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Introduction 

“Game Mathematics” refers to the mathematics that every game programmer needs to know in order to 
write cutting-edge games; whether two-dimensional or three-dimensional, strategy, fantasy, action or 
adventure. It is the math you need to know to develop games from Pong to Doom III™ or whatever 
other game idea is simmering in the back of your mind. In this lesson we will talk about why 
mathematics is so important to game developers and describe some of the interesting things you will be 
able to do when you finish this course. We will also begin to lay the framework for later chapters by 
introducing set theory and relating this branch of mathematics to the concept of mathematical functions, 
which will prove invaluable to us down the road. Mathematics is not always easy for a lot of students, so 
if something does not make sense or if you have a question that we do not cover in the material, please 
make a note of it. Later you can post to our course message board or save it until our real-time question 
and answer sessions.  Do the exercises, play with the interactive programs and, above all, have fun. 
Remember, what you are learning now is going to make all the difference in the world when it comes 
time to write your very own games.  

Today's games showcase some very technologically sophisticated software design. If you surf over to 
your favorite software cyber-store, and load up a virtual cart full of games, before long you will be 
basking in the glory of high-resolution, richly colored, vividly detailed scenes with fluid animation and 
three-dimensional, acoustically correct sound. These entertaining, interactive games present highly 
immersive worlds in which things look, sound, and act, to an ever-increasing degree, just like the real 
thing.  

As an aspiring game developer, you should be probably wondering how it is that they can make games 
that are so realistic. Certainly a large part of the credit goes to the high-tech artists who design the 
objects in the game world using Computer Aided Design (CAD) software and digitally paint them so 
that they look realistic. But as much credit goes to the game programmers, who are responsible for 
turning all of that raw information into an interactive environment, complete with animation, sounds that 
reflect off of walls, lights that cast shadows, fog that fills the air, and objects that move realistically in 
response to forces acting on them. 

All of those diverse special effects that programmers write into their games (and even the not so fancy 
ones, like those required to animate the computer screen) have one thing in common: they depend on 
mathematics. Without math there would be no special effects, no computer games, and, in fact, no 
computers. Fortunately, even if you were one of those people who would have rather gone to the dentist 
than do algebra in high school, it is never too late to pick up all of the mathematics you need to know to 
design cutting-edge computer games. In fact, you will probably even find the mathematics more 
engaging, since we will be using the concepts for such an enjoyable purpose.  
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Is more math really going to help you become a better game programmer? Absolutely! After finishing 
this course, you will have mastered many subjects directly related to game development, including, 

• Sets and functions. You will understand mathematical functions, used everywhere in game 
mathematics. 

• Trigonometry. You will use trigonometry to calculate the trajectories of your game's missiles and 
enemies, rotate 2-D and 3-D points around any place you like, and taunt your feeble-minded 
enemies with your mastery of a subject that has plagued many an unsuspecting student. 

• Vector math. You will use the power of vectors to add shadows, realistic movement, collision 
detection, and much more to your games. Without a doubt, vector math is one of the most 
powerful and frequently used tools in the arsenal of 3-D game programmers. 

• Matrix math. You will use matrices to write your own fully interactive, animated 3-D game. 
Even if you have already used matrices before, chances are you do not know what they are, how 
they work, or all the cool things you can do with them. In this course, you will get the works -- 
no skimping on theory here. 

• Analytic geometry. You will get to use your newfound knowledge of trig, vectors, and matrices 
to solve very challenging problems in analytic geometry. 

If you are a newbie programmer, do not worry -- there are plenty of programs at Game Institute that 
apply these mathematical concepts to real-world problems, which you can dissect to your heart's 
content. More advanced programmers may want to write their own programs. For all skill levels, there 
are many quizzes to test your growing knowledge and interactive programs to enhance your learning. 

We will now begin our journey into the powerful, precise world of symbols and theorems: the 
mathematical side of game development. 

1.1 Introduction to Set Theory 

I remember as if it were yesterday (perhaps because it was indeed yesterday) the scene of my 2-year-old 
nephew standing atop a six-inch kitchen stepping stool, his hands outstretched toward the countertop, 
where his tiny fingers held tight, precariously keeping his body in place as he leaned ever backwards -- 
eyes to the ceiling. He was having a blast, as one could tell from the adorable smile on his chubby little 
face. I do not know how I did it, but somehow I summoned the inner strength to go over to the little guy 
and let him know just how dangerous what he was doing actually was. I explained in detail how his 
small muscles could not bear his weight for long periods of time or for very steep angles, and how when 
his hands gave out, his head would go plunging straight into the cupboard behind him and start oozing 
blood. Ouch. "He cannot understand you, John," quipped my younger brother standing nearby. Yeah, 
sure, I knew that. Oh, the little tyke looked a tad worried, but for the most part, the words and 
constructions I used went way over his 200-word vocabulary and rudimentary Subject | Verb | Direct 
Object grammatical parser. Well, at least I tried. 

The obvious moral of this story is that you need to lift weights so that you can hang off kitchen 
countertops for as long as you want. But the other, and perhaps more relevant, moral is that complex 
concepts oftentimes require (or at the very least lend themselves to) a larger vocabulary and an extended 
set of rules for using that vocabulary than simple concepts do. Mathematical concepts, many of which 
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are indeed complex, are no exception, and so much time spent learning mathematics is spent learning 
new vocabularies and rules for using those vocabularies. 

We are going to start this lesson by introducing the vocabulary and related rules for set theory, a branch 
of mathematical logic that has proven itself foundational to just about all other areas of mathematics. We 
will not venture too deeply into set theory (entire books are devoted to the subject, although that is true 
of just about every branch of mathematics), but we will go deep enough to build the foundation for an 
all-important concept in this course and beyond: the concept of mathematical functions (which are 
similar to, but different than, functions in computer programming languages). 

First we will cover the vocabulary of set theory, which includes terms like set, subset, and element, and 
then we will cover the rules -- or, more formally, the algebra of set theory.  (The term “algebra” is 
actually a fairly generic word that can be applied to nearly any mathematical entity that you use 
according to a set of rules). This includes the operations you can perform on sets, like union, 
intersection, and difference. 

1.1.1 The Lingo of Set Theory 

What exactly is a set? Surprisingly, this term is not usually defined precisely, since it is difficult to 
explain what a set is without using some synonym (like collection or group) that also needs to be 
defined just as much as set does! But nevertheless, we can very loosely define a set as an unordered 
collection of unique things. Each word in this definition is important, so let us examine them in more 
detail. 

By unordered, we mean that the items in a set have no particular order. In the set of all letters of the 
English alphabet, for example, 'a' does not come before 'b'. The set itself provides no such information. 
All it tells you is that both 'a' and 'b' (along with all the other letters of the alphabet) are in the set. 

By unique, we mean that a set cannot contain two or more copies of the same thing. If you add an 
additional letter 'a' to the set of all letters just mentioned, for example, then you do not end up with a set, 
since each item in a set must be unique. 

By things, we mean just about anything at all (it turns out there are a few restrictions on what sets can 
contain, but they are not of concern to us here). A set can contain letters, numbers, words, phrases, 
symbols, images, abstract concepts like hours and days, real-world objects like toys, cars, and chocolate 
doughnuts. You name it (practically), and it can be an item in a set. 

Note: The version of set theory we are covering here is often referred to as naïve or intuitive set theory. 
It was invented by the German mathematician, Cantor, about one hundred years ago. Unfortunately, 
naïve set theory allows the construction of certain paradoxical sets. For example, a set that contains all 
sets that do not contain themselves. A natural question to ask is, does this set contain itself? If it does, it 
should not and if it does not, it should. A version of set theory designed to eliminate these problems is 
known as axiomatic set theory. It is based on a set of axioms designed explicitly to eliminate the 
construction of paradoxical sets. For our purposes, however, naïve set theory will work just fine.  
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A helpful way to think of a set is as a big box that you can fill with 
anything that you want, provided that you never put the same item in 
twice and that the items are not ordered. Figure 1.1 illustrates such a box 
that contains the symbol x, an asterisk, the first few digits of π (Pi), a 
rhinoceros, the German flag, and a Ferrari. These are certainly strange 
items to have in a set, but the set is perfectly valid -- all items are unique 
and unordered.  

Using pictures is a nice way to visualize the contents of a set, but it is 
rather bulky and ill-suited to describing abstract sets or those that 
contain many items. As a result, sets are typically denoted symbolically: 
the set itself is enclosed by curly braces ('{' and '}'), and commas 
separate the items in the set. For example, we can denote the set of all 
integers from 0 to 10 inclusive by the following notation:  

{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 

Note: The word “inclusive” means the end points of the range are included. In this case, 0 and 10. The 
word “exclusive”, on the other hand, means that the end points of the range are excluded. For example, 
if we refer to the set of all integers from 3 to 7 exclusive, we mean the integers 4, 5, and 6, excluding 3 
and 7. 

Remember that a set is unordered, so the above set is exactly the same set as this one: 

{ 6, 1, 0, 9, 5, 3, 7, 2, 4, 8, 10 } 

No matter how you arrange the elements of this set, it is still the same old set, because sets are 
unordered. 

It is convenient to give sets names so that we can talk about them without having to list all of their items. 
You can name a set by specifying the name, followed by the equals sign ('=') and then the set itself. For 
example, we might want to call the set that contains an apple and orange the fruit set. We could do that 
with the following notation: 

the fruit set = { apple, orange } 

Realistically though, giving sets long names (like the one above) is both unnecessary and unwieldy. For 
this reason, sets are almost always named with a single letter, typically upper-case and italicized, such as 
A or B. Of course, there are only 26 letters in the English alphabet, and we will probably want to work 
with more sets than this during the course of our lifetime, so we will often have to reuse names. At one 
time A might stand for the set of integers, and at another time, the set of rationals (numbers in the form 
p/q, where both p and q are integers and q is not zero). But do not worry -- the context will always make 
the meaning clear. 

Some sets are too large to describe explicitly. For example, you could never list all integers, since there 
are infinitely many of them! But we can certainly speak of a set that contains all integers, so how do we 

Figure 1.1: A graphical 
representation of a set. 
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denote such a set? One way to do it is with an ellipsis, a series of three dots (...) used to indicate that 
something is missing. Using ellipses, we could denote the set of all integers like this: 

A = { ..., -3, -2, -1, 0, 1, 2, 3, ... } 

This method works fine for many large sets, but not all. The set of all people, for example, is too large to 
denote explicitly, yet ellipses are of little help. The set of all real numbers is another good example of a 
set where ellipsis will just not get the job done. 

For these sets and those like them, we need a more powerful notation. One invented for just such a 
purpose is called set builder notation. In set builder notation, sets are not described explicitly, but rather, 
they are described by listing one or more properties. All things that have these properties are items in the 
set. 

The notation is very similar to what you have just learned, except that instead of listing the items of the 
set inside the curly braces, you list the properties of the set. When there is more than one property, you 
can use a comma to separate them or you can use the word "and" (the comma is preferred for its 
compactness). 

The following example describes the set of all people using set builder notation: 

P = { the set of all people } 

Another variant of this notation you will see quite frequently involves the use of the symbol '|' and one 
or more variables (symbols that do not have a fixed value). The symbol '|' is read as "such that", and you 
can think of the variables as placeholders for the things being described. 

In this next example, the set of all planets smaller than the earth is described using this variant notation: 

Q = { x | x is a planet and the radius of x is less than the radius of Earth } 

You can read this as, "Q is the set of all x such that x is a planet and the radius of x is less than the radius 
of Earth." Since x is just a temporary name, a mere placeholder, it does not matter what you call it -- you 
could have used any symbol, such as 'y' or 'g' and the set would still be the same. (This is analogous to 
variables in computer programming languages: no matter what you call them, the code still works.) 

Table 1.1 contains a few more examples to acquaint you with set builder notation. 
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Table 1.1 

Set Builder Notation Translation 
A = { y | y is a human being, y has brown hair } The set of all people with brown hair. 
R = { x | x is a number } The set of all numbers. 
B = { d | d is a day of the week and d is not Thursday }  The set of all days except Thursday. 

G = { x | x is a game, x has 3D graphics } The set of all games that have 3D graphics. 

P = { all purple dinosaurs } The set of all purple dinosaurs.  
 

 

Some sets are important enough to be given special names, two of which are the null set, and the 
universal set. The null set, often represented by the symbol φ , contains nothing, hence its name. The 
universal set is a bit trickier to define. Sometimes it literally contains everything that a set can contain. 
More often, however, it just contains everything we are talking about (for example, if we are talking 
about integers, and mention the universal set, we probably refer to the set of all integers).  The universal 
set is also sometimes called the universe of discourse, and is often denoted by the symbols U or Ω  
("omega"). 

A few other sets that have special names are listed in Table 1.2. 

Table 1.2 

 
Symbol Description 
R The set of all real numbers. 
Z The set of integers. 
N The set of natural numbers (0, 1, 2, …) 
Z+ The set of positive integers (1, 2, 3, …). 
Z- The set of negative integers (…, -3, -2, -1).  

 

In the next section, we will talk a little bit more about the contents of sets, and introduce some useful 
notation. 
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1.1.2 Set Membership 

When a thing is in a set, we call it an item of that set. Equivalently, we may also call it a member or an 
element of the set. For example, the character '!' is an element of the set     { $, *, z, ! }. Similarly, the 
letter 'a' is a member of the set { x | x is a letter of the alphabet }. Likewise, the computer game Pong is 
an item of the set { y | y is a computer game, y was created before the year 1995 }. 

Sometimes it is helpful to use a variable to stand for a member of a set. For example, we can define x to 
be a member of the set of all integers. In this case, x is not necessarily any specific integer in the set -- it 
may be any integer at all. 

You can symbolically denote that a thing is a member of a set by listing the thing, the symbol ∈(which 
you can read as, "...is an element of..."), and then the set -- in that order. You can denote that a thing is 
not a member of a set in a similar way, using the symbol ∉  instead of ∈ (which you can read as, "...is 
not an element of..."). 

For example, 

x ∈{ x, y, z }  

1 ∉{ 2, 3, 4, ... } 

Smith ∈{ ®, Smith, % } 

π ∉{ x | x is an integer } 

Just like items can relate to sets (they can be members or not), sets themselves can relate to other sets. In 
the next section, I describe some of the common relational operators defined for sets. 

1.1.3 Subsets, Supersets, and Equality 

Sometimes all items in one set are contained in another set. For example, the set of all integers is 
contained in the set of all real numbers. When two sets are related in this way, we say the one is a subset 
of the other. If the set A contains the set B, we can express this symbolically by the notation AB ⊆ , 
which you can read as "B is a subset of A." We can also express this same idea by writing BA ⊇ , which 
you can read as "A contains B," or, equivalently, "A is a superset of B." 

Since any given set contains all of its own members, our definition forces us to say that every set is a 
subset of itself. Also, our definition requires us to say the null set is a subset of every set. How so? Well, 
saying that the null set is a subset of every set is the same as saying every set is a superset of the null set; 
that is, every set contains all the members of the null set. Since the null set contains no members, this is 
trivially true. These conclusions may seem a bit odd, and we could go back and change our definitions to 
avoid them, but it actually turns out that in combinatorics (a branch of mathematics that deals with 
counting), as well as other disciplines of mathematics, these conclusions make life simpler.  
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The subset operator is very similar to the less than or equals operator (<=) for numbers. Every number is 
less than or equal to itself just like every set is a subset of itself. Also recall that if x is less than or equal 
to y and y is less than or equal to z then x is less than or equal to z. For example, one is less than or 
equal to five and five is less than or equal to 9 so 1 is less than or equal to 9. Similarly, if A is a subset of 
B and B is a subset of C then A is a subset of C.  

A helpful way of visualizing relationships between sets involves the use of Venn 
diagrams. Venn diagrams, invented in 1881 by the English mathematician John Venn, 
depict each set as a shape, most typically a circle. The geometric points inside the 
shape are the members of the set. Figure 1.2 shows such a diagram for the relation 

AB ⊆  (which, remember, is the same relation as BA ⊇ ). 

When two sets A and B contain exactly the same items, we say the sets are equal, and 
denote it A = B. You should verify for yourself that if two sets are equal, then they are 
subsets of each other. This alternate way of defining equality turns out to be very 
helpful if you are proving that two sets are equal to each other.  

Note: You can prove two sets are equal to each other by proving that the first is a subset of the second 
and then proving the second is a subset of the first. This two-step breakdown makes the problem much 
easier to deal with.  

 

1.1.4 The Algebra of Set Theory  

Just like you can add, subtract, multiply, and divide numbers, there are plenty of operations you can do 
with sets as well. One operation parallels addition, another subtraction, and a third has no clear parallel 
in the algebra of real numbers. But before we discuss what these operations are, it may be helpful to 
review some of the names mathematicians give to algebraic operations that satisfy certain properties. 

An operation is said to be commutative if you can rearrange the order of the terms without changing the 
value of the expression. Multiplication and addition of real numbers, for example, are both 
commutative: a + b = b + a, and ab = ba. An operation is said to be associative if you can add 
parentheses anywhere you want without changing the value of the expression, for example, (a + b) - c = 
a + (b - c). Lastly, an operation ⊗ is distributive with respect to an operation ⊕  if you can write a⊗ (b 
⊕  c) = a⊗ b ⊕  a⊗ c. These symbols may seem a little strange at first but keep in mind that they are 
just like variables. The difference is that they are not standing for numbers or items in a set, but 
operators like addition, subtraction and multiplication. In algebra, for example, you can write a(b + c) = 
ab + ac (the distributive property), so multiplication is distributive with respect to addition. 

Now we are ready to tackle the main operators in set theory: complement, union, intersection, difference, 
cardinality, and Cartesian product. 

Figure 1.2: A 
Venn diagram for 

the relation 
AB ⊆ . 
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The complement operator allows you to talk about everything that is not in a given 
set; it is similar to the negation operator for real numbers. Formally, a set that 
contains everything in the universal set that is not in a given set A is called the 
complement of A, and is denoted by AC, which you can read as "A complement." 
Some authors also designate the complement of a set A by A' ("A prime") or A  ("A 
bar"). 

Figure 1.3 shows a Venn diagram for the complement operator. The entire square, 
including the circle and everything outside of it, is the universe of discourse. The 
circle in the middle is A, and everything outside of A is AC -- this region is shaded 
black. If the universal set was the set of all integers, and A was the set of all even 
integers, then AC would be the set of all odd integers. 

One notable property of the complement operator is that the complement of a complement of a set is that 
set itself -- in symbols, (AC)C = A. So the complement operator is very similar to the word NOT in the 
English language. For example, if you say that you are not not speaking, that means that you are 
speaking.  It is also similar to the negative sign in algebra: - (-2) is actually +2. 

The union operator is a way of combining sets, and as such, is similar to the 
addition operator. The union of two sets A and B is a set that contains every 
item in A and every item in B, and nothing else. Symbolically, we write this as 

BA∪ , and pronounce it "A union B." Some older books write this as         A 
+ B, which has the advantage of being very suggestive, but the disadvantage 
of being confused with the addition operator for real numbers.  

You can use the union operator on any number of sets: DCBA ∪∪∪ , for 
example, is a set that contains all items in A, B, C, and D, but nothing else. 

This is true for other operators (intersection and difference) as well. 

A Venn diagram for the union operator is shown in Figure 1.4. If A represents the set of all integers less 
than -3, and B is the set of all integers greater than -10, then BA∪  is the set of all integers, since all 
integers fall into one (or both) of those categories. Similarly, if A is the set of all humans, and B is the set 
of all gremlins, then BA∪  is the set that contains all humans and gremlins. 

The union of a set A with the null set is just that set A again; in symbols, AA =∪φ  (this should remind 
you of the familiar relation in the algebra of real numbers: a + 0 = a). The union of a set A with the 
universal set is the universal set: Ω=Ω∪A  (this may call to mind ∞=∞+a , although infinity is not a 
number, so this expression does not have a formal meaning, but you still may have seen it). 

Since BA∪  is the same as AB∪ , we can see the union operator is commutative. You should verify for 
yourself that it is also associative. 

 

Figure 1.3: A Venn 
diagram for the 

complement operator. 

Figure 1.4: A Venn diagram 
for the union operator. 
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The intersection operator has no nice parallel in the algebra of real numbers. 
The intersection of sets A and B is a set that contains every item that is in both 
A and B, and nothing else. The word "both" is crucial: if an item is in one set 
but not the other, then it is not in the intersection of the two sets. Symbolically, 
you can write the intersection of two sets A and B as BA∩  (read as "A 
intersect B"). 

If you have ever used a 3D modeling program like GILES™ that supports 
constructive solid geometry (CSG), then you probably already have a good 

grasp of what the intersection operator does, since intersection is one of the operations you can perform 
on two geometric objects to yield a third object. The third object contains strictly the points in both of 
the two geometric objects from which it is formed. 

A Venn diagram for the intersection operator is shown in Figure 1.5. Using a previous example, if A 
represents the set of all integers less than -3, and B is the set of all integers greater than -10, then BA∩  
is the set { -9, -8, -7, -6, -5, -4 }, since every item in this set is in both A and B. 

As with the union operator, the intersection operator is both commutative and associative. It is also 
distributive with respect to the union operator -- that is, CABACBA ∩∪∩=∪∩ )( . You can prove 
this using the two-step process mentioned earlier (prove each side is a subset of the other) or convince 
yourself of its truth by drawing a Venn diagram.  

Note: You will notice an increasing obsession with proofs as we move through the material. Why bother 
proofing theorems anyway? Well, when you are deriving equations on your own, you will want to be able 
to rigorously verify your results before you use them in your games. Otherwise, you may spend hours or 
days trying to find out what is wrong with an algorithm you wrote when it is really your equations that 
are at fault. Or you may just spend a long time implementing a set of equations only to later find out 
they are completely wrong and then end up having to do it all over again. Thus, proofs are quite valuable 
even for game developers. Proofs also make it easier for you to share your results with other 
programmers since they will not have to count on your divine inspiration -- they can examine the 
evidence for themselves for your equations.  
 
 

The difference operator is similar to the subtraction operator for real numbers. 
The difference of A and B, written A - B, is a set that contains all elements that 
are in A but not in B. Figure 1.6 depicts this operator as a Venn diagram. 

If A denotes the set of all letters of the alphabet, and B is the set of all vowels, 
then A - B is a set that contains all consonants in the alphabet. 

The complement operator can actually be written in terms of the difference 
operator:      AC = U - A, where U is the universal set. 

The difference operator is associative, but not commutative -- A - B is not, in general, the same as B - A. 
The only time this will be true is when both sets are equal, in which case  A - B and B - A are both equal 
to the null set, and thus are equal to each other. This may be the first time you have seen a non-
commutative operator, but as we progress through the course, we will see that there are other non-
commutative operators as well. The vector cross-product and the matrix multiplication operators are 
other examples we will encounter. 

Figure 1.5: A Venn diagram 
for the intersection operator.  

 

Figure 1.6: A Venn diagram 
for the difference operator.  
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The cardinality operator is the simplest of all: the cardinality of a set is simply the number of items in 
that set. Most mathematicians denote the cardinality of a set A as |A| or card(A) (the latter is an example 
of functional notation, which we will see later in this lesson's material -- do not worry too much about it 
for now). Of course, it does not make sense to talk about the cardinality of infinite sets, so the cardinality 
operator only applies to finite sets (those that contain a finite number of items). 

The last operator we will discuss is the strangest of all: the Cartesian product. It is strange because the 
result of this operator is a set of ordered pairs. An ordered pair is simply something in the form (x, y). 
The pairs are referred to as “ordered” because the pair (x, y) is considered a different pair from (y, x) 
(this contrasts with sets -- recall that the sets  { x, y } and { y, x } refer to the same set). 

The Cartesian product of A and B, written as BA×  ("A cross B"), is a set of ordered pairs such that the 
first element in the ordered pair comes from A and the second element comes from B. Formally, we can 
write this as: 

},|),{( ByAxyxBA ∈∈=×  

This definition can be extended to any number of sets, say n, in which case the result is not a set of 
ordered pairs, but rather, a set of ordered n-tuples (an n-tuple is essentially just a list of n ordered items). 
The formal definition then becomes, 

},...,,,|),...,,,{( 332211321321 nnnn AxAxAxAxxxxxAAAA ∈∈∈∈=×⋅⋅⋅××  

If you cross a set A with itself (which is perfectly valid), you can write either AA×  or A2. By extension, 
if you cross a set A with itself n times, then you can either write a whole list of A's (n of them), each pair 
separated by the Cartesian product operator, or you can simply write An. This latter form is preferred for 
its clarity and conciseness. 

The main use of the Cartesian product is geometric: if you cross the real numbers with the real numbers 
(R2), for example, then you get a set of ordered pairs (x, y) such that both x and y are real numbers. You 
can think of these ordered pairs as points on a Cartesian plane. We will return to this topic in our next 
lesson when we talk about how to graph functions. For now, just concentrate on getting familiar with 
how the Cartesian product operator works. 

1.2 Mathematical Functions 

There is a joke about a mathematician, a physicist, and an engineer who go vacationing together in 
Scotland. While on a train, the engineer glances out the window and spots a black sheep on the grassy 
countryside, commenting, "I did not know Scottish sheep were black." The physicist jumps in to correct 
him: "No, the most you can say is that some Scottish sheep are black." The mathematician rolls his eyes, 
sighs deeply, and informs them both in a matter-of-fact tone, "No, the most you can say is that there 
exists at least one sheep in Scotland, at least one half of which is black." 

This humorous story illustrates the tendency of mathematicians to be precise. This precision enables 
them to prove theorems, and in many cases, to simplify the expression of ideas. For example, the 
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majority of this lesson's material has been focused on laying the exacting foundations of set theory. All 
the formality may seem a bit much at first -- after all, none of the examples really communicated 
concepts better than we could communicate them in English. But as we move into the concept of 
mathematical functions, this groundwork will prove itself to be an immensely simplifying tool. 

So what is a mathematical function, anyway, and why should we care what it is? With our set theory 
groundwork in place, the answer to the first question is surprisingly elegant: a function f is a mapping 
from a set A to a set B such that with each item in set A, the function associates exactly one item in set B. 
This is usually denoted symbolically as BAf →: , which you can read as, "f is a function from set A to 
set B." The set A is referred to as the domain of the function, and the set B, as the range.  

Note: The domain is also sometimes called the pre-image. Other terms for the range include co-domain 
and image. 

 

Though easily stated, this definition may take some getting used to, so we will explore it in more detail 
next. 

One way to think of a function is as a machine: you feed it an element 
of a set A, it will spit out exactly one element of a set B. Another way 
to think of it is as a set of rules: the rules tell you which element of A 
corresponds to a given element of B. 

A helpful way of visualizing a function is as a series of arrows drawn 
from one set to another, as shown in Figure 1.7. Under this way of 
looking at a function, we might say that f sends each element of A to 
exactly one element in B. Suppose set A is our domain and set B is 

our range. Then another way to think of functions is to think of all the items in set A as baseballs. Each 
baseball has a label on it that tells you what item it represents. Off in the distance is a row of boxes. 
Each box represents a different item in set B. When you want to know what box is associated with a 
given baseball, you just bring that baseball to the pitcher who then lobs it into one of the boxes. Under 
this view, the pitcher is the function: he sends each item in set A to exactly one item in set B. 

Suppose we have a set A = { 1, 2, 3 }, and a set B = { Mary, Larry }. We can define a function 
BAf →:  in many ways. One way is to say that f sends 1 and 2 to Mary, and 3 to Larry. A graphical 

representation for this function is shown below: 

1→Mary 

2→Mary 

3→Larry 

Suppose we want to create a function g from the real numbers to the real numbers. There are many (in 
fact infinite many!) ways we can do this, but let us suppose that g takes the real number that we feed it, 
squares it, and outputs the result. Thus g sends 1 to 1, 2 to 4, 3 to 9, and so on. 

Figure 1.7: A function from set A to B. 
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For sake of brevity, we often say that an item a in the range is sent to f(a) ("f of a") by the function f. 
You can regard a as the input to the function f, and f(a) as the output. If you are familiar with a 
programming language such as C or C++, this notation should be immediately familiar. In fact, you can 
construct mathematical functions in these languages using almost the same notation. For example, the 
function g we defined in the last paragraph can be expressed in C/C++ with the following code: 

float g ( float x ){ 
    return x*x; 
} 

 

You invoke this function by writing g(x) in your code somewhere. The function takes the parameter x, 
squares it, and returns the result. Hence there is a strong parallel between mathematical functions and 
functions in computer programming languages (the former is almost certainly the source of the latter -- 
most of the early pioneers in computer science were mathematicians). 

There is a property of functions implicit in our definition that might not be obvious: a function must 
send each item in its domain to exactly and only one item in its range -- it can never send it to two or 
more items. That is, if f(a) = b, and f(a) = c, then b = c. There are no exceptions. If you have some sort 
of mapping from one set to another that does not obey this rule, then it is not a function. We will explore 
a graphical, intuitive way of viewing this property of functions in the next lesson's material. Another 
property that might not be obvious is that every single item in the domain must be sent to the range. You 
cannot have items sitting in the domain that are not sent anywhere. Mappings like this are not functions 
at all. This is not true for the range, though. You can have items in the range that are not associated with 
any item in the domain.  

Be careful to notice that these restrictions on functions do not force you to send different items in the 
domain to different items in the range. There is nothing illegal about sending any number of different 
items in the domain to one item in the range (in fact several of the examples of functions listed above do 
just that). It is perfectly okay, for example, if a function f sends a to c, and b to c, where a and b are 
distinct items in the domain, and c is an item of the range. 

There is however, a special name for functions that send each item in the domain to its own unique item 
in the range, and that contain no more items in the range than in the domain. These functions are called 
invertible, since you can construct a function, called the inverse of the original function, which sends 
each item in the range back to its corresponding item in the domain. You cannot construct such a 
function if the original function sends two or more distinct items in the domain to the same item in the 
range, since otherwise, the inverse function would have to send that item in the range to the two or more 
items in the domain, which would violate the definition of a function. Nor can you construct such a 
function if the range contains more items than the domain, since that would imply either the inverse 
function would have to send one item in the range back to two or more items in the domain, or that the 
inverse function would not send one or more items in the range to anything at all in the domain.  

Note: There are special names given to other kinds of functions as well. If a function sends each item in 
the domain to exactly one item in the range then the function is called one-to-one. This is true even if the 
range contains more items than the domain. A function is called onto if each item in the range is 
associated with one or more items in the domain. You should verify that if a function is both one-to-one 
and onto, it is also invertible.  
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Figure 1.8 depicts a function and its inverse graphically. The 
function sends items from A to B, and the inverse, from B to A. The 
usual notation for the inverse of a function f is f -1 (read "f inverse"). 
You should not confuse this with raising a number to the -1 power, 
or, as we deal with algebraic functions later on, with the reciprocal 
of an algebraic expression. 

A consequence of the definition of an inverse is that f -1(f(x))=x. In 
English: The function f sends x to some element in B, say y. The inverse function takes this element y in 
B and sends it back to x in A. Thus the inverse function undoes the operation of the function. 

As an example, consider a function f from the real numbers to the real numbers, such that f(x)=2x. This 
function takes the input, multiplies it by two, and then outputs the result. The function turns out to be 

invertible (as we will see in the next lesson), and its inverse function is f -1(x)= x
2
1 . Evaluating  f -1(f(x)), 

we get back x again, as expected. You should play around with this function to get a feel for how inverse 
functions behave. 

Conclusion 

So what is the big deal with functions? In fact, why should we even care about them as game 
developers? Alas, a partial answer to this question will have to wait for our next lesson, when we delve 
into a wide range of mathematical functions that have numerous uses in game development. In the next 
lesson we will veer away from the general-purpose definition of functions and focus our attention on 
algebraic functions. We will explore how some of our definitions in this chapter carry over to algebra 
and cover a few examples of algebraic functions. Lastly, we will cover a fantastic way of visualizing 
these functions, one which turns out to have quite a few applications in game development. Until then, 
please make sure that you try your hand at the exercises. When learning mathematics, there is nothing 
more important than practice. 

 

 

 

 

Figure 1.8: A function and its inverse. 
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Exercises 

1.  Determine which of the following are sets: 

 a. F = { p | p is a prime } 

 b. M = (1, 2, 3, 4, … ) 

 c. R = {} 

 *d. Q = { {x, y} | x is an integer, y is an integer, x > y } 

2. Translate the following sets from English into set builder notation: 

 a. A is the set that contains the names of all electronic components. 

 b. L is a set that contains all integers that are not less than the square root of five. 

 c. W is a set that contains all other sets. 

 d. Z is a set that contains everything that is not contained in the universal set. 

3. Translate the following sets from set builder notation to English: 

 a. G = { y | 0, >∈ yy R } 

 b. D = { s | s is a string of letters } 

 c. PS = { x | Sx ⊂ } 

 d. N = { −+ ∈∈ ZZ xx , } 

4. Prove that if A and B are sets, and A = B, then A is a subset of B, and B is a subset of A. 

5. *Prove that the intersection operator is distributive with respect to the union operator, or draw a 
Venn diagram to illustrate this. 



 18

6. Calculate the Cartesian products of the following sets (list the ordered pairs explicitly if the resulting 
set is finite): 

 a. A = { 1, 2, 3 }, B = { a, b, c } 

 b. A = { !, @, # }, B = { alpha, beta, gamma, delta } 

 c. A = { x | x is a real number }, B = { y | y is a letter of the alphabet } 

 d. A = ZR ×2  

7. Determine whether the following mappings are functions: 

 a. 1→2 

  3→4 

  5 →  2 

  4→1 

 b. 3→2 

  1→1 

  5 →  2 

  1→3 

8. Determine which of the following functions are invertible: 

 a. f(1)→2 

  f(3)→4 

  f(4) →  5 

  f(2)→3 

 b. f(5)→2 

  f(1)→1 

  f(6) →  2 

  f(2)→3 
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Introduction 

In our last lesson we painted a rather broad picture of functions using set theory as our base. A function, 
we said, is a mapping from a set A (the domain) to a set B (the range) such that with every element in A, 
the function associates exactly one item in set B. As this definition suggests, the concept of a function is 
extremely broad, since there are not any restrictions on what kinds of sets you can use for the domain 
and range. For this reason, the vast majority of possible functions have no applications in computer 
science or game development. So in this lesson, we will narrow our attention to mathematical functions, 
and attempt to get a feel for what they look like and how they work. We will also learn how to visualize 
these functions and cover a few of the more common ones used extensively in game development.  

