
 

Graphics Programming with Direct X 9 

Part I 

(12 Week Lesson Plan) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lesson 1: 3D Graphics Fundamentals  

Textbook:             Chapter One (pgs. 2 – 32) 
 
Goals: 
 
We begin the course by introducing the student to the fundamental mathematics necessary 
when developing 3D games. Essentially we will be talking about how 3D objects in games are 
represented as polygonal geometric models and how those models are ultimately drawn. It is 
especially important that students are familiar with the mathematics of the transformation 
pipeline since it plays an important role in getting this 3D geometry into a displayable 2D 
format. In that regard we will look at the entire geometry transformation pipeline from model 
space all the way through to screen space and discuss the various operations that are necessary 
to make this happen. This will include discussion of transformations such as scaling, rotations, 
and translation, as well as the conceptual idea of moving from one coordinate space to another 
and remapping clip space coordinates to final screen space pixel positions.  
 
Key Topics: 
 

•  Geometric Modeling  
o  2D/3D Coordinate Systems 
o Meshes  

  Vertices  
  Winding Order  

•  The Transformation Pipeline  
o  Translation  
o  Rotation  
o  Viewing Transformations  
o  Perspective Projection  
o  Screen Space Mapping  
 
 

Projects:  NONE 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  5 - 7 
 
 
 
 
 
 
 



Lesson 2: 3D Graphics Fundamentals II 

Textbook:             Chapter One (pgs.  32 – 92) 
 
Goals: 
 
Picking up where the last lesson left off, we will now look at the specific mathematics 
operations and data types that we will use throughout the course to affect the goals discussed 
previously regarding the transformation pipeline. We will examine three fundamental 
mathematical entities: vectors, planes and matrices and look at the role of each in the 
transformation pipeline as well as discussing other common uses. Core operations such as the 
dot and cross product, normalization and matrix and vector multiplication will also be 
discussed in detail. We then look at the D3DX equivalent data types and functions that we can 
use to carry out the operations discussed. Finally we will conclude with a detailed analysis of 
the perspective projection operation and see how the matrix is constructed and how arbitrary 
fields of view can be created to model different camera settings.  
 
Key Topics: 
 

•  3D Mathematics Primer  
o  Vectors  

 Magnitude  
 Addition/ Subtraction  
 Scalar Multiplication  
 Normalization  
 Cross Product  
 Dot Product  

o  Planes  
o  Matrices  

 Matrix/Matrix Multiplication  
 Vector/Matrix Multiplication  
 3D Rotation Matrices  
 Identity Matrices  
 Scaling and Shearing  
 Concatenation  
 Homogenous Coordinates  

•  D3DX Math  
o  Data Types  

 D3DXMATRIX  
 D3DXVECTOR  
 D3DXPLANE  

o  Matrix and Transformation Functions  
 D3DXMatrixMultiply  
 D3DXMatrixRotation{XYZ}  
 D3DXMatrixTranslation  
 D3DXMatrixRotationYawPitchRoll  



 D3DXVecTransform{…}  
o  Vector Functions  

 Cross Product  
 Dot Product  
 Magnitude  
 Normalization  

•  The Transformation Pipeline II  
o  The World Matrix  
o  The View Matrix  
o  The Perspective Projection Matrix  

 Field of View  
 Aspect Ratio  

 
 
Projects:  
 
Lab Project 1.1: Wireframe Renderer 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  8 - 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lesson 3: DirectX Graphics Fundamentals I  

Textbook:            Chapter Two (pgs. 94 – 132) 
 
Goals: 
 
In this lesson our goal will be to start to get an overview of the DirectX Graphics pipeline and 
see how the different pieces relate to what we have already learned. A brief introduction to the 
COM programming model introduces the lesson as a means for understanding the low level 
processes involved when working with the DirectX API. Then, our ultimate goal is to be able to 
properly initialize the DirectX environment and create a rendering device for output. We will 
do this during this lesson and the next. This will require an understanding of the different 
resources that are associated with device management including window settings, front and 
back buffers, depth buffering, and swap chains. 
 
