap 
chain so that the frame buffers matched the new dimensions of the front buffer. We may still decide to 
do this anyway, but it is no longer a requirement. 
 
As long as the device is in windowed mode, the frame buffer(s) does not have to be the same size or 
color format as the front buffer. DirectX Graphics will automatically shrink or expand the frame buffer 
image to fill the front buffer, which in this case is the window client area. The same is true with color 
depth. It is now possible in windowed mode to have a 32 bit frame buffer even when the desktop (and 
therefore your front buffer) is in 16 bit color mode. DirectX Graphics will perform the color conversion 
when the image is copied from the frame buffer to the front buffer. Because all of this conversion and 
resampling will be slower, you should still try to keep the formats and sizes matched up for optimal 
performance. Note that the above features are only true when running in windowed mode. In fullscreen 
mode the frame buffer must be the same size and format as the front buffer. 
 
When we create our windowed mode device in our lab projects, we will use the current desktop display 
mode for our frame buffer. This makes environment setup much easier for windowed mode applications 
as we will see in Lab Project 2.1. 

 

2.3.4 Depth Buffers 

One of the trickiest parts of creating a 3D game used to be making sure that the polygons in the scene 
were rendered in such a way that polygons nearer to the camera were rendered on top of polygons 
further away. While this is not an issue when rendering in wireframe mode, when we use filled (solid) 
polygons this is a very significant problem. Polygons cannot just be rendered in any random order 
without potentially damaging the integrity of the scene. In Fig 2.8 we see an example of polygons 
forming a corridor section of a game world viewed from the player location.  If we rendered the wall 
polygons in no particular order (perhaps just using the order they were stored in the mesh), we might 
render the wall furthest from the camera last:  
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Figure 2.8 

 
The horizontal dark red polygon is supposed to be forming the back wall of the passage where it meets 
in a T-junction. It should be partially obscured by the nearer polygons to give the illusion that it is 
further away. We cannot simply define our meshes so that the polygons are ordered correctly because 
the drawing order will depend on the viewing angle and position of the player. These values will change 
as the player moves around the world.  
 
One way to solve this problem is with a technique called the Painter’s algorithm (Fig 2.9). The 
polygons in the scene are sorted into a back to front ordered list prior to rendering. Polygons further 
from the camera are rendered first and polygons close to the camera are rendered last, drawing over the 
distant polygons. This is similar to how a painter builds up the scene on his canvas; painting background 
objects first, followed by foreground objects. 
 

 
Figure 2.9 

 
The Painter’s algorithm worked well for the above case but it is not suitable for the complex worlds we 
expect in commercial games today. Sorting all of the visible polygons before rendering would seriously 
diminish performance if thousands of polygons or more were visible on the screen at once. Many 
polygons will be rendered only to be overdrawn by nearer polygons. We will also have difficulties 
choosing a sorting criterion and would have to settle for an approximation that can be applied to the 
whole polygon. For example, we could use the nearest vertex position in the polygon and calculate its 
distance from the camera and use that to sort polygons. Or we could try to find an average distance using 
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all of the vertices’ distances from the camera. No matter what criterion we decide to use, it will not 
suffice in all situations (Fig 2.10). 

 
Figure 2.10 

 
If we render the green polygon in Fig 2.10 first, then the portion of the red polygon that is supposed to 
be behind it will be rendered in front. If we render the red polygon first, then the portion of the green 
polygon that is supposed to be obscured by the red polygon will be rendered in front. The Painter’s 
algorithm cannot resolve this. 
 
The solution is to work with smaller units. Eventually these polygons will need to be rendered at the per-
pixel level. While a particular vertex might not be behind another polygon, when pixels are interpolated 
across the polygon from one vertex to another, the pixel itself might be obscured because a closer 
polygon has already had its pixels rendered there. Ideally the current pixel would not be rendered in this 
case. So we need a per-pixel test that allows us to figure out whether a given pixel should be rendered or 
whether a pixel that is closer to the viewer has already been rendered in that location in the frame buffer.  
 
 
The Z-Buffer 

The most popular depth solution creates a memory buffer that is the same size as the frame buffer. 
Instead of each buffer location holding a pixel color, it will store the interpolated Z depth value for each 
corresponding pixel in the frame buffer. This technique is known as Z-Buffering and the memory buffer 
itself is referred to as a Z-Buffer.  
 
In Chapter 1 we discussed the projection matrix transformation. We saw that it takes a vertex from view 
space to homogenous clip space prior to the divide by w. It is possible to ensure that when the vertex Z 
value is output from the projection matrix and divided by w, it ends up in the range [0.0, 1.0]; where 0.0 
represents a vertex very close to the viewer and 1.0 represents a vertex at the furthest possible point 
from the viewer. This is not a pure distance value mind you. It is simply the view space Z component of 
each vertex mapped to the range [0.0, 1.0]. This will suffice however because the sorting problem is a 
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view space problem. When the device renders a polygon, it will perform a linear interpolation between 
the Z values stored at each vertex to produce a Z value for each pixel. This Z value provides us with a 
relative distance from the viewer to each pixel that we render.  
 
Before we render our scene we will clear the Z-Buffer to the maximum Z distance that can be stored. 
For example, let us say that the Z-Buffer is a BYTE array. Each element can hold a number between 0 
and 255. So in this case we will set every element in the buffer to 255 (the maximum depth value). 
 
Next we render our polygons. After the polygon is transformed into screen space, we calculate the Z 
component for each pixel based on an interpolation of the Z values stored at each vertex in the polygon. 
Once we have the pixel depth value, we compare it against the corresponding value stored in the Z-
Buffer. Every pixel in the frame buffer has a corresponding entry in the Z-Buffer describing its distance 
from the viewer. 
 
If the value already stored in the Z-Buffer is smaller than the depth value of the current pixel about to be 
rendered, then it means another pixel has already been rendered at this location in the frame buffer that 
is closer to the viewer than the one we are currently about to draw. In this case we discard the current 
pixel and move on to the next one. 
 
If the depth value of the pixel we are about to render is smaller than the corresponding value in the Z-
Buffer, then the pixel we are about to render is closer to the viewer than any we have previously 
rendered in that position up to this point. So we should render the current pixel and overwrite the pixel 
residing in that frame buffer location. After we do this, we store the current depth value in the 
corresponding Z-Buffer location overwriting the depth value that was previously there.  
 
In Fig 2.11 we see a low-resolution frame buffer and depth buffer. We used a 5 bit Z-Buffer where each 
value falls between 0 and 16. Before the scene is rendered, the Z-Buffer is cleared so that every location 
contains the maximum depth value of 16. Then we render our polygons:  
 

 
Figure 2.11 
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Because we are doing per-pixel tests using the Z-Buffer values, rendering order no longer matters. If we 
rendered the red triangle in Fig 2.10 last and tried to write a pixel where the blue triangle already had a 
pixel, the Z-Buffer test would fail because a 5 would already be stored at that location. Since this is less 
than the depth of the red pixel (10) we would be about to render, the red pixel would be discarded. 
 
Per-pixel tests in software are very expensive simply because there are going to be so many of them. 
Fortunately, virtually all 3D graphics cards support Z-Buffers in hardware and our applications can use 
them without any performance concerns. The DirectX Graphics device object will handle depth testing 
for us automatically. We simply instruct it to create a Z-Buffer when it creates the frame buffer at 
application startup and activate the appropriate render state. When we render our polygons, the device 
will record the depths of each pixel in the Z-Buffer and perform the per-pixel depth tests at high speeds.  
 
Our application must query and select a Z-Buffer format supported by the current hardware and tell the 
device to use it. We also have to make sure that we setup the 3rd column of our projection matrix so that 
it generates a proper Z value for each vertex. We will discuss this exact process a little later in the 
lesson. 
 
 
 
Z-Buffer Inaccuracy 

Graphics hardware usually supports 16, 24, or 32 bit Z-Buffers and sometimes all three. But it is worth 
discussing 16 bit in particular because it presents us with some real problems that we will need to solve.  
 
The Z value for each vertex -- and eventually each pixel -- is the result of our projection matrix multiply 
and the divide by w. This gives each screen space vertex a depth value between 0.0 and 1.0. In code, this 
is a floating point value and is thus 32 bits wide. In order to fit 32 bit floats into 16 bit Z-buffer entries, 
two bytes of the float have to somehow be discarded. The clear consequence is the loss of a significant 
amount of precision. 
 
Let us assume that we need 32 bits to store values with four decimal places and 16 bits to store values 
with only 2 decimal places. The problem becomes clear if we consider two hypothetical pixels from 
separate polygons:  
 
32 bit depth values: 
 
Pixel A = 0.1025 
Pixel B = 0.1029 
 
16 bit truncated depth values: 
Pixel A = 0.10 
Pixel B = 0.10 
 
The 16 bit values lost the last two digits in the truncation and both A and B now equal 0.10. The Z-
Buffer can no longer tell which pixel should be obscuring the other. If B was rendered after A, it would 
pass the Z-Buffer test and overwrite A, even though it should not do so. This loss in precision results in 
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unattractive rendering artifacts. Unfortunately, on hardware where only a 16 bit Z-buffer is available, 
this is mostly unavoidable. 
 
There is another problem with the Z-Buffer. When we calculate the depth value for each vertex in the 
projection matrix, we need some way to provide DirectX Graphics a Z depth value between 0.0 and 1.0 
that it can use for rendering the polygon and interpolating per-pixel depths. We cannot simply hand it 
the view space Z value input into the projection matrix because this will eventually get divided by w 
when the vertex is homogenized. As the W component of the vertex output from the projection matrix 
multiplication is always equal to the Z value that was input, this equates to: 
 
Depth Z = z / w    
Depth Z = z / z 
Depth Z =1 
 
As W=Z after the projection matrix multiply, the depth value has to be something other than W when it 
leaves the projection matrix multiply. Otherwise the depth value will always be 1.0. We will discuss 
later how we setup the third column of the projection matrix to generate this depth value so that after it 
is divided by w, it ends up in the 0.0 to 1.0 range depending on its distance from the camera.  
 
The unfortunate and unavoidable problem is that the third column multiply of the projection matrix 
followed by the divide by w will not linearly map the depth value to the 0.0 to 1.0 range. In fact, most of 
the time, the first 10 percent of the scene will be mapped to the 0.0 to 0.9 range. That is, 90 percent of 
the Z-buffer’s precision is used up in the first 10 percent of the viewing distance. As a result, all of the 
depth values for the remaining 90 percent of the scene will be mapped to fractional values between 0.9 
and 1.0. This does not present as significant a problem with 32 bit floating point numbers since there is 
enough precision between 0.9 and 1.0 to generate thousands of unique depth values. 16 bit Z-Buffers do 
not fare nearly as well, as you might expect. Appendix A at the end of this lesson explores this issue in 
greater depth.   
 
To be fair, for non-complex scenes, or at least in scenes where all of the objects are relatively close to 
the camera, a 16 bit Z-Buffer will probably suffice. But for modern game scenes that have many 
polygons at medium and far distances from the camera, a 16 bit Z-Buffer is insufficient. 
 
Fortunately, most graphics cards that have been released in the last few years support either 24 or 32 bit 
Z-Buffers. 24 bits usually provide more than an adequate amount of precision to represent all of our 
depth values accurately. Cards with 32 bit Z-Buffers often allow us to use the last 8 bits for another 
function entirely, since the first 24 would meet our depth testing needs.  
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The W-Buffer 

Some graphics cards support a depth buffer variation known as a W-Buffer. W-Buffers use the same 
per-pixel comparison technique and the same physical video memory buffer as a Z-Buffer. The W-
Buffer differs in the way that it calculates the depth values for each vertex, and ultimately each pixel. 
 
When a view space vertex is multiplied with the projection matrix, we end up with an output vertex 
where W is equal to the Z component of the input vector (W = Zview). W-Buffers use the reciprocal value 
for depth testing: 
 
Depth = 1/w 
 
This provides a more distributed linear mapping than for Z-Buffers. However, using a W buffer can still 
produce artifacts when many of the objects in the scene are close to the camera. Contrast this with the Z-
Buffer which has 90 percent of its precision in that range. Nevertheless, the W-Buffer has a lot more 
precision available for objects in the middle to far distance range from the viewer. The choice of 
whether to use a Z-Buffer or W-Buffer depends on whether your objects are dispersed evenly over the 
view distance (use a W- Buffer) or whether your objects are typically going to be close to the camera 
(use a Z-Buffer). 
 
Because most cards now support 24 bit Z buffers the need for W buffers is not as great. This is fortunate 
since W buffers are not as widely supported on modern hardware as Z buffers. However, if your 
application does find itself on a system where only a 16 bit Z Buffer is available, a W buffer (if 
available) can often produce better results.  
 
The device object manages W buffer calculations for our application just as it does the Z buffer. We will 
generally only need to check for support and then specify our preference when creating the depth buffer. 
 
 
2.4 Surface Formats 

A surface is an object that stores image data. For example, both the frame buffer and depth buffer are 
physically stored as a surface. Textures are stored as surfaces as well. We carry out per-pixel operations 
on a surface object by acquiring an IDirect3DSurface9 interface. Surfaces come in a variety of sizes and 
color bit depths and not all surface formats are supported by all hardware. One of the trickiest tasks 
when initializing the environment is making sure that: 
 

• The frame buffer surface is created by the device in a format that the hardware supports 
• We create a Z-Buffer surface that the hardware supports 
• We load our textures into surfaces whose format and type the current hardware supports. 

 
The enumerated type D3DFORMAT contains the surface formats supported by DirectX Graphics. Many 
graphics cards will indeed support a great number of these formats in hardware, but some formats might 
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not be supported. For example, older cards such as the Voodoo™ 1 and 2 supported only 16 bit colors. 
None of the 32 bit color formats were available to developers targeting those platforms.  
 
When we create the device at application initialization time, we must tell it the format of the frame 
buffer(s) we would like constructed. This format must be one that is supported by the hardware. Our 
environment setup routines will need to obtain a list of supported surface formats on the current 
hardware and make sure that the frame buffer, depth buffer, and textures are created using only these 
formats.  
 
Table 2.1 lists the image surface formats we will use in the early stages of the course. These are the 
formats most commonly supported on modern cards. 
 
 
Table 2.1 Common D3DFORMATs 
 
D3DFMT_R8G8B8 24-bit RGB pixel format with 8 bits per channel. 
D3DFMT_A8R8G8B8 32-bit ARGB pixel format with alpha, using 8 bits per channel. 
D3DFMT_X8R8G8B8 32-bit RGB pixel format, where 8 bits are reserved for each color. 

D3DFMT_R5G6B5 16-bit RGB pixel format with 5 bits for red, 6 bits for green, and 5 bits for 
blue. 

D3DFMT_X1R5G5B5 16-bit pixel format where 5 bits are reserved for each color. 

D3DFMT_A1R5G5B5 16-bit pixel format where 5 bits are reserved for each color and 1 bit is 
reserved for alpha. 

D3DFMT_A4R4G4B4 16-bit ARGB pixel format with 4 bits for each channel. 
D3DFMT_X4R4G4B4 16-bit RGB pixel format using 4 bits for each color. 
D3DFMT_A2B10G10R10 32-bit pixel format using 10 bits for each color and 2 bits for alpha. 
D3DFMT_A8B8G8R8 32-bit ARGB pixel format with alpha, using 8 bits per channel. 
D3DFMT_X8B8G8R8 32-bit RGB pixel format, where 8 bits are reserved for each color. 
 
Just to ensure complete understanding of what these formats represent, let us examine the format 
D3DFMT_R8G8B8. This might look familiar if you have worked with COLORREFS in Win32. Each 
pixel on the surface is represented by 24 bits (3 bytes). Each byte can hold a value between 0 and 255 
that describes the intensity of the color. If all three bytes were set to 255, then the pixel would be full 
white. If the second byte was set to 255 and the first and third were set to 0, then the pixel would be 
bright green. 
 
The format A8R8G8B8 is a 32 bit format where Red, Green and Blue values each receive a byte of 
storage space. The A stands for alpha and is used to measure pixel opacity; it also consumes one byte 
per-pixel. If the device has alpha blending enabled, then when a pixel is rendered into the frame buffer, 
its alpha value will be used to determine how its color blends with any pixel color currently in that 
location. In this format the Alpha value would range from 0 to 255 as fully transparent to fully opaque 
respectively. We will discuss alpha values and transparency in detail in Chapter 7. 
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2.4.1 Adapter Formats 

When we create a fullscreen device we must choose a format to put the adapter into. This is the format 
of the front buffer and can only be one of the following: 
 
D3DFMT_X1R5G5B5 
D3DFMT_R5G6B5 
D3DFMT_X8R8G8B8 
 
This is useful because we know that all video cards will at least support one of these three modes. Notice 
that the front buffer cannot use a format with an alpha channel. 
 
 

2.4.2 Frame Buffer Formats 

Since windowed mode applications share the desktop, the front buffer must use the format that the 
adapter is already using. This actually makes setting up the environment for a windowed mode device 
significantly easier. The frame buffer has no such requirements. In windowed mode, the format and 
resolution of the frame buffer does not have to match the format of the adapter mode (the front buffer). 
The device will handle the color conversion between the two when they differ.  
 
There are a number of formats that we can use for the frame buffer: 
 
D3DFMT_X1R5G5B5 
D3DFMT_R5G6B5 
D3DFMT_X8R8G8B8 
D3DFMT_A8R8G8B8 
D3DFMT_A1R5G5B5 
D3DFMT_A2R10G10B10 
 
Not all of the above formats are guaranteed to be supported by all video cards, so when we setup our 
device we will need to make sure that we select a valid format. With the exception of the last mode in 
the list, you should notice that the only difference is that the back buffer supports modes that add an 
alpha channel to the pixel. You will not often need a frame buffer to have an alpha pixel format. Often, 
you will simply match the front buffer and back buffer pixel formats exactly. 
 
For fullscreen devices, the formats and resolutions must match, with one exception: the back buffer can 
still have an alpha channel even though the physical display does not. The rule is that the alpha mode 
must match the non-alpha mode counterpart (with the placeholder ‘X’ value). If we set the display mode 
of the adapter to 32 bit, the front buffer format will be D3DFMT_X8R8G8B8. This means we can have a 
back buffer format of either D3DFMT_X8R8G8B8 or D3DFMT_A8R8G8B8. Likewise, if we were in 16 bit 
mode D3DFMT_X1R5G5B5, we could create a back buffer in either D3DFMT_X1R5G5B5 or 
D3DFMT_A1R5G5B5. 
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2.5 Creating a Device 

Let us now examine the process of creating a device in DirectX Graphics. We begin by looking at the 
IDirect3D9 method that provides this functionality. 
 
 
HRESULT CreateDevice(UINT Adapter, D3DDEVTYPE DeviceType, 
                     HWND hFocusWindow, DWORD BehaviorFlags, 
                     D3DPRESENT_PARAMETERS* pPresentationParameters, 

               IDirect3DDevice9** ppReturnedDeviceInterface); 
                         

UINT Adapter  
This is the adapter ordinal that the device will be created for. Usually there is only one graphics adapter 
on the system. The primary display adapter is the adapter with an ordinal of 0 (or 
D3DADAPTER_DEFAULT). 
 
D3DDEVICETYPE DeviceType 
This parameter defines whether we will create a hardware accelerated device or a slower, software 
emulated one.  For this parameter we pass in one of the D3DDEVICETYPE enumerated types: 
 

typedef enum _D3DDEVTYPE { 
    D3DDEVTYPE_HAL = 1, 
    D3DDEVTYPE_REF = 2, 
    D3DDEVTYPE_SW = 3, 
    D3DDEVTYPE_FORCE_DWORD = 0xffffffff 
} D3DDEVTYPE; 

 
D3DDEVICETYPE_HAL – the HAL device is typically our preference since it uses the 
hardware acceleration features on the adapter. If there is no 3D accelerated graphics adapter on 
the current system, then the request to create a HAL device will fail. We will be left with no 
choice but to create a HEL device, provide our own renderer and forego DirectX, or exit the 
application. If a HAL device is created successfully then it means that the hardware has at least 
some 3D capability. This may be hardware triangle rasterization or it may be the entire 
transformation and lighting pipeline too. We will have to check the capabilities of the HAL to 
make sure it supports the functionality we require.  
 
D3DDEVICETYPE_REF - If a HAL device cannot be created then the Hardware Emulation 
Layer (HEL) is our remaining choice. Outside of feature testing, the reference rasterizer is not 
viable for commercial applications. Even simple scenes might render at as few as 1 or 2 frames 
per second. The HEL is really intended for hardware manufacturers and hardware engineers to 
ensure that their hardware performs correctly. For Example, video card makers can test their 
development boards against the reference rasterizer to check that their card is not rendering 
polygons brighter or darker than they should be. The reference rasterizer has helped to maintain 
image consistency across the variety of different video cards. 
 
Since the reference rasterizer is considered to be of no use for commercial purposes, it is not 
even enumerated by DirectX Graphics when it is installed. You must manually go to the DirectX 
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properties applet in the Windows control panel and enable it via a check box on the Direct3D 
properties page if you wish to use it. Our applications will try to create a HEL device if no HAL 
is found so you should enable this check box. This will be especially important later on in the 
next course in this series when we cover features that your hardware may not support. 
 
D3DDEVICETYPE_SW – Because of a lack of a commercially usable software device within 
DirectX Graphics, Microsoft provides developers with the ability to produce pluggable software 
devices. This allows developers to ship their applications with the ability to run on machines 
without hardware acceleration. From the application’s perspective, it is still using a single 
unified API. The Driver Development Kit (DDK) can be used to create such software devices. 
Once the devices are installed and registered with the operating system, they can be enumerated 
and created as part of DirectX Graphics. DirectX Graphics will pass application requests to the 
software device driver and the software device will perform the actual task. Unlike the HEL 
device, software devices will probably not support the entire set of DirectX Graphics 
functionality. Certain techniques may also be too processor intensive to run in software. 
 
Creating a software device yourself is a complex task that requires a strong understanding of the 
processes involved. You are essentially writing your own IDirect3DDevice9 object. Most games 
no longer offer the choice of running in software mode and require 3D graphics cards. 
Developers often feel that it is simply not worth the effort when most PCs have 3D hardware 
acceleration. Some of the very latest games even require vertex transformation and lighting in 
hardware too.  
 

HWND hFocusWindow 
The window to which the device object will be linked is referred to as the focus window. This will most 
often be the parent window of your application (such as your main application frame window). DirectX 
traps and dispatches certain messages to and from this window when the device is created, and toggled 
between fullscreen and windowed modes. Interestingly, the focus window is not necessarily the window 
where the frame buffer will be rendered. We will discuss this a little later in the chapter. In most cases, 
passing in the HWND of our main window application will suffice. Also note that if the device will 
potentially be toggled from windowed to fullscreen mode, the focus window must be a top level 
window. This is a window that has the WS_EX_TOPMOST flag set. If this is not the case, the device 
will fail to be created in fullscreen mode or fail to be switched to fullscreen mode from windowed mode.  
 
DWORD BehaviourFlags 
There are three mutually exclusive behavior flags that we can use when creating the device to request 
the maximum level of hardware support. Device creation will fail if the level of hardware acceleration 
we request is not available. We can then try again using the next best level of hardware acceleration 
until we eventually find one that is supported. At least one of the following flags must be stated. They 
are listed in order of desirability. 
 
 D3DCREATE_HARDWARE_VERTEXPROCESSING 

 
Try to create a device that performs transformation, lighting and rasterization on the video 
card. This is the maximum level of hardware support that we can request. If we request a 
D3DDEVICETYPE_HAL device type and a HAL is present on the system, we can try specifying 
this flag to create a T&L accelerated device.  
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If the device creation call fails, we can try the D3DCREATE_SOFTWARE_VERTEXPROCESSING flag 
next. If that device is successfully created then this means that the HAL can perform 
rasterization in hardware but the transformation and lighting of vertices will be done in 
software. This is slower, but still acceptable in most cases as a next best option. Very few 
games at the time of writing require T&L capable video cards, although that will likely change 
in the future.  
 
Specifying the D3DCREATE_HARDWARE_VERTEXPROCESSING flag whilst trying to create a device 
of type D3DDEVICETYPE_REF will succeed, since the reference rasterizer does emulate a 
hardware device. However, this will not speed up the reference rasterizer in any way. 
While you may be able to create a HAL device that supports hardware vertex processing, this 
does not always mean that all vertex processing will be done on the hardware. For example, a 
video card may only support vertex transformation and not lighting. In this case the driver will 
perform the lighting calculations in software using the host CPU.  
 
IDirect3D9 provides a function called IDirect3D9::GetDeviceCaps that will retrieve 
information about device capability. Since this is part of the IDirect3D9 interface, it can be 
called to query a device without having to create the device first: 
 
HRESULT GetDeviceCaps(UINT Adapter,  
                      D3DDEVTYPE DeviceType, 
                      D3DCAPS9* pCaps); 
 
We pass the adapter ordinal and the type of device we wish to learn about. We also pass a 
pointer to a D3DCAPS9. This structure contains all of the capability information for the device.  
 
D3DCAPS9 DevCaps; 
pD3D9->GetDeviceCaps (D3DADPATER_DEFAULT, D3DDEVICETYPE_HAL, &DevCaps); 
 
We will examine this structure in detail throughout this lesson. Our primary interest right now 
is a DWORD field called VertexProcessingCaps. The bits in this field indicate the level of 
hardware vertex processing supported by the device: 
 
D3DVTXPCAPS_DIRECTIONALLIGHTS  
Device supports directional lights.  
D3DVTXPCAPS_LOCALVIEWER  
Device supports local viewer.  
D3DVTXPCAPS_MATERIALSOURCE7  
Device supports selectable vertex color sources.  
D3DVTXPCAPS_POSITIONALLIGHTS  
Device supports positional lights (including point lights and spotlights).  
D3DVTXPCAPS_TEXGEN  
Device can generate texture coordinates.  
D3DVTXPCAPS_TWEENING  
Device supports vertex tweening.  
D3DVTXPCAPS_NO_VSDT_UBYTE4  
Device does not support the D3DVSDT_UBYTE4 
 
Do not worry about what these flags actually mean for now. We are currently focused on 
understanding device capability querying only. For example, we could query the D3DCAPS9 
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structure to determine whether vertex tweening was supported. This is an advanced technique 
used to create an intermediate mesh from two or more input meshes. We simply use a bitwise 
AND operation to do the test: 

 
if (DevCaps.VertexProcessingFlags & D3DVTXCAPS_TWEENING)  
{ 
  //Tweening is supported 
} 

 
If your application needed hardware tweening support and the above test failed, then you 
would not be able to use hardware vertex processing when creating the HAL device. You 
would instead choose software vertex processing where the tweening could be done on the 
CPU. 
 

 D3DCREATE_MIXED_VERTEXPROCESSING 
 

 If a device supports hardware vertex processing but does not support the capabilities that we 
require, we can attempt to create a device that supports both software and hardware vertex 
processing. In this case, our application can dynamically switch between the two vertex 
processing modes.  
 
Continuing the tweening example discussed previously, we could use hardware vertex 
processing to transform and light the vertices of objects that do not need to be tweened. This 
affords them maximum hardware acceleration.  When we need to render our tweened objects 
we could switch the device into software vertex processing mode so that the transformation, 
lighting, and tweening of those vertices would be carried out on the CPU by DirectX Graphics. 
 

 D3DCREATE_SOFTWARE_VERTEXPROCESSING 
 

If the CreateDevice function has failed to create a HAL device using the flags just discussed, 
or if you are creating a device of type D3DDEVICETYPE_REF or type D3DDEVICETYPE_SW, then 
you will need to pass this flag. All calculations to transform and light vertices will be done by 
DirectX Graphics on the CPU. If you created a HAL device but were unable to create it with 
any other flag but this one, it means that the 3D graphics card supports 3D accelerated 
rasterization only. 
 
It is possible to specify this flag even when the device supports hardware vertex processing. 
This would force the transformation and lighting to be done by DirectX Graphics instead of the 
GPU. This may be necessary if the hardware does not support the vertex processing 
capabilities you require. 
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The device behavior flags discussed previously are mutually exclusive. However, there is another flag 
that can be combined with D3DCREATE_HARDWARE_VERTEXPROCESSING to create a device designed for 
optimal performance: 
 
              D3DCREATE_PUREDEVICE 
 

If this flag is used with the D3DCREATE_HARDWARE_VERTEXPROCESSING type and device 
creation is successful then it means that the HAL supports a pure device.  
 
Recall that the device object is a state machine and that we are able to change state by calling 
certain functions like SetRenderState or SetTransform. Our application can also query the 
device to retrieve its current state. For example, we might ask the device to return the contents 
of its current world matrix: 
 
D3DXMATRIX mMat; 
pDevice->GetTransform(D3DTS_WORLD , &mMat); 

 
Although our application will generally set these device states to begin with, it is certainly 
easier not to have to store and maintain state data in persistent variables. Querying back the 
state data from the device as we need it may be convenient, but it adds overhead. The driver 
has to ensure that state data can be returned at any time. 
 
When we choose to create a pure device, we are telling the driver that we have no intention of 
querying the device for such states. The result is that we can no longer use most of the device 
query functions. This allows the driver and hardware to work more efficiently at a cost of 
denying the application convenient access to the current state of the device. Generally, this is 
not a major concern since our application is responsible for setting the states anyway. It is easy 
enough to store these states in persistent variables that our application can read and update 
whenever we update the state of the device. 
 

The following code might be used at application startup to create a device. It starts out requesting the 
maximum level of hardware support and reduces those requirements until it is able to successfully create 
the best device possible.  
 
D3DPRESENT_PARAMETERS d3dpp; 
IDirect3D9        *pD3D;       
IDirect3DDevice9  *pDevice; 
 
// First of all create our D3D Object 
pD3D = Direct3DCreate9( D3D_SDK_VERSION ); 
if (!pD3D) return false; 
 
// Try creating a HAL pure hardware device first 
if( FAILED( pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVICETYPE_HAL ,hWnd,  
                        D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_PUREDEVICE, 
                        &d3dpp, &m_pDevice ) ) ) 
{ 
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          // Pure device failed so try just hardware device with T&L acceleration 
          if (FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVICETYPE_HAL,hWnd, 
                                        D3DCREATE_HARDWARE_VERTEXPROCESSING,  
                                        &d3dpp , &m_pDevice))) 
          { 
                // nope, lets try a software vertex processing hardware device 
                // for accelerated rasterization    
                if (FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT,  
                                              D3DDEVICETYPE_HAL, hWnd, 
                                              D3DCREATE_SOFTWARE_VERTEXPROCESSING, 
                                              &d3dpp, &m_pDevice))) 
                { 
                      
                  // last resort is the reference rasterizer  
                     if (FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT, 
                                               D3DDEVICETYPE_REF,hWnd, 
                                               D3DCREATE_SOFTWARE_VERTEXPROCESSING,  
                                               &d3dpp , &m_pDevice))) 
                     { 
                           // We couldn’t even create a HEL device 
                           // something is wrong and app will not run on machine  
                           return FatalError; 
                     } // End Reference Rasterizer      
                }// End Hal – Software VP 
          }// End Hal – Hardware VP 
  }// End Hal – Pure Device 
 

2.5.1 Presentation Parameters 

The fifth parameter in the CreateDevice function is the address of a D3DPRESENT_PARAMETERS 
structure. It is used to pass information such as the video mode we wish to use (in fullscreen mode 
only), the width, height, and pixel format of the back buffer, and settings such as which window we 
wish to render to in windowed mode.  
 
struct D3DPRESENT_PARAMETERS  
{ 

UINT    BackBufferWidth, BackBufferHeight; 
D3DFORMAT   BackBufferFormat; 
UINT    BackBufferCount; 
D3DMULTISAMPLE_TYPE MultiSampleType; 
DWORD    MultiSampleQuality; 
D3DSWAPEFFECT   SwapEffect; 
HWND    hDeviceWindow; 
BOOL    Windowed; 
BOOL    EnableAutoDepthStencil; 
D3DFORMAT   AutoDepthStencilFormat; 
DWORD    Flags; 
UINT    FullScreen_RefreshRateInHz; 
UINT    PresentationInterval; 

}  
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BackBufferWidth / BackBufferHeight 
These fields inform the device of the dimensions of the desired frame buffer. They are interpreted based 
on whether we are going to create a fullscreen or a windowed device.  
 
In fullscreen mode the frame buffer must match the resolution of the physical display mode and these 
field values must match one of the supported fullscreen video modes enumerated using 
IDirect3D9::EnumAdapterModes. When we create the device, DirectX Graphics will change the 
current video mode of the hardware so that it matches this resolution, and then it creates a frame buffer 
of the same size. This allows flipping to be used.  
 
In windowed mode, our application is not allowed to change the video mode resolution since the 
desktop and other applications are using it. However, there is no need to match the back buffer and front 
buffer sizes as in fullscreen mode.  
 
If we set these values to 0 in windowed mode, the device will automatically create a frame buffer to 
match the resolution of the client area of the window it is attached to. This window is represented by the 
handle passed in the hDeviceWindow field and is not necessarily the same as the focus window passed 
in to the CreateDevice function. This is the approach we will take in Lab Project 2.1, our first demo in 
this lesson.  
 
BackBufferFormat 
This field specifies the pixel format for the frame buffer. In fullscreen mode this format will set the 
video mode for the adapter. If we specify a 32 bit D3DFMT_A8R8G8B8 format as the back buffer, then the 
device will change the video mode to use a matching format. Because the front buffer cannot use an 
alpha channel, this will put the adapter into D3DFMT_X8R8G8B8 color mode with the resolution specified 
in BackBufferWidth and BackBufferHeight. This assumes of course that this display mode is supported 
by the adapter. If the back buffer format does not correspond to one of the supported adapter display 
modes then device creation will fail. The enumerator class we develop in Lab Project 2.2 will use the 
IDirect3D9::CheckDeviceType function to build a list of modes that can be used with the device on 
the current hardware. This function allows us to check whether or not a particular back buffer format 
can be used with a particular adapter mode on both windowed and fullscreen devices. 
 
Since we are using windowed mode in Lab Project 2.1, we can simply use the same format for the frame 
buffer as the current display mode because we know it will be supported; the adapter is in that mode 
already. 
 

BackBufferCount 
This field allows you to create a device with more than one frame buffer (double or triple buffering). 
Valid values are between 0 and 4. 0 is treated the same as 1 since there must always be at least one 
frame buffer.  
 
If you specify a BackBufferCount that is larger than the number of buffers that can be created on the 
hardware, the call to create the device will fail and this field in the structure will be filled in with the 
maximum number of frame buffers that can be created. This allows for subsequent call to 
CreateDevice, passing the now amended structure to resolve the problem.  
 
For our demonstrations, and indeed for most applications, one back buffer will suffice. 
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MultiSampleType / MultiSampleQuality; 
More recent video hardware has support for multisampling video modes that remove the jagged edges of 
polygons that are especially visible in lower resolutions. When we enumerate our available video 
modes, we can record whether the hardware can perform multisampling in that video mode. If so, we 
have the option to create the device so that it uses it. We will cover multisampling in later lessons so we 
will set these fields to 0 for now. This informs the device that we do not wish to use available 
multisampling capabilities.  
 
SwapEffect 
The D3DSWAPEFFECT enumerated type describes how the device should transition frame buffer content to 
the front buffer: 

 
D3DSWAPEFFECT_FLIP 
 

In the case of fullscreen rendering, presenting the frame buffer is done very quickly by swapping 
the frame buffer and front buffer pointers. When we have more than one frame buffer, the swap 
chain is rotated each time we present the scene. After the flip, the current frame buffer becomes 
the front buffer and the current front buffer is sent to the back of the swap chain.  

  
Note: When we use a flip in windowed mode, the effect of hardware flipping is emulated using pixel 
copying (blits) between surfaces. The behavior of the swap chain frame buffers is the same from the 
application perspective. For example, in a double buffered device, after the presentation, the frame 
buffer will hold the contents of the previous front buffer and vice versa. Using flip in a windowed 
system carries processing overhead and may consume video memory. This is especially a concern 
when using D3DSWAPEFFECT_FLIP with a windowed swap chain of two or more buffers. 

 
Let us take one quick example of a device with two frame buffers (triple buffering). We will 
render a different shape to each buffer and then repeatedly flip through them: 
 

 
 

Figure 2.12 
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To create the device for Fig 2.12 we specify a BackBufferCount of 2. The result is two frame 
buffers and a front buffer. Assume that all three are initially blank. Next we render a triangle. 
The device will automatically render to the active frame buffer, which is initially the first of the 
two frame buffers created. When the image is complete, we call the Present function and the 
pointers are flipped (or copied in windowed mode). The frame buffer now becomes the front 
buffer, the front buffer becomes the second frame buffer, and the second buffer becomes the 
active frame buffer.  
 
Next we render a square and present the scene again. The front buffer which currently has the 
triangle is sent to the back of the frame buffer queue, the new frame buffer with the square 
becomes the new front buffer, and the initial front buffer has now become the next active frame 
buffer. If we were to render a circle next and then call the Present function in a loop, the image 
on the screen would switch between a triangle, a square and a circle over and over again. 
 
 
D3DSWAPEFFECT_COPY 
 
D3DSWAPEFFECT_COPY causes the contents of the frame buffer to be copied to the front buffer 
when the scene is presented. In windowed mode this is performed by doing a blit of all pixels in 
the frame buffer into the front buffer. In full screen mode, the copy may be performed in 
hardware using copies, flips, or a combination of the two to emulate the behavior: 

 
 

Figure 2.13 
 
When a copy is performed, the contents of the frame buffer are unaltered by the presentation. 
This is in contrast to flipping where the frame buffer holds the image that was previously in the 
front buffer (in a double buffer arrangement). This is important to remember if your application 
needs to read pixels back from the frame buffer after the scene has been presented. 
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This setting makes sense for windowed mode applications since they are going to perform copies 
anyway and emulating the flip comes with some overhead. In fullscreen mode, unless our 
application requires an unaltered post-presentation frame buffer, flipping should be used. 
Copying in fullscreen mode is slower and may carry additional video memory overhead. 

 
Note: D3DSWAPEFFECT_COPY can only be used for devices with one frame buffer 
(BackBufferCount = 0 or 1). Device creation will fail if you try to create it using 
D3DSWAPEFFECT_COPY and more than one frame buffer. 

 
 
D3DSWAPEFFECT_DISCARD 
 
This setting lets the device choose the best method to use (flipping or copying) based on the 
current video and window modes. This will generally mean that flipping is used with a fullscreen 
device and copying is used with a windowed device, but this is not guaranteed. Thus our 
application should not make any assumptions about the state of the frame buffer after the screen 
presentation. When using D3DSWAPEFFECT_DISCARD we will always treat the frame buffer as an 
uninitialized memory buffer requiring that we render over the entire surface. In fact, the DirectX 
Graphics debug runtime will automatically fill the contents of a presented frame buffer with 
random data to discourage you from making such assumptions when using this swap effect. 
 

HWND hDeviceWindow 
This parameter is often confused with the focus window HWND in the CreateDevice call. In most 
cases these will be the same and if you leave this parameter set to NULL, the device will use the 
focus window passed into CreateDevice as the device window also. But there are differences 
between the two and in some cases we may want to use a focus window separate from our device 
window. First let us examine what the device window is used for in both fullscreen and windowed 
modes: 

 
Windowed Mode 
In windowed mode this is the HWND of the window that will have its client area used as the 
front buffer. This device window is treated like any other windowed application. For example, 
messages from the mouse or keyboard will be sent to this window’s WndProc function when it 
has focus. It can be minimized and maximized just like any other desktop window. If the 
window is moved, then the device will automatically track the positional changes such that the 
presentation happens at the new position of the client area. Resizing (WM_SIZE messages) of 
the window, although not required, should be handled separately by our application and we will 
discuss this later in the lesson. 
 
Fullscreen Mode 
When the device is in fullscreen mode it gains exclusive access to the screen and the desktop is 
no longer visible. It is as if the device has created its own window without any caption or 
borders and has overlaid the entire desktop. This overlay has the dimensions of the video mode 
stated in the BackBufferWidth and BackBufferHeight fields.  
 
However, this overlay window is not a real window. The desktop is still active (behind it) and 
handling messages from mouse and keyboard input. So although this device window is not 
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actually rendered to, and is in fact not visible, the device resizes it so that it takes up the entire 
display. It also changes its Z order so that it is always atop all other desktop windows. This 
ensures that any mouse and keyboard input is correctly sent to the device window. This avoids 
accidentally clicking the mouse on a window belonging to another application -- invisible behind 
the overlay window -- and changing the focus to that other application. The WndProc of this 
device window will receive the mouse and keyboard messages as well as other window 
messages. Although this window is not actually visible, it will have a one-to-one mapping with 
the physical overlay window that the device is using to render.  

 

 
Figure 2.14 

 
Fig 2.14 shows the device window that would be created by our application in fullscreen mode. 
It has a caption, a border and a menu. Regardless of the initial size of this window, when we 
create the device in fullscreen mode and pass this HWND as the device window, the device will 
alter the dimensions of the window so that it takes up the entire video resolution. This window 
will not actually be visible, so all rendering will be done using an overlay window. Windows 
messages such as keyboard or mouse events will be sent to the device window. So unlike the 
windowed mode scenario where the device window was used for rendering, in fullscreen mode 
the device window is merely used as a message collector.  
 
Imagine a scenario where the window was initially set so that it was 400x400 in size. Now 
consider what would happen if the device did not resize it to take up the entire desktop. When 
the mouse was clicked on the overlay window, it may not actually be situated over the (invisible) 
device window. We might accidentally select another application’s window, or perhaps click an 
empty area on the desktop, or in a worst case scenario, drag items into the recycle bin!  
 
Fig 2.15 shows what would happen if the device did not resize the device window. While 
rendering is unaffected, the position of the mouse is not actually over the device window and 
mouse messages will not get to our device window’s WndProc function. 
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Figure 2.15 
 

So in order for everything to work correctly, we must make sure that we create our device 
window as a top level window if we intend to use fullscreen mode. 
 
There is something else to watch out for when using a device in fullscreen mode. Although the 
device will resize the window to take up the entire dimensions of the chosen video mode, this 
does not always mean that the client area of the window is resized to the full extent of the video 
mode. In Fig 2.16 we can see that the device window contains a border, a caption bar and a 
menu. When the window is resized, the menu and border still remain. Thus the client area will 
not have a one-to-one pixel mapping with the overlay window. At the top of the window in this 
example, about 10% of the overlay window covers up the caption bar and menu of the device 
window. If a mouse button was clicked in this area, the client area would not receive the 
message and we might instead be selecting a menu item or clicking on the caption bar: 
 

 
Figure 2.16 

 
The solution is to create a device window without caption, menus, or borders so that the window 
contains only a client area.  



 

  
 

147

There will be times when you want your application to toggle between fullscreen and windowed 
modes. There are two options. First, we can change the current operating mode of the device by 
calling the IDirect3DDevice9::Reset function. So if we are moving to fullscreen mode, we 
could alter the style of the window such that the menu, caption bar and borders are removed. 
Another option is to create two device windows at application startup. The first has a border and 
caption for windowed mode. The second has no caption or borders, and we can pass this one into 
the Reset function when going to fullscreen mode.  

 
Note: The focus window can only be specified when the device is initially created. If we create a 
device in windowed mode and use the window for both the focus window and the device 
window, changing to fullscreen mode later may cause a problem if we are not careful. In order 
for the device to transition to fullscreen mode, the focus window must be a top level window. If 
our windowed rendering window is not a top level window then we have no way of changing the 
focus window without destroying the device and creating a new one. Therefore, it is common 
practice to make the application main frame window the focus window even when this window 
will never be used for rendering. For applications that use multiple fullscreen devices, such as a 
multi-monitor system, only one device should use the focus window as the device window. All 
others should have unique device windows. Otherwise, behavior is undefined and applications 
will not work as expected. 

 
 

 Windowed 
This parameter tells the device creation function whether we wish to create the device in windowed or 
fullscreen mode. If we set it to TRUE then the device will be created in windowed mode and the 
device window client area will be the front buffer. If set to FALSE then the device will be created in 
fullscreen mode where the video mode will be set by the BackBufferWidth and BackBufferHeight 
fields.  
EnableAutoDepthStencil 
This Boolean variable instructs the device creation function whether or not we wish it to create and 
attach a depth buffer surface. If it is set to TRUE, the function will create the depth buffer (Z-Buffer or 
W-Buffer) using the depth buffer surface format specified in the next parameter. If the depth buffer 
surface is created successfully, it will be automatically attached to the device frame buffer. Any pixels 
rendered by the device will also have their depths tested and recorded in the depth buffer. If the device 
is reset (perhaps to resize it or alter it to a different video mode), it will automatically destroy the 
current depth buffer, create a new one that matches the new frame buffer size and attach it as the 
current depth buffer. This auto management feature makes using depth buffers very convenient.  

 
If it is set to FALSE, a depth buffer will not be created and the application will be responsible for 
creating a depth buffer surface and attaching it to the device, if it needs one. The application would 
also be responsible for managing the destruction and recreation of the buffer if the device is reset. 

 
AutoDepthStencilFormat 
If the EnableAutoDepthStencil parameter above is set to TRUE, then this field should hold the 
D3DFORMAT describing the format of the depth surface our application requires. Unlike the surface 
formats used for textures and frame buffers, there are special D3DFORMAT types for use with depth 
buffers.  
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Table 2.2 contains the depth buffer surface formats available in DirectX 9.0. If the hardware supports 
Z-Buffering (as nearly all do these days) then at least one of the D3DFORMATs listed will be available 
for use. It is possible that some 3D hardware may support many of these depth buffer formats. If this 
is the case then our application will have to choose which one is best for our application to use. As we 
will discuss  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2.2 Depth/Stencil Formats 

 
 

As we will discuss in the next course in this series, many 3D graphics cards provide support for stencil 
buffers. Stencil buffers are used to mask areas of the frame buffer we do not wish rendered to. They 
share the same physical memory as a depth buffer. A 32 bit depth buffer format may have 24 bits used 
for storing pixel depth information and the remaining 8 bits for stencil information.  

 
Our application will have to ensure that it selects a depth buffer format that the 3D hardware is capable 
of supporting. The Direct3D9 object provides member functions to check which depth buffer formats 
can be used with the selected frame buffer format.  

 

32 bit formats  

D3DFMT_D32 
A 32 bit surface where each pixel can hold 
32 bits of depth information. Provides a 
significant range of depth granularity.  

D3DFMT_D24X8 24 bits of this 32 bit surface can be used to 
hold depth information. 8 bits are unused. 

D3DFMT_D24S8 
24 bits of this 32 bit surface are used for 
depth information with 8 bits being used to 
hold stencil buffer values. 

D3DFMT_D24X4S4 

A 32 bit surface with 24 bits of each pixel 
being used to hold depth values and 4 bits 
of each pixel being used to hold stencil 
information. 4 bits are unused. 

16 bit formats  

D3DFMT_D16 

Each pixel in this surface can hold 16 bits 
of depth information. 16 bit surfaces can 
suffer Z-Buffer artifacts. A 24 bit Z-Buffer 
minimum is desirable. 

D3DFMT_D15S1 

Only 15 bits are used for depth information 
with 1 bit reserved for use by a stencil 
buffer. Z-Buffer artifacts are exacerbated 
with only 15 bits of accuracy.  

D3DFMT_D16_LOCKABLE

A special type of 16 bit depth buffer 
surface that can be locked. This allows us 
to read/write to the surface directly through 
a pointer. This is the only depth buffer 
surface format that is allowed to be locked.  
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Some older graphics cards only support 16 bit depth buffer formats. These are not ideal but if that is all 
we have available then we will have to use them. It is also possible that even if a particular card 
supports 16 and 32 bit depth buffers and frame buffers, it may require that the bit depth of the depth 
buffer matches the bit depth of the frame buffer. Therefore, if we have a 32 bit capable card but we have 
a full screen device running in 16 bit color mode (a 16 bit frame buffer), the hardware may insist that we 
also use a 16 bit depth buffer. Fortunately, most of the recent graphics cards support the D3DFMT_D24X8 
depth buffer format. 24 bit depth buffers provide us with more than adequate depth granularity so this 
format will suit our purposes for any demonstration we see in this lesson. 

 
DWORD Flags 
This parameter allows the application to specify how the frame buffer and depth buffer should be 
treated. The two flags that are of importance to us now are listed below: 

 
D3DPRESENTFLAG_LOCKABLE_BACKBUFFER – If this flag is specified, the device will create the 
frame buffer such that it can be locked and modified. When we lock a surface (calling the 
IDirect3DSurface9::Lock method) a pointer to the surface pixels is returned. This allows us 
to modify the frame buffer at the pixel level or to read back pixel colors from the frame buffer. 
On some hardware, creating a frame buffer with this flag can incur a performance cost. The cost 
may be the result of the device maintaining a system memory copy of the frame buffer so that it 
is reachable by the application. Even if this is not the case, the act of locking the frame buffer 
itself is an expensive operation and should be avoided if possible. Frame buffers are created such 
that they are not lockable by default so this flag is required if your application needs lock 
permissions (which will not usually be the case). 
 
D3DPRESENT_DISCARD_DEPTHSTENCIL – If the device was created with a depth buffer, then 
setting this flag may improve performance. If this flag is not set then the device object will 
maintain the integrity of the depth buffer information after the scene has been presented to the 
front buffer. If the application does not clear the depth buffer before the rendering the next 
scene, then the depth buffer will still hold the per- pixel depth information from the last render. 
Sometimes this can be useful, but it is usually not required.  
 
On some hardware the depth buffer data is swizzled to a proprietary format for rendering. If this 
is the case and the flag was not set, the driver would need to make sure that the original depth 
buffer information is restored afterwards so that the data appears unchanged. This might require 
an expensive copy operation.  

 
We will generally set this flag because our applications will clear the depth buffer before 
rendering each frame. The DirectX debug runtime will enforce discarding by filling the depth 
buffer with a constant value after the scene has been presented.  

 
UINT FullScreen_RefreshRateInHz  
This field lets the application specify the refresh rate for fullscreen devices. In windowed mode, this 
value must be zero since we will need to use the refresh rate used by the current adapter running the 
desktop. Setting this field to D3DPRESENT_RATE_DEFAULT allows the device to choose a refresh rate. 
This is typically the approach that our applications will use. 
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UINT PresentationInterval 
This field allows the application to specify the rate at which the frame buffer is presented to the front 
buffer. For fullscreen devices we normally want to synchronize the presentation with the vertical retrace 
period of the monitor to avoid tearing artifacts. However, there are several other options. We can choose 
to present the buffer immediately without waiting for the vertical retrace or we could have the device 
wait for more than one retrace to occur before presenting the scene. Table 2.3 lists the possible values 
(defined in d3d9.h) that can be passed. 
 

 #define Description 

D3DPRESENT_INTERVAL_DEFAULT 
The device creation function will automatically 
select a compatible presentation synchronization 
scheme. 

D3DPRESENT_INTERVAL_ONE 

The device will wait until the vertical retrace 
period before copying/flipping the frame buffer to 
the physical display. This avoids tearing and 
essentially locks the frame rate to that of the 
monitor’s refresh rate. 

D3DPRESENT_INTERVAL_TWO 

The device will wait for every second vertical 
retrace period before the frame buffer is 
copied/flipped to the front buffer. This will 
essentially limit the presentation rate to ½ the 
monitor’s refresh rate. 

D3DPRESENT_INTERVAL_THREE 

The device will wait for every third vertical 
retrace period before the frame buffer is 
copied/flipped to the front buffer. This will 
essentially limit the presentation rate to 1/3 the 
monitor’s refresh rate. 

D3DPRESENT_INTERVAL_FOUR 

The device will wait for every fourth vertical 
retrace period before the frame buffer is 
copied/flipped to the front buffer. This will 
essentially limit the presentation rate to ¼ the 
monitor’s refresh rate. 

D3DPRESENT_INTERVAL_IMMEDIATE
The device will perform the copy/flip immediately 
regardless of the current position of the electron 
gun. 

       
Table 2.3 Presentation Intervals 

 
Not all of these modes are supported on all hardware in all video modes, but you can safely assume that 
at least three are: 
 

• D3DPRESENT_INTERVAL_DEFAULT 
• D3DPRESENT_INTERVAL_IMMEDIATE 

• D3DPRESENT_INTERVAL_ONE. 
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2.5.2 Format Selection 

The IDirect3D9::CheckDeviceFormat function allows us to test whether a specific surface pixel 
format is compatible with a device in a specific display mode. This function will be used by our 
FindDepthStencilFormat function (see Lab Project 2.1) to check the various depth buffer formats 
against the current device on the current adapter. We have to do this because it is possible an adapter 
that supports 32 bit depth buffers might only support 16 bit depth buffers in 16 bit color mode. So it is 
not enough to know what depth buffer formats the hardware supports. We also have to know which ones 
are supported in a particular display mode.  

CheckDeviceFormat can also be used to check whether or not a certain texture format is supported by 
the device in the requested display mode or whether a texture surface can be rendered to directly by the 
device. For now however, we simply wish to use it for determining the best depth buffer format 
available. 
HRESULT IDirect3D9::CheckDeviceFormat(  

    UINT Adapter, 
    D3DDEVTYPE DeviceType, 
    D3DFORMAT AdapterFormat, 
    DWORD Usage, 
    D3DRESOURCETYPE RType, 
    D3DFORMAT CheckFormat 
); 

 

UINT Adapter 

The adapter ordinal for the adapter we are checking the format against. 

 

D3DDEVTYPE DeviceType 
The device type we are checking against. In our code this will either be a HAL device 
(D3DDEVTYPE_HAL) or the reference device if no 3D hardware acceleration is found. 

 

D3DFORMAT AdapterFormat 
The display mode the adapter will be placed into. This is the format for which a compatible depth buffer 
format must be found for our application. In Lab Project 2.1 for example, this will be the display mode 
currently being used by the desktop (returned by IDirect3D9::GetAdapterDisplayMode). In a 
fullscreen application we would pass in the display mode format that we are intending to put the 
hardware into. 

 

DWORD Usage 
A depth buffer surface is a special type of device resource. Internally, it is a block of memory just like 
any other surface (a texture or the frame buffer for example) but by specifying a USAGE flag we inform 
DirectX Graphics what we intend the resource to be used for.  In this example, we are trying to find an 
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image surface format that can be used for a depth buffer. In this case we use the 
D3DUSAGE_DEPTHSTENCIL flag.  

 

D3DRESOURCETYPE   rType 
The CheckDeviceFormat function is used for checking the availability of many resource types so we 
must specify the resource type we are inquiring about.  
typedef enum _D3DRESOURCETYPE { 
    D3DRTYPE_SURFACE = 1,     D3DRTYPE_VOLUME = 2, 
    D3DRTYPE_TEXTURE = 3,     D3DRTYPE_VOLUMETEXTURE = 4, 
    D3DRTYPE_CUBETEXTURE = 5, D3DRTYPE_VERTEXBUFFER = 6, 
    D3DRTYPE_INDEXBUFFER = 7, D3DRTYPE_FORCE_DWORD = 0x7fffffff 
} D3DRESOURCETYPE; 
 

As you might have guessed, the D3DRTYPE_SURFACE type is the one we need for the depth buffer.  

 

D3DFORMAT CheckFormat 
The final parameter allows us to specify our desired surface format. We looked at a table earlier that 
specified the available 16 and 32 bit depth buffer formats that DirectX Graphics supports. Since we will 
not use a stencil buffer at this point in the course, we will choose one of the standard depth buffer 
formats: D3DFMT_D32 , D3DFMT_D24X8 or D3DFMT_D16.  

To avoid the artifacts described earlier in the lesson, our code will first test for a 32 bit depth buffer. If 
that fails, we will try a 24 bit depth buffer and fall back to a 16 bit buffer as a last resort. To check for 32 
bit depth buffer support: 
if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                         D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, 
                                         D3DFMT_D32 ))) 
{ 
 return D3DFMT_D32; 
} 

 

The above code checks the adapter, device and display mode for 32 bit depth buffer support. If it is 
supported, the function returns successfully and we execute the code in the braces. If the function did 
not succeed, we would try again but change the final parameter to a 24 bit format and so on until we 
were successful. Notice that when the function succeeds the format is returned back to the caller where 
it will be placed into the D3DPRESENT_PARAMETERS structure for the call to CreateDevice. 

There is one last thing we must do before we accept the format. In windowed mode, DirectX 9.0 permits 
devices where the frame buffer and the front buffer have different surface formats. So we could use a 32 
bit frame buffer with a 16 bit front buffer. We will need to know whether our requested depth buffer 
format will work with the current front buffer/frame buffer arrangement. The following code calls an 
additional function from the IDirect3D9 interface called CheckDepthStencilMatch to make this 
verification: 
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if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                        D3DUSAGE_DEPTHSTENCIL , D3DRTYPE_SURFACE , 
                                        D3DFMT_D32 ))) 
{ 
       if (SUCCEEDED( m_pD3D->CheckDepthStencilMatch(AdapterOrdinal, DevType, 
                      Mode.Format, Mode.Format, D3DFMT_D32 ))) 
       { 
             return D3DFMT_D32; 
       } 
     
} // End if 32bpp Available 

 

The parameter list to the CheckDepthStencilMatch function are (in order) adapter, device type, adapter 
format (i.e. front buffer format), render target format, and depth buffer format. While this may seem 
redundant given the previous function, there is a difference. As we will discover in the next course in 
this series, although the frame buffer is initially the render target when the device is created -- meaning 
all rendering is done on the frame buffer surface -- we will have the ability to change render targets to 
other surfaces (like textures for example).  

The following code example is taken from Lab Project 2.1. It demonstrates the process just discussed. 
 
D3DFORMAT CGameApp::FindDepthStencilFormat(ULONG AdapterOrdinal, D3DDISPLAYMODE Mode, 
                                           D3DDEVTYPE DevType ) 
{ 
    // Test for 32bit depth buffer 
    if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                             D3DUSAGE_DEPTHSTENCIL , D3DRTYPE_SURFACE , D3DFMT_D32 ))) 
    { 
        if (SUCCEEDED( m_pD3D->CheckDepthStencilMatch ( AdapterOrdinal, DevType, Mode.Format, 
                                                        Mode.Format, D3DFMT_D32 ))) 
           return D3DFMT_D32; 
    } // End if 32bpp Available 
 
    // Test for 24bit depth buffer 
    if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                             D3DUSAGE_DEPTHSTENCIL , D3DRTYPE_SURFACE , D3DFMT_D24X8))) 
    { 
        if (SUCCEEDED( m_pD3D->CheckDepthStencilMatch ( AdapterOrdinal, DevType, Mode.Format, 
                                                        Mode.Format, D3DFMT_D24X8 ))) 
             return D3DFMT_D24X8; 
    } // End if 24bpp Available 
 
    // Test for 16bit depth buffer 
    if (SUCCEEDED( m_pD3D->CheckDeviceFormat(AdapterOrdinal, DevType, Mode.Format, 
                                             D3DUSAGE_DEPTHSTENCIL , D3DRTYPE_SURFACE , D3DFMT_D16 ))) 
    { 
        if (SUCCEEDED( m_pD3D->CheckDepthStencilMatch ( AdapterOrdinal, DevType, Mode.Format, 
                                                        Mode.Format, D3DFMT_D16 ))) 
         return D3DFMT_D16; 
    } // End if 16bpp Available 
 
    // No depth buffer supported 
    return D3DFMT_UNKNOWN; 
} 
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2.5.3 Lost Devices 

It is possible that the device object may be placed into a ‘lost’ state while the application is running. 
Consider an application running in fullscreen mode where the device has frame buffers, texture surfaces, 
and vertex buffers stored in video memory. The device knows precisely where these resources are 
located when they need to be accessed. Now imagine that the user decides to ALT+TAB the focus to 
another application. The application would be forced back into windowed mode so that another 
application on the desktop could assume the dominant role. At this point, the new focus application 
might require access to video memory. Because it has OS focus, its requests for video memory will take 
precedent and the application resources still occupying video memory are not guaranteed to be 
preserved. The textures, vertex buffers, and frame buffers may all need to be deleted to create space for 
memory requests from the focus application. As such, the device pointers now point to resources which 
no longer exist.  Even if we ALT+TAB again to return focus to our application, the memory that was 
previously being used by our application has been corrupted. It is at this point that the device is said to 
be in a lost state. When a device is lost we cannot perform normal operations with that device object. 
Only two functions will be valid at this stage: one to test if the device is lost, and the other to ‘reset’ it if 
it is.  
 
The following function call enables us to determine the state of the device: 
 
HRESULT hRet = m_pD3DDevice->TestCooperativeLevel(); 

 
This function returns one of two possible results: D3DERR_DEVICELOST or D3DERR_DEVICENOTRESET. 
 
D3DERR_DEVICELOST 
This result indicates that the device memory is still not available as it may be still in use by another 
application that has focus. Under these circumstances no rendering should be done. The application will 
need to continually poll the device using the TestCooperativeLevel function until it returns 
D3DERR_DEVICENOTRESET. At this time we will be able to reset the device. 
 
 
D3DERR_DEVICENOTRESET 
This indicates that the memory resources have been handed back to the device. However, caution is in 
order. When a device is lost, it loses exclusive access to the memory for its resources. Memory handed 
back to the device is invalid and the previous resource data should be regarded as corrupt.  
 
Once we receive the D3DERR_DEVICENOTRESET return code, we can reset the device as follows: 
 
m_pD3DDevice->Reset( &m_D3DPresentParams ); 

 
Resetting a device entails passing a D3DPRESENT_PARAMETERS structure as was done when the device 
was initially created. This tells the device how to rebuild its frame buffer(s), which rendering window to 
use, and so on. This is similar to recreating the device from scratch. Technically speaking, we are not 
recreating the device; we are simply instructing it to recreate its resources (textures, frame buffers, etc.). 
Although we can use different presentation parameters when resetting a device, this is not usually the 
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approach we will take. Our preference is to return the device back to the state it was in before the loss 
occurred. Note that this applies to states as well. Lost devices also lose the render and transform states 
that the application may have set previously. All states return to their default conditions when the device 
is reset. This is why it is good practice to put our initial device render states in a separate function.  
 
It is important to note that certain textures, vertex buffers, and other resources will need to be 
reconstructed when a lost device is finally recovered. We will examine these scenarios as we begin to 
use these resources later in the course.  
 
 
Common Causes of Lost Devices 
 
When the user switches focus (ALT+TAB) to another application from a fullscreen application, the 
device is automatically lost because it no longer has the exclusive access to the video memory that it 
needs. The application will be minimized on the task bar. The device will remain lost 
(TestCooperativeLevel will continue to return D3DERR_DEVICELOST) until the application is 
maximized again, giving it the focus. At this time, TestCooperativeLevel will return 
D3DERR_DEVICENOTRESET and we can reset our device. 
  
Other possible examples might include minimizing the application or shifting focus to another 
application when running in windowed mode. On some machines (such as our test machine) this does 
not cause device loss, but this may not always be the case on other hardware.  
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2.6 Primitive Rendering 101 

Now that we know how to set up a DirectX Graphics environment, let us try to use some of the core 
features. The rest of our discussion will focus on how to render polygons, change render states, and how 
to use the device to transform our vertices.  
 
 

2.6.1 Fill Modes 

In Chapter 1 we constructed a wireframe renderer. While it was useful for understanding the 
transformation of vertex data from world space to screen space, it is unlikely that we will be using 
DirectX Graphics to render our scenes only in wireframe. Generally we want our polygons to be filled 
with color. Let us briefly examine the different fill modes that set the polygon drawing strategy for the 
device. 
 
Point 

In point fill mode, the device renders each transformed vertex as a point on the 
screen and does not connect them. Point mode might be useful for tasks like 
generating a low-quality star field for a space game but is obviously not a fill 
mode you will likely use very often. Here we see an example of a triangle 
rendered in point mode.  

 
We can control the color of individual vertices by adding color data to our vertex structure (in addition 
to the positional data). We will discuss this in detail later in the lesson. 
  
Wireframe 

In wireframe mode, one-pixel thick lines are rendered between the screen space 
vertices. We saw this technique in Lab Project 1.1. The color of the line can be 
modified by using a color stored in each vertex structure. To the right we see a 
triangle rendered in wireframe mode. 
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Solid 

Solid rendering is the mode you will use most. In this mode the device renders 
the outlines of the polygon and paints every pixel inside the wireframe outline 
to provide a solid appearance. Once again the color we store at each vertex can 
control how the inside area of the polygon gets rendered. To the right we see an 
example of a triangle rendered in solid fill mode. 

 
We configure our device to render with a particular fill mode using the 
IDirect3DDevice9::SetRenderState function and passing in D3DRS_FILLMODE and the desired fill 
mode. The first parameter is a D3DRENDERSTATETYPE enumerated type and tells the device which 
render state we wish to change. This same function is used to change all render states. In this case, we 
are changing the current fill mode. The second parameter describes the new fill mode. Every polygon 
rendered following a call to any one of these functions will be rendered using that fill mode until the 
state is changed. 
 
pDevice->SetRenderState (D3DRS_FILLMODE , D3DFILL_POINT); 
pDevice->SetRenderState (D3DRS_FILLMODE , D3DFILL_WIREFRAME); 
pDevice->SetRenderState (D3DRS_FILLMODE , D3DFILL_SOLID); 
 
 

2.6.2 Shading Modes 

We are not limited to just using a single color to fill polygons or draw lines. We can instruct the device 
to render the surface of a polygon using an interpolation between colors stored in the vertex structures. 
This can be used to generate smooth coloring effects. DirectX Graphics supports both Flat and Gouraud 
shading. Shade modes and fill modes are not mutually exclusive and will be used together to create the 
desired effect. The following code shows us how to set one of the two shade modes. 
 
pDevice->SetRenderState (D3DRS_SHADEMODE , D3DSHADE_FLAT); 
pDevice->SetRenderState (D3DRS_SHADEMODE , D3DSHADE_GOURAUD); 

 
Flat Shade Mode 

Flat shading applies a single color to the entire polygon. In flat shade mode 
the device uses the color stored at the first vertex in the triangle to color the 
entire triangle. If you had a triangle where the first vertex was blue, the 
second vertex was red and the third vertex was green, only the color of the 
first vertex (blue) would be used to color the entire triangle. The other colors 
would be ignored. The image on the right shows a flat shaded polygon.  
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To render a polygon in this manner, the device would be set to use the solid fill mode and flat shade 
mode device render states. In wireframe fill mode and flat shade mode, the color of each line in the 
polygon will be the color stored in the first vertex. 
 
 
Gouraud Shade Mode 

When each pixel in the triangle is rendered using Gouraud shading, the 
color will be calculated by performing a linear interpolation of the three 
vertex colors weighted by the position of the pixel in relation to each 
vertex. For example, if we had two vertices that had red color components 
of 0.2 and 0.8 and the pixel being rendered was exactly half-way between 
those two vertices, the red component of that pixel would be 0.5. The 
triangle to the right has one yellow vertex at the top and two red vertices at 
the bottom:  

 
 
As we will see later, Gouraud shading helps to cover up sharp edges between adjacent polygons and 
makes the mesh appear more rounded.  
 
Gouraud shading also works in wireframe mode. The color of the line between each vertex making up 
the edge of the polygon will be determined through the same interpolation process: 
 
 

 
 
The line above consists of two vertices. The top vertex contains a yellow color and the bottom vertex 
contains a red color. We thickened the line so that it is several pixels wide for ease of viewing but keep 
in mind that in DirectX Graphics, line thickness in wireframe rendering mode is always one pixel. 
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2.6.3 Vertex Data 

As we learned in Chapter 1, 3D worlds are made up of a collection of polygons, each of which 
represents a collection of vertices. We also learned that vertices can hold more than just positional 
information. 
 
struct Vertex 
{ 
 float x; 
 float y; 
 float z; 
}; 

 
When the device renders a polygon and Gouraud shading is enabled, the color stored at each vertex is 
interpolated across the face of the polygon for each pixel. This smoothly blends the color from one 
vertex into the next: 
 

 
 
In the triangle above, the top vertex in the face holds a yellow color and the bottom two vertices hold 
slightly different shades of red. Each pixel has its color calculated as a function of its position relative to 
the three vertices. 
 
So we can store a color at each vertex. In this case, we are looking at the diffuse color of the polygon 
and our structure now looks like this: 
 
struct Vertex 
{ 
 float x; 
 float y; 
 float z; 
 DWORD diffuse; 
}; 

 
It may seem strange that we used a DWORD to hold color information but this is in fact how DirectX 
Graphics represents colors. We will often see DirectX code where colors are defined as D3DCOLOR. 
 
D3DCOLOR diffuse; 
 
D3DCOLOR is actually a typedef for a DWORD (see d3d9types.h): 
 
typedef DWORD D3DCOLOR 
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Colors are stored in the DWORD as ARGB (alpha/red/green/blue) using a byte for each color 
component. We can use the D3DCOLOR_ARGB macro to pass in 4 byte values and have the packed 
DWORD (D3DCOLOR) returned: 
 
#define D3DCOLOR_ARGB(a,r,g,b) 
                  ((D3DCOLOR)((((a)&0xff)<<24)|(((r)&0xff)<<16)|(((g)&0xff)<<8)|((b)&0xff))) 

 
The macro simply shifts the input bytes values into there respective positions inside the DWORD. 
 
In DirectX Graphics, colors are always represented as 32 bit DWORDs even if the device is in 16 bit or 
24 bit video modes. The device will handle any conversions that need to take place as well as the 
quantization of 32 bit color values into 16 bit color values.  
 
Another macro allows us to ignore the alpha component and deal with colors as RGB values: 
 
#define D3DCOLOR_XRGB(r,g,b)   D3DCOLOR_ARGB(0xff,r,g,b) 

 
The resulting alpha component will be set to 255. This means that it is completely opaque.   
 

Note: There will be times (especially when dealing with lighting) when we will need to specify colors as a 
series of floats (one float each for A, R, G and B). In this case we will use the D3DCOLORVALUE 
structure: 
 
typedef struct _D3DCOLORVALUE { 
    float r; 
    float g; 
    float b; 
    float a; 
} D3DCOLORVALUE; 
 
Note: Each component above has a value in the range to 0.0 to 1.0 (instead of 0 – 255). These values 
will be converted back into DWORD values for the final render. 

 
Colors are not the only thing we can store in our vertex structure. We may also want to texture our 
polygons. In order for polygons to have textures applied, each vertex must store a new pair of 
coordinates. You can think of these two coordinates (generally referred to by U and V) as the X and Y 
coordinates of the pixel in the texture where the vertex is mapped. Once we give each vertex a set of UV 
coordinates, the device can interpolate the pixels of the texture across the polygon surface between the 
vertex coordinates. All of this will be examined in detail in chapter 6.  
 
struct Vertex 
{ 
 float x, y, z; 
 DWORD diffuse; 
 float u, v; 
}; 
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It might seem odd to have both a color and a texture applied to the same polygon. After all, if a texture 
is mapped to a polygon, wouldn’t the color of the texture pixels determine the color of the polygon 
pixels?  
 
Not necessarily, although we certainly could do it that way. What we will do instead is instruct the 
device to blend the interpolated diffuse color of each pixel with the texture pixel computed via 
interpolation of the UV coordinates and use that single color result for our frame buffer image. Fig 2.17 
shows an example of this. We have a polygon with a texture applied to it where the vertices on the left 
edge of the polygon have darker diffuse colors than those on the right. 
 

 
 

Figure 2.17 
 
As we will see in later lessons, a single polygon can have multiple textures assigned to it. When the 
polygon is rendered, each pixel in the polygon has its color blended from a series of textures (possibly 
including the diffuse color as well). If we wanted a polygon which had three textures and a diffuse 
color, we would give it three sets of texture coordinates: 
 
struct Vertex 
{ 
 float x; 
 float y; 
 float z; 
 DWORD diffuse; 
 float u1 
 float v1; 
 float u2; 
 float v2; 
 float u3; 
 float v3; 
}; 

 
To make our objects shiny, we can store another color value called specular at each vertex. The 
specular color we specify determines the color used for surface highlights: 
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Figure 2.18 

 
The sphere on the left has no specular component. The sphere on the right has a white specular color at 
each vertex. DirectX Graphics will calculate the specular component based on the location of the 
vertices relative to light sources in the scene and the position of the camera. We will cover specular 
lighting in detail in chapter 5. 
 
struct Vertex 
{ 
 float x; 
 float y; 
 float z; 
 DWORD diffuse; 
 DWORD specular; 
 float u1 
 float v1; 
}; 

 
DirectX Graphics allows us to place lights in our scene to enhance realism. Vertices closer to light 
sources will be lit more brightly than those that are further away. The effects are even more compelling 
when combined with an algorithm like Gouraud shading. While we will discuss lighting in detail in 
chapter 5, a brief discussion will be helpful to illustrate the next concept. 
 
In order for the device to light our vertices we must place first light sources in the scene. Additionally, 
the device must know whether or not the polygon is facing the light source. Polygons facing away from 
the light source should obviously not be lit. Because lighting is done at the vertex level and not the face 
level, we must provide information about the orientation of each vertex. We can do this by storing a 
normalized vector at each vertex. 
 
A vertex normal is a normalized vector stored at each vertex describing the direction the vertex is 
facing. When the device lights a vertex it will measure the angle between the vertex normal and the 
direction vector from the vertex to the light source. Vertex color will be scaled based on this angle. A 
vertex pointing right at a light source will be lit at full intensity while a vertex rotated at some angle 
away from the light source will have its color scaled down appropriately.  
 
So if our application intends to use the DirectX Graphics internal lighting pipeline, then it will need a 
vertex structure that contains this normal.  
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The following vertex structure contains position, a vertex normal vector, a diffuse color and a specular 
color.  
 
struct Vertex 
{ 
 D3DXVECTOR3  Position; 
 D3DXVECTOR3  Normal; 
 DWORD   Diffuse; 
 DWORD   Specular; 
}; 

 
Notice that we used a D3DXVECTOR3 rather than three floats this time. We can access any individual 
float component of the positional data by using Position.x, Position.y, and Position.z (likewise for the 
Normal vector components). 
 
The real point of this discussion is that our applications will use vertices in a number of different ways. 
We may want to render some polygons using DirectX Graphics lighting and a single set of texture 
coordinates and others without lighting but with three sets of textures, and so on. The question is, how 
will we tell DirectX Graphics what our vertices look like so that it knows what to expect when we pass 
them into the IDirect3DDevice9::DrawPrimitive function? The answer is the Flexible Vertex Format. 
 

The Flexible Vertex Format (FVF) 

We can inform DirectX Graphics about the components it can expect to find in our vertices by calling 
the following function: 
 
IDirect3DDevice9::SetFVF(DWORD fvf); 
 
The DWORD will be some combination of Flexible Vertex Format flags. Some of the more common 
flags are seen in the next table: 
 
Common FVF Flags       Description  

D3DFVF_XYZ 

The vertex is untransformed and will need to be multiplied by the world, 
view and projection matrices to transform it into screen space. The 
structure will contain a 3D vector describing its model (or world) space 
position. 

D3DFVF_XYZRHW 
The vertex will not need to be transformed or lit. The positional 
information contained within the vertex is specified in screen 
coordinates.  

D3DFVF_NORMAL 

The vertex contains a normal vector that describes its orientation. If 
lighting is enabled, this normal is used in lighting calculations to scale 
the intensity of the light in relation to the orientation of the vertex to the 
light. 
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D3DFVF_DIFFUSE 

The vertex has a diffuse color component. If lighting is enabled, this 
color is scaled by the lighting calculations (and the color of lights 
effecting the vertex) to create a final diffuse color. If lighting is not 
enabled and no normal is specified, the diffuse color is considered to be 
the final output diffuse color used to render the polygon. 

D3DFVF_SPECULAR 

The color of specular highlights that should be reflected by this vertex. If 
lighting is enabled and a normal is specified, this value is scaled based on 
the light sources in the scene and the position of the camera in relation to 
the object and the light. If lighting is disabled this value is considered to 
be the final specular color used at the rasterization stage. 

D3DFVF_TEX0 through 
D3DFVF_TEX8 

DirectX Graphics supports vertices with up to 8 sets of texture 
coordinates. We can check the MaxSimultaneousTextures member of the 
D3DCAPS9 structure returned from the IDirect3D9::GetDeviceCaps 
function to inquire about the device texture blending capabilities. 
Although many 3D graphics cards will only support 2 to 4 textures being 
blended simultaneously, this does not limit the ability to store 8 texture 
coordinates in a single vertex. You may wish to store the texture 
coordinates in the vertex and render the polygon several times using 
different sets. This will be covered later in the course when covering 
multi-texturing.  

 
Note: The IDirect3DDevice9 interface has a function called GetFVF() which retrieves the currently set 
vertex format for the device. Remember that the device is a state machine. Once you call SetFVF with a 
vertex format, the device will expect that vertex format in all future calls to the DrawPrimitive functions 
until you call SetFVF again to specify another vertex format. 

 
Vertex flags that are only valid for pre-transformed vertices (vertices specified in screen coordinates) 
are highlighted in blue, while flags that are only valid for untransformed vertices are highlighted in 
yellow.  
 
These are mutually exclusive flags. The yellow flags cannot be used with the blue flag. This would be 
like informing the device that the positional information of the vertex is untransformed and transformed 
at the same time.  
 
Similarly we would not use the D3DFVF_XYZRHW flag with the D3DFVF_NORMAL flag because 
the first flag states that we are using vertices that have already been transformed. When we specify 
screen space vertices, the vertices do not pass through the transformation and lighting pipeline. Since the 
normal is only used for lighting calculations, we would not need to pass it. Flags that are not highlighted 
can be used with both untransformed and transformed vertices, although they have different 
implications depending on which of the two is being used. 
 
Let us have a look at some examples. In this first example, we will create a structure that holds 
positional information, a diffuse color, and one set of texture coordinates. This vertex would be used to 
specify vertices in model space or world space. They will need to be transformed by the fixed-function 
pipeline into screen coordinates. Because we have specified a diffuse color and no normal, we will 
indicate that we do not want the pipeline to light the vertices and that the diffuse color should be used 
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explicitly in the rendering process. This demonstrates that we can enable or disable functionality by 
choosing only the components we need. In this case, we are choosing the transformation capabilities of 
the device but not the lighting module.  
 
struct Untransformed_PreLit_Textured_Vertex 
{ 
 D3DXVECTOR3 Position; // untransformed model space vertex position 
 DWORD     Diffuse   // vertex color 
 float      u;        // x texture coordinate  
 float      v;        // y texture Coordinate       
}; 
 
Notice that although we can leave out the components we do not wish to use, the components that we do 
use must appear in the order that they are listed in the table. Diffuse must come after position and so on. 
To tell the device what to expect from our vertices: 
 
m_pDevice->SetFVF(D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1|D3DFVF_TEXCOORDSIZE2(0)) 

 
Notice that the last flag is not found in the above table. That is because it is not a flag, it is actually a 
macro. It tells the device how many floats the texture coordinate set contains. 
D3DFVF_TEXCOORDSIZE2(0) informs the device that the first set of texture coordinate in this vertex 
(index 0) is two floats in size (the typical size). We will see later on in the course that there will be times 
when we need to use 1D or even 3D texture coordinates and this macro will allow us to specify that. 
Keep in mind that at this point in the course that you are not expected to understand how texture 
coordinates work, only that a vertex may need to contain them. 
 
The next example vertex invokes both the transformation and the lighting module of the device. This 
time we will need to supply a vertex normal. When we render polygons containing vertices of this type, 
the device will transform the vertices by the device’s currently set world, view and projection matrices. 
It will use the vertex normal to calculate its orientation from any lights placed in the scene which will be 
used to scale the diffuse and specular colors. This type of vertex is referred to as an untransformed and 
unlit vertex since it needs the device to transform and light it before rendering it. Also note that it does 
not contain any texture coordinates, so a texture will not be applied to this polygon when it is rendered. 
 
struct Untransformed_Unlit_Vertex 
{ 
 D3DXVECTOR3 Position;  // untransformed model space position 
 D3DXVECTOR3 Normal;    // unit vector orientation vector 
 DWORD     Diffuse;   // color reflected from diffuse lighting   
 DWORD     Specular;  // color of specular highlights reflected 
}; 

 
To use this vertex format we would need to call SetFVF with the following flags: 
 
m_pDevice->SetFVF( D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_SPECULAR);  

 
Notice again that the flags are specified in the order that they appear in the table (ignoring omitted flags) 
and that the vertex structure itself retains this ordering as well. 
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Our lab projects in this lesson will not use texturing or the lighting module. We will specify our vertices 
in model coordinates and render polygons using Gouraud shading. Therefore, we will need to store a 
color at each vertex. This means that we will need only two components, a position and a diffuse color 
component: 
 
struct CVertex 
{ 
 float x; 
 float y; 
 float z; 
 DWORD Diffuse; 
}; 

 
Since our application uses only one vertex type we can simply call SetFVF as soon as the device is 
created and leave this state set for the life of the application: 
 
m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 

 
Note: When an application requires many different FVF types, it is preferable to #define the flags and 
give them meaningful names, making it easier to read. For example: 
 
#define MyUnLitVertex D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE 
#define MyPreLitVertex D3DFVF_XYZ | D3DFVF_DIFFUSE 
 
m_pDevice->SetFVF(MyUnLitVertex) 
// Render un-lit meshes here 
 
m_pDevice->SetFVF(MyPreLitVertex); 
// Render pre-lit meshes here 
// Present scene here 

 
In Lab Project 1.1, our spinning cubes were made up of six faces each with four vertices per face. We 
were able to render those faces (called quads due to the four sided nature of the polygon) once we had 
transformed the vertices into valid screen coordinates. In DirectX Graphics (and virtually all 3D API’s 
commonly available) you are limited to rendering only two types of primitives: lines or triangles. A line 
is specified using two vertices which define starting and ending points in either 3D space or screen 
space. A triangle is constructed from three vertices defined in either 3D space or screen space. We will 
cover using DirectX Graphics for 2D rendering using screen space vertices later in the course. At this 
point in time we will concentrate only on primitives defined in 3D model space or world space. To 
render a quad, we must construct it using two triangles as shown below: 
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Figure 2.19 

 
Triangle 1 contains three vertices (P1, P2 and P3) and Triangle 2 also has three vertices (P1, P3 and P4). 
Let us briefly discuss exactly why it is that we are limited to triangle rendering. 

 

2.6.4 Planar Polygons 

As we discussed in Chapter 1, if all of the points of a polygon are on a single plane, we can take any two 
edges in that polygon and perform a cross product to generate a normal vector for the entire polygon. 
This normal can be used to determine whether or not the polygon is facing away from the camera. Many 
mathematical operations performed in 3D graphics programming are simplified (and thus made fast 
enough for real-time use) when the assumption is made that all vertices in a polygon are on the same 
plane. If the plane is facing away from us then so are polygons that share the plane. Plane calculations 
are used for back-face culling, collision detection, object picking and even color interpolation. If we 
were allowed to generate polygons where all of the vertices did not share the same plane, then these 
mathematical operations would fail to return the correct results. 
 
Let us consider an example. Imagine that we were trying to find out whether a point was behind or in 
front of a polygon. We usually do this by using the polygon plane and classifying that point against that 
plane. If the point is behind the plane then the point is behind the polygon. Fig 2.20 shows a quad where 
three of the points share a plane but one of the vertices has been lifted off of the plane. This is similar to 
laying a piece of paper flat on a desk, and then picking up one of its corners. P2 does not lie on the same 
plane as P1, P3 and P4: 
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Figure 2.20 

 
What is the plane normal of the quad in Fig 2.20? If we perform a cross product on edges (P1 – P2) and 
(P1 - P3) we would get a very different result than if we used edges (P1 – P3) and (P1 – P4). The answer 
is that they are both wrong because the polygon does not exist on a single plane. We could have a 
situation where a point is classified as being in front of the plane (because it is in front of points P1, P3 
and P4) when it is actually behind point P2.  
 
Of course, we know that the vertices of a triangle are always co-planar. If you move a vertex to a 
different position, the entire triangle is rotated or pivoted onto a new (but single) plane. So, in choosing 
triangles, DirectX Graphics can be sure that when it is dealing with the vertices of its primitives, they 
will always exist on a single plane. Fig 2.20 does not accurately depict the situation. We had to bend 
ends P1-P2 and P2-P3 to represent the fact that the vertex P2 is raised off the plane. Of course, this is 
not actually the case since polygon edges are always straight. With this in mind, you should be able to 
carve the above quad into two triangles. Each will exist on different planes to be sure, but nevertheless 
they will have co-planar vertices when taken individually. Note that we can still store our polygons as 
N-sided convex polygons (squares, hexagons, octagons, etc.) as long we are sure to deconstruct them 
into triangles prior to passing them to the device for rendering. 
 
 

2.6.5 The DrawPrimitive Functions 

The IDirect3DDevice9 interface defines the following primitive rendering functions.  
 
HRESULT DrawPrimitive(D3DPRIMITIVETYPE PrimitiveType, 
                      UINT StartVertex, UINT PrimitiveCount); 
 
DrawPrimitive is used to draw polygons when the vertices are stored in a device resource called a vertex 
buffer. Vertex buffers are blocks of memory allocated by the device that we use to store vertex data. We 
will discuss vertex buffers in the next chapter. 
 
HRESULT DrawPrimitiveUP(D3DPRIMITIVETYPE PrimitiveType, UINT PrimitiveCount, 
     const  void *pVertexStreamZeroData, 
                        UINT VertexStreamZeroStride); 
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DrawPrimitiveUP is the function that we will use to render the two cubes in our first demo for this 
lesson (Lab Project 2.1). When we use this function to render polygons we will pass in a pointer to an 
array of vertices much like we did in our software based rendering demo. This is not the optimal way to 
render polygons in DirectX Graphics and we will learn why this is so in the next lesson. For now 
however, it will suit our purposes because it is very easy to use. The ‘UP’ appended to the end of the 
function name stands for ‘User Pointer’ because the vertices are maintained by the application (via a 
pointer to a vertex array) and not in a device owned vertex buffer. 
 
HRESULT DrawIndexedPrimitive(D3DPRIMITIVETYPE Type, INT BaseVertexIndex, 
                             UINT MinIndex, UINT NumVertices, 
                             UINT StartIndex, UINT PrimitiveCount); 

 
DrawIndexedPrimitive allows us to make certain optimizations based on the fact that vertices from 
different faces might share the same 3D space position and properties. In our cube example we created 
24 vertices (four for each face) when technically they describe only eight unique positions in 3D space. 
Many of the faces, such as the top face and the front face for example, used the same vertices. There 
were three vertices at each corner of the cube, one belonging to each face that shared that corner point. 
This is wasteful because we wind up transforming and lighting 24 vertices when we could just operate 
on 8. Using the DrawIndexedPrimitive function we pass a device resource called an index buffer along 
with our vertex buffer.  It is filled with indices into the vertex buffer describing which vertices make up 
each face. This allows us to reuse the same vertex in each of the three faces in our cube and speeds 
things up considerably.  
 
HRESULT DrawIndexedPrimitiveUP(D3DPRIMITIVETYPE PrimitiveType, 
                               UINT MinVertexIndex, 
                               UINT NumVertexIndices, UINT PrimitiveCount,  
                               const void *pIndexData, D3DFORMAT IndexDataFormat, 
                               const void* pVertexStreamZeroData, 
                               UINT VertexStreamZeroStride ); 

 
This is behaviorally the same as the DrawIndexedPrimitive function, only it allows us to pass in pointers 
to system memory allocated vertex and index arrays, rather than device allocated vertex and index 
buffers.  

 
 
The DrawPrimitiveUP Function 

DrawPrimitiveUP is the function we will use in this lesson to render our polygons: 
 
HRESULT DrawPrimitiveUP(D3DPRIMITIVETYPE PrimitiveType, UINT PrimitiveCount, 
            const void *pVertexStreamZeroData, 
                        UINT VertexStreamZeroStride); 
 
We will discuss the parameter list slightly out of order to clarify certain concepts. 
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UINT VertexStreamZeroStride 
This parameter represents the size of our vertex structure (a single vertex). It tells the device how big 
each vertex is so that it knows how far to advance the pointer to access the next vertex in the array. The 
size should match the size that would result given the FVF definition. 
 
void *pVertexStreamZeroData 
This is the pointer to our array of vertices. The first demo in this lesson will call DrawPrimtiveUP for 
each polygon in each cube. During each call, this pointer points to a single face consisting of four 
vertices. Later, we will learn how to render many triangles simultaneously with a single function call.   
 
UINT PrimitiveCount 
This value describes how many primitives we intend to render from the vertex array.  This value 
depends on the D3DPRIMTIVETYPE described next.  
 
