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GP Part I Extras: Application Timing 
 
 

Frame Rate Timers 
 
Faster computers can process more game loop iterations per second than slower computers. So 
Pentium IV™ systems will process more frames per second than Pentium III™ systems, which will 
in turn process more than Pentium II™. The geForce™ 4 can finish drawing a frame faster than the 
geForce™ III, which is faster then the geForce™ II, and so on. Such variations in degree of 
hardware speed make timing game updates based on the frame rate (frames per second) an unwise 
choice. Certain games from the late eighties did not account for this and as a result, cannot be run 
on modern PCs. On a modern system, these games cannot be properly controlled since object 
velocities are simply too high given the rapid frame updates. Our preference is to use more scalable 
time units like seconds or some fraction thereof.  

From a coding perspective, maintaining a game timer is quite simple. For example, most games 
will include timers that track the amount of time that has elapsed since the application started and 
how much time has elapsed since the last frame. These are both useful pieces of information to 
keep on hand for tasks like game physics, AI updates, animation, etc. Adding such a timer to the 
main application loop requires only a few lines of code. We will look at some of this code shortly. 

 
Selecting a System Timer 
 
In Windows, there are a number of timing mechanisms at our disposal. One of the easiest to use is 
the Windows scheduled event timer. We simply tell the system to send us WM_TIMER message at 
specified intervals and then process those messages in our message pump. However, the event 
based timer has poor performance and low resolution. In addition to the overhead of message 
handling, the WM_TIMER message is actually very low down on the list of Windows priorities. It 
actually has a lower priority than nearly all other Windows messages and is therefore unreliable. 
 
If we set the timer to pulse 20 times per second, there is no guarantee that it actually will. If a 
WM_TIMER message is in the message loop waiting to be processed and another message comes 
along with a higher priority, the WM_TIMER message gets pushed to the back of the message 
queue. This inconsistency limits the usefulness of WM_TIMER for our purposes. 
 
Windows provides two reliable timers that give good performance and suit all of our needs. Both 
are declared in the 'mmsystem.h ', so this file should be included in your application if you want to 
use these timers. You must also link your application to the library winmm.lib. 
 
timeGetTime()  
 
This function is compatible with almost all PC's and provides an accuracy of between 10 and 50 
milliseconds (1/1,000th  of a second) depending on the target operating system. It takes no 
parameters and returns the current system time as a DWORD value. While this value by itself is not 
very meaningful, we can use it to tell how much time has passed since the last call to the function. 
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In other words, we can call timeGetTime(), store the value it returns and then on the next 
frame, call it again and subtract the first value from the second.  
 
The result is the number of milliseconds that have passed since the last frame. This is a good timer; 
it is reliable and relatively fast, and is also available on very old PC's. Unfortunately, due to it’s 
relatively low resolution on certain operating systems (Windows NT, 2000 and XP) it is certainly a 
less than perfect solution. 
 
The PerformanceCounter  
 
The Performance Counter is a hardware counter that runs at 3.19 megahertz (MHz). This gives us a 
timer with measurement times in microseconds (1/1,000,000th of a second). Depending on your 
needs, this level of resolution may or may not be necessary. Our demo applications will favor the 
extra resolution. 
 

Note: Earlier computers did not have Hardware Timers, so the previously discussed function 
timeGetTime() can be used to fall back on if a hardware timer is not present. All currently produced 
processors have hardware timers, so this is really not an issue if your game is going to be cutting 
edge, in which case it would not support running on a 386 or 486 anyway. 

 
Two functions are available for using the Performance Counter. The first function we have to call is 
QueryPerformanceFrequency: 
 
BOOL QueryPerformanceFrequency (LONGLONG *lpFrequency); 
 
The single parameter is a pointer to a 64-bit integer that will receive the frequency of the timer. It 
will be measured in ticks per second. If this function returns a non-zero value, then a timer is 
available and lpFrequency will hold the timer’s frequency. If this function returns 0, then it was 
unable to find a Hardware Timer on the current system. This function only needs to be called once, 
during our initialization routine.  
 
