GP Part | Extras: Application Timing

Frame Rate Timers

Faster computers can process more game loop iterations per second than slower computers. So
Pentium [V™ systems will process more frames per second than Pentium III™ systems, which will
in turn process more than Pentium II™., The geForce™ 4 can finish drawing a frame faster than the
geForce™ III, which is faster then the geForce™ II, and so on. Such variations in degree of
hardware speed make timing game updates based on the frame rate (frames per second) an unwise
choice. Certain games from the late eighties did not account for this and as a result, cannot be run
on modern PCs. On a modern system, these games cannot be properly controlled since object
velocities are simply too high given the rapid frame updates. Our preference is to use more scalable
time units like seconds or some fraction thereof.

From a coding perspective, maintaining a game timer is quite simple. For example, most games
will include timers that track the amount of time that has elapsed since the application started and
how much time has elapsed since the last frame. These are both useful pieces of information to
keep on hand for tasks like game physics, Al updates, animation, etc. Adding such a timer to the
main application loop requires only a few lines of code. We will look at some of this code shortly.

Selecting a System Timer

In Windows, there are a number of timing mechanisms at our disposal. One of the easiest to use is
the Windows scheduled event timer. We simply tell the system to send us WM_TIMER message at
specified intervals and then process those messages in our message pump. However, the event
based timer has poor performance and low resolution. In addition to the overhead of message
handling, the WM_TIMER message is actually very low down on the list of Windows priorities. It
actually has a lower priority than nearly all other Windows messages and is therefore unreliable.

If we set the timer to pulse 20 times per second, there is no guarantee that it actually will. If a
WM _TIMER message is in the message loop waiting to be processed and another message comes
along with a higher priority, the WM_TIMER message gets pushed to the back of the message
queue. This inconsistency limits the usefulness of WM_TIMER for our purposes.

Windows provides two reliable timers that give good performance and suit all of our needs. Both
are declared in the 'mmsystem.h ', so this file should be included in your application if you want to
use these timers. You must also link your application to the library winmm.lib.

timeGetTime()

This function is compatible with almost all PC's and provides an accuracy of between 10 and 50
milliseconds (1/1,000th of a second) depending on the target operating system. It takes no
parameters and returns the current system time as a DWORD value. While this value by itself is not
very meaningful, we can use it to tell how much time has passed since the last call to the function.

In other words, we can call timeGetTime(), store the value it returns and then on the next
frame, call it again and subtract the first value from the second.

The result is the number of milliseconds that have passed since the last frame. This is a good timer;
it is reliable and relatively fast, and is also available on very old PC's. Unfortunately, due to it’s
relatively low resolution on certain operating systems (Windows NT, 2000 and XP) it is certainly a
less than perfect solution.

The PerformanceCounter

The Performance Counter is a hardware counter that runs at 3.19 megahertz (MHz). This gives us a
timer with measurement times in microseconds (1/1,000,000" of a second). Depending on your
needs, this level of resolution may or may not be necessary. Our demo applications will favor the
extra resolution.

Note: Earlier computers did not have Hardware Timers, so the previously discussed function
timeGetTime() can be used to fall back on if a hardware timer is not present. All currently produced
processors have hardware timers, so this is really not an issue if your game is going to be cutting
edge, in which case it would not support running on a 386 or 486 anyway.

Two functions are available for using the Performance Counter. The first function we have to call is
QueryPerformanceFrequency:

BOOL QueryPerformanceFrequency (LONGLONG *lpFrequency) ;

The single parameter is a pointer to a 64-bit integer that will receive the frequency of the timer. It
will be measured in ticks per second. If this function returns a non-zero value, then a timer is
available and IpFrequency will hold the timer’s frequency. If this function returns 0, then it was
unable to find a Hardware Timer on the current system. This function only needs to be called once,
during our initialization routine.

Retrieving the timer frequency, even when we know that it runs at 3.19 MHz, makes our game
future-proof. Should new hardware become available with a higher resolution timer, our game will
still work as expected because our calculations will be relative to the timer’s frequency.

QueryPerformanceCounter is the second function we will call -- once for every iteration of our
game loop:

BOOL QueryPerformanceCounter (LONGLONG * 1lpTime) ;

This function also takes a pointer to a 64-bit integer as its only parameter and fills it with the
current time. Just like the timeGetTime() function, this time is measured in ticks per second from
some arbitrary starting point. Once again, while the raw result is not particularly meaningful to us,
we can use it to determine how many ticks have passed since the last time the function was called.
This value can then be converted into fractions of a second.