D3DPRIMITIVETYPE PrimitiveType 
The D3DPRIMITIVETYPE tells the device how to interpret the vertex data passed in and how it should 
be used to render triangles. The primitive types defined by DirectX Graphics are as follows: 

 
D3DPT_POINTLIST  
 
The D3DPT_POINTLIST primitive type informs the device that the vertex data should be 
treated as a list of points to be rendered, not as a list of triangles. The vertices pass through the 
transformation and lighting pipeline and have their vertex colors calculated just like normal 
vertices, but at rendering time they are treated as individual points to be drawn on the screen. 
The following code demonstrates rendering our cube faces as a point list: 
 
for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
{ 
     CPolygon * pPolygon = pMesh->m_pPolygon[f]; 
             
     // Render the primitive 
     m_pD3DDevice->DrawPrimitiveUP(D3DPT_POINTLIST,pPolygon->VertexCount,  
                                   pPolygon->m_pVertex, sizeof(CVertex) ); 
} // Next Polygon 

 
With DrawPrimitiveUP, the second parameter describes how many primitives we wish to draw. 
When using D3DPT_POINTLIST to render points, each vertex is a primitive and thus the 
number of primitives is equal to the number of vertices to be rendered.  
 
We do not have to render all of the primitives contained in the vertex array. Of course, when 
using a Point List primitive type, the primitive count cannot exceed than the number vertices 
contained in the vertex array or the call will fail. 
 
Fig 2.21 demonstrates the results of the previous code. Faint gray lines were added to help you 
see the original cube shape. Only the white dots would actually be rendered during the call. 
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PrimitiveCount = NumberOfVertices 
 

Figure 2.21 
 
D3DPT_LINELIST  
 
The device treats the vertex array as a collection of vertex pairs when using line lists. Each pair 
defines a start and end point in 3D space (or screen space if using pre-transformed vertices). 
During rendering the device will draw a straight line between each pair of points. As with the 
point primitive, the vertices that pass through the pipeline can have colors, shading, and even 
textures applied. One limitation is that line thickness is limited to a single pixel.  
 
Fig 2.22 shows how an array of six vertices would be rendered by DrawPrimitiveUP using the 
D3DPT_LINELIST primitive type. Since each line is defined by two vertices, the maximum 
number of primitives that can be rendered is equal to NumberOfVertices / 2. In this example, six 
vertices would describe three separate lines. 
 

 
Figure 2.22 
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Note that the vertices also contain their own colors and that Gouraud shading smoothly blends 
the colors of the two vertices across the length of the line. The image is not accurate since we 
widened the lines beyond one pixel for easier viewing.  
 
Although we do not have to render all of the lines passed into the function, the PrimitiveCount 
parameter should not exceed the total number of vertices in the array divided by two: 
 
PrimitiveCount = NumberOfVertices / 2 
 
Rendering a series of connected lines using the D3DPT_LINELIST primitive type will require 
vertex duplication since vertices are paired. Fig 2.23 shows five connected line segments. Ten 
vertices would be required (5 (NumberOfLines) * 2 (VerticesPerLine) = 10): 

 
Figure 2.23 

 
Although this approach works correctly, it is inefficient. The end point of line 1 (v1) is in the 
same position as the start point of line 2 (v3) and so on. Not only will this be a less than optimal 
use of memory (especially if we were rendering a significant number of line segments) but if the 
line segments use untransformed vertices, duplicates sharing the same positions would still need 
to be transformed individually.  
 
The code to render the five line segments just mentioned is shown next. It assumes that 
m_pLineVertexArray is a pointer to an array of type CVertex large enough to hold the ten 
vertices: 
 
// There are 10 vertices in our linked line because it is made up of 5 separate lines
  
UINT LineVertexCount = 10 
 
// Render the primitives 
m_pD3DDevice->DrawPrimitiveUP( D3DPT_LINELIST , LineVertexCount / 2 ,  
                               m_pLineVertexArray , sizeof(CVertex) ); 
 
D3DPT_LINESTRIP  
 
The D3DPT_LINESTRIP primitive informs the device that the lines are connected. This 
eliminates the need for duplicated vertices. During rendering, the device uses the end vertex of 
the previous line as the start vertex of the next line and so on for each line rendered.  
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If we have two line segments to draw, v1 to v2 and v2a to v3 and v2 and v2a are duplicates, we 
can pass in vertices v1, v2, and v3 and the device will automatically render the first line between 
v1 and v2 and the next line between v2 and v3. This allows us to do remove duplicated vertices 
and conserve memory and means that the vertex position v2 only has to be transformed and lit 
once by the pipeline.  
 
Fig 2.24 illustrates the same five line segments using the D3DPT_LINESTRIP. Only six vertices 
are required to render the five line primitives. The primitive count for a line strip is: 
 

PrimitiveCount = NumberOfVertices-1 

 
Figure 2.24 

 
In this example, the device would use v2 as both the end point for line 1 and would reuse it as 
the start vertex for line two. The same holds for the other vertices that are both the start and end 
vertices of neighboring line primitives. The following code demonstrates how we would render 
this example: 
 
// There are 6 vertices uses to describe our 5 lines  
UINT LineVertexCount = 6 
 
 // Render the primitives 
m_pD3DDevice->DrawPrimitiveUP( D3DPT_LINELIST , LineVertexCount +1 ,  
                               m_pLineVertexArray , sizeof(CVertex) ); 

 
Although line strips are more efficient for rendering connected lines, they cannot be used if the 
connected line segments require different properties (such as a different color):  
 

 
Figure 2.25 

 
In Fig 2.25 v2 is the start and end point of lines 1 and 2 respectively. In order to make line 1 
blue, both of its vertices must have a blue color component. In order for line 2 to be red, both of 
its vertices must have red color components. Because v2 is shared by both lines 1 and 2 and 
there is no way to simultaneously store both colors in the vertex, a D3DPT_LINELIST primitive 
type with duplicate vertices at each line intersection must be used. Each line would have its own 
copy of the vertex in the same position but with the correct color. 
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D3DPT_TRIANGLELIST  
 
When we use the D3DPT_TRIANGLELIST, the vertex array is expected to have three vertices 
for each primitive. If a vertex array had nine vertices, it would be capable of producing three 
triangle primitives. Vertices [v1, v2, v3] would be used for triangle 1, [v4, v5, v6] for triangle 2 
and vertices [v6, v7, v8] for triangle 3. The primitive count can be calculated as follows: 
 
PrimitiveCount = NumberOfVertices / 3 
 
The vertex array must contain a vertex count that is a multiple of 3. Fig 2.26 depicts a quad 
stored as a list of 6 vertices: 

 
Figure 2.26 

 
Triangle 1 in this example would be made up of v1, v2 and v3 and triangle 2 would be made up 
of v4, v5 and v6. The vertex array passed into DrawPrimtiveUP would be arranged as follows. 
 

v1 , v2 , v3 , v4 , v5 , v6 
 
The device will treat each group of three vertices as a separate triangle for rendering. Note once 
again the duplicate vertices problem. Vertex 4 in Triangle 2 has exactly the same position 
property as vertex 1 used in Triangle 1. The same is true for v3 and v5. This is unavoidable when 
using the triangle list primitive. The vertices for each triangle can be defined in any order as long 
as a clockwise winding order is maintained for display. 
 
As we saw with the line primitive, there may be times when there is no choice but to do triangle 
list rendering and accept the duplicated vertex problem. Different properties such as color or 
texture coordinate would be examples of why we might need to take this approach.  
 
This situation only becomes more difficult when one thinks of duplicated vertices within a more 
complex mesh. Fig 2.27 depicts a triangle list representation of a cube. Each face is rendered as 
two triangles. This amounts to storage for six vertices rather than the four used in our software 
demo. 
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           Figure 2.27 
 
The red circle highlights a corner in the cube where three faces meet. We see that four vertices 
share the same position (look at the triangles) and each will be sent through the transformation 
and rendering pipeline. Consider the implications of a game world made up of thousands of 
polygons. Storing and rendering this world as a triangle list can more than double or triple the 
amount of vertices needing to be processed. 
 
The main advantage of triangle lists is that they are relatively easy to work with. For example, if 
we had a large mesh consisting of thousands of triangles, we could render the whole lot with one 
call to DrawPrimitiveUP. We simply pass in the vertex data for the entire mesh. This is much 
more efficient than calling DrawPrimtiveUP for every individual triangle despite the duplicated 
vertices. 
 
The following code shows how we could render each face of a cube using triangle lists. The 
code assumes that each face of the cube now stores 6 vertices. The two duplicates are needed to 
represent the two unique triangles from which the face is composed. 
 
for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
{ 
    CPolygon * pPolygon = pMesh->m_pPolygon[f]; 
             
    // Render the primitive 
    m_pD3DDevice->DrawPrimitiveUP ( D3DPT_TRIANGLELIST, pPolygon->m_nVertexCount / 3,  
                                    pPolygon->m_pVertex, sizeof(CVertex) ); 
} // Next Polygon 

 
In this example we render each face (two triangles) with its own call to DrawPrimitiveUP. 
Alternatively, we could have designed our cube mesh structure to hold all of the vertices in one 
large array rather than each face having its own pointer to vertex data. Had this been the case 
then we could have rendered the entire cube with one call to DrawPrimitiveUP. This would have 
been a more efficient solution but is not ideal for our cube meshes given how they are currently 
stored. 
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Note: It important to understand that duplicated vertices are not always undesirable. In fact, 
sometimes they are absolutely necessary. If we wanted each face in a cube to be different 
colors, then each face would need four unique vertices not shared by any other faces. We could 
modify the face color by altering the color components of the vertices without concern for 
affecting neighboring faces sharing the same vertex. 

 
The cube is actually a good example of a possible situation where you might desire duplicated 
vertices between faces. This is because we usually texture the faces of our meshes. If we 
wanted each face of the cube to have a different texture applied (or use different portions of the 
same texture) then we would need to give each face its own unique vertices with their own 
unique set of texture coordinates. Note that this does not mean that we need to duplicate 
vertices within a single face. It would be much more efficient to store a single cube face as four 
vertices instead of six.  We will examine how this can be accomplished later in this section. 

 
 
D3DPT_TRIANGLESTRIP  
 
Triangle strips are one of the most efficient primitive types available. This is particularly true 
when many duplicated vertex positions exist between adjacent triangles. Triangle strips are 
analogous to line strips. Strips use the first three vertices in the array to render the first triangle. 
For every triangle thereafter, the strip uses the last two vertices of the previous triangle and the 
next vertex in the list to create the next triangle. This eliminates duplicate vertices. 3D cards are 
often optimized for triangle strip rendering. Fig 2.28 demonstrates how the vertex array is used 
to construct triangles for rendering:  

 
Figure 2.28 

 
Fig 2.28 shows that we can pass 7 vertices to render 5 primitives. This ratio is very efficient. If 
we had used a triangle list instead, 15 vertices would have been necessary to achieve the same 
result. Triangle strips cut this requirement roughly in half by exploiting connected triangles that 
share edges (and therefore vertices) with neighboring triangles.  
 
Let us quickly step through the render process for the above set. The device renders the first 
triangle using the first three vertices in the vertex array: V1, V2, and V3. It then processes vertex 
V4 and creates the second triangle using vertices V2, V4, and V3. Moving to the next vertex 
(V5) the device builds Tri 3 from V3, V4, and V5.  Triangle 4 is rendered using vertices V4, V6, 
V5, and the pattern repeats until the strip is complete.  
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Be sure to note the vertex order used in the strip. For example, Triangle 2 was built using V2, V4 
and V3 rather than the order the vertices were passed in (V2, V3, and V4). Recall that backface 
culling is performed by taking the winding order of the vertices of a polygon into account. If a 
triangle strip did not swizzle the order of the vertices in every second triangle in the list, those 
triangles would have an counter-clockwise winding order and would be back face culled by the 
device, and never rendered. If Triangle 2 was built using V2, V3 and V4, it would create a 
triangle with a counter-clockwise winding order and would be incorrect. The device takes this 
into account when rendering your triangles as strips and automatically adjusts the order of the 
second and third vertex in every second triangle. When we define our strip, every second triangle 
should have a counter-clockwise winding order since the device will automatically flip it to be 
clockwise during rendering. We calculate the primitive count parameter to be passed into the 
DrawPrimitiveUP as: 
 
PrimitiveCount = NumberOfVertices - 2 
 
Fig 2.29 shows a quad represented as a triangle strip. It looks similar to the quad diagram using a 
triangle list with the exception of the counter-clockwise winding order for the complete face and 
the use of 4 vertices rather than 6.  

 
           Figure 2.29 

 
Only triangle 1 has a clockwise winding, triangle 2 does not. Please take time to review the 
diagrams above as strips are often a confusing concept for newcomers to 3D graphics 
programming. 
 
It should also be noted that if we wanted each triangle to be rendering using a different color, 
then a triangle strip would not be the appropriate choice since the two triangles share two 
common vertices. Altering the color of one of these vertices would affect the color interpolated 
across both triangles. For this effect, a triangle list should be used instead.  
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D3DPT_TRIANGLEFAN  
 
When using triangle fans, the first three vertices in the array are used to create the first triangle. 
For every other triangle, the first vertex in the array, the last vertex of the previous triangle, and 
the next vertex in the array are used. We pass the vertices to our cube face as four vertices in a 
clockwise winding order and it will automatically be rendered as two triangles by DirectX 
Graphics. There are no duplicated vertices within the face itself. Fig 2.30 demonstrates the 
concept. 

 
           Figure 2.30 

 
We pass in a vertex array with the vertices V1, V2, V3, and V4 arranged in a clockwise order. 
The device uses V1, V2, and V3 to create the first triangle. V1, V3, V4 are then used to render 
the second triangle. The first vertex in the list is used as the first vertex for all triangles in the 
list. Fig 2.31 should make the concept clear. 

 
Figure 2.31 

 
We render the entire face as a triangle fan by passing in the ordered vertex array. The octagon in 
Fig 2.31 would be broken down into six separate triangles for rendering. In the diagram, the 
triangles are colored for easier viewing only. Since vertices are shared, we recognize that 
properties such as color must also be shared if we desire a single color for the polygon. If we 
wanted the triangles to have individual colors, a triangle list would be required. 
 
The diagram shows the pattern used by the device when constructing the triangles. V1 is used in 
all six triangles. For every triangle but the first, the second vertex in each triangle is the vertex 
that was the third vertex in the previous triangle.  
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This is an ideal primitive type when dealing with data stored as convex N-gons as it does not 
suffer from duplicate vertices. It will be a good choice for rendering the faces of our cubes, and 
is the type we will use in Lab Project 2.1. 
 
The primitive count for a triangle fan can be calculated as: 
 
PrimitiveCount = NumberOfVertices – 2 
 
The following code could be used to render the faces of our cube using triangle fans: 
 
for( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
{ 
       CPolygon *pPolygon = pMesh->m_pPolygon[f]; 
             
       // Render the primitive 
       m_pD3DDevice->DrawPrimitiveUP( D3DPT_TRIANGLEFAN, 
                                      pPolygon->m_nVertexCount - 2, 
                                      pPolygon->m_pVertex, sizeof(CVertex) ); 
} // Next Polygon 

 
Rendering polygons is very easy in DirectX Graphics. We just need to make sure that we calculate the 
primitive count correctly and use a primitive type that is compatible with the way our geometry is 
stored. In our next lesson we will examine other members of the DrawPrimitive family of functions, as 
well as how to use vertex buffers and indexed primitives to eliminate duplicate vertices. 
 
 

2.6.6 The Rendering Pipeline 

We now understand how to define vertices and how to render them using the DrawPrimtiveUP function. 
It is time to bring these concepts together and examine what happens to the vertex when one of the 
DrawPrimitive functions is called. Let us assume that we are using a mesh made up of untransformed, 
pre-lit (i.e. colored) vertices. The vertex structure might look like the following: 
 
struct CVertex 
{ 
 float x, y, z; 
 DWORD color; 
}; 

 
We can describe this vertex structure using the following flexible vertex format flags: 
 
#define MyPreLitVertex D3DFVF_XYZ | D3DFVF_DIFFUSE 

 
Before rendering the mesh we will tell the device object to expect this type of vertex: 
 
m_pDevice->SetFVF ( MyPreLitVertex ); 
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The device object maintains three state matrices used to transform vertices into screen space 
coordinates. From our discussion in the last chapter we know that these matrices are the world, view, 
and projection matrices.  
 
When we call DrawPrimitiveUP, the device checks the current FVF flags. If it finds the D3DFVF_XYZ 
flag, it multiplies each vertex in the array (or subsection of the array) with the current World, View, and 
Projection matrices to produce homogeneous clip space coordinates. Tasks such as clipping and back 
face culling follow, and then the device performs the divide by w. At this point, vertices that are visible 
are inside the –1 to +1 range on the x and y axes of the projection window. The device maps these 
vertices into the range of the viewport to produce screen space coordinates. Had we used the 
D3DFVF_XYZRHW flag instead, the device would understand that there is no need to transform the 
vertices by these matrices as they are already in screen space. These flags allow us to directly control 
which parts of the transformation pipeline we want to use.  

 
Thus all we must do before we render a mesh is make sure that the world, view, and projection matrices 
are setup correctly and sent to the device. We can set all three of these matrices using the SetTransform 
method of the IDirect3DDevice9 interface, specifying the matrix we want to set: 
 
D3DXMATRIX mtxWorld , mtxView , mtxProjection 
 
//build World, View, and Projection matrices with correct information here 
… 
//whenever we need to update one of the device matrices 
//we can use one of the following transform states to 
m_pD3DDevice->SetTransform( D3DTS_WORLD , &m_mtxWorld); 
m_pD3DDevice->SetTransform( D3DTS_VIEW  , &m_mtxView); 
m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &m_mtxProj); 

 
As discussed in Chapter 1, the projection matrix is often set once at application startup. The view matrix 
will need to be updated whenever the position of the camera changes (typically once per frame if the 
camera is moving). The world matrix will normally need to be set before rendering each mesh in the 
scene.  
 
The following code snippet from Lab Project 2.1 renders two cube objects. It assumes that the view and 
projection matrices have already been sent to the device. Note that the world matrix is set for each 
object and that we render each face of each cube as a triangle fan. 
 
    // Loop through each object (there are two cubes) 
    for ( ULONG i = 0; i < 2; i++ ) 
    { 
        // Store mesh for easy access 
        pMesh = m_pObject[i].m_pMesh; 
 
        // Set our object matrix 
        m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
 
        // Loop through each polygon 
        for ( ULONG f = 0; f < pMesh->m_nPolygonCount; f++ ) 
        { 
            CPolygon *pPolygon = pMesh->m_pPolygon[f]; 
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            // Render the primitive 
            m_pD3DDevice->DrawPrimitiveUP( D3DPT_TRIANGLEFAN, pPolygon->m_nVertexCount - 2, 
                                           pPolygon->m_pVertex, sizeof(CVertex) ); 
        } // Next Polygon 
     
    } // Next Object 

 
Hopefully you will find that this is a lot easier to follow than the rendering code we wrote in Chapter 1. 
In that project we had to manually multiply each vertex by the various matrices and transform them into 
screen space ourselves.  
 
 

2.7 Device States 

The device object is a state machine and when we set a state inside the device (such as turning lighting 
on or off), it remains in effect until it is unset or modified to some other state. There are four main state 
groups: 
 

• Render States 
• Transform States 
• Texture Stage States 
• Sampler States 

 
The IDirect3DDevice9 interface exposes four functions used to alter the states within these four 
categories. We will ignore the latter two for now as these will be covered in chapter 6 and focus only on 
the render state and transform state groups. 
 
 

2.7.1 Render States 

We can set a render state using the following function exposed by the IDirect3DDevice9 interface: 
 
HRESULT SetRenderState(D3DRENDERSTATETYPE State, DWORD Value); 
 
The first parameter is one of the members of the D3DRENDERSTATETYPE enumerated type and the second 
parameter is a DWORD whose meaning depends on the render state specified in the first parameter.  
 
The D3DRENDERSTATETYPE enumerated type has a significant number of entries. We will explain each 
render state only as we cover it in the text. As we move forward in the course, at the end of each chapter 
you will find an appendix with a listing of any new states introduced during the lesson.  
 

Note: The device includes a function called GetRenderState that allows the application to retrieve the 
current device setting for a given state. We pass the render state we wish to inquire about and the 
address of a DWORD variable that will be filled with that current state inside the device: 

 
HRESULT GetRenderState(D3DRENDERSTATETYPE State, DWORD *pValue); 
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Note: GetRenderState should not be called if you are using a pure device. A pure device eliminates the 
overhead resulting from maintaining an internal structure of render states to return information to the 
GetRenderState function. This improves application performance. When using a pure device your 
application must retain its own copy of the current state settings if it requires access to this information. 

 
 
Z – Buffering 

After we have created and attached a Z-Buffer to the device, we need to tell the device that we wish to 
use it when rendering. As we will discover later in the course, there will be times when we will want to 
render some objects with the Z-Buffer and some without it. That is why there is a render state that 
allows the application to toggle it on and off: 
 
m_pDevice->SetRenderState(D3DRS_ZENABLE , D3DZB_TRUE);  

 
The D3DRS_ZENABLE member of the D3DRENDERSTATETYPE enumerated type specifies that we wish to 
alter the current state of the device Z-Buffer. The device expects the second parameter to be a member 
of the D3DZBUFFERTYPE enumerated type: 
 
typedef enum _D3DZBUFFERTYPE  
{ 
    D3DZB_FALSE = 0, 
    D3DZB_TRUE = 1, 
    D3DZB_USEW = 2, 
    D3DZB_FORCE_DWORD = 0x7fffffff 
} D3DZBUFFERTYPE; 
 
D3DZB_FALSE 
This disables the Z–Buffer so that no per-pixel depth testing is performed. It is the default state of the 
device if a Z-Buffer was not automatically created during device creation. Since our applications will 
specify automatic    Z-Buffer creation during device initialization (we set the 
EnableAutoDepthStencil member of the D3DPRESENT_PARAMETERS structure to TRUE), this will not 
be the default state of the device. 
 
D3DZB_TRUE 
This enables the device Z–Buffer for per-pixel depth testing. This state change will only succeed if a Z- 
Buffer has been created and attached to the device swap chain (frame buffer(s)). This is the default state 
of the device if the Z–Buffer created at device creation time used the EnableAutoDepthStencil 
member of the D3DPRESENT_PARAMETERS structure. Otherwise, the default is D3DZB_FALSE. 
 
D3DZB_USEW 
Some 3D graphics adapters support the use of a W-Buffer. The W-Buffer uses the same memory as the 
Z-Buffer but calculates the per-pixel depth values differently. When we enable W-Buffer, the device 
uses the reciprocal of W (1/W) where W is the value output from the projection matrix. This is equal to 
the view space Z component of the input vertex. W-Buffers provide a more linear mapping of depth 
values and eliminate artifacts caused by 16 bit Z-Buffers.  
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In order to use this parameter type, our application must ensure that the adapter supports W buffering by 
checking the RasterCaps member of the D3DCAPS9 structure to see if the 
D3DPRASTERCAPS_WBUFFER flag is set. 
 
D3DCAPS9 Caps; 
// Caps was filled out in the InitDirect3D function by calling IDirect3D9::GetDeviceCaps 
if (Caps.RasterCaps & D3DPRASTERCAPS_WBUFFER) 
 m_pDevice->SetRenderState ( D3DRS_ZENABLE , D3DZB_USEW ); // Use W Buffer 
else 
 m_pDevice->SetRenderState ( D3DRS_ZENABLE , D3DZB_TRUE );  // Use Z buffer 

 
This is generally something we will do only when a 16 bit Z-Buffer is the only option available. 
 
 
Lighting 

This next render state allows us to enable or disable the device’s internal lighting pipeline. In our initial 
applications, we will disable lighting since our vertices do not have the required vertex normal. Lighting 
will be covered in Chapter 4. To enable/disable lighting we use the following respective render states: 
 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 

 
The D3DRS_LIGHTING member of the D3DRENDERSTATETYPE enumerated type tells the device that the 
second parameter will set the state of the internal lighting module. Lighting is enabled by default so if 
we do not require lighting, then we must explicitly disable it.  
 
TRUE 
This is the default state of the device. Vertices that use lighting must include a vertex normal. Lighting 
calculations are done by taking the angle between the vertex normal and the light direction vector to 
establish the angle between the vertex and the light. We scale the light’s effect on that vertex using a dot 
product of those two vectors. If the vertex normal is absent, a dot product result of 0 will be used. 
 
FALSE 
Disables the lighting module of the device. Our current application will use this render state. 
 
 

Note: All render states can be changed at any time, even in the middle of rendering a scene. For 
example, we could disable lighting and render some pre-lit polygons, then enable lighting and render 
some unlit polygons. Pre-lit polygons have no vertex normal and include a color at each vertex. Unlit 
polygons contain a vertex normal and require the device to light them before rendering. 
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Shading 

Our applications will use the Gouraud shading model so that the colors stored at each vertex in the face 
are linearly interpolated across the surface of that face. There are a few shading models available in 
DirectX Graphics and they are set using the following render state: 
 
m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADEMODE ); 

 
When setting the D3DRS_SHADEMODE render state, the second parameter should be a member of the 
D3DSHADEMODE enumerated type: 

 
typedef enum _D3DSHADEMODE  
{ 
      D3DSHADE_FLAT = 1, 

D3DSHADE_GOURAUD = 2, 
D3DSHADE_PHONG = 3, 
D3DSHADE_FORCE_DWORD = 0x7fffffff 

} D3DSHADEMODE; 
 
Although there are three choices listed (D3DSHADE_FLAT, D3DSHADE_GOURAUD, and D3DSHADE_PHONG), 
only flat and Gouraud shading modes are currently supported.  
 
D3DSHADE_FLAT 
When this shade mode is set, the diffuse and specular colors of the first triangle vertex are used and no 
interpolation is done between vertex colors. Diffuse and specular colors stored in other vertices within 
the same triangle are ignored. Vertex alpha however is interpolated across the surface as we will see in 
Chapter 7. Note that the first vertex in the triangle is selected, not the first vertex in the entire polygon. 
Since a cube face is made using two triangles, vertex 0 will be used to color triangle 1 and vertex 3 will 
be used to color triangle 2 (using the triangle fan example). The first vertex in a given triangle can be 
defined for the different primitive types as follows. 

• For a triangle list, the first vertex of the triangle i is i * 3.  
• For a triangle strip, the first vertex of the triangle i is vertex i.  
• For a triangle fan, the first vertex of the triangle i is vertex i + 1.  

D3DSHADE_GOURAUD 
When a triangle is rendered with Gouraud shading, the colors of all vertices in the triangle are used to 
calculate the final color of a pixel within that triangle by using a linear interpolation between all three 
vertices. The distance from a pixel to a vertex is a weight value for the vertex color contribution to the 
pixel. This is the default shade mode when the device is created. To set the Gouraud shading mode in 
code: 
 
m_pD3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD ); 
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Dithering 

In 16 bit color mode the range of colors is significantly less than those available in 32 bit color mode 
(65,535 vs. 16,000,000 or so). There will be times when 16 bit color modes cannot accurately produce 
the shade of a certain color your application may require. If dithering is enabled, it creates the color by 
using two colors at alternating pixel positions across the surface. For example, let us imagine that the 
color yellow was unavailable. If dithering was enabled then the triangle would be rendered using 
alternating red and green pixels. Because the pixels are so close together the human eye perceives the 
triangle as yellow. While dithering can be useful in these situations, it can result in a grainy appearance 
on high resolution monitors. Dithering is disabled by default when the device is initially created. We 
enable dithering using the following respective render states: 
 
m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  TRUE ); 
m_pD3DDevice->SetRenderState( D3DRS_DITHERENABLE,  FALSE ); 

 

Back Face Culling 

DirectX Graphics can check the winding order of triangles that have passed through the World, View, 
and Projection matrices and remove them from further consideration when their vertices are ordered in a 
counter clockwise fashion. This ordering indicates that the camera is looking at the back of the polygon. 
Our application can set the back face culling behavior using the D3DRS_CULLMODE render state and 
specifying a member of the D3DCULL enumerated type as the second parameter: 
 
m_pD3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL ); 
 
typedef enum _D3DCULL  
{ 
    D3DCULL_NONE = 1, 
    D3DCULL_CW = 2, 
    D3DCULL_CCW = 3, 
    D3DCULL_FORCE_DWORD = 0x7fffffff 
} D3DCULL; 
 
D3DCULL_NONE 
This sets the device so that no back face culling is done. The triangle orientation is not tested and it is 
rendered as if it had two sides. If the camera was moved behind the triangle, the viewer will still be able 
to see it.  
 
D3DCULL_CW 
When this state is set, triangles with a clockwise winding order in relation to the camera are considered 
to be facing away from the camera. This mode is useful when using geometry ported from OpenGL 
engines. OpenGL uses a right-handed Cartesian coordinate system where the faces have a counter-
clockwise winding order.  
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D3DCULL_CCW 
This is the default culling state for the device and is the mode that we will use throughout this course. In 
this mode triangles that have a counter-clockwise winding order with relation to the camera are 
considered to be facing away from the camera and are not rendered. We generally set this state once at 
environment setup: 
 
m_pD3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW); 
 
 

2.7.2 Transformation States 

We set the device transform states to control how vertices are transformed from model space into screen 
space. The device maintains three state matrices (along with a few others that we will discuss in later 
lessons) that are used for this process.  
 
 
The World Matrix 

Before rendering each object in our scene we will set the object world matrix as the current world 
matrix for the device as follows: 
 
m_pD3DDevice->SetTransform( D3DTS_WORLD, &mtxWorld ); 

 
We use the SetTransform function with D3DTS_WORLD as the first parameter to inform the device we are 
setting the world matrix. The second parameter is the address of the object world matrix (a D3DXMATRIX 
structure) for the object to be rendered. This matrix holds the position and orientation of the object in the 
3D world.  
 
The device world matrix will typically have to be changed many times per frame. In our first few 
applications we will be rendering two cube objects. Each will have its own world matrix which must be 
set prior to rendering. We will set object 1’s world matrix and render its polygons, then we will set 
object 2’s world matrix (which overwrites the previous world matrix setting of the device) and then 
render its polygons. This is a critical point to understand. The device has only one world matrix. Before 
you render an object you will send its world matrix to the device. That matrix will remain the device 
world matrix until replaced with another world matrix as shown below: 
 
m_pD3DDevice->SetTransform( D3DTS_WORLD, &Object1->mtxWorld ); 
Object1->Render(); 
m_pD3DDevice->SetTransform( D3DTS_WORLD, &Object2->mtxWorld ); 
Object2->Render(); 
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The View Matrix 

The application maintains a view matrix to describe the camera position and orientation in the virtual 
world. World space vertices are multiplied by this matrix to transform them into view space relative to 
the camera. When the position or orientation of the camera changes, we need to build a new view matrix 
and send it to the device using the following transform state: 
 
m_pD3DDevice->SetTransform( D3DTS_VIEW, &mtxView ); 

 
 
The Projection Matrix 

The projection matrix describes the FOV of the camera and is used to convert the camera relative 
coordinates into homogenous clip space. We set the device projection matrix using the following 
transform state: 
 
m_pD3DDevice->SetTransform( D3DTS_PROJECTION, &mtxProj ); 

 
Once this matrix is set, the device transformation pipeline setup is complete. From now on, whenever 
our application calls one of the DrawPrimitive functions, each vertex will be multiplied by the device 
state matrices to be transformed from model space to homogeneous clip space. 
 
HomogeneousVertex = ModelSpaceVertex * World * View * Projection 
 
At this point, the device will do various clipping tests and perform back face culling. Then the divide by 
W maps the vertex onto the projection window where the vertices are in the range of –1 to +1 in both 
the x and y dimensions. Finally, the coordinates are converted into screen coordinates and used to 
rasterize the triangles. 
 

Note: Just like the SetRenderState function, the SetTransform function also has a counterpart called 
GetTransform in the IDirect3DDevice9 interface. It can be called to query the current device world, view, 
or projection matrix: 

 
D3DXMATRIX mtxWorld , mtxView , mtxProj; 
 
m_pDevice->GetTransform( D3DTS_WORLD , &mtxWorld); 
m_pDevice->GetTransform( D3DTS_VIEW     , &mtxView); 
m_pDevice->GetTransform( D3DTS_PROJECTION , &mtxProj); 

 
As with GetRenderState, GetTransform does not work if you are using a pure device. The application 
must maintain copies of the matrices if access is required after sending them to the device. 

 
Fig 2.33 shows how the SetRenderState and SetTransform functions are used to alter the states of the 
device object. These states remain in their current condition until set to new conditions. 
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Figure 2.33 
 

2.7.3 Scene Rendering 

Frame/Depth Buffer Clearing 

Before we render a scene, the first thing we generally do is clear the frame buffer and reset the Z-Buffer. 
We can accomplish both of these objectives using a single function call via the IDirect3DDevice9 
interface: 
 
IDirect3DDevice9::Clear( DWORD Count, const D3DRECT *pRects,  DWORD Flags,     
                         D3DCOLOR Color, float Z, DWORD Stencil); 
 
DWORD Count 
It is possible to clear only portions of the frame buffer (and Z-Buffer) rather than the entire surface. Our 
application can pass an array of one or more D3DRECT structures indicating the desired areas to be 
cleared. If the second parameter to this function is not NULL then this value will indicate the number of 
D3DRECT structures pointed to by pRects.  
 
 
D3DRECT pRects 
If the first parameter (Count) is not 0, this parameter will point to the start of an array containing the 
D3DRECT structures describing areas of the frame buffer or depth buffer the application want cleared. 
If the entire frame buffer (and Z-Buffer) is to be cleared, this parameter will be set to NULL. 
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DWORD Flags 
This parameter is a combination of flags that tell the device which surfaces to clear. We can choose to 
clear the frame buffer, the depth buffer, and/or the stencil buffer by combining the following flags. Note 
that at least one of the following flags must be used and that these flags are not mutually exclusive: 

 
D3DCLEAR_STENCIL: Clear the stencil buffer to the value in the Stencil parameter. We are 
not using a stencil buffer at this time so the Stencil parameter will be set to zero. 
 

D3DCLEAR_TARGET:  Clear the frame buffer (or render target) to the color in the Color 
parameter. 
  
D3DCLEAR_ZBUFFER: Clear the depth buffer to the value in the Z parameter.  
 

D3DCOLOR Color 
If the D3DCLEAR_TARGET flag is used then this should contain the 32 ARGB color used to clear 
each pixel in the frame buffer or current render target. Our application uses a white color setting 
(0xFFFFFFFF) which is the ARGB color (255,255,255,255). The frame buffer does not use the alpha 
component of a color but colors must still be specified in 32 bit ARGB format. 
 
float Z 
If the D3DCLEAR_ZBUFFER flag is set then this value should contain the normalized distance value 
that each pixel in the depth buffer should be initialized to before rendering. This value is typically set to 
1.0. This maps the maximum distance to the far frustum plane in view space.  
 
DWORD Stencil 
If the D3DCLEAR_STENCIL flag is used then this flag should contain an integer value to store in each 
stencil buffer entry. Stencil buffers will be covered at a later time and will not be used by our current 
application. 
 
If this function is unsuccessful then it will return D3DERR_INVALIDCALL. This indicates that one or 
more of the parameters may have been invalid. 
 
 
Beginning and Ending Scenes 

Before calling any primitive rendering functions for a given frame, the application must call the 
IDirect3DDevice9::BeginScene function. When rendering is completed it calls the 
IDirect3DDevice9::EndScene function. The call to EndScene informs the device that the application has 
finished rendering the current scene. All DrawPrimitive calls will take place between BeginScene and 
EndScene function calls. 
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Presenting the Frame 

The final step in frame rendering is instructing the device to present the frame buffer to the front buffer. 
This makes the newly rendered scene visible to the user on the monitor screen. We do this using the 
IDirect3DDevice9::Present function. This function is called outside the BeginScene/EndScene pair. 
 
HRESULT IDirect3DDevice9::Present(CONST RECT *pSourceRect, CONST RECT *pDestRect, 
                                  HWND hDestWindowOverride,  
                                  CONST RGNDATA *pDirtyRegion); 
 
RECT *pSourceRect 
Instead of the entire frame buffer being copied to the front buffer, the application can specify a 
rectangular frame buffer region to be copied. This parameter holds the address of a RECT structure 
containing the dimensions of the desired region. When this parameter is NULL, the entire frame buffer 
is copied. This parameter must be NULL if you did not use the D3DSWAPEFFECT_COPY swap effect for 
the swap chain when you created the device. 
 
CONST RECT *pDestRect 
A pointer to a RECT structure containing the front buffer destination rectangle in window client 
coordinates. If NULL, the entire client area is filled. If the rectangle is larger than the destination client 
area, it is clipped to the destination client area. This parameter must be NULL if the swap chain was not 
created with D3DSWAPEFFECT_COPY. 
 
 
HWND hDestWindowOverride 
This parameter allows you to specify another window to which your frame buffer output will be 
displayed. It overrides the device window specified in the D3DPRESENT_PARAMETERS structure during 
device creation. The common value is NULL. This informs the device to carry out its default behavior 
of copying the frame buffer to the front buffer when performing a presentation with a windowed device. 
Note that this only works with a windowed device and that it does not remove the association with the 
device window. For example, key press messages will still be sent to the device window and not to the 
override window. 
 
CONST RGNDATA  *pDirtyRegion 
This allows you to specify a region (an area of the screen constructed from non-overlapping rectangles) 
to be copied to the screen. The rectangles are specified in frame buffer coordinates. This value is 
typically set to NULL. 
 
Passing NULL for all of these parameters is the most common application behavior. This will copy or 
flip (depending on the swap effect being used by the device) the entire frame buffer (the top of the swap 
chain if multiple frame buffers have been created) to the front buffer. In windowed mode the front 
buffer is the client area of the device window specified in the D3DPRESENT_PARAMETERS structure used 
to create the device. In fullscreen mode rendering is always done to the overlay window covering the 
display. 
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Conclusion 

 
And with that, we now have a good understanding of core DirectX Graphics functionality. We have 
looked at environment setup, device states, and even shaded primitive rendering. When you have 
finished studying your workbook projects you will be able to quickly set up rendering environments for 
future applications and you will have a fully reusable and highly functional set of classes to handle these 
rather mundane (but essential) setup tasks. You will also have a good feel for the different steps 
involved in setting up and running your game rendering loop for every frame.  
 
In our next lesson, we will continue our study of primitive rendering. Our focus will be on more 
efficient, hardware-friendly approaches.  
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Chapter Three: 
 

 
Vertex and Index Buffers 
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Introduction 

Vertex and index buffers are important device resources used to achieve the best possible application 
performance during primitive rendering. These resources will replace the vertex arrays we used with the 
DrawPrimitiveUP call used in Chapter 2. During this lesson we will discuss how indexed primitives 
remove the need for redundant vertices in our geometry. We will also look at how to take advantage of 
the vertex cache available on most 3D graphics adapters to minimize pipeline data transfer when 
possible. Finally, this lesson will provide you with valuable information on how to create and use vertex 
buffers in an optimal way on both hardware and software vertex-processing devices.  
 
In the last lesson, we used the IDirect3DDevice9::DrawPrimitiveUP call to send vertices through the 
transformation and rendering pipeline. Recall that the ‘UP’ stands for ‘User Pointer’ because the 
application passes its own vertex data pointer into the function. This was a pointer to a vertex array 
located in system memory that the application could freely modify at will. The main problem with this 
approach is that the vertex data is contained in system memory while the hardware geometry 
processing unit or GPU (assuming one exists on the current hardware) requires that this data be 
accessible in on-board video memory (i.e. local video memory) or in AGP memory (i.e. non-local 
video memory) in order to work with it at maximum speed.  
 
When vertex data is not in video memory the CPU must copy the system memory vertices over the bus 
into local video or AGP memory. The GPU does have direct memory access to system memory but it is 
much slower than accessing data in video memory on a hardware vertex-processing device. Because we 
are passing in an application created pointer to system memory and because the application can change 
this data at any time, the driver cannot safely cache the vertex data in video memory because it has no 
way of knowing whether or not the application has changed the memory contents. Therefore, each time 
the vertex array is rendered, DirectX Graphics will copy it into another area of memory first so that the 
GPU can be sure it is accessing the most current data. The new data area where these vertices reside is 
called a vertex buffer and will typically be located in AGP memory or local video memory, if a GPU is 
available. Once the vertex data is in the vertex buffer, the GPU can access it directly for fast processing. 
After the vertex data has been used, the temporary vertex buffer that was created is discarded. It will 
have to be recreated and destroyed each time vertices are rendered. This creates stalls in the rendering 
pipeline and results in significantly degraded application performance. 
 
When the graphics adapter does not have hardware vertex processing capability, the situation is 
different. In such a case, the transformation and lighting of our vertices is done by the DirectX Graphics 
device in software. In this situation, using DrawPrimitiveUP would not degrade performance quite as 
much as it would in the HW T&L scenario. Nevertheless, the vertex data will still be copied into 
temporary system memory vertex buffers. So even on non-HW T&L devices we face the cost of 
creation, copying, and discarding memory each time we render vertex data. While the DrawPrimitiveUP 
function is indeed convenient, it should never be used in performance critical commercial code. 
It stands to reason that one way to avoid the vertex-copying overhead of DrawPrimitiveUP is to store 
our data in a vertex buffer to begin with. This way the driver already has the data available in the correct 
format. That is exactly what we will do in this lesson.  
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Vertex buffers have a strict set of rules that, when followed, allow the driver to make optimization 
decisions about vertex data. For example, you cannot just read or write from your vertex buffer any time 
you please. You must first explicitly request a lock on the buffer. If the request was successful, you will 
be returned a pointer to the data (or a copy of the data) to work with. When you are done processing, 
you must unlock the buffer. This means that the driver can place or cache your vertex buffer in optimal 
memory without having to worry about the application changing the contents of the buffer without its 
knowledge. In a system that has a GPU, the vertex buffer will typically be stored either in AGP memory 
or local video memory. These memory pools can be quickly read by the GPU since it has direct memory 
access to them. The GPU can extract vertices from the buffer and transform them without having to tie 
up the CPU with data transfers between memory pools.  
 
 

3.1 Working with Device Memory 

Vertex buffer behavior is dependant upon parameters defined at creation time. One of the most 
important performance related factors involves which memory pool the vertex buffer resides in. In most 
circumstances we will want a vertex buffer to be placed in local video memory or AGP memory. 
However, when the 3D hardware does not support T&L, then the vertex buffer will need to be created in 
system memory. This is quite logical; if no T&L facility is available on the graphics hardware, then 
software vertex processing will occur. Vertex data in system memory is within easy reach of the CPU 
based software transformation pipeline. 
 
The following diagram shows an application running on a 3D graphics card with hardware vertex 
processing capability (a graphics card that has a GPU). 
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3.1.1 Memory Types  

Let us begin by talking about the different memory types available to your application and the 
performance implications of using each type.  
 

Video Memory 

Modern graphics cards typically have their own on-board memory. The GPU can access content stored 
in video memory very quickly for both read and write operations. Applications can write to video 
memory at reasonable speeds, but reading operations are terribly slow and should be avoided at all costs. 
If we know that a certain resource used for rendering will not change (i.e. it is static), then ideally we 
will want that resource to be placed in video memory. Again, in the case of vertex buffers, if the 
graphics hardware does not support T&L (in other words, the card does not have a GPU) then we do not 
want our vertex buffers placed in video memory. System memory is the preferred choice because it 
provides fast CPU access. 
 

AGP Memory 

AGP enabled video cards are capable of interfacing at high speeds with reserved portions of system 
memory. The GPU has direct memory access to AGP memory much like its own local video memory. 
This means that data can be extracted from AGP memory directly by the GPU without having to burden 
the CPU with the request. There is usually a BIOS setting that can be changed to control how much 
system memory is set aside to be used as AGP memory. 
 
When system memory is reserved as AGP memory, it behaves very differently from standard system 
memory. AGP memory is flagged as a critical section and it cannot be cached by the CPU. This makes 
CPU data reads from AGP memory slow – much like reads from local video memory. Writing to AGP 
memory however is typically very fast. In addition, AGP memory is not allowed to be paged out to disk. 
This is very different from normal memory that can be written to the hard disk using the operating 
system’s virtual memory manager. So care should be taken if you change BIOS settings where too much 
AGP memory is reserved.  
 
Vertex buffers will often be placed in AGP memory. AGP memory is fast for the CPU to write to, and it 
is fast for the GPU to read from. However it is very slow for the CPU to read from due to the fact that 
the L1/L2 caches are disabled.  
 
As we saw with local video memory, if the current system has no hardware T&L support, AGP memory 
is a poor location for storing vertex buffers. System memory is once again the best choice in this case. 
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System Memory  

System memory (heap memory) is the memory pool in which your applications run and in which 
memory allocations are made with operators like new and delete. This is where vertex buffers should be 
placed when there is no GPU available on the current system or if there is a GPU available but the 
application frequently needs to read back data from the vertex buffer. The latter is not a recommended 
scenario if a GPU is available. GPU access to vertices in a system memory vertex buffer is typically ten 
times slower than GPU access to local or non-local video memory vertex buffers. 

 

3.1.2 Memory Pool Selection 

Ideally we want to structure our application so that vertex buffers will be placed in video memory when 
a GPU is available and system memory when it is not. We want the data stored in these buffers to be 
static, or if this is not possible, write-only. A video memory vertex buffer will be quick to render but will 
hurt performance if you have to read from it frequently. Creating the vertex buffer in system memory 
will be fast for CPU reads but will be significantly slower for the GPU to render since it will have to 
fetch the vertices over the system bus. Also note that when the GPU accesses a system memory vertex 
buffer, the CPU must play a role in the communication of that data and this can impact application 
performance.  
 
If your application requires read access to a vertex buffer then your best solution is to create it in system 
memory (even if a GPU is available). Of course, there are often solutions to help you work around the 
performance penalties associated with reading operations. One of the most obvious is keeping a separate 
copy of the vertex data in system memory to use for CPU reading, and then writing results out to a 
separate video memory copy when needed. Memory footprint is the clear downside here, but often it is 
worth it.  
 
When we create a vertex buffer, we will specify various flags that will be used by the device object and 
the driver to determine where (in which memory pool) the vertex buffer will be placed.  
 
While there are numerous rules and semantics listed for vertex buffers in the SDK documentation, very 
often the driver has some degree of autonomy to make its own choices. The more information we 
provide at vertex buffer creation time as to how we intend to use the buffer, the better chance that the 
driver will place it in the optimal memory for our needs. We will examine these rules as we progress 
through the chapter. 
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3.1.3 Device Resources 

Resources are data types that are created and owned by IDirect3DDevice9 object. They include vertex 
buffers, textures, index buffers, frame buffers, depth buffers, and more.  

 
 
All resources have interfaces that are derived directly or indirectly from the IDirect3DResource9 
interface. This interface contains a set of common methods that apply to all resource types. 
 
You will create a resource object by calling one of the device interface methods. In the case of a vertex 
buffer you call the IDirect3DDevice9::CreateVertexBuffer method. If creation is successful it will return 
a new IDirect3DVertexBuffer9 interface. This process is similar for all resource types. For example, 
when you call the IDirect3DDevice9::CreateTexture method or the 
IDirect3DDevice9::CreateIndexBuffer method, you will get returned IDirect3DTexture9 and 
IDirect3DIndexBuffer9 interfaces respectively. We use the returned interface to manipulate the resource 
data. 
 
Because the application does not own the resource data area, it cannot simply write data to the resource 
at will. In the case of a vertex buffer for example, although we have an interface, we have no means of 
filling it with data or reading data contained within, until we call the IDirect3DVertexBuffer9::Lock 
method. If the call is successful the method will return a pointer to the resource data area and the 
application can use it as it would any other memory pointer. It could read or write to the memory 
pointed to by it or use the pointer in memcpy function calls. We will discuss this in greater detail later in 
the lesson. 
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3.2 Vertex Buffers 

3.2.1 Creating Vertex Buffers 

To create a vertex buffer we call the IDirect3DDevice9::CreateVertexBuffer function: 
  
HRESULT CreateVertexBuffer 
(       
    UINT Length, 
    DWORD Usage, 
    DWORD FVF, 
    D3DPOOL Pool, 
    IDirect3DVertexBuffer9** ppVertexBuffer, 
    HANDLE* pHandle <-(Reserved : Should always be set to NULL) 
); 
 
UINT Length 
This parameter is used to tell the device how many bytes the vertex buffer will need. The value must be 
large enough to store at least one vertex. When using flexible vertex formats (FVF) the size will be 
equivalent to the size of our vertex structure (in bytes) multiplied by the number of vertices we intend to 
store in the vertex buffer. For example, if CMyVertex was our vertex structure and you wanted to store 
100 vertices in the buffer, you could calculate the length as 100 * sizeof(CMyVertex). This would 
allocate enough memory for 100 CMyVertex structures within the vertex buffer. 
 
DWORD Usage 
The Usage flag is critical to vertex buffer performance as it can ultimately control which memory pool 
the vertex buffer will reside in. The D3DUSAGE constants are used by many device resource creation 
functions. Here we will discuss the constants as they apply to vertex buffers. This parameter can be 0 if 
no usage flags are required. 
 
 D3DUSAGE_DYNAMIC 

 
This flag informs the device object that we intend to modify the contents of the vertex buffer on 
a frequent basis. If hardware vertex processing is used then the vertex buffer will typically be 
placed in AGP memory for dynamic buffers and in local video memory for static buffers 
(although this varies across cards and drivers). There is no D3DUSAGE_STATIC flag to 
indicate that we will not need to alter the contents of the vertex buffer throughout the life of the 
application. Instead, the lack of a D3DUSAGE_DYNAMIC flag is interpreted as a static vertex 
buffer request. 
 
Where the vertex buffer gets placed is ultimately up to the driver. Most nVidia® drivers place all 
vertex buffers in AGP memory (both static and dynamic) when using a hardware vertex 
processing device. If the device is using software vertex processing then the vertex buffer 
(whether static or dynamic) will usually be placed in system memory. So this flag is simply a 
hint to the driver that we anticipate needing to frequently lock the vertex buffer for updates.  
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Note: Applications should not make IDirect3DVertexBuffer9::Lock calls in time critical code 
unless the D3DUAGE_DYNAMIC flag was specified at creation time. 

 
When you lock a vertex buffer for access, there are several flags that you can pass to the device 
to minimize pipeline stalls and performance hits. 
 
For example, if we call the Lock() method with the D3DLOCK_NOOVERWRITE flag, we are 
promising the device that we will not alter any of the contents already in the vertex buffer 
although we may add additional vertices to it. This allows the driver to issue the lock, return a 
pointer, and then carry on immediately rendering from the same buffer our application is adding 
data to. Without this flag, it would have to wait until the application had finished altering the 
vertex buffer and unlocked it, before it could continue rendering. These flags (covered later when 
we look at the Lock method) are not available for static vertex buffers. Locking a static vertex 
buffer puts the GPU into a hard stall. 
 
Dynamic vertex buffers can also be locked using another flag called D3DLOCK_DISCARD. It 
is used if you intend to overwrite the contents and do not wish to stall the pipeline. Typically, 
this is handled by the device issuing a pointer to a new vertex buffer, which can be written while 
the hardware continues using the previous vertex buffer for transformation and rendering. This is 
another flag that cannot be used to lock static vertex buffers. 
 
D3DUSAGE_WRITEONLY 
 
This is a very important flag for maximum performance on a device with hardware vertex 
processing. It specifies that we do not intend to read data from the vertex buffer at any time. 
Because reading from video memory vertex buffers is so slow, the driver may decide to place the 
buffer in system memory if this flag is not specified. So, you will almost always want to include 
this flag in your creation parameters (assuming buffer reading is not required). 
 
The worst-case scenario is if the driver was to ignore this flag and place the vertex buffer in 
video memory regardless of our intentions to read from it. This would seriously hurt 
performance whenever we locked the buffer and read from it. This of course would never happen 
in a responsibly written device driver, but the point here is that, it is the driver which ultimately 
decides where the vertex buffer should be placed. This decision is based in whole or in part on 
the hint flags that we send it during vertex buffer creation. As it turns out, the driver 
development kit documentation explicitly states that any vertex buffer that is created without the 
D3DUSAGE_WRITEONLY flag set must be placed in system memory. But as mentioned, 
driver implementations may vary across hardware. 
 
The Game Institute ran some tests on our development machines using static vertex buffers 
without specifying the D3DUSAGE_WRITEONLY flag. Benchmark results proved quite 
conclusively that the vertex buffer was being placed in video memory (either AGP or local). 
Significant performance hits were recorded for data reads. 
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D3DUSAGE_SOFTWAREPROCESSING 
 
This flag indicates that we would like the transformation and lighting of the vertex buffer data to 
be performed in software using the DirectX Graphics software T&L pipeline. This usage flag 
must not be used on a device that has been created with 
D3DCREATE_HARDWARE_VERTEXPROCESSING behavior, although it can be used on 
devices created with the D3DCREATE_MIXED_VERTEXPROCESSING behavior flag. It does 
not have to be explicitly specified when using a device created with 
D3DCREATE_SOFTWARE_VERTEXPROCESSING since processing is done in software 
anyway. If this flag is not specified on a hardware vertex processing device or a mixed vertex-
processing device then vertex processing is done in hardware. 

 
There are other D3DUSAGE flags that are applicable to vertex buffers but the ones listed above are the 
ones we are currently interested in. We will return to some of the other usage flags later in the lesson. 
 
DWORD FVF 
This parameter tells the device the format of the vertices destined for the vertex buffer. For example, if 
we used a vertex structure which had an x, y, and z component and also a diffuse color component, we 
would pass the following flags: 
 
    Flags = D3DFVF_XYZ | D3DFVF_DIFFUSE 
 
Flexible vertex format flags were covered in Chapter 2. 
 
D3DPOOL POOL 
This flag allows our application to specify which memory pool it would like the resource to be place 
into. When combined with the D3DUSAGE flags, it directly governs the performance and behavior of 
our vertex buffers. It is worth noting that certain resource types are treated differently even when they 
share the same D3DPOOL. For now though our focus will be on its application to vertex buffer creation. 
 
typedef enum _D3DPOOL 
{ 
    D3DPOOL_DEFAULT = 0, 
    D3DPOOL_MANAGED = 1, 
    D3DPOOL_SYSTEMMEM = 2, 
    D3DPOOL_SCRATCH = 3, 
    D3DPOOL_FORCE_DWORD = 0x7fffffff 
} D3DPOOL; 
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3.2.2 Vertex Buffer Memory Pools 

There are four possible pool types that we can choose for any resource. We will discuss each type along 
with its relationship to the vertex processing capabilities of the device. 
 

D3DPOOL_DEFAULT 

When we use the default pool, the driver will typically store the vertex buffer in the most optimal 
memory by taking into account the D3DUSAGE flag. If we specify this pool on a device that is only 
capable of software vertex processing, or if we specify this pool on a mixed mode device when we have 
specified the D3DUSAGE_SOFTWAREPROCESSING flag, the vertex buffer will be created in system memory. 
If we specify this pool type on a mixed mode vertex-processing device without the 
D3DUSAGE_SOFTWAREPROCESSING flag or if the device is a hardware vertex processing only device, then 
the vertex buffer will typically be placed in local or non-local video memory for maximum rendering 
performance. If we have not specified the D3DUSAGE_WRITEONLY flag (even on a hardware vertex 
processing device) then the situation is more ambiguous. The driver may choose to place the vertex 
buffer in system memory because it assumes you might want to read from it. Alternatively, the driver 
may choose to ignore this flag and place the vertex buffer in video memory (local or non-local), which 
would carry a serious performance penalty if the vertex buffer were to be read from by your application.   
 
Below we list the typical video card driver reaction to specifying the D3DPOOL_DEFAULT 
enumerated type in combination with some of the D3DUSAGE flags covered previously. 

 
D3DPOOL_DEFAULT with a Hardware Vertex Processing Device 

 
 

Usage = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY 
 
With this combination the driver will usually place the vertex buffer in AGP video memory. 
Writing to the vertex buffer is typically very fast but reading is extremely slow.  
 
Usage = D3DUSAGE_DYNAMIC 
 
The driver may interpret the absence of the D3DUSAGE_WRITEONLY flag as an indication that 
you will want to read from the vertex buffer at some point. Taking this into account the driver 
might place the vertex buffer in system memory to increase reading speed at the cost of 
compromising rendering performance.  
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Usage = D3DUSAGE_WRITEONLY 
 
The lack of the D3DUSAGE_DYNAMIC flag and the use of the D3DUSAGE_WRITEONLY flag 
generally result in optimal creation. Often this will mean the driver will place the vertex buffer in 
local video memory or at the very least, in AGP memory. The driver expects that the vertex buffer 
will not be locked or updated and places it in the memory that provides maximum read 
performance for the GPU.  
 
Usage = D3DSOFTWARE_PROCESSING 
 
This is not a valid flag for a hardware vertex-processing device because the GPU will still 
transform and light the vertices even if the vertex buffer is in system memory.   
 
Usage = 0 
 
When we specify no flag, we are indicating that we want to create a static vertex buffer and that 
we may want to read from it. A driver may decide to place the vertex buffer in video memory 
where a lock and read would be extremely expensive or it may decide that the lack of the 
D3DUSAGE_WRITEONLY flag means the application wants to read from the vertex buffer and 
place it in system memory to aid read access (when in fact we probably had no such intention).  
 
 
D3DPOOL_DEFAULT with a Software Vertex Processing Device 
 
Using the D3DPOOL_DEFAULT pool to create a vertex buffer on a software vertex-processing 
device will always create the vertex buffer in system memory. If this were not the case, 
performance would be severely degraded since the software module would have to extract the 
vertices from a buffer located in video memory.  
 
D3DPOOL_DEFAULT with a Mixed Vertex Processing Device 
 
Where the vertex buffer is placed on a mixed mode device is based on whether we created the 
vertex buffer with the D3DUSAGE_SOFTWAREPROCESSING flag. If we did, then the vertex buffer is 
always created in system memory and behaves in exactly the same way as the software vertex-
processing device described previously. The GPU will not be used to transform and light vertices. 
 
If the D3DUAGE_SOFTWAREPROCESSING flag is not specified then the vertex buffer is treated like the 
hardware vertex-processing device scenario described above. This is also true of all D3DUSAGE 
flags specified in the hardware vertex processing case. The D3DUSAGE_SOFTWAREPROCESSING flag 
allows you to switch functionality on a mixed mode device between hardware vertex processing 
(using the GPU) and software vertex processing (using the CPU).  
 

The D3DPOOL_DEFAULT pool is often the preferred pool when you want to maximize performance on 
systems with a GPU. With the D3DUSAGE_WRITEONLY flag specified, we ensure that the vertex buffer is 
placed in video memory for optimal rendering performance. Additionally, you should always use 
D3DPOOL_DEFAULT for dynamic vertex buffers. 
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Note: If a device is lost, all vertex buffers that were created with the D3DPOOL_DEFAULT type become 
invalid and must be destroyed and rebuilt again after the device has been reset. This is true of all 
resources created with the D3DPOOL_DEFAULT type and not just vertex buffers. This is not true with 
D3DPOOL_MANAGED and D3DPOOL_SYSTEMMEM pool types. 

 
 
D3DPOOL_MANAGED 

 
Creating a vertex buffer using the D3DPOOL_MANAGED type asks the device to manage the vertex 
buffer for us. The device will not only choose the optimal memory pool for the vertex buffer, it will also 
maintain a system memory copy of the buffer so that when a device is lost and later reset, it can restore 
the buffer back to video memory without application intervention. 
 
The additional overhead of maintaining a system memory copy of a video memory vertex buffer on a 
hardware vertex processing device actually has some advantages. If our application should ever need to 
read data from the vertex buffer for example then the performance loss is typically not as severe because 
we will be locking and reading the system memory copy. 
 
Unfortunately, we cannot create dynamic vertex buffers in the D3DPOOL_MANAGED pool. Only static 
vertex buffers are viable candidates for this pool.   
 
Let us examine the behavior and creation processes for vertex buffers created in this pool type with the 
various D3DUSAGE flags. 
 

 
D3DPOOL_MANAGED with a Hardware Vertex Processing Device 
 
Usage  = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY 
 
The D3DUSAGE_DYNAMIC usage flag is not compatible with the D3DPOOL_MANAGED 
flag and they should not be used together. 
 
Usage = D3DUSAGE_DYNAMIC 
 
The D3DUSAGE_DYNAMIC usage flag is not compatible with the D3DPOOL_MANAGED 
flag and they should not be used together. 
 
Usage = D3DUSAGE_WRITEONLY 
A driver will typically place this static vertex buffer in the optimal memory; usually local video 
memory or at the very least, non-local video memory. When we lock a managed vertex buffer, 
we are returned a pointer to the system memory copy that is managed by the device object. 
Changes made to that copy are committed up to the video memory copy once the vertex buffer 
has been unlocked.  
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Results are undefined if you read data back from a managed vertex buffer when you have 
specified D3DUSAGE_WRITEONLY. On a local test machine we were able to successfully 
read back data from a managed vertex buffer on a hardware vertex processing device and it was 
much faster than reading back from the same vertex buffer created using the 
D3DPOOL_DEFAULT type. This is because we were reading from the system memory copy of 
the video memory vertex buffer managed by the device.  
 
Note however that this is risky. We explicitly told the driver that we do not intend to read and the 
driver is under no obligation to make sure that the data in the system memory copy of the vertex 
buffer is correct or current. It will only guarantee that changes you make to the vertex buffer will 
be synchronized with the video memory copy once the lock has been released.  
 
Usage = D3DSOFTWARE_PROCESSING 
 
This is not a valid flag for a hardware vertex processing only device even in the case of managed 
vertex buffers. With a hardware vertex-processing device, the GPU will always transform and 
light the vertices even if the vertex buffer is in system memory.  
 
Usage = 0 
 
When we do not specify any flags with a managed vertex buffer we are essentially telling the 
driver that we wish to create a static vertex buffer, which we may want to read from. Usually, 
this will still result in the vertex buffer being placed in video memory. The device will keep a 
system memory copy available that can be locked to provide decent CPU read/write 
performance.  

 
 

Note: Because D3DPOOL_MANAGED cannot be used to create dynamic vertex buffers, you should never 
use the D3DPOOL_MANAGED memory pool for any vertex buffer that your application intends to lock in a 
time critical situation. Even when the vertex buffer has been placed in system memory by the driver, the 
GPU must still read from it. Locking it will place the GPU into a wait state and stall the pipeline. 

 
 
D3DPOOL_MANAGED with a Software Vertex Processing Device 
 
Usage = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY 
 
You cannot use the D3DUSAGE_DYNAMIC usage flag with the D3DPOOL_MANAGED pool. 
Only static vertex buffers can be created with this pool type. 
 
Usage = D3DUSAGE_DYNAMIC 
 
You cannot use the D3DUSAGE_DYNAMIC usage flag with the D3DPOOL_MANAGED pool. Only 
static vertex buffers can be created with this pool type. 
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Usage = D3DUSAGE_WRITEONLY 
 
The vertex buffer will be created in system memory because this is a software vertex-processing 
device. No system memory copy will need to be maintained as the vertex buffer is already in 
system memory. 
 
It is still wise to specify D3DUSAGE_WRITEONLY even when using a software vertex-processing 
device. The software transformation and lighting module may make optimizations based on the 
fact that the information in the vertex buffer does not have to be available for the application to 
read. Using this flag will always help you to get maximum vertex buffer performance. 
 
Once again, if you specify D3DUSAGE_WRITEONLY and then read back from the vertex buffer 
you may get undefined behavior.  
 
Usage = D3DSOFTWARE_PROCESSING 
 
This flag is ignored with a software vertex-processing only device because its behavior is 
automatically implied by the type of device it is.  You should still prefer to use this flag so that 
you can clearly see how your vertex buffers are being created when examine your code. 
 
Usage = 0 
 
The vertex buffer will be created in system memory and can be safely written to and read from. 
This read-access guarantee may impede rendering performance when compared to vertex buffers 
created using the D3DUSAGE_WRITEONLY flag.  
 
 
D3DPOOL_MANAGED with a Mixed Vertex Processing Device 
 
Where the managed vertex buffer is placed on a mixed mode device is based on whether we 
created the vertex buffer with the D3DUSAGE_SOFTWAREPROCESSING flag. If we did, then the 
vertex buffer is always created in system memory and behaves in exactly the same way as the 
software vertex-processing device described above. If the D3DUAGE_SOFTWAREPROCESSING flag is 
not specified then the vertex buffer is treated the same way as one on a hardware vertex-
processing device. This is also true of all the D3DUSAGE flags specified in the hardware vertex 
processing case.  

 
 

D3DPOOL_SYSTEMMEM 

 
A vertex buffer using this pool type is always created in system memory. It will not need to be recreated 
if the device is lost and reset. This pool is the clear choice for vertex buffers created for use with a 
software vertex-processing device. In fairness, even if we did specify D3DPOOL_MANAGED or 
D3DPOOL_DEFAULT, a system memory vertex buffer would be chosen in that case. On a hardware 
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vertex-processing device, D3DPOOL_MANAGED and D3DPOOL_DEFAULT will usually place the 
vertex buffer in some form of video memory (assuming proper usage flags). So, if you wish to create a 
system memory vertex buffer with a hardware vertex-processing device, you must explicitly state this 
memory pool. 
 
While you normally would not want to do this, perhaps your application requires a dynamic vertex 
buffer and it needs to read those vertices fairly often. This is a particularly nasty situation. Your best bet 
would probably be to create the vertex buffer in the system memory pool using the 
D3DUSAGE_WRITEONLY flag. Locking the vertex buffer would be cheaper because it is a dynamic 
vertex buffer and CPU access would be decent because we are reading the vertex data back from 
memory that can be cached. Since managed vertex buffers cannot be dynamic, this is probably the best 
you can do. 
 
System memory dynamic vertex buffers are generally slow on a hardware vertex-processing device. The 
penalty associated with the GPU having to fetch the vertices, coupled with the device management 
overhead for dynamic vertex buffers, degrades performance considerably -- about 10% of the speed of 
reading vertices from a video memory vertex buffer. 
 

D3DPOOL_SCRATCH 

 
This pool places the vertex buffer in system memory and it does not need to be recreated when the 
device is lost and reset. Unlike the D3DPOOL_SYSTEMMEM pool type, vertex buffers created in this 
pool are completely inaccessible to the Direct3D device. This means they cannot be used for rendering. 
 
You can think of vertex buffers in this pool type as simply being vertex containers. You can use these 
vertex buffers to store data, which you will later copy to another vertex buffer that is accessible from the 
device.  
 
The D3DPOOL_SCRATCH pool type vertex buffer can be created, locked, and copied. It is not a pool type 
you will use very often with vertex buffers, but it can be useful for other resource types. 
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3.2.3 Vertex Buffer Performance 

Let us explore some different vertex buffer creation possibilities and discuss the outcomes. The code 
assumes that CVertex is a defined vertex structure and that pDevice is a pointer to a valid 
IDirect3DDevice9 interface.  
 
I. Managed Static Vertex Buffer -- optimal render performance 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer (sizeof(CVertex) * num_verts , D3DUSAGE_WRITEONLY , fvf ,  
                             D3DPOOL_MANAGED, &pVertexBuffer , NULL)   

 
Outcome A: Hardware Vertex Processing Device 
The vertex buffer would be created in video memory with a system memory backup. Optimal render 
performance is the result, with the cost of increased memory footprint. Locking this vertex buffer will 
stall the software pipeline because it is a static vertex buffer and reading back from the buffer could 
result in undefined behavior.  
 
Outcome B: Software Vertex Processing Device 
The vertex buffer would be created in system memory. Locking this vertex buffer will stall the software 
pipeline because it is a static vertex buffer and reading back from the buffer could result in undefined 
behavior. 
  
II. Managed Static Vertex Buffer -- non-optimal render performance 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts , 0 , fvf , D3DPOOL_MANAGED, 
                              &pVertexBuffer , NULL)   

 
 
Outcome A: Hardware Vertex Processing Device 
The driver may interpret the lack of a D3DUSAGE_WRITEONLY flag as an indication of your desire 
for read access. It is likely that because this is a managed mode vertex buffer and therefore has a system 
memory copy for read access, the actual vertex buffer will still be placed in some form of video 
memory. You can safely lock this vertex buffer and read and write its contents. When it is locked, the 
system memory copy of the vertex buffer (if it has been placed in video memory) will have its pointer 
returned. Changes made to the system memory copy will be committed to the video memory vertex 
buffer once the lock has been released. This is a static vertex buffer, so locking is still very expensive. It 
is also likely that by guaranteeing read access to the CPU, the rendering performance will be 
compromised. 
 
Outcome B: Software Vertex Processing Device 
The vertex buffer will be created in system memory and can be locked, read from, and written to with 
confidence. Again, locking a static vertex buffer is expensive since it can cause a stall in the pipeline. 
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III. Static Vertex Buffer -- optimal render performance 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts , D3DUSAGE_WRITEONLY , fvf ,   
                              D3DPOOL_DEFAULT, &pVertexBuffer , NULL); 
 
 
Outcome A: Hardware Vertex Processing Device 
The driver will place the vertex buffer in video memory (AGP or local) for optimal GPU read access. 
Unlike the D3DPOOL_MANAGED type, a system memory copy of the vertex buffer will not be 
maintained by the device object. This minimizes system memory overhead but requires your application 
to manually recreate the vertex buffer if the device is lost and reset.  
 
Speed is optimal for the GPU when transforming and rendering vertices from this vertex buffer. Unlike 
the managed vertex buffer where locking returns a pointer to the system memory copy, the pointer 
returned from locking this buffer will typically be an aliased pointer directly into video memory. 
Therefore writing to this vertex buffer can be marginally faster than writing to a managed vertex buffer 
because the copy synchronization process of the system memory vertex buffer and the video memory 
vertex buffer is not necessary when the lock is released. Although you should not try to read back from 
this buffer because it was created with D3DUSAGE_WRITEONLY, we were successfully able to do so 
during some tests. The performance results were (as one might imagine) simply terrible because the 
reads were being done directly from video memory.  
 
Outcome B: Software Vertex Processing Device 
The vertex buffer will be placed in system memory so that the software pipeline can access the data as 
quickly as possible. The device makes optimization assumptions based on the fact that you are not going 
to be reading the data back from the vertex buffer when your application locks it. Obviously, locking the 
vertex buffer and reading back from it could result in undefined behavior.  
 
IV. Managed Dynamic Vertex Buffer -- optimal render performance 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts ,  
                              D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY ,  
                              fvf , D3DPOOL_DEFAULT,  &pVertexBuffer , NULL) 

 
Outcome A: Hardware Vertex Processing Device   
Typically the driver will place the vertex buffer into some form of video memory. With nVidia® 
hardware for example, AGP seems to be the default choice. Write accesses are typically quick and 
locking the vertex buffer can be extremely efficient when the correct locking flags are used. No pipeline 
stalls will occur when locking a dynamic vertex buffer. The pointer returned from the lock is typically 
an aliased pointer directly into video memory. Reading from this buffer would result in terrible 
performance at best and undefined behavior at worst due to the fact that the driver may have swizzled 
the data into a proprietary format (not expecting your application to read it back). 
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Outcome B: Software Vertex Processing Device 
The vertex buffer will be placed into system memory. Locking this vertex buffer is much more efficient 
than locking a static vertex buffer as certain mechanisms are in place to prevent stalls in the pipeline. 
This buffer should not be read. 
 
V. Static Vertex Buffer – inefficient 
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts , 0 , fvf , D3DPOOL_DEFAULT, 
                              &pVertexBuffer , NULL); 

 
Outcome A: Hardware Vertex Processing Device 
Results are undefined here because we created a vertex buffer in the default pool but we have not 
specified D3DUSAGE_WRITEONLY. What happens from this point on is up to the driver and 
incorrect assumptions may be made.  
 
Outcome B: Software Vertex Processing Device 
The vertex buffer is placed in system memory and can be reliably read from and written to, although 
locking can cause the performance penalty seen with all static vertex buffers. 
 
VI. Dynamic Vertex Buffer in System Memory  
 
IDirect3DVertexBuffer9 *pVertexBuffer; 
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE; 
int num_verts = 36; 
pDevice->CreateVertexBuffer ( sizeof(CVertex) * num_verts , 
                              D3DUSAGE_WRITEONLY | D3DUSAGE_DYNAMIC ,  
                              fvf , D3DPOOL_SYSTEMMEM,  &pVertexBuffer , NULL); 

 
Outcome A: Hardware Vertex Processing Device 
The vertex buffer is created in system memory and can be efficiently locked and written to. It should not 
be read from.  This vertex buffer can still be transformed and lit in hardware by the GPU although a 
performance hit will result from the fact that the GPU has to retrieve the vertices from system memory. 
  
Outcome B: Software Vertex Processing Device 
The vertex buffer is created in system memory and can be efficiently locked and written to. It should not 
be read from.  This vertex buffer can still be transformed and lit in hardware by the GPU although a 
performance hit will result from the fact that the GPU has to retrieve the vertices from system memory. 
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Vertex Buffer Read Statistics 

We discussed earlier that we should avoid reading from a vertex buffer -- especially a static vertex 
buffer. Below you will see some test results that indicate the performance of the different resource pools 
for vertex buffers. This helps us to identify where the driver was placing the test (static) vertex buffers. 
During our test we locked a vertex buffer containing 1089 vertices and read them back 10,000 times in 
succession. We then unlocked the buffer. The test machine was an Athlon® 1.4 GHz with a geForce 3™ 
graphics card. Results were averaged over three tests: 
 
D3DPOOL_DEFAULT       (Hardware Vertex Processing)             23 s 80.1601 ms 
D3DPOOL_MANAGED     (Hardware Vertex Processing)                     42.7314 ms 
D3DPOOL_SYSTEMMEM (Hardware Vertex Processing)                     42.7683 ms 
 
D3DPOOL_DEFAULT 
When we chose the default pool the vertex buffer was placed in video memory. The pointer returned 
from the lock was aliased directly into video memory. Note the significant drop in performance; the tests 
took over 23 seconds when the other two took much less than a second. This is because we are reading 
directly from some type of video memory. On our test machine, the driver placed the vertex buffer in 
video memory even if we did not specify D3DUSAGE_WRITEONLY and we were still able to read back 
from the buffer. The read times were unaltered by this. This was also true when we used a dynamic 
vertex buffer in the same pool. Each time, the vertex buffer was placed in video memory, which resulted 
in a huge performance hit when reading. Note that other drivers may decide to place the vertex buffer in 
system memory if the D3DUSAGE_WRITEONLY flag is not specified. This would speed up read 
access but impair rendering performance. 
 
D3DPOOL_MANAGED  
In this case the vertex buffer was still placed in video memory by the driver, but the device object has 
maintained a separate system memory copy of it. The meaning of this sentence is obscure. Lock calls 
returned pointers to this system memory copy and reading was much faster. We see quite clearly that 
reading from a managed vertex buffer is much faster than reading from a video memory vertex buffer. 
Writing to a managed vertex buffer is typically slightly slower due to the fact that an update to the video 
memory version must eventually take place. However, because the main vertex buffer is in video 
memory rendering speed is not significantly compromised. 
 
D3DPOOL_SYSTEMMEM 
As expected, reading from a system memory vertex buffer is relatively fast. The results were the same as 
reading from a managed vertex buffer because we are reading from system memory in both cases. 
Unlike the managed pool however, rendering would take a performance hit since the GPU will have to 
fetch the vertices over the bus from system memory.  
 
We carried out the same read tests on a software vertex-processing device. Read times were also 
comparably fast since the vertex buffer was always in system memory. They are not shown above since 
the results are basically the same as reading from a D3DPOOL_SYSTEMMEM pool on a hardware vertex-
processing device. 
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3.2.4 Filling Vertex Buffers 

Once the vertex buffer is created, we need to fill it with vertex data. This is typically done at application 
startup for static vertex buffers. We call the IDirect3DVertexBuffer9::Lock method to retrieve a pointer 
to the vertex buffer data area. After we have finished filling the vertex buffer we must remember to call 
the IDirect3DVertexBuffer9::Unlock method to relinquish control of the vertex buffer back to the driver. 
Every call to Lock must be matched with a call to Unlock. This is very important.  
 

Note: As you will see in later lessons, all resources follow the same rules for locking and unlocking to 
gain temporary access to the resource data area. You should never store the pointer returned from a 
Lock method since it will be invalid once the resource is unlocked. Further, there is no guarantee that a 
second call to the lock function on the same resource will return the same pointer. In fact, this is often 
not the case. 

 
HRESULT IDirect3DVertexBuffer9::Lock 
(       
    UINT OffsetToLock, 
    UINT SizeToLock, 
    VOID **ppbData, 
    DWORD Flags 
); 
 
UINT OffsetToLock 
OffsetToLock specifies an offset into the vertex buffer in bytes. Locking can be optimized in some 
situations (especially with managed resources) if we specify only the region of the vertex buffer that we 
wish to modify. For example, if you did not need access to the first ten vertices in the buffer but did 
need access to the rest, you would want to pass in the value of 10 * sizeof(CVertex). This will return a 
pointer to the 11th vertex in the vertex buffer. If you pass in zero, the pointer returned will point to the 
start of the vertex data.  
 
UINT SizeToLock 
SizeToLock defines how many vertices you need access to, starting from OffsetToLock. If you pass in zero 
to both the OffsetToLock and the SizeToLock parameters the entire buffer will be locked and the pointer 
returned will point to the start of the data area. Otherwise, this value is used to lock only a section of the 
vertex buffer. If you only needed access to the 11th, 12th, 13th, 14th, and 15th vertices in the buffer you 
would use: 
 
OffsetToLock = 10 * sizeof(CVertex)    
SizeToLock = 5 * sizeof(CVertex)  
 
VOID **ppbData  
This is the address of a pointer that will point to the vertex data when the call returns. It is a temporary 
pointer that should be discarded once the resource has been unlocked. Usually you will pass a pointer to 
your own vertex structure type and cast it to void for the call. 
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DWORD Flags 
This will be a combination of one or more flags to aid the device in selecting an efficient locking 
strategy. The possible values are: 

• D3DLOCK_DISCARD  
• D3DLOCK_NO_DIRTY_UPDATE  
• D3DLOCK_NO_SYSLOCK  
• D3DLOCK_READONLY  
• D3DLOCK_NOOVERWRITE 

D3DLOCK_DISCARD 
This flag states that the application will write to the entire locked region. This allows the runtime 
to discard the current vertex buffer and a pointer to a new buffer is returned immediately. The 
discarded vertex buffer can continue to be used by the GPU while the new buffer is being filled.  
 
This flag is only valid when locking a dynamic vertex buffer (or any other dynamic resource). It 
cannot be specified during the lock call if your vertex buffer was not created with the 
D3DUSAGE_DYNAMIC flag. Additionally, it is recommended that this flag only be used for buffers 
created with D3DUSAGE_WRITEONLY. 
 
D3DLOCK_NOOVERWRITE 
This flag promises the device that the application will not alter any of the vertex data currently in 
the buffer. It could be used if you wanted to append vertex data to the end, or if you wanted to 
read from the vertex buffer. Because you are promising that your application will not alter the 
contents, the driver can lock the resource, return the pointer, and then continue to render from 
this buffer knowing that the vertex data is still current. The driver does not have to wait for the 
lock to return to continue processing any cached data. It is the most efficient locking flag. 
 
This flag is only valid when locking a dynamic vertex buffer (or any other dynamic resource). If 
you specify both D3DLOCK_DISCARD and D3DLOCK_NOOVERWRITE then D3DLOCK_DISCARD is 
ignored and only D3DLOCK_NOOVERWRITE is used. 
 
D3DLOCK_READONLY 
This flag promises the driver that your application will not alter the data in the buffer or attempt 
to add data to it. It will only read from it. This can be beneficial if a driver was to store the vertex 
buffer in a non-native format internally for performance reasons. If this were the case then the 
data would have to be uncompressed into a readable format for the application and then 
recompressed after the lock has been released to update the vertex buffer. If this flag is specified 
then the recompression is not necessary as the data has not changed. 
 
The lock function will fail if this flag is specified when locking a vertex buffer created with the 
D3DUSAGE_WRITEONLY flag. 
 
D3DLOCK_NO_DIRTY_UPDATE 
By default, a lock on a resource adds a dirty region to that resource. This flag prevents any 
changes to the dirty state of the resource. Applications should use this option when they have 
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additional information about the set of regions changed during the lock operation. You will 
probably not use this lock flag very often with vertex buffers. 

 
D3DLOCK_NOSYSLOCK 
The default behavior of a video memory lock is to reserve a system-wide critical section, 
guaranteeing that no display mode changes will happen whilst the resource is locked. This flag 
causes the system-wide critical section not to be held for the duration of the lock.  
 
A lock operation of this type is typically pretty slow, but it does enable the system to perform 
other duties, such as moving the mouse cursor. This option is useful for long-duration locks that 
would otherwise adversely affect system responsiveness, such as the lock of the back buffer for 
software rendering. 

 
The following code example shows how to create a static vertex buffer to hold six vertices. In this code 
CVertex is assumed to be an already defined vertex structure such as the one used in our demo 
applications. pDevice is assumed to be a valid IDirect3DVertexBuffer9 interface. Error checking is 
removed for readability. 
 
   // We will need a pointer to the vertex buffer interface 
   // In our example this is assumed to be a CGameApp class member variable   
   IDirect3DVertexBuffer9 * m_pVertexBuffer; 
   …… 
   // Declare a pointer to use for the lock. 
   CVertex *pVertex = NULL; 
   ULONG    ulUsage = D3DUSAGE_WRITEONLY;    
 
   // Create our vertex buffer ( 36 vertices (6 verts * 6 faces) ) 
   m_pD3DDevice->CreateVertexBuffer( sizeof(CVertex) * 36, ulUsage,  
                                     D3DFVF_XYZ | D3DFVF_DIFFUSE, 
                                     D3DPOOL_MANAGED, &m_pVertexBuffer, NULL ); 
   
   // Lock the vertex buffer and get ready to fill data 
   m_pVertexBuffer->Lock( 0, sizeof(CVertex) * 36, (void**)&pVertex, 0 ); 
    
   // Front Face 
   *pVertex++ = CVertex( -2,  2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex(  2,  2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex(  2, -2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex( -2,  2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex(  2, -2, -2, RANDOM_COLOR ); 
   *pVertex++ = CVertex( -2, -2, -2, RANDOM_COLOR ); 
 
    // Unlock the buffer 
    m_pVertexBuffer->Unlock( );  

 
This is a pretty straightforward example. Notice that we must call the Unlock function once we are 
finished filling the buffer. You are allowed to nest calls to Lock/Unlock pairs but any calls to render the 
buffer will fail if there are any outstanding locks on it. As you can see, the 
IDirect3DVertexBuffer9::Unlock method takes no parameters and should be paired with a prior call to 
IDirect3DVertexBuffer9::Lock. 
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3.2.5 Vertex Stream Sources  

 
In order to render a vertex buffer with the fixed function pipeline, we must set it as the currently active 
vertex buffer and make sure that the device knows the vertex format. As we did in our previous 
applications when we were not using vertex buffers, we must call the SetFVF function and specify the 
components in the vertices in our buffer using the flexible vertex format flags. 
 
    // Setup our vertex FVF code 
    m_pD3DDevice->SetFVF( D3DFVF_XYZ | D3DFVF_DIFFUSE ); 

 
We tell the device to get the vertices from our vertex buffer using the 
IDirect3DDevice9::SetStreamSource function: 
 
   // Set the vertex stream source 
   m_pD3DDevice->SetStreamSource( 0, m_pVertexBuffer, 0, sizeof(CVertex) ); 

 
Several streams can be used to pass data from multiple vertex buffers. This can be useful if you wish to 
store position components in one vertex buffer (in stream zero) and have the texture coordinates stored 
in another vertex buffer (in stream two). In all of our applications, we will be using a single vertex 
stream (stream zero).  
 
Let us have a look at the definition of the IDirect3DDevice::SetStreamSource function: 
 
HRESULT SetStreamSource 
(       
    UINT StreamNumber, 
    IDirect3DVertexBuffer9 *pStreamData, 
    UINT OffsetInBytes, UINT Stride 
); 
 
UINT StreamNumber 
This is the number of the stream you wish to bind the vertex buffer to. We will be using stream 0 for our 
applications. 
 
IDirect3DVertexBuffer9 *pStreamData 
The pointer to the interface of the vertex buffer you wish to bind to the stream.  
 
UINT OffsetInBytes 
Offset from the beginning of the stream to the beginning of the vertex data measured in bytes. To find 
out if the device supports stream offsets, see the D3DDEVCAPS2_STREAMOFFSET constant in D3DDEVCAPS2. 
You will usually set this value to zero (indicating no offset). Stream offsets are not supported by all 
devices.  
 
UINT Stride 
The stride of our vertex format is the amount of bytes from the start of one vertex to the start of the next 
vertex in the vertex buffer. Basically, this is the size of a single vertex.  
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3.2.6 DrawPrimitive  

At this point we have created and filled a vertex buffer, set the FVF, and attached the vertex buffer to 
stream zero. All that remains is to send the vertex data to the rendering pipeline. In the last chapter, we 
did this by calling the DrawPrimitiveUP function. This time we will call the 
IDirect3DDevice9::DrawPrimitive function instead. This tells the device to extract the vertices from the 
vertex buffer currently bound to the vertex stream(s). 
 
HRESULT IDirect3DDevice9::DrawPrimitive 
(       
    D3DPRIMITIVETYPE PrimitiveType, 
    UINT StartVertex, 
    UINT PrimitiveCount 
); 
 
The DrawPrimitive function fires the vertices from the currently set vertex buffer into the transformation 
and lighting pipeline (assuming they are untransformed vertices). We will set our world, view, and 
projection matrices prior to calling the function just as we did in Chapter 2.  
 
D3DPRIMITIVETYPE PrimitiveType 
Describes how the vertices in the vertex buffer are to be rendered as primitives. Valid values are 
D3DPT_POINTLIST, D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP, or 
D3DPT_TRIANGLEFAN.   
 
UINT StartVertex 
Although our application can use many vertex buffers (one for each object in our scene if we wish), it is 
often beneficial to store multiple objects within a single buffer. One of the reasons is that changing 
vertex buffers (by calling IDirect3DDevice9::SetStreamSource) can be a moderately expensive 
operation. If we store many objects within a single buffer we can minimize the number of vertex buffer 
changes that our application needs to make. This parameter allows us to store the meshes in a single 
vertex buffer sequentially and render one section at a time.  
 
For example, we could have mesh 1 stored in the vertex buffer using the first 100 vertices and mesh 2 
following mesh 1 in the vertex buffer with another 100 vertices. To render mesh 1, we would set its 
world matrix and call DrawPrimitive with a StartVertex parameter of 0 and a PrimitiveCount with a 
number such that its faces are rendered using the first 100 vertices. Then we could set the second mesh 
world matrix and call DrawPrimitive with a StartVertex of 100 and a primitive count value such that it 
renders the appropriate number of triangles for that mesh taking into account the D3DPRIMTIVETYPE 
being used. 
 
UINT PrimitiveCount 
The number of primitives to render in this call. The value will be based on the primitive type: 
 

• PointList (PrimitiveCount = NumberOfVertices) 
• LineList  (PrimitiveCount = NumberOfVertices / 2) 
• LineStrip (PrimitiveCount = NumberOfVertices –1) 
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• TriList     (PrimitiveCount = NumberOfVertices / 3) 
• TriStrip   (PrimitiveCount = NumberOfVertices – 2) 
• TriFan     (PrimitiveCount  = NumberOfVertices – 2) 

 

The next code snippet demonstrates rendering multiple objects where each mesh is stored in its own 
vertex buffer. The vertex buffers are assumed to hold untransformed vertices, and each object in the 
world is assumed to have a correctly initialized world matrix and a pointer to its own vertex buffer 
containing the vertex data. All vertices share the same FVF code set at application startup. The vertex 
data is arranged to be rendered as a triangle list. 
 
    // Clear the buffers 
    m_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xFFFFFFFF, 1.0f, 0 ); 
     
    // Begin Scene Rendering 
    m_pD3DDevice->BeginScene(); 
 
    // Loop through each object 
    for ( ULONG i = 0; i < NumberOfObjectsInWorld; i++ ) 
    { 
        // Set our object matrix 
        m_pD3DDevice->SetTransform( D3DTS_WORLD, &m_pObject[i].m_mtxWorld ); 
 
        // Set the vertex stream source 
        m_pD3DDevice->SetStreamSource( 0, m_pObject[i].m_pVertexBuffer, 
                                       0, sizeof(CVertex)); 
 
 
        // Render the primitives as a triangle list 
        m_pD3DDevice->DrawPrimitive( D3DPT_TRIANGLELIST, 
                                     0, 
                                     m_pObject[I].NumberOfVertices/3 ); 
     
    } // Next Object 
 
    // End Scene Rendering 
    m_pD3DDevice->EndScene(); 
     
    // Present the buffer 
   m_pD3DDevice->Present( NULL, NULL, NULL, NULL ); 
 

Notice that we call the SetStreamSource function during each iteration of the loop because in this 
example each object has its own vertex buffer.  
 