Retrieving the timer frequency, even when we know that it runs at 3.19 MHz, makes our game 
future-proof. Should new hardware become available with a higher resolution timer, our game will 
still work as expected because our calculations will be relative to the timer’s frequency. 
 
QueryPerformanceCounter is the second function we will call -- once for every iteration of our 
game loop: 
 
 
BOOL QueryPerformanceCounter (LONGLONG * lpTime); 
 
This function also takes a pointer to a 64-bit integer as its only parameter and fills it with the 
current time. Just like the timeGetTime() function, this time is measured in ticks per second from 
some arbitrary starting point. Once again, while the raw result is not particularly meaningful to us, 
we can use it to determine how many ticks have passed since the last time the function was called. 
This value can then be converted into fractions of a second.  
 
The code snippet below queries the frequency of the clock and sets up a variable called 
Time_Scale. This code would be executed at application startup before we enter our main game 
loop. Later on in our game loop, the Time_Scale variable is multiplied by the elapsed time to 
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convert the elapsed time into fractions of a second. Note that if the hardware counter is 
not available, we use timeGetTime instead. 
 
 
 
 
LONGLONG Frequency, Current_Time , Last_Time; 
 
double Time_Elapsed , Time_Scale; 
 
BOOL Counter_Available=false; 
 
... 
... 
 
 
if(QueryPerformanceFrequency((LARGE_INTEGER *)&Frequency) 
{ 

Counter_Available = true; 
Time_Scale = 1.0 / Frequency; 
 
QueryPerformanceCounter((LARGE_INTEGER *)&Last_Time); 

} 
else 
{ 

Last_Time=timeGetTime(); 
Time_Scale=0.001; 

} 
 
So if the Counter is available, then the Counter_Available variable is set to true and our game loop 
will know that it can use it. We divide 1.0 by the frequency of the timer that we recorded earlier to 
give us a multiplier that will later convert our elapsed time into seconds. We also store the current 
time in the Last_Time variable. This is so we have something to compare against our first time 
through the game loop. The game loop would have code in it that looks something like this: 
 
if (Counter_Available) 

QueryPerformanceCounter((LARGE_INTEGER *) &Current_Time); 
else  

Current_Time=timeGetTime(); 
 

Time_Elapsed = (Current_Time - Last_Time) * Time_Scale;  
 
Last_Time = Current_Time;  
 
 
That is all we have to do really. Time_Elapsed now stores the amount of time that has passed, in 
seconds. For example, a value of 0.1 equals 1/10th of a second.  
 
We can now use Time_Elapsed in movement and rotation calculations. Assuming we are storing 
how much an object can move or rotate in units per second, we simply multiply these values by 
Time_Elapsed, (remember that this is really a division operation because Elapsed_Time is 
measured in Hertz -- 1/sec) Our code would look something like this: 
 
Ships_Speed     = 10;   // ship travels 10 units in a second 
Ships_TurnAngle = 1.2;  // ship can turn 1.2 radians in a second 
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... 
... 
 
Game Loop  
//First calculate the time that has elapsed since the last game loop 
iteration 
if (Counter_Available) 

QueryPerformanceCounter((LARGE_INTEGER *) &Current_Time); 
else  

Current_Time=timeGetTime(); 
 
Time_Elapsed = (Current_Time - Last_Time) * Time_Scale;  
Last_Time    = Current_Time;  
 
//Now use the elapsed time to scale the position and orientation 
//updates of our game objects 
Ships_Position = Ships_Position + (Ships_Speed*Time_Elapsed); 
Ships_Angle    = Ships_Angle + (Ships_TurnAngle*TimeElapsed); 
 
 
The CTimer Class 
 
We have implemented a simple timer class to wrap this functionality. After all, this really is an 
object that we will be re-using time and time again, and is thus ideally suited for being encapsulated 
in a self-contained class.  
 
