Graphics Programming
with Direct X 9
Part 1

e-Institute Publishing, Inc.

©Copyright 2004 e-Institute, Inc. All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system without prior written permission from e-Institute Inc.,
except for the inclusion of brief quotations in a review.

Editor: Susan Nguyen
Cover Design: Adam Hoult

E-INSTITUTE PUBLISHING INC
www.gameinstitute.com

Gary Simmons and Adam Hoult. Graphics Programming with Direct X: Part |

All brand names and product names mentioned in this book are trademarks or service marks of their
respective companies. Any omission or misuse of any kind of service marks or trademarks should not be
regarded as intent to infringe on the property of others. The publisher recognizes and respects all marks
used by companies, manufacturers, and developers as a means to distinguish their products.

E-INSTITUTE PUBLISHING titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Sales Department at
sales@gameinstitute.com

Table of Contents

CHAPTER ONE: 3D GRAPHICS FUNDAMENTALS

INTRODUCTION

1.1 GEOMETRIC MODELING

1.1.1 GEOMETRY IN TWO DIMENSIONS......uuuttiiiiiiiiiitrtteeeeeeeeiirreeeeeeeeetisaeeeeeeeeeeisrereeeeeeeatsreseseseeeaetsrsseseeeeeeesssseeeeeeeensrrseeeens
1.1.2 GEOMETRY IN THREE DIMENSIONS......cetiiiiiiittttteeeeeeeeiirreeeeeeeeetiisseeeeeeeeeeisreseseeeessttsssseseseesaitsssseseeeeeaesssseseeesennsisrseeees
1.1.3 CREATING OUR FIRST IMESH........cittiuutiieiieeiieieeeteee e e eeeaeeeeeeeeseesaaaaeeeeeessesaateseeesssssassaseeesseesassasseeeesessanraaseeeeessnsnsarseeeess
) VA 212 i () 2 SRR
1.1.5 POLYGON WINDING ORDERcccotiiuuutiieeieeiiiiueeteeeeeseesaeeeeeeesseesssaseeeesssesissseseeesssssissssseesssssssssssseesssssmsassseesessmmsrssseeeees

1.2 THE TRANSFORMATION PIPELINE

1.2.1 TRANSLATIONoiiiutiiteeitteeeeeteeeeetteeeeeteeeeeeaeeeeeaeaeeeetaeeeeesseeeeasssseeanssseeaasssaeeaassseeansseseeessssseasssseeansssseaasssesennssseeasreeeannes
T.2. 2 ROTATION ...ttt e eeett et ee e e ettt e e ettt e e eeaae e e e etaeeeeetseeeeeaasaeeentseeeeasssaeeaassseeanseeeeeassseeeasssseeansesseeassseseanssseeasreeeannes
1.2.3 VIEWING TRANSFORMATIONS ... cuuttieiittieeeitteeeeiuteeeatreeesaesseeesssesassseseassssssssssssessssesessssessssssssssssssssassssessssssessssssesesnnes
1.2.4 PERSPECTIVE PROJECTIONotiiiiiiiieitiieeeittteeeetteeeetteeeeesseeeeatsseseasssesaassssssssessssaasssesesssssssesssssasnssesessssssssssssesesnssesesnnns
1.2.5 SCREEN SPACE IMAPPINGuuttieiiiiieeeiteeeestteeestteaeatseeeasssaeeassssesassssessasssssesssssssasssssesssssseessssssessssssssassssesssssseesssssesennsns
1.2.6 DRAW PRIMITIVE PSEUDO=CODEccuttiiiiiiieeiiieeeeiiieeeseteeesssseseassseeessssseesssssesssssssssassssesssssssesssssssssssssessssssessssssesennsns

1.3 3D MATHEMATICS PRIMER

L.3L1 VECTORS .ottt ettt e ettt e e e e e ettt e e e e e eeetaaaeaaaeeeeeassaaaaeeeeeassesesaeeeeeaassssaseeeeeeaasssssesaeeeaannssasaeaeeeeannssraeeeens
VECtOr MAGRITUAE................ooeeeeeeee ettt ettt et ettt e e e et e eh et e e e e ee et e bt enb e enbeeseeeaeeene e ne et enes
Vector Addition and SUDITACIION.cccccuiiiiiieeeei ettt ettt et e e e ee e e
Vector SCalar MUItIDIICATION.............c...ccoueeeue ittt et ettt e et e st e s e e s tbeesabeestbeasbaeentaeensaeestaeansaeansaeensseenees
VeCtor INOFIIGLIIZALIONcccoeeeeii ettt ettt e e e e et e e e e e e et e e e e e e e e eaaeaeeeeeeeeinans
V@CtOF CFOSS PFOMUCT.............ccceeeeeee ettt ettt e et e e e e e e et e e e e e e e et e e e e e e e e e eaaeaeeeeeeeennans
VeCtOr INOFIIQIIZATION ... ettt et
V@CLOF DOE PFOGUCT ... e ettt

T.3.2 PLANES ...ttt ettt e ettt e e et e e ettt e e e aaaeeeeatseeeeaesaeeeeasseaaantbaeeaaesseeeaasaaeeaatbeeeaesseeeanasaeeantbeeeensaeeeannreeeantreeeanns

T.3.3 IMATRICES....cceeuttteeiitteeeetteeeesteeeestteeeastseaeaesseeassssaaaasssseeasssseesssseaaassseesasssssessssaesassssesassssesanssssessssssseanssseessssseessssesennnns
Matrix/Matrix MUtIDIICAIIONc..cccoiiiiiiiiiiieeee ettt ettt ettt ettt ens
Vector/Matrix MUItIDIICALIONcccoiriiiiiiiiiiiitee ettt ettt ettt ettt
3D ROTATION MAITICES ... ettt ettt e ettt e e e e e ettt e e e e e ettt e e e e e e e eaaaeeeeee s
TACHITLY MALFICES ..o ettt ettt a e et e et ekt e bt e et e ee e ee e e et e bt e et emteeneeeeeeese e st enteenseenneaneas
Scaling and SREAVING MALFICEScc.cceeueieeeieee ettt ettt ettt e e ekt e bt et eseeeeeeeeeesaee bt e et eneeeneeaneenneens
MATFTX CONCALETALION ... ettt e ettt e e e ettt e e e e e e et e e e e e e e e et e eeseeeeaaareeeeeeeeannees
The TransSlation Problemccoovuuuuoiiieieeiie ettt et e e e e e e e eaaaees

1.4 D3DX MATH

T4 T DATA TYPES ...ttt ettt ettt e e ettt e e ettt e e e e taaeeeestbeeeeatsaee e aaseaaassseseaassseeeaassaeaassseseesssseseaassaeaansseseanssseeeasssaeeanssesanens
D3DXMATRIX ... e ettt
D3DXVECTORS3 ..o ettt e e e
D3DXPLANEcoeeeoeeeeeeee e e e et

1.4.2 MATRIX AND TRANSFORMATION FUNCTIONScuiiiiiiiitieiiieeeiitieeeeireeeesereeeesesaeeesssseseasssseesssssseassssssassssesssssessssssesennnns
DIDXMAIFIXMULLIDLY ..o ettt ettt ettt a e ettt e bt ettt e et e neeeat e et e te e te e teenteenaeeneas
DIDXMAFIXROIAIIONTXYZ] ..ottt ettt ettt ettt et e et ea e bt e aeeeae e et e ese e teeteenseenneeneas
D3DXMAFIXTVANSIATION ...ttt ettt e e e e ettt e e e e e e ettt e e e e e e e et aaeeeeeseeaaens
D3DXMatrixRotationYAWPIICHROIL...................cooooooiiie ettt e e
D3DXVECITIANSTOTI{ ..} oottt ettt ettt et e s et e e e bt bt et et e ee e s e s et e et et e eneeneeneensenesneens

1.4.3. VECTOR FUNCTIONSoutiiiiiitiie ettt e ettt eeee e e ettt e e ettt e e eetae e e e e taeeeeentaeeeeeaseaeeeassaeeensseeeeessseseasssseeesseaeenssseeeanssseeesseeeannes
CFOSS PPOAUCE ... e ettt ettt e et e e eaeee s

DOEPFOUCE ... e e ettt ettt 71

MAGRTEUAE. ..ottt ettt ettt et e bt e ss e e st e st e e as e s e e ss e es e es s e et s e b e e b e esb e e st e e seeeaeeeaeesseenbeesbeenbeeneens 72
INOFMQLIIZATION ... 72

1.5 THE TRANSFORMATION PIPELINE 11 73
1.5.1 THE WORLD IMATRIXuuuttiiiieeeeieeiiteeeeeeeeeeeitteeeeeeeeestsaeseeeeeeesassasseeeeeeeaeasssasaeseeseaassseseeeeeeaaaassssseeeeeesatssseseseeeansrraeeeeas 73
1.5.2 THE VIEW MATRIX ..coooiiiiiiiieeeeeeeeeeeeeeeeeeee ettt ettt ettt ettt et ee e e e e e e e e e e e e e e e ereeeaees 77
1.5.3 THE PERSPECTIVE PROJECTION IMATRIXcceiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt ettt e e e et et e e e e et eeeeeeeeeeeeeeeeeeeeeeereeeaees 80
AFDITAEY FIIA Of VIEW ...ttt ettt ettt et e et e et e et e et e ateen e et e eteente e e enaeanees 83

THE CO-TANGENL ...ttt ettt et et e et h e et ettt ee e e et e ket em e e et emeeem e e emeeneeenae e st emeeeneeaneenneen 85
ASPECTE RALIO..........oeceeeeee ettt et ettt e e e et e e s tb e e et e e e tb e e st e e tb e e st e etbeaasa e e tseemseeeasaeensaeeataeansaeentaeensaeensseenseeentes 88
CONCLUSION 91
CHAPTER TWO: DIRECTX GRAPHICS FUNDAMENTALS 93
INTRODUCTION 94
2.1 THE COMPONENT OBJECT MODEL (COM) 96
2. 1.1 COM INTERFACESceeeeiitttteeeeeeeeeciteeeeeeeeeeetaaeeeeeeeeeeeaaaeeeseeeeeatasaseeseeeeasssaaseseeeeaaasssssaseeeeasastsaseaeeeeeaattassaeseeeannsnrseeeens 96

2 B € 16 U5 1 TSRS 98
2.1.3 THE TUNKNOWN INTERFACEootiuutitieeeieeeeteeeeeeeeeeeeseaeeeeeeessessasseeesessaesssasssseesssasassssseesssssanssasseesssssessesseesesssnnrnnseeeess 99
2.1.4 LIFETIME ENCAPSULATIONcoiitiiiiuuttieieeeieeiteeeeeeeeeeeiaseeeeeeeseessssesseesssessssssstessssssssasssesesssssssessseessessnnrssssseesssssnssseeees 102

2. 1. S RETURN VALUES....otiiiiiiiitteteee et eeeeiteeeeeeeeeesaeeeeeeeseesiaaeseeeeseesatsasseeessaasssaasteesssesasaaseeeeeseaasaaaseseseessatsasesesessennranneeees 106
NON-HRESULT Returtn VAIUCSooooveeeeeee 110

2.1.6 BACKWARDS COMPATIBILITYoooeuutveiiieeiieiiteeeeeeeeeesiseeeeeeseeessssesseesssessssssssesssssssssssssesesssmmssssssessessmsisssssesessmmsrssseeeees 110
2.1.7 COM AND DIRECTX GRAPHICSuuvvveeieeeiieiiuireeeeeeeeeiiireeeeeeeeesiisseseseeeseasssseseseseeessisssesssesemmstsssssesesssmsisssssesessomsisseeees 112
2.2 INITIALIZING DIRECTX GRAPHICS 114
2.3 THE DIRECT3D DEVICE 117
2.3. 1 PIPELINE OVERVIEWcciutttiieeeeieiiutteeeeeeeeeeiitreeeeeeeeesitsaeseseeeeeaessessseeeeeatsssseseseeeaassssssaeeesaaatssseeeseesaaassseseseesanssnrseeeees 119
2.3 2 DEVICE IMEMORYoooiiiiiiiitieeeeeeeeeeitaeee e e e eeeettaeeeeeeeeestaaaeeeeeeeeeaasaaaeeeeeeeatatassaeeeeeeaestassaaaeeeeaatssseseeeeeaasssseseseeeentrrseneeas 120
FPAIME BUSFETS ...ttt ettt b ettt ettt bttt et 120
REII@ST RATE ... ettt ettt ettt et et h bt bttt e ekt e Rttt at e et eneenteeeneeee e enes 121

TRE FFOME BUSTET ...ttt ettt et e a e et e et eh e st e et e mt e ee e eae e et e bt en bt enseeseeeseenteenneeneeeneeenes 123

Y2 2 @ 7o 1 RSP SPS 123

2.3.3 SCREEN SETTINGS ..eeeiiiiiieuttteeeeeeeeeiuteeeeeeeeeesaaseeeeesseesisseseeesseaaiasssseeessaastassseesssesssasseeseeessassraseseseessnssrrsesesesssnsranseeees 124
FUIISCrEen MOde.oooooeee 124
WERAOWEA MO ..o e e e e e et e e e e e e e e ee e 126

2. 3.4 DEPTH BUEFFERSevtiiiiiiieeiteeee e et eeeeteeee e e e eeeeta et e e e eeestaaeeeeeeeeesataaeeaeeeeeasatsaseeeeeeeaastaaseeeeeeeaataaseseeeeeantsaseseseesenntanreeeens 126
TRE Z-BUSTEE ..ot ettt ettt ettt be e b e e sb e e sb e e ee e e bt e b e e b e e st st eat et e b e b e nb e enb e taeeteeereeneenneenes 128
Z-BUIFET TNACCUTACY ...t ettt ettt bttt ettt ettt ettt ettt 130

THE W-BULTET ...ttt ettt h et e et et b e bt ekt h bt st n et et b e bt ettt ettt 132

2.4 SURFACE FORMATS 132
2.4.1 ADAPTER FORMATSoiiietieeee ettt ettt e e e e e ettt e e e e e eeaaaae e e e eesesaasaaaeeeeseesasaaeeeeeeesannsaaseeeesessnnsesaeeeeessannraneeeeeas 134
2.4.2 FRAME BUFFER FORMATScoiiiiiiiiittteee ettt ettt e e ettt e e e e e e eaaataeeeeeseesansaaeeeeeeessnnnaaseeeesessnnsesaeeeeessannranaeeeeas 134
2.5 CREATING A DEVICE 135
2.5.1 PRESENTATION PARAMETERScooiuuttiiiieeiiiiitteeeeeeeeesitteeeeeeeeesasaeeeeeeesessssaessessseeasssaaseeseessasssaasssessessasrareeseeesssnraneeeeees 140
2.5.2 FORMAT SELECTION.......tttuttteiteeiieiuteeeeeeeeeesiareeeeesseesisseseeesesesssssesseesssaasssssteesseessssasseeseessassssrssesssssnnrrresesessonsranseeees 151
IR T 1S A D) 24 () 21 RSP 154
2.6 PRIMITIVE RENDERING 101 156
T B 2 15 DY, (0)) 1SS REUR PR 156

i

2.6.2 SHADING IMODESuvvviieiieiiiiieeieeeeeeeeitaeeeeeeeeeeeiaaeeeeeeeeeetaaaaaeeeeeeestasraaeeeeeeeaasssaeaeeeeeaesssseeeeeeeaaasssssaeeeeeaasstsreeeeeeeennnrees
FLAE SHAAC MO ...ttt ettt e e e e e e e e ee e e e e eeee e eeeeeeees
GOUTAUA SHAAC MO ...

2.0.3 VERTEX DIATA ..ottt ettt ettt et e e e ettt e e e e e ettt e et e eeseesaaaaaeeeeeseessnnaaseeeeeesasnnaasseeeeesannaaseeeeessennnneees
The Flexible Vertex FOTMAL (FVE)cccooioi oottt ettt ettt et e e ve e st e e s tve e sibaesabeesabaestseestbeenaseesaseensseenes

2.6 4 PLANAR POLYGONS ...ooiiiiiiiitieiiie e e oottt e e e e ettt e e e e e eeaaaeeeeeeeeesaaaaeeeeesaesaasaseeeseeessaaaseeeeeesaasaaaeeeseesssnssaareeseessennrrees

2.6.5 THE DRAWPRIMITIVE FUNCTIONSouvtviiiiiiiiiiiteeeeee ettt eeeeeeatee e e e e e eesaaaaaeeeesseessaaaseeseessessasaseeseesssnssaareeseessennnnees
The DrawPrimitivVeUP FUNCLIONooueeeeeeeeeeeeeeeee e

2.6.6 THE RENDERING PIPELINEcciiiiiiiiiiitieiieeeeieiiiteeeeeeeeeeeiaaeeeeeeeeeesiasseseeeeseesssssssseseeesessssseseeseesssssseeeessenssareseseseenninees

2.7 DEVICE STATES

2. 7.1 RENDER STATES ..ottt sttt ettt st sttt s h st a e bbb e s e e e st e b sa e en e sasene et ene
Z = BUJFO ING ..ottt ettt
LEGREING ..ottt h et h b bt et h e h et b ettt ettt ettt
Y 277 17 -SSP
)0 77 o 7 - USSP
BACK FACE CUITING. ...ttt ettt et ettt ettt e et e ae e et e bt et e esbeeseeseeenaeeeeenaeenes

2.7.2 TRANSFORMATION STATESoiuiiuiitiiiiiitiiesiitiite ittt sttt a bbb ea s bbb
TRE WOTIA MATFIX ..o ettt ettt ettt ettt h e et ettt oo ee e e e ekt e bt e bt emt e e s e nneenneeaeeneeenes
TRE VIEW MALFIX ... ettt ettt et e e e oo e et et e et et em e e e ekt ent e ettt n e ne e ne e et e enes
THE ProOJeCtion MALFiX...........cc.ccoecuieeiiuieiieeie e eeee ettt ettt et e e e e et e e ae e s beesbeesseeaseeateesseesseaseesbeenbeessesaaesseesneenseenes

2.7.3 SCENE RENDERINGcutiuiiuieiiiieiieie sttt sttt ettt sttt st at ettt st h e sae st e ae st e b saeeb e eat e s et et e b saeeneeaeene et ennene
Frame/Depth Buffer CIEATINGcc.ccoivuiiieiieiieieeeeee ettt ettt s ettt et b e b e sbeesbesteesaeesaeeseense e
Beginning and ENAING SCEMESccccuccuiviiiiiiiiii ittt ettt ettt
PreSEnting the FFAME.............cc.ccoiiiiiiiieiieeee ettt ettt ettt ettt b et ettt ettt e bbbttt et et et e e e

CONCLUSION

CHAPTER THREE: VERTEX AND INDEX BUFFERS
INTRODUCTION
3.1 WORKING WITH DEVICE MEMORY

BULTIMEMORY TYPES ...ttt ettt ettt ettt e e et e e oottt e e e et e e e et e e e eeaaeeeeeateeeeeasaae e e taeseeesseeeeenssseeansseeeenssseseesssseeasreeeanes
VEAEO MEIMOTY ..ottt ettt ettt ettt ettt e bt e s s e e e e e s e ssebe e b e e sb e e sseesaeeaeeeseesseenseenseensenseenseans
AGP MEIMIOTY ..ottt ettt ettt ettt et ettt et e et e et e e st e e asee e e bt e e aseeeate e e aseeeat bt e kb e ettt e tt e et teetaeenteeetaeennee s
SYSTEML MEMIOTY ...ttt et ettt ettt e ettt e et e ettt e st e ettt e st e eate e e st e enteeemseeeateeenseesnbeeenseesaseesnseennnes
3.1.2 MEMORY POOL SELECTIONcccttieiitteeesirieeaiteeessireeeasssesessssseesssssssassssesssssssessssssssasssssssssssssesssssssassssesssssssesssssessansns
3. 1.3 DEVICE RESOURCES........uttieiitiiteiiitteeirieeeststeesessteesseseseassssesesasssaeasssseeassssessassssessssssssasssseesssssssesssssssassssesssssseesssssessansns

3.2 VERTEX BUFFERS

3.2.1 CREATING VERTEX BUFFERSuuiiiiiiiiiieieee et e et e e e e et e e eeaee e e eaeeeeeeaaeeeeeaeeeeenneeeeeareeeeanes
3.2.2 VERTEX BUFFER MEMORY POOLSooiiiiiiiiiiiie oot e e e e e e et e e eeaee e eenaeeeeeareeeenes
D3DPOOL _DEFAULT ..ottt ettt et ettt e ee e e e e st et et e me e e e e bt e bt en bt eseesneesaeeneeenaeenes
D3DPOOL MANAGED ..ottt et ettt e e ettt et et e a e et et e bt en e eeeesneenae e et e anes
D3DPOOL _SYSTEMMEMooouieiiieaeeeeeee ettt ettt ettt et ettt e e e e et e et e bt et es e eneesneenae e et e e enes
D3IDPOOL SCRATCH ..ottt ettt ettt ettt et e et e et e e et e st e bt et e en et eseeeneente e et e e e
3.2.3 VERTEX BUFFER PERFORMANCEcutiiiitiiiiiitiieeiiiteeeeeteeeesaseeeasaseeeasssseseassseesssassassssesesssssesssseseassssesesssssesssssesesnnns
Vertex BUSFEr REAA STALISTICS..............c..ccvecuieieeiieeie et ettt ettt ettt et e e e e e tseebe e be e b e essessaesseesseesseensesssessseseenseens
3.2 4 FILLING VERTEX BUFFERS........ccittiiiitiiieititeeeitteeeeitteeeettteeeetaeeeeetseeeasatseseaaasseeetseseasssesesasssaeansseseessssesesssseeeasseseanns
3.2.5 VERTEX STREAM SOURCES......ccceutteiirteeesiureeeaireeesseseeeasssesesssssessssssssassssesssssssessssssssasssssssssssssessssssssssssesssssssesssssesesnsns
3.2.0 DRAWPRIMITIVE......ccciittiieiiiieeeitteeestteeestteeestaeeesseseaeasssseeeasssaasassssesaasssesaassssesassssesansssessssssseesssssssassssesssssseessnsseeennsns

193
194
195

196
196
196
197
197
198

199

199
202
202
204
206
207
208
211
212
215
216

i1

3.3 INDEX BUFFERS

3.3.1 CREATING INDEX BUFFERS
3.3.2 DRAWINDEXEDPRIMITIVE
3.3.3 DrawlndexedPrimitiveUP
3.3.4 INDEXED TRIANGLE STRIPS
Degenerate Triangles

CONCLUSION

CHAPTER FOUR: CAMERA SYSTEMS

INTRODUCTION

4.1 THE VIEW MATRIX

4.1.1 VECTORS, MATRICES, AND PLANES REVISITED

The View Space PIanes..............c...cccoueeveveeveeeceeneainianens

The View Space Transformation (Under the Microscope)
The Inverse Translation Vector

4.2 VIEWPORTS

4.2.1 THE VIEWPORT MATRIX
4.2.2 VIEWPORT ASPECT RATIOS

4.3 CAMERA SYSTEMS

4.3.1 CAMERA MANIPULATION I
4.3.2 CAMERA MANIPULATION II
4.3.3 VECTOR REGENERATION
4.3.4 FIRST PERSON CAMERAS
4.3.5 THIRD PERSON CAMERAS

4.4 THE VIEW FRUSTUM

4.4.1 FRUSTUM CULLING
4.4.2 AX1S-ALIGNED BOUNDING BOXES (AABB)

Calculating an AABB
4.4.3 CAMERA SPACE FRUSTUM PLANE EXTRACTION

Normalizing a Plane...............ccccoocevoeioieioieniiiieeaen,

4.4.4 FRUSTUM EXTRACTION CODE
4.4.5 WORLD SPACE FRUSTUM PLANE EXTRACTION
4.4.6 FRUSTUM CULLING AN AABB

CONCLUSION

CHAPTER FIVE: LIGHTING

INTRODUCTION

5.1 LIGHTING MODELS

5.1.1 EMISSIVE ILLUMINATION
5.1.2 AMBIENT ILLUMINATION
5.1.3 DIRECT LIGHTING
Diffuse Light
Specular Light
5.1.4 THE BASIC LIGHTING EQUATION

5.2 DIRECTX GRAPHICS - THE LIGHTING PIPELINE

v

218

222
224
227
227
232

235

237
238
238

242
247
250
252

255

256
258

259

259
262
266
269
270

271

272
273
276
277
284
286
288
291

296

297
298
299

299
299
301
301
303
305

305

5.2.1 ENABLING DIRECTX GRAPHICS LIGHTING......cccuttiiiiutireeeuieeeeiteeeesiteeeeetsesessseeeesseseassssesesssesessseseessssesesssessanssesesnnns
Enabling Specular HIGRIIGRLScccoooueiciieieeie ettt ettt ettt et et et et b e e b e esbesteesaaesseeseenseenns
Enabling Global AMDient LIGRIINGccccoooiiiiiiiiiiiiie ettt sttt

5.2.2 LIGHTING VERTEX FORMATSuuttiiiiiiiieiiiieeeetteessitteeestteeesateeeaaseeaasssseseassssessssssseassssesessssseessssessassssesssssseessnsseeeansns
V@I EEX INOFIIAULS ... e ettt e e e ettt e e e e e ettt e e e e e e e e e e e e eeseaes

5.2 3 SETTING LIGHTS ...t e e e e e et e e e et e e e et e e e eateeeeenaeeeeeaeeeeeesaeeeeeseeeeenneeeeesreeeenes
0B e 1 7 A USSR

5.3 LIGHT TYPES

5.3 T POINT LIGHTS ..evttviiieee ettt ettt e ettt e e e e e et e e e e e e eeaaae e e e e e e seaaaaaaseeesseeassaaaseeesseenatsaseeeeseeanntaaneeeseeensnranreeeens
5.3.2 SPOT LIGHTS ...etteeiieee oottt e ettt e e e e e et a e e e e e e seeaaaaeeeeeeseasaaaaaseeeeseanssaaaseeesseenataaseeesseeanntaaseeeeeesnnnranreeeens
5.3.3 DIRECTIONAL LIGHTS .. .uuuttiiiietieiiiieeeee e e eeeeiae e e e e eeettte e e e e e e e eeaaaeeeeeeeseasaaaaaeeeesseeassaaaseeesseesatsaseeesseesnntaanseeeessnnnsanreeeeas

5.4 MATERIALS

5.4.1 SPECULAR AND POWERuuuiiiiiiiiiiiiiiie ettt ettt e et ettt e e e e e e aaa e e e e e e eeeaaaaaaseeeeeeeseatbareeeeeeeenstaareeeeeeeentarreeeees
5.4.2 MATERIAL SOURCESuuuttttiietieeiiiieeeee e eeeeeiiaeeeeeeeeeeetaraeeeseeeeestsseeeeeeeeaatsraseaeeeeaaiasasseeeeeeeaatssseeeeeeeaatsssseeeeeenasrrreeeens

5.5 DIRECTX VERTEX LIGHTING ADVANTAGES
5.6 DIRECTX VERTEX LIGHTING DISADVANTAGES
CONCLUSION

CHAPTER SIX: TEXTURE MAPPING
INTRODUCTION
6.1 TEXTURE MEMORY

6.1.1 TEXTURE FORMATScutiiiiiiitiieiieeitiesiteesteesteestteessteessseessseesssaeasseasseassseesssessseessseesssessssensssesseensseessssenssesnsseesssennes
Validating TEXtUre FOFIMALSc...c.cccveviieiieiieeeeeeeete ettt ettt et e e ae e beeabeesbeesseeaseesaeeseesseesseenseesseessesseeseens
Understanding SUTTACE FOFMALSc..ccvooveiuieiiiieeeieeeie e ettt ettt ettt et beesse s teesaeeeaeesbeasseesseessenseesseenseensesaeas

6.1.2 TEXTURES AND MEMORY POOLSutiiiiiiiiiieiiieiiteste ettt et ste et s e ettt eseaeestteesaaeesaeessseessaensseensseenssesasseensnennns

6.2 MIP MAPS
6.3 LOADING TEXTURES

6.3.1 D3DXCREATETEXTUREFROMEILEEX ...ttt ettt e e e ettt e e e e eeetaaa e e e e e e e eetanreeeees
6.3.2 D3ADXCREATETEXTUREFROMETILEccoiiiitiiiiiiiiiiieeeee ettt ettt e e e e ettt e e e s e st as e e e e s e sannsaaeseeeessennsaneeeeeas
6.3.3 D3DXCREATETEXTUREeetiiiiiiiuteetieeeeeeeeeeeeeeeeeeeeesaeeteeesesesssaasteeeessessaesaseeeessesssasseeeesesaanssaseeessessansassseesessnsranseeeeas
6.3.4 D3DXCREATETEXTUREFROMFILEINMEMORYEX .. .ooviiiiiiiiiiieeiiie ettt ettt e e et e e e e s ennanneeee s
6.3.5 D3ADXCREATETEXTUREFROMRESOURCEEXciiiititiiiiiiiieeiieeee ettt e ettt e e e ettt e e e e e s eenaaaneeeeas
6.3.6 IDIRECT3DDEVICE D :CREATETEXTUREuuvvviiiiieiiietiteeeeeeeeeeiiaeeeeeeeeeeeaaeeeeeeseeessssseseeesseesastsaseeessessssaasseesessssnsarreeees

6.4 SETTING A TEXTURE
6.5 TEXTURE COORDINATES

Vertex Texture COOFAINALESccccueeeeeee e ettt

6.6 SAMPLER STATES

6.6.1 TEXTURE ADDRESSING MODESccutiiiiiiiiiiiiiiiiiiiiieeite sttt et st s
Wrapping (D3DTADDRESS WRAP)c.couoiuiiiiiiiit ettt ettt
Mirroring (D3DTADDRESS MIRROR)coouoiiaeeeeeeeee ettt ettt ettt ettt e et e e e et enae e
Bordering (D3IDTADDRESS BORDER)ccooiiiiiai ettt ettt ettt ese et e e e nae e enes
Clamping (D3IDTADDRESS CLAMP)ccooouaiiaeeeeeeee ettt ettt ettt ettt ettt ettt eesaesaeesaeeaeeneeenes
Mirror Once (D3DTADDRESS MIRRORONCE)coovoiieiieieeeeeee ettt
Texture Coordinate Wrapping With the D3D DeEVICe..............ccccccuioiiiiiiiiiee ettt

6.6.2 TEXTURE FILTERINGoctiiiiiiitiitiiiieitetetente sttt ettt sttt ettt aesh ettt ae st eb e sbeeas et et eaesaesbesueeuee e ennene

Magnification/MIRIfICALION FIlEErSc..ccocueciiiiiiiieiieeeieee ettt ettt eae et e ettt e beebeesbeessessaesteesseenseenseens 391

No Filtering (D3DTEXE NONE)..........cccccooiiiiieiieieeieeeie ettt sae et sttt eseabeesbe et e etseetaesbaesbeessesssesaeesaeeseenseenes 392
Point Filtering (D3IDTEXE POINT)........cc.cociooiiiiit ettt sttt ettt ettt eteenbe et e e beensessaesseesseenseeneeenes 392
Bilinear Filtering (DIDTEXF LINEAR)ccccoootiiiiiiiii ettt ettt 393
Anisotropic Filtering (DIDTEXF ANISOTROPIC)ccccccooiiiiiiiiiiiieieieeeet ettt 394
Setting Minification and MagnifiCAtion FIIEFSccoiviioiiii ettt ettt ettt neees 396

0.0.3 ENADIING MIP FUAPSc..eeiieeeie ettt ettt ettt e bt e et et e e eae et e st et e enbeesaeeseesaeeneeeneeeneeenes 396

6.7 TEXTURE STAGES 399
6.7.1 TEXTURE COLOR........cetttutuuriieeeeeieitteteeeeeeeeeiaeeeeeeeeeesateeeeeeseeatsraseeeeeesaastaereseeessaassasaeseeesseasatsssseesseannntressseesssnnnranneeees 399
6.7.2 SETTING TEXTURE STAGE STATEeveeiiiiiiiiieeeeeeeeeeeeiteeeeeeeeeeeeuaaseeeeeesssssaasesssessessassessessssessssssseesssssnsssesssessssmnsanseeees 400
6.7.3 TEXTURE STAGE STATES ...etiiiiiiiettieeeeeeeeeeeiueeeeeeeeeesiaaeeeeeeseestsssseseseessssasseeseessasssssesseesssesirtsssseessssmssrsssesessssmnsranseeees 402
6.7.4 TEXTURE STAGE USAGE ...eeoiiiiiiiiiiieieee et eeeeieeee e e et ettt e e e e eeeetaaseeeeeeeeetaareeeeeeeeesaaareseeeeeeestaaraseeeseeesatseseseeeeenatarseeeeas 408
6.8 MULTI-TEXTURING 410
6.8.1 COLOR BLENDINGcceiitttttieeeeiiiiittieeeeeeeeeitreeeeeeeeeeitaeeeeeeeeesettaaaeeeeeeeaaetarseaaeeeeeaattsssaeseeeeastsssseseeeenaatsrseseseesantrrseeeens 413
6.9 COMPRESSED TEXTURES 420
6.9.1 COMPRESSED TEXTURE FORMATScooiiiiiiiitiiiie et eeecitie et eeeeete et e e e e ettt ae e e e e e eeetaaaeeeeeeeeeeaaraseeeeeeesntssaeseeeeeenntnnreeeens 421
Pre-multiplied AIDNa TeXtUFe FOFMALS.cc.oioieiieeee ettt ettt a ettt e et et e et enee e enes 422

6.9.2 TEXTURE COMPRESSION INTERPOLATIONcutttieiiieiutteeeeeeeeeiiaseeeeeeeeessesaeseeeessssssssssesessssssnssssseesssssmssessseesssssmsesseeeees 423
6.9.3 COMPRESSED DATA BLOCKS = COLOR DATA LAYOUT....ccoiiiiiiiiiiiei ettt et e e e e eenaaaee e e e e s ssnranneeeeas 424
6.9.4 COMPRESSED DATA BLOCKS = ALPHA DATA LAY OUT ...coiiiiiiiiiiiiieee ettt eeeatee e eeeaaee e e e e eeeaaaaeesesesesnnranneeeeas 428
6.10 TEXTURE COORDINATE TRANSFORMATION 432
Setting up the Texture TrANSOFIMALIONcc.coiii ittt ettt ettt et e et e eae bt et neeneeneenee s 434

6.11 THE IDIRECT3DTEXTUREY9 INTERFACE 436
6.12 THE IDIRECT3DSURFACEY9 INTERFACE 438
6.12.1 IDIRECT3DDEVICEY SURFACE FUNCTIONSceittiitittiieeeeeiiiitreeeeeeeeeiieeeeeeeeeeesaaeeeeeeeeeestsssereseseeesntsereseseeennstrreeeeees 439

6. 12.2 SURFACE TYPEScoiiiittiiieeeeeeeecte e et ettt e e e eeee e e e e e e eeettaaaeeeeeeeeetasaeaaeeeeeeatasaeaaeeeeeenasraseseeeeesantsraeseseeeaenterseeeens 442
6.13 D3DX TEXTURE FUNCTIONS 447
CONCLUSION 449
CHAPTER SEVEN: ALPHA BLENDING AND FOG 451
INTRODUCTION 452
7.1 ALPHA BLENDING 454
7.2 STORING ALPHA COMPONENTS 457
7.2.1 VERTEX ALPHA — PRE-LIT VERTICES.......cotttttttietiiiiiiteeeeeeeeeeeitaereeeeeeeeestaareeeeeeeeessssessseeeeesissereseseensntsrsesesesennsrsrseeees 457
T2 2 MATERIAL ALPHAcooiiuttteiieeeeeeeieeeee e e e eeeeae e e e e eeee e eeeeeeeeeseaaaseeeeeeeaattareaeeeeeeasaaseseseeeeesaasasesesseennatsaseseseeeanstareeeeees 459
7.2.3 VERTEX ALPHA — UNLIT VERTICESceottttuttttteeeieeiiitreeeeeeeeeeeitrereeeeeeeeesteseeseeseeessssessseseensisseseseseenssstsssesesesesnsrsrseeees 460
T.2.4 CONSTANT ALPHAooiuttteieeeeeeeeiiteeeeeeeeeeetteeeeeeeeeeetttreeeeeeeeesttssaeaeeeeeaettssaaaeeeeaaastssaseseeeeeaiasssseseeeenaassraeseseeeannterseeeens 462
7.2.5 PER-STAGE CONSTANT ALPHAouuvtiiiieeieiiitteeeeeeeeeeiitereeeeeeestttreseeeeeeeeeearaeeaseeeeeaassesesaeeeaatsrsseseeseeaatrrseseseeeasnrsrseeeens 462
T.2.0 TEXTURE ALPHAcootiiuttiiieeeeeeeecteeee e e e eeeeaae e e e e eeeeeaae e e e e e eeesttaaaeaeeeeeaetasaeaaeeeeeeattssaaeeeeeeaaasrsseeeeeenaantsraeseseeeannterseeeens 463
7.3 THE TEXTURE STAGE ALPHA PIPELINE 464
7.4 ALPHA BLENDING WITH THE FRAME BUFFER 469
7.5 ALPHA ORDERING 472
7.6 ALPHA TESTING 475

vi

7.7 TRANSPARENT POLYGON SORTING

7.7.1 SORTING CRITERIAccoouiiiiiiiiiiiiniiiiiiiiicieic e
Calculating the Polygon Center...............ccocuiiiciioiiiiinieiininenest e
Performance CONCEINScccocuiiiiiniiiiiiiititeee et

7.7.2 CHOOSING A SORTING ALGORITHMcooiiiiiiiiiiniiiiiiieiccieieceec e
The Bubble SOFL.........cc.cocueeiiieeieeee ettt
The QUICK SOFE ..ottt ens
Hash Table SOFHIRGcccoeieeiiei ettt

7.8 ALPHA SURFACES

7.9 FOG

T.9.1 ENABLING FOG ...uvviiiiiiiiiieiie ettt
7.9.2 SETTING THE FOG COLORcoooiiiiitiiiieee et eeeeeitteee e eeeeaaee e e e eeaanneee s

7.10 FOG TYPES

701 VEFtEX FOG.....cooeiviiaiiiiiiiiiiiieeitetee et
Enabling Vertex FOZccccooiviiiiiiiiiiiiiieeetit sttt
7.10.2 PIXEL FOG (TABLE FOG)....cutiiiiiiieiieiiee ettt
ENabling PiXel FOZcccooiiiiiiieeieeee ettt

7.11 FOG FACTOR FORMULAS

7.11.1 LINEAR FOG (D3DFOG_LINEAR)coitiiiiiiiteieieeieieeeee e
7.11.2 EXPONENTIAL FOG (D3DFOG_EXP)..ccuiiiiiiiniieiieiieeeieceseeeeeee e
7.11.3 EXPONENTIAL SQUARED (D3DFOG_EXP2)

CONCLUSION

477

480
480
481
482
482
483
486

489
491

493
493

494

494
497
498
498

501

501
502
504

505

vil

Chapter One

3D Graphics Fundamentals

e

Introduction

Games that use 3D graphics often have several source code modules to handle tasks such as:

e user input

resource management

loading and rendering graphics
interpreting and executing scripts
playing sampled sound effects
artificial intelligence

These source code modules, along with others, collectively form what is referred to as the game engine.
One of the key modules of any 3D game engine, and the module that this series will be focusing on, is
the rendering engine (or renderer). The job of the rendering engine is to take a mathematical three
dimensional representation of a virtual game world and present it as a two dimensional image on the
monitor screen.

Before the days of graphics APIs like DirectX and OpenGL, developers did not have the luxury of being
handed a fully functional collection of code that would, at least to a certain extent, shield them from the
mathematics of 3D graphics programming. Developers needed a thorough understanding of designing
and coding a robust 3D graphics pipeline. Those who have worked on such projects previously have
little trouble starting to use APIs like DirectX Graphics. Most of the functionality is not only familiar,
but is probably something they had to implement by hand at an earlier time.

Unfortunately, novice game developers have a tendency to jump straight into using 3D APIs without any
basic knowledge of what the API is doing behind the scenes. Not surprisingly, this often leads to
unexpected results and long debugging sessions. 3D graphics programming involves a good deal of
mathematics. Without a firm grasp of these critical concepts you will never fully understand nor likely
have the ability to exploit the full potential of the popular APIs.

This is a considerable stumbling block for students just getting started with 3D graphics programming.
So in this lesson we will examine some basic 3D programming concepts as well as some key
mathematics to help create a foundation for later lessons. We will have only one Lab Project in this
lesson. In it, we will build a rudimentary software rendering application so that you can see the
mathematics of 3D graphics firsthand.

Those of you who already have a thorough understanding of the 3D pipeline may wish to take this
opportunity to refresh your memory or simply move on to another lesson.

1.1 Geometric Modeling

During the process of developing a three-dimensional game, artists and modelers will create 3D objects
using a modeling package like 3D Studio MAX™, Maya™, or even GILES™. These models will be
used to populate the virtual game world. If you wanted to design a game that took place along the street
where you live, an artist would likely create separate 3D models for each house, a street model and
sidewalk model, and a collection of various models to represent such things as lamp posts, automobiles
or even people. These would all be loaded into the game software and inserted into a virtual
representation of the world where each model is given a specific position and orientation.

Non-complex models can also be created programmatically using basic mathematics techniques. This is
the method we will use during our initial examples. It will provide you with a better understanding of
how 3D models are created and represented in memory and how to perform operations on them. While
this approach is adequate for creating simple models such as cubes and spheres, creating complex 3D
models in this way would be extraordinarily difficult and unwise.

Note: 3D models are often referred to by many different names. The most common are: objects, models
and meshes. In keeping with current standard terminology we will refer to a 3D model as a mesh. This
means that whenever we use the word mesh we are really referring to an arbitrary 3D model that could
be anything from a simple cube to a complex alien mother ship.

A mesh is a collection of polygons that are joined together to create the outer hull of the object being
defined. Each polygon in the mesh (often referred to as a face), is created by connecting a collection of
points defined in three dimensional space with a series of line segments. If desired, we can ‘paint’ the
surface area defined between these lines with a number of techniques that will be discussed as we
progress in this course. For example, data from two dimensional images called texture maps can be
used to provide the appearance of complex texture and color (Fig 1.1).

The cube without textures The Mesh of a wooden crate

Figure 1.1

The mesh in Fig 1.1 is constructed using six distinct polygons. It has a top face, a bottom face, a left
face, a right face, a front face and a back face. The front face is of course determined according to how
you are viewing the cube. Because of the fact that the mesh is three dimensional, we can see at most
three of the faces at any one time with the other faces positioned on the opposite side of the cube. Fig
1.2 provides a better view of the six polygons:

\\\,,//- The cube is made up of 6 faces
Figure 1.2

To create a single polygon we will plot a series of points within a 3D coordinate system. The actual
shape of the polygon will become clear when we join those points together with lines (Fig 1.3).

- Theface is defined as
../"/ four points in 3D space

Figure 1.3

Plotting points within a coordinate system and joining these points together to create more complex
shapes is an area of mathematics known as Geometry. We begin by looking at some two dimensional
geometry and later move on to three dimensions.

1.1.1 Geometry in Two Dimensions

A coordinate system is a set of one or more number lines used to characterize spatial relationships.
Each number line is called an axis. The number of axes in a system is equal to the number of dimensions
represented by that system. In the case of a two dimensional coordinate system there will typically be a
horizontal axis and a vertical axis labeled X and Y respectively. These axes extend out from the origin
of the system. The origin is represented by the location (0, 0) in a 2D system. All points to be plotted are
specified as offsets along X or Y relative to this origin.

Fig 1.4 shows one example of a 2D coordinate system that we will be discussing again later in the
lesson. It is called the screen coordinate system and it is used to define pixel locations on our viewing
screen. In this case the X axis runs left to right, the Y axis runs from top to bottom, and the origin is
located in the upper left corner.

Origin (=0, Y=0)

“Pixel (50,90)
Y=90

Figure 1.4

Fig 1.5 shows how four points could be plotted using the screen system and how those points could have
lines drawn between them in series to create a square geometric shape. The polygon looks very much
like one of the polygons in the cube mesh we viewed previously, with the exception that it is viewed two
dimensionally rather than three.

'|_ A square polygon
created from 4 points

Figure 1.5

We must plot these points in a specific sequence so that the line drawing order is clear. We see that a
line should be drawn between point 1 and point 2, and then another between point 2 and point 3 and so
on until we have connected all points and are back at point 1.

It is worth stating that this screen coordinate system is not the preferred design for representing most
two dimensional concepts. First, the Y values increase as the Y axis moves downward. This is contrary
to the common perception that as values increase, they are said to get ‘higher’. Second, the screen
system does not account for a large set of values. In a more complete system, the X and Y axes carry on
to infinity in both positive and negative directions away from the origin (Fig 1.6).

=Y
Origin (0,0)
X +}{_h
Valid Screen
Coordinates
Y +Y
Figure 1.6

Only points within the quadrant of the coordinate system where both X and Y values are positive are
considered valid screen coordinates. Coordinates that fall into any of the other three quadrants are
simply ignored.

Our preferred system will remedy these two concerns. It will reverse the direction of the Y axis such that
increasing values lay out along the upward axis and it will provide the full spectrum of positive and
negative values. This system is the more general (2D) Cartesian coordinate system that most everyone
is familiar with. Fig 1.7 depicts a triangle represented in this standard system:

A

+Y

(30,30)

(:35,10)
-X +X
\"

A

10 -258)

Y

Figure 1.7

1.1.2 Geometry in Three Dimensions

The 3D system adds a depth dimension (represented by the Z axis) to the 2D system and all axes are
perpendicular to one another. In order to plot a point within our 3D coordinate system, we need to use
points that have not only an X and a Y offset from the origin, but also a Z offset. This is analogous to
real life where objects not only have width and height but depth as well.

Y

Figure 1.8

Fig 1.8 is somewhat non-intuitive. It actually looks like the Z axis is running diagonally instead of in and
out of the page (perpendicular to the X and Y axes). But if we ‘step outside’ of our coordinate system
for a moment and imagine viewing it from a slightly rotated and elevated angle, you should more clearly
be able to see what the coordinate system looks like (Fig 1.9).

Figure 1.9

There are two versions of the 3D Cartesian coordinate system that are commonly used: the left-handed
system and the right-handed system. The difference between the two is the direction of the +Z axis. In

7

the left-handed coordinate system, the Z axis increases as you look forward (into the page) with negative
numbers extending out behind you. The right handed coordinate system flips the Z axis. Some 3D APIs,
like OpenGL use a right-handed system. Microsoft’s DirectX Graphics uses the left-handed system and
we will also use the left-handed system in this course.

Left and Right Handed Cartesian Coordinate Systems

Y
A A

i
=X
i
Left Handed Right Handed
Figure 1.10

Note: To remember which direction the Z axis points in a given system:

1) Extend your arms in the direction of the positive X axis. (towards the right).
2) Turn both hands so that the palms are facing upwards towards the sky.
3) Fully extend both thumbs.

The thumbs now tell you the direction of the positive Z axis. On your right hand, the thumb should be
pointing behind you, and the thumb on your left hand should be pointing in front of you. This informs us
that in a left handed system, positive Z increases in front of us and in a right handed system positive Z
increases behind us.

To plot a single point in this coordinate system requires that we specify three offsets from the origin: an
X,aY and a Z value. Fig 1.11 shows us where the 3D point (2, 2, 1) would be located in our left-handed
Cartesian coordinate system.

2+

Point (2,2,1)
=1

X+

Figure 1.11

A coordinate system has infinite granularity. It is limited only by the variable types used to represent
coordinates in source code. If one decides to use variables of type float to hold the X, Y and Z
components of a coordinate, then coordinates such as (1.00056, 65.0234, 86.01) are possible. If
variables of type int are used instead, then the limit would be the whole numbers like (10, 25, 2). In most
3D rendering engines variables of type float are used to store the location of a point in 3D space. A
typical structure for holding a simple 3D position looks like this:

struct 3Dpoint
{
float x;
float vy;
float z;

1.1.3 Creating Our First Mesh

A mesh is a collection of polygons. Each polygon is stored in memory as an ordered list of 3D points. In
Fig 1.12 we see that in order to create a 3D cube mesh we would need to specify the eight corner points
of the cube in 3D space. Each polygon could then be defined using four of these eight points. The
following eight points define a cube that is 4x4x4 where the extents of the cube on each axis range from
-2 to +2.

A 3D cube defined by 8 3D points
+Y +7

P3=(2,2,2)

)
-X P1=(-2,2,-2)

1 H
gaay 2 TPY
PE=(-2,2,2)

P§=(-2,-2,2) /)

'f Pd=(2,2,-2)

+X

] ‘\ P7=(2,-2,2)

i *PF{&-E,-E}
[.
—

Y

-Z \....‘
Figure 1.12

We have labeled each of the 3D points P1, P2, P3, etc. The naming order selected is currently
unimportant. What is significant is the order that we use these points in to create the polygons of the
cube. The front face of the cube would be made up of points P1, P4, P8 and P5. The top face of the cube
would be constructed from points P1, P2, P3 and P4. And so on. You should be able to figure out which
points are used to create the remaining polygons.

Notice that the center of the cube (0,0,0) is also the origin of the coordinate system. When a mesh has its
3D points defined about the origin in this way it is said to be in model space (or object local space). In
model space, coordinates are relative to the center of the mesh and the center of the mesh is also the
center of the coordinate system. Later we will ‘transform’ the mesh from model space to world space
where the coordinate system origin is no longer the center of the mesh. In world space all meshes will
coexist in the same coordinate system and share a single common origin (the center of the virtual world).

10

Very often you will want to rotate an object around its center point. For example you might want a game
character to rotate around its own center point in order to change direction. We will cover the
mathematics for rotating an object later in the lesson, but for now just remember that in order to rotate a
mesh you will have to rotate each of the points it contains. In Fig 1.12, we would rotate the cube 45
degrees to the right by rotating each of the eight corner points 45 degrees around the Y axis. When we
rotate a point in a coordinate system, the center of rotation will always be at the origin of the coordinate
system.

Note: Game World Units

It is up to you, the developer, working with your artists to decide game unit scale. For example, you may decide
that 1 unit = 1 meter and ask your artist to design 3D meshes to the appropriate size to make this appear true.
Alternatively you might decide that 1 unit = 1 kilometer and once again, create your geometry to the appropriate
size. It is important to bear in mind that if you choose such a small scale, you may encounter floating point
precision problems.

A mesh could be 4x4x4 units like our cube or even 100x100x100 and look exactly the same from the viewer’s
perspective. It depends on factors like how fast the player is allowed to move and how textures are applied to the
faces. In the next image you can see two identically sized polygons with differently scaled textures. The polygon
on the right would probably look much bigger in the game world than the one on the left. As long as all the
objects in your world are designed to a consistent scale relative to each other, all will be fine.

11

1.1.4 Vertices

The vertex (the plural of which is vertices or vertexes depending on your locale) is a data structure used
to hold 3D point data along with other potential information. From this point on we will refer to each
point that helps define a polygon in a mesh as a vertex. Therefore, we can say that our cube will have 24
vertices because there are 6 polygons each defined by 4 vertices (6 x 4 = 24).

If you examine Lab Project 1.1, you will see that our vertex structure is defined as:

class CVertex

{

public:
// Constructors
CVertex (float fX, float fY, float £fZ);
CVertex () ;

// Public Variables for This Class

float %8 // Vertex X Coordinate
float Vi // Vertex Y Coordinate
float %8 // Vertex 7Z Coordinate

1.1.5 Polygon Winding Order

3D models will not usually be created programmatically but will be created within a modeling package
such as GILES™ or 3D Studio Max™. This allows us to create scenes with thousands or even millions
of polygons. Very high polygon counts often correlate to a reduction in application performance due to
the increased volume of calculations that need to be performed when drawing them. As a graphics
developer you will use a number of techniques to keep the number of polygons that need to be drawn in
a given frame to a minimum. Certainly you would not want to render polygons that the user could not
possibly see from their current position in the virtual world. One such optimization discards polygons
that are facing away from the viewer; this technique is called back face culling. 1t is assumed that the
player will never be allowed to see the back of a polygon. You should notice in our example that
regardless of the direction from which you view the cube, you will only be able to see three of the six
faces at one time. Three will always be facing away from you. For this reason, 3D rendering engines
normally perform a fast and cheap test before rendering a polygon to see if it is facing the viewer. When
it is not it can be discarded.

12

A 3D cube defined by 8 3D points
+Y +Z

P2=(-2,2,2) PI=(22,2)
’
-X P1=(2,2,-2)]
T

L o

+X

PE=(-2-2.2) X s K
P7=(2,2,2)
P5=(—2,—2,—2))') ; _*
i P8=(2,2,-2)
[o
Y o=
Z 4
Figure 1.13

Using Figure 1.13 as a reference you should be able to see how each vertex of every face is one of the
eight 3D positions of the cube stored in our code. The coordinate P1 is used to create a vertex in the left
face, the top face and the front face. And so on for the other coordinates. Also note that the vertices are
specified in an ordered way so that lines can be drawn between each pair of points in that polygon until
the polygon is finally complete. The order in which we specify the vertices is significant and is known
as the winding order.

Clochwise Winding
/'\\\\xi

4

Figure 1.14

So how does one determine which way a polygon is facing? After all, in our cube example, a face is
simply four points; we do not provide any directional information.

The answer lies in the order in which we store the vertices within our polygons. If you look at Fig 1.13

and then reference it against the code in LP 1.1, you will notice that the polygon vertices are passed in
using a clockwise order.

13

For example, the front face is made up of points P1, P4, P8 and P5. When viewed from in front of that
face this is a clockwise specification. It does not matter which vertex in the face begins the run. We
could have created the front face in this order: P8, P5, P1 and P4 and it would still work perfectly
because the order remains clockwise. This order is referred to as the polygon winding order. In DirectX
Graphics, polygons are assumed to have a clockwise winding by default (Fig 1.14) -- although you can
change this if desired.

Now look at the back face. It uses the vertex order P6, P7, P3 and P2. This is clearly counter-clockwise
so we will not draw it. Of course if we were to rotate the cube so that the back face was now facing us,
you would notice that the vertex order would then be clockwise. In this instance the back face would
now be rendered and the old front face would not.

1.2 The Transformation Pipeline

1.2.1 Translation

We can add offsets to the positions of the vertices of a polygon such that the entire polygon moves to a
new position in our world. This process is called translation. We translate an entire mesh by translating
all of its polygons by equal amounts.

In Fig 1.15 we define a 4x4 polygon around the center of the coordinate system (model space). We
decided to place our mesh in the virtual game world so that the center of the mesh is at world position
(0, 5, 0). If we add this value set to all vertices in the mesh then the center of our mesh is indeed moved
to that position.

Translation Y+

(-252) 2

-25-2) ¢

(25.2)
v i 7+
Jl:z 15 1_2)

Object Position (0,5,0)

(2.0.2)

(2.0-2)

Woarld Space Origin

Figure 1.15

14

In pseudo-code:

PositionInWorld.x = 0; PositionInWorld.y = 5; PositionInWorld.z = 0;
for (Each Polygon in Mesh)
for (Each Vertex in Polygon)
{
Vertex.x += PositionInWorld.x;
Vertex.y += PositionInWorld.y;
Vertex.z += PositionInWorld.z;

This is a transformation. We are transforming data from model (relative) space to world (relative) space.
The mesh center (and in turn, its entire local coordinate system) is now positioned at (0, 5, 0) in the
game world. You can assign each mesh its own position in the 3D world using this approach.

Note that this is not how we will implement a transformation in code. Rather than altering the polygon
data directly we will store the results of the operation in temporary vertices prior to rendering each
polygon. We will use a single mesh object defined in model space which never has its data changed.
This mesh can be shared by multiple objects types in a process called instancing (Fig 1.16).

class CObject

{

public:
CMesh *m pMesh;
float PositionX;
float PositionY;
float PositionZ;

}i

Assuming we wanted to have three cubes in our world we would simply create three separate CObject
instances. We will specify a position for each object by setting the PositionX, PositionY and PositionZ
member variables. The CMesh pointer can point to the same CMesh object in all three instances. For
each object in our scene we would do the following prior to rendering:

a) For each polygon of the mesh referenced by the object

b) Add the PositionX, PositionY and PositionZ values to the X, Y and Z vertex values.
c) Store the results in a temporary vertex list.

d) Render the polygon using the temporary vertices.

CMesh *MyMesh; // Pointer to the mesh containing our 4x4 polygon
CObject ObjectA, ObjectB, ObjectC;

ObjectA.m pMesh = MyMesh;
ObjectB.m pMesh MyMesh;
ObjectC.m pMesh = MyMesh;

ObjectA.PositionX = 0; ObjectA.PositionY = 5; ObjectA.PositionZ = 0;
ObjectB.PositionX = -6; ObjectB.PositionY = 0; ObjectB.PositionZ = 0;
ObjectC.PositionX = 4; ObjectC.PositionY = 0; ObjectC.PositionZ = -5;

15

At the center of Fig 1.16 we see a ghosted image of the model space mesh data. By adding the positional
offset of the object to the mesh vertices, we translate the object to the desired position in the 3D world.
Notice that it is the center of each object that moves to the resulting position. The vertices retain their
relationship to that center point. We have effectively moved the origin of the model space coordinate
system to a new position in the 3D world. Note as well the distinction between a mesh and an object.
The mesh is simply the geometry an object uses to represent itself. The object is responsible for
maintaining its own position in the 3D world.

Instances
¥ 4 A Position (05,0)

25,2
() ? 2.5.2)

(2.5,2) gZ*

BFosition (-6,0,0)

<)(G,IJ, 3

‘:‘ \c
",?: Pasition (4,0,-5)
e ST

Figure 1.16

The following functions demonstrate how object transformations might occur during each frame so that
we can redraw all of the objects in our world. DrawObjects loops through each object, and for each
polygon in the mesh, calls the DrawPrimitive function to transform and render it.

void DrawObjects ()
{
// transform vertices from model space to world space
for (ULONG i = 0; 1 < NumberOfObjectsInWorld; i++)
{
CMesh *pMesh = WorldObjects[i]->m pMesh;
for (ULONG f = 0; f < pMesh->m nPolygonCount; f++)
{
// Store poly for easy access
CbPolygon *pPoly = pMesh->m pPolygon[f];

// Transform and render polygon
DrawPrimitive (WorldObjects[i] , pPoly)

16

void DrawPrimitive (CObject* Object , CPolygon *pPoly)
{
// Loop round each vertex transforming as we go
for (USHORT v = 0; v < pPoly->m nVertexCount ; v++)
{
// Make a copy of the current vertex
CVertex vtxCurrent = pPoly->m pVertex|[V];

// Add world space position to transform to world space
vtxCurrent.x += Object->PositionX;
vtxCurrent.y += Object->PositionY;
vtxCurrent.z += Object->PositionZ;

// Do further pipeline transformations here which we have

// not covered yet but will shortly.