A more efficient approach might be to store all of the objects that share the same flexible vertex format 
in the same vertex buffer. In this case, each object would need to store an index into the vertex buffer 
where its vertices begin. We would then render that section by calling DrawPrimitive and specifying this 
index as the StartVertex parameter. We would also be able to move the call to SetStreamSource outside 
of the loop and set it once for those objects. 
 
Before moving on to the next section, please open your workbook to Lab Project 3.1 and spend some 
time examining the source code. This project addresses creating, filling, and rendering vertex buffers. 
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3.3 Index Buffers 

In Lab Project 3.1, the GPU had to transform 36 vertices per cube when only 8 unique points existed.  It 
is certainly good that we were able to render the entire cube with one function call (versus our previous 
applications), but this still seems extraordinarily wasteful. When a mesh has hundreds or thousands of 
triangles (as will the next mesh we examine) the performance implications of all of this redundant 
processing are clearly not good.  
 
In this section, we will address the concern about data redundancy while preserving the preference for 
rendering with as few function calls as possible. This solution will apply to all of our primitive types 
(strips, fans, or lists), so our ability to store data in formats that suit our needs will also be preserved. 
The technique we will use is called indexed primitive rendering. Beyond simply resolving the 
redundancy issue, there is another important benefit we will see. Indexed rendering allows hardware to 
utilize a small local memory cache for temporary vertex storage. This vertex cache can, under the right 
circumstances, significantly improve application performance.  
 
Rendering with indices is a straightforward concept. In addition to our vertex buffer, we will send the 
device a second buffer filled with indices into that vertex buffer. This buffer is called an index buffer. 
Each element in the index buffer is the index of a vertex in the vertex buffer. We essentially treat this 
concept as two parallel arrays. One array (the vertex buffer) holds the building-block vertices. The 
second array (the index buffer) holds references into the first array that are used select out the vertices 
needed to construct triangles.  
 
If we were rendering a triangle list using indices, then the first three indices in the index buffer would 
describe the vertices in the vertex buffer used to form the first triangle. The next three indices would 
describe the vertices in the vertex buffer that comprise the second triangle. And so on. This allows us to 
reuse the same vertex in multiple triangles simply by specifying its index in each triangle that requires it. 
This approach can completely eliminate the need for duplicated vertices when all vertex properties are 
shared, and in turn eliminate redundant vertex processing.  
 

 
 

Figure 3.1 
 

Fig 3.1 depicts seven unique position vertices used to build five triangles. If we wanted to render this list 
of triangles as a triangle list, we would need to duplicate vertices in the vertex buffer because the device 
expects three vertices for each triangle when using the D3DPT_TRIANGLELIST primitive type. 



 

  
 

219

 
The vertex buffer would look like the list of vertices shown below: 
 
                                 Tri 1                Tri 2                 Tri3                 Tri 4                  Tri 5 
                             ------------        ------------         ------------        ------------          ------------- 
VertexBuffer =   P1 , P2 , P3 ,   P2 , P3 , P4 ,    P3 , P4 , P5 ,    P4 , P5 , P6 ,    P5 , P6 , P7    
 
Positions P3, P4, and P5 are all duplicated three times because they belong to three separate triangles.  
 
Note that indeed we could render this example mesh as a triangle strip and eliminate the redundant 
vertices without the need for indices, but since this is an indexing example, please ignore strips for now.  
 
 
Under an indexed based scenario, the situation shifts to become: 
 
                                     Vertex Pool 
                           ------------------------------- 
VertexBuffer =  P1, P2, P3, P4, P5, P6, P7 = 7 vertices 
 
This vertex buffer now serves as a pool rather than a triangle list. The triangle list is moved to the index 
buffer: 
 
                        Tri 1     Tri 2    Tri 3      Tri 4     Tri 5  
                       -------    ------     ------     ------     ------ 
IndexBuffer = 0,1,2  ,  1,2,3  ,  2,3,4  ,  3,4,5  ,  4,5,6 
 
Each element in the index buffer describes the offset (zero-based) into the vertex buffer of the vertex to 
be used in the correct location. For example, Triangle 4 references vertices P4, P5, P6 using index 
values 3, 4, and 5. 
 
Note that although we have to allocate a new resource (the index buffer) we generally wind up saving a 
considerable amount of memory. Indices are typically 16 bit values (although 32 bit values are possible 
as well). In the case above we managed to eliminate 9 vertices from the vertex buffer. Consider even a 
simple vertex structure that stored a position (3 floats) and a diffuse color (1 DWORD). That is 16 bytes. 
For the 9 vertices we eliminated we reduced the buffer size by 144 bytes. Our 18 indices at 16 bits each 
take 36 bytes of storage for an overall savings of 108 bytes. If the vertex format was more complex (as 
will usually be the case) memory savings can start to add up. 
 
More important is the point that using indices enables the GPU (if hardware vertex processing is 
enabled) to cache vertices so that they do not have to be processed multiple times. This can improve 
performance by an order of magnitude. In the above arrangement, vertices P1, P2 and P3 would be 
transformed and lit first. When we render the second triangle, vertices P2 and P3 are already in the 
vertex cache and do not have to be transformed and lit again. And so on for the other triangles. The 
vertex cache is a pretty scarce resource that is implemented on nVidia® based cards as FIFO buffers. The 
next table lists the cache size on the geForce™ series of cards. 
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NVidia Model Vertex Cache Size 
geForce  
geForce 2 
geForce 3 
geForce 4 

10 Vertices 
10 Vertices 
18 Vertices 
18 Vertices 

 
The vertex cache is a valuable resource so it is important to order your indices so that triangles that use 
the shared vertex are located close together in the vertex buffer. This ensures that when a vertex enters 
the cache, other triangles can be rendered that use that vertex before it is flushed from the cache. If you 
do not do this then there is a good chance that the vertex will have been removed from the cache by the 
time the next triangle using it is transformed and lit. When this happens, that same vertex will have to be 
pumped through the transformation pipeline again. 
 
Important: The vertex cache is only available when using indexed primitives. 
  

Let us look at one more example, just to make sure we have the concept fully nailed down. We return 
once more to our favorite 3D shape: 

 
Figure 3.2 

 
In Fig 3.2 we have labeled only the seven vertices that are used by the six visible triangles making up 
the three cube faces. Ignoring the back faces for now, we could create a vertex buffer for the six visible 
triangles as: 
 
Vertex Buffer = P1 , P2 , P3 , P4 , P5 , P6 , P7 
 
The corresponding index list for the six triangles would be: 
 
                         Tri 1    Tri 2      Tri 3       Tri 4       Tri5        Tri6 
                         ------    ------     ------       ------      -------      ------- 
Index Buffer = 0,2,3  ,  0,1,2  ,  4,1,0   ,   4,5,1   ,   1,6,2   ,   1,5,6  = 18 
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We have represented six triangles as a triangle list using only seven vertices. Notice that the index count 
is now what the old vertex count used to be for each primitive. For a triangle list, the number of indices 
needed is NumTriangles * 3. But we are not limited to indexed triangle lists. We can use indices with 
any D3DPRIMITIVETYPE. For example, take another look at the image we saw earlier: 
 

 
If we wanted to render the above as an indexed triangle strip we would create the following vertex and 
index buffers: 
 
Vertex Buffer = P1 , P2 , P3 , P4 , P5 , P6 , P7 
 
There is no change here, since the vertex buffer is just a vertex pool that will be referenced by the index 
buffer to create triangles: 
 
                          Tri 1   Tri 3                
                         -------  -------    … 
IndexBuffer =  0 , 1 , 2 , 3 , 4 , 5 , 6 
                              -------- 
                                Tri 2     
 
Note the consistency with the strips we saw in the last chapter. The first three vertices in the vertex 
buffer describe the first triangle, and then every additional vertex created a new triangle by using the last 
two vertices of the previous triangle. This same behavior carries over when using indexed triangle strips. 
 
We can calculate the number of indices needed to render an indexed triangle strip as NumTriangles * 2. 
This is identical to the way we calculated the vertices needed for a non-indexed triangle strip in Chapter 
Two. 
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3.3.1 Creating Index Buffers 

Like vertex buffers, index buffers are device resources that are derived from IDirect3DResource9. We 
can create static and dynamic index buffers (using the same D3DUSAGE flags), lock and unlock for 
read/write access, and we can set them as the active index buffer so that the device will use the index 
buffer to fetch the indices when rendering. To create an index buffer we call the 
IDirect3DDevice9::CreateIndexBuffer method.  
 
HRESULT CreateIndexBuffer 
(       
    UINT Length, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    IDirect3DIndexBuffer9 **ppIndexBuffer, 
    HANDLE* pHandle 
); 

 
UINT Length 
This specifies the length (in bytes) that you wish your index buffer to be. There are two different index 
formats you can use (16 or 32 bit).  This format is specified in the D3DFORMAT parameter. To create 
an index buffer to hold ten 16-bit indices, the length of the buffer would need to be 10 * 2 = 20 bytes. 
 
D3DUSAGE Usage 
Identical to the vertex buffer usage options discussed earlier and the same rules apply: if you need to 
lock the index buffer in time critical situations then make sure it is created with both the 
D3DUSAGE_WRITEONLY and D3DUSAGE_DYNAMIC flags.  
 
D3DFORMAT Format 
There is a choice of two format types that are applicable to index buffers: D3DFMT_INDEX16 or 
D3DFMT_INDEX32 (describing 16- or 32-bit indices respectively). Normally you will use 16-bit 
indices. If you have more than 65,535 vertices within a single vertex buffer then you could use 32-bit  
indices -- although even then it is not strictly necessary. As we will see later, we can use a special offset 
parameter during the rendering call to address just this sort of situation. This is preferable to using what 
is essentially twice as much memory and bus bandwidth during rendering. 
 
D3DPOOL Pool 
The implications for index buffers with regards to pool type are essentially the same as for vertex 
buffers. If you use a managed index buffer, then you will not have to recreate the index buffer should the 
device become lost. The driver will also try to place the index buffer in optimal memory. If you choose 
the default pool, then the index buffer will also be put into optimal memory but will have to be recreated 
by your application when the device is lost and restored. If you intend to read from the index buffer 
often then you should place the index buffer in either the managed pool or system memory pool. If you 
wish to create a dynamic index buffer then it must go in the default pool. Finally, you will want to place 
the index buffer into system memory on a software vertex-processing device. 
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IDirect3DIndexBuffer9** ppIndexBuffer 
This is where we pass the address of a pointer to an IDirect3DIndexBuffer9 interface. If the device was 
able to create the index buffer successfully then this pointer will point to a valid IDirect3DIndexBuffer9 
interface when the function returns.  
 
HANDLE *pHandle 
Reserved. This parameter should be set to NULL. 
 
The next code snippet creates a static managed index buffer that would hold 36 16-bit index values.  
 

IDirect3DindexBuffer9 * pIndexBuffer; 
DWORD ulUsage = D3DUSAGE_WRITEONLY; 
pDevice->CreateIndexBuffer(sizeof(USHORT) * m_nIndexCount, ulUsage, D3DFMT_INDEX16, 
                           D3DPOOL_MANAGED, &pIndexBuffer, NULL ); 

 
Providing the function was successful, we can now lock the buffer using the returned interface. The 
IDirect3DIndexBuffer9::Lock method should look familiar: 
 
HRESULT Lock 
(       
    UINT OffsetToLock, 
    UINT SizeToLock, 
    VOID **ppbData,  
    DWORD Flags 
); 
 
This lock method is exactly the same as the IDirect3DVertexBuffer9::Lock method. The first two 
parameters allow us to lock only a region of the index buffer. If we pass zero for both of these 
parameters then we will get back a pointer to the start of the index buffer data area. The third parameter 
is where we pass the address of a pointer that will point to the data area should the lock be successful. 
The final parameter can be any of the D3DLOCK flags that we discussed earlier when we discussed 
vertex buffers: 

• D3DLOCK_DISCARD  
• D3DLOCK_NO_DIRTY_UPDATE  
• D3DLOCK_NO_SYSLOCK  
• D3DLOCK_READONLY  
• D3DLOCK_NOOVERWRITE 

Refer back to the section on vertex buffer if you have forgotten the benefits these flags can provide. 
Once we have our index buffer, we can lock it as follows. 
 
USHORT *pIndex; 
pIndexBuffer->Lock (0, sizeof(USHORT) * m_nIndexCount, (void**)&pIndex, 0); 

  
Provided the lock is successful, we can use the returned pointer to place values into our index buffer. 
 
*pIndex++ = 0; 
*pIndex++ = 1; 
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Once we have finished placing the values into the index buffer, we unlock it. 
 
pIndex->Unlock(); 
 
 

3.3.2 DrawIndexedPrimitive 

Rendering indexed primitives is a simple affair. First, we attach the vertex buffer to stream 0 as we did 
before. Then we need to inform the device about the index buffer we wish to use. The IDirect3DDevice9 
interface has a method called SetIndices that allows you to pass in an interface to an index buffer: 
 
HRESULT SetIndices( IDirect3DIndexBuffer9 *pIndexData ); 
 
As with all device state changes, these buffers will remain active until they are changed. This means we 
can set the vertex buffer, and set the index buffer and they will remain the current index and vertex 
buffers used for rendering until they are unset.  
 
Finally, we call the rendering function IDirect3DDevice9::DrawIndexedPrimitive: 
 
HRESULT DrawIndexedPrimitive 
(       
    D3DPRIMITIVETYPE Type, 
    INT BaseVertexIndex, 
    UINT MinIndex, 
    UINT NumVertices, 
    UINT StartIndex, 
    UINT PrimitiveCount 
); 
 
We will examine the parameters slightly out of order as it should make the concepts easier to 
understand.  
 
D3DPRIMTIVETYPE Type 
This tells the device how the indexed primitives are arranged. In this case, indices define the triangles, 
so the vertices can be stored in an arbitrary order so long as the indices reference them correctly given 
the specified primitive type. The possible parameters here can be D3DPT_POINTS, 
D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP, or 
D3DPT_TRIANGLEFAN.  
 
UINT StartIndex 
This value describes the first index in the currently set index buffer that we want to start rendering with. 
For example, if we had 100 indices and a StartIndex of 30, only the last 70 indices in the index buffer 
would be used. 
 
UINT PrimitiveCount 
This informs the driver how many primitives you wish to render. There must be enough indices in the 
index buffer to fulfill this request. For example, if we were rendering using a 
D3DPT_TRIANGLESTRIP primitive type and we wanted to render 100 triangles, there would need to 
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be 102 indices in the index buffer. If we were using a D3DPT_TRIANGLELIST primitive type, there 
would need to be 300 indices in the index buffer. If you have specified a StartIndex value that is non-
zero, then there must be enough indices in the array from the specified offset in the index buffer to the 
end of the buffer to fulfill the primitive count request. 
 
INT BaseVertexIndex 
This allows you to specify a value that will be added to all index values before they are used to index 
into the vertex buffer. If we specified a base vertex index value of 1000, and our index buffer has three 
indices in it with the values (6, 7, and 8), the driver would add 1000 to each index and fetch vertices 
1006, 1007, and 1008. This allows you to use the same index values and map them to different areas of a 
vertex buffer. It also solves the problem discussed earlier regarding 16- and 32-bit index values since 
you can now use this value to offset beyond the 65,535 limitation imposed by 16-bit indices. 
 
UINT MinIndex 
This is the index of the first vertex used in the call. The BaseVertexIndex value will be added to this 
value when rendering so this does not need to be taken into account at this time. If we have a three-
element index buffer consisting of indices (20, 21, and 22) and we had a BaseVertexIndex value of 200, 
we would specify a MinIndex of 20. When transforming these vertices, the device will add the 
BaseVertexIndex value to the MinIndex value such that it knows the minimum vertex used in the call is 
actually 220. 
 
UINT NumVertices 
This is the number of vertices in the vertex buffer used in this call. Let us say for example that we have 
an index buffer (10,11,12,13,14,15,16,17,18). Let us also say that we have set a BaseVertexIndex value 
of 100 and we have a StartIndex value of 3. This is how it looks: 
  
Index Buffer        = 10,11,12,   13,14,15,    16,17,18 
StartIndex            = 3 
BaseVertexIndex = 100 
MinIndex             = 13 
NumVertices        = 6 
 
The StartIndex value 3 means that the first three indices are skipped over and are not used in this call. 
The section of our index that will be used is: 
 
IndexBuffer         = 13,14,15,   16,17,18 
 
BaseVertexIndex will be added to the indices so the device will use vertices: 
 
VerticesUsed      =  113,114,115,   116,117, 118 
 
Because we are skipping the first 3 indices, the minimum vertex index is 13 because this is the lowest 
vertex index used in our index buffer. When rendering, the device will add the BaseVertexIndex value to 
the MinIndex value and it knows that vertex 113 is the first vertex used. 
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Finally, we render two triangles from the remaining six vertices in the buffer. This creates triangle 1 
from vertices 113,114,115 and triangle 2 from vertices 116,117, 118. 
 
It is sometimes initially difficult to understand the need for MinIndex and NumVertices when it would 
seem that the primitive count should ultimately describe how many vertices we are using. But this is not 
strictly true because in our examples we have used vertices stored consecutively in our vertex buffer. 
However you might have an index buffer with one triangle using the indices (0, 9, 350). In this instance, 
we would have to set the MinIndex to 0 and the number of vertices used to 350.  
 
When using a hardware vertex-processing device, the MinIndex and NumVertices parameters are 
ignored. This is because the GPU has its own vertex cache, allowing it to very efficiently grab vertices 
when they are needed and store them in this memory. When we are using a software vertex-processing 
device however, the code can transform the vertices much quicker if it transforms a block of vertices in 
advance. This is why we need to pass in the MinIndex and NumVertices parameters. It processes the 
block of vertices in this range in one pass before it uses them for rendering.  
 
This brings up an important optimization point. If, as in the above example, we had an index buffer with 
indices (0, 9, 350) the software transformation engine would have to transform all 350 vertices in 
advance even though we are only using three of them. This is why it is crucial to store vertices in the 
vertex buffer in an ordered fashion. They should be grouped such that a single mesh’s vertices are all in 
one section, another mesh in another section and so on. Although this is not as critical on a hardware 
vertex-processing  device, it is still important to store vertices in the vertex buffer in a localized manner 
so that the GPU vertex cache is used to its maximum potential. The vertex cache has very limited 
storage space so you should try to organize your indices in such a way that all triangles that share a 
vertex are stored together in the index buffer. 
 
In our lab projects for this lesson, most of these parameters are simplified by the fact we are rendering 
using the entire contents of the index buffer and are not using a BaseVertexIndex value. Both 
BaseVertexIndex and StartIndex can be set to zero. 
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3.3.3 DrawIndexedPrimitiveUP 

It is worth mentioning that we do not have to use index buffers to use indexed rendering. In Chapter 2 
we used the DrawPrimitiveUP function to render vertices using application managed arrays rather than 
vertex buffers. Similarly (although we will not use it in the course), there is a function in the 
IDirect3DDevice9 interface called DrawIndexedPrimitiveUP. It allows you to pass user defined pointers 
to vertices along with an array of indices stored in normal application memory. It works just like the 
DrawIndexedPrimitive we studied in the last section so you should have no trouble understanding it 
should you choose to experiment with it. 
 
HRESULT DrawIndexedPrimitiveUP 
(       
    D3DPRIMITIVETYPE PrimitiveType, 
    UINT MinVertexIndex, 
    UINT NumVertexIndices, 
    UINT PrimitiveCount, 
    const void *pIndexData, 
    D3DFORMAT IndexDataFormat, 
    CONST void *pVertexStreamZeroData, 
    UINT VertexStreamZeroStride 
); 
 
 

3.3.4 Indexed Triangle Strips 

It is now time to examine some geometry that is a little more challenging than the cubes we have been 
using to date. In Lab Project 3.2 we are going to build and render a terrain (an outdoor landscape) using 
vertex and index buffers. The terrain will be rendered using indexed triangle strips. If you are unfamiliar 
with terrains, quad grids, and height maps, this would be a good time to open your workbook and read 
the first few pages of discussion for Lab Project 3.2. This will give you some foundation as to how we 
will create a terrain and some important performance issues to consider. Once you have finished reading 
these pages, please continue with the next section in this text before beginning to examine any code.  
 
3D graphics cards often have a penchant for triangle strips (and especially for indexed triangles strips). 
They can typically process and render indexed triangle strips faster than any other primitive type. 
Certainly it would be preferable if we could store and render each terrain submesh as a single triangle 
strip using one call to DrawIndexedPrimitive. This will be much faster than rendering one row of quads 
at a time. Although, if you remember how strips work, you might be wondering how you could render 
an entire mesh with multiple rows of quads as a single strip. For example, rendering the first row of a 
strip would seem easy enough, but once we get to the end of the first row, how could we tell the device 
not to draw a connecting triangle between the first and second row, and then continue rendering the 
second row as normal? The answer is that you cannot; at least not quite in that way. But you can use 
something known as a degenerate triangle and this will help you accomplish that goal. 
 
Let us first look at how the vertices will be arranged in the vertex buffer. The following diagram shows 
the vertices in world space, with the origin of the coordinate system at the bottom left vertex. We are 
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looking down on the vertices from above with the increasing Z-axis going up the screen. In the diagram 
the vertices are arranged in 3 rows of 6 vertices (a 6x3 mesh if you like). In our application each mesh 
will be similar to this but will be arranged as 17 rows of 17 vertices. 
 

 
 
As we read in each row of the image, the vertices are arranged in rows stretching out from the origin 
along both the positive X- and Z-axes. The vertex buffer really is as simple as that. Each mesh vertex 
buffer will be a 17x17 pool of vertices arranged in rows. 
 
The index buffer is going to be a little more complicated. We want each group of four vertices to form a 
quad (2 triangles). In the above example, the middle row of vertices will be reused in both the first and 
second row of quads. This is where indices pay off. Without them, each row of quads would need its 
own duplicate vertices and that would significantly increase the terrain vertex count. 
The following image shows one way to connect the vertices into quads to create a piece of terrain. In the 
following diagram, each quad has its two triangles colored differently so that we can better see the 
triangle count and arrangement: 
 

 
You can see that vertex v8 is used in four separate quads (and specifically in six triangles). Because we 
are using indices we do not have to duplicate this vertex six times; we simply have to make sure that 
each triangle in the index buffer that uses it has its index. 
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We will now need to order the indices in the index buffer so that we create an indexed strip for 
rendering. Given what we already know about strips, it is easy to see how the first row of indices could 
be ordered. This is shown in the following image. The run of indices will start at the vertex v1 and move 
right along the bottom row. 
 

 
 
Recall that in the case of a triangle strip primitive type, the first three indices define the first triangle and 
every additional index will define a new triangle. The last two indices from the previous triangle are 
used along with the new index to define the next triangle.  
 
Vertex Buffer =  v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , v9 , v10 , v11 , v12 
 
Since indices are zero based, v1 = index[0] and v7 = index[6] and so on. 
 
Index Buffer   = 0 , 6 , 1 , 7 , 2 , 8 , 3 , 9 , 4 , 10 , 5 , 12 
 
So the first three indices will define the triangle (v1, v7, v2) and the fourth index will create triangle (v7, 
v2, v8). The fifth index will define triangle (v2, v8, v3) and the sixth index will define triangle (v8, v3, 
v9). These six indices have defined two quads (four triangles) of our terrain. The pattern continues for 
the rest of the row. The pattern here is that for each pair of rows, we add horizontally matched pairs (a 
vertex from each row). The bottom row of quads in the above diagram could have the indices built in 
code like so: 
 
for ( int a=0; a< NumberOfVerticesInRow; a++) 
{ 
 AddIndexToIndexBuffer ( a ); 
 AddIndexToIndexBuffer ( a + NumberOfVerticesInRow); 
} 
 
At the end of this loop the first row of quads would be complete. In the above code, a is the index of the 
vertex in the bottom row in the image and a+NumberOfVerticesInRow is the index of the vertex in the 
next row. 
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Of course we know that when we pass the array of indices as a strip, each triangle is supposed to be 
connected. This means that we cannot just get to the end of the current row and start the next row or the 
result would be a large triangle stretching right across the terrain: 
 

 
 
The final three indices (10, 5, and 11) in the first row describe triangle (v11, v6, v12). Remember that 
each new index added generates a new triangle using the last two indices from the previous triangle. So 
adding the index of vertex v7 (index 6) would do the following: 
 
Indices before vertex v7 has its index is added 
 
10 , 5 , 11 
 
Indices after v7 has its index is added 
 
5 , 11 , 6 
 
This result is the unwanted triangle stretching across the terrain. Things get worse when you note that 
we add two vertices from two rows at a time (the quad top and quad bottom vertices). So, if we then 
added the index to vertex v13, another unwanted triangle would be formed (the blue triangle in the 
image below). 
 
Indices after vertex v13 had its index added: 
 
11 , 6 , 12 
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To solve these problems we will start the second row from the opposite side so that the terrain strip is 
indexed using a snaking pattern. The first row has its triangles indexed from left to right, then the next 
row has its triangles index from right to left, then left to right, and so on. 
 
There are a few items to consider. First, we still need a way to move up to the next row without a 
triangle being rendered. Second, we recall that when we use strips, the device expects every odd triangle 
in the strip to have a counter clockwise winding order and every even triangle to have a clockwise 
winding order. If at any time an even triangle has a counter clockwise winding or if an odd triangle has a 
clockwise winding order, the device interprets this as a back facing triangle and culls it. So let us say 
that the last triangle in the first row was represented by indices to v11, v6 and v12. This is an odd 
triangle and is counter clockwise and therefore it is interpreted as a valid triangle facing the camera. We 
will want to start the next row where the first triangle would be constructed from indices to vertices v12, 
v18, and v11. 
 

 
 
While this looks like it should solve the problem, it actually does not. Let us examine why: 
 
That last triangle in the first row has indices to v11, v6, and v12. The next triangle we need is at the end 
of the second row made from indices to vertices v12, 18, and v11. But this is impossible because we add 
one index at a time and each new index creates an entirely new triangle.  
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So at the end of the first row, we have indices to vertices: 
 
(v11, v6, v12) 
 
Since v12 is the ideal starting index of our first row two triangle, we might try to add an index to v18 
next so that the index buffer looks like this: 
 
(v6, v12, v18) 
 
If you look at the diagram you will see that we have just created another triangle that we certainly do not 
want to render. So we need a way to move from triangle (v11, v6, v12) to (v12, v18, v11) without 
drawing intermediate triangles. 
 
 
Degenerate Triangles  

A degenerate triangle is a triangle that has no volume. It is invalid for rendering and is quickly rejected 
by the device. They represent the solution to the problems discussed in the last section. We will use 
degenerate triangles to move from one row to the next without having to draw inappropriate triangles. 
We do this by inserting one index in such a way that it creates three degenerate triangles. After that our 
index buffer will be in the right order to start ordering the next row.  
 
A classic example of a degenerate triangle is one where all of the indices reference the same vertex (or a 
vertex in the same position). The triangle in this case would be infinitely small and would be rejected by 
the pipeline. Another example would be when a triangle has two vertices that are the same. This means 
that there are only two unique vertex positions forming the triangle (essentially describing an infinitely 
thin line). Although we have primitive types that we can use to render lines, when we describe a triangle 
as a line in this way, it is rejected because it has no volume.  
 
We will use both of these types of degenerate triangles to aid us in moving from one row to the next. 
Without degenerate triangles we would not be able to render the submesh as a single strip using a single 
call to DrawIndexedPrimitive. Degenerate triangles like this are quickly rejected so they carry very little 
performance penalty, if any. We will insert an extra index at the start of each new row (except the first 
row), which will actually cause three degenerate triangles to be created.  Let us have a look how this 
works. 
 
The following diagram shows the final quad of the first row. The row of quads is indexed left to right by 
adding a vertex from each row. For example, we add indices for v4 and v10, then v5 and v11, followed 
by indices for v6 and v12. The final valid triangle on that row is made from indices using vertices v11, 
v6, and v12. 
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At this point we have reached the end of the row and can move up and start adding the pairs of vertices 
for the next row of quads (consisting of vertex pairs in rows 2 and 3). For example, v12 and v18 
followed by v11 and v17, and so on. However, before we start the second row, we add the first index 
twice. In our example, this means we add an extra index to vertex v12 before we start adding the indices 
for the second row. Remember that the index list almost works like a FIFO buffer. The last three indices 
added are used to render the current triangle. This changes the index buffer so that a new triangle is 
constructed as follows. 
 

 
 
Because the last triangle was (v11, v6, v12), adding an extra v12 at the start of the next row creates a 
triangle where two to of its indices reference the same vertex. This is rejected by the pipeline and it is 
not rendered. 
 
Now we can start constructing the second row. First we add the first index of the first vertex (v12). We 
now have a situation where the last three indices in the index buffer are now all the same. This creates 
another degenerate triangle as shown below. 
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It is now time to add the index to the second vertex from quad row two, which will be the top of the 
quad in row 3 (v18). This creates another degenerate triangle, since the last three indices now looks like 
this: 
 

 
At this point the whole thing has sorted itself out and we can carry on adding the vertices for the row as 
normal. Next we add an index to vertex v11 and we now have our first proper triangle for row 2. The 
last three vertices in the index buffer are now v12, v18, and v11. Adding an index to v17 creates the 
second triangle (v18, v11, v17) and so on until we reach the end of the row. 
 

 
 
Take some time to reread this section before continuing if you are still not sure how this works. Try 
getting some paper and a pencil and sketch it out for yourself. 
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In terms of writing code, this is all very simple. For every row but the first, we add its first vertex index 
twice instead of just once. This will generate the three degenerate triangles and allow us to shuffle the 
indices in such a way that we can move to the next row without error. 

 

Conclusion 

We have just studied some of the most important aspects of 3D graphics programming with DirectX. 
We learned how to render using vertex buffers as well as indexed primitives. We learned about 
efficiently creating device resources and proper use of memory pools. We also learned how to index and 
render rows of quads as a single triangle strip using degenerate triangles. And we learned how to 
efficiently lock and fill dynamic buffers. 
 
There were a few functions that we did not cover in our second demo relating to the way the camera 
works. These functions will be examined in great detail in the next chapter.  
 
You can find a wealth of information on vertex buffers and index buffers and how to use them 
efficiently at the nVidia website www.nvidia.com. 
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Chapter Four: 
 

 
Camera Systems 
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Introduction  

 
In Lab Project 3.2 we concentrated on the rendering code for a terrain demo.  But that application also 
allowed the player to maneuver around the terrain in one of three camera modes: first person, third 
person, or spacecraft. This allowed us to pitch, roll, and yaw the camera as well as strafe and lean it from 
side to side. We included a limited gravity system that forced the camera fall to the ground when it 
found there was no ground underneath it, and a simple friction model that allowed for smooth movement 
and direction changes over the terrain. In this chapter we will discuss that camera system, as well as how 
to create your own camera management system. By the time we are finished you should have a thorough 
understanding of how to work with the view matrix at a low level and you will be able to create almost 
any camera system you need for your games.  
 
 

4.1 The View Matrix 

In Chapter 1 we learned to think of a camera in terms of an inverse transformation that repositions scene 
geometry in such a way that the relationship with the origin of the world coordinate system reflects the 
relationship the geometry would have with the local position and orientation of the camera. 
Repositioning the geometry in this way means that when we render the scene, we are essentially 
rendering it from the world origin as if we were looking through the lens of a virtual camera positioned 
there. To accomplish this, we need to apply the opposite rotations and translations we applied to our 
camera to every vertex in our world.  
 
This is intuitive when we think of what is occurring. We know that we can take any vertex P from 
model space and produce a new vertex P’ in world space by applying a series of transformations using 
matrix multiplication. The relationship between these two vertices is represented as: 
 

P’ = P * Mworld  
 
Note that the algebraic inverse of this equation describes the reverse relationship. To solve for P:  
 

(1 / Mworld ) P’ =   P  * (1 / Mworld ) Mworld   
 

P = Mworld
-1  P’ 

 
Mworld

-1 is the inverse of matrix Mworld. When we multiply the world space point P’ by this matrix, we 
get back the original local space point P as expected. So we can say that Mworld

-1 undoes the effect that 
Mworld had on P. Again this makes sense since we used one to cancel out the other in the equation above 
so that P was left alone on one side of the equation. 
 
More generally, if matrix M holds a series of equations that transform points from coordinate space A 
into coordinate space B, then its inverse M-1 will hold equations that reverse the relationship -- taking 
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points from space B into space A. If space A is the local coordinate space of entity X, then any points 
that exist in space B can enter into local space A simply by multiplying them by X’s inverse matrix. 
 
This is the fundamental idea behind any camera system. When we render a scene, we wish to do it with 
respect to the camera through which the scene is viewed. The goal then is to transform every vertex in 
the world into the local space of the camera. If we build a world matrix for the camera based on user 
input, that matrix tells us where the camera is in the world and how it is oriented with respect to the 
world axes. To get some other object in the world into the local space of the camera for the purposes of 
rendering, all we need to do is multiply its world space vertices by the inverse of that camera’s world 
matrix (which we call the view matrix).  
 
An alternative way of thinking about it is that we are actually undoing the effect of moving the camera 
around and bringing it back to the world origin such that it looks down +Z (just as it does in its own 
local space given a left-handed coordinate system). As expected then, any matrix multiplied by its 
inverse returns the identity matrix: 

I = M * M-1 
 
The rows and columns of an identity matrix perfectly describe the primary 3D coordinate system. Thus, 
it is as though we never moved or rotated the camera at all.  
 
Creating a virtual camera is usually done by writing a class that exposes methods such as 
Camera::MoveForward and Camera::PitchUp and Camera::Strafe, etc. The camera class has the job of 
maintaining the view matrix (the camera local space matrix), and rebuilding it to comply with calls to its 
methods. This class need not only be a view matrix manager. It is often useful to let it manage the 
projection matrix as well. This way we can expose functions to change the field of view and set the near 
and far clip planes. 
 
Before we start writing any code, let us first examine in more detail some of the view matrix properties 
introduced in Chapter 1. We want to understand exactly why inverse matrices look and work the way 
they do. In particular, we want to see why storing the right, up, and look vectors of the virtual camera in 
the columns of the view matrix -- rather than the rows as we do in a world matrix -- transforms vertices 
from world space to view space. We will also examine why the fourth row of the view matrix has to be 
calculated using three dot products instead of simply negating the world space position vectors of the 
camera. 

 
In Chapter 1 we learned that a standard world matrix contains the orientations of an object’s local 
coordinate system as well as the current position of that system origin in the world coordinate space: 
 
World Matrix 
Right Vector.x Right Vector.y Right Vector.z 0 
Up Vector.x Up Vector.y Up Vector.z 0 
Look Vector.x Look Vector.y Look Vector.z 0 
Position.x Position.y Position.z 1 
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The following table shows that the view matrix contains three vectors describing the inverted local 
coordinate system of the camera and a vector in the fourth row which contains an inverse translation 
based on the camera position. This translation will move vertices in such a way that their resulting 
positions will share a relationship with the world origin that previously reflected their relationship with 
the camera (world) position. 
 
View Matrix 
Right Vector.x Up Vector.x Look Vector.x 0 
Right Vector.y Up Vector.y Look Vector.y 0 
Right Vector.z Up Vector.z Look Vector.z 0 
- (Position•RightVector) - (Position•UpVector) - (Position• LookVector) 1 
 
The Right vector is stored in the first column of the matrix and describes the orientation of the camera 
local space X axis. The second column contains the camera Up vector which describes the orientation of 
the camera local space Y axis. Finally, the Look vector describes the orientation of the camera local 
space Z axis (Fig 4.1).  
 

 
 

Figure 4.1 
 
The vectors in the view matrix describe the camera local coordinate system axes along with relative 
positional information that we will discuss momentarily. If we take a view matrix and invert it, we 
would get back a world matrix describing the cameras location and orientation in the world (Fig 4.2). 
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Figure 4.2 
 
 
Fig 4.2 shows how the camera object might be drawn as a mesh using the inverse of the view matrix. 
Remember that the view matrix is already inverted, so inverting again it results in a standard world 
matrix. If we wanted to draw the camera as a mesh object, this is the matrix we would use. 
 
We know that to draw the sphere, we want its coordinates to be relative to the camera local system. As 
discussed, to get an object A into the local space of another object B, we need only multiply all of A’s 
vertices by the inverse of B’s world matrix. Since B in this case is our camera, we need only invert its 
world matrix and we are all set. This inversion produces what we commonly refer to as the view matrix. 
Fig 4.3 shows the sphere object after it has been transformed into view space. Notice that the camera is 
at the system origin and that the sphere is still directly in front of the camera, as it was in world space. 
The relationship is perfectly maintained when the sphere moves into camera local space. 
 
 

 
 

Figure 4.3 
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4.1.1 Vectors, Matrices, and Planes Revisited 

In order to understand why multiplying a vector with a matrix transforms that vector from one virtual 
space to another, we revisit the subject of vectors and matrices and discuss another way of thinking 
about them -- which you may or may not already be doing at this point. For the purposes of this 
discussion when we refer to a vector, we are talking about a position vector, although this concept 
applies more generally. 
 

Note: To be clear up front, we are going to take a very informal approach to the mathematics in this 
chapter -- as we have tried to do all along. This will make the concepts as reader-friendly as possible for 
those who are not so mathematically inclined. We hope that those of you who are schooled 
mathematicians forgive the liberties we take with some of the subject matter. If you require a more 
precise and formal understanding of vectors, vector spaces, subspaces, etc. a linear algebra course would 
be required.  

 
Although we discuss many different spaces (model space, world space, and view space) we are, in a 
sense, ultimately dealing with a single mathematical space. In this space we can define locations using a 
coordinate system (left handed in our case) where the X axis runs from left to right, the Y axis runs from 
bottom to top and the Z axis runs from back to front. This is the same coordinate system used to 
characterize our data mathematically whether we are said to be in model space, view space, or world 
space. All of these spaces are essentially subsets of the single coordinate space, and in each, 3D vectors 
are used represent a location. For example, a vector of (10, 20, 30) represents a position that is offset 
from the system origin along the X axis a distance of 10, offset along the Y axis a distance of 20 and 
offset along the Z axis at a distance of 30.  
 
A vector belongs to a particular subspace based on our selection of system origin and orientation. When 
we are talking about a model space vector for example, we are using the vector as a position relative to 
the center of the mesh. When we transform the mesh vertices into world space, all we have really done 
is simply moved the vertex to a new position in the same mathematical coordinate system. Now the 
vertices of the mesh are not centered about the origin of the local coordinate system anymore (although 
they still could be) and are instead centered about some other location in the world that is assumed to be 
the object’s world space position. In world space, the origin of the coordinate system is now assumed to 
be the origin of the entire world and all vectors are now defined relative to it. In a sense, the vectors 
have simply had their positions altered. When we apply the view space transformation to the vertices of 
an object to take it from world space to view space, all we have done is once again reposition the 
vertices in the same mathematical space such that the cameras position is assumed to be at the origin of 
the system. All vertex positions have been recharacterized relative to this new origin. Therefore, all 
these transformations are doing, however complex they may seem at first, is moving around some 
collection of vertices within the same mathematical 3D representation. With each transformation, the 
origin is assigned a new meaning and the positions reflect new distance values relative to that origin. 
This is a very important point.  
 
Up until now, we have thought of vectors in one of two ways. We have thought of a vector as a set of 
offsets describing a position that is some distance away from the origin of the mathematical space along 
the X, Y, and Z axes by the amounts described in each vector component. We have also thought of a 
vector as describing a direction and magnitude from the origin of that mathematical space. That is, 
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traveling in the direction of the vector from the origin of the coordinate system for the length of the 
vector will bring us to that same location in the 3D world. Whether we think of a vector as a collection 
of offsets or as a direction and a magnitude they both still describe the same location in 3D space.  
 
There is yet another way that we can think of vectors which is especially useful when trying to 
understand transformations. Hopefully this will allow us to perceive transformation matrices in a much 
more intuitive way.  
 
For the time being, we will forget all about the concept of world, view, and model 
space and simply think of a more general mathematical space. We will call it 3-space 
because it has three dimensions.  We will use a coordinate system in 3-space to find 
our way around. In this system, the x axis will run from right to left, the Y axis from 
bottom to top and the Z axis from back to front. These system properties have been 
shared by all of our relative spaces so far: model, view and world.  
 
We can see that the columns of the upper 3x3 portion of the matrix on the right contain unit vectors. The 
first column contains a vector that describes the orientation of the 3-space X axis. The second column 
contains a unit length vector describing the orientation of the 3-space Y axis. Finally, the third column 
contains a vector describing the 3-space Z axis. When we multiply a vector with a matrix, we know that 
we perform a dot product between the input vector and each column of the matrix. The resulting vector’s 
X component is the result of the dot product between the input vector and the X column of the matrix. 
The Y component of the resulting vector is the result of performing a dot product between the input 
vector and the second column of the matrix. And of course, the resulting vector’s Z component is 
calculated by performing a dot product between the input vector and the third column of the matrix. 
Now, it may not be obvious at this point why multiplying the input vector with these three columns 
would transform it from one space to another. But let us start thinking about the unit length vectors 
stored in the columns of a transformation matrix in another way. 
 
In the lecture for Chapter 1 we discussed the plane equation and how it could be used to classify a point 
with respect to a plane. The common form of the plane equation is: 
 

Ax+By+Cz+D = 0 
 
If the result is zero, the point is said to lie on the plane. Otherwise the result is some distance from the 
point to the plane where a positive value means the point is in front of the plane and a negative value 
means the point is behind the plane. 
 
x, y, and z in this equation are the components of the point P that we are classifying. A, B, and C are the 
3-space components of the plane normal. Finally, D describes the plane’s distance from the origin. That 
is, this is the distance you would have to travel from the origin of the coordinate system, following the 
direction of the plane normal until you intersected the plane. When a plane passes through the system 
origin then D = 0. As such, only the normal will be needed to represent a plane of this type and the 
equation can be simplified: 
 

Ax+By+Cz = 0 

1
0100
0010
0001
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This calculation should look familiar since it is just a dot product between the vector and the plane 
normal.  
 
We noted that the upper 3x3 section of the matrix above contained unit vectors. We can now think of 
each of these three vectors as being normals for three planes that pass through the system origin. 
Remembering that plane normals are always perpendicular to the plane, we can see that in the case of an 
identity matrix, the X column of the matrix represents a plane normal of (1, 0, 0). This describes a plane 
that passes through the origin of the coordinate space -- the YZ plane. The second column represents the 
normal of the 3-space XZ plane that passes through the origin. Finally, the third column represents a 
normal that describes the 3-space XY plane, once again that passes through the origin.  
 
In Fig 4.4 we clearly see the three planes described by the 3x3 identity matrix. As these planes have zero 
distances (D = 0), they pass through the origin of the coordinate system.  
 

 
 

Figure 4.4 
 

When we multiply a vector by a matrix, we can see that each dot product is simply classifying the input 
vector against each of these three planes. When we perform the dot product between the input vector and 
the X column of the matrix, we are calculating the distance from the input vector to the YZ plane. This 
distance becomes the X component of the resulting vector. When we multiply the input vector with the 
second column of the matrix, we are classifying the point against the XZ plane and the resulting distance 
becomes the Y component of the output vector. Finally, the dot product between the input vector and the 
third column calculates the distance from the input vector to the XY plane, which becomes the resulting 
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vector’s Z component. So we can think of the transformed 3D vector as being a collection of three 
distances that describe a location relative to the YZ, XZ and XY planes respectively.  
 
The vector (10,12,15) in Fig 4.4 describes a location that is a distance of 10 units from the YZ plane 
along the YZ plane normal, 12 units from the XZ plane along the XZ plane normal and 15 units from the 
XY plane along the XY plane normal. Now we see why an identity matrix creates an output vector 
identical to the input vector. If we define a vector as a set of distances relative to the world aligned 
planes and the identity matrix contains these same world planes, we get back these same distances in our 
vector components.  
 
To better understand this, let us break down the vector/matrix multiplication process so that we can see 
the vector being multiplied with each column individually. First, we will see an example of multiplying 
the input vector with the X column of the matrix. This produces a distance that is used as the X 
component in the resulting vector. Note that Fig 4.5 labels the first column of the matrix as being the 
Right vector. You are probably thinking that this is only true for an inverse matrix but that is not quite 
so. For example, a world matrix stores the object’s right vector in the first row rather than the column of 
the matrix as we have seen already, but the right vector of the coordinate system is always contained in 
the first column. This will become clear in a moment. 
 
Fig 4.5 shows how the X component of the 
resulting vector from a vector/matrix multiply is 
the result of classifying the input vector against 
the YZ plane. This distance is calculated by 
performing a dot product between the input 
vector and the YZ plane normal. Always 
remember that when we perform a dot product 
between a unit vector and a non-unit vector, we 
can think of the non-unit vector as the point in 
space and the unit vector as a normal describing 
a plane that passes through the origin. The dot 
product can be understood in terms of the plane 
equation in the instances when the plane 
distances are zero. You will find this quite a 
useful way of thinking about the dot product. 
 

                                                                                     Figure 4.5 
 
Fig 4.6 shows how the Y component of the resulting vector is calculated as the distance between the 
input vector and the XZ plane normal stored in the second column of the transformation matrix. 
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Figure 4.6 

 
Once again, we refer to the second column of the transformation matrix as the Up vector of the 
coordinate system for which the input vector is going to be redefined. This does not change the fact that 
the second row of a world matrix contains an object’s Up vector.  
 
 
Finally, Fig 4.7 shows the result of calculating the Z component of the transformed vector. It is the 
distance from the input vector to the XY plane along the XY plane normal. Note again that the matrix in 
this case is an identity matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 
 
Thinking of vectors as being a set of distances and matrices as containing a set of planes that pass 
through the origin of a coordinate system really does allow us to visualize transformations from one 
space to another in a more robust way. We now know that when we multiply a vector with a matrix we 
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are in fact classifying the vector against three planes to create a new vector. When we apply a rotation to 
the matrix, we are in fact rotating the Right, Up, and Look vectors in the columns of the matrix, which 
means, we are in fact rotating the planes themselves. When we have a rotated matrix such as this, 
multiplying it with the input vector -- which has its distances defined relative to the three world-aligned 
planes -- redefines the vector such that its distances are now relative to the rotated planes stored in the 
matrix. We will now go on to see exactly what this means by looking at the view space transformation. 
This will hopefully put all of the pieces into place. 
 
 
The View Space Planes 

We now know that an identity matrix contains three planes aligned with the 3-space X, Y, and Z axes. If 
our camera has been rotated, then its Right, Up, and Look vectors will no longer be aligned with the 
world coordinate axes and the planes stored in the view matrix must have rotated also. 
 
View Matrix 
Right Vector.x Up Vector.x Look Vector.x 0 
Right Vector.y Up Vector.y Look Vector.y 0 
Right Vector.z UpVector.z Look Vector.z 0 
- (Position•RightVector) - (Position•UpVector) - (Position• LookVector) 1 
 
Looking at the upper 3x3 section of the view matrix then, we can say that the first column of the view 
matrix contains the normal of the camera’s local YZ plane, the second column contains the normal of 
the camera’s local XZ plane and the third column represents the normal of the camera’s local XY plane. 
 
Let us consider a quick example. We start with a camera that is perfectly aligned with the world X, Y, 
and Z axes. We now want to rotate it left around the world Y axis by an angle of 45 degrees. A positive 
angle will always rotate an object clockwise about the rotation axis from the perspective of looking from 
the positive end of the axis towards the negative end of the axis -- referred to as ‘looking down the axis’. 
We can build a matrix that yaws the camera left by 45 degrees by creating a standard rotation matrix: 
 
D3DXMatrixRotationY(&mtxViewMatrix, D3DXToRadian(-45)); 

 
This call produces the following matrix: 
 
Rotation 
0.707107 0 0.707107 0 
0 1 0 0 
-0.707107 0 0.707107 0 
0 0 0 1 
 
Because we will wish to use this matrix as a view matrix, we do not need a matrix that will rotate an 
object left 45 degrees. Instead we need an inverted matrix that will rotate all of the vertices in our world 
right 45 degrees; this will create the appearance that our camera has rotated left. The above matrix is the 
camera’s world matrix. If we were rendering the camera as a mesh, this matrix would rotate the camera 



 

 248 

mesh left 45 degrees – as it would any other mesh (a matrix is a matrix – it has no particular affiliation 
with a specific object). Inverting a matrix consists of transposing (swapping the rows and the columns) 
the upper 3x3 portion of the matrix and adding an equation (discussed momentarily) to calculate the 
fourth row of the matrix. We note that the relationship between the inverse and the transpose does not 
hold true in all cases and in fact, some matrices are not invertible at all. But when we are dealing with 
orthogonal unit vectors as we are with our linear transformation matrices, this will always work. Again, 
we refer you to a more serious study of linear algebra for the precise rules and properties. 
 
For now our camera is assumed to have a position of (0,0,0) because the fourth row of our matrix is 
zeroed out. The inverted matrix is: 
 
D3DXMatrixInverse(&mtxViewMatrix, NULL, &mtxViewMatrix); 

 
Inverse Rotation 
0.707107 0 -0.707107 0 
0 1 0 0 
0.707107 0 0.707107 0 
0 0 0 1 
 
Inverting a matrix is not a cheap operation. Since all we are doing is negating the rotation angle, we 
could generate the same view matrix simply by flipping the sign of the angle passed into the function: 
 
D3DXMatrixRotationY(&mtxViewMatrix, D3DXToRadian(45)); 

 
We now pass a positive angle instead. The resulting rotation matrix will be the same as if we had passed 
in the negative angle above and then inverted the result. This is actually quite an important point, 
because we can apply rotations to the view matrix simply by building a rotation matrix and multiplying 
it with the current view matrix to achieve an additive rotation. The previous discussion had just taught 
us, that if we wanted to pitch a mesh 45 degrees upwards we would need to create an X axis rotation 
matrix that rotated the mesh –45 degrees about its X axis. You are reminded again that positive rotation 
angle values perform a clockwise rotation from the perspective of looking towards the negative end of 
the rotation axis from the positive end. 
 
D3DXMATRIX mtxViewMatrix , mtxRotationMatrix; 
pDevice->GetTransform(D3DTS_VIEW, &mtxViewMatrix); 
 
D3DXMatrixRotationX(&mtxRotationMatrix, D3DXToRadian(-45)); 
D3DXMatrixMultiply(&mtxViewMatrix, &mtxViewMatrix, &mtxRotationMatrix); 
 
pDevice->SetTransform(D3DTS_VIEW, &matViewMatrix); 

 
The above code will actually rotate the camera about its own local X axis (its right vector). Changing the 
order of the multiplication to… 
 
D3DXMatrixMultiply(&mtxViewMatrix, &mtxRotationMatrix, &mtxViewMatrix);  
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…would rotate the camera about the world’s X axis and not its own. We will see why this is the case in 
a moment.  
 
The above code is erroneous in that we wanted to pitch the camera up 45 degrees. Although we know 
that a negative angle should pitch the camera upwards, the rotation matrix has not been inverted but is 
being multiplied by the view matrix -- which is an inverse matrix. Therefore, we would actually achieve 
a rotation in the opposite direction and the above code would pitch the camera down 45 degrees. We can 
fix this by inverting the rotation matrix before we multiply it with the view matrix; this would rotate the 
camera in the direction we would expect and is consistent with the way a world matrix would be rotated. 
However, an inverse is an expensive operation and we know that if we invert a rotation matrix we get 
the same matrix as if we had created that matrix with a negated angle to begin with. It would seem then 
that in this case it would be much cheaper to build a rotation matrix with an opposite angle of rotation 
rather than generate it normally and then flip it. Below, we show two ways that we could rotate the 
camera upwards about its own X axis. 
 
Example 1: Rotate Camera upwards 45 degrees 
 
D3DXMatrixRotationX (&mtxRotationMatrix, D3DXToRadian (-45)); 
D3DXMatrixInverse   (&mtxRotationMatrix, NULL, &mtxRotationMatrix); 
D3DXMatrixMultiply  (&mtxViewMatrix, &mtxViewMatrix, &mtxRotationMatrix); 

 
This example rotates the camera as we would expect in keeping with our rotation rules. A negative X 
axis rotation should rotate an object upwards about its X axis, but as we are dealing with the view matrix 
-- which is inverted -- this means we actually want to build a matrix that instead rotates the world down. 
Because the view matrix is inverted, we also invert the rotation matrix. This will change the rotation 
matrix such that it now contains a positive rotation and not a negative rotation. In other words, it will 
rotate vertices downwards, which is what we want. Finally we multiply it with the view matrix and we 
have a new view matrix that now rotates vertices down 45 degrees. This gives the illusion that the 
camera has been rotated up 45 degrees. Therefore, the inversion of the rotation matrix allows us to rotate 
the camera using the same (sign) angle of rotation as we would use for normal world objects.  
 
Example 2: Rotate Camera upwards 45 degrees 
 
D3DXMatrixRotationX (&mtxRotationMatrix, D3DXToRadian(45)); 
D3DXMatrixMultiply  (&mtxViewMatrix, &mtxViewMatrix, &mtxRotationMatrix ) 

 
In this second example we avoid the overhead of the inversion at the cost of inconsistency when 
specifying rotation angles to rotate the camera. Our code now has to know that angles must be negated. 
A slight hack, but faster certainly.  
 
So assuming that we have a view matrix that has been rotated to some degree, the Look, Up and Right 
vectors have been rotated as well. They are pointing in new directions whilst still remaining orthogonal 
to each other. As these vectors can also be perceived as plane normals, the planes have also been rotated 
in the same way. Whichever method we use to rotate the camera left 45 degrees about its Y axis, would 
result in the following view matrix: 
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Inverse Rotation 
Right Vector                      Up Vector      LookVector 
0.707107 0 -0.707107 0 
0 1 0 0 
0.707107 0 0.707107 0 
0 0 0 1 
 
This matrix describes the camera as being at the origin of world space looking halfway between the 
negative X axis and the positive Z axis. Let us now examine the transformation of a vector into view 
space using this view matrix. 
 
 
The View Space Transformation (Under the Microscope) 

Fig 4.8 depicts a two-dimensional scene viewed top-down. It contains a virtual camera described by the 
example view matrix above and a world space vector (-2, 0, 10). This specific top-down view was 
chosen because the camera has an Up vector that is perfectly aligned with the world Y axis (0,1,0) and 
our world space vector Y component will not be altered by the transformation. Therefore, we can 
simplify this transformation in the diagram and think of it in terms of only the Right vector and the Look 
vector of the view matrix.  

 
Figure 4.8 

 
The black horizontal line is the world space X axis (the world space XY plane) and the vertical black 
line is the world space Z axis (the world YZ plane). Because we are looking down on the world, we 
cannot see the Y axis. In the circular inset at the top left of the diagram you can see that the orientation 
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of the virtual camera is a 45 degree rotation to the left about the Y axis. The position of the camera is 
assumed to be at the origin of the world space coordinate system in this example. The two red arrows 
show the orientation of the Look and Right vectors stored in the matrix and the blue and green lines 
show the planes that these two vectors describe. For example, the Look vector, when treated as a plane 
normal, describes the blue plane (the camera local XY plane). The Right vector describes the plane 
shown as the green line (the camera local YZ plane). As we can see, the camera space XY and YZ 
planes are misaligned from the world space XY and YZ planes by 45 degrees. 
 
Now we get to the really important part. We know that when we have a vector such as the one shown in 
the diagram, it is defined as a collection of distances from the world space planes. The world space 
position seen above (-2, 0, 10) simply means that this vector is –2 units from the world YZ plane, a 
distance of 0 units from the world XZ plane and a distance of 10 units from the world XY plane. When 
we multiply our world space vector with the view matrix, we are actually recalculating the three 
distances such that they are now relative to the planes stored in the view matrix instead of the world 
space planes. When we multiply our vector with the first column of the matrix we are classifying the 
point against the camera local YZ plane. You can see that this returns a distance 5.6. The dot product 
between the input vector and the Y column of the matrix simply leaves the input value (0) unchanged 
because the second column of our view matrix in this example is a Y identity column. The Z column 
result -- the distance from the vector to the camera local XY plane -- is 8.6. Therefore, the vector has 
been transformed from world space vector (-2, 0, 10) to a new view space vector (5.6, 0.0 ,8.6).  
 
Now look at Fig 4.8 and rotate your head left 45 degrees so that the camera XY plane looks like the 
world Z axis. You will see what relationship this vector will have with the origin -- which will be 
assumed to be the camera position. Now, slowly rotate your head back upright and imagine that the 
camera planes and the world space point are rotating with you. The camera planes should now be 
aligned with the world planes. At this point we see that the new view space point describes the location 
of the world space point having been rotated 45 degrees to the right. Remember, the camera is imagined 
to be rotated left so we move the vector right. This is an intuitive way to think of transformations. We 
are simply classifying the input point against the planes. This has the same effect as taking those planes 
and rotating them until they align with the world planes and rotating the point along with them. As such, 
we treat it like any other point in that the distances are assumed to be offset from the world space planes. 
This creates the rotation shown in Fig 4.9. 
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Figure 4.9 

 
We classify the input vector against the camera local planes and then use the returned vector to describe 
a position relative to the world aligned planes. The result is the perceived rotation. 
 
 
The Inverse Translation Vector 

If the translation vector in the view matrix is zeroed out as in the above example then this completes the 
transformation from world space to view space. Otherwise, we noted that the fourth row of the inverse 
matrix was calculated by performing three dot products between the world space camera position and 
the respective vector axis stored in that column. We have highlighted the inverse translation section of 
the view matrix below. This will only be zeroed out when the camera is positioned at the origin of world 
space. 
 
View Matrix 
Right Vector.x Up Vector.x Look Vector.x 0 
Right Vector.y Up Vector.y Look Vector.y 0 
Right Vector.z UpVector.z Look Vector.z 0 
- (Position•RightVector) - (Position•UpVector) - (Position• LookVector) 1 
 
We learned in Chapter 1 (before we started using matrices) that all we had to do was subtract the camera 
position from the input vector and then perform the rotation. This rotated the input vector about the 
camera position instead of the world space origin. However, when using concatenated matrices we do 
not have the luxury of choosing the order in which our rotation and translation is done. The rotation is 
performed first (per vector component that is). If we were to simply store the negated camera position in 
the translation vector of the matrix, the results would be incorrect. Instead we need to know how much 
to subtract from the input vector after it has been rotated about the world space origin such that it sits in 
the corrected position in view space. 
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Figure 4.10 
 
Fig 4.10 depicts a top down view of world space with a camera rotated 45 degrees left about the Y axis. 
The Y axis in this diagram cannot be seen because we are looking directly down it onto the world. This 
time the camera position is not at the origin but is at world position (-3.5, 0, 11.5). We see two example 
world space vectors shown as the red spheres in the image. If we were not using matrices, we would 
simply subtract the camera position from each vector such that the virtual camera is moved back to the 
origin. We would then perform the three dot products with the world space position vectors and each of 
the camera local planes as we did above, which effectively rotates the camera local planes right 45 
degrees (along with the world space vectors) such that they are aligned with the world space planes. This 
means that the vertices of a mesh would be rotated 45 degrees right about the camera position. The 
problem we face now is that the rotation happens before the translation when using matrices. So we need 
to know how much to subtract from the input vector after it has been rotated into its new position.  
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Imagine that we subtracted the camera position from each of the two world vectors. You should be able 
to see how the position of these vectors would indeed share a relationship with the origin that they had 
previously shared with the camera position. We know that before the translation vector gets added to the 
input vector, the input vector is classified against the camera local planes. In this example it would 
create a new vector that has been rotated 45 degrees right about the origin from its previous position. 
Now imagine that the two world space vectors shown above had been rotated about the origin 45 
degrees right but had not yet had the translation vector applied. You could say at this point that the 

vectors are not in world space or view 
space but rather some intermediate space. 
The position of these intermediate space 
vectors is seen in Fig 4.11. 
 
We can see that if we subtracted the 
camera world space position (-3.5, 0, 
11.5) from these intermediate space 
vectors, the resulting vectors would not 
have a relationship with the origin that 
they had previously had with the camera. 
This is because we can think of the 
intermediate space vectors and the camera 
world space position vector as being in 
two different spaces at this point. No 
immediately meaningful relationship 
exists yet between them. Therefore, we 
need to know how much to subtract the 
vectors in intermediate space, not in world 
space. 
 
 

                                            
 

Figure 4.11 
 
The answer is surprisingly simple. If we look at Fig 4.10 and Fig 4.11 and imagine that instead of just 
rotating the vectors 45 degrees by classifying them against the camera local planes, we also rotated the 
actual camera position itself, once again by classifying the camera position against the local planes 
stored in the view matrix, this rotates not only the input vector into the new intermediate rotated 
position, but also rotates the camera position itself 45 degrees about the origin into intermediate space. 
Fig 4.11 shows that in this example, the intermediate camera position vector would be (5.65, 0, 10.60). 
Now that the camera position and the vector we are transforming are in intermediate space and have had 
their relationships maintained, we can simply subtract the distances stored in this new camera position 
from each of the intermediate space vectors and get them into true view space.  
 
If we look at the fourth row of the view matrix, we see that it contains three dot products. When we 
think about how the input vector is multiplied against the first three columns of the matrix to classify the 
input vector against the three matrix planes, we can see that exactly the same thing is happening here. 
Only now we are classifying the camera position against the camera local planes instead of the input 
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vector. Therefore, the fourth row is like an inline vector/matrix multiply -- a vector/matrix multiply 
within a matrix. So then all that is happening here is that we are classifying the camera position itself 
against the camera local planes. Thus in our example, the position is rotating 45 degrees to the right. We 
can see in the first of the two previous diagrams that the fourth row of the first column of the matrix 
calculated the distance from the camera position to the cameras local ZY plane (x = 5.65). The camera is 
not pitched at all so the Y component of the transformed vector will remain zero (y = 0). Finally, when 
we multiply the camera position against the Look vector in the third column of the fourth row, we are 
calculating the distance from the camera position to the camera local XY plane (z = 10.60). The image 
above shows what the new rotated camera position would look like if it actually existed as a physical 
object. At this point we can simply subtract this new camera position vector from the input vector. We 
note that the fourth row of the matrix is added and not subtracted from the resulting vector component 
currently being calculated. So we negate the value and it will now subtract the adjusted camera position. 
Now the input vector is successfully transformed into view space. We can see in Fig 4.10 that when we 
add the intermediate camera position (-5.65, 0, -10.60) to the intermediate space vectors, we effectively 
move the intermediate space vectors into their final view space positions and the camera is then situated 
at the origin. Of course, all of this is actually done per-component of the resulting vector, so adding the 
fourth row as a separate stage is not what happens. Instead we rotate and inverse translate each 
component one at a time to get the same results. 

 

4.2 Viewports 

In DirectX Graphics, we have the ability to limit scene rendering to only a portion of the frame buffer. 
We use the D3DVIEWPORT9 structure to inform the device of the rectangular region of the frame 
buffer to which rendering should be limited. The D3DVIEWPORT9 structure is shown below. 
 
typedef struct _D3DVIEWPORT9  
{ 
    DWORD X; 
    DWORD Y; 
    DWORD Width; 
    DWORD Height; 
    float MinZ; 
    float MaxZ; 
} D3DVIEWPORT9; 
 
DWORD X 
DWORD Y 
These members define the coordinate of the top left corner of the viewport rectangle in frame buffer 
pixel coordinates. If you set both of these to zero, then the top left corner of the viewport will match the 
top left corner of the frame buffer. 
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DWORD WIDTH 
DWORD HEIGHT 
These values define the width and height of the viewport in frame buffer pixel coordinates. The 
viewport will be a rectangular region on the frame buffer with the coordinates (X, Y, X+Width, 
Y+Height). 
 
Float MinZ 
Float MaxZ 
These values can be used to remap the Z-Buffer depth values calculated by the projection matrix and the 
divide by W into another range of values. Usually you will set these to 0.0 and 1.0 so that the depth 
values calculated from the projection matrix and the divide by W are passed straight through to the 
rasterizer. 
 
 

4.2.1 The Viewport Matrix 

In Chapter 1 we learned that after the divide by W, our vertex coordinates are in 2D projection space 
coordinates in the range [–1, 1] in the X and Y dimensions. In our software pipeline demo we used the 
following formula to map these coordinates into screen space coordinates: 
 
ScreenX =  projVertex.x * ScreenWidth  / 2  + ScreenWidth  / 2 
ScreenY = -projVertex.y * ScreenHeight / 2  + ScreenHeight / 2 
 
This works correctly when we are assuming that the frame buffer is taking up the entire screen (or the 
entire window). When rendering to a viewport however, DirectX Graphics also has to take into account 
the viewport origin and its width and height so that all of the projection space coordinates in the –1 to +1 
range get mapped to coordinates that fall only within the viewport rectangle. 
 
ScreenX =   projVertex->x *  ViewportWidth / 2  + ViewportX  + ViewportWidth  / 2; 
ScreenY =  -projVertex->y *  ViewportHeight / 2 + ViewportY  + ViewportHeight / 2; 
 
When we discussed the DirectX transformation pipeline in earlier lessons we examined the core 
matrices that are used in the process: World, View and Projection. There is actually a fourth matrix 
which the vertices are multiplied by which contains the above formula to map projection space 
coordinates into screen space coordinates. This matrix is shown below. The third column maps the 
vertex depth value into the [minZ, maxZ] range of the view port. 
 
The Viewport Matrix 
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All of this is managed behind the scenes by the device object. We simply fill in the details of the 
D3DVIEWPORT9 structure and send it to the device with a call to: 
 
IDirect3DDevice9::SetViewport(CONST D3DVIEWPORT9 *pViewport); 
 
The function will force the device to rebuild its viewport matrix based on the settings that we have 
passed in with the D3DVIEWPORT9 structure. When the device is first created, the default state of the 
viewport matrix is to map projection space coordinates to the entire area of the frame buffer. If we 
created a 640x480 frame buffer, the default viewport will be 640x480 also, with its top left corner at (0, 
0). Just to be clear, when we set a viewport, this does not simply truncate the portions of the scene that 
are outside the viewport. The entire scene is rendered into the view port as shown in Fig 4.12: 
 

 
 

Figure 4.12 
 

In the above example, we have a 640x480 frame buffer and a viewport rectangle of (0, 0, 320, 160). 
Note that the entire scene is rendered into the viewport rectangle within the frame buffer. When we 
present the frame buffer (assuming we do not provide a presentation rectangle) the entire frame buffer is 
still displayed.  
 
Viewports can be very useful. For example, you may use them when programming a split screen two 
player game. You could set the view port so that it takes up the top half of the frame buffer and then 
render the scene in that viewport from player one’s position. Then you could set the view port such that 
it takes up the bottom half of the frame buffer and render the scene again, this time from the second 
player’s position. 
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4.2.2 Viewport Aspect Ratios 

We must ensure that if we use a viewport that does not span the entire frame buffer, that we use the 
aspect ratio calculated using ViewportWidth/ViewportHeight rather than 
FrameBufferWidth/FrameBufferHeight when we build the projection matrix. The previous image 
showed us that the frame buffer had an aspect ratio of 1.3333333, but when we set the viewport to 
320x160 the aspect ratio of the viewport was 2.0. It is important that we use the aspect ratio of the 
viewport since this is where the scene will be rendered. Using the 320x160 viewport shown above, the 
image would look squashed if we did not adjust the aspect ratio to reflect the new settings. Just because 
we may have an elongated viewport, does not mean we wish to see the geometry in our scene elongated. 
Fig 4.13 shows how the same image of the terrain would look using a wide but shallow viewport 
without recalculating the aspect ratio of the viewport. 
 

 
 

Figure 4.13 
 

 
Note: As with all device states, when the device is lost, the viewport information is also reset. Therefore 
you must remember to reset your viewport settings when resetting a device. 
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4.3 Camera Systems 

4.3.1 Camera Manipulation I 

In Chapter 1 we discovered that we can multiply one matrix with another matrix to generate a resulting 
matrix that will transform vectors in the same way that the two source matrices would have done 
individually. Therefore, it is safe to assume that if we were to build a rotation matrix, let us say a matrix 
that rotates vectors 45 degrees around the X axis, and then multiply our view matrix by that rotation 
matrix, we would have created a resulting matrix that not only transforms the vertices from world space 
into view space, but one that also rotates them around the world X axis. The following code snippet 
retrieves the currently set view matrix from the device and rotates it 45 degrees about the X axis 
(pitching it down).  
 
D3DXMATRIX matView, matRotx; 
 
// Get View matrix from device (will not work on a pure device) 
pDevice->GetTransform(D3DTS_VIEW, &matView); 
 
// Built Rotation matrix about X axis 
D3DXMatrixRotationX(&matRotx, D3DXToRadian(-45)); 
 
// Multiply the view matrix with rotation matrix 
D3DXMatrixMultiply(&matView, &matView, &matRotx); 
 
//Set the new modified view matrix 
pDevice->SetTransform(D3DTS_VIEW, &matView); 

 
Because all of the same the transformations can be applied to the view matrix as to any world matrix, we 
can think of the view matrix as a physical camera object even if this is not technically correct. Let us 
assume that the view matrix was set to an identity matrix before the above code was executed. We 
already know that if the view matrix is an identity matrix then the Look, Up, and Right vectors in the 
view matrix exactly match the axes of the world coordinate system. 
 
Because of the order of the above matrix multiplication, we are in fact performing what is known as a 
camera local rotation. Instead of rotating the camera about the world X axis, we are in fact rotating the 
camera about its own Right vector. The red arrow in Fig 4.14 shows the direction of rotation the code 
would generate.  
 

 
Figure 4.14 
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Because the code performed a camera relative rotation, we see now that we can perform accumulative 
rotations. Regardless of the orientation of the camera in world space, the above code will always pitch 
the camera down (or up if we negate the rotation angle) relative to itself and not the world. For example, 
if you stand on your head and look up, you are looking at the floor. But it is still ‘up’ with respect to 
your current situation. If somebody was observing you however, they might describe you as looking 
down at the floor, given their perspective.  
 
If we were to change the matrix multiplication order from ViewMatrix*RotationMatrix to 
RotationMatrix*ViewMatrix this would rotate the camera about the world X axis. This would not 
perform a localized rotation but would instead perform a world rotation. So take care to use the matrix 
multiplication order that produces the results you desire. When rotating a non-inverted matrix (an object 
world matrix for example) the opposite is true: WorldMatrix*RotationMatrix would perform a non-
localized rotation and RotationMatrix*WorldMatrix would apply localized rotation.  
 
D3DX includes helper functions that allow us to build rotation matrices for the Y and Z axes also.  
 
D3DXMATRIX matView, matRoty; 
 
// Get View matrix from device (will not work on a pure device) 
pDevice->GetTransform(D3DTS_VIEW , &matView); 
 
// Built Rotation matrix about Y axis 
D3DXMatrixRotationY(&matRoty, D3DXToRadian(45)); 
 
// Multiply the view matrix with rotation matrix 
D3DXMatrixMultiply(&matView, &matView, &matRoty); 
 
//Set the new modified view matrix 
pDevice->SetTransform(D3DTS_VIEW, &matView); 
 

Notice the matrix multiplication order we are using to rotate the camera about its own Up vector (view 
space Y axis). This allows us to yaw the camera left or right relative to itself. Changing the 
multiplication order would change this so that the camera was always rotated about the world Up vector 
rather than the camera Up vector 
 

 
 

Figure 4.15 
 
This system provides us with a convenient way to handle rotating left and right in a game. Notice that 
the red arrow in the Fig 4.15 shows the direction of rotation about the Up vector that the camera will 
have applied to it. As we now know, a positive angle would create a matrix that would rotate vectors 
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right, but because we are not inverting the rotation matrix before multiplying it with the view matrix 
(which is already inversed) the rotation direction is switched. Therefore, a positive rotation angle would 
rotate the camera left.  
 
Finally the above code could also be changed to rotate the camera about the Z axis to create a Roll 
effect. Rolling is the effect you get in a flight simulation where pushing left and right on the joystick 
banks the plane. 
 
D3DXMATRIX matView, matRotz; 
 
// Get View matrix from device (will not work on a pure device) 
pDevice->GetTransform(D3DTS_VIEW, &matView); 
 
// Built Rotation matrix about z axis 
D3DXMatrixRotationZ(&matRotz, D3DXToRadian(-45)); 
 
// Multiply the view matrix with rotation matrix 
D3DXMatrixMultiply (&matView, &matView, &matRotz); 
 
//Set the new modified view matrix 
pDevice->SetTransform(D3DTS_VIEW, &matView); 
 
 

 
Figure 4.16 

 
The red arrow in Fig 4.16 shows the direction of rotation that this code would apply to the cameras Up, 
Right and Look vectors stored in the view matrix. Again, we would typically associate a negative 
rotation angle as applying a clockwise rotation (roll right) when rotating a world matrix, but since we are 
applying the rotation matrix (without inverting it) to the view matrix, the rotational direction is flipped. 
 
So we now have the ability to easily rotate a virtual camera about all three of its axes. As we know, 
matrix multiplication is not commutative and the order in which the matrices are passed to the 
multiplication function is critically important.  
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4.3.2 Camera Manipulation II 

In this section we are going to look at an easier way to ensure proper local camera rotations. We are 
going to abandon the D3DXMatrixRotate functions as a means of applying rotations to our view matrix. 
Instead, we will manually rotate the Look, Up, and Right vectors in the view matrix ourselves so that the 
rotations are always relative to any desired arbitrary axis. We can maintain and rotate these vectors 
separately and simply rebuild the view matrix each time they change. Not only will this allow us to 
perform the relative rotations that matrix multiplication provided, but it will allow us to rotate our 
vectors around any axis we choose. This might not sound so easy until you realize that D3DX has a 
function for building a matrix that rotates vectors about any arbitrary axis. We simply send the function 
a unit vector and an angle: 

 
D3DXMatrixRotationAxis(D3DXMATRIX *pOut, CONST D3DXVECTOR3 *pV,  FLOAT Angle); 

 
D3DXMATRIX *pOut 
This is the address of a D3DXMATRIX structure that will contain the newly generated matrix. 
 
D3DXVECTOR3 *pV 
This is in an arbitrary unit length vector that is treated as the axis of rotation. For example, if you passed 
in a vector of (1,0,0) then this would produce the same rotation matrix as D3DXMatrixRotationX. 
Because we can pass in vectors that are not limited to the world space axes, it means that we can 
generate a rotation matrix that will rotate the camera about any arbitrary world space axis, as well as the 
camera Look, Up and Right vectors when camera-relative rotations need to be applied.  
 
FLOAT Angle 
The angle in radians to rotate about the passed axis. 
 
Now let us imagine that we are trying to create a spacecraft camera system. Assume that we want the 
left and right actions on the joystick to produce local yaw, the forward/back actions on the joystick to 
produce local pitch and a left/right action on the joystick with the fire button down to produce local roll.  
Fig 4.17 shows the where the virtual camera might be in the world:  
 

 
                   Figure 4.17 
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Now let us see what the code might look like that reacts to the user pulling the joystick backwards. Your 
input routine may call a function like the following to rotate the camera about its local X axis by the 
specified angle. Note that we are extracting the vectors from the view matrix but you would probably 
store the four view matrix vectors (look, up, right, and position) as variables for easier access and to run 
this with a pure device. 
 
void Pitch(IDirect3DDevice9* pDevice, float Angle) 
{ 
 D3DXMATRIX matView , matRotx; 
 D3DXVECTOR3 RightVector, UpVector, LookVector; 
 
 pDevice->GetTransform (D3DTS_VIEW , &matView); 
  
 RightVector.x = matView._11; 
 RightVector.y = matView._21; 
 RightVector.z = matView._31; 
 
 UpVector.x = matView._12; 
 UpVector.y = matView._22; 
 UpVector.z = matView._32; 
 
       LookVector.x = matView._13; 
 LookVector.y = matView._23; 
 LookVector.z = matView._33; 
 
 D3DXMatrixRotationAxis (&matRotx , &RightVector , Angle ); 
  
       D3DXVec3TransformNormal (&UpVector , &UpVector , &matRotx); 
 D3DXVec3TransformNormal(&LookVector , &LookVector , &matRotx); 
 
       matView._12=UpVector.y;   matView._13=LookVector.z;  

matView._22=UpVector.y;   matView._23=LookVector.z; 
matView._32=UpVector.y;   matView._33=LookVector.z; 
 
pDevice->SetTransform(D3DTS_VIEW , &MatView); 

} 

 
This example assumes we are not using a PURE device since it uses the GetTransform function to 
retrieve the current view matrix from the device. Our final code will manage its own copy of the view 
matrix making this call unnecessary but we have used that method here to better show the process. The 
code does the following: 
 

• It retrieves the current view matrix 
• It manually extracts the cameras local axes from the view matrix and stores them in RightVector, 

UpVector and LookVector for the local X,Y and Z axes respectively. 
• Because we are pitching up, we wish to rotate the camera about the RightVector (local X axis). 

We build a rotation matrix that will rotate vectors about that axis (whatever orientation it may 
be). Because the rotation is about the Right vector, the vector itself will be unchanged. All we 
have to do is rotate the Look and Up vectors about the Right vector. 

• Once we have multiplied the Look and Up vectors with the rotation matrix, we place them back 
into the view matrix so that the view matrix now contains the new orientation.  

• Notice that we do not have to place the Right Vector into the view matrix because it has not been 
changed by this function. 
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Fig 4.18 shows what the view matrix and its vectors would look like if the above function was called to 
pitch the camera up 45 degrees (a negative angle would rotate downwards). Notice how the right vector 
is unchanged, but the Look vector and the Up vector have been rotated such that they are no longer 
aligned with the world Y and Z axes: 
 

 
 

Figure 4.18 
 

So in order to rotate the camera about its local X axis, all we have to is rotate the Up and Look vectors 
about the Right vector. Regardless of the orientation of the Right vector in the world, this will always 
pitch the camera up and down relative to itself. Hopefully, the above code snippet has given you 
everything you need to write a function that Yaws. Looking at the diagram, you should be able to see 
that in order to perform local Yaw we have to rotate the Right and Look vectors about the Up vector. Fig 
4.19 shows what the camera should look like if we were to apply a 45 degree Yaw. 
 

 
 

Figure 4.19 
 
The next piece of code is a function that allows the camera to rotate left and right about its own Y axis. 
This function is very similar to the Pitch function with the exception that we now wish to rotate the 
Right and Look vectors about the Up vector. This means the Up vector will be unchanged. 
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void Yaw (IDirect3DDevice9* pDevice , float Angle) 
{ 
 D3DXMATRIX matView , matRoty; 
 D3DXVECTOR3 RightVector, UpVector, LookVector; 
 
 // Retrieve device view matrix  

pDevice->GetTransform (D3DTS_VIEW , &matView); 
  
 // extract right, up and look vectors 
 RightVector.x = matView._11; 
 RightVector.y = matView._21; 
 RightVector.z = matView._31; 
 
 UpVector.x = matView._12; 
 UpVector.y = matView._22; 
 UpVector.z = matView._32; 
 
       LookVector.x = matView._13; 
 LookVector.y = matView._23; 
 LookVector.z = matView._33; 
 
 // build matrix to rotate vectors about the Up vector 

D3DXMatrixRotationAxis ( &matRoty , &UpVector , Angle ); 
  
       // rotate right and look vectors about the up vector 

D3DXVec3TransformNormal (&RightVector , &RightVector , &matRoty); 
 D3DXVec3TransformNormal( &LookVector , &LookVector , &matRoty); 
 
 
 // place modified vectors back into the view matrix 
       matView._11=RightVector.y;     matView._13=LookVector.z;  

matView._21=RightVector.y;     matView._23=LookVector.z; 
matView._31=RightVector.y;     matView._33=LookVector.z; 
 
// send modified view matrix to the device 
pDevice->SetTransform(D3DTS_VIEW , &MatView); 

} 

 
You should now have little trouble writing your own Roll function that rotates the camera about its local 
Z axis. It would be a good idea if you opened up Notepad right now and had a go at this to make sure 
that you understand what is happening. Remember to refer back to the table for the ViewMatrix to 
remind yourself which vectors are stored in which columns. Once you have tried implementing this 
function yourself, check it against the code listed below: 
 
void Roll (IDirect3DDevice9* pDevice , float Angle) 
{ 
 D3DXMATRIX matView , matRotz; 
 D3DXVECTOR3 RightVector, UpVector, LookVector; 
 
 // Get Current View Matrix 
       pDevice->GetTransform (D3DTS_VIEW , &matView); 
  
 // Extract the right, up and look vectors 
       RightVector.x = matView._11; 
 RightVector.y = matView._21; 
 RightVector.z = matView._31; 
 
 UpVector.x = matView._12; 
 UpVector.y = matView._22; 
 UpVector.z = matView._32; 
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       LookVector.x = matView._13; 
 LookVector.y = matView._23; 
 LookVector.z = matView._33; 
 
 // Build matrix to rotate vector about the LookVector 
       D3DXMatrixRotationAxis ( &matRotz , &LookVector , Angle ); 
  
       // Rotate Up and Right vectors about the Look vector    
       D3DXVec3TransformNormal (&UpVector , &UpVector , &matRotz); 
 D3DXVec3TransformNormal( &RightVector , &RightVector , &matRotz); 
 
       // Place modified vectors back into view matrix 
       matView._11=RightVector.x;    matView._12=UpVector.y;    

matView._21=RightVector.y;    matView._22=UpVector.y;    
matView._31=RightVector.z;    matView._32=UpVector.y;    
 
// Send the modified view matrix back to the device 
pDevice->SetTransform(D3DTS_VIEW , &matView); 

} 

 
Another thing to bear in mind is that we can store the world space position of the camera and allow our 
application to work with that position vector just like any other object position in the world. When the 
position or orientation of the camera changes, we can place the Look, Up, and Right vectors into a view 
matrix and calculate the inverse translation vector using the camera world space position. It is much 
more intuitive for our application to move the camera using a world space position and calculate the 
inverse translation vector when inserting it into the fourth row of the view matrix rather than have to 
store the position as an inverse translation vector.  

 
 

4.3.3 Vector Regeneration 

The finite resolution of floating point numbers on the PC leads to some trouble as we continually rotate 
our vectors. The vector/matrix multiplications we are performing involve many floating point 
multiplications and over time, errors can start to accumulate. The problem is that a float can only store a 
finite number of digits. Let us imagine that we want to store the value of PI (defined as 
3.14159265358979323846…) within a single precision float. This value will be truncated before it is 
stored, so that perhaps our float variable holds 3.141593. 
 
If we multiply this float by 36.0 we should see a return value of 113.097384. However, because of the 
floating-point limitation, the result is rounded to 113.0974 before storage. If we divide by the same 
value again (36.0), we find that we end up with a value of 3.141594444444444, which is again rounded 
to 3.141594. 
 
So simply multiplying and then dividing by the same value produces a float which is 0.000001 adrift 
from the original value. This may not seem like much, but over time this type of error accumulates. 
When these errors creep into our vectors, we can end up with a situation where the camera coordinate 
system axes are no longer perpendicular to each other: 
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Figure 4.20 

 
As you can imagine, the problem gets worse as we perform more consecutive operations. You can see in 
Fig 4.20 that rotating the camera around the corrupted Up vector would no longer perform a proper 
Yaw. Additionally, the accumulations can also cause the vectors to lose their unit length status which 
also has adverse effects. To combat this, we must perform vector regeneration on these vectors at regular 
intervals. This means rebuilding the vectors to ensure that they remain orthogonal and unit length. In our 
application, we will do this every time the camera is rotated in some way. The technique for 
regenerating the vectors is shown below. 
 

• Normalize the Look vector so that it is always unit length 
• Regenerate the Up vector by performing a cross product with the Look and Right vectors to 

return a new Up vector that is perpendicular to them 
• Normalize the new Up vector to make sure it is unit length 
• Regenerate the Right vector by performing a cross product with the Look and Up vectors to 

return a Right vector that is perpendicular to them. 
• Normalize this new Right vector to make sure it is unit length 

 
We now have a regenerated set of unit length vectors that are mutually perpendicular. Notice that we 
only normalize the Look vector and do not actually regenerate it by performing a cross product between 
the Up and Right vectors. This would cause the Look vector to be snapped suddenly to another vector 
and would cause a noticeable shift to the player. For this reason, we leave the orientation of the Look 
vector alone and simply normalize it.  
 
The following code handles rotation about all three axes and regenerates the vectors before placing them 
back into the view matrix. This function expects rotations to be specified in radians. 
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void Rotate (IDirect3DDevice9* pDevice ,  float x ,  float y ,  float z  ) 
{ 
    D3DXMATRIX     matRotate , matView; 
    D3DXVECTOR3   RightVector , UpVector , LookVector; 
 
    // Extract Local Camera axes from view matrix 
    pDevice->GetTransform ( D3DTS_VIEW , &matView); 
 
    RightVector.x = matView._11;  UpVector.x = matView._12 ;  LookVector.x = matView._13; 
    RightVector.y = matView._21;  UpVector.y = matView._22 ;  LookVector.y = matView._23; 
    RightVector.z = matView._31;  UpVector.z = matView._32 ;  LookVector.z = matView._33; 
  
    if ( x != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &matRotate, &RightVector, x  ); 
        D3DXVec3TransformNormal( &LookVector, &LookVector , &matRotate ); 
        D3DXVec3TransformNormal( &UpVector    , &UpVector    , &matRotate ); 
    } // End if Pitch 
 
    if ( y != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &matRotate, &UpVector,   y  ); 
        D3DXVec3TransformNormal( &LookVector, &LookVector,  &matRotate ); 
        D3DXVec3TransformNormal( &RightVector, &RightVector, &matRotate ); 
    } // End if Yaw 
 
    if ( z != 0 )  
    { 
        // Build rotation matrix 
        D3DXMatrixRotationAxis( &matRotate, &LookVector,  z  ); 
        D3DXVec3TransformNormal( &UpVector    , &UpVector    , &matRotate ); 
        D3DXVec3TransformNormal( &RightVector, &RightVector, &matRotate ); 
    } // End if Roll 
         
    // Perform vector regeneration 
    D3DXVec3Normalize( &m_vecLook, &m_vecLook ); 
    D3DXVec3Cross( &m_vecRight, &m_vecUp, &m_vecLook ); 
    D3DXVec3Normalize( &m_vecRight, &m_vecRight ); 
    D3DXVec3Cross( &m_vecUp, &m_vecLook, &m_vecRight ); 
    D3DXVec3Normalize( &m_vecUp, &m_vecUp ); 
 
    // Place the new rotated vectors back into the view matrix   
    matView._11 = RightVector.x;  mtxView._12 = UpVector.x;  mtxView._13 = LookVector.x  
    mtxView._21 = RightVector.y;  mtxView._22 = UpVector.y;  mtxView._23 = LookVector.y; 
    mtxView._31 = RightVector.z;  mtxView._32 = UpVector.z;  mtxView._33 = LookVector.z; 
   
    // Send the new view matrix back to the device 
    pDevice->SetTransform ( D3DTS_VIEW , &matView );  
} 

 
Note: Whether you are rotating your camera by rotating its Look, Up and Right vectors manually as 
shown above, or whether you rotating the camera by performing matrix multiplication as shown earlier, 
vector regeneration still needs to be done when performing cumulative rotations. Even when performing 
cumulative matrix multiplication, we are really just rotating the Look, Up and Right vectors inside the 
view matrix. So you will need to periodically extract the vectors, regenerate them and insert them back 
into the matrix. 
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4.3.4 First Person Cameras 

The previous function rotates the camera about its own Up, Right, and Look vectors. This is ideal for a 
space ship camera system. For a first person camera system however, we need to make some changes. 
We will discuss those changes briefly since we will cover the complete camera code in the workbook. 

 
• Pitch must be limited so that we cannot loop completely upside down. In a first person game, the 

camera acts as the head of the player with regards to up/down rotation. In reality, our head’s 
rotational capacity is limited by our neck. Generally we clamp pitch to +89 degrees up and –89 
degrees down. 

• Yaw (Y Axis rotation) has to be handled differently for a first person camera. In the previous 
camera code above, we always rotated about the camera local Y axis (the Up vector). This does 
not work for a first person camera. If you load up any first person perspective game and rotate 
your head so that you are looking at the roof (or floor) and then move the mouse left or right, you 
will notice that the camera will no longer move left or right relative to itself, but will actually 
spin around in a tight circle. This is because in a first person camera situation, we want to always 
to yaw around the world Y axis instead of the camera Y axis. Fig 4.21 demonstrates this concept. 
 