2.1 Mathematical Functions 

Mathematical functions are functions from mathematical sets to mathematical sets. We are already very 
familiar with the sets of real numbers, positive numbers, rational numbers, and integers, but there are 
other sets as well, such as sets of ordered n-tuples (which we briefly mentioned in the last chapter), sets 
of matrices, sets of vectors, sets of quaternions, sets of imaginary numbers, and much more. 
Mathematical functions map from one of these sets to another (or possibly the same set). 

Perhaps the most common type of function we will encounter is one that maps from some subset of the 
real numbers to another subset of the real numbers. (Keep in mind that the set of all real numbers, just 
like any other set, is a subset of itself, so the domain and range of these functions may very well be the 
set of all real numbers.) These kinds of functions are sometimes called real-valued functions of a real 
value. The "real-valued" part indicates the range of the functions is a subset of the real numbers. The "of 
a real value" part indicates the domain is a subset of the real numbers. 

We saw a few examples of real-valued functions of a real value in the last lesson, such as 2)( xxf = . 
This particular function takes any real number, squares it, and outputs the result -- itself a real number. 

There are infinitely many ways we can create functions like this one using just high school algebra. For 
example, all of the following are perfectly valid functions that map from real numbers to real numbers: 

923)( 4 +−= xxxf  
xxf =)(  

 

Of course, we are not limited to using the symbol "f" for the function and "x" for the element in the 
domain (although these are quite common choices). All of these examples are equally valid as well: 

3)( 4 −= qqg  
2

5
1)( θθ =Φ  
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Suppose we do not want to pass just a single variable to a function, but want to pass a whole bunch. 
How do we fit this into the definition of a function? Simple: we just map from the set of ordered n-tuples 
(where n is the number of variables we want to pass to the function) to whatever set we are interested in. 
Here are a few examples that map from the set of ordered 3-tuples to the set of real numbers: 

zyxzyxf ++=),,(  
222),,( zyxzyxd ++=  

 
As you can see, the definition of a function gives us quite a bit of flexibility. The only rule we need to 
satisfy is that our function associates exactly one item in the range with each item in the domain. 

Are there any algebraic constructs that do not satisfy this constraint? Absolutely. It is quite possible to 
accidentally create an equation that we want to map from the set of all real numbers to the set of all real 
numbers, but which fail to do so for specific choices of elements in the domain (see Figure 2.1). 

 
Figure 2.1: A mapping that fails to satisfy the criteria for a function. 

 
Consider, for example, the following "function": 

x
xf 1)( =

 
 

Now if we specify the domain and range for this "function" as the set of all real numbers, then our 
mapping is not a function at all. Why is this so? Well, 0 is a real number, so if the equation truly did 
specify a function from the set of all real numbers to the set of all real numbers, then )0(f  would also 
have to be a real number, but )0(f  is just 0/1 , which is undefined. 

However, if we restrict our domain to the set of all real numbers except 0, then f instantly becomes a 
function. Another way to make f a function is to define it piecewise -- that is, define f using more than 
one equation, and specify for what elements in the domain each equation applies. We could, for 
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example, define )(xf to be 
x
1 , except when 0=x , and then specify that for this sole case, 1)( =xf . 

This "composite" function is called a piecewise-defined function. Piecewise-defined functions are 
designated with the following notation: 
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x
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Division by zero is not the only way to create a mapping that is not a function. Suppose we define a 
mapping xxf =)(  from the set of all real numbers to the set of all real numbers. Then f is not a 
function because if you evaluate it for any negative number, the result is not a real number. Take, for 
example, 2)2( −=−f . There is no real number such that, when multiplied by itself, is equal to -2, 
since whether the number is negative or positive, when you multiply it by itself the result will be 
positive.  

Note: Recall that the product of two negative numbers is a positive number, and of course, the product 
of two positive numbers is a positive number. So the square of any number is positive. That is, until we 
get to chapter 10! 

2.2 Functions and Graphs 

I can remember overhearing a teacher carefully explain the concept of a tensor to one of his more 
inquisitive students: "Essentially," he said, "a second-order tensor is a list of 9 numbers that satisfy 
certain properties." The student listened patiently while the professor went on to describe what those 
properties were. "Make sense now?" the professor asked. "Yeah, only what does a tensor look like?" 

Unfortunately, the student was not to have his wish fulfilled, since you cannot really picture a tensor. 
But the point is that as human beings, we are very comfortable with tangible things; things we can hear, 
touch, taste, and see. When it comes to the intangible, we often try to find ways to understand these 
things through analogies or representations. In the last chapter's material, for example, we explored the 
use of Venn diagrams to picture relationships between sets, elements, and other sets, and used pictures 
to represent functions. These illustrations give a sense of concreteness to otherwise abstract subjects. 

Not surprisingly, mathematical functions are no exception. There is a way to visualize all real-valued 
functions of real values. This technique is called graphing, and it is the topic of the next section. 
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2.2.1 Visualizing Single-Variable Functions with Graphs 

The formal definition of a graph is quite concise: a graph of a one-variable function BAf →:  (where 
A and B are both subsets of the real numbers) is a set G of ordered pairs such that }|))(,({ AxxfxG ∈= . 
How does this rather terse definition help people understand functions better? Well the great thing about 
a graph is not its cryptic definition, which serves only as setup, but rather what you can do with it -- you 
can draw a picture of a graph that visually represents the function. 

In order to understand how this is done, we must first cover the concept of a Cartesian coordinate system 
(which you may already be familiar with from your high school days). Essentially, a Cartesian 
coordinate system is a mechanism that allows you to specify the location of points using lists of 
numbers. 

Suppose you were told to draw a point on a piece of paper. This can be done with two pieces of 
information: first, you are going to be given some measurements relative to a fixed point on the paper, 
say the exact center; this point is called the origin of the coordinate system. Then you will be told to 
place your pencil at the origin, and move it left or right, then up or down a certain number of inches. I 
can describe this movement with two numbers: one that tells you how far you should move left or right 
(say positive numbers are right of the origin, and negative numbers are left), and another that tells you 
how far you should move up or down (say with positive numbers being up, and negative numbers being 
down). Together, these two numbers are called the coordinate of the point. There are unique coordinates 
for every point on the piece of paper. 

Figure 2.2 is an illustration of how this setup might work. 

 
Figure 2.2: A coordinate system on a piece of paper. 

 
What we have just described is a very simple two-dimensional Cartesian coordinate system. 
Mathematicians add some formality to the preceding illustration by introducing the concept of an axis, 
an infinitely long imaginary ruler of sorts. For the two-dimensional Cartesian coordinate system, there 
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are two axes: the horizontal one, often referred to as the x-axis, and the vertical one, usually called the y-
axis. The origin is usually taken to be the place where these two axes intersect. 

You can describe all points in the Cartesian coordinate system by using an ordered pair. The first 
number in the ordered pair tells you how far along to go on the x-axis, and by convention, positive 
numbers are taken to be rightward, and negative numbers, leftward. The second number in the ordered 
pair tells you how far to go on the y-axis -- most often, positive numbers are upward and negative 
numbers are downward. 

Figure 2.3 shows how of all this looks with a visual representation of the x- and y-axes and a point 
plotted in the coordinate system. Notice how finite lines represent the axes, since it is impossible to draw 
an infinitely long line in a finite space. But you should still think of the axes as going on forever. Also, 
little marks are drawn on the axes and numbers are drawn next to the marks: the numbers indicate how 
far along the axes the marks are; this lets you know which numbers correspond to which positions 
without having to use real-world measurements such as inches or centimeters. Lastly, the direction of 
positive movement is indicated with a plus sign -- here the standard conventions are chosen, so there is a 
plus sign to the right of the origin for the x-axis, and a plus sign to the top of the origin for the y-axis. 

 
Figure 2.3: A point on a two-dimensional Cartesian coordinate system. 

 
Recall we said that a graph of a one-variable function function BAf →:  is a set G of ordered pairs 
such that }|))(,({ AxxfxG ∈= . How do you visualize a function given its graph G? Well G is a set of 
ordered pairs, and we just learned that an ordered pair can represent a point, so the answer is staring us 
right in the face: simply draw (or plot) all the points in G on some coordinate system. The process of 
drawing all these points is called graphing or plotting the function, and as we shall soon see, it makes 
visualizing functions very easy. 

You may be thinking to yourself that for most functions, G will contain infinitely many points. After all, 
we can pass infinitely many real numbers to most functions, and the "number" of points is equal to the 
"number" of things we can pass to the function. Indeed this is so, which creates a bit of a problem: how 
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can we display infinitely many points? The answer is that we cannot, due to both time and physical 
constraints. It would take infinitely long for us (or even a fast computer) to display infinitely many 
points. Even if we could do it in a finite amount of time, the best we could hope for is to use one 
subatomic particle to represent each point, and though the universe contains a great many subatomic 
particles, the actual number is finite. 

So can we ever truly graph a function, then? Not in the general case. But what we can do is focus on a 
particular subset of the function's domain (include only a specific range of real numbers, say the real 
numbers from -10 to 10) and then from this subset, choose a finite number of points to draw. We can 
then play "connect the dots" and draw lines between the points we have plotted. Assuming the function 
is "smooth" (a concept given more precision in calculus), and assuming we choose enough points, our 
graph of the function should approximate what the function really looks like. 

Now that we have defined the concept of a graph, and discussed how to display it (or display some 
wisely chosen part of that graph), it is time for a few examples. Figure 2.4 shows the graph of the 
function 2)( xxf =  for all x in the interval [-1, 1]. 

 
Figure 2.4 The graph of the function 2)( xxf =  

 
A computer program called Mathematica™ was used to generate this graph. This is not a numerical 
analysis course, so we will not be delving into exactly how the program works its magic. But suffice it 
to say that Mathematica™ is one of the best math programs around, and it does an excellent job at 
graphing functions (as well as just about everything else).  

How should you interpret the graph? Well if you see some point plotted, say ),( yx , then you know that 
this point is in the graph, which means )(xfy = . For example, in Figure 2.4 you can discern that the 
point (1, 1) is plotted, which means that )1(1 f= . Let us check to see if this is true. Recall that 

2)( xxf = , so 11)1( 2 ==f . So (1, 1) really is in the graph of the function. Before proceeding you 
should take a few minutes to study Figure 2.4. It is even recommended that you graph the function 
yourself: just choose some x's, evaluate the function for these values, and plot the resulting ordered pairs 
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on a piece of graph paper. Then connect the dots and frame your masterpiece in the living room for all to 
behold! 

Just to give you a feel for how some other functions look, a more complex function is graphed in Figure 
2.5. Once you have become more familiar with how graphs correspond to functions, you will be ready to 
proceed to the next section, in which we cover three-dimensional graphs. 

 
Figure 2.5 The graph of a more complex mathematical function. 

 

2.2.2 Visualizing Two-Variable Functions with Graphs 

Just as we can visualize a real-valued function of one real variable with a two-dimensional image, we 
can visualize a real-valued function of two real variables with a three-dimensional image. Actually, the 
image is not 3D in the strict sense of the word; rather it is a 2D image with the illusion of depth (very 
similar to a photograph of a 3D object). 

To do this, we still make use of the concept of a graph, but we extend it as follows: the graph of a two-
variable function BAf →:  (where A is a set of ordered pairs, and B is a subset of the real numbers) is a 
set of ordered triples G such that }),(|)),,(,{( AzxzzxfxG ∈= . 

As with the one-variable case, to visualize the graph, all we have to do is plot some subset of the 
elements in G. Note though, that now the elements in G have three components (G is, after all, a set of 
ordered triples), so they actually correspond to three-dimensional points. This means that to plot them, 
we need a three-dimensional coordinate system. 
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It is easy enough to cook up such a system. All we have to do is add an additional axis, which we will 
call the z-axis, and make this axis perpendicular to the two we have already covered. Figure 2.6 shows 
an example of such a coordinate system. The x-axis measures how far to the left or right a point is, the y-
axis measures how far up or down the point is, and the z-axis measures the depth of the point. By 
common convention, positive numbers indicate in front of the origin, and negative numbers indicate 
behind the origin (the side of the origin you are on when you look at Figure 2.6).  

 
Figure 2.6: A three-dimensional Cartesian coordinate system. 

 
If you were told to plot the point at (1, 3, -2), you could do so by placing your pencil at the origin, then 
moving 1 unit to the right, 3 units up, and 2 units backward, towards yourself. To display a graph, you 
have to make use of the same tricks we did when plotting the graphs of one-variable functions: only look 
at some subset of the points in the graph, and connect those points to form a three-dimensional surface. 

That is enough background to introduce our first three-dimensional graph: a plot of the two-variable 
function 22)( yxxf +=  (which actually looks quite similar to the one-variable function 2)( xxf = , only 
in three-dimensions). You can see the Mathematica™-generated plot of this function in Figure 2.7. 

 
Figure 2.7: A plot of the two-variable function 22)( yxxf += . 
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The interpretation of the graph is much like that for one-variable functions. If you see some point         
(x, y, z) plotted, then you know that ),( zxfy = . For example, the plot shows that the point (-1, 2, 1) is 
in the graph, so we would expect that 2)1,1( =−f . Sure enough, 2111)1()1,1( 22 =+=+−=−f . 

Figure 2.8 shows some other real-valued functions. You should spend some time relating their equations 
to how their graphs look. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
Figure 2.8: Real-valued functions of ordered pairs 
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Humans live in a world of three spatial dimensions, so they have no problems visualizing two-
dimensional and three-dimensional graphs. Unfortunately, we have no capacity to visualize higher 
dimensions. So if you run across a function of three or more variables, you are essentially out of luck. 
There are ways to visualize these functions, but only by breaking them down into one- or two-variable 
functions by holding some of the other variables constant (We will look at this technique later on in this 
lesson's material). The good news is that, as game programmers, we are mostly going to be concerned 
with functions of one- or two-variables. 

Now that you have a better grasp of what functions are, and can visualize them with the aid of graphs, it 
is time to start covering some of the ones that come up all the time in game development. 

2.3 Families of Functions 

With the rich variety of mathematical functions, you might wonder if any attempt to classify them could 
possibly succeed. As fate would have it, however, certain kinds of functions come up quite frequently in 
math and computer science -- often enough to group them into categories. For example, mathematicians 
have defined polynomial functions, rational functions, exponential functions, logarithmic functions, 
trigonometric functions, and other classes of functions as well. 

These functions are important enough to game development that they warrant some study. Exponential 
functions, for example, are used to model fog, as well as certain kinds of light sources. Rational 
functions are used indirectly in texture mapping. Polynomial functions are used to approximate other, 
more complicated functions, and to create smooth surfaces and fluid paths. Trigonometric functions are 
used a million different ways in everything from animating 3D geometry to collision detection. 

In the remainder of this lesson's material, we are going to look at several of the easiest types of functions 
to understand: the absolute value function, exponential functions, and logarithmic functions. 

2.3.1 Absolute Value Function 

The absolute value function is a strange little function: you feed it a number, and if that number is 
positive, it will return that number; if the number is negative, it will return the negative of that number 
(which is itself a positive number). 

The absolute value function is designated by the symbols '|' and '|', which -- in departure from the normal 
functional notation -- enclose the expression being sent to the function. For example, if you want to 
write down the absolute value of 3, you write |3|. Similarly, the absolute value of -8 is |-8|. 

You can express the absolute value function using mathematical operators as follows: 

+= 2xx  
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In words, this says that the absolute value of x is the positive square root of the square of x. Since a 
negative number times a negative number is a positive number, and a positive number times a positive 
number is a positive number, the square of x is always positive. The square root of this positive number 
will itself be positive, so you can see the absolute value function returns positive numbers unchanged 
and inverts the sign of negative numbers. 

2.3.2 Exponential Functions 

Perhaps you have heard the word "exponential" in a sentence before, such as "the value of Amazon.com 
stock rose exponentially in its early years," or "it is exponentially more difficult to find a parking spot 
downtown than it is on the fringes of the city." These sentences should illustrate that the word 
"exponential" is often associated with "very much" or "greatly". Does this have any bearing to the 
mathematical meaning of "exponential"? The answer is a definite "yes”. 

Mathematicians are often concerned with how quickly functions increase or decrease. To understand 
what this means, think back to the graphs of the functions you have seen so far. It is not too difficult to 
picture the wavy line in such graphs as the silhouette of a mountain range. Wherever the slope of the 
range is very steep, the function is increasing or decreasing rapidly (increasing if, when walking on it 
from left to right, you have to walk uphill, and decreasing otherwise). 

Some functions do not increase or decrease at all. Take, for example, the function 1)( =xf . When you 
plot this function, as we have in Figure 2.9, you can see that it is just a straight horizontal line, lifted one 
unit above the origin. 

 
Figure 2.9 The plot of the function 1)( =xf . 
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Other functions change comparatively slowly. For example, the plot of the function 32)( −= xxf  is just 
a straight line, as shown in Figure 2.10. Sure, the function increases, but not by much -- to return to our 
mountain range analogy, for every one unit you walk to the right on the range, you have to hike "just" 
two units up if you want to stay on the plot of the function (that may seem like a lot now, but just wait!). 

 
Figure 2.10 :The plot of the function 32)( −= xxf . 

 
The plot of the function 2)( xxf =  (the first function we graphed, visible in Figure 2.4) decreases and 
increases quite a bit more rapidly than any of the previous ones, especially the farther away from the 
origin you get. For example, 100)10( =f  and 121)11( =f . So if you were to walk on the plot of the 
function from x = 10 to x = 11, you would have to hike 21 units vertically to stay on the plot. And the 
situation only gets worse: 000,10)100( =f , and 201,10)101( =f , so if you walked from x = 100 to x = 
101, you'd have to hike a full 201 units straight up to stay on the graph. 

Back in Figure 2.4 we saw the plot of x2. You might be thinking to yourself that other higher powers of 
x (such as 3x , 4x , or 5x ) would change even more rapidly than 2x . This is quite true: the greater the 
power, the faster the function changes (increases or decreases). But there is another class of functions, 
called exponential functions, which make even large powers of x seem like straight lines in comparison! 

An exponential function is one in the form: 

1,0)( ≠>= aaaxf x
 

 
The constant a, called the base of the exponential function, is just any real number, subject to the 
following constraints: 0>a , since otherwise, the function would not map to the real numbers; and 

1≠a , or else the function would just graph as a horizontal line (which does not fit with the meaning of 
the word exponential). 
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Does the exponential function live up to our expectations? Take a look at the graphs of the exponential 
function for a few different base choices in Figure 2.11 and judge for yourself. 

 

 

 

Figure 2.11: The plot of the exponential function for various bases. 
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As you can see, for fractional bases (those between 0 and 1) with a positive exponent, the function 
decreases rapidly from left to right; for larger bases with a positive exponent, the function increases 
rapidly. If you change a positive exponent into a negative exponent, you reverse these results (which 

should make sense, since xa−  is just ⎟
⎠
⎞

⎜
⎝
⎛

xa
1 ). 

So just how rapidly does the exponential function change? To answer this question, let us look at the 
exponential function with base 2. Well, for 2x , if you walked along the function until you got to x = 100, 
and then walked one more unit right, you would have to hike 210 units straight up to remain on the 
graph. With the base 2 exponential functions, you would have to hike 
1,267,650,600,228,229,401,496,703,205,376 units straight up under the exact same circumstances to 
remain on the graph of the function. 

This should tell you that you definitely do not want to be hiking the graphs of exponential functions any 
time soon! The exponential function changes exponentially faster than all the other functions we have 
looked at. 

There is one particular base that distinguishes itself from all others: called the natural base, this number 
is so special it is given the unique symbol 'e'. Its approximate numerical value is 
2.7182818284590452354.  

The exponential function with base e is called the natural exponential function, or sometimes, just the 
exponential function (which reflects its importance). 

What is so special about the natural exponential function? For one, it is the only function that is its own 
derivative (a topic covered in calculus). But perhaps more importantly for our purposes, the function is 
special because it lends itself to modeling real-world phenomena; for example, the function has been 
used to model all of the following: 

• To predict how long it takes for radioactive isotopes to decay 
• To determine what effects various interest rates have on a principal investment 
• To predict how fast populations are expanding 
• To model how well people remember things 
• To model the way fog density increases with distance 

 
There are many applications for games, such as modeling how long it takes for a burning building to 
reduce to ashes (for which the exponential function is a much better choice than what most games 
nowadays use), simulating damage to a vehicle (you can make it so the more damaged a vehicle is, the 
more easily it takes damage, which is a fairly realistic approach), and many more. Rather than cover all 
possible applications, we are going to focus on just a few, but cover them in sufficient depth so that you 
will feel comfortable using exponential functions for any application you may dream up. 

The most critical application you may run across is fog density, since both OpenGL and Direct3D 
models both use the exponential function directly.  
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Exponential Fog Density 

Fog is a generic term that refers to any kind of atmospheric suspension of particles (typically water 
droplets and dust) that is dense enough to cause light to noticeably scatter. The fog we are all most 
familiar with is the whitish haze that appears whenever moisture is available and there is some sort of 
localized cooling. 

Fog is a nice effect in computer games that has been used both to add realism and to increase 
performance (you do not have to display anything that is so deeply obscured by fog that it cannot be 
seen by the user). To implement fog, the basic problem you have to solve is this: given a point at a 
certain distance from the user, what should the intensity of the fog be at that point? 

The simplest of answers to this question involves choosing a start and an end distance for the fog. The 
fog will not obscure anything closer to the user than the start distance and anything further than the end 
distance need not even be displayed. Objects that fall in between these points are given a fog intensity 
(which ranges from 0 to 1) computed by the following linear function: 

)(
)(1)(

startend

end

dd
dddf

−
−

−=
 

 
where startd  is the distance the fog starts at, and endd  is the distance it ends at.  
 
This function is called linear because its graph is a straight line for any given values of endd  and startd . 
Figure 2.12 graphs a part of the function, using 10=endd  and 0=startd .  

 
Figure 2.12: The graph of a linear fog function. 

 
The function's range is the set of all real numbers between 0 and 1. A value of 0 indicates no fog at that 
point, and a value of 1 indicates full fog. Notice in the graph that instead of calling the axes 'x' and 'y', 
we have called them "Distance" and "Fog Intensity" to make things clearer. 
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This approximation works well enough that the majority of games can use it to simulate fog, but we can 
certainly improve on the model. It turns out for various physical reasons that the perceived intensity of 
fog increases exponentially with distance, rather than linearly. Recall that when you are in fog, the 
objects in your immediate vicinity are clear and sharp and there is little if any fog obscuring them. Then 
at some further distance, the intensity of the fog increases quickly until you cannot see anything beyond 
that point. The photograph in Figure 2.13 illustrates this effect. 

 
 

Figure 2.13: A photograph showing how fog intensity increases with distance.  
 
This is where the exponential function comes in. Rather than invent our own equations using the 
exponential function, we will look at two models built directly into popular rendering APIs like 
Direct3D and OpenGL: the exponential model and the squared exponential model. 

Both of these models make use of something called the fog density, which is used to tweak just how 
foggy the environment appears. This value is used instead of the start and end distances in the linear 
model, but serves much the same purpose. 

The fog density can be set to any value between 0 and 1, and hence, is another variable -- just like the 
distance to the point whose fog intensity we wish to compute. Thus the functions for both the 
exponential model and the squared exponential model map from a set of ordered pairs (consisting of the 
distance to the point and the fog density) to the set of real numbers (the fog intensity, between 0 and 1). 

In the exponential model, the fog-mapping function is defined as follows: 

ρρ dedf −−=1),(  
 
where ρ  is the fog density.  
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So you can see what this function actually does, it is graphed in Figure 2.14 for all fog densities and for 
all distances from 0 to 5.  

 
Figure 2.14: A graph of the exponential fog-mapping function.  

 
Notice how that the fog intensity is very low for small distances, and then increases rapidly for larger 
distances. Exactly when this occurs is governed by the fog density: lower fog densities allow the user to 
see much more of the immediate vicinity than do higher densities.  

The squared exponential model is very similar to the exponential model, as shown below:  

2)(1),( ρρ dedf −−=  
 
The squaring of the ρd  makes the fog intensity increase much faster than in the exponential model. You 
can see this for yourself in Figure 2.15. 
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Figure 2.15 A graph of the squared exponential fog-mapping function.  

 
These fog models provide substantially more realistic results than the linear fog equation, and show that 
even a topic as abstract and mathematical as exponential functions can be extremely useful in game 
development. 

Next we are going to go step-by-step through the process of creating our own model of how an object 
takes damage, using the exponential function for increased realism. 

Taking Damage the Exponential Way 

Suppose you are working on a 3D role-playing game where you battle monsters, spirits, and evil 
wizards, and want to implement a system for how the various items of armor that your character wears 
take damage. For example, your character probably has a shield, a helmet, mail, gloves, and perhaps 
boots. When enemies attack your character, you will want to damage these items by some realistic 
amount. 

Certainly, the amount of damage your character's armor takes is going to depend on how strong the 
enemies are and how good their weapons are. A strong enemy with a good weapon will do more damage 
than a weak enemy with a good weapon, for example. At a minimum, then we are going to want to 
create a function that inputs these two variables and outputs the damage done by the attack. 

As our first attempt, we might try a function similar to the following: 

babaf +=),(  
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where a and b are the strength of the enemy and the rating of his or her weapon, respectively. This is not 
a particularly bad attempt, though it may seem arbitrary: why not multiply a and b together, or sum 
multiples of a and b, or throw in a few powers of a or b? These are all possibilities, and they will affect 
how your combat system works. Which one you choose ultimately depends on your preferences (unless 
you can fund some studies to figure out which one is most realistic). For example, if you would like to 
give preference to strength, under the theory that a really strong opponent with a flimsy weapon will be 
able to overcome a weaker one with an excellent weapon, then you could use the following function: 

babaf += 2),(  
 
For our purposes, we will just use the sum of a and b and work on improving its realism through more 
objective means. 

Rather than increasing the damage done to an item by a fixed amount for a given enemy and weapon, it 
makes sense to increase it by an amount that varies depending on how badly it has already been 
damaged. For example, a brand new shield in perfect working order should take less damage than one 
that is falling apart. So what we really should do is have the item always take some sort of base damage, 
and then add to this an amount that increases as the overall damage of the item goes up. 

We will run through an example to make this clearer. Say our shield is undamaged and has 100 hit 
points. An opponent comes along who has 10 points for strength, and is carrying a weapon with a rating 
of 5 points. Thus the base damage the opponent does to the player is 10 + 5 = 15. When the opponent 
first strikes, this is all the damage he does to the player's shield (since the shield is undamaged), so the 
shield ends up with 85 hit points. 

After the first strike, the shield is damaged; so when the opponent strikes again, we will throw in 2 hit 
points above base value, bringing the total damage done by the opponent to 17. This reduces the shield's 
hit points to 68. In the next attack, we will add 4 hit points to the base value, reducing the shield's hit 
points to 49. In the fourth attack, we will add 8 hit points to the base value, reducing the shield's hit 
points to 26. In the fifth and last attack, we will add 16 points to the base value, making the shield 
completely unusable. (Of course, in a more realistic example, we would also reduce the hit points of the 
enemy's weapon, thus downgrading its ability to deal out damage, and possibly also decrease the 
strength of the enemy as fatigue set in from the battle.) 

You can see that our damage function is going to be a function of three variables: the strength of the 
enemy, the rating of his or her weapon, and the damage already done to the item being attacked. 
Mathematically, we can express this as follows: 

)(),,( cgbacbaf ++=  
 
where c is the damage already done to the item and )(cg  is a new function that computes how much 
additional damage should be done to the item based on the damage it has already sustained. For 
convenience, we will let c range between 0 and 1, where 0 represents no damage, and 1 represents full 
damage. 

Our task now is to figure out exactly what )(cg  looks like. We know immediately it is going to look like 
an exponential function, since that is what this section is all about! But if we did not already know this, 
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how would we come to this conclusion? One way would be to graph a function based on the example 
described with the shield, as in Figure 2.16.  

 

Figure 2.16: A graph of damage already taken versus additional damage dealt out.  
 
As you can see, the function is definitely exponential. 

The form we will choose for )(cg  is shown below: 

31
2)( kekcg ck +=  

 
Why add 1k , 2k , and 3k  to the basic exponential function? Because we want to be able to have some 
degree of control over how )(cg  operates -- and these new constants will let us do exactly that. 
Otherwise, we would just have to accept whatever the exponential function gave us, which is not what 
we want. 

In order to determine what the values of 1k , 2k , and 3k  are, we are going to have to be more precise in 
describing how )(cg  works. Certainly, we want 0)0( =g  (that is, when the item is not damaged, no 
additional damage should be added to the base damage). This, in turn, implies that 03

0
1 =+ kek , but any 

number raised to the power of 0 is just one, so we have 031 =+ kk . This is good because it tells us that 

1k  and 3k  are related in a very specific way -- one is the negative of the other. We will need this 
information later on. 

What else can we say about )(cg ? Here we enter murky waters. We can describe )(cg  more, but only 
by making subjective choices about how the damage dealing should work. Somewhat arbitrarily, we will 
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choose to add 1 hit point of damage if the item is 10% damaged. We can express this mathematically as 
follows: 

1)1.0( =g  
 
This gives us the following relationship: 

3
)1.0(

1
21 kek k +=  

 
Our preference will be for )1(g  to be a very high value, since an item that is nearly completely damaged 
should not be able to withstand any more. So we will choose 100)1( =g , which although tending toward 
the high side, should work fine for most items. Mathematically, we can express this additional constraint 
as shown below: 

3
)1(

1
2100 kek k +=  

 
These two equations, combined with third equation 031 =+ kk , enable us to determine what the values 
of 1k , 2k , and 3k  are. Mathematica™ gives the following results: 

10999.2,87937.3,10999.2 321 −≈≈≈ kkk  
 
The squiggly equals sign means "is approximately equal to”, which is a roundabout way of saying the 
terms are irrational numbers and therefore do not have a finite decimal expansion.  

Plugging all of the values back into the original equation, we finally get what we are after: 

)1(10999.2)( 87937.3 −= cecg  
 
The relevant part of this function is graphed in Figure 2.17. As you can see, the function satisfies all of 
our three conditions: 0)0( =f , 1)1.0( =f , and 100)1( =f . Plug it into our expression for f, and it is 
ready to use in your game. 
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Figure 2.17: The graph of )1(10999.2)( 87937.3 −= cecg  for all c in [0,1].  

 
We have covered exponential functions enough that you should be familiar with how they work and 
have a rough idea of how to use them to model things in your games. Now we will move on to 
logarithmic functions, which are closely related to exponential functions. 
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2.3.3 Logarithmic Functions 

Logarithmic functions are very similar to exponential functions (and with good reason, as we will see 
shortly). Recall that there is no single exponential function -- rather, there is a family of exponential 
functions, each one with a different base. The same is true for logarithmic functions (or log functions, as 
we will call them for short): there are many different log functions, each one with its own base. 

Log functions are represented by the notation )(log xa , where a is the positive base of the function. Just 
as with exponential functions, the base of a log function is a positive real number -- zero or negative 
bases are not allowed. Unlike exponential functions, however, there is a restriction on the domain of the 
log function: the domain is strictly the set of all positive real numbers. 

So what is it that log functions do, anyway? To be precise, )(log xa  is a real number y such that xa y = ; 
in other words, )(log xa  is a number such that if you raise a to this power, you get x. This may seem like 
a complicated definition (and it is!), so we will examine some examples: 

2100log10 = , since if you raise 10 (the base) to the power of 2, you get 100. 
38log2 = , since if you raise 2 to the power of 3, you get 8. 
01log =a , since if you raise any base to the power of 0, you get 1. 

264log8 = , since if you raise 8 to the power of 2, you get 64. 
 
These examples should hopefully clarify what it is that log functions do: they give you a real number 
such that, if you raise the base to this number, you get whatever real number you sent to the function. 

Exponential functions are fast changing functions, as we saw in the last section. What about log 
functions? Log functions, as it turns out, have a reputation for growing extremely slowly for the vast 
majority of the graph (they do grow quickly in the beginning, however). Walking along the graphs of 
log functions is not too much more difficult than walking on a level plane. 

So you can see this for yourself, we have graphed some log functions with a number of different bases in 
Figure 2.18. Remember that since the log's domain is the set of all positive real numbers, you will not 
see anything to the left of the origin. This may seem a bit odd at first, since the previous functions we 
have graphed are visible everywhere, but we will see many more functions in the coming lessons whose 
domain is restricted in like fashion. 

 



 43

 

 

 
 
 

 
 
 

Figure 2.18: Graphs of some various log functions. 
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Perhaps the most interesting property of log functions is that )(log xa  is the inverse function for the 
exponential xa ; or to put it another way, xa x

a =)(log . Recall from our last lesson that an inverse 
function undoes the operation of the function: if a function f sends an element x in A to y in B, then the 
inverse of f (denoted 1−f ) will send y in B to x in A. 

Just like the natural exponential function is the exponential function with base e, the natural log is the 
log function with base e. Instead of denoting this function with elog , mathematicians often shorten it to 
ln, which stands for natural log (in reverse word order!). 

If you just see log in a textbook with no base, then you are pretty safe in assuming the implied base is 
10, unless it is a computer science book, and then the implied base is probably 2. Also, sometimes 
mathematicians get lazy and drop the parentheses from the log function, so it is quite common for 
textbooks to write something like 5log instead of )5log( . 

Log functions have a number of useful properties, which are summarized for you in Table 2.1. 

Table 1: Useful properties of log functions. 

1. )(log)(log)(log vuuv aaa +=  0,0,0 >>≠ vua  

2. )(log)(log)(log vu
v
u

aaa −=  
0,0,0 >>≠ vua  

3. )(log)(log unu a
n

a =  0,0 >≠ ua  

4. 
)(log
)(log)(log

a
xx

b

b
a =  (Change of Base Formula) 

0,1,1 >≠≠ xba  

 
The Change of Base Formula listed in Table 2.1 is quite handy, since unless you have a really nice 
calculator, the one you have will not support bases other than 10 or e. If you want to use other bases, you 
will first have to convert from these bases to one that the calculator supports. 

The exercises ask you to prove several of the properties listed in Table 2.1. To give you a feel for how 
you should go about this, we will prove the first and last properties now: 

Proof of Log Property (1): By definition, zyvu aa +=+ )(log)(log , where yau =  and zav = . Here we 
have a representation for u and v. Multiplying these together, we get zyzy aaauv +== . Taking the log of 
both sides of this equation (with base a), we find that )(log)(log zy

aa auv += . The right hand side of this 
equation simplifies to zy + , so we have, zyuva +=)(log . But )(log)(log vuzy aa +=+ , so 

)(log)(log)(log vuuv aaa += . This completes the proof. 