// By this point we will have 2D screen vertices so render
// to screen which we have not yet covered.

The transformation from model to world space occurs during every frame for each polygon that we
render. By adjusting the position of an object between frames we can create animation. For example,
one might make a space ship move through space by incrementally adding or subtracting offsets from
the CObject’s PositionX, PositionY and PositionZ variables each frame.

1.2.2 Rotation

To rotate a set of two dimensional points we will use the following formula on each point of the 2D
polygon:

NewX = OldX x cos(0) — OldY x sin(0)

NewY = OldX xsin(@)+ OldY x cos(0)

In these equations, OldX and OIdY are the two dimensional X and Y coordinates prior to being rotated.
cos and sin are the standard abbreviation for the cosine and sine trigonometric functions. The theta
symbol & represents the angle of rotation for the point specified in radians and not in degrees (most 3D
APIs, including DirectX Graphics, use radians for angle calculations).
Note: A radian is used to measure angles. Instead of a circle being divided into 360 degrees, it is
divided into 2 * pi radians. Pi is approximately 3.14159 and is equivalent to 180 degrees in the radian

system of measurement. Therefore there are approximately 6.28 radians in a full circle. 90 degrees is
equivalent to pi / 2 (1.1570796 radians) and so on.

Because many programmers prefer working with degree measurements, a macro can be created that will
convert a value in degrees to its radian equivalent:

fdefine DegToRad(x) (x *(pi/180))

17

+Y

-X +X

Y

Figure 1.17

We will need to feed each of the four vertices in Fig 1.17, one at a time, through the above rotation
formula to receive back our rotated vertices (Fig 1.18). The following code snippet demonstrates this:

float angle = DegToRad(45);

for (USHORT v = 0; v < pPolygon->m nVertexCount; v++)
{

CVertex 01ldVtx = pPolygon->Vertex([Vv];

CVertex NewVtx;

// Rotate the vertex 45 degrees
NewVtx.x = 01ldVtx.x * cos(angle) - 0ldvtx.y * sin(angle);
NewVtx.y Oldvtx.x * sin(angle) + 0ldvVtx.y * cos(angle);

// Vertex 1s now rotated and stored in NewVtx
// Use to draw polygon in rotated position

You might think of this rotation as rotating a point around the Z axis. While technically true that we do
not see a Z axis in the image, you can contemplate the 2D image in 3D. In this case the Z component of
each point is zero and the Z axis is pointing into the page as it was in the 3D Cartesian system discussed
earlier. Fig 1.18 shows the resulting points after rotating the polygon by 45 degrees:

18

A
+Y

Figure 1.18

The key point to remember is that in a given coordinate system, rotations are relative to the coordinate
system origin. You can see in Fig 1.18 that the vertices are rotated about the origin (the blue circle). This
is the center of rotation.

Notice that when we rotate a vertex around an axis, the vertex component that matches the axis is
unchanged in the result. If we rotate a vertex about the Y axis, only the X and Z values of the vertex are
affected. If we rotate about the X axis, only the Y and Z values are affected. If we rotate around the Z
axis, only the X and Y values are affected.

The following formulas are used to rotate a 3D point around any of the three principal axes:

X Axis Rotation
NewY = OIdY x cos(0) — OldZ x sin(8)
NewZ = OldY x sin(0) + OldZ x cos(60)
Y Axis Rotation
NewX = OldX x cos(0) + OldZ x sin(0)
NewZ = OldX x —sin(0) + OldZ x cos(6)
Z Axis Rotation

NewX = OldX x cos(0) — OldY xsin(0)
NewY = OldX xsin(@) + OldY x cos(0)

Because rotations are always relative to the coordinate system origin, we have to be careful about the
order in which we perform the rotation and the translation operations in our pipeline. Let us imagine that
we want to place a mesh into our world at position (0, 5, 0) and that we want it rotated by 45 degrees
about the Z axis. We might initially try something like this:

1) Apply translation to the vertices to move the object to position (0, 5, 0) in world space.
2) Apply 45 degree rotation about the Z axis so it is rolled in world space.

19

Rotation After Translation

-
“ertices always rotate
about the origin

Figure 1.19

Fig 1.19 might not display what you were expecting. The object was first moved to the world space
position (0, 5, 0) and then rotated about the Z axis relative to the world space origin. More often than
not, we want to perform the rotation before the translation. Here the object would first be rotated in
model space about its own center point (the model space origin) and then translated to the final position
in world space (Fig 1.20).

Rotation Before Translation

Figure 1.20
By performing the rotation transformation first we were able to achieve the expected world space
position with a 45 degree roll about the mesh center point. Of course translating before rotating can be
useful too. If you had a planet object at the coordinate space origin then you might use this approach to
make an object rotate around that planet at a constant distance (like an orbit).

We can add some rotation members to our CObject class to allow for object rotations relative to axes:

20

class CObject
{
public:
CMesh *m pMesh;

float PositionX;
float PositionY;
float PositionZ;
float RotationX;
float RotationY;
float RotationZ;

All of these transformations will take place when we render our meshes. They are performed at the per-
polygon level for every frame before those polygons are drawn.

1.2.3 Viewing Transformations

Before we can render anything we must create a virtual camera through which to view our world. All of
our world space vertices must then be defined relative to this camera. This requires a new coordinate
system called camera space (or view space) and as we saw earlier, transformations will be required to
get our vertices into this new space. We will specify camera properties such as the current position,
viewing direction, and field of view (FOV).

We should also be able to move and orient a camera in our world in real-time. In effect, this is
accomplished in a rather interesting and perhaps not immediately obvious manner:

1) When player moves the camera forward, we translate the whole world backward

2) When player moves the camera backward, we translate the whole world forward

3) When player rotates left around the Y axis, we rotate the entire world right around the Y axis
4) Andso on...

As you can see, whatever we want our virtual camera to do, we must make the opposite happen to every
scene object. This gives the appearance that we are moving through the world when, in fact, it is the
world that is moving around us. simple camera class might hold only the camera world position and
rotation.

class CCamera

{

public:
float PositionX;
float PositionY;
float PositionZ;
float RotationX; // Pitch
float RotationY; // Yaw
float RotationZ; // Roll

21

One could add input routines to convert mouse or joystick data into rotations for the camera. Moving left
on the joystick might store a rotation of 1 degree in the RotationY member to make the camera yaw. If
the joystick is pushed forward you might update the position of the camera to make it travel forward
along the current heading.

A render loop that includes camera data might look something like the following:

void DrawObjects ()
{ for (each object)
{ for (Each Polygon in Object)
{ DrawPrimitive (Object , Polygon , Camera);

}

void DrawPrimitive (CObject * Object , CPolygon *Poly , CCamera * Cam)
{
for (each Vertex in Poly)
{
// convert polygon to world space (Already discussed)
Perform any object Rotations on vertices of polygon
Perform Translation on vertices of polygon to move polygon into world space

// convert polygon to view space
Perform inverse camera rotations on vertices of polygon
Perform inverse camera translations on vertices of polygon

// Convert polygon to Projection Space
Not Yet Covered

// Render 2D polygon
Not Yet Covered

If the camera had an X axis rotation of 45 degrees, the following code would rotate all of the vertices of
every object in the world -45 degrees about the X axis (i.e. 45 degrees in the opposite direction).

if (m _pCamera.RotationX)
{
VSVertex.y = Vertex.y * cos(-m pCamera.RotationX) -
Vertex.z * sin(-m_pCamera.RotationX);

VSVertex.z = Vertex.y * sin(-m pCamera.RotationX) +
Vertex.z * cos(-m_pCamera.RotationX);

} // End if X Axis Rotation

22

Y and Z axis rotations would follow along similar lines:

if (m pCamera.RotationY)
{
VSVertex.x = Vertex.x * cos(-m pCamera.RotationY) -
Vertex.z * sin(-m_pCamera.RotationY);

VSVertex.z = Vertex.x * -sin(-m pCamera.RotationY) +
Vertex.z * cos(-m pCamera.RotationY);

} // End if Y Axis Rotation
if (m _pCamera.RotationZ)

{
VSVertex.x

Vertex.x * cos(-m _pCamera.Rotationz) +
Vertex.y * sin(-m_pCamera.RotationZz);

VSVertex.y = Vertex.x * sin(-m pCamera.RotationZz) +
Vertex.y * cos(-m pCamera.RotationZz);

} // End if Z Axis Rotation

In the above code, Vertex is assumed to be in world space and is being converted into camera space (i.e.
view space). The same rotation formulas are used as before with the exception that we are negating the
angle passed into the function so that the objects are rotated in the opposite direction. If the camera has a
position in the world other than (0, 0, 0) then this would also have to be taken into account which we
will look at in a later section.

It is worth pointing out that we devote an entire chapter to camera systems later in the course, so do not
be especially concerned if some of these concepts are not immediately obvious to you.

23

1.2.4 Perspective Projection

Model Space Vertices

,

World View Perspective
Transform Transform Transform

Screen Space Vertices

Perspective is an important aspect of how we process distance and scale in the world around us. In real
life, as things move further away from us they appear to grow smaller and vice versa. The same will
hold true for our scene geometry. As we move the camera away from our meshes, the meshes should
‘shrink’. When we move it closer they should ‘grow’.

Things also tend to move toward the center of your field of view as distance increases and away from
the center as distance decreases. Most objects in your field of view will appear to be either left or right
or up or down relative to the center of your field of vision. You can refer to these left/right positions
using X coordinate values and up/down positions using Y coordinate values relative to that center. In the
last section, we discussed converting our vertices to camera space where vertices are offsets relative to a
camera coordinate system. We call the distance from the viewer position to any object a Z coordinate
relative to that position (a view space Z coordinate).

As the Z coordinate increases between the viewer and a given mesh, the X and Y coordinates of each
vertex in that mesh can be scaled by that Z amount (the distance) to produce the perspective effect:

2DX =ViewSpaceX |/ ViewSpaceZ
2DY =ViewSpaceY | ViewSpaceZ

We divide each vertex view space x and y components by their view space z component. The result is a
2D point in projection space.

24

Imagine that we have a coordinate that is 5 units to the right of the camera, 20 units up from the camera
and 100 units in front of the camera. This vertex would have a view space coordinate of (5, 20,
100). Performing the perspective projection:

ViewSpaceX 5

= = 0.005
ViewSpaceZ 100

projectedX =

ViewSpaceY 20

= =0.2
ViewSpaceZ 100

projectedY =

We end up with the 2D point (0.005, 0.2). Note that these are not screen coordinates (since we know
that those must be discrete integer values). These new coordinates are actually called viewport space
coordinates (sometimes called clip-space coordinates or projection space coordinates).

The 3D coordinates have been projected onto a 2D infinite plane. On this plane there is a projection
window. If the x and y values are within this projection window then they are visible to the camera and
should be rendered. It is at this point that 3D APIs often perform tests to see if the polygon is facing
away from the viewer (back face culling) and may also clip any polygons that are only partially in view.

Projection Plane , 2D projection space coordinates have been
o F) 07+ 4 {Outside 0 not wisible) | mapped to the projection plane using the x/z and
-1,+1 +1,+1

y/z technique.

® (0 -0.2H)T [Msible . . e .. .
: (elkle) Point P is not within the projection window

because one of its coordinates i1s not within the -
1 to +1 range.

Frojection VWindow

- - + B
1-1 . Point Q will be visible from the camera position

because its projected coordinates fall within the -
1 to +1 range.

The projection window is a square 2D window that is 2 units wide and 2 units high with an origin at the
center. Thus a projection space point of (0, 0) would map directly to the center of the projection
window. Valid coordinates in projection space are in the range of —1 to +1 on both the x and y axes.
These are the coordinates generated after dividing by z in the equations shown above.

Both components of the sample projected point (x = 0.005, y = 0.2) are within the —1 to +1 range so in

this particular case the point would be considered within the bounds of the projection window and
therefore visible to the camera (within the field of view).

25

Fig 1.21 shows a side view of the camera in view space prior to the divide by Z operation. Please note
that the X axis is assumed to be going into the page and can not be seen and that the same logic would
also apply to the X coordinate projections.

hi}
M=t 4
FOv
- Z:l:ld £t
=4
Y-
Figure 1.21

As Z increases, Y is scaled in direct proportion. Given that the projection window maximum coordinate
along the Y axis is +1.0, if Y = Z then our projection formula becomes:

projectedY = DD Ay
z

< <

If Y = Z in view space then that point will be projected at the very top of the projection window. As Z
increases, the maximum Y point that will fall within the projection window is Y=Z or Y=-Z. The same
is also true for the X projection.

So, ifatany point Y > Z or Y <-Z or X > Z or X <- Z in view space, when this point is projected, it will
fall outside the —1 to +1 range (and therefore outside the projection window).

If we have a Z coordinate of 4 then the range of Y coordinates that are visible are [—4, +4] in view space
as shown in figure 1.21. The maximum range of Y values that can be seen at a distance of Z=6 is in the
range [—6, +6]. And so on. (Once again, exactly the same holds true for the X coordinate projection.)

Thus, for any point in view space where (x>-z) and (x<z) and (y>-z) and (y<z) that point is visible.
When we scale the x and y components of the vertex in proportion to z, we are in effect creating an
imaginary view cone that extends out at a 90 degree angle across both the x and y axes (45 degrees up
and 45 degrees down on the Y axis and 45 degrees left and 45 degrees right for X). Where the two red
lines meet in Fig 1.21 (at the camera position) there is a perfect right angle. Any points falling within
this cone are considered visible because their divided x and y coordinates will fall within the bounds of
the projection window.

26

Thus our virtual camera has a 90 degree field of view because the ratio described above will always
produce values that are consistent with this.

Although the 90 degree view cone does not really exist, as there is no physical camera in our game
world, it is a useful way to think about how functions that convert vertices from 3D to 2D space work.
Dividing x and y by z stretches or squashes geometry as it gets closer or further away from the camera
respectively. Looking at the view cone in Fig 1.21 we note that the total range between the bottom red
cone line and the top red cone line at any given z position, is mapped into the —1 to +1 range. As Z
increases, a larger portion of the cone is mapped to the [-1, +1] range and things get squashed more
towards the center of the projection window.

Fig 1.22 shows a series of points plotted at the same y position in view space, each with increasing z.

Ferspectve Projection

=D

Projection
Flane

Eevw: -

® Catmera Space point

® View Port Space Point

Diagram is not to scale.

Figure 1.22

The formula squashes the two red cone lines so that they become parallel with each other with a
separating distance equal to the size of the projection plane (Fig 1.22). The blue lines show what the
cone looks like after it has been squashed/projected into what is essentially a box. Larger z values
produce greater squashing ratios.

In Fig 1.22 there are five points in view space (green circles). Each has a y value of +2 and increasing z
values are assigned. The effect of our projection formula can be seen when we look at the projected
points (blue dots). All of these have been squashed into the [-1, +1] range. Although the points had
identical y values in view space, when mapped to projection space they receive different y values.

27

In many math textbooks perspective projection formulas are listed as:

X
Xp =
P z/d
y
Yo=Y
P=a

The problem with the projection formula we have been using is that it always projects with a field of
view of 90 degrees. We would prefer to use an arbitrary field of view to give complete control over
exactly how much of the scene can be viewed by the camera. In order to accommodate this, a new
variable is introduced (d). This allows the projection window to be moved further from or closer to the
camera. Because the size of the projection window remains the same (-1 to +1), moving the projection
window further away from the camera reduces the cone size. Moving the projection window nearer to
the camera increases the cone size. This new formula allows us to alter the camera FOV in a manner
similar to the way a photographer might adjust the lens of his camera to capture more or less of a scene
in his photo. In Fig 1.23 you can see why moving the projection window affects the FOV:

Projection Plane being used to alter FOY

Projection Plane Distance 1.0 Pis outside FOV

| P=ly=Bz T

i

Pis inside FOY Projection Plane Distance 5.0

Figure 1.23

The cone is much smaller when the projection window is at a distance of 5 units from the camera than
when it is when it is at a distance of 1 unit. This distance is labeled d in the above formula.

While this technique works quite well, in DirectX Graphics (and in our software renderer) the projection

window is always set at a fixed distance of 1.0 unit from the camera. The pipeline performs the x/z, y/z
mapping into 2D space as was the case in our old formula:

28

But we can achieve the effect of the d value using a different strategy. Our code (and DirectX Graphics)
will continue to use a 90 degree FOV behind the scenes but will use a projection matrix to deform
geometry prior to the divide by z to accommodate the appearance of arbitrary FOV. We will examine
the projection matrix in detail later in the lesson. For now we will proceed with a 90 degree FOV.

1.2.5 Screen Space Mapping

The final stage is finding a screen space pixel coordinate for our projected vertex. Transforming a 2D
projection space point to a 2D screen space point requires mapping the —1 to +1 coordinates to the width
and height of the current render window. The formula is:

ScreenX = projVertex.x * ScreenWidth / 2 + ScreenWidth / 2
ScreenY = -projVertex.y * ScreenHeight / 2 + ScreenHeight / 2

Let us assume our window is 640x480 pixels in size and that we have a vertex which has been mapped
to (0, 0) in projection space. This should mean that it is in the center of the screen:

ScreenX = 0 * (640/2) + (640/2)
ScreenX = 0 * (320) + (320)
ScreenX = 320

Another example would be x = -1 in projection space. It should wind up on the far left hand side of the
projection window (and thus the screen):

ScreenX = -1 *(640/2) + (640/2)
ScreenX = -1 *(320) + (320);
ScreenX = -320 + 320

ScreenX = 0;

The Y value is projected into screen coordinates using the same approach but with one exception. In
projection space (as with model space, world space and view space) the Y axis is positive running up
and negative running down. In screen space (as we discussed earlier in this lesson) the Y axis would be
0 at the top of the screen and increase toward the bottom. So we will need to invert it by negating the
projection space Y coordinate to ensure conformity.

Let us look at an example using a projection Y value of Y = 1 in projection space. We saw earlier that
this value was at the very top of the projection window. We need it to be at the top of the screen too:

ScreenY = -1 * (480/2) + (480/2)
ScreenY = -1 * (240) + (240)
ScreenY = -240 + 240

ScreenY = 0

Once all of the vertices of our polygon are in screen space we can draw lines between each point. The
result is a wire frame rendition of our scene geometry.

29

1.2.6 Draw Primitive Pseudo-code

Model Space Vertices

|

World View Perspective Screen
Transform Transform Transform Transform

Screen Space Vertices

The pseudo-code to an updated DrawPrimitive function follows. In the example, we pass the object we
are processing and the polygons we wish to render. The object is needed for its position and rotation
information which is necessary to transform the polygons into world space. We pass a pointer to a
camera so that we can access the camera position and rotational information in order to do a view space
transformation after the world space transformation:

void DrawPrimitive (CObject *pObject , CPolygon *pPoly , CCamera *pCamera)
{

CVertex CurrVertex;

CVertex PrevVertex;

// Retrieve object angles;

float Opitch = pObject->RotationX;
float Oyaw = pObject->RotationY;
float Oroll = pObject->RotationZ;

// Retrieve Camera angles

float Cpitch = pCamera->RotationX;
float Cyaw = pCamera->RotationY;
float Croll = pCamera->RotationZ;

// Loop round each vertex transforming as we go
for (USHORT v = 0; v < pPoly->m nVertexCount + 1; v++)
{
// Store the current vertex
CurrVertex = pPoly->m pVertex[v % pPoly->m nVertexCount];

// WORLD SPACE TRANSFORMATION

// Apply any object rotations if applicable

if (Opitch) // rotate object about its x axis like pitching up and down

{
currVertex.y = currVertex.y * cos(Opitch) - currVertex.z * sin(Opitch);
currVertex.z = currVertex.y * sin(Opitch) + currVertex.z * cos(Opitch);

} // End if Pitch

30

if (Oyaw) // rotate object about its Y axis like yawing left/right

{
currVertex.x = currVertex.x * cos(Oyaw) + currVertex.z * sin(Oyaw) ;
currVertex.z = currVertex.x * -sin(Oyaw) + currVertex.z * cos (Oyaw);

} // End if Yaw

if (Oroll) // rotate object about its Z axis like rolling left or right

{
currVertex.x = currVertex.x * cos(Oroll) + currVertex.y * sin(Oroll);
currVertex.y = currVertex.x * sin(Oroll) + currVertex.y * cos(Oroll);

} // End if Roll

// Now move the vertex into its world space position
currVertex.x += pObject.PositionX;
currVertex.y += pObject.PositionY;
currVertex.z += pObject.PositionZ;

// VIEW SPACE TRANSFORMATION
// subtract the camera position from the vertex so its position is relative
// to the camera with the camera at the origin

currVertex.x -= pCam->PositionX;
currVertex.y -= pCam->PositionY;
currVertex.z -= pCam->PositionZ;

// 1f the camera is rotated, rotate the world the opposite way

// but the only difference

// from the object rotation is the negated parameter

if (Cpitch) // rotate camera about its x axis like pitching up and down

{
currVertex.y = currVertex.y * cos(-Cpitch) - currVertex.z * sin(-Cpitch);
currVertex.z = currVertex.y * sin(-Cpitch) + currVertex.z * cos(-Cpitch);

} // End if Pitch

if (Cyaw) // rotate cam around its Y axis

{
currVertex.x = currVertex.x * cos(-Cyaw) + currVertex.z * sin(-Cyaw);
currVertex.z = currVertex.x * -sin(-Cyaw) + currVertex.z * cos(-Cyaw);

} // End if Yaw

if (Croll) // rotate camera about its Z axis like rolling left or right

{
currVertex.x = currVertex.x * cos(-Croll) + currVertex.y * sin(-Croll);
currVertex.y = currVertex.x * sin(-Croll) + currVertex.y * cos(-Croll);

} // End if Roll

// PERSPECTIVE PROJECTION TRANSFORMATION

// divide x and y by z to project point onto 2D projection
// window in the -1 to +1 range

currVertex.x /= currVertex.z;

currVertex.y /= currVertex.z;

// SCREEN SPACE TRANSFORMATION
// Convert to screen space coordinates

vtxCurrent.x = vtxCurrent.x * SCREENWIDTH / 2 + SCREENWIDTH / 2;
vtxCurrent.y = -vtxCurrent.y * SCREENHEIGHT / 2 + SCREENHEIGHT / 2;

31

// If this is the first vertex, continue. This is the first
// point of our first line.
if (v ==) { vtxPrevious = vtxCurrent; continue; }

// Draw the line Dbetween this one and the previous vertex in the loop
DrawLine (vtxPrevious, vtxCurrent, 0);

// Store this as new line's first point
vtxPrevious = vtxCurrent;

} // Next Vertex

After the above function has been called for each polygon of every object in the world we would be left
with a 2D visual representation of our 3D world from the point of view of our virtual camera.

1.3 3D Mathematics Primer

1.3.1 Vectors

A vector is a mathematical construct that describes a physical point or a direction and magnitude. We
can represent a 3D vector using a C++ class:

class Vector

{

public:
float x;
float y;
float z;

}i

Vectors are very important to the 3D graphics programmer. You might have noticed the similarity to 3D
Cartesian points. In fact, a 3D point is a vector. To be more precise it is a 3D vector. There are also 2D
vectors and so on for other dimensions.

Although many people use the terms vector and point interchangeably there is a distinction; a point is
always a vector but the reverse is not always true. It depends on how we intend to interpret the values
stored in the vector: either as an actual location in space (where the vector does indeed describe an
absolute point) or as an indicator of direction with magnitude (which can be used relative to some other
point in space).

Point vectors can be defined via a direction from some origin (the origin of our coordinate system) and a

magnitude (the distance to travel in that direction). If we travel out from the origin in a given direction
for a specified distance we end up at a location described in 3D space.

32

In Fig 1.24 we see points plotted in a 2D Cartesian coordinate system. Although each point can be
described as a collection of offsets from the origin along each major axis, each point also describes a
vector from the origin to that point (the green arrows):

Vectors
B) (11,11) Ty
JA) (3,3)
-X +X
D) (-2,-1)
€) (1,-8)
X
Figure 1.24

The vector A<5, 5> can be described as a location 5 units right of the origin and 5 units up from the
origin. It also describes the line shown by the green arrow which has a definite direction and a length.

Vector Magnitude

We can use the Pythagorean Theorem to determine the length of a vector. This length is the distance
from the origin to the point (the length of the green arrows in Fig 1.24).

2D VectorMagnitude =N X* +Y*

Everything is identical when working with 3D vectors; we simply have an extra axis. To find the length
of'a 3D vector we would use the extended formula:

3D VectorMagnitude =~ X> +Y* + Z*

We could write a function that returned the length of a 3D vector like so:

33

float VectorLength3D(CVector * v)
{
return sqrtf((v->x * v->x) + (v->y * v->y) + (v=->z * v->z));

}

If we use the 2D vector A<S5, 5>:

Length = sqrtf((5*5)+(5*5))
= sqrtf(50)

7.0710

If we travel a distance of 7.0710 units from the origin and disperse that motion evenly in both the
positive X and Positive Y directions (because the x and y vector components are equal in this example)
we will arrive at the location (5, 5).

We calculate the length of vector C<1, -8>:
Length sqrtf((1*1) + (-8*-8))
sqrtf(65)

8.06225

If we travel from the origin down the positive X axis and the negative Y axis at a ratio of 8:1 for a
distance of 8.06225 units we would arrive at location C. The distance is dispersed over the ratio of the
X:Y components in a 2D vector or the X:Y:Z components in a 3D vector.

Vector magnitude is represented using two uprights on either side of the vector name:

Length of C =|C]|.

While we can and will use vectors for representing the vertices of our objects in 3D space, they can also
be used for many other tasks in 3D graphics programming, from representing the direction the camera is

facing, to representing the way that light reflects off a polygon or a vertex. Vectors will be used within
collision detection systems and to make objects move around your game world.

Vector Addition and Subtraction

Vector addition is performed by adding like components together to create a new vector. We can write
vector addition using the short hand (C = A + B).

CVector AddVectors3D(CVector A , CVector B)
{

CVector C;

C.x = A.x + B.x;
C.y = A.y + B.y;
C.z = A.z + B.z;

return C;

34

To add two 2D vectors together simply remove the addition of the Z components.

Adding two 2D vectors (A and B) we can visualize the resulting vector (C) by taking the tail of B and
placing it at the head of A and then drawing a new vector between the tail of A and the head of B (Fig
1.25). The second vector (B) is now relative to first vector (A).

A +Y
B B
c
A

-X +X
A+B=C

Y

Figure 1.25

The circular inset in Fig 1.25 shows the vectors A and B and their relationship to one another prior to the
addition. During addition, A begins at the origin and B is added to this vector. So its tail starts at the tip
of A. The resulting vector is the red vector C.

Vector subtraction is similar to addition:

CVector SubtractVector3D(CVector A , CVector B)
{

CVector C;

C.x = A.x — B.x;
C.y = A.y — B.y;
C.z = A.z — B.z;

return C;

}

Because subtracting B from A is the same as negating B and then adding it to A, we could represent this
as:

C=A-B
OR (the negated version)

C=A+(-B)

35

We can visualize the resulting vector (C) by placing the tail of B at the tip of A as we did with addition.
This time we flip (negate) the direction of B so that it is facing in the opposite direction. Fig 1.26 shows
the same two 2D vectors A and B. B is subtracted from A to produce the red vector C.

+Y A
B
-B
A
X c +X
A-B=C
Y
Figure 1.26

Vector subtraction is quite useful. It allows us to gain an understanding of the relationship between the
objects in our scene. Let us say, for example, that we have two fighter planes (Fighter Plane A and
Fighter Plane B) in our game world. One of them is at position A, and the other at position B. If we
subtracted position B from position A we would end up with a vector that told us both the direction
Fighter Plane A would have to fly to get to Fighter Plane B’s position as well as the distance between
the two -- by calculating the vector length (Fig 1.27).

Using Vectors }.y B) (10,8)
A @25
) (2.5) B A B3
-X +X
A-B($,3)
=Y
Figure 1.27

In Fig 1.27 there are two points (A and B) representing our fighter planes. If we subtract B from A we
would end up with Vector B-A = (8, 3) shown as the green arrow above pointing right and up. We could
then go on to calculate the length of the vector as follows

36

MagnitudeB-A = /8% +3°

- J64+9

8.544

So the distance between fighter plane A and fighter plane B is 8.544 units. In order for fighter plane A to
reach fighter plane B it must travel that distance in a ratio of 8:3 along the positive X and Y axes,
respectively.

Vector Scalar Multiplication

Vectors can be multiplied by scalar values. In this case the scalar is multiplied with each component of
the vector. A function that performs scalar multiplication on a 3D vector might look like the following:

CVector VectorMultiply3D (CVector A , float scalar)
{

CVector C;

C.x A.x * scalar;

C.y A.y * scalar;

C.z A.z * scalar;

return C;

}

Fig 1.28 shows the visual effect of multiplying Vector A by 2.0.

A Scalar Multiply*.y Axa

Y

Figure 1.28

Vector Normalization

A special type of vector that is incredibly useful in 3D graphics programming is the unit vector. A unit
vector is a vector with a magnitude of 1. The process of taking a non-unit vector and making it a unit
vector is called normalizing the vector (or normalization). This is done by dividing each component of
the vector by the length of the vector.

37

VectorC = (8,3,10)
Ic| = V8 +3%+10°
|C| = 13.15294¢6
, {C.x Cy C.z}
UnitVectorC =
Cl [C] |C]
, 8 3 10
UnitVectorC =
13.152946 13.152946 13.152946

UnitVectorC = (0.60822 , 0.2280 , 0.7602859)

Vector C should now have a length of 1. To prove this let us run the distance calculation on the resulting
vector:

UnitVectorC = (0.60822, 0.2280, 0.7602859)
|UnitVectorC| — +/0.60822% +0.22802 +0.7602859>
|UnitVectorC| = 0.9999...

This is about as close to 1.0 as we can generally expect using limited-precision floating point math.

Note that while the length becomes 1.0 the directional information remains the same. This is due to the
fact that all vector components are scaled equally by the length. Next we see a function that could be
called to normalize a vector. It uses one of our earlier functions (VectorLength3D) to initially calculate
the length of the vector.

CVector VectorNormalize3D (CVector A)
{
float length = VectorLength3D (A);
A.x = A.x / length;
A.y = A.y / length;
A.z A.z / length;

return A;

}

We mentioned that unit vectors can be used for object movement. Let us assume that we have a
spaceship facing down the X and Z axes of our world in equal proportions. This direction could be
represented with a single vector (we will call this DirectionVector) and might be (1, 0, 1). Imagine that
we want to move our space ship forward based on a velocity of 100 world space units per frame.

(1,0,1)
100

DirectionVector
Speed

Movement. x DirectionVector.x * speed

N
nwnn

Movement. DirectionVector.y * speed
Movement. DirectionVector.z * speed
Movement.x = 1 * 100 = 100

Movement.y = 0 * 100 = 0

Movement.z = 1 * 100 = 100

38

Is this correct? We said the space ship could travel 100 units so let us check the length of the movement
vector:

imovement | = 1002 +0? +100>
141.42135

|movement |

That is obviously incorrect as we moved the ship 141 units. The problem is that the direction vector
specified (1, 0, 1) is not a unit vector. If we calculate the length of that initial direction vector we can see
that we would end up with:

|DirectionVector| =412 +0% +1> = 14142135

The error is the result of the ship moving a total of 100 units along the X axis and 100 units along the Z
axis (which is not the same as moving 100 units diagonally as we would expect). Before we use our
direction vector to calculate the new movement vector we must normalize the vector:

DirectionVector = ! , 0 , ! = (0.7071068 , 0, 0.7071068)
1.4142135 1.4142135 1.4142135

Let us calculate the ship’s movement vector again with the normalized direction vector.

Movement.x = 0.7071068 * 100 = 70.71068
Movement.y = 0.7071068 * 0 =0
Movement.z = 0.7071068 * 100 = 70.71068

This movement vector (70.71068, 0, 70.71068) gets added to our ship’s previous position.

OldPosition.x + Movement.x
OldPosition.y + Movement.y
OldPosition.z + Movement.z

NewPosition.x
NewPosition.y
NewPosition.z

Let us check our results:

V70.71068% + 0% +70.71068>
100

| Movement |

| Movement |

We now have a space ship located at a new position having traveled exactly 100 units from its previous
position in the direction of the unit vector. This is the equivalent of moving 70.7 units along the X axis
and 70.7 units along the Z axis. If unit vectors are used to represent the direction an object is facing in
your game world, using the above technique allows you to easily move that object forward (no matter
which direction it is facing).

Object movement is just one of the many uses of unit vectors. Unit vectors are also used to describe the
direction your polygons are facing; something which is used extensively during lighting calculations.
You will come to discover that unit vectors are seen all the time in 3D graphics programming and we
will cover a lot of these situations throughout the coming lessons.

39

Vector Cross Product

The cross product operation between two vectors results in a third vector perpendicular to the two input
vectors. The ‘x’ symbol is used to represent a cross product between two vectors.

Input vectors
A= (0, 1, 0)
B = (1, 0, 0)

Cross product calculation

C =AXB = ((A.y*B.z) - (A.z*B.y), (A.z*B.x) - (A.x*B.z), (A.x*B.y) - (A.y*B.x))
C = ((1*0) - (0*1), (0*1) - (0*0), (0*0) - (1*1))

c= (0, 0, -1)

The resulting vector C is perpendicular (90 degrees) to vectors A and B. The two green vectors in Fig
1.29 show the input vectors and the resulting vector C is shown in red.

C=AXB

A (0,1,0)

B (1,0,0)

i
P
"

A‘ﬁémﬂﬂy

Figure 1.29

In this example we used two unit vectors as input and the vector returned is also a unit vector. The cross
product does not require that the input vectors be unit vectors. If the two input vectors are not unit length
then the resulting vector will also not be unit length but it will still be perpendicular. If you require a unit
length vector then you will need to normalize the resulting vector.

The order in which we pass the vectors into the cross product operation is significant. If we had
performed Bx A instead of A xB, the resulting vector C above would still be perpendicular to the input
vectors but would be facing in the opposite direction. Try this out for yourself on paper using the above
calculations.

The cross product works with any two arbitrarily orientated vectors and will always return a vector that
is perpendicular to them.

40

CVector VectorCrossProduct (CVector A , CVector B)
{

CVector C;
C.x = (A.y*B.z) — (A.z*B.vy);
C.y = (A.z*B.x) — (A.x*B.z);
C.z = (A.x*B.y) — (A.y*B.x);
return C;

Vector Normalization

One very useful application of the cross product is generating what is known as a normal. A normal is a
unit length vector that describes the direction that something (a polygon for example) is facing.

In Fig 1.30 we see a triangular polygon consisting of three vectors (v0, v1, v2). If we were to subtract vO
from v1 the result would be a vector which describes Edge 1. If we do the same again, this time
subtracting v0 from v2 we get Edge 3. The cross product of these two edges yields a vector which, after
normalization, is the polygon normal:

Mormal

Edge

W

Figure 1.30

The following code snippet assumes that the polygon structure has already been initialized with the
vertex data and uses some of our previously created vector functions to accomplish this task. This code
can also safely cast our polygon vertex structure to a CVector because at this point our vertex structure
simply contains an X, y and z position.

41

CVector GeneratePolygonNormal (CPolygon P)

{
CVector Edgel, Edge3, Normal;

Edgel SubtractVector3D (Polygon.Vertices[1] Polygon.Vertices[0]) ;

Edge3 = SubtractVector3D(Polygon.Vertices[2], Polygon.Vertices[0]);

Normal = VectorCrossProduct (Edgel, Edge3);
Normal = VectorNormalize3D (Normal) ;

return Normal;

If the polygon is rotated, the normal would have to be regenerated in order to correctly describe the new
orientation.

Vector Dot Product

The e symbol is commonly used to express the dot product (inner product) operation between two
vectors. The dot product calculation between two 3D vectors A and B can be expressed as follows:

AeB = (A.x * B.x) + (A.y * B.y) + (A.z * B.z)

The results of each component multiply are added to create a single scalar value and not another vector.
The significance of the result can be appreciated when we look at an alternative formula for the dot
product:

AeB = cos(0)|A||B|

The value returned by the dot product of two vectors is equal to the cosine of the angle between those
two vectors multiplied by their magnitudes. So we can find the cosine of the angle between two vectors
by doing the following:

cos(0) = aeB / |A||B|

When the two vectors are unit vectors then the equation is simplified because the length of both vectors
equates to 1. This allows us to eliminate the magnitudes and simplify the procedure:

cos(f) = BAeB

Plugging the cosine of the angle into the acos (inverse cosine) function, we quickly find the actual angle
between the two vectors (expressed in radians).

We can now write a generic angle determination function which accepts two vectors and returns the
angle between them. Unfortunately finding the angle between two vectors in this way involves first

42

finding the length of the vectors. This is not a particularly fast process because it involves three
multiplies, three additions and a square root. For this reason we generally try to use unit vectors
wherever possible because it simplifies and speeds up the calculation. The function below shows how
one might implement a dot product procedure:

float VectorDotProduct3D (CVector A , CVector B)

{
return (A.x * B.x + A.y * B.y + A.z * B.z);

}

If the two vectors are of unit length, this function will return the cosine of the angle between them.

If you need to find the angle between two vectors and they are not assured to be unit length then you
could write an angle finding function which automatically handles the division of the dot product by the
vector magnitudes:

float FindVectorAngles3D (CVector A, CVector B)
{

float LengthOfA VectorLength3D)
) -
.Z

(
float LengthOfB = VectorLength3D (
return acos ((A.x*B.x + A.y*B.y +

Il
Bdilos i
+\\

B.z) / (LengthOfA * LengthOfB));

Fig 1.31 shows how the dot product works when determining the angle between two 2D vectors.

L+Y

A (3,10)

cos(@) = A . B|A||B|
B (11,4)

Figure 1.31

43

Al =

1Bl =

0
0
0

737 +10° = 10.440306

11.704699

V117 +47

cos (0)
cos (0)

73 / 122.20063

acos (0.5973782)
0.93056 radians
53.31 degrees

(3*11) + (10%*4)

(10.440306 * 11.704699)

One thing to remember is that the vectors share the same origin during the dot product operation. Think
of the process as placing the tail points of each vector at the origin of the coordinate system.

Often we only need to know whether an angle between two vectors is larger or smaller than 90 degrees.
If we do not need to know the actual angle, then we do not need to use unit vectors or divide by the
magnitude. The sign of the result will not change because vector magnitudes are always positive.

There are some important points to note about the dot product between two vectors:
if the angle < 90 degrees the result will be a positive number

if the angle = 90 degrees the result will be zero

if the angle > 90 degrees the result will be a negative number

a.
b.
C.

This diagram on the left outlines the different
relationships between two vectors and the result
returned by the dot product operation.

If both of the vectors are unit vectors then the
result will be the cosine of the angle between the
two vectors. You can pass that result into the acos
function to determine the actual angle in radians.

Remember that both of the source vectors are
moved to the origin during the dot product so that
their tails share a single point.

44

1.3.2 Planes

A plane is an infinitely thin slice of 3D space that stretches out to infinity in all directions. It is the 3D
equivalent of an infinite line in 2D. To visualize a plane, pick up a piece of paper and rotate it to some
arbitrary angle (making sure not to bend it). Now imagine that the paper had no edges and in fact went
on forever in all directions. Although the plane is infinite it does have an orientation in the 3D space.

Rotating your piece of paper to different angles shows you an infinite number of different planes. Each
orientation change defines a new plane. You could draw a polygon in the center of that piece of paper
and you will see that as you rotate the paper the polygon changes orientation too. But it is always on that
plane. In fact, polygons are subsets of planes. If you imagine a polygon without any edges so that its
area expanded forever in all directions, you would have the plane the polygon is said to lay on.

Planes are useful for many things in 3D graphics development. For example, if we know that a point
(say, our camera location) is behind a certain plane then we know that the polygons on that plane are
facing away from us and cannot be seen. This allows us to quickly reject polygons that do not need to be
rendered.

Fig 1.32 shows an infinite plane in the 3D Cartesian coordinate system. The red plane is technically
infinite but we have taken some liberties to make our plane finite in size for easier viewing. Also
depicted is a point that lies on that plane and a vector describing the orientation of the plane (shown in
green). This vector is called the plane normal. Like the polygon normal discussed earlier, the plane
normal is also a unit length vector. It describes the orientation of the plane.

Figure 1.32

45

A typical class which might be used to store a plane is:

class CPlane

{
public:

CVector PlaneNormal;
float DistanceToPlane;

}i

The PlaneNormal member variable is a unit length vector that describes the orientation of the plane. The
DistanceToPlane variable is the distance to the plane as measured from the origin to the closest point on
the plane (the black dotted line in the Fig 1.33). It can be determined by tracing a line from the origin to
the plane in the direction of the plane normal (Fig 1.33).

A

+Y

\\ Plane Normal
P

lane

-X)Jf\ +X .

Orlgin * Distance

Figure 1.33

Fig 1.33 represents a cross section of the 3D world as if we were looking at the plane from the ‘side’. In
two dimensions the plane looks like an infinite line, but it would have an infinite depth coming out and
going into the page.

Because the plane normal is facing away from the origin, the origin is said to be behind the plane. In this
case the distance to the plane will be a positive distance value. If the plane is facing the origin then the
origin is said to be in front of the plane and the distance will be negative.

To find the plane on which a polygon lies and determine the plane normal we would calculate a normal
for the polygon using the cross-product of the edges as described earlier. We could then copy this data
directly into the plane structure. To calculate the distance the dot product will be used.

Recall that the dot product of two unit vectors is equal to the cosine of the angle between them.

However, when one of the two vectors is a non-unit vector then the outcome of the dot product will
equal the cosine of the angle between them multiplied by the length of the non-unit vector.

46

5.5

MNon Ut
Vector

_Smhd
Cosine
0 - - - -y
' w2 1.0 -""‘h Distance from
Tt e
Vector P
Figure 1.34

In Fig 1.34 the non-unit vector (v1) forms the hypotenuse of a right angled triangle and the unit vector
(v2) forms the adjacent leg with a length of 1.0. The cosine is also the length of the adjacent leg of a
right-angled triangle.

The result of the dot product of any non-unit vector with a unit vector is the length of the first vector
projected onto the unit vector. The length of vl is projected onto v2 in the diagram and results in the
length of the adjacent side ((0, 0) to p1). Imagine that the opposite leg of the triangle above is a plane on
which the polygon lies and that the (5, 5) coordinate is some point on that plane (any vertex belonging to
a polygon will do). vl is the direction vector from the origin of our coordinate system to the vertex at
position (5, 5). Vector v2 is the same as the polygon/plane normal. The result of the dot product is the
shortest distance to the plane (p1). Note that this does not tell us the distance to the polygon necessarily,
only the distance to the infinite plane on which it lies.

CVector PointOnPlane = (5.
1

0.0); // Vector from origin to point on plane
CVector Normal = ;

14
, 0.0); // Unit vector (the plane normal)

// pl=distance to the plane
float DistanceToPlane = VectorDotProduct3D(PointOnPlane, Normal);

The result of the dot product is 5. The length of PointOnPlane (v1 in diagram) is:
length = sqrtf(5*5,0*0,5*5) ; // we get the answer 7.0710678.

We can see in Fig 1.34 that the angle is 45 degrees (it climbs in equal steps along each axis. To be sure
this is true we can divide the result of our dot product (which was 5) by the length of the non-unit
vector):

5/ 7.0710678 = 0.7071067; // gives us the cosine of the angle

float angle = acosf(0.7071067) = 0.7853981; // 0.78539181 radians = 45 degrees

The dot product returns the result we expect by finding the cosine of the angle first which it then
multiplies by the length of the non-unit vector.

47

DotProduct = (Cosine of 45 Degrees) * (Length of vl)
DotProduct 0.7071067 * 7.0710678
DotProduct = 5

So in order to calculate the distance from the origin to the plane we need two vectors. The first is the
plane normal. The second vector is a non-unit vector that starts from the origin and extends to any point

known to be on that plane (Fig 1.35). The dot product between these two vectors is our plane distance.

A

Plane +Y, - Polygon Nomal
(O FOFI06F 0 FO7 Q6T 0

Polygon

Origin \ \"

Distance AdotB = 4.949

Y

Figure 1.35

We can now write a function that would construct a plane from a polygon. Later we will be using
DirectX Graphics helper functions to perform all of these calculations but it is worth understanding the

mathematics happening under the hood.

CPlane GetPolygonPlane(CPolygon & P)

{
CPlane Plane;

// Calculate polygon Normal by performing cross product on two of the
// polygon’s edges

CVector Edgel = P.Vertices[l] - P.Vertices|[O0];

CVector Edge2 = P.Vertices[3] - P.Vertices][O0];

CVector Normal = VectorCrossProduct(Edgel, Edge2);

// normalize this so it is unit length. We now have our plane normal
Plane.PlaneNormal = VectorNormalize3D (Normal) ;

// Perform dot product between ANY vertex in the polygon and the plane normal
// to get distance

Plane.DistanceToPlane = VectorDotProduct3D(P.Vertices[0], Plane.PlaneNormal) ;
return Plane;

48

Knowing the plane of a polygon also allows us to determine whether it is facing away from the viewer.
We can do this test in world space and thus avoid transforming the vertices through the entire pipeline
only to be rejected in screen space (where it would have a counter-clockwise vertex winding order).

Eack Face Removal In World Space

Polygon A Polygon B
Facing Camera Mot Facing Camera

e

Unit Normals

P2
P1

Angle = 40

Dot Praoduct =0

Dot Product =0

Figure 1.36

Fig 1.36 shows the dot product between the camera position in world space and a polygon plane. We
create a vector from the camera position to any point on the polygon plane (any vertex of the polygon
will do) and perform the dot product on this vector and the polygon plane normal. This gives us the
distance from the camera to the polygon plane.

In the circular inset above polygon A, when the polygon normal and the vector V1 (created by
subtracting any vertex in the polygon from the camera’s position) have the dot product performed
between them the two vectors create an angle that is larger than 90 degrees. Since the nle V1 result is a
negative number the polygon is facing the camera. This holds true with Polygon B as it is clearly facing
away. The two vectors n2e V2 create an angle smaller than 90 degrees and the result is a positive
number.

49

1.3.3 Matrices

Matrices are a fundamental mathematical concept in 3D graphics programming. Not only do they play a
central role in the DirectX transformation pipeline, but they will be used in many other places outside
the vertex pipeline as well. Throughout this course series we will encounter matrices for managing all
types of transformation requirements and it is very important that you understand what matrices are and
how they are used, so make sure careful attention is paid as you work your way through this section.

A matrix is a table of values arranged in rows and columns. The table can be of any dimensions. Below
we can see an example of a 3x3 matrix:

5 4 -1
0 5 29
11 -7 2

Access to the matrix (and indeed all matrices) must be done in a consistent manner. Some math texts use
a row major addressing approach. A matrix position of [2][3] means that we are referring to the value
in [Row 2][Column 3]. In the above example you can see that this is the number ‘29°. Others use a
column major system where the same [2][3] reference would describe the element in the above table
that contains ‘-7’ as its value. Interpreting a matrix element description using the wrong system returns
an incorrect result.

Note: DirectX Graphics uses the row major system for accessing matrix elements.

The matrix in the above example is a special type of matrix called a square matrix. This means that it
has as many rows as it does columns. Matrices can be of any size however. The following matrix is an
example of a 3x1 matrix, because it has 3 rows but only one column:

The following matrix is a 1x3 matrix:
[3 9 3]

We can replace the numbers in each element with some variables. For example: x, y and z:
vy 2]

This matrix looks identical to our 3D vector. In fact, you can think of a 3D vector as being a matrix of
dimensions 1x3.

50

A matrix having m rows and n columns is referred to as an m x n matrix (order m x n).

A matrix is usually referred to with a capital letter such as ‘M’ or ‘A’. Each element in that matrix has
its own address that describes the location of the element using double suffix notation. Each address
contains three parts: a letter that describes the matrix, the first number indicating the row, and the second
number indicating the column:

mll ml2 ml3
m21l m22 m23
m31 m32 m33

Note: In some textbooks and in some code implementations the labeling scheme is zero based for both
rows and columns. This means that m11 would be referred to as m00 and m32 would be m21. If you are
converting code from source that uses the m00 based convention, you will need to add ‘+1’ to each
label: m00 = m(0+1)(0+1) = ml1.

Matrix/Matrix Multiplication

Two matrices can be multiplied together if and only if they share the same inner dimension.

Matrix A (3x3) * Matrix B (3x6). The inner dimensions are A 3x3 * B 3x6 (OK)

Above you see that when we line up the four matrix dimensions we get: 3x3 3x6. The inner dimensions
of both matrices do indeed match and these matrices can be multiplied. The following matrices could

not be multiplied together:

Matrix A (3x3) * Matrix B (6x3). The inner dimensions are A 3x3 * B 6x3 (NOT OK)

Note: Matrices can only be multiplied when the number of columns in the first is equal to the nhumber of
rows in the second. This is called the Inner Dimension Rule.

If two matrices have a matching inner dimension they can be multiplied to create a resulting matrix with
dimensions equal to their outer dimensions. A 5x8 * B 8x16 would result in a matrix of dimensions

5x16.

Matrix multiplication is easier to understand when we look at some reference tables. In the next
example, we want to multiply two square matrices A and B:

51

Matrix A Matrix B

all al2 al3 bll bl2 bl3
a2l a22 a23 b21 b22 b23

a31 a32 a33 b31 b32 b33

We treat each row in the Matrix A as a vector and each column in Matrix B as a vector. In this example
since we are using 3x3 matrices each vector is a 3D vector. Again, vectors can be 4D, 5D....nD, etc. so
this works with any size matrices that can be multiplied. Matrix A consists of 3 row vectors: Vector 1
(all, al2 ,al3), Vector 2 (a2l , a22 , a23) and Vector 3 (a31, a32 , a33). Matrix B also consists of 3
vectors: Vector 1 (b11, b21, b31), Vector 2 (b12, b22, b32) and Vector 3 (b13, b23, b33). In order to
calculate our resultant matrix we need to calculate the value for each element in the output matrix. Our
resulting matrix will be called M as shown below:

mll ml2 ml3
M= |m21 m22 m23
m31 m32 m33

We begin by calculating the value that will be stored at position m11. Because this element is in row 1
and column 1 of the resultant matrix the value stored here will be the dot product e of Vector 1 (1¥ row)
in Matrix 4 with Vector 1 (1* column) in Matrix B. The double suffix notation of the element you are
calculating in the resultant matrix describes which rows from Matrix 4 to dot with the columns from
Matrix B. So the value of m32 would be calculated like this:

Blue Row (A) o Green Column (B)

Since we are calculating the result of address [3][2], we dot the [3] vector of Matrix A with the [2]
vector of matrix B. This same multiplication is carried out to compute every cell in the resulting matrix.

all al2 al3 b1l b12 b13 aRowl e bColl aRowlebCol2 aRowlebCol3
a2l a22 a23|x|b21 b22 b23|=|aRow2ebColl aRow2ebCol2 aRow2eb(Col3
a3l a32 a33 b31 b32 b33 aRow3ebColl aRow3ebCol2 aRow3ebCol3

The dot product notation allows us to write the entire multiplication for the resulting 3x3 matrix in a
shorthand way. Look at element [1][1] in the resulting matrix. We can write

aRowl e bColl
Or
all*bll +al2 *b21 +al3 *b31

Some source examples do matrix multiplication using only a couple of lines of code. This is possible by
nesting for/next loops. We will not do that here. Matrix multiplication should be fast because it may be

52

done hundreds of times per frame. We prefer to avoid the loop logic processing so we will unroll the
loops to create a longer but typically faster function. This will also make it easier to see the dot products
being performed between the columns and rows. The following source code multiplies two 4x4 matrices
together. As we will discuss later, DirectX Graphics works almost exclusively with 4x4 matrices.

void MatrixMultiply (MATRIX &result, MATRIX &a, MATRIX &b)

{
result.mll = a.mll*b.mll + a.ml2*b.m21 + a.ml3*b.m31 + a.mld4d*b.m4l;
result.ml?2 = a.mll*b.ml2 + a.ml2*b.m22 + a.ml3*b.m32 + a.mld*b.m42;
result.ml3 = a.mll*b.m13 + a.ml2*b.m23 + a.ml3*b.m33 + a.ml4*b.m4d3;
result.ml4 = a.mll*b.m14 + a.ml2*b.m24 + a.ml3*b.m34 + a.mld*b.md4;
result.m21 = a.m21*b.mll + a.m22*b.m21 + a.m23*b.m31 + a.m24*b.m4l;
result.m22 = a.m21*b.ml12 + a.m22*b.m22 + a.m23*b.m32 + a.m24*b.m4d2;
result.m23 = a.m21*b.m13 + a.m22*b.m23 + a.m23*b.m33 + a.m24*b.m4d3;
result.m24 = a.m21*b.ml4 + a.m22*b.m24 + a.m23*b.m34 + a.m24*b.méd4;
result.m31 = a.m31*b.ml1l + a.m32*b.m21 + a.m33*b.m31 + a.m34*b.m4l;
result.m32 = a.m31*b.ml12 + a.m32*b.m22 + a.m33*b.m32 + a.m34*b.m4d2;
result.m33 = a.m31*b.m13 + a.m32*b.m23 + a.m33*b.m33 + a.m34*b.m4d3;
result.m34 = a.m31*b.ml4 + a.m32*b.m24 + a.m33*b.m34 + a.m34*b.m44;
result.m4l = a.m41*b.mll + a.m42*b.m21 + a.m43*b.m31 + a.m4d*b.m4l;
result.m42 = a.m41*b.ml12 + a.m42*b.m22 + a.md43*b.m32 + a.md4d*b.md2;
result.m43 = a.m41*b.m13 + a.m42*b.m23 + a.m43*b.m33 + a.md44*b.m4d3;
result.m44 = a.m4l*b.ml4 + a.m42*b.m24 + a.m43*b.m34 + a.mdd*b.md4;

Vector/Matrix Multiplication

A 3D vector can be treated like a 1x3 matrix. When we multiply a 3D vector with a 3x3 matrix the result
is another 1x3 matrix. That is, we get back another 3D vector.

Matrix A Matrix B Matrix C
mll ml2 ml3

[x v z]x|m21 m22 m23|=[aRowlebColl aRowlebCol2 aRowlebCol3|=[X Y Z]
m31 m32 m33

Vector <X, y, z> is transformed into vector <X, Y, Z> by the multiplication.

When a vector is multiplied by a matrix we are actually feeding that vector into an equation and getting
back a transformed result. This is very useful because we will need to perform transformations on our
3D vertices. We need to scale them, translate them and rotate them to transform them from one
coordinate system to another (ex. model space to world space). If we have the equations required to do
these operations then we simply need to set up some matrices to hold them.

53

We will give each object in our game world a matrix to describe its orientation about all three axes and
its position in the world. The local space vertices of the object mesh can then be transformed into world
space by multiplying each by this matrix. This will clean up our pipeline a fair bit, from a coding
perspective, and it will be much faster to execute.

Let us suppose that we have a 2D vector <x, y> that we want to rotate by an arbitrary angle € around
the origin to get a transformed 2D vector <X, Y>. Recall from our earlier discussion that we can
imagine a Z axis running through the origin for rotation purposes.

Formula for Rotation around the Z Axis

X =x*cos(@)— y*sin(0)
Y =x*sin(@) + y * cos(0)

These input values could be represented by a [1][2] matrix called V.
V=[x »]

Because two values are calculated (x and y) our output vector will be a 2D vector as well (consisting of
X and ¥). We will call this vector C.

C=[XY]
Our input vector has 2 columns so we know that our multiplication matrix must have 2 rows (the Inner
Dimension rule). Because we need the output matrix C to contain 2 columns, our multiplication matrix
must then be a square [2][2] matrix. We will call this matrix M.

mll ml2
M:
m21 m22
Then V * M = C using the above matrices:

V M C

8 y]{mu ml2

=[X=VomColl Y=VomC012]
m21 m22

The long-hand form sheds more light on how we might represent our rotation. X and Y below are the X
and Y elements of the 2D output vector (matrix C). Remember that column 1 is used for calculating the
X component of the output vector and column 2 is used to calculate the Y component in the output
vector.

X
Y

x *mll + y * m21
x *ml2 + y * m22

54

Now look again at our rotation formula:
X =x * cos(f) -y * sin(6)
Y =x * sin(f) + y * cos(6)

The similarities should be clear. Let us look at the Y calculation first:

Y
Y

X * ml2 + y * m22 // Matrix Calculation of Y
x * sin(f) + y * cos(f) // Rotation Formula for Y

We can replace m12 in our matrix with sin(&) and m22 with cos(€):

{ml 1 sin(H)}
M=
m21 cos(0)

The same is also true for X. We calculate X (in vector C) by doing this:
X=x *mll + y * m21

Compare this to our rotation formula of:

X =x * cos(f) -y * sin(6)

Because the signs are different we can rearrange terms to get:

X =x * cos(f) + y * -sin(6f)

Thus:
X =x * mll + y * m21 // Matrix Calculation of X
X =x * cos(f) +y * -sin(6) // Rotation Formula for X

We can now replace m11 with cos(8), and m21 with -sin(6). The final matrix M contains both of our
transformations (X and Y):

X Y
Me { co§(t9) sin(@)}
—sin(€@ cos(d)

Matrix M will transform the x and y coordinates of an input vector to a rotated X and ¥ in an output
vector. One important benefit here is that we can initialize the matrix once, calling cos twice and sin
twice (or once if we use a local variable) and storing the values in the matrix. Then we could multiply
thousands of vectors by this matrix to transform them without having to call cos and sin to transform
every vertex as we did in our earlier code examples.

55

Rotation is the same in 3D. The only difference is that we use a 3D vector and a 3x3 matrix:

Matrix to Rotate 3D Vector V around the Z axis by & Radians.

cos(f) sin(@) O
V=[x y z|xM=|-sin(@) cos(d) 0|=C=[VemColl VemCol2 VemCol3]
0 0 1

Very little has changed going to 3D because when a rotation around the Z axis occurs, only the X and Y
values of a vector are actually modified by the rotation. This means that we want C[Z] to be the same as
V[z]. You can think of the 3 column of the matrix M above, as being the vector that produces the
transformed Z component in the output vector.