  

 
 
 

Figure 4.21 
 
This actually makes perfect sense since pitching up and down is equivalent to rotating your head up and 
down. Yawing left and right is equivalent to actually spinning your whole body around in a circle. 
Therefore, if you yaw whilst the camera is pitched up, it is equivalent to standing in a room, looking up 
at the ceiling, and spinning around. 
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4.3.5 Third Person Cameras 

Third person camera systems are used in games like Tomb Raider™, Splinter Cell™, Mario64™ and 
many others. A third person camera is quite different than the other types we discussed because we have 
to limit the player’s ability to move the camera such that it does not lose focus on what it is supposed to 
be looking at. The idea is that the user no longer directly controls the camera, but instead controls the 
player avatar. The camera stays focused on that avatar as it moves around the environment. In our third 
person camera system, although the camera will always be looking at the player, we will have the ability 
to specify an offset vector that allows us to control the distance and angle from which the player should 
be viewed. You can think of this as attaching the camera to the player avatar with a large stick. When 
the player moves, the camera will move also. When the player turns left or right, so will the camera.  
 
If this was the limit of our control, then the camera system would seem far too rigid. Let us imagine that 
we specify an offset vector that puts the camera directly behind the player object. This would mean that 
we would always be looking at the back of the avatar no matter how quickly they rotate left or right. To 
make things more interesting and fluid we can introduce a time lag when the player rotates. In this case 
the camera will still be behind the player but it may take ¼ of a second to catch up to a new rotation. 
This allows us to see our player turn before the camera drifts into the correct position again. 
 
Fig 4.22 is a crude representation of this concept. The camera is attached to the player and offset by the 
vector shown as the white line. In our demo, the camera is always positioned behind and above the 
player as specified by the offset vector that we specify. In third person mode, the player object can be 
yawed left or right, and the camera has its position rotated about the player in a large circle using a 
radius specified by the offset vector. 
 

 
 

Figure 4.22 
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4.4 The View Frustum 

As discussed earlier in the course, the projection matrix defines a camera view volume. Recall that the 
1st and 2nd columns of the projection matrix store values that define the angle of the horizontal and 
vertical field of view respectively. We also use the 3rd column of the projection matrix to map view 
space vertex Z components to the finite [0, 1] range used for depth buffering. To achieve this mapping 
we used the projection matrix to set minimum and maximum view distances, referred to as the near and 
far planes. Any view space vertices with Z components greater than the far plane distance stored in the 
projection matrix are rejected by the pipeline prior to the homogeneous W divide (i.e. the projection). 
Likewise, any view space vertices that have Z components smaller than the near plane distance will also 
be rejected in the same place by the pipeline. When we consider the shape of the space defined by the 
viewing angles as well as the minimum and maximum depths, we note that the result resembles a 
truncated pyramid. This pyramidal volume is called a frustum. It is similar to a typical pyramid shape 
except that the tip of the pyramid is sliced off by the near plane and the base is sliced off by the far plane 
(Fig 4.23).  
 

 
 

Figure 4.23 
 
 
It could be said that the 1st column of the projection matrix describes the normal for two planes: the left 
and right planes of the view frustum (where one is the negation of the other). Polygons that fall between 
these two planes are thus within the horizontal field of view of the camera. The 2nd column of the 
projection matrix could likewise be said to describe a normal for two planes, the top plane and the 
bottom plane of the frustum. If a polygon exists between these two planes, then it is within the camera’s 
vertical field of view. Finally, the 3rd column of the projection matrix could be said to describe two 
additional frustum planes: the near plane and the far plane. If a polygon is positioned such that it lies 
completely or even partially within the area between all six of these planes, then all or part of it is 
considered inside the viewing frustum and would therefore be visible to the viewer.  
 
In a moment we will see how and why the columns of the projection matrix describe these six frustum 
planes, but for now just take it on faith that they do. Bear in mind that the orientations of these planes 
are controlled by the values we store in the projection matrix. As a result, we have the ability to change 
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the shape of the view frustum. Nevertheless, whilst we can change the depth, width, and height of the 
frustum, it will always be constructed from six planes and will look like the shape shown in Fig 4.23. 
 

4.4.1 Frustum Culling 

While the pipeline will test each triangle against the view frustum prior to projection, and reject the 
polygon from further processing if it is outside the frustum (or clip it when it is half inside and half 
outside), this test is run after the vertices have been transformed from model space to homogenous clip 
space. So while the frustum rejection mechanism in the DirectX pipeline does enable the system to 
avoid rendering polygons that will never be seen, it is only after the expensive transformation and 
lighting calculations have been performed for each vertex that this rejection becomes possible.  
 
Ideally what we would like to do is perform this test prior to our polygons entering the pipeline and thus 
avoid these calculations when possible. It would also be nice if we could do this without having to test 
every single polygon in a level. Considering the size of modern game levels, a higher level frustum test 
at the object (mesh) level would be much more efficient.   
 

 
 

Figure 4.24 
 
In Fig 4.24, we see a camera and its view frustum in world space along with a handful of geometric 
objects in the scene. (Remember that the frustum has six planes -- we just cannot see the top and bottom 
planes in this diagram given the top-down view). The sphere is well beyond the far plane of the frustum 
and therefore all of its polygons will be rejected by the pipeline. The cylinder is partially behind and to 
the right of the camera, so it too will be rejected by the pipeline. The torus has all of its polygons inside 
the six planes of the frustum and therefore will not be rejected by the pipeline -- it will be rendered in its 
entirety. Finally, the cone is partially inside the view frustum and in this case, all of its triangles that are 
beyond the far plane will be rejected and any cone triangles that span the far plane (half inside/half 
outside) will be clipped by the pipeline so that only the section of the triangle that is inside the far plane 
would be rendered. 
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If the cylinder and sphere were 20,000 polygon objects, and we rejected them in such a way that we 
would not even bother calling DrawPrimitive, consider how many tens of thousands of potential 
calculations we would save in that case. And keep in mind that they would ultimately be discarded by 
the pipeline anyway, but only after all of their vertices had been transformed and lit. 
 
All we need is a way to get access to the frustum planes in world space (or even model space) and we 
could perform the frustum test ourselves, rendering only the polygons that we find are visible. That is, 
we would like to cull the visible polygons in our scene and make sure they are rendered, while the rest 
are ignored. This process is called frustum culling and it is exactly what we are going to study in the 
remaining portions of this lesson. Since we generally do not want to do this test at the per-polygon level 
or take on the responsibility of clipping triangles, we will also need to figure out some way to run this 
test at the object/mesh level. If we did the per-polygon testing and clipping ourselves (even if we did not 
have to transform the vertices) on the CPU, it would still be slower than just running the entire process 
on the GPU and letting it deal with these issues.  
 
We should think of our frustum culling code as less of an exact frustum culler and clipper than a first 
line of defense for quickly rejecting the vast bulk of scene geometry before it enters the rendering 
pipeline. If we leave the borderline cases (i.e. partial intersections) for the pipeline to handle, we can 
come up with an extremely efficient way of rejecting large batches of polygons with a few simple tests.  
 
 

4.4.2 Axis-Aligned Bounding Boxes (AABB) 

Given the infinite number of complex shapes our meshes can assume, testing a mesh for intersection 
with the frustum would be difficult indeed. What sort of algorithm could we design that could handle 
any mesh we throw at it that did not require per-polygon testing at the end of the day? Forget it. We will 
need an alternative polygon aggregate that can be created easily and tested quickly for intersection 
against the frustum (i.e. the planes of the frustum) for real-time work. The solution is to bound our 
complex objects with simple volumetric shapes and then test these bounding volumes for collision with 
the frustum.  
 
Depending on the volume we choose, our intersection tests will have different levels of accuracy and 
efficiency, generally trading off one for the other. The most common bounding volumes are simple 
shapes like boxes, spheres, cylinders, cones, and so on (boxes and spheres are generally the most 
popular). For now, we will keep things simple and focus on boxes. In the next course in this series, we 
will discuss other bounding volumes and even more efficient ways to do frustum intersection at the 
scene level. 
     
For this lesson we will use a box shaped bounding volume whose orientation is such that its sides are 
always aligned with the standard axes (1,0,0), (0,1,0), and (0,0,1). This is called an axis-aligned 
bounding box (AABB). In Fig 4.25 we see an example of our models and their AABBs. Our culling 
system now resolves to a set of frustum/AABB intersection tests for each object in the scene.  
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Figure 4.25 
 
We can see in Fig 4.25 that both the sphere and cylinder objects do not require any rendering since they 
are outside the frustum. This can be determined using a simple box/frustum test for each object rather 
than N polygon/frustum tests. If these two objects had 20,000 polygons each, we have just avoided 
transforming, lighting, and ultimately rejecting 40,000 polygons. Remember that T+L takes place at the 
vertex level, so this is a substantial savings indeed. 
 
As the cone bounding box partially intersects the frustum, we will just render the object and let the 
pipeline cull and clip the object as usual. Likewise for the torus as its bounding box is completely inside 
the frustum. In fact, we could theoretically speed things up in the torus case by telling the pipeline not to 
bother trying to test any polygons for clipping, but for the time being we will not worry about this 
concept.  
 
For now our approach will be to render any mesh whose AABB is not fully outside of the frustum. Any 
objects with intersecting AABBs will be rendered as we normally do. In the next course in this series we 
will explore ways to optimize this system using spatial partitioning and scene graphs. In that case the 
scene itself will be divided into a hierarchical arrangement of bounding volumes so that even objects 
themselves can be aggregated and tested against the frustum (sort of like bounding volumes around 
groups of bounding volumes). Again, for now we will stick to the basics. 
 
We know at this point that we will need our meshes and/or objects to store a bounding box. The 
coordinate space we choose for the intersection tests requires some consideration. If we perform the test 
in world space, then we will need to convert the frustum planes to world space. We will also have to 
recalculate the extents of the AABB if the object moves or rotates (because the AABB will be described 
in world space units). We can see in Fig 4.26 how a single cone mesh would have different sized and 
shaped AABBs depending on its position and orientation in the world. Certain objects can rotate without 
altering the shape of the AABB (a sphere for example). In that case we could get away with not 
recalculating the bounding box, but simply updating its position when the object is moved. 
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Figure 4.26 
 
Recalculating an AABB can be costly if the mesh consists of thousands of vertices. This is because 
calculating an AABB requires our looping through each vertex and recording the highest and lowest X, 
Y, and Z vertex extents. Of course, this is only an issue if the object is dynamic -- and many objects in a 
scene are not. In the case of our terrain for example, we divided the entire terrain into a grid of smaller 
meshes. Each one of these meshes could have its AABB calculated at application start-up and never 
require re-calculation because the terrain meshes never move. Since the terrain meshes are defined in 
world space to begin with, storing their AABBs in world space and performing the frustum test in world 
space is probably the best choice. We will simply need to extract the frustum planes from the projection 
matrix and convert them into world space just once at the beginning of each frame. We can then reuse 
them for testing all world space AABBs. Note that there are faster solutions for recalculating an AABB 
after a rotation, but the result will generally be a less tightly fit bounding volume which can result in 
false positives on the intersection test. (Everything is a tradeoff.)  
 
For high polygon dynamic objects, recalculating a world space AABB can become expensive, so a 
model space AABB (which will never change) might be a better choice. That is, you would build the 
bounding box using the model space (un-transformed) vertex positions. Of course, for this to be useful 
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we would need to transform the frustum planes into model space using the inverted mesh world matrix 
to perform the intersection test. Depending on the number of such objects in your scene, this can also 
become expensive. The more common solution for dynamic objects is to use a bounding sphere since it 
will not need to be recalculated if the object rotates. Spheres are very fast to test, but do not generally 
provide as tight a fit as a box. The result is an increase in false positives for intersection tests and thus 
rendering objects that are, in reality, fully outside the frustum. A common solution to this problem is to 
perform multiple tests. For example, one might do a sphere/frustum test first for rough culling. Since a 
sphere test is faster than a box test, this is a good first choice. If the sphere test indicates an intersection, 
a second test can be done using a tighter fitting bounding volume (like a box) to see if the intersection 
result was indeed accurate.  
 
Even view space frustum testing is possible if desired, although it is not very commonly used. By and 
large the preferred choice is to use world space intersection testing whenever possible since it requires 
no transformations to take place prior to the test. This is the method we will discuss here in this lesson 
and the one we will use in our lab projects. 
 
 
Calculating an AABB 

Calculating an AABB is a straightforward process regardless of whether we are calculating it in model 
space, world space, or even view space. An AABB can be stored using just two 3D vectors (6 floats) 
which keep track of the minimum and maximum X, Y, and Z components of the mesh respectively. The 
following snippet of code shows how we calculate the bounding box for each of our terrain meshes in 
our demonstration project. Because the terrain vertices are already stored as world space vertices, there 
is no need for us to multiply the vertex position by the mesh world matrix. However, if each mesh was 
defined in model space and we wanted to calculate a world space bounding box for it, we would first 
need to transform the vertex by the world matrix. Then the code would be identical to that shown.  
 
// Calculate the mesh bounding box extents 
m_BoundsMin  = D3DXVECTOR3( 999999.0f, 999999.0f, 999999.0f ); 
m_BoundsMax = D3DXVECTOR3(-999999.0f, -999999.0f, -999999.0f); 
     
for ( ULONG i = 0; i < m_nVertexCount; ++i ) 
{ 
    D3DXVECTOR3 * Pos = (D3DXVECTOR3*)&m_pVertex[i]; 
    if ( Pos->x < m_BoundsMin.x ) m_BoundsMin.x = Pos->x; 
    if ( Pos->y < m_BoundsMin.y ) m_BoundsMin.y = Pos->y; 
    if ( Pos->z < m_BoundsMin.z ) m_BoundsMin.z = Pos->z; 
    if ( Pos->x > m_BoundsMax.x ) m_BoundsMax.x = Pos->x; 
    if ( Pos->y > m_BoundsMax.y ) m_BoundsMax.y = Pos->y; 
    if ( Pos->z > m_BoundsMax.z ) m_BoundsMax.z = Pos->z; 
}  

 
As you can see in the above example code, we represent the bounding box using two 3D vectors: one to 
store the minimum extents of the bounding box and one for the maximum extents. We could 
subsequently select components from each vector to describe the eight corner points of the box.  
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Notice how we set the minimum vector components initially to very high values and set the maximum 
vector components to very large negative values. We then loop through every (world space) vertex in 
the mesh and test each X, Y, and Z component against the corresponding component in both the 
minimum and maximum vectors. If for example we find that the vertex X component is larger than the 
current maximum vector X component, then the vertex X component will become the new maximum X 
component. Likewise, if the vertex X component is smaller than the currently stored X component in the 
minimum vector, then this becomes the new minimum X component. We do this for all vertices and all 
components so that when the loop ends, we have stored the minimum and maximum extents of the mesh 
along all three coordinate system axes. These two vectors now represent a world space axis aligned 
bounding box and all the mesh vertices will be contained inside. Again, remember that if you want a 
world space bounding volume and your vertices are defined in model space, then you will need to 
multiply each vertex by the object’s world matrix before performing the component tests above. 
 
 
4.4.3 Camera Space Frustum Plane Extraction 

Now we will need to learn how to extract the frustum planes for use in intersection testing. Before 
continuing, it is important that you fully understand the projection matrix topics discussed in Lessons 1 
and 2, so refer back to those discussions if you are feeling a little rusty. 
 
This discussion also assumes that you know what a plane is, so we will not cover that topic in great 
detail. However, we should note that there are two popular methods for storing plane representations. 
The first form stores the plane normal and a point known to be on that plane. The second form stores the 
plane normal and a distance to that plane from the origin of the coordinate system. For example, if we 
have a plane in world space, the distance tells us how close that plane passes by the world origin (0,0,0). 
If a plane passes through the origin of the coordinate system then the distance to the plane is 0. This 
second form is the one we will be using for frustum extraction. 
 
The great thing about the projection matrix is that it holds all of the plane information for the view 
frustum. This means that instead of having to pump every vertex in our scene through the projection 
matrix to see if it is visible or not, we can extract the frustum planes from the projection matrix so that 
they are in camera space (or world space, but more on that later) and then use those planes for fast 
intersection testing on the CPU. 
 
Let us look at an example projection matrix that has a near plane of 10.0 and a far plane of 100.0 with an 
FOV of 60 degrees along the Y axis. As discussed in Lesson 1, the X axis FOV will be slightly different 
to compensate for screen distortion caused by the aspect ratio of the current screen or viewport 
dimensions.  
 
To create this projection matrix using D3DX: 
 
D3DXMatrixPerspectiveFovLH(&proj_m, D3DXToRad(60.0f), 1.333333f ,10.0f, 100.0f); 
 
Just to refresh your memory, the following shows us how the values of the projection matrix are 
calculated by the function. The actual projection matrix follows.  
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In the projection matrix, the first three rows of each column represent a vector of varying magnitude that 
is aligned with the camera space X, Y, and Z axes respectively. You can see for example, that the first 
three rows of column 1 is a vector that points down the positive X axis in camera space. 
 
X Vector = (1.299038109, 0, 0) 
 
This vector is fully aligned with the camera space x axis (1, 0, 0) and the only difference is that it is not 
a unit length vector. If we were to normalize this vector so that it had a length of 1.0, it would be exactly 
the same as the X axis in camera space: 
 
Normalized X Vector = camera space Z Axis =  (1, 0, 0) 
 
This is also true for the first three rows of the Y column. It is a non-unit length vector exactly aligned 
with the Y axis in camera space.  
 
The first three rows of the W column represent a unit length vector aligned with the camera space Z 
axis.  
 
W Vector = camera space Z Axis = (0, 0, 1) 
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It is important to us that the X and Y vectors are not unit length, because these vectors hold vital 
information about the relationship they have with each other. The W vector describes a movement of 1.0 
unit down the cameras space Z axis, and the Y vector (for example) describes the ratio of movement 
down the Y axis for each unit of W. In other words, the direction of the plane normals are described as 
ratios of movement along the X or Y axes, in relation to one unit of movement along the Z axis. If you 
do not recall why this would be the case, just remember that W = Z axis. 
 
Furthermore, the fourth row of each column can be used to extract the plane distance so that we will 
then have our complete set of plane information. For the moment however, forget about the fourth row 
of each vector since the Left, Right, Top, and Bottom clip planes all have distances of 0 in camera space. 
We will be using only the first three rows (which represent the plane normals) for the time being. 
 
Let us first see how we could extract the Bottom frustum plane normal of our 60 degree FOV frustum so 
that the normal is facing outwards. The following line of pseudo-code creates an un-normalized plane 
normal for the bottom frustum plane by adding the W column of the projection matrix to the Y column 
of the projection matrix. We will discuss why we negate the result in a moment. 
 
BottomPlane->Normal = - (Column_4 + Column_2) 
 
Fig 4.27 should make everything clear. In the diagram we are looking down the negative X axis in 
camera space. The camera space Y axis is assumed to run bottom to top and the camera space Z axis 
from left to right. 
 

 
 

Figure 4.27 
 
First look at the camera space origin, and notice how the W vector of the projection matrix (0,0,1) 
represents a point at (0,0,1) along the camera space Z axis. Also note how the Y vector of our projection 
matrix represents a point at (0, 1.732050808, 0) along the camera space Y axis. If we combine these two 
vectors using the calculation shown above, we end up with the vector: 
                                                                                                  X          Y            W   
Column_4 + Column_2 = (0, 0, 1) + (0, 1.732050808, 0) = (0, 1.732050808, 1) 
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We have now created a 3D coordinate in camera space. If we forget about the X coordinate for now 
because it is 0, and plot this point on some graph paper with a side-on view of camera space (Fig 4.27), 
we can see that this coordinate is plotted at Y=1.732050808 and Z=W=1. Remember that a coordinate is 
really just a direction vector that describes the direction and distance to a point from the origin of the 
coordinate system (camera space in this example). The green arrow in the above diagram shows the 
direction this vector is facing and we can see that it is in fact the un-normalized plane normal for the 
bottom frustum plane. A plane is always perpendicular to its normal, so to test this, if we rotate the 
normal around by 90 degrees, we should have a line representing the bottom frustum plane in the above 
diagram. We can see that this is the case; the blue line in the above diagram is at 90 degrees to the green 
direction vector. The angle between this plane and the camera space Z axis is exactly half of our FOV. 
This is correct because when we extract the Top plane, which will also be at an angle of 30 degrees from 
the camera Z axis, together they will form an angle of 60 degrees (30 degrees top and bottom) off the 
camera space Z axis. So indeed we can see that the vector that we have just created (the green arrow) 
describes the orientation of the Bottom frustum plane. It is not yet unit length of course, but if we were 
to normalize it, we would have the plane normal such that the ‘front’ of the Bottom frustum plane would 
be facing inwards (pointing towards the Top plane actually). 
 
Our preference in this lesson will be that our frustum planes have their normals face outwards instead of 
inwards. To do this, we simply negate the resulting vector, which has the effect of flipping the green line 
in the above diagram (see the direction of the blue arrow labeled ‘Reversed Plane Normal’). That is why 
we used the minus sign in the initial formula. After normalizing this inverted vector, we would have our 
outward facing plane normal (blue arrow) for the Bottom frustum plane. Note that the choice to flip the 
direction of the plane normal vectors during extraction is a matter of preference only. We did this 
because when the frustum planes all point outwards and we test a point against the plane, the results of 
the dot products are more intuitive. If any point is found to be outside a frustum plane, it will have a 
positive distance returned.  
 
This technique can be repeated to extract all six clip planes. It should be clear from the diagram, that if 
we subtracted column 2 from column 4, rather than adding them like we did above, we will end up with 
a coordinate: 
                                                                                                  X             Y            W   
Column_4 – Column_2 = (0, 0, 1) - (0, 1.732050808, 0)   =  (0, -1.732050808, 1) 
 
This new vector is the green arrow in Fig 4.28.  We can see that it works exactly the same way as the 
previous diagram. This time, subtracting the Y vector instead of adding it to the W vector, returned the 
un-normalized, inward facing plane normal for the Top clip plane. 
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Figure 4.28 

 
Since we prefer our plane normals to face outward, we flip the direction 180 degrees by negating the 
result so that the green arrow in the above diagram would face in the same direction as the blue arrow. 
So the extraction of the top frustum plane becomes: 
 
TopPlane->Normal =-(Column_4 – Column_2) 
 
Keep in mind that this vector is not normalized, so if we need normalized planes we will have to do this 
next. 
 
Take some time to study how the above examples worked. If you have fully understood everything 
discussed, you should be able to figure out how the Left and Right frustum plane normals could be 
extracted. In this case we add or subtract the X column of the projection matrix from the W column 
instead (and invert the result for outward facing planes).  
 
LeftPlane->Normal   =-(Column_4 + Column_1) 
RightPlane->Normal =-(Column_4 – Column_1) 
 
Fig 4.29 shows how the Left plane extraction works. The diagram looks at camera space from a top-
down view such that the camera space Z axis runs from bottom to top and the camera space X axis runs 
from left to right. 
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Figure 4.29 
 
By adding column 1 of the matrix to column 4 of the matrix, we create a vector that is perpendicular to 
the left clip plane (the green arrow). Because we have created the vector using column 1 instead of 
column 2, we end up with a left clip plane that is 39.99 degrees from the camera space Z axis. 
Remember that this describes only half the FOV since the Right clip plane will also be at an angle of 
39.99 degrees from the camera space Z axis.  
 
So far we have looked only at extracting the plane normal from the matrix. However, the distance to the 
plane is also calculated as part of the process.  
 
Left Plane->Normal=-(Column_4 + Column_1) 
 
In this case we are in fact extracting four pieces of information about the plane. If we look at the 
addition at the component level, we would see this more clearly: 
 
Left Plane->Normal.X= - (m14 + m11) 
Left Plane->Normal.Y= - (m24 + m21) 
Left Plane->Normal.Z= - (m34 + m31) 
Left Plane->Distance = - (m44 + m41)  
 
We have not discussed how it is exactly that the fourth row contains the distance parameter, and for 
good reason. Because plane extraction from the projection matrix extracts the planes in camera space, 
the camera is the center of the origin. As the center of camera space is the origin for the Left, Top, 
Right, and Bottom planes (our view cone starts at camera (0,0,0)), it means the distance for these planes 
will always be 0.  
 
The Near and Far planes however are perpendicular to the camera, and are also some distance away. In 
our example so far, we know that our near plane is at a distance of 10 units and our far plane is at a 
distance of 100 units (these were our settings when we created the matrix). Let us look at the how we 
extract the far plane first: 
 
Far Plane->Normal = -(Column_4 – Column_3) 
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Do you see the recurring pattern here? 
 
Just as with the other planes, we use column 4 again, but this time use column 3 as the vector to subtract 
from it, because this column contains the Z information for the near and far planes. If we write out the 
far plane extraction formula above, we can more clearly see what is happening: 
 
Far Plane->Normal.x = - (m14 - m13) 
Far Plane->Normal.y = - (m24 - m23) 
Far Plane->Normal.z = - (m34 - m33) 
Far Plane->Distance  = - (m44 - m43) 
  
Have another look at the projection matrix we are working with: 
 

                                                                                   Z             W 
 
 

 
 
 
 
 
 
 
First let us see what subtracting the first three rows of W and Z produces as a direction vector: 
 
-(Column_4 – Column_3) = -( (0,0,1)-(0,0,1.11111111) ) = (0 , 0 , 0.11111111) 
 
This result certainly seems correct, for if the vector were normalized it would become: 
 
Normalize( (0, 0, 0.111111) ) = (0, 0, 1) 
 
This is just what the far plane normal should be -- facing down the camera space Z axis.  
Now let us see what happens when we try to extract the distance to this plane (which we know to be 100 
units away from the camera): 
 
Distance = -(m44 – m43) = -( 0 - -11.11111111 )= -11.1111111111 
 
That is not correct at all now is it?  
 
Remember that the plane normals must be normalized in order to make them unit length. What we have 
to do then is, in addition to normalizing the plane normals, normalize the distance as well. Therefore, we 
could say that whilst the projection matrix does indeed contain the frustum plane information, this plane 
information on the whole is not normalized. When we normalize the plane, the plane normals we have 
extracted will become unit length and the plane distances we have extracted will also be scaled by the 
same amount. This way they will accurately describe the plane distance. If we do this for all six planes, 
we will finally have our six normalized frustum planes.  
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Normalizing a Plane 

Recall from Lesson One that normalizing a vector scales the vector so that it has a length of 1 while still 
keeping the individual components of the vector in proportion with each other. To calculate the length of 
a vector we used the following formula: 
 

ZYXthVectorLeng 222 ++=  
  
If for example, we had a vector of (3,0,9), the length of that vector would be calculated as: 
 

4868329.9)9*9()0*0()3*3( =++=thVectorLeng  
 
This vector is quite clearly not a unit vector because it has a length greater than 1.0. In order to make 
this vector unit length, we divide each component of the vector by its length: 
 

)9486833.0,0,316227768.0(
4868329.9

9,
4868329.9

0,
4868329.9

3
=⎟

⎠
⎞

⎜
⎝
⎛=UnitVector  

 
Just to verify that this worked and that we indeed have a unit normal, let us calculate its magnitude: 
 

0.1)9486833.0*9486833.0()0*0()316227768.0*316227768.0( =++=thVectorLeng  
 
We now know how to normalize a vector, but to normalize a plane we must also normalize the distance 
value. This is not a problem. All we have to do is divide the distance value by the length of the direction 
vector also, because the direction vector and distance value are proportional to each other in the matrix. 
So, we will get the length of the plane vector that we extract from the projection matrix and divide this 
vector by its own length to normalize it. This creates a unit length frustum plane normal. Then we divide 
the plane distance by the vector length and we are done. Let us try that now with our Far plane 
information: 
 
Far Plane->Normal.x = - (m14 - m13) = - (0 – 0)    =0 
Far Plane->Normal.y = - (m24 - m23) = - (0 – 0)    =0 
Far Plane->Normal.z = - (m34 - m33) = - (1 - 1.11111111) =0.11111111 
Far Plane->Distance  = - (m44 – m43)= - (0 - -11.11111111)      = -11.1111111111 
  
First we normalize the plane direction vector (0, 0, 0.11111111): 
 
Vector Length= 11111111.0)11111111.0*11111111.0()0*0()0*0( =++  
 
Now we need to divide each component of the vector by this length to normalize it to a proper plane 
normal:  
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Finally, we divide the distance by the original vector length (0.11111111) and see what happens: 
 

Distance= 100
11111111.0

11111111.11
−=

−  

 
Now there is our correct plane distance. In case you are wondering why it is a negative number, the 
distance is always negative if we are behind the plane. Because we have flipped our far plane so that it 
faces away from the camera, the origin of camera space is indeed 100 units behind the plane. 
 
So frustum plane extraction is really just a case of adding/subtracting the X, Y and Z vectors from the 
projection matrix to/from the W vector of that same matrix. Then we normalize the planes by dividing 
the vector by its length, and divide the plane distance by the vector length as well. 
 
Before we list all of the extraction formulas for each plane, for completeness, let us look at how the final 
plane extraction works (the Near plane). We know that it should be 10 units away from the camera in 
camera space and, unlike the far plane, have its normal facing towards the camera. 
 
The near plane is actually an exception to the approach we have been using, in that we do not have to 
use the W column vector for addition/subtraction. In fact it is the easiest case, because the full set of 
plane information is already contained inside the Z vector of the projection matrix. All we have to do is 
extract and normalize the 3rd column of the matrix and we have our near plane. 
 
Our 3rd column looked as follows: 
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If you have forgotten what these numbers represent, then refer back to Lesson 2 where we talked about 
how to set up this column in detail. The plane can be extracted simply by doing the following: 
 
Near Plane = -(Column_3) 
 
Therefore: 
 
Near Plane->Normal.x=-m13 
Near Plane->Normal.y=-m23 
Near Plane->Normal.z=-m33 
Near Plane->Distance =-m43 
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All we have to do is normalize the above information, and we will have a plane normal of (0, 0, -1) and 
a plane distance of 10.0.  
 
First we extract the normal, which will of course be (0, 0, -1.11111111). Remember that the value 
1.11111111 was our scaling ratio to map the input z value to a Z-Buffer value. Also recall that the 4th 
row in the column is the actual distance to the near plane, multiplied by the ratio. Therefore, both of 
these values need to be divided by the scaling ratio to reduce the normal to a unit vector and reduce the 
distance back into a camera space distance (which should result in a distance of 10.0).  
 

Vector Length= 11111111.111111111.10.00.0 222 =++ −  
 

Near Plane->Normal= =⎟
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Near plane->Distance= =
11111111.1
11111111.11 10.0 

 
 

4.4.4 Frustum Extraction Code 

The following code snippet assumes that we have a plane structure defined as follows: 
 
struct PLANE 
{ 
    D3DXVECTOR3 Normal; 
    FLOAT     Distance; 
};  

 
It also assumes that we have allocated an array of six PLANE structures to hold the six frustum planes. 
 
PLANE Planes[6]; 

 
Finally, our code assumes that the projection matrix has already been set up correctly. 
 
D3DXMATRIX M;  //our projection matrix 
 
The following code extracts and normalizes the planes. If you prefer inward facing planes then simply 
remove the minus sign from the beginning of each line. 
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// Left clipping plane 
Planes[0].Normal.x = -(M._14 + M._11); 
Planes[0].Normal.y = -(M._24 + M._21); 
Planes[0].Normal.z = -(M._34 + M._31); 
Planes[0].Distance = -(M._44 + M._41); 
 
// Right clipping plane  
Planes[1].Normal.x = -(M._14 - M._11); 
Planes[1].Normal.y = -(M._24 - M._21); 
Planes[1].Normal.z = -(M._34 - M._31); 
Planes[1].Distance = -(M._44 - M._41); 
 
// Top clipping plane  
Planes[2].Normal.x = -(M._14 - M._12); 
Planes[2].Normal.y = -(M._24 - M._22); 
Planes[2].Normal.z = -(M._34 - M._32); 
Planes[2].Distance = -(M._44 - M._42); 
 
// Bottom clipping plane  
Planes[3].Normal.x = -(M._14 + M._12); 
Planes[3].Normal.y = -(M._24 + M._22); 
Planes[3].Normal.z = -(M._34 + M._32); 
Planes[3].Distance = -(M._44 + M._42); 
 
// Near clipping plane  
Planes[4].Normal.x = -(M._13); 
Planes[4].Normal.y = -(M._23); 
Planes[4].Normal.z = -(M._33); 
Planes[4].Distance = -(M._43); 
 
// Far clipping plane  
Planes[5].Normal.x = -(M._14 - M._13); 
Planes[5].Normal.y = -(M._24 - M._23); 
Planes[5].Normal.z = -(M._34 - M._33); 
Planes[5].Distance = -(M._44 - M._43); 
 
// Normalize the planes 
for ( int i = 0; i < 6; i++ )  
{ 
            // Get magnitude of Vector 
 float denom = 1.0f / D3DXVec3Length(&Planes[i].Normal);  
            Planes[i].Normal.x *= denom; 
 Planes[i].Normal.y *= denom; 
 Planes[i].Normal.z *= denom; 
 Planes[i].Distance *= denom; 
}  

 
It is worth mentioning that you are not required to normalize the planes if all you want to do is classify a 
point against a plane to see if it is in front or behind. The sign of the classification will be correct even if 
the planes are not normalized -- which is all you need for simple front/back tests. If you need to know 
the correct distance to the plane, then they will need to be normalized.  
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4.4.5 World Space Frustum Plane Extraction 

As mentioned, extracting the planes from the projection matrix results in planes defined in camera 
space. This means that the distance value of the Top, Bottom, Left and Right planes will always be zero. 
If this is the case, then why extract it at all? Why not just set it to 0 in the plane structure automatically? 
We do this is because we can combine the view matrix with the projection matrix, and without any 
alteration to our extraction code, extract the frustum planes in world space.  
 
The problem with our frustum planes being in camera space is that testing geometry or AABBs against 
these planes requires that we transform all objects from world space into camera space. With even a 
moderately sized scene, this can mean pushing a lot of vertices through the view matrix. With the 
frustum planes in world space, we do not have to do this since our objects (and their bounding volumes) 
are generally defined in world space to begin with. This is far more optimal. 
 

NOTE: The code to extract the frustum planes in world space is exactly the same as the code we have 
already created. All we have to do is combine the View Matrix and the Projection Matrix (multiply them 
together) prior to extracting the planes. This will automatically extract planes in world space. This is also 
why, in the previous code, we extracted the distance for the Top, Bottom, Left, and Right planes. In 
world space, the Left, Top, Right, and Bottom frustum planes (which always pass through the camera 
origin) may not be anywhere near the origin of world space. They might also be rotated at an angle so 
that the camera space Z axis is not aligned to the world space Z axis. In this situation the distance of 
each plane will be the distance from the plane to the origin of world space. Thus, the distances of all 
planes will most often not be zero anymore. 

 
To extract the frustum planes in world space, all we have to do is concatenate the view and projection 
matrices before running the plane extraction code: 
 
D3DXMatrixMultiply(&M , &ViewMatrix, &ProjMatrix); 

 
M is the matrix that stores the result of the matrix multiplication. 
 
What you must remember is that if the camera moves, we have to re-extract the frustum planes, because 
they move and rotate with the camera when the view matrix is updated. Usually this means extracting 
the frustum planes once each frame, or at least every time the view matrix is changed. This is not 
necessary if you are extracting planes in camera space since the projection matrix usually remains 
unchanged throughout the life of the application.  
 
Combining the view matrix with the projection matrix has the effect of rotating and translating the plane 
information using the camera’s position and orientation. Before we finish up here, let us see this 
working using some real numbers. We will use the same 60 degree projection matrix from our previous 
example, and we will create a new view matrix to test it out.  
 
For this example, let us set up a simple view matrix that will make things easy to follow. We will 
position the camera at (0,0,0) in world space (camera space origin=world space origin), but will rotate 
the camera 45 degrees to the right. The Up vector will be aligned with the world Up vector (0,1,0). 
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Note: Remember that all vectors MUST be unit length vectors in the view matrix 
 

RIGHT      UP     LOOK 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0707107.00707107.0
0010
0707107.00707107.0

 

 
 

In our example view matrix, the Look vector is pointing in equal proportion along the X and Z axes. 
Since the Look vector is actually the camera space Z axis, you should be able to see that the angle 
between the world Z Axis (0,0,1) and the camera space Z Axis (0.707107, 0, 0.707107) is 45 degrees. 
The Up vector (camera space Y) is the same as the world Y axis, since we have not pitched or rolled the 
camera at all. The angle between the Right vector (camera space X) and the world space X axis is also 
45 degrees -- as it should be.  
 
When we multiply the above matrix with our projection matrix, the frustum plane normals should be 
rotated 45 degrees. We will test this out by extracting the Left plane to make sure that this definitely 
works out.  

 
RIGHT      UP     LOOK                      X                       Y                        Z             W 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0707107.00707107.0
0010
0707107.00707107.0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

×

011111111.1100
111111111.100
00732050808.10
000299038109.1

 

                             View Matrix    Projection Matrix 
 
The resulting combined matrix is shown next: 
 

X                 Y                  Z                 W 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

0111111.1100
707107.0785674.00918559.0

00732051.10
707107.0785674.00918559.0

 

 
While the numbers in the above matrix may not immediately leap out at you as explaining what has 
happened, it is easy to verify our theory if we plot the X, Y, and W values on some graph paper. 
However, if you look at the new W vector, it should make things clear. Remember that this vector in the 
projection matrix points straight down the camera Z axis (W=0,0,1). In camera space this is always the 
camera Look vector. In the resulting matrix however, it has now been rotated to match the Look vector 
in the view matrix, which makes clear that it has been rotated 45 degrees. The same is true for the X, Y, 
and Z vectors – they have all been rotated 45 degrees as well.  
 



 

 290 

Fig 4.30 shows an example of a Left frustum plane extraction. The image on the left is the camera space 
version and it is identical to the one we saw earlier. On the right, we have plotted the vectors from the 
new combined matrix to see how the Left plane has been rotated. Recall that the normal vector and the 
distance for the left clip plane are still extracted as:  
 
Left Plane->Normal.X = - (m14 + m11) = 1.62566 
Left Plane->Normal.Y = - (m24 + m21) = 0 
Left Plane->Normal.Z = - (m34 + m31) = -0.211452 
Left Plane->Distance  = - (m44 + m41) = 0 
 
 

 
 

Figure 4.30 
 
The green arrows in Fig 4.30 show the plane normal stored in the matrix while the plane itself is shown 
by the thick blue lines. Notice in the image on the right (where we see the rotated camera) that the green 
vector has also been rotated – indicating the left plane has been rotated as well. 
 
Before finishing up here, it is worth mentioning that you can extract the frustum planes for model space 
testing using the following set of combined matrices: 
 
 WorldMatrix*ViewMatrix*ProjectionMatrix 
 
The world matrix would belong to the object whose local space you wish to run the test in. 
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4.4.6 Frustum Culling an AABB 

In order to test whether or not an AABB is within the frustum, we have to check each of the six frustum 
planes against the bounding box. You might be thinking that in order to test whether or not an AABB is 
within the frustum, all we have to do is check the eight corner points of the box to see if any of them are 
behind all the frustum planes and therefore at least partially contained within the frustum.  In fact, this is 
not sufficient, as Fig 4.31 demonstrates: 
  

 
Figure 4.31 

 
In Fig 4.31, although the corner points of the bounding box are outside the view frustum, the bounding 
box would still be considered partially visible, as one of its edges intersects the frustum.  
 
The solution is to test each plane against a single point on the bounding box. This point will be one of 
the corners of our bounding box, but which corner we use depends on the orientation of the current 
frustum plane being tested. If we imagine that the AABB is completely outside the frustum and just 
about to intersect the current plane being tested, the point we wish to test would be the first corner point 
on the box that would intersect it. This point is called the negative or near point. 
 
What we will do is examine each component of the plane normal, and select an appropriate AABB 
corner as the near point. We can then test this near point against the plane and if it is outside the plane 
then we know for a fact that the entire bounding box is also outside the frustum. This near point 
selection process will happen once for each plane, because each plane will have a different orientation. 
The basic concept is as follows: 
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For each frustum plane, we examine the components of the plane normal: 
 

• If the 'x' component of the plane normal is negative, then we use the bounding box's x maximum 
point as our near point's x component.  Otherwise, we use the bounding box's x minimum 
component.  

 
• If the 'y' component of the plane normal is negative, then we use the bounding box's y maximum 

point as our near point's y component.  Otherwise, we use the bounding box's y minimum 
component.  

• If the 'z' component of the plane normal is negative, then we use the bounding box's z maximum 
point as our near point's z component.  Otherwise, we use the bounding box's z minimum 
component.  

At this point, we will have constructed a near point (3D vector) to test against the current frustum plane. 
If this point is in front of the current plane (remember that frustum planes point outwards), then we can 
exit the test immediately. We do not have to check the other planes in this case, because the near point 
being outside (in front) of a plane tells us that the entire AABB must be outside the frustum. 

If the near point is behind the plane, then we must continue to test the other planes. For every plane that 
we test, we have to build a new near point using the logic above. Again, if at any point the current near 
point is in front of the current plane being tested, then we can exit the test and know that the AABB is 
completely outside the frustum.  If we test all six planes and do not find a near point that is in front of 
one of the planes, then this means that the AABB is at least partially inside the frustum. In our 
workbook example code, when this happens, the function returns a value of ‘true’ and the object will be 
rendered. 

If you are having trouble visualizing this concept, the following diagram should help. It depicts two 
AABBs (A and B) and a set of six frustum planes. 
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Let us imagine that we first want to 
check the left (L) clip plane of the 
frustum and the camera is facing due 
north. In this case, the left clip plane’s 
normal would be facing in the negative x 
direction, which means that we will use 
the AABB x maximum point as our near 
point x component. The same is true for 
the z component of the plane normal. 
This too would be a negative component, 
meaning we would use the AABB 
maximum z component as the near 
point’s z component. (Forget about y for 
now, because we are looking top-down 
and the plane has no y orientation.)  In 
this case then, the near point (corner 
point of the AABB) used will be in the 
top right of the box, as indicated by the 
green square (the left box in the 
diagram). Looking at this corner point on 
Box A and remembering that planes are 
infinite, you should be able to see that if 
this near point is in front of the left 
plane, the whole AABB must be as well 
-- and therefore there is no way that this 
AABB can be inside or even partially 
inside the frustum. 
 
When testing the right plane, a different 
near point is used because the plane 
normal’s x component now faces in a 
positive direction, which means we use 
the AABB's x minimum component as 
the near point’s x component. Z is still 
facing the same way (negative), so we 
still use the AABB's max z component. 
This gives us the corner indicated by the 
red boxes in the diagram 
 
Look at Box B and you should also be 
able to see that if the red corner is in 
front of the right plane, then the entire 
AABB must be also.   
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Let us do a quick run through for the bounding boxes depicted in the previous diagram. We will start 
with Box A.  First we test the left frustum plane, which creates the green near point seen above.  For 
Box A, the near point is in front of the left plane, so the box is not within the frustum and the function 
returns false.  Next we test Box B. Once again, we test the left plane against the near point (green 
corner) and discover that this point is behind the left plane. This means it might be within the frustum.  
In this case, instead of returning from the function, we move on to test the next plane, which in this case 
is the right plane. Because we are testing the right plane now, a different near point is created (the red 
corner) and tested against the right plane. In this case, however, the near point of Box B is in front of the 
right plane, so the entire AABB must be in front also. This causes the function to return false. We will 
do this for all six planes, unless we find that the current near point is in front of the current plane being 
tested. In summary, if an AABB is within the frustum, then the near points generated for it during the 
test will be behind all six of the planes. 

Let us now take a look at a function called IsBoxInFrustum, which will be passed a bounding box as two 
vectors (minimum and maximum extents) along with an array of six planes containing the frustum. The 
frustum planes should have already been extracted at this point and stored in this array using code 
similar to the extraction code discussed earlier. IsBoxInFrustum can be called while we are rendering to 
see whether an object about to be drawn can actually be seen given the current position and orientation 
of the camera represented by the input planes. If the function returns false, then we do not want to draw 
the object. The code is basically a bunch of conditional statements that build the near point for the 
current plane being tested. Once the near point is found, a simple dot product between the near point and 
the plane determines whether or not the near point is in front of or behind the plane: 

bool IsBoxInFrustum(D3DXVECTOR3 *bMin, D3DXVECTOR3 *bMax, PLANE *FrustumPlanes) 
{ 
 D3DXVECTOR3  NearPoint; 
 PLANE *Plane=FrustumPlanes; 
 
 for (int i=0;i<6;i++) 
 { 
   if (Plane->Normal. x > 0.0f) 
   { 
    if (Plane->Normal. y > 0.0f) 
    { 
     if (Plane->Normal. z > 0.0f) 
     { 
       NearPoint. x = bMin. x; NearPoint. y = bMin. y; NearPoint. z = bMin. z; 
     }  
     else 
     { 
       NearPoint. x = bMin. x; NearPoint. y = bMin. y; NearPoint. z = bMax. z; 
     } 
    } 
    else 
    { 
     if (Plane->Normal. z > 0.0f) 
      { 
       NearPoint. x = bMin. x; NearPoint. y = bMax. y; NearPoint. z = bMin. z; 
      } 
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        else 
        { 
         NearPoint. x = bMin. x; NearPoint. y = bMax. y; NearPoint. z = bMax. z; 
        } 
      }  
    } 
    else 
    { 
      if (Plane->Normal. y > 0.0f) 
       { 
        if (Plane->Normal. z > 0.0f) 
         { 
           NearPoint. x = bMax. x; NearPoint. y = bMin. y; NearPoint. z = bMin. z; 
         } 
         else 
         { 
           NearPoint. x = bMax. x; NearPoint. y = bMin. y; NearPoint. z = bMax. z; 
         } 
    } 
    else 
    { 
     if (Plane->Normal. z > 0.0f) 
      { 
         NearPoint. x = bMax. x; NearPoint. y = bMax. y; NearPoint. z = bMin. z; 
      }  
      else  
      { 
         NearPoint. x = bMax. x; NearPoint. y = bMax. y; NearPoint. z = bMax. z; 
      } 
    } 
 } 
 
    // near extreme point is outside, and thus AABB is outside the polyhedron 
    if(D3DXVec3Dot(&Plane->Normal, &NearPoint) + Plane->Distance > 0) return false; 
 
    Plane++;  
 } 
 
    return true; 
} 
 

 
The camera class in our lab project contains very similar code to what we have explored here in these 
last few sections. A function called CCamera::CalcFrustumPlanes takes no parameters and extracts the 
planes from the camera view matrix and stores them in the CCamera::m_Frustum array (an array of six 
plane structures). Although this function is called each frame to keep the world space frustum planes up 
to date, the camera maintains a Boolean variable called ‘m_FrustumDirty’ which is set to true only when 
the projection matrix or the view matrix has been updated. The function will test this Boolean and re-
extract the frustum planes only if one of these matrices has been altered. During the CTerrain::Render 
function, the bounding box of each terrain mesh is passed into the CCamera::BoundsInFrustum function. 
The call will return true if the bounding box is inside or partially inside the frustum and we will know 
that the terrain submesh needs to be rendered. Be sure to look at the source code to the CCamera class 
for more details. 
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This concludes our coverage of frustum culling for this course. However, in the next course in this 
series, our frustum culling code will take a significant leap forward. Not only will it allow for more 
bounding volume types to be tested, but it will also add code that distinguishes between ‘fully inside’ 
and ‘partially inside’. This will be important for the types of hierarchical bounding volume structures we 
will be working with in our engine design. Finally, we will add some optimization code that minimizes 
redundant plane testing in scene hierarchies and also provides frame-to-frame coherence (i.e. the 
intersection status that resulted in the last frame is often going to be the same in the next frame – we can 
speed things up considerably with this in mind).  Do not concern yourself with these issues for the 
moment. For now, just be sure that you understand the basic concepts discussed here in this lesson. We 
will be getting to more complex visibility determination strategies in due time.  

 

Conclusion 

We now have a good understanding of transformations, the view matrix, and the differences between 
various popular camera systems. We have also had another look at the projection matrix and now better 
understand the relationship it has with what things are considered visible and what items in the scene do 
not need to be drawn. Please turn to your workbook and examine the source code and additional 
discussion for this lesson. The camera and player classes we create in this lesson will provide a nice 
framework on which to build and refine your own camera systems down the road.  
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Chapter Five: 
 

 
Lighting 
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Introduction 

The interaction between light and the surfaces that reflect it is responsible for everything we see. 
Consider what happens when we enter a completely dark room. Until we turn on a light, we would be 
unable to see any of the objects within the room. Now imagine turning on a small overhead light bulb. 
As the light comes on, its energized photons are emitted outwards in all directions striking surfaces, 
being absorbed and reflected, each time losing a little more of their energy. Objects are now visible to us 
as the photons reflected off of their surfaces reach our eyes. The color of those objects depends on the 
frequency of the light as well as the various properties of the surface. If the surface properties were such 
that the surface would only reflect red light, then the blue and green color components of the light would 
be absorbed and only the red component would be reflected back to the viewer. This object would 
appear red to us. If we shone a green light at such a surface, the surface would appear black because it 
absorbs the green and blue components and only reflects red. Some surfaces, such as metal, are shiny 
and when light is reflected off of them we notice highlights on their surface. Again, this is a result of the 
properties of the surface, not the light itself.  
 
Given that light is ultimately responsible for what we see in the real world, it is fair to say that the more 
realistically we can model it in the virtual world, the more realistic our games will look. Light and 
shadow play a critical role in creating mood and establishing atmosphere in a game. A brightly lit 
dungeon is not likely to be very eerie or frightening from the player’s perspective. Lighting techniques 
are one of the most researched topics in the computer game industry and new and more sophisticated 
approaches are constantly evolving. The recent advent of programmable hardware shader programs 
really opened up new doors to game developers. You can see this reflected in many of the titles hitting 
shelves today. Creating realistic lighting effects that run in real time is a challenging task to say the least. 
This chapter starts us down that path.  
 
In this lesson we will assemble a mathematical model for scene lighting suitable for use in real-time 
applications. This model will necessarily be only an approximation (at best) since producing lighting 
that is even close to being physically correct is simply not possible on modern hardware. In the next 
course in this series we will examine techniques that generate more realistic looking lighting than the 
model we are about to study.  
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5.1 Lighting Models 

 

5.1.1 Emissive Illumination 

We begin our lighting model at the most basic level -- one where the surface itself emits its own 
illumination based on some inherent property of its material. We refer to this as the emissive property. 
One might think of a neon sign or even a light source itself as examples. The material produces its own 
illumination even in the absence of a specific external light source. 
 

5.1.2 Ambient Illumination 

When a surface reflects incoming light, those photons will strike other surfaces in the scene and 
contribute to their coloring. This process continues in all directions for every surface in the scene until 
eventually a global level of lighting is established and all surfaces are lit equally. This is referred to as 
indirect global illumination because all surfaces are lit indirectly as a result of light scatter from other 
surfaces rather than directly by a scene light source. A global ambient lighting term can be used to very 
roughly approximate this general effect of light scattering in the environment. This approach can be used 
to provide a constant global illumination level for all vertices in the scene. The ambient color will be set 
to a desired value that is added to each vertex color.  
 
Ambient light is useful when there are areas in the scene not affected by any of the direct light sources. 
Without ambient lighting (or an alternative technique), such areas would be rendered totally black. Since 
ambient light is evenly dispersed everywhere in the scene, it is applied to all vertices in equal amounts. 
As a result, we generally set it to a very low intensity so as not to interfere with the effects of our direct 
light sources. With only ambient light enabled and no other direct light sources in the scene, the color of 
each surface will be identical -- assuming that they all use the same material.  Fig 5.1 shows a cylinder 
and a sphere rendered only with a blue global ambient light setting. 
 
 

 
 

Figure 5.1  
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Fig 5.2 shows the same cylinder and sphere with no ambient light and one yellow point light source 
added to the scene and positioned between the cylinder and the sphere. We will examine point lights in 
the next section when we discuss direct lighting, but for now we notice that the vertices (and therefore 
the faces) that are facing away from the light source are not lit at all. This is because the vertex normals 
of the top cylinder face and those toward the back of the sphere are facing away from the light source.  
 

 
 

Figure 5.2 
 
Now look at the same cylinder and sphere lit with a white point light and a light grey global ambient 
light setting (Fig 5.3). All faces will include the minimum grey color even if they are not influenced by 
the point light:  
 
 

 
 

Figure 5.3 
 
As we will see later on, even direct light sources can include ambient light emitting properties to add to 
the global ambient light level of the scene. It should also be noted that in both of the diagrams above, it 
is assumed that the surface material reflects all ambient light. If the material did not reflect ambient 
light, then the ambient light color would have no effect on the final color of the rendered surface. This 
would indicate that the material absorbs all ambient light and reflects none back to the viewer. 
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While a global ambient lighting term is one way to make sure that surface vertices that are not directly 
influenced by the directional light sources in the scene do not remain completely black, the downside is 
that all surfaces will receive the same color. There are a number of ways around this limitation; one 
example would be to attach a directional light source to the player/camera that aligns with the Look 
vector. This is often called a headlight. Essentially it allows for a direct light source to affect areas of the 
scene in the player’s view where the static light sources may not have reached. It is not a perfect 
solution, but it can often produce satisfactory results.  

 

5.1.3 Direct Lighting 

Direct lighting generally makes the largest contribution to the final appearance of a surface. It is broken 
into two sub-categories: positional (where light emanates from a specific identifiable point in space) and 
directional (where light comes from a general direction whose source is infinitely far away).   
 
We can add light sources to a scene that have positions, orientations, ranges, colors, and intensities. The 
lighting engine can calculate which lights in the scene contribute to the color of every vertex rendered. 
Each vertex is first checked to see if it is within the range of a given light. If it is, light can be attenuated 
with respect to distance and the remaining light color (intensity) scaled by the cosine of the angle 
between the vertex normal and the vector describing the direction of the light source from that vertex. 
The resulting light color is then used to determine two different types of reflections: diffuse and 
specular. How much of that diffuse and specular color gets reflected depends on the material we 
currently have set. We will discuss materials later in the lesson. 
 
 
Diffuse Light 

The effect of a diffuse light source on a surface is dependant upon the spatial relationship between the 
two. When a surface is perpendicular to a directional light source then the full intensity of the light 
strikes the surface. When the surface is oriented at an arbitrary angle with respect to the light source, the 
intensity of the reflected light is reduced. Lambert’s Law describes the amount of diffuse light that 
strikes some point in space as the full intensity of the light scaled by the cosine of the angle between two 
vectors. The first of these vectors is a unit length vector describing the direction from the point in space 
to the light source. The second vector is another unit length vector describing the direction that point is 
facing.  
 
Fig 5.4 shows a ray of light striking a point on a surface, and the surface normal. If we invert and 
normalize the incoming light direction vector and perform the dot product between this vector and the 
face normal, the cosine of the angle returned can be used to scale the contribution of the incoming light 
source. 
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Figure 5.4 

 
In Chapter 3 we modeled the effect of incoming light at a particular surface point – a vertex. The 
assumption was that our terrain surfaces were ideal diffuse Lambertian surfaces that scatter light equally 
in all directions. We will continue to make that assumption for all diffuse surfaces in this lesson. 
 
The color of the surface at a particular point does not depend on the location or orientation of the viewer 
because light reflecting off of a diffuse surface travels equally in all directions. Together with the diffuse 
reflectance property of the currently set material, diffuse light is responsible for contributing to what we 
would perceive to be the actual color of a vertex. If we have a light that emits white diffuse light and we 
have a material that reflects only the red component of the diffuse light, then the vertex will appear to be 
red. 
 
When a vertex has its color calculated, the diffuse colors of all the direct lights that influence that vertex 
are combined. The position of each light source, the normal of the vertex, and the orientation, range, and 
attenuation of the light are all factors used to calculate the total diffuse light at a given vertex. This light 
is then modulated with the diffuse reflectance properties of the material to create the perceived color of 
the object. 
 

 
 

Figure 5.5 
 
Fig 5.5 shows the same cylinder and sphere lit by a white directional light source. No ambient light is 
used (global ambient light color = black). The material describes the diffuse reflection as medium grey 
where the angle between the incident light vector and the vertex normal is 0 degrees (they are facing 
each other exactly). As you can see, as the angle between the vertex normal and the incident light vector 
increases, the grey color is scaled down. At some point the incident light vector and the vertex normal is 
greater than 90 degrees. At that point the vertex will no longer be lit since its normal is facing in the 
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opposite direction of the light direction vector. With Gouraud shading enabled, the faces using such 
vertices fade away into darkness. 
 
Fig 5.6 shows a cylinder lit by a white directional light shining in from the left side. The material used 
reflects all incoming diffuse light. This means that if the entire object is lit by white light, the vertices 
will reflect all the white light that reaches it. However, take a close look at the image. 
 

 
 

Figure 5.6 
Notice that the vertices are only completely white at the exact points where the vertex normal and the 
incident light vector are the same. The other vertices reflect all diffuse light as well (because they use 
the same material) but they do not receive the same amount of light due to the angle between their 
vertex normals and the incident light vector.  
 
Fig 5.7 shows the same cylinder with the same intense white light shining on it. However, in this 
example, the material used by the cylinder only reflects green diffuse light. So the red and blue color 
components of the diffuse light that hit each vertex are totally absorbed and the object appears green.  
 
 

 
 

Figure 5.7 
 
Specular Light 

Specular lighting creates surface highlights that make objects appear shiny and smooth. Unlike diffuse 
lighting, specular lighting is view dependant because light is not scattered equally in all directions. A 
perfect specular surface (like a polished mirror) would reflect light such that it mirrored the incoming 
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ray. A rougher specular surface like a metallic facade introduces some scattering but nevertheless 
reflects light in a roughly mirrored fashion (i.e. still primarily along one directional axis). As the angular 
relationship between the camera look vector, the vector between the vertex and the viewer, and the 
vector between the vertex and the light source changes, the highlights will appear to move across the 
surface of the object.  
 

 
 

Figure 5.8 
 
In Fig 5.8, we see a sphere lit by a bright white diffuse light shining in from the right. The light also 
includes a white specular component. The material reflects green diffuse light and all specular light. 
The highlight helps us to gauge the location of the light source more accurately. This is another 
important visual cue that contributes to the overall realism of the lighting chosen for the scene. 
 
In addition to emitting a diffuse color, each light in our scene can be configured to emit a specular color 
using a separate property. This color will be modulated with the specular reflectance properties of the 
currently set material to control the color of the highlight. 
 
To better see that diffuse and specular colors are calculated separately, Fig 5.9 shows the same sphere 
and the same white light. This time we are using a material that reflects only blue diffuse light and red 
specular highlights. A dark green global ambient color is used to make the faces completely in shadow 
on the left side of the sphere visible. All of these colors are added together so that the red specular 
highlight has been modulated with the blue diffuse color to create a purple/pink highlight. 
 
 

 
 

Figure 5.9 
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5.1.4 The Basic Lighting Equation 

The total illumination (I) level of a vertex can now be described by: 
 

I = A + D + S + E 
 
A (Ambient Light) is the sum of the global ambient light color and the ambient color emitted from all 
lights that influence the vertex -- modulated by the material ambient reflectance property. 
 
D (Diffuse Light) is the sum of all the diffuse colors from each light source that influences the vertex -- 
modulated by the material diffuse reflectance property. 
 
S (Specular Light) is the sum of all specular colors from each light that influences the vertex -- 
modulated by the material specular reflectance property. 
 
E (Emissive Light) is a color that is emitted by the vertex itself, not by a light source. A material can be 
used that has an emissive color such that even if the vertex receives no light of any kind, the emissive 
color will contribute to the vertex color.   

 

5.2 DirectX Graphics – The Lighting Pipeline 

The DirectX Graphics fixed function pipeline conducts lighting operations at the per-vertex level. This 
is the lighting we looked at in Chapter 3 when we added color to our terrain. Vertex lighting is generally 
fast enough to be done dynamically, but it does have limitations. We will discuss some of the benefits 
and limitations of including vertex level lighting support in our games later in the lesson.  
 
In the CTerrain::BuildMeshes function in Lab Project 3.2, we calculated the color of each vertex in our 
terrain by generating a temporary vertex normal using heightmap data. This normal was used to measure 
the angle between the vertex and the incoming light’s direction vector using the dot product. The cosine 
of the angle between these two vectors scaled the color and then we stored the color in the vertex. As 
each triangle was rendered, the colors stored at each vertex in the triangle were interpolated across the 
surface during rendering (Gouraud shading). This was simple but effective vertex lighting and is not 
much different from what we are going to see throughout this lesson. The calculations will be a bit more 
complicated at times, but the concepts will be the same. 
 
We did not enable the DirectX lighting pipeline in our demo because we had already lit the vertices 
when the terrain was assembled.  The device was told that the vertices already contained their colors and 
dynamic calculation was unnecessary. The obvious drawback with this technique is that it is completely 
static. If we wanted to change the direction a light was shining, we would need to recalculate the lighting 
for every vertex affected by that light all over again. This is a slow CPU bound process and our 
preference is not to have to run it in real time. But enabling the DirectX Graphics lighting module allows 
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for hardware – or fast software – lighting of vertices that can be run in real time applications. If the 
graphics card does not have hardware support for lighting, then we can create a software vertex 
processing device and the DirectX graphics software lighting module will be used instead. Although it 
runs on the CPU, the software lighting module that ships with DirectX Graphics is actually very 
respectable performance-wise and can be used in commercial applications.  
 
When we call one of the DrawPrimitive functions with lighting enabled, the vertices passed in (typically 
in a vertex buffer) will not only be transformed but will also have their color calculated. We will no 
longer store a color value in our vertex which describes the final color of the vertex but will instead store 
a vertex normal at each vertex describing the direction the vertex is facing in model space. When a 
vertex position is transformed, so is its normal. Once the vertices are fully transformed, the lighting 
module will take into account all of the active light sources in the scene to determine their influence on a 
particular vertex. If a vertex is within the range of the light’s influence, that light’s color, and the angle 
between the vertex normal and the light direction vector (along with a few other factors to be explored 
later in the lesson) will be used to determine a final vertex color.  
 
Adding lights to a scene is not sufficient to inform the lighting pipeline how the vertex should have its 
final color calculated. The way a surface reflects light is a major factor in determining the final color. As 
we will discover a little later in the lesson, a material (a collection of reflectance property settings) will 
describe how light should be reflected or absorbed by a vertex.  
 
 

Note: there are alternative approaches that do not transform the vertex normals directly but instead 
back transform light sources into local model space using inverse matrices. This is done for efficiency; the 
results are the same.  

 
 

5.2.1 Enabling DirectX Graphics Lighting 

In order to effectively use the DirectX Graphics lighting pipeline we will need to do the following: 
 

• Enable the lighting pipeline 
• Ensure that all vertices that need to be lit include vertex normals. 
• Add lights to the scene. 
• Define and set materials to describe the reflectance properties of the vertices. 

 
Enabling/Disabling the lighting pipeline is done using the IDirect3DDevice9::SetRenderState function: 
 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); //enables Direct3D lighting module 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); //disables Direct3D lighting module 

 
One thing to bear in mind is that an application can mix pre-lit meshes with unlit meshes. In a space 
based game you may want to light all of the vertices of your space craft and planets using the light from 
a local sun or nebula. The color of each vertex will be calculated based on the orientation of the meshes 
with respect to the light sources. So objects in the scene would use unlit vertices with vertex normals so 
that they can be updated dynamically. 
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But we may also want to render a HUD (heads-up display) to provide information about the speed of the 
craft, laser energy remaining, shield integrity, etc. We would probably want this HUD to be a constant 
brightness at all times. You would not want the HUD information to become dull or perhaps even 
unreadable when the pilot positioned his spaceship such that the HUD was facing away from a light 
source. In the case of the HUD, you will make sure that the vertices store the colors themselves. After all 
other objects had been rendered you could disable lighting and render the HUD using pre-lit vertices. A 
render loop that uses both types might look like: 
 
m_pDevice->BeginScene() 
 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, TRUE ); 
 
CSpaceCraft->Render(); // This mesh does not have its final color stored in the vertex. 
                       // It includes vertex normals defined in model space.  
                       // The lighting pipeline will use this to calculate the vertices 
                       // final color by calculating the relationship between light sources 
                       // in the scene and each vertex  
 
m_pD3DDevice->SetRenderState( D3DRS_LIGHTING, FALSE ); 
 
CHeadsUpDisplay->Render(); // This mesh’s vertices have no vertex normals. 
                           // Color is stored in the diffuse member of the vertex  
                           // structure. This is the type of mesh we have been using in  
                           // previous applications. 
m_pDevice->EndScene(); 

 
 
Enabling Specular Highlights 

Specular highlights are not calculated by the lighting pipeline by default so you must explicitly turn on 
the specular calculations with the following render state: 
 
IDirect3DDevice9::SetRenderState(D3DRS_SPECULARENABLE, TRUE) // enable specular highlights 
IDirect3DDevice9::SetRenderState(D3DRS_SPECULARENABLE, FALSE)// disable specular highlights 

 
Enabling specular highlighting will reduce performance to some degree, but it does dramatically add to 
the realism of the scene.  
 
Enabling Global Ambient Lighting 

To set the global ambient color in DirectX Graphics, we must enable the lighting pipeline and then set 
the appropriate render state for the device: 
 
//                    A R G B 
DWORD MyCOLORARGB = 0x00FF0000; 
m_pd3dDevice->SetRenderState( D3DRS_AMBIENT, MyCOLORARGB); 

 
We specify the color of the ambient light as an ARGB DWORD. Each byte holds a value in the range 
[0, 255] for each of the alpha, red, green, and blue components. In lighting calculations, the alpha 
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component has no effect and can be set to zero. The color value that we specify here will be added to 
each vertex that is rendered while this render state is set. We can change the color of the ambient light at 
any point throughout the lifetime of our application by calling the above function again and specifying 
the new ambient light color. 
 

5.2.2 Lighting Vertex Formats 

The vertices we have used in previous applications have been using a pre-lit format, where the color 
stored in the diffuse component of the vertex is sent directly to the rasterizer for color interpolation 
across the pixels of the triangle. In order to use the DirectX lighting pipeline, we must store a vertex 
normal in our vertex structure. 
 
struct UnlitVertex 
{ 
     float x; 
     float y; 
     float z; 
     D3DXVECTOR3 Normal; 
}; 

 
We have removed the diffuse color component from our vertex structure and added a new 3D vector 
member called Normal to hold the orientation of the vertex in model space. The following code snippet 
is from Lab Project 5.1 (in CObject.h) and shows our new CVertex class: 
 
class CVertex 
{ 
public: 
     
    // Constructors & Destructors for This Class. 
    CVertex( float fX, float fY, float fZ, const D3DXVECTOR3& vecNormal )  
                  { x = fX; y = fY; z = fZ; Normal = vecNormal; } 
     
    CVertex()   { x = 0.0f; y = 0.0f; z = 0.0f; Normal = D3DXVECTOR3( 0, 0, 0 ); } 
 
    // Public Variables for This Class 
     
    float       x;                               // Vertex Position X Component 
    float       y;                               // Vertex Position Y Component 
    float       z;                               // Vertex Position Z Component 
    D3DXVECTOR3 Normal;     // Vertex Normal 
 }; 

 
Most of the time, we will load geometry from a file that was created using a world editor such as 
GILES™ or a modeling package like 3D Studio MAX™. Vertex normals are often calculated in the 
editor and saved into the file so that the application can load the data directly into vertex buffers. Later 
in the lesson, we will load in an IWF file exported from GILES™ to see how to extract the appropriate 
vertex information. There may be times however when you will need to calculate vertex normals 
yourself, so let us take a look at what vertex normals are used for and how they can be generated. 
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Vertex Normals 

Your first thought might be to simply supply DirectX Graphics with a surface normal for each triangle 
we render. Or perhaps even better, the DirectX pipeline could generate the face normal for our triangle 
automatically and just use it on the spot. But this will not work. First, a vertex may be shared by two or 
more faces and each face might have completely different surface normals. Second, The DirectX 
Graphics pipeline calculates the lighting in the transformation and lighting stage. This occurs before the 
vertices are assembled into primitives to be rendered. When using a software vertex processing device, 
the device will transform and light an entire range of vertices long before any per-triangle relationship 
has been established. And of course, the purpose of the lighting calculation module is to generate colors 
for each vertex, not just for each face.  
 
 
Since a vertex is a single point in space, it may be a little strange to think of it having its own 
orientation. But in fact this is actually not so confusing if you consider a vertex to be a single sample 
point on a surface where we can collect light. We recall that a triangle is planar and that the plane itself 
has orientation. The vertices themselves share that orientation – as would all points on that plane. 
 
Imagine if you took a single triangle and subdivided it into millions of smaller triangles. Now we can 
think of the vertices of these sub-triangles as tiny points filling the surface. Our light will strike these 
points and be reflected based on the orientation of the surface. Since the surface is really the sum of its 
parts (the tiny triangles) it would make sense that they all assume the same orientation in space. If we 
were to bend the corner points of the big triangle such that we created a curved bulging surface, we 
recognize that the orientations of many of those subtriangles -- and thus their vertices -- changes. Now 
imagine the little triangles starting to merge together, welding themselves into larger triangles. The 
curve starts to become less smooth as the process moves along. The orientation of a specific vertex on 
the surface becomes more of an average orientation based on the triangles meeting at that point. Of 
course, this was always the case from the beginning, even before we bent the triangle. It is just that the 
average normal for the subtriangle vertices in that case would always result in the same value: the 
normal of the surface.  
 
Assigning a normal to each vertex gives us finer control of the color that gets generated. Vertices 
belonging to the same triangle can each have different vertex normals. Each can describe an average 
orientation of triangles that meet at that point, rather than just the orientation of a single parent triangle. 
This provides smoother shading effects. The more vertices (and vertex normals) available to capture 
light samples, the more accurate a lighting model we achieve.   
 
The cube in Fig 5.10 image depicts vertex normals that are the same as their parent surface normal. The 
arrows depict the direction of the vertex normals belonging to each face.  
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Figure 5.10 

 
This arrangement actually works well for a cube since each face of the cube reacts to the light as a 
whole. The top face is a lighter shade of gray because its surface normal is parallel to the light source 
shining down. The front and side faces are not so brightly lit because they point away. Using a single 
surface normal for each face of the cube provides very sharp and distinct edges. It is easy to see where 
one face ends and the next face begins. Note that there are three vertex normals at each corner point of 
the cube. In this particular case, we find ourselves back in a situation where we need to duplicate 
vertices between faces. At any given corner of the cube, there are three vertices with duplicated 
positions and different vertex normals.  
 
The cube example is a rare case where we typically do not want to share vertex normals because we 
want a sharp and defined edge between each face. In Chapter 3 we learned that eliminating this sort of 
redundancy is very desirable. We did this by generating normals for shared vertices that were an average 
of the normals of all of the faces to which a shared vertex belongs. Fig 5.11 shows a cylinder with 
duplicated vertices. 
 

 
Figure 5.11 

 
Just like the cube, each face in the cylinder above has its own unique set of vertices. Each vertex has a 
normal that is equal to the face normal to which it belongs. Unlike the cube mesh however, a cylinder 
mesh should usually be perceived as a more rounded object. Sharp and defined edges between faces are 
not ideal. 
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Fig 5.12 shows the same cylinder where the side faces share vertices with neighboring faces. Each 
vertex is shared by two faces and the color in both faces at that point is the same. We no longer have 
sharp color changes as we move from one face to the next. This makes for a more rounded appearance. 
Note that the top face does maintain its own unique set of vertices because we do want a sharp edge 
between it and the side faces. 

 
Figure 5.12 

 
The vertex normals that are shared among faces have been averaged so that they are no longer aligned 
with any particular face normal. Their orientations describe a vector halfway between the two parent 
face normals.  
 
It is easy to generate averaged normals. Simply calculate a normal for each face to which the vertex 
belongs, add them together, and normalize the result to ensure a unit length vector.  
 
D3DXVECTOR3 CalculateVertexNormal( int VertexIndex , int *IndexArray ) 
{ 
  D3DXVECTOR3 VertexNormal ( 0.0f , 0.0f , 0.0f ) 
  for (int a=0; a< NumberOfIndices/3;a+=3) 
   { 
      int index1 = IndexArray[a]; 
      int index2 = IndexArray[a+1]; 
      int index3 = IndexArray[a+2]; 
     
      if ( index1==VertexIndex || index2==VertexIndex || index3==VertexIndex) 
      { 
           VertexNormal += CrossProduct ( index1 , index2 , index3); 
      } 
   } 
   Normalize (&VertexNormal); 
   return VertexNormal; 
} 

 
The code snippet above assumes that IndexArray is a list of triangle indices. It accepts a vertex index 
and then checks to see if any triangles reference that vertex. If so, then the cross product is performed on 
the three vertices and the resulting face normal is added to VertexNormal. At the end of the function, we 
normalize the result to ensure unit length and return the average vector. Obviously the code completely 
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depends on how the vertex and index data is stored. But it should give you enough of an idea to use it as 
a template to write your own function. 
 
With each vertex now storing its own normal, the pipeline line has what it needs to accurately the 
compare the relationship between the direction the vertex is facing and the orientation of any lights in 
the scene.  
 
There is one important thing to note about the use of vertex normals and the DirectX lighting pipeline. 
Vertex normals are transformed by the upper 3x3 portion of the currently set world matrix (technically 
the concatenated world/view matrix) during the render call. This insures proper world space orientation 
for the normal since it is assumed that the vertex normals passed in were created using model space data. 
If your world transformation matrix uses a scaling component, this will be part of that upper 3x3 matrix 
(see Chapter 1). This scaling creates an undesirable outcome since the normals that are scaled will wind 
up losing their unit length status. When this happens, the results of the dot product used in the lighting 
equation will be affected and the lighting engine will not produce correct results. To address this 
problem, there are two solutions.  
 
The first solution is provided by DirectX. There is a render state that can be activated prior to the call to 
DrawPrimitive that will re-normalize the vertex normal data after the transformation. As you might 
imagine, this can be a costly operation since normalization involves three multiplications and a square 
root calculation. To enable and disable this render state, simply call: 
 
IDirect3DDevice9::SetRenderState(D3DRS_NORMALIZENORMALS, TRUE);   //turn on  
IDirect3DDevice9::SetRenderState(D3DRS_NORMALIZENORMALS, FALSE);  //turn off  
 
The second solution, which is generally preferable, is not to include scaling data in your world matrices. 
That is, make sure that your models conform to the appropriate world scale before you export them from 
your modeling package. While this may sound like a cop out and it is indeed nice to be able to scale 
models on the fly, we generally prefer to avoid the overhead of the per-vertex re-normalization 
processing in a real-time situation. 
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5.2.3 Setting Lights 

DirectX Graphics allows your application to store a set of properties for each light in your scene in an 
array of memory slots on the device. IDirect3DDevice9::SetLight is called to assign light properties to 
specific memory slots.  Calling IDirect3DDevice9::SetLight by itself does not make a light active. By 
default, lights are disabled until explicitly turned on, even after they have been set. The device simply 
stores these settings until such time as you enable that light with a call to 
IDirect3DDevice9::LightEnable.  
 
HRESULT IDirect3DDevice9::SetLight(DWORD Index, CONST D3DLIGHT9 *plight) 
 
DWORD Index 
This zero-based offset is used to specify the desired slot for the property set contained in the second 
parameter.  
 
D3DLIGHT9 *plight 
The second parameter to the SetLight function will be the address of a D3DLIGHT9 structure. This 
structure contains settings which describe how a light should be used by the device to contribute to 
vertex coloring. These settings include the type of light it is, the position of the light in the world, the 
direction the light is facing, the range of the light and many other properties which will be discussed in 
this lesson.  
 
typedef struct _D3DLIGHT9 
{ 
    D3DLIGHTTYPE    Type; 
    D3DCOLORVALUE   Diffuse; 
    D3DCOLORVALUE   Specular; 
    D3DCOLORVALUE   Ambient; 
    D3DVECTOR       Position; 
    D3DVECTOR       Direction; 
    float           Range; 
    float           Falloff; 
    float           Attenuation0; 
    float           Attenuation1; 
    float           Attenuation2; 
    float           Theta; 
    float           Phi; 

} D3DLIGHT9; 
 
The light type you choose to create determines which members need to be filled in. For example, the 
Theta and Phi values are only used by the device if the light is of type D3DLIGHT_SPOT (a spot light).  
 
Your application can call IDirect3DDevice9::SetLight at any time to update light properties. This allows 
for dynamic effects like pulsing lights or lights that move about the level. In Lab Project 5.1, we will use 
this technique to move some lights around our terrain in real time. 
 
 
 



 

 314 

Light Limits 

There is no maximum limit on the number of lights that you can set (memory permitting), but there is a 
limit on the number of lights that can be active at any one time. This limit is generally eight active lights 
even on many of the latest 3D graphics cards. You can find out how many lights can be simultaneously 
enabled by checking the MaxActiveLights member of the D3DCAPS9 structure. The following snippet of 
code demonstrates how you could retrieve and store the number of active lights supported by the current 
device.  
 
DWORD     MaxLights; 
D3DCAPS9 DeviceCaps; 
pD3DDevice->GetDeviceCaps (&DeviceCaps); 
MaxLights = DeviceCaps.MaxActiveLights; 
 
Although this limit might seem off-putting at first, it is quite unlikely that the application would need 
any more than eight lights to affect a single vertex. Often only two or three will suffice. Too many lights 
may result in washing out the vertex as the light colors are accumulated.  
 
While the light limit does not pose a problem from the perspective of a single vertex, it is common that a 
game world will have many lights, perhaps even hundreds. So the active light limit does mean that we 
will need to implement some form of light management system that enables lights in the immediate 
vicinity of the object being drawn and disables the rest.  
 
Finally, although vertex lighting is fast when compared to other more complex lighting techniques, each 
light adds a per-vertex cost. Keeping the number of lights for any particular group of vertices to a 
minimum is an important performance consideration. 
 
Lab Project 5.2 will implement a basic light management system. It will load in level data created with 
the GILES™ level editor that will have many lights in it. We will learn how to implement a system that 
allows us to enable only the minimum amount of lights for each rendered object and still achieve good 
visual results. 
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5.3 Light Types 

There are three types of direct light sources that can be added to the scene with the SetLight function. 
Each behaves differently and requires certain members of the D3DLIGHT9 structure to be filled in 
correctly. DirectX Graphics supports point lights, spot lights and directional lights.  
 
typedef enum _D3DLIGHTTYPE  
{ 
    D3DLIGHT_POINT = 1, 
    D3DLIGHT_SPOT = 2, 
    D3DLIGHT_DIRECTIONAL = 3, 
    D3DLIGHT_FORCE_DWORD = 0x7fffffff 
} D3DLIGHTTYPE; 
 
 
 

5.3.1 Point Lights 

 
Figure 5.13 

 
Point lights will probably be a light type you will use very often, as it works much like a light bulb in the 
real world. When we create a point light, we supply a world space position as well as a range value that 
describes a spherical bounding radius around the light position. This is the range of the light’s intensity. 
Any vertices that are close enough to the light source to fall within its radius will have their color 
influenced to some degree, provided the vertex is not facing away from the light source. Point lights 
emit light from the center outward in all directions as Fig 5.13 shows.  
 
A point light can be initialized so that the amount of light a vertex within its range receives is scaled by 
the distance from the vertex to the light. This property is called attenuation. The D3DLIGHT9 structure 
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has three attenuation members that allow us to supply constants to be used in the attenuation equation. 
We will talk about this equation in more detail later in the lesson. Vertices that are outside the range of 
the light are not influenced by the light at all and are quickly rejected by the lighting module. At the 
outer ranges of the point light radius the contribution of that light on the vertex is very slight. Vertices 
gradually fade out of range rather than transitioning abruptly at the boundary of the sphere. This 
minimizes any sudden changes from light to dark. 
 
The following code sets up a point light that emits yellow diffuse light, white specular light, and dark 
blue ambient light. 
 
D3DLIGHT9 MyPointLight; 
MyPointLight.Type = D3DLIGHT_POINT; 

 
First we fill in the desired light type, which in this case is a point light. Next we will setup the three 
color values that any light source can emit: diffuse, specular, and ambient. Each is represented in the 
D3DLIGHT9 structure as a D3DCOLORVALUE structure: 
 
typedef struct _D3DCOLORVALUE  
{ 
    float r; 
    float g; 
    float b; 
    float a; 
} D3DCOLORVALUE; 
 
Each member is normally in the range [0.0, 1.0] although numbers outside the range can be used. A 
value of 1.0 for any color component means the component is at full intensity. If we set the r, g, and b 
fields to 1.0 then the color will be bright white. If we set all the members to 0.0, the color will be black. 
The alpha component is ignored when specifying light colors. 
 
MyPointLight.Diffuse.r = 1.0f; 
MyPointLight.Diffuse.g = 1.0f; 
MyPointLight.Diffuse.b = 0.0f; 

 
If the currently set material reflects the red and green components of diffuse light, then the vertex color 
will have the resulting yellow diffuse color added to its color. Next we can set up the specular color of 
the light source. Usually you will want specular highlights to be white, but you can set any value you 
wish:  
 
MyPointLight.Specular.r = 1.0f; 
MyPointLight.Specular.g = 1.0f; 
MyPointLight.Specular.b = 1.0f; 

 
Because specular lighting is view dependant, the number of vertices that have their color modified by 
the specular calculation is typically small – although the calculation itself still takes place for each. The 
angle between the camera, the vertex and the light direction vector is used to scale the specular color of 
the light source.  Then the color is scaled by the attenuation values so that the distance from the vertex to 
the position of the light is taken into account. The remaining color is modulated with the specular 
reflectance property of the material and added to the diffuse color and ambient color of the vertex. 
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Figure 5.14 
 
The sphere in Fig 5.14 has a material that reflects all diffuse, specular, and ambient light. The specular 
highlights are white even though the color of the sphere is mostly yellow. The sphere is reflecting all of 
the yellow light it receives. Notice that the polygons facing away from the light source are colored by 
dark blue ambient light. 
 
The D3DLIGHT9 structure includes an Ambient member. Earlier we talked about ambient lighting at 
the global level set through a render state call. Additionally, each light source can also emit its own 
ambient light color which is used when the ambient light for each vertex is calculated by the pipeline. 
The ambient light that is added to each vertex is equal to the sum of the global ambient light color and 
all of the other ambient lights that influence that vertex. The following code sets the ambient light 
emitted by the light source to dark blue. 
 
MyPointLight.Ambient.r = 0.0f; 
MyPointLight.Ambient.g = 0.0f; 
MyPointLight.Ambient.b = 0.2f; 

 
When a vertex is in range of a light source that includes an ambient color, the ambient light color is also 
added to the vertex color. Vertex normal orientation is not a factor here. However, unlike the global 
ambient light level that is applied to all vertices equally, the ambient color applied to each vertex from 
the direct light source is attenuated and is only received by vertices within the range of the light source. 
In Fig 5.14, no global ambient light level was used so only the vertices within the range of the light 
source were updated 
 
Position 
 
Point lights and spot lights are both positional light sources with actual locations in the world. With a 
point light, light is emitted from this position equally in all directions. This is analogous to real life, 
where a bed side lamp for example emits light from a position in the real world -- the position of the 
light bulb.  
 
To set the light position we fill in the Position member of the D3DLIGHT9 structure. For example, to set 
the world space position of the light source to location (40, 90, 20): 
 
MyPointLight.Position = D3DXVECTOR3(40.0f , 90.0f , 20.0f );   
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Direction 
 
Direction is a unit length 3D vector which specifies the direction that the light source is shining. Point 
lights emit light equally in all directions so this member will not be used for this light type. Directional 
lights and spot lights do not emit light equally in all directions and we will specify an orientation vector 
for those light sources. 
 
Range 
 
Range determines the outer boundary of the light source. Point lights and spot lights use the Range 
member to determine if a particular vertex falls within their zone of influence. Directional light sources 
do not specify a range because they are infinite. For a point light, range describes a spherical radius. 
DirectX Graphics can quickly calculate whether a vertex is outside this sphere and reject it before more 
costly calculations are done.  
 
FallOff 
 
The FallOff member of the D3DLIGHT9 structure is only used with spot lights. We will discuss the 
FallOff member when we discuss spot lights later in the lesson. 
 
Attenuation 
 
Under normal circumstances the illumination from a point light source decreases according to the 
inverse square of the distance between the light source and the surface (or vertex in this case): 
 

Attenuation   =   1/D2 
 

D = | (VertexPosition – LightPosition) | 
 
Attenuation scales the intensity of the light as distance increases between the light source and the 
surface. The problem with using the attenuation formula above is that as distance values get closer to the 
maximum range of the light source, the difference between values becomes insignificant. As distance 
gets closer to zero the variations become much larger very quickly. Coefficients and new variables can 
be added to the equation to address some of these concerns: 
  

Color(current)  = 
)3()2(1

1
2DnAttenuatioDnAttenuationAttenuatio ×+×+

 * Color(orig) 

 
The Attenuation1 member describes a constant attenuation factor, Attenuation2 describes a linear 
attenuation factor, and Attenuation3 describes a squared attenuation factor. These values taken 
together can create a variety of attenuation curves. Notice that the equation does not take account of the 
Range value of the light source in any way. The constant value allows us to avoid 0 in the denominator. 
 
Generating the correct attenuation curve requires some degree of experimentation to get the correct 
falloff over the range of the light. Vertices that are outside the range of the light are not lit at all, so if 
you do not set the attenuation values properly (so that the intensity of the light degrades to 
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approximately zero as D reaches the range of the light), you will see a sharp cutoff point. Therefore you 
must think carefully about the values you use. For example, if you set the following attenuation values, 
you would get no attenuation at all: 
 

Attenuation1 = 1.0    Attenuation2 = 0.0     Attenuation3 = 0.0 
 

Attenuation Value = 
)0()0(1

1
2DD ×+×+

= 1.0 

 
Color(current)  = Attenuation Value * Color(orig) 

 
Color(current)  = Color(orig) 

 
In this case vertices within the range of the light are lit with the same intensity irrespective of the 
distance between the vertex and light source. If you want your light intensity to attenuate, then you will 
often have to experiment with these values so that they provide attenuation consistent with the range of 
the light. One easy way to do this is to manipulate the values in a spreadsheet so that the intensity of the 
light is near zero at the light’s range.  
 
In the following attenuation graphs, the point light source has a range of 200 world units. The goal is to 
find values such that the light intensity is close to full power (1.0) at a distance of zero from the light 
source and decreased to nearly zero near the outer range (i.e. at a distance of 200 units from the light). 
 
Example 1:            Attenuation1 = 1.0     Attenuation2 = 0.0002     Attenuation3 = 0.0009 

 

 
 

The above graph shows how the color emitted from the light would be scaled by distance. At a distance 
of 200 units it is close enough to zero not to produce a noticeable illumination discontinuity at the edge 
of the light’s range. Changing the attenuation values allows you to modify the shape of the graph. This is 
certainly not a very linear attenuation. Look at the way the curve dips within the first 90 units of the 
light’s range. Only 50 units from the light source, the color that would reach the vertex is less than half 
of its full intensity.  
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The results are subjective and it can take some trial and error to find an attenuation curve you are happy 
with. Often you will not be able to manipulate the coefficients of the equation to produce the exact curve 
that you desire but you can usually find something that looks good in practice.  
 
In this next example, we used some different attenuation values for the same light source. Once again, 
the goal is to make the attenuation decrease as near to zero as possible at the light’s max range. The 
following values are not quite as successful at doing this as the last example, but it does provide a more 
linear attenuation. 
 
Example 2:             Attenuation1 = 1.0      Attenuation2 = 0.004     Attenuation3 = 0.0001 
 

 
 
The graph above indicates a much more linear falloff, but at the max range (200) the light intensity is 
still just under 0.2. This indicates that vertices just inside the range will still be receiving 20% of the 
light’s full power while vertices just outside the lights range will receive none. This may cause a visual 
glitch in the lighting but it is not likely to be too noticeable.  
 
Adjusting the squared coefficient from 0.0001 to 0.0007 drastically alters the shape of the graph so that 
it is very close to zero at the light’s range but without as linear an attenuation: 
 
 
Example 3:                Attenuation1 = 1.0          Attenuation2 = 0.004     Attenuation3 = 0.0007 
  

 



 

  
 

321

If you wish your light source to have its intensity attenuate, you will need to create attenuation values 
that suit the range of your light source. The above values would not be at all suitable for a light that only 
had a range of 30 units because at the light’s outer range, the vertex would still receive approximately 
65% of the color. This would cause a steep decline in illumination for vertices just outside the lights 
range.  
 
For those of you familiar with the Microsoft Excel® spreadsheet application, we have included with this 
lesson the spreadsheet used to create the attenuation graphs in the previous pages. This will allow you to 
experiment with the coefficients to produce settings that suit your own light sources.  
 
Point lights and spot lights both use the Attenuation1, Attenuation2, and Attenuation3 members of the 
D3DLIGHT9 structure as coefficients in an equation that scales light intensity based on the distance from 
the vertex to the light source.  Directional lights do not use the attenuation values because they have 
infinite range. 
 