The code snippet below queries the frequency of the clock and sets up a variable called
Time Scale. This code would be executed at application startup before we enter our main game
loop. Later on in our game loop, the Time Scale variable is multiplied by the elapsed time to

convert the elapsed time into fractions of a second. Note that if the hardware counter is (_"
not available, we use timeGetTime instead.

LONGLONG Frequency, Current Time , Last Time;
double Time Elapsed , Time Scale;

BOOL Counter Available=false;

if (QueryPerformanceFrequency ((LARGE INTEGER *) &Frequency)
{

Counter Available = true;
Time Scale = 1.0 / Frequency;

QueryPerformanceCounter ((LARGE INTEGER *)&Last Time);
else

Last Time=timeGetTime () ;
Time Scale=0.001;

So if the Counter is available, then the Counter Available variable is set to true and our game loop
will know that it can use it. We divide 1.0 by the frequency of the timer that we recorded earlier to
give us a multiplier that will later convert our elapsed time into seconds. We also store the current
time in the Last Time variable. This is so we have something to compare against our first time
through the game loop. The game loop would have code in it that looks something like this:

if (Counter Available)
QueryPerformanceCounter ((LARGE INTEGER *) &Current Time);

else

Current Time=timeGetTime () ;
Time Elapsed = (Current Time - Last Time) * Time Scale;
Last Time = Current Time;

That is all we have to do really. Time Elapsed now stores the amount of time that has passed, in
seconds. For example, a value of 0.1 equals 1/10th of a second.

We can now use Time Elapsed in movement and rotation calculations. Assuming we are storing
how much an object can move or rotate in units per second, we simply multiply these values by
Time FElapsed, (remember that this is really a division operation because Elapsed Time is
measured in Hertz -- 1/sec) Our code would look something like this:

Ships Speed = 10; // ship travels 10 units in a second
Ships TurnAngle = 1.2; // ship can turn 1.2 radians in a second

Game Loop
//First calculate the time that has elapsed since the last game loop
iteration
if (Counter Available)
QueryPerformanceCounter ((LARGE INTEGER *) &Current Time);
else
Current Time=timeGetTime () ;

Time Elapsed = (Current Time - Last Time) * Time Scale;
Last Time = Current Time;

//Now use the elapsed time to scale the position and orientation
//updates of our game objects

Ships Position = Ships Position + (Ships Speed*Time Elapsed);
Ships Angle Ships Angle + (Ships TurnAngle*TimeElapsed);

The CTimer Class

We have implemented a simple timer class to wrap this functionality. After all, this really is an
object that we will be re-using time and time again, and is thus ideally suited for being encapsulated
in a self-contained class.

We will also implement some simple functionality to help smooth sporadic changes in elapsed time
values. Should the frame rate take a sudden drop for some reason, perhaps due to an external
process hogging CPU time for a fraction of a second, or perhaps due to the graphic complexity of
the scene increasing dramatically for a brief period, we would like to avoid jerky results in our
animations and scene updates. In this class, we will always keep an array of the last 50 elapsed
times that have been fetched over the last 50 iterations of our game loop. The elapsed time returned
by the class to our application will actually be the average of these times. Any temporary
fluctuations in frame rate will be diluted by the other 49 values in the list. This also helps us more
accurately describe a consistent application frame rate. You can experiment with this

In your demo projects, you will find the CTimer class declaration in the file ‘CTimer.h’. It is shown
below with a list of its member variables and methods. In addition to the constructor and the
destructor, the class exposes only three public functions -- the interface for our class. The ‘Tick’
function should be called in every iteration of the game loop. It fetches the current time from the
performance counter, subtracts this from the previous time (fetched in a previous call to this
function) to calculate the elapsed time in seconds since the last time the function was called. We
then use the GetTimeElapsed method to fetch this elapsed time value. This value is used to control
the updating of the objects in our scene. This class also has a helpful function called GetFrameRate
which will use the elapsed time value to calculate and return how many frames per second the

u

application is currently achieving. For convenience, passing in a string allows us to get back a line
of text describing the frames per second currently being achieved, so that the application can output
this string to the user.