3D Rotation Matrices

X Axis Rotation
1 0 0
0 cos(d) sin(0)
0 —sin(d) cos(0)

NewY = OIdY x cos(0) — OldZ x sin(8)
NewZ = OldY x sin(0) + OldZ x cos(60)

Y Axis Rotation
, Tcos(@) 0 —sin(6)
NewX = OldX xcos(6) + OldZ x sin(8) 0) 0

NewZ = OldX x—sin(8) + OldZ x cos(6)

|| sin(f) 0 cos(0)

Z Axis Rotation
cos(d) sin(d) O
—sin(@d) cos(d) 0
0 0 1

NewX = OldX xcos(6)— OldY xsin(8)
NewY = OldX xsin(6)+ OldY x cos(6)

56

Identity Matrices

You might think that because we did not need Z to change during the previous rotation transformation
example that we could simply fill the 3" column of M with zeros. This is not so. The Z component in
the output vector is computed as follows:

Z = x*ml3 + y*m23 + z*m33

If the input vector contained a value of z = 10 then we would want to make sure that this value made it
through the z axis rotation transformation unmodified. The output vector must also have Z = 10. If we
had filled the last column of matrix M with zeros, we would have computed the output as follows:

Z = x*0 + y*0 + z*¥0 = 0

What we really want to do is copy the value into the output vector. By placing a ‘1’ in m33, the Z
calculation now becomes:

Z
Z

x*0+y*0+z*1-=2z .
x*0+y*0+ 10 *1 =10

This new column in the matrix is called an identity column because the value it outputs is the same as its
input. Using this knowledge we can create a special type of matrix known as an identity matrix which is
the matrix equivalent of the number 1:

1 00
Identity Matrix=|{0 1 0
0 0 1

Given a vector V=[x y z] and an Identity Matrix I, by multiplying V * I we should get a resulting vector
CIXY Z] such that C= V-

1
Vz[x y ﬂx[z 0
0

S = O

0
0|=C=[x*1+y*0+z*0=X x*0+y*l+z*¥0=y x*0+y*0+z*1=2]
1

Losing the zeroed out values we are left with:

C=[x*1,y*1, z*1]

57

Scaling and Shearing Matrices

The identity matrix is a matrix that multiplies an input vector by one. We can expand this concept to
build a matrix that multiplies vectors by other values as well. The result is a uniform scaling matrix
that replaces the 1’s for some other amount by which you wish to scale the vector. For example, if you
wanted to scale all vectors by 10, the scaling matrix looks like this:

10 0 O
10X ScaleMatrix= 0 10 0
0O 0 10

If you multiplied all of the vertices of a mesh by the above matrix, the object would become 10 times
bigger. Note that we can also create a matrix for non-uniform scaling along individual axes. It is called
a shearing matrix:

50 0
0 20 O
0 0 35

Matrix Concatenation

Matrix multiplication is associative (A(BC) = (AB)C). So if matrix A rotates points around the Z axis
and matrix B rotates points around the Y axis, they can be combined (concatenated) into a single matrix
M that does the work of both. Thus for vector V to have both transformations applied to it, rather than
doing V *A = C and then C * B = D, we will take a different approach. Instead we will do M = A * B
first. This allows us to use V * M = D and get the same effect as V*A=C, C*B=D. Concatenating
matrices like this means that you can have many different matrices, each of which performs its own
transformation, and combine them into a final matrix using matrix multiplication. We can now multiply
a vector by this final matrix and it is completely transformed in one pass. This is very efficient as it
significantly reduces the number of operations required to transform a vertex.

For example, imagine that we had a 10,000 vertex model that needed to be taken from model space to
projection space. If we assume that we might apply a number of different transformations (e.g. local
rotations and scaling in model space, perhaps translation in world space, our inverse translations and
rotations in camera space, etc.) to these vertices along the way, it becomes clear that by concatenating all
of these transformations into a single matrix, we reduce our mathematical operations down to a fixed
cost. Once the concatenated matrix is created, all 10,000 vertices need only be multiplied by this one
matrix to complete all of the transformations described. Contrast this with the manual transformation
approach we studied earlier in the lesson and you will find that this is a major savings in terms of total
number of multiplications and additions.

58

While the matrix concatenation step itself includes the overhead of matrix setup and potentially even
some number of matrix/matrix multiplications, this is a one-time setup cost that takes place before the
vertices are introduced to be transformed. Under most circumstances, even including this cost will still
result in a massive gain in efficiency. However, it is also important to note that while it can theoretically
be faster to do a one-off transformation (like a translation that requires only a few additions) directly to
vertices, a matrix based system, which uses concatenation when multiple transforms are needed,
provides us the opportunity to reduce our costs in the overall sense as well as keep our code clean and
free of special cases that branch based on individual transform requirements. Matrices generally result
in an overall net gain in efficiency in the system, even if there are some individual cases that may arise
where an on-the-spot transform would be quicker. Of course, these can still be done in software to
individual 3D points (like a world translation of a player position vector for example), but in the vertex
transformation pipeline we are focused on in this lesson, matrices are the key to efficient operations (and
not surprisingly, are required when using the DirectX Graphics transformation pipeline as we will see in
Lesson Two).

Matrix multiplication is not commutative (A * B) != (B * A) and thus, multiplication order is
significant. This should sound familiar since earlier in this chapter we saw the effects of rotating vertices
before translating them and the very different results when translating first and then rotating. Rotating
the mesh before translating it gave the appearance that the object was rotating around its own center
point (often the desired effect). When we translated the object into world space first and then followed
with a rotation, the vertices were rotated around the world space origin rather than its own (Fig 1.37).
Since we will use matrices to store these types of transformations, the order in which matrix
multiplication is performed will be significant to us.

Rotation Before Translation Rotation After Translation

-
Wertices always rotate
about the origin

Figure 1.37

59

The Translation Problem

We know that a vector/matrix multiplication is essentially a series of row/column dot products. This of
course means that the input vertex components are multiplied by the matrix components during the
process. But what if we wanted to build a matrix that always produced an X component in the output
vector with a value of 5 regardless of the value originally contained in the input vector?

mll ml2 ml3
[x »y z|x|m21 m22 m23|=[x Y Z]
m31 m32 m33

Ignore the Y and Z components of the output vector for now, and just concentrate on how the X
component in the output vector is calculated:

X=x*mll +y*m2l + z*m31

Because x, y and 7 are all used to create the resulting X component, there is no way to fill in an element
of our matrix that would always result in X = 5.

So, if our object is supposed to be positioned at world space coordinates (50, 70, 10) we would need to
build a matrix that franslates all the vertices in its mesh by 50 along the x axis, 70 along the y axis and
10 along the z axis.

It would appear that the only solution would be to handle the other transformations first using a 3x3
matrix and then translate that result separately, like so:

V’=MV+T

Where V and V’ represent the input and output vectors respectively, M is a 3x3 rotation/scaling matrix,
and T is a translation vector (a 1x3 matrix).

While this approach would certainly work, we would much prefer to get the job done with a single
matrix multiplication. But how do we build a matrix that will add 50 to the X, 70 to the Y and 10 to the
Z of the input vector, regardless of the vector’s initial input value? In the matrix above you should be
able to see that this is just not possible. Take a look at column 1 in the matrix, which is responsible for
the output of the X component. There is no way to substitute m11, m21 or m31 for any value that would
simply add 50 to the x value for example.

Of course, there is a solution. It involves changing our perspective a bit and introducing a new
dimension to the equation.

Although human beings have difficulty visualizing more than three dimensions, in mathematics many
dimensions can and do exist. These ‘hidden’ dimensions (specifically the fourth dimension in this case)

60

provide us with an interesting mathematical method for solving the translation problem. Have a look at a
four dimensional vector. A 4D vector is perhaps very much like you would expect -- a 1x4 matrix:

[x v z w]

The 4D vector above has an x, y and z component just like our 3D vector and it also has a fourth
component labeled w. If we divide a 4D vector by its own w component like so we can map back into
3D space:

[x/w yiw z/w wi/w]

In fact any 4D vector where w=1I, maps directly to 3d space:
[x/1=x y/1=y z/1=z w=1]

This type of vector is known as a homogeneous coordinate. The operation of dividing x, y and z by w
projects a vector from dimension N to dimension N-I. Homogeneous coordinates do not apply to 4D
vectors only. They exist in every dimension N. If we wanted to project a 3D vector V-

V=(x,y,6 2

We can do this by dividing x and y by z like so:
V= (x/z , y/z , z/z)

This resulting vector R looks like:

R= (X, Y,k 1)

The operation projected the vector from 3D space into 2D space. You may recall this technique from our
earlier discussion. Dividing the X and ¥ components of a 3D point by the Z component was the formula
we used to perspective project a 3D point onto a 2D plane located at z= 1.

Note: A vector of dimension N can be projected back into a space of dimension N-1 by dividing its
components by the Nth component of that vector.

Using a homogeneous 4D vector we can ignore the w component since it always equals 1. To be sure,
there will be times when we will work with 4D coordinates where the w component does not equal 1,
and we will discuss those cases later in the course.

So how does this help us solve the problem of representing a non-linear translation transformation in a
matrix? The key is found in the idea that w = 1. Below, we see a 4D vector V multiplied with a 4x4
identity matrix I to create resulting 4D vector R. Notice that a new column is needed to compute w in
the matrix. If w=1I (as we know it does) then multiplying by this matrix also results in an output vector
where w=1.

61

V=[x y z w=Il]xI= =RX Y Z W=1]

S o o =
S o = O
S — O O
— o O O

With this knowledge we can create a new 4x4 matrix storing the equation for rotation around the Z axis:

Matrix for Rotation around the Z Axis
cos(d) sin(d) 0 O
—sin(d) cos(@d) 0 O
0 0 1 0
0 0 0 1

The matrix is essentially the same as it was before with the exception being that the last two columns
now have been set to identity columns. Remember that we only want the x and y values of the input
vector to be affected by the rotation operation. The z and w values of the input vector should be copied
over into the output vector unchanged. The new identity column above would copy the w component
from the input vector into the W component of the output vector unchanged as expected:

W=x*0+y*0+z*0+w*l=w

Note as well that we have added an extra row to our matrix. This is done firstly in order to allow us to
multiply vector[1][4] with the matrix[4][4] (the inner dimension rule). It will also allow us to represent
translation in our matrices. Take a look at the two matrices below, which demonstrate the multiplication
of our vector V with a matrix M:

mll ml2 ml3 ml4
m21 m22 m23 m24
m31 m32 m33 m34
m4l m42 m43 m4i4

Vix v z 1]xMm =RX Y Z 1]

To calculate element X in output vector R:
X=Vx*mll +Vy*m2l + Vz*m31 + 1*m41

We know that w=I so the last portion of the calculation for X will always be “+ 1*m41”. In other words,
whatever value we put into element m41 will be used in an addition operation:

The same also holds true for both the y and z columns in the matrix. Any value we store in m42 will be
directly added to the y component of the input vector V and any value we store in element m43 will be
added to the z component of input vector V. So the fourth row, along with the homogeneous coordinate,
lets us represent translation in a matrix because together they give us the required addition operation.

62

You should think of the fourth row as a separate section of the matrix that does not scale the input vector
like the upper 3x3 portion does. It will be used to add to or subtract from the values contained in the
input vector.

With this knowledge, we can now create a matrix that would translate a vector 7X along the X axis, 7Y
along the Y axis and 77 along the Z axis like so:

Translation Matrix

1 0 0 O
o 1 0 O
0o 0 1 0
X TY TZ 1

For example: TX=200, TY=0 and TZ=-50. Input vector V=(200, 70, 500). We will need to represent
this vector as a 4D homogeneous coordinate so V= (200, 70, 500, 1).

1

v =[200 70 500 1]x =R=[x Y Z 1]

(= - =)
wm = O O
- o O O

200

Calculating vector R ourselves:

Rx=200*1+70*0+500*0+1*200=200*1+ 1*200 =400 (Rx=400)

Ry=200*0+70*1+500*0+1%0 =70%*] =70 (Ry=70)
Rz=200*0+70*0+500*1+1%-50= 500%1 + 1*-50 =450 (Rz=450)
Rz=200*0+70*0+500*0+1*1 =1*1 =1 (Rw=l)

~R=[400 70 450 1]

Our point has been successfully transformed by the matrix. This 4x4 translation matrix can be combined
with other matrices. We can concatenate a rotation matrix and a translation matrix into a single matrix
and pump all of our vectors through it.

Matrix for Z Axis Rotation and Translation

cos(f) sin(@d) O O
—sin(@) cos(@d) 0 O
0 0 1 0
X Y 717 1

63

We can hardcode the fact that input vector W components will always equal 1 in a function. This is a
shortcut we can safely make for a function that works explicitly with 3D vectors and matrices that
consist of translations, rotations and scaling. Below, we see a function called VectorMatrixMultiply that
takes a 3D vector and stores it as a 4D vector internally in order to carry out the calculation. The result is
then homogenized to make sure we return a 3D vector. This is why we are dividing x, y and z by w. This
is a handy function for multiplying the mesh’s model space vertices to world space or view space when
we know that we want a resulting vector where w = 1.

BOOL VectorMatrixMultiply(VECTOR3D& vDest, VECTOR3D& vSrc, MATRIX& mat)
{

FLOAT x = vSrc.x*mat.mll + vSrc.y*mat.m21 + vSrc.z* mat.m31 + mat.mdl;
FLOAT y = vSrc.x*mat.ml2 + vSrc.y*mat.m22 + vSrc.z* mat.m32 + mat.mé2;
FLOAT z = vSrc.x*mat.ml3 + vSrc.y*mat.m23 + vSrc.z* mat.m33 + mat.m43;
FLOAT w = vSrc.x*mat.ml4 + vSrc.y*mat.m24 + vSrc.z* mat.m34 + mat.md4;

// Prevent Divide by 0 case.
if(fabsf(w) < g EPSILON) return FALSE;

// Homogenize the coordinate.

vDest.x = x / w;
vDest.y =y / w;
vDest.z = z / w;

return TRUE;

Some matrix functions (such as he one shown above) seem to multiply a 3D vector with a 4D matrix
but we know this can not be done because of the inner dimension rule. Of course, what these functions
are doing is similar to what we are doing here: explicitly treating the 3D vector as a 4D vector where w
always equals 1 therefore always adding the 4™ row of a column to the result. There are times when you
do not want a function to homogenize the result and therefore the more generic 4D vector/4D matrix
multiplication would be used.

For each component calculated in the output vector we add the 4™ row values from the matrix. We then
homogenize the 4 components back into 3D space by dividing by w. This allows us to return a 3D space
vector. You could alter this code to return a 4D vector instead where the divide by w could be performed
elsewhere. Another point to note is that if you know for sure that the 4™ column (the w column) of the
matrix being multiplied is an identity column, then the resulting w will still equal 1 and the divisions by
w are not needed. This is often the case when dealing with vertex positions.

64

1.4 D3DX Math

The DirectX9 SDK ships with a DirectX Graphics helper API called the Direct3D Extensions (D3DX).
Among just some of its components it includes numerous mathematical structures and functions that will
be of value to us. We can include this functionality in our source code modules by adding #include
<d3dx9.h> near the top of the source file. Most D3DX classes have overloaded operators and various
constructors to make operations easy and intuitive. Lab Project 1.1 will be using D3DX for its math
functions and its matrix and vector structures. This will be advantageous since D3DX math functions
may take advantage of CPU capabilities like MMX™ or 3DNow™ when available. As the course
progresses we will use the D3DX library for many other important tasks. This section will examine
some of the D3DX data types and functions that we will use on a frequent basis.

1.4.1 Data Types

D3DXMATRIX

DirectX Graphics works exclusively with 4x4 matrices (16 floats). Matrix elements in this class can be
accessed in two ways: via a 4x4 array or by using the double suffix notation we are already familiar
with. Each member of the matrix can be accessed using the .row column method. This means that we
can assign a value to the 3™ row and the 2™ column using the following code:

D3DXMATRIX Mat;
Mat. 32 = £; //f = float value

With operator overloading we can perform matrix multiplication, addition and subtraction:

D3DXMATRIX matl, mat2, mat3;

mat3 = matl * mat2; // matrix multiplication
mat3 = matl + mat2; // matrix addition
mat3 = matl - mat2; // matrix subtraction

There are two constructors worthy of mention. The first initializes the matrix using another matrix
passed as a parameter. The second allows us to pass in each of the 16 float values we want placed in
each element of matrix. Their definitions are:

65

Constructor 1
D3DXMATRIX (CONST D3DMATRIX&) ;

Constructor 2

D3DXMATRIX (FLOAT 711, FLOAT 712, FLOAT 713, FLOAT 714,
FLOAT 21, FLOAT 22, FLOAT 23, FLOAT 24,
FLOAT 31, FLOAT 32, FLOAT 33, FLOAT 34,
FLOAT 41, FLOAT 42, FLOAT 43, FLOAT 44);

D3DXVECTORS

The D3DXVECTORS stores 3D vectors (3 floats). There are structures for 2D (two floats) and 4D (four
floats) vectors also. All contain overloaded operators and constructors for easy initialization. This means
we can perform addition, subtract, multiplication, etc. with the standard operators as shown below.

//Construction

D3DXVECTOR3 MyVector (20.0f, 50.0f, -10.0f);

D3DXVECTOR3 YourVector (0.0f, -200.0f, 35.0f);

MyVector = MyVector + YourVector ; // Vector Addition

MyVector = MyVector * 5; // Vector scalar multiplication
MyVector = MyVector - YourVector; // Vector subtract

MyVector = (YourVector*2) + MyVector; // Combination

We can access and modify the individual vector elements x, y, or z as follows:

MyVector.x += 10.0f;
MyVector.y = YourVector.y;

Of course with a D3DXVECTOR2 structure there are only x and y member variables and with the
D3DXVECTOR4 structure we have x, y, z and w member variables. The latter can be used to store
homogeneous coordinates.

66

D3DXPLANE

D3DX also provides a structure for holding plane information (four floats). The first three floats will
store the plane normal (x, y and z components). The fourth float will be assigned the distance to the
plane from the origin.

D3DXPLANE MyPlane;

MyPlane.a = Normal.x;
MyPlane.b = Normal.y;
MyPlane.c = Normal.z;
MyPlane.d = dist; // Distance to plane from origin.

We can make use of the constructor for easy initialization:

D3DXPLANE MyPlane (Normal.x, Normal.y , Normal.z , DistanceToPlane);

D3DX has many helper functions that can be wused to create planes. Using the
D3DXPlaneFromPointNormal function you could, for example, create a plane simply by passing in the
plane normal and any point known to be on the plane. In the case of using a polygon’s plane, we could
pass in a plane normal and any one of the polygons vertices.

D3DXPlaneFromPointNormal (D3DXPLANE* pQOut, CONST D3DXVECTOR3* pPoint,
CONST D3DXVECTOR3* pNormal) ;

We pass in a pointer to a D3DXPLANE structure that will receive the final plane and also pointers to
two 3D vectors, the plane normal and a point known to be on the plane.

If you do not have access to the polygon normal and want it calculated on your behalf, use the
D3DXPlaneFromPoints function. This function can be used to create a plane from any three points
known to be on the plane. For example, if you were creating a plane for a polygon, you could pass in
three of the polygon’s vertices. D3DX would calculate the plane normal and the distance for you,
returning the information via the D3ADXPLANE structure passed in the pOut parameter.

D3DXPlaneFromPoints (D3DXPLANE* pOut, CONST D3DXVECTOR3* pVI,
CONST D3DXVECTOR3* pVZ2, CONST D3DXVECTOR3* pV3);

67

1.4.2 Matrix and Transformation Functions

D3DXMatrixMultiply

D3DX provides a function to multiply two 4x4 matrices:

D3DXMATRIX* D3DXMatrixMultiply(D3DXMATRIX* pOut,
CONST D3DXMATRIX* pMI,
CONST D3DXMATRIX* pMZ2);

The function takes the addresses of the two 4D matrices to be multiplied and the address of a matrix
which will receive the result of the operation. The multiplication will take advantage of any hardware
(CPU) features or optimizations available.

D3DXMatrixRotation{XYZ}

D3DX provides three functions for building specific rotation matrices:

D3DXMatrixRotationX (D3DXMATRIX* pOut, FLOAT Angle);
D3DXMatrixRotationY (D3DXMATRIX* pOut, FLOAT Angle);
D3DXMatrixRotationZ (D3DXMATRIX* pOut, FLOAT Angle);

The functions accept a pointer to a D3DXMATRIX structure and float values that describe the amount
of rotation (in radians) we require about that particular axis. For example, if we want to build a matrix
that rotates vectors 1.3 radians about the world Y axis we can do the following:

D3DXMATRIX RotationMatrixY;
D3DXMatrixRotationY (&RotationMatrixY , 1.3);

When the function returns, the matrix passed via the pOut parameter will contain the correct values. In
this case, the matrix returned internally would look like so:

cos(d) 0 —sin(@)
0 1 0
sin(d) 0 cos(0)

68

D3DXMatrixTranslation

There is also a function to create a translation matrix for positioning our objects in the world:

D3DXMatrixTranslation (D3DXMATRIX* pOut, FLOAT x, FLOAT y, FLOAT z);

If we wanted to translate our mesh so that it was positioned at (10, 40, 50) in world space we could do
the following:

D3DXMATRIX TranslationMatrix;
D3DXMatrixTranslation (&TranslationMatrix , 10 , 40 , 50);

Using these functions, we can give each object its own world matrix. When that object is rendered for
each frame, its vertices are multiplied by this matrix to transform it into world space. For example, let us
say that we have an object that we want to be rotated 2 radians about the Z axis and positioned at (10,
50, 2) in world space. We could build a matrix that would perform this operation by first building the
translation matrix, and then combining it with a rotation matrix in order to generate the concentrated
matrix. The code to do this is shown below:

CObject Object; // assumed to have two members, a mesh and a world matrix
D3DXMATRIX RotMat, TransMat;

// Build the matrices
D3DXMatrixTranslation (&TransMat , 10, 50, 2);
D3DXMatrixRotationZ (&RotMat , 2);

// Set the combined matrix as the object’s world matrix
Object.WorldMatrix = RotMat * TransMat;

The object now has a single world matrix which completely describes its orientation and position within
the 3D world. Using that matrix to transform the vertices into world space, we can move the object
around the world simply by altering the matrix values. We might have a function that is called every
time the left arrow key is pressed, that builds a rotation matrix around the Y axis by 0.2 radians and then
multiplies this with the object’s current world matrix. This would cause the object to rotate each time by
a further 0.2 radians.

Note that in the above code the matrix multiplication order is significant. Here we are rotating the object
about its local origin first and then translating the object into its final world space position. Reversing the
order of the multiplication would produce a translation into the world space position followed by a
rotation about the world origin.

69

D3DXMatrixRotationYawPitchRoll

The next function allows you to specify the rotations about the X, Y and Z axes with a single call. This
would otherwise have to be built using three separate rotation matrices about each of the X, Y and Z
axes respectively and then multiplying each of them together.

D3DXMatrixRotationYawPitchRoll (D3DXMATRIX* pOut, FLOAT Yaw, FLOAT Pitch,
FLOAT Roll);

To build a single matrix that rotates 1 radian about the X axis, 2 radians about the Y axis and 0.5 radians
about the Z axis and then positions our object at (100,50,-20), we would use the following code:

D3DXMATRIX OrientationMat , TranslationMat;

D3DXMatrixRotationYawPitchRoll (&OrientationMat , 2 , 1 , 0.5);
D3DXMatrixTranslation (&TranslationMat , 100 , 50 , -20);

Object.WorldMatrix = OrientationMat * TranslationMat;

If you maintain three floats (Yaw, Pitch, Roll) for each object, these can be altered in response to user
input and used to build the object’s new orientation matrix each time it needs to be updated.

D3DXVec3Transform...}

The D3DX library also has functions that allow us to multiply a vector with a matrix. We will need to do
this multiply on each of the mesh’s vertices using the object’s world matrix. There are three functions
that concern us and each behaves somewhat differently:

1. D3DXVec3TransformCoord(D3DXVECTOR3* pOut, CONST D3DXVECTOR3* pV,
CONST D3DXMATRIX* pM);

This function multiplies a 3D vector with a 4x4 matrix. As we know from our earlier discussion, the
function treats the input vector as a homogenous 4D vector in the form (x, y ,z , 1). The 4D vector is
multiplied by the 4x4 matrix which creates another 4D vector. This function takes care of homogenizing
the resulting vector back into 3D space.

This is the function we will use to multiply our object vertices by our object world matrix.

2. D3DXVec3TransformNormal (D3DXVECTOR3* pOut, CONST D3DXVECTOR3* pV,
CONST D3DXMATRIX* pM);

This function is provided when the result vector needs to be normalized. For example, let us say that we
have a polygon facing down the positive Z axis. The normal for this polygon equals (0, 0, 1). If the
polygon were rotated 45 degrees about the Y axis, the normal would also have to be updated. We can

70

rotate normal vectors just as we do ordinary vectors as long as the unit vector remains a unit vector after
the matrix multiplication.

When the matrix contains translation information (which will most likely be the case with the object’s
world matrix) then the normal will also be translated. As a result, its tip would no longer necessarily be
one unit from the origin. So we want to ignore the bottom row of the matrix which stores the translation
and only multiply the normal using the upper 3x3 section storing the orientation. The D3DX function
does just this.

3. D3DXVec3Transform (D3DXVECTOR4* pOut, CONST D3DXVECTOR3* pV,
CONST D3DXMATRIX* pM) ;

This function takes a 3D input vector and a matrix and returns a 4D vector. The input vector is treated as
a 4D vector in the form (X, y, z, 1). This output vector is in the form (X, y, z, w) where w does not equal
1. Unlike D3DXVec3TransformCoord, this function does not homogenize the result by dividing x, y and

z by w. You may need this function if you are required to use a matrix where the fourth column is not an
identity column.

1.4.3. Vector Functions

The D3DX library also provides functions for performing normalization of vectors, dot products, cross
products and functions for returning the length of a vector. Some of these are listed below.

Cross Product

D3DXVec3Cross (D3DXVECTOR3* pOut, CONST D3DXVECTOR3* pVI, CONST D3DXVECTOR3* pVZ2);

Returns a vector perpendicular to A and B in pOut result.

D3DXVECTOR3 Result, A, B;
D3DXVec3Cross(&Result , &A , &B);

Dot Product

D3DXVec3Dot (CONST D3DXVECTOR3* pVI1, CONST D3DXVECTOR3* pVZ2),

Returns cosine of the angle between A and B scaled by vector magnitudes.

D3DXVECTOR3 A, B;
float CosAngle = D3DXVec3Dot(&A , &B);

71

Magnitude

D3DXVec3Length (CONST D3DXVECTOR3* pV);

Returns the length of the passed vector.

D3DXVECTOR3 A;
float Length = D3DXVec3Length (&A);

Normalization

D3DXVec3Normalize (D3DXVECTOR3* pOut, CONST D3DXVECTOR3* pV)/,

This function takes a vector pV and makes it unit length.

D3DXVECTOR3 A;
D3DXVec3Normalize (&A , &A);

The functions that return a vector result allow an output vector to be specified. This vector can be used
to specify a vector other than the one used for input. This is useful if you do not want the normalized
vector to overwrite the input vector. However, in the above example we have passed vector A as both
the input and the output, thus normalizing vector A and storing the result back in vector A.

72

1.5 The Transformation Pipeline II

In our first Lab Project, three key matrices are used. These matrices combine to perform the initial phase
of the transformation pipeline from model space to projection space. After a polygon has passed through
each of these three matrices its vertices are ready to be scaled from 2D projection space to 2D screen
space as discussed earlier. We will now cover each of the three matrix types, their use, and some
interesting facts about them.

1.5.1 The World Matrix

Each object in our scene will have a world matrix. The world matrix is used to position, scale and orient
the object in world space. The first thing our pipeline will do is multiply each of the polygon’s vertices
with the current object’s world matrix. This will transform the polygon from model space into world
space. By applying new rotations and translations during each frame of our game, we can animate a 3D
object. Our object structure looks like this:

class CObject
{
CMesh *pMesh;
D3DXMATRIX WorldMatrix;
i

If an object’s world matrix has been set as an identity matrix, then we know that the object will not be
translated or rotated at all, it will positioned in the world at position (0, 0, 0) and is assumed to face
straight down the positive Z axis. Let us look at an identity matrix again for a moment:

1000 | LocalXAxis
0100| LocalYAxis
0010| LocalZAxis
0001 Position

Ignoring row 4 and column 4 for the moment, we can see that the first three rows are actually unit
vectors which are identical to that of the world X, Y and Z axes. The third row for example is a vector of
(0, 0, 1) which is a unit vector describing the world Z axis. You should think of these three rows as the
object’s local coordinate system. They describe the orientation of the model space X, Y and Z axes in
relation to the world space X, Y and Z axes. We can see that the local coordinate system exactly matches
the world space coordinate system when using an identity matrix.

In Fig 1.38, the X and Y rows in the identity matrix are unit vectors pointing in the same direction as the

world axes. We know that the input vector will be unchanged by this matrix since the matrix used is
constructed with identity columns.

73

World Matrix (ldentity)

+Y

Local ¥ Axis (0,1,0)

-X X
e
Cube Object / Loecal X Axis (1,0,0)
=Y
Figure 1.38

Regardless of whether the world matrix of an object is an identity matrix or not, we can still think of the
first three rows of the matrix as unit vectors describing the local coordinate system x, y and z axes.

Let us see what happens when we combine our identity initialized world matrix with a Z axis rotation
matrix. In the next example we will build a rotation matrix that rotates our points by 45 degrees
(0.785398 radians).

Identity 45 degree Z rotation

1 0 0 O cos(45) sin(45) 0 O

01 0O X —sin(45) cos(45) 0 0 _

0 010 0 0 1 0

0 0 01 0 0 0 1
Identity 45 degree Z rotation New Rotated World Matrix
1 0 0O 0.707106 0.707106 0 0 0.707106 0.707106 0 0| LocalXAxis
01 00 X -0.707106 0.707106 0 O _ —0.707106 0.707106 0 O| LocalYAxis
0 010 0 0 1 0 0 0 1 0| LocalZAxis
0 0 01 0 0 0 1 0 0 0 1| Position

We see in Fig 1.39 that the axes of the local space coordinate system are now rotated 45 degrees:

74

World Matrix
(45 degree Z rotation)
A

+Y
Locate Y Axis Locate Y Axis
{(0.707,0.707,0) (0.707,0.707, 0)
-X +X
Cube Ohject
(45 degree Z rotation)
Y
Figure 1.39

If we have a unit vector describing the way an object is pointing, we can use it to update its position in
the world (by moving along this vector). Our object matrix contains all of the information we need to
move it along a local axis even though it is now in world space. For example, the 3™ row of the matrix is
referred to as the look vector. 1t is a unit vector describing the way the object is facing. It is actually the
model space Z axis and it retains exactly the same relationship to the model in world space as it did in
model space. If we want to move our object a certain distance forward, we can use the 3™ row of the
matrix to do this:

// move spaceship forward
void MoveForward(float distance)

{
D3DXVECTOR LookVector;

// Extract the Look vector (local z axis) from the world matrix
LookVector.x SpaceShip.WorldMatrix. 31;
LookVector.y = SpaceShip.WorldMatrix. 32;
LookVector.z SpaceShip.WorldMatrix. 33;

SpaceShip.WorldMatrix. 41 += LookVector.x * distance;
SpaceShip.WorldMatrix. 42 += LookVector.y * distance;
SpaceShip.WorldMatrix. 43 += LookVector.z * distance;

}

MoveForward extracts the look vector from the 3™ row of the matrix and then scales it by the forward
distance we wish to move. We add the resulting vector to the current position -- which we know is
stored in the 4™ row of the matrix. Because LookVector is a unit vector, the distance is dispersed over
the X, Y and Z axis in their correct proportions and the world matrix now contains the new world space
position. This new position is exactly distance units from its previous position in the direction of the
look vector. So whatever the orientation of the object in world space, we now have the means to move it

75

forward in the desired direction. If MoveForward was passed a negative distance value, it would move
the object backwards in world space.

We also have the object local Y axis (called the up vector) in the second row of the matrix and the local
X axis (called the right vector) in the first row. This means that we could, for example, make our
spaceship strafe left or right by using a function that uses the first row of the matrix. A negative distance
value would cause the object to move left instead of right:

// Strafe spaceship left or right
void MoveStrafe(float distance)

{
D3DXVECTOR RightVector;
// Extract the Right vector (local x axis) from the world matrix
RightVector.x = SpaceShip.WorldMatrix. 11;
RightVector.y = SpaceShip.WorldMatrix. 12;
RightVector.z = SpaceShip.WorldMatrix. 13;

// update position in matrix

SpaceShip.WorldMatrix

SpaceShip.WorldMatrix.
SpaceShip.WorldMatrix.

. 41 += LookVector.x * distance;

42 += LookVector.y * distance;
43 += LookVector.z * distance;

With these two examples it should be no problem for you to write a third function called MoveUpDown.
The world matrix can be summarized as follows:

World Matrix

Right Vector.x Right Vector.y Right Vector.z 0
Up Vector.x Up Vector.y Up Vector.z 0
Look Vector.x LookVector.y Look Vector.z 0
Position.x Position.y Position.z 1

This matrix will serve as our entire world transformation module. Multiplying our object vertices with a
world matrix will convert those vertices from model space to world space:

WorldSpaceVertex = ModelSpaceVertex * WorldMatrix

76

1.5.2 The View Matrix

The next task is to transform our world space vertices to view space (relative to some virtual camera
position). The camera orientation and position information can also be stored in a single matrix. We
refer to this matrix as the view matrix.

The view matrix works a little differently than our world matrix. As we saw earlier, in order to transform
vertices into view space, we have to perform the opposite operations on them. When the camera is
rotated to the right, we need to rotate the vertex left. If the camera is moved forward, we need to move
the vertex backwards, and so on. In order to accomplish this we will use the inverse matrix.

Let us assume that we have three vectors describing the Up, Look and Right vectors of the camera, and
that we also have a camera position in our 3D world.

// Assumed to be later initialized to meaningful values..
D3DXVECTOR3 CLook; // Camera Look Vector

D3DXVECTOR3 CRight; // Camera Right Vector

D3DXVECTOR3 CUp; // Camera Up Vector

D3DXVECTOR3 CPos; // Camera World space Position

If we were to build a standard local to world matrix for the camera it would look like so:

CRight.x CRight.y CRightz 0
CUp..x CUp.y CUpz O
CLook.x CLook.y CLook.z 0
CPos.x CPos.y CPos.z 1

However this matrix would not have the desired effect. In fact it would take a vertex that is already in
view space and transform it so that the result is back in world space! This can actually be handy in
certain situations we will encounter later, but it is not what we need at the moment. We need to use the
inverse of this matrix:

View Matrix

CRight.x CUp.x CLook .x 0
CRight.y CUp.y CLook.y 0
CRight.z CUp.z CLook .z 0
—(CPos e CRight) —(CPoseCUp) —(CPoseCLook) 1

This is the matrix we will use to convert vertices from world space into view space. The virtual camera
in our game can be represented using this single matrix. D3DX has a function that will take a 4x4 matrix
and invert it:

D3DXMatrixInverse (D3DXMATRIX* pOut,FLOAT* pDeterminant, CONST D3DXMATRIX* pM) ;

77

The mathematics involved in inverting arbitrary matrices can be complex and is covered in detail in the
Game Mathematics course here at the Game Institute. For our purposes, we can simply pass in a
transformation matrix and set the determinant value to NULL (as we will not need it). Also notice that
the output matrix need not be the same as the input matrix.

There will be times when you will need to call the above function to invert a matrix but it is certainly not
the way we would recommend creating the view matrix each time the camera moves and the view matrix
needs to be updated. Storing the camera position and orientation as a normal transformation matrix and
calculating the inverse each time the camera moves is an expensive operation. Instead, the camera is
usually managed by having Up, Right, Look and position vectors and building the view matrix
manually; inserting the vectors into the matrix as shown above. The matrix will only need to be rebuilt
when the camera moves or rotates. We could for example replace our previous CCamera class with a
new one that looked like the following:

class Camera

{

public:
D3DXVECTOR3 LookVector;
D3DXVECTOR3 Up Vector;
D3DXVECTOR3 RightVector;
D3DXVECTOR3 Position;

}

At the start of your application you might set the camera to its correct starting position and set the look,
up and right vectors so they are aligned with the world axes using vectors (0,0,1) , (0,1,0) and (1,0,0)
respectively. Then when the player presses an arrow key, you could rotate the vectors with a rotation
matrix that rotates them so they are now facing in a new direction. Finally the view matrix would be
rebuilt by inserting these vectors manually into the view matrix.

In LP 1.1 we will not be moving the camera and we will be leaving the view matrix set as an identity
matrix. This means that the camera can be visualized as being at position (0,0,0) in the world, with its
local coordinate system aligned with the world axes so that it is looking down the positive Z axis.

View Matrix

Right Vector.x Up Vector.x Look Vector.x 0
Right Vector.y Up Vector.y Look Vector.y 0
Right Vector.z UpVector.z Look Vector.z 0
- (Position ® RightVector) | - (Position® UpVector) - (Position ® LookVector) | 1

There are D3DX matrix functions which aid in the setting up of a view matrix. We will discuss using the
view matrix in Chapter 4 in much more detail. We will see how to get it to behave like a first person
shooter game camera or even a space ship game camera.

A D3DX view matrix helper function of interest to us is shown below. It takes a camera position in

world space, a point in that we want the camera to look at, and a vector describing the UP vector of the
camera (often <0, 1, 0> at startup) and builds the matrix for us:

78

D3DXMatrixLookAtLH(D3DXMATRIX* pOut, CONST D3DXVECTOR3* pEye,
CONST D3DXVECTOR3* pAt, CONST D3DXVECTOR3* pUp) ;

The parameters are shown below:

pOut - The address of a D3DXMATRIX structure that will contain the calculated view matrix.
pEye — World space position of the camera, referred to here as the eye point

pAt - World space position that we want the camera to be looking at

pUp - Orientation of the camera up vector

It should be noted that the ‘LH’ at the end of the function call is short for ‘Left Handed’. This function
builds a view matrix suitable for a left handed coordinate system, which DirectX Graphics (and we) will
use. D3DX does contain a right handed version of the function called D3DXMatrixLookAtRH so make
sure that you do not accidentally call the wrong one.

Note: Inverting a matrix produces the opposite effect of a normal transformation matrix. Thus, by
inverting an object’s world matrix, we get a matrix that would transform world space vectors into model
space vectors.

This technique is often used in collision detection routines where you may have to check each vertex of a
mesh against a world space bounding box or a bounding sphere. In these cases it is much cheaper to
back transform a single world space sphere into model space and perform the test there than to
transform every vertex in the mesh into world space and then test.

If you think of a transformation matrix as transforming points from one space to another, you can think
of the inverse of that matrix as performing a canceling or reversing transformation into the original space.

Remember that we can multiply matrices together to create a single combined transformation matrix that
will transform any vectors as if they had been multiplied by all the original matrices. We could combine
each object’s world matrix with the current view matrix prior to rendering that object, and thus transform
all vertices from model space to view space with one vector/matrix multiplication. This saves us a fair
amount of work as each vertex would otherwise need to be multiplied by the object world matrix, and
then again by the view matrix.

D3DXMATRIX ComboMatrix = Object.WorldMatrix * ViewMatrix;
D3DXVECTOR ViewSpaceVertex = ModelSpaceVertex * ComboMatrix;

In LP 1.1 we will not do this. At this point we would like to keep the World, View and Projection
matrices separate to better demonstrate each stage of the pipeline.

79

1.5.3 The Perspective Projection Matrix

We spent a good deal of time earlier in this lesson discussing how to project a 3D view space point into a
2D projection space point. You may recall that the resulting point was in the —1 to +1 range on both the
X and Y axes. This point was later mapped to screen space. You may also recall that the formula we
used to perspective project the 3D point into a 2D projection space coordinate was simply:

2D ProjectionPoint X = ViewSpaceX
ViewSpaceZ
2DProjectionPointY = ViewSpaceY
ViewSpaceZ

As a point gets further away from the camera it is scaled down (and vice versa). This provides the
illusion of perspective. Recall that the one important characteristic of this formula is that it always uses a
90 degree FOV. This means that the camera can always see 45 degrees to the left, and 45 degrees to the
right, and on the other axis, 45 degrees up and 45 degrees down. We could visualize this as a view cone
spreading out from the camera origin at an angle of 90 degrees.

This is exactly how DirectX Graphics (and our own software code) perspective projects a 3D view space
point. But having no choice other than a 90 degree FOV is simply not acceptable to us. First of all, a 90
degree FOV does not usually look particularly good. Most developers prefer to use a 45 to 65 degree
FOV. This is not technically correct because humans have a wider FOV than that in real life, but it looks
correct in the game. Second, the monitor screen is not square and we usually have more pixels
horizontally than we do vertically. This means we should really have a wider FOV left and right than we
do Up and Down. If we do not, then the scene will looked squashed because we are doing a SQUARE
projection onto a rectangular monitor screen. If your application is running in a perfectly square window,
then no squashing or distortion will appear, but usually, we like our games to run in full screen
resolution such as 800x600 or 1024x768 which are rectangular video modes.

If all of this is true, then we would appear to have a problem. DirectX Graphics calculates the
perspective projection using the 90 degree FOV formula we saw earlier (x/z and y/z) yet we wish to use
arbitrary FOV.

In order to combat this problem we can multiply view space vectors by a third matrix prior to the divide
by z (the perspective projection process). This matrix will distort the geometry in our world in a
controlled manner so that the illusion of an arbitrary FOV is maintained. We are still doing a 90 degree
unit projection, but because the vertices have been deformed, we can control whether or not they fit
within the 90 degree FOV.

The vertices of a mesh will be multiplied with this new projection matrix affer the vertices have been
converted to view space. This means that we can write the complete transformation from model space
vertex to projection space vertex as:

ProjectedVertex = ModelVertex * (WorldMatrix * ViewMatrix * ProjectionMatrix);

80

At this point we can map the [-1, +1] range of the vertex along the x and y axes into the range of the
current screen resolution as shown earlier in the lesson.

Note: It is perhaps odd that it is called a ‘projection matrix’ since it does not project the vertices at all.
Rather it swells or shrinks their position values prior to a perspective divide. You could say, then, that the
projection matrix is a matrix that prepares 3D vertices for projection to 2D.

Refer back to the section on perspective projection if you need to. It is important that you understand
why the divide by z performs a 90 degree projection if you are to understand this next section.

Let us start our analysis of the projection matrix with an identity matrix and build up from there. We
know that the projection matrix is a 4x4 matrix and that it will output a 1x4 vector. The input vector will
be a homogeneous 4D coordinate in the form of (x, y, z, 1) as we have already discussed. As with all of
the matrices we have used up until this point, the W column of the matrix is an identity column. Thus the
output vector will also be in the form of (x, y, z, 1) and we can discard the w component.

Projection Matrix

V=[x y z 1]xM= =Plx Y z w=]]

S O o =
S O = O
S = O O
— o O O

The above projection matrix does absolutely nothing. Because it is an identity matrix, output vector P
will be identical to input vector V. Once vector P has been calculated we could simply do x/z and y/z to
calculate the new 2D projection space position of the vector. This would scale the geometry using a 90
degree FOV projection.

Note that the projection matrix is the last point at which we have control over the vertex in the DirectX
Graphics fixed-function transformation pipeline. We will pass DirectX Graphics a World matrix, a View
matrix and a Projection matrix and call the DrawPrimitive function to render polygons. DirectX
Graphics will multiply our vertices with the three matrices and will then take care of performing the
perspective divide on the resulting vector returned from the projection matrix. It will eventually remap
the coordinate to a screen space coordinate. The software renderer in LP 1.1 will mimic this behavior to
a certain extent. Therefore we will set up the projection matrix the same way it will need to be set up
when using DirectX Graphics.

The first problem we must address with our matrix is that DirectX Graphics requires that the w
component of the output vector be equal to the z component of the input vector affer the projection
matrix multiply (W=z). The reason is that DirectX Graphics uses the w component of the output vector
for other calculations (depth-based fog, color interpolation, W—Buffer). It may seem more intuitive to
copy the input z component into the output Z component and use that, but as you will see later on, we
need the Z value of the output vector to hold specialized information intended for something called a
Depth Buffer. Copying the z component of the input vector into the W component of the output vector is
no big deal, and we can alter our matrix quite easily to ensure that this is so:

81

Projection matrix

V=[x y z 1|xM= =PlX Y Z W=1|

S o o =
=
S = O O
S = O O

By adjusting the 4™ column of the projection matrix so that the 1 is no longer in the 4th row but is now
in the 3™ row, the W component of the output vector will be calculated as follows:

W=x*0 +y*0 + 2% + 1%0 =

This matrix has correctly copied over the z component of the input vector V into the W component of the
output vector P. So if V=(20,40, 105, 1), then P =(20, 40, 105, 105).

We said before that to move a vertex from view space to 2D projection space (where the divide by z
happens) we simply do:

ViewSpace.
2D ProjectionSpacex = M
ViewSpace.z
2D ProjectionSpacey = ViewSpace.y
ViewSpace.z

And now we have a new coordinate space. This space is the space the vertex is in after it has been
multiplied by the projection matrix but before it has been projected into 2D projection space (the divide
by z). This new space is referred to as Homogeneous Clip Space. The only current difference between
view space and homogeneous clip space is that in homogeneous clip space we have copied the z
component into w and we have:

ViewSpaceVector =(x,y,z,1)
HomogneousClipSpaceVector =(x,y,z,z)

Because the w component holds the z value and because the z value of the output vector will later hold
something else, DirectX Graphics (and our software engine) does its perspective projection using this
formula:

H ; .
2D ProjectionSpacex = omogenouslepSpace X

HomogenousClipSpace.w

H ; _
2D ProjectionSpacey = omogenousClipSpace.y

HomogeneousClipSpace.w

82

The formula remains totally unchanged, only now the z value is in W instead of Z. So if we set up our
projection matrix correctly, it will output a 4D vector P like so:

P(X,Y , Z=depth buffer value , W=z)

Ignore the depth buffer value for now since we will cover it in our next lesson. For now we are only
interested in finding out how the X and Y columns of the projection matrix can be used to deform
geometry to give an arbitrary FOV. The W column is already taken care of; it simply copies over the
input z component into w. So let us now look at what we should do with columns 1 and 2 of the
projection matrix.

Arbitrary Field of View

If you take a look at the first two columns of the projection matrix, you see that for x and y, it is really
like a 2x4 scaling matrix. At the moment it is simply scaling x*I = x and y*I=y -- which is why these
are not altered. But by changing the values in elements m11 and m22 we can scale the x and y values
prior to the divide by w. In effect, we still perform a 90 degree FOV projection (x /w and y / w), but we
can use the m11 and m22 elements in the matrix to scale (squash or enlarge) geometry so that it falls
either in or out of the 90 degree FOV projection cone. This is what allows us to have any FOV we
desire. To understand this concept, take a look at Fig 1.40. It shows us squashing geometry into the view
cone that would otherwise not be rendered.

Y+

L?{V—-IE Z=412
P1 [¥=12,2=5

=9, Z=8)
P3{¥=6
P =4, 8).»
-

P2(¥=3.6

= 2+
Figure 1.40

83

Noting that the z value of the input vector is simply copied over into the W value of the output vector,
any given x or y point in space will only be mapped inside the projection window if the following is
true:

-W<X<W
-W<Y<W

In Fig 1.40 there are three view space points (red dots) labeled PI, P2 and P3. These points are outside
the 90 degree view cone because the Y value of each of these points is greater than the Z value.
However, if we were to multiply each Y value by, say, 0.4, the Y values would be smaller than their z
counterparts (green dots in the above diagram). This means that these points would be projected onto the
projection window when the divide by w is calculated. If we do this to al/l vertices in our scene, we can
squash as much or as little geometry into our 90 degree view cone as we want.

In the previous example, we multiplied our y values by 0.4 to create a wider FOV. But we can also scale
the geometry up as well. For example, if we were to scale each vertex by 1.5, Y values that did fit within
the 90 degree FOV originally would be increased and would leave the projection matrix greater than W.
These points would not fall within the projection window and this would simulate a narrower FOV.

Scaling the x and y values is easy. The first two columns of our projection matrix look just like a scaling
matrix. Therefore, in m11 and m22 where we currently have a value of 1.0, we can replace these values
with other values that will increase or decrease x and y input vector values.

Projection Matrix

()

~
S = O O
S = O O

Y is calculated as follows:
Y=x*0+y*0.4 +z*0 + w*0
This simplifies to:
Y=y*0.4.
The same is true for the x coordinate. X is calculated as follows: -
X=x*0.4 +y*0 +z*0 + w*0

This simplifies to:
X=x*0.4

84

At this point we can now scale the geometry, calculate the depth buffer output value and copy z into W,
all by performing one vector/matrix multiplication.

The Co-Tangent

In the last example we used an arbitrary value of 0.4 in the m11 and m22 elements of the matrix to scale
the geometry. This provided the appearance of a wider FOV because geometry was scaled down.
However gaining precise control over the FOV settings requires a trigonometric function: the co-tangent.

Cosine, Sine, and Tangent are functions that return the ratio of two sides of a right triangle. For example
the Tan function returns the ratio between the Opposite side of a triangle and the Adjacent side of a
triangle.

Tan=0pposite / Adjacent

Lo’

// Opposite = 7

BT e

Adiacent =15

Tan=0Opp/Adj=7/15=0.466666666

Figure 1.41

In Fig 1.41, the length of the Opposite side of the right triangle is 7 and the length of the Adjacent side
of the triangle is 15. When we divide the opposite side by the adjacent side we get a result of
0.466666666. This ratio is called the Tangent (or Tan for short). The tangent is always calculated by
dividing opposite by adjacent.

All angles of a right angled triangle are mapped to a specific tangent value that describes the ratio
between the opposite and adjacent sides. For example, let us say that we know the triangle has an angle
0f 25.01689345 degrees and we also know the length of the Adjacent leg of the triangle. If we wanted to
figure out how long the opposite leg was, we could punch in the angle on our calculator (25.01689345)
and then press the Tan button (which in this case would return 0.466666666). This value describes the
ratio of the opposite leg to the adjacent. Thus to find the length of the opposite leg:

Opposite= Tan (25.01689345) * 15 = 0.466666666*15 = 7 (approx, actually 6.999999999999)

If we have the lengths of both the opposite side and the adjacent side, but we do not know the angle
value, we can use the inverse tangent atan (i.e. Tan™). First we calculate the tangent:

85

Tan = Opposite/Adjacent = 7/15 = 0.46666666

Punch in this tangent value and press the atan key and the calculator will return the angle for that
tangent (which in our case we already knew was 25.01689345 degrees or 0.436627159 radians).

If we take a side-on look at our view cone, and split it down the middle, you can see that for any z value
along the Z axis in view space, we do indeed have a right angled triangle.

Y+
QOpposite
FOY/2
,
T Adjacent Z+
-
Figure 1.42

The opposite side of the triangle is represented by the Y value and the Adjacent leg is represented by the
Z value. The same would also be true in a top-down view of the view cone, where the X axis would
represent the Opposite leg.

In Fig 1.42, the Opposite side of the Triangle is at a distance of Z=+6. (It should be noted that for any Z
value, the ratio (tangent) between the Opposite and Adjacent would remain the same and the angle
would remain the same). Note that the angle of the triangle is FOV/2. Also notice that the Opposite and
Adjacent sides have the same lengths as each other.

Opposite 6 _
Adjacent 6

If you type 1.0 into your calculator and press the atan function you will be returned an angle of 45
degrees. Recall that when the Y value at any point is equal to Z, then the FOV is 90 degrees. If we
change this relationship we could come up with a value that we could put into our projection matrix
(ml11 and m22) to scale the geometry.

Let us suppose that we want a FOV smaller than the default 90 degree projection carried out by the
divide by w projection (say 60 degrees). Logically we would want a value that would increase our X and
Y values so that the geometry which was just inside our 90 degree FOV is pushed outwards. This
simulates a smaller FOV since we should not see as much of our scene as we would be able to see with a
90 degree FOV.

What happens if we use the tangent function to calculate the ratio for us?

86

Tan(30)=0.577350269

That is clearly not correct. Multiplying our x and y values by 0.577350269 would actually make the
values smaller and would squash even more geometry into the view cone. It is the opposite effect that we
want. In order to get the correct ratio to scale our x and y values we need to use the co-tangent function:

CoTan = Adjacent / Opposite

L

’(/ Opposite = 7

Wﬁqﬁvhﬁfﬂhu

Adiacent =15

CoTan=AdjiOpp = 15/7=2.142857143

Figure 1.43

The co-tangent in our example ratio is 2.142857143. This value is exactly what we need to multiply by
the opposite side in order to make it equal to the adjacent side:

7 * 2.142857143 = 15

More specifically, this is the value that we need to create an opposite side length such that the triangle is
forced into becoming a 45 degree triangle (where both the opposite side and the adjacent side have
lengths of 15).

So this is the value we need to multiply by our x and y values in order to simulate a 50.02 FOV (twice
the angle above for the full view cone). Since the Co-Tangent function is not implemented in many
programming languages or on many calculators we can use trig functions to figure it out:

1 cos(0)
tan(d) sin(6)

co-tan

If we want a FOV of 60 degrees, we can scale the x and y values in the projection matrix by filling out
the m11 and m22 elements of our matrix as follows.

mll = 1 / tan(60/2)

m22 = 1 / tan(60/2)

or

mll = cos(60/2) / sin(60/2)
m22 = cos(60/2) / sin(60/2)

Notice above that the FOV (60 degrees) is divided in two (30 degrees) because the trigonometry
functions use one half of the view cone.

87

0 =1.047197551 radians (60 degrees)

l/Tan(g) 0 0 0
2
M = 0 l/Tan(g) 0 0
0 0 11
0 0 0 0

We now have a projection matrix that will scale geometry according to any arbitrary FOV. The 4"
column simply copies the input z value into W of the output vector for the divide by w. The 3 column
maps the input z value into a value that can be used by the DirectX Graphics depth buffer. We are just
about finished.

Aspect Ratio

When projected into 2D space, we get back a value between —1 and +1 in both the x and y dimensions
for any point inside the FOV. This is the coordinate system of the Projection Window. The next task is
to convert those projection coordinates to valid screen coordinates that can be rendered on the display. In
order to calculate the final screen coordinates, we do something like this:

Vector.x * ViewportWidth / 2 + ViewportLeft + ViewportWidth / 2;
-Vector.y * ViewportHeight / 2 + ViewportTop + ViewportHeight / 2;

ScreenX
ScreenY

ScreenX and ScreenY are screen space coordinates. In a resolution of 800x600, ScreenX 1is in the
range of 0 to 800 and ScreenY is in the range of 0 to 600.

Vector.x and Vector.y are the clip space coordinates on the projection window (in the range —1 to +1)
and are the results of the divide by w.

ViewportWidth and ViewportHeight are the dimensions of the viewable area on screen. For example,
in a full screen window of 800x600, these values would be 800 and 600 respectively.

ViewportLeft and ViewportTop should be set to zero for full screen windows, or should contain the top
left coordinates of the view window if you only wish to render to a view port that covers part of the
screen.

The projection window coordinates range from —1 to +1 in both the x and y dimensions and thus the
window is square (2x2 in size). However, monitor screens are generally not square. Most are rectangular
(usually wider than they are higher). This is also true for the most common video modes: 800 x 600,
640 x 480, 1024 x 768. These are all video modes that have more pixels horizontally than they do
vertically. This presents us with a problem. Suppose we have a polygon in front of the camera that is a
perfect square. This will be projected onto the projection window as a perfect square also. However,
when the projection window coordinates are mapped to screen coordinates, they will be stretched to take

88

up the extra width of the video mode. This means that the user of your application will see the square as
a rectangle (Fig 1.44).

y +1F"ru]t:[:tmn Window . Monitor Display

0,0 200,0

0,600 800,600

-1,-1 +1 -1

Screen Distortion from Projection Window space to Screen Space
Figure 1.44

In order to counter this unwanted effect we will set a different FOV in the X dimension of our matrix
(m11). By increasing the FOV in the X dimension, we scale the input x values in our projection matrix
down. This means a square in camera space will be squashed in X onto the projection window such that
when the projection window is stretched into screen coordinates, the resulting rectangle is stretched back
into a square shape (Fig 1.45).

+1F"ruljt:-::tmln Window - Monitor Display

0,0 A00,0

0,600 200,600

-1,

-1,-1 +1,-1

Screen Distodion from Projection Window space to Screen Space
Figure 1.45

If we can measure the ratio of Screen Width to Screen Height that our application is using, and set the
FOV for the x axis (mI1) in our projection matrix accordingly, we get a wider FOV along the x axis.
This is logical; if the monitor is wider in the x dimension than it is in the y, we should be able to see
more in the x dimension, and therefore have a wider FOV in the x dimension. In order to correct the
problem, we must first measure the ratio of screen distortion. This ratio is nearly always referred to as
the Aspect Ratio, and can be calculated like so:

Width _1024 _800 _ 640 _ | 11i0ass
Height 768 600 480

Aspect Ratio =

&9

Notice how the aspect ratio is the same for all the standard full screen video resolutions (1.3333333). If
you are not using a standard video mode, or are using a viewable area that is not the full screen, Width
and Height in the above equation refers to the width and height of the view in which port you are
rendering (in screen coordinates).

With this aspect ratio, we can adjust the m11 element of our matrix to correct for screen space distortion
by setting up the matrix as follows:

Projection Matrix with 60 Degree FOV and Aspect Ratio Correction

0 =1.047197551 (60 Degree FOV)

1/ Tan(g)
2 0 0
AspectRatio
M= 0 1/Tan(§) 0 0
0 0 11
i 0 0 0 0

When we specify a FOV of 60 degrees, the FOV is only 60 degrees with respect to the Y axis. It is
ATAN(TAN(620) x1.333333) x 2 = 75.1781788 degrees with respect to the X axis.

Note: In some source implementations you might see Aspect Ratio calculated as
Height

Width
of DIVIDING m11 by 1.33333333.

=0.77777777 . These implementations will MULTIPLY element m11 with 0.77777777 instead

After that somewhat lengthy discussion on setting up a projection matrix, you will be glad to know that
you can set-up a projection matrix easily with a single call to a D3DX function:

D3DXMatrixPerspectiveFovLH(D3DXMATRIX* pOut, FLOAT fovY, FLOAT Aspect,
FLOAT zn, FLOAT zf);

We pass to this function the address of a matrix that will store the final matrix, a FOV for the Y axis, and
an aspect ratio (ViewportWidth / ViewportHeight). The matrix returned will be calculated in the way
that we have just described.

The two parameters at the end of the parameter list in the above function (zn and zf) are used to
configure the 3" column of the projection matrix to scale the Z value of the input vector into a range that
can be used by the DirectX Graphics depth buffer. We will not be using a depth buffer in our first lab
project so we can leave this discussion until the next chapter when we use DirectX Graphics to render
our geometry.

90

Conclusion

The key points from this lesson are the core processes involved in transforming objects from model
space to world space to view space to eventual screen coordinates. We also learned that 3D models are
constructed from polygons and that each polygon is made up of a number of vertices. Finally we
reviewed the core mathematics techniques that will be invaluable as we progress through the course. At
this point it is recommended that, if you have not already, you should enroll in the Game Mathematics
course to continue to reinforce this mathematics knowledge as well as learn new concepts. The two
courses can be taken in parallel since the foundation math you will need for this course has been
covered.