Theta and Phi 
 
Theta and Phi are only used for spotlights. We will cover spot lights in the next section. 
 
 
In this next example, we will create a point light at world space position (10, 60, 20) with a range of 200 
units. We will use the attenuation settings from our final attenuation graph above. 
 
// Setup a point light 
D3DLIGHT9 MyLight; 
ZeroMemory(&MyLight , sizeof(D3DLIGHT9)); 
 
MyLight.Type  = D3DLIGHT_POINT;                // Point Light 
 
MyLight.Diffuse.a  = 1.0f;                     // Blue Diffuse Light 
MyLight.Diffuse.r  = 0.0f;       
MyLight.Diffuse.g  = 0.0f; 
MyLight.Diffuse.b  = 1.0f; 
 
MyLight.Specular.a = 1.0f;                     // White Specular Light 
MyLight.Specular.r = 1.0f;       
MyLight.Specular.g = 1.0f; 
MyLight.Specular.b = 1.0f; 
 
MyLight.Ambient.a  = 1.0f;                     // Dark Grey Ambient Light     
MyLight.Ambient.r  = 0.2f;       
MyLight.Ambient.g  = 0.2f; 
MyLight.Ambient.b  = 0.2f; 
 
MyLight.Position  = D3DXVECTOR (10.0f , 60.0f , 20.0f);    // Position 
MyLight.Range     = 200;                                   // Range         
 
 
MyLight.Attenuation0 = 1.0f;                   // Attenuation Coefficients                          
MyLight.Attenuation1 = 0.004; 
MyLight.Attenuation2 = 0.0007; 
 
m_pDevice->SetLight   (0, &MyLight);           // Set this light as light index zero                
m_pDevice->LightEnable(0, TRUE);               // Turn the light on      
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5.3.2 Spot Lights 

A spot light is a positional light that emits light in a specific direction. A DirectX spot light is very much 
like the type of spot light you would see in a theatre: a cone shaped beam of light shining toward the 
stage. The cone can be narrowed or widened to focus the beam of light on a single actor or an entire 
cast. When we fill in the D3DLIGHT9 structure for a spot light, we set the position and direction of the 
light vectors in the D3DLIGHT9 Position and Direction members respectively. The Phi and Theta 
members are angle values used to define the light cone exiting the spotlight and traveling along its 
direction vector. Just as a point light has a sphere of influence in which all vertices inside it are 
considered for lighting, the Phi and Theta members define a cone of influence for the spot light. 
Technically, these values describe two cones of influence: an inner and outer cone as we will see 
momentarily.  
 

 
Figure 5.15 

 
Let us begin by discussing which members of the D3DLIGHT9 structure are used to create a spot light 
effect and how to fill them in correctly. 
 
Diffuse, Ambient, and Specular 
The diffuse, ambient, and specular members of the D3DLIGHT9 structure are the same for spot lights as 
they were for point lights. They describe the diffuse, ambient, and specular colors emitted by the spot 
light. Any vertices that are within the range of the light and within its cone of influence will receive 
these colors to some extent, provided the vertex normals are not facing away from the light source. How 
much of this color ultimately makes it into the vertex is dependant on how we set the attenuation values, 
the falloff values, and the inner and outer cone angles in the D3DLIGHT9 structure. It also depends on 
the angle between the vertex normal and the light direction vector (excluding the ambient color which is 
not scaled by this angle but still has range and attenuation applied). 
 
Position 
A spot light is assigned a position in the 3D world that describes the origin of the light source. 
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Direction 
A spot light must be assigned a direction vector that describes the direction the spot light beam travels in 
the 3D world.  
 
Range 
Like a point light source, the Range member of the D3DLIGHT9 structure is interpreted as the radius of 
a sphere of influence. Values outside this range are not affected by the light. If a vertex is within range 
of the light, then another test is performed to test if it is within the outer cone of light. If the vertex is 
outside the outer cone, it will not receive any of the light color. If the vertex is within the outer cone and 
is not facing away from the light source, then the vertex will receive at least some of the light color.  
 
Attenuation 
The Attenuation1, Attenuation2, and Attenuation3 members of the D3DLIGHT9 structure are the same 
for spotlights as they are for point lights. They can be configured so that the light intensity diminishes in 
relation to the vertex distance from the light source. The distance value considered is the length of a 
vector from the light source position to the vertex. 
 
Phi and Theta 
The Phi and Theta members of the D3DLIGHT9 structure describe the angle (in radians) of the outer 
and inner spotlight cones respectively. Vertices that fall within the inner cone receive the color of the 
light scaled by distance using the attenuation values. Vertices that are outside the inner cone but within 
the outer cone receive the color as well, but it is scaled by another form of attenuation called falloff. 

 

 
 

Figure 5.16 
 
Fig 5.16 shows that Phi describes the angle of the outer cone and Theta describes the angle of the inner 
cone, both projecting outwards from the light source along the direction vector. You can set up the inner 
and outer cones of the spot light so that vertices within the inner cone are lit more brightly than vertices 
outside the inner cone but still inside the outer cone. Vertices in the outer cone can slowly fade in 
intensity as they approach the boundary of the outer cone. Obviously, if you set both angles to the same 
value then you will see not any falloff on the vertices. By setting the Falloff member of the D3DLIGHT9 
structure we can model an additional attenuation.  
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FallOff 
The FallOff member of the D3DLIGHT9 structure attenuates the light color for vertices falling within the 
outer cone of the light but outside the inner cone. To calculate falloff the pipeline first measures the 
angle between the direction vector and a vector from the light to the vertex to return the cosine of the 
angle between them.  
 

 
 

Figure 5.17 
 
The vector L is negated and the dot product performed to return the cosine of the angle between the two 
vectors. 
 

DL •−=αcos  
 
This angle can then be directly compared to the outer and inner cone angles (Phi and Theta) specified in 
the D3DLIGHT9 structure to determine if the vertex is within the inner or outer cones. The Phi and 
Theta values are divided by 2 prior to being compared with α because they describe total cone angles 
when we actually want the angle relative to the direction vector L at the center if the inner cone. The 
cones have an angle that sweeps out α /2 on each side of vector L.  
 
After Phi and Theta have been divided by 2, the pipeline compares them with α to see if the vertex is 
within the cones. If α  is larger than the Phi/2 then it is totally outside the outer cone and is rejected 
from further consideration for this light. If this is not the case then α  is compared against Theta/2. If α  
is less than Theta/2, then it is within the inner cone and will not have the additional attenuation (FallOff) 
applied to it. Remember that Falloff is separate from the three attenuation settings that scaled the 
intensity of the light based on the distance from the light source. Even if the vertex is at the center of the 
cone, it will still have the distance based attenuation equation applied to it. However, it will not be 
scaled by the falloff equation. If the vertex does lie within the outer cone but is outside the inner cone, 
the color is additionally scaled by the result of the following equation: 
 

S = 
Falloff
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⎜⎜
⎝
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φα  

    
   α  = Angle between vectors L and D 

         φ   = Phi / 2 (Half the outer cone angle) 
         θ   = Theta / 2 (Half the inner cone angle) 

Falloff = Falloff property of the D3DLIGHT9 structure  
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The equation produces an S value between 0.0 and 1.0. This is used to further scale the light color to 
account for falloff. This is referred to as the spot factor. By altering the Falloff property of the 
D3DLIGHT9 structure we can adjust the falloff curve. Unlike the distance based attenuation that we 
discussed earlier (which is also applied to the color before reaching the vertex), the falloff curve is not 
nearly as difficult to manipulate since it does not rely on world space distances. This means for example 
that a falloff value of 1.0 will always give a linear falloff regardless of the other properties of the light. 
This should be clear enough given that an exponential value of 1.0 in the above equation does not affect 
the ratio. This approach allows you to create consistent falloff curves that can be used by all of your spot 
lights. 
 
The graph in Fig 5.18 shows three examples of falloff values: 1.0, 0.2, and 5.0. 
 

 
 

Figure 5.18 
 
Your applications will usually set the Falloff member to 1.0 which causes linear attenuation between the 
inner and outer cones to be applied to vertices in the outer cone. There is a small performance penalty 
incurred when using falloff values other than 1.0 and as the attenuation effect between the inner and out 
cones is usually extremely subtle it is often not worth doing. 
 
In the next code example we create a spot light at position(10, 50, 10) with a direction vector that orients 
it down the positive Z axis (0, 0, 1). We set the range of the light to 400 and use the same attenuation 
values we used in our point light example. We set the falloff value of the structure to 1.0 to provide 
linear attenuation between the inner and outer cones, where the angle of the outer cone is 60 degrees and 
the inner cone is 30 degrees. The light emits green diffuse light, white specular light, and no ambient 
light (black ambient color). Finally we set the light as light index 1. If we used this code after the 
preceding point light code we would have the point light as light 0 and the spot light as light 1. 
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// Setup a point light 
D3DLIGHT9 MyLight; 
ZeroMemory(&MyLight , sizeof(D3DLIGHT9)); 
 
MyLight.Type           = D3DLIGHT_SPOT;       // Spot Light 
 
MyLight.Diffuse.a      = 1.0f;                // Green Diffuse Light 
MyLight.Diffuse.r      = 0.0f;       
MyLight.Diffuse.g      = 1.0f; 
MyLight.Diffuse.b      = 1.0f; 
 
MyLight.Specular.a     = 1.0f;                // White Specular Light 
MyLight.Specular.r     = 1.0f;       
MyLight.Specular.g     = 1.0f; 
MyLight.Specular.b     = 1.0f; 
 
MyLight.Ambient.a      = 1.0f;                // No ambient light     
MyLight.Ambient.r      = 0.0f;       
MyLight.Ambient.g      = 0.0f; 
MyLight.Ambient.b      = 0.0f; 
 
MyLight.Position     = D3DXVECTOR (10.0f , 50.0f , 10.0f);   // Position 
MyLight.Direction    = D3DXVECTOR3( 0.0f , 0.0f ,1.0);       // Direction vector  
 
MyLight.Range        = 400;                                  // Range         
 
MyLight.Attenuation0 = 1.0f;                                 // Attenuation Coefficients                   
MyLight.Attenuation1 = 0.004; 
MyLight.Attenuation2 = 0.0007; 
 
MyLight.Theta   = D3DXToRadian (30);                  // Inner Cone angle (30 degrees)       
MyLight.Phi     = D3DXToRadian (60);                  // Outer Cone angle (60 degrees)      
MyLight.Falloff = 1.0f;                               // Falloff (linear = 1.0) 
 
m_pDevice->SetLight (1, &MyLight);                    // Set this as light index 1                  
 
m_pDevice->LightEnable(1, TRUE);                      // Turn the light on      

 
Spot lights are generally more computationally expensive than point lights because of the extra 
calculations involved for both determining if the vertex is within the inner or outer cones and for 
calculating the falloff between the cones. While this is true on a per-vertex basis, these unique properties 
of a spot light are such that they will generally affect fewer vertices in the scene than other light types. 
As a result, using spot lights can sometimes result in better performance than point lights under certain 
circumstances. Nevertheless, as a general rule, they are the most computationally expensive light type, 
followed by point lights, and then directional lights. 
 
 

5.3.3 Directional Lights 

Directional lights are the least computationally expensive light source and are ideal for simulating far 
away light sources such as the sun. A directional light does not have a position in the 3D world and does 
not have a limited range. A directional light is essentially nothing more than a unit length direction 
vector describing the direction in which the light is shining on all vertices in the scene. A directional 
light can emit ambient, diffuse, and specular colors just like point and spot lights, but the Position, 
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Range, Falloff, Theta, Phi and the three attenuation members of the D3DLIGHT9 structure are all 
unused. 
 
This is very much like the type of lighting that we used in Lab Project 3.2 when we calculated the colors 
of the terrain vertices. When there is a directional light in the scene, all vertices have their vertex 
normals compared to its direction vector and the diffuse and specular colors of the light are scaled by the 
cosine of the angle between them. Its ambient color is applied without prejudice to all vertices in the 
scene. Because the diffuse and specular colors are scaled by the angle between the vertex normal and the 
light direction vector, this simplified lighting calculation still provides smooth lighting. As vertex 
normals become less parallel to the light source direction vector, the colors received by the vertex are 
scaled down to a greater degree. We can think of the directional light source as emitting an infinite 
number of rays of light parallel to the direction vector throughout the 3D world.  Fig 5.19 shows four 
meshes that are lit by a bright white directional light shining from right to left. 
 

 

 
 

Figure 5.19 
 
Remember that a directional light has no position. Every vertex in the world perceives the directional 
light to be an infinite distance away shining rays along the same vector. In Fig 5.19, notice that there are 
no ambient light sources in the scene, so vertices facing away from the direction vector do not receive 
any light. This creates a smooth fade to black effect for the sphere, cylinder, and torus. Since the cube 
has many fewer faces, the change from light to dark is much less gradual. It looks as if the back face of 
the cube (with relation to the light vector) is missing, but it is there. It simply receives no light because 
the vertices of that face have normals that are facing away from the direction vector. This is a good 
example of why we might consider setting a global ambient color; so that such faces are rendered using 
at least a very low intensity color. Again, a possible alternative is to use a low intensity directional light 
that shines along the view vector. You will typically use only 1 or 2 directional light sources in your 
scene (if at all) since they will affect all vertices.  
 
The following code creates a red diffuse directional light with white specular light and a small amount 
of blue ambient light. The light has a direction vector aligned with the world’s negative X axis (i.e. the 
light is emitting parallel rays from right to left in world space) and is set at index 2. 
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// Setup a directional light 
D3DLIGHT9 MyLight; 
ZeroMemory(&MyLight , sizeof(D3DLIGHT9)); 
 
MyLight.Type           = D3DLIGHT_DIRECTIONAL;       // Spot Light 
 
MyLight.Diffuse.a      = 1.0f;                       // Green Diffuse Light 
MyLight.Diffuse.r      = 0.0f;       
MyLight.Diffuse.g      = 1.0f; 
MyLight.Diffuse.b      = 1.0f; 
 
MyLight.Specular.a     = 1.0f;                       // White Specular Light 
MyLight.Specular.r     = 1.0f;       
MyLight.Specular.g     = 1.0f; 
MyLight.Specular.b     = 1.0f; 
 
MyLight.Ambient.a      = 1.0f;                       // No ambient light     
MyLight.Ambient.r      = 0.0f;       
MyLight.Ambient.g      = 0.0f; 
MyLight.Ambient.b      = 0.0f; 
 
MyLight.Direction      = D3DXVECTOR3( 0.0f , 0.0f ,1.0);         // Direction vector  
 
m_pDevice->SetLight (2 , &MyLight);                              // Set as light index 2                  
m_pDevice->LightEnable(2, TRUE);                                 // Turn the light on      

 
At this point we know how to set up the three different light types. We also know (roughly) how the 
pipeline scales the colors emitted from a light source using the angle between the vertex normal and the 
light source. We examined the attenuation equation, which further scales the light source based on a 
distance from the light, and in the case of a spot light, the colors may be further attenuated by a falloff 
equation. So a vertex may receive only a fraction of a light’s full intensity when its position, orientation, 
and distance from the light source are taken into account.  
 
Note that the color components of a D3DLIGHT9 structure are not limited to the [0.0, 1.0] range, 
although it is the range we will most commonly use. We could for example create a light that has 
negative color components which would actually ‘remove’ light from the scene. This could be used to 
create shadowy areas within the level. Simply place a ‘dark light’ where you want the shadowy area to 
appear and any vertices that are within the influence of the light will have the light’s color subtracted 
from their total color. The following snippet of code shows how you might setup the diffuse members of 
a D3DLIGHT9 structure to create a light that removes diffuse lighting from the scene. 
 
//dark light 
MyLight.Diffuse.r = -0.5; 
MyLight.Diffuse.g = -0.5; 
MyLIght.Diffuse.b = -0.5; 
MyLight.Diffuse.a =  1.0; 

 
You could also use this strategy to create a light that removes only certain color components from a 
scene (ex. a diffuse color with a negative red component to subtract only the redness from vertices). 
Note as well that we can also use intensity values that exceed 1.0 to create an oversaturation effect (i.e. a 
‘bright light’).  Because the color of a vertex is clamped to its maximum color intensity (bright white), 
creating a bright light can cause vertices to have a much higher intensity color added to them. This 
causes them to be clamped to their maximum color much sooner. This causes a light saturation effect 
where every vertex within range is lit to full intensity. 
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Note: When you pass the D3DLIGHT9 structure into the IDirect3DDevice9::SetLight function, a copy of 
the information is made by the device and this copy is used. Therefore, after calling SetLight, you can 
safely delete the D3DLIGHT9 variable (or let it go out of scope) without it deleting or corrupting the light 
in the scene. After the call to SetLight, the passed structure is NOT attached to the physical light. It is 
just used to create it. 

 

5.4 Materials 

Materials are used to determine how a vertex reacts to incoming light and ultimately, what color it is 
perceived to be. They do so by specifying which color components are absorbed and which are reflected. 
In Fig 5.20 we see a white directional light shining on the objects from right to left.  
 

 
 

Figure 5.20 
 
Although all of the objects in Fig 5.20 receive the same white light, each object is a different color 
because they have different materials that define how they react to the light. All of the objects above use 
a material that reflects red ambient light and we can see that the faces that point away from the light 
source take on a red coloring to some degree. The torus has a material that only reflects green diffuse 
light; the red and blue color components of the white directional light are absorbed by the material and 
only the green is reflected. The sphere uses a material that reflects all diffuse lighting so it appears white 
when fully lit and fades to red as faces leave the influence of the direct light source and have only the 
red ambient color applied. The material the cylinder uses reflects only blue diffuse light. The cube 
reflects all three color components but reflects the red color of a light source to a much stronger degree. 
It appears as a light red color since it also reflects some blue and green.  
 
The device object has a memory slot for exactly one material, so we can only set one material at a time 
for rendering. Usually you will have a polygon structure that contains an index into an array of 
D3DMATERIAL9 structures created by your application. When a triangle is rendered, we will need to 
make sure that the material it uses is set as the current device material by calling the 
IDirect3DDevice9::SetMaterial member function. 
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For each vertex, its final color is calculated by the pipeline as follows: 
 

Vertex Color = (AmbientLight * A) + (DiffuseLight * D) + (SpecularLight * S) + E 
           
AmbientLight –This is the total ambient light color that has reached a vertex after attenuation and 
falloff have been taken into account for direct light sources. The global ambient light color is also added 
to this color. 
 
DiffuseLight –This is the total diffuse light color that has reached the vertex after angle, attenuation, 
and falloff have been taken into account. 
 
SpecularLight –This is the total specular light color that has reached a vertex after angle, attenuation, 
and falloff have been taken into account. 
 
A, D, S and E are colors that we can specify using either materials or vertex colors. We will ignore 
using vertex colors in this equation for the time being and concentrate on materials. Later we will see 
how we can use colors stored in the vertex as variables in the above equation. 
 
Each value in the above equation is an ARGB group of floats. We are modulating inbound light color 
with colors stored in the material. The above equation could be rewritten as: 
 
VertexColor =   (AmbientLight(a,r,g,b) * A(a,r,g,b))  + 
                       (DiffuseLight  (a,r,g,b) * D(a,r,g,b)) + 
                       (SpecularLight(a,r,g,b) * S(a,r,g,b)) + E(a,r,g,b) 
 
If for example the color of A was (0.5, 0.5, 0.5, 0.5) then the incoming ambient light color would be 
scaled by half, giving the impression that the surface has absorbed half of the ambient light. If the 
incoming ambient light was bright white (1.0, 1.0, 1.0, 1.0) and the color A was (1.0, 0.0, 0.5, 0.0) we 
can see that the following ambient light reflectance calculation would occur: 
 
Vertex Color = (AmbientLight * A) …. 
Vertex Color = (1.0, 1.0, 1.0, 1.0) * (1.0, 0.0, 0.5, 0.0) 
Vertex Color = (1.0, 0.0, 0.5, 0.0) 
 
The red and blue ambient light would be completely absorbed by the surface and we would reflect green 
ambient light at half intensity. The same logic obviously holds true for the other color types. 
 
So a material is really nothing more than a collection of four ARGB colors with color components in the 
range of 0.0 to 1.0. The structure used to represent materials in DirectX Graphics is called 
D3DMATERIAL9. We store an ambient, diffuse and specular color in this structure which maps to A, D 
and S in the above we equation respectively. Although you can think of these as colors that control the 
color of the vertex that uses it, you can also think of them as simple being a collection of four 
component values in the range of 0.0 to 1.0 that are used to scale the incoming ambient, diffuse and 
specular light.   
 
The D3DMATERIAL9 structure contains a fourth color called Emissive (E in the above equation). The 
emissive color of a material is a color that is always added to the vertex even if it is not receiving any 
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light whatsoever. We can think of this as a color emitted by the vertex itself. Unlike light sources, the 
color emitted by the vertex is not projected onto neighboring vertices.  
 
Fig 5.21 shows a torus rendered using an emissive red color and a green diffuse color. There is a single 
bright white diffuse directional light source in the scene. Notice that the vertices that are facing the 
directional light source reflect only the green component of the light color. Also notice how the vertices 
that are facing away from the light source receive no light but that the material always emits a red 
emissive color.  
 

 
 

Figure 5.21 
 
Emissive colors in materials can look really nice. You often see them used in space combat games to 
emit a glow effect on the engines of a space craft. As the space ship leaves the sun’s illumination, its 
hull fades into darkness. But its engines still glow fully bright. This can be done using a material with an 
emissive property when rendering the engines. You might also use emissive colors in a first-person 
shooter game on the mesh of a fireplace so that the bricks glow an orange color even when there is no 
light shining on the fireplace. 
 
The D3DMATERIAL9 structure is shown below. The Power floating point member is used to control the 
application of specular highlights and will be discussed momentarily. 
 
typedef struct _D3DMATERIAL9 
{ 
  D3DCOLORVALUE Diffuse;   // D in the above equation 
  D3DCOLORVALUE Ambient;   // A in the above equation 
  D3DCOLORVALUE Specular;  // S in the above equation 
  D3DCOLORVALUE Emissive;  // E in the above equation 
  float Power;             // Controls the sharpness of highlights                      
} D3DMATERIAL9; 
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The following code example creates a material that reflects only green diffuse light and emits its own 
red color as seen in Fig 5.21. No specular or ambient light are reflected. 
 
D3DMATERIAL9 mat; 
 
mat.Diffuse.a = 1.0f;     
mat.Diffuse.r = 0.0f; 
mat.Diffuse.g = 1.0f;  // reflects only green diffuse light 
mat.Diffuse.b = 0.0f; 
 
// reflects no ambient or specular light 
mat.ambient.a = mat.ambient.r = mat.ambient.g = mat.ambient.b = 0.0f; 
mat.specular.a = mat.specular.r = mat.specular.g = mat.specular.b = 0.0f;  
 
mat.Emissive.a = 1.0f;   
mat.Emissive.r = 1.0f; // the material emits its own red color onto vertices that use it 
mat.Emissive.g = 0.0f; 
mat.Emissive.b = 0.0f; 
 
mat.Power = 0.0f;      // Not reflecting specular highlights so set power to zero 

 
Once we have the material structure filled out, we can set the material as the current device material 
using the IDirect3DDevice9::SetMaterial function: 
 
HRESULT IDirect3DDevice9::SetMaterial(CONST D3DMATERIAL9 *pMaterial) 
 
We pass in the address of our material structure so that the device can copy the values into its local 
material properties memory. Our code would do something like this: 
 
m_pd3dDevice->SetMaterial( &mat ); 

 
Note: After the call to SetMaterial, a copy is made of the material properties by the device. The material 
structure can be safely deleted (or allowed to go out of scope) without affecting the material settings of 
the device. 

 
At this point we can render all of the polygons that use this material and they will have the correct 
reflectance properties applied in their color calculations. Every triangle that is rendered thereafter will 
use this material until such a time that the material is changed to a new material or the lighting pipeline 
is disabled. Therefore, you could create many material structures in an array and store indices into this 
array in your object or polygon structures to set the required material before rendering. In our workbook 
we will discuss batch rendering so that we are not calling SetMaterial before we render every polygon. 
This would be very slow and render state changes should be minimized as they can be expensive. 
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5.4.1 Specular and Power 

 
We know that the specular color of the material is used as a multiplier with the specular color received 
from the light source to generate the specular color that will be applied to the vertex. However, specular 
highlights on objects are spread across many vertices depending on the position of the camera and the 
light source with respect to the object. The Power member is used to control the dispersion of highlights 
across the range of vertices. Specular highlights are more computationally expensive than calculating the 
diffuse lighting for a vertex because we need to factor in view dependant information. As a result, 
specular highlights are disabled by default and must be enabled by setting the following render state: 
 
m_pDevice->SetRenderState (D3DRS_SPECULARENABLE , TRUE); 

 
If you set this condition to false, specular highlights will not be calculated and the specular material 
properties will be ignored. This speeds up the lighting pipeline but the visual results are not as pleasing. 
 
Although the code we saw earlier set Power to 0.0 and the specular color to black, you must be sure to 
disable the D3DRS_SPECULARENABLE render state to prevent the specular calculation from occurring 
unnecessarily. 
 
Let us look at how the Power member of the material can be used to alter the spread and intensity of 
specular highlights. Higher powers yield sharper specular highlights and vice versa. The range of values 
that you can use in the Power member is the range of a float. You will usually wind up using values 
between 0.0 and 250.0. 
 
Fig 5.22 depicts a sphere illuminated by a white (diffuse and ambient) directional light. The material 
used to render the sphere reflects red diffuse light, white specular light, and dark red ambient light. 
Altering the Power of the material changes the size of the specular highlight: 
 

Power = 2 

 

Power = 5 

 



 

 334 

Power = 10 

 

Power = 30 

 

  
Figure 5.22 

 
At this point we have now covered the requirements for using DirectX Lighting: 
 

• Create materials for your objects. 
• Add your lights to the scene. 
• Enable lighting. 
• Enable specular highlights if desired. 
• Begin render loop. 

• Set material for current triangles to be rendered. 
• Render triangles that use the currently set material. 
• Repeat until all triangles have been rendered. 

• End render loop. 
• Present scene. 

 
Notice that we render the triangles in batches based on the materials they use. This is important because 
we want to reduce number of calls to DrawPrimitive and render (within reason) as many triangles as is 
optimal. The problem is that we can only set a different material between DrawPrimitive calls. 
Therefore, in order to reduce the number of calls to DrawPrimitive, you will want to reduce the number 
of times a new material has to be set. In order to do this you will want to (in a pre-process) batch your 
triangles together into groups depending on the material they use. Then you can just set material 1 and 
render all triangles that use material 1, then set material 2 and render all triangles that use material 2, and 
so on. This allows you to render the scene with the minimum amount of DrawPrimitive calls and a 
minimal number of material changes. Changing state assigned objects like materials, textures, and vertex 
buffers can be expensive operations inside of a render loop (although some are certainly far more 
expensive than others). We should always look to minimize state changes as best we can.  
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5.4.2 Material Sources 

 
What happens if we enable lighting and give our vertices a vertex normal, but also include diffuse and 
specular color components at the same time? In previous weeks we treated the inclusion of these colors 
as a sign that the vertices were pre-lit. We might assume that when using the lighting pipeline, any color 
stored in the vertex would be ignored. As we will soon see, this assumption may or may not be true 
depending on how we set up our material source render states. Let us look again at our simplified 
equation for calculating the color of a vertex: 
 

Vertex Color = (AmbientLight * A) + (DiffuseLight * D) + (SpecularLight * S) + E 
 
Recall that in this equation, AmbientLight, DiffuseLight and SpecularLight represent the total amount of 
light that hits the vertex collected from all light sources. This light was scaled by distance attenuation 
and the angle of the vertex normal with the incident light vector. Then each sub-group of the total light 
is scaled by the corresponding material component (A, D, S, and E). 
 
We can change these relationships so that if desired, we could store a color (or two colors) in the vertex 
itself and can instruct the device not to use a particular material component as the reflectance property 
but instead use the color in the vertex. This means for example, that you could instruct the device to use 
the currently set material members for calculating ambient (A) and diffuse (D) reflection, but use the 
two colors stored in each vertex as the specular (S) and emissive (E) reflectance properties. This would 
allow a per-vertex emissive property which is simply not possible using materials. This is just one 
example and there are many combinations available.  
 
There are four device render states that allow the application to configure the source of A, D, S and E in 
the above equation. They determine whether a reflectance property is taken from the currently set 
material or from one of the two color components that can be stored in a vertex.  
 
SetRenderState ( D3DRS_DIFFUSEMATERIALSOURCE   , D3DMATERIALCOLORSOURCE) 
SetRenderState ( D3DRS_AMBIENTMATERUALSOURCE , D3DMATERIALCOLORSOURCE) 
SetRenderState ( D3DRS_SPECULARMATERIALSOURCE , D3DMATERIALCOLORSOURCE) 
SetRenderState ( D3DRS_EMISSIVEMATERUAL SOURCE, D3DMATERIALCOLORSOURCE) 
 
We pass in a member of the D3DMATERIALCOLORSOURCE enumerated type: 
 
typedef enum _D3DMATERIALCOLORSOURCE  
{ 
    D3DMCS_MATERIAL = 0, 
    D3DMCS_COLOR1 = 1, 
    D3DMCS_COLOR2 = 2,  
    D3DMCS_FORCE_DWORD = 0x7fffffff 
} D3DMATERIALCOLORSOURCE; 
 
D3DMCS_MATERIAL - This instructs the device that the color for the current material source being 
set is found in the material. If we were currently setting the D3DRS_AMBIENTMATERIALSOURCE render 
state and used D3DMCS_MATERIAL, then the lighting calculations would use the ambient color stored in 
the material as A in our lighting equation to reflect incoming ambient light. 
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D3DMCS_COLOR1 – This instructs the device that the color for the material source being set is to be 
taken from the diffuse color member of the vertex. For this to work you must have defined your vertex 
structure to have a color component and must set your FVF flags so that they include the 
D3DFVF_DIFFUSE flag. If we were setting the D3DRS_AMBIENTMATERIALSOURCE render state and 
used D3DMCS_COLOR1, then the lighting calculations would use the color stored in the diffuse member 
of the vertex as A in our lighting equation to reflect incoming ambient light. 
 
D3DMCS_COLOR2 – This instructs the device that the color for the material source is to be taken 
from the specular color member of the vertex. For this to work you must have defined your vertex 
structure with a color component and set your FVF flags to include the D3DFVF_SPECULAR flag. If we 
were currently setting the D3DRS_AMBIENTMATERIALSOURCE render state and were using 
D3DMCS_COLOR2, then the lighting calculations would use the color stored in the specular member of 
the vertex as A in our lighting equation to reflect incoming ambient light. 
 
In summary, we can configure A, D, S, and E to be taken from the corresponding color in the currently 
set material or from one of two possible colors that could be stored at each vertex. Let us examine some 
examples. We start with a vertex structure that will contain a vertex normal and two color values which 
could be used as material sources in lighting calculations. 
 
CVertex 
{ 
 D3DXVECTOR3 Position; 
 D3DXVECTOR3 Normal; 
 DWORD Diffuse; 
 DWORD Specular; 
}; 
  
m_pDevice->SetFVF( D3DFVF_XYZ | D3DFVF_NORMAL  | D3DFVF_DIFFUSE | D3DFVF_SPECULAR) 

 
Notice that the two color components in the vertex structure are described as diffuse and specular 
members by the FVF flags. This is slightly misleading in the general case. When we are not using 
DirectX lighting, then these two colors do indeed store the diffuse and specular components of the 
vertex. The colors are passed straight through to the rasterizer which combines these colors to create the 
color of the vertex which is then interpolated over the surface. In this case, DirectX Graphics expects 
that you have calculated the correct diffuse color and specular colors yourself and stored them in the 
vertex. Referring to the color members of the vertex as diffuse and specular components is accurate and 
makes perfect sense.  
 
When using the lighting pipeline however, referring to the two color members as diffuse and specular is 
not quite as accurate since these members are no longer used specifically to store the diffuse and 
specular colors. These are colors used as material reflectance properties. With the render states covered 
above, we can use the two colors in the vertex as either A, D, S or E in the lighting equation. This means 
of course, that in FVF terms, the diffuse member of the vertex could be used as the emissive reflectance 
property in place of the material emissive property, or the specular member could be used as the diffuse 
reflectance property in place of the material diffuse member. While there is not much we can do to avoid 
this unfortunate naming dilemma at the FVF level, we can at least modify our structure to more 
accurately reflect what we are trying to do: 



 

  
 

337

 
CVertex 
{ 
 D3DXVECTOR3 Position; 
 D3DXVECTOR3 Normal; 
 DWORD Color1; 
 DWORD Color2; 
}; 

 
Of course, you can call the color members whatever you like. We simply chose names that were generic 
enough to make sense when we wish to store material colors in the vertex. Note that even if you store 
reflectance properties in the vertex, you will still need to use them alongside materials if you wish to 
model all four material properties (ambient, diffuse, specular, and emissive) since we can only store two 
colors in the vertex. 
 
The vertex structure we will use in Lab Project 5.1 will not have colors stored at the vertex. This means 
that A, D, S and E in the lighting equation will be taken from the currently set material Ambient, 
Diffuse, Specular and Emissive members. We will not explicitly set any of the material source render 
states. This would lead us to believe that the default state of the device is to simply take A, D, S and E in 
the lighting equation from the currently set material and ignore any color components stored in the 
vertex unless the device is set otherwise. This is not actually the case. In fact, the default state of the 
device is to take the material reflectance properties from the sources listed in the following table when 
they exist. 
 
 
Material Color Source Render 
State 

Default Value Description 

D3DRS_DIFFUSEMATERIALSOURCE D3DMCS_COLOR1 If the vertex has a diffuse component  
(D3DFVF_DIFFUSE), this color is used 
as the diffuse reflectance property (D 
in the lighting equation). If the vertex 
does not have a diffuse member then 
the currently set material diffuse 
member is used instead.     

D3DRS_SPECULARMATERIALSOURCE D3DMCS_COLOR2 If the vertex has a specular component 
(D3DFVF_SPECULAR), this color is 
used as the specular reflectance 
property (S in the lighting equation). If 
the vertex does not have a specular 
component then the currently set 
material specular member is used 
instead. 

D3DRS_AMBIENTMATERIALSOURCE D3DMCS_MATERIAL The Ambient member of the currently 
set material is used as A in the lighting 
equation. 

D3DRS_EMISSIVEMATERIALSOURCE D3DMCS_MATERIAL The Emissive member of the currently 
set material is used as E in the lighting 
equation. 
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As you can see, the default device state uses the diffuse and specular color components stored in the 
vertex instead of the material. If the vertex does not contain the appropriate color members, then the 
device uses the material members. However if our vertex did have one or two color components then we 
would need to explicitly set the diffuse and specular material color sources to that of the material if we 
wanted the material members to be used. 
 
The main difference between the two concepts is that vertex colors are stored as DWORDs and material 
colors are stored as D3DCOLORVALUEs (4 floats). Therefore, when storing colors in the vertex you 
must combine them into a DWORD. Fortunately, there is a DirectX macro that allows us to pass in four 
floats and returns a DWORD representation of that color. This macro is shown below and is found in 
d3d9types.h. 
 
#define D3DCOLOR_COLORVALUE(r,g,b,a) \  
D3DCOLOR_RGBA((DWORD)((r)*255.f),(DWORD)((g)*255.f),(DWORD)((b)*255.f),(DWORD)((a)*255.f)) 

 
This system provides a good deal of flexibility to our application since it allows per-vertex control of 
reflectance properties. Normally we would set the current material and render the triangle(s) that apply 
the material properties to all of the vertices within the triangle(s). By storing reflectance properties in the 
vertex also, we can render a triangle where each vertex within that triangle has a unique set of 
reflectance properties. 
 
// Example 1:  In this example, if the vertex has a diffuse or specular color component (or both) they are 
completely ignored by the lighting calculations. The reflectance properties for the diffuse, ambient, 
specular and emissive light are all taken from the relevant members of the currently set material. 
 
m_pDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE  , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE  , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_MATERIAL); 

 
With these device states: 
 
A = Material.Ambient 
D = Material.Diffuse 
S = Material.Specular 
E = Material.Emissive 
 
// Example 2: In this example, the ambient and diffuse reflectance properties used in the lighting 
calculations are stored in the diffuse and specular color components of the vertex. The specular and 
emissive reflectance properties are taken from the specular and emissive members of the currently set 
material. 
 
m_pDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE  , D3DMCS_COLOR1); 
m_pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE  , D3DMCS_COLOR2); 
m_pDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_MATERIAL); 
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With these device states: 
 
A = Vertex.Diffuse 
D = Vertex.Specular 
S = Material.Specular 
E = Material.Emissive 
 
// Example 3:  This is a combination which you will probably never use, but it does make a good 
example. In this next example none of the currently set material members are used and the diffuse color 
of the vertex is used to reflect the incoming ambient and specular light as well as being used as the 
emissive color. The specular color of the vertex is used to reflect incoming diffuse light. 
 
m_pDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE  , D3DMCS_COLOR1; 
m_pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE  , D3DMCS_COLOR2); 
m_pDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE , D3DMCS_COLOR1); 
m_pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_COLOR1); 
 

With these device states: 
 
A = Vertex.Diffuse 
D = Vertex.Specular 
S = Vertex.Diffuse 
E = Vertex.Diffuse 
 
 

 // Example 4:  The final example shows ambient, diffuse and specular reflectance properties taken from 
the currently set material. The diffuse color component of the vertex is used as the emissive color.  
 
m_pDevice->SetRenderState( D3DRS_AMBIENTMATERIALSOURCE  , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE  , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_SPECULARMATERIALSOURCE , D3DMCS_MATERIAL); 
m_pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_COLOR1); 
 

With these device states: 
 
A = Material.Ambient 
D = Material.Diffuse 
S = Material.Specular 
E = Vertex.Diffuse 
 
Unless you require per-vertex reflectance properties (probably not very often), you will use materials 
almost exclusively and will not need to store colors in your vertices.  
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5.5 DirectX Vertex Lighting Advantages 

• Speed: On nearly all modern 3D graphics cards, lighting calculations are done in hardware on 
the GPU.  

• Dynamic: Unlike many lighting techniques which are usually done as a pre-process, vertex 
lighting is calculated each frame as the vertices are passed through the transformation and 
lighting pipeline. So vertex lighting is a viable choice for implementing dynamic lighting effects. 
By simply updating a light source’s properties each frame, we can animate its position, 
orientation, and even its color to create dynamic lighting effects.  

• Simplicity: Vertex lighting is easy to use. All we need is a way to record the positions of where 
each light is placed in the scene and a way to apply materials to different polygons. Almost all 
3D modeling packages provide this functionality. The GILES™ level editor certainly allows you 
to do all these things quickly and easily. Because GILES™ was written to compliment this 
course and DirectX specifically (although it is in no way limited to being used for DirectX 
applications) you will notice that setting materials and lights in GILES™ is almost identical to 
setting them in DirectX. So you can more easily understand all of our discussions simply by 
firing up GILES™ and experimenting. Using GILES™ to create you game world and to set your 
lights and materials makes using DirectX lighting very easy. In Lab Project 5.2 we will load in a 
simple level made in GILES™ and look at all of these features. 

• Clarity: Vertex lighting is ideal for beginners to 3D graphics. It helps them more easily see how 
light sources affect geometry and add realism to a scene.  

 
 

5.6 DirectX Vertex Lighting Disadvantages 

 

• Resolution: One of the major disadvantages of vertex lighting is its fixed relationship to the 
geometric level of detail. Changes in illumination are only reflected from vertex to vertex rather 
than at the pixel level, so in order to have nice looking vertex lighting, we need meshes that use a 
lot of vertices. If a mesh contains only a few vertices (such as a cube) much detail and nuance is 
lost. Fig 5.23 depicts a cylinder and a sphere made from numerous triangles (and therefore many 
vertices). The ambient color in the scene is blue and each mesh has a spotlight shining on it.  
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Figure 5.23 

 
Keep in mind that although we view these meshes as solid triangle based objects, the lighting 
pipeline works only with the vertices of the mesh. Therefore, what is really happening to the 
vertices is shown in Fig 5.24: 
 

 
 

Figure 5.24 
 
If a light is placed such that it does not influence any vertices, the light will have no effect. Now 
this may seem like an obvious point to make, but think about a situation where we have a cube 
face. Imagine that we created a bright white spot light with a narrow cone such that it shone on 
the center of the quad but that the corner points were outside the cone. Although the quad should 
have a circle of white light at its center, the light would have no effect. The only way we could 
get this effect would be to subdivide the quad into smaller quads, perhaps using a 10x10 vertex 
grid for example. This gives us a lit quad, but at the expense of having many more vertices than 
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we need. Each of these additional vertices will need to be transformed and lit by the pipeline thus 
slowing the performance of our game engine. 
 
Fig 5.25 shows cylinders with low and high polygon counts and a green spot light shining on 
their surfaces.  
 

High Vertex Count Cylinder 
Vertices inside the cone receive the 
green light. Because the surface of the 
cylinder is made up of many vertices 
in close proximity, the surface reacts 
to light in a more realistic way.  

Low Vertex Count Cylinder 
Vertices are placed only at the top and 
bottom of the cylinder and as such, 
none of the vertices fall within the 
cone of light. Therefore, the light has 
no effect on the color of the cylinder. 

 
 

Figure 5.25 
 

This is a very common and constant problem when using vertex lighting. The answer could be to 
make sure that your entire world is highly tessellated, but usually this is in direct opposition to 
what you are trying to accomplish. Level designers are generally encouraged to restrict polygon 
budget so that the game engine does not have to transform, light, and render too many triangles 
each frame. It is often for this reason that vertex lighting is not usually solely relied upon for the 
illumination of game worlds in modern commercial games. 

 
• No Occlusion: Another disadvantage of vertex lighting is a lack of accounting for occlusion. It 

illuminates vertices without considering the positions of other triangles in the world. If polygon 
B is positioned between polygon A and the light source, polygon B will not block the light and 
cast Polygon A into shadow as would be expected in real life. The lighting pipeline does not cast 
shadows. The result is a major loss of scene realism and mood.   
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In Fig 5.26 there is a green point light behind the pillar. In real life, the pillar would block the 
light and cast certain parts of the wall into shadow. As you can see, the light passes right through 
the pillar. 
 

 
 

Figure 5.26 
 

If you have very tessellated geometry (high polygon counts) you can simulate area shadowing by 
placing dark lights (negative color values) in appropriate places. The problem with the technique 
of course (even beyond the extra polygons) is that it would be difficult or nearly impossible to 
recreate the shape of a particular object’s shadow. However, it may be good enough for your 
game to use only pools of shadow like this.  

 
• The final disadvantage is the limit on the number of simultaneously active light sources. The 

problem is not that vertices will not receive adequate coloring (in practice, only two or three light 
sources are needed for that), it is that we will have to create a light management system that 
knows how to activate only the lights that influence the polygon(s) being rendered and disable 
the rest.  
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Conclusion 

 
This lesson taught us the basics of DirectX lighting and materials. We understand the different light 
types available to our application as well as some of the mathematics of the lighting pipeline. In addition 
to reviewing many of these concepts, our lecture will focus in on the mathematics in greater detail, so be 
sure to take the time to go through it and take notes. Also, make sure that you spend time exploring the 
projects in your workbook since we have only covered the high level theory here in the text. The lab 
projects for this lesson will teach you more practical concepts such as how to: 
 

• emulate the lighting equations yourself to record light influences at each vertex 
• work around the simultaneous light limit imposed by hardware vertex processing devices 
• use batching strategies to keep render state changes and DrawPrimitive calls minimized 
• use the IWF SDK helper classes to load geometry from GILES™ 
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Chapter Six:  
 

 
Texture Mapping  
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Introduction 

In this lesson we will learn: 
• what a texture is  
• how it is stored in memory 
• how to create textures 
• how to load texture images from files 
• how to store texture coordinates in our vertex structure 
• how blend multiple textures together 
• how to use compressed textures 

 
In nature, a surface such as a wooden board or a metal sheet can have a near infinite amount of detail 
and randomness caused by surface imperfections, wear and tear over time, etc. Moreover, it is generally 
true that two surfaces are never exactly the same. Consider two planks of wood purchased from the same 
timber merchant. Even if the wood is of the same type, each plank of wood will have its own unique 
grain pattern and color. 
 
We cannot possibly hope to model this behavior in our applications in real-time, but we can give the 
surfaces of our objects much more detail than we have to date. One approach is to use many more 
vertices in our models. If we wanted to render a rectangle that it looked like a piece of wood, instead of 
building it from four vertices, we might make it from a grid of quads (like our terrain grid in Chapter 3) 
and give each little quad its own color. This way the parent rectangle would look like it was made up 
from many hundreds or thousands of shades of brown and more closely resemble a piece of wood. The 
problem with this approach is that at the scene level it would potentially require million of vertices that 
will need to be processed (transformed and lit). 
 
This is why the concept known as texturing is so important. It is a method of ‘painting’ image detail 
(usually a 2D image created in a paint program or with the use of a digital camera) onto a polygon as it 
is rendered. Instead of creating thousands of tiny quads to give the wood surface many different colors, 
we can instead use an image of a piece of wood to achieve the same end. If we had some means to keep 
the rectangle as a simple 4 vertex construct but paint the 2D image onto the surface of the polygon as it 
was rendered, we would experience the best of both worlds -- we would have a very low polygon object 
with a highly detailed surface. Fig 6.1 shows a quad with a wood image applied. 
 

 
 

Figure 6.1 
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The quad in Fig 6.1 does not exhibit the true imperfections of a real piece of wood and the surface is still 
perfectly flat. Nevertheless to the naked eye, the surface does not appear completely flat and does indeed 
look like a piece of wood planking. 
 
The process of mapping images to polygons is referred to as texturing (or texture mapping). The image 
which is being mapped onto these polygons is referred to as a texture (or a texture map). 

 
Note: The word texture usually describes the way something feels to touch. In 3D graphics 
programming, a texture refers to an image that is used by the rendering pipeline to provide per-pixel 
color information for a polygon during the rendering process. The two are not totally unrelated. The idea 
is to give objects the appearance of a surface that has texture. 

 
Recall the way that color is stored at the vertices and then interpolated across the triangle as it is 
rendered. Imagine if we also stored 2D coordinates (referred to as texture coordinates) at each vertex 
that described a pixel in the texture such that the color of that pixel in the texture is assigned as the color 
of the vertex. Now imagine that the 2D coordinates themselves are interpolated across the surface for 
each pixel. Each pixel of the polygon now has its own set of 2D coordinates which describe a pixel 
location in the texture.    

 
Note: To avoid confusion when referring to both pixels on the screen (or in the frame buffer) and pixels 
within a texture image, a pixel within a texture is referred to as a texel.  

 
The images in Fig 6.2 show our scene from Lab Project 5.3 both with and without textures. 
 

Without Textures With Textures 
 

  
Figure 6.2 

 
For most of our scenes we will use many texture images. Creating these textures is usually the 
responsibility of the project texture artist or someone else on the artistic team. You can see in the Fig 6.2 
that this small section of a level has a different texture for the door, walls, floor, ceiling, window frame 
and even a transparent texture applied to the glass of the window. 
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Fig 6.3 shows some 2D images that might be used as textures in a game level.  These were created using 
the popular paint programs Adobe Photoshop™ and Jasc’s Paint Shop Pro™. 
 

  
A Brick Texture A Stone Texture 

  
A Wood Texture A Floor Tile Texture 

 
Figure 6.3 

 
Looking at the visuals for some of the latest games, it should be clear that a modern 3D application has 
to load and maintain many texture maps. Generating quality textures can be quite difficult and time 
consuming work for the artists. Fortunately for us, as game programmers our job is actually much less 
difficult than theirs in this respect. We simply need to load the textures they create into memory and be 
sure to apply them to the correct polygons in a given scene. We will even be receiving assistance from 
the DirectX API to make that job easier. DirectX Graphics will allow us to bind textures to polygons 
with ease and even automates loading the textures from file and managing them in memory. 

Although we will cover the complete the texturing process in this chapter, the following list describes a 
brief summary of the steps involved: 

• Use a level editor or modeling program to assign textures to faces. 
• Have the level editor or modeling program generate texture coordinates at the vertices. 
• Load the vertex data from the file containing texture coordinate set(s) per vertex. 
• Load the texture images from files. 
• Set the texture(s) as the device texture(s). 
• Render all the triangles that use the current texture(s).  
• Repeat last two steps for each texture in the scene. 

 
Since the first two steps are typically not our responsibility, we can concentrate on allocating and 
loading textures properly, and setting the device to get the best texture image quality when rendering. 
We will examine later in the lesson how to calculate texture coordinates for a vertex. Although most of 
the time the texture coordinates will be generated for us in the level editing package, there will be times 
when we may want to calculate texture coordinates ourselves in code. 
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6.1 Texture Memory 

Because of the way our textures will be loaded, it is important that we discuss how textures are stored in 
memory first. When we load texture images from a file, we can specify several parameters that describe 
to the D3DX texture loading functions how we would like them stored in memory.  

Before the release of DirectX 8.0, there was a DirectX API called DirectDraw. It was used to perform 
2D operations and render 2D graphics to surfaces. We would store 2D image data on DirectDraw 
surfaces which if possible, would be stored in video memory for optimal performance. These surfaces 
would typically be used to hold bitmap data and the DirectDraw surface could be blitted to the screen or 
to another DirectDraw surface very quickly with the aid of hardware acceleration. 

While the notion of a surface being used as the main means for transporting and storing image data has 
been diminished in favor of the IDirect3DTexture9 interface, at the driver level DirectDraw remains a 
core asset. In fact, DirectDraw surfaces are still used to hold our texture image data. The 
Direct3DTexture9 object is used to manage and work with textures and completely encapsulates the 
underlying surface object containing the texture image data.  There is a Direct3DSurface9 object as well 
which allows us to store and work with surfaces directly. These surface objects are typically used for 
performing 2D operations like blitting title screens for example, rather than being used directly for 
texture work. Because the texture image data is stored in a surface within the texture object, we need to 
look at how surfaces are stored in memory. This will enable us to work with both texture and surface 
objects alike. 

Note: It may seem a strange fact that under the bonnet DirectX also stores vertex buffer data as 
DirectDraw surfaces. This is not so strange however when you consider that they are simply blocks of 
linear memory as we shall soon see. 

Regardless of where a surface is stored, we can think of it as a rectangle with a width and height and a 
memory area for the image data. In reality, this memory is just a linear block of bytes. You might think 
that you could calculate how many bytes a surface is using by multiplying the width by the height and 
then multiplying the result by the number of bytes used by each pixel, but this is not the case. When a 
surface is created, the driver may choose to insert extra bytes in the surface at the end of each row of 
image data such that the data is aligned to memory address boundaries. This is done so that the driver 
can work with or copy the image data in an optimal way. Since each row of the surface may have one or 
more extra bytes of data allocated, the length of a row in the surface is referred to as the pitch. So the 
number of bytes used by a surface can accurately be calculated as Pitch x Height x Bytes Per Pixel 
(BPP) as shown in Fig 6.4. 
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Figure 6.4 

 

Although these extra bytes on the end of each row are not rendered when the texture is drawn and are 
not considered to be part of the image data, we still have to be aware of this fact when we work with 
image data. Just like vertex buffers, the IDirect3DTexture9 and the IDirect3DSurface9 interfaces both 
include Lock methods to lock the resource and return a pointer to the image data for reading and/or 
writing pixels. When we have a pointer to image data, we normally think to advance to the next line in 
the image by: 

   pImageData += ImageWidth 
 
But with a DirectX texture/surface, because of the padding bytes on the end, this approach might leave 
the pointer stranded in the wrong location. Therefore, when we have a pointer to the image data of a 
DirectX surface, we must advance to the next line of image data by: 
 
pImageData += ImagePitch 

 

Note: We have been using the terms surface and texture interchangeably. Technically, the surface is the 
actual memory holding the image data and the Direct3DTexture9 object is an object that encapsulates 
the surface and allows us to work with it. The IDirect3DSurface9 object is another object that 
encapsulates image data, but we will discuss surfaces in the context of the data encapsulated by the 
Direct3DTexture9 object for now. 

6.1.1 Texture Formats 

When we initialized our rendering device in Chapter 2, we had to choose a format for the frame buffer. 
We did this using the D3DFORMAT enumerated type. While this type has many members, during frame 
buffer creation we were limited to only a small subset of formats. When creating textures, we have a 
much wider range of formats that we can choose from. We use the D3DFORMAT type to create a texture or 
load a texture such that its image data is stored in memory using the specified color component 
arrangement for each pixel.  
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Not all of the possible texture formats are shown in Table 6.1, since many are obscure and not widely 
supported. However, we do list the common formats that you are likely to use along with a description 
of how the color information is stored in a single pixel within the surface. Typically you will be using 
one of the 32-bit or 16-bit formats when creating your textures. Popular texture formats supported by 
most hardware are highlighted in grey. 

Table 6.1 Texture Formats 
 

D3DFORMAT 
Member 

Description 

32-bit Surface Formats 
D3DFMT_A8R8G8B8 Each pixel in the surface will be a 32-bit value. 8 bits 

are used for alpha (transparency information), and 8 
bits each for red, green and blue. 

D3DFMT_X8R8G8B8 8 bits for red, 8 bits for green and 8 bits for blue (8 bits 
are unused -- X8). This gives 24 bit color resolution on 
a 32-bit surface. This is useful because many graphics 
adapters to not support 24 bit textures so this allows us 
to use a 32-bit surfaces to store 24 bit color. 

D3DFMT_A2B10G10R10 2 bits for alpha, 10 bits for each red, green and blue. 
D3DFMT_A8B8G8R8 8 bits for alpha followed by 8 bits for each blue, green 

and red. The components are arranged in memory in 
ABGR format as opposed to 32-bit ARGB. 

D3DFMT_X8B8G8R8 8 bits for red, green and blue stored in XBGR format. 
There are 8 bits of each pixel not used (X8)  

D3DFMT_G16R16 A rarely used format where each pixel contains 16-bits 
for green and 16-bits for red. You will rarely ever use 
this for textures because of the lack of its blue color 
component limiting the colors that can be stored. 

D3DFMT_A2R10G10B10 2 bits for alpha and 10 bits for each red, green and blue 
component. Rarely used. 

16-bit Surface Formats 
D3DFMT_R5G6B5 This 16-bit RGB format has 5 bits reserved for red, 6 

bits for green and 5 bits for blue. 
D3DFMT_X1R5G5B5 5 bits for each red, green and blue component with one 

bit unused. 
D3DFMT_A1R5G5B5 This ARGB surface stores 1 bit for alpha and 5 bits for 

each red, green and blue component. 
D3DFMT_A4R4G4B4 4 bits for each alpha, 4 bits for red, 4 bits for green and 

4 bits for blue. 
D3DFMT_A8R3G3B2 Rarely used ARGB format with 8 bits for alpha, 3 bits 

each for both red and green color components and 2 
bits for blue. 

D3DFMT_X4R4G4B4 4 bits unused and 4 bits each for red, green and blue 
color components.  
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In addition to the more common surface formats described above, DirectX Graphics also supports 
compressed texture formats. Compressed textures allow the application to use much larger and more 
detailed textures that otherwise might not fit in video memory. These large textures retain an amazing 
amount of detail even when the player is standing very close to them. They can also be used to optimize 
smaller textures by saving video memory. The formats are D3DFMT_DXT1 through D3DFMT_DXT5. 
Compressed textures are now quite widely supported and all future 3D cards released will certainly 
support them. We will examine compressed textures in detail later on in the lesson.  

 

Validating Texture Formats 

It is likely that not all of the 16 and 32-bits formats listed in Table 6.1 will be supported on all devices. 
We have highlighted the most common formats and the ones you will most likely use in your own 
applications, but you should always check the support for any format before using it. It is possible that a 
format may be supported by the current hardware but perhaps not with the current frame buffer/depth 
buffer format. 

Once we have created a device, we know the frame buffer and depth buffer formats we are using. With 
this information, we can check a given format against the device using IDirect3D9::CheckDeviceFormat 
to see if this is a valid texture format for the current device. 

We used this function in the enumeration code in Chapter 2 to check if the depth buffer and frame buffer 
could work together on the device we were trying to create.  

HRESULT CheckDeviceFormat 
(       
    UINT Adapter, 
    D3DDEVTYPE DeviceType, 
    D3DFORMAT AdapterFormat, 
    DWORD Usage, 
    D3DRESOURCETYPE RType, 
    D3DFORMAT CheckFormat 
); 
 
In the following example we are trying to find a supported 32-bit format that we can tell DirectX to use 
when creating our textures. As each one fails, we check the next in line until we find one which is 
supported. Otherwise we move on to testing 16-bit formats. The following code assumes we are using 
the primary display adapter and a HAL device. It also assumes that our adapter is in 32-bit X8R8G8B8 
format and that we are testing to see if we can find support for a 32-bit texture format.  
 
D3DFORMAT SupportedFormat = D3DFMT_UNKNOWN; 
if(SUCCEEDED(pD3D->CheckDeviceFormat(D3DADAPTER_DEFAULT,  //Adapter 
          D3DDEVTYPE_HAL,      //Device Type 
                 D3DFMT_X8R8G8B8,     //Adapter Format 
          0,      //Usage flags 
                 D3DRTYPE_TEXTURE,    //Resource Type 
           D3DFMT_A8R8G8B8     //Requested Format 
          )) 
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    SupportedFormat = D3DFMT_A8R8G8B8; 
 
else 
if(SUCCEEDED(pD3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, 
           D3DDEVTYPE_HAL, 
           D3DFMT_X8R8G8B8, 
           0, 
           D3DRTYPE_TEXTURE, 
           D3DFMT_X8R8G8B8 // Requested Format?  
           )) 
SupportedFormat = D3DFMT_X8R8G8B8; 
 
else 
if(SUCCEEDED(pD3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, 
           D3DDEVTYPE_HAL, 
           D3DFMT_X8R8G8B8, 
           0, 
           D3DRTYPE_TEXTURE, 
           D3DFMT_X8B8G8R8 //Requested format? 
          )) 
      
SupportedFormat = D3DFMT_X8R8G8B8;   
      
We perform this process for all formats we are interested in. Fortunately, D3DX includes a texture 
loading function that simply loads the file with the file name you supply and automatically creates a 
compatible texture format that most closely matches the bit depth and pixel format of the image in the 
file. The CheckDeviceFormat function is useful if we are looking for a very specific set of formats. For 
example, if we want our textures to use an alpha channel, then we could use the code above to check all 
formats that have alpha components until a suitable one is found.  
 

Note: Unlike choosing a back buffer and front buffer format in fullscreen device mode, we are not limited 
to choosing a texture format that matches either the front buffer or the frame buffer. It is acceptable to 
run the graphics card in 16-bit mode while still creating and using 32-bit texture formats. The textures, 
unlike the frame buffer that needs to be flipped to an identical front buffer format in full screen mode, 
are containers of per-pixel information accessed on a per-texel basis by the renderer. The performance 
overhead of using a 32-bit texture while the adapter (and frame buffer) is in 16-bit mode (or vice versa) 
is typically quite small. The color is converted during rendering fairly quickly on the hardware. However, 
for maximum performance you should try to use a texture format that matches your frame buffer format 
whenever it is possible or convenient. 

D3DX also includes a function called D3DXLoadSurfaceFromSurface which allows you to copy image 
data in one surface to a destination surface of the same or different format. For example, if we have a 
source surface of D3DFMT_X8R8G8B8 and a destination surface in D3DFMT_DXT1 (compressed format), the 
function will take the image data in the source surface and copy it into the compressed format required 
by the destination surface. This gives us a mechanism to covert between arbitrary surface formats with 
ease. We will take a look at the D3DX texture functions shortly when we discuss the various ways of 
creating and filling textures. 
 

Note: Often we will not need to manipulate texture data at the pixel level. Letting the D3DX loader 
functions choose a texture format for us is generally fine. If we do need to lock the texture and work with 
image data directly, we will need to be aware of the format so that we know how the pixels are arranged 
in memory. 
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Understanding Surface Formats 

We will briefly cover the D3DFORMAT type and the way texels are arranged in memory since there will be 
times where you will want to manipulate the surface images directly. Let us use as our first example, the 
process of reading and writing to the individual pixels within a texture that has been created with a 32-
bit ARGB format (D3DFMT_A8R8G8B8). Although each of the formats in Table 6.1 store colors in a 
different configuration for each texel, the A8R8G8B8 case should shed some light on accessing texels in 
texture surfaces stored in other formats. 
 
A D3DFMT_A8R8G8B8 surface means that every 32 bits (4 bytes) of surface data represents a single texel 
color. The name of this format makes sense when we consider that we have one byte (8 bits) for each 
color component. Although we have not discussed what the alpha component of a color is at this point in 
the text (see Chapter 7), just know that a pixel can include an alpha component that describes how 
transparent it is. This value determines how the pixel will be blended with another color already in the 
frame buffer at the same pixel location. If the alpha component is at full intensity then the pixel is 
considered opaque and should overwrite any pixel in the frame buffer at that location, assuming it passes 
the appropriate tests (depth, etc.). 
 
As you may recall, this idea of packing four color components into a 32-bit ARGB DWORD can be 
found in cases such as the Diffuse and Specular vertex color components. In a moment we will look at 
how to extract the individual color values from this type of variable.  
 
Although we do not yet know how to create a Direct3DTexture9 object, assume for now that we have 
created one that stores a 32-bit image surface that we wish to access. As is the case with vertex buffers, 
the IDirect3DTexture9 interface does not expose the surface data directly, so we have to lock the surface 
first. We do this using the IDirect3DTexture9::LockRect method shown below. 
 
IDirect3DTexture9::LockRect 
(       
    UINT Level, 
    D3DLOCKED_RECT *pLockedRect, 
    CONST RECT *pRect, 
    DWORD Flags 
); 
 
Ignore the first parameter for now -- we will discuss it in the next section. The second parameter accepts 
the address of a D3DLOCKED_RECT structure. If the lock call is successful it will contain a pointer to the 
image data that our application can use to read from or write to the surface. The D3DLOCKED_RECT will 
also contain an integer value describing the pitch of the surface in bytes. 
 
typedef struct _D3DLOCKED_RECT 
{ 
      INT Pitch; 
      void *pBits; 
} D3DLOCKED_RECT; 
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The third parameter to the LockRect function allows our application to pass in a rectangle specifying the 
region of the texture surface that we would like to lock. If you set this to NULL then the pointer returned 
in the D3DLOCKED_RECT structure will contain a pointer to the first byte of the first pixel in the surface. 
This can be understood as the pixel in the top left corner of the image. If you specify a rectangle on the 
surface, then the pointer returned will point to the first byte of the pixel in the top left corner of the 
rectangle on the surface.  
 
The fourth parameter allows us to specify a series of flags that can be used to supply DirectX Graphics 
with hints regarding the most efficient locking strategy. Unlike vertex buffers which can always be 
locked (even static ones in video memory at a severe performance cost), not all textures are lockable. 
Typically textures that exist in video memory are not lockable and ideally most of our required textures 
will exist there.  However if a texture is created with the D3DUSAGE_DYNAMIC flag, then it can be 
locked even if it does exist in video memory.   
 
The Flags parameter of the lock function can be set to one or more of the following: 

• D3DLOCK_DISCARD   
• D3DLOCK_NO_DIRTY_UPDATE   
• D3DLOCK_NO_SYSLOCK  
• D3DLOCK_READONLY 

These flags will not be discussed just yet, although you might recognize them from Chapter 3 when we 
locked our vertex buffers.  Their functioning is very similar for textures since, at the driver level, both 
vertex buffers and texture resources are stored on DirectDraw surfaces.  
 
The following example will lock a 32-bit surface and extract the individual color components of the 
texel at coordinates (x =10, y = 4). We use the surface pitch to calculate the correct row width.  
 
IDirect3DTexture9 * pTexture; 
… 
… 
D3DLOCKED_RECT  LockInfo; 
 
// Lock the texture to retrieve its lock info. 
pTexture->LockRect( 0 , &LockInfo , NULL , 0); 

 
We want to cast the void pointer returned in the D3DLOCKED_RECT structure to a 32-bit pointer to access 
the data on a per-pixel level. 
 
// create a 32-bit pointer to the surface pixel data 
unsigned long *pPixelData = NULL; 
pPixelData = (unsigned long *)LockInfo->pBits; 

 
To retrieve the pixel at location (10, 4) we calculate the offset of that pixel as: 
 
Row = LockInfo.Pitch * 4;  (Y=4 so we need to move 4 rows down) 
TotalOffset = Row + 10;    (X=10, so we move to 10th pixel in 4th row) 
pPixelData += TotalOffset; 
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Now simply dereference the pointer to extract the pixel: 
 
unsigned long SrcColor = *pPixelData; 
  
When specifying a 32-bit color using hexadecimal, each full byte is represented as 0xFF (255). The 
hexadecimal layout of the color in code allows us to clearly see the two digits for each color component. 
Now let us see how we can break the DWORD into its separate A, R, G and B byte components using 
bitwise AND operations. Assume that SrcColor has a value of 0xFF326C94. To break the color into its 
separate BYTE components: 

// SrcColor = 0xFF326C94; 
unsigned long DestColor = 0; 
 
// Lets extract each individual color component 
unsigned char Alpha = (SrcColor & 0xFF000000) >> 24;  // 0xFF 
unsigned char Red   = (SrcColor & 0x00FF0000) >> 16;  // 0x32 
unsigned char Green = (SrcColor & 0x0000FF00) >> 8;   // 0x6C 
unsigned char Blue  = (SrcColor & 0x000000FF);        // 0x94 

 
At this point we have the alpha, red, green and blue components stored separately as byte values 
between 0 and 255. To pack this information back into the DWORD and write it to our 32-bit surface we 
use a series of bitshifting operations. A new color (if desired) could then be directly written to our 
surface as follows:   
 
// Lets now take each of these values and rebuild it 
DestColour = (Alpha << 24) | (Red << 16) | (Green << 8) | (Blue); 
 
// Write Pixel to surface 
pPixelData = DestColor; 

  
So a color component is extracted by masking off the byte in which that component is contained and 
then shifting it to the right until it occupies the low (first) byte. Since bit masking is sometimes 
confusing for newcomers to programming, let us extract the red color component as a quick example.  
 

 
                         (Bit 32)...................(Bit1) 

SrcColor   = 11111111001100100110110010010100 // 0xFF326C94 
 
 
We mask out the component by &’ing the value with a bit mask of 0x00FF0000: 

 
 

   BitMask = 00000000111111110000000000000000 // 0x00FF0000 
 
& 
 

 SrcColor = 11111111001100100110110010010100 // 0xFF326C94 
 
= 

TempColor = 00000000001100100000000000000000 // 0x00320000 
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All of the values contained within the alpha, green and blue components now equal 0. Only red bits 
remain set. The value now stored in the variable ‘TempColor’ has a hex value of 0x00320000. Since 
there are now 16 empty bits to the right of our red component value we will shift it so that it lines up 
with bit locations 1 through 8 (the bits which describe values between 0 and 255).  
 
 

TempColor = 00000000001100100000000000000000 // 0x00320000 
 

>> 16 
 

    Result = 00000000000000000000000000110010 // 0x00000032 
 

 
The green and blue components essentially drop off the end leaving a red value of 0x00000032 (hex) -- 
50 in decimal.  
 
The same operation is applied to the other three color components. The only differences between the 
processes used to extract the color components is that they each utilize unique bit masks and bit shifting 
values in order to extract that component’s information. Try out the remaining three for yourself and see 
what you come up with. 
 
We should be able to adjust the above code to extract color components from a 16-bit A4R4G4B4 
surface just as easily. The only difference is that there are two bytes in total to store the colors (each 
color component is represented by 4 bits instead of 8). This of course reduces the available colors 
significantly. At 32-bits we had 255 intensity levels per component, but with a 4444 surface we have 
only 16 levels of intensity per color. This does not mean that the components cannot be as bright as a 
32-bit color, but that between zero intensity and full intensity there are only 16 different shades of that 
color component available. When separated out, each component should have a value between 0 and 15. 
Finally, it should be clear that the color masks for each format would have to be constructed differently 
based on the color format. The following example shows how to extract the colors from an A4R4G4B 
16-bit surface just for completeness -- the other formats you should be able to figure yourself by looking 
at the two examples provided. 
 
For a single component to be at full intensity, all four bits would have to be set (1111). We know from 
the binary number system that this is equal to 15 in decimal, or ‘F’ in hexadecimal. We will use an 
example color of 0xF8C4 (ARGB = (15, 8, 12, 4)).  

 
 

  (Bit 16)………………(Bit1) 
SrcColor   = 1111001011000100 // 0xF8C4 

 
 
To retrieve the red color component we need to isolate the first 4 bits in the high byte of the word. To 
mask off the green color value, we need to mask off the last 4 bits in the low word, and so on.  
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// WORD SrcColor  = 0xF8C4; 
WORD DestColor = 0; 
 
// Lets extract each individual color component 
unsigned char Alpha  = (SrcColor & 0xF000) >> 12;  // 0xF 
unsigned char Red    = (SrcColor & 0x0F00) >> 8;   // 0x8 
unsigned char Green  = (SrcColor & 0x00F0) >> 4;   // 0xC 
unsigned char Blue   = (SrcColor & 0x000F);        // 0x4 

 
Notice that we mask off the 4 bits of interest and reduce the number of bits that need to be shifted. In the 
32-bit example the red bits started at bit 16, now they start at bit 8. So we only have to shift down by 8 
bits this time to convert it to a byte value in the range of 0 - 15.  

 
 
 

   BitMask = 0000111100000000 // 0x0F00 
 
& 
 

 SrcColor = 1111001011000100 // 0xF8C4 
 
= 
 

TempColor = 0000001000000000// 0x0800 
 
 

 
TempColor = 0000001000000000 // 0x0800 

 
>> 8  
 

    Result = 0000000000000010 // 0x08 
 
 
If we wish to build a color with this format we use the same approach and shift the bytes into position.  

// Lets now take each of these values and rebuild it 
DestColour = (Alpha << 12) | (Red << 8) | (Green << 4) | (Blue); 
 
// Write Pixel to surface 
pPixelData = DestColor; 
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6.1.2 Textures and Memory Pools 

Like vertex and index buffers, textures are resources that derive their interface from 
IDirect3DResource9. As with all resources, when they are created, we must choose the memory pool 
where we want them to be stored. We covered the D3DPOOL enumerated type when we discussed vertex 
buffers in Chapter 3, and most of the same rules apply. We will briefly examine memory pool usage as it 
applies to textures. 
 
 
D3DPOOL_DEFAULT 
When textures are placed in D3DPOOL_DEFAULT we are indicating that we would like the driver to place 
the texture in the memory pool it considers optimal for rendering performance. This will typically be 
local video memory or non-local video memory (AGP memory). Unlike vertex and index buffers 
created in this pool, a D3DPOOL_DEFAULT texture cannot be locked unless it is created with the 
D3DUSAGE_DYNAMIC usage flag. The reason is that a driver may manipulate and rearrange the bits of data 
so that it can work with the texture data using its own format for maximum speed. This is called 
swizzling. Once the texture data has been swizzled, locking the surface could return a pointer to a 
texture format we no longer understand – one that does not correspond to the DirectX standard formats. 
If we specify a dynamic texture, we inform the driver that we will want to lock it at some point. It now 
knows that the texture data should not be converted to an unknown format because we expect to 
read/write from the texture using the format that it was created with. This can carry a performance 
penalty because the driver will typically more efficiently with swizzled data. 
 
Note that this is also the only pool type you can choose if you intend to use the 
IDirect3DDevice9::StretchRect function to copy one texture surface to another with automatic scaling. 
The same is true of the IDirect3DDevice9::ColorFill function which can be used to fill a texture surface 
with a color. We will examine both of these functions later in the lesson. 
 
Video memory management falls to the application in this case. If there is not enough video memory to 
create a texture, you may need to evict other (perhaps least recently used) textures to make room for it.  
You should also create all of your D3DPOOL_DEFAULT resources before creating any D3DPOOL_MANAGED 
resources. Otherwise the memory management system employed by DirectX9 for your 
D3DPOOL_MANAGED resources will not be able to accurately track available memory. 
 
Like other resources in this pool, when the device is lost, all textures in the D3DPOOL_DEFAULT pool are 
lost also and must be recreated.  
 
 
D3DPOOL_MANAGED 
When a texture is created in the D3DPOOL_MANAGED pool a copy is created first in system memory and 
then the data is uploaded to device memory as it is needed. The DirectX resource management system 
will make sure the texture data exists in the optimal device memory pool and that it can be locked. When 
the texture is locked we get back a pointer to the system memory copy of the surface. This makes reads 
and writes relatively fast. When the surface is unlocked, the modified image data is uploaded from the 
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system memory copy into the actual texture surface (typically in video memory) and the changes to the 
texture will take effect. 
 
One of the biggest advantages of using this pool is that the DirectX memory management system will 
remove least recently used textures from video memory and promote more recently used ones into that 
space. Each texture is given a time stamp describing the last time it was used. When a polygon(s) is 
about to be rendered that uses a texture not already in video memory, the texture with the oldest time 
stamped is removed and the required texture has its data uploaded from the system memory copy into 
video memory. The application can assign each texture a priority if desired. This way if two textures in 
memory currently have the same time stamp, the texture with the lowest priority gets evicted from video 
memory first. This allows us to hint that certain textures are more important than others. We might do 
this if the texture is large -- where constantly evicting and uploading it would affect performance. 
 
Like all managed resources, these textures will not have to be recreated when a lost device is recovered. 
The device can automatically recreate the texture surface when the device is reset and upload the texture 
data from the system memory copy. This is done automatically; making D3DPOOL_MANAGED a reasonable 
default memory pool for applications that simply create textures from images loaded from files and use 
them to render texture mapped polygons. 
 
There are several cases where you may not want to use D3DPOOL_MANAGED textures. This pool cannot be 
used if you need to call any of the following IDirect3DDevice9 functions: 
 

• StretchRect 
• ColorFill 
• UpdateSurface 
• UpdateTexture 
 

D3DPOOL_SYSTEMMEM 
Textures created with this pool are placed in system memory and do not need to be recreated when the 
device is reset. Hardware accelerated devices generally cannot usually use system memory textures 
directly for rendering. You can check whether this is the case by checking the D3DCAPS9::DevCaps 
member returned from the IDirect3DDevice9::GetDeviceCaps function. This member is a bit field so 
you can check to see if it has the D3DDEVCAPS_TEXTURESYSTEMMEMORY flag set as follows: 
 
D3DCAPS9 caps; 
pDevice->GetDeviceCaps(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &caps); 
if(cap.DevCaps & D3DDEVCAPS_TEXTURESYSTEMMEMORY)   
{ 
 //Texturing from system memory is supported 
} 
 
Typically, software devices (such as the reference rasterizer) are limited to only using system memory 
textures and cannot use video memory textures. You can check if a device can or can not support video 
memory textures by checking the DevCaps member for the D3DDEVCAPS_TEXTUREVIDEOMEMORY flag. 
This is not something your application will usually need to do because if you use the D3DPOOL_MANAGED 
or D3DPOOL_DEFAULT pool types then the driver will create the texture in the memory pool preferred by 
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the device. This will normally be in video memory for hardware devices and system memory for 
software devices. 
 
Since most applications will be using a hardware device you might wonder if there would ever be a need 
to create system memory texture resources on a hardware device if they cannot be used directly for 
texturing. As it happens there is a need for this resource type if you intend to manage texture memory 
yourself (using D3DPOOL_DEFAULT) and need to frequently alter the contents of the texture. 
 
When managing textures yourself, your application will typically want to create a system memory copy 
of all of the D3DPOOL_DEFAULT created textures.  If the application needs to update the contents of the 
texture, it is usually fastest to make the alterations to the system memory copy and then transfer the 
contents up to the video memory version with the IDirect3DDevice9::UpdateTexture member function. 
This function is designed specifically for this purpose. It accepts two textures (a source and a destination 
texture) where the source texture must be a system memory texture and the destination texture must be a 
D3DPOOL_DEFAULT texture.  These copies are also useful when the device becomes lost because 
D3DPOOL_DEFAULT textures will need to be recreated. Since D3DPOOL_SYSTEMMEM textures persist, they 
are available for copying back up to the hardware.  
 
 
D3DPOOL_SCRATCH 
In this pool the texture is created in system memory but is not accessible to the device. These textures 
can be understood as simple data containers. While they can be locked, and their bits copied to and from 
the surfaces of other textures, we cannot use a texture in this pool to render textured polygons.  
 
We will shortly see that devices often put restrictions on textures used for rendering. A common 
prerequisite is that the texture dimensions be a power of 2 (and on some very old hardware textures must 
be perfectly square). Some hardware devices may impose a maximum texture size such as 256x256 or 
512x512.  Textures created in the D3DPOOL_SCRATCH pool do not have any of these restrictions – but that 
is hardly surprising since these restrictions are imposed by the device and the device cannot access 
textures in the D3DPOOL_SCRATCH pool.  
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6.2 MIP Maps 

We continue our exploration of textures and texture memory with a brief discussion of MIP maps. Let us 
begin by examining their origins and move on to storage implications. 
 
When working exclusively with 2D graphic images, we can choose to maintain precise dimensions 
when copying images to the screen. For example, we could sample an image with a pixel/texel ratio of 
1:1 -- every texel in the source image mapping precisely to one pixel on the display. But when working 
in 3D we generally will not have this ability. We may have textures that are mapped to a polygon far in 
the distance taking up fewer pixels on the screen than there are texels in the texture. The polygon may 
have screen space dimensions of 64x64 pixels, while the texture mapped to it has 128x128 texels. When 
this is the case, it is clear that we can no longer copy all of the texture detail onto the polygon. As each 
screen space pixel is mapped back to a 2D texel coordinate by the rasterizer, some texels will have to be 
left out (every other texel in the aforementioned case). 
 
If you have ever done any sound recording, you can liken this process to sampling a sound. Provided we 
use a high enough sample rate, the recorded sound will be very close to the original -- as is the case with 
music recorded on compact discs. Reducing the sample rate results in the loss of accuracy and detail. 
Texture mapping a polygon on the display is much like this. The fewer pixels we have to work with on 
the display, the less detail we will be able to preserve.  
 
Simply skipping texels like this can result in the loss of important detail information that we may not be 
prepared to sacrifice. But if you have ever scaled down an image in a paint package, you know that 
detail preservation is attempted. Most paint packages include filters that use pixel averages to reduce the 
picture in such a way that it remains a good approximation of the original image. If you use a pixel 
discarding process, you will notice that when scaling down by large amounts the image can be quickly 
distorted -- especially noticeable if there is text on the original image. In the downsampled result, the 
loss of detail may be significant. Fig 6.5 shows a 128x128 texture (left) mapped to a (64x64) quad. A 
simple pixel skipping algorithm is used to make the texture fit the polygon: 
 

128x128 Texture 64x64 Quad 

 

 

 
Figure 6.5 

 
The scaled down image in Fig 6.5 looks rather bad and the text has become totally unreadable. This 
would only get worse as the polygon gets smaller. Further, it will also produce a shimmering artifact as 
the interpolated floating point texture coordinate for each pixel in the polygon is mapped into the 2D 
texture space and snapped to the nearest integer texture coordinate. The floating point rounding causes a 
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given pixel’s corresponding texel in the texture map to fluctuate between neighboring texels and pixel 
colors can appear to change as the object moves nearer or further away from the viewer.  
 
There are also problem with the opposite scenario. As polygons approach the camera and begin to 
occupy more pixels than the texture, we reach a point where we are mapping 1 texel to multiple pixels. 
This stretches the texture image to fill the surface of the quad causing an undesirable blocky appearance 
(Fig 6.6). 
 
A 64x64 texture map will look fine when 
applied to a polygon of approximately the 
same size. 

A blockiness and lack of detail appears 
when the polygon is larger than the texture 
and many pixels map to a single texel. 

 

 
Figure 6.6 

 
A common solution to both of these problems is MIP mapping. MIP is short for Multum In Parvo -- a 
Latin phrase meaning ‘much in small’ (i.e. many things in a small place).  A MIP map is essentially an 
ordered series of texture surfaces where each one is half the size in each dimension as its predecessor. 
For example, we could create a texture to hold a 256x256 image. If we instruct our texture loading 
function to create a MIP map chain, it should create an array of surfaces such that the next one in the 
chain is 128x128 and the next is 64x64 and the next is 32x32 – all the way down to 1x1 if that many 
MIP levels are desired. Since we will use D3DX texture loading functions for this procedure, in 
memory, each one of these surfaces will be a separate surface object that is managed by the main 
Direct3DTexture9 object. We instruct the D3DX texture loading functions to take the image stored in 
the top level surface (this is our base texture image) and sample the image down into all of the 
descending MIP surfaces as shown in Fig 6.7. 
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Figure 6.7 

 

Note: In Fig 6.7 all of the textures are square but this does not have to be the case. The MIP levels 
reflect the scaled dimensions of the top level surface. Some older 3D graphics cards do insist on square 
textures, so we will discuss how to check the device for that limitation later in the lesson. 

The D3DX texture loading functions can use filtering algorithms to generate a high quality 
downsampled image. They do this by calculating the color of every texel in a MIP surface using a 
weighted average of neighboring pixels in the preceding surface in the chain. Most paint packages such 
as Jasc’s Paint Shop Pro™ use similar filters that allow you to scale the image down by a fair amount 
before the image starts to become conspicuously corrupt. The following set of images show a 128x128 
texture, followed by this same texture downsampled onto a 64x64 quad by the rasterizer. The third 
image is a 64x64 MIP level generated by a D3DX texture loading function. 
 

 

A 128x128 image. When the texture has MIP surfaces, this will be the 
dimensions and image in the top level MIP surface (Level 0). When the 
texture does not have MIP surfaces, this will be the only surface used for 
texturing the polygons that use it regardless of their distance from the 
camera. 

 

When the texture does not have MIP surfaces the image is downsampled 
onto a 64x64 quad by the rasterizer using a fast but crude algorithm 
causing crude sampling artifacts. 

 

If the texture has MIP surfaces the correct MIP surface will be used to 
texture the quad. The D3DX loading function has done a much nicer job 
of downsampling the image to this resolution 

 
We can access each surface separately by using the IDirect3DTexture9::LockRect function and 
specifying the MIP level (zero based indices) that we want to retrieve a pointer to. This is what the first 
parameter in the LockRect function is used for. For example, your artist may think that despite the 
advanced filtering algorithms provided by D3DX, some important detail has become unacceptably 
blurred. In such case they may want to create a new touched up image for a given MIP level. Although 



 

  
 

365

this is probably not something that will happen very often, the ability to access each MIP surface 
individually and copy data directly provides you with this capability.  
 
The next example shows a 128x128 texture downsampled by the D3DX texture loading functions to fit 
on a 64x64 MIP surface. Compare that to the same image sampled down by the artist and copied into the 
64x64 MIP level. In the example, the floor tile looks basically the same and there has been no real 
benefit over the automatic downsampled version. However, the artist has chosen to use a smaller, 
sharper font for the text which makes it appear cleaner. 
 

 

In this image we have let the D3DX texture loading function generate the 64x64 
MIP level by downsampling the original 128x128 image using filtering. It has 
done a fair job although the text is slightly blurred and hard to read.  

 

In this image, the 64x64 image was created by the artist in a paint package and a 
different font was added that was cleaner and looked better at a smaller resolution. 
This image could be loaded and copied into the 64x64 MIP surface of our texture. 

 
If you decide that the texture you are creating will not have MIP maps, then the first LockRect 
parameter will always be 0 to specify the top level (and in that case, the only) surface.  
 
When the device is rendering the scene, it will perform a distance calculation to determine which MIP 
level should be used to texture a polygon (pixel). If we are rendering a polygon that is close to the 
camera, it might use the top level surface of the texture (perhaps a 512x512 texture with lots of detail). 
As the polygon gets further away and becomes increasingly smaller, then the device will automatically 
select a smaller MIP surface that more closely matches the size of the polygon being rendered. This is 
more efficient and minimizes aliasing artifacts. 
 
We can also gain a performance boost using MIP maps at the cost of additional memory footprint.  
Rather than render a single texture with one resolution, it is faster to use multiple textures at varying 
resolutions. When rendering a small polygon with MIP maps, a smaller MIP level will be chosen. Many 
more of the texels we intend to use will fit into the cache memory during rendering and fewer will have 
to travel across the bus when uploading to the hardware is necessary. In the best case when we are using 
the lowest MIP levels (1x1, 2x2, 4x4, etc.), the entire MIP surface could be cached for the rendering of 
distant polygons. 
 
 



 

 366 

6.3 Loading Textures 

Let us now look at how to load image data in from a file. Fortunately, we can accomplish this with a 
single function call using D3DX. There are two functions for creating and loading textures in DirectX 
Graphics (D3DXCreateTextureFromFile and D3DXCreateTextureFromFileEx). The first is the easiest 
to use and takes fewer parameters as it assumes certain default values. The second function provides 
much more flexibility but includes a larger parameter list. We will cover the latter first so that we can 
better understand the default values used by the former. 
 

6.3.1 D3DXCreateTextureFromFileEx 

HRESULT D3DXCreateTextureFromFileEx 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    LPCSTR pSrcFile, 
    UINT Width, 
    UINT Height, 
    UINT MipLevels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    DWORD Filter, 
    DWORD MipFilter, 
    D3DCOLOR ColorKey, 
    D3DXIMAGE_INFO *pSrcInfo, 
    PALETTEENTRY *pPalette, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
 
LPDIRECT3DEVICE9 pDevice 
This parameter is a pointer to the device interface. It is needed because the device owns the texture 
memory and because this function calls the D3DXCheckTextureRequirements function to check that the 
other inputs to this function are valid (i.e. that properties such as the width, height, and format are 
supported by the current device). If the any of the inputs are invalid, then they are adjusted to find the 
best supported match.  
 
LPCSTR pSrcFile 
This is a pointer to a string storing the texture filename. It can include relative or absolute paths -- or no 
path at all to load a texture from the application’s current working directory. D3DX supports a wide 
range of image formats (bmp, tga, jpg, png, dib, dds). This function automatically handles the creation 
of the texture object and the conversion of image data from the file into the texture surface. 
 
UINT Width 
This is the width of the desired texture. It does not have to be the same as the width of the image that we 
are loading because the function will scale the image to fit using one of the filter types specified in the 
Filter parameter to this function. If we specify D3DX_DEFAULT for this parameter, then the width is taken 
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from the image in the file. If this width is not a supported texture width, then the closest supported width 
is chosen and the image is scaled to fit. 
 
UINT Height 
This is the height of the desired texture. Same rules as above. 
 
UINT MipLevels 
This is where we specify the desired number of MIP map levels for the texture. A value of 1 indicates a 
texture with a top level surface only. If the value we specify is not a valid number it will be adjusted to 
create a texture with a MIP level count supported by the device. D3DX_DEFAULT (or a value of 0) will 
create a texture with a MIP chain down to 1x1 in dimensions. This means a 128x128 texture would have 
8 levels with dimensions shown below: 
 

128 x 128 Level 0 
64   x  64  Level 1 
32   x  32  Level 2 
16   x  16  Level 3 
8     x   8  Level 4 
4     x   4  Level 5 
2     x   2  Level 6 
1     x   1  Level 7 

    
Once the image has been loaded into the top level surface and scaled (if necessary) using the filtering 
algorithm specified in the Filter parameter, it is sampled from the top level down through to the bottom 
level automatically. The filtering algorithm used to resize the image from one MIP level to the next does 
not need to be the same as the filtering algorithm use to scale the image file at the top level surface. We 
specify the filtering algorithm we would like the function to use when generating the MIP map images 
with the MipFilter parameter to this function.  
   
DWORD Usage 
For general texture use, you will usually set this flag to zero. You can however specify the 
D3DUSAGE_DYNAMIC flag if you wish the function to create a dynamic texture. You can check to see if 
the device supports dynamic textures using the IDirect3DDevice9::CheckDeviceFormat function, 
passing in the texture format and the D3DUSAGE_DYNAMIC flag.  The other flag that we can specify is the 
D3DUSAGE_RENDERTARGET flag. If a texture is created as a render target, we can tell the device to render 
the scene to the texture surface instead of the frame buffer.  
 
D3DFORMAT Format 
This parameter indicates the pixel format that we desire. If the format is not supported by the current 
device then the function will find the next closest match. This format does not need to be the same 
format or bit depth as the image we are loading. Once the texture has been created, the function will 
copy the image data to the surface performing the appropriate color conversion. This is useful because it 
allows us to request a texture format that is identical to the frame buffer format. When we do so and then 
use this texture for rendering, no color conversion has to be performed and we can render at maximum 
speed. If we specify D3DFMT_UNKNOWN then the texture surface created will be the closest match to the 
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pixel format of the image data in the file. Because of this, the function will very rarely fail -- unless the 
file name is incorrect or an invalid device was passed.  
 