Proof of Log Property (4): Let )(log xy a= . By definition, this implies that xa y = . Taking the log of 
both sides (with base b), we have )(log)(log xa b

y
b = . By Log Property (3), we can write the left hand 



 45

side of this equation as )(log ay b , so the equation becomes )(log)(log xay bb = . Solving for y, we get 

)(log
)(log

a
xy

b

b= . But )(log xy a= , so we know 
)(log
)(log)(log

a
xx

b

b
a = . This completes the proof. 

Right now you probably know more about log functions than you want to! But the knowledge certainly 
will not go to waste -- the log function is invaluable when you are dealing with exponential functions, 
since it enables you to solve equations you would not otherwise be able to solve. We will wrap up this 
chapter's discussion by looking at an example that illustrates this point perfectly. 

Using the Log Function for Game Development 

Many role-playing games use a system that allows a character to advance, whether in strength, dexterity, 
or some skill such as thievery. Typically, your character gains experience points by completing quests or 
killing bad guys. After acquiring a certain number of experience points, your character advances to the 
next level (a process termed "leveling up"), and you can choose what areas of your character you want to 
develop more. 

With open-ended games that allow you to do the same quests over again (or just kill monsters endlessly 
to gain experience points), one of the challenges developers face is what to do when the players become 
too powerful, and killing common enemies or completing low-level quests becomes too easy. If 
developers made it so that killing a Beta Werewolf brought you 10 experience points, and you leveled 
up every 100 points, you could just spend all your time killing these monsters until your character 
became mega-powerful. 

To avoid this problem, developers often make each new level harder to reach than the last. After 
reaching level 2, for example, perhaps it would require 200 experience points to make it to level 3, 
which would mean you would have to kill twice as many Beta Werewolves. This motivates players to 
play at a level more appropriate for their character, since the harder the enemies or quests, the more 
experience points the characters gain for a victory. 

One way to implement this solution is to use an exponential function, which ensures that each new level 
will be harder to reach than the last. Specifically, we can solve the problem with an exponential function 

)(xf  such that x is the current level of the character and )(xf is the number of experience points 
required for the character to level up. 

As before, we will setup a generic function involving the natural exponential, only this time we will use 
multiplicative constants (this will make the problem solvable with the mathematical tools we have 
developed thus far). Such a function is shown below: 

xkekxf 1
2)( =  

 
Similarly, we will need some constraints so that we can determine the values of the two constants. Two 
that we are going to use are 10)0( =f  and 10000)100( =f . The first one says that a character at level 0 
has to acquire 10 experience points in order to level up, and the second one says a character at level 100 
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has to acquire 10000 experience points to level up. (This should be considered the practical upper limit 
for character development, since the exponential function will grow so fast beyond this point that higher 
levels will be virtually unattainable.) 

Mathematically, we can express these two constraints as follows: 

102
0

2 == kek  
100001100

2 =kek  
 
The first equation tells us that 102 =k . Substituting this value into the second equation, we get, 

1000010 1100 =ke  
 
Dividing both sides of the equation by 10, we find that, 

10001100 =ke  
 
Now what do we do? Without the log function or a computer algebra system like Mathematica™, we 
would be reduced to trying different values for 1k in hopes of stumbling on the one that made the 
equation true (there are actually more sophisticated guessing methods than this, but we have not covered 
them). With an infinite number of real numbers to try, our odds of guessing the right one are not very 
good. 

Fortunately we do not have to guess. The log function acts as an inverse for the exponential function, so 
all we really have to do is take the natural log of both sides. This will give us the equation shown below: 

)1000ln()ln( 1100 =ke  

This simplifies to the following: 

)1000ln(100 1 =k  

Dividing both sides by 100, we finally isolate 1k : 

0690776.0
100

)1000ln(
1 ≈=k

 
 
So our final expression for the function f is as follows: 

xexf 0690776.010)( =  

The graph of this function from 0 to 100 is shown in Figure 2.19. 
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Figure 2.19: The graph of the function xexf 0690776.010)( =  

 
 

Conclusion 

In our next lesson, we are going to look at an altogether different class of functions: the class of 
polynomial functions. These handy functions, which are simply sums of powers of one or more 
variables, can be used to draw polygons or lines, approximate functions, predict the future, and much 
more. 
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Introduction 

The basement was a complete mess. Sawdust and a fine white powder covered the floor, boxes of 
packed goods were clustered in the corners, and slabs of wood and drywall were stacked in each room. 
The basement was not being remodeled -- it was being finished. And as I could tell from my monthly 
inspection, it had a long way to go. 
 
I was at my friend's house to visit and as we chatted about current world affairs and various 
philosophical topics, I helped him drywall the ceiling in one of the rooms. This arduous process 
consisted mainly of cutting pieces of drywall and screwing them to the overhead wooden beams. 
 
The job went smoothly enough, until we came to the ceiling light fixture in the center of the room. This 
protrusion required a custom cut in exactly the right place and in precisely the right shape. The first part 
was easy: we just used a measuring tape to locate the fixture relative to where we knew the drywall slab 
would be placed. Once measured, we drew a corresponding 'X' on the slab itself to indicate where we 
would need to cut the hole. 
 
The hard part was the cutout itself. Fortunately, the base of the light fixture was circular, so we 
measured the diameter of the base and drew a square of matching dimensions on the drywall slab, 
centered on the 'X'. Our task, we reasoned, was now to draw the largest possible circle that would fit in 
that square. We of course did what all men would do, and that is search around for some sort of can in 
our immediate vicinity that we could use to trace our circle with. Alas, the cans we found were either far 
too small or too large, and being the professionals we were, we could not accept anything less than a 
perfect fit. 
 
My friend began sketching a circle, but the resulting shape was too crude for our needs. So we pondered 
our situation for a few moments. We could always go upstairs and search for a compass, but that seemed 
like such a drastic step to take for something that real men should be able to do without assistance. No, a 
compass was not the solution, we concluded. There had to be another way. 
 
As my friend started drawing little equidistant marks on the sides of the square, suddenly a brilliant 
solution to our problem hit me: "We can use this square as a piece of graph paper, derive polynomial 
approximations to the sine and cosine functions, and then use these functions to plot the graph of a 
perfect circle!" This idea would have worked perfectly, too. The only problem was we did not have a 
calculator, and so we would have had to do the calculations manually (and there would have been 
hundreds of them to do). 
 
While I lamented the fact that mathematics was not able to rescue us, my friend solved the problem by 
drawing a series of lines from marks on one side of the square to marks on an adjoining side, creating a 
near-perfect circle in the process (a trick he says he picked up when he was quite young). So much for 
all those years in college studying math!  
 
Still, you may be wondering if it is possible to draw a perfect circle using polynomials. The answer is a 
definite yes. Polynomials can be used to approximate a large number of functions; indeed, they are so 
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good at it that various branches of mathematics study polynomials exclusively, knowing that the results 
of their study are applicable to many other kinds of functions as well. 
 
Approximating other functions is just one use for polynomials: like exponential and logarithmic 
functions, polynomials can be used to model various phenomena -- phenomena even more complicated 
than what you can model with exponential and log functions. They can also be used to predict future 
events based on past events (a useful feature for multiplayer games), to represent three-dimensional 
curved surfaces, and to direct the paths of computer characters. 
 
So polynomials must be pretty important, right? You bet. In fact, they are so important that we will 
spend this entire lesson looking at nothing but polynomials. By the end of the material, you will be able 
to astound your friends and amaze even yourself with all of the cool stuff you will be able to do. And 
you will also have taken your first steps toward being able to finish or remodel your own basement 
without a compass -- just do not forget to bring a calculator! 

3.1 Polynomials 

A polynomial is a simple algebraic construction involving sums of polynomial terms. A polynomial term 
is just a real number times the product of one or more variables, where each variable is raised to some 
non-negative integer power. A polynomial that uses certain variables is said to be a polynomial in those 
variables; for example, a polynomial that uses the variable x is said to be a polynomial in x. 
 
The following are all examples of polynomial terms: x2− , 234 yx , xyz3 , and 102 zx . Each of these 
polynomial terms is itself a polynomial. Here are some examples of polynomials that have more than 
one polynomial term: xx 25 3 +− , yx +5 , and xzyx −++ 222 . 
 
Every polynomial has a degree, which is defined differently depending on how many variables appear in 
the polynomial. For polynomials of a single variable, the degree is the largest power the variable is 
raised to. The degree of the polynomial xx +− 3 , for example, is 3, since 3 is the largest power that x is 
raised to.  
 
For polynomials of several variables, the degree is the largest combined exponent of the terms. By 
combined, we mean that you sum the exponents of the variables in the terms (e.g. the combined 
exponent of the term xy  is 2 -- the exponent of x plus the exponent of y). The degree of the polynomial 

zyxxy 222 +− , for example, is 3, since this is the largest combined exponent. 
 
Symbolically, we can express a polynomial in x of degree n with the following notation: 
 

0
0

1
1

2
2

2
2

1
1 xaxaxaxaxaxa n

n
n

n
n

n +++⋅⋅⋅+++ −
−

−
−  
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The a's can be any real numbers at all, as long as 0≠na . These real numbers are called the coefficients 
of the terms. The coefficient of ix , where i is any number between 0 and n, is simply ia ; for example, 
the coefficient of 2x  is 2a . 
 
The coefficient 0a  is called the constant term, and the coefficient na , the leading coefficient (since it 
comes first in the expression when you order the terms as shown). 
 
The symbolic notation for a polynomial in x of degree n can actually be simplified somewhat, since 0x  
is 1, and 1x  is just x. We can therefore rewrite the definition as follows: 
 

01
1

1 axaxaxa n
n

n
n ++⋅⋅⋅++ −

−  
 
There are special names given to polynomials of certain degrees: a polynomial of degree 0 is called a 
monomial (because it has one term) or a constant polynomial; a polynomial of degree 1 is called a 
binomial (because it has two terms); a polynomial of degree 2 is called trinomial (because it has three 
terms) or, more commonly, a quadratic. 
 
As a point of interest, a rational expression is a fraction where the numerator and the denominator are 
both polynomials. A rational function is just a function that maps from real numbers (or ordered n-
tuples) to the real numbers by using a rational expression. 
 
That is about all there is to the definition and representation of polynomials. There is no great mystery; 
in fact you have seen polynomials in previous lessons. Next we are going to discuss the algebra of 
polynomials -- all the stuff you can do with them -- but we will restrict our attention to polynomials of a 
single variable, which are the most important for our purposes. Keep in mind however, that 
fundamentally, a polynomial can have as many variables as you want. 

3.1.1 The Algebra of Polynomials of a Single Variable 

The operations defined for polynomials are pretty much the same as for real numbers: you can add them, 
subtract them, multiply them, divide them, and raise them to powers. You can even multiply and divide 
polynomials in more than one way. 
 
The unfortunate part about this richness of polynomial algebra is that the set of polynomials is not 
closed under the last two operations: that is, if you divide one polynomial by another polynomial, the 
result may not be a polynomial (in general, it is a rational expression); similarly, if you raise a 
polynomial to fractional or negative powers, the result will generally not be a polynomial either. But 
despite these inconveniences, the operations do come up often enough that we will cover them here. 
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Adding and Subtracting Polynomials 

Adding or subtracting two polynomials follows the rules of arithmetic you learned in high school. The 
new polynomial will have a degree equal to the largest of the degrees of the polynomials you are adding 
or subtracting. To compute the coefficients for this new polynomial, simply add or subtract the 
corresponding coefficients of the polynomials you are working with (some of them may be zero). 
 
For example, let us say we have the following two polynomials we want to both add and subtract: 
 

534 +− xx  
124 23 +−+ xxx  

 
The first step we might take is to format the polynomials so their powers of x line up, putting zeros 
wherever certain powers are missing: 
 

4x  
30x  

20x  x3−  5  
40x  

34x  
22x  x−  1 

 
Now to add or subtract them, all we have to do is add or subtract the coefficients in each column. For 
example, the addition of the two polynomials is the new polynomial 6424 234 +−++ xxxx . Similarly, 
the subtraction of the two polynomials is the new polynomial 4224 234 +−−− xxxx . 

Scaling Polynomials 

You can multiply polynomials or divide them by any real number (except you cannot divide by zero). 
The result will still be a polynomial. To do so, you use the normal rules of algebra, treating the entire 
polynomial as if it were enclosed by parentheses (thus you multiply or divide each term individually by 
the real number). Let us look at some examples. If you multiply the polynomial xx 105 7 +  by 2, then the 
resulting polynomial is xx 2010 7 + . If you divide the polynomial 13 2 −x  by 2 (which is the same as 

multiplying it by 1/2), you get 
2
15.1 2 −x . 

Multiplying Polynomials  

To multiply two polynomials together, you treat them as if they were both enclosed by parentheses, and 
then multiply the expressions together using the distributive property for real numbers. As mentioned 
briefly in lesson one, the distributive property for real numbers says that acabcba +=+ )( . This 
property provides a way of distributing multiplication inside of parentheses. 
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When you are multiplying a monomial by a binomial, the distributive law applies easily and directly: for 
example, the monomial 5 times the binomial x – 2 is just (5)(x-2) = 5x - 10, by the distributive law. If 
you are multiplying two binomials, the situation is a bit more complicated. 
 
In general, a binomial times a binomial will look like (ax + b)(cx + d), where a, b, c, and d are constant 
real numbers. To compute the result of this multiplication, we are going to let e = (ax + b); that is, we 
are going to rename the quantity (ax + b), and the new name we are going to use is e. Then the 
multiplication becomes e(cx + d). By the distributive property, we know this is just ecx + ed. Now we 
will substitute the quantity (ax + b) wherever we see e, since that is what we defined e to be. This gives 
us dbaxcxbax )()( +++ . We can apply the distributive property two more times to this expression, 
giving us bdaxdbcxacx +++2 . By factoring out an x, we can simplify this to bdadbcxacx +++ )(2 . 
Notice the degree of the resulting polynomial is equal to the sum of the degrees of its constituent 
products -- this is always true, no matter the polynomials involved. 
 
The lesson to learn from all this is that multiplying polynomials together is in general an unpleasant 
process: the more terms in the polynomials, the more unpleasant it becomes. Fortunately, there is an 
easier way than using the distributive property that can be extended to multiply any number of sums of 
terms by other sums of terms, whether or not those sums are polynomials. 
 
Let us say we have n sums maaaS 112111 +⋅⋅⋅++= , maaaS 222212 +⋅⋅⋅++= , and so on, with the nth sum 
being nmnnn aaaS +⋅⋅⋅++= 21 . To compute the product nSSS ⋅⋅⋅⋅⋅⋅ 21 , here is what you need to do: 
choose a term from each sum, and then multiply the terms together. Repeat the process until you have 
chosen all possible combinations. Add the resulting products, and you are done! Easier said than done, 
of course, but this way of doing it is much simpler than using the distributive property a thousand times. 

Dividing Polynomials  

Division of one polynomial by another is the most complicated of polynomial operations. Worse still, 
the end result is usually not a polynomial at all, but a rational expression. But despite these drawbacks, 
polynomial division is an invaluable tool for anyone who works a lot with polynomials (and that is, or 
will be, you!). 
 
The method we are going to cover for polynomial division is called long division. It parallels long 
division for real numbers. The best way to explain this process is to look at a few examples. 
 
Suppose we want to divide the polynomial xxxxx 61111174 2345 −−++−  (called the dividend) by the 
trinomial xx 34 2 +  (called the divisor). The steps involved in this process are explained below: 
 
1. Write the polynomials in long division form. 
 

xxxxxxx 6111117434 23452 −−++−+
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2. Above the dividend, write down a polynomial term such that, when multiplied by the divisor, the first 
term of the resulting polynomial is identical to the first polynomial term in the dividend. Here the 
polynomial we want to write down is 3x− , since if you multiply this by the divisor, you get 

45 34 xx −− , and the first term of this resulting polynomial is equal to the first polynomial term in the 
dividend (namely, 54x− ). 
 

3

23452 6111117434
x

xxxxxxx
−

−−++−+
 

 
3. Multiply the polynomial term you just wrote down by the divisor, and then write the resulting 
polynomial directly beneath the dividend, lining up the powers of x. 
 

45

3

23452

34

6111117434

xx

x
xxxxxxx

−−

−
−−++−+

 
 
4. Subtract the polynomial you just wrote down from the dividend, and write the resulting remainder 
directly below the polynomial (taking care again to align the powers of x). 
 

4

45

3

23452

20
)34(

6111117434

x
xx

x
xxxxxxx

−−−

−
−−++−+

 
 
5. Drop down a term from the dividend and add it to the remainder you wrote down in the last step. In 
this case, we drop down the 311x . 
 

34

45

3

23452

1120
)34(

6111117434

xx
xx

x
xxxxxxx

+
↓−−−

−
−−++−+

 
 
6. This step is a repeat of step 2: above the dividend, write down a polynomial term such that, when 
multiplied by the divisor, the first term of the resulting polynomial is equal to the first term of the 
"remainder" polynomial at the bottom. In our case, the sought-after polynomial term is 25x , since 

3422 1520)34(5 xxxxx +=+ , and the first term of this new polynomial is 420x , which is the same as 
the first term in our remainder polynomial. 
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34

45

23

23452

1120
)34(

5
6111117434

xx
xx

xx
xxxxxxx

+
−−−

+−
−−++−+

 
 
7. This step is a repeat of step 3. Multiply the polynomial written above the dividend by the divisor then 
write the result directly below the remainder polynomial, aligning the matching powers of x. 
 

34

34

45

23

23452

1520

1120
)34(

5
6111117434

xx

xx
xx

xx
xxxxxxx

+

+
−−−

+−
−−++−+

 
 
8. This step is a repeat of step 4: from our remainder polynomial, subtract the polynomial you just wrote 
down, and write the resulting polynomial at the bottom. This is the new remainder. 
 

3

34

34

45

23

23452

4
)1520(

1120
)34(

5
6111117434

x
xx

xx
xx

xx
xxxxxxx

−
+−

+
−−−

+−
−−++−+

 
 
9. This step is a repeat of step 5: drop down a term, adding it to the remainder calculated in the previous 
step. 
 

23

34

34

45

23

23452

114
)1520(

1120
)34(

5
6111117434

xx
xx

xx
xx

xx
xxxxxxx

−−
+−

↓
+

−−−

+−
−−++−+

 
 
10. By now you should know exactly what is coming next. To spare you the painful details, we will skip 
to the end result, which is listed below: 
 



 57

0
)68(

68
)34(

114
)1520(

1120
)34(

25
6111117434

2

2

23

23

34

34

45

23

23452

xx

xx
xx

xx
xx

xx
xx

xxx
xxxxxxx

−−−

−−
−−−

−−
+−

+
−−−

−−+−
−−++−+

 
 
11. As you can see, the final remainder is zero, so we can conclude that xx 34 2 + exactly divides 

xxxxx 61111174 2345 −−++− . The result of the division is the polynomial listed above the dividend: 
25 23 −−+− xxx . You should verify that this polynomial times the divisor is indeed the dividend. 

 
This example went very smoothly: the dividend had all powers of x and the remainder of the division 
was zero. This was not a coincidence, either since we rigged the example to produce these results. The 
vast majority of polynomial divisions, however, will involve polynomials that are not so well behaved. 
We will cover one more example now that will show you what to do in these cases. 
 
Suppose we want to divide the polynomial 23 −x  by the polynomial xx −2 . Notice that the dividend 
here does not have any powers of x aside from 3x  and 0x , and yet we will have to subtract such powers 
from it like we did in the previous example. So what do we do? The trick is noticing that it does in fact 
have the missing powers of x, but with zero coefficients. We can therefore write the dividend as 

200 23 −++ xxx . 
 
Now we proceed exactly as before. The final result of the division process is shown below: 
 

2
)(

0
)(

1
200

2

2

23

232

−
−−

+
−−

+
−++−

x
xx
xx

xx

x
xxxxx

 
 
As you can see, the remainder is not zero in this case -- it is 2−x . Remainders are so common that if 
you pick two polynomials at random, and divide the smaller into the larger, chances are you will get a 
remainder (in fact, the above two polynomials were selected at random, knowing that there would 
almost certainly be a remainder after the division). 
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So how do we interpret the remainder? The exact same way we do in long division: the dividend divided 
by the divisor is equal to the result of the division process plus the remainder divided by the divisor. In 

our case, this means that 
xx

xx
xx

x
−
−

++=
−
−

22

3 212 . 

3.1.2 Finding the Zeros of a Polynomial 

Sometimes you will have a polynomial and will want to know exactly what values of x the polynomial 
sends to 0. You can get a rough idea by just graphing the function and looking for places the graph of 
the polynomial intersects the x-axis (more on this in the next section). But generally, we want an 
analytical expression that will give us exact values and leave no need for guesswork. 
 
It turns out that this is easy for low degree polynomials and progressively harder for higher ones -- 
eventually, it is literally impossible to write down an analytical solution for the problem. 
 
The monomial and binomial cases are easy, so we will not cover them here. The trinomial case is a bit 
more interesting. Essentially, we want to know what values of x will make the equation 02 =++ cbxax  
true. Mathematicians have discovered that a quadratic in this form always has two solutions, although 
they may be identical or even non-real (a topic we will cover more in lesson seven). The solutions are 
given by something called the quadratic equation, listed below: 
 

a
acbbx

2
42 −±−

=  

 
That is just one equation -- so where are the two solutions? Simply use the positive square root to get 
one solution, and the negative square root to get the other (the '± ' symbol just means a plus or a minus 
sign can go there). You should verify that both of these really are solutions to the equation 

02 =++ cbxax  (that is, if you plug these values of x into the equation, you get a true equality). 

3.2 Visualizing Polynomials 

To master polynomials, you must be able to intuitively grasp what the lower degree polynomials do. The 
best way to do this is to construct functions that use polynomials to map from the real numbers to the 
real numbers, and then to graph these functions and carefully study what the graphs look like.  
 
The simplest polynomial of all is a zeroeth-degree polynomial, which is just a real number. A function 
that uses this polynomial will map all real numbers to a single real number. Thus the graph of such a 
function will be a perfectly straight, horizontal line (Figure 3.1). 
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Figure 3.1: The graph of a zeroeth-degree polynomial. 
 
The graph of a function that uses a first-degree polynomial is a straight line too, but this time the line 
can be oriented in any direction except perfectly vertical (if the graph was a vertical line, the function 
would have to associate an infinite many elements in the range with a single element in the domain, 
which violates the definition of a function). A first-degree polynomial is graphed in Figure 3.2. 
 

 
 

Figure 3.2: The graph of a first degree polynomial. 
 
In our last lesson, we graphed the function 2)( xxf = , so you have already seen what a second-degree 
polynomial looks like. In general, the form of a second-degree polynomial function is 

cbxaxxf ++= 2)( , where a, b, and c are all real numbers, and a is nonzero. If a is positive, as it is for 
2)( xxf = , then the graph of the function resembles a 'U'. If a is negative, on the other hand, the graph 

looks like an upside down 'U' (a parabola). You can see these distinctions in Figure 3.3. 



 60

 

 
 

Figure 3.3: The graphs of some second degree polynomials. 
 
A third-degree polynomial resembles a series of hills and valleys, although exactly how it does so 
depends on the coefficients of the powers of x. A few simple trinomial functions are graphed in Fig 3.4. 
 

 
 

Figure 3.4: The graphs of some third degree polynomials. 
 
The graphs of higher degree polynomials are more erratic, at least when you look around the origin. This 
is because of the wide variety of choices you have for all the different coefficients: they can be zero, 
small or huge, and negative or positive. But if you become familiar with the graphs presented here, you 
will be more than able to handle the applications of polynomials we will look at in the next section. 

3.3 Using Polynomials 

We have covered just about everything we are going to on the subject of polynomials. You know what 
they are, what operations are defined for them, and what they look like when graphed. The next step, 
and the reason we studied all of this material to begin with, is applying polynomials to the real-world 
problems that game developers face. 
 
Polynomials can be used in a variety of ways -- too many to cover in one lesson's material. So what we 
will do in the next few sections is select a few of the more interesting applications. But by the time you 
are done, you will be familiar enough with the process to apply polynomials to anything you want.  
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3.3.1 Modeling Phenomena with Polynomials 

In our last chapter we used exponential and log functions to model various phenomena. Exponential 
functions work great when you need a steep increase or decrease, and log functions work well if you 
need a slow increase or decrease (they can also be used to solve exponential equations, as we saw). 
Some phenomena however, exhibit more complex behavior. For example, let us say that we want to 
model the intensity of rain in a storm, which starts out softly, then rises to full intensity, and then 
decreases again to zero. Neither log nor exponential functions can help us here, but polynomial 
functions can. 
 
Polynomial functions are ideal for modeling phenomena that rise, and then fall (or visa versa). They can 
also be used to model phenomena that rise, level out, then rise some more (or phenomena that fall, level 
out, then fall some more). Polynomial functions can do more complex things too, like rise, then level 
out, then rise some more, then level out, then fall. The possibilities are truly endless, although the more 
complicated the polynomial, the longer it will take for your computer to process it – there is a point at 
which it simply is not feasible to model something using a polynomial. 
 
That said, let us take a look at a fairly simple application of polynomials: modeling a flashing light. A 
flashing light starts out at zero intensity, increases to max intensity, and then decreases to zero intensity 
again. 
 
It makes sense to have our function map from the time since the start of the flashing cycle to the 
intensity of the light (say, from 0 to 1, where 0 represents no intensity, and 1 represents full intensity). A 
rough graph of such a function is shown in Figure 3.5. 
 

 
Figure 3.5: The graph of a light intensity function. 
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The first and most important step to solving this problem is recognizing that we need a quadratic 
(trinomial) function, (i.e. a function of the form, cbtattf ++= 2)( ).  Here t is the elapsed time from the 
start of the flashing cycle, )(tf  is the intensity of the light, and a, b, and c are constants. Now we need 
to choose constraints so we can determine what the values of the constants are. 
 
We will choose the intensity of the light to be zero at 0=t , increase to 1 at 5.0=t , and then decrease to 
0 again at 1=t . Now a fact about quadratics that should be fairly obvious from their graphs is that if the 
graph of one intersects the x-axis twice (that is, if the function sends two elements in the domain to 0), 
then exactly in the center of these intersection points is the x value that corresponds to the maximum or 
minimum of the function (see Figure 3.6). What this means is that since we have specified that the 
function will intersect the x-axis at 0=t  and 1=t , the maximum or minimum of the function occurs at 

5.0=t . That is why we said that the function should increase to 1 (our specified maximum intensity) at 
5.0=t . 

 

 
Figure 3.6: The minimum or maximum of quadratic functions. 

 
All of the constraints we have just made up force the function to satisfy the following equalities: 
 

0)0( =f  
1)5.0( =f  

0)1( =f  
 
These equalities in turn give us the following equations: 
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1. 0)0()0( 2 ==++ ccba  
2. 1)5.0()5.0( 2 =++ cba  
3. 0)1()1( 2 =++=++ cbacba  
 
Equation (1) tells us that 0=c . Substituting this value for c into equations (2) and (3), we get the 
following two derived equations: 
 
4. 1)5.0()5.0( 2 =+ ba  
5. 0=+ ba  
 
Equation (5) tells us that ba −= . Plugging this into equation (4), we get the following equation: 
 

{ } 1)25.0()5.0(5.0)5.0()5.0( 22 ==−=+− bbbb  
Thus we see that 4)25.0/(1 ==b , and hence, that 4−=a  (by equation (5)). Our final equation for f, our 
function, is therefore as follows: 
 

tttf 44)( 2 +−=  
 
Notice that the coefficient of 2t  is negative, which means the graph of the function will look like an 
upside down 'U' -- exactly what we wanted. You can see the graph for all t in between 0 and 1 in Figure 
3.6. 
 

 
Figure 3.7: The graph of the function tttf 44)( 2 +−= . 

 
So the process of using a polynomial to model something is not very complex, at least for low degree 
polynomials. It does get more complex for higher degree ones, but even then, all you have to do is solve 
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for the unknown constants like we have just done here. To do this, you will want to impose n constraints 
on your polynomial, where n is the degree of the polynomial. This will produce n equations. Solve one 
equation for one unknown, and substitute it into the other equations. Repeat the process until you have 
figured out what all the unknowns are. 

3.3.2 Linear Interpolation 

Another popular application of polynomials is linear interpolation. Linear interpolation refers to passing 
a variable through a range of values in a linear fashion. That is, we use a binomial function, whose graph 
is a line, to do it. 
 
Say, for example, that you are manually drawing and filling a polygon on a computer screen. One way 
to do this is to find the top of the polygon, and then travel down the polygon one row at a time, filling 
whatever is inside the left and right edges of the polygon. The essential task here is finding out where 
the left and right edges of the polygon are -- that is, what their x (horizontal) components are. 
 
Suppose we are displaying a row -- call it y. We need to figure out where the edges of the polygon are 
on this row. The edges of the polygon are defined by lines, so our task is going to involve lines. 
Specifically, if we could figure out the x coordinate of the line at row y, we could solve our problem. 
 
This may seem a bit abstract, so take a look at Figure 3.8 to see what we are talking about. 
 

 
Figure 3.8: Displaying a row of a polygon. 
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Binomials can easily solve such a problem. The generic form for a binomial function is f(y) = by + c. 
Each edge of the polygon must go through the two points that define that edge. If we call these points 
(x1, y1) and (x2, y2), then this imposes the following constraints on the binomial function: 
 
f(y1) = x1 
f(y2) = x2 
 
These constraints give us the following two equations: 
 
x1 = by1 + c 
x2 = by2 + c 
 
Solving the first equation for c, we find that c = y1 - bx1. Substituting this into the second equation, and 
solving for b, we find that b = (x2 - x1)/(y2 - y1). Now we can feed this into our equation c = x1 - by1, 
which then becomes c = x1 - y1(x2 - x1)/(y2 - y1). Our final expression for the binomial expression is 
therefore as follows: 
 

f(y) = y(x2 - x1)/(y2 - y1) + x1 - y1(x2 - x1)/(y2 - y1) 
 
This gives us the x component for any given y. 
 
Drawing polygons is not the only thing interpolation can be used for. We might associate a color with 
each vertex of our polygon, and then want to interpolate these colors down the rows of the polygon and 
then across the columns, displaying each point on the polygon with the interpolated color. This process, 
known as Gouraud shading, would actually require that we interpolate the red, green, blue, and alpha 
components of the color separately (red, green, and blue together define all possible colors the human 
eye can perceive, and the alpha component defines how transparent the color is). You could also 
associate an ordered pair with each vertex, and then interpolate the components of this pair separately, 
again down rows and across columns, and then look into an image and grab a point from there that 
corresponds to the interpolated point. This technique is known as linear texture mapping, and it was 
used to increase realism before better methods of texture mapping became practical. (See the Graphics 
Programming course series for more information on shading and texture mapping.) 
 
There are numerous other applications for linear interpolation. The technique is so easy to apply and so 
fast, in fact, that it has been applied a bit too widely. Most things in real-life are not linear. Drawing 
polygons, shading, and texture mapping are operations where linear interpolation works, but that is not 
the most realistic way to do these things. But nonetheless, linear interpolation is an excellent choice 
whenever it does a good job approximating the underlying phenomena, or when the alternatives are just 
too slow. 

3.3.3 Approximating Functions 

Once in a while you will cook up a mathematical function (or perhaps find it in some book on graphics, 
physics, mathematics, or game development) that does exactly what you need, but when you put it in 
your game, you find that it slows the application down way too much -- either because the function is 
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really complex, or because your program uses it quite frequently. Sometimes you can solve this problem 
by using a polynomial to approximate the function. By approximate, we mean that the graph of the 
polynomial resembles the graph of the function over some region of interest. 
 
Unfortunately, the optimal method for producing such polynomials requires an understanding of 
calculus, which is not assumed in this course. However, there is a ‘cheat’ that often produces good 
results. This method involves calculating a couple of points on the graph of the original function, and 
then generating a polynomial that passes through these points. The good news is that this technique does 
not involve learning any concepts we have not already covered. 
 
We will look at one example to see how it can be done. 
 
Suppose we come up with the following function, whose domain is the set of all positive real numbers: 
 

1

)1ln(
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+
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This is a pretty complex function, as you can tell by looking at Figure 3.9, and it is going to take a while 
for the computer to process it. 
 

 

Figure 3.9: The graph of the function 
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Now let us take a look at how we could code this function in C/C++: 
 
float f ( float x ) 
{ 
   return pow ( 2.71828F / log ( 1.0F + x ), 1.0F + x ); 
} 

 
The code involves two function calls, each of which is very slow, plus a division and an addition 
(addition is quick, but division is not). If you did not need to use this function very often, then it would 
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probably not be much of a problem, but if you had to call it hundreds of times a second, it could slow 
down your program considerably. 
 
We cannot approximate the entire function (especially not without calculus), but we can approximate a 
section of it with a low degree polynomial. This may not sound terribly useful, but it turns out that more 
often than not, we will only be interested in a small region of a function anyway. For example, if you are 
using a function to simulate the swing of a grandfather clock pendulum, you really only need to concern 
yourself with low angles. Similarly, instead of using a realistic but cumbersome lighting function for 
every point you draw on the computer screen, you can calculate the true lighting for just a few points, 
and then use a polynomial to approximate the lighting for the in-between areas; in this way, you need 
approximate only a small subset of the range of the lighting function. 
 
For this example, let us assume that we are interested in all x values in between 2 and 4. A blown-up 
section of the function over this region is shown in Figure 3.10. 
 

 
 

Figure 3.10: A magnified view of the relevant portion of the function to be approximated. 
 
This portion of the function looks remarkably similar to a quadratic, so we will define our polynomial 
function to be cbxaxxg ++= 2)( . 
 
We want our polynomial to approximate the region from x = 2 to x = 4. One way to do this is to make 
sure the points (2, f(2)), (3, f(3)) and (4, f(4)) are on the polynomial, since these same points are also on 
the function we are approximating. This forces our polynomial to satisfy the following equalities: 
 

)2()2( fg =  
)3()3( fg =  
)4()4( fg =  

 
If you go through the math (we will avoid the gory details here), then you end up getting the following 
expression for the function g: 
 

8555.1332025.1337058.0)( 2 ++−= xxxg  
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This function is graphed in Figure 3.11. The polynomial approximates the function f amazingly well 
over the interval we are interested in. In fact, if you were to graph both of them together, you would not 
be able to tell the difference between them -- that is how good the approximation is. 
 

 
Figure 3.11: The graph of the approximation function. 

 
The polynomial function requires only a few multiplications and additions, which is a tremendous 
savings. And since the approximation is nearly flawless over the specified interval, there would be no 
reason not to use the polynomial instead. 
 