91

Chapter Two:

DirectX Graphics
Fundamentals

e

93

Introduction

DirectX Graphics provides a unified programming interface for multimedia development with integrated
support for hardware acceleration when available. Since even the most moderately priced PCs on the
market typically include hardware acceleration for 3D graphics, most end-user systems can be counted
on to meet minimum requirements. Driver support for the DirectX Graphics API exists for practically
every video card sold since the mid-90s. If hardware acceleration is not present on an end user system,
DirectX Graphics provides software based emulation with full support for optimized CPU instruction
sets (like MMX or 3DNow).

When card manufacturers ship their latest hardware, they release a small high-speed software layer
called a device driver along with it. Driver software acts as an interpreter, taking requests from the OS
and turning them into native instructions the hardware can execute. As newer versions of the OS are
released, the manufacturer can release new drivers to maintain compatibility. Device drivers are
generally fast and stable and tend to improve with time. Hardware manufacturers like nVidia and ATI
are constantly working on optimizing their device drivers and you should check their websites’ driver
downloads sections periodically to ensure optimal application performance.

Most hardware manufacturers package a DirectX Graphics compliant device driver called the
Hardware Abstraction Layer (HAL). When a HAL is found on the current system, it indicates that the
graphics hardware has hardware accelerated support for at least some DirectX Graphics functionality.
DirectX Graphics can talk to hardware in a consistent way because the HAL takes care of translating
requests into the native instruction set for the 3D hardware. Some adapters provide only hardware
accelerated polygon rasterization. When this is the case, DirectX Graphics will transform and light
polygons in software and then pass them to the HAL for rasterization. DirectX will shift the entire
process to the HAL when transformation and lighting (T&L) support is available.

One of the first things your application will need to do is determine whether or not a HAL is present on
the current system. If a HAL is available (which is likely the case), then you will generally prefer it over
software emulation. If a HAL is not provided, then the graphics adapter has no DirectX Graphics
support. In this case you can choose to use the DirectX Graphics Hardware Emulation Layer (HEL).
When you use the HEL, all transformation, lighting and rasterization of polygons is done on the CPU.
The DirectX Graphics software emulation module is called the Reference Rasterizer. It emulates all of
the DirectX Graphics features but is not viable for commercial purposes due to performance constraints.

The reference rasterizer is useful for testing DirectX features when development hardware does not
support all of the DirectX Graphics features your game will use. If you were developing an application
that used bump mapping, and your test hardware did not support bump mapping, you could use the
reference rasterizer to test your code. This ensures that users who have hardware that supports bump
mapping can still enjoy it in your game.

Features supported in the HAL vary widely across video hardware. Our application must be flexible

enough to ensure that it does not attempt to use features that are not available while taking advantage of
those that are.

94

Fig 2.1 shows the relationship between the application and hardware layers:

If no HAL exists on the system, or if the

WiIn32 Application application has decided not to make use of
i it, then DirectX Graphics will emulate all
functionality in software using the HEL

(reference rasterizer).
DirectX Graphics API

The reference rasterizer is slow but is useful
Hardware for testing features not supported in
T Emulation hardware on your development machine.
¥ Layer
Hardwar_e The HAL does not provide emulation of
Abstraction DirectX features when a feature is not
Layes supported by the underlying hardware.

¥

Device Driver Interface (DDI)

]

Graphics Hardware

Figure 2.1

When graphics hardware supports the entire transformation and rendering pipeline, this frees up the
system CPU to handle other game tasks like Al and physics. Most users will have cards capable of
hardware rasterization, but not everyone will have full T&L support. The latest cards from nVidia (the
geForce™ family) and more recently ATI (the Radeon™ family) support the transformation and lighting
of vertices in hardware.

The DirectX Graphics environment must be initialized appropriately to ensure that your application can
take advantage of the best features available on a given system. Failure to properly initialize DirectX
Graphics could result in significant performance loss or even total software failure. This will be the main
focus of the first part of this chapter. Using DirectX Graphics to draw 3D shapes will be our focus in the
second part of this lesson.

Before we begin discussing DirectX Graphics initialization details, we will first take a short detour and

discuss the Component Object Model (COM). This will set the stage for discussions later in the lesson
that address proper DirectX Graphics initialization.

95

2.1 The Component Object Model (COM)

DirectX is implemented using an object oriented programming model called the Component Object
Model (or COM for short). Although programming with COM and creating your own COM objects can
be a complex task, we will not have to deal with such things in this course. We only have to learn how to
use COM objects with our application, which is quite simple since it is similar to using C++ objects.
Although the COM programming we will need to do will be very straightforward, we will still need to
have an understanding of the underlying COM technology and how it works in order to interact with
DirectX in a safe manner. Therefore, we will use this opportunity to take a high-level look at COM.

COM objects are code modules, more correctly called software components, most often although not
always implemented as dynamic link libraries that can be installed on an end users’ computer system. A
COM object, like a conventional DLL, exposes functions that applications can call to request
functionality. Therefore COM objects offer a nice way to extend the functionality of the operating
system. When COM objects are installed they can be used by all applications that wish to use them — as
is the case with DirectX. When DirectX is installed, a number of COM objects are installed and
registered with the operating system, making the functionality provided by those COM objects available
to any application running on the machine. They can be treated as “black boxes” from the application
perspective and have their functions called to perform supported tasks.

The goal of COM is to provide a programming model where software components can be created and
installed on systems with ease. Those same components need to be easily upgraded in the future without
breaking backwards compatibility with software that used the older version of the object. COM objects
are also completely portable.

The nice thing about COM objects is that the programming language the software component was
written in does not limit its use. A visual basic application for example could access functions in a COM
object that was written in C++. This means that COM can be used in a variety of software development
environments. This is all achieved by exposing an object's functionality through an interface.

2.1.1 COM Interfaces

A COM object’s code is completely encapsulated and you will have no direct access to its data. You can
think of this as a C++ class where all member variables are private. The only way you can communicate
with a COM object is through one or more interfaces that it supports. An interface is a collection of
functions that share a common purpose. You can think of an interface as being like an abstract C++ class
with no code implementations of the functions, but with a class signature. Interfaces provide a way for
objects to communicate with other objects, and also provide a means for those objects to expose their
functionality to other objects seeking it. Below we see an example of an interface that has two member
functions. Interface names are always preceded with an ‘I’ as in IMylterface or IMyInterface?2.

96

typedef struct Interface

Interface IMylInterface

{
HRESULT MyFunctionl (int , int);
HRESULT MyFunction2 (bool);

b

This example interface has no code, but it does tell us that this interface supports two functions:
MyFunctionl and MyFunction2. If any COM object supports this interface then it must support both of
these functions. Interfaces can be inherited amongst objects and it is likely that one COM object may
support many interfaces. Many COM objects may even support the same interface.

The developer of the COM object will typically provide you with header files that can be linked into
your application. These headers define all of the interfaces supported by this object. If you open up the
d3d9.h header file that ships with the DirectX9 SDK, you will see the definitions of the interfaces
supported by the DirectX Graphics objects. This means that our applications will recognize the interface
names (such as IMyInterface in the above example).

Below we see a code snippet from the DirectX Graphics header file d3d9.h which shows all of the
interfaces supported by the main DirectX Graphics COM objects. These are the interfaces we will be
dealing with throughout this course. By including this header file in our CPP files we can, for the most
part, call the functions of any one of these interfaces just like they were C++ class member functions.

Except from the d3d9.h header file

interface IDirect3D9;

interface IDirect3DDevice9;
interface IDirect3DStateBlock9;
interface IDirect3DResource9;
interface IDirect3DVDecl9;
interface IDirect3DVShader9;
interface IDirect3DPShader9;
interface IDirect3DBaseTexture9;
interface IDirect3DTexture9;
interface IDirect3DVolumeTexture9;
interface IDirect3DCubeTexture9;
interface IDirect3DVertexBuffer9;
interface IDirect3DIndexBuffer9;
interface IDirect3DSurface9;
interface IDirect3DVolume9;
interface IDirect3DSwapChain9;

Once we have an interface to a COM object, we can call its member functions like we would if we were
using a C++ class. The following example uses the IDirect3D9 interface to a valid COM object to call
one of its member functions (GetAdapterCount). This call finds out how many graphics adapters are on
the system on which the application is currently running.

IDirect3D9 pd3d; // Assume this links to a valid COM object
ULONG Count = pd3d->GetAdpaterCount(); // Call one of the interfaces functions

97

Although we have not covered how to get an interface to a COM object yet, you can see in the above
example that once we have an interface, we can call its member functions just like C++ class member
functions.

2.1.2 GUIDS

Every interface and COM object has an ID that is unique so that there can be no confusion as to which
interface or object your application wants to use. The question then becomes, if you created your own
COM object, how could you be sure that the ID you gave your COM object was not already be in use by
other COM objects being developed elsewhere in the world?

In order to assign each COM object or interface a unique ID, globally unique identifiers (GUIDs) are
used. These GUIDs are 128-bit (16 byte) structures. Although it may at first seem that there is not
enough scope in a 128-bit structure for guaranteed uniqueness, there actually is plenty. GUIDs can be
created in such a way that they are guaranteed to be unique. They use an extremely high precision time
stamp as well as things like the IDs of the specific hardware components installed on the system for
which the GUID is being created (the COM object developer’s machine for example). GUIDs can be
created very easily using a tool that ships with Microsoft Visual C++ called GUIDGEN.exe.

GUIDs are used for both COM objects and interfaces. When a COM object is installed on your
computer system, its GUID is entered into the registry. When an application wants to interact with this
COM object, it passes in the GUID of the COM object it wants to use and the operating system looks it
up in the registry. This will tell the OS which DLL module to load (if it is not already loaded).

The GUID assigned to a COM object is called a class identifier (CLSID) and it is this GUID you must
specify when you want to create an instance of a COM object. If the GUIDs of either interfaces or
objects are not made publicly available, then applications will not be able to use them. You will usually
find the GUIDs of an object or an interface in either the reference manual or appropriate header files that
shipped with the component.

A GUID assigned to an interface is called an interface identifier (IID). Whenever you wish to find out if
a COM object supports a particular interface, you can pass in the GUID of the interface to validate its
support for that object.

GUIDs are typically pretty unfriendly things to work with. And although they are technically structures,
they are often expressed as a string of 32 hexadecimal numbers in the format 8-4-4-4-12. Below we see
the GUID for a DirectX Graphics COM object interface (the IDirect3D9 interface).
{IDD9ESDA-1c77-4d40-b0cf-98fefdff9512}

Imagine having to type in numbers like that every time you wanted to ask a COM object for a specific

interface, or worse, trying to remember all of the GUIDs for the many interfaces DirectX Graphics
supports. Fortunately, when a COM object is installed, its GUID is registered and assigned an alias (an

98

alternative name) which is typically pretty intuitive. It is common practice for the name assigned to the
GUID of an interface to be the same as the name of the interface with IID preceding the name. So
instead of typing in the above GUID to request the support of the IDirect3D9 interface, we could instead
use its counterpart: IID_IDirect3D9.

When referring directly to a COM object (versus an interface), you need to precede the name of the
COM object with CLSID .

If we look at the d3d9.h header file, we see the GUIDs listed for each interface. Below we see how the
GUID for IDirect3DDevice9 has the alias IID IDirect3DDevice9 assigned to it. The first parameter to
the DEFINE GUID macro is the IID name we wish to assign to the GUID. The numbers that follow
are the GUID itself.

DEFINE_GUID(IID_IDirect3DDevice9, 0xd0223b96, 0xbf7a, 0x43fd,
0x92, Oxbd, 0xa4, 0x3b, 0xd, 0x82, 0xb9, Oxeb);

Because this is included in our application source files, whenever we wish to specify this interface to
work with, we can call it by its intuitive name (IID_IDirect3DDevice9) instead of its GUID.

2.1.3 The IUnknown Interface

All COM interfaces must derive from an interface called [Unknown. This is an interface that provides
the core COM object usability. The result is that the first three entries in the vtable of all interfaces are
the same three functions.

typedef struct Interface

Interface IUnknown

{
HRESULT QueryInterface (
ULONG AddRef (void);
ULONG Release (void)

REFIID *idd , void ** ppbObject);

’

b

These three functions are available through all COM interfaces and together they provide two very
important concepts that fundamentally define how COM works.

Before we look at how these functions work, let us first examine how one might go about creating an
instance of a COM object. Imagine for now that you had installed a software component called
'Aeroplane' (a single COM object) and that this object grouped functions into several interfaces
depending on there relationship to the plane.

The first thing our application must do before it can work with COM is initialize itself as a COM user

with the operating system. We use the following Colnitialize function to initialize the application COM
layer. This would typically be called at the start of an application:

99

| coInitialize (NULL);

Our application is now ready to invoke the services of any COM object that is installed on the system.
When the application closes, we must remember to match this call with a call to CoUninitialize to clean
up all resources used by the COM library. This would typically be in your application’s ShutDown()
function.

CoUninitialize ();

Continuing our example, imagine that the developers of this COM object decided to group the
functionality of the entire Aeroplane object into three interfaces:

= [Cockpit
= [Passengers
= [Cargo

So this imaginary COM object exposes three interfaces. The ICockpit interface might have functions
relating to the actual flying of the plane:

Interface ICockpit

{
HRESULT SetAirSpeed (ULONG Speed);
HRESULT SetAltimeter (ULONG Altitude);
HRESULT UnderCarriage (BOOL Down) ;

) 8

We could have another interface that configures the passenger compartment:

Interface IPassengers
{
HRESULT SeatBeltsOn (BOOL Belts) ;
HRESULT SmokingAllowed (BOOL Smoking) ;
}i

The third interface allows for loading and unloading of cargo:

Interface ICargo

{
HRESULT AddCargo (ULONG Units) ;
HRESULT RemoveCargo (ULONG Units);

}i

Note that we are being very abstract here. As you can see, the one object supports three interfaces. Its
functions are divided among these three interfaces by relevance to a particular category. Remember that
we are not worried about how these functions are implemented inside the COM object itself; we only
need access to the interfaces so that we can request that the COM object perform tasks.

Once the COM layer has been initialized in our application by calling Colnitialize, our next task is to
create an instance of the object wherever we need it. If we wanted to create an instance of the
‘Aeroplane’ object, we need to do this by calling the following function:

100

HRESULT hr;
ICockpit *pCP;

Hr = CoCreatelInstance (CLSID Aeroplane, NULL, CLSCTX INPROC SERVER,
IID ICockpit, (LPVOID¥*)&pCP);

The first parameter to the above function is the class id (CLSID) of the COM object we wish to create.
Remember that it is common practice for COM objects to have a CLSID as an alternative to specifying
the actual GUID string. This function will search the registry for the passed class ID and if found (in
other words, if the ‘Aeroplane’ software component has been installed on the system), it will retrieve the
dll/module that this object is located in and make sure it is loaded for use.

The second parameter can safely be set as NULL for our purposes.
The third parameter specifies that the object will run as part of the application’s process space.

The fourth parameter requires some explaining. When the object is created, we will never receive a
pointer to the object itself. This violates the rules of COM. Instead, we get a pointer to an interface that
is used to communicate with the underlying COM object. As we have discussed, an object may support
more than one interface, so when the object is first created, you pass in the interface id (IID) of the
interface you want returned. In the above code we have asked to initially have an ICockpit interface
returned; we specified IID ICockpit and for the final parameter passed in an address of a pointer to an
ICockpit interface. This interface will hold a valid pointer to an ICockpit interface if the function is
successful. We know that our Aeroplane object supports the [Cockpit interface, so this function should
be successfully executed.

Now that we have a pointer to the ICockpit interface, we can call the functions of the ICockpit interface
to instruct our COM object to perform some bit of work. The following code shows how we could use
our newly returned interface to instruct the COM object to set the plane’s air speed to 325km, its altitude
to 800 meters, and retract its wheels.

PCP->SetAirSpeed (325);
pCP->SetAltimeter (800);
pCP->UnderCarriage (FALSE) ;

Now this is all well and good, but we only have the ICockpit interface to hand. We know that the object
supports two more interfaces (IPassenger and ICargo) which allow us to instruct the Aeroplane object to
perform other tasks that we may wish to use. However, when we created the instance of the Aeroplane
object, we only received a pointer to one of its interfaces. We could have requested one of the other
interfaces just as easily, but that does not help us understand how to access the other interfaces after the
fact. As it happens, the IUnknown interface (from which all COM interfaces derive) has a member
function called QuerylInterface that will assist us in this task.

HRESULT QueryInterface (REFIID *idd , void ** ppbObject);

All COM interfaces support this function as a means of querying and obtaining pointers to other
interfaces that are supported by the parent COM object. Once we have set up the cockpit parameters, we
could request a pointer to the ICargo or [Passenger interfaces by calling the ICockpit::Querylnterface
member function:

101

IPassenger *pPassenger;
ICargo *pCargo ;

pCP->QueryInterface (IID IPassenger , (LPVOID *)&pPassenger);
pCP->QueryInterface (IID ICargo , (LPVOID*)&pCargo);

// Use our two new interfaces
pPassenger->SeatBeltsOn (TRUE) ;
pPassenger->SmokingAllowed (FALSE) ;
pCargo->AddCargo (25) ;

There are some very important concepts to be noted in the previous code snippet. Most importantly, if
we have any interface to an object, we can query and obtain a pointer to any other interface the object
supports by calling QuerylInterface. For example, we initially only have one valid interface (ICockpit)
linked to its underlying COM object. By calling ICockpit::QueryInterface we can request another
supported interface. If this interface is not supported by the underlying COM object then the function
will return a failure message. But if the requested interface is supported, then a pointer to an interface of
that type will be returned. In the code we first asked for an [Passenger object, but we could have first
asked for the ICargo interface instead. Order is not significant here so long as the interface is supported
by the object. Note that we called ICockpit::QueryInterface both times to query for new interfaces.
However, once the [Passenger interface was created we could have called [Passenger::QueryInterface
instead to query the ICargo interface. The result would have been the same because both of these
interfaces are attached to the same object. These concepts demonstrate why the IUnknown interface
must serve as the base in all COM interfaces. Without this core functionality, the application would have
no way to request additional interfaces supported by a COM object.

So we now know how to create an instance of a COM object and also how to get access to any of its
interfaces in order to call their functions. The next important thing that the [Unknown interface provides
COM objects is the ability to handle lifetime encapsulation.

2.1.4 Lifetime Encapsulation

One interesting point about COM objects is that the application does not control their creation or
destruction. A COM object keeps an internal reference count of how many interface requests it has
dispatched to an application. This count is set to 1 when the object is first created and the first interface
is returned via CoCreatelnstance. Every time we call QueryInterface from one of the object’s supported
interfaces to retrieve a different interface, the internal reference count is incremented.

When we no longer need to use an interface, we call the Interface::Release() method. This is another
IUnknown member function inherited by all interfaces. Release() signals to the COM object that we no
longer need this interface to be valid and it can therefore be detached from the object. The COM object
will decrement its internal reference count by one to indicate that one less interface is now actively
linked to the object. An interface pointer should not be used after it has been released, so it is good
programming practice to set the pointer to NULL immediately afterwards. This makes it easier to track a
bug that might be caused by your application trying to use an interface pointer which was already

102

released. Once the object’s reference count drops to zero, it means that there are no interfaces to this
object in use by any application. The object interprets this as indicating that its services are no longer
required, and at this point the object destroys itself. This means that our application does not have to
release the memory for the COM object since it controls its own lifetime through the tracking of active
interfaces.

This is actually just as well, because we have no idea how the memory for the COM object was
allocated to begin with. Remember that we did not create it manually and we would hate to mismatch a
call to frree to release memory allocated with new and vice versa. Allowing the object to control its own
construction and destruction is an elegant solution. Another vital reason for this reference counting
mechanism is to allow for other applications that may be using the same COM object. If our application
was allowed to simply destroy the COM object when it was no longer needed, other applications still
using it -- unaware of its destruction -- would most likely crash.

Let us have a look at this concept in action. In this next example we create an instance of an Aeroplane
object as before and initially request an ICargo interface. This goes to show that we can request any of
its supported interfaces to be returned from the CoCreatelnstance function. Please note that this code
would, in a real situation, check error codes returned from each function, but we have not covered the
values returned from COM member functions yet.

// global interface pointer
ICockpit *pCockpit;

void ApplicationSetup () {
// Initialize COM layer for application
CoInitialize (NULL) ;

// Local Interface pointer
ICargo * pCargo;

// Create an instance of IAeroplane with an initial ICargo interface
CoCreatelInstance(CLSID Aeroplane , NULL , CLSCTX INPROC SERVER,
IID ICargo , (LPVOID*)é& pCargo);

// We have a valid object and one interface linked to it.
// The objects internal reference count is 1

// Now we could use the ICargo interface
pCargo->AddCargo (35) ;

// Now get a pointer to a ICockpit interface that the object
// also supports and store in global pointer
pCargo->QueryInterface(IID ICockpit , (LPVOID¥*) &pCockpit)

// Objects reference count is now 2 because it has dispatched 2 interface
// requests (ICargo and ICockpit) We have no further use for the ICargo

// interface here so release it.

pCargo->Release ()

pCargo = NULL;

// pCargo pointer is no longer valid. the com object has its reference count
// decremented. the reference count is now 1

103

In the above function we initialize the COM layer, create an instance of our Aeroplane COM object, and
retrieve a pointer to an ICargo interface. Behind the scenes, the object’s internal reference counter will
be incremented to 1 because it has dispatched an interface to the application (ICargo). Next we use the
ICargo interface member functions to set some states within the object (in this case we set the cargo of
the object to 35 units) and then call the QuerylInterface function to request the COM object to dispatch
an ICockpit interface. At this point the object’s internal reference count is incremented again. It now
equals 2 because there are currently two interfaces that the object has dispatched to the application that
are still active.

We release the pCargo interface because we no longer need it anywhere else. If we did need it
somewhere else we could always request the interface again so long as we had a surviving interface
from which to call QueryInterface. We could also store it in a global pointer if we needed its lifetime to
extend past the scope of the function. At this point the COM object decrements its internal counter from
2 back to 1 and detaches the interface pointer so that it is no longer valid. The pCargo interface pointer
should not be used from this point forward.

There is now only one active interface still referencing the object and this brings up an important point.
In this example we purposely made the ICockpit pointer a global variable. This means of course, that we
can access it and eventually release this interface from its underlying COM object anywhere in the
program. If pCockpit was a local pointer we still have to make sure that we Release the interface before
the pointer itself goes out of scope. This would cause the object to be destroyed because the reference
count would fall to 0.

In the following function you can see that because we still have our global pointer to an ICockpit
interface, the COM object remains alive and can be called elsewhere. The reference count of the COM
object at this point would be 1.

void SomeOtherFunction ()

{
// The COM object is still alive because the ICockpit interface has not bee released.
// Because this is a global pointer we can continue to use it else where.
// The Object’s reference count is 1 because the
// ICockpit interface has not yet been released from the object
pCockpit->SetAirSpeed (400) ;
pCockpit->SetAltimeter (1000) ;

}

Finally, at application shutdown we release the ICockpit interface. This reduces the reference count of
the COM object to 0 and causes the COM object to destroy itself and release any resources back to the
system. As our final act, we uninitialize the COM layer by calling CoUninitialize.

void ApplicationShutdown ()

{
//We should release any interfaces here from their objects.
//We still have the ICockpit interface attached so we should release it.
//This will drop the objects reference count from one to zero causing the
//object to unload itself from memory
pCockpit->Release () ;
pCockpit=NULL;

//... Other cleanup stuff here

104

// finally uninitialize the COM layer
CoUninitialize ()

}

There is one more key function from the IUnknown interface that all interfaces inherit. It is called
IUnknown::AddRef() and it allows the application to manually increase the reference count of the COM
object.

ULONG AddRef (void);
Now why would we want to do this? Does this not render the auto-reference counting system useless?

This function is provided because you will often wish to make a copy of a pointer to an interface and it
is cleaner to always call Release for every pointer. If we were to make a copy of an interface pointer and
not increase the reference count, the outcome could be fatal. The following code shows such an error.

In the following example, assume that the Aeroplane COM object currently has one active interface
(ICockpit) and a pointer to that interface is passed into the function. The reference count of the COM
object is 1.

void BADfunction(ICockpit *pCockpit) // COM Object counter = 1

{
ICockpit * pCockpitCopy;

pCockpitCopy = pCockpit; // Make copy of pointer
pCockpit->Release () ; // Counter = 0 so object is destroyed
pCockpit=NULL;

pCockpitCopy->SetAirSpeed (400) ; // ERROR! -- object no longer alive
pCockpitCopy->Release () ;
pCockpitCopy=NULL:

In the code we made a copy of the pCockpit pointer (into pCockpitCopy) but we forget to call AddRef
to increase the reference count of the object. This is dangerous because the reference count is still 1 but
we now have two pointers using the object. The problem occurs when we call pCockpit::Release(). This
causes the COM object to decrement its internal reference count back to 0 -- causing the object to be
destroyed. However, we now have another pointer to the interface (pCockpitCopy) hanging around
which we theoretically think is still usable because we have not yet released it. Of course, this causes the
application to fail because it is a dangling pointer to an interface for an object that is no longer alive.

Therefore, whenever you make an explicit copy of an interface pointer you should call AddRef. Make
sure that you always call Release() for each interface pointer as well. This makes it much easier and
tidier to see if the object is still valid. Here is the altered code:

void GOODfunction(ICockpit * pCockpit) // COM Object counter =1

105

ICockpit * pCockpitCopy;

pCockpitCopy = pCockpit; // Make copy of pointer
pCockpitCopy->AddRef () ; // Increment counter. Now =2
pCockpit->Release () ; // Counter now = 1

pCockpit=NULL;

pCockpitCopy->SetAirSpeed (400) ; // Com object still alive all is well
pCockpitCopy->Release () ; // counter =0 so object is destroyed
pCockpitCopy=NULL:

}

This is a habit you should adopt immediately since it is a crucial part of good COM programming. It is
easy to see when debugging if a pointer is used and never had Release called. If you do not properly
manage the reference counting of your COM object, then your application will have memory leaks or
perhaps fail if an object is unloaded earlier than it should have been.

2.1.5 Return Values

All COM interface member functions return a 32-bit integer called an HRESULT. For most functions
this is a structure that contains three bits of vital information about whether or not the function was
successful. The 32-bit integer is actually divided up into 4 separate fields as shown below.

Severity - Bit 31 of the integer is set to 1 if an error has occurred or 0 if the function was a success.
Reserved — There are four bits of the HRESULT structure which are reserved

Facility — There are eight bits reserved to hold a facility code. This is a number that can be used to
indicate the responsibility for the error. As an example, all DirectX Graphics functions return an
HRESULT with a facility code of hex value 0x876. This number makes it easier to track down
which code module the error was created in for debugging purposes.

Error Code — This is a 16-bit field that the COM object can use to return a meaningful error code.
For example, if you open up the header file d3d9.h and scroll to the bottom of the file, you will see a
list of many of the defined error codes being used alongside a macro to create a valid HRESULT.

Excerpt from D3D9.h

#define D3ADERR_WRONGTEXTUREFORMAT MAKE_D3DHRESULT(2072)
#define D3DERR_UNSUPPORTEDCOLOROPERATION MAKE_D3DHRESULT(2073)
#define D3DERR_UNSUPPORTEDCOLORARG MAKE_D3DHRESULT(2074)
#define D3DERR_UNSUPPORTEDALPHAOPERATION MAKE_D3DHRESULT(2075)
#define D3DERR_UNSUPPORTEDALPHAARG MAKE_D3DHRESULT(2076)
#define D3DERR_TOOMANYOPERATIONS MAKE_D3DHRESULT(2077)
#define D3DERR_CONFLICTINGTEXTUREFILTER MAKE_D3DHRESULT(2078)
#define D3DERR_UNSUPPORTEDFACTORVALUE MAKE_D3DHRESULT(2079)
#define D3DERR_CONFLICTINGRENDERSTATE MAKE_D3DHRESULT(2081)

106

#define D3DERR_UNSUPPORTEDTEXTUREFILTER
#define D3DERR_CONFLICTINGTEXTUREPALETTE
#define D3DERR_DRIVERINTERNALERROR
#define D3DERR_NOTFOUND

#define D3DERR_MOREDATA

#define D3DERR_DEVICELOST

#define D3DERR_DEVICENOTRESET

#define D3DERR_NOTAVAILABLE

#define D3DERR_OUTOFVIDEOMEMORY

#define D3DERR_INVALIDDEVICE

#define D3DERR_INVALIDCALL

#define D3DERR_DRIVERINVALIDCALL

#define D3DERR_WASSTILLDRAWING

MAKE_D3DHRESULT(2082)
MAKE_D3DHRESULT(2086)
MAKE_D3DHRESULT(2087)
MAKE_D3DHRESULT(2150)
MAKE_D3DHRESULT(2151)
MAKE_D3DHRESULT(2152)
MAKE_D3DHRESULT(2153)
MAKE_D3DHRESULT(2154)
MAKE_D3DHRESULT(380)

MAKE_D3DHRESULT(2155)
MAKE_D3DHRESULT(2156)
MAKE_D3DHRESULT(2157)
MAKE_D3DHRESULT(540)

What you see in the parentheses above are the actual error codes for each error. The
MAKE D3DHRESULT macro takes this error code and embeds it into an HRESULT with the DirectX
Graphics Severity code.

#define MAKE_D3DHRESULT(code) MAKE_HRESULT(1, 0x876, code)

The first parameter indicates that bit 31 should be set to 1. All HRESULTSs have bit 31 set if they are
reporting errors. All of the codes listed above are error codes, so they all have the 31* bit set. The
second parameter is the facility code which is used to identify that this is a DirectX Graphics error, as
opposed to some other COM object being used which is not related to DirectX Graphics. This other
COM object would have its own facility code to allow us to distinguish between them. Finally, the last
parameter is the actual error code itself. With it we can identify which of the DirectX Graphics errors
actually occurred.

HRESULTS are also used to return success, or sometimes just the status of some object state. For
example, in the same header file you can see that another HRESULT is created which is not an error but
instead indicates success:

#define D3DOK_NOAUTOGEN MAKE_D3DSTATUS(2159)

Here we use a macro which is almost the same as MAKE D3DHRESULT with the exception that the
31% bit is cleared to indicate that this is not an error.

#define MAKE_D3DSTATUS(code) MAKE_HRESULT(0, 0x876, code)

The D3DOK NOAUTOGEN success value is one example where the function itself was successful
BUT the information that was returned could be vital in terms of how you proceed. In this case it is
successfully reporting that Auto Texture Generation is not supported by the hardware (do not worry
about what that means for now).

Because an HRESULT can indicate any number of success or failure values, it can make testing the
result of a function tedious and error prone. For example, imagine that we have called a COM member
function that returns a number of error codes. We cannot simply test for success or failure as we do with
a Boolean because we may miss something important:

HRESULT hr= Somelnterface->SomeFunction()

107

if (hr == E_FAIL)

{
Report and error and handle the error
b
else
{
Report success and continue
b

This approach may seem fine, but what happens if the function can return many different error codes
and not just an E FAIL error? The function could also return E OUTOFMEM or
E INVALIDARGUMENT for example, and the above code would not catch these two errors. Although
you could add a large collection of tests in the above code to test all possible return values, it is often the
case that you are only interested in whether or not an error occurred. What the error actually was may
not be as important to you. Certainly if an error has occurred and you have detected it, you could always
take additional steps to narrow down which error was reported.

To do easy testing of HRESULTS there are two macros we can use: SUCCEEDED and FAILED. With
them we can test HRESULTSs in a Boolean style as shown below. These macros can generically signal
success or failure simply by testing the severity bit of the HRESULT.

HRESULT hr = Somelnterface->SomeFunction();

if (FAILED(hr))
{
report and handle error
b
else
{
report success
b

The above code would catch all errors returned by the function. Whether you use SUCCEEDED or
FAILED or both is totally up to you. The code could instead be written as:

HRESULT hr = Somelnterface->SomeFunction();

if (SUCCEEDED(hr))
{
report success
by
else
{
report and handle error
b

108

Note as well that the ‘!” operator works here. !SUCCEEDED is the same as FAILED and !FAILED is
the same as SUCCEEDED:

if (ISUCCEEDED(hr))

{
report and handle error
b
else
{
report success
by

Another handy DirectX function is included in the header file dxerr9.h and lib file dxerr9.lib. If you
include and link these with your application then you can call two functions that accept an HRESULT
and return a string of text explaining the error. For example, you could do the following once an error
has occurred:

if (FAILED(hr)

{
Char *Error = GetErrorString9(hr);
Char *ErrDesc = GetErrorDescription9(hr);
PrintMyString (Error);
PrintMyString (ErrDesc);

3

After trapping the error, we retrieve a meaningful error code and a description of the error. These results
can be output to the screen or to a log file. This is very handy for debugging.

There are alternatives for handling HRESULT errors if you do not wish to include dxerr9.h and
dxerr9.1ib. You could write down the hex value of the entire HRESULT and use the D3DXErr.exe that
ships with the DX9 SDK to input the value and have the actual error returned. This application is
located in the BIN folder inside the folder where you installed the SDK. You can also extract the error
code from the HRESULT in code by using the following Windows macro, checking the value against
the definitions in the header files. Windows defines three macros that can be used to extract all 3 bits of
information from the 32-bit HRESULT.

#define HRESULT_CODE((hr) ((hr) & OxFFFF)
#define HRESULT_FACILITY(hr) (((hr) >> 16) & 0x1fff)
#define HRESULT_SEVERITY(hr) (((hr) >> 31) & 0x1)

So to extract the actual error code we could just do:

| int ErrorCode = HRESULT_CODE(hr);

109

Non-HRESULT Return Values

While an HRESULT can be handled trivially thanks to the FAILED and SUCCEEDED macros, there
are exceptions to the rule. Some COM functions return an HRESULT as a simple 32-bit integer and this
is the case with two of the I[Unknown interfaces functions:

ULONG AddRef (void):;
ULONG Release (void) ;

These functions return the current reference count of the object after the function call. The value
returned by these functions are mostly for debugging purposes and should not be relied on as means of
COM object management.

2.1.6 Backwards Compatibility

The Component Object Model does have important restrictions. We saw earlier that every interface has
a unique GUID for identification purposes. Because of this, once an interface has been released to the
public it must never change. It would seriously undermine COM's design for backwards compatibility if
a single GUID was the same for many different versions of an interface -- each with different functions
sets. Even fairly trivial interface changes, such as adding an additional function, is strictly forbidden
because this could break applications using an older version of the interface.

So the question is, how does one upgrade COM object functionality? Refer back to our Aeroplane COM
object and its three interfaces. Let us say that we wanted to release a new version of our Aeroplane
object with extra functionality that allowed the user to set the autopilot. This new COM upgrade would
replace the old COM object when installed on the user’s machine. Since older applications will want to
use this COM object as if it was still the older version, we must make sure that the old interfaces are
supported and implemented within the new object.

Let us say that the logical place for our new function SetAutopilot() would be as a member of the
ICockpit interface. Although this is true, the ICockpit interface has already been made public and cannot
be changed. So it is common practice to create a new interface which adds the extra functionality like
SO:

HRESULT Hr;
ICockpit *pCP;
ICockpit2 *pCP2;

CoCreatelInstance (CLSID Aeroplane , NULL , CLSCTX INPROC SERVER,
IID ICockpit , (LPVOID*) &pCP);

// Use old interface as normal, old app don’t break cause its still here
PCP->SetAirSpeed (325) ;

110

// New apps can request the addition interface to access extra function
pPCP2->QueryInterface (IID ICockpit2 , (LPVOID¥*)&pCP2);
pCP2->SetAutopilot (true);

As you can see, the object still supports the older interface, so older applications can request this
interface and carry on using the newer COM object without incident. Applications that are aware of the
COM object’s extended features can request the new interface to access the new functionality. In this
example the [Cockpit2 interface would look like this.

Interface ICockpit2

{
HRESULT SetAutopilot (BOOL on);

) 8

It is customary for newer versions of an interface to have the number appended to the end as shown
above. This is one way that new interfaces can be created.

Another way is for the developer to support all of the older interface functions in the new interface
through the use of interface inheritance. This is a much nicer solution in most circumstances because the
newer applications do not have to request the older interface first and then query again to access the new
functionality. In this case the two ICockpit interfaces would look like so:

Interface ICockpit

{
HRESULT SetAirSpeed (ULONG Speed) ;
HRESULT SetAltimeter (ULONG Altitude) ;
HRESULT UnderCarriage (BOOL Down) ;

W

Interface ICockpit2

{
HRESULT SetAirSpeed (ULONG Speed) ;
HRESULT SetAltimeter (ULONG Altitude);
HRESULT UnderCarriage (BOOL Down) ;
HRESULT SetAutopilot (BOOL on)

W5

Newer applications can now forget about the ICockpit interface and simply request an ICockpit2
interface when the object is initially created. All of the functions of the original interface are supported
in the new interface so this solution works well:

HRESULT Hr;
ICockpit2 *pCP2;

CoCreatelInstance (CLSID Aeroplane , NULL , CLSCTX INPROC SERVER,
IID ICockpit2 , (LPVOID*) &pCP);

// Use old interface as normal, old app don’t break cause its still here
pPCP2->SetAirSpeed (325) ;
pCP2->SetAutopilot (true) ;

111

This is not something we have to concern ourselves too much with in the latest versions of DirectX
Graphics however because it uses all new interfaces, negating the need to query later ones. In the above
example, older applications still have access to the totally unchanged ICockpit interface and newer
applications can just forget all about the ICockpit interface and use an ICockpit2 interface for
everything.

2.1.7 COM and DirectX Graphics

You might be starting to feel that COM requires too many complex procedures for seemingly simple
tasks. Fortunately, with each new release of DirectX, the interaction between your application and the
underlying COM layer becomes more and more encapsulated. In DX9 we no longer have to call
Colnitialize or CoUninitialize because it is all handled for us by DirectX. Also, we hardly ever have to
manually create a COM object using CoCreatelnstance since this is something DirectX has wrapped for
us as well. But this is not the case with all modules in DirectX, so the information learned here will
surely come in handy in the future. When using DirectX Graphics, we rarely need to manually create a
COM object because DirectX Graphics has a global function to create the main COM object and return
the top level interface to that object. Once we have an interface to the top level object, we can use its
member functions to create other DirectX Graphics objects and interfaces automatically. Thus, we will
hardly ever need to call the QueryInterface function either, as there are helper functions within the
DirectX Graphics interfaces to wrap the querying of interfaces. These wrappers also increment the
reference count before returning the interface to the application. However, what is vitally important is
that you still need to manage your reference count correctly and remember to do the following:

e Always release your interfaces when you have finished using them.
e Ifyou make an explicit copy of an interface pointer, call AddRef to increase the reference count.

Make a note of this because if you do not release your interfaces after use, the objects will not be
destroyed. This can lead to significant memory leaks. Also, if you do not call AddRef as you copy
interface pointers, you could end up with dangling pointers to objects that have already been destroyed.

To better show the COM encapsulation of DirectX Graphics, the following code shows everything we
need to do to create the top level DirectX Graphics COM object and access its interface. We can then
use this interface to query the graphics capabilities of the system (among other things) on which the
application is running, and create other DirectX Graphics objects and interfaces.

LPDIRECT3D9 pD3D;
pD3D = Direct3DCreate9(D3D_SDK_VERSION);

Believe it or not, that is it. As you can see, there is no need to initialize the COM layer via Colnitialize
and no need to call CoCreatelnstance to create the Direct3D9 object. We simply call the DirectX
Graphics global function Direct3DCreate9. It will initiate the COM layer transaction, create the COM

112

object, and return a pointer to an IDirect3D9 interface. We can then use the pointer to this interface to
call member functions.

NOTE: The variable type LPDIRECT3D9 is defined in the d3d9.h header file as a pointer to an IDirect3D9
interface. Many people mistakenly call this a pointer to the Direct3D9 object but it is not. We never get a
pointer to a COM object, only to an interface that the object supports. Therefore, this is actually a pointer
to an IDirect3D9 interface which is attached to our Direct3D9 object.

typedef struct IDirect3D9 *LPDIRECT3D9

You will find that all interfaces have been typedefd in a similar way. Another interface that DirectX
Graphics uses is called IDirect3DDevice9. It has a pointer that is typedef'd in the same way:

typedef struct IDirect3DDevice9 *LPDIRECT3DDEVICE9

Whether you prefer to use LPDIRECT3DDEVICEY or IDirect3DDevice9 * is up to you.

The next example shows that the Direct3D9 object exposes functions to create other COM objects and
return interfaces for them. First we call the IDirect3D9::CreateDevice member function. This function
creates the new COM object (the rendering device) and returns an interface to it (IDirect3DDevice9).
The only parameter of importance for this discussion is the final one -- the address of a pointer to an
IDirect3DDevice9 interface. If the function is successful, on function return this will point to a valid
interface for the device object that was created. This behavior is typical of most of the DirectX Graphics
objects. Using this approach we can create all of the objects DirectX Graphics provides and gain access
to the full range of the DirectX Graphics functionality.

LPDIRECT3D9 pD3D;

LPDIRECT3DDEVICE9 pD3DDevice;

pD3D = Direct3DCreate9(D3D_SDK_VERSION);

pD3D->CreateDevice(blah , blah , blah , blah , blah , (LPVOID*)&pD3DDevice);
pD3DDevice->SomeFunction();

This encapsulation reduces most of what we have just learned (managing COM objects and interfaces)
to nothing more than making sure that you release interfaces when you are finished using them and
calling AddRef if you make an explicit copy of an interface pointer. That is nice to know.

NOTE: The Direct3DCreate9 function is a global function used to kick-start the COM interaction with
DirectX Graphics. This function is not a COM method, but is used to initialize the COM layer and create
the initial COM object. Once we have a Direct3D9 object we can either directly or indirectly create all
other DirectX Graphics COM objects through COM interface member functions.

113

2.2 Initializing DirectX Graphics

The IDirect3D9 object interface provides access to core DirectX Graphics functionality. Creating this
interface is typically one of the first things our application will do during initialization. DirectX
Graphics contains a global function to handle creation:

IDirect3D9 *Direct3DCreate9 (UINT SDKVersion) ;

This is how it would be called from our code:

LPDIRECT3DS pD3D;
pD3D = Direct3DCreate9(D3D SDK VERSION);

The function accepts a single unsigned integer parameter. The integer identifier D3D_SDK VERSION is
defined in the d3d9.h header file and ensures that the application is built with the correct header file
versions. The function creates the Direct3D9 COM object, increases its reference count, and returns an
[Direct3D9 interface to the object. Direct3DCreate9 is the only global non-COM function that DirectX
Graphics provides (excluding D3DX). All other functionality will be accessed using COM methods
either directly or indirectly through the IDirect3D9 interface.

IDirect3D9 exposes methods that allow the application to query the hardware capabilities of the current
system. This interface is also used to create the Direct3DDevice9 object and retrieve a pointer to the
IDirect3DDevice9 interface. The IDirect3DDevice9 interface provides the functionality our application
will use most of the time.

In order to create a proper Direct3DDevice9 object, we will need to know the capabilities of the
hardware installed on the system. For example, cards like the Voodoo 1™ and the Voodoo 2™ are 3D
accelerators with no 2D support. As a result they exist alongside another graphics card which provides
that 2D functionality. So there may be two physically separate 3D hardware accelerated devices on the
system. Since we can only use one of them, which one do we choose? If we choose incorrectly our
application is not likely to perform as well as it should. We may wind up using the CPU when there was
hardware acceleration available on the video card.

The IDirect3D9 interface provides functions for querying the number of graphics adapters installed on
the system as well as functions for querying the capabilities of each of those adapters. So the main
purpose of this object is to gather information that we can use to create the most optimal
Direct3DDevice9 object possible on an end user system. Some of the key functions of this interface are
shown below. This is not a complete list, but it does provide the core functionality we will need in this
lesson:

UINT GetAdapterCount (VOID) ;
HRESULT GetDeviceCaps (UINT Adapter, D3DDEVTYPE DeviceType, D3DCAPS9* pCaps);
UINT GetAdapterModeCount (UINT Adapter , D3DFORMAT Fomat);

HRESULT GetAdapterDisplayMode (UINT Adapter, D3DDISPLAYMODE* pMode) ;
HRESULT CheckDeviceType (UINT Adapter, D3DDEVTYPE CheckType,
D3DFORMAT DisplayFormat, D3DFORMAT BackBufferFormat,
BOOL Windowed) ;

114

HRESULT EnumAdapterModes (UINT Adapter, D3DFORMAT Format, UINT Mode,
D3DDISPLAYMODE* pMode) ;
HRESULT CreateDevice (UINT Adapter, D3DDEVTYPE DeviceType, HWND hFocusWindow,
DWORD BehaviorFlags,
D3DPRESENT_PARAMETERS* pPresentationParameters,
IDirect3DDevice9** ppReturnedDevicelnterface);

The structures and enumerated types used as parameters will be covered later in the lesson. For now we
will briefly explore some these functions so that we can begin to understand system capability querying.

GetAdapterCount — This function returns the number of physical display adapters available on the
current system. The value returned will usually be 1; indicating only one display adapter is installed. The
first graphics card installed is typically referred to as the primary display adapter.

While it is true that only one adapter will exist on the vast majority of systems, we still want our code to
handle cases where more than one is present. Although we could choose to ignore the other adapters and
simply use the first adapter found, we risk not selecting the most capable adapter available. The
Enumeration class that we will build in our final Lab Project for this lesson will let the user choose
which adapter they wish to use.

GetAdapterDisplayMode — This function returns the current display mode of the adapter identifier.
Each adapter on the system is assigned an integer index between 0 and AdapterCount — 1. This is
referred to as the adapter ordinal. If you need to find out information about the current display mode,
the D3DDISPLAYMODE returned will include this information (resolution, color bit depth, and so on). If
the adapter is the primary display adapter currently being used to display the Windows desktop, then the
display mode returned will be equal to the resolution and color depth you have your desktop set to.

typedef struct D3DDISPLAYMODE
{

UINT Width;
UINT Height;
UINT RefreshRate;

D3DFORMAT Format;
} D3DDISPLAYMODE;

The D3DDISPLAYMODE structure contains the width and height (in pixels) of the current display mode,
the monitor refresh rate, and the display surface pixel format.

EnumAdapterModes —In DirectX Graphics, there are a number of formats that describe how image
pixels are represented in memory. The D3DFORMAT enumerated type contains all of the formats
currently supported by DirectX. When we create our game, we will want it to run in a variety of
different video resolutions given the wide range of hardware capability across the marketplace. People
with low-end machines might need to run our game in a resolution of 640x480 for better performance
while users with high-end machines can run 1600x1200. This function allows us to request a list of
video resolutions available for a given pixel format.

For example, let us assume that there is one adapter installed in the system (the primary display adapter)
and that we desire a display mode with a 16 bit color format of D3DFMT_RSG6BS (5 bits for red, 6 for

115

green, and 5 for blue in every pixel). We could use the following code to find out if this format is
supported by the adapter:

D3DDISPLAYMODE Mode;

UINT Adapter = 0;

D3DFORMAT Format = D3DFMT R5G6B5;
LPDIRECT3D9 pD3D;

pD3D = Direct3DCreate9 (D3D_SDK_VERSION)
if (!pD3D) return FALSE;

UINT NumberOfModes = pD3D->GetAdpaterModeCount (Adapter, Format);
if (!NumberOfModes) return FALSE;

for (UINT I=0; I < NumberOfModes; I++)

{

pD3D->EnumAdapterModes (Adapter, Format , I , &Mode);
FormatModeList->push back (Mode) ;

In this example we tested for D3DFMT R5G6B5 format support (generally available on most cards). We
use an adapter ordinal of 0 (the number of the default adapter) and do not iterate through all adapters on
the system. Next we create the Direct3D9 object and use one of its member functions to query the
number of video modes the adapter supports for that pixel format. For example, the adapter may support
640x480, 800x600 and 1024x768 video modes -- all using the D3DFMT R5G6B5 format. If this was the
case, then the number of modes returned would be 3. More recent hardware may support many more
modes than this (sometimes going to resolutions beyond 2000 pixels in a single dimension). Of course,
in a commercial application we would not look for one particular format. We will write some code later
in the lesson that will search all formats available. If the desired video mode format is not available, we
will try another until we find the best match.

If the number of modes returned is zero, the graphics card does not support this color format. This is not
unusual as there are a number of 16 bit color formats available and it may use one of the others instead.
In a real application we would continue to test other possible 16 bit formats until we found a suitable
match.

Next, we loop through the number of available modes and call the
IDirect3D9: :EnumAdapterModes function. This function parameter list includes the adapter
ordinal, the desired pixel format, and the number of modes we wish to retrieve. For each format an
adapter supports, there is a list of display modes containing 0 to modecount - 1 elements. This function
asks for details of the display mode at a given index in that list (the third input parameter ‘I’ above).
Details are returned in the D3DDISPLAYMODE structure whose address is contained in the last
parameter. This structure will contain the width and height of the mode, the format itself (which we
passed in) and the refresh rate. Note that it is quite possible that many of the modes returned have
identical width, height, and format settings, and differ only with respect to refresh rate. This reflects the
wide range of capabilities present on current monitors. Each is copied into an STL vector called
FormatModeList and at the end of the loop the vector will contain all display modes available for the

116

D3DFMT R5G6B5 color format on that system. A brief STL vector tutorial is included in the Appendices
to this chapter if you are unfamiliar with its usage.

Note: You should always use the format returned in the D3DDISPLAYMODE structure from
EnumAdapterModes to create your device object. Although we pass in the format that we wish to have
modes enumerated for, the format returned in the D3DDISPLAYMODE structure is not always guaranteed
to be the same for certain 16 bit formats. The formats, D3DFMT_X1R5G5B5 and D3DFMT_R5G6B5 are
two commonly supported 16 bit pixel formats. In some cases an adapter will only support one or the
other. The EnumAdapterModes function will return the version that the hardware supports in the
D3DDISPLAYMODE structure. So if you enumerated all modes for D3DFMT_X1R5G5B5 but the graphics
card only supported D3DFMT_R5G6B5 then the latter format would have its modes enumerated. This is
the only case where this is true. For all other formats the function will not succeed if the explicit format
passed is not supported by the graphics adapter.

2.3 The Direct3D Device

Once we have used the IDirect3D9 object to gather information about the current system, we will create
a device object based on that information. The device object can be thought of as a black box that
encapsulates the transformation pipeline, rendering to the frame buffer, pixel blending, depth testing and
texture mapping -- using hardware acceleration when available.

In many respects the device object is a 3D engine. At a very basic level, we tell it to render a polygon by
passing a collection of vertices to the IDirect3DDevice9: :DrawPrimitive function. This very
much like the way we passed vertices into our software transformation and rendering code in Lab
Project 1.1. The vertices are passed through a series of computations to arrive at the screen
representation of the polygon. Unlike our simple software rendering demo, the polygons rendered by the
device can have lighting effects applied to them, multiple textures blended onto them, and even have
several color blending operations done at the per-pixel level to allow for transparency.

The device is also a state machine that can be controlled through member functions (e.g.
IDirect3DDevice9: :SetRenderState). These states control the way the device transforms and
color blends our polygons onto the screen. Any state that is set will remain set until we unset it or set it
to something else. If we set the device to wireframe render mode for example, every polygon drawn will
be rendered in wireframe until we set the render state to some other value (such as solid fill mode).

Using the device states to control the transformation and lighting of vertices is referred to as fixed
function pipeline rendering. There will be times however when even all of the many render states
available do not provide the results you want. Beginning with DirectX 8, Microsoft exposed the
rendering pipeline to the developer using something called programmable shaders. Shaders allow the
developer to create small code modules for transforming and lighting vertices and coloring pixels
instead of using the fixed function pipeline. We call this the programmable pipeline. Shaders will be
covered in detail during the next course in this series.

117

Vertices (DrawPrimitive)

Direct® Graphics World Matrix
Transformaton I View Matrix Vertex Shader
& Lighting Projection Matrix

Fixed Function | [sEERESERIE Programmable
G t Frustum Clipping G t
eometry Divide By W eometry

Pipeline Viewport Mapping Pipeline
Screen Space Coordinates

Triangle Setup &
Per Pixel Sampling

Directx Graphics
Texture/Color Blending Pixel Shader
MultTexturing

. : Fog Calculations
Fixed Function Alpha Testing Programmable

Pixel Stencil Tests Pixel
Pipeline Depth Buffer Tests Pipeline

Alpha Blending / Dithering
into
Frame Buffer

Copy Frame Buffer to Physical Display
Figure 2.2
Fig 2.2 provides a representation of the device object and the software modules that it contains. The

device is divided into two main sections: the vertex processor (BLUE) and the pixel processor
(PURPLE).

118

2.3.1 Pipeline Overview

Vertices are sent to the device using the DrawPrimitive function(s). As we did in Lab Project 1.1, we
will pass in world, view, and projection matrices so that the device can perform the necessary
transformations. We set each matrix using the IDirect3DDevice9::SetTransform function
prior to rendering an object. The function takes as its first parameter a member of the
D3DTRANFORMSTATETYPE enumerated type. This tells the device which of the matrices is being passed
(projection, view or world). The second parameter is a pointer to the matrix itself.

HRESULT SetTransform (D3DTRANSFORMSTATETYPE State, CONST D3DMATRIX* pMatrix) ;

At application startup we might create a projection matrix and send it to the device as follows:

m_pD3DDevice->SetTransform(D3DTS PROJECTION, &m mtxProjection);

Each frame we can create a view matrix which would contain the position and orientation of the virtual
camera in our world. Before rendering any objects we would use the SetTransform function again to
set the device view matrix:

m pD3DDevice->SetTransform(D3DTS VIEW, &m mtxView);

Finally, before we render each object’s polygons, we send the object world matrix to the device:

for(I = 0; I < NumberOfObjects; I++)
{

m_pD3DDevice->SetTransform(D3DTS WORLD, &m pObject[I].m mtxWorld);

m pD3DDevice->DrawPrimitive (All Object[I] Polygons); //pseudo function call
}

Polygons are transformed by these matrices in a manner similar to what we saw in our software demo.

Once the device has transformed (and lit — see Chapter 5) the vertices, it performs backface culling (if
enabled) to remove polygons facing away from the viewer. It then performs the divide by w to
perspective project the vertices into 2D projection space coordinates in the range of —1 to 1.

The transformed vertices now enter the pixel pipeline. The device will set up the outline of the polygon
in screen space and then draw that polygon one scan line at a time -- and ultimately one pixel at a time.
Once the device has interpolated the depth and color values for a pixel (using a weighted interpolation
between the vertices and their depth and color values), the pixel is sent through the rest of the pixel
pipeline where it may have texture and/or fog effects applied that alter its color. The pixel depth value is
then tested against the depth buffer (and possibly the stencil buffer if one is being used) to see if it is
closer to the camera than a previously rendered pixel. If so, if enters the final phase where it may be
color or alpha blended with a pixel already stored in the frame buffer. If not, it is discarded.

Do not be too concerned if this description is a little overwhelming. We will be dealing with every
element described above as we progress through this course.

119

2.3.2 Device Memory

The device owns and maintains memory for a number of important data storage buffers. The frame
buffer (and usually the depth buffer) memory will be created when we create the device. Device
memory can also be allocated by our application for assets like texture images and mesh geometry.
These memory buffers are referred to as device resources. Having these resources available in device
memory provides maximum speed on T&L hardware. Fig 2.2 shows the memory buffers owned by the
device for an application that uses four vertex buffers (perhaps to hold the vertices for four different
meshes), four textures, a depth buffer, and a frame buffer.

The Device

Texture 1 Vertex Buffer 1

Depth Buffer

Texture 2 Vertex Buffer 2

Texture 3 Vertex Buffer 3

Frame Buffer
Texture 4 Vertex Buffer 4

Figure 2.3

Although it is likely that your application will use all of the memory buffers types in Fig 2.3, only a
frame buffer is required. Later we will see how our application can configure the device to control where
resources are stored.

Frame Buffers

The frame buffer (or back buffer) is a memory buffer where the image of our 3D scene is rendered
prior to displaying the output on the screen. This approach allows us to minimize or even avoid certain
artifacts that may occur if we rendered directly to the screen buffer. We discussed some of these artifacts
in Chapter 1. We saw that a frame buffer was critical because proper scene rendering required that we
erase the prior frame image before displaying the new one. If we were to try to do this on the physical
display, the user would see the image flicker as it was erased and then redrawn at high speeds. The
frame buffer solved this problem by clearing and rendering to an off-screen memory buffer. Only after
the scene was completely rendered did we copy it to the screen and replace the existing image.

120

Refresh Rate

The speed at which the monitor screen repaints itself is referred to as the refresh rate. Refresh rate is
measured in Hertz (1/sec). A refresh rate of 60 Hz means the monitor repaints itself 60 times per second.
The higher the refresh rate, the more rapidly the monitor can react to changes in the image rendered to
the screen. There is typically a block of memory on every video card that is used to map images directly
to the monitor screen. When the screen is repainted by the electron gun, it gets information about how it
should be painted directly from this display memory. When changes are made within this address space,
it changes the image seen by the viewer.

The electron gun inside the monitor starts at the top left corner of the display. Each line of the monitor
display is called a scan line and is refreshed as the electron gun from moves left to right. At the end of

each scan line, the electron gun is moved to the beginning of the next line to repeat the process until the
entire screen has been refreshed.

The Vertical Retrace Period

—~._vertical Retrace
o~

/|

/|

YWY WYYV VY

U’

Figure 2.4

If we copy the frame buffer to the display memory while the electron gun is halfway through repainting
the screen, the new image will be displayed only on the bottom half of the screen for a fraction of a
second. This is because the top part of the display has already been repainted by the electron gun using
the image that was previously in display memory, while the new image is used for the second part of the
repaint. Although this corrects itself very quickly due to high refresh rates, it is still noticeable to the
viewer. We call this visual artifact tearing.

121

Screen Tearing

Figure 2.5

In Fig 2.5 the current frame in the frame buffer is slightly skewed to the right with respect to the
previous frame’s camera setting (currently being displayed in display memory). When the frame buffer
is copied to display memory and the electron gun is only half way through a repaint, the bottom half of
the screen is updated with the new image. The top half of the screen will not be updated until the next
repaint.

Referring back Fig 2.4 we notice that there is a time at which the electron gun reaches the bottom right
corner of the screen and has to stop repainting and return to the top left corner for the next repaint.
During this time the electron gun is not painting the screen, so this will be an ideal time for us to copy
the frame buffer to display memory. This period of time during which the gun retraces from bottom right
to top left is called the vertical retrace period (sometimes called the vertical blank). While the vertical
retrace time is indeed quite short, we can be assured with modern hardware that we can copy the entire
frame buffer to the display memory within that time block to prepare for the next monitor repaint.