We will also implement some simple functionality to help smooth sporadic changes in elapsed time 
values.  Should the frame rate take a sudden drop for some reason, perhaps due to an external 
process hogging CPU time for a fraction of a second, or perhaps due to the graphic complexity of 
the scene increasing dramatically for a brief period, we would like to avoid jerky results in our 
animations and scene updates. In this class, we will always keep an array of the last 50 elapsed 
times that have been fetched over the last 50 iterations of our game loop. The elapsed time returned 
by the class to our application will actually be the average of these times. Any temporary 
fluctuations in frame rate will be diluted by the other 49 values in the list. This also helps us more 
accurately describe a consistent application frame rate. You can experiment with this  
 
In your demo projects, you will find the CTimer class declaration in the file ‘CTimer.h’. It is shown 
below with a list of its member variables and methods. In addition to the constructor and the 
destructor, the class exposes only three public functions -- the interface for our class. The ‘Tick’ 
function should be called in every iteration of the game loop. It fetches the current time from the 
performance counter, subtracts this from the previous time (fetched in a previous call to this 
function) to calculate the elapsed time in seconds since the last time the function was called. We 
then use the GetTimeElapsed method to fetch this elapsed time value. This value is used to control 
the updating of the objects in our scene. This class also has a helpful function called GetFrameRate 
which will use the elapsed time value to calculate and return how many frames per second the  
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application is currently achieving. For convenience, passing in a string allows us to get back a line 
of text describing the frames per second currently being achieved, so that the application can output 
this string to the user. 
 
class CTimer 
{  
  public: 
   //------------------------------------------------------------- 
   // Constructors & Destructors for This Class 
   //------------------------------------------------------------- 
        CTimer(); 
    virtual ~CTimer(); 
 
   //------------------------------------------------------------ 
   // Public Functions For This Class 
   //------------------------------------------------------------ 
    void         Tick( float fLockFPS = 0.0f ); 
    float           GetTimeElapsed() const; 
    unsigned long   GetFrameRate( LPTSTR lpszString = NULL ) const; 
 
   private: 
   //------------------------------------------------------------ 
   // Private Variables For This Class 
   //------------------------------------------------------------ 
     
 
    bool            m_PerfHardware;              
    float           m_TimeScale;                 
    float           m_TimeElapsed;               
    __int64         m_CurrentTime;               
    __int64         m_LastTime;                  
    __int64         m_PerfFreq;                  
 
    float           m_FrameTime[MAX_SAMPLE_COUNT]; 
    ULONG           m_SampleCount; 
 
    unsigned long   m_FrameRate;                 
    unsigned long   m_FPSFrameCount;             
    float           m_FPSTimeElapsed;            
   }; 
 
Let us now take a look at the member variables and describe their purpose. 
 
bool  m_PerfHardware 
This Boolean variable is set to either true or false in the constructor of the timer object depending 
on whether a hardware performance counter is available on the current system or not. If this is set 
to TRUE, then the Tick function will use QueryPerformanceCounter to fetch the elapsed time. If 
set to FALSE, the Tick function will use the lower resolution timeGetTime function as a fall back 
option. 
 
float m_TimeScale 
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This value is used to convert the result of time query functions into seconds. It is 
calculated in the constructor by dividing 1 by the frequency of the timer. 
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float     m_TimeElapsed 
This member stores the current time in seconds that has elapsed since the previous call to the Tick 
function. The setting of this variable is the fundamental purpose of the Tick function. Once the Tick 
function has executed, this value can be fetched by the application using the GetTimeElapsed 
method. It can be used directly for scene updates and task execution. 
 
__int64      m_CurrentTime 
This member contains the raw value (time) returned by the QueryPerformanceCounter function. 
This value will later have the previous time subtracted from it and will be scaled by the 
m_TimeScale for conversion into seconds of elapsed time (since the previous call to the Tick 
function). 
 
__int64      m_LastTime 
At the end of the Tick function, this variable will be assigned the value in m_CurrentTime. The 
next time the Tick function is called, it will be subtracted from the new m_CurrentTime to 
determine the elapsed time between calls. 
                