D3DPOOL Pool 
This is where we specify the memory pool that we would like the texture to be created in.  
 
DWORD Filter 
If the size of the image being loaded does not match the size of the texture we are creating, the image 
will be scaled to fit the texture surface. This parameter allows us to specify the filtering technique that 
should be used to downsample (or upsample) the image to the top level surface. The possible algorithms 
that we can choose from are listed below and vary in the quality of filtering they provide. These are the 
more common filtering options, but be sure to refer to the SDK documentation for a more complete 
listing. 
 

D3DX_FILTER_NONE 

No filtering takes place at all. If the image from the file does 
not fit on the created texture surface it is simply cropped to fit. 
If the image is smaller than the texture surface then all unused 
pixels in the texture will be transparent black.  

D3DX_FILTER_POINT Each texel gets its color from the nearest equivalent pixel in 
the file image. This can cause resizing artifacts. 

D3DX_FILTER_LINEAR 
Each pixel in the texture surface is computed by averaging the 
four nearest pixels in the source image. 
 

D3DX_FILTER_TRIANGLE 

This is the slowest filter but provides the best re-sampling 
quality. Every pixel in the source image contributes equally to 
the image on the destination texture surface. This is the 
default filtering type used if you specify D3DX_DEFAULT 
for either the Filter or MipFilter parameters. 

D3DX_FILTER_BOX 

Each pixel is computed by averaging a 2×2(×2) box of pixels 
from the source image. This filter works only when the 
dimensions of the destination are half those of the source (as 
is the case with MIP maps). 

D3DX_FILTER_DITHER 
The resulting image is dithered using a 4x4 ordered dithering 
algorithm. This can be combined with any of the above filter 
types.  

 
If we set this parameter D3DX_DEFAULT then the filtering method used is equivalent to specifying both 
D3DX_FILTER_TRIANGLE and D3DX_FILTER_DITHER. 
 
DWORD MipFilter 
While the Filter parameter specifies the filter used to sample the source image into the top level texture 
surface, the MipFilter parameter allows us to specify the filter type used to filter images down through 
the MIP chain surfaces. All of the filters listed above are valid, and the default is a combination of 
D3DX_FILTER_TRIANGLE and D3DX_FILTER_DITHER. 
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D3DCOLOR ColorKey 
The ColorKey allows us to create textures that have transparent regions. This is useful for texture 
images such as windows, chain link fences, foliage, etc. where the viewer should be able to see through 
portions of the texture into sections of the scene that are rendered behind it. When each pixel is read 
from the source image and converted into the texture surface format, it is compared against the 
ColorKey color -- which has itself also been converted into the destination format. If the pixels match 
exactly, then the color of the pixel is replaced with transparent black. When alpha testing is enabled 
during rendering (Chapter 7), pixels with an alpha value of 0 can be ignored, even when they pass the 
depth test and are closer than a pixel already in the frame buffer.  
 
D3DXIMAGE_INFO *pSrcInfo 
When the function returns, this structure will hold information about the original image data found in the 
file. NULL can be passed if your application does not require this information. 

            typedef struct _D3DXIMAGE_INFO 
     { 

    UINT Width; 
    UINT Height; 
    UINT Depth; 
    UINT MipLevels; 
    D3DFORMAT Format; 
    D3DRESOURCETYPE ResourceType; 
    D3DXIMAGE_FILEFORMAT ImageFileFormat; 

     } D3DXIMAGE_INFO; 
 

In this structure we will find the width, height, and pixel format of the image in the file that was loaded. 
We can also retrieve the number of MIP levels that were in the file and the resource that represents the 
type of the texture stored in the file (D3DRTYPE_TEXTURE, D3DRTYPE_VOLUMETEXTURE, or 
D3DRTYPE_CUBETEXTURE). All files imported using the dds surface format (used by DirectX) provide 
this resource information. The Depth parameter is only applicable to 3D textures (volume textures). 
Finally, the D3DXIMAGE_FILEFORMAT member describes the type of file that contained the image and is 
expressed as one of the members of the enumerated type shown below. 

 
typedef enum _D3DXIMAGE_FILEFORMAT 
{ 
    D3DXIFF_BMP = 0, 
    D3DXIFF_JPG = 1, 
    D3DXIFF_TGA = 2, 
    D3DXIFF_PNG = 3, 
    D3DXIFF_DDS = 4, 
    D3DXIFF_PPM = 5, 
    D3DXIFF_DIB = 6, 
    D3DXIFF_FORCE_DWORD = 0x7fffffff 
} D3DXIMAGE_FILEFORMAT; 
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PALETTEENTRY *pPalette 
This member is used when we are creating 8 bit surfaces that use a color palette. Palletized surfaces 
contain a maximum of 256 possible pixel colors. We will not use such textures in this course as we will 
prefer a greater range of colors. Support for this type of texture on more modern graphics cards may 
even be unavailable, so be sure to check the device capabilities if you intend to use one. 
 
LPDIRECT3DTEXTURE9 *ppTexture 
This is the address of a pointer to an IDirect3DTexture9 interface. It will be assigned a valid interface if 
the function is successful. We use the IDirect3DTexture9 interface to work with the texture surface and 
to send it to the device for rendering.  
 
The following code shows how to use this function to load a file based image into a 256x256 32-bit 
RGB surface in the managed memory pool:  
 
IDirect3DTexture9 *pNewTexture = NULL; 
 
D3DXCreateTextureFromFileEx(m_pDevice,  // Our Device 
                            “Brickwall.bmp”, // File name of texture 
                            256,  256,  // We want a 256x256 texture  
                            D3DX_DEFAULT, // Create MIP chain to 1x1 
        0,   // No special usage flags 
        D3DFMT_X8R8G8B8,  // Desired texture format 
        D3DPOOL_MANAGED,  // A Managed texture 
        D3DX_DEFAULT,     // Use default filtering if 
                                              // image needs scaling to fit 
                                              // texture 
        D3DX_DEFAULT,     // Use default filtering to  
                                              // generate mip map images   
        0,          // No Color key  
        NULL,         // Don’t want file info 
               NULL,         // No palletized surface 
        &pNewTexture);    // Pointer to created texture 

 
That is basically all there is to loading a texture and preparing it for use. Later we will see how to send 
the texture to the device for rendering. 
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6.3.2 D3DXCreateTextureFromFile 

 
The D3DXCreateTextureFromFile function does not have the flexibility of the extended version of the 
function, but it has a much more manageable parameter list. 

HRESULT D3DXCreateTextureFromFile 
(       
    LPDIRECT3DDEVICE9  pDevice, 
    LPCSTR   pSrcFile, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
 

All we have to do is pass in our device, a filename, and a pointer to a texture interface pointer. It is the 
equivalent of calling D3DXCreateTextureFromFileEx with the excluded parameters set to either 
D3DX_DEFAULT or 0. This function can be used as shown below: 

IDirect3DTexture9 *pTexture = NULL; 
D3DXCreateTextureFromFile( pDevice , “Brickwall.bmp” , &pTexture); 

 
The equivalent would be calling D3DXCreateTextureFromFileEx with the following parameters:  

D3DXCreateTextureFromFileEx 
( 
    pDevice,      //Pass our device 
    pSrcFile,      //Image file name 
    D3DX_DEFAULT,   //Choose closest compatible width 
    D3DX_DEFAULT,   //Choose closest compatible height 
    D3DX_DEFAULT,   //Generate complete MIP map chain  
    0,       //No special usage flags 
    D3DFMT_UNKNOWN, // Choose closest compatible pixel format 
    D3DPOOL_MANAGED,// Create texture in the Managed tool 
    D3DX_DEFAULT,   // Use default scaling filter 
    D3DX_DEFAULT,   // Use default Mip sampling filter 
    0,       // No color key 
    NULL,      // No Image information returned 
    NULL,      // No Palette info returned 
    &pTexture      // Pointer to the created texture interface 
); 
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6.3.3 D3DXCreateTexture 

If we need to generate a blank texture and fill in the image data ourselves, D3DX includes functions that 
allow us to create a texture object without loading file image data into it. We may need to do this if we 
have our own texture file reading code, or if we wanted to generate texture images in our code 
(procedural texturing). D3DXCreateTexture includes a parameter list similar to the file loading function 
we saw previously.  
 
HRESULT D3DXCreateTexture 
(       
    LPDIRECT3DDEVICE9  pDevice, 
    UINT Width, 
    UINT Height, 
    UINT MipLevels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
 
If we specify an unsupported width, height, or format, the function will find the next closest match that 
is supported and should not fail. To use the function: 
 
IDirect3DTexture9 * pTexture = NULL; 
D3DXCreateTexture( pDevice , 100 , 100 , 6 , 0 , D3DFMT_A4R4G4B4, 
                              D3DPOOL_MANAGED, &pTexture ); 
 

Note: When a texture or surface has a pixel format with an alpha component, the texture is said to use 
an ‘Alpha Channel’. This per-pixel alpha can be used when alpha blending is enabled to provide per-pixel 
transparency (Chapter 7). 

 

6.3.4 D3DXCreateTextureFromFileInMemoryEx  

There are two D3DX functions to create textures from files stored in memory. This can be useful if you 
load the complete contents of the file (header and all) into a memory location. Simply provide a pointer 
to this memory location and the textures are created in exactly the same way with the exception that the 
data is read from memory rather than a file. These two functions are called 
D3DXCreateTextureFromFileInMemoryEx and D3DXCreateTextureFromFileInMemory. Both are 
analogous to D3DXCreateTextureFromFileEx and D3DXCreateTextureFromFile respectively. The 
function prototypes are shown below. The only difference is that we pass a void pointer to the first byte 
in the memory block containing the file. 
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HRESULT D3DXCreateTextureFromFileInMemoryEx 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    LPCVOID pSrcData, 
    UINT SrcDataSize, 
    UINT Width, 
    UINT Height, 
    UINT MipLevels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    DWORD Filter, 
    DWORD MipFilter, 
    D3DCOLOR ColorKey, 
    D3DXIMAGE_INFO *pSrcInfo, 
    PALETTEENTRY *pPalette, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 

 
We will not explain the parameter list again. However, the second parameter should now be a pointer to 
the file in memory (as opposed to string containing the file name) and the third parameter should 
describe the size of the file in memory in bytes. 
 
D3DXCreateTextureFromFileInMemory uses a simplified parameter list with D3DX_DEFAULT, 0, or 
NULL values as substitutes for the absent parameters. 
 
HRESULT D3DXCreateTextureFromFileInMemory 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    LPCVOID pSrcData, 
    UINT SrcDataSize, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 

 

6.3.5 D3DXCreateTextureFromResourceEx 

There are two functions that allow you to create textures from files stored as application resources. 
When binding a file into your resource file you should make sure that you use either the RT_BITMAP 
resource type to store bitmap files (bmp) or the RT_DATA type to store files for other supported 
formats (tga, png , jpg, etc.). When we create a texture from a resource, we pass the handle of the 
module that contains the resource and the string identifying the resource within that module using the 
second and third parameters. 
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HRESULT D3DXCreateTextureFromResourceEx 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    HMODULE hSrcModule, 
    LPCSTR pSrcResource, 
    UINT Width, 
    UINT Height, 
    UINT MipLevels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    DWORD Filter, 
    DWORD MipFilter, 
    D3DCOLOR ColorKey, 
    D3DXIMAGE_INFO *pSrcInfo, 
    PALETTEENTRY *pPalette, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 

 
The simplified version of this function is shown below: 
 
HRESULT D3DXCreateTextureFromResource 
(       
    LPDIRECT3DDEVICE9 pDevice, 
    HMODULE hSrcModule, 
    LPCSTR pSrcResource, 
    LPDIRECT3DTEXTURE9 *ppTexture 
); 
 
 
 

6.3.6 IDirect3DDevice9::CreateTexture 

D3DX functions are essentially wrappers around the texture and surface creation functions exposed by 
the device. The IDirect3DDevice9::CreateTexture method can be used to create a blank texture in much 
the same way as D3DXCreateTexture: 
 
HRESULT CreateTexture 
(       
    UINT Width, 
    UINT Height, 
    UINT Levels, 
    DWORD Usage, 
    D3DFORMAT Format, 
    D3DPOOL Pool, 
    IDirect3DTexture9 **ppTexture, 
    HANDLE* pHandle 
); 
 

Note: The final parameter is reserved for future use. It should be set to NULL. 

There are several parameters that are absent when compared to the D3DXCreateTexture function. The 
reason is that this function simply tries to create the specific texture object that is indicated by the 
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parameters. The missing filtering parameters make sense since this is a blank texture (possibly with 
blank MIP surfaces). If you choose not use D3DX functions then you will need to write your own code 
to import the different image file formats and convert them into the proper surface color format. You 
will also need to deal with scaling, filtering, and filling MIP surfaces yourself.   
 
The call will fail if the parameters are invalid or if the requested settings (format, width, height, or 
usage) are not supported on the current device. It is the application’s responsibility to test for failure and 
adjust the parameters accordingly. Furthermore, when the application is creating textures in this way it 
should check the device capabilities -- especially the common ones listed below. Once you get the 
D3DCAPS9 structure using the IDirect3DDevice9::GetDeviceCaps function, you should check the 
following fields to determine support: 
 
MaximumTextureWidth  
A device will typically have a maximum texture width. If the image you are loading is wider than this 
limit then you will need to scale the image to fit the maximum texture size. If you try to create a texture 
using the above function and you specify a texture wider than this limit, the texture creation function 
will fail.  
 
MaximumTextureHeight 
This specifies a value describing the maximum texture height. If you try to create texture with a larger 
height value than this, texture creation will fail.  
 
TextureCaps 
The TextureCaps flag is a bit field. We will need to check the following bits to make sure that the width 
and height of our desired texture is supported by the device. The two bits we need to check are: 
 

D3DTEXTURECAPS_POW2 – If this bit is set then it means the width and height of the 
texture must be a power of two (ex. 64x32, 128x256 and 512x512). If you need to adjust a value 
so that it is a power of 2, simply start with a value of 1 and shift it left, each time testing whether 
it is greater than or equal to the original number. The following function would accept a width or 
height parameter and if it is not a power of 2, round up to the nearest power of 2. 

int GetPowerOfTwo (int Number) 
{ 
 int n = 1; 
 while (n < Number) n<<1; 
 return n; 
}  

 
D3DTEXTURECAPS_SQUARE – If this bit is set then the device only supports textures that 
are perfectly square (width = height). 

Lab Project 6.5 examines how to create textures using IDirect3DDevice9::CreateTexture rather than a 
D3DX helper function. It will check the capabilities of the device and modify the texture creation 
parameters when they are not supported. For all other demos we will use the D3DX texture loading 
functions so that all of this labor is handled automatically. 
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6.4 Setting a Texture 

A typical game level will use many textures and your faces will probably contain indices into a (global) 
scene level texture array. The application can create all required textures at application initialization or 
as needed – although initialization is preferred. Before rendering a face or a group of faces, we will call 
IDirect3DDevice9::SetTexture to tell the device which texture to use with the next DrawPrimitive call. 
For the time being, you can think of it as analogous to the IDirect3DDevice9::SetMateral function. Like 
that function, the texture will persist for DrawPrimitive calls until changed.  
  
HRESULT SetTexture(DWORD Stage, IDirect3DBaseTexture9 *pTexture); 

 
If we created an array of three textures: 
 
IDirect3DTexture9 *Textures[3]; 
D3DXLoadTextureFromFile (m_pDevice , “Texture1.bmp” , &Texture[0]); 
D3DXLoadTextureFromFile (m_pDevice , “Texture2.bmp”,  &Texture[1]); 
D3DXLoadTextureFromFile (m_pDevice , “Texture3.bmp”,  &Texture[2]); 

 
We could then render all of the faces that use these textures as follows: 
 
m_pDevice->BeginScene 
  m_pDevice->SetTexture (0 , Textures[0]); 
  m_pDevice->DrawPrimitive ( Render all triangles that use texture 1 ); 
  m_pDevice->SetTexture (0 , Textures[1]); 
  m_pDevice->DrawPrimitive ( Render all triangles that use texture 2 ); 
  m_pDevice->SetTexture (0 , Textures[2]); 
  m_pDevice->DrawPrimitive ( Render all triangles that use texture 3 ); 
m_pDevice->EndScene 

 
Note that we see polygon state batching once again. Later in our workbook we will revisit the IWF level 
loaded in the last chapter and see to how load in textures referenced from an IWF file. We will also 
adjust the CLightGroup class used in Lab Project 5.3 to batch by both texture and material. 

 

Note: Batching polygons to reduce the number of SetTexture calls is very important since the SetTexture 
device state change can be one of the most expensive. This is especially true if there is not enough video 
memory on the card to contain all of the textures used to render a single frame. For example, when 
using managed textures on a hardware device, if a texture used for rendering is not currently in video 
memory because there is not sufficient room, then a texture currently in video memory will need to be 
evicted to make room for the new texture. The system memory copy of the texture will then be uploaded 
to the hardware so that the rasterizer can access it. Passing texture data over the bus can be slow given 
the number of potential pixels involved. If we do not batch calls to SetTexture, this could result in a 
texture being evicted and then uploaded to video memory several times in a single frame. This is 
minimized if we batch by texture, because once all of the polygons that use a texture have been 
rendered, the texture can be evicted and will not be needed until the next frame -- at which point it will 
be uploaded again. Ideally, you will have enough video memory available to fit the textures for entire 
regions in a level (or perhaps even entire scenes) so that textures are only evicted and uploaded as new 
areas are entered by the player.  
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The Stage parameter above will be discussed later in the lesson. For now just know that you can 
simultaneously set multiple textures that will be blended together during rendering and that each texture 
(along with certain settings) is assigned to a texture stage. We will forget about multiple textures for the 
time being and simply set the Stage member to 0. This is the top level texture stage that must be used 
when we are only using single textured polygons.  
 

6.5 Texture Coordinates 

Texture coordinates are ordered tuples that define a mapping from locations on the polygon surface back 
to pixel locations in texture space. 2D coordinates are by far the most common since almost all texture 
maps we use will be two dimensional images. However 1D and 3D texture coordinates are also possible 
for special circumstances and texture types. For 2D coordinates we use a normalized coordinate system 
where both the horizontal (U) and vertical (V) axis range is [0.0, 1.0] regardless of texture size (Fig 6.8). 
Every pixel in the image can be accessed using UV coordinates in this range.  

The process is similar to what we saw with colors stored at vertices. Recall that when Gouraud shading 
is enabled, the vertex positions are converted into screen space coordinates and then the color of each 
pixel is calculated by calculating its distance from each of the three vertices. We then used these 
distances to calculate a weighted blend of the three vertex colors to generate a final pixel color.  

The rasterizer will calculate a 2D set of texture coordinates for each pixel that can be used to index into 
the texture surface and retrieve a color. Just as we needed to supply a per-vertex color that was 
interpolated across the surface, we need to supply a set of per-vertex texture coordinates for surface 
interpolation as well. This interpolation will generate a per-pixel texture coordinate by calculating the 
distance of the pixel from each vertex in the polygon. Using these distances, we perform a weighted 
interpolation for the current pixel. Once a per-pixel texture coordinate is found, a color is retrieved from 
the texture and used to fill the pixel. This is a simplified description of the process, but serves our 
purposes for this discussion.  

 
Figure 6.8 
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Texture coordinates will usually be generated in a level editing package and the data simply loading in 
along with the rest of the vertex data.  
 
Let us briefly look at how to calculate a correct UV coordinate for any 
texel in a texture using a simple calculation. In Lab Project 6.1 we 
return to the infamous spinning cubes (right image). This time the faces 
of our cubes will have textures mapped to them. We will apply a 
different one to every face in the cube mesh. 
 
In the texture coordinate system, the UV coordinate (0, 0) is considered 
to be the top left texel in the image and (1, 1) is the texel in the bottom 
right corner. Fig 6.10 shows how a texture might be mapped to a quad. 
Each vertex in the quad stores a coordinate pair that maps to the 
corresponding corner in the texture map. The texture is assumed to be 
256x256 texels in this example but it does not matter what size the texture is. These texture coordinates 
will map the entire contents of the texture to the surface of the quad when it is rendered.  

 
 

Figure 6.10 
 
In Fig 6.10 we see how to calculate the UV coordinates for a pixel in the image at location (128, 64). 
Note that we must take the dimensions of the image into account using a division. The coordinate (128, 
64) in the above 256x256 image would generate a UV coordinate pair of (0.5, 0.25).  
 
Fig 6.11 is a bit more revealing. Here we see a 128x128 texture mapped to a quad. This time however, 
the texture coordinates stored in the vertices do not map to the four corners of the texture but rather to 
only a particular section of the image. This section is them mapped over the entire surface when the 
quad is rendered, and scaled to fit. The green diagonal line reminds us that the quad is really two 
triangles: 
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Figure 6.11 

 
The texture coordinates stored at each vertex in Fig 6.11 describe a rectangle on the texture surface. This 
is the section used to map to the polygon. Note that if we were to alter these texture coordinates between 
frames, we could give the appearance of making the texture slide across the surface.  
 
Ultimately we can think of texture coordinates as defining a window. Anything on the texture surface 
that falls within the window is mapped to the polygon and texels outside the window are not.  
 
Although we have looked at rectangular regions, this need not be the case. Typically, you will want the 
window described by the polygon vertices to be the shape of the polygon itself so that the image on the 
texture is not unevenly squished out of shape -- but this is not a requirement. Your texture coordinates 
can define any shape, or even map to the same texel.  
 
In Fig 6.12 we are mapping a texture to a triangle. We will usually want the texture coordinates of its 
vertices to define a triangular region on the texture of similar proportion so that the image does not look 
too distorted when its texels are interpolated across the surface. 
 

 
 

 Figure 6.12 
 



 

 380 

Vertex Texture Coordinates 

The texture coordinate set for a vertex is stored in the vertex itself and is typically represented by two 
floating point values. As discussed in Chapter 2, we use flags to tell the pipeline that our vertex structure 
has one (or more) sets of texture coordinates.  The Flexible Vertex Format flags are listed again below 
with the ones we are currently interested in highlighted. 

 
Common FVF Flags       Description  

D3DFVF_XYZ Informs the device that the vertices are untransformed and will need to be 
sent through the transformation pipeline. 

D3DFVF_XYZRHW 

Informs the device that this vertex is pre-transformed and should not be 
sent through the transformation and lighting pipeline. The X and Y 
members of the vertex describe the screen space coordinates and the Z 
member describes the depth buffer value between 0.0 and 1.0. 

D3DFVF_NORMAL 
This flag can be used to inform the device that the vertex contains a 
normal vector that is used by the lighting pipeline to calculate diffuse and 
specular lighting. 

D3DFVF_DIFFUSE 

If lighting is disabled the vertex have a diffuse color component. If 
lighting is enabled this may be used as a material reflectance property. If 
lighting is not enabled then this contains the vertex diffuse color. If the 
vertex also contains a specular color these are added together to become 
the final color of the vertex.  

D3DFVF_SPECULAR 
The vertex has a specular component. When lighting is enabled this can 
store a material reflectance property. When lighting is disabled this 
describes the specular color of the vertex. 

D3DFVF_TEX0 through 
D3DFVF_TEX8 

DirectX Graphics supports vertices with up to 8 sets of texture 
coordinates. Many graphics cards available at this time however do not 
support single pass blending of as many as 8 textures. You can check the 
MaxSimultaneousTextures member of the D3DCAPS9 structure returned 
from the IDirect3D9::GetDeviceCaps function to inquire about a device’s 
texture blending capabilities. Although many 3D graphics cards will only 
support 2 to 4 textures being blended simultaneously, this does not limit 
the ability to store 8 texture coordinates in a single vertex. This is 
because you may wish to store the texture coordinates in the vertex and 
render the polygon several times using different sets.  

 
So we will specify one of the D3DFVF_TEX0 through D3DFVF_TEX8 flags to tell the pipeline how 
many sets of texture coordinates the vertex includes. As mentioned earlier, we can set different textures 
in different texture stages for blending onto a single polygon. Thus we can store multiple sets of textures 
coordinates in a vertex so that the polygon can map its vertices to separate independent regions of the 
textures being blending. Lab Project 6.1 uses only a single texture with a single pair of texture 
coordinates per vertex. 
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   Untransformed, Pre-Lit Vertex with Texture Coordinates 
 
 #define PreLitVertex D3DFVF_XYZ | D3DFVF_TEX1 
 

When we set this vertex format, the device knows to expect a vertex with a position that needs to be 
transformed and a pair of UV coordinates. Our vertex structure would look something like this: 
 
struct MyTexVertex 
{ 
       float x; float y; float z; // Model/World space position 
       float u;          // U Texture Coordinate  
       float v;          // V Texture Coordinate 
}; 

 
We would use this vertex type with lighting disabled. If no diffuse or specular color is specified in the 
vertex when lighting is disabled, the pipeline treats the vertex as if it has bright white diffuse and 
specular colors (0xFFFFFFFF). We will discuss in detail how to enable blending between the texture 
color and the polygon color later in the lesson. 
 
In this next example, we create another pre-lit vertex with texture coordinates. We use a vertex with a 
diffuse color (instead of relying on a default white diffuse color) and a set of texture coordinates so that 
the interpolated texel and diffuse colors can be blended together.  
 
#define PreLitVertex2 D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1 
 
struct MyPreLitVertex2 
{ 
   float x; floaty; floatz;     // Object/World space position 
   DWORD diffuse;        // Pre-lit diffuse color of vertex 
   float u;         // U Texture Coordinate 
   float v;         // V Texture Coordinate 
}; 

 
   Untransformed, Unlit Vertex with Texture Coordinates 

 
In this next example we see a vertex structure with texture coordinates designed to work with the 
DirectX lighting pipeline (includes a vertex normal). 

 
#define UnLitVertex D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1 
 
struct MyUnlitVertex 
{ 
    float x; float y; float z;    // Object/World space position 
    D3DXVECTOR Normal;           // Normal used for lighting 
    float u;            // U Texture Coordinate  
    float v;            // V Texture Coordinate 
}; 

 
The lighting pipeline calculates the per-vertex color (Chapter 5) and the vertex colors are interpolated to 
provide a per-pixel diffuse color. We can instruct the pipeline to blend this color with the texel color in 
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the texture for a given pixel. If a vertex is outside the range of all lights, it will have a black color 
interpolated across the surface, thus darkening the texels mapped to the polygon. 
 
In the next example we see an unlit vertex with a diffuse vertex color that could be used as a material 
reflectance property (Chapter 5). You might use a structure like this if you wanted each vertex in the 
object to have a per-vertex emissive property (instead of per-face). 

 
#define UnLitVertex D3DFVF_XYZ| D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX1 
 
struct MyUnlitVertex 
{ 
    float x; float y; float z;    // Object/World space position 
    D3DXVECTOR Normal;                // Normal used for lighting 
    DWORD      Diffuse;                // Diffuse Color 
    float u;                 // U Texture Coordinate  
    float v;                 // V Texture Coordinate 
}; 

 
Note: To be technically correct we should refer to a pixel that has not yet been rendered in the frame 
buffer as a fragment (or color fragment). This is because a pixel is used to describe a displayed point on 
the monitor screen and any fragment passing through the pipeline may be rejected by a depth test or 
some other test. Therefore, a fragment can be thought of as a potential pixel because it is a color that 
will be plotted on the screen as a pixel only if it does not get rejected at some point in the pipeline.  

 

6.6 Sampler States 

IDirect3DDevice9::SetSamplerState configures the way the device samples texels during rendering. 
Sampler states are analogous to render states. When a sampler state is set, it remains set until it is either 
unset or changed to some other state.  
 
HRESULT SetSamplerState 
(       
  DWORD Stage, 
  D3DSAMPLERSTATETYPE Type, 
  DWORD Value 
); 

 
Sampler states can be used to control what happens when the U or V coordinate of a vertex is outside the 
[0.0, 1.0] range. They can also be used to modify the way the device maps texels to pixels. Other 
settings are possible and we will see such examples as the lesson progresses. 
 
DWORD Stage 
This parameter is the zero-based integer index of the texture stage that we are setting the sampler state 
for.  
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D3DSAMPLERSTATETYPE Type 
This is the sampler state that we would like to set or change the property for. We specify one of the 
D3DSAMPLERSTATETYPE enumerated types defined below.  
 

typedef enum _D3DSAMPLERSTATETYPE 
 { 
    D3DSAMP_ADDRESSU = 1, 
    D3DSAMP_ADDRESSV = 2, 
    D3DSAMP_ADDRESSW = 3, 
    D3DSAMP_BORDERCOLOR = 4, 
    D3DSAMP_MAGFILTER = 5, 
    D3DSAMP_MINFILTER = 6, 
    D3DSAMP_MIPFILTER = 7, 
    D3DSAMP_MIPMAPLODBIAS = 8, 
    D3DSAMP_MAXMIPLEVEL = 9, 
    D3DSAMP_MAXANISOTROPY = 10, 
    D3DSAMP_SRGBTEXTURE = 11, 
    D3DSAMP_ELEMENTINDEX = 12, 
    D3DSAMP_DMAPOFFSET = 13, 
    D3DSAMP_FORCE_DWORD = 0x7fffffff 
} D3DSAMPLERSTATETYPE; 

 
DWORD Value 
This value is interpreted based on the sampler state being set. For one state this might contain a 
D3DCOLOR while another may use the value to determine which MIP level is used for texturing. We 
will see more alternatives for this parameter as we examine various sampler states. 
 
As one quick example, the following code could be used to limit stage 0 to only use the first three MIP 
maps (MIP levels 0, 1, and 2 -- which are the largest) in the chain when rendering. Even if the texture in 
stage 0 had 16 MIP levels, levels 3 through 15 would not be used, even when the polygon being 
rendered is very small. While this is not something you will usually want to do because it could cause 
aliasing artifacts, it does show us how to set a sampler state: 
 
m_pDevice->SetSamplerState(0, D3DSAMP_MAXMIPLEVEL, 2); 

 
Like the SetRenderState function, this function has a partner function to retrieve the current sampler 
states for a given stage on the device: 
 
HRESULT GetSamplerState 
(       
    DWORD Sampler, 
    D3DSAMPLERSTATETYPE Type, 
    DWORD* pValue 
); 
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6.6.1 Texture Addressing Modes 

The job of fetching the texel from the current texture using the UV coordinate pair belongs to the 
sampler unit. How the sampler interprets texture coordinates outside the [0.0, 1.0] range depends on the 
texture addressing algorithm used. We will look at these algorithms in a moment.  
 
The sampler states we set or modify to change the addressing mode are D3DSAMP_ADDRESSU and 
D3DSAMP_ADDRESSV for the U and V coordinates respectively. The value passed will be a member 
of the D3DTEXTUREADDRESS enumerated type: 
 
typedef enum _D3DTEXTUREADDRESS 
{ 
    D3DTADDRESS_WRAP = 1, 
    D3DTADDRESS_MIRROR = 2, 
    D3DTADDRESS_CLAMP = 3, 
    D3DTADDRESS_BORDER = 4, 
    D3DTADDRESS_MIRRORONCE = 5, 
    D3DTADDRESS_FORCE_DWORD = 0x7fffffff 
} D3DTEXTUREADDRESS; 

 

Wrapping (D3DTADDRESS_WRAP) 

This is the default addressing mode used for both the U and V texture coordinates when either (or both) 
is outside the [0, 1] range. UV coordinates outside the range cause the texture to be tiled across the 
surface.  
 

The Texture 
The Texture is repeated over the 
quad surface using WRAP address 
mode. 

 

 
 

Figure 6.13 
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Wrapping works simply by taking the interpolated texture coordinate and dropping the integer term. 
This can be affected in the U or V direction separately (or both as in Fig 6.13). When texture coordinates 
are negative, the tiling would still work in the same way, only in the opposite direction. The GILES™ 
level editor uses this addressing mode to allow you to scale and tile your textures across faces. In Fig 
6.13, if we were to change the bottom left coordinate to (0,8) and the bottom right to (4,8), the textures 
would tile four times across the surface and eight times down as seen in Fig 6.14. 
 

 
Figure 6.14 

 
You will normally want to use textures that will tile without visible seams. For example, making your 
own textures with a digital camera is easy to do, but generally they do not tile properly and will require 
some touching up in a photo editing package.  
 
Setting WRAP addressing mode for both U and V 
 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSU , D3DADDRESS_WRAP); 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSV , D3DADDRESS_WRAP); 

 

Mirroring (D3DTADDRESS_MIRROR) 

When we set either the U or V address modes to D3DTADDRESS_MIRROR, any coordinates outside 
the [0, 1] range are tiled much like D3DTADDRESS_WRAP except that every time the texture repeats 
along that axis, the coordinates are flipped. The best way to understand this is to see it in action. In Fig 
6.15 we have a texture of the planet Earth mapped to a quad with UV coordinates in the range [0.0, 2.0]. 
The texture is tiled as in the previous mode but this time it is mirrored as it is repeated. 
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Figure 6.15 

 
The flipping of the image happens at the texture boundary. If Fig 6.15 had coordinates in the 0.0 to 4.0 
range, it would be repeated 4 times along the U and V axes with the 2nd and 4th tiles mirrored and the 1st 
and 3rd tiles the same as the original source image. 
 
Sometimes using mirror mode can help break up repeating patterns when applying a texture over a large 
area. This makes the results appear somewhat more random to the viewer  

 
Setting MIRROR addressing mode for both U and V 
 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSU , D3DTADDRESS_MIRROR); 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSV , D3DTADDRESS_MIRROR); 

 
. 

Bordering (D3DTADDRESS_BORDER) 

Unlike other texture addressing modes which involve a single state change per axis to set that mode, 
border addressing mode requires that we set an additional sampler state. This second state will be a color 
that to be used to generate a border beyond the [0, 1] range. When a pixel maps to a texture coordinate 
outside this range, the sampler returns the border color. In the following example, we set the border 
color to opaque red using the D3DSAMP_BORDERCOLOR sampler state and then map the texture to 
a quad so that some of its pixels fall outside the [0, 1] range. We can see that these pixels are colored red 
(Fig 6.16). 

 
Setting BORDER addressing mode and color for both U and V 
 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSU , D3DADDRESS_BORDER); 
m_pDevice->SetSamplerState( 0 , D3DSAMP_ADDRESSV , D3DADDRESS_BORDER); 
m_pDevice->SetSamplerState( 0 , D3DSAMP_BORDERCOLOR , 0xFFFF0000); 
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                                                                                       Figure 6.16 
 
You can use this mode to make sure that only one copy of the texture is assigned to each polygon 
rendered with it.  
 

Clamping (D3DTADDRESS_CLAMP) 

Clamping (like the border address mode) is also useful when you want only one copy of the texture to 
appear on a polygon. U coordinates for pixels outside the 0.0 to 1.0 range are clamped to the color of the 
last (or first if U < 0) texel color in the given row. V coordinates outside the range are clamped to the 
last (or first if V < 0) texel in the given column (Fig 6.17).  

    
Figure 6.17 

 
Mirror Once (D3DTADDRESS_MIRRORONCE) 

This is analogous to using D3DTADDRESS_MIRROR and D3DTADDRESS_CLAMP addressing 
modes. It takes the absolute value of the texture coordinate (thus, mirroring around 0), and then clamps 
it to the maximum value.  
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Texture Coordinate Wrapping with the D3D Device 

In addition to the sampler being assigned a texture addressing mode, we can also assign each set of 
texture coordinates a wrapping mode. This is often confused with the D3DTADDRESS_WRAP texture 
addressing mode described above, but texture wrapping modes are quite different.  
 
To understand wrapping modes we first have to understand how texture coordinates are interpolated 
when wrapping is disabled. The following diagram shows how two vertices belonging to an edge of a 
triangle may be mapped to texels in the current texture being used. As you would expect, the 
interpolated per-pixel UV coordinates of the edge step across the texture and maintain the rule that 
higher U values are to the right of lower U values and higher V values are below lower V values. The 
texels along the edge of the line are returned to the renderer by the sampler unit for each fragment along 
the edge of the polygon.  

            
Figure 6.18: UV Wrapping Disabled 

 
When wrapping is enabled along either the U or V axis of the texture coordinate system, we interpolate 
along the edge formed by the per-vertex texture coordinates using the shortest distance between the two 
coordinates along the given axis.  
 
In Fig 6.19, we see an edge that will be interpolated between the same two points when wrapping is 
enabled along the U axis. Notice that it takes the shortest distance along the U axis by wrapping off the 
left hand side of the texture and back again onto the right hand side.  
 

           
                                                           Figure 6.19: U Wrapping Enabled 
 
Notice that only U wrapping is enabled in Fig 6.19. The V interpolation still carries on vertically down 
the texture as usual. The edge is only wrapped if the length of the edge will be shorter by doing so. 
Otherwise, the edge will be interpolated across the face of the texture in the normal fashion. 
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We can also enable texture wrapping along the V axis in the same way. The difference here is that if the 
edge is vertically shorter by wrapping off the top/bottom of the texture, then this approach is used (Fig 
6.20).  

 
                                                   

                                                              Figure 6.20: V Wrapping Enabled 
 
Note that the U edge is not wrapped and steps along the edge of the texture from left to right. The V 
coordinate is wrapped and the edge is shorter vertically if the edge is wrapped off the top edge of the 
texture and up through the bottom. 
 
Finally, we can enable texture wrapping on both the U and V axes of the texture coordinate system 
which, in Fig 6.21, causes the edge to be wrapped both horizontally and vertically: 
 

 
                                                              Figure 6.21: UV Wrapping Enabled 

 
Wrapping can be very useful when generating texture coordinates to wrap a texture around a sphere or 
cylinder (Fig 6.22).  

 
                                                                                  Figure 6.22 
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Because this wrapping is really a manipulation of the interpolation of per-vertex texture coordinates, it is 
performed by the renderer and not in the texture stage sampler unit. Therefore, this kind of wrapping is 
actually a render state and not a sampler state.  
 
Wrapping is not enabled on a per-texture state basis, but rather on sets of texture coordinates within the 
vertices. Earlier we discussed how a vertex may have more than one set of texture coordinates so that 
they can be used to address multiple textures (or into the same texture more than once). If we enable 
texture wrapping for texture coordinate 3 for example, then all vertices that are rendered with three sets 
of texture coordinates (or more) will have their 3rd set wrapped by the renderer when they are used to 
access the texture into which they are indexing. This will make more sense later in the lesson when we 
cover multiple texture blending and multiple texture coordinate sets. 
 
To enable wrapping we will use the IDirect3DDevice9::SetRenderState function. The D3DRS_WRAP0 – 
D3DRS_WRAP15 render state types will enable wrapping for texture coordinate sets 0-15 respectively. The 
second parameter specifies the axis we wish to enable wrapping for (D3DWRAPCOORD_0 or 
D3DWRAPCOORD_1 for U and V respectively and D3DWRAPCOORD_2 and D3DWRAPCOORD_3 for wrapping 3D 
or 4D texture coordinates).  
 
The following example shows how to enable wrapping on the V axis for the 1st texture coordinate set 
stored at a vertex. 
 
d3dDevice->SetRenderState(D3DRS_WRAP0, D3DWRAPCOORD_1); 

 
The next example shows how to enable texture wrapping for the 3rd set of texture coordinates (for 
vertices that have them) on the U axis. 
 
d3dDevice->SetRenderState(D3DRS_WRAP2, D3DWRAPCOORD_0); 

 
 
 

6.6.2 Texture Filtering  

Texture filtering improves the visual quality of our rendered image. Earlier we saw that using MIP maps 
can help reduce aliasing artifacts that occur when textures are mapped to polygons that are much smaller 
or larger than the dimensions of the texture.  
 
The process of mapping a texture to a polygon such that it has to be reduced (use fewer texels) is 
referred to a minification. When a texture image is reduced in size, ideally each pixel rendered would 
be sampled using a weighted average of all texels in the texture image. However this would be far too 
expensive to be done in real-time and this is where MIP maps can really help. MIP maps provide pre-
generated images that are scaled down using this exact filtering technique (by default). Nevertheless the 
MIP map downsampling is only available at discrete intervals. We can still suffer minification artifacts 
when a polygon is at a distance that places it between two MIP levels.  
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As discussed earlier, minification is only half the story. When the polygon is very close to the viewer, it 
occupies many more pixels on the screen than are in the texture. This process is called magnification -- 
where many pixels are mapped to the same texel. Magnification gives a blocky result as shown in Fig 
6.23. 
 

 

 

 
In this image the camera is moved so close to the quad 
that a small area in the center of the texture is mapped 
to the entire frame buffer. 

 
Figure 6.23 

 
DirectX 9 supports several filters that can be used independently for both minification and magnification 
artifacts. These filters affect the way a floating point per-pixel UV coordinate is used to sample the texel 
in the texture. Forgetting about MIP maps for the time being, we will describe the filtering techniques 
from the perspective of using a one level texture (non-MIP mapped). Then we will discuss how the 
minification and magnification filters can be used with MIP maps to provide additional image quality.  
 
If you are an avid gamer or games programmer you have probably heard terms like bilinear filtering, 
trilinear filtering, and anisotropic filtering. Using sampler states to set the minification, magnification 
and MIP map filters is how we get our applications to use these well-known filtering techniques. If a 
texture has to be scaled down to fit the polygon being rendered then the minification filter is used to 
fetch the correct texel from the texture for the corresponding pixel. If the texture has to be magnified to 
fill the on-screen region then the magnification filter is used. (Often you will use the same filtering 
technique for both.) 
 
 
Magnification/Minification Filters 

There are two sampler states that we can set (using SetSamplerState) to independently set the filtering 
technique used for magnification and/or minification.  
 
m_pDevice->SetSamplerState( stage , D3DSAMP_MINFILTER , D3DTEXTUREFILTERTYPE); 
m_pDevice->SetSamplerState( stage , D3DSAMP_MAXFILTER , D3DTEXTUREFILTERTYPE); 
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In the above code, stage should be set to the texture stage for which you wish to set the filter. If we have 
multiple textures being used (in different stages) we can tell the device to use a different filtering 
technique for each stage. The third parameter must be set to one of the D3DTEXTUREFILTERTYPE 
enumerated type members: 
 

typedef enum _D3DTEXTUREFILTERTYPE  
{ 
    D3DTEXF_NONE = 0, 
    D3DTEXF_POINT = 1, 
    D3DTEXF_LINEAR = 2, 
    D3DTEXF_ANISOTROPIC = 3, 
    D3DTEXF_PYRAMIDALQUAD = 6, 
    D3DTEXF_GAUSSIANQUAD = 7, 
    D3DTEXF_FORCE_DWORD = 0x7fffffff 
} D3DTEXTUREFILTERTYPE; 

 
The enumeration is used to set the minification and magnification types as well as the MIP filter type 
which we will explain in a moment. Because of this, not all types are valid for all three sampler states.  
 
 
No Filtering (D3DTEXF_NONE) 

This is only a valid filter type when setting a MIP filter. It should not be used with minification and 
magnification filters. When tested with minification and magnification filters the results can differ 
across hardware and drivers. Some hardware defaults to D3DTEXF_POINT whilst others default to 
D3DTEXF_LINEAR. As D3DTEXF_POINT is basically no filtering at all, you should use point filters to 
disable filtering as seen next. 
 
 
Point Filtering (D3DTEXF_POINT) 

This is the default minification and magnification filter for all texture states. Point filtering essentially 
equates to no filtering at all; the per-pixel UV coordinate is truncated to an integer value used to index 
the correct texel in the texture. For example, if a pixel’s UV coordinates were (10.2, 15.3) then this 
would be snapped to the integer set (10, 15).  
 

Note: A UV coordinate is not simply snapped to an integer coordinate. It is first mapped from texture 
coordinate space into an image space UV coordinate using the following formula: 

U = u x ImageWidth – 0.5 

V = v x Image Height – 0.5 

Where u and v are the floating point texture coordinates and U and V are floating point coordinates 
mapped into image space but not yet snapped to an integer texel coordinate. Therefore, in the above 
paragraph and in future discussions in this section, when we talk about the UV coordinates being 
snapped to an integer, we are referring to the coordinates after they have been transformed into image 
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space using the above equation. It is this snapped coordinate that is then considered the true integer 
coordinate of the nearest texel in the texture. 

When the texture is magnified, many pixels in the polygon being rendered will be snapped to the same 
integer texel and therefore will have exactly the same color. This is what causes the blocky appearance 
in Fig 6.23. When the texture is minified, this filtering technique leads to texels in the source image 
being skipped. Since the skipped texels may have been important contributors to the integrity of the 
image, aliasing artifacts occur as discussed earlier. 
 
 
Bilinear Filtering (D3DTEXF_LINEAR) 

After the integer UV coordinate is found, the color of the corresponding texel and the four neighboring 
texels are combined together to create the final color returned from the sampler. The amount of weight 
that each texel contributes to the final color is based on the distance from that integer texel coordinate to 
the ideal float point UV coordinate (Fig 6.24). 
 

 
Figure 6.24 

 
In Fig 6.24 an image space floating point UV coordinate of (20.15, 115.75) is passed to the sampler unit 
from the rasterizer. The ideal image space coordinate is somewhere between the four texels. The offset 
between the ideal UV image space coordinate and each integer texel coordinate is used to scale the 
contribution of that texel to the final color. In this case, the color returned will be a blend between the 
colors found at integer texture coordinates (20,115), (21,115), (20,116) and (21,116).  
 
Using this filter (especially during magnification) means that abrupt color changes in the surface caused 
by the snapping of floating point UV coordinates to a single integer texture coordinate are smoothed 
(Fig 6.25).  
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Point Filtering Bilinear Filtering 

                             
 
                                                                                     Figure 6.25 
 
When used for minification, this helps alleviate the problems caused by skipping pixels in the source 
image. Pixels that would otherwise we completely skipped with point filtering now contribute to the 
neighboring pixel color. Bilinear minification works exceptionally well when used alongside MIP maps 
because the smaller images sampled at far distances means that there is a lower chance of any texel in 
the source image not contributing to the screen representation of the image in some way.  
 
 
Anisotropic Filtering (D3DTEXF_ANISOTROPIC) 

Anisotropic means ‘no equal shape’.  When anistropic filtering is enabled, the shape of the filter in 
texture space and the number of texels sampled take polygon orientation into account. To understand the 
need for anisotropic filtering we must first understand the problems associated with using bilinear 
filtering (or trilinear filtering discussed later). Bilinear filtering is done using a 2x2 square sampling 
grid. Using a square grid is fine when the plane of the polygon is oriented directly with the view plane, 
but as the orientation of the polygon changes with respect to the viewer, this perspective should be taken 
into account when choosing the shape of the filter used for sampling the texture map. 
 

 
Figure 6.26 

 



 

  
 

395

In Fig 6.26, the gray slab represents the monitor screen and the textured quad behind it is directly facing 
the viewer. In this example we have used a circular spot to indicate a region of pixels on the screen that 
would be mapped back into texture space. We can see that the shapes are the same, as they should be. 
Imagine that the red circle on the screen is a spotlight shining on the screen which is then projected onto 
the texture. When the polygon is facing the viewer, using a box shaped filter to sample textures is ideal, 
but look at what happens to our spotlight projection when the polygon is oriented away from the viewer 
(Fig 6.27). 

 
Figure 6.27 

 
The spotlight shining through the screen onto the quad is now elongated because of perspective. Using 
this as an analogy, we can see that when the texture/viewer angle is large, a box shaped filter no longer 
describes the correct region in the texture to sample. When the angle is large, many more texel colors 
should be taken into account to produce the final perspective correct samples for each pixel. Because of 
this, when using bilinear filtering, polygons at large angles with respect to the view plane can appear 
exceptionally blurry. Anisotropic filters use this perspective concept to provide a more accurate filter 
shape when sampling (much more like the projected shape of our spotlight). 
 
More recent 3D cards support anisotropic filtering in hardware. Some earlier cards (the TNT™ 
generation) did support some level of anisotropic filtering but it typically resulted in significant 
performance degradation. Typically a graphics card that supports anisotropic filtering will support 
multiple levels of anisotropy between 1 and MaxAnisotropy. MaxAnisotropy can be found by querying 
the device capabilities and examining the D3DCAPS9::MaxAnisotropy member. This is typically 
between 1 and 16 but can be higher on the latest graphics hardware. A level of 1 will provide no visual 
improvement whilst the higher levels will provide better results (at a higher performance cost). 
Additionally, some cards only support anisotropy for specific filters. For example, the early models of 
the nVidia GForce3™ supported only anisotropic filtering as a minification filter. 
 
Although it can be expensive on older cards, anisotropic filtering looks about as good as we can expect 
things to get at this time. There are other filters in the D3DTEXTUREFILTERTYPE enumerated type not 
mentioned above, but at the time of this writing they are unsupported in hardware and are terribly slow 
in software. Therefore, the applications in this chapter will use anisotropic filtering as the top level 
filtering technique that you can enable. If you would like more information on the 
D3DTEXF_PYRAMIDALQUAD and D3DTEXF_GAUSSIANQUAD filters, please consult the DirectX 9 SDK 
documentation. 
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Setting Minification and Magnification Filters 

The following code shows us how to set the minification filter to sample texels using bilinear filtering 
and the magnification filter to sample using an anisotropic filter of the highest level supported by the 
graphics hardware. These settings are applied to texture stage 0. 
 
// Get the devices maximum supported anisotropy level 
D3DCAPS9 caps; 
m_pDevice->GetDeviceCaps ( &caps ); 
DWORD MaxLevel = caps.MaxAnisotropy; 
 
// Set Sampler filters in State0 
m_pDevice->SetSamplerState (0, D3DSAMP_MINFILTER ,D3DTEXF_LINEAR ); 
m_pDevice->SetSamplerState (0, D3DSAMP_MAXFILTER ,D3DTEXF_ANISOTROPIC);  
m_pDevice->SetSamplerState (0, D3DSAMP_MAXANISOTROPY, MaxLevel ); 

 
It is important to realize that these filters are applied in conjunction with MIP mapping when it is 
enabled. Minification and magnification filters will be applied to the current MIP level being used for 
rendering. This means that if we have a polygon in the distance such that its closest match in size is MIP 
level 8 in the texture surface, the minification and magnification filters will be applied to MIP surface 8 
to sample the color. 
 
6.6.3 Enabling MIP maps 

We talked earlier about how MIP maps can be used to provide pre-filtered images of a texture at 
different size resolutions. They also provide an even greater benefit when a given MIP level is filtered 
using the minification and magnification filters discussed above. Not only do we have a pre-filtered 
image of approximately the size of the rendered polygon, but the slight aliasing that would occur 
between the closest-match MIP level sizes will further be reduced using bilinear or anisotropic filtering 
when sampling the MIP level. 
 
It is worth noting that the correct MIP map is chosen for a given polygon at an arbitrary distance partly 
based on the MIP filter selected. This is in addition to the minification and magnification filters for MIP 
surface texels. To set the MIP filter, we use the SetSamplerState function with the following sampler 
state: 
 
m_pDevice->SetSamplerState(stage, D3DSAMP_MIPFILTER , D3DTEXTUREFILTERTYPE); 

 
We pass in the stage which we are setting the filter for, along with a member of the 
D3DTEXTUREFILTERTYPE enumerated type (whose members we used to set the minification and 
magnification filters in the last section). Let us briefly discuss how these filters affect the selection of the 
MIP level and ultimately the color sent back from the sampler. 
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D3DTEXF_NONE 
When this is the MIP filter, the MIP mapping mechanism for the texture stage is disabled. Whether the 
texture has MIP levels or not, the top level surface will always be used. This can cause aliasing artifacts, 
even with the minification filter set to bilinear or anisotropic.  
 
D3DTEXF_POINT 
If the texture includes MIP levels, then the correct MIP map is selected to fetch texels using the 
currently active minification and magnification filters. In Fig 6.28 both terrains use bilinear filtering for 
minification and magnification filters. In the bottom image, MIP map textures are used with the 
D3DTEXF_POINT MIP filter state. As you can see, even with the minification and magnification filters 
turned on, the top image, which does not use MIP maps, still suffers aliasing artifacts. It looks even 
worse when the camera is moving because the pixels in the distance noticeably shimmer. 
 

 
Figure 6.28 

 
In the bottom image in Fig 6.28, the distant hill polygons do not suffer significant aliasing because a 
higher level (lower resolution) MIP map surface is being used for sampling. As the polygons get 
progressively further from the viewer, the correct MIP map is used that most closely matches the ideal 
size of a 1:1 pixel-to-texel ratio. Because these MIP maps have been pre-filtered, they look much better 
than the top image, which is simply downsampled from the maximum texture size for each polygon. 
 
D3DTEXF_POINT is adequate for sampling from the closest ideal MIP map, but it is far from perfect. 
Because the number of MIP values is so low in comparison to the number of possible distance values, 
the MIP map generally selected for sampling will only be a closest match. Let us say for example that a 
polygon is at a distance such that its ideal MIP level is 1.2 (i.e. 20% between levels 1 and 2). With a 
point MIP filter, this fraction will not be taken into account and level 1 would be used exclusively. 
When walking closer to a wall you might even see its texture change as it is snapped up to the next MIP 
level. Likewise, when walking away from the wall you will see its MIP level visibly switch as distance 
increases.  
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D3DTEXF_LINEAR 
 
When we enable linear MIP filtering we are performing a sampling between the two closest MIP levels. 
In Fig 6.29 we can see that the ideal MIP level of 1.2 places the pixel between MIP levels 1 and 2. The 
texel is sampled from both MIP maps using the bilinear minification and magnification filters on each, 
and then the resulting colors from both MIP levels are blended together based on the distance from the 
ideal MIP level. In this particular case, the final color contains 80% of the level 1 sampled color and 
20% of the level 2 color. This is called trilinear MIP map interpolation or simply, trilinear filtering. 
 

 
Figure 6.29 

 
Fig 6.29 could have used anisotropic filtering for magnification and/or minification to further increase 
visual quality. Alternatively a point filter could have been used to extract the nearest texel from each 
level and blend them together. 
 
When we enable trilinear MIP filtering, we no longer see transitions between MIP levels when the 
viewer moves through the world. The two MIP levels are taken into account and gradually interpolate 
from one to the other, making for a smoother transition.  
 
D3DTEXF_ANISOTROPIC 
This is not a valid MIP filter. 
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6.7 Texture Stages 

The texture stages form the core of the DirectX blending cascade. The cascade determines the color and 
opacity of a fragment as it passes through the pipeline on its way to becoming a pixel in the frame 
buffer. When we call the SetTexture function, we specify a texture stage that the given texture will be 
assigned to. Texture stages are fed texel colors from the sampler unit. The sampler determines how 
texels are sampled from the texture bound to that stage. DirectX 9 has eight texture stages, so 
theoretically eight textures can be stored and subsequently blended together in a single pass. In practice 
however, most hardware supports somewhere between two and four stages -- although the most recent 
cards support eight or more. When using only one texture at a time, we will bind that texture to stage 0.  
 
 

6.7.1 Texture Color 

If we have a texture in stage 0 and our vertices include texture coordinates, then the sampler unit will 
retrieve the color for each pixel in the polygon from the corresponding texel in the texture. This color 
fragment is forwarded to the texture stage where it can be used as an argument to a blending function to 
produce the final color. In previous lessons we saw how to store vertex colors and interpolate them 
across each pixel in a polygon. Once the interpolated color for each pixel is determined, it can be sent to 
a texture stage.  
 

Note: If lighting is enabled then we do not calculate the vertex colors ourselves since the lighting 
calculations in the pipeline will determine those values. From that point on, vertex colors calculated by 
the pipeline are interpolated to generate a per-pixel color. This color can be sent to a texture stage. 

 
Texture colors and vertex colors are not mutually exclusive. When a green light 
is placed near a vertex for example, the vertex will have a green color generated 
for it (assuming proper material conditions). This ultimately leads to the pixel 
colors generated via interpolation being green as well. The cylinder on the right 
has a green light shining on it.  If we were unable to use this per-pixel color 

information when texturing was enabled, we would 
effectively lose the lighting pipeline completely.  
 
 
The cylinder to the left, while textured, lacks shading. A 
world without shading would look very flat and boring 
indeed. 
 
As it happens, when texturing is enabled, every pixel in the polygon being 
rendered has both a texel color sampled for it and a diffuse and a specular color 
generated for it. These colors are passed to the texture stages where we can 

choose how we wish to blend them together.  
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In the next cylinder image we see the result of modulating the texel color sampled for each pixel with 
the diffuse color generated for each pixel. Notice how the brick wall texture detail can still be seen, but 
that the cylinder is also affected by the green light nearby.  

 
 
Every polygon pixel is sent through the texture blending cascade. In fact, it is perhaps more precise to 
say that the possible pixel ingredients are sent to the stages. By this we mean that the texture stages can 
be sent the diffuse and specular colors, the texel color, and even a constant color to construct the final 
pixel value.  
 
 

6.7.2 Setting Texture Stage State 

Our application can configure the behavior of a texture stage through state settings. The function that 
controls this is called SetTextureStageState and is a member of the IDirect3DDevice9 interface.  
 
HRESULT IDirect3DDevice9::SetTextureStageState 
(       
    DWORD Stage, 
    D3DTEXTURESTAGESTATETYPE Type, 
    DWORD Value 
); 
  
Just as IDirect3DDevice9::SetRenderState and IDirect3DDevice9::SetSamplerState can be used to set 
render states and sampler states respectively, the SetTextureStageState function can be used to set the 
states of any textures stage. We simply pass in the stage we wish the state change to apply to, the state 
type we wish to set, and a state specific value. 

 

Note: We do not bind a texture to a stage using the SetTextureStageState function. There is a separate 
function for binding textures to stages called SetTexture. 

 

Fig 6.30 shows what a texture stage looks like internally. 
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Figure 6.30 
 

Once the ARGB color has been calculated for each pixel and the texture has been sampled, the color and 
alpha components are separated (Fig 6.30). The texture stages actually use two pipelines so that RGB 
and A can be processed separately. The Color unit and the Alpha unit are each fed three inputs called 
Arg0, Arg1, and Arg2. Our application will configure which information is routed through these inputs. 
We could decide for example, that Arg0 should be the diffuse pixel color and Arg1 should be the 
sampled texel color. We can then set the color operation unit to multiply these two colors together. The 
final result is the output for that texture stage. In the simplest case, using only one stage and no alpha 
blending, the output of the texture stage becomes the final fragment color that will become a pixel if it 
passes the depth test. The alpha unit will also have its own arguments and operations (Chapter 7). 
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6.7.3 Texture Stage States 

Let us now examine the different states that can be set using this function. We will first look at a list of 
all available states with a brief description of each. This will be followed by much closer examination of 
the states that we are interested in for this lesson. The rest of the texture stage states will be covered 
throughout the remainder of this course and in the next course in this series. 
 
typedef enum _D3DTEXTURESTAGESTATETYPE 
{ 
    D3DTSS_COLOROP = 1, 
    D3DTSS_COLORARG1 = 2, 
    D3DTSS_COLORARG2 = 3, 
    D3DTSS_ALPHAOP = 4, 
    D3DTSS_ALPHAARG1 = 5, 
    D3DTSS_ALPHAARG2 = 6, 
    D3DTSS_BUMPENVMAT00 = 7, 
    D3DTSS_BUMPENVMAT01 = 8, 
    D3DTSS_BUMPENVMAT10 = 9, 
    D3DTSS_BUMPENVMAT11 = 10, 
    D3DTSS_TEXCOORDINDEX = 11, 
    D3DTSS_BUMPENVLSCALE = 22, 
    D3DTSS_BUMPENVLOFFSET = 23, 
    D3DTSS_TEXTURETRANSFORMFLAGS = 24, 
    D3DTSS_COLORARG0 = 26, 
    D3DTSS_ALPHAARG0 = 27, 
    D3DTSS_RESULTARG = 28, 
    D3DTSS_CONSTANT = 32, 
    D3DTSS_FORCE_DWORD = 0x7fffffff 
} D3DTEXTURESTAGESTATETYPE; 
 
Below we discuss the texture stage states listed above but not necessarily in the order specified.  
 
D3DTSS_COLORARG0 
D3DTSS_COLORARG1 
D3DTSS_COLORARG2 
These states configure the inputs for the color operation specified with the D3DTSS_COLOROP texture 
stage state. We use them to assign the diffuse pixel color to ARG1 for example, or the texel color to 
ARG2, etc. These states are used for configuring the arguments to the color unit only. When setting one 
of these states using the SetTextureStageState function, the third parameter should be one of the DirectX 
defined D3DTA_ values listed below with a description of its meaning. (TA is short for Texture 
Argument). Most of the available color blending functions use only two arguments (ARG1 and ARG2) 
but there are a few that use ARG0. 
 
D3DTA_DIFFUSE  
The interpolated per-pixel diffuse color is routed to the specified input. For example, the following code 
snippet would specify that the ARG1 input to the color unit in texture stage 0 should be the interpolated 
diffuse color. 
 
pDevice->SetTextureStateState(0, D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
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Using the above code, any color operations that use ARG1 during blending will use the diffuse color. 
The next example shows how to set the diffuse color to ARG2 for the color unit in texture stage 3. 
 
pDevice->SetTextureStateState(3, D3DTSS_COLORARG2 , D3DTA_DIFFUSE); 

 
D3DTA_TEXTURE 
Binds the texel color sampled for the current pixel as an argument to one of the blending equations. To 
use this as an argument for a color unit you should have a texture assigned to the stage. The texel color 
used as an argument will be the one returned from the sampler unit. The following example shows how 
to configure ARG1 in the color unit to receive the texture color. 
 
pDevice->SetTextureStateState(0, D3DTSS_COLORARG1 , D3DTA_TEXTURE); 

 
D3DTA_SPECULAR 
If we are using pre-lit vertices then we can store a specular color in our vertex structure -- if we do not 
store it, then the specular component in our vertex defaults to black. When using the lighting pipeline, 
the specular color is calculated by DirectX. This state allows us to assign the interpolated per-pixel 
specular color to one of the arguments of a color operation. The following code shows to assign the 
specular color as an input argument. 
 
pDevice->SetTextureStateState(0, D3DTSS_COLORARG0 , D3DTA_SPECULAR); 

 
D3DTA_CURRENT 
This argument is the key to using multiple stages. When we assign this value to an argument in a stage 
that is not stage 0, the color of that argument is the output from the previous texture stage. This means 
for example, that we could modulate the diffuse color and the texture color in stage 0 so that the result is 
output to stage 1 where it is used in another blending operation, perhaps with sampled texels from the 
texture assigned to stage 1.  
 
When used as an argument for stage 0 it simply defaults to the same behavior as D3DTA_DIFFUSE. 
This is because stage 0 is the first stage in the cascade and there is no previous stage data to use as an 
input.  
  
The following code shows how we might set ARG1 in the second texture stage such that it uses the color 
output by texture stage 0.   
 
pDevice->SetTextureStateState(1, D3DTSS_COLORARG1 , D3DTA_CURRENT); 

 
D3DTA_TFACTOR 
We can provide texture stages with access to a constant color. This can be useful for a number of tasks. 
Perhaps we might decide to perform an ADD operation so that the texture factor color is added to the 
color input into the stage. Or perhaps we wish to darken some pixels by modulating with a half-intensity 
color like (128, 128, 128, 128). These values will be converted to floating point numbers (0.5, 0.5, 0.5, 
0.5) for use in blending operations. The application will set the color using a render state rather than a 
texture stage state and it will be global across all texture stages.  
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pDevice->SetRenderState (D3DRS_TEXTUREFACTOR , 0xFF0000FF); 
pDevice->SetTextureStageState(0 , D3DTSS_COLORARG2 , D3DTA_TFACTOR); 

 
 
D3DTA_CONSTANT 
This allows a particular stage to use an application set constant color in its blending operations. Unlike 
the TFACTOR argument, this color will only be available to that stage.  
 
pDevice->SetTextureStageState(0 , D3DTSS_CONSTANT , 0xFF0000FF); 
pDevice->SetTextureStageState(0 , D3DTSS_COLORARG1 , D3DTA_CONSTANT);  

 
If you intend to use a per-stage constant color then you will need to check the device capabilities. Such 
constants are not supported on most hardware, at least not at the time of this writing. If this feature is 
supported, then the D3DPMISCCAPS_PERSTAGECONSTANT bit will be set in the PrimitiveMiscCaps 
member of the D3DCAPS9 structure: 
 
D3DCAPS9 caps; 
pDevice->GetDeviceCaps(&caps); 
if(Caps.PrimitiveMiscCaps & D3DPMISCCAPS_PERSTAGECONSTANT) 
   Supported = TRUE;  

 
D3DTSS_TEXCOORDINDEX 
By default, if we are using stage 0, then the first set of texture coordinates in the vertex describe the 
mapping of the texture in stage 0 to the polygon. If there is a texture in stage 1, then the second set of 
vertex texture coordinates describe how the texture in stage two is mapped to the polygon. And so on up 
until the final stage.  
 
We can use this texture stage state to change these defaults and instruct a given stage to use any of the 
available coordinate sets in the vertex. For example, you might have 2 textures, one in stage 0 and one in 
stage 1. Assume that the same texture coordinates describe how they are mapped to the polygon. In this 
case, rather than store a duplicate set, you could set both stages to use texture coordinate set 0. 
 
pDevice->SetTextureStageState(0 , D3DTSS_TEXCOORDINDEX , 0); 
pDevice->SetTextureStageState(1 , D3DTSS_TEXCOORDINDEX , 0); 
 
 
D3DTSS_CONSTANT 
Set the per-stage constant color.  
 
pDevice->SetTextureStageState(0 , D3DTSS_CONSTANT , 0xFF0000FF); 

 
D3DTSS_ALPHAARG1 
D3DTSS_ALPHAARG2 
D3DTSS_ALPHAARG3 
These states allow us to specify inputs for the alpha pipeline and its blending functions. We will 
examine alpha blending in Chapter 7 so for now, just be aware that D3DTA_ values allow us to pass 
parameters to the alpha pipeline as well as the color pipeline. 
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pDevice->SetTextureStageState(0 , D3DTSS_ALPHAARG1 , D3DTA_DIFFUSE); 

 
D3DTSS_COLOROP 
We use this state to configure the color blending operation for the texture stage. The third parameter to 
the SetTextureStageState function should be one of the members of the D3DTEXTUREOP enumerated 
type shown below.  

 
typedef enum _D3DTEXTUREOP 
{ 
    D3DTOP_DISABLE = 1, 
    D3DTOP_SELECTARG1 = 2, 
    D3DTOP_SELECTARG2 = 3, 
    D3DTOP_MODULATE = 4, 
    D3DTOP_MODULATE2X = 5, 
    D3DTOP_MODULATE4X = 6, 
    D3DTOP_ADD = 7, 
    D3DTOP_ADDSIGNED = 8, 
    D3DTOP_ADDSIGNED2X = 9, 
    D3DTOP_SUBTRACT = 10, 
    D3DTOP_ADDSMOOTH = 11, 
    D3DTOP_BLENDDIFFUSEALPHA = 12, 
    D3DTOP_BLENDTEXTUREALPHA = 13, 
    D3DTOP_BLENDFACTORALPHA = 14, 
    D3DTOP_BLENDTEXTUREALPHAPM = 15, 
    D3DTOP_BLENDCURRENTALPHA = 16, 
    D3DTOP_PREMODULATE = 17, 
    D3DTOP_MODULATEALPHA_ADDCOLOR = 18, 
    D3DTOP_MODULATECOLOR_ADDALPHA = 19, 
    D3DTOP_MODULATEINVALPHA_ADDCOLOR = 20, 
    D3DTOP_MODULATEINVCOLOR_ADDALPHA = 21, 
    D3DTOP_BUMPENVMAP = 22, 
    D3DTOP_BUMPENVMAPLUMINANCE = 23, 
    D3DTOP_DOTPRODUCT3 = 24, 
    D3DTOP_MULTIPLYADD = 25, 
    D3DTOP_LERP = 26, 
    D3DTOP_FORCE_DWORD = 0x7fffffff 
} D3DTEXTUREOP; 
 

Note: The default color operation for texture stage 0 is diffuse/texture color modulation. 
 
Most of the operations work exclusively with arguments 1 and 2 and are relatively simple mathematical 
operations like add, subtract, multiply (modulate), and so on. Some of the modes are more advanced and 
will be covered later in the course and in the next course in this series.  
 
In the following descriptions, R is used to indicate the result of the color operation. ARG1, ARG2 and 
ARG3 represent color inputs as arguments to the color or alpha pipelines. We will not discuss all the 
above texture operations but will concentrate on the ones relevant to us at this time.  
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D3DTOP_SELECTARG1  
The operation routes the ARG1 input straight to the output of the stage, ignoring all other inputs.  
 

R = ARG1 
 
D3DTOP_SELECTARG2  
The operation routes the ARG2 input straight to the output of the stage, ignoring all other inputs.  
 

R = ARG2 
 
D3DTOP_MODULATE  
The inputs to the texture stage are multiplied together. This is the default color operation for stage 0. It 
can be used to modulate the diffuse color and the texture color as discussed above. Note that because 
this is floating point multiplication, the result is actually darker than one or both input colors -- which 
may or may not be desirable. For example, (0.9 , 0.9 , 0.9)  x  (0.5, 0.5, 0.5) = (0.45 , 0.45 ,0.45) 
 

R = ARG1 x ARG2 
 
 
D3DTOP_MODULATE2X  
This is a useful operation if D3DTOP_MODULATE creates undesirably dark results. It performs the 
multiplication and then doubles the result -- therefore doubling its brightness.  
 

R = (ARG1 x ARG2) << 1 
 
 
D3DTOP_MODULATE4X  
Modulate the colors and then multiply the result by four. This can be useful when blending two very 
dark textures or where you need to over-brighten. For general use, this will often cause a washed out 
look as the resulting color components exceed the 1.0 max limit and are clamped. 
 

R= (ARG1 x ARG2) << 2 
 
 
D3DTOP_ADD  
This operation adds the two colors together. If the ARG1 and ARG2 matching components are both over 
0.5, they will exceed the 1.0 range and be clamped to 1.0 (bright white).  
 

R = ARG1 + ARG2 
 
 
D3DTOP_ADDSIGNED  
Add the two arguments together and subtract 0.5. This makes the effective range of values [–0.5, 0.5].  
  

R = ARG1 + ARG2 – 0.5 
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This allows us to blend two textures together without suffering from over brightening. The results are 
comparable to D3DTOP_MODULATE2X. 
D3DTOP_ADDSIGNED2X  
ADDSIGNED with the result multiplied by two. 
 

R = (ARG1 + ARG2 – 0.5) << 1 
 
D3DTOP_SUBTRACT  
Subtract ARG2 from ARG1. 
 

R= (ARG1 – ARG2) 
 
D3DTOP_MULTIPLYADD  
This blending operation uses all 3 arguments. ARG2 and ARG3 are multiplied and ARG1 is added to 
the result. ARG3 is set using D3DTSS_COLORARG0 and D3DTSS_ALPHAARG0 for the respective pipelines. 
 

R = ARG1 + (ARG2 * ARG3) 
 
D3DTOP_LERP  
Linearly interpolates using all three input arguments. ARG3 is set using D3DTSS_COLORARG0 and 
D3DTSS_ALPHAARG0 for the respective pipelines. 
 

R = (ARG1) * ARG2 + (1- ARG1) * ARG3. 
 

 
D3DTOP_DISABLE  
This disables the stage and it will output no color results. Because the texture stages are connected in 
ascending order, disabling the color operations in a given texture stage will also disable color operations 
in subsequent stages. By default, when the device is first created, stages 1 – 7 are disabled and only 
stage 0 is enabled.  
 

Note: Alpha operations should not be disabled when color operations are enabled as this can result in 
undefined behavior. Make sure to set D3DTOP_DISABLE in both the color and alpha pipelines at the 
same time for a given stage.  
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6.7.4 Texture Stage Usage 

In these first examples we will only be using stage 0. After you have studied the code for Lab Project 
6.1, we can examine using multiple stages to perform single-pass and multi-pass texture blending.  
 
Example 1: Blending Diffuse and Texture Color 
 
These settings are actually the default states for texture 0. We use a color modulate operation to blend 
the diffuse color with the texture color currently set at that stage. 
  
pDevice->SetTexture           ( 0 ,  pBrickWallTexture); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_MODULATE ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
 
 

 
Figure 6.31 
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Example 2: Texture Color Only  
 
In this example, the diffuse fragment color will be ignored and only the color of the texture will be used.  
 
pDevice->SetTexture           ( 0 ,  pBrickWallTexture); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_SELECTARG1 ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_TEXTURE); 

 
Example 3: Adding Texture and Diffuse colors 
 
The texture color is added to the diffuse color, which would cause the scene to be rendered brighter.  
 
pDevice->SetTexture           ( 0 ,  pBrickWallTexture); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_ADD ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG2 , D3DTA_TEXTURE); 

 
Note: Burnout happens when color overflows the allowed range and is clamped. In the extreme case, 
this would cause the scene to be rendered completely white. 
 
Example 4: Adding Diffuse to a Constant Color 
 
In some ways it might be preferable thinking of texture stages simply as color stages. As this next 
example shows, we do not need to use textures in order to benefit from the color operations the texture 
stages supply. In this case we will not use a texture at all. Instead we will set a constant color which will 
then be added to the diffuse color of all objects rendered.  
 
pDevice->SetRenderState       ( D3DRS_TEXTUREFACTOR , 0xFF008800); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_ADD ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG2 , D3DTA_TFACTOR); 

 
Example 5: Modulating the Texture with the Texture Factor 
 
In this example we take the texture color for each pixel and scale it by the texture factor. In this case it 
has half intensity RGB components which will scale the texture color by half.  
 
pDevice->SetRenderState       ( D3DRS_TEXTUREFACTOR , 0xFF888888); 
pDevice->SetTexture           ( 0 ,  pBrickWallTexture ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLOROP , D3DTOP_MODULATE ); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 ,  D3DTSS_COLORARG2 , D3DTA_TFACTOR); 
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6.8 Multi-Texturing 

As discussed earlier in the lesson, the texture stages form a texture blending cascade. Input starts at the 
top of the cascade (stage 0) and the result of operations conducted in that stage can be passed to the next 
stage as an input argument. In this next stage, it can be blended with the color of the texture assigned to 
that stage (or some other argument) and passed on yet again. Fig 6.32 shows the texture blending 
cascade using the first four stages to perform four color operations. 
 

 
 

Figure 6.32 
 
In Fig 6.32, the diffuse color and the texture are assigned to stage 0 as input arguments. They are 
modulated and the result is passed as stage 1’s first argument. In this stage, the texture assigned to stage 
1 is used as the second argument and added to argument 1 -- the output from the previous stage. The 
result is passed to stage 2 where it is modulated with the texture assigned there. The result of this 
operation is passed to stage 3 where the texture color there is subtracted from it. The result is the pixel 
color sent to be rendered. While this may be an unlikely set of operations, it does get the point across. 
Note as well that if you use multiple stages, you must use them in order. You cannot just use stages 0, 1, 
and 5 for example.   
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By default, only stage 0 is active and the color operations and alpha operations in all other stages are set 
to D3DTOP_DISABLE. To enable consecutive stages, we simply set the color (or alpha) operation we 
desire in that stage and assign the inputs. You will usually want one of the inputs to these texture stages 
set to D3DTA_CURRENT to access the result of a previous stage.  
 
Fig 6.33 sets up two texture stages: a brick wall texture in the first stage and a yellow light texture (a 
simple light map) in the second stage. We pass the stage 0 texture color to stage 1 where it will be added 
to the color of the light texture. 

 

  +     =  

 
Figure 6.33 

 
The texture stage settings to achieve this effect are shown below.  
 
pDevice->SetTexture          ( 0 , pBrickWallTexture); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLOROP , D3DTOP_SELECTARG1); 
 
pDevice->SetTexture          ( 1 , pYellowLightTexture); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLOROP , D3DTOP_ADD ); 

 
Mastering multiple texture blending techniques is critical to making visually compelling games. In this 
course, we only begin to scratch the surface. The next course in this series will spend a great deal of time 
examining multi-texturing techniques to achieve realistic scene lighting and other interesting visual 
effects.  
 
The next example adjusts the previous texture stage states so that stage 0 modulates the texture with the 
diffuse vertex color before sending it on to stage 1. The resulting color is passed to stage 2 where its 
color is scaled in half by modulating all components by the texture factor. 
 
pDevice->SetTexture          ( 0 , pBrickWallTexture); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState( 0 , D3DTSS_COLOROP , D3DTOP_MODULATE); 
 
pDevice->SetTexture          ( 1 , pYellowLightTexture); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState( 1 , D3DTSS_COLOROP , D3DTOP_ADD ); 



 

 412 

pDevice->SetRenderState      ( D3DRS_TEXTUREFACTOR,0x88888888 ); 
pDevice->SetTextureStageState( 2 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState( 2 , D3DTSS_COLORARG2 , D3DTA_TFACTOR);  
pDevice->SetTextureStageState( 2 , D3DTSS_COLOROP , D3DTOP_MODULATE); 

 

Note: Video cards have varying levels of support for the number of allowable texture stages. Some even 
impose limitations on the order of the arguments. For example, some drivers prefer the D3DTA_TEXTURE 
argument to always be ARG1 for a given stage. Tom Forsyth’s blogspot is an excellent resource for 
analysis of the texture stage support on various hardware. 

http://tomsdxfaq.blogspot.com/ 

If your texture stage state configurations perform strangely on certain video cards, this website should be 
your first port of call in identifying whether there is a card or driver specific problem. Often, there is a 
way to re-order your texture stage operations to find a configuration that works. 

 
Our application should check the capabilities of the device to see how many texture stages are supported 
and how many different textures can be blended simultaneously. A device might support four texture 
stages for example, but only allow you to blend three textures. There are two members of the 
D3DCAPS9 structure which give us this information: MaxTextureBlendStages and 
MaxSimultaneousTextures.  
 
D3DCAPS9 Caps; 
m_pDevice->GetDeviceCaps(&Caps); 
DWORD MaxTextures = Caps.MaxSimultaneousTextures; 
DWORD MaxStages   = Caps.MaxTextureBlendStages; 

 
You should also test to make sure that the color operations and alpha operations you intend to use are 
supported by the current device. The IDirect3DDevice9 interface exposes the ValidateDevice function 
for this purpose. First set up the texture stages and render states as they would be used in the render 
loop. Then call this function to test whether the current stages will render in a single pass. 
 
HRESULT ValidateDevice(DWORD *pNumPasses); 
 
The HRESULT returned will be one of the values in the following table. 
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D3DERR_CONFLICTINGTEXTUREFILTER The current texture filters cannot be used together. 

D3DERR_DEVICELOST The device has been lost but cannot be reset at this 
time. Therefore, rendering is not possible. 

D3DERR_DRIVERINTERNALERROR Internal driver error. Applications should generally 
shut down when receiving this error. 

D3DERR_TOOMANYOPERATIONS The application is requesting more texture filtering 
operations than the device supports. 

D3DERR_UNSUPPORTEDALPHAARG The device does not support a specified texture-
blending argument for the alpha channel. 

D3DERR_UNSUPPORTEDALPHAOPERATION The device does not support a specified texture-
blending operation for the alpha channel. 

D3DERR_UNSUPPORTEDCOLORARG The device does not support a specified texture-
blending argument for color values. 

D3DERR_UNSUPPORTEDCOLOROPERATION The device does not support a specified texture-
blending operation for color values. 

D3DERR_UNSUPPORTEDFACTORVALUE The device does not support the specified texture 
factor value. 

D3DERR_UNSUPPORTEDTEXTUREFILTER The device does not support the specified texture 
filter. 

D3DERR_WRONGTEXTUREFORMAT The pixel format of the texture surface is not valid. 
 
Notice that we pass in the address of a DWORD. The function will fill it with the number of passes 
needed to render with the current state setup. If the value > 1, then we are trying to use either more 
textures than the maximum amount or more stages. We will need to break the texture stage 
configuration down into smaller sub-configurations and render the polygon multiple times using a subset 
of the states each time.  

 
 
 

6.8.1 Color Blending 

DirectX allows us to blend the polygon pixels we are about to render with the pixels already rendered in 
the frame buffer -- rather than simply overwriting them. This process is commonly referred to as alpha 
blending and the result is a transparent effect. This choice of wording is somewhat unfortunate because 
we are not limited to blending based only on the alpha component of a color. The technique can also be 
used quite successfully for general RGB color blending. In Chapter 7 we will examine alpha blending 
based solely on the alpha component of a color. In this chapter, we will discuss RGB color blending. 
 
In Fig 6.34 the smaller cube was rendered using our standard approach. Then we rendered the larger 
cube with color blending enabled and a color blending operation setup. The final color of each pixel 
rendered to the frame buffer was calculated by combining the color of the fragment output from the 
texture stages with the color of the pixel already in the frame buffer (the smaller cube pixels). The left 
image used an addition operation to add the pixel to the current contents of the frame buffer. The right 
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image used a modulate operation so that each pixel was multiplied with the current pixel color in the 
frame buffer. 

 

  
 

Figure 6.34 
 
After we have finished rendering the color blended polygons, we can disable color blending and 
continue to render any other polygons normally. Usually you will want to sort your polygons such that 
you can render all opaque polygons first followed by those that need to be color blended. This will cut 
down on the number of render state changes. 
 
To enable color blending, we will set three render states. The first state 
(D3DRS_ALPHABLENDENABLE) informs the device to enable blending with the frame buffer. We 
set it to either true or false. Do not be put off by the name, it can be used to perform both alpha blending 
and color blending.  
 
m_pDevice->(D3DRS_ALPHABLENDENABLE , TRUE);  //enable blending 
m_pDevice->(D3DRS_ALPHABLENDENABLE , FALSE); //disable blending 

 
Once blending has been enabled, the device will take the values generated by the color and alpha 
pipelines in the texture stage cascade and use them as input to a blending operation. Fig 6.35 shows the 
color and alpha components output from the texture stages moved into the rasterizer module. By default, 
alpha blending is disabled and alpha values output from the texture stages will be ignored. In this case, 
the color will be copied directly into the frame buffer overwriting anything that exists there (assuming 
the pixel has passed the depth test). When we enable blending however, the rasterizer can use these 
inputs (alpha, color, or both) as variables in a blending function that blends the pixel we are about to 
render with the pixel already in the frame buffer. 
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Figure 6.35 

 
When blending is enabled, the following formula calculates the final color written to the frame buffer: 
 

FinalColor = (SrcColor * SrcBlend) + (DestColor * DestBlend) 
 
SrcColor is the color output from the texture stage cascade (Input Color in Fig 6.35) and DestColor is 
the color of the pixel that is already in the frame buffer. The SrcBlend and DestBlend variables control 
the behavior of the blending equation using a set of blend modes. To set the source and destination blend 
modes we use the D3DRS_SRCBLEND and D3DRS_DESTBLEND render states: 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND , SourceBlendMode); 
m_pDevice->SetRenderState(D3DTS_DESTBLEND , DestBlendMode ); 

 
For the second parameter, we pass a member of the D3DBLEND enumerated type: 
 
typedef enum _D3DBLEND 
{ 
    D3DBLEND_ZERO = 1, 
    D3DBLEND_ONE = 2, 
    D3DBLEND_SRCCOLOR = 3, 
    D3DBLEND_INVSRCCOLOR = 4, 
    D3DBLEND_SRCALPHA = 5, 
    D3DBLEND_INVSRCALPHA = 6, 
    D3DBLEND_DESTALPHA = 7, 
    D3DBLEND_INVDESTALPHA = 8, 
    D3DBLEND_DESTCOLOR = 9, 
    D3DBLEND_INVDESTCOLOR = 10, 
    D3DBLEND_SRCALPHASAT = 11, 
    D3DBLEND_BOTHSRCALPHA = 12, 
    D3DBLEND_BOTHINVSRCALPHA = 13, 
    D3DBLEND_BLENDFACTOR = 14, 
    D3DBLEND_INVBLENDFACTOR = 15, 
    D3DBLEND_FORCE_DWORD = 0x7fffffff 
} D3DBLEND; 
 
These blend modes are used to scale the source color and the destination color by some given amount. 
Let us take a look at a few of them to see what they do. 
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D3DBLEND_ZERO = ARGB (0, 0, 0, 0) 
Multiply all components of the color by 0. The color will not contribute to the final color in any way. 
 
D3DBLEND_ONE = ARGB(1, 1, 1, 1) 
Multiply all components of the color by 1. The color is not diminished at all by the operation and the 
final color will be at least as bright as the color for which this scale factor is used. 
 
D3DBLEND_SRCCOLOR = ARGB (S_alpha, S_red, S_green, S_blue) 
The ARGB components will be multiplied by the source color ARGB components. 
 
D3DBLEND_INVSRCCOLOR = ARGB (1-S_alpha, 1-S_red, 1-S_green, 1-S_blue) 
This multiplies each component of the color by the inverse of the source color.  
 
D3DBLEND_DESTCOLOR = ARGB(D_alpha, D_red,  D_green, D_blue) 
This multiplies the components of the color by the components of the frame buffer color. 
 
D3DBLEND_INVDESTCOLOR = ARGB (1-D_alpha, 1-D_red, 1-D_green, 1-D_blue) 
Each component of the color is multiplied by one minus the corresponding component of the frame 
buffer color. 
 
Example 1 (Source Pixel Overwrites Frame Buffer Pixel) 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO); 

 
In this example we multiply each component of the source color by 1, so it is unaltered. The current 
frame buffer color has been multiplied by 0 so of course it will not play a part in the final pixel color 
when the two are added. This is the same result we would see if alpha blending was disabled. This is for 
example only. We would not want to use this mode for standard rendering since blending will be slower. 
Using these blend modes, the blending equation would be as follows: 
 
FrameBufferColor = Source(ARGB)  * 1 + Dest(ARGB) * 0 
FrameBufferColor = Source(ARGB)  * (1,1,1,1) + Dest(ARGB) * (0,0,0,0) 
FrameBufferColor = Source(ARGB) + (0,0,0,0)  
                               = Source(ARGB) 
 
Example 2 (Frame Buffer Unchanged by Source Pixel) 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); 

 
The final color is the source color multiplied by 0 plus the frame buffer pixel color multiplied by 1. So, 
the source pixel does not alter the frame buffer in any way.   
 
FrameBufferColor = Source(ARGB) * 0 + Dest(ARGB) * 1 
FrameBufferColor = Source(ARGB) * (0,0,0,0) + Dest(ARGB) * (1,1,1,1) 
FrameBufferColor = (0,0,0,0) + Dest(ARGB) 
                               = Dest(ARGB) 
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Example 3 (Additive Blend between Source and Frame Buffer Pixels) 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); 

 
Let us imagine that we have a source pixel ARGB (0.5, 0.5, 0.5, 0.5) and a frame buffer pixel ARGB 
(0.2, 0.2, 0.2, 0.2). The final color in the frame buffer would be: 
 
FrameBufferColor = Source(ARGB)  * 0 + Dest(ARGB) * 1 
FrameBufferColor = (0.5,0.5,0.5,0.5) * (1,1,1,1) + (0.2,0.2,0.2,0.2) * (1,1,1,1) 
FrameBufferColor = (0.5, 0.5, 0.5, 0.5) + (0.2, 0.2, 0.2, 0.2)  
                               = (0.7, 0.7, 0.7, 0.7) 
 
 
 
 
 
 
 
 
 
 

Figure 6.36 
 
In Fig 6.36 we see the results of an addition operation similar to the equation above.  
 
When using addition to blend already bright pixels, this can result in burnout. 
Burnout happens when detail is lost because many of the pixels have been 
clamped to white. Neighboring pixels that would normally be subtly different 
shades of color will now all be clamped to the same color. The image on the 
right shows this happening when the cylinder is rendered after the cube with 
color blending enabled. Because both objects have fairly bright textures applied 
already, we can see that where they overlap, the result is washed out. 
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Example 4 (Source Color Intensity Blend) 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCCOLOR); 
 
This blending configuration uses the intensity of the source color to control the 
weight of the frame buffer color. As the source color increases, the destination color 
contributes to a lesser extent. When the source color is 0, the frame buffer color is 
used. When the source color is full intensity (1.0) the frame buffer color does not 
contribute at all.  
 
FrameBufferColor = Src(ARGB) * Src(ARGB) + Dest(ARGB) * (1 – Src(ARGB)) 
FrameBufferColor = (0.25, 0.25, 0.25, 0.25) * (0.25, 0.25, 0.25, 0.25) 
                               + (0.5, 0.5, 0.5, 0.5) * (1–0.25, 1-0.25, 1-0.25, 1-0.25) 
FrameBufferColor = (0.062, 0.062, 0.062, 0.062) + (0.75, 0.75, 0.75, 0.75) 
FrameBufferColor = (0.812, 0.812, 0.812, 0.812) 
 
 
 
 
 
Example 5 (Emulating the Modulate2x Texture Stage Color Operation) 
 
m_pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR); 
m_pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCCOLOR); 

 
This example is useful, especially for multiple render passes, because it works like the modulate2x color 
operation in the texture stages. In effect we are modulating the source color and the destination color 
together twice and adding the results.  
 