We will tell the device that we want to synchronize our frame buffer with the vertical retrace period.
This is called VSYNC. When given a command to present the frame buffer, the device will wait until
the vertical retrace starts before it performs the copy operation from the frame buffer to display memory.

Note: Some commercial games allow the user to disable VSYNC in order to increase the responsiveness
of the game and increase the frame rate slightly. This usually comes at the cost of visual artifacts such as
screen tearing. When VSYNC is disabled in such games, the frame buffer is copied to display memory as
soon as the scene is rendered and no waiting for the vertical retrace occurs.

122

The Front Buffer

The display memory used by the electron gun to repaint the monitor is sometimes called the front
buffer. DirectX Graphics enforces the use of a frame buffer by denying the application access to the
front buffer -- all rendering must be done to the frame buffer. When the frame buffer is complete, we
call IDirect3DDevice9: :Present to tell the device object to copy or promote the frame buffer to
display memory.

It should be noted that while you cannot directly access or alter the image in the front buffer, the
IDirect3DDevice9 interface does have a function called IDirect3DDevice9: :GetFrontBuffer.
This function will return a copy of the image in the front buffer only. Altering this returned image will
not alter display memory. This can be useful for taking a screen shot of your application.

Note: IDirect3DDevice9::GetFrontBuffer is the only way to take a screen shot of an anti-aliased scene.

Swap Chains

It is possible to create more than one frame buffer for a device. When more than one frame buffer is
used, this is called a swap chain. Consider a scenario where your application tells the device to present
the frame buffer to display memory. The device may have to wait until the vertical retrace period before
it can present the frame buffer. Your application will essentially wait for the all clear signal to render the
next frame; which it cannot do until the current frame buffer has been presented. If a swap chain is used,
you can continue to render the next frame into the next frame buffer in the swap chain. This can speed
things up under certain circumstances and may even smooth out erratic frame rates, but it comes at a
cost. At high screen resolutions (especially in 32 bit color) each frame buffer can take up a considerable
amount of precious video memory. This is memory often best reserved for resources that need to be
accessed frequently by the device (like textures or vertex buffers).

The process of using two frame buffers (plus the front buffer) is called triple buffering. The more
typical approach uses just one frame buffer and is called double buffering. We will be using double
buffering for most of the demo applications in this course. DirectX allows swap chains with as many as
four frame buffers.

Fig 2.6 shows the relationship between the front buffer, the frame buffer, and the physical display. All
polygon rendering is done through the device to the frame buffer. When we have finished rendering the
frame, we tell the device to present the frame buffer to the user. The device then takes the current image
in the frame buffer and puts it into the front buffer when the next vertical retrace period starts. If we
have disabled synchronization with the vertical retrace period, then the device will put the frame buffer
image into the front buffer immediately. Each time the monitor is repainted, it takes the information
about what to display from the front buffer. Notice that even though the frame buffer and the front
buffer are both located in memory on the video card, sometimes referred to as local video memory,
only the front buffer memory is used to repaint the physical display:

123

FrunﬁBuﬂer Video Memory prame Buffer

-
- 4
A
Currently Displayed Image Direct3DDevice9
Next Image to be displayed &
Application
Figure 2.6

2.3.3 Screen Settings

When we create a Direct3DDevice9 object at the start of our application, we also have to choose a
windowing mode to operate under. Most commercial games use a fullscreen mode. In fullscreen mode,
the 3D image covers the entire display area. Alternatively, windowed mode games run alongside other
applications on your desktop. As you will discover for yourself, this mode is critical during the
development phase of your application.

Fullscreen Mode

When we create the device object, we query the current hardware to see which fullscreen video modes it
supports. Once we select a resolution and color depth (or let the user choose from a list) we create a
fullscreen device that physically puts the graphics hardware into this video mode. The Windows desktop
will no longer be visible and the front buffer will take up the entire screen.

In fullscreen mode, the frame buffer created for the device must be exactly the same size and color depth

as the front buffer. If we choose to create our device so that it operates in a video mode of 640x480 in 16
bit color (640x480x16), the frame buffer should also be created to these specifications.

124

In this mode the device can perform a fast presentation from the frame buffer to the front buffer using a
technique called flipping -- a feature available on virtually all current graphics hardware. Flipping
essentially amounts to a pointer swap. The video card has two pointers; one to the current frame buffer
and the other to the front buffer. The monitor is repainted by the image pointed to by the front buffer
pointer. Drawing commands issued by the application to the device take place in the area of video
memory pointed to by the frame buffer pointer. Once we have rendered the scene in the frame buffer
and it is ready for presentation, the device (in a double buffer system) just swaps the pointers. Now the
front buffer pointer points at the old frame buffer and the frame buffer pointer points at the old front
buffer. This is much faster than the alternative which is called blitting, where every pixel would need to
be copied between the buffers.

Once the swap has taken place, the new frame buffer replaces the old front buffer and all drawing
commands are directed to the current frame buffer (the old front buffer). When the next image is
complete the device will once again swap the two pointers. Fig 2.7 shows this concept in action over two
consecutive frames:

Frame 2 —»

Frame 1 —>

— Front Buffer Pointers -\-_\-‘H

—
Buffer 1 « Buffer 2

k
"'~._\ /¢—— Frame Buffer Pointers

Direct3DDevice9
A
Application

Figure 2.7

The blue arrows show the buffer arrangement during frame one. The device draws directly to Buffer 2
(the current frame buffer). Buffer 1 is the front buffer and contains the image currently being displayed
on the monitor. When the device is told to present the image in the frame buffer, the pointers are
switched so that Buffer 2 is now the front buffer. Its contents (the image we just rendered) are painted by
the electron gun. When we render frame two, the pointers have been swapped. The device now draws
directly to Buffer 1 while Buffer 2 is used as the front buffer. When the device is told to present the
frame buffer, the pointers are switched again, and Buffer 1 is promoted to the front buffer, with Buffer 2
becoming the frame buffer for the next frame. And so it goes for the lifetime of the application.

125

Windowed Mode

In windowed mode the desktop is not hidden and it shares the current video mode with other
applications that may be running, including yours. Thus the video mode cannot be changed. Flipping
cannot be used because the front buffer is mapped directly to the client area of the application window.
In windowed mode, the frame buffer is copied to the client area pixel-by-pixel each time we present the
scene. Although this blitting process is handled by the device, it is likely to be slower than flipping.

Movement of the application window by the user is handled automatically by DirectX Graphics.
However, until the release of DirectX 9.0, resizing the window was not. Until now, when the user
resized the window (WM_SIZE) our message handler would need to tell the device to rebuild its swap
chain so that the frame buffers matched the new dimensions of the front buffer. We may still decide to
do this anyway, but it is no longer a requirement.

As long as the device is in windowed mode, the frame buffer(s) does not have to be the same size or
color format as the front buffer. DirectX Graphics will automatically shrink or expand the frame buffer
image to fill the front buffer, which in this case is the window client area. The same is true with color
depth. It is now possible in windowed mode to have a 32 bit frame buffer even when the desktop (and
therefore your front buffer) is in 16 bit color mode. DirectX Graphics will perform the color conversion
when the image is copied from the frame buffer to the front buffer. Because all of this conversion and
resampling will be slower, you should still try to keep the formats and sizes matched up for optimal
performance. Note that the above features are only true when running in windowed mode. In fullscreen
mode the frame buffer must be the same size and format as the front buffer.

When we create our windowed mode device in our lab projects, we will use the current desktop display
mode for our frame buffer. This makes environment setup much easier for windowed mode applications
as we will see in Lab Project 2.1.

2.3.4 Depth Buffers

One of the trickiest parts of creating a 3D game used to be making sure that the polygons in the scene
were rendered in such a way that polygons nearer to the camera were rendered on top of polygons
further away. While this is not an issue when rendering in wireframe mode, when we use filled (solid)
polygons this is a very significant problem. Polygons cannot just be rendered in any random order
without potentially damaging the integrity of the scene. In Fig 2.8 we see an example of polygons
forming a corridor section of a game world viewed from the player location. If we rendered the wall
polygons in no particular order (perhaps just using the order they were stored in the mesh), we might
render the wall furthest from the camera last:

126

The Depth Rendering Problem

Figure 2.8

The horizontal dark red polygon is supposed to be forming the back wall of the passage where it meets
in a T-junction. It should be partially obscured by the nearer polygons to give the illusion that it is
further away. We cannot simply define our meshes so that the polygons are ordered correctly because
the drawing order will depend on the viewing angle and position of the player. These values will change
as the player moves around the world.

One way to solve this problem is with a technique called the Painter’s algorithm (Fig 2.9). The
polygons in the scene are sorted into a back to front ordered list prior to rendering. Polygons further
from the camera are rendered first and polygons close to the camera are rendered last, drawing over the
distant polygons. This is similar to how a painter builds up the scene on his canvas; painting background
objects first, followed by foreground objects.

Painters Algorithm

Figure 2.9

The Painter’s algorithm worked well for the above case but it is not suitable for the complex worlds we
expect in commercial games today. Sorting all of the visible polygons before rendering would seriously
diminish performance if thousands of polygons or more were visible on the screen at once. Many
polygons will be rendered only to be overdrawn by nearer polygons. We will also have difficulties
choosing a sorting criterion and would have to settle for an approximation that can be applied to the
whole polygon. For example, we could use the nearest vertex position in the polygon and calculate its
distance from the camera and use that to sort polygons. Or we could try to find an average distance using

127

all of the vertices’ distances from the camera. No matter what criterion we decide to use, it will not
suffice in all situations (Fig 2.10).

A Sorting Paradox

Figure 2.10

If we render the green polygon in Fig 2.10 first, then the portion of the red polygon that is supposed to
be behind it will be rendered in front. If we render the red polygon first, then the portion of the green
polygon that is supposed to be obscured by the red polygon will be rendered in front. The Painter’s
algorithm cannot resolve this.

The solution is to work with smaller units. Eventually these polygons will need to be rendered at the per-
pixel level. While a particular vertex might not be behind another polygon, when pixels are interpolated
across the polygon from one vertex to another, the pixel itself might be obscured because a closer
polygon has already had its pixels rendered there. Ideally the current pixel would not be rendered in this
case. So we need a per-pixel test that allows us to figure out whether a given pixel should be rendered or
whether a pixel that is closer to the viewer has already been rendered in that location in the frame buffer.

The Z-Buffer

The most popular depth solution creates a memory buffer that is the same size as the frame buffer.
Instead of each buffer location holding a pixel color, it will store the interpolated Z depth value for each
corresponding pixel in the frame buffer. This technique is known as Z-Buffering and the memory buffer
itself is referred to as a Z-Buffer.

In Chapter 1 we discussed the projection matrix transformation. We saw that it takes a vertex from view
space to homogenous clip space prior to the divide by w. It is possible to ensure that when the vertex Z
value is output from the projection matrix and divided by w, it ends up in the range [0.0, 1.0]; where 0.0
represents a vertex very close to the viewer and 1.0 represents a vertex at the furthest possible point
from the viewer. This is not a pure distance value mind you. It is simply the view space Z component of
each vertex mapped to the range [0.0, 1.0]. This will suffice however because the sorting problem is a

128

view space problem. When the device renders a polygon, it will perform a linear interpolation between
the Z values stored at each vertex to produce a Z value for each pixel. This Z value provides us with a
relative distance from the viewer to each pixel that we render.

Before we render our scene we will clear the Z-Buffer to the maximum Z distance that can be stored.
For example, let us say that the Z-Buffer is a BYTE array. Each element can hold a number between 0
and 255. So in this case we will set every element in the buffer to 255 (the maximum depth value).

Next we render our polygons. After the polygon is transformed into screen space, we calculate the Z
component for each pixel based on an interpolation of the Z values stored at each vertex in the polygon.
Once we have the pixel depth value, we compare it against the corresponding value stored in the Z-
Buffer. Every pixel in the frame buffer has a corresponding entry in the Z-Buffer describing its distance
from the viewer.

If the value already stored in the Z-Buffer is smaller than the depth value of the current pixel about to be
rendered, then it means another pixel has already been rendered at this location in the frame buffer that
is closer to the viewer than the one we are currently about to draw. In this case we discard the current
pixel and move on to the next one.

If the depth value of the pixel we are about to render is smaller than the corresponding value in the Z-
Buffer, then the pixel we are about to render is closer to the viewer than any we have previously
rendered in that position up to this point. So we should render the current pixel and overwrite the pixel
residing in that frame buffer location. After we do this, we store the current depth value in the
corresponding Z-Buffer location overwriting the depth value that was previously there.

In Fig 2.11 we see a low-resolution frame buffer and depth buffer. We used a 5 bit Z-Buffer where each
value falls between 0 and 16. Before the scene is rendered, the Z-Buffer is cleared so that every location
contains the maximum depth value of 16. Then we render our polygons:

16/16/16/16/16/16]16/16/16
16/5 [16/16/10[1016/16/16
16/5 |5 16[10[1010/16/16
The Z Buffer |ig[s[5 (5 10010106
16/5 (5|5 |5 10[10/1616
165|555 |5 (161616
16/16/16/16/10/16/16/16/16
16/16/16/16/16/16/16/16/16
Figure 2.11

129

Because we are doing per-pixel tests using the Z-Buffer values, rendering order no longer matters. If we
rendered the red triangle in Fig 2.10 last and tried to write a pixel where the blue triangle already had a
pixel, the Z-Buffer test would fail because a 5 would already be stored at that location. Since this is less
than the depth of the red pixel (10) we would be about to render, the red pixel would be discarded.

Per-pixel tests in software are very expensive simply because there are going to be so many of them.
Fortunately, virtually all 3D graphics cards support Z-Buffers in hardware and our applications can use
them without any performance concerns. The DirectX Graphics device object will handle depth testing
for us automatically. We simply instruct it to create a Z-Buffer when it creates the frame buffer at
application startup and activate the appropriate render state. When we render our polygons, the device
will record the depths of each pixel in the Z-Buffer and perform the per-pixel depth tests at high speeds.

Our application must query and select a Z-Buffer format supported by the current hardware and tell the
device to use it. We also have to make sure that we setup the 3" column of our projection matrix so that
it generates a proper Z value for each vertex. We will discuss this exact process a little later in the
lesson.

Z-Buffer Inaccuracy

Graphics hardware usually supports 16, 24, or 32 bit Z-Buffers and sometimes all three. But it is worth
discussing 16 bit in particular because it presents us with some real problems that we will need to solve.

The Z value for each vertex -- and eventually each pixel -- is the result of our projection matrix multiply
and the divide by w. This gives each screen space vertex a depth value between 0.0 and 1.0. In code, this
is a floating point value and is thus 32 bits wide. In order to fit 32 bit floats into 16 bit Z-buffer entries,
two bytes of the float have to somehow be discarded. The clear consequence is the loss of a significant
amount of precision.

Let us assume that we need 32 bits to store values with four decimal places and 16 bits to store values
with only 2 decimal places. The problem becomes clear if we consider two hypothetical pixels from
separate polygons:

32 bit depth values:

Pixel A =0.1025
Pixel B =0.1029

16 bit truncated depth values:
Pixel A=0.10
Pixel B=10.10

The 16 bit values lost the last two digits in the truncation and both A and B now equal 0.10. The Z-

Buffer can no longer tell which pixel should be obscuring the other. If B was rendered after A, it would
pass the Z-Buffer test and overwrite A, even though it should not do so. This loss in precision results in

130

unattractive rendering artifacts. Unfortunately, on hardware where only a 16 bit Z-buffer is available,
this is mostly unavoidable.

There is another problem with the Z-Buffer. When we calculate the depth value for each vertex in the
projection matrix, we need some way to provide DirectX Graphics a Z depth value between 0.0 and 1.0
that it can use for rendering the polygon and interpolating per-pixel depths. We cannot simply hand it
the view space Z value input into the projection matrix because this will eventually get divided by w
when the vertex is homogenized. As the W component of the vertex output from the projection matrix
multiplication is always equal to the Z value that was input, this equates to:

DepthZ=z/w
DepthZ=2z/z
Depth Z =1

As W=Z after the projection matrix multiply, the depth value has to be something other than W when it
leaves the projection matrix multiply. Otherwise the depth value will always be 1.0. We will discuss
later how we setup the third column of the projection matrix to generate this depth value so that after it
is divided by w, it ends up in the 0.0 to 1.0 range depending on its distance from the camera.

The unfortunate and unavoidable problem is that the third column multiply of the projection matrix
followed by the divide by w will not linearly map the depth value to the 0.0 to 1.0 range. In fact, most of
the time, the first 10 percent of the scene will be mapped to the 0.0 to 0.9 range. That is, 90 percent of
the Z-buffer’s precision is used up in the first 10 percent of the viewing distance. As a result, all of the
depth values for the remaining 90 percent of the scene will be mapped to fractional values between 0.9
and 1.0. This does not present as significant a problem with 32 bit floating point numbers since there is
enough precision between 0.9 and 1.0 to generate thousands of unique depth values. 16 bit Z-Buffers do
not fare nearly as well, as you might expect. Appendix A at the end of this lesson explores this issue in
greater depth.

To be fair, for non-complex scenes, or at least in scenes where all of the objects are relatively close to
the camera, a 16 bit Z-Buffer will probably suffice. But for modern game scenes that have many
polygons at medium and far distances from the camera, a 16 bit Z-Buffer is insufficient.

Fortunately, most graphics cards that have been released in the last few years support either 24 or 32 bit
Z-Buffers. 24 bits usually provide more than an adequate amount of precision to represent all of our
depth values accurately. Cards with 32 bit Z-Buffers often allow us to use the last 8 bits for another
function entirely, since the first 24 would meet our depth testing needs.

131

The W-Buffer

Some graphics cards support a depth buffer variation known as a W-Buffer. W-Buffers use the same
per-pixel comparison technique and the same physical video memory buffer as a Z-Buffer. The W-
Buffer differs in the way that it calculates the depth values for each vertex, and ultimately each pixel.

When a view space vertex is multiplied with the projection matrix, we end up with an output vertex
where W is equal to the Z component of the input vector (W = Zyi.w). W-Buffers use the reciprocal value
for depth testing:

Depth = 1/w

This provides a more distributed linear mapping than for Z-Buffers. However, using a W buffer can still
produce artifacts when many of the objects in the scene are close to the camera. Contrast this with the Z-
Buffer which has 90 percent of its precision in that range. Nevertheless, the W-Buffer has a lot more
precision available for objects in the middle to far distance range from the viewer. The choice of
whether to use a Z-Buffer or W-Buffer depends on whether your objects are dispersed evenly over the
view distance (use a W- Buffer) or whether your objects are typically going to be close to the camera
(use a Z-Buffer).

Because most cards now support 24 bit Z buffers the need for W buffers is not as great. This is fortunate
since W buffers are not as widely supported on modern hardware as Z buffers. However, if your
application does find itself on a system where only a 16 bit Z Buffer is available, a W buffer (if
available) can often produce better results.

The device object manages W buffer calculations for our application just as it does the Z buffer. We will
generally only need to check for support and then specify our preference when creating the depth buffer.

2.4 Surface Formats

A surface is an object that stores image data. For example, both the frame buffer and depth buffer are
physically stored as a surface. Textures are stored as surfaces as well. We carry out per-pixel operations
on a surface object by acquiring an IDirect3DSurface9 interface. Surfaces come in a variety of sizes and
color bit depths and not all surface formats are supported by all hardware. One of the trickiest tasks
when initializing the environment is making sure that:

e The frame buffer surface is created by the device in a format that the hardware supports
e We create a Z-Buffer surface that the hardware supports
e We load our textures into surfaces whose format and type the current hardware supports.

The enumerated type D3DFORMAT contains the surface formats supported by DirectX Graphics. Many
graphics cards will indeed support a great number of these formats in hardware, but some formats might

132

not be supported. For example, older cards such as the Voodoo™ 1 and 2 supported only 16 bit colors.
None of the 32 bit color formats were available to developers targeting those platforms.

When we create the device at application initialization time, we must tell it the format of the frame
buffer(s) we would like constructed. This format must be one that is supported by the hardware. Our
environment setup routines will need to obtain a list of supported surface formats on the current
hardware and make sure that the frame buffer, depth buffer, and textures are created using only these
formats.

Table 2.1 lists the image surface formats we will use in the early stages of the course. These are the
formats most commonly supported on modern cards.

Table 2.1 Common D3DFORMATs

D3DFMT_R8G8BS 24-bit RGB pixel format with 8 bits per channel.
D3DFMT_A8RS8GS8BS 32-bit ARGB pixel format with alpha, using 8 bits per channel.
D3DFMT_X8R8GS8BS 32-bit RGB pixel format, where 8 bits are reserved for each color.

16-bit RGB pixel format with 5 bits for red, 6 bits for green, and 5 bits for
blue.

D3DFMT_X1R5G5BS 16-bit pixel format where 5 bits are reserved for each color.

D3DFMT_R5G6B5

16-bit pixel format where 5 bits are reserved for each color and 1 bit is
reserved for alpha.

D3DFMT_A4R4G4B4 16-bit ARGB pixel format with 4 bits for each channel.
D3DFMT_X4R4G4B4 16-bit RGB pixel format using 4 bits for each color.
D3DFMT_A2B10G10R10 32-bit pixel format using 10 bits for each color and 2 bits for alpha.
D3DFMT_A8B8GS8RS 32-bit ARGB pixel format with alpha, using 8 bits per channel.
D3DFMT_X8B8GS8RS 32-bit RGB pixel format, where 8 bits are reserved for each color.

D3DFMT_A1RSGSBS

Just to ensure complete understanding of what these formats represent, let us examine the format
D3DFMT R8G8BS. This might look familiar if you have worked with COLORREFS in Win32. Each
pixel on the surface is represented by 24 bits (3 bytes). Each byte can hold a value between 0 and 255
that describes the intensity of the color. If all three bytes were set to 255, then the pixel would be full
white. If the second byte was set to 255 and the first and third were set to 0, then the pixel would be
bright green.

The format ASR8GEBS is a 32 bit format where Red, Green and Blue values each receive a byte of
storage space. The A stands for alpha and is used to measure pixel opacity; it also consumes one byte
per-pixel. If the device has alpha blending enabled, then when a pixel is rendered into the frame buffer,
its alpha value will be used to determine how its color blends with any pixel color currently in that
location. In this format the Alpha value would range from 0 to 255 as fully transparent to fully opaque
respectively. We will discuss alpha values and transparency in detail in Chapter 7.

133

2.4.1 Adapter Formats

When we create a fullscreen device we must choose a format to put the adapter into. This is the format
of the front buffer and can only be one of the following:

D3DFMT X1R5G5B5
D3DFMT R5G6B5
D3DFMT X8R8GSBS

This is useful because we know that all video cards will at least support one of these three modes. Notice
that the front buffer cannot use a format with an alpha channel.

2.4.2 Frame Buffer Formats

Since windowed mode applications share the desktop, the front buffer must use the format that the
adapter is already using. This actually makes setting up the environment for a windowed mode device
significantly easier. The frame buffer has no such requirements. In windowed mode, the format and
resolution of the frame buffer does not have to match the format of the adapter mode (the front buffer).
The device will handle the color conversion between the two when they differ.

There are a number of formats that we can use for the frame buffer:

D3DFMT X1R5G5B5
D3DFMT R5G6B5
D3DFMT X8R8G8BS
D3DFMT AS8R8GSBS
D3DFMT AI1R5G5B5
D3DFMT A2R10G10B10

Not all of the above formats are guaranteed to be supported by all video cards, so when we setup our
device we will need to make sure that we select a valid format. With the exception of the last mode in
the list, you should notice that the only difference is that the back buffer supports modes that add an
alpha channel to the pixel. You will not often need a frame buffer to have an alpha pixel format. Often,
you will simply match the front buffer and back buffer pixel formats exactly.

For fullscreen devices, the formats and resolutions must match, with one exception: the back buffer can
still have an alpha channel even though the physical display does not. The rule is that the alpha mode
must match the non-alpha mode counterpart (with the placeholder ‘X’ value). If we set the display mode
of the adapter to 32 bit, the front buffer format will be p3pFMT x8rR8G8B8. This means we can have a
back buffer format of either D3DFMT x8R8G8BS or D3DFMT A8R8G8BS. Likewise, if we were in 16 bit
mode D3DFMT x1R5G5B5, we could create a back buffer in either D3DFMT X1R5G5B5 or
D3DFMT A1R5GS5BS.

134

2.5 Creating a Device

Let us now examine the process of creating a device in DirectX Graphics. We begin by looking at the
IDirect3D9 method that provides this functionality.

HRESULT CreateDevice (UINT Adapter, D3DDEVTYPE DeviceType,
HWND hFocusWindow, DWORD BehaviorFlags,
D3DPRESENT PARAMETERS* pPresentationParameters,
IDirect3DDeviced** ppReturnedDevicelnterface);

UINT Adapter

This is the adapter ordinal that the device will be created for. Usually there is only one graphics adapter
on the system. The primary display adapter is the adapter with an ordinal of 0 (or
D3DADAPTER DEFAULT).

D3DDEVICETYPE DeviceType
This parameter defines whether we will create a hardware accelerated device or a slower, software
emulated one. For this parameter we pass in one of the D3DDEVICETYPE enumerated types:

typedef enum D3DDEVTYPE {
D3DDEVTYPE HAL = 1,
D3DDEVTYPE REF = 2,
D3DDEVTYPE SW = 3,
D3DDEVTYPE FORCE DWORD = Oxffffffff
} D3DDEVTYPE;

D3DDEVICETYPE HAL - the HAL device is typically our preference since it uses the
hardware acceleration features on the adapter. If there is no 3D accelerated graphics adapter on
the current system, then the request to create a HAL device will fail. We will be left with no
choice but to create a HEL device, provide our own renderer and forego DirectX, or exit the
application. If a HAL device is created successfully then it means that the hardware has at least
some 3D capability. This may be hardware triangle rasterization or it may be the entire
transformation and lighting pipeline too. We will have to check the capabilities of the HAL to
make sure it supports the functionality we require.

D3DDEVICETYPE_REF - If a HAL device cannot be created then the Hardware Emulation
Layer (HEL) is our remaining choice. Outside of feature testing, the reference rasterizer is not
viable for commercial applications. Even simple scenes might render at as few as 1 or 2 frames
per second. The HEL is really intended for hardware manufacturers and hardware engineers to
ensure that their hardware performs correctly. For Example, video card makers can test their
development boards against the reference rasterizer to check that their card is not rendering
polygons brighter or darker than they should be. The reference rasterizer has helped to maintain
image consistency across the variety of different video cards.

Since the reference rasterizer is considered to be of no use for commercial purposes, it is not
even enumerated by DirectX Graphics when it is installed. You must manually go to the DirectX

135

properties applet in the Windows control panel and enable it via a check box on the Direct3D
properties page if you wish to use it. Our applications will try to create a HEL device if no HAL
is found so you should enable this check box. This will be especially important later on in the
next course in this series when we cover features that your hardware may not support.

D3DDEVICETYPE_SW — Because of a lack of a commercially usable software device within
DirectX Graphics, Microsoft provides developers with the ability to produce pluggable software
devices. This allows developers to ship their applications with the ability to run on machines
without hardware acceleration. From the application’s perspective, it is still using a single
unified API. The Driver Development Kit (DDK) can be used to create such software devices.
Once the devices are installed and registered with the operating system, they can be enumerated
and created as part of DirectX Graphics. DirectX Graphics will pass application requests to the
software device driver and the software device will perform the actual task. Unlike the HEL
device, software devices will probably not support the entire set of DirectX Graphics
functionality. Certain techniques may also be too processor intensive to run in software.

Creating a software device yourself is a complex task that requires a strong understanding of the
processes involved. You are essentially writing your own IDirect3DDevice9 object. Most games
no longer offer the choice of running in software mode and require 3D graphics cards.
Developers often feel that it is simply not worth the effort when most PCs have 3D hardware
acceleration. Some of the very latest games even require vertex transformation and lighting in
hardware too.

HWND hFocusWindow

The window to which the device object will be linked is referred to as the focus window. This will most
often be the parent window of your application (such as your main application frame window). DirectX
traps and dispatches certain messages to and from this window when the device is created, and toggled
between fullscreen and windowed modes. Interestingly, the focus window is not necessarily the window
where the frame buffer will be rendered. We will discuss this a little later in the chapter. In most cases,
passing in the HWND of our main window application will suffice. Also note that if the device will
potentially be toggled from windowed to fullscreen mode, the focus window must be a top level
window. This is a window that has the WS _EX TOPMOST flag set. If this is not the case, the device
will fail to be created in fullscreen mode or fail to be switched to fullscreen mode from windowed mode.

DWORD BehaviourFlags

There are three mutually exclusive behavior flags that we can use when creating the device to request
the maximum level of hardware support. Device creation will fail if the level of hardware acceleration
we request is not available. We can then try again using the next best level of hardware acceleration
until we eventually find one that is supported. At least one of the following flags must be stated. They
are listed in order of desirability.

D3DCREATE_HARDWARE_VERTEXPROCESSING

Try to create a device that performs transformation, lighting and rasterization on the video
card. This is the maximum level of hardware support that we can request. If we request a
D3DDEVICETYPE HAL device type and a HAL is present on the system, we can try specifying
this flag to create a T&L accelerated device.

136

If the device creation call fails, we can try the D3DCREATE SOFTWARE VERTEXPROCESSING flag
next. If that device is successfully created then this means that the HAL can perform
rasterization in hardware but the transformation and lighting of vertices will be done in
software. This is slower, but still acceptable in most cases as a next best option. Very few
games at the time of writing require T&L capable video cards, although that will likely change
in the future.

Specifying the D3DCREATE HARDWARE VERTEXPROCESSING flag whilst trying to create a device
of type D3DDEVICETYPE REF will succeed, since the reference rasterizer does emulate a
hardware device. However, this will not speed up the reference rasterizer in any way.

While you may be able to create a HAL device that supports hardware vertex processing, this
does not always mean that all vertex processing will be done on the hardware. For example, a
video card may only support vertex transformation and not lighting. In this case the driver will
perform the lighting calculations in software using the host CPU.

IDirect3D9 provides a function called IDirect3D9::GetDeviceCaps that will retrieve
information about device capability. Since this is part of the Ipirect3D9 interface, it can be
called to query a device without having to create the device first:

HRESULT GetDeviceCaps (UINT Adapter,
D3DDEVTYPE DeviceType,
D3DCAPS9* pCaps) ;

We pass the adapter ordinal and the type of device we wish to learn about. We also pass a
pointer to a D3pCcAPS9. This structure contains all of the capability information for the device.

D3DCAPS9 DevCaps;
pD3D9->GetDeviceCaps (D3DADPATER DEFAULT, D3DDEVICETYPE HAL, &DevCaps)

We will examine this structure in detail throughout this lesson. Our primary interest right now
is a DWORD field called vertexProcessingCaps. The bits in this field indicate the level of
hardware vertex processing supported by the device:

D3DVTXPCAPS DIRECTIONALLIGHTS

Device supports directional lights.

D3DVTXPCAPS LOCALVIEWER

Device supports local viewer.

D3DVTXPCAPS MATERIALSOURCE7

Device supports selectable vertex color sources.
D3DVTXPCAPS POSITIONALLIGHTS

Device supports positional lights (including point lights and spotlights).
D3DVTXPCAPS_TEXGEN

Device can generate texture coordinates.
D3DVTXPCAPS_TWEENING

Device supports vertex tweening.
D3DVTXPCAPS NO _VSDT UBYTE4

Device does not support the D3DVSDT UBYTEA4

Do not worry about what these flags actually mean for now. We are currently focused on
understanding device capability querying only. For example, we could query the D3DCAPS9

137

138

structure to determine whether vertex tweening was supported. This is an advanced technique
used to create an intermediate mesh from two or more input meshes. We simply use a bitwise
AND operation to do the test:

if (DevCaps.VertexProcessingFlags & D3DVTXCAPS TWEENING)
{

//Tweening is supported

}

If your application needed hardware tweening support and the above test failed, then you
would not be able to use hardware vertex processing when creating the HAL device. You

would instead choose software vertex processing where the tweening could be done on the
CPU.

D3DCREATE_MIXED_VERTEXPROCESSING

If a device supports hardware vertex processing but does not support the capabilities that we
require, we can attempt to create a device that supports both software and hardware vertex
processing. In this case, our application can dynamically switch between the two vertex
processing modes.

Continuing the tweening example discussed previously, we could use hardware vertex
processing to transform and light the vertices of objects that do not need to be tweened. This
affords them maximum hardware acceleration. When we need to render our tweened objects
we could switch the device into software vertex processing mode so that the transformation,
lighting, and tweening of those vertices would be carried out on the CPU by DirectX Graphics.

D3DCREATE_SOFTWARE_VERTEXPROCESSING

If the CreateDevice function has failed to create a HAL device using the flags just discussed,
or if you are creating a device of type D3DDEVICETYPE REF Or type D3DDEVICETYPE SW, then
you will need to pass this flag. All calculations to transform and light vertices will be done by
DirectX Graphics on the CPU. If you created a HAL device but were unable to create it with
any other flag but this one, it means that the 3D graphics card supports 3D accelerated
rasterization only.

It is possible to specify this flag even when the device supports hardware vertex processing.
This would force the transformation and lighting to be done by DirectX Graphics instead of the
GPU. This may be necessary if the hardware does not support the vertex processing
capabilities you require.

The device behavior flags discussed previously are mutually exclusive. However, there is another flag
that can be combined with D3DCREATE HARDWARE VERTEXPROCESSING to create a device designed for
optimal performance:

D3DCREATE_PUREDEVICE

If this flag is used with the D3DCREATE HARDWARE VERTEXPROCESSING type and device
creation is successful then it means that the HAL supports a pure device.

Recall that the device object is a state machine and that we are able to change state by calling
certain functions like SetRenderState or SetTransform. Our application can also query the
device to retrieve its current state. For example, we might ask the device to return the contents
of its current world matrix:

D3DXMATRIX mMat;
pDevice->GetTransform (D3DTS WORLD , &mMat);

Although our application will generally set these device states to begin with, it is certainly
easier not to have to store and maintain state data in persistent variables. Querying back the
state data from the device as we need it may be convenient, but it adds overhead. The driver
has to ensure that state data can be returned at any time.

When we choose to create a pure device, we are telling the driver that we have no intention of
querying the device for such states. The result is that we can no longer use most of the device
query functions. This allows the driver and hardware to work more efficiently at a cost of
denying the application convenient access to the current state of the device. Generally, this is
not a major concern since our application is responsible for setting the states anyway. It is easy
enough to store these states in persistent variables that our application can read and update
whenever we update the state of the device.

The following code might be used at application startup to create a device. It starts out requesting the
maximum level of hardware support and reduces those requirements until it is able to successfully create
the best device possible.

D3DPRESENT PARAMETERS d3dpp;
IDirect3D9 *pD3D;
IDirect3DDevice9 “*pDevice;

// First of all create our D3D Object
pD3D = Direct3DCreate9(D3D_SDK VERSION);
if (!pD3D) return false;

// Try creating a HAL pure hardware device first

if(FAILED(pD3D->CreateDevice (D3DADAPTER_DEFAULT, D3DDEVICETYPE_HAL , hiWnd,
D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_PUREDEVICE,
&d3dpp, &m pDevice)))

139

// Pure device failed so try just hardware device with T&L acceleration
if (FAILED(pD3D—>CreateDeVice(D3DADAPTER7DEFAULT, D3DDEVICETYPE HAL, hWnd,
D3DCREATE_HARDWARE_VERTEXPROCESSING,
&d3dpp , &m_pDevice)))

// nope, lets try a software vertex processing hardware device

// for accelerated rasterization

if (FAILED (pD3D->CreateDevice (D3DADAPTER DEFAULT,
D3DDEVICETYPE HAL, hWnd,
D3DCREATE SOFTWARE VERTEXPROCESSING,
&d3dpp, &m pDevice)))

// last resort is the reference rasterizer

if (FAILED(pD3D—>CreateDeVice(D3DADAPTER_DEFAULT,
D3DDEVICETYPE_REF,hWnd,
D3DCREATE78OFTWARE7VERTEXPROCESSING,
&d3dpp , &m pDevice)))

// We couldn’t even create a HEL device
// something is wrong and app will not run on machine
return FatalError;
} // End Reference Rasterizer
}// End Hal - Software VP
}// End Hal - Hardware VP
}// End Hal - Pure Device

2.5.1 Presentation Parameters

The fifth parameter in the CreateDevice function is the address of a D3DPRESENT PARAMETERS
structure. It is used to pass information such as the video mode we wish to use (in fullscreen mode
only), the width, height, and pixel format of the back buffer, and settings such as which window we
wish to render to in windowed mode.

struct D3DPRESENT PARAMETERS
{

UINT BackBufferWidth, BackBufferHeight;
D3DFORMAT BackBufferFormat;

UINT BackBufferCount;
D3DMULTISAMPLE_TYPE MultiSampleType;

DWORD MultiSampleQuality;
D3DSWAPEFFECT SwapEffect;

HWND hDeviceWindow;

BOOL Windowed;

BOOL EnableAutoDepthStencil;
D3DFORMAT AutoDepthStencilFormat;
DWORD Flags;

UINT FullScreen RefreshRatelInHz;
UINT PresentationInterval;

140

BackBufferWidth / BackBufferHeight
These fields inform the device of the dimensions of the desired frame buffer. They are interpreted based
on whether we are going to create a fullscreen or a windowed device.

In fullscreen mode the frame buffer must match the resolution of the physical display mode and these
field values must match one of the supported fullscreen video modes enumerated using
IDirect3D9: :EnumAdapterModes. When we create the device, DirectX Graphics will change the
current video mode of the hardware so that it matches this resolution, and then it creates a frame buffer
of the same size. This allows flipping to be used.

In windowed mode, our application is not allowed to change the video mode resolution since the
desktop and other applications are using it. However, there is no need to match the back buffer and front
buffer sizes as in fullscreen mode.

If we set these values to 0 in windowed mode, the device will automatically create a frame buffer to
match the resolution of the client area of the window it is attached to. This window is represented by the
handle passed in the hDeviceWindow field and is not necessarily the same as the focus window passed
in to the CreateDevice function. This is the approach we will take in Lab Project 2.1, our first demo in
this lesson.

BackBufferFormat

This field specifies the pixel format for the frame buffer. In fullscreen mode this format will set the
video mode for the adapter. If we specify a 32 bit D3DFMT A8R8G8BS format as the back buffer, then the
device will change the video mode to use a matching format. Because the front buffer cannot use an
alpha channel, this will put the adapter into D3DFMT x8R8G8B8 color mode with the resolution specified
in BackBufferWidth and BackBufferHeight. This assumes of course that this display mode is supported
by the adapter. If the back buffer format does not correspond to one of the supported adapter display
modes then device creation will fail. The enumerator class we develop in Lab Project 2.2 will use the
IDirect3D9::CheckDeviceType function to build a list of modes that can be used with the device on
the current hardware. This function allows us to check whether or not a particular back buffer format
can be used with a particular adapter mode on both windowed and fullscreen devices.

Since we are using windowed mode in Lab Project 2.1, we can simply use the same format for the frame
buffer as the current display mode because we know it will be supported; the adapter is in that mode
already.

BackBufferCount

This field allows you to create a device with more than one frame buffer (double or triple buffering).
Valid values are between 0 and 4. 0 is treated the same as 1 since there must always be at least one
frame buffer.

If you specify a BackBufferCount that is larger than the number of buffers that can be created on the
hardware, the call to create the device will fail and this field in the structure will be filled in with the
maximum number of frame buffers that can be created. This allows for subsequent call to
CreateDevice, passing the now amended structure to resolve the problem.

For our demonstrations, and indeed for most applications, one back buffer will suffice.

141

MultiSampleType / MultiSampleQuality;

More recent video hardware has support for multisampling video modes that remove the jagged edges of
polygons that are especially visible in lower resolutions. When we enumerate our available video
modes, we can record whether the hardware can perform multisampling in that video mode. If so, we
have the option to create the device so that it uses it. We will cover multisampling in later lessons so we
will set these fields to 0 for now. This informs the device that we do not wish to use available
multisampling capabilities.

SwapEffect
The p3pswaPEFFECT enumerated type describes how the device should transition frame buffer content to

the front buffer:

D3DSWAPEFFECT FLIP

In the case of fullscreen rendering, presenting the frame buffer is done very quickly by swapping
the frame buffer and front buffer pointers. When we have more than one frame buffer, the swap
chain is rotated each time we present the scene. After the flip, the current frame buffer becomes
the front buffer and the current front buffer is sent to the back of the swap chain.

Note: When we use a flip in windowed mode, the effect of hardware flipping is emulated using pixel
copying (blits) between surfaces. The behavior of the swap chain frame buffers is the same from the
application perspective. For example, in a double buffered device, after the presentation, the frame
buffer will hold the contents of the previous front buffer and vice versa. Using flip in a windowed
system carries processing overhead and may consume video memory. This is especially a concern
when using D3DSWAPEFFECT_FLIP with a windowed swap chain of two or more buffers.

Let us take one quick example of a device with two frame buffers (triple buffering). We will
render a different shape to each buffer and then repeatedly flip through them:

Back of Swap Chain Active Frame Buffer Video Display

Eal K. A Initial Front Buffer

Present 1

_)Initial Front Buffer [-

Present2

—)»Ar—l.

Initial Front Buffer

Figure 2.12

142

To create the device for Fig 2.12 we specify a BackBufferCount of 2. The result is two frame
buffers and a front buffer. Assume that all three are initially blank. Next we render a triangle.
The device will automatically render to the active frame buffer, which is initially the first of the
two frame buffers created. When the image is complete, we call the present function and the
pointers are flipped (or copied in windowed mode). The frame buffer now becomes the front
buffer, the front buffer becomes the second frame buffer, and the second buffer becomes the
active frame buffer.

Next we render a square and present the scene again. The front buffer which currently has the
triangle is sent to the back of the frame buffer queue, the new frame buffer with the square
becomes the new front buffer, and the initial front buffer has now become the next active frame
buffer. If we were to render a circle next and then call the present function in a loop, the image
on the screen would switch between a triangle, a square and a circle over and over again.

D3DSWAPEFFECT_COPY

D3DSWAPEFFECT COPY causes the contents of the frame buffer to be copied to the front buffer
when the scene is presented. In windowed mode this is performed by doing a blit of all pixels in
the frame buffer into the front buffer. In full screen mode, the copy may be performed in
hardware using copies, flips, or a combination of the two to emulate the behavior:

Active Frame Buffer Video Display

A Initial Front Buffer

A

Figure 2.13

When a copy is performed, the contents of the frame buffer are unaltered by the presentation.
This is in contrast to flipping where the frame buffer holds the image that was previously in the
front buffer (in a double buffer arrangement). This is important to remember if your application
needs to read pixels back from the frame buffer after the scene has been presented.

143

144

This setting makes sense for windowed mode applications since they are going to perform copies
anyway and emulating the flip comes with some overhead. In fullscreen mode, unless our
application requires an unaltered post-presentation frame buffer, flipping should be used.
Copying in fullscreen mode is slower and may carry additional video memory overhead.

Note: D3DSWAPEFFECT_COPY can only be used for devices with one frame buffer
(BackBufferCount = 0 or 1). Device creation will fail if you try to create it using
D3DSWAPEFFECT_COPY and more than one frame buffer.

D3DSWAPEFFECT DISCARD

This setting lets the device choose the best method to use (flipping or copying) based on the
current video and window modes. This will generally mean that flipping is used with a fullscreen
device and copying is used with a windowed device, but this is not guaranteed. Thus our
application should not make any assumptions about the state of the frame buffer after the screen
presentation. When using D3DSWAPEFFECT DISCARD we will always treat the frame buffer as an
uninitialized memory buffer requiring that we render over the entire surface. In fact, the DirectX
Graphics debug runtime will automatically fill the contents of a presented frame buffer with
random data to discourage you from making such assumptions when using this swap effect.

HWND hDeviceWindow

This parameter is often confused with the focus window HWND in the CreateDevice call. In most
cases these will be the same and if you leave this parameter set to NULL, the device will use the
focus window passed into CreatebDevice as the device window also. But there are differences
between the two and in some cases we may want to use a focus window separate from our device
window. First let us examine what the device window is used for in both fullscreen and windowed
modes:

Windowed Mode

In windowed mode this is the HWND of the window that will have its client area used as the
front buffer. This device window is treated like any other windowed application. For example,
messages from the mouse or keyboard will be sent to this window’s WndProc function when it
has focus. It can be minimized and maximized just like any other desktop window. If the
window is moved, then the device will automatically track the positional changes such that the
presentation happens at the new position of the client area. Resizing (WM_SIZE messages) of
the window, although not required, should be handled separately by our application and we will
discuss this later in the lesson.

Fullscreen Mode

When the device is in fullscreen mode it gains exclusive access to the screen and the desktop is
no longer visible. It is as if the device has created its own window without any caption or
borders and has overlaid the entire desktop. This overlay has the dimensions of the video mode
stated in the BackBufferWidth and BackBufferHeight fields.

However, this overlay window is not a real window. The desktop is still active (behind it) and
handling messages from mouse and keyboard input. So although this device window is not

actually rendered to, and is in fact not visible, the device resizes it so that it takes up the entire
display. It also changes its Z order so that it is always atop all other desktop windows. This
ensures that any mouse and keyboard input is correctly sent to the device window. This avoids
accidentally clicking the mouse on a window belonging to another application -- invisible behind
the overlay window -- and changing the focus to that other application. The WndProc of this
device window will receive the mouse and keyboard messages as well as other window
messages. Although this window is not actually visible, it will have a one-to-one mapping with
the physical overlay window that the device is using to render.

Device Window in Full Screen mode

Full screen device window

D iniratizaton. __._.-gﬁ

Fia Araion -

Full screen overlay Window

/

N
A

Figure 2.14

Mouse Messages Sent
to Device Window

Fig 2.14 shows the device window that would be created by our application in fullscreen mode.
It has a caption, a border and a menu. Regardless of the initial size of this window, when we
create the device in fullscreen mode and pass this HWND as the device window, the device will
alter the dimensions of the window so that it takes up the entire video resolution. This window
will not actually be visible, so all rendering will be done using an overlay window. Windows
messages such as keyboard or mouse events will be sent to the device window. So unlike the
windowed mode scenario where the device window was used for rendering, in fullscreen mode
the device window is merely used as a message collector.

Imagine a scenario where the window was initially set so that it was 400x400 in size. Now
consider what would happen if the device did not resize it to take up the entire desktop. When
the mouse was clicked on the overlay window, it may not actually be situated over the (invisible)
device window. We might accidentally select another application’s window, or perhaps click an
empty area on the desktop, or in a worst case scenario, drag items into the recycle bin!

Fig 2.15 shows what would happen if the device did not resize the device window. While

rendering is unaffected, the position of the mouse is not actually over the device window and
mouse messages will not get to our device window’s WndProc function.

145

Device Window

Mouse Messages sent
to Device Window

e

Figure 2.15

So in order for everything to work correctly, we must make sure that we create our device
window as a top level window if we intend to use fullscreen mode.

There is something else to watch out for when using a device in fullscreen mode. Although the
device will resize the window to take up the entire dimensions of the chosen video mode, this
does not always mean that the client area of the window is resized to the full extent of the video
mode. In Fig 2.16 we can see that the device window contains a border, a caption bar and a
menu. When the window is resized, the menu and border still remain. Thus the client area will
not have a one-to-one pixel mapping with the overlay window. At the top of the window in this
example, about 10% of the overlay window covers up the caption bar and menu of the device
window. If a mouse button was clicked in this area, the client area would not receive the
message and we might instead be selecting a menu item or clicking on the caption bar:

Full screen device window

o @ hiietan L
e Pl Annston -
. -

- T

Full screen overlay Window -

‘ Mouse Messages Sent

to Device Window

L

Figure 2.16

The solution is to create a device window without caption, menus, or borders so that the window
contains only a client area.

146

There will be times when you want your application to toggle between fullscreen and windowed
modes. There are two options. First, we can change the current operating mode of the device by
calling the TDirect3DDevice9: :Reset function. So if we are moving to fullscreen mode, we
could alter the style of the window such that the menu, caption bar and borders are removed.
Another option is to create two device windows at application startup. The first has a border and
caption for windowed mode. The second has no caption or borders, and we can pass this one into
the Reset function when going to fullscreen mode.

Note: The focus window can only be specified when the device is initially created. If we create a
device in windowed mode and use the window for both the focus window and the device
window, changing to fullscreen mode later may cause a problem if we are not careful. In order
for the device to transition to fullscreen mode, the focus window must be a top level window. If
our windowed rendering window is not a top level window then we have no way of changing the
focus window without destroying the device and creating a new one. Therefore, it is common
practice to make the application main frame window the focus window even when this window
will never be used for rendering. For applications that use multiple fullscreen devices, such as a
multi-monitor system, only one device should use the focus window as the device window. All
others should have unique device windows. Otherwise, behavior is undefined and applications
will not work as expected.

Windowed

This parameter tells the device creation function whether we wish to create the device in windowed or
fullscreen mode. If we set it to TRUE then the device will be created in windowed mode and the
device window client area will be the front buffer. If set to FALSE then the device will be created in
fullscreen mode where the video mode will be set by the BackBufferWidth and BackBufferHeight
fields.

EnableAutoDepthStencil

This Boolean variable instructs the device creation function whether or not we wish it to create and
attach a depth buffer surface. If it is set to TRUE, the function will create the depth buffer (Z-Buffer or
W-Buffer) using the depth buffer surface format specified in the next parameter. If the depth buffer
surface is created successfully, it will be automatically attached to the device frame buffer. Any pixels
rendered by the device will also have their depths tested and recorded in the depth buffer. If the device
is reset (perhaps to resize it or alter it to a different video mode), it will automatically destroy the
current depth buffer, create a new one that matches the new frame buffer size and attach it as the
current depth buffer. This auto management feature makes using depth buffers very convenient.

If it is set to FALSE, a depth buffer will not be created and the application will be responsible for
creating a depth buffer surface and attaching it to the device, if it needs one. The application would
also be responsible for managing the destruction and recreation of the buffer if the device is reset.

AutoDepthStencilFormat
If the EnableAutoDepthStencil parameter above is set to TRUE, then this field should hold the
D3DFORMAT describing the format of the depth surface our application requires. Unlike the surface

formats used for textures and frame buffers, there are special D3DFORMAT types for use with depth
buffers.

147

Table 2.2 contains the depth buffer surface formats available in DirectX 9.0. If the hardware supports
Z-Buffering (as nearly all do these days) then at least one of the D3DFORMATs listed will be available
for use. It is possible that some 3D hardware may support many of these depth buffer formats. If this
is the case then our application will have to choose which one is best for our application to use. As we
will discuss

32 bit formats

A 32 bit surface where each pixel can hold
D3DFMT_D32 32 bits of depth information. Provides a
significant range of depth granularity.
24 bits of this 32 bit surface can be used to
hold depth information. 8 bits are unused.
24 bits of this 32 bit surface are used for
D3DFMT_D24S8 depth information with 8 bits being used to
hold stencil buffer values.
A 32 bit surface with 24 bits of each pixel
being used to hold depth values and 4 bits
of each pixel being used to hold stencil
information. 4 bits are unused.

D3DFMT_D24X8

D3DFMT_D24X4S4

16 bit formats

Each pixel in this surface can hold 16 bits
of depth information. 16 bit surfaces can
suffer Z-Buffer artifacts. A 24 bit Z-Buffer
minimum is desirable.

D3DFMT D16

Only 15 bits are used for depth information
with 1 bit reserved for use by a stencil
buffer. Z-Buffer artifacts are exacerbated
with only 15 bits of accuracy.
A special type of 16 bit depth buffer
surface that can be locked. This allows us
D3DFMT_D16_LOCKABLE to read/write to the surface directly through
a pointer. This is the only depth buffer
surface format that is allowed to be locked.

D3DFMT_D15S1

Table 2.2 Depth/Stencil Formats

As we will discuss in the next course in this series, many 3D graphics cards provide support for stencil
buffers. Stencil buffers are used to mask areas of the frame buffer we do not wish rendered to. They
share the same physical memory as a depth buffer. A 32 bit depth buffer format may have 24 bits used
for storing pixel depth information and the remaining 8 bits for stencil information.

Our application will have to ensure that it selects a depth buffer format that the 3D hardware is capable

of supporting. The Direct3D9 object provides member functions to check which depth buffer formats
can be used with the selected frame buffer format.

148

Some older graphics cards only support 16 bit depth buffer formats. These are not ideal but if that is all
we have available then we will have to use them. It is also possible that even if a particular card
supports 16 and 32 bit depth buffers and frame buffers, it may require that the bit depth of the depth
buffer matches the bit depth of the frame buffer. Therefore, if we have a 32 bit capable card but we have
a full screen device running in 16 bit color mode (a 16 bit frame buffer), the hardware may insist that we
also use a 16 bit depth buffer. Fortunately, most of the recent graphics cards support the D3DFMT D24x8
depth buffer format. 24 bit depth buffers provide us with more than adequate depth granularity so this
format will suit our purposes for any demonstration we see in this lesson.

DWORD Flags
This parameter allows the application to specify how the frame buffer and depth buffer should be
treated. The two flags that are of importance to us now are listed below:

D3DPRESENTFLAG LOCKABLE BACKBUFFER - If this flag is specified, the device will create the
frame buffer such that it can be locked and modified. When we lock a surface (calling the
IDirect3DSurface9: :Lock method) a pointer to the surface pixels is returned. This allows us
to modify the frame buffer at the pixel level or to read back pixel colors from the frame buffer.
On some hardware, creating a frame buffer with this flag can incur a performance cost. The cost
may be the result of the device maintaining a system memory copy of the frame buffer so that it
is reachable by the application. Even if this is not the case, the act of locking the frame buffer
itself is an expensive operation and should be avoided if possible. Frame buffers are created such
that they are not lockable by default so this flag is required if your application needs lock
permissions (which will not usually be the case).

D3DPRESENT DISCARD DEPTHSTENCIL - If the device was created with a depth buffer, then
setting this flag may improve performance. If this flag is not set then the device object will
maintain the integrity of the depth buffer information after the scene has been presented to the
front buffer. If the application does not clear the depth buffer before the rendering the next
scene, then the depth buffer will still hold the per- pixel depth information from the last render.
Sometimes this can be useful, but it is usually not required.

On some hardware the depth buffer data is swizzled to a proprietary format for rendering. If this
is the case and the flag was not set, the driver would need to make sure that the original depth
buffer information is restored afterwards so that the data appears unchanged. This might require
an expensive copy operation.

We will generally set this flag because our applications will clear the depth buffer before
rendering each frame. The DirectX debug runtime will enforce discarding by filling the depth
buffer with a constant value after the scene has been presented.

UINT FullScreen RefreshRatelnHz

This field lets the application specify the refresh rate for fullscreen devices. In windowed mode, this
value must be zero since we will need to use the refresh rate used by the current adapter running the
desktop. Setting this field to D3DPRESENT RATE DEFAULT allows the device to choose a refresh rate.
This is typically the approach that our applications will use.

149

UINT PresentationInterval

This field allows the application to specify the rate at which the frame buffer is presented to the front
buffer. For fullscreen devices we normally want to synchronize the presentation with the vertical retrace
period of the monitor to avoid tearing artifacts. However, there are several other options. We can choose
to present the buffer immediately without waiting for the vertical retrace or we could have the device
wait for more than one retrace to occur before presenting the scene. Table 2.3 lists the possible values

(defined in d3d9.h) that can be passed.

#define

D3DPRESENT INTERVAL DEFAULT

D3DPRESENT INTERVAL ONE

D3DPRESENT INTERVAL TWO

D3DPRESENT INTERVAL THREE

D3DPRESENT INTERVAL FOUR

Description

The device creation function will automatically
select a compatible presentation synchronization
scheme.

The device will wait until the vertical retrace
period before copying/flipping the frame buffer to
the physical display. This avoids tearing and
essentially locks the frame rate to that of the
monitor’s refresh rate.

The device will wait for every second vertical
retrace period before the frame buffer is
copied/flipped to the front buffer. This will
essentially limit the presentation rate to "2 the
monitor’s refresh rate.

The device will wait for every third vertical
retrace period before the frame buffer is
copied/flipped to the front buffer. This will
essentially limit the presentation rate to 1/3 the
monitor’s refresh rate.

The device will wait for every fourth vertical
retrace period before the frame buffer is
copied/flipped to the front buffer. This will
essentially limit the presentation rate to % the
monitor’s refresh rate.

The device will perform the copy/flip immediately

D3DPRESENT INTERVAL IMMEDIATE regardless of the current position of the electron

gun.

Not all of these modes are supported on all hardware in all video modes, but you can safely assume that

Table 2.3 Presentation Intervals

at least three are:

150

D3DPRESENT INTERVAL DEFAULT
D3DPRESENT INTERVAL IMMEDIATE

D3DPRESENT INTERVAL ONE.

2.5.2 Format Selection

The IDirect3D9::CheckDeviceFormat function allows us to test whether a specific surface pixel
format is compatible with a device in a specific display mode. This function will be used by our
FindDepthStencilFormat function (see Lab Project 2.1) to check the various depth buffer formats
against the current device on the current adapter. We have to do this because it is possible an adapter
that supports 32 bit depth buffers might only support 16 bit depth buffers in 16 bit color mode. So it is
not enough to know what depth buffer formats the hardware supports. We also have to know which ones
are supported in a particular display mode.

CheckDeviceFormat can also be used to check whether or not a certain texture format is supported by
the device in the requested display mode or whether a texture surface can be rendered to directly by the
device. For now however, we simply wish to use it for determining the best depth buffer format
available.
HRESULT IDirect3D9::CheckDeviceFormat (

UINT Adapter,

D3DDEVTYPE DeviceType,

D3DFORMAT AdapterFormat,

DWORD Usage,

D3DRESOURCETYPE RType,
D3DFORMAT CheckFormat

UINT Adapter

The adapter ordinal for the adapter we are checking the format against.

D3DDEVTYPE DeviceType

The device type we are checking against. In our code this will either be a HAL device
(p3DDEVTYPE HAL) or the reference device if no 3D hardware acceleration is found.

D3DFORMAT AdapterFormat

The display mode the adapter will be placed into. This is the format for which a compatible depth buffer
format must be found for our application. In Lab Project 2.1 for example, this will be the display mode
currently being used by the desktop (returned by IDirect3D9::GetAdapterDisplayMode). In a
fullscreen application we would pass in the display mode format that we are intending to put the
hardware into.

DWORD Usage

A depth buffer surface is a special type of device resource. Internally, it is a block of memory just like
any other surface (a texture or the frame buffer for example) but by specifying a USAGE flag we inform
DirectX Graphics what we intend the resource to be used for. In this example, we are trying to find an

151

image surface format that can be used for a depth buffer. In this case we wuse the
D3DUSAGE_DEPTHSTENCIL flag.