Of course, polynomials will not always save you. Sometimes you will be interested in so wide a region 
or so complicated a function that a low degree polynomial will not be of any service. Higher degree 
polynomials can approximate most any smooth function very well over most any interval, but at great 
cost: all of those powers of x take time to compute, possibly even more time than the function that you 
are trying to approximate takes. The lesson to learn here is that polynomials are useful when 
approximating functions, but only when you can do so using a low degree polynomial. 

3.3.4 Predicting the Future 

Another way to use polynomials is for predicting the next number in a sequence of numbers -- such a 
polynomial is called a predictor. 
 
There are many ways you can use predictors in games. Say, for example, you are writing a multiplayer 
racing car game. Your computer needs to know where everyone else is and what they are doing, but due 
to network latency problems, sometimes your computer will not receive any information about where 
the other players are for a long time (anywhere from a half a second to several seconds). During this 
period of time, what should you do? You could stop their cars at their last known positions, and then 
start them up again the next time you receive information, but this would make the cars jump from 
position to position, which is not very realistic. A much better way is to look at what the cars were doing 
the last time you received information, and then guess what they are doing now -- when you receive the 
next update, you can always correct any errors in your guess. 
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You can also use predictors in artificial intelligence for games. In action games, the player's enemies 
often have weapons (such as crossbows or plasma guns) that shoot out projectiles that take time to travel 
from the enemies to the player. If the computer just aimed at the player and fired, then whenever the 
player was moving, the projectile would miss. The solution to this problem is to anticipate where the 
player will be and then aim for that location instead. 
 
Implementing a predictor is very straightforward: decide how many past numbers you want to analyze 
and then create a polynomial with that many terms (if you wanted to analyze 2 numbers, for example, 
then you would create a binomial). Then create a series of points based on the numbers you record; for 
example, if the recorded numbers were labeled 0a , 1a , ..., na  (where n is one more than the degree of 
the polynomial), then you could generate the points ),0( 0a , ),1( 1a , ..., ),( nan . Lastly, force the 
polynomial to contain these points, and solve for the unknown coefficients. To predict the next number 
in the sequence, just evaluate the polynomial at the next x value -- in our setup, 1+n .  
 
You will not need to write code to implement these ideas, since it has already been done for you as part 
of the Game Math SDK included with this course. To use the source code, just add eIMathLib.cpp to 
your project and include the header eIMathLib.h in your files. 
 
The class that implements prediction is called eIPredictor. This class has just three member functions: 
AnalyzeValue(), PredictValue(), and Reset(). 
 
The function AnalyzeValue() stores a real number in memory for use in predicting future values. A 
maximum of three values are stored. If you have the function analyze more values, then the oldest of the 
values stored in memory is tossed out. 
 
The function PredictValue() uses the stored real numbers to predict the next number. Exactly how it 
does this depends on how many values have already been stored. If one value has been stored, the 
function returns that value. If two values have been stored, then a linear predictor is used to predict the 
next value. If three values have been stored, then a quadratic predictor is used to predict the next value. 
 
The function Reset() clears all the stored numbers. 
 
The following code example shows you how you might use this class: 
 
eIPredictor Pred; 
Pred.AnalyzeValue ( 1.0F ); 
float Value = Pred.PredictValue (); // Value is now equal to 1.0F 
Pred.AnalyzeValue ( 2.0F ); 
Value = Pred.PredictValue ();       // Value is now equal to 3.0F 
Pred.AnalyzeValue ( 1.0F ); 
Value = Pred.PredictValue ();       // Value is now equal to -2.0F 

 
If you were using the predictor in a multiplayer game to predict the new position of players, then you 
might want to use the Reset() function every time you received an information update. (Note that 
positions require two to three numbers to represent, depending on the dimension of the coordinate 
system, so predicting a position would require two to three predictors.) 
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3.3.5 Using Polynomials in Code 

To make polynomials as easy to incorporate into your games as possible, a simple C++ math source 
code library is included with this course. As with the eIPredictor class, to use this source code, simply 
add eIMathLib.cpp to your project and include the header eIMathLib.h in your files. 
 
The source code hides the complexity of using polynomials in the eIPolynomial class, which represents 
a polynomial. You can set and retrieve the degree and coefficients of polynomials, evaluate a 
polynomial for a given real number, add and subtract polynomials, multiply and divide polynomials by 
real numbers, compare polynomials, and create a polynomial that passes through a series of points. 
 
You can create an eIPolynomial object as you would any other object, as shown with the following 
code snippet: 
 
eIPolynomial MyPoly; 

 
If you want to specify the degree of the polynomial when you create the object, you can use the alternate 
eIPolynomial constructor, which accepts an integer (the degree of the polynomial). The following code 
creates an eIPolynomial object of degree 2. 
 
eIPolynomial Quadratic ( 2 ); 

 
If you do not use this constructor, then before you can use the other member functions of eIPolynomial, 
you will need to set the degree of the polynomial with the SetDegree () member function. You can use 
this function on any polynomial object, even if its degree has already been set. 
 
The following code sets the degree of a polynomial object to 4: 
 
MyPoly.SetDegree ( 4 ); 

 
To set and retrieve the coefficients of an eIPolynomial, simply call the SetCoeff() and GetCoeff() 
member functions. The first parameter of these functions is the power of x of the term you are interested 
in.  The second parameter of SetCoeff() is the new value of the coefficient of that term (GetCoeff() does 
not accept any more parameters). 
 
The following code example creates a second-degree polynomial and then sets its coefficients to that of 
the polynomial 2x . 
 
eIPolynomial Poly ( 2 ); 
Poly.SetCoeff ( 0, 0.0F ); // Sets the coeff. for the x^0 term 
Poly.SetCoeff ( 1, 0.0F ); // Sets the coeff. for the x^1 term 
Poly.SetCoeff ( 2, 1.0F ); // Sets the coeff. for the x^2 term 

 
Adding, subtracting, and multiplying or dividing polynomials by scalars are performed using the 
standard C++ operators for these functions. You can compare polynomials with the == and != operators. 
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To evaluate the polynomial for a given real number, use the Evaluate () function as shown below: 
ElementInRange = Poly.Evaluate ( 1.0 ); 
 
The last feature of the eIPolynomial class is the ability to create a polynomial that passes through a 
number of points. The function that does this, Interpolate(), is a static member function. It accepts a list 
of points and an integer that specifies how many points are in that list. The list itself is specified as a 
series of eIVector2D classes, which we will learn more about in Chapter Seven. For now, just think of 
them as points. The eIVector2D class has two member variables you should be familiar with: x1 and x2. 
The first designates how far the point is along the x-axis, and the second designates how far the point is 
along the y-axis. 
 
If you wanted to generate a polynomial that passed through the points in the list Pts, and there were n of 
them in that list, then you could do so with the following code: 
 
eIPolynomial NewPoly = eIPolynomial::Interpolate ( Pts, n ); 
 
The method by which this function works its magic is somewhat beyond the scope of this chapter's 
topic. However, please note that it is a very slow process (especially the more points you use) and it is 
subject to inaccuracies. In general, you should work out the polynomials by hand whenever you can, 
rather than relying on this function to generate them for you. 

Conclusion  

In our next lesson, we will continue our tour of mathematical functions by covering the basics of 
trigonometry. “Trig”, as it is commonly abbreviated, is largely concerned with the definitions and 
properties of the so-called trigonometric functions. These functions relate angles to the lengths of the 
sides of a right triangle in ways that spawn a multitude of applications. 
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Exercises 

1. Calculate the following: 
   a. )922()42( 3232 xxxxx +−−+−  
   b. )532()( 532 xxxxx ++−×++  
   c. )1()52( 3 +÷−+ xxx  
 
*2. Suppose you are incorporating rain effects into your game and you want to make the size of a 
raindrop proportional to the distance between the viewer and the raindrop. If the position of the raindrop 
is (x, y, z), and the position of the viewer is (vx, vy, vz), then the distance between the two points is 

222 )()()( zvyvxvd zyx −+−+−= . If you let 222 )()()( zvyvxvq zyx −+−+−= , then you can rewrite 

this equation as qd =  -- a function of a single variable q. Since there are hundreds or thousands of 
raindrops, and it is computationally expensive to evaluate the square root function, it makes sense to 
approximate the square root function with a polynomial. Develop a quadratic approximation over the 
interval [0, 10] (on the assumption that raindrops further away than 10 units will not be visible at all). 
(Hint: You will have to use the quadratic formula to solve for the constants, unless you have a calculator 
or software that can solve the equations for you.) 
 
An example of this kind of approximation is shown in Figure E3.1. 
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Figure E3.1: A possible solution to problem 2. 

 
3. Find the general form of a monomial that passes through the point (x, y). 
 
4. Find the general form of a binomial that passes through the points (x0, y0) and (x1, y1). 
 
*5. Texture mapping is the process of mapping a bitmap onto a polygon. You are given a two-
dimensional polygon described by n points (ordered pairs). With each point, you are also given another 
ordered pair that specifies a location on a bitmap corresponding to that point (see Figure E3.2). In order 
to map the texture onto the polygon, as you display each pixel of the polygon you must find out which 
location in the bitmap corresponds to that pixel. Describe how you might use binomials to solve this 
problem. 
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Figure E3.2: Linear texture mapping. 

 
*6. Suppose the angle between a surface and a light source is denoted by x, measured in degrees, from 0 
to 180 (see Figure E3.3). Develop a quadratic function to model the intensity of the surface from 0 to 1 
(assuming that at x = 90 degrees, the surface is at its brightest, and at x = 0 = 180 degrees, the surface is 
at its dimmest). 

 
Figure E3.3: The angle between a surface and a light source. 

 
*7. A product of n terms can only be zero if one of the terms is zero. Thus, the roots of the 4th degree 
polynomial )2)(1)(1)(2( −−++ xxxx are at x = -2, -1, 1, and 2. Create a polynomial whose roots are at x 
= 0, 1, 2, and 3, and then scale the polynomial so that its maximum is 2. (Hint: The scaling factor will be 
negative.) The end result is shown in Figure E3.4. 
 
 

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

1.5

2

 
Figure E3.4: The solution to problem 7. 
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Introduction 

 
Figure 4.1: A triangle. 

 
Trigonometry is a subject whose roots go all the way back to Hipparchus, a Greek philosopher who 
lived in the 2nd century BC, although its foundations go back even further, to the heyday of the 
Babylonians. From those early times to the Swiss mathematician Leonhard Euler's work in the 18th 
century, trigonometry has continued to evolve and grow into a subject of considerable depth and 
richness. 
 
The reason for humanity's special preoccupation with trigonometry is that it is eminently applicable to 
real-world problems. The Greeks used it for surveying, navigation, and astronomy. Modern physicists 
use it in virtually all of their work, from astrophysics to quantum physics. And game developers use it to 
manipulate and display 3D geometry, to perform physics calculations, and to optimize their games for 
blazing fast performance. 
 
Trigonometry is often one of the most misunderstood of all subjects. Even students who have gone 
through trigonometry in high school are often baffled by what they covered, and can barely recall only 
its most basic principles years later (perhaps due to the emotional trauma of studying it!). 
 
But trigonometry need not be so intimidating or difficult to master. At its heart are some very simple 
ideas that involve one of the simplest shapes of all -- the triangle. In this chapter, we will introduce (or 
perhaps reintroduce) the subject of trigonometry and cover it in a slow, methodical manner so that you 
will be on top every step of the way. When you are done, your skills as a game developer will have 
increased exponentially (to borrow a term from lesson two!). 
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4.1 Angles 

Central to trigonometry is the concept of angles. Formally, an angle is a real number that measures the 
amount of divergence between two rays that share a common origin. 
 
You have probably used angles before back in your high school geometry lessons. Unfortunately, the 
system you learned there was likely based on degrees (e.g. 360 degrees in a complete revolution), and 
that system has been out of fashion with mathematicians for quite some time. 
 
In this course we will use the concept of radian measure, which is a far more elegant and useful way to 
express angles. 
 
Radian measure relies on a circle of radius 1 (that is, the distance from the center of the circle to its 
perimeter is 1 unit) centered on the origin of a Cartesian coordinate system. Suppose we draw two rays 
that emanate from the origin. Then the angle between the rays is the length of the arc delineated by the 
intersection of the rays with the perimeter of the circle. If this makes no sense to you, check out Figure 
4.2, because -- as they say -- a picture is worth a thousand words. 
 

 
Figure 4.2: The definition of an angle. 

 

Figure 4.2 depicts a circle of radius 1 (a unit circle) centered on the origin, and two rays that emanate 
from the origin. The two rays intersect the perimeter of the circle at points A and B, respectively. The 
angle θ  is simply the length of the arc from A to B -- i.e., the distance you would travel if you walked 
the perimeter of the circle from A to B. There is only one caveat: you can actually draw your arc (or 
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travel from A to B) in an infinite many ways by going around the circle repeatedly, or in a different 
direction. This means that you can measure any given degree of divergence in infinitely many ways. 

Angles are usually designated with lower-case Greek letters, the most common letter being θ  (theta - 
pronounced "THAY-tuh"). They are identified by the word "radian" (plural: radians), so if you see a 
measurement such as "2.31 radians", you know the number is an angle. This is where the term radian 
measure gets its name. 

4.1.1 Common Angles 

Suppose we wanted to rotate a ray all the way around the perimeter of a circle and back to its starting 
point. By how many radians would we have to rotate the ray to do this? You may recall from high 
school the formula rp π2= , which relates the perimeter p of a circle to its radius r. The perimeter of a 
circle, as you probably remember, is just the distance you would travel if you walked all the way around 
it once. 
 
The radius of the measuring circle is 1, so we have ππ 2)1(2 ==p  radians. Rotate a ray by this many 
radians, and it is back where it started. Of course, you could also rotate it by 0, π2− , or π4  radians to 
get the same effect (try to think of a few more angles that would do this). 
 
Figure 4.3 shows this and some other angles that arise often in trigonometry. 
 

 
Figure 4.3: Common angles. 
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The angle 2/π  (which corresponds to 90 degrees) is called a right angle. Any angle less than this angle 
is classified as an acute angle, and any angle greater than this is classified as an obtuse angle. 
 
You can use angles to measure the divergence of more than just rays, too, or else they'd be pretty 
useless. For example, you can measure the angle of a ramp by using two rays, one parallel to the ramp 
and the other parallel to the ground. The concept of rays only gives the definition of angles precision. 

4.1.2 The Polar Coordinate System 

The concept of the angle allows mathematicians to use a different coordinate system. It is different from, 
although similar to, the Cartesian system we studied earlier. It is called a polar coordinate system. Under 
this system, points are still measured by ordered pairs, but the interpretation of the numbers has 
changed. The first number of the ordered pair specifies the distance from the origin of the coordinate 
system to the point. The second number of the ordered pair tells you the angle a ray drawn from the 
origin through the point makes with the positive x-axis. By convention, positive angles indicate a 
counterclockwise measure with respect to the x-axis, and negative angles indicate a clockwise measure 
from the positive x-axis. 
 
You can see a few points plotted in the polar coordinate system in Figure 4.4. 
 

 
Figure 4.4: Points in the polar coordinate system. 
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Note that in the polar coordinate system, unlike the Cartesian coordinate system, each point does not 
have a unique representation. 
 
Although we will not be using it in this course, there is a three-dimensional analog to the polar 
coordinate system called the spherical coordinate system. In this system, each point is specified by an 
ordered 3-tuple: the first number of the 3-tuple describes the distance from the origin to the point (as 
with polar coordinates). The second number tells you the rotation of the point around the y-axis from the 
positive x-axis. The third number tells you the angle the point makes with the positive y-axis. 

4.2 The Triangle 

The triangle is a geometric primitive (building block) that consists of all the points in the closed region 
formed by the intersection of three non-parallel lines. The angles between these lines are referred to as 
the angles of the triangle (see Figure 4.5). If the vertices (i.e. corner points) of the triangle are labeled, 
then these letters also symbolically represent the angles of the triangle. 
 

 
Figure 4.5: An example of a triangle. 

 
Triangles come in a variety of different flavors: an acute triangle is a triangle whose angles are all acute. 
An obtuse triangle is a triangle that has an angle that is obtuse. An equiangular triangle is a triangle 
whose angles are equal. A right triangle is a triangle that has a right angle.  Figure 4.6 depicts all of the 
different types of triangles. 
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Figure 4.6: The types of triangles and their labels. 

4.2.1 Properties of Triangles 

The sum of the angles of any triangle is always equal to π  radians -- no exceptions. The proof behind 
this theorem is quite trivial, more of an observation than a proof, as you can see from looking at Figure 
4.7. 
 

 
Figure 4.7: Proof that the sum of the angles of any triangle is equal to π  radians. 
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An important concept in trigonometry is that of similar triangles. Two triangles are regarded as similar 
if their corresponding angles are equal, as shown in Figure 4.8. 
 

 
 

Figure 4.8: The corresponding angles of similar triangles are equal. 
 
Similar triangles have a very interesting property. Say you label the sides of a triangle 1a , 2a , and 3a , 
then label the corresponding sides of a similar triangle 1A , 2A , and 3A . It turns out that jiji AAaa // = , 
for all i and j }3,2,1{∈ . In English, this says that the ratio of two sides of a triangle is equal to the ratio of 
the corresponding sides of a similar triangle. Check out Figure 4.9 to see what this looks like. 
 

 
 

Figure 4.9: Similar triangles. 
 
A consequence of this property of triangles is that a triangle can be enlarged or reduced to match the 
dimensions of any similar triangle. To be more precise, there is a certain real number, call it α , such that 
the length of any given side of the triangle is equal to α  times the length of the corresponding side of 
the similar triangle. 
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The proof of this is straightforward: first, we label the sides of the triangle 1a , 2a , and 3a , and then label 
the corresponding sides of the similar triangle 1A , 2A , and 3A , as before. Second, we solve the equation 

jiji AAaa // =  for a side of the triangle, say ia , giving us jiji AAaa /= . We want ii Aa α= , so 
substituting this value into our equation for ia , we find that jiji AAaA /=α . Solving this equation for α , 
we see that jj Aa /=α . 
 
We have found an expression for α  that has the properties we want, but we are not quite done yet. It is 
conceivable that jj Aa /  is not constant -- that is, the ratio changes depending on what value we use for j. 
This would be unfortunate, since it would mean we really had three different versions of α . However, 
we are trying to prove there is a single real number that satisfies our properties, so this simply will not 
do. The solution? Prove that jj Aa /  is constant and that no matter what value we use for j, we get the 
same real number. We can do this by proving that jjii AaAa // = , regardless of the choices for i or j. 
 
How are we going to do this? Easy. Since the one triangle is similar to the other, we know that 

jiji AAaa // = , for any i and j. Dividing both sides of this equation by iA , and then multiplying both 
sides by ja , we get jjii AaAa // = , which is exactly what we wanted. Proof complete! 

4.2.2 Right Triangles 

The most important triangle for our purposes as game developers is the right triangle. 
 
The side opposite of the right angle is called the hypotenuse, and the other two sides are called the legs 
of the triangle. If we are talking about a certain angle, then the leg that is adjacent to the angle is called 
the adjacent side, and the side directly opposite the angle is called the opposite side. You can see this 
naming convention in Figure 4.10. 
 

 
Figure 4.10: The names of the sides of a right triangle. 
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An ancient theorem states that the square of the length of the hypotenuse is equal to the sum of the 
squares of the lengths of the legs, for any right triangle. This theorem is called Pythagorean's theorem, 
named after the famous Greek mathematician who first analytically proved it. It is very useful to us 
because it allows for the calculation of distances between points (among other things). 
 
If the length of the opposite side is a, the length of the adjacent side is b, and the length of the 
hypotenuse is c, then Pythagorean's theorem can be written symbolically as follows: 
 

a2 + b2 = c2 
 

4.3 Introduction to Trigonometry 

Trigonometry (or trig, as it is sometimes called for short) has a whole slew of applications, but one of its 
most important ones, and the reason it was created in the first place, was to help solve problems 
involving right triangles. Specifically, if you know a little bit about a right triangle, trigonometry can tell 
you everything you do not know about it. 
 
In this respect, trigonometry is much like a good private detective: you give it some leads, and it will 
figure out what you want to know. This amazing ability is what makes trigonometry such a powerful 
tool.  
 
To understand exactly what trigonometry does, consider the right triangle pictured in Figure 4.11. 
 

 
Figure 4.11: A right triangle. 

 
One of the triangle's acute angles is labeled θ , and the length of its sides are labeled a, o, and h, for 
adjacent, opposite, and hypotenuse, respectively. If we knew θ  and the length of one of the sides, could 
we calculate the lengths of the other two sides and the values of the other two angles? Intuitively, we 
might say “yes”. After all, we know that the sum of the angles of the triangle must be equal to π  
radians, and we know that one angle of the right triangle is 2/π  radians, so we know the third angle is 
just θππ −− 2/  radians. Knowing all three angles and the length of one side, we might reason that the 
lengths of the other two sides are fixed, and that we should be able to calculate what they are. 
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This intuition turns out to be correct, and it is not terribly hard to see why. Suppose you know an acute 
angle and the length of one side of a triangle. To figure out what you do not know, first determine the 
other two angles of the triangle, as described above. Then draw a line segment so that it is as long as the 
one side you do know, and draw two lines that pass through the end points of this segment and make the 
appropriate angles with it. These lines will intersect in exactly one place, thus forming a closed region 
that defines the triangle (Figure 4.12). To figure out the lengths of the other two sides, just measure 
them. 

 
Figure 4.12: A right triangle is uniquely determined by an acute angle and the length of a side. 

 
This recipe is not purely mathematical of course – you would have to use a piece of paper, a pencil, a 
protractor, and a ruler to compute the results -- but it should help you understand that what we are asking 
from trigonometry is not what is beyond its capabilities to deliver. 
 
Now that you know something of what trigonometry is all about, it is time to probe a bit deeper. We 
have already claimed that you can use trigonometry to determine missing information about the angles 
and lengths of the sides of right triangles. But exactly how do you do this? The answer is found in the 
trigonometric functions. 

4.4 The Trigonometric Functions 

The three trigonometric functions we are going to introduce in this lesson are called sine, cosine, and 
tangent, and are denoted with the function names sin, cos, and tan, respectively. All three functions map 
from the real numbers to the real numbers. 
 
The trigonometric functions are defined with respect to a right triangle. Such a triangle is depicted in 
Figure 4.13. As before, one of the triangle's acute angles is labeled θ , and the lengths of its sides are 
labeled a, o, and h, for adjacent, opposite, and hypotenuse, respectively. 
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Figure 4.13: The right triangle used to define the trigonometric functions. 

 
With reference to Figure 4.13, the trig functions are defined as follows: 

h
o

=)sin(θ  

h
a

=)cos(θ  

a
o

==
)cos(
)sin()tan(

θ
θθ  

 
You will input an angle to the trig functions and they will output a ratio of the sides of the triangle; the 
nature of the ratio depends on what trig function you are using. For the sine function, the ratio is the 
length of the opposite side over the length of the hypotenuse. For the cosine function, the ratio is the 
length of the adjacent side over the length of the hypotenuse. For the tangent function, the ratio is the 
length of the opposite side over the length of the adjacent side.  
 
With these three trigonometric functions (actually, as you can see from the definition of the tangent 
function, only sine and cosine are really necessary), you can analytically determine the lengths of the 
sides of a right triangle knowing only the length of one side and an acute angle. We will look at how to 
do this shortly, after we cover a more general way to define the trig functions. 

4.4.1 An Alternate Definition of the Trigonometric Functions 

An alternate way of defining trigonometric functions that proves more useful in many applications 
involves a circle. This circle is centered at the origin of a Cartesian coordinate system and has radius r. 
Consider a point (x, y) on the perimeter of the circle in the first quadrant. A ray drawn from the origin to 
this point makes an angle θ  with the positive x-axis. This setup is shown in Figure 4.14. 
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Figure 4.14: The alternate method of defining the trig functions.  
 
With reference to Figure 4.14, the trig functions can be defined as follows: 

r
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=)sin(θ  
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These equations are, in fact, compatible with the former definitions of the trig functions for all angles in 
between 0 and 2/π  (which are the only angles that make sense with right triangles). You can see this 
clearly in Figure 4.15, which shows a right triangle in the first quadrant. The length of the adjacent side 
is x, and the length of the opposite side is y. Hence, for any angle in the first quadrant, the above 
definitions of the trig functions give the same results as the former definitions. 
 

 
 

Figure 4.15: A triangle superimposed on a circle. 
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One thing this alternate definition of the trigonometric functions allows us to do is to convert points 
from polar coordinates to Cartesian coordinates. If we solve the above definitions of sine and cosine for 
x and y, we get the following expressions: 
 

)sin(θry =  
)cos(θrx =  

 
This relationship is depicted in Figure 4.16.  
 

 
Figure 4.16: A relationship between polar and Cartesian coordinates. 

 
Because the circular method of defining the trig functions is more widely applicable, and is perfectly 
compatible with the triangular method, this is generally the method programmed into your calculator 
and computer. 
 
For illustration, the graphs of the sine, cosine, and tangent functions are shown in Figure 4.17.  
 

Note: The domain of the tangent function excludes certain points -- namely, all those points where its 
definition would otherwise require it to divide by zero. The domain of the other functions, sine and 
cosine, is the set of all real numbers, thanks to this new way of defining the trig functions. 
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Figure 4.17: The graphs of the trig functions. 
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4.5 Applications of Basic Trigonometry 

Trigonometry pops up everywhere in computer science, especially in the field of game development. 
Some of trigonometry's applications just add dazzle to a 3D world, others are absolutely critical for 
displaying 3D geometry on a computer screen. In this section we will discuss both kinds of problems, 
with an emphasis on the ones essential to 3D game development. 

4.5.1 Solving Triangle Problems 

We said before that solving problems involving right triangles was the primary reason trigonometry was 
invented. But we never really asked why people would want to solve such problems in the first place. As 
it turns out, there are numerous real-world applications, from navigation, to surveying, to installing your 
own personal digital satellite system, to applications in computer science (several of which we will 
cover later on) which take advantage of trigonometry. 
 
So how do we use trigonometry to solve such problems? The simple answer is to just pick a trig function 
that involves the appropriate quantities and solve for the unknown. For example, let us say you have a 
triangle whose hypotenuse is 5 units long, and you know an acute angle is 4/π  radians. Then, from the 
definition of the sine function, you know the following relation holds: 
 

5
)4/sin( o
=π  

 
where o is the length of the side opposite the angle. Solving for this unknown quantity, we get, 
 

)4/sin(5 π=o  
 
If you evaluate the sine function using a calculator or computer, you will find that 54.3≈o . 
 
To find a, we can use the definition of the cosine function, which tells us that: 
 

5
)4/cos( a
=π  

 
Solving this equation for a, the length of the side adjacent to the angle, we find that 

54.3)4/cos(5 == πa . So with just the length of one side of the triangle, and one of the acute angles, 
we were able to determine the length of the other two sides. We could determine the angles too, if we 
wanted, by the process mentioned previously. 
  
You can also use trigonometry to find out the angles of a right triangle given just the lengths of two 
sides, but this requires the more advanced trigonometry we will cover in our next lesson. 
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4.5.2 Modeling Phenomena 

So far we have seen that mathematical functions have a great capacity to model phenomena (whether 
real-world or otherwise), and the trigonometric functions are no exceptions. Trig functions are ideally 
suited to modeling phenomena that tends to repeat in a rising and falling pattern. The intensity of a 
flashing light (modeled in our last lesson with a polynomial), the intensity of a police siren, and the 
height of waves in a pool of water are all good candidates for a trigonometric-based model. 
 
To learn how to do this, we are going to model the height of waves traveling in water. This example will 
illustrate many of the techniques you will need when modeling with trigonometric functions. 

Modeling Waves  

If you drop a stone in still water, then the impact of the stone hitting the water will send out circular 
waves that travel away from the point of impact. We are going to assume that the waves will instantly 
propagate from the impact point out as far as the water goes, and then slowly fade as time goes on. If 
you want to add more realism, you can still use the function we are going to develop, you just have to 
restrict its use to an ever-increasing number of points around the point of impact. 
 
In our model, the height of a wave at a particular point depends on two things: how many seconds have 
elapsed since the time of impact and how far the point is away from the point of impact. So our function 
will take the form ),( rtf , where t is the elapsed time and r is the distance from the point to the place of 
impact. 
 
We want the height of the waves to vary with time and distance, so a good first attempt would be 

)sin(),( trrtf +=  (you could also use cosine here, too). 
 
To give us some control over exactly how the height varies with time and distance, we are going to add 
three constants in strategic positions to give us the function )sin(),( trrtf γβα +=  (the Greek letters 
here are alpha, beta, and gamma, respectively). 
 
The function is nearly finished: with greater distances or greater times, the height of the waves should 
decrease. We can model this by dividing the whole expression by the product of t and r, since as these 
variables grow larger, this will make the value of the function smaller. Or rather, we can divide by t and 
r raised to some power, since that will give us more flexibility. Our function then becomes: 
  

{ }δ
γβα

)1(
)sin(),(

+
+

=
rt

trrtf  

 
(The new Greek letter here is delta). 
 
Notice that because of the division by t and r, the function is only defined for all 1,0 −≠≠ rt . Further, 
notice that we added 1 to r in the denominator, because otherwise, for very small values of t and r, the 
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function will fail, since the reciprocal of a tiny fraction is a huge number. This addition allows us to 
evaluate the function for all 0≥r  without any problems and is a common way to solve this issue. 
 
Now let us say that we want the maximum height of the waves to be 5 units. Since the sine function 
varies between -1 and 1 (check out its graph in Fig 4.17), if we multiply it by 5, then it will vary 
between -5 and 5. So a good guess for α  is 5 (it is only a guess because we are ignoring the fact that we 
divide by a power of t and r; it is a good guess because for small t and r, this will nearly be equal to 1). 
 
The rest of the constants are rather difficult to evaluate analytically, no matter what constraints you 
impose on the function (you also need inverse trig functions, which we will not cover until the next 
lesson). For something this complicated, it is recommend that you experiment with the constants until 
you come up with something that looks nice. Before you do this, however, it is helpful to know that β  
will affect the spacing of the waves, γ  will affect the rate at which the waves travel, and δ  will affect 
the way the height of the waves decreases with time and distance. 
 
Figure 4.18 shows just one frame of an animation for what the water would look like with a version of 
the function that was derived after a few minutes of experimentation. 
 
 

 
 

Figure 4.18: Waves traveling through water. 
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Drawing Circles and Ellipses 

Although not particularly efficient, you can use the trigonometric functions to draw circles and ellipses 
on a computer screen, or even generate polygons that approximate these primitives. 
 
To display a circle, just select a set of angles (preferably equidistant from each other) and use these 
angles and the radius of the circle to form polar coordinate pairs. Then convert these polar coordinates 
into Cartesian coordinates, and display the resulting points on the screen. 
 
In C++, this whole process might look something like the following: 
 

void DisplayCircle (float Radius, int AngleCount) 
{ 
   for ( float Angle = 0.0F; Angle < ( 2.0F * 3.14596F ); 
         Angle += ( 2.0F * 3.14596F )/( float ) AngleCount ) { 
      float X = Radius * cos ( Angle ); 
      float Y = Radius * sin ( Angle ); 
 
      DisplayPoint ( X, Y ); 
   } 
} 

 
Exactly where the circle is drawn on the screen depends on how the function DisplayPoint() interprets 
the coordinates. The circles will be centered on whatever screen location the function maps the point    
(0, 0) to (in DirectX, this is typically the upper-left hand corner of the screen). 
 
You could also add fixed integers to X and Y so that you could control the location of the circle on the 
screen. The following code does just this: 
 
void DisplayCircle(float Radius, int AngleCount, int CenterX, int CenterY ) 
{ 
   for ( float Angle = 0.0F; Angle < ( 2.0F * 3.14596F ); 
         Angle += ( 2.0F * 3.14596F )/( float ) AngleCount ) { 
      float X = Radius * cos ( Angle ); 
      float Y = Radius * sin ( Angle ); 
 
      DisplayPoint ( X + CenterX, Y + CenterY ); 
   } 
} 

 
Keep in mind that how the values of CenterX and CenterY correspond to a given screen location is still 
determined by the DisplayPoint () function. 
 
Ellipses are only slightly more difficult to display than circles. Ellipses have two "radii", one equal to 
half the distance from the top of the ellipse to the bottom, and the other equal to half the distance from 
the left of the ellipse to the right. These are called the horizontal semi-radius and the vertical semi-
radius, respectively, as shown in Figure 4.19. 
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Figure 4.19: The radii of an ellipse determine its shape. 

 
Instead of multiplying the radius by the cosine of an angle to get its x coordinate, with an ellipse you 
multiply the horizontal semi-radius by the cosine of the angle to get that coordinate. Similarly, you 
multiply the vertical semi-radius by the sine of the angle to get the y coordinate. You can see why this 
works by recalling that both the cosine and sine functions map to values in between -1 and 1, so when 
you multiply them by the major and minor axes, they map to the extents of the ellipse. 
 
The basic code for drawing an ellipse is shown below: 
 
void DisplayCircle(float MajorAxis, float MinorAxis, int AngleCount, 
                   int CenterX, int CenterY ) 
{ 
   for ( float Angle = 0.0F; Angle < ( 2.0F * 3.14596F ); 
         Angle += ( 2.0F * 3.14596F )/( float ) AngleCount ) { 
      float X = MajorAxis * cos ( Angle ); 
      float Y = MinorAxis * sin ( Angle ); 
 
      DisplayPoint ( X + CenterX, Y + CenterY ); 
   } 
} 

Rotating Points 

One of the most important applications of trigonometry is rotating points in 2D and 3D space. 
Unfortunately this application requires some more advanced trigonometry that we will cover in out next 
lesson, so we will postpone the topic of rotation until then.  
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Projecting 3D Geometry onto a 2D Screen 

Your computer screen is a two-dimensional surface, yet you play 3D games on your computer all the 
time. How so? This magic is made possible by a mathematical trick known as projection. 
 
The three-dimensional worlds of computer games are composed of polygons (which you can think of as 
paper cutouts), which are in turn defined by a series of vertices (the points that define the shape of the 
polygons). To understand how projection works, picture a ray sent out from your eye, into the screen, to 
each point of a polygon. Wherever the ray intersects the screen, that is where it is drawn on your screen. 
This process, illustrated in Figure 4.20, is what makes the illusion of three dimensions possible. 
 

 
Figure 4.20: The process of geometry projection. 

 
The task of projection is this: given a 3D point, what is its projected location on a 2D computer screen? 
 