class CTimer

CTimer () ;
virtual ~CTimer () ;

/== s
// Public Functions For This Class

[
void Tick(float fLockFPS = 0.0f);

float GetTimeElapsed () const;

unsigned long GetFrameRate (LPTSTR lpszString = NULL) const;

private:

)/ m e -
// Private Variables For This Class

e
bool m_PerfHardware;

float m TimeScale;

float m_TimeElapsed;

__inte4 m_CurrentTime;

__inte4 m LastTime;

__inteo4 m_PerfFreq;

float m_FrameTime [MAX SAMPLE COUNT];

ULONG m_SampleCount;

unsigned long
unsigned long
float

}i

m_ FrameRate;
m_ FPSFrameCount;
m_FPSTimeElapsed;

Let us now take a look at the member variables and describe their purpose.

bool m_PerfHardware

This Boolean variable is set to either true or false in the constructor of the timer object depending
on whether a hardware performance counter is available on the current system or not. If this is set
to TRUE, then the Tick function will use QueryPerformanceCounter to fetch the elapsed time. If
set to FALSE, the Tick function will use the lower resolution timeGetTime function as a fall back
option.

float m_TimeScale

This value is used to convert the result of time query functions into seconds. It is Q
calculated in the constructor by dividing 1 by the frequency of the timer.

float m_TimeElapsed

This member stores the current time in seconds that has elapsed since the previous call to the Tick
function. The setting of this variable is the fundamental purpose of the Tick function. Once the Tick
function has executed, this value can be fetched by the application using the GetTimeElapsed
method. It can be used directly for scene updates and task execution.

__int64 m_CurrentTime

This member contains the raw value (time) returned by the QueryPerformanceCounter function.
This value will later have the previous time subtracted from it and will be scaled by the
m_TimeScale for conversion into seconds of elapsed time (since the previous call to the Tick
function).

__int64 m_LastTime

At the end of the Tick function, this variable will be assigned the value in m_CurrentTime. The
next time the Tick function is called, it will be subtracted from the new m_CurrentTime to
determine the elapsed time between calls.

__int64 m_PerfFreq

This value will be assigned in the constructor when the timer is first created. It will contain the
frequency of the timer that we are using. This is needed to calculate m_ TimeScale so that we can
convert the elapsed time into seconds. It is retrieved from the system using the
QueryPerformanceFrequency function.

float m_FrameTime[MAX SAMPLE_ COUNT]

This float array will be used to store MAX SAMPLE COUNT elapsed time values (in seconds)
that we calculated in the last MAX SAMPLE COUNT calls to the Tick function.
MAX SAMPLE COUNT is defined as 50 in our demos, but you can change this. At the end of the
Tick function, the m TimeElapsed value will be set to the average of these 50 values. This should
help smooth any sporadic fluctuations in frame rate that occurred in the previous 50 iterations of
our game loop.

unsigned long m_SampleCount;

This variable stores the current number of time samples stored in the m FrameTime array. Whilst
you might think this would always be equal to 50 (MAX SAMPLE COUNT), this will only be
true once the first 50 iterations of our game loop have been executed. When our application is in its
10" iteration for example, there will be only 10 actual time samples in the m FrameTime array.

unsigned long m_FrameRate;

This value is also calculated in the Tick function and stores how many frames per second the
application is currently achieving. Whilst this is not to be used to update the objects in our scene in
any way, it can be useful for diagnostic purposes.

unsigned long m_FPSFrameCount;

This variable is used in the Tick function to keep track of how many times the function has been
called in any given second. It is incremented each time the Tick function is called. Once the end of
the current second has been reached, m FPSFrameCount will contain the total number of frames
that occurred in that second. It can then be stored in the m_FrameRate variable.

float m_FPSTimeElapsed;

This member is used in connection with the previous two values to record how much time has
elapsed since the start of the current second we are processing. Once this time has reached 1.0, the
second has ended and we can check the m FPSFrameCount variable to see how many frames were
achieved in this second. The result is stored in m FrameRate so that it can be retrieved by the
application for diagnostic purposes.

The Constructor

This constructor initializes the member variables to their default values and determines whether or
not the high performance counter is available. We call QueryPerformanceFrequency to fetch the
frequency of the high performance counter on the current system. If the function returns non-zero
then a performance counter is available and its frequency is stored in the m PerfFreq member
variable and we set m_PerfHardware to TRUE. We then query the current time of the performance
counter and store it in m_LastTime for use in the first call to Tick. Finally, we calculate
m_TimeScale by dividing 1.0 by the frequency of the performance counter.