D3DRESOURCETYPE rType

The CheckDeviceFormat function is used for checking the availability of many resource types so we
must specify the resource type we are inquiring about.
typedef enum D3DRESOURCETYPE {
D3DRTYPE SURFACE = 1, D3DRTYPE VOLUME = 2,
D3DRTYPE TEXTURE = 3, D3DRTYPE VOLUMETEXTURE = 4,
D3DRTYPE CUBETEXTURE = 5, D3DRTYPE VERTEXBUFFER = 6,
D3DRTYPE INDEXBUFFER = 7, D3DRTYPE FORCE DWORD = Ox7fffffff
} D3DRESOURCETYPE;

As you might have guessed, the D3DRTYPE SURFACE type is the one we need for the depth buffer.

D3DFORMAT CheckFormat

The final parameter allows us to specify our desired surface format. We looked at a table earlier that
specified the available 16 and 32 bit depth buffer formats that DirectX Graphics supports. Since we will
not use a stencil buffer at this point in the course, we will choose one of the standard depth buffer
formats: D3DFMT D32, D3DFMT_D24X8 Of D3DFMT_D16.

To avoid the artifacts described earlier in the lesson, our code will first test for a 32 bit depth buffer. If
that fails, we will try a 24 bit depth buffer and fall back to a 16 bit buffer as a last resort. To check for 32
bit depth buffer support:

if (SUCCEEDED(m pD3D->CheckDeviceFormat (AdapterOrdinal, DevType, Mode.Format,
D3DUSAGE DEPTHSTENCIL, D3DRTYPE SURFACE,
D3DFMT D32)))

return D3DFMT D32;

The above code checks the adapter, device and display mode for 32 bit depth buffer support. If it is
supported, the function returns successfully and we execute the code in the braces. If the function did
not succeed, we would try again but change the final parameter to a 24 bit format and so on until we
were successful. Notice that when the function succeeds the format is returned back to the caller where
it will be placed into the D3DPRESENT PARAMETERS structure for the call to createDevice.

There is one last thing we must do before we accept the format. In windowed mode, DirectX 9.0 permits
devices where the frame buffer and the front buffer have different surface formats. So we could use a 32
bit frame buffer with a 16 bit front buffer. We will need to know whether our requested depth buffer
format will work with the current front buffer/frame buffer arrangement. The following code calls an
additional function from the IDirect3D9 interface called CheckDepthStencilMatch to make this
verification:

152

if (SUCCEEDED(m pD3D->CheckDeviceFormat (AdapterOrdinal, DevType, Mode.Format,
D3DUSAGE DEPTHSTENCIL , D3DRTYPE SURFACE ,
D3DFMT_ D32)))

if (SUCCEEDED(m pD3D->CheckDepthStencilMatch (AdapterOrdinal, DevType,
Mode.Format, Mode.Format, D3DFMT D32)))

return D3DFMT D32;

} // End if 32bpp Available

The parameter list to the CheckDepthStencilMatch function are (in order) adapter, device type, adapter
format (i.e. front buffer format), render target format, and depth buffer format. While this may seem
redundant given the previous function, there is a difference. As we will discover in the next course in
this series, although the frame buffer is initially the render target when the device is created -- meaning
all rendering is done on the frame buffer surface -- we will have the ability to change render targets to
other surfaces (like textures for example).

The following code example is taken from Lab Project 2.1. It demonstrates the process just discussed.

D3DFORMAT CGameApp: :FindDepthStencilFormat (ULONG AdapterOrdinal, D3DDISPLAYMODE Mode,
D3DDEVTYPE DevType)

{

// Test for 32bit depth buffer

if (SUCCEEDED(m pD3D->CheckDeviceFormat (AdapterOrdinal, DevType, Mode.Format,

D3DUSAGE DEPTHSTENCIL , D3DRTYPE SURFACE , D3DFMT D32)))
{
if (SUCCEEDED(m pD3D->CheckDepthStencilMatch (AdapterOrdinal, DevType, Mode.Format,
Mode.Format, D3DFMT D32)))
return D3DFMT D32;
} // End if 32bpp Available

// Test for 24bit depth buffer
if (SUCCEEDED(m pD3D->CheckDeviceFormat (AdapterOrdinal, DevType, Mode.Format,
D3DUSAGE7DEPTHSTENCIL 7 D3DRTYPE7$URFACE 7 D3DFMT7D24X8)))
{
if (SUCCEEDED(m pD3D->CheckDepthStencilMatch (AdapterOrdinal, DevType, Mode.Format,
Mode.Format, D3DFMT D24X8)))
return D3DFMT7D24X8;
} // End if 24bpp Available

// Test for 16bit depth buffer
if (SUCCEEDED(m pD3D->CheckDeviceFormat (AdapterOrdinal, DevType, Mode.Format,
D3DUSAGE DEPTHSTENCIL , D3DRTYPE SURFACE , D3DFMT D16)))

{

if (SUCCEEDED(m pD3D->CheckDepthStencilMatch (AdapterOrdinal, DevType, Mode.Format,

Mode.Format, D3DFMT D16)))

return D3DFMT D16;

} // End if 16bpp Available

// No depth buffer supported
return D3DFMT_UNKNOWN;

153

2.5.3 Lost Devices

It is possible that the device object may be placed into a ‘lost’ state while the application is running.
Consider an application running in fullscreen mode where the device has frame buffers, texture surfaces,
and vertex buffers stored in video memory. The device knows precisely where these resources are
located when they need to be accessed. Now imagine that the user decides to ALT+TAB the focus to
another application. The application would be forced back into windowed mode so that another
application on the desktop could assume the dominant role. At this point, the new focus application
might require access to video memory. Because it has OS focus, its requests for video memory will take
precedent and the application resources still occupying video memory are not guaranteed to be
preserved. The textures, vertex buffers, and frame buffers may all need to be deleted to create space for
memory requests from the focus application. As such, the device pointers now point to resources which
no longer exist. Even if we ALT+TAB again to return focus to our application, the memory that was
previously being used by our application has been corrupted. It is at this point that the device is said to
be in a lost state. When a device is lost we cannot perform normal operations with that device object.
Only two functions will be valid at this stage: one to test if the device is lost, and the other to ‘reset’ it if
it is.

The following function call enables us to determine the state of the device:

HRESULT hRet = m pD3DDevice->TestCooperativelLevel () ;

This function returns one of two possible results: D3DERR_DEVICELOST Or D3DERR DEVICENOTRESET.

D3DERR_DEVICELOST

This result indicates that the device memory is still not available as it may be still in use by another
application that has focus. Under these circumstances no rendering should be done. The application will
need to continually poll the device using the TestCooperativeLevel function until it returns
D3DERR_DEVICENOTRESET. At this time we will be able to reset the device.

D3DERR_DEVICENOTRESET

This indicates that the memory resources have been handed back to the device. However, caution is in
order. When a device is lost, it loses exclusive access to the memory for its resources. Memory handed
back to the device is invalid and the previous resource data should be regarded as corrupt.

Once we receive the D3DERR DEVICENOTRESET return code, we can reset the device as follows:

m_pD3DDevice->Reset(&m D3DPresentParams) ;

Resetting a device entails passing a D3DPRESENT PARAMETERS structure as was done when the device
was initially created. This tells the device how to rebuild its frame buffer(s), which rendering window to
use, and so on. This is similar to recreating the device from scratch. Technically speaking, we are not
recreating the device; we are simply instructing it to recreate its resources (textures, frame buffers, etc.).
Although we can use different presentation parameters when resetting a device, this is not usually the

154

approach we will take. Our preference is to return the device back to the state it was in before the loss
occurred. Note that this applies to states as well. Lost devices also lose the render and transform states
that the application may have set previously. All states return to their default conditions when the device
is reset. This is why it is good practice to put our initial device render states in a separate function.

It is important to note that certain textures, vertex buffers, and other resources will need to be
reconstructed when a lost device is finally recovered. We will examine these scenarios as we begin to
use these resources later in the course.

Common Causes of Lost Devices

When the user switches focus (ALT+TAB) to another application from a fullscreen application, the
device is automatically lost because it no longer has the exclusive access to the video memory that it
needs. The application will be minimized on the task bar. The device will remain lost
(TestCooperativeLevel will continue to return D3DERR DEVICELOST) until the application is
maximized again, giving it the focus. At this time, TestCooperativeLevel will return
D3DERR _DEVICENOTRESET and we can reset our device.

Other possible examples might include minimizing the application or shifting focus to another

application when running in windowed mode. On some machines (such as our test machine) this does
not cause device loss, but this may not always be the case on other hardware.

155

2.6 Primitive Rendering 101

Now that we know how to set up a DirectX Graphics environment, let us try to use some of the core
features. The rest of our discussion will focus on how to render polygons, change render states, and how
to use the device to transform our vertices.

2.6.1 Fill Modes

In Chapter 1 we constructed a wireframe renderer. While it was useful for understanding the
transformation of vertex data from world space to screen space, it is unlikely that we will be using
DirectX Graphics to render our scenes only in wireframe. Generally we want our polygons to be filled
with color. Let us briefly examine the different fill modes that set the polygon drawing strategy for the
device.

Point

In point fill mode, the device renders each transformed vertex as a point on the
screen and does not connect them. Point mode might be useful for tasks like
generating a low-quality star field for a space game but is obviously not a fill
mode you will likely use very often. Here we see an example of a triangle
rendered in point mode.

We can control the color of individual vertices by adding color data to our vertex structure (in addition
to the positional data). We will discuss this in detail later in the lesson.

Wireframe

In wireframe mode, one-pixel thick lines are rendered between the screen space
vertices. We saw this technique in Lab Project 1.1. The color of the line can be
modified by using a color stored in each vertex structure. To the right we see a
triangle rendered in wireframe mode.

156

Solid

Solid rendering is the mode you will use most. In this mode the device renders
the outlines of the polygon and paints every pixel inside the wireframe outline
to provide a solid appearance. Once again the color we store at each vertex can
control how the inside area of the polygon gets rendered. To the right we see an
example of a triangle rendered in solid fill mode.

We configure our device to render with a particular fill mode using the
IDirect3DDevice9::SetRenderState function and passing in D3DRS FILLMODE and the desired fill
mode. The first parameter is a D3DRENDERSTATETYPE enumerated type and tells the device which
render state we wish to change. This same function is used to change all render states. In this case, we
are changing the current fill mode. The second parameter describes the new fill mode. Every polygon
rendered following a call to any one of these functions will be rendered using that fill mode until the
state is changed.

pDevice->SetRenderState (D3DRS_FILLMODE P D3DFILL_POINT);
pDevice->SetRenderState (D3DRS_FILLMODE P D3DFILL_WIREFRAME);
pDevice->SetRenderState (D3DRS FILLMODE , D3DFILL SOLID) ;

2.6.2 Shading Modes

We are not limited to just using a single color to fill polygons or draw lines. We can instruct the device
to render the surface of a polygon using an interpolation between colors stored in the vertex structures.
This can be used to generate smooth coloring effects. DirectX Graphics supports both Flat and Gouraud
shading. Shade modes and fill modes are not mutually exclusive and will be used together to create the
desired effect. The following code shows us how to set one of the two shade modes.

pDevice->SetRenderState (D3DRS_SHADEMODE , D3DSHADE FLAT) ;
pDevice->SetRenderState (D3DRS_SHADEMODE , D3DSHADE GOURAUD) ;

Flat Shade Mode

Flat shading applies a single color to the entire polygon. In flat shade mode
the device uses the color stored at the first vertex in the triangle to color the
entire triangle. If you had a triangle where the first vertex was blue, the
second vertex was red and the third vertex was green, only the color of the
first vertex (blue) would be used to color the entire triangle. The other colors
would be ignored. The image on the right shows a flat shaded polygon.

157

To render a polygon in this manner, the device would be set to use the solid fill mode and flat shade
mode device render states. In wireframe fill mode and flat shade mode, the color of each line in the
polygon will be the color stored in the first vertex.

Gouraud Shade Mode

When each pixel in the triangle is rendered using Gouraud shading, the
color will be calculated by performing a linear interpolation of the three
vertex colors weighted by the position of the pixel in relation to each
vertex. For example, if we had two vertices that had red color components
of 0.2 and 0.8 and the pixel being rendered was exactly half-way between
those two vertices, the red component of that pixel would be 0.5. The
triangle to the right has one yellow vertex at the top and two red vertices at
the bottom:

As we will see later, Gouraud shading helps to cover up sharp edges between adjacent polygons and
makes the mesh appear more rounded.

Gouraud shading also works in wireframe mode. The color of the line between each vertex making up
the edge of the polygon will be determined through the same interpolation process:

AN

The line above consists of two vertices. The top vertex contains a yellow color and the bottom vertex
contains a red color. We thickened the line so that it is several pixels wide for ease of viewing but keep
in mind that in DirectX Graphics, line thickness in wireframe rendering mode is always one pixel.

158

2.6.3 Vertex Data

As we learned in Chapter 1, 3D worlds are made up of a collection of polygons, each of which
represents a collection of vertices. We also learned that vertices can hold more than just positional
information.

struct Vertex

{
float x;
float vy
float z;

}i

When the device renders a polygon and Gouraud shading is enabled, the color stored at each vertex is
interpolated across the face of the polygon for each pixel. This smoothly blends the color from one
vertex into the next:

In the triangle above, the top vertex in the face holds a yellow color and the bottom two vertices hold
slightly different shades of red. Each pixel has its color calculated as a function of its position relative to
the three vertices.

So we can store a color at each vertex. In this case, we are looking at the diffuse color of the polygon
and our structure now looks like this:

struct Vertex
{

float x;

float y;

float z;

DWORD diffuse;
}i

It may seem strange that we used a DWORD to hold color information but this is in fact how DirectX
Graphics represents colors. We will often see DirectX code where colors are defined as D3ADCOLOR.

D3DCOLOR diffuse;
D3DCOLOR is actually a typedef for a DWORD (see d3d9types.h):

typedef DWORD D3DCOLOR

159

Colors are stored in the DWORD as ARGB (alpha/red/green/blue) using a byte for each color
component. We can use the D3DCOLOR _ARGB macro to pass in 4 byte values and have the packed
DWORD (D3DCOLOR) returned:

#define D3DCOLOR ARGB(a,r,g,b)
((D3DCOLOR) ((((a) &§0xff)<<24) | (((r) &0xff)<<16) | (((g) &80xff)<<8) | ((b) &0x£ff)))

The macro simply shifts the input bytes values into there respective positions inside the DWORD.
In DirectX Graphics, colors are always represented as 32 bit DWORDs even if the device is in 16 bit or
24 bit video modes. The device will handle any conversions that need to take place as well as the

quantization of 32 bit color values into 16 bit color values.

Another macro allows us to ignore the alpha component and deal with colors as RGB values:

#define D3DCOLOR XRGB(r,g,b) D3DCOLOR ARGB (0xff,r,g,b)

The resulting alpha component will be set to 255. This means that it is completely opaque.

Note: There will be times (especially when dealing with lighting) when we will need to specify colors as a
series of floats (one float each for A, R, G and B). In this case we will use the D3DCOLORVALUE
structure:

typedef struct _D3DCOLORVALUE {
floatr;
float g;
float b;
float a;
} D3DCOLORVALUE;

Note: Each component above has a value in the range to 0.0 to 1.0 (instead of 0 — 255). These values
will be converted back into DWORD values for the final render.

Colors are not the only thing we can store in our vertex structure. We may also want to texture our
polygons. In order for polygons to have textures applied, each vertex must store a new pair of
coordinates. You can think of these two coordinates (generally referred to by U and V) as the X and Y
coordinates of the pixel in the texture where the vertex is mapped. Once we give each vertex a set of UV
coordinates, the device can interpolate the pixels of the texture across the polygon surface between the
vertex coordinates. All of this will be examined in detail in chapter 6.

struct Vertex

{
float x, vy, z;
DWORD diffuse;
float u, v;

160

It might seem odd to have both a color and a texture applied to the same polygon. After all, if a texture
is mapped to a polygon, wouldn’t the color of the texture pixels determine the color of the polygon
pixels?

Not necessarily, although we certainly could do it that way. What we will do instead is instruct the
device to blend the interpolated diffuse color of each pixel with the texture pixel computed via
interpolation of the UV coordinates and use that single color result for our frame buffer image. Fig 2.17
shows an example of this. We have a polygon with a texture applied to it where the vertices on the left
edge of the polygon have darker diffuse colors than those on the right.

Figure 2.17

As we will see in later lessons, a single polygon can have multiple textures assigned to it. When the
polygon is rendered, each pixel in the polygon has its color blended from a series of textures (possibly
including the diffuse color as well). If we wanted a polygon which had three textures and a diffuse
color, we would give it three sets of texture coordinates:

struct Vertex

{
float x;
float y;
float z;
DWORD diffuse;
float ul
float vl;
float u2;
float v2;
float u3;
float v3;

b

To make our objects shiny, we can store another color value called specular at each vertex. The
specular color we specify determines the color used for surface highlights:

161

No Specular

Figure 2.18

The sphere on the left has no specular component. The sphere on the right has a white specular color at
each vertex. DirectX Graphics will calculate the specular component based on the location of the
vertices relative to light sources in the scene and the position of the camera. We will cover specular
lighting in detail in chapter 5.

struct Vertex
{
float x;
float y;
float z;
DWORD diffuse;
DWORD specular;
float ul
float vl;
}i

DirectX Graphics allows us to place lights in our scene to enhance realism. Vertices closer to light
sources will be lit more brightly than those that are further away. The effects are even more compelling
when combined with an algorithm like Gouraud shading. While we will discuss lighting in detail in
chapter 5, a brief discussion will be helpful to illustrate the next concept.

In order for the device to light our vertices we must place first light sources in the scene. Additionally,
the device must know whether or not the polygon is facing the light source. Polygons facing away from
the light source should obviously not be lit. Because lighting is done at the vertex level and not the face
level, we must provide information about the orientation of each vertex. We can do this by storing a
normalized vector at each vertex.

A vertex normal is a normalized vector stored at each vertex describing the direction the vertex is
facing. When the device lights a vertex it will measure the angle between the vertex normal and the
direction vector from the vertex to the light source. Vertex color will be scaled based on this angle. A
vertex pointing right at a light source will be lit at full intensity while a vertex rotated at some angle
away from the light source will have its color scaled down appropriately.

So if our application intends to use the DirectX Graphics internal lighting pipeline, then it will need a
vertex structure that contains this normal.

162

The following vertex structure contains position, a vertex normal vector, a diffuse color and a specular
color.

struct Vertex

{

D3DXVECTOR3 Position;
D3DXVECTOR3 Normal;

DWORD Diffuse;
DWORD Specular;

) 8

Notice that we used a D3DXVECTOR3 rather than three floats this time. We can access any individual
float component of the positional data by using Position.x, Position.y, and Position.z (likewise for the
Normal vector components).

The real point of this discussion is that our applications will use vertices in a number of different ways.
We may want to render some polygons using DirectX Graphics lighting and a single set of texture
coordinates and others without lighting but with three sets of textures, and so on. The question is, how
will we tell DirectX Graphics what our vertices look like so that it knows what to expect when we pass
them into the IDirect3DDevice9::DrawPrimitive function? The answer is the Flexible Vertex Format.

The Flexible Vertex Format (FVF)

We can inform DirectX Graphics about the components it can expect to find in our vertices by calling
the following function:

IDirect3DDevice9: :SetFVF (DWORD fvf);

The DWORD will be some combination of Flexible Vertex Format flags. Some of the more common
flags are seen in the next table:

Common FVF Flags Description

The vertex is untransformed and will need to be multiplied by the world,
view and projection matrices to transform it into screen space. The

DN 20T structure will contain a 3D vector describing its model (or world) space
position.
The vertex will not need to be transformed or lit. The positional
D3DFVF_XYZRHW information contained within the vertex is specified in screen

coordinates.

The vertex contains a normal vector that describes its orientation. If
lighting is enabled, this normal is used in lighting calculations to scale
the intensity of the light in relation to the orientation of the vertex to the
light.

D3DFVF_NORMAL

163

The vertex has a diffuse color component. If lighting is enabled, this
color is scaled by the lighting calculations (and the color of lights

D3DFVF_DIFFUSE effecting the vertex) to create a final diffuse color. If lighting is not
enabled and no normal is specified, the diffuse color is considered to be
the final output diffuse color used to render the polygon.

The color of specular highlights that should be reflected by this vertex. If
lighting is enabled and a normal is specified, this value is scaled based on

D3DFVF_SPECULAR the light sources in the scene and the position of the camera in relation to
the object and the light. If lighting is disabled this value is considered to
be the final specular color used at the rasterization stage.

DirectX Graphics supports vertices with up to 8 sets of texture
coordinates. We can check the MaxSimultaneousTextures member of the
D3DCAPS9 structure returned from the IDirect3D9::GetDeviceCaps
function to inquire about the device texture blending capabilities.

D3DFVF _TEXO0 through Although many 3D graphics cards will only support 2 to 4 textures being

D3DFVF_TEXS blended simultaneously, this does not limit the ability to store 8 texture
coordinates in a single vertex. You may wish to store the texture
coordinates in the vertex and render the polygon several times using
different sets. This will be covered later in the course when covering
multi-texturing.

Note: The IDirect3DDevice9 interface has a function called GetFVF() which retrieves the currently set
vertex format for the device. Remember that the device is a state machine. Once you call SetFVF with a
vertex format, the device will expect that vertex format in all future calls to the DrawPrimitive functions
until you call SetFVF again to specify another vertex format.

Vertex flags that are only valid for pre-transformed vertices (vertices specified in screen coordinates)
are highlighted in blue, while flags that are only valid for untransformed vertices are highlighted in
yellow.

These are mutually exclusive flags. The yellow flags cannot be used with the blue flag. This would be
like informing the device that the positional information of the vertex is untransformed and transformed
at the same time.

Similarly we would not use the D3DFVF XYZRHW flag with the D3DFVF NORMAL flag because
the first flag states that we are using vertices that have already been transformed. When we specify
screen space vertices, the vertices do not pass through the transformation and lighting pipeline. Since the
normal is only used for lighting calculations, we would not need to pass it. Flags that are not highlighted
can be used with both untransformed and transformed vertices, although they have different
implications depending on which of the two is being used.

Let us have a look at some examples. In this first example, we will create a structure that holds
positional information, a diffuse color, and one set of texture coordinates. This vertex would be used to
specify vertices in model space or world space. They will need to be transformed by the fixed-function
pipeline into screen coordinates. Because we have specified a diffuse color and no normal, we will
indicate that we do not want the pipeline to light the vertices and that the diffuse color should be used

164

explicitly in the rendering process. This demonstrates that we can enable or disable functionality by
choosing only the components we need. In this case, we are choosing the transformation capabilities of
the device but not the lighting module.

struct Untransformed PrelLit Textured Vertex

{

D3DXVECTOR3 Position; // untransformed model space vertex position

DWORD Diffuse // vertex color
float u; // X texture coordinate
float v; // y texture Coordinate

}i

Notice that although we can leave out the components we do not wish to use, the components that we do
use must appear in the order that they are listed in the table. Diffuse must come after position and so on.
To tell the device what to expect from our vertices:

m_pDevice->SetFVF (D3DFVF XYZ|D3DEVEF DIFFUSE|D3DEFVEF TEX1|D3DEVE TEXCOORDSIZEZ (0))

Notice that the last flag is not found in the above table. That is because it is not a flag, it is actually a
macro. It tells the device how many floats the texture coordinate set contains.
D3DFVF TEXCOORDSIZE2(0) informs the device that the first set of texture coordinate in this vertex
(index 0) is two floats in size (the typical size). We will see later on in the course that there will be times
when we need to use 1D or even 3D texture coordinates and this macro will allow us to specify that.
Keep in mind that at this point in the course that you are not expected to understand how texture
coordinates work, only that a vertex may need to contain them.

The next example vertex invokes both the transformation and the lighting module of the device. This
time we will need to supply a vertex normal. When we render polygons containing vertices of this type,
the device will transform the vertices by the device’s currently set world, view and projection matrices.
It will use the vertex normal to calculate its orientation from any lights placed in the scene which will be
used to scale the diffuse and specular colors. This type of vertex is referred to as an untransformed and
unlit vertex since it needs the device to transform and light it before rendering it. Also note that it does
not contain any texture coordinates, so a texture will not be applied to this polygon when it is rendered.

struct Untransformed Unlit Vertex

{
D3DXVECTOR3 Position; // untransformed model space position

D3DXVECTOR3 Normal; // unit vector orientation vector
DWORD Diffuse; // color reflected from diffuse lighting
DWORD Specular; // color of specular highlights reflected

b

To use this vertex format we would need to call SetFVF with the following flags:

m pDevice->SetFVF (D3DFVF XYZ | D3DFVF NORMAL | D3DFVF DIFFUSE | D3DFVF SPECULAR) ;

Notice again that the flags are specified in the order that they appear in the table (ignoring omitted flags)
and that the vertex structure itself retains this ordering as well.

165

Our lab projects in this lesson will not use texturing or the lighting module. We will specify our vertices
in model coordinates and render polygons using Gouraud shading. Therefore, we will need to store a
color at each vertex. This means that we will need only two components, a position and a diffuse color
component:

struct CVertex
{

float x;

float y;

float z;

DWORD Diffuse;
) 8

Since our application uses only one vertex type we can simply call SetFVF as soon as the device is
created and leave this state set for the life of the application:

m pD3DDevice->SetFVFEF (D3DEVE XYZ | D3DEFVF DIFFUSE);

Note: When an application requires many different FVF types, it is preferable to #define the flags and
give them meaningful names, making it easier to read. For example:

#define MyUnLitVertex D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE
#define MyPreLitVertex D3DFVF_XYZ | D3DFVF_DIFFUSE

m_pDevice->SetFVF(MyUnLitVertex)
// Render un-lit meshes here

m_pDevice->SetFVF(MyPreLitVertex);
// Render pre-lit meshes here
/| Present scene here

In Lab Project 1.1, our spinning cubes were made up of six faces each with four vertices per face. We
were able to render those faces (called quads due to the four sided nature of the polygon) once we had
transformed the vertices into valid screen coordinates. In DirectX Graphics (and virtually all 3D API’s
commonly available) you are limited to rendering only two types of primitives: lines or triangles. A line
is specified using two vertices which define starting and ending points in either 3D space or screen
space. A triangle is constructed from three vertices defined in either 3D space or screen space. We will
cover using DirectX Graphics for 2D rendering using screen space vertices later in the course. At this
point in time we will concentrate only on primitives defined in 3D model space or world space. To
render a quad, we must construct it using two triangles as shown below:

166

A Quad made up of Triangles

P1 P2

.\\\Triang]e 1
AN

™

N

Triangle 2

Figure 2.19

Triangle 1 contains three vertices (P1, P2 and P3) and Triangle 2 also has three vertices (P1, P3 and P4).
Let us briefly discuss exactly why it is that we are limited to triangle rendering.

2.6.4 Planar Polygons

As we discussed in Chapter 1, if all of the points of a polygon are on a single plane, we can take any two
edges in that polygon and perform a cross product to generate a normal vector for the entire polygon.
This normal can be used to determine whether or not the polygon is facing away from the camera. Many
mathematical operations performed in 3D graphics programming are simplified (and thus made fast
enough for real-time use) when the assumption is made that all vertices in a polygon are on the same
plane. If the plane is facing away from us then so are polygons that share the plane. Plane calculations
are used for back-face culling, collision detection, object picking and even color interpolation. If we
were allowed to generate polygons where all of the vertices did not share the same plane, then these
mathematical operations would fail to return the correct results.

Let us consider an example. Imagine that we were trying to find out whether a point was behind or in
front of a polygon. We usually do this by using the polygon plane and classifying that point against that
plane. If the point is behind the plane then the point is behind the polygon. Fig 2.20 shows a quad where
three of the points share a plane but one of the vertices has been lifted off of the plane. This is similar to
laying a piece of paper flat on a desk, and then picking up one of its corners. P2 does not lie on the same
plane as P1, P3 and P4:

167

A Twisted Quad

P2

P

P4

Figure 2.20

What is the plane normal of the quad in Fig 2.20? If we perform a cross product on edges (P1 — P2) and
(P1 - P3) we would get a very different result than if we used edges (P1 — P3) and (P1 — P4). The answer
is that they are both wrong because the polygon does not exist on a single plane. We could have a
situation where a point is classified as being in front of the plane (because it is in front of points P1, P3
and P4) when it is actually behind point P2.

Of course, we know that the vertices of a triangle are always co-planar. If you move a vertex to a
different position, the entire triangle is rotated or pivoted onto a new (but single) plane. So, in choosing
triangles, DirectX Graphics can be sure that when it is dealing with the vertices of its primitives, they
will always exist on a single plane. Fig 2.20 does not accurately depict the situation. We had to bend
ends P1-P2 and P2-P3 to represent the fact that the vertex P2 is raised off the plane. Of course, this is
not actually the case since polygon edges are always straight. With this in mind, you should be able to
carve the above quad into two triangles. Each will exist on different planes to be sure, but nevertheless
they will have co-planar vertices when taken individually. Note that we can still store our polygons as
N-sided convex polygons (squares, hexagons, octagons, etc.) as long we are sure to deconstruct them
into triangles prior to passing them to the device for rendering.

2.6.5 The DrawPrimitive Functions

The IDirect3DDevice9 interface defines the following primitive rendering functions.

HRESULT DrawPrimitive (D3DPRIMITIVETYPE PrimitiveType,
UINT StartVertex, UINT PrimitiveCount);

DrawPrimitive is used to draw polygons when the vertices are stored in a device resource called a vertex
buffer. Vertex buffers are blocks of memory allocated by the device that we use to store vertex data. We
will discuss vertex buffers in the next chapter.

HRESULT DrawPrimitiveUP (D3DPRIMITIVETYPE PrimitiveType, UINT PrimitiveCount,

const void *pVertexStreamZeroData,
UINT VertexStreamZeroStride);

168

DrawPrimitiveUP is the function that we will use to render the two cubes in our first demo for this
lesson (Lab Project 2.1). When we use this function to render polygons we will pass in a pointer to an
array of vertices much like we did in our software based rendering demo. This is not the optimal way to
render polygons in DirectX Graphics and we will learn why this is so in the next lesson. For now
however, it will suit our purposes because it is very easy to use. The ‘UP’ appended to the end of the
function name stands for ‘User Pointer’ because the vertices are maintained by the application (via a
pointer to a vertex array) and not in a device owned vertex buffer.

HRESULT DrawIndexedPrimitive (D3DPRIMITIVETYPE Type, INT BaseVertexIndex,
UINT MinIndex, UINT NumVertices,
UINT StartIndex, UINT PrimitiveCount);

DrawIndexedPrimitive allows us to make certain optimizations based on the fact that vertices from
different faces might share the same 3D space position and properties. In our cube example we created
24 vertices (four for each face) when technically they describe only eight unique positions in 3D space.
Many of the faces, such as the top face and the front face for example, used the same vertices. There
were three vertices at each corner of the cube, one belonging to each face that shared that corner point.
This is wasteful because we wind up transforming and lighting 24 vertices when we could just operate
on 8. Using the DrawIndexedPrimitive function we pass a device resource called an index buffer along
with our vertex buffer. It is filled with indices into the vertex buffer describing which vertices make up
each face. This allows us to reuse the same vertex in each of the three faces in our cube and speeds
things up considerably.

HRESULT DrawIndexedPrimitiveUP (D3DPRIMITIVETYPE PrimitiveType,
UINT MinVertexIndex,
UINT NumVertexIndices, UINT PrimitiveCount,
const void *pIndexData, D3DFORMAT IndexDataFormat,
const void* pVertexStreamZeroData,
UINT VertexStreamZeroStride);

This is behaviorally the same as the DrawIndexedPrimitive function, only it allows us to pass in pointers
to system memory allocated vertex and index arrays, rather than device allocated vertex and index
buffers.

The DrawPrimitiveUP Function

DrawPrimitiveUP is the function we will use in this lesson to render our polygons:

HRESULT DrawPrimitiveUP (D3DPRIMITIVETYPE PrimitiveType, UINT PrimitiveCount,
const void *pVertexStreamZeroData,
UINT VertexStreamZeroStride);

We will discuss the parameter list slightly out of order to clarify certain concepts.

169

UINT VertexStreamZeroStride

This parameter represents the size of our vertex structure (a single vertex). It tells the device how big
each vertex is so that it knows how far to advance the pointer to access the next vertex in the array. The
size should match the size that would result given the FVF definition.

void *pVertexStreamZeroData

This is the pointer to our array of vertices. The first demo in this lesson will call DrawPrimtiveUP for
each polygon in each cube. During each call, this pointer points to a single face consisting of four
vertices. Later, we will learn how to render many triangles simultaneously with a single function call.

UINT PrimitiveCount
This value describes how many primitives we intend to render from the vertex array. This value
depends on the D3DPRIMTIVETYPE described next.

D3DPRIMITIVETYPE PrimitiveType
The D3DPRIMITIVETYPE tells the device how to interpret the vertex data passed in and how it should
be used to render triangles. The primitive types defined by DirectX Graphics are as follows:

D3DPT_POINTLIST

The D3DPT POINTLIST primitive type informs the device that the vertex data should be
treated as a list of points to be rendered, not as a list of triangles. The vertices pass through the
transformation and lighting pipeline and have their vertex colors calculated just like normal
vertices, but at rendering time they are treated as individual points to be drawn on the screen.
The following code demonstrates rendering our cube faces as a point list:

for (ULONG f = 0; f < pMesh->m nPolygonCount; f++)

{
CbPolygon * pPolygon = pMesh->m pPolygon[f];

// Render the primitive
m pD3DDevice->DrawPrimitiveUP (D3DPT POINTLIST, pPolygon->VertexCount,
pPolygon->m pVertex, sizeof (CVertex));

} // Next Polygon

With DrawPrimitiveUP, the second parameter describes how many primitives we wish to draw.
When using D3DPT POINTLIST to render points, each vertex is a primitive and thus the
number of primitives is equal to the number of vertices to be rendered.

We do not have to render all of the primitives contained in the vertex array. Of course, when
using a Point List primitive type, the primitive count cannot exceed than the number vertices

contained in the vertex array or the call will fail.

Fig 2.21 demonstrates the results of the previous code. Faint gray lines were added to help you
see the original cube shape. Only the white dots would actually be rendered during the call.

170

PrimitiveCount = NumberOfVertices

Figure 2.21

D3DPT_LINELIST

The device treats the vertex array as a collection of vertex pairs when using line lists. Each pair
defines a start and end point in 3D space (or screen space if using pre-transformed vertices).
During rendering the device will draw a straight line between each pair of points. As with the
point primitive, the vertices that pass through the pipeline can have colors, shading, and even
textures applied. One limitation is that line thickness is limited to a single pixel.

Fig 2.22 shows how an array of six vertices would be rendered by DrawPrimitiveUP using the
D3DPT LINELIST primitive type. Since each line is defined by two vertices, the maximum
number of primitives that can be rendered is equal to NumberOfVertices / 2. In this example, six
vertices would describe three separate lines.

6 Vertices passed as a Line List

Key:-
V1 V1 (Diffuse Color) = Yellow
V2 (Diffuse Color) = Red
VG
V6 ey V3 (Diffuse Color) = Black
V4 V4 (Diffuse Color) = White
V5 (Diffuse Color) = Black
/ V6 (Diffuse Color) = Orange
Vs \

V3
Figure 2.22

171

172

Note that the vertices also contain their own colors and that Gouraud shading smoothly blends
the colors of the two vertices across the length of the line. The image is not accurate since we
widened the lines beyond one pixel for easier viewing.

Although we do not have to render all of the lines passed into the function, the PrimitiveCount
parameter should not exceed the total number of vertices in the array divided by two:

PrimitiveCount = NumberOfVertices / 2

Rendering a series of connected lines using the D3DPT_LINELIST primitive type will require
vertex duplication since vertices are paired. Fig 2.23 shows five connected line segments. Ten
vertices would be required (5 (NumberOfLines) * 2 (VerticesPerLine) = 10):

10 Vertices needed for 5 Lines

VA V6,/V7 V8,V

vl V4,/V5
V10

Figure 2.23

Although this approach works correctly, it is inefficient. The end point of line 1 (v1) is in the
same position as the start point of line 2 (v3) and so on. Not only will this be a less than optimal
use of memory (especially if we were rendering a significant number of line segments) but if the
line segments use untransformed vertices, duplicates sharing the same positions would still need
to be transformed individually.

The code to render the five line segments just mentioned is shown next. It assumes that
m_pLineVertexArray is a pointer to an array of type CVertex large enough to hold the ten
vertices:

// There are 10 vertices in our linked line because it is made up of 5 separate lines
UINT LineVertexCount = 10
// Render the primitives

m_pD3DDevice->DrawPrimitiveUP (D3DPT LINELIST , LineVertexCount / 2 ,
m pLineVertexArray , sizeof (CVertex));

D3DPT_LINESTRIP

The D3DPT LINESTRIP primitive informs the device that the lines are connected. This
eliminates the need for duplicated vertices. During rendering, the device uses the end vertex of
the previous line as the start vertex of the next line and so on for each line rendered.

If we have two line segments to draw, v1 to v2 and v2a to v3 and v2 and v2a are duplicates, we
can pass in vertices v1, v2, and v3 and the device will automatically render the first line between
vl and v2 and the next line between v2 and v3. This allows us to do remove duplicated vertices
and conserve memory and means that the vertex position v2 only has to be transformed and lit
once by the pipeline.

Fig 2.24 illustrates the same five line segments using the D3DPT LINESTRIP. Only six vertices
are required to render the five line primitives. The primitive count for a line strip is:

PrimitiveCount = NumberOfVertices-1
Only 6 vertices needed for 5 lines

V2 va V5

V1 V3
Ve
Figure 2.24

In this example, the device would use v2 as both the end point for line 1 and would reuse it as
the start vertex for line two. The same holds for the other vertices that are both the start and end
vertices of neighboring line primitives. The following code demonstrates how we would render
this example:

// There are 6 vertices uses to describe our 5 lines
UINT LineVertexCount = 6

// Render the primitives
m pD3DDevice->DrawPrimitiveUP(D3DPT LINELIST , LineVertexCount +1 ,
m pLineVertexArray , sizeof (CVertex));

Although line strips are more efficient for rendering connected lines, they cannot be used if the
connected line segments require different properties (such as a different color):

V2 Vi V5

V3
V1 V6

Figure 2.25

In Fig 2.25 v2 is the start and end point of lines 1 and 2 respectively. In order to make line 1
blue, both of its vertices must have a blue color component. In order for line 2 to be red, both of
its vertices must have red color components. Because v2 is shared by both lines 1 and 2 and
there is no way to simultaneously store both colors in the vertex, a D3DPT_LINELIST primitive
type with duplicate vertices at each line intersection must be used. Each line would have its own
copy of the vertex in the same position but with the correct color.

173

174

D3DPT_TRIANGLELIST

When we use the D3DPT_TRIANGLELIST, the vertex array is expected to have three vertices
for each primitive. If a vertex array had nine vertices, it would be capable of producing three
triangle primitives. Vertices [v1, v2, v3] would be used for triangle 1, [v4, v5, v6] for triangle 2
and vertices [v6, v7, v8] for triangle 3. The primitive count can be calculated as follows:

PrimitiveCount = NumberOfVertices / 3

The vertex array must contain a vertex count that is a multiple of 3. Fig 2.26 depicts a quad
stored as a list of 6 vertices:

V1/v4 V2
Triangle 1
Triangle 2
vG v3/vh
Figure 2.26

Triangle 1 in this example would be made up of v1, v2 and v3 and triangle 2 would be made up
of v4, v5 and v6. The vertex array passed into DrawPrimtiveUP would be arranged as follows.

vl,v2,v3,v4d,v5,v6

The device will treat each group of three vertices as a separate triangle for rendering. Note once
again the duplicate vertices problem. Vertex 4 in Triangle 2 has exactly the same position
property as vertex 1 used in Triangle 1. The same is true for v3 and v5. This is unavoidable when
using the triangle list primitive. The vertices for each triangle can be defined in any order as long
as a clockwise winding order is maintained for display.

As we saw with the line primitive, there may be times when there is no choice but to do triangle
list rendering and accept the duplicated vertex problem. Different properties such as color or
texture coordinate would be examples of why we might need to take this approach.

This situation only becomes more difficult when one thinks of duplicated vertices within a more
complex mesh. Fig 2.27 depicts a triangle list representation of a cube. Each face is rendered as
two triangles. This amounts to storage for six vertices rather than the four used in our software
demo.

Figure 2.27

The red circle highlights a corner in the cube where three faces meet. We see that four vertices
share the same position (look at the triangles) and each will be sent through the transformation
and rendering pipeline. Consider the implications of a game world made up of thousands of
polygons. Storing and rendering this world as a triangle list can more than double or triple the
amount of vertices needing to be processed.

The main advantage of triangle lists is that they are relatively easy to work with. For example, if
we had a large mesh consisting of thousands of triangles, we could render the whole lot with one
call to DrawPrimitiveUP. We simply pass in the vertex data for the entire mesh. This is much
more efficient than calling DrawPrimtiveUP for every individual triangle despite the duplicated
vertices.

The following code shows how we could render each face of a cube using triangle lists. The
code assumes that each face of the cube now stores 6 vertices. The two duplicates are needed to
represent the two unique triangles from which the face is composed.

for (ULONG f = 0; f < pMesh->m nPolygonCount; f++)

{
CbPolygon * pPolygon = pMesh->m pPolygon[f];

// Render the primitive
m pD3DDevice->DrawPrimitiveUP (D3DPT TRIANGLELIST, pPolygon->m nVertexCount / 3,
pPolygon->m pVertex, sizeof (CVertex));
} // Next Polygon

In this example we render each face (two triangles) with its own call to DrawPrimitiveUP.
Alternatively, we could have designed our cube mesh structure to hold all of the vertices in one
large array rather than each face having its own pointer to vertex data. Had this been the case
then we could have rendered the entire cube with one call to DrawPrimitiveUP. This would have
been a more efficient solution but is not ideal for our cube meshes given how they are currently
stored.

175

176

Note: It important to understand that duplicated vertices are not always undesirable. In fact,
sometimes they are absolutely necessary. If we wanted each face in a cube to be different
colors, then each face would need four unique vertices not shared by any other faces. We could
modify the face color by altering the color components of the vertices without concern for
affecting neighboring faces sharing the same vertex.

The cube is actually a good example of a possible situation where you might desire duplicated
vertices between faces. This is because we usually texture the faces of our meshes. If we
wanted each face of the cube to have a different texture applied (or use different portions of the
same texture) then we would need to give each face its own unique vertices with their own
unique set of texture coordinates. Note that this does not mean that we need to duplicate
vertices within a single face. It would be much more efficient to store a single cube face as four
vertices instead of six. We will examine how this can be accomplished later in this section.

D3DPT_TRIANGLESTRIP

Triangle strips are one of the most efficient primitive types available. This is particularly true
when many duplicated vertex positions exist between adjacent triangles. Triangle strips are
analogous to line strips. Strips use the first three vertices in the array to render the first triangle.
For every triangle thereafter, the strip uses the last two vertices of the previous triangle and the
next vertex in the list to create the next triangle. This eliminates duplicate vertices. 3D cards are
often optimized for triangle strip rendering. Fig 2.28 demonstrates how the vertex array is used
to construct triangles for rendering:

V4
V2
V6
> V7
Vi
V5

Triangle Strip
7 Vertices to build 5 Triangles
Figure 2.28

Fig 2.28 shows that we can pass 7 vertices to render 5 primitives. This ratio is very efficient. If
we had used a triangle list instead, 15 vertices would have been necessary to achieve the same
result. Triangle strips cut this requirement roughly in half by exploiting connected triangles that
share edges (and therefore vertices) with neighboring triangles.

Let us quickly step through the render process for the above set. The device renders the first
triangle using the first three vertices in the vertex array: V1, V2, and V3. It then processes vertex
V4 and creates the second triangle using vertices V2, V4, and V3. Moving to the next vertex
(V5) the device builds Tri 3 from V3, V4, and V5. Triangle 4 is rendered using vertices V4, V6,
V5, and the pattern repeats until the strip is complete.

Be sure to note the vertex order used in the strip. For example, Triangle 2 was built using V2, V4
and V3 rather than the order the vertices were passed in (V2, V3, and V4). Recall that backface
culling is performed by taking the winding order of the vertices of a polygon into account. If a
triangle strip did not swizzle the order of the vertices in every second triangle in the list, those
triangles would have an counter-clockwise winding order and would be back face culled by the
device, and never rendered. If Triangle 2 was built using V2, V3 and V4, it would create a
triangle with a counter-clockwise winding order and would be incorrect. The device takes this
into account when rendering your triangles as strips and automatically adjusts the order of the
second and third vertex in every second triangle. When we define our strip, every second triangle
should have a counter-clockwise winding order since the device will automatically flip it to be
clockwise during rendering. We calculate the primitive count parameter to be passed into the
DrawPrimitiveUP as:

PrimitiveCount = NumberOfVertices - 2
Fig 2.29 shows a quad represented as a triangle strip. It looks similar to the quad diagram using a
triangle list with the exception of the counter-clockwise winding order for the complete face and

the use of 4 vertices rather than 6.

V2 W<l

Triangle 2

Triangle 1

V1 V3
Figure 2.29

Only triangle 1 has a clockwise winding, triangle 2 does not. Please take time to review the
diagrams above as strips are often a confusing concept for newcomers to 3D graphics
programming.

It should also be noted that if we wanted each triangle to be rendering using a different color,
then a triangle strip would not be the appropriate choice since the two triangles share two
common vertices. Altering the color of one of these vertices would affect the color interpolated
across both triangles. For this effect, a triangle list should be used instead.

177

178

D3DPT_TRIANGLEFAN

When using triangle fans, the first three vertices in the array are used to create the first triangle.
For every other triangle, the first vertex in the array, the last vertex of the previous triangle, and
the next vertex in the array are used. We pass the vertices to our cube face as four vertices in a
clockwise winding order and it will automatically be rendered as two triangles by DirectX
Graphics. There are no duplicated vertices within the face itself. Fig 2.30 demonstrates the
concept.

V1 V2

Triangle 2

Triangle 1

V4 V3

Figure 2.30

We pass in a vertex array with the vertices V1, V2, V3, and V4 arranged in a clockwise order.
The device uses V1, V2, and V3 to create the first triangle. V1, V3, V4 are then used to render
the second triangle. The first vertex in the list is used as the first vertex for all triangles in the
list. Fig 2.31 should make the concept clear.

Frimitves

Tril=(vl,v2,v3)
Tri2=(vl,v3,vd4)
Trid=(vl,v4,v5)
Trid=(vl,v5,v6)
TriS5=(vl,v6,v7)
Trie =(vl,v7,v8)

Figure 2.31

We render the entire face as a triangle fan by passing in the ordered vertex array. The octagon in
Fig 2.31 would be broken down into six separate triangles for rendering. In the diagram, the
triangles are colored for easier viewing only. Since vertices are shared, we recognize that
properties such as color must also be shared if we desire a single color for the polygon. If we
wanted the triangles to have individual colors, a triangle list would be required.

The diagram shows the pattern used by the device when constructing the triangles. V1 is used in
all six triangles. For every triangle but the first, the second vertex in each triangle is the vertex
that was the third vertex in the previous triangle.

This is an ideal primitive type when dealing with data stored as convex N-gons as it does not
suffer from duplicate vertices. It will be a good choice for rendering the faces of our cubes, and
is the type we will use in Lab Project 2.1.

The primitive count for a triangle fan can be calculated as:

PrimitiveCount = NumberOfVertices — 2

The following code could be used to render the faces of our cube using triangle fans:

for(ULONG £ = 0; £ < pMesh->m nPolygonCount; f++)
{
CbPolygon *pPolygon = pMesh->m pPolygon[f];

// Render the primitive
m pD3DDevice->DrawPrimitiveUP(D3DPT TRIANGLEFAN,
pPolygon->m nVertexCount - 2,
pPolygon->m pVertex, sizeof (CVertex));
} // Next Polygon

Rendering polygons is very easy in DirectX Graphics. We just need to make sure that we calculate the
primitive count correctly and use a primitive type that is compatible with the way our geometry is
stored. In our next lesson we will examine other members of the DrawPrimitive family of functions, as
well as how to use vertex buffers and indexed primitives to eliminate duplicate vertices.

2.6.6 The Rendering Pipeline

We now understand how to define vertices and how to render them using the DrawPrimtiveUP function.
It is time to bring these concepts together and examine what happens to the vertex when one of the
DrawPrimitive functions is called. Let us assume that we are using a mesh made up of untransformed,
pre-lit (i.e. colored) vertices. The vertex structure might look like the following:

struct CVertex

{
float x, vy, z;
DWORD color;

}i

We can describe this vertex structure using the following flexible vertex format flags:

| #define MyPreLitVertex D3DFVF XYZ | D3DFVE DIFFUSE

Before rendering the mesh we will tell the device object to expect this type of vertex:

| m pbevice->SetFVF (MyPreLitvVertex);

179

The device object maintains three state matrices used to transform vertices into screen space
coordinates. From our discussion in the last chapter we know that these matrices are the world, view,
and projection matrices.

When we call DrawPrimitiveUP, the device checks the current FVF flags. If it finds the D3DFVF_XYZ
flag, it multiplies each vertex in the array (or subsection of the array) with the current World, View, and
Projection matrices to produce homogeneous clip space coordinates. Tasks such as clipping and back
face culling follow, and then the device performs the divide by w. At this point, vertices that are visible
are inside the —1 to +1 range on the x and y axes of the projection window. The device maps these
vertices into the range of the viewport to produce screen space coordinates. Had we used the
D3DFVF _XYZRHW flag instead, the device would understand that there is no need to transform the
vertices by these matrices as they are already in screen space. These flags allow us to directly control
which parts of the transformation pipeline we want to use.

Thus all we must do before we render a mesh is make sure that the world, view, and projection matrices
are setup correctly and sent to the device. We can set all three of these matrices using the SetTransform
method of the IDirect3DDevice9 interface, specifying the matrix we want to set:

D3DXMATRIX mtxWorld , mtxView , mtxProjection
//build World, View, and Projection matrices with correct information here

//whenever we need to update one of the device matrices
//we can use one of the following transform states to

m _pD3DDevice->SetTransform(D3DTS WORLD , &m mtxWorld);
m_pD3DDevice->SetTransform(D3DTS VIEW , &m mtxView);
m_pD3DDevice->SetTransform(D3DTS PROJECTION, &m mtxProj);

As discussed in Chapter 1, the projection matrix is often set once at application startup. The view matrix
will need to be updated whenever the position of the camera changes (typically once per frame if the
camera is moving). The world matrix will normally need to be set before rendering each mesh in the
scene.

The following code snippet from Lab Project 2.1 renders two cube objects. It assumes that the view and
projection matrices have already been sent to the device. Note that the world matrix is set for each
object and that we render each face of each cube as a triangle fan.

// Loop through each object (there are two cubes)
for (ULONG i = 0; 1 < 2; i++)
{

// Store mesh for easy access

pMesh = m pObject([i].m pMesh;

// Set our object matrix
m_pD3DDevice->SetTransform(D3DTS WORLD, &m pObject([i].m mtxWorld);

// Loop through each polygon
for (ULONG f = 0; f < pMesh->m nPolygonCount; f++)
{

CPolygon *pPolygon = pMesh->m pPolygon[f];

180

// Render the primitive
m_pD3DDevice->DrawPrimitiveUP (D3DPT TRIANGLEFAN, pPolygon->m nVertexCount - 2,
pPolygon->m pVertex, sizeof (CVertex));
} // Next Polygon

} // Next Object

Hopefully you will find that this is a lot easier to follow than the rendering code we wrote in Chapter 1.
In that project we had to manually multiply each vertex by the various matrices and transform them into
screen space ourselves.

2.1 Device States

The device object is a state machine and when we set a state inside the device (such as turning lighting
on or off), it remains in effect until it is unset or modified to some other state. There are four main state
groups:

Render States
Transform States
Texture Stage States
Sampler States

The IDirect3DDevice9 interface exposes four functions used to alter the states within these four
categories. We will ignore the latter two for now as these will be covered in chapter 6 and focus only on
the render state and transform state groups.

2.7.1 Render States

We can set a render state using the following function exposed by the IDirect3DDevice9 interface:

HRESULT SetRenderState (D3DRENDERSTATETYPE State, DWORD Value) ;

The first parameter is one of the members of the D3DRENDERSTATETYPE enumerated type and the second
parameter is a DWORD whose meaning depends on the render state specified in the first parameter.

The D3DRENDERSTATETYPE enumerated type has a significant number of entries. We will explain each
render state only as we cover it in the text. As we move forward in the course, at the end of each chapter
you will find an appendix with a listing of any new states introduced during the lesson.

Note: The device includes a function called GetRenderState that allows the application to retrieve the
current device setting for a given state. We pass the render state we wish to inquire about and the
address of a DWORD variable that will be filled with that current state inside the device:

HRESULT GetRenderState (D3DRENDERSTATETYPE State, DWORD *pValue);

181

Note: GetRenderState should not be called if you are using a pure device. A pure device eliminates the
overhead resulting from maintaining an internal structure of render states to return information to the
GetRenderState function. This improves application performance. When using a pure device your
application must retain its own copy of the current state settings if it requires access to this information.

Z — Buffering

After we have created and attached a Z-Buffer to the device, we need to tell the device that we wish to
use it when rendering. As we will discover later in the course, there will be times when we will want to
render some objects with the Z-Buffer and some without it. That is why there is a render state that
allows the application to toggle it on and off:

m pDevice->SetRenderState (D3DRS ZENABLE , D3DZB TRUE);

The D3DRS_zENABLE member of the D3DRENDERSTATETYPE enumerated type specifies that we wish to
alter the current state of the device Z-Buffer. The device expects the second parameter to be a member
of the D3DZBUFFERTYPE enumerated type:

typedef enum D3DZBUFFERTYPE
{

D3DZB FALSE = O,

D3DZB TRUE = 1,

D3DZB_USEW = 2,

D3DZB_FORCE DWORD = Ox7fffffff
} D3DZBUFFERTYPE;

D3DZB_FALSE

This disables the Z—Buffer so that no per-pixel depth testing is performed. It is the default state of the
device if a Z-Buffer was not automatically created during device creation. Since our applications will
specify automatic Z-Buffer creation during device initialization (we set the
EnableAutoDepthStencil member of the D3DPRESENT PARAMETERS structure to TRUE) , this will not
be the default state of the device.

D3DZB_TRUE

This enables the device Z-Buffer for per-pixel depth testing. This state change will only succeed if a Z-
Buffer has been created and attached to the device swap chain (frame buffer(s)). This is the default state
of the device if the Z-Buffer created at device creation time used the EnableAutoDepthStencil
member of the D3DPRESENT PARAMETERS structure. Otherwise, the default is D3DzB_ FALSE.

D3DZB_USEW

Some 3D graphics adapters support the use of a W-Buffer. The W-Buffer uses the same memory as the
Z-Buffer but calculates the per-pixel depth values differently. When we enable W-Buffer, the device
uses the reciprocal of W (1/W) where W is the value output from the projection matrix. This is equal to
the view space Z component of the input vertex. W-Buffers provide a more linear mapping of depth
values and eliminate artifacts caused by 16 bit Z-Buffers.

182

In order to use this parameter type, our application must ensure that the adapter supports W buffering by
checking the Rastercaps member of the D3DCAPS9 structure to see if the
D3DPRASTERCAPS_WBUFFER flag is set.

D3DCAPSY9 Caps;
// Caps was filled out in the InitDirect3D function by calling IDirect3D9::GetDeviceCaps
if (Caps.RasterCaps & D3DPRASTERCAPS WBUFFER)
m_pDevice->SetRenderState (D3DRS_ZENABLE , D3DZB USEW); // Use W Buffer
else
m pDevice->SetRenderState (D3DRS_ZENABLE , D3DZB TRUE); // Use z buffer

This is generally something we will do only when a 16 bit Z-Buffer is the only option available.

Lighting

This next render state allows us to enable or disable the device’s internal lighting pipeline. In our initial
applications, we will disable lighting since our vertices do not have the required vertex normal. Lighting
will be covered in Chapter 4. To enable/disable lighting we use the following respective render states:

m_pD3DDevice->SetRenderState (D3DRS_LIGHTING, TRUE) ;
m pD3DDevice->SetRenderState (D3DRS_LIGHTING, FALSE) ;

The D3DRS_LIGHTING member of the D3DRENDERSTATETYPE enumerated type tells the device that the
second parameter will set the state of the internal lighting module. Lighting is enabled by default so if
we do not require lighting, then we must explicitly disable it.

TRUE

This is the default state of the device. Vertices that use lighting must include a vertex normal. Lighting
calculations are done by taking the angle between the vertex normal and the light direction vector to
establish the angle between the vertex and the light. We scale the light’s effect on that vertex using a dot
product of those two vectors. If the vertex normal is absent, a dot product result of 0 will be used.

FALSE
Disables the lighting module of the device. Our current application will use this render state.

Note: All render states can be changed at any time, even in the middle of rendering a scene. For
example, we could disable lighting and render some pre-lit polygons, then enable lighting and render
some unlit polygons. Pre-lit polygons have no vertex normal and include a color at each vertex. Unlit
polygons contain a vertex normal and require the device to light them before rendering.

183

Shading

Our applications will use the Gouraud shading model so that the colors stored at each vertex in the face
are linearly interpolated across the surface of that face. There are a few shading models available in
DirectX Graphics and they are set using the following render state:

m pD3DDevice->SetRenderState (D3DRS_SHADEMODE, D3DSHADEMODE) ;

When setting the D3DRS_SHADEMODE render state, the second parameter should be a member of the
D3DSHADEMODE enumerated type:

typedef enum D3DSHADEMODE

{

D3DSHADE FLAT = 1,

D3DSHADE GOURAUD = 2,

D3DSHADE PHONG = 3,

D3DSHADE FORCE DWORD = Ox7fffffff
} D3DSHADEMODE;

Although there are three choices listed (D3DSHADE_FLAT, D3DSHADE GOURAUD, and D3DSHADE PHONG),
only flat and Gouraud shading modes are currently supported.

D3DSHADE_FLAT

When this shade mode is set, the diffuse and specular colors of the first triangle vertex are used and no
interpolation is done between vertex colors. Diffuse and specular colors stored in other vertices within
the same triangle are ignored. Vertex alpha however is interpolated across the surface as we will see in
Chapter 7. Note that the first vertex in the triangle is selected, not the first vertex in the entire polygon.
Since a cube face is made using two triangles, vertex 0 will be used to color triangle 1 and vertex 3 will
be used to color triangle 2 (using the triangle fan example). The first vertex in a given triangle can be
defined for the different primitive types as follows.

e For a triangle list, the first vertex of the triangle i is i * 3.
o For a triangle strip, the first vertex of the triangle 7 is vertex i.
o For a triangle fan, the first vertex of the triangle i is vertex i + 1.