__int64       m_PerfFreq                   
This value will be assigned in the constructor when the timer is first created. It will contain the 
frequency of the timer that we are using. This is needed to calculate m_TimeScale so that we can 
convert the elapsed time into seconds. It is retrieved from the system using the 
QueryPerformanceFrequency function. 
 
float            m_FrameTime[MAX_SAMPLE_COUNT] 
This float array will be used to store MAX_SAMPLE_COUNT elapsed time values (in seconds) 
that we calculated in the last MAX_SAMPLE_COUNT calls to the Tick function. 
MAX_SAMPLE_COUNT is defined as 50 in our demos, but you can change this. At the end of the 
Tick function, the m_TimeElapsed value will be set to the average of these 50 values. This should 
help smooth any sporadic fluctuations in frame rate that occurred in the previous 50 iterations of 
our game loop. 
 
unsigned long   m_SampleCount; 
This variable stores the current number of time samples stored in the m_FrameTime array. Whilst 
you might think this would always be equal to 50 (MAX_SAMPLE_COUNT), this will only be 
true once the first 50 iterations of our game loop have been executed. When our application is in its 
10th iteration for example, there will be only 10 actual time samples in the m_FrameTime array. 
 
unsigned long   m_FrameRate;                 
This value is also calculated in the Tick function and stores how many frames per second the 
application is currently achieving. Whilst this is not to be used to update the objects in our scene in 
any way, it can be useful for diagnostic purposes. 
 
unsigned long   m_FPSFrameCount;             
This variable is used in the Tick function to keep track of how many times the function has been 
called in any given second. It is incremented each time the Tick function is called. Once the end of 
the current second has been reached, m_FPSFrameCount will contain the total number of frames 
that occurred in that second. It can then be stored in the m_FrameRate variable. 
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float                  m_FPSTimeElapsed; 
This member is used in connection with the previous two values to record how much time has 
elapsed since the start of the current second we are processing. Once this time has reached 1.0, the 
second has ended and we can check the m_FPSFrameCount variable to see how many frames were 
achieved in this second. The result is stored in m_FrameRate so that it can be retrieved by the 
application for diagnostic purposes. 
 
The Constructor 
 
This constructor initializes the member variables to their default values and determines whether or 
not the high performance counter is available. We call QueryPerformanceFrequency to fetch the 
frequency of the high performance counter on the current system. If the function returns non-zero 
then a performance counter is available and its frequency is stored in the m_PerfFreq member 
variable and we set m_PerfHardware to TRUE. We then query the current time of the performance 
counter and store it in m_LastTime for use in the first call to Tick. Finally, we calculate 
m_TimeScale by dividing 1.0 by the frequency of the performance counter. 
 
CTimer::CTimer() 
{ 
    // Query performance hardware and setup time scaling values 
    if (QueryPerformanceFrequency((LARGE_INTEGER *)&m_PerfFreq))  
    {  
  m_PerfHardware  = TRUE; 
  QueryPerformanceCounter((LARGE_INTEGER *) &m_LastTime);  
  m_TimeScale   = 1.0f / m_PerfFreq; 
    }  
    else  
    {  
  // no performance counter, read in using timeGetTime  
  m_PerfHardware  = FALSE; 
  m_LastTime   = timeGetTime();  
  m_TimeScale   = 0.001f; 
    } // End If No Hardware 
 
    // Clear any needed values 
    m_SampleCount       = 0; 
    m_FrameRate  = 0; 
    m_FPSFrameCount = 0; 
    m_FPSTimeElapsed = 0.0f; 
} 
 
If the performance counter is not available on the current system then we will set the 
m_PerfHardware flag to FALSE. The Tick function will then know to use timeGetTime instead of 
the higher resolution QueryPerformanceCounter alternative. We then query the current time and 
store it in m_LastTime and set the m_TimeScale variable to 0.001 (for millisecond resolution, 
compatible with the timeGetTime return value). 
 
The Destructor 
 
As this class does not allocate any dynamic memory, the destructor does not have any work to do. 
 