The actual math behind projection is quite simple, and requires only the basic trigonometry we have 
covered in this chapter. Figure 4.21 shows a side view of the viewer sitting in front of the computer 
screen and a three-dimensional point inside the screen. 
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Figure 4.21: The math of geometry projection. 

 
In the figure, a ray is traced from the viewer, through the screen, and to the point. This ray actually 
forms the hypotenuse of two similar triangles, which are also shown in the figure. To simplify matters, 
we have placed the origin of the coordinate system at the location of the viewer, who is assumed to be 
centered both horizontally and vertically in front of the computer screen. 
 
The ray drawn from the viewer to the point being projected makes an angle θ  with the z-axis. This is 
also one of the acute angles of the two triangles depicted in the figure. 
 
The point being projected onto the screen is labeled (x, y, z). Since this is a side view of the viewer, you 
really cannot see the x coordinate of the point, but you can see its y and z coordinates clearly. The z 
coordinate tells you how far in or out of the screen the point is, and the y coordinate tells you how far up 
or down the point is, as mentioned in lesson two. 
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The vertical location where the ray intersects the computer screen is designated y'. The horizontal 
location, which we would label x', is not pictured, since we are looking at the side view. 
 
The distance from the viewer to the screen (measured in the same units as the coordinate system) is 
designated d; this distance is somewhat arbitrary and determines how much of the world the viewer sees. 
If the distance is small, then the viewer is right up against the screen and sees a lot of the world; if the 
distance is larger, then the viewer sees only a small portion of the world. 
 
From the figure and the definition of the tangent function, it is obvious that zy /)tan( =θ  and 

dy /')tan( =θ , so we can conclude dyzy /'/ = , and hence, that zydy /'= . You can follow a similar 
procedure to conclude that zxdx /'=  (just view the whole thing from the top -- the only things that 
change are the labels). 
 
That is basically all there is to geometry projection!  

Conclusion  

As we have seen in this lesson, trigonometry is a powerful subject. But there is more to trigonometry 
than just the sine, cosine, and tangent functions we have looked at here. There are other trig functions, 
pseudo-inverse trig functions, and a multitude of formulas and identities that can all be used to solve 
more challenging problems. These topics are the subject of our next lesson. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 98

Exercises 

1. Fill in the missing information about this right triangle: 
 
Hypotenuse: 10  Angle: 8/π  radians Opposite: Adjacent: 
 
2. Fill in the missing information about this right triangle: 
 
Hypotenuse:  Angle: 8/π  radians Opposite: 3 Adjacent: 
 
 
3. Fill in the missing information about this right triangle: 
 
Hypotenuse:  Angle: 8/π  radians Opposite: Adjacent: 7 
 
*4. Suppose you have n functions, labeled f1(r, t), f2(r, t), ..., fn(r, t), and that the ith function models the 
height of a water ripple at time t at a distance r away from the impact point (xi, yi). Assuming all of the 
ripples occur in a single pond, write down an expression describing the height of an arbitrary point (x, y) 
at time t. (The distance between two points (a, b) and (c, d) is 22 )()( dbca −+− .)  
 
5. Polynomials can be used to represent can be used to approximate trigonometric functions (or even 
represent them perfectly, for polynomials of infinite degree). Determine which of the trig functions is 
approximated by the following polynomial: 
 

654321432121
1)(

642

×××××
−

×××
+

×
−=

xxxxf  

 
*6. Given Pythagorean's theorem and what you know of trigonometry, determine the area of the triangle 
shown in Figure E4.1 (the area of a triangle is used to compute its mass in some physics simulations). 
 

 
E4.1: The setup for problem 6. 
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*7. Suppose you are developing an RPG game and the speed at which a party can travel depends on the 
temperature (on the assumption that people travel slower in colder weather). Develop a function to 
model the temperature of the weather assuming trig-like behavior, subject to the following constraints: 
the time is measured in hours, the temperature, in degrees Celsius; the temperature reaches a low point 
and a high point exactly once every 24-hours; the minimum temperature is -10 C; the maximum 
temperature is 30 C. 
 
*8. Improve upon the model you developed in problem 7 by incorporating small weather fluctuations 
throughout the day (caused by wind, changing locations or altitudes, etc.). The graph of your final 
function might look something like Figure E4.2. (Hint: You can obtain Figure E4.2 by summing various 
sine or cosine functions.) 
 

5 10 15 20
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Figure E4.2: Chaotic weather behavior. 
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Chapter Five 
 

 

 
Basic Trigonometry II 
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Introduction 

In our last lesson we discussed the fundamental ideas in trigonometry: the concept of angles, the polar 
coordinate system, the types and properties of triangles, and the three core trigonometric functions -- 
sine, cosine, and tangent. While this limited look at trigonometry yielded a wealth of applications, there 
is a lot more to trigonometry than just these basics. 
 
In this chapter, we will look at derivative trigonometric functions (which are just useful variants of the 
functions we have already seen), inverse trigonometric functions, and a variety of identities that will 
help you when you are trying to solve trigonometric problems. We will also learn how to use these 
functions in game development by deriving the formulas for rotation -- formulas that have been used in 
every 3D game ever made. 

5.1 Derivative Trigonometric Functions 

Back in the dark ages of mathematics, a wise soul asked, "Why have just three trigonometric functions 
when we can have six?" And so it was: the number of trigonometric functions was doubled.  
 
What did these new functions look like? They were reciprocals of the three existing functions. Since all 
the ratios had been defined (opposite over hypotenuse, adjacent over hypotenuse, and opposite over 
adjacent), all that was left were the multiplicative inverses of those ratios. 
 
Those derivative trigonometric functions were named cosecant, secant, and cotangent, and are 
designated by the function names csc, sec, and cot. Cosecant is the reciprocal of sine, secant is the 
reciprocal of cosine, and cotangent is the reciprocal of tangent. 
 
Table 5.1 summarizes all the trig functions learned thus far. 
 

Function Mathematical Name Triangular Definition Circular Definition 
Sine Sin o/h y/r 
Cosecant csc h/o r/y 
Cosine Cos a/h x/r 
Secant sec h/a r/x 
Tangent Tan o/a y/x 
Cotangent cot a/o x/y 

 
Table 5.1: Summary of the trigonometric functions. 

 
These functions do not really do anything new, but they do enable you to simplify some otherwise 

complicated expressions. For example, instead of writing 2)))(tan(cos(
1

yx
, you can just write 

2)))(cot(sec( yx .  
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5.2 Inverse Trig Functions 

Often in a trigonometric problem, you will know the lengths of two sides of a right triangle, and want to 
determine from this information what the angles of the triangle are. 
 
For example, you know that the legs of a right triangle are 5 and 3 units long, respectively. Then, by 
using the tangent function, you know that 3/5)tan( =θ , where θ  is the angle of the triangle opposite 
the side with the length of 5 (see Figure 5.1). Unfortunately, this equation does not tell you what θ  is -- 
it only tells you what the tangent of θ  is (namely, 5/3). 
 

 
Figure 5.1: A right triangle that has two unknown angles. 

 
In theory, you could randomly choose a variety of angles, take their tangents, and see which one was 
closest to 5/3. Then you could modify that angle, make it larger or smaller, and see if the tangent of that 
angle moved closer or father away from 5/3. With much trial and error, you would eventually stumble 
upon an angle whose tangent was approximately equal to 5/3. 
 
If the process were really this cumbersome though, you would not be able to use it in computer games; it 
would be only minimally useful for trigonometric calculation. Fortunately, there is a better way.  
 
Recall that if invertible function f maps from A to B, sending an element a in A to b in B, then the 
inverse of the function, denoted 1−f , maps from B to A, sending b in B to a in A. 
 
If we had an inverse for the tangent function, then in order to solve for θ  in the equation 2/5)tan( =θ , 
all we would have to do is take the inverse tangent of both sides, giving us the equation, 

)2/5(tan))(tan(tan 11 −− =θ . By definition of an inverse function, θθ =− ))(tan(tan 1 , the expression 
simplifies to )2/5(tan 1−=θ . At this stage, all we would have to do to calculateθ  is evaluate the inverse 
tangent function for the value 5/2. 
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However, the problem is not quite that simple, since not all functions are invertible. What defines an 
invertible function? Recall that an invertible function is a function BAf →:  such that every element in 
B is associated with exactly one element in A. 
 
Now consider what this condition tells us about the graph of an invertible function, so we can see if the 
trigonometric functions are invertible. The graph of a function BAf →:  is a set 

},|),{( ByAxyxG ∈∈= . If the function is an inverse, we know that if ),( 1 yx  and ),( 2 yx  are both 
elements in G, then 21 xx = ; otherwise, the element y in B would be associated with two elements in A 
(namely, 1x  and 2x ), which violates the definition of an invertible function. 
 
So for a given y value, there can only be a single corresponding x value in the graph of an invertible 
function. This gives us a visual test: draw any horizontal line across the graph of a function, and if the 
function is invertible, then the line will not intersect the graph of that function at more than one point. 
Figure 5.2 shows an example of an invertible function. 
 
 

 
Figure 5.2: Graphical representation of an invertible function.  

 
To refresh your memory of the three primary trigonometric functions, the sine function graph is shown 
in Figure 5.3. (You can refer back to Chapter Four if you wish to see the graphs for cosine and tangent.) 
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Figure 5.3: The graphs of the sine, cosine, and tangent functions. 
 
As you can see, a horizontal line drawn at 0.5 (for example) will intersect the graphs of the trig functions 
many times -- in fact, an infinite number of times. This means the trig functions associate an infinite 
number of x values with y = 0.5. Thus, the trigonometric functions are not invertible. 
 
This is not too surprising when you think about it. Consider the sine function. Suppose we know that 

1)sin( =θ , and we want to find out what θ  is. Now 4/π  would satisfy the equation, since 
1)4/sin( =π . So we might think to define the inverse sine function so that 4/)1(sin 1 π=− , since that 

would enable us to write 4/)1(sin))4/(sin(sin 11 ππ == −− . But the problem is, 4/π  is not the only 
angle that satisfies the equation 1)sin( =θ . The angle 4/5π  works just as well, since 1)4/5sin( =π . In 
fact, any angle of the form 4/)41( n+π  will work, where n is any integer at all. So if we went ahead 
and said 4/)1(sin 1 π=− , then since 1)4/5sin( =π , we could write, 4/))4/5(sin(sin)1(sin 11 ππ == −− . 
But this equation clearly violates the definition of an inverse function, since 4/5π  is not equal to 4/π . 
 
If this seems abstract, here is another way to view it. The trig functions send many different angles to a 
single real number. For example, the sine function sends 2/π , 2/5π , 2/9π  and so on, to the real 
number 1. If our inverse function sent 1 back to only one of these angles, then it would not be a true 
inverse function. On the other hand, if it sent 1 back to all of these numbers, it would not be a function at 
all, since a function cannot send an item in the domain to more than one item in the range. 
 
However, all hope is not lost. Even functions with limited inverse trigonometric capabilities are 
extremely useful, which is why the mathematicians came up with partial inverses to the trig functions. 
These functions send real numbers to angles. And while these angles might not be the angles you are 
looking for, they are related to them. 
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The inverse functions are known as arcsine, arccosine, and arctangent, and are denoted with the 
function names arcsin, arcos, and arctan. (Sometimes you will also see the standard inverse notation 

1sin− , 1cos− , and 1tan− , but keep in mind that these functions are not really true inverses of the 
trigonometric functions.)  
 
The function )arcsin(x  is defined to be a real number θ  such that x=)sin(θ , where θ  falls in between 

2/π−  and 2/π . The first condition gives the function its inverse properties. The second condition cuts 
the number of solutions down from infinity to exactly 1. The domain of the function is the same as the 
range of the sine function, the set of all real numbers between -1 and 1. 
 
The function )arccos(x  is defined to be a real number θ  such that x=)cos(θ , where θ  falls in between 
0 and π . The domain of the function is the same as the range of the cosine function, the set of all real 
numbers between -1 and 1. 
 
The function )arctan(x  is defined to be a real number θ  such that x=)tan(θ , where θ  falls in between 

2/π−  and 2/π . The domain of the function is the same as the range of the tangent function, the set of 
all real numbers. 
 
For illustration, the graph of the inverse cosine function is shown in Figure 5.4. 
 

 
 

Figure 5.4: The graph of the inverse cosine function. 
 
Without relying on the graphs of the arc functions, let us look at an example of how we would evaluate 
them for a given real number between -1 and 1. Say we want to know what )1arcsin(  is. By definition, 
we are looking for a real number θ  such that 1)sin( =θ , and we want θ  to fall between 2/π−  and 

2/π . All we have to do is look at a graph of the sine function from 2/π−  to 2/π  and find the point in 
this interval where the y value is equal to 1. The x value of this point is θ . Or, if you are familiar with 
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the sine function, you can guess what θ  is immediately. In either case, 2/πθ = , since 1)2/sin( =π  and 
2/π  falls between 2/π−  and 2/π . That is how we know that 2/)1arcsin( π= . 

 
In real life, you would never go through this complicated process to calculate the value of an inverse 
trigonometric function. You would instead use a calculator, a computer algebraic system like 
Mathematica™, or your compiler's built-in inverse trigonometric functions (in C and C++, they are 
called asin(), acos(), and atan(), and are defined in the header math.h). But it is important for you to 
understand exactly how the definitions of the functions work. You may want to repeat the above process 
for a few other easy angles, relying on Figure 5.4 (or your calculator) if you get stuck. 
 
Now that we have defined the inverse trigonometric functions and have seen what the definitions entail, 
we will cover the sense in which these inverse trigonometric functions are inverses. After all, if they can 
not give us angles from ratios (which is what we are interested in), then they can not help us.  
 
To see the properties of the inverse trig functions, let us further examine the properties of the arcsine 
function. Suppose we have an angle θ  that falls in between 2/π−  and 2/π . Send the sine of this angle 
to the arcsine function. (This is perfectly permissible because the range of the sine function is the same 
set as the domain of the arcsine function.) Then we will have the quantity ))(arcsin(sin θ . What is this 
number? By definition of the arcsine function, ))(arcsin(sin θ  is a real number φ  ("phi," since we are 
already using θ ) such that both )sin()sin( θφ =  and φ  falls in between 2/π−  and 2/π .  At this point, 
there is only one possible value that φ  can be, and that is θ . This is because the sines of the numbers 
from 2/π−  to 2/π  are unique, which means that the only way the equation )sin()sin( θφ =  can be true 
is if θφ = . You can see this for yourself in Figure 5.5. 
 

 
Figure 5.5: The graph of the sine function over the interval from 2/π−  to 2/π . 

 
Since θφ = , θθ =))(arcsin(sin . Does this look familiar? It should, because arcsine is acting as the 
inverse of the sine function, which is exactly what we wanted it to do. Similar results follow for the 
cosine and tangent functions, when you look at angles in the range of their respective arc functions. 
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What happens if, in our current example, θ  does not fall in between 2/π−  and 2/π ? We can still use 
the arcsine function on the sine function, but we will not get back θ . Instead, we will get an angle that 
does fall in between 2/π−  and 2/π  and is only related to θ . Exactly how it is related to θ  depends 
on the quadrant that θ  falls in. If it falls in the first quadrant, then the new angle is equal to θ  plus some 
multiple of π2 . If it falls in the second or third quadrant, then the new angle is equal to θπ −  plus some 
multiple of π2 . And lastly, if it falls in the fourth quadrant, then the new angle is equal to πθ 2−  plus 
some multiple of π2 . (If you know that θ  falls in between 0 and π2 , you do not need to add a multiple 
of π2  -- all that addition does is take care of the angles outside that range.) 
 
Notice that you have to know which quadrant θ  is in. Also, you have to know if and how much the 
angle wraps around the unit circle -- that is, how many multiples of π2  you have to add to the 
appropriate equation to get θ . You can usually drop the latter requirement, since angles outside the 0 to 
π2  range do not describe any new directions; they just describe the old ones in a slightly different way. 

The former requirement, however, is a fundamental limitation of all inverse trigonometric functions. 
Fortunately, more often than not, we will know which quadrant θ  is in, making this limitation a 
manageable one. 
 
You might be thinking that this is terribly tedious, and this is certainly true. But without inverse 
trigonometric functions, life would be far worse; you would end up having to guess what the angles 
were whenever you wanted to solve for them in a trigonometric equation. Also, for many of the 
applications that we run across in real life, we can use the arc functions as if they were real inverses of 
the trig functions with no ill effects, since the angle we are trying to solve for will fall in to the range of 
the appropriate inverse function. 
 
Table 5.2 summarizes our discussion of the arcsine function and also shows us how the arccosine and 
arctangent functions work with angles in all of the different quadrants. Study this table thoroughly! The 
inverse trig functions are a notorious sticking point in most people's study of trigonometry. 
 

Table 2:  Summary of the inverse trig functions. 

θ  Sine Cosine Tangent 
Quadrant 
I 

πθθ n2))(arcsin(sin +=  πθθ n2))(arccos(cos +=  πθθ n2))(arctan(tan +=  

Quadrant 
II 

πθπθ n2))(arcsin(sin +−=  πθθ n2))(arccos(cos +=  πθπθ n2))(arctan(tan ++=  

Quadrant 
III 

πθπθ n2))(arcsin(sin +−=  πθπθ n2))(arccos(cos2 +−= πθπθ n2))(arctan(tan ++=  

Quadrant 
IV 

πθπθ n2))(arcsin(sin2 ++=  πθπθ n2))(arccos(cos2 +−= πθπθ n2))(arctan(tan2 ++=

 
NOTES: If πθ 20 <≤ , then ),( 2 yx . Otherwise, n is an integer (possibly positive or negative) that specifies how 

many times θ  wraps around the unit circle. Usually this information is not required, and the term can be 
safely dropped, in which case the angle calculated by the arc equation above will not be θ ; rather, it will be an 
angle that describes the same direction as θ , but falls between 0 and π2 . 

 



 109

5.2.1 Using the Inverse Trigonometric Functions 

The simplest way to use inverse trig functions is to solve problems involving right triangles. This is the 
easiest of all applications because the angles of a right triangle are all less than or equal to 2/π  radians -
- which means the arc functions act as true inverses for the trig functions. 
 
In Figure 5.6, we see a right triangle where the legs of this triangle are 3 and 5 units in length, 
respectively. One thing we know about the triangle is that 5/3)tan( =θ , where θ  is the angle opposite 
the side with the length of 3, and adjacent to the side with the length of 5. Applying the arctangent 
function to both sides, we find that 54.0)5/3arctan())(arctan(tan ≈==θθ  radians.  
 

 
Figure 5.6: Using the arctangent function to determine the angles of a right triangle. 

 
You can also use the other arc functions to solve for the angles of a triangle. Suppose you know the 
hypotenuse of a right triangle is 13 units long, and the length of one of the legs is 2 units long. Then you 
know that 13/2)sin( =θ , where θ  is the angle opposite the leg with the length of 2. Solving for θ , we 
get 15.0)13/2arcsin( ≈=θ  radians. 
 
A harder application of inverse trigonometry involves converting Cartesian coordinates to polar 
coordinates. Say we have a point (x, y) measured in Cartesian coordinates and want to convert it to a 
point ),( θr  measured in polar coordinates. If we draw a right triangle whose hypotenuse extends from 
the origin to the point, then we can calculate r by using the Pythagorean theorem. This theorem tells us 
that 222 yxr += , so we know that 22 yxr += . (We use the positive square root because r is defined 
to be positive, so the negative square root would not make much sense). You can see this relationship in 
Figure 5.7. 
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Figure 5.7: Converting Cartesian coordinates to polar coordinates. 

 
Now comes the hard part -- determining what θ  is. To make things simpler, we first assume that 

πθ 20 <≤ , so we do not have to add multiples of π2  to the angle that we calculate.  Next, we 
determine what quadrant θ  is in. This is not as difficult as it sounds, since the signs (whether positive or 
negative) of x and y already provide us with this information. Specifically, if both x and y are positive, θ  
lies in the first quadrant. If x is negative and y is positive, θ  lies in the second quadrant. If both x and y 
are negative, θ  lies in the third quadrant. And if x is positive and y is negative, θ  lies in the fourth 
quadrant. 
 
Once we have determined which quadrant θ  lies in, we just use the appropriate arctangent equation 
given in Table 5.2. For example, if θ  fell in the fourth quadrant, we would know that 

)/arctan(2 xy+= πθ . 
 
The conversion from Cartesian coordinates to polar coordinates is done so often that some compilers 
include a second version of the arctangent function; one that accepts a point and returns the angle 
between the positive x-axis and the point (in C++, this function is called atan2 ()). However, depending 
on how the function is implemented, it may not return an angle between 0 and π2  (atan2(), for 
example, returns an angle between π−  and π ). 
 
While that is not all there is to say about inverse functions -- it is enough to get you started. The rest of 
this lesson's material will focus on easier issues, such as useful trigonometric equations and how you can 
use the new functions you have learned in game development. 
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5.3 The Identities of Trig Functions 

The term identity in trigonometry refers to an equation that relates one trigonometric expression to 
another. 
 
Trigonometry is full of identities, ranging from the very simple, involving one or two terms, to the 
outrageously complex. You probably will never need to program these identities into the games you 
write; however, when you are brainstorming an equation or deriving a formula, you may need to call 
upon a trigonometric identity to transform your work into something that is a bit easier to use. Later on, 
we will discuss how to use trigonometry to rotate points around the origin of a Cartesian coordinate 
system. In order to derive an expression for this rotation, we will have to use a certain trigonometric 
identity. 
 
Many mathematical courses require proving one theorem or another. There are many reasons why even 
game developers should know how to construct mathematical proofs for the formulas and equations they 
derive. Not only will this make results a lot more persuasive if shared with other game programmers, but 
they can have confidence knowing that a particular equation they are using will work flawlessly in their 
games. 
 
For these reasons, we will now learn how to prove some trig identities. While this is not a 
comprehensive list proving all trig identities, the proofs we discuss will give you all the skills you need 
to enable you to prove your own results (as well as the selected theorems for you to prove in the 
exercises). 
  

5.3.1 Pythagorean Identities 

The first Pythagorean identity (there are three) relates the sine and the cosine function as follows: 
 
Identity 5.1: 1cossin 22 =+ θθ  
 

Note: You can see that the parentheses have been dropped from the trig functions. Also, the squared 
symbols attached to the sine and cosine function are shorthand ways of writing 2)(sinθ  and 2)(cosθ , 
respectively. Both of these notations make the equations much more readable, and for this reason, you 
will see them often throughout this section. 

 
Proof of Identity 5.1: 
 
The Pythagorean identities are all based on the Pythagorean theorem. Figure 5.8 shows a right triangle 
whose legs are labeled x and y and whose hypotenuse is labeled r. The angle opposite the side y is 
designated θ . 
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Figure 5.8: A right triangle. 

 
The Pythagorean Theorem tells us that the length of the hypotenuse squared is equal to the sum of the 
lengths of the legs squared: 
 

222 ryx =+  
 
If r is non-zero (and it must be, or we have a point instead of a triangle), then we can divide both sides 
of the equation by 2r , which leaves us with the following equation: 
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We can replace rx /  and ry /  with )cos(θ  and )sin(θ , respectively, which gives us Identity 5.1. That is 
all there is to the proof. 
 
Identity 5.2:  θθ 22 sectan1 =+  
 
Proof of Identity 5.2: 
 
Since we have already proven Identity 5.1, we will use that as a starting point. Dividing this identity by 

2)cos(θ  , we get the following result: 
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This is the exact result we want, so our proof is complete. 
 
The last Pythagorean identity is provided without proof. See if you can derive your own proof for it 
based on what we have learned thus far: 
 
Identity 5.3:  θθ 22 csccot1 =+  
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5.3.2 Reduction Identities 

From looking at the graphs of the trigonometric functions, we learn that the sine function looks a lot like 
the cosine function, which looks a lot like the cosecant and secant functions. Similarly, the tangent 
function looks much like the cotangent function. 
 
The only difference between these functions is that the graph of one is shifted to the left or right from 
the graph of the other by a certain number of radians. Consequently, it is possible to write down 
relationships between the functions. 
 
One of these relationships is listed below: 
 
Identity 5.4: )cos()2/sin( θθπ =±   
 
The symbol '± ' should be read as "plus or minus." This combination symbol indicates that the 
expression can take two forms: one with the plus sign, and one with the minus sign. (This is more 
compact than writing out two identities: one with the plus sign, and the other with the minus sign.) 
 
Identity 5.5: )sin()2/cos( θθπ m=±  
 
The new combination symbol 'm ' is read as "minus or plus." 
 
Whenever there is more than one of these combination symbols, the first symbol indicates how you 
should interpret the following symbols. If you choose the sign on the top for the first combination 
symbol, then you must choose the sign on the top for all subsequent symbols, regardless of what they 
may be. Similarly, if you choose the sign on the bottom for the first combination symbol, then you must 
choose the sign on the bottom for all subsequent symbols, no matter what they are. Thus, Identity 5.5 
expands in to the following two identities: 
 

)sin()2/cos( θθπ −=+  
)sin()2/cos( θθπ =−  

 
The rest of the reduction identities, as they are often called, are shown in Table 5.3. 
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Table 5.3: The reduction identities. 

θθθθθθθπ
θθθθθθθπ
θθθθθθθπ
θθθθθθθπ
θθθθθθθπ
θθθθθθθπ
θθθθθθθπ
θθθθθθθπ
θθθθθθθ

cscseccottancossin2
cscseccottancossin2
seccsctancotsincos2/3
seccsctancotsincos2/3
cscseccottancossin
cscseccottancossin
seccsctancotsincos2/
seccsctancotsincos2/
cscseccottancossin
cscseccottancossin

−+−−+−−
+++++++
−−++−−−
−+−−+−+
+−−−−+−
−−++−−+
++++++−
+−−−−++
−+−−+−−

n
n

angle

 

 

5.3.3 Angle Sum/Difference Identities 

The angle sum/difference identities show us an alternate way of evaluating the sine, cosine, tangent, or 
cotangent functions for the sum of two angles. Why is this important? This is the precise result needed 
to derive the formulas for the rotation of a point about the origin of a coordinate system. 
 
Identity 5.6:  βθβθβθ sincoscossin)sin( ±=±  
 
Identity 5.7:  βθβθβθ sinsincoscos)cos( m=±  
 
Proof of Identity 5.6 and 5.7: 
 
These are two of the most difficult identities to prove. At this point, we will only discuss the top of the 
combination symbols here -- the other cases can be derived from those. 
 
Figure 5.9 shows the setup for the problem. Pay attention to the layout of the four triangles, and the 
names given to each side -- these will be critical in our proof. 
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Figure 5.9: The setup for the proof of the sum and difference formulas for sine and cosine. 

 
Notice that the radius of the circle in Figure 5.9 is 1. This simplifies the definition of the trigonometric 
functions. While a more general radius of r could have been used, doing so would only complicate the 
problem. Besides, by the properties of similar triangles, proving the relation for one radius proves it for 
all. 
 
What we are looking for is an expansion of )sin( βθ +  and )cos( βθ + . Using the circular definition of 
the trig functions (and the fact that r = 1), you can see that these expressions are just xxrx == 1//  and 

yyry == 1// , respectively. As the figure shows, 21 ttx −=  and 21 ssy += . So what we need to do now 
is figure out what t1, t2, s1, and s2 are. 
 
By the triangular definition of the trig functions, we know that θβθ sin)(cossin21 == as  and 

φβφ sin)(sinsin22 == os . But since θπφ −= 2/ , and θθπ cos)2/sin( =− , we can simplify this as 
θβ cossin2 =s . Thus, θβθβ cossinsincos21 +=+= ssy . And since y=+ )sin( βθ , 

θβθββθ cossinsincos)sin( +=+ . 
 
The proof for the cosine function runs along similar lines. We know θβθ cos)(coscos21 == at  and 

θβθπβφ cossin)2/cos()(sincos22 =−== ot . Thus θβθββθ sinsincoscos)cos(21 −=+=−= ttx . 
Proof complete. 
 
The following sum/difference identities are listed without proof: 
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Identity 5.8:  
βθ
βθβθ

tantan1
tantan)tan(

m

±
=±  

 

Identity 5.9:  
θβ

θββθ
cotcot

1cotcot)cot(
±

=±
m  

5.3.4 Double-Angle Identities 

The double-angle identities allow you to convert from a trig function evaluated at twice some angle to an 
alternate expression involving the angle itself (rather than twice that angle). 
 
Identity 5.10:  θθθ cossin22sin =  
 
Identity 5.11:  θθθθθ 2222 sin211cos2sincos2cos −=−=−=  
 

Identity 5.12:  
θ
θθ 2tan1

tan22tan
−

=  

5.3.5 Sum-To-Product Identities 

As the name suggests, sum-to-product identities convert from a sum of trigonometric functions to a 
product of trigonometric functions. 
 

Identity 5.13:  ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ±

=±
2

cos
2

sin2sinsin βθβθβθ m  

Identity 5.14:  ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

=+
2

cos
2

cos2coscos βθβθβθ  

Identity 5.15:  ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

−=−
2

sin
2

sin2coscos βθβθβθ  

5.3.6 Product-to-Sum Identities 

Product-to-sum identities are based on sum-to-product identities. They convert from products of 
trigonometric functions to sums of trigonometric functions. 
 

Identity 5.16:  
2

)cos()cos(sinsin βθβθβθ +−−
=  

Identity 5.17:  
2

)cos()cos(coscos βθβθβθ ++−
=  
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Identity 5.18:  
2

)sin()sin(cossin βθβθβθ −++
=  

Identity 5.19:  
2

)sin()sin(sincos βθβθβθ −−+
=  

 

5.3.7 Laws of Triangles 

These identities relate the angles and sides of arbitrary triangles, even if they are not right triangles. The 
identities are derived by splitting an arbitrary triangle in to right triangles. 
 
All of the following identities refer to Figure 5.10. 
 

 
Figure 5.10: An oblique triangle. 

 
 

Identity 5.20 (Law of Cosines): 
Cabbac
Baccab
Abccba

cos2
cos2
cos2

222

222

222

−+=

−+=

−+=

  

 

Identity 5.21 (Law of Sines):    
C

c
B

b
A

a
sinsinsin

==  
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5.4 Applications 

We will conclude this lesson by covering two applications: point rotation and field-of-view calculations. 

5.4.1 Rotating Points 

One of the most important applications in this lesson is point rotation. Point rotation, in its most general 
form, involves taking a point and rotating it around another point, called the center of rotation. 
However, it is simpler mathematically to rotate a point around the origin of a Cartesian coordinate 
system rather than some arbitrary point.  
 
So what programmers do is translate (move without changing the orientation of) the center of rotation so 
it is at the origin, and then translate the point to be rotated by the exact same amount. Then they rotate 
the point as needed, and undo their original translation by adding back whatever they subtracted (or 
subtracting whatever they added). The end result is exactly the same. (Technically, this is not really the 
case -- programmers do not literally translate the center of rotation, but conceptually, this is a nice way 
to think about it -- and is the reason the whole process works). 
 
Now, take a look at the example shown in Figure 5.11. Say we want to rotate the point (4, 1) around the 
point (5, 5) by π  radians. The first thing we have to do is figure out how to translate the center of 
rotation to the origin. Simply add -5 to the x value and -5 to the y value. This moves the center of 
rotation to the origin. Now we add the same values to the point (4, 1), which gives us the new point       
(-1, -4). Rotating this point by π  radians, we get the point (1, 4). (A simple geometric argument should 
convince you why this is so). Lastly, we undo our translations by adding 5 to the x value and 5 to the y 
value of both the center of rotation and the rotated point. We find the rotated point is (6, 9), which looks 
about right according to Figure 5.11. 
 

 
Figure 5.11: Rotating a point around another point. 
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In two dimensions, rotation is pretty straightforward. In three dimensions, however, there are actually 
three different ways you can rotate a point. Specifically, you can rotate the point around any one of the 
three axes. The axis you rotate the point around is called the axis of rotation. 
 
What does it mean to rotate something around an axis? Imagine thrusting an axis through some object, 
and twirling the object around the axis (Fig 5.12.)  

 
Figure 5.12: Rotating an object around an axis in three dimensions. 

 
Now let us discuss the math behind rotating a point. We will derive equations for the case of rotation 
around the z-axis, which effectively makes this a two-dimensional problem. (If the point has a z 
component, it does not change upon rotation around the z-axis.) Figure 5.13 depicts a 2D point located at 

),( yx  in Cartesian coordinates and ),( θr  in polar coordinates. Rotating this point by φ  radians, we will 
end up with a new point located at )','( yx  ("x prime, y prime") in Cartesian coordinates and ),( φθ +r  in 
polar coordinates. What we need to determine is what x' and y' are -- everything else we know. 
 

 
Figure 5.13: The math of point rotation. 
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One way to do this would be to simply convert the point ),( φθ +r  into Cartesian coordinates. But this is 
not a good idea, since games typically represent points with Cartesian coordinates and not polar 
coordinates. (This will be discussed in greater depth in Chapter Seven.) So in order for us to rotate a 
point in this way, we would have to convert from Cartesian coordinates to polar coordinates (to get 

),( θr ), perform an addition (to get ),( φθ +r ), and then convert from polar coordinates back to 
Cartesian coordinates. This is extremely complex -- involving multiplications, additions, trig functions, 
comparisons, and inverse trig functions -- so let us see if we can come up with a better way. 
 
By definition of sine and cosine, we know that: 
 

Equation 1: 
r
x

=θcos  

Equation 2: 
r
y

=θsin  

Equation 3: 
r
x')cos( =+φθ  

Equation 4: 
r
y')sin( =+φθ  

 
Solving equations (3) and (4) for x' and y', respectively, we find that, 
 
Equation 5: )cos(' φθ += rx  
Equation 6: )sin(' φθ += ry  
 
This does tell us what x' and y' are, but not in a way that saves us from the complex Cartesian-to-polar 
and polar-to-Cartesian conversions.  
 
Fortunately, the sum identities allow us to write equations (5) and (6) as follows: 
 
Equation 7: )sinsincos(cos' φθφθ −= rx  
Equation 8: )sincoscos(sin' φθφθ += ry  
 
This is good news, since we can plug equations (1) and (2) in to equations (7) and (8), giving us the 
following two vastly simplified formulas: 
 

Equation 9: φφφφφφ sincos)sincos(1)sincos(' yxyx
r

r
r
y

r
xrx −=

⎭
⎬
⎫

⎩
⎨
⎧ −=−=  

Equation 10: φφφφφφ sincos)sincos(1)sincos(' xyxy
r

r
r
x

r
yry +=

⎭
⎬
⎫

⎩
⎨
⎧ +=+=  

 
Notice that the final equations do not involve converting between coordinate systems. They require just 
four multiplications, two additions, and two trigonometric functions evaluated at the angle φ . 
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You will find equations (9) and (10) in just about every graphics and 3D game development book out 
there (as well as in a number of mathematical books). Now you can derive these legendary equations for 
yourself. 
 