D3IDSHADE_GOURAUD

When a triangle is rendered with Gouraud shading, the colors of all vertices in the triangle are used to
calculate the final color of a pixel within that triangle by using a linear interpolation between all three
vertices. The distance from a pixel to a vertex is a weight value for the vertex color contribution to the
pixel. This is the default shade mode when the device is created. To set the Gouraud shading mode in
code:

m_pD3DDevice->SetRenderState (D3DRS_SHADEMODE, D3DSHADE_GOURAUD) ;

184

Dithering

In 16 bit color mode the range of colors is significantly less than those available in 32 bit color mode
(65,535 vs. 16,000,000 or so). There will be times when 16 bit color modes cannot accurately produce
the shade of a certain color your application may require. If dithering is enabled, it creates the color by
using two colors at alternating pixel positions across the surface. For example, let us imagine that the
color yellow was unavailable. If dithering was enabled then the triangle would be rendered using
alternating red and green pixels. Because the pixels are so close together the human eye perceives the
triangle as yellow. While dithering can be useful in these situations, it can result in a grainy appearance
on high resolution monitors. Dithering is disabled by default when the device is initially created. We
enable dithering using the following respective render states:

m_pD3DDevice—>SetRenderState(D3DRS_DITHERENABLE, TRUE) ;
m pD3DDevice->SetRenderState (D3DRS_DITHERENABLE, FALSE);

Back Face Culling

DirectX Graphics can check the winding order of triangles that have passed through the World, View,
and Projection matrices and remove them from further consideration when their vertices are ordered in a
counter clockwise fashion. This ordering indicates that the camera is looking at the back of the polygon.
Our application can set the back face culling behavior using the D3DRS_CULLMODE render state and
specifying a member of the D3DCULL enumerated type as the second parameter:

|m_pD3DDevice—>SetRenderState(D3DRS_CULLMODE, D3DCULL) ;

typedef enum D3DCULL
{
D3DCULL NONE =
D3DCULL_CW 2,
D3DCULL _CCW = 3,
D3DCULL FORCE DWORD = Ox7fffffff
} D3DCULL;

1,

D3DCULL_NONE

This sets the device so that no back face culling is done. The triangle orientation is not tested and it is
rendered as if it had two sides. If the camera was moved behind the triangle, the viewer will still be able
to see it.

D3DCULL_CW

When this state is set, triangles with a clockwise winding order in relation to the camera are considered
to be facing away from the camera. This mode is useful when using geometry ported from OpenGL
engines. OpenGL uses a right-handed Cartesian coordinate system where the faces have a counter-
clockwise winding order.

185

D3DCULL_CCW
This is the default culling state for the device and is the mode that we will use throughout this course. In
this mode triangles that have a counter-clockwise winding order with relation to the camera are
considered to be facing away from the camera and are not rendered. We generally set this state once at
environment setup:

m_pD3DDevice->SetRenderState (D3DRS CULLMODE, D3DCULL_ CCW) ;

2.7.2 Transformation States

We set the device transform states to control how vertices are transformed from model space into screen
space. The device maintains three state matrices (along with a few others that we will discuss in later
lessons) that are used for this process.

The World Matrix

Before rendering each object in our scene we will set the object world matrix as the current world
matrix for the device as follows:

m_pD3DDevice->SetTransform(D3DTS WORLD, &mtxWorld);

We use the SetTransform function with b3pTs WORLD as the first parameter to inform the device we are
setting the world matrix. The second parameter is the address of the object world matrix (a D3DXMATRIX
structure) for the object to be rendered. This matrix holds the position and orientation of the object in the
3D world.

The device world matrix will typically have to be changed many times per frame. In our first few
applications we will be rendering two cube objects. Each will have its own world matrix which must be
set prior to rendering. We will set object 1’s world matrix and render its polygons, then we will set
object 2’s world matrix (which overwrites the previous world matrix setting of the device) and then
render its polygons. This is a critical point to understand. The device has only one world matrix. Before
you render an object you will send its world matrix to the device. That matrix will remain the device
world matrix until replaced with another world matrix as shown below:

m_pD3DDevice->SetTransform(D3DTS WORLD, &Objectl->mtxWorld);
Objectl->Render () ;
m pD3DDevice->SetTransform(D3DTS WORLD, &Object2->mtxWorld);
Object2->Render () ;

186

The View Matrix

The application maintains a view matrix to describe the camera position and orientation in the virtual
world. World space vertices are multiplied by this matrix to transform them into view space relative to
the camera. When the position or orientation of the camera changes, we need to build a new view matrix
and send it to the device using the following transform state:

m pD3DDevice->SetTransform(D3DTS_VIEW, &mtxView);

The Projection Matrix

The projection matrix describes the FOV of the camera and is used to convert the camera relative
coordinates into homogenous clip space. We set the device projection matrix using the following
transform state:

m_pD3DDevice->SetTransform D3DTS_PROJECTION, &mtxProj) ;

Once this matrix is set, the device transformation pipeline setup is complete. From now on, whenever
our application calls one of the DrawPrimitive functions, each vertex will be multiplied by the device
state matrices to be transformed from model space to homogeneous clip space.

HomogeneousVertex = ModelSpaceVertex * World * View * Projection

At this point, the device will do various clipping tests and perform back face culling. Then the divide by
W maps the vertex onto the projection window where the vertices are in the range of —1 to +1 in both
the x and y dimensions. Finally, the coordinates are converted into screen coordinates and used to
rasterize the triangles.

Note: Just like the SetRenderState function, the SetTransform function also has a counterpart called
GetTransform in the IDirect3DDevice9 interface. It can be called to query the current device world, view,
or projection matrix:

D3DXMATRIX mtxWorld , mtxView , mtxProj;

m_pDevice->GetTransform(D3DTS WORLD , &mtxWorld);
m pDevice->GetTransform(D3DTS VIEW , &mtxView) ;
m_pDevice->GetTransform(D3DTS PROJECTION , &mtxProj);

As with GetRenderState, GetTransform does not work if you are using a pure device. The application
must maintain copies of the matrices if access is required after sending them to the device.

Fig 2.33 shows how the SetRenderState and SetTransform functions are used to alter the states of the
device object. These states remain in their current condition until set to new conditions.

187

Device Object

Z - Buffer & SetRenderState{ D3DRS_ZENABLE, D3D2B_TRUE)
Lig hti ng 4———SetRenderState{ D3DRS_LIGHTING, FALSE)

Ditheri ng 4———SetRenderState{ D3DRS_DITHERENABLE, TRUE)

World Matrix =l SetTransformi{ D3DTS_WORLD, &mtxWorld)
View Matrix > =il . SetTransform{ D3DTS_VIEW , RmtxView)

Projection Matrix "2 M SetTransform{ D3DTS_PROJECTION , &kmtxProj)

Figure 2.33

2.1.3 Scene Rendering

Frame/Depth Buffer Clearing

Before we render a scene, the first thing we generally do is clear the frame buffer and reset the Z-Buffer.
We can accomplish both of these objectives using a single function call via the IDirect3DDevice9
interface:

IDirect3DDevice9::Clear (DWORD Count, const D3DRECT *pRects, DWORD Flags,
D3DCOLOR Color, float Z, DWORD Stencil);

DWORD Count

It is possible to clear only portions of the frame buffer (and Z-Buffer) rather than the entire surface. Our
application can pass an array of one or more D3DRECT structures indicating the desired areas to be
cleared. If the second parameter to this function is not NULL then this value will indicate the number of
D3DRECT structures pointed to by pRects.

D3DRECT pRects

If the first parameter (Count) is not 0, this parameter will point to the start of an array containing the
D3DRECT structures describing areas of the frame buffer or depth buffer the application want cleared.
If the entire frame buffer (and Z-Buffer) is to be cleared, this parameter will be set to NULL.

188

DWORD Flags

This parameter is a combination of flags that tell the device which surfaces to clear. We can choose to
clear the frame buffer, the depth buffer, and/or the stencil buffer by combining the following flags. Note
that at least one of the following flags must be used and that these flags are not mutually exclusive:

D3DCLEAR STENCIL: Clear the stencil buffer to the value in the Stencil parameter. We are
not using a stencil buffer at this time so the Stencil parameter will be set to zero.

D3DCLEAR TARGET: Clear the frame buffer (or render target) to the color in the Color
parameter.

D3DCLEAR ZBUFFER: Clear the depth buffer to the value in the Z parameter.

D3DCOLOR Color

If the D3DCLEAR TARGET flag is used then this should contain the 32 ARGB color used to clear
each pixel in the frame buffer or current render target. Our application uses a white color setting
(OxFFFFFFFF) which is the ARGB color (255,255,255,255). The frame buffer does not use the alpha
component of a color but colors must still be specified in 32 bit ARGB format.

float Z

If the D3ADCLEAR ZBUFFER flag is set then this value should contain the normalized distance value
that each pixel in the depth buffer should be initialized to before rendering. This value is typically set to
1.0. This maps the maximum distance to the far frustum plane in view space.

DWORD Stencil

If the D3ADCLEAR _STENCIL flag is used then this flag should contain an integer value to store in each
stencil buffer entry. Stencil buffers will be covered at a later time and will not be used by our current
application.

If this function is unsuccessful then it will return pD3pERR INVALIDCALL. This indicates that one or
more of the parameters may have been invalid.

Beginning and Ending Scenes

Before calling any primitive rendering functions for a given frame, the application must call the
IDirect3DDevice9::BeginScene function. When rendering is completed it calls the
IDirect3DDevice9::EndScene function. The call to EndScene informs the device that the application has
finished rendering the current scene. All DrawPrimitive calls will take place between BeginScene and
EndScene function calls.

189

Presenting the Frame

The final step in frame rendering is instructing the device to present the frame buffer to the front buffer.
This makes the newly rendered scene visible to the user on the monitor screen. We do this using the
IDirect3DDevice9::Present function. This function is called outside the BeginScene/EndScene pair.

HRESULT IDirect3DDevice9::Present (CONST RECT *pSourceRect, CONST RECT *pDestRect,
HWND hDestWindowOverride,
CONST RGNDATA *pDirtyRegion);

RECT *pSourceRect

Instead of the entire frame buffer being copied to the front buffer, the application can specify a
rectangular frame buffer region to be copied. This parameter holds the address of a RECT structure
containing the dimensions of the desired region. When this parameter is NULL, the entire frame buffer
is copied. This parameter must be NULL if you did not use the p3pswaPEFFECT copy swap effect for
the swap chain when you created the device.

CONST RECT *pDestRect

A pointer to a RECT structure containing the front buffer destination rectangle in window client
coordinates. If NULL, the entire client area is filled. If the rectangle is larger than the destination client
area, it is clipped to the destination client area. This parameter must be NULL if the swap chain was not
created with D3DSWAPEFFECT COPY.

HWND hDestWindowOverride

This parameter allows you to specify another window to which your frame buffer output will be
displayed. It overrides the device window specified in the D3DPRESENT PARAMETERS structure during
device creation. The common value is NULL. This informs the device to carry out its default behavior
of copying the frame buffer to the front buffer when performing a presentation with a windowed device.
Note that this only works with a windowed device and that it does not remove the association with the
device window. For example, key press messages will still be sent to the device window and not to the
override window.

CONST RGNDATA *pDirtyRegion

This allows you to specify a region (an area of the screen constructed from non-overlapping rectangles)
to be copied to the screen. The rectangles are specified in frame buffer coordinates. This value is
typically set to NULL.

Passing NULL for all of these parameters is the most common application behavior. This will copy or
flip (depending on the swap effect being used by the device) the entire frame buffer (the top of the swap
chain if multiple frame buffers have been created) to the front buffer. In windowed mode the front
buffer is the client area of the device window specified in the D3DPRESENT PARAMETERS structure used
to create the device. In fullscreen mode rendering is always done to the overlay window covering the
display.

190

Conclusion

And with that, we now have a good understanding of core DirectX Graphics functionality. We have
looked at environment setup, device states, and even shaded primitive rendering. When you have
finished studying your workbook projects you will be able to quickly set up rendering environments for
future applications and you will have a fully reusable and highly functional set of classes to handle these
rather mundane (but essential) setup tasks. You will also have a good feel for the different steps
involved in setting up and running your game rendering loop for every frame.

In our next lesson, we will continue our study of primitive rendering. Our focus will be on more
efficient, hardware-friendly approaches.

191

Chapter Three:

Vertex and Index Buffers

193

Introduction

Vertex and index buffers are important device resources used to achieve the best possible application
performance during primitive rendering. These resources will replace the vertex arrays we used with the
DrawPrimitiveUP call used in Chapter 2. During this lesson we will discuss how indexed primitives
remove the need for redundant vertices in our geometry. We will also look at how to take advantage of
the vertex cache available on most 3D graphics adapters to minimize pipeline data transfer when
possible. Finally, this lesson will provide you with valuable information on how to create and use vertex
buffers in an optimal way on both hardware and software vertex-processing devices.

In the last lesson, we used the IDirect3DDevice9::DrawPrimitiveUP call to send vertices through the
transformation and rendering pipeline. Recall that the ‘UP’ stands for ‘User Pointer’ because the
application passes its own vertex data pointer into the function. This was a pointer to a vertex array
located in system memory that the application could freely modify at will. The main problem with this
approach is that the vertex data is contained in system memory while the hardware geometry
processing unit or GPU (assuming one exists on the current hardware) requires that this data be
accessible in on-board video memory (i.e. local video memory) or in AGP memory (i.e. non-local
video memory) in order to work with it at maximum speed.

When vertex data is not in video memory the CPU must copy the system memory vertices over the bus
into local video or AGP memory. The GPU does have direct memory access to system memory but it is
much slower than accessing data in video memory on a hardware vertex-processing device. Because we
are passing in an application created pointer to system memory and because the application can change
this data at any time, the driver cannot safely cache the vertex data in video memory because it has no
way of knowing whether or not the application has changed the memory contents. Therefore, each time
the vertex array is rendered, DirectX Graphics will copy it into another area of memory first so that the
GPU can be sure it is accessing the most current data. The new data area where these vertices reside is
called a vertex buffer and will typically be located in AGP memory or local video memory, if a GPU is
available. Once the vertex data is in the vertex buffer, the GPU can access it directly for fast processing.
After the vertex data has been used, the temporary vertex buffer that was created is discarded. It will
have to be recreated and destroyed each time vertices are rendered. This creates stalls in the rendering
pipeline and results in significantly degraded application performance.

When the graphics adapter does not have hardware vertex processing capability, the situation is
different. In such a case, the transformation and lighting of our vertices is done by the DirectX Graphics
device in software. In this situation, using DrawPrimitiveUP would not degrade performance quite as
much as it would in the HW T&L scenario. Nevertheless, the vertex data will still be copied into
temporary system memory vertex buffers. So even on non-HW T&L devices we face the cost of
creation, copying, and discarding memory each time we render vertex data. While the DrawPrimitiveUP
function is indeed convenient, it should never be used in performance critical commercial code.

It stands to reason that one way to avoid the vertex-copying overhead of DrawPrimitiveUP is to store
our data in a vertex buffer to begin with. This way the driver already has the data available in the correct
format. That is exactly what we will do in this lesson.

194

Vertex buffers have a strict set of rules that, when followed, allow the driver to make optimization
decisions about vertex data. For example, you cannot just read or write from your vertex buffer any time
you please. You must first explicitly request a lock on the buffer. If the request was successful, you will
be returned a pointer to the data (or a copy of the data) to work with. When you are done processing,
you must unlock the buffer. This means that the driver can place or cache your vertex buffer in optimal
memory without having to worry about the application changing the contents of the buffer without its
knowledge. In a system that has a GPU, the vertex buffer will typically be stored either in AGP memory
or local video memory. These memory pools can be quickly read by the GPU since it has direct memory
access to them. The GPU can extract vertices from the buffer and transform them without having to tie
up the CPU with data transfers between memory pools.

3.1 Working with Device Memory

Vertex buffer behavior is dependant upon parameters defined at creation time. One of the most
important performance related factors involves which memory pool the vertex buffer resides in. In most
circumstances we will want a vertex buffer to be placed in local video memory or AGP memory.
However, when the 3D hardware does not support T&L, then the vertex buffer will need to be created in
system memory. This is quite logical; if no T&L facility is available on the graphics hardware, then
software vertex processing will occur. Vertex data in system memory is within easy reach of the CPU
based software transformation pipeline.

The following diagram shows an application running on a 3D graphics card with hardware vertex
processing capability (a graphics card that has a GPU).

Graphics Card Critical Section

AGP Memory
m (Mon Local Wideo Memory')
Video

T

Application
Memory System Memory
(Local e
video <
Memory) >
Key:-

—» Extremely Slow Read Access
——» Fast Read Access
-+——— Fast Write Access

195

3.1.1 Memory Types

Let us begin by talking about the different memory types available to your application and the
performance implications of using each type.

Video Memory

Modern graphics cards typically have their own on-board memory. The GPU can access content stored
in video memory very quickly for both read and write operations. Applications can write to video
memory at reasonable speeds, but reading operations are terribly slow and should be avoided at all costs.
If we know that a certain resource used for rendering will not change (i.e. it is static), then ideally we
will want that resource to be placed in video memory. Again, in the case of vertex buffers, if the
graphics hardware does not support T&L (in other words, the card does not have a GPU) then we do not
want our vertex buffers placed in video memory. System memory is the preferred choice because it
provides fast CPU access.

AGP Memory

AGP enabled video cards are capable of interfacing at high speeds with reserved portions of system
memory. The GPU has direct memory access to AGP memory much like its own local video memory.
This means that data can be extracted from AGP memory directly by the GPU without having to burden
the CPU with the request. There is usually a BIOS setting that can be changed to control how much
system memory is set aside to be used as AGP memory.

When system memory is reserved as AGP memory, it behaves very differently from standard system
memory. AGP memory is flagged as a critical section and it cannot be cached by the CPU. This makes
CPU data reads from AGP memory slow — much like reads from local video memory. Writing to AGP
memory however is typically very fast. In addition, AGP memory is not allowed to be paged out to disk.
This is very different from normal memory that can be written to the hard disk using the operating
system’s virtual memory manager. So care should be taken if you change BIOS settings where too much
AGP memory is reserved.

Vertex buffers will often be placed in AGP memory. AGP memory is fast for the CPU to write to, and it
is fast for the GPU to read from. However it is very slow for the CPU to read from due to the fact that
the L1/L2 caches are disabled.

As we saw with local video memory, if the current system has no hardware T&L support, AGP memory
is a poor location for storing vertex buffers. System memory is once again the best choice in this case.

196

System Memory

System memory (heap memory) is the memory pool in which your applications run and in which
memory allocations are made with operators like new and delete. This is where vertex buffers should be
placed when there is no GPU available on the current system or if there is a GPU available but the
application frequently needs to read back data from the vertex buffer. The latter is not a recommended
scenario if a GPU is available. GPU access to vertices in a system memory vertex buffer is typically ten
times slower than GPU access to local or non-local video memory vertex buffers.

3.1.2 Memory Pool Selection

Ideally we want to structure our application so that vertex buffers will be placed in video memory when
a GPU is available and system memory when it is not. We want the data stored in these buffers to be
static, or if this is not possible, write-only. A video memory vertex buffer will be quick to render but will
hurt performance if you have to read from it frequently. Creating the vertex buffer in system memory
will be fast for CPU reads but will be significantly slower for the GPU to render since it will have to
fetch the vertices over the system bus. Also note that when the GPU accesses a system memory vertex
buffer, the CPU must play a role in the communication of that data and this can impact application
performance.

If your application requires read access to a vertex buffer then your best solution is to create it in system
memory (even if a GPU is available). Of course, there are often solutions to help you work around the
performance penalties associated with reading operations. One of the most obvious is keeping a separate
copy of the vertex data in system memory to use for CPU reading, and then writing results out to a
separate video memory copy when needed. Memory footprint is the clear downside here, but often it is
worth it.

When we create a vertex buffer, we will specify various flags that will be used by the device object and
the driver to determine where (in which memory pool) the vertex buffer will be placed.

While there are numerous rules and semantics listed for vertex buffers in the SDK documentation, very
often the driver has some degree of autonomy to make its own choices. The more information we
provide at vertex buffer creation time as to how we intend to use the buffer, the better chance that the
driver will place it in the optimal memory for our needs. We will examine these rules as we progress
through the chapter.

197

3.1.3 Device Resources

Resources are data types that are created and owned by IDirect3DDevice9 object. They include vertex
buffers, textures, index buffers, frame buffers, depth buffers, and more.

The Device

Texture 1 Vertex Buffer 1

Depth Buffer

Texture 2 Vertex Buffer 2

Texture 3 Vertex Buffer 3

Frame Buffer
Texture 4 Vertex Buffer 4

All resources have interfaces that are derived directly or indirectly from the IDirect3DResource9
interface. This interface contains a set of common methods that apply to all resource types.

You will create a resource object by calling one of the device interface methods. In the case of a vertex
buffer you call the IDirect3DDevice9::CreateVertexBuffer method. If creation is successful it will return
a new IDirect3DVertexBuffer9 interface. This process is similar for all resource types. For example,
when you call the IDirect3DDevice9::CreateTexture method or the
IDirect3DDevice9::CreateIndexBuffer method, you will get returned IDirect3DTexture9 and
IDirect3DIndexBuffer9 interfaces respectively. We use the returned interface to manipulate the resource
data.

Because the application does not own the resource data area, it cannot simply write data to the resource
at will. In the case of a vertex buffer for example, although we have an interface, we have no means of
filling it with data or reading data contained within, until we call the IDirect3DVertexBuffer9::Lock
method. If the call is successful the method will return a pointer to the resource data area and the
application can use it as it would any other memory pointer. It could read or write to the memory
pointed to by it or use the pointer in memcpy function calls. We will discuss this in greater detail later in
the lesson.

198

3.2 Vertex Buffers

3.2.1 Creating Vertex Buffers

To create a vertex buffer we call the IDirect3DDevice9::CreateVertexBuffer function:

HRESULT CreateVertexBuffer

(
UINT Length,

DWORD Usage,

DWORD FVF,

D3DPOOL Pool,

IDirect3DVertexBuffer9** ppVertexBuffer,

HANDLE* pHandle <- (Reserved : Should always be set to NULL)

)

UINT Length

This parameter is used to tell the device how many bytes the vertex buffer will need. The value must be
large enough to store at least one vertex. When using flexible vertex formats (FVF) the size will be
equivalent to the size of our vertex structure (in bytes) multiplied by the number of vertices we intend to
store in the vertex buffer. For example, if CMyVertex was our vertex structure and you wanted to store
100 vertices in the buffer, you could calculate the length as 100 * sizeof(CMyVertex). This would
allocate enough memory for 100 CMyVertex structures within the vertex buffer.

DWORD Usage

The Usage flag is critical to vertex buffer performance as it can ultimately control which memory pool
the vertex buffer will reside in. The D3DUSAGE constants are used by many device resource creation
functions. Here we will discuss the constants as they apply to vertex buffers. This parameter can be 0 if
no usage flags are required.

D3DUSAGE_DYNAMIC

This flag informs the device object that we intend to modify the contents of the vertex buffer on
a frequent basis. If hardware vertex processing is used then the vertex buffer will typically be
placed in AGP memory for dynamic buffers and in local video memory for static buffers
(although this varies across cards and drivers). There is no D3DUSAGE STATIC flag to
indicate that we will not need to alter the contents of the vertex buffer throughout the life of the
application. Instead, the lack of a D3DUSAGE DYNAMIC flag is interpreted as a static vertex
buffer request.

Where the vertex buffer gets placed is ultimately up to the driver. Most nVidia® drivers place all
vertex buffers in AGP memory (both static and dynamic) when using a hardware vertex
processing device. If the device is using software vertex processing then the vertex buffer
(whether static or dynamic) will usually be placed in system memory. So this flag is simply a
hint to the driver that we anticipate needing to frequently lock the vertex buffer for updates.

199

200

Note: Applications should not make IDirect3DVertexBuffer9::Lock calls in time critical code
unless the D3DUAGE_DYNAMIC flag was specified at creation time.

When you lock a vertex buffer for access, there are several flags that you can pass to the device
to minimize pipeline stalls and performance hits.

For example, if we call the Lock() method with the D3DLOCK NOOVERWRITE flag, we are
promising the device that we will not alter any of the contents already in the vertex buffer
although we may add additional vertices to it. This allows the driver to issue the lock, return a
pointer, and then carry on immediately rendering from the same buffer our application is adding
data to. Without this flag, it would have to wait until the application had finished altering the
vertex buffer and unlocked it, before it could continue rendering. These flags (covered later when
we look at the Lock method) are not available for static vertex buffers. Locking a static vertex
buffer puts the GPU into a hard stall.

Dynamic vertex buffers can also be locked using another flag called D3DLOCK DISCARD. It
is used if you intend to overwrite the contents and do not wish to stall the pipeline. Typically,
this is handled by the device issuing a pointer to a new vertex buffer, which can be written while
the hardware continues using the previous vertex buffer for transformation and rendering. This is
another flag that cannot be used to lock static vertex buffers.

D3DUSAGE_WRITEONLY

This is a very important flag for maximum performance on a device with hardware vertex
processing. It specifies that we do not intend to read data from the vertex buffer at any time.
Because reading from video memory vertex buffers is so slow, the driver may decide to place the
buffer in system memory if this flag is not specified. So, you will almost always want to include
this flag in your creation parameters (assuming buffer reading is not required).

The worst-case scenario is if the driver was to ignore this flag and place the vertex buffer in
video memory regardless of our intentions to read from it. This would seriously hurt
performance whenever we locked the buffer and read from it. This of course would never happen
in a responsibly written device driver, but the point here is that, it is the driver which ultimately
decides where the vertex buffer should be placed. This decision is based in whole or in part on
the hint flags that we send it during vertex buffer creation. As it turns out, the driver
development kit documentation explicitly states that any vertex buffer that is created without the
D3DUSAGE WRITEONLY flag set must be placed in system memory. But as mentioned,
driver implementations may vary across hardware.

The Game Institute ran some tests on our development machines using static vertex buffers
without specifying the D3DUSAGE WRITEONLY flag. Benchmark results proved quite
conclusively that the vertex buffer was being placed in video memory (either AGP or local).
Significant performance hits were recorded for data reads.

D3DUSAGE_SOFTWAREPROCESSING

This flag indicates that we would like the transformation and lighting of the vertex buffer data to
be performed in software using the DirectX Graphics software T&L pipeline. This usage flag
must not be used on a device that has been created = with
D3DCREATE HARDWARE VERTEXPROCESSING behavior, although it can be used on
devices created with the D3DCREATE MIXED VERTEXPROCESSING behavior flag. It does
not have to be explicitly specified when wusing a device created with
D3DCREATE SOFTWARE VERTEXPROCESSING since processing is done in software
anyway. If this flag is not specified on a hardware vertex processing device or a mixed vertex-
processing device then vertex processing is done in hardware.

There are other D3ADUSAGE flags that are applicable to vertex buffers but the ones listed above are the
ones we are currently interested in. We will return to some of the other usage flags later in the lesson.

DWORD FVF

This parameter tells the device the format of the vertices destined for the vertex buffer. For example, if
we used a vertex structure which had an x, y, and z component and also a diffuse color component, we
would pass the following flags:

Flags = D3DFVF_XYZ | D3DFVF_DIFFUSE
Flexible vertex format flags were covered in Chapter 2.

D3DPOOL POOL

This flag allows our application to specify which memory pool it would like the resource to be place
into. When combined with the D3DUSAGE flags, it directly governs the performance and behavior of
our vertex buffers. It is worth noting that certain resource types are treated differently even when they
share the same D3DPOOL. For now though our focus will be on its application to vertex buffer creation.

typedef enum _D3DPOOL

{
D3DPOOL_DEFAULT = 0,
D3DPOOL_MANAGED = 1,
D3DPOOL_SYSTEMMEM = 2,
D3DPOOL_SCRATCH = 3,
D3DPOOL_FORCE_DWORD = Ox7fffffff

} D3DPOOL;

201

3.2.2 Vertex Buffer Memory Pools

There are four possible pool types that we can choose for any resource. We will discuss each type along
with its relationship to the vertex processing capabilities of the device.

D3DPOOL_DEFAULT

When we use the default pool, the driver will typically store the vertex buffer in the most optimal
memory by taking into account the D3DUSAGE flag. If we specify this pool on a device that is only
capable of software vertex processing, or if we specify this pool on a mixed mode device when we have
specified the D3DUSAGE _SOFTWAREPROCESSING flag, the vertex buffer will be created in system memory.
If we specify this pool type on a mixed mode vertex-processing device without the
D3DUSAGE_SOFTWAREPROCESSING flag or if the device is a hardware vertex processing only device, then
the vertex buffer will typically be placed in local or non-local video memory for maximum rendering
performance. If we have not specified the D3DUSAGE_WRITEONLY flag (even on a hardware vertex
processing device) then the situation is more ambiguous. The driver may choose to place the vertex
buffer in system memory because it assumes you might want to read from it. Alternatively, the driver
may choose to ignore this flag and place the vertex buffer in video memory (local or non-local), which
would carry a serious performance penalty if the vertex buffer were to be read from by your application.

Below we list the typical video card driver reaction to specifying the D3DPOOL DEFAULT
enumerated type in combination with some of the D3DUSAGE flags covered previously.

D3DPOOL_DEFAULT with a Hardware Vertex Processing Device

Usage = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY

With this combination the driver will usually place the vertex buffer in AGP video memory.
Writing to the vertex buffer is typically very fast but reading is extremely slow.

Usage = D3DUSAGE_DYNAMIC

The driver may interpret the absence of the D3DUSAGE _WRITEONLY flag as an indication that
you will want to read from the vertex buffer at some point. Taking this into account the driver
might place the vertex buffer in system memory to increase reading speed at the cost of
compromising rendering performance.

202

Usage = D3DUSAGE_WRITEONLY

The lack of the D3ADUSAGE DYNAMIC flag and the use of the D3DUSAGE WRITEONLY flag
generally result in optimal creation. Often this will mean the driver will place the vertex buffer in
local video memory or at the very least, in AGP memory. The driver expects that the vertex buffer
will not be locked or updated and places it in the memory that provides maximum read
performance for the GPU.

Usage = D3DSOFTWARE_PROCESSING

This is not a valid flag for a hardware vertex-processing device because the GPU will still
transform and light the vertices even if the vertex buffer is in system memory.

Usage =0

When we specify no flag, we are indicating that we want to create a static vertex buffer and that
we may want to read from it. A driver may decide to place the vertex buffer in video memory
where a lock and read would be extremely expensive or it may decide that the lack of the
D3DUSAGE_WRITEONLY flag means the application wants to read from the vertex buffer and
place it in system memory to aid read access (when in fact we probably had no such intention).

D3DPOOL_DEFAULT with a Software Vertex Processing Device

Using the D3DPOOL _DEFAULT pool to create a vertex buffer on a software vertex-processing
device will always create the vertex buffer in system memory. If this were not the case,
performance would be severely degraded since the software module would have to extract the
vertices from a buffer located in video memory.

D3DPOOL_DEFAULT with a Mixed Vertex Processing Device

Where the vertex buffer is placed on a mixed mode device is based on whether we created the
vertex buffer with the D3DUSAGE_SOFTWAREPROCESSING flag. If we did, then the vertex buffer is
always created in system memory and behaves in exactly the same way as the software vertex-
processing device described previously. The GPU will not be used to transform and light vertices.

If the D3DUAGE_SOFTWAREPROCESSING flag is not specified then the vertex buffer is treated like the
hardware vertex-processing device scenario described above. This is also true of all D3ADUSAGE
flags specified in the hardware vertex processing case. The D3DUSAGE_SOFTWAREPROCESSING flag
allows you to switch functionality on a mixed mode device between hardware vertex processing
(using the GPU) and software vertex processing (using the CPU).

The p3pPoOL DEFAULT pool is often the preferred pool when you want to maximize performance on
systems with a GPU. With the D3DUSAGE_WRITEONLY flag specified, we ensure that the vertex buffer is
placed in video memory for optimal rendering performance. Additionally, you should always use
D3DPOOL_DEFAULT for dynamic vertex buffers.

203

Note: If a device is lost, all vertex buffers that were created with the D3DPOOL_DEFAULT type become
invalid and must be destroyed and rebuilt again after the device has been reset. This is true of all
resources created with the D3DPOOL_DEFAULT type and not just vertex buffers. This is not true with
D3DPOOL_MANAGED and D3DPOOL_SYSTEMMEM pool types.

D3DPOOL_MANAGED

Creating a vertex buffer using the D3ADPOOL MANAGED type asks the device to manage the vertex
buffer for us. The device will not only choose the optimal memory pool for the vertex buffer, it will also
maintain a system memory copy of the buffer so that when a device is lost and later reset, it can restore
the buffer back to video memory without application intervention.

The additional overhead of maintaining a system memory copy of a video memory vertex buffer on a
hardware vertex processing device actually has some advantages. If our application should ever need to
read data from the vertex buffer for example then the performance loss is typically not as severe because
we will be locking and reading the system memory copy.

Unfortunately, we cannot create dynamic vertex buffers in the b3DPOOL_MANAGED pool. Only static
vertex buffers are viable candidates for this pool.

Let us examine the behavior and creation processes for vertex buffers created in this pool type with the
various D3DUSAGE flags.

D3DPOOL_MANAGED with a Hardware Vertex Processing Device
Usage = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY

The D3DUSAGE DYNAMIC usage flag is not compatible with the D3DPOOL MANAGED
flag and they should not be used together.

Usage = D3DUSAGE_DYNAMIC

The D3DUSAGE DYNAMIC usage flag is not compatible with the D3DPOOL MANAGED
flag and they should not be used together.

Usage = D3DUSAGE_WRITEONLY

A driver will typically place this static vertex buffer in the optimal memory; usually local video
memory or at the very least, non-local video memory. When we lock a managed vertex buffer,
we are returned a pointer to the system memory copy that is managed by the device object.
Changes made to that copy are committed up to the video memory copy once the vertex buffer
has been unlocked.

204

Results are undefined if you read data back from a managed vertex buffer when you have
specified D3DUSAGE WRITEONLY. On a local test machine we were able to successfully
read back data from a managed vertex buffer on a hardware vertex processing device and it was
much faster than reading back from the same vertex buffer created using the
D3DPOOL DEFAULT type. This is because we were reading from the system memory copy of
the video memory vertex buffer managed by the device.

Note however that this is risky. We explicitly told the driver that we do not intend to read and the
driver is under no obligation to make sure that the data in the system memory copy of the vertex
buffer is correct or current. It will only guarantee that changes you make to the vertex buffer will
be synchronized with the video memory copy once the lock has been released.

Usage = D3DSOFTWARE_PROCESSING

This is not a valid flag for a hardware vertex processing only device even in the case of managed
vertex buffers. With a hardware vertex-processing device, the GPU will always transform and
light the vertices even if the vertex buffer is in system memory.

Usage =0

When we do not specify any flags with a managed vertex buffer we are essentially telling the
driver that we wish to create a static vertex buffer, which we may want to read from. Usually,
this will still result in the vertex buffer being placed in video memory. The device will keep a
system memory copy available that can be locked to provide decent CPU read/write
performance.

Note: Because D3DPOOL_MANAGED cannot be used to create dynamic vertex buffers, you should never
use the D3DPOOL_MANAGED memory pool for any vertex buffer that your application intends to lock in a
time critical situation. Even when the vertex buffer has been placed in system memory by the driver, the

GPU must still read from it. Locking it will place the GPU into a wait state and stall the pipeline.

D3DPOOL_MANAGED with a Software Vertex Processing Device

Usage = D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY

You cannot use the D3DUSAGE_DYNAMIC usage flag with the D3DPOOL _MANAGED pool.
Only static vertex buffers can be created with this pool type.

Usage = D3DUSAGE_DYNAMIC

You cannot use the D3DUSAGE_DYNAMIC usage flag with the D3DPOOL _MANAGED pool. Only
static vertex buffers can be created with this pool type.

205

Usage = D3DUSAGE_WRITEONLY

The vertex buffer will be created in system memory because this is a software vertex-processing
device. No system memory copy will need to be maintained as the vertex buffer is already in
system memory.

It is still wise to specify D3DUSAGE_WRITEONLY even when using a software vertex-processing
device. The software transformation and lighting module may make optimizations based on the
fact that the information in the vertex buffer does not have to be available for the application to
read. Using this flag will always help you to get maximum vertex buffer performance.

Once again, if you specify D3DUSAGE_WRITEONLY and then read back from the vertex buffer
you may get undefined behavior.

Usage = D3DSOFTWARE_PROCESSING

This flag is ignored with a software vertex-processing only device because its behavior is
automatically implied by the type of device it is. You should still prefer to use this flag so that
you can clearly see how your vertex buffers are being created when examine your code.

Usage =0

The vertex buffer will be created in system memory and can be safely written to and read from.
This read-access guarantee may impede rendering performance when compared to vertex buffers
created using the D3DUSAGE_WRITEONLY flag.

D3DPOOL_MANAGED with a Mixed Vertex Processing Device

Where the managed vertex buffer is placed on a mixed mode device is based on whether we
created the vertex buffer with the D3DUSAGE_SOFTWAREPROCESSING flag. If we did, then the
vertex buffer is always created in system memory and behaves in exactly the same way as the
software vertex-processing device described above. If the D3DUAGE _SOFTWAREPROCESSING flag is
not specified then the vertex buffer is treated the same way as one on a hardware vertex-
processing device. This is also true of all the D3DUSAGE flags specified in the hardware vertex
processing case.

D3DPOOL_SYSTEMMEM

A vertex buffer using this pool type is always created in system memory. It will not need to be recreated
if the device is lost and reset. This pool is the clear choice for vertex buffers created for use with a
software vertex-processing device. In fairness, even if we did specify D3DPOOL MANAGED or
D3DPOOL DEFAULT, a system memory vertex buffer would be chosen in that case. On a hardware

206

vertex-processing device, D3DPOOL MANAGED and D3DPOOL DEFAULT will usually place the
vertex buffer in some form of video memory (assuming proper usage flags). So, if you wish to create a
system memory vertex buffer with a hardware vertex-processing device, you must explicitly state this
memory pool.

While you normally would not want to do this, perhaps your application requires a dynamic vertex
buffer and it needs to read those vertices fairly often. This is a particularly nasty situation. Your best bet
would probably be to create the vertex buffer in the system memory pool using the
D3DUSAGE WRITEONLY flag. Locking the vertex buffer would be cheaper because it is a dynamic
vertex buffer and CPU access would be decent because we are reading the vertex data back from
memory that can be cached. Since managed vertex buffers cannot be dynamic, this is probably the best
you can do.

System memory dynamic vertex buffers are generally slow on a hardware vertex-processing device. The
penalty associated with the GPU having to fetch the vertices, coupled with the device management
overhead for dynamic vertex buffers, degrades performance considerably -- about 10% of the speed of
reading vertices from a video memory vertex buffer.

D3DPOOL_SCRATCH

This pool places the vertex buffer in system memory and it does not need to be recreated when the
device is lost and reset. Unlike the D3ADPOOL SYSTEMMEM pool type, vertex buffers created in this
pool are completely inaccessible to the Direct3D device. This means they cannot be used for rendering.

You can think of vertex buffers in this pool type as simply being vertex containers. You can use these
vertex buffers to store data, which you will later copy to another vertex buffer that is accessible from the

device.

The D3DPOOL_SCRATCH pool type vertex buffer can be created, locked, and copied. It is not a pool type
you will use very often with vertex buffers, but it can be useful for other resource types.

207

3.2.3 Vertex Buffer Performance

Let us explore some different vertex buffer creation possibilities and discuss the outcomes. The code
assumes that CVertex is a defined vertex structure and that pDevice is a pointer to a valid
IDirect3DDevice9 interface.

I. Managed Static Vertex Buffer -- optimal render performance

IDirect3DVertexBuffer9 *pVertexBuffer;

DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE;

int num verts = 36;

pDevice->CreateVertexBuffer (sizeof (CVertex) * num verts , D3DUSAGE WRITEONLY , fvf ,

D3DPOOL MANAGED, &pVertexBuffer , NULL)

Outcome A: Hardware Vertex Processing Device

The vertex buffer would be created in video memory with a system memory backup. Optimal render
performance is the result, with the cost of increased memory footprint. Locking this vertex buffer will
stall the software pipeline because it is a static vertex buffer and reading back from the buffer could
result in undefined behavior.

Outcome B: Software Vertex Processing Device

The vertex buffer would be created in system memory. Locking this vertex buffer will stall the software
pipeline because it is a static vertex buffer and reading back from the buffer could result in undefined
behavior.

I1. Managed Static Vertex Buffer -- non-optimal render performance

IDirect3DVertexBuffer9 *pVertexBuffer;

DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE;

int num verts = 36;

pDevice->CreateVertexBuffer (sizeof (CVertex) * num verts , 0 , fvf , D3DPOOL MANAGED,
&pVertexBuffer , NULL)

Outcome A: Hardware Vertex Processing Device

The driver may interpret the lack of a D3DUSAGE WRITEONLY flag as an indication of your desire
for read access. It is likely that because this is a managed mode vertex buffer and therefore has a system
memory copy for read access, the actual vertex buffer will still be placed in some form of video
memory. You can safely lock this vertex buffer and read and write its contents. When it is locked, the
system memory copy of the vertex buffer (if it has been placed in video memory) will have its pointer
returned. Changes made to the system memory copy will be committed to the video memory vertex
buffer once the lock has been released. This is a static vertex buffer, so locking is still very expensive. It
is also likely that by guaranteeing read access to the CPU, the rendering performance will be
compromised.

Outcome B: Software Vertex Processing Device

The vertex buffer will be created in system memory and can be locked, read from, and written to with
confidence. Again, locking a static vertex buffer is expensive since it can cause a stall in the pipeline.

208

III. Static Vertex Buffer -- optimal render performance

IDirect3DVertexBuffer9 *pVertexBuffer;

DWORD fvf = D3DFVF XYZ | D3DFVF DIFFUSE;

int num verts = 36;

pDevice->CreateVertexBuffer (sizeof(CVertex) * num verts , D3DUSAGE WRITEONLY , fvf ,
D3DPOOL DEFAULT, &pVertexBuffer , NULL);

Outcome A: Hardware Vertex Processing Device

The driver will place the vertex buffer in video memory (AGP or local) for optimal GPU read access.
Unlike the D3DPOOL MANAGED type, a system memory copy of the vertex buffer will not be
maintained by the device object. This minimizes system memory overhead but requires your application
to manually recreate the vertex buffer if the device is lost and reset.

Speed is optimal for the GPU when transforming and rendering vertices from this vertex buffer. Unlike
the managed vertex buffer where locking returns a pointer to the system memory copy, the pointer
returned from locking this buffer will typically be an aliased pointer directly into video memory.
Therefore writing to this vertex buffer can be marginally faster than writing to a managed vertex buffer
because the copy synchronization process of the system memory vertex buffer and the video memory
vertex buffer is not necessary when the lock is released. Although you should not try to read back from
this buffer because it was created with D3ADUSAGE_WRITEONLY, we were successfully able to do so
during some tests. The performance results were (as one might imagine) simply terrible because the
reads were being done directly from video memory.

Outcome B: Software Vertex Processing Device

The vertex buffer will be placed in system memory so that the software pipeline can access the data as
quickly as possible. The device makes optimization assumptions based on the fact that you are not going
to be reading the data back from the vertex buffer when your application locks it. Obviously, locking the
vertex buffer and reading back from it could result in undefined behavior.

IV. Managed Dynamic Vertex Buffer -- optimal render performance

IDirect3DVertexBuffer9 *pVertexBuffer;
DWORD fvf = D3DFVF XYZ | D3DFVF DIFFUSE;
int num verts = 36;
pDevice->CreateVertexBuffer (sizeof (CVertex) * num verts ,
D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY 0
fvf , D3DPOOL DEFAULT, &pVertexBuffer , NULL)

Outcome A: Hardware Vertex Processing Device

Typically the driver will place the vertex buffer into some form of video memory. With nVidia®
hardware for example, AGP seems to be the default choice. Write accesses are typically quick and
locking the vertex buffer can be extremely efficient when the correct locking flags are used. No pipeline
stalls will occur when locking a dynamic vertex buffer. The pointer returned from the lock is typically
an aliased pointer directly into video memory. Reading from this buffer would result in terrible
performance at best and undefined behavior at worst due to the fact that the driver may have swizzled
the data into a proprietary format (not expecting your application to read it back).

209

Outcome B: Software Vertex Processing Device

The vertex buffer will be placed into system memory. Locking this vertex buffer is much more efficient
than locking a static vertex buffer as certain mechanisms are in place to prevent stalls in the pipeline.
This buffer should not be read.

V. Static Vertex Buffer — inefficient

IDirect3DVertexBuffer9 *pVertexBuffer;

DWORD fvf = D3DFVF7XYZ | DBDFVFiDIFFUSE;

int num verts = 36;

pDevice->CreateVertexBuffer (sizeof(CVertex) * num verts , 0 , fvf , D3DPOOL DEFAULT,
&pVertexBuffer , NULL);

Outcome A: Hardware Vertex Processing Device

Results are undefined here because we created a vertex buffer in the default pool but we have not
specified D3DUSAGE WRITEONLY. What happens from this point on is up to the driver and
incorrect assumptions may be made.

Outcome B: Software Vertex Processing Device
The vertex buffer is placed in system memory and can be reliably read from and written to, although

locking can cause the performance penalty seen with all static vertex buffers.

VI. Dynamic Vertex Buffer in System Memory

IDirect3DVertexBuffer9 *pVertexBuffer;
DWORD fvf = D3DFVF_XYZ | D3DFVF_DIFFUSE;
int num verts = 36;
pDevice->CreateVertexBuffer (sizeof (CVertex) * num verts ,
D3DUSAGE7WRITEONLY | D3DUSAGE7DYNAMIC o
fvf , D3DPOOL75YSTEMMEM, &pVertexBuffer , NULL);

Outcome A: Hardware Vertex Processing Device

The vertex buffer is created in system memory and can be efficiently locked and written to. It should not
be read from. This vertex buffer can still be transformed and lit in hardware by the GPU although a
performance hit will result from the fact that the GPU has to retrieve the vertices from system memory.

Outcome B: Software Vertex Processing Device

The vertex buffer is created in system memory and can be efficiently locked and written to. It should not
be read from. This vertex buffer can still be transformed and lit in hardware by the GPU although a
performance hit will result from the fact that the GPU has to retrieve the vertices from system memory.

210

Vertex Buffer Read Statistics

We discussed earlier that we should avoid reading from a vertex buffer -- especially a static vertex
buffer. Below you will see some test results that indicate the performance of the different resource pools
for vertex buffers. This helps us to identify where the driver was placing the test (static) vertex buffers.
During our test we locked a vertex buffer containing 1089 vertices and read them back 10,000 times in
succession. We then unlocked the buffer. The test machine was an Athlon” 1.4 GHz with a geForce 3™
graphics card. Results were averaged over three tests:

D3DPOOL_DEFAULT (Hardware Vertex Processing) 235 80.1601 ms
D3DPOOL_MANAGED (Hardware Vertex Processing) 42.7314 ms
D3DPOOL_SYSTEMMEM (Hardware Vertex Processing) 42.7683 ms

D3DPOOL_DEFAULT

When we chose the default pool the vertex buffer was placed in video memory. The pointer returned
from the lock was aliased directly into video memory. Note the significant drop in performance; the tests
took over 23 seconds when the other two took much less than a second. This is because we are reading
directly from some type of video memory. On our test machine, the driver placed the vertex buffer in
video memory even if we did not specify D3DUSAGE_WRITEONLY and we were still able to read back
from the buffer. The read times were unaltered by this. This was also true when we used a dynamic
vertex buffer in the same pool. Each time, the vertex buffer was placed in video memory, which resulted
in a huge performance hit when reading. Note that other drivers may decide to place the vertex buffer in
system memory if the D3ADUSAGE WRITEONLY flag is not specified. This would speed up read
access but impair rendering performance.

D3DPOOL_MANAGED

In this case the vertex buffer was still placed in video memory by the driver, but the device object has
maintained a separate system memory copy of it. The meaning of this sentence is obscure. Lock calls
returned pointers to this system memory copy and reading was much faster. We see quite clearly that
reading from a managed vertex buffer is much faster than reading from a video memory vertex buffer.
Writing to a managed vertex buffer is typically slightly slower due to the fact that an update to the video
memory version must eventually take place. However, because the main vertex buffer is in video
memory rendering speed is not significantly compromised.

D3DPOOL_SYSTEMMEM

As expected, reading from a system memory vertex buffer is relatively fast. The results were the same as
reading from a managed vertex buffer because we are reading from system memory in both cases.
Unlike the managed pool however, rendering would take a performance hit since the GPU will have to
fetch the vertices over the bus from system memory.

We carried out the same read tests on a software vertex-processing device. Read times were also
comparably fast since the vertex buffer was always in system memory. They are not shown above since
the results are basically the same as reading from a D3DPOOL_SYSTEMMEM pool on a hardware vertex-
processing device.

211

3.2.4 Filling Vertex Buffers

Once the vertex buffer is created, we need to fill it with vertex data. This is typically done at application
startup for static vertex buffers. We call the IDirect3DVertexBuffer9::Lock method to retrieve a pointer
to the vertex buffer data area. After we have finished filling the vertex buffer we must remember to call
the IDirect3DVertexBuffer9::Unlock method to relinquish control of the vertex buffer back to the driver.
Every call to Lock must be matched with a call to Unlock. This is very important.

Note: As you will see in later lessons, all resources follow the same rules for locking and unlocking to
gain temporary access to the resource data area. You should never store the pointer returned from a
Lock method since it will be invalid once the resource is unlocked. Further, there is no guarantee that a
second call to the lock function on the same resource will return the same pointer. In fact, this is often
not the case.

HRESULT IDirect3DVertexBuffer9::Lock

(
UINT OffsetToLock,
UINT SizeToLock,
VOID **ppbData,
DWORD Flags

)

UINT OffsetToLock

OffsetToLock specifies an offset into the vertex buffer in bytes. Locking can be optimized in some
situations (especially with managed resources) if we specify only the region of the vertex buffer that we
wish to modify. For example, if you did not need access to the first ten vertices in the buffer but did
need access to the rest, you would want to pass in the value of 10 * sizeof(CVertex). This will return a
pointer to the 11" vertex in the vertex buffer. If you pass in zero, the pointer returned will point to the
start of the vertex data.

UINT SizeToLock

SizeToLock defines how many vertices you need access to, starting from OffsetToLock. If you pass in zero
to both the OffsetToLock and the SizeToLock parameters the entire buffer will be locked and the pointer
returned will point to the start of the data area. Otherwise, this value is used to lock only a section of the
vertex buffer. If you only needed access to the 11", 12", 13" 14™ and 15" vertices in the buffer you
would use:

OffsetToLock = 10 * sizeof(CVertex)
SizeToLock = 5 * sizeof(CVertex)

VOID **ppbData

This is the address of a pointer that will point to the vertex data when the call returns. It is a temporary
pointer that should be discarded once the resource has been unlocked. Usually you will pass a pointer to
your own vertex structure type and cast it to void for the call.

212

DWORD Flags
This will be a combination of one or more flags to aid the device in selecting an efficient locking
strategy. The possible values are:

« D3DLOCK DISCARD

« D3DLOCK NO DIRTY UPDATE
« D3DLOCK NO SYSLOCK

« D3DLOCK READONLY

« D3DLOCK NOOVERWRITE

D3DLOCK_DISCARD

This flag states that the application will write to the entire locked region. This allows the runtime
to discard the current vertex buffer and a pointer to a new buffer is returned immediately. The
discarded vertex buffer can continue to be used by the GPU while the new buffer is being filled.

This flag is only valid when locking a dynamic vertex buffer (or any other dynamic resource). It
cannot be specified during the lock call if your vertex buffer was not created with the
D3DUSAGE_DYNAMIC flag. Additionally, it is recommended that this flag only be used for buffers
created with D3DUSAGE_WRITEONLY.

D3IDLOCK_NOOVERWRITE

This flag promises the device that the application will not alter any of the vertex data currently in
the buffer. It could be used if you wanted to append vertex data to the end, or if you wanted to
read from the vertex buffer. Because you are promising that your application will not alter the
contents, the driver can lock the resource, return the pointer, and then continue to render from
this buffer knowing that the vertex data is still current. The driver does not have to wait for the
lock to return to continue processing any cached data. It is the most efficient locking flag.

This flag is only valid when locking a dynamic vertex buffer (or any other dynamic resource). If
you specify both D3DLOCK_DISCARD and D3DLOCK_NOOVERWRITE then D3DLOCK_DISCARD is
ignored and only D3DLOCK_NOOVERWRITE is used.

D3DLOCK_READONLY

This flag promises the driver that your application will not alter the data in the buffer or attempt
to add data to it. It will only read from it. This can be beneficial if a driver was to store the vertex
buffer in a non-native format internally for performance reasons. If this were the case then the
data would have to be uncompressed into a readable format for the application and then
recompressed after the lock has been released to update the vertex buffer. If this flag is specified
then the recompression is not necessary as the data has not changed.

The lock function will fail if this flag is specified when locking a vertex buffer created with the
D3DUSAGE_WRITEONLY flag.

D3DLOCK_NO_DIRTY_UPDATE

By default, a lock on a resource adds a dirty region to that resource. This flag prevents any
changes to the dirty state of the resource. Applications should use this option when they have

213

additional information about the set of regions changed during the lock operation. You will
probably not use this lock flag very often with vertex buffers.

D3DLOCK_NOSYSLOCK

The default behavior of a video memory lock is to reserve a system-wide critical section,
guaranteeing that no display mode changes will happen whilst the resource is locked. This flag
causes the system-wide critical section not to be held for the duration of the lock.

A lock operation of this type is typically pretty slow, but it does enable the system to perform
other duties, such as moving the mouse cursor. This option is useful for long-duration locks that
would otherwise adversely affect system responsiveness, such as the lock of the back buffer for
software rendering.

The following code example shows how to create a static vertex buffer to hold six vertices. In this code
CVertex is assumed to be an already defined vertex structure such as the one used in our demo
applications. pDevice is assumed to be a valid IDirect3DVertexBuffer9 interface. Error checking is
removed for readability.

// We will need a pointer to the vertex buffer interface

// In our example this is assumed to be a CGameApp class member variable
IDirect3DVertexBuffer9 * m pVertexBuffer;

// Declare a pointer to use for the lock.

CVertex *pVertex = NULL;

ULONG ulUsage = D3DUSAGE WRITEONLY;

// Create our vertex buffer (36 vertices (6 verts * 6 faces))
m pD3DDevice->CreateVertexBuffer (sizeof (CVertex) * 36, ulUsage,
D3DFVF7XYZ | D3DFVF7DIFFUSE,
D3DPOOL MANAGED, &m pVertexBuffer, NULL);

// Lock the vertex buffer and get ready to fill data
m pVertexBuffer->Lock(0, sizeof(CVertex) * 36, (void**)s&pVertex, 0);

// Front Face

*pVertex++ = CVertex(-2, 2, -2, RANDOM COLOR
*pVertex++ = CVertex(2, 2, -2, RANDOM COLOR
*pVertex++ = CVertex(2, -2, -2, RANDOM COLOR
*pVertex++ = CVertex(-2, 2, -2, RANDOM COLOR
*pVertex++ = CVertex(2, -2, -2, RANDOM COLOR
*pVertex++ = CVertex(-2, -2, -2, RANDOM COLOR

~.

. N

~.

~.

—_— — — — — —
~

~.

// Unlock the buffer
m_pVertexBuffer->Unlock();

This is a pretty straightforward example. Notice that we must call the Unlock function once we are
finished filling the buffer. You are allowed to nest calls to Lock/Unlock pairs but any calls to render the
buffer will fail if there are any outstanding locks on it. As you can see, the
IDirect3DVertexBuffer9::Unlock method takes no parameters and should be paired with a prior call to
[Direct3DVertexBuffer9::Lock.

214

3.2.5 Vertex Stream Sources

In order to render a vertex buffer with the fixed function pipeline, we must set it as the currently active
vertex buffer and make sure that the device knows the vertex format. As we did in our previous
applications when we were not using vertex buffers, we must call the SetFVF function and specify the
components in the vertices in our buffer using the flexible vertex format flags.

// Setup our vertex FVF code
m_pD3DDevice—>SetFVF(DBDFVF_XYZ | D3DFVF_DIFFUSE) ;

We tell the device to get the wvertices from our vertex buffer wusing the
IDirect3DDevice9::SetStreamSource function:

// Set the vertex stream source
m pD3DDevice->SetStreamSource(0, m pVertexBuffer, 0, sizeof (CVertex));

Several streams can be used to pass data from multiple vertex buffers. This can be useful if you wish to
store position components in one vertex buffer (in stream zero) and have the texture coordinates stored
in another vertex buffer (in stream two). In all of our applications, we will be using a single vertex
stream (stream zero).

Let us have a look at the definition of the IDirect3DDevice::SetStreamSource function:

HRESULT SetStreamSource

(
UINT StreamNumber,
IDirect3DVertexBuffer9 *pStreamData,
UINT OffsetInBytes, UINT Stride

)7

UINT StreamNumber
This is the number of the stream you wish to bind the vertex buffer to. We will be using stream 0 for our
applications.

IDirect3DVertexBuffer9 *pStreamData
The pointer to the interface of the vertex buffer you wish to bind to the stream.

UINT OffsetInBytes

Offset from the beginning of the stream to the beginning of the vertex data measured in bytes. To find
out if the device supports stream offsets, see the D3DDEVCAPS2_STREAMOFFSET constant in D3DDEVCAPS2.
You will usually set this value to zero (indicating no offset). Stream offsets are not supported by all
devices.

UINT Stride

The stride of our vertex format is the amount of bytes from the start of one vertex to the start of the next
vertex in the vertex buffer. Basically, this is the size of a single vertex.

215

3.2.6 DrawPrimitive

At this point we have created and filled a vertex buffer, set the FVF, and attached the vertex buffer to
stream zero. All that remains is to send the vertex data to the rendering pipeline. In the last chapter, we
did this by calling the DrawPrimitiveUP function. This time we will call the
[Direct3DDevice9::DrawPrimitive function instead. This tells the device to extract the vertices from the
vertex buffer currently bound to the vertex stream(s).