FrameBufferColor = (SourceColor*DestColor) + (DestColor*SourceColor) 
FrameBufferColor = (SourceColor * DestColor) * 2 
  
Let us assume that we have a source pixel color of (0.5, 0.5, 0.5, 0.5) and a destination color of (0.75, 
0.75, 0.75, 0.75). 
 
FrameBufferColor = (0.5, 0.5, 0.5, 0.5) * (0.75, 0.75, 0.75, 0.75)  
                               + (0.75, 0.75, 0.75, 0.75) * (0.5, 0.5, 0.5, 0.5) 
FrameBufferColor = (0.375, 0.375, 0.375, 0.375) + (0.375, 0.375, 0.375, 0.375) 
FrameBufferColor = (0.75, 0.75, 0.75, 0.75) 
 
If the source color is exactly half intensity (0.5), then the frame buffer is unchanged by the operation. If 
the source color is less than half intensity, then the frame buffer result will be darkened to some degree. 
If the source color is greater than half intensity then the frame buffer result will be lightened to some 
degree. This is the blending mode we will use in Lab Project 6.2 for detail texturing. 
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The image on the left shows a brick texture 
and a high-detail gray cement texture, each 
mapped to its own quad. The quads are 
rendered without any alpha blending. As 
expected, the second polygon (the gray one) 
overwrites the first one. In the image on the 
right, we render the gray polygon with the 
blending operation just discussed. We note that 
it has added a grainy detail to the otherwise 
smooth brick wall texture. Also notice that 
because we are doing what is essentially a modulate2x operation, the 

intensity of the blended pixels has been mostly maintained. 
 

Note: One of the blend modes that we can specify is D3DBLEND_BLENDFACTOR. This allows us to use a 
constant color as a blend factor much like the TextureFactor constant discussed earlier. It is set with a 
call to SetRenderState. The following example sets a half-intensity color which can be used in the alpha 
blending equation during frame buffer blending.  

m_pDevice->SetRenderState(D3DRS_BLENDFACTOR, 0x88888888); 

This functionality is available if the D3DPBLENDCAPS_BLENDFACTOR capabilities bit is set in the 
SrcBlendCaps member of D3DCAPS9 or the DestBlendCaps member of D3DCAPS9. This identifies whether 
the blend factor can be used as a source blend mode or a destination blend mode respectively.  

Please open your workbook now to Lab Project 6.2. This project will use multi-texturing to blend two 
textures onto a terrain in a single pass. If multi-texturing is not available on the current hardware, we 
will implement the texture blending using multiple passes. This means that we will render the terrain 
with the first texture, and then render it again with the second texture using alpha blending to color 
blend the second pass with the results of the first. 
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6.9 Compressed Textures 

Compressed textures reduce the storage requirements for texture resources. This allows us to store more 
textures in video memory at any one time, and also to reduce the amount of bandwidth required to 
upload the data to the card during texture swapping. While there is some small amount of overhead 
involved when rendering with compressed textures due to on-the-fly decompression, this overhead is 
generally minimal compared to the cost of storing uncompressed textures and transferring them across 
the bus to the graphics card. The potential downside to compression is lossiness -- some image data may 
be discarded to save space -- which might affect texture detail and quality. However, when using texture 
compression, we can work with much larger textures and, for the most part, this addresses any potential 
loss in quality. 

 
The D3DXCreateTextureFromFileEx function makes loading and compression simple and easy. Let us 
imagine that we would like to use compressed textures of the type D3DFMT_DXT1 (do not worry what this 
actually means for the moment). There are two steps that we must perform. First, we will use 
IDirect3DDevice9::CheckDeviceFormat to determine whether or not the desired compressed format can 
be used with our current device. If so, then we can proceed to the second step and load the texture. 
 
ULONG      Ordinal = pSettings->AdapterOrdinal; 
D3DDEVTYPE Type    = pSettings->DeviceType; 
D3DFORMAT  AFormat = pSettings->DisplayMode.Format; 
 
if ( SUCCEEDED( m_pD3D->CheckDeviceFormat( Ordinal, Type, AFormat, 0, 
                                           D3DRTYPE_TEXTURE, D3DFMT_DXT1))) 
{      
   
D3DXCreateTextureFromFileEx(m_pD3DDevice,FileName,D3DX_DEFAULT,D3DX_DEFAULT,  
                            D3DX_DEFAULT,0,D3DFMT_DXT1,D3DPOOL_MANAGED, 
                            D3DX_DEFAULT,D3DX_DEFAULT,0,NULL,NULL,&pTexture); 
} 

 
 
We used the D3DXCreateTextureFromFileEx form of the function because we want to specify the 
precise surface format that we want the source image converted to. If we had just used the 
D3DXCreateTextureFromFile function, then it would have chosen a texture format that most closely 
matched the image format in the file. When the function returns, we will have a pointer to our 
compressed texture and we can use it just like a normal texture from this point on.  The texture can even 
be locked and the pixel data manipulated, although this will cause the compressed data to be 
decompressed into a temporary surface for reads and writes. After we unlock the surface, the modified 
image data will be compressed again. 
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6.9.1 Compressed Texture Formats 

There are five compressed texture formats available for use in DirectX Graphics. They are members of 
the D3DFORMAT enumerated type and are listed below along with brief descriptions. We will go on to 
examine each in further detail in the next few sections. 
 
D3DFMT_DXT1 
 

The DXT1 format is primarily used when the texture is not required to store an alpha component, 
or in cases where we might only require a single alpha level (i.e. on/off). This will probably be 
the compression format used most within your scene because in most cases textures are either 
fully opaque or are being used for entities such as billboards for rendering trees, grass, etc. In the 
former case, no transparency is required. In the latter, it is often the case that we are only 
required to trace the outline of the billboard texture itself. 

 
D3DFMT_DXT2 & D3DFMT_DXT3 
 

These two formats are commonly used in situations where the texture requires several levels of 
alpha. This is often the case with textures used for effects like lens flares, user interface 
elements, and other special effects. Although the two provide similar functionality, there is one 
key difference between them. When a texture is created using the DXT2 format, each pixel’s 
color data is multiplied by any per-pixel alpha information stored within the texture. This is done 
as a pre-process, before texture creation is completed. For the DXT3 format, no such 
multiplication takes place.  
 

D3DFMT_DXT4 & D3DFMT_DXT5 
 

Like DXT2 and DXT3, these formats also provide variable levels of alpha information. As with 
the previous two, DXT4 is the pre-multiplied format, and DXT5 is the standard format. The only 
difference between these two formats and the previous two formats is that the DXT2 and DXT3 
both store their alpha information explicitly. This means that each pixel within the texture 
maintains its own alpha value. However, when using DXT4 or DXT5, much of the alpha 
information is discarded and is instead interpolated over a wide area of pixels. As a result, you 
would likely only use these formats in situations where the accuracy of the alpha information is 
not extremely important. 
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Pre-multiplied Alpha Texture Formats 

 
Probably one of the most confusing aspects about compressed texture formats is why we need the option 
to create texture surfaces that have their colors pre-multiplied by their alpha components. Although the 
alpha information is not discarded after the multiplication takes place, and we gain no 
compression/bandwidth benefits from this alone, the advantage to this approach is that it will speed up 
the per-pixel calculations required to perform certain color blending operations. To understand why this 
is the case, we first need to take a look at the most typical alpha blending formula. It blends two colors 
together, taking into account the texture alpha: 
 

R(RGB) = (C1(RGB) * Alpha) + (C2(RGB) * (1 – Alpha)) 
 
In this formula, R is the resulting color, C1 and C2 are the two colors we are blending together, and 
Alpha is the alpha value being used. In this case, the alpha value is the one stored within the compressed 
texture. It is assumed that each component (R,G,B,A) is within the range [0.0, 1.0]. 
 
Note that we perform two multiplications. But if both C1 and Alpha originate in the same texture, we 
can speed up the formula by moving part of it out of the per-pixel operation and into a pre-process. This 
is where the pre-multiplication concept comes into play. Take a look at the formula again, and assume 
that Alpha originates in the same texture as C1: 
 

R(RGB) = (C1(RGB) * C1(Alpha)) + (C2(RGB) * (1 – C1(Alpha))) 
 

This is exactly the same formula with the exception that the alpha value is taken from the same location 
as the first color input. We notice that the first portion of the runtime per-pixel processing (C1(RGB) * 
C1(Alpha)) can be optimized. Rather than waste precious cycles, we can do this multiplication once as a 
pre-process when we create the texture and remove it from the formula altogether. So when we use a 
pre-multiplied texture for our C1 input value, we know in advance that the color components have 
already undergone this multiplication. Thus, we can then reduce the formula to: 
 

R(RGB) = C1(RGB) + (C2(RGB) * (1 – C1(Alpha))) 
 
Bear in mind that this is a per-pixel operation, so if we use a 1280x1024 frame buffer for example, we 
just eliminated up to 1,310,270 potential multiplications. This can be a significant savings indeed. 
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6.9.2 Texture Compression Interpolation 

 
One of the primary methods by which DirectX Graphics reduces texture storage space when using 
compressed textures is interpolation. This is true for color as well as alpha values. Let us start with an 
example. Take a look at the following 300 pixel wide gradient: 
 

 
 
This block of color slowly changes from blue to red as we move from left to right. This transition takes 
place over 300 pixels, and thus requires 300 sets of color values to correctly express the gradient. 
Interestingly, we can store this entire image with as few as two color values if we were to use 
interpolation. Let us simplify this a bit and take a look at how interpolation works using an example 
which is only 3 pixels wide: 
 

 
 

We can see here that the image uses 3 distinct colors. On the left, the first pixel has a bright blue color: 
RGB (0.0, 0.0, 1.0). On the right the third pixel has a bright red color: RGB (1.0, 0.0, 0.0). The pixel in 
the middle is a purple color: RGB (0.5, 0.0, 0.5). This pixel is positioned between the blue and red pixels 
and is rendered using a color value that is also directly between the neighboring pixel values. If we were 
to use interpolation to interpret the above image, we could store the color values for pixels 1 and 3 only, 
and then interpolate between the two to come up with the color for pixel 2. This concept can be applied 
to a much wider span of pixels of course. We could then render this arbitrarily wide gradient using these 
two stored colors with some code that is similar to the following: 
 
// Calculate the color shift between each pixel of the gradient 
// We subtract one from GradientWidth so that the last pixel = Color_2 
// this ensures that during the loop (GradientWidth-1)/(GradientWidth-1) = 1.0  
Color_Shift = (Color_2 – Color_1) / (GradientWidth – 1); 
 
// Render the gradient 
for ( i = 0; i < GradientWidth + 1; i++ )  

SetPixel( i, 0, Color_1 + (Color_Shift * i) ); 

 
This is the concept used for the majority of the texture compression techniques used by DirectX 
Graphics. Let us now examine how DirectX Graphics stores the color data within a compressed texture 
format and how interpolation applies. 
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6.9.3 Compressed Data Blocks - Color Data Layout 

 
Texture compression divides the texture into a series of 4x4 texel blocks. This allows the interpolation to 
be performed across each individual block of 4x4 texels, and works to maintain image data integrity.  
Each block is essentially a mini palletized image. Each of the 16 individual texels stores their 
information using 2 bits. These bits serve as an index (between 0 and 3), that look up a color in what we 
might consider a virtual palette.  
 

As we can see in the image to the left, each block contains two colors (not four as 
might be expected given the index range). We referred to the palette as ‘virtual’ 
because the other two colors to be indexed are generated at runtime by 
interpolating between the two colors provided within the block.  
 
Referring back to the previous example, let us assume for a moment that Color_0 
contains the bright blue color and Color_1 the bright red color. The third and 
fourth color values would now be calculated such that the third color is 2/3rd blue 
and 1/3rd red, and the fourth color is 1/3rd blue and 2/3rd red. We can think of this 
as generating a four pixel wide gradient using Color_0 and Color_1 as the outer 

bounds. This can reduce image quality to some degree, but in most cases, unless the texture is extremely 
small and scaled over a large area, the effect is hardly noticeable.  
 
The images on the right show comparisons of the 
uncompressed (explicit) 4x4 block and the block 
using interpolated color values. We also see the 
resulting images (actual size) making use of each 
type. When we inspect the block colors close up, 
we can see a significant difference between the 
two. In the explicit block, we are using seven 
distinct colors and in the interpolated case we 
used four. The interpolated block (50X 
magnification) would not be of sufficient quality 
as an image on in its own. However, the key to 
this technique is that each block of 16 texels can 
have its own unique virtual palette. So we can 
vary the range of colors used by each block in the 
image. If we take a look at the two results, we 
note that even in this extreme case, the result is a 
barely noticeable difference in the overall color 
between them. 
  

 
Explicit Block 

 
Interpolated Block 

 
Explicit Result 

 
Interpolated Result 
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In the more practical example on the left, even though it 
is possible to spot the difference between the two blocks 
when magnified, the resulting images are practically 
indistinguishable even at this relatively low resolution of 
128x128 (non-filtered, actual size). The larger the 
texture, the less you will be able to see the visible signs 
of compression. This is due to the fact that more and 
more texels will be mapped to the polygon currently 
being rendered. This is really an ideal situation because it 
encourages us to increase the size and quality of our 
textures. We gain significant benefits in doing so because 
we can provide a far richer game environment without 
requiring more video memory on the card. 
 
 
 
 
 

 
The compressed texture block is laid out and interpolated as follows: 
 

 
 

The first portion holds the actual color data. These are the two extents between which our two 
interpolated colors will be computed. They are stored in a 16-bit R5G6B5 format. The 4x4 grid values 
specify the two bit binary code used as the index into the virtual palette. Recall that 00(bin) = 0(dec), 
01(bin) = 1(dec), 10(bin) = 2(dec) and 11(bin) = 3(dec). Thus, each color block uses only 64 bits        (8 
bytes) of memory, and provides reasonably good image quality.  
 
Let us now interpolate the color values. As discussed earlier, the first interpolated color uses 2/3rd of 
Color_0 and 1/3rd of Color_1. The second interpolated color uses 1/3rd of Color_0 and 2/3rd of Color_1.  
 
Interpolated_0(red) = (2 * (Color_0(red) / 3)) + (1 * (Color_1(red) / 3)) 
Interpolated_0(red) = (2 * Color_0(red) + Color_1(red)) / 3 

 
Interpolated_1(red) = (1 * (Color_0(red) / 3)) + (2 * (Color_1(red) / 3)) 
Interpolated_1(red) = (Color_0(red) + 2 * Color_1(red)) / 3 

 
 
 

 
Explicit Block 

 
Interpolated Block 

 
Explicit Result 

 
Interpolated Result 
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Ex. 
Color_0(red) = 140 
Color_1(red) = 173 

 
Interpolated_0(red) = (2 * 140 + 173) / 3 
Interpolated_1(red) = (140 + 2 * 173) / 3 

 
Interpolated_0(red) == 151 
Interpolated_1(red) == 162 

 

Referring back to the previous diagram, we realize that this works out exactly as our results 
demonstrated for the red components. If you follow this calculation through, you should find that it also 
works out for both the green and blue components too. 
 
When decoding the 4x4 bit-map area of the block, we will extract the data for each row one byte at a 
time. 
 

 
 

Here we see a single row of our example color data block. The row consists of 8 bits of data. In binary 
form, the byte consists of the bits 00 01 10 10. When converted to decimal, this value = 26. The code 
snippet below demonstrates how we might extract the indices from each 2 bit section of this byte. 
Remember that when using a little-endian system (as is the case with the Intel 80x86 architecture), bit 7 
is furthest left and bit 0 is furthest right, as labeled above. 
 

RowByte = 26; // Assume this is the first row 
Texel[0][0] = Color[(RowByte & 0x03)];      // 2(dec) = 10(bin) 
Texel[1][0] = Color[(RowByte & 0x0C) >> 2]; // 2(dec) = 10(bin) 
Texel[2][0] = Color[(RowByte & 0x30) >> 4]; // 1(dec) = 01(bin) 
Texel[3][0] = Color[(RowByte & 0xC0) >> 6]; // 0(dec) = 00(bin) 

 
This code extracts the 2 bit index from the row’s bit data and uses it to look up one of the four colors 
calculated earlier. The result is stored in a 4x4 texel color array. We would obviously have to do this 
three more times (for the three remaining rows) to complete the full decoding of the block. 
 

Note: You might have noticed that the least significant bits in the byte describe the first texel for that 
image’s row. This is not a typo, the image data is actually encoded in this way. 

Take a moment to examine the following tables. They compare memory footprint between standard non-
compressed textures, and their opaque DXT1 compressed counterparts. Remember that each DXT1 
color block is 8 bytes in size. 
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Standard 16bit / 32bit Uncompressed Textures 
Dimensions Bits Per Pixel Pixel Count Size (Bytes) 
128x128 16 16,384 32,768 
128x128 32 16,384 65,536 
256x256 16 65,536 131,072 
256x256 32 65,536 262,144 
512x512 16 262,144 524,288 
512x512 32 262,144 1,048,576 
1024x1024 16 1,048,576 2,097,152 
1024x1024 32 1,048,576 4,194,304 
2048x2048 16 4,194,304 8,388,608 
2048x2048 32 4,194,304 16,777,216 
4096x4096 16 16,777,216 33,554,432 
4096x4096 32 16,777,216 67,108,864 

 
 

Opaque DXT1 Compressed Textures 
Dimensions Block Count Size (Bytes) 
128x128 1,024 (32x32) 8,192 
256x256 4,096 (64x64) 32,768 
512x512 16,384 (128x128) 131,072 
1024x1024 65,536 (256x256) 524,288 
2048x2048 262,144 (512x512) 2,097,152 
4096x4096 1,048,576 (1024x1024) 8,388,608 

 
This is a significant reduction. Note as well that the storage space and bandwidth savings are 
exponential as the size of the texture increases. In addition, each block is exactly 64 bits in size. This 
allows for optimal (practically best case) transfer rate when sending the texture data to the card. As a 
general rule, we can use a compressed texture with dimensions (Width*2) x (Height*2) beyond those of 
an uncompressed 16-bit texture and take up no additional storage, with acceptable lossiness. 
 

Note: Due to the fact that each block describes a 4x4 texel area, and because of other optimizations 
that may be performed, compressed textures must always use dimensions equal to (N2). This is true even 
in cases where the graphics adapter supports non-‘power of two’ image dimensions for uncompressed 
textures. 
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6.9.4 Compressed Data Blocks - Alpha Data Layout 

 
Although the layout of the color data stays basically the same between compressed texture formats (with 
one exception to be discussed shortly), we have several options when it comes to how we store alpha 
information and how it is interpolated.  
 
D3DFMT_DXT1 - Opaque or 1 Bit Alpha 
 
The DXT1 format has the ability to store a single bit of alpha information. This basically describes 
whether or not the resulting pixel should be rendered (i.e. totally transparent or totally opaque).  
 
As discussed previously, we store 2 bits for each texel stored in the 4x4 color data block. In order to 
provide transparency, we will discard one of the interpolated color values in favor of having a ‘free’ 
index available (11(bin) or 3(dec)). Here we will specify whether a texel is transparent or not. So in this 
case we now have three color values: the two encoded into the block itself and a single interpolated 
value (created using ½ Color_1 and ½ Color_2). The consequence is some additional lossiness. 
Fortunately, this is determined on a block-by-block basis during compression, so only those blocks 
which happen to contain transparent pixels will suffer as a result. 
 
To determine whether a compressed data block contains transparency information during decompression 
/ rendering, rather than use a flag, this format uses a little hardcoded logic. If the block does not contain 
transparency information then Color_0 will be greater than Color_1. If it does contain transparency 
information then the situation is reversed and Color_1 will be greater than Color_0.  
 
if ( (Color_0 > Color_1) || Format != D3DFMT_DXT1 ) 
{ 
    // No transparency, this block uses all four colors 
    Color_2 = (2 * Color_0 + Color_1) / 3; 
    Color_3 = (Color_0 + 2 * Color_1) / 3; 
} 
else 
{ 
    // Contains transparency, use only three colors 
    Color_2 = (Color_0 + Color_1) / 2; 
    Color_3 = transparent; 
} 
 
Notice that the above ‘if’ statement takes into account the fact that this transparency technique applies 
only to the DXT1 compressed texture format. All other formats always assume four color encoding. 
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D3DFMT_DXT2 & D3DFMT_DXT3 - Explicit Alpha 
 

These two formats both store their color data in exactly the same way as the 
opaque version of the DXT1 format. However, they store their alpha values 
separately. These explicit alpha formats provide a unique 4 bit alpha value for 
each texel in the block. This data is stored in a separate 64-bit 4x4 transparency 
block. It is encoded before the color block, as seen in the image on the left. 
 
When explicit alpha is used, the size of each data block (transparency block + 
color block) adds up to a total of 128 bits (16 bytes). This is obviously not as 
significant a space savings as DXT1, but when we need relatively accurate, 
explicit per-texel alpha values, these formats provide the best of both worlds. 
 
For DXT2 and DXT3 formats, the 4-bit alpha encoding for each texel can be 
achieved using several methods, such as dithering or simply truncation using only 
the 4 most significant bits (4 through 7). The latter is the method DirectX 
Graphics uses when compressing alpha information using either of these two 
formats. Since we are truncating the alpha information into 4 bits, the texture is 

only capable of describing 16 unique alpha levels. During compression, any original alpha values that 
are less than 16 will become completely transparent (0). 
 
Because the alpha values are explicit, and use 4 bits per texel, decoding the transparency block is 
relatively easy when using these formats. We read the entire row into a single WORD (2 bytes).  
 
Let us assume that the row we are processing is split up into 4 bit chunks as [1101 0010 1100 0101] 
 
RowWord = 53957; // Assume this is the first row 
Alpha[0][0] =  (RowWord & 0x000F) << 4;            //   80(dec) = 01010000(bin) 
Alpha[1][0] = ((RowWord & 0x00F0) >> 4 ) << 4; // 192(dec) = 11000000(bin) 
Alpha[2][0] = ((RowWord & 0x0F00) >> 8 ) << 4; //   32(dec) = 00100000(bin) 
Alpha[3][0] = ((RowWord & 0xF000) >> 12) << 4; // 208(dec) = 11010000(bin) 
 
As with the code used to extract the color indices, this process must also be repeated for the remaining 
three rows. Shifting each value to the left by 4 bits converts the 4-bit value back into a byte within the 
range [0, 255]. One potential optimization is to simplify the right and left shifts to one operation:       
(ex. >> 12 followed by a  << 4 is changed to a  >> 8).  
 

Note: The least significant bits in the word describe the first alpha value for that physical texture row. 
This is not a typo, the alpha data is actually encoded in this way. 

Remember that DXT2 has its color data encoded using pre-multiplied alpha and DXT3 does not. If you 
are encoding these formats manually, do not forget to do this multiplication. 
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D3DFMT_DXT4 & D3DFMT_DXT5 - Interpolated Alpha 
 

DXT4 and DXT5 also store their own transparency block encoded before the 
color block. For alpha, they will use interpolation in much the same way as the 
color block. There are two key differences. First, the two alpha values used to 
generate the interpolated values are stored as 8-bit (one byte) values. This allows 
a full range between 0 and 255. Second, each index in the bit-map uses 3 bits, 
providing up to 8 interpolated alpha values to be specified (0 through 7). 
 
As with the interpolated color values, we will need to generate a certain number 
of alpha values that fall within the range specified by the Alpha_0 and Alpha_1 
values contained within the transparency block. Because our data area uses 3-bit 
indices, we can address a maximum of 8 unique values. When these formats are 
decoded, we will generate 6 alpha values interpolated between the two values 
specified within the block. The following code snippet generates each of these 6 
alpha values. 
 
 

// Alpha_0 = First 8 bits of transparency block   - Bit code 000 
// Alpha_1 = Second 8 bits of transparency block  – Bit Code 001 
Alpha_2 = ( 6 * Alpha_0 +     Alpha_1 ) / 7; //   - Bit Code 010 
Alpha_3 = ( 5 * Alpha_0 + 2 * Alpha_1 ) / 7; //   - Bit Code 011 
Alpha_4 = ( 4 * Alpha_0 + 3 * Alpha_1 ) / 7; //   - Bit Code 100   
Alpha_5 = ( 3 * Alpha_0 + 4 * Alpha_1 ) / 7; //   - Bit Code 101 
Alpha_6 = ( 2 * Alpha_0 + 5 * Alpha_1 ) / 7; //   - Bit Code 110 
Alpha_7 = (     Alpha_0 + 6 * Alpha_1 ) / 7; //   - Bit Code 111 

 
Each of these values is distributed evenly between the Alpha_0 and Alpha_1 such that: 
 
Alpha_2 uses 6/7th Alpha_0 and 1/7th Alpha_1, 
Alpha_3 uses 5/7th Alpha_0 and 2/7th Alpha_1, 
Alpha_4 uses 4/7th Alpha_0 and 3/7th Alpha_1,  
… 
 
As with the color data, there is a special case which can be used on a block-by-block basis. If Alpha_1 is 
greater than Alpha_0, we assume a 6-alpha block, as opposed to the 8-alpha block described above: 
 
// Alpha_0 = First 8 bits of transparency block       - Bit code 000 
// Alpha_1 = Second 8 bits of transparency block      – Bit Code 001 
if ( Alpha_0 > Alpha_1 ) 
{ 
    Alpha_2 = ( 6 * Alpha_0 +     Alpha_1 ) / 7; //   - Bit Code 010 
    Alpha_3 = ( 5 * Alpha_0 + 2 * Alpha_1 ) / 7; //   - Bit Code 011 
    Alpha_4 = ( 4 * Alpha_0 + 3 * Alpha_1 ) / 7; //   - Bit Code 100   
    Alpha_5 = ( 3 * Alpha_0 + 4 * Alpha_1 ) / 7; //   - Bit Code 101 
    Alpha_6 = ( 2 * Alpha_0 + 5 * Alpha_1 ) / 7; //   - Bit Code 110 
    Alpha_7 = (     Alpha_0 + 6 * Alpha_1 ) / 7; //   - Bit Code 111 
} 
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else 
{ 
    Alpha_2 = ( 4 * Alpha_0 +     Alpha_1 ) / 5; //   - Bit Code 010 
    Alpha_3 = ( 3 * Alpha_0 + 2 * Alpha_1 ) / 5; //   - Bit Code 011 
    Alpha_4 = ( 2 * Alpha_0 + 3 * Alpha_1 ) / 5; //   - Bit Code 100   
    Alpha_5 = (   * Alpha_0 + 4 * Alpha_1 ) / 5; //   - Bit Code 101 
    Alpha_6 = 0;                                 //   - Bit Code 110 
    Alpha_7 = 255;                               //   - Bit Code 111 
} 
 
As you can see, this approach creates only 4 interpolated values and explicitly defines the extremes. This 
can be used in cases where we want no blending to occur (total opacity or transparency). 
 
Decoding the data area for three-bits per texel can be a little bit tricky. The easiest way is to read the 
entire data area (48 bits) into a single 64-bit variable (using an __int64) and parse it.  
 
__int64 BlockData = 195010219826458; // Assume this is the first row 
 
// In this example, BlockData binary is shown below 
// 101 100 010 101 110 001 011 010 111 000 010 101 110 100 011 010 
TAlpha[0][0] = Alpha[(BlockData & 0x7)]; // 2(dec) = 010(bin) 
BlockData >>=3; 
TAlpha[1][0] = Alpha[(BlockData & 0x7)]; // 3(dec) = 011(bin) 
BlockData >>=3; 
TAlpha[2][0] = Alpha[(BlockData & 0x7)]; // 4(dec) = 100(bin) 
BlockData >>=3; 
TAlpha[3][0] = Alpha[(BlockData & 0x7)]; // 6(dec) = 110(bin) 
BlockData >>=3; 
... 

 
Again, this process repeats for the remaining three rows. As we saw earlier, we start with the least 
significant bits of the data type being processed. We strip off the 3 least significant bits used in the 
previous calculation, so that the next 3 bits in the data area become the least significant bits in their 
place. This is also a valid way of decoding the other data blocks and is extremely useful if you wish to 
place your extraction code in a loop. 
 
Finally, remember that DXT4 color data is encoded using pre-multiplied alpha and DXT5 is not.  
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6.10 Texture Coordinate Transformation 

Each of the eight texture stages owns a 4x4 matrix that can be used to apply transformations to the 
texture coordinates associated with that stage. This provides an easy way to animate texture coordinates 
at run-time as they are pumped through the cascade. We can think of the texture coordinates as normal 
2D vectors, such that multiplying them with the texture matrix works in exactly the same way as 
multiplying our vertex positions with a 4x4 matrix (see Chapter 1). By default, texture coordinate 
transformations are disabled for each stage and the matrix stored at each stage is an identity matrix.  
 
Our first concern is figuring out how to multiply a 2D texture coordinate with a 4x4 matrix (the 2D 
coordinate is a 1x2 matrix and the inner dimensions do not match the 4x4 matrix). Recall that we used 
homogeneous coordinates in the form (x,y,z,1) to solve this problem for 3D vectors. This also gave us 
the ability to place addition/subtraction into the matrix for translations. The DirectX pipeline uses a 
similar approach with texture coordinates. Note that even though we have only used 2D texture 
coordinates so far, you can also use 1D, 3D, and even 4D coordinates with DirectX. If N is the 
dimension of the texture coordinates, the coordinate set will be padded to a 4D vector prior to 
multiplication with the texture matrix such that component N+1 will have the value 1. The remaining 
values in the vector are padded to 0.  
 
Let us assume that we have a 2D set of texture coordinates in our vertex structure (u, v). If texture 
transformations are enabled in the stage that uses those coordinates, the texture coordinates will be 
padded to 4D texture coordinates for the matrix multiplication. The 2D texture coordinate would now be 
(u, v, 1, 0). A 1D texture coordinate (u) would be padded to (u, 1, 0, 0). A 3D coordinate (u, v, w) would 
be padded to (u, v, w, 1). 
 

2D Texture Coordinate Translation Matrix 
 

Texture Matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241
34333231
24232221
14131211

mmmm
mmmm
mmmm
mmmm

 

 
Let us imagine that we have a texture matrix assigned to stage 0 as an identity matrix.  
 

Texture Matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
0010
0001

 

 
When we are using 3D vertex positions (x, y, z, 1) we know that the translation vector should go in the 
fourth row. However, when using 2D texture coordinates (u, v, 1, 0), this will not suffice:  
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U = u * m11 + v * m21 + 1 * m31 + 0 * m41 
V = u * m12 + v * m22 + 1 * m32 + 0 * m41 
U = u * m11 + v * m21 + 1 * m31 
V = u * m12 + v * m22 + 1 * m32 
 
Instead we see that since the third component of the texture coordinate is set to 1 prior to the 
multiplication. Thus, the third row in the matrix provides us with the ability to add or subtract values 
from the input components.  
 
Assume UV components of (0.5, 0.9). If we wanted to translate our U coordinates by 2 and our V 
coordinates by –5 we would generate the following matrix: 
 
 

2D Texture Translation Matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0152
0010
0001

 

 
U = 0.5*1   +   0.9*0   +   1*2 
U = 2.5 
 
V = 0.5*0   +   0.9*1   +   1*-5 
V = -4.1 
 
Next we see how to setup a matrix to translate a 1D texture (u, 1, 0, 0) by du and dv: 
 

1D Texture Translation Matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
00
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dvdu
 

 
 
In Lab Project 6.3 we will use texture coordinate animation to 
make the water underneath the wooden bridge look like it is 
flowing. We do this by setting the texture stage matrix to a 
translation matrix that continuously increments the translation 
amount of the texture coordinates each time the face is rendered. 
This offsets the texture coordinates a little more each frame.  
 
Before rendering each water polygon, we will set the texture stage 
texture matrix to increment the U component of the texture 
coordinates. Since the default texture addressing mode wraps 
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coordinates outside the [0, 1] range, as the texture is tiled we will see a scrolling effect.  
 
The top part of the image on the right shows the water texture 
mapped to a quad in its entirety. The bottom image shows what the 
quad would look like if we subtracted 0.5 from the U coordinate 
using the translation matrix. The white line lets us see where one tile 
ends and the next one begins, but is for the purposes of the diagram 
only – it will be a seamless join in the application.  
 
If we subtract a small amount from the U coordinate each frame, the 
white line would scroll slowly from right to left (from 0.0 to 1.0). 
Once it reached 1.0 it would just wrap around to 0.0. This means that 
our water texture will look like it is endlessly scrolling. In the demo 
we only translate the U coordinates because the room design is such 
that the water flow is aligned with our world X axis. If the room was 
oriented diagonally between the X and Z axes, we would have 
translated both the U and V coordinates by equal measure.  
 

We can also perform texture scaling and rotations on our UV 
coordinates. The following matrix scales the u coordinate by 5 and the v coordinate by 2. 

A 2D texture coordinate scale matrix 
 

⎥
⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
0020
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Setting up the Texture Transformation 

To enable texture transformation we first use the D3DTTS_TEXTURETRANSFORMFLAGS texture stage state 
as shown below: 
 
pDevice->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS, flags); 

 
We use this function to inform the device about the texture coordinate size. The 4D texture coordinate 
will be padded and the output will be trimmed accordingly. We specify one of the members of the 
D3DTEXTURETRANSFORMFLAGS enumeration: 
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typedef enum _D3DTEXTURETRANSFORMFLAGS 
{ 
    D3DTTFF_DISABLE = 0, 
    D3DTTFF_COUNT1 = 1, 
    D3DTTFF_COUNT2 = 2, 
    D3DTTFF_COUNT3 = 3, 
    D3DTTFF_COUNT4 = 4, 
    D3DTTFF_PROJECTED = 256, 
    D3DTTFF_FORCE_DWORD = 0x7fffffff 
} D3DTEXTURETRANSFORMFLAGS; 
 
D3DTTFF_DISABLE 
Texture transformations are disabled. This is the default state for each texture stage. 
 
D3DTTFF_COUNT1 
This tells the device to trim the 4D texture coordinate output from the texture matrix multiplication to its 
first component. All other components are discarded. The rasterizer now knows to expect 1D 
coordinates. 
 
D3DTTFF_COUNT2 
This tells the device to trim the 4D texture coordinate output from the texture matrix multiply to its first 
two components. All other components are discarded. The rasterizer now knows to expect 2D 
coordinates. 
 
D3DTTFF_COUNT3 
This tells the device to trim the 4D texture coordinate output from the texture matrix multiply to its first 
three components. The 4th component is discarded. The rasterizer now knows to expect 3D texture 
coordinates. 
 
D3DTTFF_COUNT4 
The 4D vector output from the matrix multiplication is passed straight to the rasterizer. 
 
D3DTTFF_PROJECTED 
This flag can be combined with any of the above flags.  The 4D texture coordinates output from the 
matrix are all divided by the last component before being passed to the rasterizer. For example, if this 
flag is specified with the D3DTTFF_COUNT3 flag, the first and second texture coordinates are divided by 
the third coordinate before being passed to the rasterizer. This flag is used for projective texturing. We 
will discuss this feature in detail during the next course in this series. 
 
Thus, to enable transformations in stage 0 for 2D texture coordinates: 
 
pDevice->SetTextureStageState(0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTFF_COUNT2); 

 
To set the transformation matrix we use the SetTransform function, passing one of the D3DTS_TEXTURE0 
– D3DTS_TEXTURE7 transform states. The number on the end describes which texture stage we are 
setting matrix for. The following code creates a texture translation matrix that scrolls the U coordinates 
by 0.1 and assigns it to stage 0. 
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D3DXMATRIX  mat; 
D3DXMatrixIdentity (&mat); 
Mat._31 = 0.1; 
pDevice->SetTransform ( D3DTS_TEXTURE0 , &Mat); 

 

6.11 The IDirect3DTexture9 Interface 

It is tempting to think of the IDirect3DTexture9 interface as an interface to an object that encapsulates 
an image stored on a surface. However, this is not quite true. As we have already discovered, the texture 
object can actually manage multiple surfaces called MIP maps. (It would be appropriate however to 
think of the IDirect3DSurface9 interface as an object that encapsulates a single image surface.) Each 
MIP mapped texture object is really an object that manages an array of surface objects. Each of these 
surfaces can be accessed and operated on using the methods of the IDirect3DSurface9 interface.  With 
the release of DirectX 9.0 the IDirect3DTexture9 interface was extended, allowing you to lock any 
surface belonging to a texture without the need to use an intermediate IDirect3DSurface9 interface. The 
IDirect3DSurface9 interface is nevertheless quite important. Not only is it used to operate on surfaces 
that are not textures (such as the frame buffer for example), there are still D3DX functions that operate 
on IDirect3DSurface9 rather than IDirect3DTexture9. Since IDirect3DTexture9 includes a function to 
return an IDirect3DSurface9 interface for any one of its MIP levels, we can use these D3DX functions 
with individual texture surfaces with no trouble.  
 
Let us briefly examine some of the methods exposed by the IDirect3DTexture9 interface. Some of these 
you will use very rarely, while others may be used quite regularly. 
 
LockRect(UINT Level, D3DLOCKED_RECT *pLockedRect, CONST RECT *pRect, DWORD Flags) 
This function locks a rectangular area on the texture and returns a pointer to the first pixel in the top left 
corner of the rectangle. If the RECT pointer is set to NULL, a pointer to the first pixel in the top left 
corner of the entire surface is returned. This pointer can be used to read and write directly to or from the 
surface. The Level parameter specifies the MIP map level you wish to lock. The D3DLOCKED_RECT 
structure is filled with a pointer to the bits of the image surface and the pitch of the surface. 
 
UnlockRect(UINT Level) 
When a surface has been locked you must remember to unlock it after you have finished reading or 
writing. We pass in the MIP level we wish to unlock. 
 
GetLevelCount(VOID) 
This function returns the number of MIP levels in the texture. 
 
GetLevelDesc(UINT Level, D3DSURFACE_DESC *pDesc) 
This function is used to get specific information about a particular surface level in a texture. The Level 
parameter specifies the MIP level we wish to inquire about. The D3DSURFACE_DESC will be filled with 
the width, height and format information about that surface level. The D3DSURFACE_DESC structure is 
shown below.  
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typedef struct _D3DSURFACE_DESC 
{ 
    D3DFORMAT Format; 
    D3DRESOURCETYPE Type; 
    DWORD  Usage; 
    D3DPOOL Pool; 
    D3DMULTISAMPLE_TYPE MultiSampleType; 
    DWORD  MultiSampleQuality; 
    UINT  Width; 
    UINT  Height; 
} D3DSURFACE_DESC; 
 
The D3DSURFACE_DESC is used to contain information about all sorts of surfaces. For example, it could 
be used for frame buffer information as well as texture information. The Format, Width, Height, Usage, 
and Pool members have been discussed in detail already. The MultiSampleType and 
MultiSampleQuality members are only relevant for surfaces that can be used as render targets (i.e. frame 
buffer or render target textures). The Type parameter identifies the type of surface this is. For a standard 
2D texture surface, this will always be D3DRTYPE_TEXTURE. The other D3DRESOURCETYPE members are 
shown below and some of the following types we have not yet covered. 
 
typedef enum _D3DRESOURCETYPE 
 { 
    D3DRTYPE_SURFACE = 1, 
    D3DRTYPE_VOLUME = 2, 
    D3DRTYPE_TEXTURE = 3, 
    D3DRTYPE_VOLUMETEXTURE = 4, 
    D3DRTYPE_CUBETEXTURE = 5, 
    D3DRTYPE_VERTEXBUFFER = 6, 
    D3DRTYPE_INDEXBUFFER = 7, 
    D3DRTYPE_FORCE_DWORD = 0x7fffffff 
} D3DRESOURCETYPE; 
 
 
GetSurfaceLevel(UINT Level, IDirect3DSurface9 **ppSurfaceLevel) 
Individual texture MIP surfaces can be retrieved using this function. It will return a pointer to an 
IDirect3DSurface9 interface based on the MIP surface level specified in the Level parameter.  
 
PreLoad (void) 
We use this function to inform the DirectX memory manager that the texture will soon be used for 
rendering. This function is used for managed textures only. A managed texture resource may have been 
temporarily unloaded from video memory to make room for other textures. Calling this function forces 
the texture manager to upload the texture to video memory immediately. Often when textures are first 
created, they will not be loaded up to video memory until the first time they are used. This can result in 
stutters or delays at the start of an application. Calling PreLoad on all of your managed textures can help 
minimize this occurrence by making sure the textures are in video memory before rendering. 
 
AddDirtyRect(CONST RECT *pDirtyRect) 
When using managed textures, whenever a texture is locked, the rectangle that was locked is flagged as 
dirty. When the texture is unlocked, the texture manager updates the video memory copy of the texture 
with the new image data from the system memory copy. When we are not using managed textures, we 
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manage this system memory copy of the texture ourselves. The IDirect3DDevice9::UpdateTexture 
function can be used to copy data from the system memory texture to the video memory texture. This 
function copies all the dirty rectangles of the system memory texture. We can use the AddDirtyRect 
function to specify additional dirty regions. This forces either the memory manager or the 
IDirect3DDevice9::UpdateTexture function to push the system memory copy to the card even if the 
system does not officially consider them to be dirty.  
 
SetPriority(DWORD PriorityNew) 
This function is used to set the priority of a managed texture. By default, all managed textures begin life 
with a priority level of 0. When the memory manager is deciding which textures to remove from video 
memory to make room for newly requested ones, it will choose textures with a lower priority. This 
means that we can assign a priority number > 0 to make sure that a texture is not removed from memory. 
This can be useful if we know a texture will be used lots of times throughout the scene. The function 
returns the previous priority level of the texture. This is only used with managed textures. 
 
 
HRESULT IDirect3DDevice9::UpdateTexture(IDirect3DBaseTexture9 *pSourceTexture, 
                                                                                 IDirect3DBaseTexture9 *pDestinationTexture) 
This function is used to copy a system memory texture to a texture in the default memory pool. 
Typically you will use this function when updating textures that are not in the D3DPOOL_MANAGED 
resource pool. This function will copy only the dirty regions of the texture. Locking a texture makes the 
locked rectangle dirty, provided that the texture rectangle was not locked using the 
D3DLOCK_NO_DIRTY_UPDATE or D3DLOCK_READONLY flags. Note that using the 
IDirect3DDevice9::AddRect function is another way to add dirty rectangles to a texture. 
 
The source texture must have been created in the D3DPOOL_SYSTEMMEM memory pool and the destination 
surface must have been created in the D3DPOOL_DEFAULT memory pool. This function cannot be used for 
managed textures. There are a few other semantics that must be obeyed when using this function and the 
full details are discussed in the DirectX SDK documentation. 
 
 

6.12 The IDirect3DSurface9 Interface 

IDirect3DSurface9 is an interface used to interact with an individual surface, such as a single MIP 
surface in a texture object. This is an important interface because not all surfaces are texture surfaces. 
The frame buffer, front buffer, and depth buffer are good examples. They are not necessarily limited to 
the same size and shape restrictions that texture surfaces may be limited to. Note that although we 
cannot physically write to the front buffer for example, the IDirect3DDevice9::GetFrontBufferData 
makes a copy of the front buffer and returns an IDirect3DSurface9 interface. This is ideal for grabbing a 
screen shot and saving it to a file. 
 
The IDirect3DSurface9 interface also includes many useful methods that are not available through 
IDirect3DTexture9. For example, let us imagine that we have a texture with 10 MIP levels and we wish 
to write some text to the top level surface. It would be handy if we could use the Win32 GDI text output 
functions since they are familiar and easy to use (assuming speed is not a concern). IDirect3DSurface9 
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exposes a GetDC function that allows us to do just that. Once you have the device context, you can use 
GDI functions to render to the surface as though it were a window. For example: 
 
// assumes that pTexture is a valid IDirect3DTexture9 interface… 
IDirect3DSurface9 *pSurface; 
HDC hDC; 
 
pTexture->GetSurfaceLevel(0, &pSurface); 
pSurface->GetDC( &hDC ) 
 
::SetTextColor( hDC, 0xFFFFFF ); 
::TextOut( hDC , 10 , 10 , “Hello World” , 11); 
 
pSurface->ReleaseDC( hDC ); 
pSurface->Release(); 
 
D3DXFilterTexture(pTexture, NULL, 0, D3DX_DEFAULT); 

 
The first thing we do is retrieve an IDirect3DSurface9 for the current texture level (0 in this example). 
Once we have the surface interface, we use the GetDC function to retrieve a device context handle for 
drawing to the surface. In this example we set the text color of the device context to white and then print 
the text ‘Hello World’ using the 2D device context coordinates X=10, Y=10. Once we are done writing 
to the surface, we release the device context and the surface interface as they are no longer needed. 
Finally, we called the D3DXFilterTexture function (see next section) to ensure that the changes to the 
top level surface are downsampled to all subsequent MIP levels.  
 

Note: While the GDI is too slow to be used in a time critical situation, it can be used during initialization 
of your application to write to or copy from texture surfaces. 

 

6.12.1 IDirect3DDevice9 Surface Functions 

The IDirect3DDevice9 interface has a few useful methods for working with surfaces. They are listed 
below along with a description of their use, followed by a description of their parameters. 
 
ColorFill(IDirect3DSurface9 *pSurface, CONST RECT *pRect, D3DCOLOR color) 
 
The IDirect3DDevice9::ColorFill function is used to fill a surface (or a rectangular portion thereof) with 
a specified color. 
 
IDirect3DSurface9 *pSurface 
We use this parameter to pass an IDirect3DSurface9 pointer to the surface we wish to fill. 
 
CONST RECT *pRect 
The rectangular region on the surface that we wish to be filled. If we pass NULL, then the entire surface 
will be filled with the color. 
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D3DCOLOR Color 
The color we will use for the fill operation. 
 
//ex.Fill the entire surface with opaque green. 
pDevice->ColorFill (pSurface, NULL, 0xFF00FF00);  
 
 
CreateOffscreenPlainSurface(UINT Width, UINT Height, D3DFORMAT Format, 
                                                DWORD Pool, IDirect3DSurface9** ppSurface, HANDLE* pHandle) 
 
This function creates a new surface object which we will typically want to place in system memory. 
When we create an offscreen plain surface, we are not limited by any of the device restrictions that 
apply to textures. This makes them ideal for storing images that are too large to fit into a texture. 
 
For example, if we had a title screen image that was 1024x768 and we loaded this as a texture on a 
device that was limited to textures of 256x256 in size, the D3DXCreateTextureFromFile function would 
automatically resize the image so that it would fit onto a 256x256 texture surface. When the image was 
stretched over the entire screen, magnification artifacts would be the result.  So instead, 
CreateOffscreenPlainSurface should be used to create a blank surface of the correct size. We can then 
use the D3DXLoadSurfaceFromFile function to load the image data and the 
IDirect3DDevice9::UpdateSurface function to copy the image from the offscreen surface to the frame 
buffer surface. If the frame buffer and offscreen surface are different sizes, we can use the 
IDirect3DDevice9::StretchRect function to copy from the offscreen surface to the frame buffer. This 
performs the color conversion and image resizing to fit the frame buffer.  
 
Remember that this function only creates the surface. Your application is responsible for filling it with 
image data. 
 
UINT Width 
UINT Height 
The first two parameters specify the pixel width and pixel height of the surface to be created. 
 
D3DFORMAT Format 
This is the pixel format of the surface and it must be a valid format that the device supports. We verify 
this using the IDirect3D9::CheckDeviceType function as shown below.  
 
DWORD UsageFlags = 0; 
D3DFORMAT CheckFormat = D3DFMT_X4R4G4B4; 
pD3D->CheckDeviceFormat(Adapter, DeviceType, AdapterFormat, UsageFlags, 
                        D3DRTYPE_SURFACE, CheckFormat); 

 
DWORD Pool 
This is the memory pool we would like the surface to be created in. This will be either 
D3DPOOL_SYSTEMMEM or D3DPOOL_DEFAULT depending on how we intend to use the surface. 
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IDirect3DSurface9 **pSurface 
If surface creation is successful, this will point to the new IDirect3DSurface9 interface. 
 
HANDLE *pHandle 
Reserved. Set this parameter to NULL 
 
Typically you will find that you will be creating offscreen surfaces for holding images like title screens. 
In this case, you will want the offscreen surface format to match the back buffer surface format because 
no color conversion would have to take place. Also, no stretching or shrinking of the image is performed 
so we must copy an area of MxN pixels from the source surface to an area of MxN pixels on the 
destination surface. If you wanted to use IDirect3DDevice9::UpdateSurface to copy the offscreen 
surface to the frame buffer, then you would probably want to create your offscreen surface using an 
approach like this: 
 
IDirect3DSurface9 pMySurface; 
pDevice->CreateOffscreenPlainSurface(BackBufferWidth, BackBufferHeight, 
                                     BackBufferFormat, D3DPOOL_SYSTEMMEM, 
                                     &pMySurface, NULL); 

 
Note that when we use the UpdateSurface function, we must create our offscreen surface in the 
D3DPOOL_SYSTEMMEM pool. 
 
The problem with this using this method to present a title screen is that the surface is bound to the 
dimensions frame buffer. If the frame buffer is resized, we will need to create a new offscreen surface 
matching the new dimensions. The IDirect3DDevice9 interface has another surface-to-surface copying 
function called StretchRect which is a lot more flexible. We will cover this function shortly. 
 
 
UpdateSurface(IDirect3DSurface9* pSourceSurface,  CONST RECT* pSourceRect, 
                            IDirect3DSurface9* pDestinationSurface,  CONST POINT* pDestinationPoint) 
 
If you have ever used DirectX prior to version 9.0, you may recall a function called CopyRects. It was 
used to do a direct bit copy from one image surface to another. This function has been replaced in 
DirectX 9 with the IDirect3DDevice9::UpdateSurface function. The pixel formats of the source and 
destination surfaces must be the same or the copy will fail. The function performs no color conversion 
between surface formats and no shrinking or stretching to fit the destination surface dimensions. 
 
IDirect3DSurface9* pSourceSurface 
This is a pointer to the surface that will be the source for the copy operation. This surface must have 
been created in the D3DPOOL_SYSTEMMEM pool for the copy to be successful. It must not be currently 
locked or have any outstanding device contexts. 
 
CONST RECT* pSourceRect 
If this parameter is NULL then the entire source surface will be copied to the destination surface. If not, 
then this is a pointer to a RECT structure that defines a rectangular region on the surface that should be 
copied. The top left corner of the source rectangle will be mapped to the specified point on the 
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destination surface (4th parameter). Be sure to verify that the copied pixels will fit onto the destination 
surface starting at this position. 
 
IDirect3DSurface9* pDestinationSurface 
This is a pointer to the destination surface. The surface must have been created in the D3DPOOL_DEFAULT 
pool. This surface must not be currently locked or have any outstanding device contexts. 
  
CONST POINT* pDestinationPoint 
This is a 2D point on the destination surface where the source pixels will be copied. The top left corner 
pixel of the source rectangle in the source image will be mapped to this point on the destination surface. 
If you specify NULL, then the source rectangle will be copied starting at the top left corner of the 
destination surface. 

 

6.12.2 Surface Types 

The following table contains permissible source/destination surface combinations for various surface 
types. It is assumed that the source surfaces are all created in the D3DPOOL_SYSTEMMEM pool and the 
destination surfaces have been created in the D3DPOOL_DEFAULT pool.  
 
Key: Source Surface Type       Destination Surface Type 
 

 
* If the device does not support copying from a texture surface to a render target surface (such as the 
frame buffer) then this will be emulated using a lock and pixel copy operation. 
 
Finally, there are two additional rules to keep in mind when copying surfaces: 

• Neither the source surface nor the destination surface can have been created with multisampling 
capabilities. The only valid flag for both surfaces is D3DMULTISAMPLE_NONE.  

• The pixel formats of both surfaces must match and they must not be a depth stencil format. 
 
 
 
 
 
 
 

 Texture 
Surface 

Texture 
Render Target 

Render Target 
Surface 

Off-screen 
Plain 

Texture Surface Yes Yes Yes* Yes 
TextureRender Target No No No No 
Render Target Surface No No No No 
Off-screen Plain Yes Yes Yes Yes 
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StretchRect(IDirect3DSurface9 *pSourceSurface,  CONST RECT *pSourceRect, 
                      IDirect3DSurface9 *pDestSurface,      CONST RECT *pDestRect,  
                      D3DTEXTUREFILTERTYPE Filter)                                                                                             
 
DirectX 9.0 introduced a new 2D surface copying function called IDirect3DDevice9::StretchRect. This 
function is used primarily for copying images from surfaces to render target surfaces. Unlike the 
UpdateSurface function, the pixel formats of the source and destination pixel formats do not have to 
match because color conversion will be applied if necessary. Also, the source and destination rectangles 
do not require matching dimensions either. This allows us to magnify/minify the source image onto the 
destination surface using a specified filtering technique. While the function looks simple enough, there 
are some rules and restrictions that must be considered. We will discuss these as we move along. 
 
IDirect3DSurface9 *pSourceSurface 
The source surface of the copy operation. This surface must have been created in the D3DPOOL_DEFAULT 
memory resource pool. 
 
CONST RECT *pSourceRect 
The source rectangle that marks a region on the source surface that is to be copied onto the destination 
surface. If this parameter is NULL, the entire contents of the surface will be copied. 
 
IDirect3DSurface9 *pDestSurface 
This is the destination surface for the copy operation. This surface must have been created in the 
D3DPOOL_DEFAULT memory resource pool and will typically be a render target such as the frame buffer 
or a texture that has been created as a render target. This surface need not match the pixel format of the 
source surface. This cannot be the same surface as the source surface. 
 
CONST RECT *pDestRect 
The destination rectangle on the destination surface. The pixels that fall within the source rectangle on 
the source surface will be copied, color converted if necessary, and resized to fit within this rectangle on 
the destination surface. If this is set to NULL, the source rectangle will be resized to fill the entire 
destination surface. 
 
D3DTEXTUREFILTERTYPE Filter 
If the pixels copied from the source image need to be resized to fit the destination rectangle, this 
parameter describes one of three possible filter types used to reduce aliasing. Possible values are 
D3DTEXF_NONE, D3DTEXF_POINT or D3DTEXF_LINEAR. If D3DTEXF_NONE is specified, the driver will 
choose a filtering algorithm. If you intend to explicitly set a filter type you should check that the filter 
type is supported for the device. The D3DCAPS9 structure has a member called 
StretchRectFilterCaps. You can check one of the following filter flags for support: 
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D3DPTFILTERCAPS_MINFPOINT 

Device supports point-sample filtering for minifying 
rectangles. This filter type is requested by calling 
IDirect3DDevice9::StretchRect using 
D3DTEXF_POINT. 

D3DPTFILTERCAPS_MAGFPOINT 

Device supports point-sample filtering for magnifying 
rectangles. This filter type is requested by calling 
IDirect3DDevice9::StretchRect using 
D3DTEXF_POINT. 

D3DPTFILTERCAPS_MINFLINEAR 

Device supports bilinear interpolation filtering for 
minifying rectangles. This filter type is requested by 
calling IDirect3DDevice9::StretchRect using 
D3DTEXF_LINEAR. 

D3DPTFILTERCAPS_MAGFLINEAR

Device supports bilinear interpolation filtering for 
magnifying rectangles. This filter type is requested by 
calling IDirect3DDevice9::StretchRect using 
D3DTEXF_LINEAR. 

 
The following code shows how we could perform a copy from one surface to another using a driver 
selected filtering type. 
 
pDevice->StretchRect(pSrcSurface, NULL, pDestSurface, NULL, D3DTEXF_NONE);  

 
There are a few issues we need to look out for if we are converting between different image formats. 
First, once we have checked that the surface formats are supported by the device using the 
CheckDeviceFormat function, we must check that the device can handle color conversion between the 
two formats that we are using. Just because the device supports both formats does not mean that it 
supports copying from one to the other. The following code shows how we can use the 
IDirect3D9::CheckDeviceFormatConversion function to test if color conversion is supported between an 
A8R8G8B8 and a X4R4G4B4 surface.  
 
if(SUCCEEDED(pDevice->CheckDeviceFormatConversion(Adapter, DeviceType,  
                                             D3DFMT_X8R8G8B8, 
                                                  D3DFMT_X4R4G4B4)); 
{ 
  // Success 
} 

 
There are also restrictions on the combinations of source and destination surfaces that can be used 
together. Some of this depends on the driver. DX8 drivers cannot use a normal texture surface as a 
source surface for the copy operation but a DX9 driver can. Furthermore, a DX8 driver can only use 
render target textures as source surfaces if no stretching/shrinking of the image is required. While there 
is no easy way to know whether our application is running on DX8 or DX9 drivers, we can check the 
D3DCAPS9::DevCaps2 member for D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES. This tells us 
whether the device supports using a texture surface as a source surface when calling StretchRect. DX8 
drivers will not, whilst DX9 drivers will.  
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D3DCAPS9 Caps; 
pDevice->GetDeviceCaps( &Caps ); 
if(Caps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) 
{ 
   // DirectX9 Driver -- supports texture surfaces as source surfaces 
} 

 
The following table shows the surface type combinations that can be used for both DX8 and DX9 
drivers, with and without pixel resizing. 
 
Key : Source Surface Type       Destination Surface Type 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The IDirect3DDevice9::StretchRect function can fail for a number for reasons: 

• If pSourceSurface and pDestSurface are the same.  
• If stretching or shrinking is involved and either surface has a DXTn compressed format.  
• If the source surface is multisampled.  
• If the destination surface is an off-screen plain surface but the source is not. 
• If the destination surface is an off-screen plain surface and stretching is involved. 

 
For more information, please consult the DirectX 9 SDK documentation. 
 
 
 
 
 

DX8 Driver 
(No Stretching) Texture Surface Texture Render 

Target 
Render Target 
Surface 

Off-screen 
Plain 

Texture Surface No No No No 
Texture Render Target No Yes Yes No 
Render Target Surface No Yes Yes No 
Off-screen Plain Yes Yes Yes Yes 
DX8 Driver  
(Stretching) Texture Surface Texture Render 

Target 
Render Target 
Surface 

Off-screen 
Plain 

Texture Surface No No No No 
Texture Render Target No No No No 
Render Target Surface No Yes Yes No 
Off-screen Plain No Yes Yes No 
DX9 Driver 
(No Stretching) Texture Surface Texture Render 

Target 
Render Target 
Surface 

Off-screen 
Plain 

Texture Surface No No No No 
Texture Render Target No Yes Yes No 
Render Target Surface No Yes Yes No 
Off-screen Plain Yes Yes Yes Yes 
DX9 Driver  
(Stretching) Texture Surface Texture Render 

Target 
Render Target 
Surface 

Off-screen 
Plain 

Texture Surface No Yes Yes No 
Texture Render Target No Yes Yes No 
Render Target Surface No Yes Yes No 
Off-screen Plain No Yes Yes No 



 

 446 

GetBackBuffer(UINT iSwapChain, UINT BackBuffer, 
                            D3DBACKBUFFER_TYPE Type, IDirect3DSurface9 **ppBackBuffer) 
 
We use the IDirect3DDevice9::GetBackBuffer function to retrieve a surface interface to the frame 
buffer or to any surface in the back buffer swap chain. You could then call the surface interface GetDC 
function to write some text to the back buffer or perhaps call the IDirect3DDevice9::StretchRect 
function to copy an image surface to the frame buffer. 
 
UINT iSwapChain 
This is an integer specifying the swap chain. It is possible to create multiple swap chains that can be 
used as rendering targets. Specifying 0 selects the swap chain connected to the device which contains 
the frame buffer setup at device creation. 
 
UINT BackBuffer 
This parameter specifies the number of the surface in the swap chain that we wish to retrieve. Specifying 
index 0 returns an interface for the current frame buffer. 
 
D3DBACKBUFFER_TYPE Type 
This parameter must be set to D3DBACKBUFFER_TYPE_MONO in DirectX 9. 
 
IDirect3DSurface9 **ppBackBuffer 
The address of an IDirect3DSurface9 interface that will point to a valid surface interface if the function 
is successful. Remember to release the surface interface after you have finished using it or else you will 
cause a memory leak. 
 
 
GetFrontBufferData(UINT iSwapChain, IDirect3DSurface9 *pDestSurface) 
 
This function retrieves a copy of the front buffer. Due to its slow speed given the video memory read, 
this function should not be used in performance critical code.  Remember to release the surface interface 
after you have finished using it or else you will cause a memory leak. 
 
UINT iSwapChain 
Integer specifying the swap chain. This will usually be zero. 
 
IDirect3DSurface9 *pDestSurface 
This is an interface to a surface which has already had its buffer created by the application. This function 
does not create the surface memory buffer, it only copies the data into it. Thus it is the application’s 
responsibility to allocate the surface correctly. It should be a surface created in the D3DPOOL_SYSTEMMEM 
resource pool and the pixel format of this surface should be 32-bit D3DFMT_A8R8G8B8. It must also be 
large enough to hold the image data. If this is a windowed device then the surface should be the size of 
the entire desktop, if it is a fullscreen device, it should match the dimensions of the current adapter 
mode. 
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6.13 D3DX Texture Functions 

D3DX includes a number of functions that can be used to assist with common texture housekeeping 
tasks. We already discussed the D3DX texture loading functions, but there are a few more worth 
mentioning. 
 
D3DXFilterTexture(LPDIRECT3DBASETEXTURE9 pBaseTexture, 
                                    CONST PALETTEENTRY *pPalette, UINT SrcLevel, DWORD MipFilter) 
 
There may be times when you need to force MIP map image regeneration. This will be the case in Lab 
Project 6.4 when we use GDI to write to a texture surface. Once we write to the top level surface, we 
need the changes to be filtered down to all subsequent MIP levels. This function provides the solution. 
We pass a pointer to the texture we wish to have refiltered as the first parameter.  
 

Note: LPDIRECT3DBASETEXTURE9 is a pointer to an IDirect3DBaseTexture9 interface. This is the 
interface from which all other texture interfaces are derived.  

The second parameter is used only with palletized textures (we will simply set it to NULL). The third 
parameter specifies the MIP level at which the generation should begin. For example, if we specified 3 
then the image in MIP level 3 would be filtered down to the subsequent MIP levels. Specifying 0 will 
ensure that the top level image is filtered down through all levels. The last parameters describes the filter 
we would like the function to use when downsampling. This can be a combination of one or more 
D3DX_FILTER members as we discussed when examining the D3DXCreateTextureFromFileEx function.  
Specifying D3DX_DEFAULT for this parameter is the equivalent of specifying D3DX_FILTER_BOX if the 
texture size is a power of two, and D3DX_FILTER_BOX | D3DX_FILTER_DITHER otherwise. 
 
D3DXSaveTextureToFile(LPCTSTR pDestFile, D3DXIMAGE_FILEFORMAT DestFormat, 
                                   LPDIRECT3DBASETEXTURE9 pSrcTexture,  
                                             const PALETTEENTRY *pSrcPalette)____________________________              
 
This function is useful when you wish to save a texture image to a file. This can be useful if you want to 
load it into a paint program for viewing or editing. We pass in the desired file name and a member of the 
D3DXIMAGE_FILEFORMAT enumerated type. This describes the image file format we would like the file to 
be saved in. 
 
typedef enum _D3DXIMAGE_FILEFORMAT { 
    D3DXIFF_BMP = 0, 
    D3DXIFF_DDS = 4, 
    D3DXIFF_DIB = 6, 
    D3DXIFF_JPG = 1, 
    D3DXIFF_PNG = 3, 
    D3DXIFF_PPM = 5, 
    D3DXIFF_TGA = 2, 
    D3DXIFF_FORCE_DWORD = 0x7fffffff 
} D3DXIMAGE_FILEFORMAT; 

 
The third parameter is a pointer to the texture whose image we wish to save. The fourth parameter 
allows us to pass in an image palette if we are using palletized textures.  
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D3DXGetImageInfoFromFile(LPCSTR pSrcFile,  D3DXIMAGE_INFO *pSrcInfo) 
 
The first parameter is the file name of the image we wish to extract the information for. The second 
parameter should be a pointer to a D3DXIMAGE_INFO structure which will contain the information about 
the image if it is successful. The D3DXIMAGE_INFO structure is defined as: 
 
typedef struct _D3DXIMAGE_INFO  
{ 
    UINT Width; 
    UINT Height; 
    UINT Depth; 
    UINT MipLevels; 
    D3DFORMAT Format; 
    D3DRESOURCETYPE ResourceType; 
    D3DXIMAGE_FILEFORMAT ImageFileFormat; 
} D3DXIMAGE_INFO; 
 
The members of this structure should be self explanatory by now as we have covered them throughout 
this course. In Lab Project 6.4, we are interested in the width and height members so that we can use it 
to create our offscreen surface. We will create the offscreen surface in the pixel format of the frame 
buffer so that we have an exact match when copying for maximum speed. Once we have created the 
surface in the format and dimensions we desire, we call D3DXLoadSurfaceFormFile to load the image 
into the surface we have created. The image will be color converted into the format of our surface which 
in our demo example is the format of the frame buffer.  
 
 
D3DXLoadSurfaceFromFile(LPDIRECT3DSURFACE9 pDestSurface, 
                                      CONST PALETTEENTRY* pDestPalette,  CONST RECT* pDestRect, 
                                      LPCTSTR pSrcFile, CONST RECT* pSrcRect,  
                                      DWORD Filter,  D3DCOLOR ColorKey, D3DXIMAGE_INFO* pSrcInfo) 
 
There are several flavors of the D3DXLoadSurfaceFromXX function, just as there were for the 
D3DXCreateTextureFromXX functions. These functions load surfaces from files, resources, and from 
memory. Since they are all essentially the same, we will look at just one of them. You should consult the 
SDK documentation for details on the other types. 
 
LPDIRECT3DSURFACE9 pDestSurface 
This is the pointer to the surface into which the image data will be loaded. 
 
CONST PALETTEENTRY* pDestPalette 
This parameter is a pointer to a palette used for palettized surfaces. We will pass in NULL for this 
parameter since we will not be using such textures in this course. 
 
CONST RECT* pDestRect 
Specifies a rectangle on the surface that the image will be loaded into. Often this will be set to NULL 
and the image will be loaded into the entire surface area. This function handles color conversion and 
resizing of the source image area to the destination rectangle. 
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LPCTSTR pSrcFile 
A string specifying the image file name to load. 
 
CONST RECT* pSrcRect 
This parameter defines a rectangular region of the source file to be loaded. Often this will be set to 
NULL so that the entire image is loaded into the destination surface rectangle.  
 
DWORD Filter 
If the source image pixels have to be stretched or squashed to fit within the destination rectangle, then 
we can specify a filter to minimize aliasing. We pass one of the D3DX_FILTER values discussed earlier. 
Specifying D3DX_DEFAULT for this parameter is the equivalent of specifying D3DX_FILTER_TRIANGLE | 
D3DX_FILTER_DITHER. 
 
D3DCOLOR ColorKey 
This parameter can be used to specify a 32-bit color to be replaced with transparent black pixels. We 
discussed color keys earlier in the lesson when examining texture loading from files. 
 
D3DXIMAGE_INFO* pSrcInfo 
Pointer to a D3DXIMAGE_INFO structure to be filled with a description of the data in the source file. We 
can pass NULL if we are not interested in this information. 
 
 
 
Conclusion 

 
We covered a lot of ground in this lesson. We now know quite a bit about the various texturing options 
at our disposal in DirectX Graphics. We know how to load them, blend them, filter them, and even how 
to compress and decompress them. Make sure that you thoroughly review the Lab Projects for this 
lesson since texturing will be an important part of all of our projects as we move forward. This will be 
especially true when we get to the next course in this series since it will deal almost exclusively with 
advanced texturing concepts to produce incredibly realistic lighting and other popular special effects.  
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Chapter Seven: 
 

 
Alpha Blending and Fog 
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Introduction 

In this chapter we will examine the relationship between alpha and transparency as well as how to use 
our alpha components to achieve a number of important rendering effects. Our discussions and 
subsequent lab projects will cover: 
 

• Vertex alpha values 
• Texture alpha values (alpha channels) 
• Material alpha and the DirectX Graphics lighting pipeline 
• Alpha values in the texture blending cascade  

 
In earlier lessons we saw that colors can be described as three component RGB values or four 
component ARGB values where the alpha value is included. Regardless of the current video mode we 
are working in and the current color bit depth being used, we always specify colors explicitly using one 
of two approaches. The first is the 32-bit four component ARGB value stored as a DWORD (D3DCOLOR). 
This is the case when specifying vertex colors. Each component uses 8 bits and has a range of [0, 255] 
decimal or [0, FF] hexadecimal. The second approach uses the D3DCOLORVALUE structure which includes 
four floating point member variables -- one for the alpha, red, green, and blue components respectively. 
We used a D3DCOLORVALUE structure in Chapter 5 when specifying colors for lights and materials. When 
using the D3DCOLORVALUE structure we typically specify each component in the range [0.0, 1.0]. An 
important point to keep in mind is that whether we are using a DWORD or a D3DCOLORVALUE, the colors 
will be converted into the bit depth currently being used for scene rendering. For example, a DWORD 
color will be scaled to fit into a 16-bit WORD by the renderer if the device is in 16-bit color mode. 

 
The following example shows the DWORD representing the ARGB color (128, 255, 64, 64) or in hex, 
0x80FF4040. Hexadecimal specification makes color component assignment intuitive. The decimal 
value of this DWORD would be 2164211776. This provides no visual clue as to the color being stored. 
With hex we see clearly that every two digits represent a BYTE of the DWORD between 0 and FF. 
 
 
Hex 
Dec 
Bits 
 

Figure 7.1 
 
This color has a half intensity alpha component, a full intensity red component, and quarter intensity 
green and blue components. 

 
We can think of the alpha value as a packet of information that accompanies the main RGB color 
components. Although alpha is technically a component that can carry any information, it is used 
primarily to store values that will be used in the color and alpha blending pipelines in the texture stages 
as well as for alpha blending pixels with the existing contents of the frame buffer. If we do not perform 
any alpha dependant color blending in the texture stages or any alpha dependant alpha blending with the 

Alpha Red Green Blue 
80 FF 40 40 
128 255 64 64 
31                         24 23                              16 15                             8 7                       0  
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frame buffer, the alpha value of a color is simply ignored by the renderer and plays no part in the final 
rendered image.  
 
The advantage to using alpha values in blending operations is that they allow us to perform color (RGB) 
independent blending operations. For example, color A can be blended with color B such that the alpha 
value stored in color A controls the ratio that each color plays in the final blended result.  
 
 

Note: Alpha Blending technically means blending two colors using alpha values to determine the 
resulting color. The distinction between color blending and alpha blending has been blurred by the 
naming conventions of the DirectX API. When we enable alpha blending in DirectX 9, we set the following 
render state: 
 
pDevice->SetRenderState ( D3DRS_ALPHABLENDENABLE , TRUE ); 
 
This call does not guarantee that we will be doing alpha blending specifically. Instead it enables a more 
generic frame buffer blending operation. Whether we actually use the alpha or color components of the 
source and destination colors during blending depends on how we set up the source and destination 
blend modes. In chapter 6 we saw how to set up the source and destination blend states to perform a 
modulation of the color of the pixel about to be written to the frame buffer with the color of the pixel 
already in the frame buffer. Recall from our lab project that this was how we blended the detail map with 
the base terrain texture in multi-pass rendering mode. Although we had to enable the alpha blending 
render state to do this, we did not technically perform alpha blending since we performed the blend by 
modulating RGB components and did not use alpha values at all. Therefore, the 
D3DRS_ALPHABLENDENABLE simply informs the renderer that we wish to perform some form of blending 
with the frame buffer, be it color or alpha blending. Once alpha blending is enabled, the renderer uses 
the states of the D3DRS_SRCBLEND and D3DRS_DESTBLEND render states to determine whether to use 
alpha components in the blend or just RGB color components. 
 
Further confusion is introduced by the fact that alpha blending can also be performed in the texture 
stages -- much earlier in the pixel pipeline. This is independent from the D3DRS_ALPHABLENDENABLE 
render state. While a more fitting name for this render state might have been 
D3DRS_FRAMEBUFFERBLENDENABLE, we will just have to be aware of the differences. 
 
In keeping with the DirectX API conventions, when we refer to the process of ‘enabling alpha blending’ in 
the text, we will be referring to the process of enabling frame buffer blending using the 
D3DRS_ALPHABLENDENABLE render state. 
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7.1 Alpha Blending  

Let us begin by looking at an example of blending two colors together using an alpha value. The most 
common usage of this technique is blending with the frame buffer to increase or decrease pixel opacity. 
Usually a source pixel about to be written will contain an alpha component and the color value in the 
frame buffer will not. This source alpha value governs the percentage of both the source and the 
destination color used to create the blended result. For this example we will assume that DestColor is a 
32-bit pixel already in the frame buffer and SrcColor is a 32-bit pixel about to be written which includes 
an alpha component. Below we see the colors in their hexadecimal form and in their floating point 
equivalent form. This should make the mathematics easier to follow. 
 
SrcColor  = 0x80800000 (Alpha: 0.5; Red: 0.5; Green: 0.0; Blue:0.0)  
DestColor= 0xFF008000 (Alpha: 1.0; Red: 0.0; Green: 0.5; Blue:0.0) 
 
Assume that we enable alpha blending and use the blend mode configurations shown next. 
 
pDevice->SetRenderState( D3DRS_ALPHABLENDENABLE , TRUE); 
pDevice->SetRenderState( D3DRS_SRCBLEND , D3DBLEND_SRCALPHA); 
pDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA); 

 
Remember that these blend modes are assigned as multipliers to both the source and destination colors 
in the blending equation. The DirectX documentation describes these two blend modes as follows: 
 
D3DBLEND_SRCALPHA = ARGB (sA , sA , sA , sA); 
Each component of the color is multiplied by the alpha component of the source color. The alpha value 
of the source color directly controls how much of the color is allowed into the resulting color. The 
higher the source alpha value, the larger contribution the color makes to the resulting color. 
 
D3DBLEND_INVSRCALPHA = ARGB (1-sA , 1-sA , 1-sA , 1-aA); 
The color has each of its components multiplied by one minus the source alpha to create an inverse 
weighting multiplier. The higher the source alpha value, the less contribution the color makes to the 
resulting color. 
 
 
Note: sA = source color alpha. Source color is the color about to be written to the frame buffer. 
 
 
When alpha blending is enabled, the renderer performs the following calculation between the pixel color 
about to be written and the frame buffer pixel color (see Chapter 6): 
 
Final Color = SourceColor * SrcBlendMode + DestColor * DestBlendMode 

 
Using the blend modes above, this equates to the following calculation being performed: 
 
Final Color = SourceColor * D3DBLEND_SRCALPHA + DestColor * D3DBLEND_INVSRCALPHA; 
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This means that we will use the alpha component of the source color to directly control the mixture of 
both colors in the final result. In our example, we have a source alpha value of 0.5. This should give an 
equal blend of both the source and destination colors (50% of each) to create the final color written to 
the frame buffer.  
 
Final Color = (sA, 0.5, 0, 0) * (sA, sA, sA, sA) + (1.0, 0, 0.5, 0) * (1 –sA, 1-sA, 1-sA, 1-sA) 
Final Color = (0.5, 0.5, 0, 0) * (0.5, 0.5, 0.5, 0.5) + (1.0, 0, 0.5, 0) * (1-0.5, 1-0.5, 1-0.5, 1-0.5) 
Final Color = (0.25, 0.25, 0, 0) + (0.5, 0, 0.25, 0) 
Final Color = (0.75, 0.25, 0.25, 0);   
 
RGB Color = (0.25, 0.25, 0) 
 
We can see that the final RGB color is a blend of 50% source RGB and 50% destination RGB. Figure 
7.2 shows the source and destination colors used in this example and the resulting color blend in the 
overlapped area of the two squares. 
 

 
Figure 7.2 

 
This common alpha blending equation certainly does make the source pixel appear to be transparent.  
 

Note: The front buffer pixel format never supports alpha components. Although the frame buffer can, its 
alpha information is lost when flipping. Alpha format frame buffers are not very commonly used. The 
alpha component of the destination color is not used (defaults to 1.0) in the blending process if the frame 
buffer does not support alpha information. 

 
We will try one more example source color. We will use the same RGB components but this time will 
include an alpha component of 0.75. This should cause the final color to be 75% percent of the source 
color and only 25% of the destination color. 
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SrcColor   = 0xC0800000 (Alpha: 0.75; Red: 0.5;  Green: 0.0;   Blue:0.0)  
DestColor = 0xFF008000 (Alpha: 1.0;   Red: 0.0;  Green: 0.5;   Blue:0.0) 
 
Final Color = (sA, 0.5, 0, 0) * (sA, sA, sA, sA) + (1.0, 0, 0.5, 0) * (1 –sA, 1-sA, 1-sA, 1-sA) 
Final Color = (0.75, 0.5, 0, 0) * (0.75, 0.75, 0.75, 0.75) +  
                    (1.0, 0, 0.5, 0) * (1-0.75, 1-0.75, 1-0.75, 1-0.75) 
Final Color = (0.56, 0.375, 0, 0) + (0.25, 0, 0.125, 0) 
Final Color = (0.81, 0.375, 0.125, 0);   
 
RGB Color = (0.375, 0.125, 0) 
 
Figure 7.3 shows the results. Using an alpha value of 0.75 decreases the transparency effect on the red 
square. The final blended color is no longer an equal mixture of both colors, but is instead 75% source 
color and only 25% destination color. 
 

 
Figure 7.3 

 
By altering the alpha value in the source color, we manipulate the color mixture in the blending 
equation. If the alpha value was set to 1.0 in the above example, the resulting color would be the 
unaltered source color and the destination color would not be blended with the source color at all. If 
however the source color alpha value was 0.0, then the source color would not contribute to the final 
color. This means that the alpha value in the source color allows direct control over how transparent the 
source pixel appears to be. The higher the alpha value, the more opaque the source pixel will be. Lower 
values result in greater pixel transparency. 
 
This degree of transparency control was not possible in the previous chapter when we used blend modes 
based solely on the color information. We used blending modes such as D3DBLEND_SRCCOLOR and 
D3DBLEND_DESTCOLOR where the actual RGB components of source and destination pixels became 
multipliers in the equation to control transparency effect. It is difficult, if not impossible, to achieve 
certain results using this approach. When we store an alpha value in the source color, we can use it to 
describe very specific blending percentages regardless of the colors being blended.  
 
Alpha blending is used to produce transparent effects that require precision. Glass, water, fire and other 
related game features are typical uses of this blending formula.  
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7.2 Storing Alpha Components 

Alpha values can be stored just about anywhere that a color is stored. Let us now examine the different 
places we might choose to store our alpha components. We will look more closely at each example as 
we progress though the lab projects accompanying this lesson.  

 

7.2.1 Vertex Alpha – Pre-Lit Vertices 

This section looks at storing alpha values for vertices that are not using the lighting pipeline. As we have 
seen in previous chapters when using pre-lit vertices, our application explicitly stores the color of the 
vertex in the vertex structure. Because this is a four component color, storing the alpha value happens 
automatically when we specify the vertex color because the color of a vertex is specified in 32-bit 
ARGB format.  
 
Let us say for example that we wanted all of the vertices in a given triangle to be full intensity green and 
75% transparent. We start with a pre-lit vertex structure: 
 
struct MyVertex 
{ 
    float x; 
    float y; 
    float z; 
    DWORD Diffuse; 
}; 

 
Since each color component will be in the [0, 255] range, in order to make our green face ¾ transparent, 
the alpha component will need to be set to 64 (0x40). If you were expecting a value of 192, remember 
that when the alpha value is 0, the color is totally transparent and when the alpha value is 255 the color 
is totally opaque. Therefore, in order to make our color ¾ transparent we need to subtract 192 (3/4 of 
256) from 256 to give 64. 
 
for (int i = 0;  i < Polygon.VertexCount;  i++) 
{ 
 Polygon.Vertex[i].diffuse = 0x4000FF00; 
} 

 
At the end of the above loop, every vertex in the polygon would be full intensity green and have an 
alpha value of 64 (0x40).  Since every vertex in the triangle has the same color, the face would be a 
consistent green color across the entire surface. Since each vertex in the face would also have the same 
alpha value, the face would have a consistent transparency level for each pixel. The color at each vertex 
as it is stored in the DWORD is shown in the next table.  
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Hex 
Dec 
Bits 
 
Whether or not the face is rendered transparently depends on whether alpha blending is enabled or 
whether alpha operations are used in the texture stages. We will address these cases in a moment. The 
important thing to grasp is that using this method provides the ability to store a per-vertex alpha value 
for each face to be used later by the vertex and pixel pipelines. 

 
Figure 7.4 
 
Recall that per-vertex colors are interpolated across 
the surface of a polygon when Gouraud shading is 
enabled. This generates a per-pixel color that can be 
accessed by the texture stages and finally passed on 
to the rasterizer. When the per-vertex color is 
interpolated, the alpha component is interpolated as 
well. The interpolation will generate both a per-pixel 
RGB value and a per-pixel alpha value. 
Consequently, we can have a polygon with different 
vertex alpha values and thus adjust the transparency 
so that it changes between vertices in a face. Fig 7.4 
shows a simple quad rendered after the main scene 

has already been rendered into the frame buffer. The quad has an opaque white color (0xFFFFFFFF) 
stored at three of its vertices, but the bottom right vertex has the color (0X00FFFFFF) which is a white 
color with an alpha value of zero (full transparency).  
 
Notice that when the alpha values are interpolated across the quad from the top left corner to the bottom 
right corner, the results are a per-pixel partial transparency beginning at the lower right corner and 
fading as we move up and to the left. This process takes place at the same time the color components are 
calculated.  
 
Whether we use the resulting per-pixel alpha values for alpha blending depends on how the texture 
stages are configured. Just as we can set the stages to use the vertex and/or texture color, we can also 
configure the texture stages to use the per-pixel alpha values generated from this interpolation. 
Alternatively, we could decide to ignore the alpha information generated here and use alpha information 
stored in a texture, as we will discuss later on in the lesson. 
 
Finally, if you are specifying your own colors at the vertices then you may also be storing the specular 
highlight color at the vertex too. Just as diffuse colors are four component colors, so are specular colors. 
These two colors are added together at render time to create the true ARGB color of each pixel in the 
surface being rendered. 

 

Alpha Red Green Blue 
40 0 FF 0 
64 0 255 0 
31                         24 23                              16 15                               8 7                           0 



 

  
 

459

7.2.2 Material Alpha 

In Chapter 5 we learned how to use materials to store polygon colors for the DirectX lighting pipeline. 
The material structure determines how polygons react to incoming light and the colors that are 
ultimately reflected. Recall that materials use four component colors and allow us to specify alpha 
values for the diffuse, ambient, emissive, and specular properties in addition to the RGB values.   
 
The D3DCOLORVALUE type used by materials use floats that are typically in the range [0.0, 1.0]. The 
following example demonstrates setting up a material for a green quad with white specular highlights. 
We have given the diffuse color an alpha value of 0.5 so that any pixels that receive diffuse light will be 
50% transparent.  
 
D3DMATERIAL9 Material; 
ZeroMemory(&Material, sizeof(D3DMATERIAL9)); 
 
Material.Diffuse.a = 0.5f; 
Material.Diffuse.r = 0.0f; 
Material.Diffuse.g = 1.0f; 
Material.Diffuse.b = 0.0f 
 
Material.Specular.a = 1.0; 
Material.Specular.r = 1.0; 
Material.Specular.g = 1.0; 
Material.Specular.b = 1.0;  

 
In Chapter 5 we discussed how the pipeline uses the material properties to calculate a final per-vertex 
color. The alpha component is calculated in exactly the same way since it is just another component of 
the color. Thus we can give different reflective properties their own alpha values within the same 
material. This means that the polygon will be more or less transparent depending on the type of light that 
is contributing most to the final color of the vertex. For example, we know that a material can reflect 
white diffuse light and green ambient light to cause any polygon rendered using it to be white when lit 
by a light source but green when only ambient light is affecting it. Since alpha is just another color 
component, the same applies. We might have an alpha value of 1.0 specified in the diffuse member of 
the material so that polygons rendered would be completely opaque when being light by a directional 
light source. Then we could include an alpha value of 0.5 in the ambient color so that when the 
directional light is no longer shining on the object and it is only lit by ambient light, it would be semi-
transparent:  
 
D3DMATERIAL9 Material; 
ZeroMemory(&Material, sizeof(D3DMATERIAL9)); 
 
Material.Diffuse.a = 1.0f; 
Material.Diffuse.r = 1.0f; 
Material.Diffuse.g = 1.0f; 
Material.Diffuse.b = 1.0f 
Material.Ambient.a = 0.5; 
Material.Ambient.r = 1.0; 
Material.Ambient.g = 1.0; 
Material.Ambient.b = 1.0;  
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You could take this idea a step further and have different alpha values for emissive and specular 
reflectance properties as well. However we will generally want a polygon to have a consistent 
transparency setting across all light types and we will set all material alpha components to the same 
value. 
 

7.2.3 Vertex Alpha – Unlit Vertices 

The problem with using only materials to inform the lighting pipeline of the surface reflectance 
properties is that we are limited to a polygon being a single color. This is because we set the material, 
and then render the polygon (or polygons) that use that material. Every vertex rendered has its color 
calculated by the lighting pipeline using the same reflectance properties as the currently set material. For 
example: 
 
pDevice->SetMaterial(&Material); 
RenderFaces (); 

 
This approach seems to limit us to having a per-face alpha value for each reflectance property. If a 
material has a diffuse alpha component of 0.5 for example, then it would appear that every vertex 
rendered using that material will have a diffuse alpha property of 0.5 as well. However you should recall 
that even when using the lighting pipeline, we can store colors at the vertices and instruct the lighting 
pipeline to use these colors as reflectance properties in the lighting equations instead of some of the 
colors in the currently set material. Using this technique we can store up to two colors in each vertex 
which can be substituted for the reflective properties of the material. This allows us to continue to use 
the lighting pipeline but have per-vertex alpha properties when necessary.  
 
In the following example we use a vertex structure with a color to store our diffuse reflectance instead of 
the using the diffuse material property. In order to do this, we must remember to set the diffuse material 
source so that the lighting pipeline takes it from the color in the vertex instead of the diffuse member of 
the material. 
 
struct Vertex 
{ 
    float x; float y; float z; 
    DWORD Color; 
}; 

 
Assume that we have three vertices stored in the above format and that we wish to use the lighting 
pipeline. Each vertex in the triangle has the same RGB color (0, 255, 0), but the first vertex has ¾  
transparency, the second vertex has ½ transparency and the third has ¼  transparency. 
 
Note that only the diffuse reflectance property is taken from the vertex. The emissive, specular and 
ambient reflectance properties in the material will still be used to calculate the final color of the vertex. 
 
Vertex[0].Color = 0x4000FF00; // ARGB ( 64 , 0 , 255 , 0); 
Vertex[1].Color = 0x8000FF00; // ARGB ( 128, 0 ,255 , 0); 
Vertex[2].Color = 0xC000FF00; // ARGB ( 192, 0 , 255 , 0); 
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We now enable lighting and inform the device that the diffuse reflectance property should be taken from 
the first color in the vertex and not the diffuse member of the currently set material. 
 
pDevice->SetRenderState( D3DRS_LIGHTING , TRUE ); 
pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE , D3DMCS_COLOR1); 

 
When the triangle is rendered, each vertex will have a different diffuse alpha value that is interpolated 
over the surface. This provides the same level of control that we had when using pre-lit vertices. Bear in 
mind that the final color of the vertex is calculated by adding the ambient, diffuse, specular and emissive 
light reflected by the vertex. So we could have different alpha values for different light types.  
 
In this final example, we will look at an example of creating vertices that store a ½ transparent green 
diffuse color and a ¾ transparent blue emissive color. This will render polygons that have a per-vertex 
diffuse alpha and a different per-vertex emissive alpha. When the vertices are being lit by a white diffuse 
light, the polygon will be ½ transparent and green in color. When no light is shining on the vertices, the 
polygon will be emissive blue and will be ¾ transparent. 
 