CTimer: :CTimer ()

{
// Query performance hardware and setup time scaling values
if (QueryPerformanceFrequency ((LARGE INTEGER *)&m PerfFreq))

{
m_PerfHardware = TRUE;
QueryPerformanceCounter ((LARGE INTEGER *) &m LastTime);
m TimeScale = 1.0f / m PerfFreq;

else

// no performance counter, read in using timeGetTime

m PerfHardware = FALSE;
m LastTime = timeGetTime () ;
m TimeScale = 0.001f;

} // End If No Hardware

// Clear any needed values

m_SampleCount = 0;
m_FrameRate = 0;
m_FPSFrameCount = 0;
m FPSTimeElapsed = 0.0£f;

If the performance counter is not available on the current system then we will set the
m_PerfHardware flag to FALSE. The Tick function will then know to use timeGetTime instead of
the higher resolution QueryPerformanceCounter alternative. We then query the current time and
store it in m_LastTime and set the m TimeScale variable to 0.001 (for millisecond resolution,
compatible with the timeGetTime return value).

The Destructor

As this class does not allocate any dynamic memory, the destructor does not have any work to do.

CTimer::~CTimer () {}

The Tick Function

The Tick method is called any time we would like the timer updated. In our demos this is done
once per game loop iteration, before we update the scene. Here the current time is updated and the
elapsed time calculated from the previous iteration.

The function takes a single float parameter which serves as an optional frame rate lock. This can be
useful if you want to see how your game performs at different frame rates. Our demo applications
will not use this feature, and will prefer to squeeze out as many frames as possible. The default
value for the fLockFPS parameter (0.0) allows the application to proceed at the maximum speed.

First the function fetches the current time using either QueryPerformaceCounter or timeGetTime,
depending on whether the high performance counter is available. Once we have the current time of
the counter, we subtract from this the time that was fetched from the counter in the previous call to
the function (or that was set in the constructor if this is the first time the Tick function has been
called) to calculate the elapsed time between calls. These steps are shown below:

void CTimer::Tick(float fLockFPS)

{
float fTimeElapsed;

// Is performance hardware available?
if (m PerfHardware)

{
// Query high-resolution performance hardware
QueryPerformanceCounter ((LARGE INTEGER *)é&m CurrentTime);

}

else

{
// Fall back to less accurate timer
m CurrentTime = timeGetTime () ;

} // End If no hardware available

// Calculate elapsed time in seconds
fTimeElapsed = (m CurrentTime - m LastTime) * m TimeScale;

The next section of code is activated only of we chose to lock the frame rate to a given number of
frames per second. Here we do a brute force while loop to chew up time, but a sleep function could
also be used. The loop repeatedly queries the time of the counter and calculates the elapsed time in
seconds. Only when the elapsed time reaches the user-specified frame rate ceiling is the while loop
exited. If the caller requested 30 frames per second, then we only need to update our timer every
1.0/30 = 0.033333 seconds. Therefore, if the elapsed time between this frame and the last frame is
say, 0.011111, then this while loop would chew up time until fTimeElapsed was greater than or
equal to 0.033333.

// Should we lock the frame rate ?

if (fLockFPS > 0.0f)

{
while (fTimeElapsed < (1.0f / fLockFPS))
{

// Is performance hardware available?

if (m PerfHardware)

{
// Query high-resolution performance hardware
QueryPerformanceCounter ((LARGE INTEGER*) &m CurrentTime) ;

}

else

{

// Fall back to less accurate timer
m CurrentTime = timeGetTime () ;
} // End If no hardware available

// Calculate elapsed time in seconds
fTimeElapsed = (m CurrentTime - m LastTime) * m TimeScale;

} // End While
} // End If

Our next step is to store the current time of the timer object (calculated in the last call to this
function) in the m_LastTime member. The next time this function is called it can be subtracted
from the current time (at the start of the function) to determine the difference in the timer’s time
between calls to the function.