HRESULT IDirect3DDevice9::DrawPrimitive

(
D3DPRIMITIVETYPE PrimitiveType,
UINT StartVertex,
UINT PrimitiveCount

);

The DrawPrimitive function fires the vertices from the currently set vertex buffer into the transformation
and lighting pipeline (assuming they are untransformed vertices). We will set our world, view, and
projection matrices prior to calling the function just as we did in Chapter 2.

D3DPRIMITIVETYPE PrimitiveType

Describes how the vertices in the vertex buffer are to be rendered as primitives. Valid values are
D3DPT_POINTLIST, D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP, or
D3DPT_TRIANGLEFAN.

UINT StartVertex

Although our application can use many vertex buffers (one for each object in our scene if we wish), it is
often beneficial to store multiple objects within a single buffer. One of the reasons is that changing
vertex buffers (by calling IDirect3DDevice9::SetStreamSource) can be a moderately expensive
operation. If we store many objects within a single buffer we can minimize the number of vertex buffer
changes that our application needs to make. This parameter allows us to store the meshes in a single
vertex buffer sequentially and render one section at a time.

For example, we could have mesh 1 stored in the vertex buffer using the first 100 vertices and mesh 2
following mesh 1 in the vertex buffer with another 100 vertices. To render mesh 1, we would set its
world matrix and call DrawPrimitive with a StartVertex parameter of 0 and a PrimitiveCount with a
number such that its faces are rendered using the first 100 vertices. Then we could set the second mesh
world matrix and call DrawPrimitive with a StartVertex of 100 and a primitive count value such that it
renders the appropriate number of triangles for that mesh taking into account the D3DPRIMTIVETYPE
being used.

UINT PrimitiveCount
The number of primitives to render in this call. The value will be based on the primitive type:

e PointList (PrimitiveCount = NumberOfVertices)

e LineList (PrimitiveCount = NumberOfVertices / 2)
e LineStrip (PrimitiveCount = NumberOfVertices —1)

216

e TriList (PrimitiveCount = NumberOfVertices / 3)
e TriStrip (PrimitiveCount = NumberOfVertices — 2)
e TriFan (PrimitiveCount = NumberOfVertices — 2)

The next code snippet demonstrates rendering multiple objects where each mesh is stored in its own
vertex buffer. The vertex buffers are assumed to hold untransformed vertices, and each object in the
world is assumed to have a correctly initialized world matrix and a pointer to its own vertex buffer
containing the vertex data. All vertices share the same FVF code set at application startup. The vertex
data is arranged to be rendered as a triangle list.

// Clear the buffers
m_pD3DDevice—>Clear(O, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, OXFFFFFFFF, 1.0£, 0);

// Begin Scene Rendering
m pD3DDevice->BeginScene () ;

// Loop through each object
for (ULONG i = 0; i < NumberOfObjectsInWorld; i++)
{
// Set our object matrix
m_pD3DDevice->SetTransform(D3DTS WORLD, &m pObject[i].m mtxWorld);

// Set the vertex stream source
m_pD3DDevice->SetStreamSource(0, m pObject[i].m pVertexBuffer,
0, sizeof (CVertex)):;

// Render the primitives as a triangle list
m_pD3DDevice->DrawPrimitive (D3DPT TRIANGLELIST,

0,

m pObject[I].NumberOfVertices/3);

} // Next Object

// End Scene Rendering
m_pD3DDevice->EndScene () ;

// Present the buffer
m pD3DDevice->Present (NULL, NULL, NULL, NULL);

Notice that we call the SetStreamSource function during each iteration of the loop because in this
example each object has its own vertex buffer.

A more efficient approach might be to store all of the objects that share the same flexible vertex format
in the same vertex buffer. In this case, each object would need to store an index into the vertex buffer
where its vertices begin. We would then render that section by calling DrawPrimitive and specifying this
index as the StartVertex parameter. We would also be able to move the call to SetStreamSource outside
of the loop and set it once for those objects.

Before moving on to the next section, please open your workbook to Lab Project 3.1 and spend some
time examining the source code. This project addresses creating, filling, and rendering vertex buffers.

217

3.3 Index Buffers

In Lab Project 3.1, the GPU had to transform 36 vertices per cube when only 8 unique points existed. It
is certainly good that we were able to render the entire cube with one function call (versus our previous
applications), but this still seems extraordinarily wasteful. When a mesh has hundreds or thousands of
triangles (as will the next mesh we examine) the performance implications of all of this redundant
processing are clearly not good.

In this section, we will address the concern about data redundancy while preserving the preference for
rendering with as few function calls as possible. This solution will apply to all of our primitive types
(strips, fans, or lists), so our ability to store data in formats that suit our needs will also be preserved.
The technique we will use is called indexed primitive rendering. Beyond simply resolving the
redundancy issue, there is another important benefit we will see. Indexed rendering allows hardware to
utilize a small local memory cache for temporary vertex storage. This vertex cache can, under the right
circumstances, significantly improve application performance.

Rendering with indices is a straightforward concept. In addition to our vertex buffer, we will send the
device a second buffer filled with indices into that vertex buffer. This buffer is called an index buffer.
Each element in the index buffer is the index of a vertex in the vertex buffer. We essentially treat this
concept as two parallel arrays. One array (the vertex buffer) holds the building-block vertices. The
second array (the index buffer) holds references into the first array that are used select out the vertices
needed to construct triangles.

If we were rendering a triangle list using indices, then the first three indices in the index buffer would
describe the vertices in the vertex buffer used to form the first triangle. The next three indices would
describe the vertices in the vertex buffer that comprise the second triangle. And so on. This allows us to
reuse the same vertex in multiple triangles simply by specifying its index in each triangle that requires it.
This approach can completely eliminate the need for duplicated vertices when all vertex properties are
shared, and in turn eliminate redundant vertex processing.

5 Triangles

P2 P6
P4
P1
P7
P3
PS5

Figure 3.1

Fig 3.1 depicts seven unique position vertices used to build five triangles. If we wanted to render this list
of triangles as a triangle list, we would need to duplicate vertices in the vertex buffer because the device
expects three vertices for each triangle when using the D3DPT_TRIANGLELIST primitive type.

218

The vertex buffer would look like the list of vertices shown below:

Tri 1 Tri2 Tri3 Tri 4 Tri 5

VertexBuffer= P1,P2,P3, P2,P3,P4, P3,P4,P5, P4,P5,P6, P5,P6,P7

Positions P3, P4, and PS5 are all duplicated three times because they belong to three separate triangles.
Note that indeed we could render this example mesh as a triangle strip and eliminate the redundant
vertices without the need for indices, but since this is an indexing example, please ignore strips for now.
Under an indexed based scenario, the situation shifts to become:

Vertex Pool

VertexBuffer = P1, P2, P3, P4, PS5, P6, P7 = 7 vertices

This vertex buffer now serves as a pool rather than a triangle list. The triangle list is moved to the index
buffer:

Tril Tri2 Tri3 Tri4 Tri5

IndexBuffer=0,1,2 , 1,23, 2,34, 3,4,5 , 4,5,6

Each element in the index buffer describes the offset (zero-based) into the vertex buffer of the vertex to
be used in the correct location. For example, Triangle 4 references vertices P4, PS5, P6 using index
values 3, 4, and 5.

Note that although we have to allocate a new resource (the index buffer) we generally wind up saving a
considerable amount of memory. Indices are typically 16 bit values (although 32 bit values are possible
as well). In the case above we managed to eliminate 9 vertices from the vertex buffer. Consider even a
simple vertex structure that stored a position (3 floats) and a diffuse color (1 DWORD). That is 16 bytes.
For the 9 vertices we eliminated we reduced the buffer size by 144 bytes. Our 18 indices at 16 bits each
take 36 bytes of storage for an overall savings of 108 bytes. If the vertex format was more complex (as
will usually be the case) memory savings can start to add up.

More important is the point that using indices enables the GPU (if hardware vertex processing is
enabled) to cache vertices so that they do not have to be processed multiple times. This can improve
performance by an order of magnitude. In the above arrangement, vertices P1, P2 and P3 would be
transformed and lit first. When we render the second triangle, vertices P2 and P3 are already in the
vertex cache and do not have to be transformed and lit again. And so on for the other triangles. The
vertex cache is a pretty scarce resource that is implemented on nVidia® based cards as FIFO buffers. The
next table lists the cache size on the geForce™ series of cards.

219

NVidia Model Vertex Cache Size
geForce 10 Vertices
geForce 2 10 Vertices
geForce 3 18 Vertices
geForce 4 18 Vertices

The vertex cache is a valuable resource so it is important to order your indices so that triangles that use
the shared vertex are located close together in the vertex buffer. This ensures that when a vertex enters
the cache, other triangles can be rendered that use that vertex before it is flushed from the cache. If you
do not do this then there is a good chance that the vertex will have been removed from the cache by the
time the next triangle using it is transformed and lit. When this happens, that same vertex will have to be
pumped through the transformation pipeline again.

Important: The vertex cache is only available when using indexed primitives.

Let us look at one more example, just to make sure we have the concept fully nailed down. We return
once more to our favorite 3D shape:

Indexed Cube

P5 P6

Figure 3.2
In Fig 3.2 we have labeled only the seven vertices that are used by the six visible triangles making up
the three cube faces. Ignoring the back faces for now, we could create a vertex buffer for the six visible
triangles as:
Vertex Buffer=P1,P2,P3,P4,P5,P6,P7

The corresponding index list for the six triangles would be:

Tril Tr12 Tri3 Tri 4 Tri5 Tri6

Index Buffer=0,2,3 , 0,1,2 , 4,1,0 , 45,1 , 1,6,2 , 1,56 =18

220

We have represented six triangles as a triangle list using only seven vertices. Notice that the index count
is now what the old vertex count used to be for each primitive. For a triangle list, the number of indices
needed is NumTriangles * 3. But we are not limited to indexed triangle lists. We can use indices with
any D3DPRIMITIVETYPE. For example, take another look at the image we saw earlier:

P2 P6
P4
P1
P7
P3

If we wanted to render the above as an indexed triangle strip we would create the following vertex and
index buffers:

Vertex Buffer=P1,P2,P3,P4,P5,P6,P7

There is no change here, since the vertex buffer is just a vertex pool that will be referenced by the index
buffer to create triangles:

Tril Tri3

Note the consistency with the strips we saw in the last chapter. The first three vertices in the vertex
buffer describe the first triangle, and then every additional vertex created a new triangle by using the last
two vertices of the previous triangle. This same behavior carries over when using indexed triangle strips.

We can calculate the number of indices needed to render an indexed triangle strip as NumTriangles * 2.

This is identical to the way we calculated the vertices needed for a non-indexed triangle strip in Chapter
Two.

221

3.3.1 Creating Index Buffers

Like vertex buffers, index buffers are device resources that are derived from IDirect3DResource9. We
can create static and dynamic index buffers (using the same D3DUSAGE flags), lock and unlock for
read/write access, and we can set them as the active index buffer so that the device will use the index
buffer to fetch the indices when rendering. To create an index buffer we call the
IDirect3DDevice9::CreateIndexBuffer method.

HRESULT CreateIndexBuffer
(
UINT Length,
DWORD Usage,
D3DFORMAT Format,
D3DPOOL Pool,
IDirect3DIndexBuffer9 **ppIndexBuffer,
HANDLE* pHandle
)

UINT Length

This specifies the length (in bytes) that you wish your index buffer to be. There are two different index
formats you can use (16 or 32 bit). This format is specified in the DADFORMAT parameter. To create
an index buffer to hold ten 16-bit indices, the length of the buffer would need to be 10 * 2 = 20 bytes.

D3DUSAGE Usage

Identical to the vertex buffer usage options discussed earlier and the same rules apply: if you need to
lock the index buffer in time critical situations then make sure it is created with both the
D3DUSAGE WRITEONLY and D3DUSAGE DYNAMIC flags.

D3DFORMAT Format

There is a choice of two format types that are applicable to index buffers: D3DFMT INDEX16 or
D3DFMT INDEX32 (describing 16- or 32-bit indices respectively). Normally you will use 16-bit
indices. If you have more than 65,535 vertices within a single vertex buffer then you could use 32-bit
indices -- although even then it is not strictly necessary. As we will see later, we can use a special offset
parameter during the rendering call to address just this sort of situation. This is preferable to using what
is essentially twice as much memory and bus bandwidth during rendering.

D3DPOOL Pool

The implications for index buffers with regards to pool type are essentially the same as for vertex
buffers. If you use a managed index buffer, then you will not have to recreate the index buffer should the
device become lost. The driver will also try to place the index buffer in optimal memory. If you choose
the default pool, then the index buffer will also be put into optimal memory but will have to be recreated
by your application when the device is lost and restored. If you intend to read from the index buffer
often then you should place the index buffer in either the managed pool or system memory pool. If you
wish to create a dynamic index buffer then it must go in the default pool. Finally, you will want to place
the index buffer into system memory on a software vertex-processing device.

222

IDirect3DIndexBuffer9** ppIndexBuffer

This is where we pass the address of a pointer to an IDirect3DIndexBuffer9 interface. If the device was
able to create the index buffer successfully then this pointer will point to a valid IDirect3DIndexBuffer9
interface when the function returns.

HANDLE *pHandle
Reserved. This parameter should be set to NULL.

The next code snippet creates a static managed index buffer that would hold 36 16-bit index values.

IDirect3DindexBuffer9 * pIndexBuffer;

DWORD ulUsage = D3DUSAGE7WRITEONLY;

pDevice->CreateIndexBuffer (sizeof (USHORT) * m nIndexCount, ulUsage, D3DFMT INDEX16,
D3DPOOL_MANAGED, &pIndexBuffer, NULL);

Providing the function was successful, we can now lock the buffer using the returned interface. The
[Direct3DIndexBuffer9::Lock method should look familiar:

HRESULT Lock

(
UINT OffsetToLock,
UINT SizeToLock,
VOID **ppbData,
DWORD Flags

);

This lock method is exactly the same as the IDirect3DVertexBuffer9::Lock method. The first two
parameters allow us to lock only a region of the index buffer. If we pass zero for both of these
parameters then we will get back a pointer to the start of the index buffer data area. The third parameter
is where we pass the address of a pointer that will point to the data area should the lock be successful.
The final parameter can be any of the D3DLOCK flags that we discussed earlier when we discussed
vertex buffers:

D3DLOCK_DISCARD
D3DLOCK_NO DIRTY UPDATE
D3DLOCK_NO SYSLOCK
D3DLOCK_READONLY
D3DLOCK_NOOVERWRITE

Refer back to the section on vertex buffer if you have forgotten the benefits these flags can provide.
Once we have our index buffer, we can lock it as follows.

USHORT *pIndex;
pIndexBuffer->Lock (0, sizeof (USHORT) * m nIndexCount, (void**)&pIndex, 0);

Provided the lock is successful, we can use the returned pointer to place values into our index buffer.

*pIndex++
*pIndex++

0;
lg

223

Once we have finished placing the values into the index buffer, we unlock it.

| pIndex->Unlock () ;

3.3.2 DrawIndexedPrimitive

Rendering indexed primitives is a simple affair. First, we attach the vertex buffer to stream 0 as we did
before. Then we need to inform the device about the index buffer we wish to use. The IDirect3DDevice9
interface has a method called SetIndices that allows you to pass in an interface to an index buffer:

HRESULT SetIndices(IDirect3DIndexBuffer9 *pIndexData);

As with all device state changes, these buffers will remain active until they are changed. This means we
can set the vertex buffer, and set the index buffer and they will remain the current index and vertex
buffers used for rendering until they are unset.

Finally, we call the rendering function IDirect3DDevice9::DrawIndexedPrimitive:

HRESULT DrawIndexedPrimitive
(
D3DPRIMITIVETYPE Type,
INT BaseVertexIndex,
UINT MinIndex,
UINT NumVertices,
UINT StartIndex,
UINT PrimitiveCount
);

We will examine the parameters slightly out of order as it should make the concepts easier to
understand.

D3DPRIMTIVETYPE Type

This tells the device how the indexed primitives are arranged. In this case, indices define the triangles,
so the vertices can be stored in an arbitrary order so long as the indices reference them correctly given
the specified primitive type. The possible parameters here can be D3DPT POINTS,
D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT _TRIANGLELIST, D3DPT_TRIANGLESTRIP, or
D3DPT TRIANGLEFAN.

UINT StartIndex

This value describes the first index in the currently set index buffer that we want to start rendering with.
For example, if we had 100 indices and a StartIndex of 30, only the last 70 indices in the index buffer
would be used.

UINT PrimitiveCount

This informs the driver how many primitives you wish to render. There must be enough indices in the
index buffer to fulfill this request. For example, if we were rendering using a
D3DPT TRIANGLESTRIP primitive type and we wanted to render 100 triangles, there would need to

224

be 102 indices in the index buffer. If we were using a D3DPT TRIANGLELIST primitive type, there
would need to be 300 indices in the index buffer. If you have specified a Startindex value that is non-
zero, then there must be enough indices in the array from the specified offset in the index buffer to the
end of the buffer to fulfill the primitive count request.

INT BaseVertexIndex

This allows you to specify a value that will be added to all index values before they are used to index
into the vertex buffer. If we specified a base vertex index value of 1000, and our index buffer has three
indices in it with the values (6, 7, and 8), the driver would add 1000 to each index and fetch vertices
1006, 1007, and 1008. This allows you to use the same index values and map them to different areas of a
vertex buffer. It also solves the problem discussed earlier regarding 16- and 32-bit index values since
you can now use this value to offset beyond the 65,535 limitation imposed by 16-bit indices.

UINT MinIndex

This is the index of the first vertex used in the call. The BaseVertexIndex value will be added to this
value when rendering so this does not need to be taken into account at this time. If we have a three-
element index buffer consisting of indices (20, 21, and 22) and we had a BaseVertexIndex value of 200,
we would specify a Minlndex of 20. When transforming these vertices, the device will add the
BaseVertexIndex value to the MinIndex value such that it knows the minimum vertex used in the call is
actually 220.

UINT NumVertices

This is the number of vertices in the vertex buffer used in this call. Let us say for example that we have
an index buffer (10,11,12,13,14,15,16,17,18). Let us also say that we have set a BaseVertexIndex value
of 100 and we have a StartIndex value of 3. This is how it looks:

Index Buffer =10,11,12, 13,14,15, 16,17,18
StartIndex =3

BaseVertexIndex = 100

MinlIndex =13

NumVertices =6

The StartIndex value 3 means that the first three indices are skipped over and are not used in this call.
The section of our index that will be used is:

IndexBuffer =13,14,15, 16,17,18

BaseVertexIndex will be added to the indices so the device will use vertices:

VerticesUsed = 113,114,115, 116,117,118

Because we are skipping the first 3 indices, the minimum vertex index is 13 because this is the lowest

vertex index used in our index buffer. When rendering, the device will add the BaseVertexIndex value to
the MinIndex value and it knows that vertex 113 is the first vertex used.

225

Finally, we render two triangles from the remaining six vertices in the buffer. This creates triangle 1
from vertices 113,114,115 and triangle 2 from vertices 116,117, 118.

It is sometimes initially difficult to understand the need for MinIndex and NumVertices when it would
seem that the primitive count should ultimately describe how many vertices we are using. But this is not
strictly true because in our examples we have used vertices stored consecutively in our vertex buffer.
However you might have an index buffer with one triangle using the indices (0, 9, 350). In this instance,
we would have to set the MinIndex to 0 and the number of vertices used to 350.

When using a hardware vertex-processing device, the Minlndex and NumVertices parameters are
ignored. This is because the GPU has its own vertex cache, allowing it to very efficiently grab vertices
when they are needed and store them in this memory. When we are using a software vertex-processing
device however, the code can transform the vertices much quicker if it transforms a block of vertices in
advance. This is why we need to pass in the Minlndex and NumVertices parameters. It processes the
block of vertices in this range in one pass before it uses them for rendering.

This brings up an important optimization point. If, as in the above example, we had an index buffer with
indices (0, 9, 350) the software transformation engine would have to transform all 350 vertices in
advance even though we are only using three of them. This is why it is crucial to store vertices in the
vertex buffer in an ordered fashion. They should be grouped such that a single mesh’s vertices are all in
one section, another mesh in another section and so on. Although this is not as critical on a hardware
vertex-processing device, it is still important to store vertices in the vertex buffer in a localized manner
so that the GPU vertex cache is used to its maximum potential. The vertex cache has very limited
storage space so you should try to organize your indices in such a way that all triangles that share a
vertex are stored together in the index buffer.

In our lab projects for this lesson, most of these parameters are simplified by the fact we are rendering

using the entire contents of the index buffer and are not using a BaseVertexIndex value. Both
BaseVertexIndex and StartIndex can be set to zero.

226

3.3.3 DrawIndexedPrimitiveUP

It is worth mentioning that we do not have to use index buffers to use indexed rendering. In Chapter 2
we used the DrawPrimitiveUP function to render vertices using application managed arrays rather than
vertex buffers. Similarly (although we will not use it in the course), there is a function in the
IDirect3DDevice9 interface called DrawIndexedPrimitiveUP. It allows you to pass user defined pointers
to vertices along with an array of indices stored in normal application memory. It works just like the
DrawlIndexedPrimitive we studied in the last section so you should have no trouble understanding it
should you choose to experiment with it.

HRESULT DrawIndexedPrimitiveUP
(
D3DPRIMITIVETYPE PrimitiveType,
UINT MinVertexIndex,
UINT NumVertexIndices,
UINT PrimitiveCount,
const void *pIndexData,
D3DFORMAT IndexDataFormat,
CONST void *pVertexStreamZeroData,
UINT VertexStreamZeroStride

3.3.4 Indexed Triangle Strips

It is now time to examine some geometry that is a little more challenging than the cubes we have been
using to date. In Lab Project 3.2 we are going to build and render a terrain (an outdoor landscape) using
vertex and index buffers. The terrain will be rendered using indexed triangle strips. If you are unfamiliar
with terrains, quad grids, and height maps, this would be a good time to open your workbook and read
the first few pages of discussion for Lab Project 3.2. This will give you some foundation as to how we
will create a terrain and some important performance issues to consider. Once you have finished reading
these pages, please continue with the next section in this text before beginning to examine any code.

3D graphics cards often have a penchant for triangle strips (and especially for indexed triangles strips).
They can typically process and render indexed triangle strips faster than any other primitive type.
Certainly it would be preferable if we could store and render each terrain submesh as a single triangle
strip using one call to DrawIndexedPrimitive. This will be much faster than rendering one row of quads
at a time. Although, if you remember how strips work, you might be wondering how you could render
an entire mesh with multiple rows of quads as a single strip. For example, rendering the first row of a
strip would seem easy enough, but once we get to the end of the first row, how could we tell the device
not to draw a connecting triangle between the first and second row, and then continue rendering the
second row as normal? The answer is that you cannot; at least not quite in that way. But you can use
something known as a degenerate triangle and this will help you accomplish that goal.

Let us first look at how the vertices will be arranged in the vertex buffer. The following diagram shows
the vertices in world space, with the origin of the coordinate system at the bottom left vertex. We are

227

looking down on the vertices from above with the increasing Z-axis going up the screen. In the diagram
the vertices are arranged in 3 rows of 6 vertices (a 6x3 mesh if you like). In our application each mesh
will be similar to this but will be arranged as 17 rows of 17 vertices.

vi3 vidg v1l5 viH vi7 v1s
+7
w7 vB vo w10 viil v1z2
Origin
vl w2 V3 v v5 vh

As we read in each row of the image, the vertices are arranged in rows stretching out from the origin
along both the positive X- and Z-axes. The vertex buffer really is as simple as that. Each mesh vertex
buffer will be a 17x17 pool of vertices arranged in rows.

The index buffer is going to be a little more complicated. We want each group of four vertices to form a
quad (2 triangles). In the above example, the middle row of vertices will be reused in both the first and
second row of quads. This is where indices pay off. Without them, each row of quads would need its
own duplicate vertices and that would significantly increase the terrain vertex count.

The following image shows one way to connect the vertices into quads to create a piece of terrain. In the
following diagram, each quad has its two triangles colored differently so that we can better see the
triangle count and arrangement:

You can see that vertex v8 is used in four separate quads (and specifically in six triangles). Because we
are using indices we do not have to duplicate this vertex six times; we simply have to make sure that
each triangle in the index buffer that uses it has its index.

228

We will now need to order the indices in the index buffer so that we create an indexed strip for
rendering. Given what we already know about strips, it is easy to see how the first row of indices could
be ordered. This is shown in the following image. The run of indices will start at the vertex vl and move
right along the bottom row.

vi3 vid vl5 w1t vl7/ vlg
v7 v8 vO v10 viil vi2
N]
I
A F A& 'y
N
vl v2 v3 v v vO

Recall that in the case of a triangle strip primitive type, the first three indices define the first triangle and
every additional index will define a new triangle. The last two indices from the previous triangle are
used along with the new index to define the next triangle.

Vertex Buffer= vl ,v2,v3,v4,v5,v6,v7,v8,v9,v10,vll, vl2
Since indices are zero based, vl = index[0] and v7 = index[6] and so on.
Index Buffer =0,6,1,7,2,8,3,9,4,10,5,12

So the first three indices will define the triangle (v1, v7, v2) and the fourth index will create triangle (v7,
v2, v8). The fifth index will define triangle (v2, v8, v3) and the sixth index will define triangle (v8, v3,
v9). These six indices have defined two quads (four triangles) of our terrain. The pattern continues for
the rest of the row. The pattern here is that for each pair of rows, we add horizontally matched pairs (a
vertex from each row). The bottom row of quads in the above diagram could have the indices built in
code like so:

for (int a=0; a< NumberOfVerticesInRow; a++)
{
AddIndexTolndexBuffer (a);
AddIndexTolndexBuffer (a + NumberOfVerticesInRow);

}

At the end of this loop the first row of quads would be complete. In the above code, a is the index of the
vertex in the bottom row in the image and a+NumberOfVerticesInRow is the index of the vertex in the
next row.

229

Of course we know that when we pass the array of indices as a strip, each triangle is supposed to be
connected. This means that we cannot just get to the end of the current row and start the next row or the
result would be a large triangle stretching right across the terrain:

vi3 vid vl5 v16 vl/ vld
v7 | !u8| |vo| [vio] [vii| |u12

B B
4 1 ‘{‘ T L [
vi \uz u|3 v4 N5 | | ve

The final three indices (10, 5, and 11) in the first row describe triangle (v11, v6, v12). Remember that
each new index added generates a new triangle using the last two indices from the previous triangle. So
adding the index of vertex v7 (index 6) would do the following:

Indices before vertex v7 has its index is added

10,5,11

Indices after v7 has its index is added

5,11,6

This result is the unwanted triangle stretching across the terrain. Things get worse when you note that
we add two vertices from two rows at a time (the quad top and quad bottom vertices). So, if we then
added the index to vertex v13, another unwanted triangle would be formed (the blue triangle in the
image below).

Indices after vertex v13 had its index added:

11,6,12

230

vl7 vls

-
-l
k

Y
i)

7]« &m J a[v12
& \f [‘\ i_, L1.
‘u«z} NSl lv6

vl V2 vl
To solve these problems we will start the second row from the opposite side so that the terrain strip is
indexed using a snaking pattern. The first row has its triangles indexed from left to right, then the next
row has its triangles index from right to left, then left to right, and so on.

it

There are a few items to consider. First, we still need a way to move up to the next row without a
triangle being rendered. Second, we recall that when we use strips, the device expects every odd triangle
in the strip to have a counter clockwise winding order and every even triangle to have a clockwise
winding order. If at any time an even triangle has a counter clockwise winding or if an odd triangle has a
clockwise winding order, the device interprets this as a back facing triangle and culls it. So let us say
that the last triangle in the first row was represented by indices to v11, v6 and v12. This is an odd
triangle and is counter clockwise and therefore it is interpreted as a valid triangle facing the camera. We
will want to start the next row where the first triangle would be constructed from indices to vertices v12,
v18, and v11.

vl

While this looks like it should solve the problem, it actually does not. Let us examine why:
That last triangle in the first row has indices to v11, v6, and v12. The next triangle we need is at the end

of the second row made from indices to vertices v12, 18, and v11. But this is impossible because we add
one index at a time and each new index creates an entirely new triangle.

231

So at the end of the first row, we have indices to vertices:
(vll, v6, v12)

Since v12 is the ideal starting index of our first row two triangle, we might try to add an index to v18
next so that the index buffer looks like this:

(v6, v12, v18)

If you look at the diagram you will see that we have just created another triangle that we certainly do not
want to render. So we need a way to move from triangle (v11, v6, v12) to (v12, v18, v11) without
drawing intermediate triangles.

Degenerate Triangles

A degenerate triangle is a triangle that has no volume. It is invalid for rendering and is quickly rejected
by the device. They represent the solution to the problems discussed in the last section. We will use
degenerate triangles to move from one row to the next without having to draw inappropriate triangles.
We do this by inserting one index in such a way that it creates three degenerate triangles. After that our
index buffer will be in the right order to start ordering the next row.

A classic example of a degenerate triangle is one where all of the indices reference the same vertex (or a
vertex in the same position). The triangle in this case would be infinitely small and would be rejected by
the pipeline. Another example would be when a triangle has two vertices that are the same. This means
that there are only two unique vertex positions forming the triangle (essentially describing an infinitely
thin line). Although we have primitive types that we can use to render lines, when we describe a triangle
as a line in this way, it is rejected because it has no volume.

We will use both of these types of degenerate triangles to aid us in moving from one row to the next.
Without degenerate triangles we would not be able to render the submesh as a single strip using a single
call to DrawIndexedPrimitive. Degenerate triangles like this are quickly rejected so they carry very little
performance penalty, if any. We will insert an extra index at the start of each new row (except the first
row), which will actually cause three degenerate triangles to be created. Let us have a look how this
works.

The following diagram shows the final quad of the first row. The row of quads is indexed left to right by
adding a vertex from each row. For example, we add indices for v4 and v10, then v5 and v11, followed
by indices for v6 and v12. The final valid triangle on that row is made from indices using vertices v11,
v6, and v12.

232

V17 V18

——Uﬂ{ B2

i"“-—-— Last Tri in First Row
vil,vbo ,vl2

AN
Vs Vs

At this point we have reached the end of the row and can move up and start adding the pairs of vertices
for the next row of quads (consisting of vertex pairs in rows 2 and 3). For example, vI2 and v18
followed by v11 and v17, and so on. However, before we start the second row, we add the first index
twice. In our example, this means we add an extra index to vertex v12 before we start adding the indices
for the second row. Remember that the index list almost works like a FIFO buffer. The last three indices
added are used to render the current triangle. This changes the index buffer so that a new triangle is
constructed as follows.

V17 V18

Vi1 V12

Degenerate 1
(w6, w12, vl2)

Vo VO

Because the last triangle was (v11, v6, v12), adding an extra v12 at the start of the next row creates a
triangle where two to of its indices reference the same vertex. This is rejected by the pipeline and it is
not rendered.

Now we can start constructing the second row. First we add the first index of the first vertex (v12). We
now have a situation where the last three indices in the index buffer are now all the same. This creates
another degenerate triangle as shown below.

233

V17 V18

Vil viz2 | Degenerate 2
(viz,vl2,vi2)

V5 Vo

It is now time to add the index to the second vertex from quad row two, which will be the top of the
quad in row 3 (v18). This creates another degenerate triangle, since the last three indices now looks like
this:

V17 Vi3

Degenerate 3
(viz,vl2,vi8)

Vi1 V12

V5 V6

At this point the whole thing has sorted itself out and we can carry on adding the vertices for the row as
normal. Next we add an index to vertex vl1 and we now have our first proper triangle for row 2. The
last three vertices in the index buffer are now v12, v18, and v11. Adding an index to v17 creates the
second triangle (v18, v11, v17) and so on until we reach the end of the row.

V17 V18
// New Row
(viz,vi8,vil)
rd
Vil V12
V5 V6

Take some time to reread this section before continuing if you are still not sure how this works. Try
getting some paper and a pencil and sketch it out for yourself.

234

In terms of writing code, this is all very simple. For every row but the first, we add its first vertex index
twice instead of just once. This will generate the three degenerate triangles and allow us to shuffle the
indices in such a way that we can move to the next row without error.

Conclusion

We have just studied some of the most important aspects of 3D graphics programming with DirectX.
We learned how to render using vertex buffers as well as indexed primitives. We learned about
efficiently creating device resources and proper use of memory pools. We also learned how to index and
render rows of quads as a single triangle strip using degenerate triangles. And we learned how to
efficiently lock and fill dynamic buffers.

There were a few functions that we did not cover in our second demo relating to the way the camera
works. These functions will be examined in great detail in the next chapter.

You can find a wealth of information on vertex buffers and index buffers and how to use them
efficiently at the nVidia website www.nvidia.com.

235

Chapter Four:

Camera Systems

237

Introduction

In Lab Project 3.2 we concentrated on the rendering code for a terrain demo. But that application also
allowed the player to maneuver around the terrain in one of three camera modes: first person, third
person, or spacecraft. This allowed us to pitch, roll, and yaw the camera as well as strafe and lean it from
side to side. We included a limited gravity system that forced the camera fall to the ground when it
found there was no ground underneath it, and a simple friction model that allowed for smooth movement
and direction changes over the terrain. In this chapter we will discuss that camera system, as well as how
to create your own camera management system. By the time we are finished you should have a thorough
understanding of how to work with the view matrix at a low level and you will be able to create almost
any camera system you need for your games.

4.1 The View Matrix

In Chapter 1 we learned to think of a camera in terms of an inverse transformation that repositions scene
geometry in such a way that the relationship with the origin of the world coordinate system reflects the
relationship the geometry would have with the local position and orientation of the camera.
Repositioning the geometry in this way means that when we render the scene, we are essentially
rendering it from the world origin as if we were looking through the lens of a virtual camera positioned
there. To accomplish this, we need to apply the opposite rotations and translations we applied to our
camera to every vertex in our world.

This is intuitive when we think of what is occurring. We know that we can take any vertex P from
model space and produce a new vertex P’ in world space by applying a series of transformations using
matrix multiplication. The relationship between these two vertices is represented as:

P’ =P * Mworia
Note that the algebraic inverse of this equation describes the reverse relationship. To solve for P:

(1 / Mworld) PP=P* (1 / Mworld) Mworld

P= N[world-l P’
Mworld'1 is the inverse of matrix Myena. When we multiply the world space point P’ by this matrix, we
get back the original local space point P as expected. So we can say that Myena™ undoes the effect that
Myoria had on P. Again this makes sense since we used one to cancel out the other in the equation above

so that P was left alone on one side of the equation.

More generally, if matrix M holds a series of equations that transform points from coordinate space A
into coordinate space B, then its inverse M™ will hold equations that reverse the relationship -- taking

238

points from space B into space A. If space A is the local coordinate space of entity X, then any points
that exist in space B can enter into local space A simply by multiplying them by X’s inverse matrix.

This is the fundamental idea behind any camera system. When we render a scene, we wish to do it with
respect to the camera through which the scene is viewed. The goal then is to transform every vertex in
the world into the local space of the camera. If we build a world matrix for the camera based on user
input, that matrix tells us where the camera is in the world and how it is oriented with respect to the
world axes. To get some other object in the world into the local space of the camera for the purposes of
rendering, all we need to do is multiply its world space vertices by the inverse of that camera’s world
matrix (which we call the view matrix).

An alternative way of thinking about it is that we are actually undoing the effect of moving the camera
around and bringing it back to the world origin such that it looks down +Z (just as it does in its own
local space given a left-handed coordinate system). As expected then, any matrix multiplied by its
inverse returns the identity matrix:

I=M*M"'

The rows and columns of an identity matrix perfectly describe the primary 3D coordinate system. Thus,
it is as though we never moved or rotated the camera at all.

Creating a virtual camera is usually done by writing a class that exposes methods such as
Camera::MoveForward and Camera::PitchUp and Camera::Strafe, etc. The camera class has the job of
maintaining the view matrix (the camera local space matrix), and rebuilding it to comply with calls to its
methods. This class need not only be a view matrix manager. It is often useful to let it manage the
projection matrix as well. This way we can expose functions to change the field of view and set the near
and far clip planes.

Before we start writing any code, let us first examine in more detail some of the view matrix properties
introduced in Chapter 1. We want to understand exactly why inverse matrices look and work the way
they do. In particular, we want to see why storing the right, up, and look vectors of the virtual camera in
the columns of the view matrix -- rather than the rows as we do in a world matrix -- transforms vertices
from world space to view space. We will also examine why the fourth row of the view matrix has to be
calculated using three dot products instead of simply negating the world space position vectors of the
camera.

In Chapter 1 we learned that a standard world matrix contains the orientations of an object’s local
coordinate system as well as the current position of that system origin in the world coordinate space:

World Matrix

Right Vector.x Right Vector.y Right Vector.z 0
Up Vector.x Up Vector.y Up Vector.z 0
Look Vector.x Look Vector.y Look Vector.z 0
Position.x Position.y Position.z 1

239

The following table shows that the view matrix contains three vectors describing the inverted local
coordinate system of the camera and a vector in the fourth row which contains an inverse translation
based on the camera position. This translation will move vertices in such a way that their resulting
positions will share a relationship with the world origin that previously reflected their relationship with
the camera (world) position.

View Matrix

Right Vector.x Look Vector.x 0
Right Vector.y Look Vector.y 0
Right Vector.z Look Vector.z 0
- (Position ® RightVector) | - (Position® UpVector) - (Position ® LookVector) | 1

The Right vector is stored in the first column of the matrix and describes the orientation of the camera
local space X axis. The second column contains the camera Up vector which describes the orientation of
the camera local space Y axis. Finally, the Look vector describes the orientation of the camera local
space Z axis (Fig 4.1).

Cameras Local
Coordinate System

-Y
Figure 4.1
The vectors in the view matrix describe the camera local coordinate system axes along with relative

positional information that we will discuss momentarily. If we take a view matrix and invert it, we
would get back a world matrix describing the cameras location and orientation in the world (Fig 4.2).

240

View Space
Coordinate System

World Space
Coordinate System

Object In World Space o

+Right (X)

Figure 4.2

Fig 4.2 shows how the camera object might be drawn as a mesh using the inverse of the view matrix.
Remember that the view matrix is already inverted, so inverting again it results in a standard world
matrix. If we wanted to draw the camera as a mesh object, this is the matrix we would use.

We know that to draw the sphere, we want its coordinates to be relative to the camera local system. As
discussed, to get an object A into the local space of another object B, we need only multiply all of A’s
vertices by the inverse of B’s world matrix. Since B in this case is our camera, we need only invert its
world matrix and we are all set. This inversion produces what we commonly refer to as the view matrix.
Fig 4.3 shows the sphere object after it has been transformed into view space. Notice that the camera is
at the system origin and that the sphere is still directly in front of the camera, as it was in world space.
The relationship is perfectly maintained when the sphere moves into camera local space.

Transformed into
View Space

241

4.1.1 Vectors, Matrices, and Planes Revisited

In order to understand why multiplying a vector with a matrix transforms that vector from one virtual
space to another, we revisit the subject of vectors and matrices and discuss another way of thinking
about them -- which you may or may not already be doing at this point. For the purposes of this
discussion when we refer to a vector, we are talking about a position vector, although this concept
applies more generally.

Note: To be clear up front, we are going to take a very informal approach to the mathematics in this
chapter -- as we have tried to do all along. This will make the concepts as reader-friendly as possible for
those who are not so mathematically inclined. We hope that those of you who are schooled
mathematicians forgive the liberties we take with some of the subject matter. If you require a more
precise and formal understanding of vectors, vector spaces, subspaces, etc. a linear algebra course would
be required.

Although we discuss many different spaces (model space, world space, and view space) we are, in a
sense, ultimately dealing with a single mathematical space. In this space we can define locations using a
coordinate system (left handed in our case) where the X axis runs from left to right, the Y axis runs from
bottom to top and the Z axis runs from back to front. This is the same coordinate system used to
characterize our data mathematically whether we are said to be in model space, view space, or world
space. All of these spaces are essentially subsets of the single coordinate space, and in each, 3D vectors
are used represent a location. For example, a vector of (10, 20, 30) represents a position that is offset
from the system origin along the X axis a distance of 10, offset along the Y axis a distance of 20 and
offset along the Z axis at a distance of 30.

A vector belongs to a particular subspace based on our selection of system origin and orientation. When
we are talking about a model space vector for example, we are using the vector as a position relative to
the center of the mesh. When we transform the mesh vertices into world space, all we have really done
is simply moved the vertex to a new position in the same mathematical coordinate system. Now the
vertices of the mesh are not centered about the origin of the local coordinate system anymore (although
they still could be) and are instead centered about some other location in the world that is assumed to be
the object’s world space position. In world space, the origin of the coordinate system is now assumed to
be the origin of the entire world and all vectors are now defined relative to it. In a sense, the vectors
have simply had their positions altered. When we apply the view space transformation to the vertices of
an object to take it from world space to view space, all we have done is once again reposition the
vertices in the same mathematical space such that the cameras position is assumed to be at the origin of
the system. All vertex positions have been recharacterized relative to this new origin. Therefore, all
these transformations are doing, however complex they may seem at first, is moving around some
collection of vertices within the same mathematical 3D representation. With each transformation, the
origin is assigned a new meaning and the positions reflect new distance values relative to that origin.
This is a very important point.

Up until now, we have thought of vectors in one of two ways. We have thought of a vector as a set of
offsets describing a position that is some distance away from the origin of the mathematical space along
the X, Y, and Z axes by the amounts described in each vector component. We have also thought of a
vector as describing a direction and magnitude from the origin of that mathematical space. That is,

242

traveling in the direction of the vector from the origin of the coordinate system for the length of the
vector will bring us to that same location in the 3D world. Whether we think of a vector as a collection
of offsets or as a direction and a magnitude they both still describe the same location in 3D space.

There is yet another way that we can think of vectors which is especially useful when trying to
understand transformations. Hopefully this will allow us to perceive transformation matrices in a much
more intuitive way.

For the time being, we will forget all about the concept of world, view, and model 1 O O O
space and simply think of a more general mathematical space. We will call it 3-space
because it has three dimensions. We will use a coordinate system in 3-space to find O 1 O O
our way around. In this system, the x axis will run from right to left, the Y axis from
bottom to top and the Z axis from back to front. These system properties have been O O 1 O
shared by all of our relative spaces so far: model, view and world. a b C 1

We can see that the columns of the upper 3x3 portion of the matrix on the right contain unit vectors. The
first column contains a vector that describes the orientation of the 3-space X axis. The second column
contains a unit length vector describing the orientation of the 3-space Y axis. Finally, the third column
contains a vector describing the 3-space Z axis. When we multiply a vector with a matrix, we know that
we perform a dot product between the input vector and each column of the matrix. The resulting vector’s
X component is the result of the dot product between the input vector and the X column of the matrix.
The Y component of the resulting vector is the result of performing a dot product between the input
vector and the second column of the matrix. And of course, the resulting vector’s Z component is
calculated by performing a dot product between the input vector and the third column of the matrix.
Now, it may not be obvious at this point why multiplying the input vector with these three columns
would transform it from one space to another. But let us start thinking about the unit length vectors
stored in the columns of a transformation matrix in another way.

In the lecture for Chapter 1 we discussed the plane equation and how it could be used to classify a point
with respect to a plane. The common form of the plane equation is:

Ax+By+Cz+D = 0

If the result is zero, the point is said to lie on the plane. Otherwise the result is some distance from the
point to the plane where a positive value means the point is in front of the plane and a negative value
means the point is behind the plane.

X, y, and z in this equation are the components of the point P that we are classifying. A, B, and C are the
3-space components of the plane normal. Finally, D describes the plane’s distance from the origin. That
is, this is the distance you would have to travel from the origin of the coordinate system, following the
direction of the plane normal until you intersected the plane. When a plane passes through the system
origin then D = 0. As such, only the normal will be needed to represent a plane of this type and the
equation can be simplified:

Ax+By+Cz =0

243

This calculation should look familiar since it is just a dot product between the vector and the plane
normal.

We noted that the upper 3x3 section of the matrix above contained unit vectors. We can now think of
each of these three vectors as being normals for three planes that pass through the system origin.
Remembering that plane normals are always perpendicular to the plane, we can see that in the case of an
identity matrix, the X column of the matrix represents a plane normal of (1, 0, 0). This describes a plane
that passes through the origin of the coordinate space -- the YZ plane. The second column represents the
normal of the 3-space XZ plane that passes through the origin. Finally, the third column represents a
normal that describes the 3-space XY plane, once again that passes through the origin.

In Fig 4.4 we clearly see the three planes described by the 3x3 identity matrix. As these planes have zero
distances (D = 0), they pass through the origin of the coordinate system.

Y Axis (0,1,0) :|XZ Plane Normal |
(Up Vector)

XY Plane
YZ Plane

Z Axis (0,0,1) =/ XY Plane Normal |
(Look Yector)

Vector (10,12, 15)

X = 10 units from YZ Plane
Y = 12 units from XZ Plane
Z = 15 units from XY Plane

XZ Plane X Axis (1,0,0) = YZ Plane Normal |

(Right VYector)

Figure 4.4

When we multiply a vector by a matrix, we can see that each dot product is simply classifying the input
vector against each of these three planes. When we perform the dot product between the input vector and
the X column of the matrix, we are calculating the distance from the input vector to the YZ plane. This
distance becomes the X component of the resulting vector. When we multiply the input vector with the
second column of the matrix, we are classifying the point against the XZ plane and the resulting distance
becomes the Y component of the output vector. Finally, the dot product between the input vector and the
third column calculates the distance from the input vector to the XY plane, which becomes the resulting

244

vector’s Z component. So we can think of the transformed 3D vector as being a collection of three
distances that describe a location relative to the YZ, XZ and XY planes respectively.

The vector (10,12,15) in Fig 4.4 describes a location that is a distance of 10 units from the YZ plane
along the YZ plane normal, 12 units from the XZ plane along the XZ plane normal and 15 units from the
XY plane along the XY plane normal. Now we see why an identity matrix creates an output vector
identical to the input vector. If we define a vector as a set of distances relative to the world aligned
planes and the identity matrix contains these same world planes, we get back these same distances in our
vector components.

To better understand this, let us break down the vector/matrix multiplication process so that we can see
the vector being multiplied with each column individually. First, we will see an example of multiplying
the input vector with the X column of the matrix. This produces a distance that is used as the X
component in the resulting vector. Note that Fig 4.5 labels the first column of the matrix as being the
Right vector. You are probably thinking that this is only true for an inverse matrix but that is not quite
so. For example, a world matrix stores the object’s right vector in the first row rather than the column of
the matrix as we have seen already, but the right vector of the coordinate system is always contained in
the first column. This will become clear in a moment.

Fig 4.5 shows how the X component of the X = RightVector # PositionVector

resulting vector frpm a Vectqr/matrix multiply is i — ?f;f'&'fe.F?fS,f;’iig?" AL T DT
the result of classifying the input vector against x = (1*10) + (0*12) + (0*15)
the YZ plane. This distance is calculated by x=10
performing a dot product between the input

vector and the YZ plane normal. Always 2 Axis
remember thgt when we perform a.dot product YZ Plane
between a unit vector and a non-unit vector, we
can think of the non-unit vector as the point in
space and the unit vector as a normal describing
a plane that passes through the origin. The dot
product can be understood in terms of the plane
equation in the instances when the plane
distances are zero. You will find this quite a
useful way of thinking about the dot product.

(10,12,15)

Length = 10

Figure 4.5

Fig 4.6 shows how the Y component of the resulting vector is calculated as the distance between the
input vector and the XZ plane normal stored in the second column of the transformation matrix.

245

¥ Asis (0,1,0)/

Calculating the World Space
(10,12,15) Y Component of a Vector

¥ = UpVector # PositionVector

Y = Distance From Position Vector to XZ Plane
¥ = (0,1,0) #(10,12,15)

¥ = (0%10) + (1*12) + (0*15)

Y =12

Figure 4.6

Once again, we refer to the second column of the transformation matrix as the Up vector of the
coordinate system for which the input vector is going to be redefined. This does not change the fact that
the second row of a world matrix contains an ebject’s Up vector.

Finally, Fig 4.7 shows the result of calculating the Z component of the transformed vector. It is the
distance from the input vector to the XY plane along the XY plane normal. Note again that the matrix in
this case is an identity matrix.

Calculating the World Space

XY Plane Z Component of a Vector

Z = LookVector # Position Vector

Z = Distance From Position Vector to XY Plane
Y Axis Z2=(0,0,1) #(10,12,15)

Z = (0*10) + (0*12) + (1*15)

Z=15

(10,12,15)

£ Axis
X Axis
Figure 4.7

Thinking of vectors as being a set of distances and matrices as containing a set of planes that pass
through the origin of a coordinate system really does allow us to visualize transformations from one
space to another in a more robust way. We now know that when we multiply a vector with a matrix we

246

are in fact classifying the vector against three planes to create a new vector. When we apply a rotation to
the matrix, we are in fact rotating the Right, Up, and Look vectors in the columns of the matrix, which
means, we are in fact rotating the planes themselves. When we have a rotated matrix such as this,
multiplying it with the input vector -- which has its distances defined relative to the three world-aligned
planes -- redefines the vector such that its distances are now relative to the rotated planes stored in the
matrix. We will now go on to see exactly what this means by looking at the view space transformation.
This will hopefully put all of the pieces into place.

The View Space Planes

We now know that an identity matrix contains three planes aligned with the 3-space X, Y, and Z axes. If
our camera has been rotated, then its Right, Up, and Look vectors will no longer be aligned with the
world coordinate axes and the planes stored in the view matrix must have rotated also.

View Matrix

Right Vector.x Look Vector.x 0
Right Vector.y Look Vector.y 0
Right Vector.z Look Vector.z 0
- (Position ® RightVector) | - (Position ® UpVector) - (Position ® LookVector) | 1

Looking at the upper 3x3 section of the view matrix then, we can say that the first column of the view
matrix contains the normal of the camera’s local YZ plane, the second column contains the normal of
the camera’s local XZ plane and the third column represents the normal of the camera’s local XY plane.

Let us consider a quick example. We start with a camera that is perfectly aligned with the world X, Y,
and Z axes. We now want to rotate it left around the world Y axis by an angle of 45 degrees. A positive
angle will always rotate an object clockwise about the rotation axis from the perspective of looking from
the positive end of the axis towards the negative end of the axis -- referred to as ‘looking down the axis’.
We can build a matrix that yaws the camera left by 45 degrees by creating a standard rotation matrix:

D3DXMatrixRotationY (&mtxViewMatrix, D3DXToRadian (-45));

This call produces the following matrix:

Rotation

0.707107 0 0.707107

el k=l (=] fan)

Because we will wish to use this matrix as a view matrix, we do not need a matrix that will rotate an
object left 45 degrees. Instead we need an inverted matrix that will rotate all of the vertices in our world
right 45 degrees; this will create the appearance that our camera has rotated left. The above matrix is the
camera’s world matrix. If we were rendering the camera as a mesh, this matrix would rotate the camera

247

mesh left 45 degrees — as it would any other mesh (a matrix is a matrix — it has no particular affiliation
with a specific object). Inverting a matrix consists of transposing (swapping the rows and the columns)
the upper 3x3 portion of the matrix and adding an equation (discussed momentarily) to calculate the
fourth row of the matrix. We note that the relationship between the inverse and the transpose does not
hold true in all cases and in fact, some matrices are not invertible at all. But when we are dealing with
orthogonal unit vectors as we are with our linear transformation matrices, this will always work. Again,
we refer you to a more serious study of linear algebra for the precise rules and properties.

For now our camera is assumed to have a position of (0,0,0) because the fourth row of our matrix is
zeroed out. The inverted matrix is:

D3DXMatrixInverse (&mtxViewMatrix, NULL, &mtxViewMatrix);

Inverse Rotation

0.707107 0 -0.707107 0
0 1 0 0
0.707107 0 0.707107 0
0 0 0 1

Inverting a matrix is not a cheap operation. Since all we are doing is negating the rotation angle, we
could generate the same view matrix simply by flipping the sign of the angle passed into the function:

D3DXMatrixRotationY (&mtxViewMatrix, D3DXToRadian (45));

We now pass a positive angle instead. The resulting rotation matrix will be the same as if we had passed
in the negative angle above and then inverted the result. This is actually quite an important point,
because we can apply rotations to the view matrix simply by building a rotation matrix and multiplying
it with the current view matrix to achieve an additive rotation. The previous discussion had just taught
us, that if we wanted to pitch a mesh 45 degrees upwards we would need to create an X axis rotation
matrix that rotated the mesh —45 degrees about its X axis. You are reminded again that positive rotation
angle values perform a clockwise rotation from the perspective of looking towards the negative end of
the rotation axis from the positive end.

D3DXMATRIX mtxViewMatrix , mtxRotationMatrix;
pDevice->GetTransform (D3DTS VIEW, &mtxViewMatrix);

D3DXMatrixRotationX (&mtxRotationMatrix, D3DXToRadian (-45));
D3DXMatrixMultiply (&mtxViewMatrix, &mtxViewMatrix, &mtxRotationMatrix) ;

pDevice->SetTransform(D3DTS VIEW, &matViewMatrix);

The above code will actually rotate the camera about its own local X axis (its right vector). Changing the
order of the multiplication to...

D3DXMatrixMultiply (&mtxViewMatrix, &mtxRotationMatrix, &mtxViewMatrix) ;

248

...would rotate the camera about the world’s X axis and not its own. We will see why this is the case in
a moment.

The above code is erroneous in that we wanted to pitch the camera up 45 degrees. Although we know
that a negative angle should pitch the camera upwards, the rotation matrix has not been inverted but is
being multiplied by the view matrix -- which is an inverse matrix. Therefore, we would actually achieve
a rotation in the opposite direction and the above code would pitch the camera down 45 degrees. We can
fix this by inverting the rotation matrix before we multiply it with the view matrix; this would rotate the
camera in the direction we would expect and is consistent with the way a world matrix would be rotated.
However, an inverse is an expensive operation and we know that if we invert a rotation matrix we get
the same matrix as if we had created that matrix with a negated angle to begin with. It would seem then
that in this case it would be much cheaper to build a rotation matrix with an opposite angle of rotation
rather than generate it normally and then flip it. Below, we show two ways that we could rotate the
camera upwards about its own X axis.

Example 1: Rotate Camera upwards 45 degrees

D3DXMatrixRotationX (&mtxRotationMatrix, D3DXToRadian (-45));
D3DXMatrixInverse (&mtxRotationMatrix, NULL, &mtxRotationMatrix):;
D3DXMatrixMultiply (&mtxViewMatrix, &mtxViewMatrix, &mtxRotationMatrix);

This example rotates the camera as we would expect in keeping with our rotation rules. A negative X
axis rotation should rotate an object upwards about its X axis, but as we are dealing with the view matrix
-- which is inverted -- this means we actually want to build a matrix that instead rotates the world down.
Because the view matrix is inverted, we also invert the rotation matrix. This will change the rotation
matrix such that it now contains a positive rotation and not a negative rotation. In other words, it will
rotate vertices downwards, which is what we want. Finally we multiply it with the view matrix and we
have a new view matrix that now rotates vertices down 45 degrees. This gives the illusion that the
camera has been rotated up 45 degrees. Therefore, the inversion of the rotation matrix allows us to rotate
the camera using the same (sign) angle of rotation as we would use for normal world objects.

Example 2: Rotate Camera upwards 45 degrees

D3DXMatrixRotationX (&mtxRotationMatrix, D3DXToRadian (45));
D3DXMatrixMultiply (&mtxViewMatrix, é&mtxViewMatrix, &mtxRotationMatrix)

In this second example we avoid the overhead of the inversion at the cost of inconsistency when
specifying rotation angles to rotate the camera. Our code now has to know that angles must be negated.
A slight hack, but faster certainly.

So assuming that we have a view matrix that has been rotated to some degree, the Look, Up and Right
vectors have been rotated as well. They are pointing in new directions whilst still remaining orthogonal
to each other. As these vectors can also be perceived as plane normals, the planes have also been rotated
in the same way. Whichever method we use to rotate the camera left 45 degrees about its Y axis, would
result in the following view matrix:

249

Inverse Rotation

Right Vector Up Vector LookVector

0.707107 -0.707107 0
0 0 0
0.707107 0.707107 0
0 0 1

This matrix describes the camera as being at the origin of world space looking halfway between the
negative X axis and the positive Z axis. Let us now examine the transformation of a vector into view
space using this view matrix.

The View Space Transformation (Under the Microscope)

Fig 4.8 depicts a two-dimensional scene viewed top-down. It contains a virtual camera described by the
example view matrix above and a world space vector (-2, 0, 10). This specific top-down view was
chosen because the camera has an Up vector that is perfectly aligned with the world Y axis (0,1,0) and
our world space vector Y component will not be altered by the transformation. Therefore, we can
simplify this transformation in the diagram and think of it in terms of only the Right vector and the Look
vector of the view matrix.

Transforming from World Space to View Space

Vector A - Cameras Local XY Plane
(-2,0,10) //

Camera Right Vector
(07,0,07)

Camera Look Vector
(-0.7,0,0.7)

/ ‘\Cameras Local ¥Z Plane

Figure 4.8
The black horizontal line is the world space X axis (the world space XY plane) and the vertical black

line is the world space Z axis (the world YZ plane). Because we are looking down on the world, we
cannot see the Y axis. In the circular inset at the top left of the diagram you can see that the orientation

250

of the virtual camera is a 45 degree rotation to the left about the Y axis. The position of the camera is
assumed to be at the origin of the world space coordinate system in this example. The two red arrows
show the orientation of the Look and Right vectors stored in the matrix and the blue and green lines
show the planes that these two vectors describe. For example, the Look vector, when treated as a plane
normal, describes the blue plane (the camera local XY plane). The Right vector describes the plane
shown as the green line (the camera local YZ plane). As we can see, the camera space XY and YZ
planes are misaligned from the world space XY and YZ planes by 45 degrees.

Now we get to the really important part. We know that when we have a vector such as the one shown in
the diagram, it is defined as a collection of distances from the world space planes. The world space
position seen above (-2, 0, 10) simply means that this vector is —2 units from the world YZ plane, a
distance of 0 units from the world XZ plane and a distance of 10 units from the world XY plane. When
we multiply our world space vector with the view matrix, we are actually recalculating the three
distances such that they are now relative to the planes stored in the view matrix instead of the world
space planes. When we multiply our vector with the first column of the matrix we are classifying the
point against the camera local YZ plane. You can see that this returns a distance 5.6. The dot product
between the input vector and the Y column of the matrix simply leaves the input value (0) unchanged
because the second column of our view matrix in this example is a Y identity column. The Z column
result -- the distance from the vector to the camera local XY plane -- is 8.6. Therefore, the vector has
been transformed from world space vector (-2, 0, 10) to a new view space vector (5.6, 0.0 ,8.6).

Now look at Fig 4.8 and rotate your head left 45 degrees so that the camera XY plane looks like the
world Z axis. You will see what relationship this vector