 
Key Topics: 
 

•  The Component Object Model (COM)  
o Interfaces/IUnknown  
o GUIDS  
o COM and DirectX Graphics  

•  Initializing DirectX Graphics  
•  The Direct3D Device  

o  Pipeline Overview  
o  Device Memory  

 The Front/Back Buffer(s)  
 Swap Chains  

o  Window Settings  
 Fullscreen/Windowed Mode  

o Depth Buffers  
 The Z-Buffer / W-Buffer 

 
 

Projects:  
 
Lab Project 2.1: DirectX Graphics Initialization 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):   8 – 10 
 
 
 
 
 



Lesson 4: DirectX Graphics Fundamentals II  

Textbook:            Chapter Two (pgs. 132 – 155) 
 
Goals: 
 
Continuing our environment setup discussion, in this lesson our goal will be to create a 
rendering device for graphics output. Before we explore setting up the device, we will look at 
the various surface formats that we must understand for management of depth and color 
buffers. We will conclude the lesson with a look at configuring presentation parameters for 
device setup and then talk about how to write code to handle lost devices.  
 
Key Topics: 
 

• Surface Formats  
o  Adapter Formats  
o  Frame Buffer Formats  

•  Device Creation  
o  Presentation Parameters  
o  Lost Devices  

 
Projects:  
 
Lab Project 2.2: Device Enumeration 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):   8 - 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lesson 5: Primitive Rendering I  

Textbook:            Chapter Two (pgs. 156 – 191) 
 
Goals: 
 
Now that we have a rendering device properly configured, we are ready to begin drawing 3D 
objects using DirectX Graphics. In this lesson we will examine some of the important device 
settings (states) that will be necessary to make this happen. We will see how to render 3D 
objects as wireframe or solid objects and also talk about how to affect various forms of shading. 
Our discussion will also include flexible vertex formats, triangle data, and the DrawPrimitive 
function call. Once these preliminary topics are out of the way we will look at the core device 
render states that are used when drawing – depth buffering, lighting and shading, back face 
culling, etc. We will also talk about transformation states and how to pass the matrices we 
learned about in prior lessons up to the device for use in the transformation pipeline. We will 
conclude the lesson with discussion of scene rendering and presentation (clearing the buffers, 
beginning and ending the scene and presenting the results to the viewer).  
 
Key Topics: 
 

• Primitive Rendering 
o Fill Modes  
o Shading Modes  
o Vertex Data and the FVF 
o DrawPrimitiveUP  

• Device States  
o  Render States  

 Z – Buffering  
 Lighting/Shading/Dithering 
 Backface Culling  

o  Transformation States  
 World/View/Projection Matrices 

•  Scene Rendering  
o Frame/Depth Buffer Clearing  
o Begin/End Scene  
o Presenting the Frame  

 
Projects:  
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  5 – 7 
 
 



Lesson 6: Primitive Rendering II  

Textbook:            Chapter Three (pgs. 194 – 235) 
 
Goals: 
 
In this lesson we will begin to examine more optimal rendering strategies in DirectX. Primarily 
the goal is to get the student comfortable with creating, filling and drawing with both vertex 
and index buffers. This means that we will look at both indexed and non-indexed mesh 
rendering for both static geometry and dynamic (animated) geometry. To that end it will be 
important to understand the various device memory pools that are available for our use and 
see which ones are appropriate for a given job. We will conclude the lesson with a discussion of 
indexed triangle strip generation and see how degenerate triangles play a role in that process. 
 
Key Topics: 
 

•  Device Memory Pools and Resources  
o Video/AGP/System Memory  

• Vertex Buffers  
o  Creating Vertex Buffers  
o  Vertex Buffer Memory Pools  
o  Vertex Buffer Performance  
o  Filling Vertex Buffers  
o  Vertex Stream Sources  
o  DrawPrimitive  

•  Index Buffers  
o  Creating Index Buffers  
o  DrawIndexedPrimitive/DrawIndexedPrimitiveUP  
o  Indexed Triangle Strips/Degenerate Triangles  

 
Projects:  
 
Lab Project 3.1: Static Vertex Buffers 
Lab Project 3.2: Simple Terrain Renderer 
Lab Project 3.3: Dynamic Vertex Buffers 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  8 – 10 
 
 
 
 
 
 



Mid-Term Examination 

The midterm examination in this course will consist of 40 multiple-choice and true/false 
questions pulled from the first three textbook chapters. Students are encouraged to use the 
lecture presentation slides as a means for reviewing the key material prior to the examination.    
The exam should take no more than 1.5 hours to complete. It is worth 35% of student final 
grade. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lesson 7: Camera Systems  