Rotating around the other two axes is easy: you can re-derive the equations or just substitute z for either 
x or y in the above equations, depending on whether you want to rotate around the x or y axes, 
respectively. 

5.4.2 Field-of-View Calculations 

In our last lesson we discussed the equations for projecting 3D geometry onto a two-dimensional screen. 
These equations relied on a factor d, the distance from the viewer to the screen. Recall that this factor 
determines how much of the world the viewer sees: large d's correspond with narrow views of the world, 
and small d's correspond with wide views of the world. 
 
We can be a lot more precise: we can exactly relate any d value to the viewer's field-of-view (an angular 
measurement that describes how much of the world the viewer sees). The concept of a field-of-view is 
shown in Figure 5.14. 

 
 

Figure 5.14: The viewer's field-of-view. 
 
The math behind this concept is not outrageously complex, although it does involve something 
previously unavailable to us: an inverse trig function. Figure 5.15 shows the setup of the problem. 
 

 
 

Figure 5.15: Relating d to the field-of-view. 
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The height of the screen (in pixels) is h, so we can write 
d

h 2/)tan( =θ , where θ  is half the field of 

view. Solving for θ  and multiplying by two, we find the field of view is ⎟
⎠
⎞

⎜
⎝
⎛−

d
h 2/tan2 1 . 

Conclusion 

In our next lesson, we leave the realm of trigonometry (we will not be studying trig exclusively 
anymore, although it will come up quite frequently in future calculations) and delve into analytic 
geometry. Analytic geometry is a field of mathematics that gives geometric shapes algebraic 
representations and uses these representations to answer questions about the underlying geometry. 
Analytic geometry lies at the heart of collision detection, shadows, reflections, and many other features 
in today's games. 

Exercises 

1. Fill in the missing information about this triangle: 
 
Hypotenuse: 12 Adjacent: 3 Opposite: Angle:  
 
2. Fill in the missing information about this triangle: 
 
Hypotenuse:  Adjacent: 3 Opposite: 5 Angle:  
 
3. Fill in the missing information about this triangle: 
 
Hypotenuse: 4 Adjacent: Opposite: 2 Angle:  
 
4. Prove Identity 5.3. 
 
*5. Prove Identities 5.8 and 5.9. 
 
6. Derive formulae to rotate any point around the point (x, y), using the translation trick mentioned in 
this lesson's material. 
 
! 7.  One problem in designing intelligent computer opponents in action games is determining if an 
enemy can see the player, which in turn determines if the enemy attacks. Suppose the position of the 
player is (x, y) and the position of an enemy is (s, t). Further, suppose the enemy's field of view is β2 , 
and that the angle the enemy's forward line of sight makes with the positive x-axis is θ . Derive 
equations to determine if the enemy can see the player. (You can also use this technique to optimize the 
performance of 3D games by only displaying the objects the player can see.) 
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Figure E5.1: The illustration for exercise 7. 

 
*8. Suppose the player has a horizontal field of view of h radians, and a vertical field of view of v 
radians (see Figure E5.2). Determine the angle of a cone that completely encompasses what the player 
sees. (This information can be used to quickly and easily determine which objects in a 3D world are 
visible to the player.) 
 

 
Figure E5.2: The illustration for exercise 8. 

 
9. Derive formulas for rotation around the x- and y-axes. 
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Chapter Six 
 

 

 
Analytic Geometry I 
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Introduction 

When you think of geometry, you probably remember the hundreds of tedious theorems that your high 
school teacher carefully derived (no matter how intuitive or obvious they seemed). This kind of 
geometry is useful, especially when coming up with trigonometric expressions. But for the most part, 
game programmers tend to rely on a different kind of geometry -- one termed analytic geometry. 
 
Analytic geometry takes a whole new approach to geometric problems. Instead of trying to deduce 
geometric solutions from theorems (which computers are not very good at doing), analytic geometry 
tries to calculate them. How? By giving geometric shapes equations, and then manipulating those 
equations according to the standard rules of algebra to produce the desired results. 
 
In this chapter, you will be introduced to some very basic topics in analytical geometry. We will discuss 
how you can represent points, lines, planes, ellipses, and ellipsoids, and then discuss some interesting 
things that you can do with their mathematical representations. 

6.1 Points 

A point in an n dimensional coordinate system is just an ordered list of n numbers -- in other words, an 
n-tuple. For the Cartesian coordinate system, these points tell you how far the point is along each axis. 
 
One of the only things you can do with points is to calculate the distance between them. For one-
dimensional points, the distance between a point 0x  and a point 1x  is given by the following equation: 
 

||)( 01
2

01 xxxxd −=−=  
 
If the points are two-dimensional, the problem is a bit more interesting. In this case, all we have to do is 
construct a right triangle whose hypotenuse joins the points, as shown in Figure 6.1. 
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Figure 6.1: A right triangle whose hypotenuse connects two points of interest. 

 
To calculate the length of the hypotenuse, we could use trigonometry, but that is not a good idea since 
we would have to know the angle of the triangle. A better approach is to simply use the Pythagorean 
Theorem, which tells us that the length of the hypotenuse is equal to the square root of the sums of the 
squares of the lengths of the sides. In our case, the lengths of the sides are || 01 xx −  and || 01 yy − . We 
take the absolute value of these quantities, because negative numbers cannot be lengths. Consequently, 
the distance between the points is given by the following equation: 
 

2
01

2
01 )()( yyxxd −+−=  

 
Notice that the absolute value signs were dropped because the square of a number is always positive. 
 
The three-dimensional case might seem much harder, but actually, is extremely similar to -- and borrows 
from -- the two-dimensional case. 
 
Much like Figure 6.1, Figure 6.2 shows a right triangle set in three-dimensional space whose hypotenuse 
connects one 3D point to another. 
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Figure 6.2: A right triangle whose hypotenuse connects two points of interest. 
 
As the figure suggests, we can use the Pythagorean Theorem to yield the following result: 
 

2
01

2 )( yysd −+=  
 
s is the length of the base of the triangle. How do we calculate s? One way to do it is to calculate the 
distance from the point ),,( 000 zyx  to the point ),,( 101 zyx . Notice that since the y coordinate is the same 
in these points, this is the same as calculating the distance separating the two-dimensional points ),( 00 zx  
and ),( 11 zx . This gives us the following value for s: 
 

)()( 0101 zzxxs −+−=  
 
Substituting this into our equation for d, we get the following equation: 
 

( ) 2
01

2
01

2
01

2
01

2
2

01
2

01 )()()()()()( zzyyxxzzyyxxd −+−+−=−+−+−=  
 
As we can see, the equation looks remarkably similar to the two-dimensional case. You can probably 
guess how the equation extends to handle points in any number of dimensions. 

6.2 Lines 

From Chapter Three, you know that a binomial produces the graph of a two-dimensional line. Indeed, all 
mathematical representations of a line are binomials. In the sections that follow, we will discuss the 
many ways that you can use a binomial to represent two-dimensional lines, as well as the techniques for 
representing three-dimensional lines. We will also learn how these representations enable us to solve an 
array of geometric problems. 
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6.2.1 Two-Dimensional Lines 

The simplest kind of line to represent is a straight horizontal line. For such a line, the x value is free to 
be any real number, but the y value is fixed to a certain number, which determines where on the y-axis 
the line appears. The equation for this representation is: 
 

by =  
 
A straight vertical line is very similar, except this time, the y value is free to be any real number and the 
x value is fixed. The equation for such a line is: 
 

ax =  
 
This is a perfectly good way to mathematically express a vertical line, although you should keep in mind 
that the above equation is not a function from the real numbers on the x-axis to the real numbers on the 
y-axis. If it were, the "function" would associate an infinite number of elements in the range with a 
single element in the range, which a function cannot do. However, we can certainly think of the equation 
as a function from the real numbers on the y-axis to the real numbers on the x-axis. 
 
The most basic equation for a line that can have nearly any orientation and position is called the slope-
intercept form. This equation relates the y coordinate of a point on the line to an x coordinate on the line. 
The slope-intercept form of the equation of a line is usually written as follows: 
 

bmxy +=  
 
We can see that the expression on the right is a binomial, so we know that the graph of the equation will 
be a line. The variables m and b are constants that dictate the exact form of the line: m is called the slope 
of the line and b is called the y-intercept (for reasons which will become clear shortly). 
 
So how do we interpret m and b? Let us consider two points that lie on the line, which we will call 

),( 00 yx  and ),( 11 yx . Then, using the slope-intercept equation, we know that the following two 
equations hold true: 
 

bmxy
bmxy

+=
+=

11

00

 
 
Solving the top equation for b, we find that 00 mxyb −= . Plugging this result into the bottom equation, 
we get the following derived equation: 
 

0010011 )( yxxmmxymxy +−=−+=  
 
All we have to do now is solve this equation for m, the slope of the line: 
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01

01

xx
yym

−
−

=  

 
To understand the significance of this result, take a look at Figure 6.3.  
 

 
Figure 6.3: A right triangle whose hypotenuse connects two points on a line. 

 
This figure shows a circle centered on the point ),( 00 yx  and extending out to the point ),( 11 yx . From 
the definition of the tangent function, we can see that m is simply the tangent of the angle that the line 
makes with the horizontal x-axis. In other words: 
 

πθθ <≤=
−
−

= 0tan
01

01

xx
yym  

 
This is the result we want, since it tells us that m measures the orientation of the line. If we picture the 
line as a hill, then we can also say that m measures the slope of the hill, which is, in fact, why m is called 
the slope of the line. 
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Note that θ  is defined to be in the interval ),0[ π .This allows us to say that if two lines have equal 
slopes, they have equal angles. We would not be able to say this otherwise, since, for example, it is 
possible that the angle of one line could be 0 and the angle of another line could be π2 , and the slopes of 
these lines and their orientations are equal, even though the angles themselves are different. 
 
Figuring out what b does is much simpler. When 0=x , the slope-intercept equation tells us that by = . 
This means that b tells us what the y value of the line is at the place where the line crosses the y-axis; 
hence, b is usually called the y-intercept. 
 
Figure 6.4 nicely summarizes our discussion of the slope-intercept equation in a visual way. 
 

 
Figure 6.4: The slope-intercept form of the equation of a line. 

 
Another line equation often used is called the point-slope form of the equation of a line. This equation 
relates one point on a line, designated ),( yx , to another point, designated ),( 00 yx . 
 

)( 00 xxmyy −=−  
 
This form is actually one of the intermediate equations we derived in trying to figure out what the 
interpretation of m and b are in the slope-intercept equation. 
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A problem with both the slope-intercept and point-slope forms is that they cannot represent perfectly 
vertical lines, since in a perfectly vertical line, the numerator of the slope would be infinite and the 
denominator would be zero. One solution is to simply replace all the x's with y's, and vice-versa, in all of 
the above equations. Then we will have a second set of equations which map from a given y value to an 
x value, and thus, allow us to represent perfectly vertical lines. But this second set cannot handle 
perfectly horizontal lines like the first set can, so we really will not have gained much by doing this. 
 
The solution is the general form of the equation of a line, shown below:   
 

0=++ cbyax  
 
If the line is horizontal, then a will be non-zero and b will be zero. We can then solve for x. If the line is 
vertical, then a will be zero and b will be non-zero. We can then solve for y. If the line is neither 
horizontal nor vertical, then neither a nor b will be zero, and we can solve for whatever we want to. If 
we solve for x, we have a function from the real numbers on the y-axis to the real numbers on the x-axis. 
And if we solve for y, we have a function from the real numbers on the x-axis to the real numbers on the 
y-axis.  
 
We can actually derive all other forms of the equation of a line from the general form -- even by =  and 

ax = . However, in practice, game developers usually use the slope-intercept equation. 

6.2.2 Parametric Representation 

The last way to represent a line is also the most powerful. It is called the parametric form of the 
equation of a line, since the coordinates of the point rely on a parameter. This parameter is free to be 
any real number; each choice of a parameter results in a different point on the line. 
 
The parametric equations, which are defined in terms of two points on the line called ),( 00 yx  and 

),( 11 yx , are shown below: 
 

001

001

)(
)(

yyyty
xxxtx

+−=
+−=

 

 
Notice the parametric form does not relate x to y or y to x (at least directly), but rather, it relates both of 
these to the parameter. This form can express any possible line, regardless of orientation or position, and 
it does not require us to first calculate the slope of the line. 
 
It is fairly easy to derive the slope-intercept equation from the parametric equations. First, we just solve 
the x equation for t, giving us the following relationship: 
 

01

0

xx
xxt

−
−

=  
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Next, we substitute this into the equation for y, and simplify, as shown below:  
 

bmx

xx
yyxyx

xx
yy

y
xx
yyx

xx
yyx

y
xx
yyxx

yyy
xx
xxy

+

=
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=+
−
−

−

=+−
−
−

=

01

01
00

01

01

0
01

01
0

01

01

0
01

01
0

001
01

0

)(

)(

 

Notice that b was substituted in place of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
01

01
00 xx

yyxy . How can we do this?  As illustrated in Figure 

6.5, we can see that b is just oy −0 , and o, in turn, is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
01

01
00 tan

xx
yyxx θ , so b is ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−
01

01
00 xx

yyxy . 

 

Figure 6.5: A graphical proof that b is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
01

01
00 xx

yyxy . 

That completes the proof. Now we turn to looking at the analytic operations we can do with lines. 
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6.2.3 Parallel and Perpendicular Lines 

Sometimes we want to know if two lines are parallel or perpendicular to each other. Fortunately, there is 
an easy way to do this, based on the definition of the slope of a line. 
 
Suppose we have two lines with the slopes 00 tanθ=m  and 11 tanθ=m . If the two lines are parallel, then 
they have the same angles. Consequently, their tangents are equal. This tells us that if two lines are 
parallel to each other, their slopes are equal. 
 
Perpendicular lines are a bit trickier. Suppose we have two lines with slopes θtan0 =m  and 

)2/tan(1 πθ +=m . It is a trigonometric fact (which we discussed in our last lesson) that 

θπθ cot)2/tan( −=+ , so we can rewrite 1m  as 
0

1
1

tan
1cot

m
m −=−=−=

θ
θ . Thus, we see that if two 

lines are perpendicular, then the slope of one line is the negative reciprocal of the slope of the other line. 
This result is more important than the last, since there are many instances where we will need to create a 
line that is perpendicular to another, and this equation will allow us to do it. We will see one such 
instance later on in this lesson, when we calculate the distance from a point to a line. 

6.2.4 Intersection of Two Lines 

An extremely useful tool in analytic geometry is determining the intersection of shapes -- in this case, 
the intersection of two lines. Here, the word "intersection" carries its set theoretic meaning. Two 
geometric shapes can be thought of as two sets of points. The intersection of these sets, recall, is a set 
that contains every point in both the sets, and no other points. 
 
In the case of lines, as long as two lines are not parallel, they will intersect at exactly one place. To 
determine where this is, we should first define the two lines using the slope-intercept equation, as shown 
below: 
 

0000 bxmy +=  

1111 bxmy +=  
 
Each of these equations determines a set of points. The first line determines the set 

},|),{( 00000000 bxmyxyxL +=ℜ∈= , and the second line, the set },|),{( 11111111 bxmyxyxL +=ℜ∈= .  

The intersection of these sets, then, is the set }),(,),(|),{( 1010 LyxLyxyxLLI ∈∈=∩= . We can 
expand this as )},(),,(|),{( 10 bxmyxbxmyxyxI +=ℜ∈+=ℜ∈= , but since this expansion contains 
redundant information (we do not need to be told that ℜ∈x  twice), we can simplify the expression to 

},,|),{( 10 bxmybxmyxyxI +=+=ℜ∈= .  
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This tells us what all the points in I will look like: the first component will be a real number, and the 
second component will be related to the first in the way specified by the two equations. Actually, the 
first constraint is no longer helpful: while x is a real number, it is not just any real number. We have two 
equations involving x, so x is forced to be a specific real number. Thus, it is sufficient to write the 
intersection of the sets as },|),{( 10 bxmybxmyyxI +=+== .  

So what does this intersection point look like? By definition of the intersection set, we know that 
bxmy += 0  and bxmy += 1 . By deduction, therefore, we also know that 1100 bxmbxm +=+ . This is 

good, since it is an equation with only one unknown -- x. We can get an analytic expression for x. 
 
The first step is to move all the terms involving x to the left side, and all the other terms to the right, 
leaving us with the equation 0110 bbxmxm −=− . Next we factor out an x, giving us 0110 )( bbmmx −=− . 

Finally, we divide both sides by x, giving us 
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Now that we know what x is, it is simple enough to find out what y is; simply plug our known value of x 
into any one of the line equations (either one will work since, at the intersection point, they both have 
the same y values). This step (and resulting simplification) is shown below: 
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Thus, with very little effort, we have determined the intersection point is ),(
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what happens if the slopes are equal and the lines are therefore parallel -- a division by zero, which is 
undefined. Mathematics has a way of "encoding" the "no solution" case as a division by zero (or 
sometimes, as the square root of a negative number). 
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6.2.5 Distance from a Point to a Line 

One extremely useful application of analytic geometry is calculating the distance from a point to a line. 
By distance, it refers to the shortest distance from the point to the line. This is shown in Figure 6.6. 
 

 
 

Figure 6.6: The shortest distance between a point and a line. 
 
With a little thought, we will soon come to the conclusion that what we need to solve this problem is 
another line, this one, perpendicular to the first. The perpendicular line should pass through the point. 
The distance from the point to wherever the perpendicular line intersects the other line is the distance we 
seek. Figure 6.7 illustrates this. 
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Figure 6.7: A perpendicular line can be used to calculate the shortest distance between a line and a point. 
 
The first step in solving the problem is to describe each line with an equation: 
 

0000 bxmy +=  

1111 bxmy +=  
 
We know both the slope and the y-intercept of the first line. The perpendicular line, designated 1y , has a 
slope equal to the negative reciprocal of the first line (which we covered earlier). We can determine 
what 1b  is by recognizing that the line must pass through the point whose distance we are computing. If 
we call this point ),( pp yx , then we know that the perpendicular line must satisfy the following equation: 
 

11 bxmy pp +=  
 
Solving for 1b , we find that, 
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We now have the equations of both lines. What we need to do next is determine where the lines 
intersect. Fortunately, we just did this in the last section, so we can reuse those results here. 
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Let us call the point where the lines intersect ),( ii yx . Then, from the intersection equations, we know 
that, 
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Similarly, we know that iy  is given by the following expression: 
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We are nearly done. All we have to do now is calculate the distance between the points ),( ii yx  and 

),( pp yx , which we can do using our distance formula:: 
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The equation has been vastly simplified in the third step shown above. We could discuss the math -- but 
it would be another three pages of computation. You should work it out for yourself, however, to verify 
the result. 
 
Note that we can take the square root into the numerator to simplify further, but we will have to use the 
absolute value function, since the positive square root of the square of a number is not necessarily equal 
to that number -- rather, it is equal to the absolute value of that number. 

6.2.6 Angles between Lines 

Another useful thing we can do in analytic geometry is calculate the angle between two lines. 
 
Suppose we have two lines defined as follows: 
 

0000 bxmy +=  

1111 bxmy +=  
 
Say the angles of the lines are 0φ  and 1φ , respectively. Then angle θ  between the lines is defined to be 
the absolute value of the difference between these angles -- i.e. 01 φφθ −= . This angle, which happens 
to be the smaller of the two angles formed by the intersection of the two lines, is shown graphically in 
Figure 6.8. 
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Figure 6.8: The angle between two lines. 
 
We can immediately write down the following expression for the tangent of θ : 
 

)tan(tan 01 φφθ −=  
 
In order to calculate what θ  is, we need to use the difference identity for the tangent function (discussed 
in Chapter Five). But that identity did not tell us how to expand the difference of an absolute value, so 
what do we do? Recall from that same lesson that θθ tan)tan( −=− , so we can write )tan( 01 φφ −  as 

)tan( 01 φφ − . This enables us to easily use the difference identity, as shown below: 
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This may not seem like a better form, but actually, it is. Recall that the tangent of the angle of a line is 
equal to the slope of that line, so we can rewrite the equation as shown below: 
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This gives us a nice, convenient expression for the angle between two lines that relies only on the slope 
of those lines. Of course, to get the actual angle, we will have to use the inverse tangent function, but 
since the angle will always be in the interval ]2/,0[ π , this is quite trivial. 
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6.2.7 Three-Dimensional Lines 

Lines in the 3rd dimension can be described in a variety of ways, but all can be derived from the 
parametric representation of 3D lines. This form, exactly like the parametric representation of two-
dimensional lines, depends on a parameter that can assume any real number. Different real numbers 
correspond to different points on the 3D line. 
 
The form of this line is shown below: 
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where ),,( 000 zyx  and ),,( 111 zyx  are two points on the line and t is the parameter. 
 
We can derive from the parametric equation new equations that depend on x, y, or z, according to our 
preference. If we wanted to know what the x and y coordinates of the line are for a given z value, for 
example, then we simply solve the z equation for t, and plug this value of t into the other two equations. 
 
Like two-dimensional lines, there are lots of neat tricks we can do with 3D lines as well. But most of 
these lend themselves to vector mathematics, so we will discuss their coverage later in the course. 

6.3 Ellipses 

Ellipses generally resemble squashed circles, although they can also look like perfectly round circles.  
Like lines, they too can be represented mathematically. The usual form of the ellipse equation is shown 
below: 
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Here ),( kh  is the point at the center of the ellipse, xr  is half the width of the ellipse, and yr  is half its 
height. The equation is true for all points ),( yx  on the ellipse, and false otherwise. Figure 6.9 shows us 
an ellipse and how the various parameters shape how the ellipse looks. 
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Figure 6.9: An ellipse described by the standard ellipse equation. 

 
We can solve for either x or y in the ellipse equation, however, we will always get two solutions, one 
involving a positive square root and the other involving a negative square root. These two equations 
correspond to the two halves of the ellipse. 
 
If yx rr = , then the ellipse is actually a circle, and the equation simplifies as follows: 
 

222 )()( rkyhx =−+−  
 
As with lines, ellipses can be represented parametrically. This time the parameter is an angle. The angle 
describes the orientation of a ray that emanates from the center of the ellipse. The ray intersects the point 
on the ellipse associated with that angle. 
 
The equations for the parametric representation of ellipses are shown below:  
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If yx rr = , then as before, the ellipse is actually a circle, and the equation simplifies as follows: 
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6.3.1 Intersecting Lines with Ellipses 

Just as we can determine the points in the intersection of two lines, we can also determine the points in 
the intersection of a line with an ellipse. (Intersecting ellipses do not have that many applications, so we 
will not discuss them here.)  
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When a line intersects an ellipse, it will usually intersect it twice -- once as the line enters the ellipse, 
and once as the line exits the ellipse. For a line and ellipse in standard form, the first intersection point is 
given by the following equations: 
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The second intersection point is given by the following equation: 
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If the line just grazes the ellipse, then it will intersect it only once, and both of the above sets of 
equations will produce the same point. If the line does not intersect the ellipse at all, then the 
discriminant -- that expression inside the square root operator -- will be negative, and as we all know, 
there is no real number such that, when multiplied by itself, is equal to a negative number. 
 
If the ellipse is a circle, then the equations simplify as follows: 
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And for the second intersection point: 
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6.4 Ellipsoids 

Ellipsoids are three-dimensional versions of ellipses. Essentially, they are spheres that have been 
compressed or expanded on each of the three axes. An example of an ellipsoid is shown in Figure 6.10. 
 

Note: a sphere is a special case of an ellipsoid, like a circle is a special case of an ellipse. 
 

 
Figure 6.10: An ellipsoid. 

 
The equations for ellipsoids are almost identical to those for ellipses. The standard form for an ellipse 
centered at ),,( jkh  is shown below: 
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In this equation, we can solve for one variable -- x, y, or z. We will get two solutions, as before, one 
representing one half of the ellipse, and the other representing the other half. 
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The parametric form uses a form of spherical coordinates to describe a ray that emanates from the origin 
of the ellipsoid. The spherical coordinates are mapped to the point where the ray intersects the ellipsoid. 
 
 
The parametric equations are shown below:  
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Here θ  describes the rotation of the ray around the y-axis (0 radians points in the direction of the 
positive x-axis), and φ  describes the tilt of the ray -- the angle it makes with the plane formed by the x- 
and z-axes. 
 
For the special case of a sphere, the equations simplify as follows: 
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6.4.1 Intersecting Lines with Spheres 

It is possible to determine exactly where a three-dimensional line and an ellipsoid intersect, but the 
resulting equations are extremely complex, and generally too slow to compute to be of much use to 
game developers. However, for the special case of the sphere, the resulting equations are actually simple 
enough to be used in computer games. 
 
Suppose we have a line described parametrically by the following equations: 
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Further, suppose we have a sphere described by the following equation: 
 

2222 )()()( rjzkyhx sss =−+−+−  
 
To find out where the line and sphere intersect, the first thing to notice is that the intersection points 
must (1) satisfy the line equations, and (2) satisfy the sphere equation. So one thing we can do is 
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substitute the expressions for x, y, and z into the sphere equation. (If it is not obvious why this works, go 
through the whole set theory procedure we discussed when intersecting two lines). Doing this and 
collecting like terms, we get the rather complicated expression shown below: 
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To simplify, we should let: 
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Now we can plug these values into the quadratic formula to solve this equation for t. We get the 
following two solutions: 
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To find the two points where the line intersects the sphere, simply plug these values of t into the 
parametric equation for the line. Note that if the discriminant of the above equations is negative, then the 
line does not intersect the sphere at all. This allows us to use the equations just to see if a line intersects 
a sphere (even if we are not interested in the location of the intersection). 
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6.5 Planes 

Planes are two-dimensional surfaces that extend infinitely in both dimensions and reside in three-
dimensional space. Sometimes, people talk about the x-y plane, for example. This simply refers to the 
plane that contains the x- and y-axes. Similarly, the x-z plane contains the x and z axes, and the y-z plane 
contains the y and z axes. Figure 6.11 illustrates this: 
 

 
Figure 6.11: The names for planes containing two standard axes. 
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If a plane is parallel to the y-z plane, then the usual way to represent it mathematically is ax = . This is a 
shorthand way of saying that the plane contains all points in the set },,|),,{( ℜ∈ℜ∈= zyaxzyx . 
Similar notations are observed for planes parallel to the x-y and x-z planes. 
 
We should have no problem believing that if we look at a vertical cross section of a non-vertical plane, 
we will see a line. (Looking at a cross section corresponds to intersecting the plane with another plane). 
So in particular, if we look at a cross section parallel to the y-z plane, we will see a line, and if we look 
at a cross section parallel to the x-y plane, we will see a line. Figure 6.12 shows a plane and the two lines 
that result from intersecting the plane with the y-z and x-y planes. 
 

 
Figure 6.12: Cross sections of a plane. 
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This should lead us to conclude that perhaps we can represent a non-vertical plane with the sum of two 
line equations: one line equation that depends on x, and one line equation that depends on y. This turns 
out to be correct, and the resulting equation that describes the height of the plane for any given ),( zx  is 
shown below: 
 

cnzmxy ++=  
 
Here, m is the slope of the line that runs along the y-z plane, n is the slope of the line that runs along the 
x-y plane, and c is the y value of the plane at the point (0, 0). For non-vertical planes, we can express x in 
terms of y and z, or z in terms of x and y, depending on the plane. In our next lesson, we will discuss a 
more elegant equation called the general (or standard) plane equation, that represents all planes, 
regardless of orientation. But for now, this one will suffice. 

6.5.1 Intersecting Lines with Planes 

It is quite trivial to calculate the intersection point between a line and a plane. Assuming the line is in 
standard parametric form, and the plane is determined by the equation cnzmxy ++= , then the value of 
t that produces the intersection point is given by the following equation (you will derive this equation in 
an exercise): 
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To find the point, just plug this value of t into the parametric equation for the line, and we are done. 
 
If the line is parallel to the plane, then the denominator of the above equation will evaluate to zero, 
indicating there is no solution. 

Conclusion  

In the next chapter, we bring out the heavy-duty math: vector algebra. Vectors allow us to do even more 
advanced analytic geometry than what we have looked at here in this lesson. Plus, we can use them for 
geometry transformation, animation, performance optimization, and much more. They also lead 
naturally to a discussion of matrices, the workhorse of every 3D program on the market. 

 

 



 150

Exercises 

*1. Determine the intersection between a line and a quadratic. 
 
*2. Determine the intersection between a line (in parametric form) and a plane. 
 
3. A direct hit to the head with a gun is far more serious than a direct hit to the foot (in fact, the former is 
usually lethal!), and games like Hitman™ and Soldier of Fortune™ take this into consideration to 
increase realism. This approach requires you to know which body part is hit by the weapons. The exact 
math required to do this is covered in Chapter Eleven, but for now, describe how you could use spheres 
to achieve a rough solution to this problem. 
 
4. Ray-tracing is a rendering technique whereby a two-dimensional view of a 3D world is produced by 
sending out imaginary rays from the viewer to each pixel on the screen, and then following the rays out 
into the 3D world to see which point they intersect first (see Figure E6.1). Suppose the origin of the 
coordinate system is placed at the viewer's location, which is assumed to be a distance d from the screen, 
centered vertically and horizontally. Derive an equation for the 3D line that passes through the pixel 
located at the 3D point (x, y, d). 
 

 
Figure E6.1: Ray-tracing. 

 
! 5. Find an inequality (i.e. an equation stating that one thing is less than, greater than, less than or equal 
to, or greater than or equal to something else) that holds for all points above a line in slope-intercept 
form, and another inequality that holds for all points below the line. 
 
*6. Describe how you could use the inequalities of problem 5 to determine if a point falls within a two-
dimensional polygon. 
 
! 7.  Suppose the viewer (situated as described in problem 4) has a horizontal field of view of h, and a 
vertical field of view of v, and is looking through a computer screen at a 3D world. Find equations that 
describe six planes that enclose the portion of the 3D world that the viewer sees. 
 
*8. Describe how you can use the results of problems 6 and 7 to determine if the viewer can see a point. 
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Chapter Seven 
 

 

 
Vector Mathematics 
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Introduction 

If you asked me for my top 10 favorite math subjects, vectors would definitely be right up there. Ever 
since I was first introduced to them, vectors have captivated me with their elegance and wide 
applicability. 
 
It is not often in mathematics that a clean, simple concept generates an enormous variety of applications, 
but with vectors, that is surely the case. From two-dimensional and three-dimensional graphics, to 
physics, to sophisticated bones-based animation -- anywhere you look in a modern game, you are bound 
to run across vectors and the mathematics that deals with them. 
 
In this chapter, we are going to get a thorough introduction to the world of vector math. We will cover 
what vectors are, what operations are defined for them, and a few of the many different ways you can 
use them in game programming. 

7.1 What Are Vectors? 

A plain old number, such as 2 or 9102, is useful for describing the size or magnitude of something: like 
the temperature, for example, or the length of a piece of sheet metal, or the number of votes a candidate 
wins from a local precinct. Single numbers are not very good, however, for describing directions. If I 
asked you where the airport was, for example, you might tell me it was 27.1 miles away, but that single 
number -- though helpful -- is not nearly enough information for me to find the airport. 
 
That is where vectors come in. A vector can be very loosely defined as an entity that has both a 
direction and a magnitude. That is not perhaps the best definition for vectors since there are entities that 
have both direction and magnitude and yet are not vectors -- in fact, entities must satisfy other properties 
as well before you can call them vectors -- but for now this definition will suffice.  
 
Returning to the airport example, you could tell me the airport was 27.1 miles in the direction you were 
pointing. That direction, combined with the magnitude of 27.1 miles, together constitute a vector.  
 
Similarly in physics, velocities are vectors. A velocity describes the direction of movement and how fast 
that movement is. For example, a train might be moving at 70 mph in the northeast direction. 
 
Since directions can exist in any number of dimensions, so can vectors. You can have one-dimensional 
vectors, two-dimensional vectors, three-dimensional vectors, and so on. Although not used frequently in 
computer science, there are occasions when higher dimensional vectors are useful (especially in 
physics). 
 
Vectors can be visually represented by a so-called directed line segment, which is nothing more than a 
portion of a straight line with an arrowhead stuck on the end. The direction of both the line segment and 
the arrowhead designate the direction of the vector, while the length of the vector represents its 
magnitude. Figure 7.1 shows you how this looks with a number of different vectors.  
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Figure 7.1: Examples of vectors. 

 
Vectors are usually represented by lower case English letters, oftentimes in bold or italic face (such as a 
or b, or even c), and occasionally (when the typesetter is feeling extraordinarily ambitious) by a letter 
with an arrow placed directly overhead (e.g. vr ). 

7.2 Elementary Vector Math 

For a thing to be a vector, it must not only have a direction and magnitude, but it must also have certain 
properties and obey certain rules. These properties and operations are what make vectors so incredibly 
useful across a broad range of mathematical, physical, and computational disciplines. 
 
Addition is probably the most basic of all vector operations. The operation of addition takes two vectors 
and returns another vector, called the resultant. Geometrically, you can think of addition as taking the 
base of the first vector and sticking it at the tip of the second; the resultant vector is the vector formed by 
the line segment that travels from the base of the second vector to the tip of the first. This is shown in 
Figure 7.2.  

 
Figure 7.2: Adding two vectors. 

 
As you can probably guess from the definition, vector addition is commutative (a + b = b + a), as well 
as associative ((a + b) + c = a + (b + c)). 
 
The so-called zero or null vector is a vector with no direction or magnitude (weird, but true), designated 
by 0. It exists so that we can write equations like a + 0 = a. 
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Subtraction is defined for vectors too. If you have two vectors a and b, then to subtract b from a, place 
the bases of the vectors at the same point, then draw a line segment from the tip of b to the tip of a. The 
vector formed by this line segment defines the result of the subtraction. Figure 7.3 shows how this looks. 
 

 
Figure 7.3: Vector subtraction. 

 
Like vector addition, subtraction is both commutative and associative. Furthermore (and this is not an 
accident) any vector minus itself (a - a) is the zero vector, a consequence of the way subtraction is 
defined. 
 
You can multiply a vector by any real number, called a scalar because it scales the vector. The new 
vector has the same direction as the old one if the scalar is positive, but the opposite direction if the 
scalar is negative. The magnitude of the new vector is equal to its old magnitude times the absolute 
value of the scalar. 
 
For one thing, this definition of scalar multiplication allows you to write a + (-1 a) = 0, since -1 a points 
in the opposite direction as a but has the same magnitude, so adding the two vectors will result in the 
null vector (see Figure 7.4). 
 