// Save current frame time
m LastTime = m CurrentTime;

The next section of code is where we add our elapsed time to an array of the 50 most recent time
values that have been calculated (in previous calls to the function). We only add our elapsed time if
it is not a wild time (such as over a whole second for example) which is more than likely being
caused by a menu bar being selected or something like that. So, provided the elapsed time is a
sensible one, we insert it at the head of our frame time array by moving the first 49 elements in the
array [0] to [48] into elements [1] to [49] (nudging them up one). The oldest time will be bumped
off the end of the array, leaving room at the head of our array (element [0]) to place our new time.

We also increment the sample count because if this function has not been called at least 50 times,
the sample count array will not be full yet. We need to know how many are stored there to perform
the averaging of times shown in a moment.

// Filter out values wildly different from current average
if (fabsf(fTimeElapsed - m TimeElapsed) < 1.0f)

{
// Wrap FIFO frame time buffer.
memmove (&m FrameTime[l],m FrameTime, (MAX SAMPLE COUNT-1) *sizeof (float));
m FrameTime[0] = fTimeElapsed;

if (m SampleCount < MAX SAMPLE COUNT) m SampleCount++;
} // End if

The next thing our timer class does is calculate the frame rate by calculating when a second

10

boundary has been reached. It records the number of times this function was called within that
second. Whilst we do not need to know the frame rate as such to move our objects correctly, this is
useful diagnostic information that the application may want to display to the user.

m_FPSFrameCount starts at O initially and is incremented each time the function is called.
m_FPSTimeElapsed also starts at 0 and has the elapsed time added to it with each call to this
function. When m_FPSTimeElapsed reaches a value >= 1.0, it means one second has passed and
m_FPSFrameCount will contain the total number of times this function was executed in the
previous second. When this is the case, we record the frame count in the m FrameRate member
variable and reset m FPSFrameCount and m FPSTimeElapsed to zero so that we can start
recording the frame rate all over again for the next second of time.

// Calculate Frame Rate

m_ FPSFrameCount++;

m FPSTimeElapsed += m TimeElapsed;
if (m FPSTimeElapsed > 1.0f)

{

m FrameRate = m FPSFrameCount;
m FPSFrameCount = 0;
m FPSTimeElapsed = 0.0f;

} // End If Second Elapsed

Our next important job is to calculate the elapsed time in seconds. Since the application will use
this value to update objects, we would like it to be smooth. This is where our time sample array
comes into play. The following code sums the elements in the m FrameTime array and averages
the result using the number of elements in the array. The result is stored in the m TimeElapsed
member variable.

// Count up the new average elapsed time

m TimeElapsed = 0.0f;

for (ULONG i = 0; i < m SampleCount; i++)
m TimeElapsed += m FrameTime[i];

if (m SampleCount > 0) m TimeElapsed /= m_SampleCount;
}

At this point the internal variables of the CTimer object have been updated and both the elapsed
time and the frame rate values are available to the application through the two member functions
described next.

The GetTimeElapsed Function

This function should be called after the Tick function has been called for each iteration of the game
loop. It simply returns the averaged elapsed time that was calculated and stored in the Tick
function. This value will be used by our demo applications to scale movements and rotations of
objects in the scene.

float CTimer::GetTimeElapsed() const
{

return m TimeElapsed;

}

11

The GetFrameRate Function

This function returns the current frame rate and optionally fills a formatted string with this
information for output. The ° _itot’ function is used to place the integer frame rate value into the
string in base 10 format. The letters FPS are pre-pended for strings that look like 25 Fps”.

unsigned long CTimer::GetFrameRate(LPTSTR lpszString) const
{

// Fill string buffer ?

if (lpszString)

{

// Copy frame rate value into string
_itot(m FrameRate, lpszString, 10);

// RAppend with FPS
strcat (lpszString, T(" FPS"));

} // End if build FPS string

return m FrameRate;

Conclusion

This simple timer system should serve us well for the remainder of this course. Feel free to use it
however you see fit -- you can probably think of ways to streamline it a bit or tweak it for your own
purposes. There is much more to learn about game timing as we move on in this series. For
example, task scheduling and time-slice management are very interesting related subjects and we
will examine these later in the curriculum. For now however, you should be in good shape with this
nice little reusable class.

12

	GP Part I Extras: Application Timing
	Frame Rate Timers
	Selecting a System Timer
	
	The PerformanceCounter
	The CTimer Class
	The Constructor
	The Destructor
	The Tick Function
	The GetTimeElapsed Function
	The GetFrameRate Function