The vertex will now need to store two colors. 
 
struct Vertex 
{ 
   float x; float y; float z; 
   DWORD Color1; 
   DWORD Color2; 
}; 
 
Vertex[0].Color1 = 0x8000FF00;   // ARGB ( 128 , 0 , 255 , 0); 
Vertex[1].Color1 = 0x8000FF00;   // ARGB ( 128,  0 , 255 , 0); 
Vertex[2].Color1 = 0x8000FF00;   // ARGB ( 128,  0 , 255 , 0); 
Vertex[0].Color2 = 0x400000FF;   // ARGB ( 64 ,  0 , 0 , 255); 
Vertex[1].Color2 = 0x400000FF;   // ARGB ( 64,   0 , 0 , 255); 
Vertex[2].Color2 = 0x400000FF;   // ARGB ( 64,   0 , 0 , 255); 

 
Again, we need to enable lighting and inform the device that the diffuse reflectance property should be 
taken from the first color in the vertex and that the emissive reflectance property should be taken from 
the second color in the vertex: 
 
pDevice->SetRenderState( D3DRS_LIGHTING , TRUE ); 
pDevice->SetRenderState( D3DRS_DIFFUSEMATERIALSOURCE , D3DMCS_COLOR1); 
pDevice->SetRenderState( D3DRS_EMISSIVEMATERIALSOURCE , D3DMCS_COLOR2); 
 
Remember that the final color of a vertex is calculated as: 
 
Vertex Color = (AmbientLight * A) + (DiffuseLight * D) + (SpecularLight * S) + E 
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Where: 
 
A = Ambient Reflectance Property 
D = Diffuse Reflectance Property 
S = Specular Reflectance Property 
E = Emissive Property 
 
Since the alpha value of the color is just one of its components, we know that the alpha value generated 
for a vertex by the lighting pipeline is therefore: 
 
Vertex Color.a = (AmbientLight * A.a) + (DiffuseLight * D.a) + (SpecularLight * S.a) + E.a 
 

Where: 
 
a = the alpha component of the color 
 
Once the lighting pipeline has calculated the per-vertex color and alpha values, the process continues as 
usual. The triangle is assembled and the per-vertex values are interpolated over the surface to generate 
per-pixel color and alpha values that will be accessible in the texture cascade. 
 
 

7.2.4 Constant Alpha 

If we need a constant level of transparency for a set of polygons, we can use the D3DRS_TEXTUREFACTOR 
to set a constant alpha value that is accessible in the texture stages. In Chapter 6 we discussed how to 
use the texture factor as a constant color and how to select its RGB values as inputs into the texture stage 
color pipeline. In a short while we will discuss how the alpha component of this color can also be 
selected as an input into the alpha pipeline of the texture cascade for blending with other alpha sources 
or simply passed to the rasterizer for frame buffer blending. For now we are simply trying to understand 
where alpha components can be stored. The following code shows how we could set a red texture factor 
color with ½ intensity alpha.  
 
pDevice->SetRenderState(D3DRS_TEXTUREFACTOR, 0x80FF0000); 

 
Remember that the device has only one texture factor property, so setting this color will overwrite any 
previous color stored.  

 

7.2.5 Per-Stage Constant Alpha 

 
In chapter 6 we also discussed using the D3DTSS_CONSTANT texture stage state to set a per-stage constant 
color as an input argument. This color is also a four component color so we can provide each stage with 
an RGB constant and a constant alpha component to be used in the alpha pipeline. The following code 
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shows how we could set a half intensity blue constant color for texture stage 2 along with a half intensity 
alpha component: 
 
pDevice->SetTextureStageState(2, D3DTSS_CONSTANT, 0x80000080); 

 
The color and alpha components of this color can be selected as input arguments to a texture stage by 
using the D3DTA_CONSTANT parameter as one of the arguments to the color or alpha pipelines of the 
stage. 
 
 

7.2.6 Texture Alpha 

 
Alpha components can also be stored in textures. In previous chapters we looked at a number of pixel 
formats that contain alpha components. One such format was the 32-bit ARGB texture format 
D3DFMT_A8R8G8B8. Another was the 16-bit alpha pixel format D3DFMT_A4R4G4B4. There are quite a few 
more such formats and there are also compressed texture formats that support alpha information. 
 
Just as each texel contains a red, green, and a blue component, we can create textures whose texels 
include alpha components too. When the texels in a texture also contain an alpha component, the texture 
is said to have an alpha channel. Alpha channels allow us to specify per-texel alpha. This provides a 
good deal more flexibility than the other storage methods we just examined.   
 
Although per-vertex alpha is interpolated to create per-pixel alpha values, we have very little control 
over the per-pixel alpha values generated. Per-vertex alpha is fine if we require only that limited degree 
of control, but for more complex scenarios it becomes too restrictive. Consider the window texture 
shown to the right. Assume that it is mapped to a quad and that there is geometry on the other side of the 
window that is currently being obscured. If this were a real window we 
would want to see the objects on the other side through the glass panes. 
Giving each vertex in the quad an alpha value would not work because the 
bars of the window on the texture would also become transparent. 
 

So let us instead give each pixel belonging to one 
of the window panes an alpha value of 128 (semi-
transparent) and each pixel belonging to one of 
the window bars an alpha value of 255. If we used 
the alpha values in the texture to perform frame buffer blending, only the 
window panes would be transparent and we would see the geometry in the 
distance. You can see this effect in the image on the left. Notice that the bars 
of the window still obscure the geometry behind the window but that the glass 
panes allow the background geometry to show through while still retaining 
the rough texture of window pane itself. 
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There are a couple of ways to add alpha information to a texture. We could lock the texture and 
manually set the alpha component of each pixel, but this would not be recommended in most cases. The 
more common approach is to use an image editing/paint package. Most paint programs like Jasc Paint 
Shop Pro 7™ or Adobe PhotoShop™ provide a mechanism for writing alpha values to the pixels of a 
texture. This makes the creation of the alpha channel much like drawing normal RGB values. These 
texture images can be saved out in a format that supports alpha channel images (.tga is a popular choice) 
and then loaded into our application using the D3DXCreateTextureFromFile function. The DirectX 
SDK includes a utility application in the DXUtils folder called DxTex.exe. This is a simple tool that 
allows you to load an image and manipulate its format.  You might decide to add an alpha channel or 
simply to change the surface format to some other color depth. You can even load another image 
directly into the texture alpha channel if desired. The application exports images in .DDS format which 
is the DirectX native format for storing surfaces. These formats are supported by the 
D3DXCreateTextureFromFile functions and are stored in exactly the same format used by DirectX. The 
chapter appendices include a short tutorial on adding an alpha channel to a bitmap in Paint Shop Pro 
7™. This is a powerful paint package that is affordably priced.  

 

7.3 The Texture Stage Alpha Pipeline 

 
In Chapter 6 we looked at color blending in the color pipeline of a texture stage. We learned that there is 
also a separate alpha pipeline in each stage that uses nearly all of the same blending operations and input 
argument types as the color pipeline. Fig 7.5 shows a single texture stage with its RGB and Alpha 
pipelines along with possible color/alpha sources that can be used as arguments for the stage. 
 

 
Figure 7.5 
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We know from Chapter 6 that we can set up the inputs of a texture stage to sample per-pixel colors from 
a variety of different color sources. In the following example we set up the color pipeline in stage 0 for a 
modulate2x operation.  
 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_MODULATE2X); 

 
The RGB color components from the interpolated vertex colors will be blended with the RGB color 
components of the current texel in the texture to generate a new set of RGB color values that are output 
from the texture stage. The output is a single RGB color either sent to the next stage, or if this is the last 
active stage in the cascade, sent to the rasterizer as the source color for any frame buffer blending 
operation enabled. If alpha blending is not enabled, the source color will be written directly to the frame 
buffer if the depth test is passed.  
 
The texture stage states shown above only configured the arguments and blending operations performed 
on the RGB values of the selected arguments. However, each texture stage also has a separate alpha unit 
which can be used to extract the alpha values from all of the different sources shown in the Fig 7.5. 
Moreover, these sources need not be the same color sources that the RGB values are being extracted 
from. For example, we might generate a pixel RGB color that is a modulation between the diffuse color 
(RGB only) and the texture color (RGB only) but decide that we want the alpha information to be taken 
from the texture factor color.  This would extract the alpha component from the texture factor and push 
it into the alpha pipeline. 
 
As discussed earlier in the lesson, the diffuse vertex color, the texture factor color, and the per-stage 
constant color include an alpha value -- even if it is just the fully opaque default (0xFF). The texture 
color source is slightly different as the texture might not contain an alpha channel (non-alpha pixel 
format). If this is the case then any attempt to sample an alpha value from a texel will simply return a 
value of (0xFF). 
 
We will use the D3DTSS_ALPHAARGn texture stage states to determine which color source(s) the alpha 
information is extracted from. The D3DTSS_ALPHAOP texture stage state sets up a blending operation for 
multiple alpha input values to create a final alpha value that is output from the stage. Every stage outputs 
an RGB color and an Alpha value and these are either passed to the following stage as input arguments 
or to the rasterizer when the last active stage is reached.  
 
 

Note: The default alpha operation is D3DTOP_SELECTARG1 for texture stage 0 and for all other 
stages it is D3DTOP_DISABLE. The default value of D3DTSS_ALPHAARG1 is D3DTA_TEXTURE, so 
the alpha values will be taken from the texture or equal 0xFF if no texture is bound to the stage. 

 
 
RGB = (Vertex*Texture) : Alpha = Texture 
 
In this code snippet we setup the texture stage states to modulate the texture color with the diffuse color 
and select alpha values from the texture alpha channel. This alpha setup would be useful when you wish 
to make sure that only certain pixels are transparent (like the window example discussed previously). 
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We divide the texture states above into two sections to clearly show the division between setting up the 
RGB pipeline and the Alpha pipeline.  
 
// Each pixel RGB is a combination of the texel color 
// and the interpolated vertex diffuse color  
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG2 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_MODULATE); 
 
// Each pixel alpha value is taken from the alpha component 
// of the texel in the texture 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP   , D3DTOP_SELECTARG1); 

  
RGB = Texture : Alpha = Vertex  
 
In this next example, the color of each pixel is taken directly from the texel and the alpha value from the 
alpha component of the interpolated diffuse vertex color. This is a useful alpha pipeline setup if your 
texture does not include an alpha channel. It is also useful when you are only interested in a constant 
level of alpha across the entire polygon or if you need alpha control only at the vertex level. Lab Project 
7.1 will use this alpha configuration. 
 
// Each pixel RGB color is taken from the texel in the texture 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_SELECTARG1); 
 
// Each pixel alpha value is taken from the 
// interpolated diffuse vertex color (alpha component) 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP   , D3DTA_SELECTARG1); 

 
RGB = (Texture*Vertex)+TextureFactor : Alpha = (Texture*TextureFactor) 
 
The next configuration sets up a blue texture factor color with a ¼ intensity alpha component. The 
texture RGB components from stage 0 are modulated with the diffuse vertex RGB components and 
passed on to stage 1 where the texture factor RGB components are added to the result. The alpha 
component in the first stage is taken from the alpha channel of the texture and is passed to the second 
stage where it is modulated with the alpha component of the texture factor. 
 
 
// Set a blue texture factor color with an ¼ intensity alpha component 
pDevice->SetRenderState( D3DRS_TEXTUREFACTOR , 0x400000FF ); 
 
// Each pixel RGB color is (texture*vertex) + texture factor 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_MODULATE; 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLORARG1 , D3DTA_TFACTOR); 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLOROP   , D3DTOP_ADD ); 
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// Each pixel alpha value is taken from the 
// interpolated diffuse vertex color (alpha component) 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP   , D3DTA_SELECTARG1); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG2 , D3DTA_TFACTOR); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAOP   , D3DTA_MODULATE); 

 
This example may look complex, but that is only because we are using two stages. In the color pipeline 
we instruct the device to modulate the diffuse vertex color and texture color in stage 0. The result of this 
stage is used as the first argument to the next stage (D3DTA_CURRENT) where it is added to the RGB 
components of the texture factor that had been set previously as a render state. The resulting RGB color 
will be output from stage 1 and passed as an input to the rasterizer later on in the pipeline. 
 
We can see that the alpha pipeline is setup quite differently than the color pipeline in this example. This 
shows us the flexibility of using the alpha and RGB pipelines together. In the first stage, we use the 
alpha value from the sampled texel of the texture bound to that stage as the output from stage 0. This 
becomes the input to the second stage alpha pipeline (D3DTA_CURRENT) and we multiply it with the alpha 
component of the texture factor color. The resulting alpha value is output from the texture stage cascade 
and passed down the pipeline where it will become the source alpha value input to the rasterizer’s 
color/alpha blending equations if frame buffer blending is enabled.  
 
RGB = Texture : Alpha = (Texture*Diffuse)+TextureFactor 
 
In this next example the RGB components are taken from the texture color, but the alpha component is 
calculated by doing a signed add between the texture alpha and diffuse alpha. The result is then added to 
the texture factor alpha in the second stage. 
 
// Each pixel RGB color sampled from texture  
pDevice->SetTextureStageState ( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_COLOROP   , D3DTOP_SELECTARG1); 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLORARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState ( 1 , D3DTSS_COLOROP   , D3DTOP_SELECTARG1);  
 
// Alpha = (Texture*Diffuse) + TFactor 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG1 , D3DTA_TEXTURE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAARG2 , D3DTA_DIFFUSE); 
pDevice->SetTextureStageState ( 0 , D3DTSS_ALPHAOP   , D3DTOP_ADDSIGNED); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG1 , D3DTA_CURRENT); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAARG2 , D3DTA_TFACTOR); 
pDevice->SetTextureStageState ( 1 , D3DTSS_ALPHAOP   , D3DTOP_ADD ); 
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Figure 7.6 

 
Note that the second stage in the color pipeline does not seem to be doing much beyond passing the 
color value from the previous stage through as output (Fig 7.6). The color pipeline technically needs 
only one texture stage but the alpha operations require two. This means the RGB components output 
from the first stage need to be passed through the second stage unaltered. The reason we have to do this 
is that we need the second stage enabled to do alpha operations, but we do not wish to perform any 
operations on the RGB components. The important concept to understand is the flow of components 
from one stage to the next active stage in the cascade. 
 
There are other texture operations that can blend RGB components in a stage using the alpha 
components (from the other pipeline) but we will discuss these a little later in the lesson. These blend 
modes will be useful for performing true alpha blending inside the texture stages. Our main focus at the 
moment is to configure the texture stages for frame buffer blending. The RGB and Alpha components 
output from the texture blending cascade become the two inputs into the alpha blending equation. This 
will merge the color output from the stage with the frame buffer. 
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7.4 Alpha Blending with the Frame Buffer 

So far we have seen where we can store alpha information and how we can select this information into 
the texture cascade. The texture stages allow us to select which color source we will extract the alpha 
from and they allow us to use multiple sources to blend the alpha components together to create new 
alpha values. After the final stage, an RGB color and an Alpha value are output to become the 
SourceColor and SourceAlpha colors in the frame buffer alpha blending equation. 
 
If the D3DRS_ALPHABLENDENABLE render state has not been enabled, then the SourceAlpha value output 
from the texture stage cascade is discarded. The source color is written to the correct location in the 
frame buffer and (assuming the depth test is passed) overwrites any previous pixel color that may 
already exist there.  
 
If the D3DRS_ALPHABLENDENABLE render state has been enabled, then the source color and source alpha 
values output from the texture stage cascade are fed into the frame buffer blending equation as potential 
multipliers. Let us remind ourselves of the calculation that generates the final pixel color written to the 
frame buffer when alpha blending is enabled: 
 
Pixel Color = SourceColor * SrcBlendMode + DestColor * DestBlendMode 
 
SourceColor is the RGB color output from the texture stage cascade and DestColor is the color of the 
pixel already in the frame buffer. We use the SrcBlendMode and DestBlendMode values to control how 
much of the SourceColor and how much of the DestColor are used to create the final color.  
 
We also briefly discussed how to use the alpha value output from the texture stage cascade.  The 
following is the standard alpha blending equation used for controlling the ratio of the SourceColor and 
DestColor used to create the final color: 
 
PixelColor = SourceColor * SourceAlpha + DestColor * (1 – SourceAlpha) 
  
The above blending approach allows us to perform RGB independent transparency effects and is the 
most common blend mode configuration for generating transparency effects. The equation will be 
configured using the following render states: 
 
pDevice->SetRenderState ( D3DRS_ALPHABLENDENABLE , TRUE); 
pDevice->SetRenderState ( D3DRS_SRCBLEND   , D3DBLEND_SRCALPHA); 
pDevice->SetRenderState ( D3DRS_DESTBLEND  , D3DBLEND_INVSRCALPHA); 

 
Note: It is also possible for the frame buffer or render target to have an alpha channel. You could 
instead choose this alpha value (called DestAlpha) to control blending, but this is not as common. 

 
There are certainly many more ways that we can setup the alpha blending modes. For example, you may 
recall that in Chapter 6 we used blend modes that did not use the SourceAlpha value output from the 
texture stage cascade. Instead we performed frame buffer blending using the colors themselves as 
scaling factors. In the following example, although alpha blending is enabled, the alpha value output 
from the texture stages is not used at all: 
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PixelColor = SrcColor * SrcColor + DestColor * (1-SrcColor) 
 
pDevice->SetRenderState ( D3DRS_ALPHABLENDENABLE , TRUE); 
pDevice->SetRenderState ( D3DRS_SRCBLEND   , D3DBLEND_SRCCOLOR); 
pDevice->SetRenderState ( D3DRS_DESTBLEND  , D3DBLEND_INVSRCCOLOR); 

 
Again, there are many blending combinations available since each blend mode can be used as either the 
source blend mode or the destination blend (or both). We discussed many of these in Chapter 6 so please 
refer back to that lesson when necessary.  
 
Let us finally look now at the blending modes available when working with the source alpha value 
output from the texture stages (such as D3DBLEND_SRCALPHA for example). We see the complete 
D3DBLEND enumerated type below. Most of these blend modes were covered in Chapter 6.  
 
typedef enum _D3DBLEND  
{ 
    D3DBLEND_ZERO = 1, 
    D3DBLEND_ONE = 2, 
    D3DBLEND_SRCCOLOR = 3, 
    D3DBLEND_INVSRCCOLOR = 4, 
    D3DBLEND_SRCALPHA = 5, 
    D3DBLEND_INVSRCALPHA = 6, 
    D3DBLEND_DESTALPHA = 7, 
    D3DBLEND_INVDESTALPHA = 8, 
    D3DBLEND_DESTCOLOR = 9, 
    D3DBLEND_INVDESTCOLOR = 10, 
    D3DBLEND_SRCALPHASAT = 11, 
    D3DBLEND_BOTHSRCALPHA = 12, 
    D3DBLEND_BOTHINVSRCALPHA = 13, 
    D3DBLEND_BLENDFACTOR = 14, 
    D3DBLEND_INVBLENDFACTOR = 15, 
    D3DBLEND_FORCE_DWORD = 0x7fffffff 
} D3DBLEND; 
 
D3DBLEND_SRCALPHA   (As, As, As, As).  
This blend mode multiplies every component in the color (either source or destination color depending 
on whether it is being used as a source blend or destination blend mode) with the alpha component of 
the source color.  
 
D3DBLEND_INVSRCALPHA  (1 - As, 1 - As, 1 - As, 1 - As).  
Every color component in the color (source or destination color) is multiplied with the result of 1 minus 
the alpha component of the source color.  
 
D3DBLEND_DESTALPHA  (Ad, Ad, Ad, Ad).  
If the frame buffer or render target contains an alpha channel, the destination color (the color of the pixel 
currently in the frame buffer) may also have an alpha value which could be used in the blending 
equation. This is not commonly used, but can be useful for some advanced effects. 
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D3DBLEND_INVDESTALPHA  (1 - Ad, 1 - Ad, 1 - Ad, 1 - Ad).  
The source or destination color is multiplied by the result of 1 minus the destination alpha component. 
 
D3DBLEND_BOTHSRCALPHA  
Obsolete. You can achieve the same effect by setting the source and destination blend factors to 
D3DBLEND_SRCALPHA and D3DBLEND_INVSRCALPHA in separate calls.  
 
D3DBLEND_BOTHINVSRCALPHA  
Source blend factor is (1 - As, 1 - As, 1 - As, 1 - As) and destination blend factor is (As, As, As, As). The 
destination blend selection is overridden. This blend mode is supported only for the D3DRS_SRCBLEND 
render state. This is a single mode that performs the reverse of the SrcAlpha and InvSrcAlpha modes 
used for standard alpha blending. With this blend mode, the larger the alpha value the more transparent 
the source pixel will appear to be. 
 

 
Figure 7.7 

 
Fig 7.7 shows the complete picture of alpha blending with the frame buffer. As discussed, alpha values 
can be stored in vertices, textures, or constants. The texture stages manipulate the RGB and Alpha 
values to create a final output color consisting of RGB and Alpha components. We refer to these as 
SourceColor and SourceAlpha respectively.  
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If alpha blending is not enabled, then the SourceAlpha value is ignored and the RGB color is written to 
the frame buffer (and converted to the correct pixel format). If the frame buffer does have an alpha 
channel, then the alpha value will also be written to the frame buffer where it could be used as a color 
blending argument with the D3DBLEND_DESTALPHA blending modes.  
 
If alpha blending is enabled then the color and alpha components are fed into the alpha blending 
equation where the source color and destination color (the color already in the frame buffer) are blended 
together. The alpha value output from the stage can be used in the blending equation to scale the colors 
contributions for the final pixel color. This controls the transparency of the source pixel. 
 
Please turn to your workbooks and examine Lab Project 7.1. This first demonstration will add a 
transparent water layer to our terrain application using per-vertex alpha components. 
 
 

7.5 Alpha Ordering 

Transparency effects with alpha blending present certain obstacles. Regardless of how transparent or 
opaque the output color of the alpha blending equation, when it is written to the frame buffer, its pixel is 
also written to the depth buffer. We will see later in this chapter that we will take steps to render our 
non-alpha polygons first and then render the alpha polygons in a second pass. Additionally, we will 
usually have to sort the alpha polygons before they are rendered so that the furthest alpha polygons are 
rendered first. This is quite logical of course. Let us say for example that we have a red window polygon 
which is partially transparent. We know that the objects on the other side of the window from the 
camera should be tinted red as a result. This will only happen if the window is rendered after all of the 
polygons behind it, so that its color can be blended with the colors already in the frame buffer.  
 
Consider what would happen if we did not order our rendering such that alpha polygons were rendered 
last. In this example our red window might be the first polygon rendered. At this point the frame buffer 
would be empty and may have been cleared to a black color. The alpha blending equation would blend 
the red color of the window with the black color of the frame buffer resulting in a very dark red color. 
This would in no way represent the color that it should be because in the scene there may be a bright 
blue polygon immediately behind the window. So in reality there should be a blend of red and blue and 
not red and black, but this is what we would have. In fact, the problem can get much worse. Now 
imagine that in this scenario the window polygon also has its Z values written to the Z-Buffer. When we 
then try to render the polygons on the far side of the window, they will fail the depth test because they 
are further away from the camera than the window polygon that is already in the frame buffer. As a 
result we lose the ability to render anything behind our supposedly transparent window. 
 
Fig 7.8 shows a scene with transparent polygons. The image on the left renders all alpha polygons in the 
scene after it has rendered the opaque polygons. Because all opaque polygons that are behind the 
window are rendered first, when the window is rendered, the frame buffer contains what would truly be 
behind the window. The alpha blending equation then correctly blends the color of the window with the 
color of all objects behind the window already in the frame buffer. 
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Figure 7.8 
 
The image on the right is the same scene but with no particular rendering order applied to the polygons. 
We can see that the blue window has been rendered before the polygons on the other side of it. Even 
though the polygon is transparent, at the time it was rendered there was nothing in the frame buffer. So 
its pixels were simply blended with the empty frame buffer color. The depth of each pixel was stored in 
the depth buffer and all polygons rendered after the window that are further away from the camera are 
rejected by the depth test. This is an important point to remember. Just because the color of a pixel 
includes an alpha value, it does not alter the behavior of the Z-Buffer.  We can clearly see here why it is 
important to render our alpha polygons after all of the non-alpha polygons.  
 
While rendering our alpha polygons after our opaque polygons would seem to be an easy solution to the 
problems discussed above, there are additional considerations. If any alpha polygons occlude each other, 
then we will also have to render the alpha polygons such that they are sorted and rendered back to front 
with respect to their distance from the camera. The artifacts that result if we do not do this are not quite 
as obvious as those seen in Fig 7.8 but they can still be severe under certain circumstances. 
 
Fig 7.9 shows a case where one transparent window occludes another transparent window. Both 
windows have slightly different colors. In our alpha rendering pass, we should render the furthest 
window from the camera first and render the closest window to the camera last. This way the second 
window blends its color with the color of the first window -- which itself was blended with the color of 
the frame buffer opaque polygons rendered previously.  
 
One might think that we could avoid any problems if we disabled Z buffer writing when rendering the 
alpha polygons. If we did this, an alpha polygon already in the frame buffer that is closer to the camera 
would not cause another alpha polygon behind it (but rendered afterwards) to be rejected by the depth 
test. While this will certainly prevent transparent polygons from occluding each other, it will still result 
in incorrect color blending (Fig 7.9). 
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Figure 7.9 

 
The image on the left has been rendered correctly. The furthest window was rendered first, which tinted 
the frame buffer pixels appropriately. The closest window was rendered last. Its pixels were blended 
with the pixels in the frame buffer -- which are themselves the result of a blend between the first 
window and the opaque polygons behind it. As we can see, when we are sorting our alpha polygons, the 
transparency results are correct even if two or more alpha polygons overlap from a given viewpoint.  
 
In the image on the right, after drawing the opaque polygons, the alpha polygons are rendered in the 
order in which they are stored in the file. In this instance the closest window was rendered first and 
blended with the opaque polygons in the frame buffer. Then the second window was rendered and 
blended with the contents of the frame buffer also. The second window was not rejected by the Z-Buffer 
tests because we disabled Z writes during the rendering of the alpha polygons. So when we rendered the 
closest window first, its depth values were not recorded in the depth buffer. Although this certainly 
prevents the second window from failing the depth test, it still results in an incorrect blend because the 
two windows are blended in the wrong order. Remember, when we disable Z writes, the alpha polygons 
will still be tested against the depths that are currently in the buffer and rejected if occluded by any of 
the opaque polygons that were rendered in the first pass. If the alpha polygon is not occluded, it is 
rendered but its depth values are not written to the depth buffer. So from a depth buffer perspective, it is 
as though the polygon is not there. 
 
While the artifacts in the image on the right may not initially strike you as incorrect, we can certainly see 
when we compare the two images that the blending results are not the same. Therefore, when we have 
alpha polygons, we will usually want to sort them before rendering. We will discuss sorting strategies 
later in this chapter.  
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7.6 Alpha Testing 

Very often we will be rendering polygons that have a level of transparency such that the pixels are either 
fully opaque or fully transparent. Think about a texture of a tree mapped to a quad for example. We 
would want the pixels in between the leaves and branches to be totally transparent so that when rendered 
on top of the scene, the scene polygons between the branches are visible. The actual branches and leaves 
themselves however would be fully opaque, occluding anything underneath them in the frame buffer. 
The DirectX pipeline provides an alpha testing function which is disabled by default when the device is 
first created. When it is enabled, it is actually executed before the alpha blending equation that calculates 
the final pixel color. 
 
As we can see in the 
diagram, the color and 
alpha values are output 
from the texture stage 
cascade. If alpha testing is 
enabled then a comparison 
is made between the alpha 
value and some reference 
value that our application 
provides. We can specify 
the nature of the 
comparison function that is 
performed between the 
alpha value and the 
reference value. A 
common alpha testing 
comparison function is 
D3DCMP_GREATEREQUAL. In 
this case, if the alpha value 
output from the texture 
stages is greater than or 
equal to the reference value, then the pixel passes the test and continues down the pipeline. Notice that 
Alpha Testing is completely separate from alpha blending. You do not need to have alpha blending 
enabled to use alpha testing and vice versa. 
 
If a pixel is rejected by the alpha testing mechanism then its depth value will not be written to the Z-
Buffer and it will not occlude any pixels behind it. Thus these pixels are not rendered or stored. This is 
useful when we have polygons where the alpha values are providing simple on/off transparency.  
 
We can use alpha testing to mask out pixels that have an alpha value less than the reference value. For 
the sake of example, let us imagine that we have polygons that are black and have alpha values of 0 for 
each pixel (totally transparent).  
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The image on the left shows a scene rendered using no 
particular sorting order. In this image the black window 
polygon is totally transparent. Because it is rendered 
before all other polygons in the scene it is simply alpha 
blended with a black frame buffer. In this example, Z 
writing is not disabled so the window rendered to the 
frame buffer has its Z values written to the Z-Buffer 
and it occludes the polygons behind it. 
 
Let us see what happens when we enable alpha testing 
so that any pixels with an alpha value of anything less 

than 255 (totally opaque) get rejected by the pipeline – they are never added to the frame buffer or the 
depth buffer.  
 
We enable alpha testing using the D3DRS_ALPHATESTENABLE render state.  
 
pDevice->SetRenderState( D3DRS_ALPHATESTENABLE , TRUE ); 

 
The next step is to set the reference value. In this example we will reject pixels that are not totally 
opaque so we will set the alpha reference value to 255 and the alpha testing comparison function to 
D3DCMP_GREATEREQUAL. The default alpha testing comparison function is D3DCMP_ALWAYS which means 
that every pixel always passes the alpha test regardless of its alpha value.  
 
pDevice->SetRenderState( D3DRS_ALPHAREF  ,(DWORD)0x000000FF ); 
pDevice->SetRenderState( D3DRS_ALPHAFUNC , D3DCMP_GREATEREQUAL ); 

 
The image on the left shows the result of using alpha 
testing. As you can see, all of the places where there are 
windows, nothing is rendered. The polygons that are 
rendered afterwards that occupy the same region of the 
frame buffer are still correctly rendered underneath. When 
using totally transparent surfaces or polygons that have 
totally transparent regions (for example, if it has a texture 
with an alpha channel where certain pixels within that 
texture have alpha values of 0), we do not have to sort these 
polygons. 
 

Of course, alpha testing is not limited to masking out totally transparent pixels. We could set the 
reference value to any arbitrary value such that only pixels above (or below, or even equal to) the 
reference value pass the alpha test. Therefore, alpha testing provides us with a way to mask pixels 
regardless of the origin of the alpha value (texture alpha channel, interpolated diffuse or specular alpha, 
constant alphas from the D3DRS_TEXTUREFACTOR render state, etc.). 
 
We can control the alpha testing function using the D3DRS_ALPHAFUNC render state. We pass in one of 
the members of the D3DCMPFUNC enumerated type shown below. 
 
 



 

  
 

477

typedef enum _D3DCMPFUNC  
{ 
    D3DCMP_NEVER = 1, 
    D3DCMP_LESS = 2, 
    D3DCMP_EQUAL = 3, 
    D3DCMP_LESSEQUAL = 4, 
    D3DCMP_GREATER = 5, 
    D3DCMP_NOTEQUAL = 6, 
    D3DCMP_GREATEREQUAL = 7, 
    D3DCMP_ALWAYS = 8, 
    D3DCMP_FORCE_DWORD = 0x7fffffff 
} D3DCMPFUNC; 
 
As you can see, there are a number of comparison options at our disposal. In Lab Project 7.2 we will use 
alpha testing with alpha values stored in a texture alpha channel.  
 
There are some final points to keep in mind about alpha testing pixels that use on/off transparency (0x00 
or 0xFF). First, we do not have to worry about disabling Z writes when rendering these polygons 
because the pixels will be rejected before they are written to the depth buffer. Second, if we are using 
simple on/off transparency, there will be no color blending for transparent pixels. As a result there is no 
need to render these polygons in a second pass after the opaque polygons. This in turn means there is 
also no need to sort them before they are rendered.  

 

7.7 Transparent Polygon Sorting 

 
As discussed earlier, when we render scenes that include partially transparent polygons, we will need to 
use alpha blending and render all opaque polygons first. We will then render our alpha polygons in a 
second pass in back-to-front order with respect to the camera. When using alpha blending, the order we 
blend the polygons into the frame buffer is significant. For example, imagine that we have a blue frame 
buffer and we render an alpha blended green polygon followed by an alpha blended red polygon in the 
same location. We would not get the same result if we reversed the rendering order as the following 
demonstrates.   
 
Pixel Color = SourceColor * SrcAlpha + DestColor * (1-SrcAlpha) 
 
Example 1: Blue * Green * Red 
Blend Green Quad First 
Pixel Color = GreenQuad * 0.5 + BlueFrameBuffer * (1 - 0.5) 
Pixel Color = ( 0, 1.0 , 0)  * 0.5 +  (  0 , 0 , 1.0 )  * 0.5 
Pixel Color = ( 0, 0.5,  0)           +  (  0 , 0 , 0.5 ) 
Pixel Color = ( 0, 0.5 , 0.5 )    
Pixel Color =  Murky Blue Color 
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Now Blend Red Quad 
PixelColor  = RedQuad   * 0.5 +   MurkyBlue * (1 – 0.5) 
PixelColor  = ( 1.0 , 0 , 0 ) * 0.5 +   (0.0 , 0.5 , 0.5) * 0.5 
PixelColor  = ( 0.5 , 0 , 0 )          +   (0.0 , 0.25 , 0.25 ) 
Pixel Color = ( 0.5,  0.25 , 0.25 ) 
Pixel Color = Brownish Color 
 
Example 2: Blue * Red * Green 
Blend Red Quad First 
Pixel Color = RedQuad * 0.5   + BlueFrameBuffer * (1 - 0.5) 
Pixel Color = ( 1.0, 0, 0 ) * 0.5 +  (  0 , 0 , 1 ) * 0.5 
Pixel Color = ( 0.5, 0, 0 )          +  (  0 , 0 , 0.5 ) 
Pixel Color = ( 0.5, 0, 0.5 )    
Pixel Color =  Half Intensity Purple 
 
Now Blend Green Quad 
PixelColor = GreenQuad  * 0.5 +    Half Intensity Purple * (1 – 0.5) 
PixelColor =  ( 0 , 1 , 0 )* 0.5    +    (0.5 , 0.0 , 0.5) *  0.5 
PixelColor  = ( 0 , 0.5 , 0 )         +    (0.25 , 0  , 0.25 ) 
Pixel Color = ( 0.25, 0.5 , 0.25 ) 
Pixel Color = Grayish Green Color 
 
The different colors generated provide clear evidence that we really do need to render our alpha 
polygons in back-to-front order if they are going to overlap.  
   
In Chapter 2 we saw that without a depth buffer, we would need to use a back-to-front rendering 
technique like the Painters Algorithm. We also said that sorting all of our polygons every frame would 

be slow and that even if we did sort our polygons 
before rendering, there would be cases where 
rendering order could not be fully resolved. The 
image to the left reminds us of one such case. 
Although the depth buffer allowed us to forget 
about these problems by providing depth testing 
at the pixel level, we now find ourselves in a 
similar situation once again, with the need to sort 
our alpha polygons back to front.  
 
Although optional, we will usually want to 
disable Z writes when rendering alpha polygons 
in the second pass so that they do not occlude 
anything in the depth buffer. As transparent 
objects are supposed to be non-occluders by their 
very nature, it is often best not to write their depth 
values. Disabling Z writes can speed up rendering 
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a little as well because although the depth test is still done, the pipeline does not have to update the pixel 
in the depth buffer each time. In Lab Project 7.3 we will disable Z writes when rendering the alpha 
polygon list. This is done with via a render state call: 
 
m_pD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE); //Z Writes Off 
m_pD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);  //Z Writes On 

 
As it turns out, there is no correct order that can be determined in the above example. A common way to 
solve the problem is to compile the alpha polygons into a BSP tree, which splits polygons along the 
planes of other polygons. In the example above, the green polygon would actually be split into two new 
polygons – one on the front side of the red polygon, the other on the backside. Sorting by polygon then 
becomes straightforward again. However, compiling BSP trees is beyond the scope of this course and 
will not be discussed until the third course in this series. Besides, while a BSP tree is an elegant solution, 
it is not always necessary. Because we are rendering only the alpha polygons without the assistance of a 
depth buffer, the odds of such overlaps are pretty small. But even if there are overlaps, often the scene 
can be modified in the world editor to remove or rearrange them if the game engine does not want to 
address this issue. If such polygons are few and far between, it is sometimes preferable to live with the 
fact that the blending may be incorrect at times. Even in some commercial titles, if you know what you 
are looking for, you can see places where alpha polygons are sometimes blended in an ‘incorrect’ way. 
The errors produced are often quite subtle and generally go unnoticed unless you are specifically 
looking for them. Therefore, we will decide -- for the time being at least -- that we will proceed with a 
higher level technique like the Painter’s Algorithm and if such a situation should arise, we will accept 
any blending errors produced by intersecting alpha polygons.  
 
Before moving on, it is also worth mentioning at this point that certain effects may benefit from 
disabling the Z buffer completely while they are being rendered. The water polygon in Lab Project 7.1 is 
a good example. In that case we are drawing a very large polygon, potentially over the entire viewport. 
Since we know in advance that all of its pixels will pass the depth buffer test anyway since nothing in 
the scene can occlude them (as is often the case with many such screen space effects – user interfaces, 
etc.) there is no point in running all of those per-pixel depth tests. We would prefer to simply forget 
about testing the polygon pixels and writing them to the depth buffer at all. To deactivate the depth 
buffer entirely (writes would be also be deactivated as a result), another render state is used: 
 
m_pD3DDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE); //Z Buffer Deactivated 
m_pD3DDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);  //Z Buffer Activated 

 
Whether you choose to deactivate depth buffer writing or the entire depth buffer testing/writing process 
is a function of the particular effect you are trying to achieve. 
 
 
 

 

 



 

 480 

7.7.1 Sorting Criteria 

Now that we have decided to sort the alpha polygons and render them back-to-front using the Painter’s 
Algorithm, the next question is, how will we determine if one polygon is behind or in front of another? 
This is actually another case where a BSP tree would help, but usually, we cheat a little and simply sort 
based on distance from the camera to the center of the polygon. This approach comes with some risks as 
a very large polygon may be overlapping a smaller polygon that is more distant. Because the large 
polygon is so large, its center point may be further away from the camera than the smaller polygon 
center point. But its nearest edge may be closer to the camera, or vice versa, as shown in Fig 7.10. 

 
Figure 7.10 

 
In Fig 7.10 we see a camera position (the red sphere) and a large gray polygon and a small red polygon. 
From the camera’s perspective, the red polygon is overlapping the gray polygon such that if we were 
using alpha blending, we would want to render the gray polygon first and then alpha blend the red 
polygon on top of it. However, we can see that because the sizes of the polygons are so different, the 
distance from the camera position to the center point of the gray polygon is shorter than the distance 
from the camera position to the center point of the red polygon. When we render back to front such that 
polygons that have greater distances to their center points are rendered first, the red polygon would be 
rendered before the gray polygon. This produces incorrect blending results. Fortunately, since alpha 
polygons are relatively few in number this is another situation that does not typically arise very often 
and as such is something we can often live with.  
 
Calculating the Polygon Center 

Calculating a polygon center point can be done using a simple averaging technique. Simply sum the 
polygon vertex positions and divide the result by the number of vertices. For example, in Lab Project 
7.3, where we store geometry as triangle lists, we calculate the center point of a triangle using the 
following code: 
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D3DXVECTOR3 CalculateCenterPoint(D3DXVECTOR3 *v1,D3DXVECTOR3 *v2,D3DXVECTOR3 *v3) 
{ 
      D3DXVECTOR3 CenterPoint; 
      CenterPoint   = *v1; 
      CenterPoint + = *v2; 
      CenterPoint + = *v3; 
      CenterPoint   = CenterPoint / 3; 
 
      return CenterPoint; 
} 

 
If the function is passed the three world space vertex positions of a triangle, it will return a world space 
vector describing the position of the center point of the triangle.  The center points are world space 
center points that will be used during rendering to subtract the position of the camera. This will return a 
vector whose magnitude describes the distance from the camera position to the center point of a 
polygon. The center points do not need to be updated when the camera position changes because the 
world space center points of the alpha polygons do not change unless the alpha polygons are animated or 
modified in some way. Usually we can calculate and store the center points of all alpha polygons as a 
pre-process. There is no need to store the center points for the opaque polygons as we do not need to sort 
them. 
 
In our lab project, when we encounter alpha polygons during the first render pass we will simply store 
them for later use. After the opaque polygons have been rendered, we will sort the alpha polygons based 
on their distance from the camera. For each polygon, we will calculate its distance from the camera by 
subtracting the camera position vector from the alpha polygon center point. This builds a vector that 
describes the direction and magnitude of travel from the camera to the center point to the polygon. The 
length of this vector is the distance to the center point from the camera. We can store that alpha polygon 
in a list or an array along with its distance. The next step will be to sort that list and then render it in 
back-to-front order. 
 
Performance Concerns 

Certainly we will want to do the distance calculations and the center point sorting as quickly as we 
possibly can. As discussed in Chapter 1, calculating the length of a vector is not a fast process. It 
involves first calculating the squared length of the vector by doing (X*X) + (Y*Y) + (Z*Z) and then 
performing a square root on the result. Unfortunately, the square root operation is one of the slower 
math routines for a computer to perform and it would surely be preferable if we could avoid it.  
 
If we need the true distance value, then this cost is something we simply have to accept. However, we do 
not need the true distance. We only need a number that we can use to accurately describe ordering 
information, such that the relationship between all polygon distances is maintained. So instead of 
calculating the actual distance, we will calculate the squared distance instead. This avoids the square 
root and simply returns (X*X) + (Y*Y) + (Z*Z). As it happens, just as D3DX contains a function to 
return the true length of a vector (D3DXVec3Length), it also includes a function for calculating the less 
computationally expensive squared length of a vector. 
 
FLOAT D3DXVec3LengthSq(CONST D3DXVECTOR3 *pV); 
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Like its counterpart, this function accepts the address of the vector you wish to know the length of. The 
function returns a single floating point value describing the squared length of the vector.  
 
When we encounter an alpha polygon during our opaque polygon render pass, we will subtract the 
camera position from the polygon center point and call the above function to calculate the squared 
length of the resulting vector. This is the distance we will store with the polygon and use for sorting. 

 

7.7.2 Choosing a Sorting Algorithm 

After we have created our unsorted list of alpha polygons, we must decide which sorting algorithm to 
use. We certainly want an efficient routine that scales well since we may have a scene with many 
hundreds of alpha polygons that need to be drawn. 
 
There are many well-known sorting algorithms that programmers use to sort data. We will briefly 
discuss two of the most popular (and extreme): the bubble sort and the quick sort. Other sorting 
algorithms usually perform somewhere between the bubble sort and the quick sort. The bubble sort is 
just about the slowest choice and the quick sort is typically one of the fastest. Of course much of this 
depends on the data set being sorted, but in general, this is usually the case.  
 
The quick sort is very fast for arbitrary data sets, although it can be difficult to understand due to its 
recursive nature. The bubble sort is generally much easier to understand and code because it uses a 
simpler algorithm.  
 
One thing to keep in mind is that if the quick sort algorithm is implemented in a recursive fashion, large 
data sets may cause a stack overflow. However, if we did utilize a quick sort for our alpha polygons, we 
would probably not be in any danger due to the fact that we are typically only sorting a handful of alpha 
polygons at any one time. But even if we were rendering thousands of alpha polygons each frame, the 
quick sort would still be a fine choice.  
 
The Bubble Sort 

The bubble sort is probably the simplest sorting algorithm to implement. It generally performs best when 
passed an already sorted or nearly sorted list, where its level of complexity can approach a constant 
O(n). The more general case however is O(n2). While other sorting algorithms also have complexities of 
O(n2), the bubble sort is significantly less efficient than most of the alternatives. 
 
The bubble sort works by visiting each item in the list, comparing its value to the item next to it, and 
swapping them if required. This depends on whether you want the list sorted in ascending or descending 
order. This process is repeated until we pass through the list and find that no items need to be swapped.  
 
If we think about smaller values sorted towards the beginning of the list and higher values pushed 
towards the end of the list, we can see how this sorting algorithm gets its name. A higher value slowly 
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sinks towards the end of the list with each sorting pass while smaller values slowly bubble up towards 
the front of the list. The following code example shows how one might implement a function that 
performs a bubble sort on a passed array of integers. 
 
void bubbleSort(int ListOfNumbers[], int ListSize) 
{ 

int a, b , temp; 
 
for (a = (ListSize - 1) ; a >= 0 ; a--) 
{ 
   for (b = 1 ; j <= a ; j++) 

{ 
  if  (ListOfNumbers[b-1] > ListOfNumbers[b]) 

                       { 
                                 temp = ListOfNumbers[b-1]; 
                                 ListOfNumbers[b-1] = ListOfNumbers[b]; 
                                 ListOfNumbers[b] = temp; 
                       } 
            } 
} 

} 
 
Although easy to understand and implement, the bubble sort should definitely not be used for repetitive 
sorts or for sorting lists than contain more than a few hundred items. It certainly should not be used in 
time critical code (like our render loop). 
 
The Quick Sort 

The quick sort is the fastest of the common sorting algorithms. While it is possible to write special 
purpose optimized sorting techniques that work with specific data sets to outperform quick sort, for the 
general case, the quick sort is the top choice when it comes to speed. The quick sort uses an approach 
that is relatively easy to understand in words but is harder to grasp in code. Essentially, it is a divide-
and-conquer technique that is normally implemented using recursion. The algorithm implements the 
following basic steps to achieve the sort: 
 

• If the list has only one (or zero) elements then exit -- the list is already sorted. 
• Select a number in the list as the Pivot Point. 
• Split the list into two lists (left and right).  
• The right list contains numbers higher than the Pivot Point. 
• The left list contains values lower than the Pivot Point. 
• Recursively repeat the above steps on the two child lists. 

 
So the quick sort repeatedly chooses a Pivot Point, reorganizes the numbers in the array such that values 
smaller than the Pivot Point end up on the left side, while higher values end up on the right side. We 
then recursively send the two sections of the list (to the left and right of the Pivot Point) into the quick 
sort function again and repeat the process until the list is completely sorted.   
 
The efficiency can depend very much on the value chosen as the Pivot Point for a given data set. Often 
the leftmost value in the list will simply be selected as the Pivot Point by default. In the absolute worst 
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case, complexity can approach O(n2). This occurs when the leftmost value is selected as the Pivot Point 
and the list passed into the quick sort is already perfectly sorted. If you suspect that the data passed into 
the quick sort will be mostly sorted, you are better off choosing a random Pivot Point from the list. As 
long as the Pivot Point is chosen randomly, the quick sort has a complexity of O(n log n). Below, we see 
a simple quick sort implementation: 
 
void QuickSort ( int ListOfNumbers[] , int ListSize ) 
{ 

QSort( ListOfNumbers, 0 , ListSize - 1); 
} 
 
void QSort ( int ListOfNumbers[], int Left , int Right ) 
{ 
  int PivotPoint, LeftStart, RightStart; 
 
   LeftStart   = Left; 
   RightStart  = Right; 
   PivotPoint  = ListOfNumbers[Left]; 
   
  while ( Left <  Right ) 

{ 
while ( (Left < right) && ( ListOfNumbers[Right] >= PivotPoint ) ) Right--; 

     
if ( Left != Right) 

      { 
       ListOfNumbers[Left] = ListOfNumbers[Right]; 
       Left++; 
} 

    
while ( ( Left < Right ) && (ListOfNumbers[Left] <= pivot) )  Left++; 

  
     if ( Left != Right ) 

      { 
         ListOfNumbers[Right] = ListOfNumbers[Left]; Right--; 

    } 
} 

 
ListOfNumbers[Left] = PivotPoint; 
PivotPoint = Left;  
Left  = StartLeft; 
Right = StartRight; 
if ( Left < PivotPoint)  QSort ( ListOfNumbers, Left , PivotPoint -1 ); 
if ( Right > PivotPoint) QSort ( ListOfNumbers, PivotPoint+1, Right ); 

} 
 
If you do not immediately understand the code above, do not panic. Most people find that they have to 
sketch it out with a pen and paper to understand what is happening the first time around. Fortunately, we 
do not have to implement our own quick sort function since it has been a part of the C standard for quite 
some time. The function is called qsort and to use it all you have to do is include stdlib.h. The qsort 
function accepts four parameters as shown below: 
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void qsort 
( 

void *base, 
      size_t num, 
      size_t width,  
      int (__cdecl *compare )(const void *elem1, const void *elem2 )  
); 
 
The first parameter should be a pointer to the array of elements that you wish to sort. The second 
parameter describes the number of elements in the array. The third parameter describes the size in bytes 
of a single element in the array. The fourth parameter is a pointer to an application defined callback 
function that returns an int and accepts two void pointers.  For every element comparison that needs to 
take place during the quick sort, the callback is called to determine if element 1 is larger, smaller, or 
equal to element 2. This is necessary because the qsort function has no idea about the data you are 
sorting (it has only a void pointer). You can use the qsort function to sort arrays of arbitrary structures 
because you are responsible for writing the callback function that you register with qsort. The callback 
function should return the following integer values to describe the relationship between element 1 and 
element 2. 
 

Return Value Description 

        < 0 elem1 less than elem2 

          0 elem1 equal to elem2 

        > 0 elem1 greater than elem2 

 
Here is a bit of code to demonstrate the use of the qsort function -- just in case you decide to use it to 
sort your own game objects. 
 
#include <stdlib.h> 
#include <string.h> 
#include <stdio.h> 
 
int compare(const void *arg1, const void *arg2); // Our compare call back function 
int List[5] = { 9 , 3 , 100 , 1 , 5 }; 
 
void main( void ) 
{ 
   int i; 
  
   /* Sort the list using our ‘compare’ function for comparisons */  
   qsort( (void *) List,  5, sizeof( int ), compare ); 
 
   /* Output sorted list: */ 
   for( i = 0; i < 5; ++i )   printf( "%d ", List[I] ); 
   printf( "\n" ); 
} 
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int compare( const void *arg1, const void *arg2 ) 
{ 
   if ( (int)*arg1 > (int) *arg2 ) return 1;    // Arg 1 greater than Arg 2 
   if ( (int)*arg1 < (int) *arg2 ) return –1;   // Arg  2 greater than Arg 1 
   return 0;                           // Arg1 = Arg2 
} 

 
 
Hash Table Sorting 

Lab Project 7.3 will not use a bubble sort or quick sort to sort alpha polygons. It will use a data structure 
called a hash table. Hash table sorting is really a rather simple and elegant idea and it works quite well 
in this particular situation. Hash tables provide fast random access to data. They do this through the use 
of what is known as a hash function. This function accepts some data element as input and then 
converts it into a number that indicates where in the table that data should reside. This number is called a 
hash key. Depending on the nature of the data to be stored, along with any number of other factors, 
hashing functions can range from the very simple to the very complex. Fortunately for us, our hashing 
function will turn out to be quite straightforward. 
 
At the end of our first render loop, we have an unsorted list of alpha polygons. Each polygon is stored 
with its squared distance from the camera. Let us imagine that we had an array and that we could use the 
distance value as the index of the element in the array to which a given polygon should be assigned. By 
taking the distance value of each alpha polygon, mapping it into an integer range of between zero and 
the size of the array, and then inserting the polygon into the array at that location, polygons will be 
added to the array automatically sorted by distance. This is essentially the core of our hashing function. 
Polygons with higher distance values will be at the back of the list and polygons with smaller distance 
values will be at the front of the list. Then all we have to do is enable alpha blending and render the list, 
starting at the back and working towards the front -- rendering each alpha polygon stored at each index. 
There may of course be many elements in the array with no polygons assigned (a sparse array) and we 
would skip these because the element would be set to NULL. In effect, this gives us nearly free sorting. 
 
Let us start off with an example that uses small values to better illustrate the process. Imagine that we 
have our far plane set such that it is a distance of 100 units away from the camera in view space. Also 
imagine that our camera is at position <0,0,10> in world space and that there is an alpha polygon with a 
center point at <0,0,20> in world space. In this example we will use a hash table of 1000 pointers. Each 
element in the array is a pointer to a polygon that will (potentially) eventually be stored there. We can 
easily increase or decrease the size of our hash table to improve sorting speed and accuracy. 
 
FarPlane        = 100 
CameraPos            = (0, 0, 10); 
AlphaPoly->CenterPoint = (0, 0, 40); 
HashTableSize          = 1000; 
Polygon **HashTable[ HashTableSize ]; 

 
For each alpha polygon encountered, we calculate the squared distance: 
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D3DXVECTOR3 DistanceVector = AlphaPoly->CenterPoint – CameraPos; //(0, 0, 30) 
float PolyDistanceSq = D3DXVec3LengthSq(&DistanceVector); 
                                                  //(0*0)+(0*0)+(30*30) = 900 

 
Now we will map the distance value into the far plane range so that we end up with a value in the range 
[0.0, 1.0]. Thus a value of 1.0 would describe a polygon that has its center point right on the far plane. If 
we were not dealing with a squared distance we could just divide the polygon distance value by the far 
plane distance value. However the polygon distance is a squared distance and the far plane distance is 
not. So we will square the far plane distance and use the result to divide the polygon center point 
squared distance. 
 
float fIndex = PolyDistanceSq / (FarPlane * FarPlane);  // 900 / 10,000 = 0.09  

 
Now, we simply map this floating point value to the size of our hash table array to generate our hash 
key. Our hash table in this example is 1000 elements in size, so we multiply the value by 1000 to take it 
into the integer range of [0, 999] and add the polygon to the hash table array at that index. 
 
ULONG Index = fIndex * (HashTableSize-1); //0.09 * 999 = 89; 
HashTable[ Index ] = Poly; 

 
Note that this approach does not map the distance values linearly to hash table indices. In fact, one might 
say that it suffers from the opposite problem of that of the depth buffer. Because we are using squared 
distances, polygons nearer the back of the scene will map to a larger range of hash table keys. In the 
above example, we had a non-squared distance of 30 from the camera to the polygon and a far plane 
distance of 100. We are using values that make it easy to see that the polygon center point is 30% of the 
distance between the camera and far plane. Therefore, with a hash table size of 1000 you would expect 
the index generated for this polygon to be 30% of the hash table array size 1000/100*30 = 300. 
However, we can see that because we are using squared distances, we actually get a value of 89. 
Therefore, the first 30% of the scene in this example is mapped to the first 9% of the hash table array. 
We could of course decide to use non-squared distances but that would involve a square root per-
polygon. To solve this problem we could increase the size of the hash table. This reduces polygon/index 
ambiguities and it will be less likely that polygons in the near distance will be mapped to the same key 
value in the hash table.  
 
In reality, it is not so terrible if we end up with multiple polygon distances mapped to the same hash key 
(a hashing phenomenon known as a collision). After all, we are not limited to storing only a single 
polygon at each element in the hash table. The pointers themselves can simply be used as the head of a 
sorted linked list. This is exactly the technique that we will use in Lab Project 7.3.  
 
Once we have calculated the index of an alpha polygon, we check the element in the array. If it is set to 
NULL, then we store the polygon pointer at that array element because no other polygon has previously 
been stored there. If the pointer is not NULL then we step through the linked list and compare the 
squared distances. Once we locate the exact place in the linked list where the alpha polygon belongs, we 
add it there. Polygons with smaller distance values are now at the tail of the linked list. 
 
In summary, our render function loops through each polygon in the scene. If the polygon is opaque it is 
rendered. If the polygon is an alpha polygon, we calculate a hash table index (a hash key) based on the 
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distance from the camera formula and add it to the hash table using the technique just discussed. Once 
we have finished looping through each polygon, the frame buffer will contain all opaque polygons and 
the hash table will contain all alpha polygons. Closer polygons will be at the top of the hash table and 
distant polygons will be towards the bottom of the table. At this point we loop through the hash table, 
from bottom to top, and render each polygon -- or linked list of polygons -- with alpha blending enabled. 
At the end of this process, our alpha polygons have been rendered and blended with the frame buffer 
correctly. 
 
Fig 7.11 depicts a ten element hash table. It just so happens that in this example, ten polygons have been 
added to the table using some particular hash function.  
 

 
 

Figure 7.11 
 
Notice how each polygon in Fig 7.11 is stored in the list ordered by distance, and that some elements are 
NULL when no polygon distance maps to that index. Also notice that array elements 3 and 8 in this 
example have more than one polygon mapped to their hash key (i.e. there was a collision). For these 
cases we use a linked list sorted so that larger distance values are stored at the head of the list and 
smaller values are stored towards the tail. 
 
The alpha polygons can be rendered in the correct back-to-front order using the following pseudo code. 
It loops through the hash table array in reverse order and traverses the linked lists stored at each index in 
the array. 
 
POLYGON *Poly = NULL: 
for ( ULONG i = HashTableSize-1  ; i  > = 0 ; i -- ) 
{ 
 for ( Poly = ppHashTable[i]; Poly; Poly = Poly->Next )  
 {  
               Poly->Render(); 
 } 
} 
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Note that while the hash table approach is useful, it is not a panacea. To be sure, you will wind up using 
other sorting algorithms (especially quick sort) many times in your coding projects. Please spend some 
time now looking over the code for Lab Project 7.3. Make sure that you understand the sorting algorithm 
and try to think about how you might use an alternative algorithm like the quick sort as well. Perhaps 
take the time to test both and compare performance.  
 
 

7.8 Alpha Surfaces 

One very useful technique involves extracting alpha values in the texture stages from one or more 
textures that are not actually going to be used for color rendering. For example, you could have a terrain 
texture assigned to stage 0 that is modulated with the vertex color and rendered with the terrain polygons 
as normal. However, you could also have a second set of texture coordinates in your vertex used to 
sample the alpha value from a texture assigned to the second stage. This second texture might not 
actually be mapped to the polygon from a rendering perspective but could be used to describe how the 
sampled colors from the texture in the first texture stage blend with the frame buffer. We can do this 
using the alpha value sampled from the texture in the second texture stage.  
 
In the following code snippet, we see an example of this technique. We have a normal color texture 
assigned to the first texture stage, and we assign a texture with an alpha channel to the second stage. We 
set the first stage to modulate the color sampled from the texture in stage 0 with the interpolated vertex 
color. The result is passed on to the next stage. In stage 1, we set the color operation to simply accept the 
result of the previous color operation and output it from the texture cascade unaltered. The texture 
assigned to stage 1 does not have its RGB values sampled at all, and it will not contribute to the color 
output from the texture stage cascade.  
 
In stage 0, we set the alpha operation to sample the alpha from the assigned texture. This is done simply 
to enable the alpha flow through the pipeline. In fact, this alpha value will not be used at all and will be 
replaced in stage 1.  
 
// Stage 0 Coloring : Modulate vertex color and texture color 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE ); 
 
// stage 0 alpha : Just set up flow to next stage 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
m_pD3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_CURRENT ); 
 
// Bind the render texture (the color texture) to stage 0 
m_pD3DDevice->SetTexture( 0 , pMyColorTexture ); 

 
In stage 1, the alpha value is sampled from the assigned texture using the second set of texture 
coordinates by default. The alpha value sampled from this second texture will be output from the texture 
cascade as the final alpha value along with the color value calculated in the first texture stage.  
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// stage 1 coloring : Output stage 0 texture color unaltered by this stage 
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLOROP, D3DTOP_SELECTARG1 ); 
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_COLORARG1, D3DTA_CURRENT ); 
     
// stage 1 alpha : Output alpha sample from texture assigned to this stage. 
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 ); 
m_pD3DDevice->SetTextureStageState( 1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE ); 
 
// Bind the alpha texture to stage 1 
m_pD3DDevice->SetTexture( 1 , pMyAlphaTexture); 

 
Assuming alpha blending is enabled, the blending equation will color the face of each polygon using the 
color resulting from modulating the first texture with the interpolated vertex alpha, and an alpha value 
sampled from the texture assigned to stage 1. The alpha operation in stage 0 is only significant in that it 
ensures that the alpha pipeline is enabled.  
 
DirectX Graphics includes a pure alpha surface format. In a pure alpha surface, each pixel is an 8-bit 
alpha value and it does not contain red, green, or blue components. This is an ideal surface to use for the 
above example, where we only need the second texture for alpha information and would be otherwise 
wasting memory. The D3DFORMAT enumerated type that describes an alpha surface is: 
 
D3DFMT_A8; //Used to create Textures/Surfaces that just contain alpha information 

 
Note: At the time of this writing, pure alpha surfaces (D3DFMT_A8) have only minimal support on some 
graphics cards and no support on many others. Therefore, our demos will continue to use normal ARGB 
textures for the ‘alpha texture’, but will only store meaningful values in the alpha component at each 
pixel.  
 
Note that while the RGB pixel components of our alpha texture will be not be used by the color pipeline in 
our demos, you could theoretically come up with some interesting additional uses for them (storing per-
pixel lighting data for example). The only time our alpha textures will be used is when sampling alpha in 
the 2nd texture stage.  
 
Regardless of whether we are using a pure alpha surface or just using the alpha channel of an ARGB 
surface, the techniques are the same.  
 
 

Lab Project 7.4 uses this technique to implement an interesting and relatively advanced concept called 
texture splatting. Although a demo of this complexity is technically not necessary to show us how to 
use a separate texture as an alpha-only source in the texture cascade, it is a technique that you will find 
adds significant enhancements to your terrain application (and can be useful in other areas as well). 
Please refer to your course workbook for further details on texture splatting and its implementation 
before continuing with the next section. 
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7.9 Fog 

Let us now turn our attention to another form of blending used to create the effect of fog in our scenes. If 
we were to describe fog technically we could say that it is the phenomenon produced when water and 
dust particles suspended in the air are dense enough to scatter light. If we were to give fog a non-
technical description, we might say it was a misty substance that obscures our viewing of distant objects. 
Fog is definitely a key ingredient for providing a sense of atmosphere and mood and is often a must-
have in many computer games. 
 
In addition to aesthetic appeal, fog also provides a way to optimize our rendering engine. As you know, 
we have a projection matrix that defines a view frustum with a near and a far plane. Objects on the 
opposite side of the far plane are considered out of viewing range and are not rendered. Even if we use 
very large viewing distances, we can often see objects popping in and out of view as our camera is 
navigated about the game world. If we had a far plane of 5000 units for example and an object was 
placed at a distance of 5100 units away from our camera along the Z axis, the object would be rejected 
by the pipeline and would not be rendered because it is considered outside the view frustum. If we were 
to move our camera forward a couple of hundred units along Z, the object would suddenly appear since 
its position would then fall between the near and far planes of the view frustum. Although we can push 
the far plane out to a very far distance so that objects that pop in and out are relatively small, this is 
usually in direct contrast to what we want to do to make the rest of our application run as smoothly as 
possible. Usually, we want to render as little as we can get away with. One way to optimize our 
rendering is to bring the far plane closer to the camera so that objects in the distance do not get rendered. 
The closer we bring the far plane, the fewer objects we have to render.  Also recall that we discussed the 
various depth buffer artifacts that can occur if the distance between the near and far planes of our 
frustum is too great (Chapter 2).  
 
Fog provides a solution for both of these problems. We can set the fog such that as an object’s distance 
with respect to the camera increases -- and it approaches the far plane -- the object begins to become 
more and more obscured by fog. At the point where the object is about to be clipped by the far plane, it 
is no longer visible and therefore we do not see it suddenly disappear from the scene. As objects first 
enter the frustum at the far plane, they are initially obscured by fog, so we do not see them suddenly 
appear. Instead, they slowly fade into view, appearing out of the fog. This hides the fact that we have a 
far clip plane at all.  
 
Fig 7.11 shows two views of the same scene. The image on the left shows our demo level from previous 
chapters rendered normally. The image on the right shows the same scene rendered using fog supplied 
by the DirectX Graphics pipeline. 
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Figure 7.11 
 
The image on the right uses a very dense fog. It does not look very good, but it was done to prove a 
point. We have to be careful not to overuse fog at the expense of severely limiting the player’s ability to 
see more than a few meters. This can make the game frustrating to play and quite claustrophobic. For 
example, the original Turok: The Dinosaur Hunter™ on the Nintendo 64™ was quite graphically 
impressive. But in order to achieve high frame rates on a relatively low powered console (by today’s 
standards) the developers used very dense fog settings and the player could usually only see a short 
distance in front of himself. This was done to minimize the number of polygons that had to be rendered 
each frame, but unfortunately it marred the game experience because players could not see what they 
were firing at until it emerged from the fog (often only a few meters away and with deadly intent).  
 
In DirectX Graphics, fog is implemented as a form of color blending. We typically set a fog color along 
with other properties like density and range, and then enable the fog mechanism with a single render 
state. When objects are rendered, the color of the object is blended with the fog color based on the 
distance between the object and the camera and how we currently have the fog set to change over 
distance. When objects are close to the viewer, their colors are only lightly blended with the fog color 
while objects far away (towards the back of the fog range) will have their colors heavily blended with 
the fog color.  
 
The pipeline calculates a value called the fog factor. This is a scalar between 0.0 and 1.0. Far away 
objects that are completely obscured by fog will have a fog factor of 0.0. Objects very close to the 
camera and thus not obscured by fog will have a fog factor of 1.0. We can configure the pipeline to use 
one of three different equations to calculate the fog factor. These equations will change the way fog 
affects our scene. We can choose the Linear Fog Model, the Exponential Fog Model, or the Squared 
Exponential Model. We will look at how we set the fog model in a moment but for now, just keep in 
mind that each of these fog models produces a fog factor in the range of [0.0, 1.0].  
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The pipeline alters the original color of an object by blending its color with the fog color using the 
following color blending equation: 
 
Cfinal = Ffactor x Coriginal + (1 – Ffactor) x Cfog 
 
Cfinal       = Final color after fog has been applied.  
Coriginal = Original color prior to fogging.  
Ffactor     = Fog Factor value between 0.0 and 1.0.  
Cfog         = Application defined fog color.  
 
You might have noticed that this is essentially the same structure as the alpha blending equation we 
discussed earlier. In this case, the fog factor replaces the alpha value, the original color is the source 
color, and the fog color is the destination color. In fact, when performing vertex fog, the pipeline 
internally stores the fog factor in the alpha component of the specular color calculated for each vertex. 
This means that even if we are not using the DirectX transformation pipeline and we are rendering using 
transformed and lit vertices, we can calculate the fog factor for each vertex ourselves and store this value 
in the alpha component of our vertex specular color. If fog has been enabled and a fog color has been 
set, the pipeline will still apply vertex fog to our scene. When using the transformation pipeline 
however, DirectX will calculate the fog factors automatically for each vertex/pixel, using one of the 
three fog models mentioned above. If we are not using the transformation pipeline and we calculate the 
fog factors ourselves, we can use whatever fog model we choose to produce fog factors. We will discuss 
these models momentarily. 

 

7.9.1 Enabling Fog  

If the application is to use fog, then it must enable the fogging module on the Direct3DDevice. Just as 
we turned on lighting using a render state, we will do the same with fog. To enable or disable DirectX 
fog, we use the D3DRS_FOGENABLE render state and pass in either TRUE or FALSE to enable to disable the 
fog calculations in the pipeline respectively. 
 
// Enable Fog Calculations 
pDevice->SetRenderState( D3DRS_FOGENABLE , TRUE ); 
 
// Disable Fog Calculation 
pDevice->SetRenderState( D3DRS_FOGENABLE, FALSE); 

 

 
7.9.2 Setting the Fog Color 

Although we often think of fog as being white or perhaps grayish white, our application can set the fog 
color to any value we choose. However, when choosing the fog color we must be cognizant of our 
backgrounds – especially skies when we are outdoors. We will usually want to match the background 
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color with the fog color so that objects fade into the horizon appropriately. For example, consider the 
two images in Fig 7.13. The image on the left shows a terrain being rendered with fog that is equal in 
color to the color of the sky. We see that the terrain fades slowly into the sky color in the distance until it 
slowly disappears from view. The image on the right however uses a purple fog color. When the terrain 
is rendered into the blue frame buffer it does not allow the terrain to fade smoothly with distance. 
Instead it simply renders the distant terrain as fog colored polygons. 
 

   
 

Figure 7.13 
 
To set the fog color we use the D3DRS_FOGCOLOR render state and pass in a DWORD containing the 32-
bit ARGB color. Only the RGB components are used. To specify the color red, we would pass 
0x00FF0000. In the following example we set a green fog color: 
 
// Setting the Fog Color 
pDevice->SetRenderState ( D3DRS_FOGCOLOR , 0x0000FF00 ); 

 
 
7.10 Fog Types 

DirectX can provide fog at the per-vertex level or the per-pixel level. We will usually use either one or 
the other although if the hardware supports both types, we could enable both simultaneously (although 
there is little point in doing so).  
 
7.10.1 Vertex Fog  

Vertex fog is typically the least desirable fog type because it is calculated at the vertex level -- much like 
vertex lighting. This means that it suffers from many of the same problems as vertex lighting (Chapter 
5). Vertex fog is performed in the DirectX transformation pipeline, so if you are not using the pipeline, 
you will need to calculate the fog factors for each vertex yourself and store them in the alpha component 
of the vertex specular color.  
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When vertex fog is enabled, the pipeline calculates the fog factor for each vertex. This is typically quite 
expensive, especially when using one of the exponential fog models. By default, this fog factor is 
calculated using the view space Z component of a vertex as the distance variable in its equations. Note 
that this is not the true distance from the vertex to the camera; it is only the Z displacement. However 
the view space Z component is convenient because it is already available to the pipeline because we 
have a ‘W-friendly’ projection matrix. This means that our projection matrix has a W column of           
(0, 0, 1, 0) -- which is a Z identity column (Chapter 1). Recall that a view space vertex multiplied with 
our projection matrix will have its Z component copied into the W component of the output vector 
where it can be used by the fog calculations (and W buffers incidentally). If for some reason the 
projection matrix you are using does not have a normalized W column of (0, 0, 1, 0) you will need to 
make your projection matrix W-friendly by scaling every other element of your matrix by the inverse of 
element m34 as shown below. 
 
Non-W-Friendly matrix where ‘e’ does not equal 1: 
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To force the matrix to be W friendly, divide all elements by element m34 (‘e’) and set m34 to 1: 
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All of the projection matrices we have used in our applications, and the projection matrices returned by 
the D3DXMatrixPerspectiveLH function, are W-friendly matrices. They will not need to have this 
process applied to them. 
 
When using the view space Z component as the distance for fog factor calculations, rotational artifacts 
may result. This is because the view space Z component only tells us the depth of the vertex along the Z 
axis and not the true distance. When the camera rotates, a vertex Z component can move in and out of 
the fog zone. Fig 7.14 demonstrates the problem. 
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Figure 7.14 
 
In Fig 7.14, the light purple boxes show where the fog starts and ends with respect to the camera. 
Objects inside the purple boxes will receive fogging to some degree. The image on the left shows our 
camera before it has been rotated. Using the view space Z component we can see that object 1 is not 
considered to be inside the fog zone. This is because we have set the fog to start at a certain distance 
from the camera and the view space Z component of object 1 is not large enough to be considered inside 
the fog zone. The problem here is that we are only considering the Z component of the object and not its 
true distance (which would account for the X and Y offsets in view space also). If you draw a line from 
the camera to object 1 in the left diagram and then rotate object 1 about that line such that it was now 
directly in front of the camera, you should be able to see that it does indeed have a distance from the 
camera which is larger than the fog start distance. Thus it should be contained inside the fog zone. 
However, since we are only using the view space Z component as the distance, it is not. Now perhaps 
we could accept this flaw, but note what happens if the camera was to rotate left 45 degrees. It is now 
facing object 1 as shown in the image on the right. The Z depth of object 1 (tilt your head to the left 
when looking at the diagram to see view space) is now greater than our fog start distance and the object 
would be fogged. The unfortunate result is that as we rotate the camera, objects seem to suddenly pop in 
and out of the fog. 
 
Some hardware supports an additional render state that instructs the pipeline to calculate the true 
distance from the camera to the vertex rather than the view space Z depth. This eliminates the rotational 
artifacts at the cost of performance. This is called range based fog. Range based fog is only supported 
for the vertex fog state.  
 
After the pipeline has calculated the fog factor for each vertex and stored it inside the alpha component 
of the specular color, if Gouraud shading is enabled, the fog factor is interpolated across the face of the 
polygon just like any other color/alpha value stored in a vertex. This is later used to generate the fogged 
color for each pixel on the surface. 
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Enabling Vertex Fog 

To enable vertex fog we will set a render state and specify the fog model we would like to use. Before 
we do this, we should check the RasterCaps member of the D3DCAPS9 structure returned by the 
IDirect3DDevice::GetDeviceCaps function for the D3DPRASTERCAPS_FOGVERTEX flag. If it is set, 
then the device supports vertex fog. 
 
D3DCAPS9 Caps; 
pDevice->GetDeviceCaps( &Caps ); 
 
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGVERTEX ) 
{ 
 // Vertex Fog is Supported 
} 

 
Once we know that vertex fog is supported, we enable it by setting the D3DRS_FOGVERTEXMODE render 
state and specifying a member of the D3DFOGMODE enumerated type as the second parameter to the 
function. The D3DFOGMODE has four members which allow us choose the fog model used to calculate the 
fog factor. These members are shown below. 
 
typedef enum _D3DFOGMODE  
{ 
    D3DFOG_NONE = 0, 
    D3DFOG_EXP = 1, 
    D3DFOG_EXP2 = 2, 
    D3DFOG_LINEAR = 3, 
    D3DFOG_FORCE_DWORD = 0x7fffffff 
} D3DFOGMODE; 
 
D3DFOG_NONE is the default setting when the device is created. Essentially it means that vertex fog is 
disabled. We can enable vertex fog by choosing one of the three fog models: D3DFOG_EXP, D3DFOG_EXP2 
or D3DFOG_LINEAR. We will discuss the three fog models in detail shortly. 
 
The following code snippet enables vertex fog using the linear fog model. Note that we specify two view 
space distances. The first specifies the minimum distance a vertex would need to be from the camera in 
order to be influenced by fog (D3DRS_FOGSTART). The second specifies the distance at which a vertex 
would be fully fogged (D3DRS_FOGEND). Notice that we also check for range fog support and enable it 
when available. This means that each vertex will have its true distance from the camera used to calculate 
the fog factor rather than the view space Z component (at a higher performance cost). 
 
D3DCAPS9 Caps; 
pDevice->GetDeviceCaps(  &Caps ); 
 
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGVERTEX ) 
{ 
   pDevice->SetRenderState (D3DRS_FOGENABLE  , TRUE ); 
   pDevice->SetRenderState (D3DRS_FOGCOLOR  , 0x00AAAAAA ); 
   pDevice->SetRenderState (D3DRS_FOGVERTEXMODE , D3DFOG_LINEAR ); 
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   if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGRANGE ) 
   { 
    pDevice->SetRenderState (D3DRS_RANGEFOGENABLE , TRUE ) 
   } 
 
   float fStart = 100; 
   float fEnd   = 1000; 
 
   pDevice->SetRenderState (D3DRS_FOGSTART, *(DWORD*) (&fStart) ); 
   pDevice->SetRenderState (D3DRS_FOGEND,   *(DWORD*) (&fEnd) ); 
} 

 
There are a few noteworthy items regarding the above code. First of all, we are checking the 
D3DPRASTERCAPS_FOGRANGE flag against the RasterCaps member of the D3DCAPS9 structure to see if 
the hardware supports range-based vertex fog. If it does, we enable it using the D3DRS_RANGEFOGENABLE 
render state. Next, because we are using the linear fog model, we must also specify the fog start and fog 
end values described above. The linear fog model applies fog to objects such that fog intensity increases 
linearly between these two distances. We will discuss these two values in more detail when we cover the 
fog models, but it is worth taking note of the way the values are passed into SetRenderState. The 
SetRenderState function expects a DWORD as its second parameter, but our values need to be floats 
when we use fog. Therefore, we cast the address of the float to a DWORD pointer and then de-reference 
the result.  
 
 

7.10.2 Pixel Fog (Table Fog) 

Pixel fog calculates the fog intensity for each pixel rather than each vertex and provides much better 
looking fog effects. Thus, if pixel fog is available on the current hardware we will usually want to use it 
instead of vertex fog. Pixel fog uses many of the same settings as vertex fog. For example, we still set 
the fog color using the D3DRS_FOGCOLOR render state and we can also use the same three fog models: 
linear, exponential and squared exponential. The fog factor calculations are exactly the same, only they 
are performed on a per-pixel basis in the driver instead of a per-vertex basis in the transformation 
pipeline.  
 
The idea of calculating a per-pixel fog factor raises obvious concerns about performance. To address 
such concerns, the driver builds a lookup table containing fog factors for a number of fixed distances. 
When the fog factor for a pixel is needed, the view space Z depth of the pixel is used to look up a fog 
factor that has been pre-calculated for that depth and stored in the table. This concept has led to pixel fog 
commonly being referred to as table fog.  
 
 
Enabling Pixel Fog 

To determine whether or not a device supports pixel fog, we check the RasterCaps member of the 
D3DCAPS9 structure for the D3DPRASTERCAP_FOGTABLE flag. If it is set, then we can enable pixel fog by 
setting the D3DRS_FOGTABLEMODE render state to a member of the D3DFOGMODE enumerated type, 
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describing which of the three fog models we would like to use. Also, remember that whether we are 
using vertex or pixel fog, we must always have the D3DRS_FOGENABLE render state set to TRUE in order 
for fog calculations to be performed.  
 
We have one more thing to consider if we intend to use the linear fog model with pixel fog. To alleviate 
fog-related graphic artifacts caused by uneven distribution of z values in a depth buffer, most hardware 
devices will use the view space Z component of a vertex to produce an eye relative depth value that can 
be used to lookup the fog factor for that depth. You will recall that the view space Z component is 
preserved in the W component of the vector output from the projection matrix (see Chapter 1). If eye 
relative depth calculations are supported by the device, we can describe the FogStart and FogEnd 
parameters for the linear fog model using view space units (just as we did when setting up the linear fog 
model for vertex fog). However, if the hardware does not support the use of W-based fog, then we will 
need to specify the FogStart and FogEnd parameters in device coordinates (depth buffer coordinates) in 
the range of [0.0, 1.0]. This will only need to be done if we are using the linear fog model because the 
exponential and squared exponential fog models do not use the FogStart and FogEnd render states. We 
can check the RasterCaps member of the D3DCAPS9 structure to see if the D3DPRASTERCAPS_WFOG flag 
is set. If so, then the preferred W-based fog will be supported and used automatically -- provided we are 
using a W-friendly projection matrix. 
 
There is also a D3DPRASTERCAPS_ZFOG flag that can be set in the RasterCaps member. One might 
assume that if W-based fog was not available, then Z-based fog would be supported. But the relationship 
is a little more complex. Although a W-based fog capable device will always use W-based fog by 
default, this will only be possible if we have a W-friendly projection matrix. If we do not, then Z fog 
will be used instead as a next best option for pixel fog. In this case, we must use the [0, 1] distance range 
for FogStart and FogEnd. 
 
It is possible that a device may support W-based fog, but not support Z-based fog as a backup. In such a 
case, we must be absolutely sure that we set a W-friendly projection matrix in order for fog to work 
correctly. Note that if pixel fog is supported, at least one of these two fog types will also be supported. 
 
The following code enables pixel fog using the linear model for the fog factor calculations. We also see 
how to convert our fog start and fog end distances into the [0, 1] range if W-based fog is not supported 
(where Z-based fog will be used automatically). We assume that the projection matrix is W-friendly. 
 

D3DCAPS9 Caps; 
pDevice->GetDeviceCaps( &Caps ); 
 
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGTABLE ) 
{ 
 float fStart = 100; //Fog starts at 100 from the camera 
 float fEnd  = 1000; //Fog reaches full intensity at a distance of 1000 units 
 
      pDevice->SetRenderState (D3DRS_FOGENABLE  , TRUE ); 
 pDevice->SetRenderState (D3DRS_FOGCOLOR  , 0xAAAAAA ); 
 pDevice->SetRenderState (D3DRS_FOGTABLEMODE, D3DFOG_LINEAR ); 
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      // if W fog is not supported we need start/end distances in device units 
      if ( !(Caps.RasterCaps & D3DPRASTERCAPS_WFOG) ) 
      { 
    fStart /= fFarPlaneDistance ; 
    fEnd   /= fFarPlaneDistance ;  
      } 
 
      pDevice->SetRenderState (D3DRS_FOGSTART, * (DWORD*) (&fStart) ); 
 pDevice->SetRenderState (D3DRS_FOGEND,   * (DWORD*) (&fEnd) ); 
} 

 
In the above code we enable fog, set the fog model to linear, set the fog type as table (pixel) fog, and 
check to see if the device is going to use W-based fog or not. If it is not, then we need to divide our fog 
distances by the far plane distance specified when we built our projection matrix. This only needs to be 
done if we are using a linear fog model. 
 
In the next example, we will look at some code that sets up fog using the exponential model. The code 
will try to use pixel fog if it is supported on the current device and fall back to vertex fog if it is not. 
Notice that when we use either the exponential or squared exponential model, we no longer specify start 
and end distances. Instead we specify a fog density value between 0.0 and 1.0. This is used as a weight 
in the exponential fog formulas used to calculate the fog factors. We will look at these equations in the 
next section. 
 
D3DCAPS9 Caps; 
pDevice->GetDeviceCaps( &Caps ); 
float fDensity = 0.6;  
 
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGTABLE ) 
{ 
      pDevice->SetRenderState (D3DRS_FOGENABLE  , TRUE ); 
 pDevice->SetRenderState (D3DRS_FOGCOLOR  , 0xAAAAAA ); 
 pDevice->SetRenderState (D3DRS_FOGTABLEMODE    , D3DFOG_EXP ); 
 pDevice->SetRenderState (D3DRS_FOGDENSITY , * (DWORD*) (&fDensity) ); 
} 
else 
if ( Caps.RasterCaps & D3DPRASTERCAPS_FOGVERTEX ) 
{ 
      pDevice->SetRenderState (D3DRS_FOGENABLE  , TRUE ); 
 pDevice->SetRenderState (D3DRS_FOGCOLOR  , 0xAAAAAA ); 
 pDevice->SetRenderState (D3DRS_FOGVERTEXMODE   , D3DFOG_EXP ); 
 pDevice->SetRenderState (D3DRS_FOGDENSITY , * (DWORD*) (&fDensity) ); 
} 

 
The density value is used to scale the vertex or pixel distance values when either the EXP or EXP2 fog 
models are enabled. A value of 0.0 equates to no fog being applied to the scene at all. A value of 1.0 
means everything in the scene will be completely fogged. Values in between allow us to control where 
the fog starts (at least at a significant intensity). It is often necessary to experiment with a few different 
values to find the density level that best suits your scene. When the device is first created, the default 
density is 1.0 and everything will be fogged. 
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7.11 Fog Factor Formulas 

When using either fog type (vertex or pixel) we will specify the model that is used to calculate fog 
factors. Each model calculates the way fog intensity increases with distance in a different fashion. There 
are three equations that we can choose from and they are selected by passing in a member of the 
D3DFOGMODE enumerated type when setting the D3DRS_FOGVERTEXMODE or D3DRS_FOGTABLEMODE. The 
default mode for both is D3DFOG_NONE which means that no fog model is being used. Our options are: 
 
7.11.1 Linear Fog (D3DFOG_LINEAR) 

ff

f

startend
dend

f
−

−
=  

 
f         = Resulting Fog Factor. 
startf  = FogStart value. 
endf   = FogEnd value. 
d        = Distance. 
 
Linear fog is the fastest but least visually appealing model available. In the formula, f is the fog factor 
that is used by the pipeline to control the blending of the vertex/pixel color with the fog color. The 
calculation also uses the start and end values set by the application to linearly distribute fog to objects 
between those distances.  
 
If this equation is used for table fog and W-based fog is active, then the start and end values will be view 
space distances and the pixel distance d will be the view space z component of the pixel (interpolated). 
If W-based fog is not being used, then the start and end values will be device coordinates (depth buffer 
coordinates) in the range of 0.0 to 1.0 and the distance d will be the depth of the pixel in depth buffer 
coordinates. 
 
If this equation is used for vertex fog, then the start and end distances will be specified by the 
application in view space units. If range-based vertex fog is enabled, then the vertex distance d will be 
the actual distance between the camera and the vertex. Otherwise d will be the view space Z component 
of the vertex. 
 
The linear model does not accurately represent how we perceive fog density to change over distance. In 
real life, as the distance between an object and the viewer increases, the density of the fog appears to 
increase exponentially. Therefore, for more realistic fog we would use the more performance heavy 
exponential or the squared exponential fog model.  
 
When we plot this function as a graph, we see a diagonal line demonstrating that fog density increases 
linearly and predictably with distance. Fig 7.15 uses a fog start value of 0.0 and a fog end value of 200. 
We plot for distances along the X axis in 10 unit increments from 0 to 210.  
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Figure 7.15 
 
Note that the fog factor is 0 when the object is far away (totally fogged) and 1.0 when the object is very 
close to the camera (no fog). If you read the line from right to left instead of from left to right, you can 
more easily visualize how fog increases with distance under the linear fog model.  
 
At first it may seem counterintuitive to think of the fog factor as being 0 when an object needs to have 
total fog applied and 1.0 to have no fog applied. However, recall that the fog factor as used in the 
blending equation is an inverse. When the fog factor is zero, then none of the original color is used and 
all of the fog color is used; if the fog factor is 1 then all of the original color is used and none of the fog 
color is used. If the fog factor is between 0.0 and 1.0 then some degree of color blending takes place. 

 

7.11.2 Exponential Fog (D3DFOG_EXP) 

Unlike linear functions, where the graph increases or decreases uniformly with respect to distance, 
exponential function graphs have abrupt and steep changes. Exponential functions generally take the 

form xaxf =)( .  In this formula, a is a real number that is referred to as the base of the exponential 
function. This can be any number that fulfills the requirements of the function. x is the number we pass 
into the function which will be used as the exponent. 
 
When discussing exponential functions, there is one very important number that can be used as a base. 
This special number is called the natural base and is represented by the symbol e. When an exponential 
function uses the natural base, it is referred to as the natural exponential function or sometimes just 
the exponential function -- which just goes to show just how significant it is. The natural base is 
approximately 2.7182818284590452354.  
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The reason the natural base and the natural exponential function are so important is that they help to 
accurately model rates of change. The natural exponential function has been used to predict the rate at 
which populations expand, the effect of interest rate increases and decreases on investment, and more 
importantly to this discussion, the rate at which fog density changes over distance. When using the 
exponential fog model, we no longer pass in fog start and end distances, but instead pass a fog density 
value in the range [0.0, 1.0]. Smaller density values lead to a less dense fog and vice versa.  
 

 
 

Figure 7.16 
 
By altering the density value we can shape the intensity curve. We see in Fig 7.16 that although fog 
intensity varies over the view space range of 200 units, the fog intensity increases rapidly in the first 80 
view space units. Objects situated at view space distances greater than 80 will receive almost total fog. 
This provides much greater control over modeling the way distance affects fog intensity. Contrast this 
with the D3DFOG_LINEAR mode where intensity increases rigidly in direct proportion to distance. 
 
When the D3DFOG_EXP model is used for vertex or table fog mode, the following formula is used. This 
calculation is more expensive than the linear model fog factor calculation. 
 

densityde
f

*

1
=  

 
f           = Resulting Fog Factor 
e          = Natural Base 
d          = Distance 
density = Application specified density in the range [0, 1] 
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7.11.3 Exponential Squared (D3DFOG_EXP2) 

Our final fog model is very similar to the previous model. It is also the most expensive performance-
wise. The difference is that it squares the exponent in the denominator of the equation. Once again we 
will want to experiment with the density value in order to find a fog curve that suits our application. The 
fog factor is calculated using the following equation: 
 

2
)*(

1
densityde

f =  

 
f           = Resulting Fog Factor 
e          = Natural Base 
d          = Distance 
density = Application specified density in the range [0, 1] 
 
 
If you spend some time examining your workbook for this lesson, you will have an opportunity to 
examine these various fog models in action. Try to experiment with some of the different fog models 
and associated settings in the various lab projects. Look at the results of fog in your indoor scenes as 
well as your outdoor scenes. Experiment with modifying the position of your far plane and see what 
effects this has on frame rate.  
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Conclusion 

In this lesson we have examined a number of important new techniques. With our discussions in Chapter 
6, and again in this lesson, we now have a very strong understanding of the various blending options 
available in DirectX Graphics. We know how to use color and alpha data in vertices, materials, 
constants, and textures. 
  
We also know how to configure our pipeline to produce any number of transparency based effects. 
These are the bedrock concepts upon which all of our important special effects will be based. From 
magic spells, to fire, to explosions, we will be ready to immediately tackle all sorts of special effects 
programming techniques with little effort. 
 
To wrap things up, we took a look at adding fog to our scenes to add mood and atmosphere and to 
optimize engine performance. Configuring the pipeline to add fog was a relatively simple process, so 
you should have no trouble adding it to your scenes in the specified workbook exercises. 
 
Please make sure that you spend time examining the workbook projects for this week. In addition to the 
implementations of the concepts discussed here, as usual, you will also find a good deal of discussion on 
other relevant topics in 3D graphics programming. We will look at geometry manipulation, polygon 
splitting, ray intersections, screen space polygons, and much more. You will find this to be a very 
exciting lesson, so take your time, and enjoy the new coding techniques you learn. They will prove to be 
very valuable as we move forward into new subject areas as we finish up this course and prepare for the 
next course in the series.   
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