 
Figure 7.4: Adding the vectors a and -a. 

 
Scalar multiplication is distributive with respect to vector addition, so a(u+v) = au+av (where a is a 
scalar and u and v are vectors). It is also associative, since au = ua, and commutative as well. 
 



 155

One of the things we take for granted in the arithmetic of ordinary numbers is that we can easily write x 
+ (-x) as x - x. For vectors, however, the first would be a vector plus a scalar times a vector, and the 
second would be a vector minus another vector. Fortunately, by the way scalar multiplication is defined, 
it turns out this property holds true for vector arithmetic as well, but if we had defined scalar 
multiplication in any other way (e.g. the new vector has a length equal to its old length plus the scalar) 
the property would not hold. The moral of this story is that you need to be careful whenever you create a 
new algebra not to ascribe properties of real number arithmetic to the new algebra. 
 
You can divide a vector by a scalar by multiplying it by the reciprocal of the real number. This intuitive 
way of defining scalar division allows you to write equations like 5(a/5) = a. 
 
The magnitude (i.e. length) of a vector comes up so frequently that there is a special designation for it: 
two vertical bars ('|') that enclose the vector. Thus the magnitude of vector a can be designated by |a|. In 
many math texts, You will also see the magnitude of a vector represented by the letter standing in for the 
vector, without boldface, and possibly italicized (in a text where a vector is written v, for example, the 
magnitude of the vector might be written v, or maybe just v). 
 
To normalize a vector is to make its length 1. You can do this by taking the vector and dividing it by its 
own length. The resulting vector is called a normalized vector. 
 
That about does it for the elementary vector operators. You may be wondering if you can multiply a 
vector by another vector, or divide two vectors. As we will see in the next section, the answer to the first 
question is "sort of". Division of one vector by another, however, cannot be defined in any meaningful 
way. We will briefly see why this is true after defining the two operations of vector multiplication. 

7.2.1 Vector Multiplication 

It is not immediately obvious how to define multiplication for vectors. In the case of real numbers, ab is 
defined as the sum of a certain number of a's -- namely, b of them (or conversely, as a sum of a b's). So 
the first thing you might think of is to define the vector product ab as the sum of a certain number of a's 
-- namely, b of them -- but what does it mean to say b of them, since b is a vector and not a number? 
 
The answer is that it does not mean anything, so it is not possible to define vector multiplication in a 
way that parallels real number multiplication. So instead, what mathematicians have done is define two 
operations, called the dot product and the cross product, that act like multiplication in some respects 
(they are distributive with respect to vector addition, for example, just like real number multiplication), 
but do not have an exact parallel in the algebra of real numbers. 
 
In the next two sections, we will look at both of these operations in some depth. 
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The Dot Product / Vector Projection 

The dot product operator, designated by the symbol '•', tells you something about the angle between two 
vectors. Here you can understand "angle between two vectors" as the angle formed by geometrically 
dragging the base of one vector to the base of the other (see Figure 7.5). 
 

 
 

Figure 7.5: The angle between two vectors. 
 
More precisely, a•b (read "a dot b") is defined as )cos(|||| θba ; that is, the magnitude of a times the 
magnitude of b times the cosine of the angle between the vectors. 
 
This may seem an odd way to define the dot product. After all, if we are interested in the angle between 
two vectors, why not simply define the dot product as just that? Actually there is a reason for the strange 
definition: it is very easy to derive a formula for the dot product of two vectors given their Cartesian 
representations (more on this later). 
 
In any case, if you want to find the angle between two vectors, all you have to do is solve the equation 

)cos(|||| θbaba =⋅  for θ , which gives you )
||||

(cos 1

ba
ba ⋅

= −θ  (which is true only assuming you choose 

θ  so that it falls in the interval ],0[ π , the range of the inverse cosine function). 
 
The dot product is commutative and associative with respect to vector addition -- the latter property 
giving it some similarity to multiplication. Of course, the result of the dot product operation is not a 
vector, but a scalar, whereas the product of two real numbers is again a real number, so the parallel 
between the two breaks down. 
 
The definition of the dot product leads to an interesting (and sometimes useful) way to calculate the 
magnitude of a vector: ||||)1(||||)0cos(|||| 2 aaaaaa ====⋅aa . 
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The dot product leads naturally to an operation known as vector projection. The projection of some 
vector a onto another vector b, sometimes denoted projb(a), is a vector pointing in the direction of b, 
whose magnitude is equal to the part of a that points in the direction of b. 
 
Figure 7.6 graphically depicts what vector projection is all about. The figure also suggests a way to 
determine what the projected vector is. 
 

 
 

Figure 7.6: Vector projection. 
 
Suppose we call the projected vector a'. We know a' will have the same direction as b, but what about 

its magnitude? From the right triangle drawn in Figure 7.6, we know that 
||
|'|)cos(

a
a

=θ , so solving for 

|a'|, we find )cos(|||'| θaa = . From the definition of the dot product, we also know that 

)cos(|||| θbaba =⋅ , so dividing both sides of the equation by |b|, we see that 
||

)cos(||
b
baa ⋅

=θ . 

Together, these two equations imply that 
||

|'|
b
baa ⋅

= . If we multiply this number (which is the magnitude 

of a') by the normalization of b (which is just 
|| b

b ), then we will have the vector a'. Thus our formula 

for vector projection becomes, 
 

b
b

baab 2||
)( ⋅
=proj  

 
However, note that bbb ⋅=2|| , so we can also write the formula as follows: 
 

b
bb
baab ⋅
⋅

=)(proj  
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Vector projection is often used in physics simulations and collision detection. In physics, for example, 
you use vectors to represent forces, and sometimes you need to figure out what part of a force points in a 
given direction. Vector projection allows you to easily calculate this result. 

The Cross Product 

The cross product operation is a bit strange in that it is only defined for three-dimensional vectors. That 
means that within the algebra of two-dimensional vectors or four-dimensional vectors, for example, the 
cross product operation does not exist. 
 
The cross product of two vectors a and b, written ba× , is a vector, not a scalar (in contrast to the dot 
product of two vectors). What sort of vector? Consider that if you move the base of one of these vectors 
to the base of the other vector, as done in Figure 7.7, then the two vectors determine a three-dimensional 
plane (that is, there is one and only one plane that passes through both the common base and the tips of 
the two vectors). The cross product is a vector that is perpendicular to the plane (and hence, to the two 
vectors). 
 

 
Figure 7.7: The cross product operation. 

 
We have left two things out in this description of the cross product: (1) what side of the plane the cross 
product vector points away from (since it could point away from either side of the plane and still be 
perpendicular to the plane) and (2) what the magnitude of the cross product vector is. 
 
The cross product vector points in the direction determined by the right-hand rule. To use the right-hand 
rule, make a flat hand, then stick your thumb straight out at a 90-degree angle from the direction of your 
fingers. Then angle your hand so that you can rotate your fingers from the direction of the first vector to 
the direction of the second (from a to b in the above example, although if we were computing ab× , it 
would be from b to a) without rotating more than 180 degrees (see Figure 7.8). The cross product vector 
points in the same general direction as your thumb. (A variant of this rule involves turning a screw from 
the first vector to the second in such a way that you do not turn more than 180 degrees; the screw will go 
in the same direction the cross product vector points.) 
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Figure 7.8: The right-hand rule for cross products. 

 
The magnitude of the cross product vector is defined to be )sin(|||| θba , where a and b are the vectors 
being crossed (note the similarity to the dot product) and θ  is the smallest angle between the two 
vectors, as illustrated back in Figure 7.7. You can interpret the magnitude of the cross product vector as 
the area of the parallelogram formed by the two vectors. Figure 7.9 shows you why this is so. 
 

 
 

Figure 7.9: The parallelogram interpretation of the magnitude of the cross product vector. 
 
The cross product is associative with respect to addition, so cabacba ×+×=+× )( . However, it is not 
commutative: the vector ba×  does have the same magnitude as the vector ab× , but as the right-hand 
rule should convince you, it points in the opposite direction. This means that )( abba ×−=× . As we will 
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see later in this course, the cross product is but one of many mathematical operations that is not 
commutative (the idea of a non-commutative operation is strange at first, but you get used to it after a 
while and stop taking commutativity for granted). 
 
It should be clear by now that neither the dot product nor the cross product is really a substitute for a 
"multiplication" of vectors. The operation that is associative and commutative results in a number, not a 
vector, and the operation that results in a vector is associative but not commutative. As we will see in the 
next section, we cannot have anything even remotely approaching division.  

7.2.2 Vector Division 

One of the most fundamental uses for division is solving an equation for an unknown. In the equation 
105 =x , for example, all we need to do is divide both sides of the equation by 5 in order to determine 

the value of x. So it makes sense to define division in vector math in a way that lets us solve vector 
equations. 
 
Consider the equation b=⋅xa .  Ideally, we would divide both sides of the equation by the vector a, 

giving us, b⎟
⎠
⎞

⎜
⎝
⎛=

a
x 1  for some definition of 1/a (which must be a vector, since b is a scalar). The problem 

with this approach is that there are infinitely many solutions to the equation b=⋅xa  for any given a and 
b. Remember that b=⋅xa  simply implies that b=)cos(|||| θxa . This equation is true for any choice of 

x and θ  such that 
||

)cos(||
a

x b
=θ , and there are infinitely many such choices, so there is no single 

vector we can assign to 1/a. This means that division in the case of the dot product is not possible -- at 
least, no division is possible that would allow us to solve vector equations. 
 
You run into the same problem with cross products. Consequently, division in any form is not defined 
for vectors. 

7.3 Linear Combinations 

If you add up a bunch of vectors, each multiplied by some arbitrary scalar, then you will get back a 
vector. Such a vector is called a linear combination of the others. For example, the following vector: 
 

nnaaaav αααα +⋅⋅⋅+++= 332211  
 
is a linear combination of the vectors a1, a2, ..., an (all the α 's are scalars). 
 
Of special note is the following linear combination: 
 

nnaaaa0 αααα +⋅⋅⋅+++= 332211  



 161

Using the geometric definition of vector addition, this case looks something like that shown in Figure 
7.10. As you can see, all the vectors form a closed loop. If you add 22aa to 11aa  and then add 33aa  to 
that, and continue doing the process, you will eventually wind up exactly where you started: the base of 
the vector 11aa . The sum of all those vectors equals the null vector. 
 

 
 

Figure 7.10: The visual depiction of  nnaaaa0 αααα +⋅⋅⋅+++= 332211 . 

 
If the only way the equation: 
 

nnaaaa0 αααα +⋅⋅⋅+++= 332211  
 
can be satisfied for a given list of vectors a1, a2, ..., an  is if all the α 's are zero, then the vectors are 
called linearly independent. The term "linearly independent" might conjure up images of vectors yelling, 
"None of you other vectors can represent me! I'm an independent!" Surprisingly, that is exactly what it 
means: in a linearly independent set of vectors, no one vector can be represented as a linear 
combination of the others.  
 
To see why this is so, suppose the vectors a1, a2, ..., an are linearly independent, and that we can 
represent a1 as a linear combination of the others (if it cannot be done, then we will get a contradiction). 
Then we can write a1 as: 
 

nnaaaa ααα +⋅⋅⋅++= 33221  
 
for some scalars 2α , 3α , up to nα . Now subtract a1 from both sides of the equation, giving us, 
 

nnaaaa ααα +⋅⋅⋅+++−= 332210  
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Here we have a linear combination of the vectors adding to zero, with a1 multiplied by the scalar -1. But 
that is a contradiction, since the vectors are linearly independent, and therefore, the only way linear 
combinations of the vectors can add to zero is if all the scalars are zero. Hence, in a linearly independent 
set of vectors, no one vector can be represented as a linear combination of the others. 
 
We are teetering on the edge of vector analysis here, so we will steer the concept of linear independence 
toward a definite application: n linearly independent vectors, each of dimension n, form a so-called basis 
for n-dimensional space (almost sounds like it comes from an episode of Star Trek, does it not?). By a 
basis, we mean that any vector of dimension n can be uniquely represented as a linear combination of 
these basis vectors. These basis vectors, which are themselves not unique, are said to span the n 
dimensions. 
 
Take, for example, the case of two dimensions: define a vector u as pointing along the positive x-axis, 
having length 1, and a vector v as pointing along the positive y-axis, also having length 1. Then any two-
dimensional vector can be represented as a linear combination of the vectors u and v (remember, these 
vectors are not unique -- any two linearly independent vectors would work as a basis). 
 
The standard basis for n dimensional space consists of a list of n vectors: the first one points along the 
positive direction of the first axis, the second, along the positive direction of the second axis, and so on. 
Each of the vectors has length 1. These vectors are used so often they have standard notations: typically 
they're called i1, i2, i3, ..., in, or, for the 2D and 3D cases, i and j, and i, j, and k, respectively. These basis 
vectors are called orthonormal because they are all at right angles to each other and each has length 1.  

7.4 Vector Representations 

So far, all of the discussion about vectors has been pretty abstract: we have talked about directed line 
segments, but directed line segments are, after all, geometric objects, and consequently of little use to 
computers. In Chapter Six we learned that many geometric shapes have mathematical representations, 
and that expressing them in these mathematical forms is the basis of analytic geometry -- an immensely 
useful tool in math, physics, computer science, and computer game development. Vectors are no 
exception. If we want to wield their power, we have to find some way to represent them analytically, 
with numbers instead of shapes, so we can manipulate those numbers according to the rules of math. 
 
There is more than one way to do this. One way we could represent vectors is to denote their orientation 
with a number of angles (one angle for two-dimensions, two angles for three-dimensions, and so on), 
and then represent their magnitude with a real number. This is done often in math and physics but is not 
the preferred representation in computer science because it is so difficult to work with (try to find a way 
to add two vectors in such a form, for example -- it is not pretty). 
 
A much better representation is based on the Cartesian coordinate system, and is therefore referred to as 
the Cartesian representation of vectors. In this scheme, each point in the Cartesian coordinate system 
represents a vector: where the vector is the directed line segment drawn from the origin to the point. The 
magnitude of a vector is simply the distance from the origin to the point representing the vector. Figure 
7.11 shows you the Cartesian representations of a vector. 
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Figure 7.11: The Cartesian representation of vectors. 
 
Points, as you have seen in past lessons, are represented by ordered n-tuples: lists of numbers enclosed 
in parentheses (such as the 3D point (x,y,z)). To differentiate points from vectors, vectors have their own 
notation: they are represented by lists of numbers enclosed in angular brackets ('<' and '>'). Hence        
(1, 3, -5) is a point, while <2, -1> is a vector (specifically, it is the vector represented by a directed line 
segment drawn from the origin to the point (2,-1)).  
 
The standard basis vectors i, j, k for 3D space are represented as <1,0,0>, <0,1,0>, and <0,0,1>, 
respectively. Any vector written in the form <x,y,z> can also be written as xi + yj + zk. 
 
The reason why the Cartesian representation is better is because all the operations we have discussed are 
easy to implement for Cartesian vectors. In the next sections, we will revisit the operations of vector 
math, this time with attention to how you actually perform the operations with three-dimensional 
Cartesian vectors (you can easily derive the results for n dimensional vectors yourself).  

7.4.1 Addition/Subtraction 

The best way to determine how to add two vectors u and v is to add their standard basis representations. 
If u = <u1, u2, u3>, and v = <v1, v2, v3>, then we can write u = u1i + u2j + u3k, and v = v1i + v2j + v3k. 
Thus u + v = u1i + u2j + u3k + v1i + v2j + v3k = u1i +v1i + u2j +v2j + u3k + v3k (by the commutative 
property of vector addition) = (u1+v1)i  + (u2+v2)j+ (u3+v3)k (since scalar multiplication is distributive 
with respect to vector addition) = < u1+v1, u2+v2, u3+v3>.  
 
Cleaning the result up a bit, we have found the following: 
 
u + v = < u1+v1, u1+v2, u3+v3> 
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By the same process, we could also determine, 
 
u - v = < u1-v1, u1-v2, u3-v3> 
 
This is the kind of clean, elegant result that gives the Cartesian representation its good name. To add two 
vectors, as we have now discovered, merely requires adding their Cartesian components.  

7.4.2 Scalar Multiplication/Division 

We will figure out how to multiply a vector by a scalar in the same way we determined vector addition: 
by giving the vector a standard basis representation. 
 
Suppose we want to compute av, where a is the scalar and v, the vector. If v has a Cartesian 
representation <v1, v2, v3>, then we can write v = v1i + v2j + v3k. Then av = a(v1i + v2j + v3k) = av1i + 
av2j + av3k = <av1, av2, av3>. Thus we have, 
 
av =  <av1, av2, av3> 
 
Similarly, 
 
v/a =  <v1/a, v2/a, v3/a > 

7.4.3 Vector Magnitude 

Recall that the magnitude of a vector is its length, which, in the Cartesian representation of vectors, 
corresponds to the distance from the origin to the tip of the vector. So if v = v1i + v2j + v3k, then the 
magnitude of the vector is given by, 
 

2
3

2
2

2
1|| vvv ++=v  

7.4.4 The Dot Product 

The dot product is trickier to compute than the other operations we have covered so far. To derive a 
formula, we will have to refer back to Chapter Five and use the very handy Law of Cosines. To refresh 
your memory, that law describes a relationship between the lengths of the sides of some arbitrary 
triangle and one of the angles of that triangle. Specifically, if a, b, and c are the lengths of the sides of 
the triangle, and θ  is the angle between the sides a and b, then the law states the following (graphically 
depicted in Figure 7.12): 
 



 165

 
Figure 7.12: The Law of Cosines. 

 
)cos(2222 θabbac −+=  

 
The right hand side of this equation looks suspiciously like the right hand side of the dot product 
equation, which states that )cos(|||| θbaba =⋅ , which should give you a clue as to how to solve the 
problem. 
 
If we represent side a of the triangle with vector a, and side b with vector b, then we can represent side c 
with the vector b-a (which is, graphically, the vector that connects the tip of a to the tip of b). This state 
of affairs is shown in Figure 7.13 (it looks exactly like Figure 7.12 except vectors form the edges of the 
triangle). 

 
Figure 7.13: The Law of Cosines -- with vectors 

 
Now we are in business, because we can apply the Law of Cosines to the magnitudes of these vectors, 
giving us the following relation: 
 

)cos(||||2|||||| 222 θbabaab −+=−  
 
Solving for the quantity )cos(|||| θba  (which is what we are interested in), we find the following: 
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2
||||||)cos(||||
222 abbaba −−+

=θ  

 
The only thing left to do now is to give each vector a Cartesian representation. If a = <a1, a2, a3> and     
b = <b1, b2, b3>, then we can write the above equation like so: 
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Whew! This should teach you that no matter how ugly an equation gets, you should persevere -- if there 
is any justice in life, it will simplify greatly at the end. 
 
All of these calculations establish the following important formula for calculating the dot product: 
 

332211)cos(|||| bababa ++==⋅ θbaba  
 
This is a nice result because it allows you to find out something about the angle between two vectors just 
by multiplying their Cartesian components together. 

7.4.5 The Cross Product 

Compared to the dot product operation, computing the cross product is a breeze thanks in large part to 
the distributive property of the cross product operation. Given two vectors u and v with standard 
representations, their cross product can be computed as follows: 
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Notice two things about the above derivation: first, it required us to know that )( vuvu ×=× αββα  (you 
should verify this is true by using the definition of the cross product); and second, it required us to 
compute nine cross products directly, such as ji×  (fortunately these cross products are so easy you can 
do them in your head). 
 
 
In the end we get the following formula for computing cross products: 
 

>−−−=<=× 122131132332 ,,)sin(|||| vuvuvuvuvuvuθvuvu  
 
It is not very pretty (there is no simple way to remember it), but as with the dot product formula, the 
cross product formula is very powerful and it gets used all the time in 3D graphics programming. 
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7.5 Applications of Vectors 

Vectors have a wide variety of applications in computer games: they are used in geometry 
transformation, in animation, in physics simulation, in collision detection, in projecting 3D data onto a 
two-dimensional screen, in optimizing the performance of 3D games, and much more. 
 
In this section, we will look at some of the most important (but basic) applications, including vector-
based representations of lines and planes, useful formulas for calculating distances, and a vector-based 
method of efficiently rotating, scaling, and skewing points. This is really just a teaser of what vectors are 
capable of. In the coming lessons we will look at many more applications of vectors. 

7.5.1 Representing Lines 

We noted in Chapter Six that vectors lead to a very elegant and intuitive way of mathematically 
representing lines. Suppose we know two points on the line, located by the vectors p0 and p1. Then we 
can define a function from the set of real numbers to the set of all points on the line in the following 
way: 
 
P(t )= p0+(p1-p0)t 
 
Here P(t) is the point corresponding with the real number t (actually, it is a vector that describes the 
point, but that is really a technicality). By varying t from 0 to 1, you get all the points from p0 to p1. 
Notice how this one simple vector equation takes the place of the three parametric equations introduced 
in Chapter Six. Such is the elegance of vector math. 

7.5.2 Vectors and Planes 

Vectors can be used to describe the orientation of a plane. Such vectors are called surface normal 
vectors or sometimes just normal vectors, and are perpendicular to the surfaces of the planes they 
describe (the word normal means perpendicular). 
 
Figure 7.14 shows an example of a normal vector. 
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Figure 7.14: A normal vector. 

 
You can create a normal vector given any three unique points on a plane. If you represent these points 
with the vectors p0, p1, and p2, then you can form two vectors s = p0 - p1 and t = p2 - p1 that both lie on 
the surface of the plane. The cross product of these vectors is the normal vector of the plane (Fig 7.15). 
 

 
Figure 7.15: The cross product allows you to compute the normal vector for a plane. 
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Recall that there are two ways to cross the vectors s and t. The resulting vectors will both be 
perpendicular to the plane, but they will point in opposite directions. In some cases this will not matter 
to you, but if your 3D game uses polygons, then which one you choose can be important, as the next 
section demonstrates. 

Backface Culling 

If your game uses polygons, then you can describe the orientation of each polygon by using the normal 
of the polygon's plane (the plane the polygon lies in). Usually, only one side of a polygon can be seen, 
due to the construction of the game world (walls, for example, are represented with two polygons so that 
they do not appear infinitely thin, and the inner sides of these two polygons are never seen). If you know 
whether the surface normal points on the side of the polygon that is seen or the side that is never seen, 
then you can use an optimization known as backface culling to speed up the processing of your game. 
 
Suppose you know that the surface normal of a polygon points on the side of the polygon that the viewer 
can see. Then you can construct a vector from the viewer to a point on the polygon. Now take the dot 
product of the polygon's normal vector and that vector that you just created. If the result is positive 
(indicating the angle between both vectors is 90 degrees or less), then the viewer is looking at the 
backside of the polygon and you do not need to display it. On the other hand, if the result is negative 
(indicating the angle between both vectors is greater than 90 degrees), then the viewer is looking at the 
front side of the polygon and so you do need to display it (of course, the polygon may be obstructed by 
other polygons, but as far as backface culling is concerned, there is no way to eliminate the polygon). 
 
Figure 7.16 shows you what this looks like. 
  

 
Figure 7.16: Backface culling. 
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A Vector-Based Representation of Planes 

Another useful thing we can do with normal vectors is mathematically represent planes, regardless of 
their orientations. 
 
Suppose p0 is a definite, known point on the plane, and p is any point on the plane. Then the vector        
s = p - p0 lies on the surface of the plane. The angle between this vector and the normal vector is 2/π  
radians (see Figure 7.17). More importantly, the cosine of this angle is 0, hence the dot product is zero 
also. If n is the normal vector, we can express this mathematically as 0)( 00 =⋅−⋅=⋅−=⋅ npnpnppns .  
If we let p = <x, y, z>, n = <A, B, C>, and np ⋅−= 0D , then we can rewrite this equation as follows: 
 
Ax + By + Cz + D = 0 
 

 
Figure 7.17: The relationship between a vector lying in a plane and the normal of that plane. 

 
This is the famous general form of the plane equation mentioned in Chapter Six. This equation tells us 
that all points (x, y, z) lying on the surface of the plane must satisfy the equation. Unlike the plane 
equations introduced in Chapter Six, this equation can represent all planes, regardless of orientation. 
 
The plane equation gets used in many ways in game development. For example, if you want to 
determine which side of a plane a certain point lies on, plug it into the plane equation: the result will be 
positive for points lying on one side of the plane equation (thanks to the cosine of the angle between the 
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normal and the vector p - p0 being positive), zero for points directly lying on the plane, and negative for 
points lying on the other side of the plane (thanks to the cosine being negative). 
 
Since it is impossible for A, B, and C to all be zero (otherwise the triplet would be the null vector and 
describe the orientation of no plane), you can always solve the plane equation for either x, y, or z in 
terms of the other two. So you can also use the plane equation to generate points on the plane, as was 
done in Chapter Six. 
 
Another way to represent planes with vectors (which we will not cover here) is to find two non-parallel 
vectors lying on the surface of the plane. The plane can then be defined as the sum of a point on the 
plane and all linear combinations of those two vectors. 

7.5.3 Distance between Points, Planes, and Lines 

Vectors allow you to calculate the distance between a plane and a point, or between a plane and a line. 
In both cases, "distance" is defined as the minimum distance. 
 
Given a point p on a plane with normal n, the minimum distance from the plane to the point q can be 
found with the following formula: 
 

|)(| pqn −= projD  
 
Figure 7.18 justifies the formula. 
 

 
Figure 7.18: Determining the distance between a point and a plane. 

 
Given a point p on a line whose direction is given by the vector u, the minimum distance from the line 
to the point q can be found with the following formula: 
 

||
|)(|

u
upq ×−

=D  
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7.5.4 Rotating, Scaling, and Skewing Points 

Vectors can be used to rotate, scale, and skew (scale differently for each axis) points efficiently and 
easily. This is possible all thanks to the magic of bases. 
 
Recall that any vector in 3D space can be represented as a linear combination of three linearly 
independent 3D vectors. So suppose we have three linearly independent vectors, e1, e2, and e3. Then a 
given vector v in 3D space can be represented as, 
 
v = xe1 + ye2 + ze3 
 
The amazing thing occurs when you realize that each of the vectors e1, e2, and e3 can, in turn, be 
represented by a linear combination of the standard basis vectors i, j, and k. That is, we can write: 
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Plugging this into our equation for v, we see: 
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This result relates a vector <x, y, z> in the e1, e2, e3 basis to a vector <x', y', z'> in the i, j, k basis. If the 
e1, e2, e3 basis is rotated, scaled, or skewed in relation to the standard basis, then we can effectively use 
the above equation to rotate, scale, and skew points. 
 
We will not pursue this method because it requires additional vector math in order to produce a useable 
result, but you should at least be aware of it -- it is in fact, the reason why matrices can be used to 
transform points. 
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Conclusion 

In our next lesson, we will introduce matrices -- what they are and what operations are defined for them 
-- with the eventual goal of using matrices to transform points. Your new background in vector math 
will help immensely, because from a certain point of view, a matrix is really just a list of vectors. 

Exercises 

1. Perform the following vector operations: 
 

>−−<×>−<
><⋅><

>−−<−>−<
><+>−<

3,2,81,9,5.
2,3,31,2,4.

7,7,25,1,9.
2,8,67,4,1.

d
c
b
a

 

 
*2. Suppose the player's location is described by the vector p, and the player's orientation is described by 
the vector v. If everything the player can see falls within a cone of angle θ , then derive an expression 
that is positive for points the player can see, and negative otherwise. (You can also use this technique to 
determine what the non-player characters can see.) 
 
*3. Determine the intersection between a line (in parametric vector form) and a plane (in general form). 
 
*4. One optimization that 3D game programmers use involves looking for polygons that are completely 
obscured by nearer polygons. These polygons do not need to be displayed since they will not be visible 
in the final scene. One way you can check to see if one polygon obscures another is by casting out rays 
from the viewer through the vertices of the first polygon (see Figure E7.1). These rays will form a 3D 
shape that the second polygon will fall within if it is obscured by the first. Using this information and the 
general form of the plane equation, devise a method to determine if one polygon obscures another. (This 
method is too slow for real-time deployment, but the data can be pre-computed for some specially 
chosen subset of viewer locations; that is precisely what many game engines on the market do.) 
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Figure E7.1: One polygon obscures another. 

 
*5. Compute the area of a triangle if two of its edges are spanned by the vectors u and v. 
 
*6. Using vector projection, compute the distance between a point and a line in parametric vector form. 
Compare this to the formula given in Chapter Six. 
 
*7. In Chapter Three, you created a polynomial that mapped angles to light intensities. In this problem, 
you will make that result more useable. Suppose a light source is located at position p, with orientation 
v. Further, suppose the light falls on a nearby plane with normal n. Using both the general form of the 
equation for a plane and the polynomial you derived in Chapter Three, create a function that expresses 
the intensity of the plane as a function of the plane's normal n. 
 
*8. One 3D animation technique involves having the artist create a bunch of 3D models (key frames) 
and then morphing between them to achieve fluid real-time animation. The heart of this method is 
interpolating between the points in one frame and the points in the next. Suppose the location of the 
points at the nth frame of the animation is given by the vectors 3n2n1n vvv ,...,, . Using linear 
interpolation, derive a function that computes the location of the nth point at time t. (Hint: The function 
must be defined piecewise.) 
 
*9. Revisit problem 8, only this time, use quadratic interpolation to achieve a smoother fit with the data. 
Explain why you cannot use quadratic interpolation for both the beginning and the end of the animation. 
Where does your own quadratic interpolation function fail? 
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Introduction 

I first started dabbling in computer game programming when I was 8 years old. My Dad purchased a 
Commodore 64™, which came with a very simple BASIC programming language and a manual 
designed to introduce kids to the wonderful world of computer programming. The manual described the 
exploits of the robot Gortek and the other robots of his civilization, illustrating basic computer 
programming ideas with lavish cartoons and intriguing stories. 
 
The first game I wrote (which I never actually finished) was a simple text-based adventure game with 
primitive ASCII graphics. About the only thing I can remember about that game is that the setting was a 
mansion, and that there was some mystery to solve (I was a huge fan of the mystery genre in those 
days). 
 
A few years later, I graduated to C programming on an IBM PC, where, after spending a year or two 
learning 2D game programming, I delved into 3D game programming. Although it was far more 
challenging and engaging than anything I had done prior, at that relatively young age I was still studying 
algebra, so more often than not I would end up using "black boxes" (equations I did not fully 
understand) supplied by the authors of books or by fellow game programmers to write my programs. 
 
The biggest of all such black boxes were the equations that involved mathematical entities called 
"matrices", used in virtually all three-dimensional geometry processing. To me, this was quite amazing: 
How could a rectangular block of numbers (which is essentially all a matrix is) be used to perform such 
feats as scaling, rotation, coordinate transformation, and projection? 
 
I eventually found the answer to that question (and many more I did not ask!) in later mathematics 
courses in college -- but even to this day I have retained that initial sense of wonder at the power of 
matrices. Like vectors, but to an even greater degree, matrices are simple to define but extraordinarily 
powerful. 
 
In this chapter we will introduce the concept of a matrix and look at how to add and multiply them, 
among other operations. In the next chapter we will actually see specifically how matrices are used in 
game development by introducing the concept of linear transformations. The material we cover in this 
lesson is necessary for understanding matrices, but will only surface intermittently during actual game 
development projects. 
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8.1 Matrices 

Fundamentally, a matrix is a table of numbers. Matrices are usually denoted with bold capital letters, 
such as A or B. A matrix with m rows and n columns is called an nm×  matrix. 
 
To explicitly list the contents of a matrix, just draw the table of numbers so that the columns are aligned 
and then enclose the table in square brackets ('[' and ']'). 
 
A few examples of matrices are shown below: 
 

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

dc
ba

632
89

123
230
301

π
 

 
The elements in a matrix have a shorthand notation: if A is the matrix, then the element at the ith row 
and jth column is typically denoted aij, (A)ij, or even Aij. 
 
The ith row of a matrix A is typically denoted Ai, and the jth column, as Aj. The rows and columns can 
be thought of as one-dimensional matrices (matrices with size 1×n  and m×1 , respectively) or as 
vectors.  
 
There are two matrices so frequently used that they have special symbols: the null or zero matrix, 
denoted by 0 and defined by the rule aij = 0 for all i and j; and the so-called identity matrix, denoted by I 
and defined by the rules aij = 1 for all i = j, and aij = 0 otherwise. Only square matrices can be identity 
matrices, although any size matrix can be a zero matrix. 
 
Here are some examples of identity matrices: 
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⎥
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⎣
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The identity matrix is so named because if you multiply it by any other matrix of the appropriate size, 
using the definition of matrix multiplication we will introduce later, then the result is equal to that same 
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matrix. Hence the identity matrix is the matrix equivalent of the number '1', since if you multiply 1 by 
any number, you get back that same number. 
 
In the sections that follow we will describe some of the things you can do with matrices. 

8.1.1 Matrix Relations 

You can compare two matrices of the same size to see if they are equal. The equals sign ('=') is used, just 
like when comparing real numbers or vectors. 
 
By definition, two matrices are defined to be equal if their corresponding elements are equal. 

8.1.2 Matrix Operations 

Much like real numbers, you can add, subtract, and multiply matrices. Like vectors, you can also do a 
whole lot more with matrices, including transpose and invert them or take their determinant. 
 
The first operation we will look at is addition. 

Addition/Subtraction 

You can add two matrices (done with the standard '+' symbol) providing they are the same size. If A and 
B are matrices, and C = A + B, then cij = aij + bij. In words, the ijth element of the sum (the element 
located at the ith row and jth column of C) is equal to the ijth element of A plus the ijth element of B.  
 
Here's an example of matrix addition: 
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Matrix addition is both commutative and associative, which comes from the commutativity and 
associativity properties of real numbers. Also, we can write A + 0 = A (where 0 is the zero matrix 
introduced previously), which has parallels in real number arithmetic as well as vector arithmetic. 
 
Subtraction is defined analogously, so that if A and B are matrices, and C = A - B, then cij = aij - bij. 
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Scalar Multiplication 

You can multiply a matrix by a real number (called a scalar, just as with vectors), and scale the entries in 
the matrix. If A is a matrix and c is a scalar, then (cA)ij = c(A)ij. That is, the ijth element of the matrix 
cA is merely c times the ijth element of the matrix A. Scalar division (division of a matrix by a real 
number) is defined in the same manner. 
 
The following is an example of scalar multiplication: 
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Note that c0 = 0, for any scalar c. 