Textbook:            Chapter Four (pgs.  238 – 296) 
 
Goals: 
 
In this lesson we will take a detailed look at the view transformation and its associated matrix 
and see how it can be used and manipulated to create a number of popular camera system 
types – first person, third person, and spacecraft. We will also discuss how to manage 
rendering viewports and see how the viewport matrix plays a role in this process. Once we have 
created a system for managing different cameras from a rendering perspective, we will examine 
how to use the camera clipping planes to optimize scene rendering. This will include writing 
code to extract these planes for the purposes of testing object bounding volumes to determine 
whether or not the geometry is actually visible given the current camera position and 
orientation. Objects that are not visible will not need to be rendered, thus allowing us to speed 
up our application. 
 
Key Topics: 
 

•  The View Matrix  
o  Vectors, Matrices, and Planes  

 The View Space Planes  
 The View Space Transformation  
 The Inverse Translation Vector  

•  Viewports  
o  The Viewport Matrix  
o  Viewport Aspect Ratios  

•  Camera Systems  
o  Vector Regeneration  
o  First Person Cameras  
o  Third Person Cameras  

•  The View Frustum  
o  Camera Space Frustum Plane Extraction  
o  World Space Frustum Plane Extraction  
o  Frustum Culling an AABB  

 
Projects: NONE 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):   8 - 10 
 
 
 



Lesson 8: Lighting  

Textbook:            Chapter Five (pgs. 298 – 344) 
 
Goals: 
 
In this lesson we will introduce the lighting model used in the fixed function DirectX Graphics 
pipeline. We begin with an overview of the different types of lighting (ambient, diffuse, 
specular, and emissive) that are modeled in real-time games.  We will also talk about the 
specific light types (point/spot/directional) and how to setup their properties and configure the 
lighting pipeline to use them.  This will include some discussion of the role of vertex normals 
and how to calculate them when necessary. In conjunction with lighting we must also discuss 
the concept of materials as they define how surfaces interact with the lights in the 
environment. We will see how to create them and set their properties to produce different 
results. We will conclude this lesson with a brief discussion of the advantages and 
disadvantages of using the fixed function vertex lighting pipeline as a means for setting the 
stage for more advanced lighting models that will be introduced in Part II of this course series.   
 
Key Topics: 
 

•  Lighting Models  
o Indirect Lighting 

 Emissive/Ambient Illumination  
o Direct Lighting  

 Diffuse/Specular Light   
•  The Lighting Pipeline  

o  Enabling DirectX Graphics Lighting  
 Enabling Specular Highlights  
 Enabling Global Ambient Lighting  

o  Lighting Vertex Formats and Normals 
o  Setting Lights and Light Limits  

•  Light Types  
o  Point/Spot/Directional  

• Materials  
o  Colors, Specular and Power  
o  Material Sources  

 
Projects:  
 
Lab Project 5.1: Dynamic Lights 
Lab Project 5.2: Scene Lighting 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  10 - 12 



Lesson 9: Texture Mapping I 

Textbook:            Chapter Six (pgs.  346 – 398) 
 
Goals: 
 
In this lesson students will be introduced to texture mapping as a means for adding detail and 
realism to the lit models we studied in the last lesson. We begin by looking at what textures are 
and how they are defined in memory.  This will lead to a preliminary discussion of mip-maps in 
terms of memory format and consumption. Then we will look at the various options at our 
disposal for loading texture maps from disk or memory using the D3DX utility library. 
Discussion of how to set a texture for rendering and the relationship between texture 
coordinates and addressing modes will follow. Finally we will talk about the problem of aliasing 
and other common artifacts and how to use various filters to improve the quality of our visual 
output. 
 
Key Topics: 
 

•  Texture Memory Pools  
o  Texture Formats  

 Validating Texture Formats  
 Surface Formats  

•  MIP Maps  
•  Loading Textures  
•  Setting Textures  
•  Texture Coordinates  
•  Sampler States  

o  Texture Addressing Modes  
 Wrapping/Mirroring/Bordering/Clamping/MirrorOnce 

o Texture Coordinate Wrapping  
o  Texture Filtering  

 Magnification/Minification 
 Point/Bilinear/Trilinear/Anisotropic  

 
Projects:  
 
Lab Project 6.1: Simple Texturing 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  8 - 10 
 
 