CTimer::~CTimer(){} 
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The Tick Function 
 
The Tick method is called any time we would like the timer updated. In our demos this is done 
once per game loop iteration, before we update the scene. Here the current time is updated and the 
elapsed time calculated from the previous iteration.  
 
The function takes a single float parameter which serves as an optional frame rate lock. This can be 
useful if you want to see how your game performs at different frame rates. Our demo applications 
will not use this feature, and will prefer to squeeze out as many frames as possible. The default 
value for the fLockFPS parameter (0.0) allows the application to proceed at the maximum speed. 
 
First the function fetches the current time using either QueryPerformaceCounter or timeGetTime, 
depending on whether the high performance counter is available. Once we have the current time of 
the counter, we subtract from this the time that was fetched from the counter in the previous call to 
the function (or that was set in the constructor if this is the first time the Tick function has been 
called ) to calculate the elapsed time between calls. These steps are shown below: 
 
void CTimer::Tick( float fLockFPS ) 
{ 
    float fTimeElapsed;  
 
    // Is performance hardware available? 
    if ( m_PerfHardware )  
    { 
        // Query high-resolution performance hardware 
   QueryPerformanceCounter((LARGE_INTEGER *)&m_CurrentTime); 
    } 
    else  
    { 
        // Fall back to less accurate timer 
   m_CurrentTime = timeGetTime(); 
 
    } // End If no hardware available 
 
    // Calculate elapsed time in seconds 
    fTimeElapsed = (m_CurrentTime - m_LastTime) * m_TimeScale; 
 
 
The next section of code is activated only of we chose to lock the frame rate to a given number of 
frames per second. Here we do a brute force while loop to chew up time, but a sleep function could 
also be used. The loop repeatedly queries the time of the counter and calculates the elapsed time in 
seconds. Only when the elapsed time reaches the user-specified frame rate ceiling is the while loop 
exited. If the caller requested 30 frames per second, then we only need to update our timer every 
1.0/30 = 0.033333 seconds. Therefore, if the elapsed time between this frame and the last frame is 
say, 0.011111, then this while loop would chew up time until fTimeElapsed was greater than or 
equal to 0.033333.    
 
    // Should we lock the frame rate ? 
    if ( fLockFPS > 0.0f ) 
    { 
        while ( fTimeElapsed < (1.0f / fLockFPS)) 
        { 
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            // Is performance hardware available? 
       if ( m_PerfHardware )  
            { 
                // Query high-resolution performance hardware 
           QueryPerformanceCounter((LARGE_INTEGER*)&m_CurrentTime); 
       }  
            else  
            { 
 
 
 
                // Fall back to less accurate timer 
           m_CurrentTime = timeGetTime(); 
            } // End If no hardware available 
 
       // Calculate elapsed time in seconds 
       fTimeElapsed = (m_CurrentTime - m_LastTime) * m_TimeScale; 
 
        } // End While 
    } // End If 
 
 
Our next step is to store the current time of the timer object (calculated in the last call to this 
function ) in the m_LastTime member. The next time this function is called it can be subtracted 
from the current time (at the start of the function) to determine the difference in the timer’s time 
between calls to the function.  
 
 // Save current frame time 
 m_LastTime = m_CurrentTime; 
 
The next section of code is where we add our elapsed time to an array of the 50 most recent time 
values that have been calculated (in previous calls to the function). We only add our elapsed time if 
it is not a wild time   (such as over a whole second for example) which is more than likely being 
caused by a menu bar being selected or something like that. So, provided the elapsed time is a 
sensible one, we insert it at the head of our frame time array by moving the first 49 elements in the 
array [0] to [48] into elements [1] to [49] (nudging them up one). The oldest time will be bumped 
off the end of the array, leaving room at the head of our array (element [0]) to place our new time.  
 
We also increment the sample count because if this function has not been called at least 50 times, 
the sample count array will not be full yet. We need to know how many are stored there to perform 
the averaging of times shown in a moment. 
 