Lesson 10: Texture Mapping II 

Textbook:            Chapter Six (pgs. 399 – 449) 
 
Goals: 
 
This lesson will conclude our introduction to texture mapping (advanced texturing will be 
discussed in Part II of this series). We will begin by examining the texture pipeline and how to 
configure the various stages for both single and multi-texturing operations. Then we will take a 
step back and examine texture compression and the various compressed formats in detail as a 
means for reducing our memory requirements. Once done, we will return to looking at the 
texture pipeline and see how we can use transformation matrices to animate texture 
coordinates in real time to produce simple but interesting effects. Finally, we will conclude with 
a detailed look at the DirectX specific texture and surface types and their associated utility 
functions.  
 
Key Topics: 

 
•  Texture Stages  

o  Texture Color  
o  Texture Stage States  

•  Multi-Texturing and Color Blending 
•  Compressed Textures  

o  Compressed Texture Formats  
 Pre-Multiplied Alpha  

o  Texture Compression Interpolation  
o  Compressed Data Blocks – Color/Alpha Data Layout  

• Texture Coordinate Transformation  
• The IDirect3DTexture Interface  
• The IDirect3DSurface Interface  
• D3DX Texture Functions  

 
Projects:  
 
Lab Project 6.2: Terrain Detail Texturing 
Lab Project 6.3: Scene Texturing 
Lab Project 6.4: GDI and Textures 
Lab Project 6.5: Offscreen Surfaces 
 
Exams/Quizzes:  NONE 
 
Recommended Study Time (hours):  10 – 12 
 
 



Lesson 11: Alpha Blending  

Textbook:            Chapter Seven (pgs. 451 – 505) 
 
Goals: 
 
In this lesson we will examine an important visual effect in games: transparency. Transparency 
requires that students understand the concept of alpha blending and as such we will talk about 
various places alpha data can be stored (vertices, materials, textures, etc.) and how what 
various limitations and benefits are associated with this choice. We will then explore the alpha 
blending equation itself and look at how to configure the transformation and texture stage 
pipelines to carry out the operations we desire. We will also examine alpha testing and alpha 
surfaces for the purposes of doing certain types of special rendering that ignores specific pixels. 
We will conclude our alpha blending discussion with a look at the all important notion of front 
to back sorting and rendering, examining various algorithms that we can use to do this. Finally, 
we will wrap up the lesson with an examination of adding fog to our rendering pipeline. This 
will include both vertex and pixel fog, how to set the color for blending, and the three different 
formulas available to us (linear/exponential/exponential squared) for producing different 
fogging results.  
 
 
Key Topics: 
 

• Alpha Components  
o  Vertex Alpha – Pre-Lit/Unlit Vertices  
o  Material Alpha  
o  Constant Alpha + Per-Stage Constant Alpha  
o  Texture Alpha  

•  The Texture Stage Alpha Pipeline  
•  Frame Buffer Alpha Blending 
• Transparent Polygon Sorting  

o Sorting Algorithms and Criteria 
 Bubble Sort/Quick Sort/Hash Table Sort  

•  Alpha Surfaces  
•  Alpha Testing 
•  Fog  

o  Enabling Fog and Setting the Fog Color  
o  Vertex/Pixel Fog  
o  Fog Factor Formulas  

  Linear/Exponential/Exponential Squared 
 
 
 
 
 
 



Projects:   
 
Lab Project 7.1: Vertex Alpha 
Lab Project 7.2: Alpha Testing 
Lab Project 7.3: Alpha Sorting 
Lab Project 7.4: Texture Splatting 
 
 
Exams/Quizzes:  NONE 
 
 
Recommended Study Time (hours):   10 - 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lesson 12: Exam Preparation and Course Review 

Textbook:            NONE 
 
 
Goals: 
 
In this final lesson we will leave the student free to prepare for and take their final 
examination. Multiple office hours will be held for student questions and answers.  
 
 
Key Topics: NONE 
 
 
Projects: NONE 
 
 
Exams/Quizzes: NONE 
 
 
Recommended Study Time (hours):  15 - 20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Final Examination 

The final examination in this course will consist of 50 multiple-choice and true/false questions 
pulled from all of the textbook chapters. Students are encouraged to use the lecture 
presentation slides as a means for reviewing the key material prior to the examination.    The 
exam should take no more than two hours to complete. It is worth 65% of student final grade. 
 