    // Filter out values wildly different from current average 
    if ( fabsf(fTimeElapsed - m_TimeElapsed) < 1.0f  ) 
    { 
        // Wrap FIFO frame time buffer. 
        memmove(&m_FrameTime[1],m_FrameTime,(MAX_SAMPLE_COUNT-1)*sizeof(float)); 
        m_FrameTime[ 0 ] = fTimeElapsed; 
        

  if ( m_SampleCount < MAX_SAMPLE_COUNT ) m_SampleCount++; 
    } // End if 
     
 
The next thing our timer class does is calculate the frame rate by calculating when a second   
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boundary has been reached. It records the number of times this function was called within that 
second. Whilst we do not need to know the frame rate as such to move our objects correctly, this is 
useful diagnostic information that the application may want to display to the user. 
 
m_FPSFrameCount starts at 0 initially and is incremented each time the function is called. 
m_FPSTimeElapsed also starts at 0 and has the elapsed time added to it with each call to this 
function. When m_FPSTimeElapsed reaches a value >= 1.0, it means one second has passed and 
m_FPSFrameCount will contain the total number of times this function was executed in the 
previous second. When this is the case, we record the frame count in the m_FrameRate member 
variable and reset m_FPSFrameCount and m_FPSTimeElapsed to zero so that we can start 
recording the frame rate all over again for the next second of time. 
 
 // Calculate Frame Rate 
 m_FPSFrameCount++; 
 m_FPSTimeElapsed += m_TimeElapsed; 
 if ( m_FPSTimeElapsed > 1.0f)  
      { 
  m_FrameRate  = m_FPSFrameCount; 
  m_FPSFrameCount = 0; 
  m_FPSTimeElapsed = 0.0f; 
 } // End If Second Elapsed 
 
Our next important job is to calculate the elapsed time in seconds. Since the application will use 
this value to update objects, we would like it to be smooth. This is where our time sample array 
comes into play. The following code sums the elements in the m_FrameTime array and averages 
the result using the number of elements in the array. The result is stored in the m_TimeElapsed 
member variable. 
 
    // Count up the new average elapsed time 
    m_TimeElapsed = 0.0f; 
    for ( ULONG i = 0; i < m_SampleCount; i++ )  

m_TimeElapsed += m_FrameTime[ i ]; 
 

    if ( m_SampleCount > 0 ) m_TimeElapsed /= m_SampleCount; 
} 
 
At this point the internal variables of the CTimer object have been updated and both the elapsed 
time and the frame rate values are available to the application through the two member functions 
described next.  
 
 
The GetTimeElapsed Function 
 
This function should be called after the Tick function has been called for each iteration of the game 
loop. It simply returns the averaged elapsed time that was calculated and stored in the Tick 
function. This value will be used by our demo applications to scale movements and rotations of 
objects in the scene. 
 
float CTimer::GetTimeElapsed() const 
{ 
    return m_TimeElapsed; 
} 
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The GetFrameRate Function 
 
This function returns the current frame rate and optionally fills a formatted string with this 
information for output. The ‘_itot’ function is used to place the integer frame rate value into the 
string in base 10 format. The letters FPS are pre-pended for strings that look like “25 FPS”. 
 
unsigned long CTimer::GetFrameRate( LPTSTR lpszString ) const 
{ 
    // Fill string buffer ? 
    if ( lpszString ) 
    { 
       // Copy frame rate value into string 
        _itot( m_FrameRate, lpszString, 10 ); 
 
        // Append with FPS 
        strcat( lpszString, _T(" FPS") ); 
 
    } // End if build FPS string 
 
    return m_FrameRate; 
} 
 

 
Conclusion 
 
This simple timer system should serve us well for the remainder of this course. Feel free to use it 
however you see fit -- you can probably think of ways to streamline it a bit or tweak it for your own 
purposes. There is much more to learn about game timing as we move on in this series. For 
example, task scheduling and time-slice management are very interesting related subjects and we 
will examine these later in the curriculum. For now however, you should be in good shape with this 
nice little reusable class. 
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