Matrix Multiplication 

The most difficult of the elementary operations to perform is matrix multiplication -- the product of two 
matrices. Based on the way addition and subtraction were defined, you might suspect that for two 
matrices A and B, the product AB would be a matrix C such that cij = aijbij. It is certainly possible to 
define matrix multiplication like this, but doing so is not entirely helpful. 
 
It turns out that the best way to define matrix multiplication is not anything like the definitions of matrix 
addition or subtraction. It is also a difficult definition to master, and quite tedious to use if you need to 
multiply moderately sized matrices by hand. But the definition goes a long way: the number of 
applications for this particular definition of matrix multiplication is enormous (using matrices, you can 
solve systems of linear equations, transform geometry, or perform any linear transformation, for 
example). 
 
The first thing to note is that you cannot multiply just any two matrices together, regardless of their 
dimensions. Now you can multiply any square matrices together (of the same size), but the definition 
goes beyond that and allows you to multiply matrices of different sizes together, provided that they meet 
certain requirements. What requirements? Well if you want to compute the matrix product AB (which, 
note, is not the same as BA), then A must be an nm×  matrix, and B must be an pn×  matrix; m and p 
can be anything you want, but notice that the number of columns in A must be equal to the number of 
rows in B. If this is not the case, then you cannot multiply the two matrices together. 
 
If we denote the size of a matrix with a subscript, then we can restate the above rule by saying that you 
can only compute products of the form pnnm BA ×× (the n's are on the inside and close together -- this 
should help you remember the requirement). 
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The product AB is another matrix called C. The size of C is pm× ; it has the same number of rows as 
A, but the same number of columns as B. So using the subscript notation again, we can write: 

pnnmpm BAC ××× = . For square matrices of dimension n, this reduces to, nnnnnn BAC ××× = . 
 
The ijth element of C is defined as the dot product of the ith row of A and the jth column of B. Dot 
product, you ask? By dot product, we mean that you should think of both the ith row of A and the jth 
column of B as vectors, and then compute the dot product of these vectors as discussed in the last 
chapter. The result goes into the ijth element of C. 
 
In symbols, we can describe the ijth element of C as follows: 
 

∑
=

=+⋅⋅⋅+++=⋅=
n

k
kjiknjinjijiji

j
iij bababababac

1
332211BA  

 
The notation on the far right side is shorthand for indicating summation: it can be read, "the sum of all 
aikbkj for k from 1 to n." You can think of it as a simple FOR loop in mathematics. 
 
Here are some examples of matrix multiplication: 
 

 
 
 
Matrix multiplication is not commutative: AB is not, in general, the same as BA (you can easily see this 
by noting that, to begin with, these matrices are usually not even the same size!). However, matrix 
multiplication is associative and also distributive with respect to matrix addition (or subtraction). With 
the distributive law, however, you must be careful, since while it is true you can write A(B + C) as     
AB + AC, you cannot write it as BA + CA. Similarly, you can write (B + C)A as BA + CA, but not as 
AB + AC. 



 183

Notice that as mentioned before, the identity matrix times any matrix equals that matrix. 
 
You can raise a matrix to a non-zero integer power n by multiplying the matrix by itself n times. 

Transpose 

The transpose of a matrix A, denoted AT, is a matrix such that (AT)ij = (A)ji. One of the implications of 
this definition is that if A is nm× , then AT is mn× . 
 
The transpose of a simple matrix is shown below: 
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Here are a few important properties of the transpose operation: 
 
(AT)T = A 
(A + B)T = AT + BT 
(AB)T = BTAT 
 
The proofs of these properties are quite easy and follow directly from the definition of the transpose. 

Determinant 

The determinant of a matrix A is a function, denoted by det(A). The domain of the determinant function 
is the set of all square matrices, and the range is the set of all real numbers. Thus the determinant 
function associates a real number with every square matrix, a real number that tells you something about 
that matrix. 
 
A whole chapter could be spent discussing exactly what the determinant is, and the various (rather 
complicated) ways to calculate it. But for our purposes, it suffices to know just this: that the determinant 
evaluates to non-zero if the rows of the matrix are linearly independent, as defined by vector math, and 
zero otherwise. 
 
If you need to calculate the determinant of a matrix (you should not typically need to; the determinant is 
mainly used in proofs rather than in applications), then you can always use a CAS (Computer Algebra 
System) or a matrix library (such as that supplied with this course). 
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Inverse 

You will notice that we have not said a word about division of one matrix by another: that is because 
such an operation does not exist (it would not be possible to assign any meaning to division in the 
general case).  
 
However, to take its place in certain situations, we do have the inverse. The inverse of a square matrix 
A, denoted A-1, is a matrix such that AA-1 = I (or A-1A = I -- in this special case multiplication does 
commute). 
 
Not all square matrices have inverses. In order for a given square matrix to have an inverse, its 
determinant must be non-zero. 
 
Important properties of inverses are as follows: 
 
(A-1)-1 = A 
(AB)-1 = B-1A-1 
(AT)-1 = (A-1)T 
 
There are a number of ways to calculate the inverse of a matrix, but as with the determinant, in this 
course we will not explore the very complex mathematics involved. Suffice to say that most math 
libraries (including the one that ships with this course) will calculate the inverse of a matrix for you. 
Inverse matrices are often used to cancel out the effects of a set of operations that has taken place and 
are stored in the original matrix. The goal is to allow one to use the matrix to enter the local coordinate 
space of a given entity. Since we have not talked about transformations or local coordinate spaces yet, 
we will save this discussion for the next lesson.  
 

8.2 Systems of Linear Equations 

You may wonder what matrices are actually used for. The full answer to that question will have to wait 
until the next chapter when we discuss the topic of linear transformations, but for now we can at least 
look at what matrices were originally intended to do. This will provide some context to some of the 
matrix operations, as well as provide a foundation upon which physics and certain areas of computer 
science can build on (linear transformations are the primary use of matrices in game development, but 
certainly not the only one). 
 
A system of n linear equations in m unknowns is a set of n linear equations, each of which involves one 
or more of the m variables. For example, the following is a system of two linear equations in two 
unknowns: 
 
x + y = 2 
3y = 5 
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Allowing zero coefficients, we can write all systems of linear equations in the following form: 
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where the x's are the unknowns. Cast in the above form, we can represent this system of linear equations 
with the following matrix equation: 
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If there are more unknowns than equations, then the system does not have a unique solution. If there are 
more equations than unknowns, then the system might have a solution, but then again, maybe not (you 
cannot impose more constraints than you have unknowns). If there are as many equations as unknowns 
(m = n, so the coefficient matrix – the matrix on the left that stores the coefficients -- is square), then 
providing the rows of the coefficient matrix are linearly independent, the system has a unique solution. 
 
One way to solve a system with a unique solution is to find the inverse of the coefficient matrix, and 
then multiply both sides by that. This gets the job done, but it is inefficient, and can only be used for 
systems that have a single solution (as opposed to many solutions). 
 
A better way involves the so-called augmented matrix of the system. This matrix is what you get when 
you add the column of b's to the coefficient matrix. The augmented matrix of the above system is shown 
below: 
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Once you create this matrix, solving the system involves the application of a process known as Gaussian 
elimination on the matrix.  
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8.2.1 Gaussian Elimination 

Consider the system of n equations in m unknowns: 
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Gaussian elimination is based on the following three principles: 
 

1. You can multiply (or divide) any equation by a non-zero real number without changing the 
solution set. 

2. You can swap two equations without changing the solution set. 
3. You can multiply (or divide) any equation by a non-zero real number, and then add the resulting 

equation to another equation without changing the solution set. 
 
The first two principles are obviously true (we use them all the time in algebra when solving for 
unknowns), but the third one may not be, so we will take some time to explain it now. 
 
Suppose we have the following two equations: 
 
a + b = c 
 
d + e = f 
 
Then we can add the first equation to the second as follows: 
 
(a + b) + (d + e) = c + f 
 
This is justified because we are adding the same quantity to both sides of the second equation -- namely, 
the quantity (a + b), which is the same number as c. 
 
The three principles above also apply to augmented matrices, since augmented matrices are just systems 
of linear equations written in compact form. Restated with matrices in mind, the principles become: 
 

1. You can multiply (or divide) any row by a non-zero real number without changing the solution 
set. 

2. You can swap two rows without changing the solution set. 
3. You can multiply (or divide) any row by a non-zero real number, and then add the resulting row 

to another row without changing the solution set. 
 
Gaussian elimination can now be defined as the process of using these three operations (referred to as 
elementary row operations) on an augmented matrix in order to find the solution set. For a square 
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matrix, the easiest way to do this is to manipulate the augmented matrix so that it is in the following 
form (called echelon form):  
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The associated system of equations for the above matrix looks like this: 
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We can solve this system by using a process known as back-substitution. First you solve for xm, using 
the last equation, which tells you xn = b'n/a'nn. Then you substitute this into the second-to-last equation, 
and solve for xn-1. You repeat the process until you have solved for all the unknowns. Of course, this 
process can fail if certain coefficients are zero. For example, if  a'nn = 0, then since division by zero is 
undefined, you cannot compute xn. More generally, if a'ii is zero for any i, then you cannot solve the 
system for all the unknowns. 
 
For non-square matrices, the process works much the same, except you may either get a contradiction (it 
is possible if there are more equations than unknowns) or you will not be able to solve for all unknowns 
(if there are more unknowns than equations). In the latter case, you can still solve for some of the 
unknowns in terms of the other unknowns. 
 
For an example of the latter, consider the simple system x + y = 1. Solving for x, we get x = 1 - y. This is 
all we can say about x, since we have no additional equation that relates y to x (if we did, we could solve 
this equation for y and plug the result into the equation x = 1 - y to determine the value of x). Thus the 
system x + y = 1 has no single solution for x; rather, it has an infinite number of solutions -- one for each 
value of y. 
 
As game developers, unsolvable systems, and non-square matrices in general, will not be of concern to 
us. We are interested in problems we can solve for all the unknowns and get definite values from -- that 
is, in the rare case we are interested in solving systems of equations at all (physics simulation calls for 
this sometimes, but usually game developers use matrices in other ways). 
 
 
 



 188

Conclusion 

That concludes our rather brief introduction to the world of matrix math. In our next lesson, we will 
study an alternate way of looking at matrix math that provides the basis for virtually every three-
dimensional game on the market.  

Exercises 

1. Compute the following matrix operations: 
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*2. Simulating the physics of cloth is one of many uses for matrices. Read the paper located at 
http://www.cs.cmu.edu/~baraff/papers/sig98.pdf and report on your findings. You will not understand 
everything, since the paper assumes you know calculus, but the paper should give you an idea of the 
sheer breadth of applications that matrices have. The Cloth Animation seminar here at Game Institute 
will also provide you with some interesting insight (although you may wish to wait until you have 
completed the Graphics Programming course series before enrolling in the seminar). 
 
*3. Compute the intersection of two lines in general form using Gaussian elimination. 
 
!4. Markov chains allow you to represent the probability (in the range of [0, 1]) of transitioning from one 
state to another with a matrix. This has applications in artificial intelligence, where a computer character 
may have a number of different states (such as attacking, retreating, defending -- or even emotional 
states, such as happy, sad, angry), and different probabilities of transitioning from one state to another. 
Read the paper located at http://www.mech.bee.qut.edu.au/men170/smsch6.html and construct two 
matrices to model a character's behavior. One matrix should be the initial state of the character, and the 
other should be the transition probability matrix. (Note the author of the paper uses the period '.' symbol 
to designate matrix multiplication.) 
 
*5. Take the matrix you constructed in problem 4, and multiply it by itself 10 times (use a Computer 
Algebra System if you have access to one). Did the matrix change? If so, how did it change? What does 
this new matrix represent, anyway? 
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*6. Gaussian elimination is exceptionally adept at solving resource allocation problems. Suppose you 
are designing a resource management game and that your income comes from four species: the 
Grendals, the Hymlocks, the Wyrotts, and the Shails. Suppose the user wants to collect 10 million 
credits from all four species combined, but that the species will tolerate differing levels of taxation 
according to the following rules: the Grendals are greedy and will only pay half of what the Hymlocks 
pay; the Wyrotts and the Shails have formed an alliance and will pay only 4 million combined; the 
Hymlocks and Shails are small populations, and cannot afford to pay more than 2 million combined. 
Using Gaussian elimination, find out how much each species pays. Which species pays zero taxes? 
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Chapter Nine 
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Introduction 

In our last lesson we learned the ground rules for matrix math, and were shown how matrices can be 
used to solve systems of linear equations. As it turns out, that is just one of the many ways we can use 
matrices. Another use, more relevant to computer game programming, involves the concept of linear 
transformations. 
 
In this lesson we will talk about linear transformations and how matrices can be used when performing 
them. Then we will see a wide variety of matrices that can be used to rotate, translate, scale and skew 
points in any conceivable way. 

9.1 Linear Transformations 

Suppose L(v) is a function whose domain is the set of n dimensional vectors, and whose range is the set 
of m dimensional vectors. If L(v) obeys the following two properties (where c and d are scalars and u 
and v are n dimensional vectors): 
 
L(cv) = cL(v) 
L(u + v) = L(u) + L(v) 
 
then L is called a linear transformation from Rn to Rm  (the set of ordered real n-tuples to the set of 
ordered real m-tuples).  
 
Let us look at few examples of linear transformations. Suppose we define a function                        
f(v) = 4v1i + (v1+v2)j, where v is the vector v1i + v2j. Is this a linear transformation from R2 to R2? To 
determine that, we have to see if it satisfies the two properties listed above. 
 
For a scalar c, cv = c(v1i + v2j) = cv1i + cv2j. So f(cv) = 4cv1i + (cv1+cv2)j = c(4v1i + (v1+v2)j). Now 
cf(v), on the other hand, is c(4v1i + (v1+v2)j. Thus f(cv) = cf(v), so the function satisfies the first 
property. 
 
Let us check the second property for vectors u and v, 
 
f(u) + f(v) = (4v1i + (v1 + v2)j) + (4u1i + (u1 + u2)j)  

                 = (4v1 + 4u1)i + ((v1 + v2) + ( u1 + u2))j  

                 = 4(v1 + u1)i + ((v1 + u1) + (v2 + u2))j  

On the other hand, u + v = (v1 + u1)i + (v2 + u2)j. So f(u + v) = 4(v1 + u1)i + ((v1 + u1) + (v2 + u2))j. This 
is the same as f(u) + f(v), so we can conclude that f satisfies the second property as well. 
 
Thus, f is a linear transformation from R2 to R2. 
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Consider another transformation g that takes vectors in R3 and drops the "z" component, thus bringing 
them into R2. Mathematically, you can express this as g(v) = v1i + v2j, where v = v1i + v2j + v3k. This 
transformation can be viewed as a projection of vectors onto the x-y plane, as shown in Figure 9.1. 
 

 
Figure 9.1: Projecting vectors onto the x-y plane. 

 
Is this a linear transformation from R3 to R2? The answer is yes, although it will be left to you to verify 
that mathematically (or by thinking about the transformation as a projection). 
 
Another example of a linear transformation is rotation of a vector around the origin of a coordinate 
system. Scaling and skewing are also linear transformations. All three of these operations are very 
important for computer games. 
 
Translation of points (represented by vectors) is also important, but unfortunately, translation is not a 
linear transformation. This is an important point, so we will prove it here. Let T(v) be a function from R3 
to R3 that adds tx, ty, and tz onto the x, y, and z components of the vector v, respectively. Thus            
T(v) = (v1 + tx)i + (v2 + ty)j + (v3 + tz)k. 
 
Now cv = c(v1i + v2j + v3k) = cv1i + cv2j + cv3k. So T(cv) = (cv1 + tx)i + (cv2 + ty)j + (cv3 + tz)k. On the 
other hand, cT(v) = c(v1 + tx)i + c(v2 + ty)j + c(v3 + tz)k = (cv1 + ctx)i + (cv2 + cty)j + (cv3 + ctz)k. Clearly 
then, the function T is not a linear transformation. 
 
The application to matrices of this discussion of linear transformation is simple, but profound. Any 
linear transformation whatsoever from Rn to Rm can be represented by an nm× matrix. To transform a 
vector, just represent it as an 1×n  matrix, and compute Lv, where L is the linear transformation matrix 
(sometimes called the induced matrix, since it is induced by the linear transformation function) and v is 
the vector matrix. The result is the transformed vector in Rm. 
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The critical question now is how to compute a matrix that corresponds to a given linear transformation 
function. That is the topic of the next section. 

9.1.1 Computing Linear Transformation Matrices 

Suppose we have a linear transformation function T that maps vectors from Rn to Rm. Further, let us 
suppose we represent vectors as column matrices (matrices with only one column). Then we can express 
any given vector v in Rn  as shown below: 
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Now let us apply the transformation to v, using the fact that T is a linear transformation: 
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All the T(ij)'s are 1×m column matrices. They are the m dimensional transformations of the n 
dimensional standard basis vectors. With this in mind, if you study the above equation for a while, you 
will see that we can represent T(v) (itself an 1×m column matrix) as the product of an nm×  matrix L 
and the vector v, where the jth column of L is T(ij). This product can be represented with the following 
notation: 
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(The symbol 'M ' merely separates the columns.) 
 
With very little effort, we have found the induced matrix of the linear transformation T. Moreover, we 
have also indirectly proved that all linear transformations have induced matrices (a statement we made 
in the last section without proof), since we found exactly what those matrices look like! 
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To summarize these results, if T is a linear transformation that maps vectors from Rn to Rm, then to find 
the corresponding matrix, we transform the standard basis vectors, and use the transformed vectors as 
columns in a matrix. This matrix is the induced matrix of T. 
 
To solidify this process in your mind, let us look at an example. 
 
In the last section, we introduced the linear transformation g(v) = v1i + v2j, where v = v1i + v2j + v3k. 
This is a transformation from R3 to R2, so the induced matrix will be a 32×  matrix. The columns of this 
matrix will be the transformed standard basis vectors for R3. The standard basis vectors for R3 are, in 
matrix form: 
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Sending all of these vectors to g, our transformation function, we get the following vectors in R2: 
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These form the columns of our 32×  matrix. So our induced transformation matrix is: 
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Let us check to make sure this is correct by multiplying the matrix by the vector v: 
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It worked! We found the induced matrix of g. 
 
These are impressive results. Shortly, we are going to take them and apply them to all the common 
transformations that computer games require. But first, there is one issue we need to address – 
translation. We saw that translation is not a linear transformation, but it is, nevertheless, extremely 
important in game programming. In the next section we will address just this issue. 
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9.1.2 Resistance is Futile: Making Translation Comply 

The first step in finding some way of making translation a linear transformation is figuring out why it is 
not already a linear transformation. In the last section, we calculated both T(cv) and cT(v) (where T was 
our translation transformation function), and found the following: 
 
T(cv) = (cv1 + tx)i + (cv2 + ty)j + (cv3 + tz)k 
 
cT(v) = (cv1 + ctx)i + (cv2 + cty)j + (cv3 + ctz)k 
 
As you can see, T(cv) and cT(v) differ in that T(cv) lacks a factor of c in the translation terms tx, ty, and 
tz. This problem stems from our definition of T, which we defined as (v1 + tx)i + (v2 + ty)j + (v3 + tz)k. 
When we compute cT(v), we multiply all of the terms by c, which gives rise to a factor of c in both the 
v's and the t's. But when we compute cv, we introduce a factor of c only in the v's. Essentially, what is 
going wrong is that the terms tx, ty, and tz are not multiplied by any of the v's. 
 
We can solve this problem, but it requires a slight leap of faith. 
 
Suppose for a moment that v is not a three-dimensional vector, but a four-dimensional vector. Further 
suppose that we define the translation function as follows: 
 
T(v) = (v1 + txv4)i + (v2 + tyv4)j + (v3 + tzv4)k 
 
Now what happens when we compute T(cv)? We get the following result: 
 
cv = c((v1 + txv4)i + (v2 + tyv4)j + (v3 + tzv4)k) = (cv1 + ctxv4)i + (cv2 + ctyv4)j + (cv3 + ctzv4)k 
 
This introduces a factor of c in the v's, which is good, but we still need to know what cT(v) is under this 
new definition of T. This computation is shown below: 
 
cT(v) = c((v1 + txv4)i + (v2 + tyv4)j + (v3 + tzv4)k) = (cv1 + ctxv4)i + (cv2 + ctyv4)j + (cv3 + ctzv4)k 
 
The result is exactly the same! So we have established that under our new definition of T, T(cv) = cT(v) 
(You can verify on your own that T(u + v) = T(u) + T(v)). We are not done yet, however, since it is 
unclear how we can use this result (which assumes we send the function a four-dimensional vector) to 
translate three-dimensional vectors. 
 
The new transformation equation maps from R4 to R3. We defined the new transformation as: 
 
(v1 + txv4)i + (v2 + tyv4)j + (v3 + tzv4)k 
 
where the old transformation was: 
 
 (v1 + tx)i + (v2 + ty)j + (v3 + tz)k.  
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You can see that if v4 = 1 (that is, if the fourth component of our 4D vector is 1), then the new 
transformation reduces to the old one. To confirm this, let us transform the vector <v1, v2, v3, 1>: 
 
T(<v1, v2, v3, 1>) = (v1 + tx(1))i + (v2 + ty(1))j + (v3 + tz(1))k  

    = (v1 + tx)i + (v2 + ty)j + (v3 + tz)k 
    = <v1 + tx, v2 + ty, v3 + tz> 

 
This is the precise result we needed! What we have learned from all this is that if we represent our 3D 
vectors <v1, v2, v3> in the form <v1, v2, v3, 1>, then translation of the 3D vector becomes a linear 
transformation. That means it has an induced matrix. 
 
The size of the induced matrix is 43× . A square matrix is nicer to work with than a non-square one (a 
square matrix can have a determinant and an inverse, for example), so most games do not actually use 

43×  matrices to translate points. Rather, they use 44×  matrices that map from R4 to R4. The following 
definition of T is one way of defining translation for such a matrix: 
 
T(v) = (v1 + txv4)i + (v2 + tyv4)j + (v3 + tzv4)k + v4l 
 
where l is the vector <0, 0, 0, 1> (the fourth dimensional standard basis vector). This is a nice definition 
because the resulting induced matrix is invertible (the rows are linearly independent). 
 
Since the transformation results in a 4D vector, and all you really need is a 3D vector, you can just 
ignore the fourth component after you have transformed your vector. 
 
This method of incorporating translation into matrices is not new -- it has been known for decades. As a 
result, there is some information you might want to know: the 4D vectors in the form <v1, v2, v3, 1> are 
called homogenous coordinates. The 4th component is often referred to as the w coordinate (since the 
letters x, y, and z are already taken). Although translation requires that w = 1, there are some cases where 
other values of w are allowed. In these cases, to convert to a 3D vector, just divide the vector by w, 
which will again put the vector in the form <v1, v2, v3, 1> (the first three components are the coordinates 
of the vector in three dimensions). This is called homogenizing the coordinate.  
 
With translation out of the way, we are now ready to compute the induced matrices for a wide variety of 
common operations. 

9.2 Common Transformation Matrices 

The operations commonly performed in 3D games include scaling, skewing, translation, rotation and 
projection. For reasons that will soon become clear, it is helpful to perform all of these operations using 
the same size matrices. Translation is the only operation that requires a 44×  matrix; the others can be 
implemented with 33×  matrices, but can still be made to work with 44×  matrices. For that reason, we 
are going to make 44×  matrices the standard for all operations. This means that all of our vectors must 
be four-dimensional, and as we learned in the last section, the 4th component of our vectors must be 1, or 
the translation matrix fails to translate. 
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9.2.1 The Scaling Matrix 

The scaling function takes a vector and scales its x, y, and z components by some scalar. We can define 
such a function as S(v) = sv1i + sv2j + sv3k + v4l, where s is the scaling constant. 
 
We can create the induced matrix of this transformation by applying the transformation function to the 
columns of the following matrix: 
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(The columns are just the standard basis vectors.) 
 
The result is the following matrix: 
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We can then scale any vector v by computing the product Sv. 

9.2.2 The Skewing Matrix 

Skewing is just non-symmetric scaling. That is, each axis is scaled by its own constant. Our linear 
transformation function will then look something like K(v) = sxv1i + syv2j + szv3k + v4l. 
 
Applying this transformation to the columns of the 44×  identity matrix, we obtain the following result: 
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You can skew a vector v by computing Kv. 
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9.2.3 The Translation Matrix 

Earlier we uncovered the form of the translation function:  
 
T(v) = (v1 + txv4)i + (v2 + tyv4)j + (v3 + tzv4)k + v4l 
 
All we have to do now is apply it to columns of the 44×  identity matrix. This results in the following 
translation transformation matrix: 
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You can translate a vector v by computing Tv. 

9.2.4 The Rotation Matrices 

Way back in Chapter Five, we derived the following formulas for the rotation of a point (x, y) around the 
origin of the coordinate system: 
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where (x', y') is the rotated point. The above rotation is actually a rotation around the z-axis. So if we 
were rotating a 3D point (x, y, z), then the new point would be (x', y', z) (the z coordinate does not change 
for rotation around the z axis). 
 
It is helpful if you make your rotations obey the so-called right hand rule. This rule tells you to point 
your right hand's thumb in the positive direction of the axis you want to rotate around. Your fingers will 
curl in the direction that corresponds to positive rotation angles. Negative rotation angles specify 
rotations in the opposite direction. 
 
As it stands now, the above equations do not obey the right hand rule (they are the exact opposite), but 
that is easy enough to fix. All we have to do is negate the angle, and use the properties of trig functions 
described in Chapter Five. The end result is shown below: 
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These equations lead to the following linear transformation:  
 

lkjivRz 431221 ))sin()cos(())sin()cos(()( vvvvvv ++−++= θθθθ  
 
Applying this transformation to the 44×  identity matrix, we obtain the induced z-axis rotation matrix: 
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Rotating a vector v around the z-axis is as easy as computing Rzv. 
 
What about the other axes of rotation? The process for finding the induced matrices is exactly the same; 
just find formulas for the rotated points and apply those to the columns of the 44×  identity matrix. 
 
We will not perform the calculations here, but rather just present you with the results: 
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It is worth noting that the inverse of any rotation-only matrix is equal to its own transpose. This can be 
easily proven for the above matrices, and is not too hard to prove for the more general case. (The critical 
step is showing that the rows/columns of all rotation-only matrices are orthonormal. After that, an 
argument based on the dot product easily finishes the proof.) 

9.2.5 The Projection Matrix 

Recall that projection (at least as far as our graphics discussions have gone in the course) is defined as 
the operation of projecting 3D geometry onto a 2D screen. This is an absolutely critical function for 3D 
games, since inevitably, all the data describing the three-dimensional game world must be displayed on 
a two-dimensional computer screen. 
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We calculated equations for projection in Chapter Four for a viewer centered at the origin, looking down 
the positive z-axis. The equations were: 
 
x' = xd/z  
y' = yd/z 
 
where d is the "distance" from the viewer to the plane the geometry is being projected onto (the 
computer screen). Notice this projects points of the form <x, y, z> to <x', y', d> (where only the first two 
components are really necessary). We can therefore define a transformation function as follows: 
 
T(v) = v1d/v3i + v2d/v3j + dk 
 
The division in this equation should set off an alarm for you. Linear equations do not involve divisions 
(by variables, anyway), and so you might suspect that the projection transformation is not linear. Let us 
check the first of the linearity properties to be sure: 
 
T(cv)  = (cv1)d/(cv3)i + (cv2)d/(cv3)j + dk 
 = v1d/v3i + v2d/v3j + dk 
 
cT(v) = c(v1d/v3i + v2d/v3j + dk) 
 = cv1d/v3i + cv2d/v3j + cdk 
 
As we can see, T(cv) is not equal to cT(v), so the projection transformation is not linear. This means, for 
one, that it has no induced matrix. What is needed then is another trick, like the one we used for 
translation. Recall that the homogenous point <x, y, z, w> represents the 3D point <x/w, y/w, z/w>. If w 
"just happened" to be equal to z/d, then the 3D point would be equal to <xd/z, yd/z, d>. This suggests 
that the following transformation function might work for projection: 
 
T(v) = v1i + v2j + v3k + v3/dl 
 
There is a division in this transformation, but it is only by a constant, not by a variable, so there is hope 
that the transformation is now linear. Let us check the two properties: 
 
T(cv)  = cv1i + cv2j + cv3k + cv3/dl 
 
cT(v) = c(v1i + v2j + v3k + v3/d l) 
 = cv1i + cv2j + cv3k + cv3/dl 
 
The first property is satisfied. One down and one to go: 
 
T(v + u)  = (v1 + u1)i + (v2 + u2)j + (v3 + u3)k + (v3 + u3)/dl 
 
T(u) + T(v)  = (v1i + v2j + v3k + v3/dl) + (u1i + u2j + u3k + u3/dl) 
 = (v1 + u1)i + (v2 + u2)j + (v3 + u3)k + (v3 + u3)/dl 
 
Thus the second property is satisfied!  
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Before we compute the induced matrix, it is worth pointing out what we have actually done here. The 
projection transformation modifies the w component of the homogenous vector so that it is no longer 1. 
In order to actually transform the point into the form <x', y', d>, we would still have to homogenize the 
result (i.e. divide each component by w). So in a sense, we really have not "projected" until we have 
homogenized the point. 
 
Also, note that translation requires w = 1, so you cannot translate points after you project them unless 
you first homogenize (not that doing so would make much sense, anyway). 
 
Now let us compute the induced matrix, applying the transformation function to the columns of the 44×  
identity matrix: 
 

⎥
⎥
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By inspection, you can see the rows of this matrix are not linearly independent. This means that the 
projection matrix does not have an inverse. This is as it should be. Each projected point on a computer 
screen could be any one of an infinite number of 3D points. There is just no way to tell which one is 
which. 
 
You are probably wondering exactly why we have gone to the trouble of expressing all of these different 
transformations as matrices, rather than just use the transformation functions directly on the points. The 
answer to that question is the topic of the next section. 

9.3 Matrix Transformations 

Nearly all computer games and most graphics tools use matrices for geometry transformation. Since 
matrices are not as intuitive as functions, there has to be something really attractive about them to 
warrant all of the attention they have received. 
 
In fact, there is. One benefit is pretty obvious. You can just create a library of matrices, and no matter 
what (linear) operation you need to do to a vector, you can do it by multiplying the vector by the 
appropriate matrix. Matrices standardize all transformations to matrix multiplication. 
 
Another benefit is that most new video cards on the market can perform matrix operations in hardware -
- much faster than the CPU can do it. Since you can encode all linear transformations with matrices, this 
means that you can use the video card to perform all of your linear transformations (the Graphics 
Programming course series goes into more depth on exactly how you do this). Without matrix math, you 
would be stuck doing everything in software or perhaps taking advantage of a few functions the 
manufacturer chose to encode in hardware. 
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Perhaps the largest benefit to matrix math, however, comes into play when you need to perform a 
sequence of transformations on a number of points. For example, if you are animating a swinging door, 
then you need to translate the door so that its hinges are at the origin, then rotate it by the appropriate 
amount, then translate it back to its position, and finally, project it onto the computer screen. (Actually, 
you have to do even more operations than this, but we will cover why later.) If you were using functions 
to do the transformations, then you would have to send each point to the first transformation function, 
then to the second, then to the third, and so on, in sequence. Matrix math allows you to perform all of the 
transformations at once. 
 
To see how, suppose we want to apply n transformations to a point represented by the vector v (each 
transformation can be any linear transformation at all). Further, suppose the induced matrices are 
denoted T1, T2, …, Tn. To transform the point by the first transformation, we compute T1v. Then we 
multiply that by the second transformation matrix, which gives us  T2(T1v). In the end, after all of the 
multiplications have been performed, we get the transformed vector (Tn(Tn-1...(T2(T1v))... )), or      
TnTn-1...T2T1v. 
 
Here is the critical part - since matrix multiplication is associative, we can throw in parentheses 
wherever we want. In particular, we can add parentheses around the transformation matrices. The 
transformed point then becomes (TnTn-1...T2T1)v. Notice that (TnTn-1...T2T1) is a matrix, and that 
multiplying it by v produces a vector transformed by all of the transformation matrices. 
 
So now we can merge any number of linear transformation matrices into a single transformation matrix 
that does the job of all of them. Going back to the door example, we could compute one matrix that does 
all the operations we want it to, and then multiply this matrix by each of the door's points (i.e. the 
vertices of the polygons that comprise the 3D door model). This results in a dramatic performance gain. 
 
Multiplying the matrices together is often called concatenation, compounding, catenation, or 
composition. Whatever you call it, the power of the operation is perhaps the most compelling argument 
for using matrices in your games. 
 
There is one last important point that needs to be remembered: matrix multiplication is not commutative. 
So (TnTn-1...T2T1) is, in general, not the same as (T1T2...Tn-1Tn). The first one is the matrix Tn 
multiplied by the matrix Tn-1, and so on. The second one is the matrix T1 multiplied by the matrix T2, 
and so on. If you want to apply the transformation T1 to the vector first, followed by T2, then T3, and so 
on, with Tn being the last transformation applied, then you must multiply the matrices together in the 
first order. 
 
In the next section, we will discuss how to use what we have learned to write a 3D game. 
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9.4 Linear Transformations in 3D Games 

Today's three-dimensional games usually represent objects as collections of polygons. Points define the 
vertices of these polygons. The points themselves can even be animated to animate the object. 
 
You can easily animate points using the theory introduced in this chapter. Just use the appropriate 
matrices to transform the points according to the requirements of the animation. (Usually artists design 
the animations in 3D graphics programs, and these programs typically output the animation as a series of 
scale, rotation, and translation matrices – often called SRT matrices for short.) 
 
A larger question is how to view all of our three-dimensional geometry from an arbitrary point-of-view. 
Players want to move around in 3D games, exploring the game world, killing bad guys and solving 
puzzles. This means that your games have to be able to display the three-dimensional game world as 
viewed through the eyes of the player, who can be at any location, looking in any direction. 
 
In Chapter Four, we learned how to project 3D geometry onto a 2D screen for a viewer situated at the 
origin of the coordinate system, looking down the positive z-axis. The question is, what can we do when 
this is not the case? 
 
Two solutions present themselves: (1) give the viewer an arbitrary position and orientation and then 
deduce new projection formulas from this information; (2) leave the viewer at the origin, looking down 
the positive z-axis, and move the game world around to simulate viewer movement.  
 
Since the latter solution is the easiest, that is the one games use -- and the one we will cover here. 
 
Motion is relative. If you are sitting in an airplane, looking out the window, you cannot tell (visually) 
whether the airplane is moving forward or the clouds are moving backwards. Similarly, when you walk, 
there is no visual difference between you moving forward and the world moving backward. So if we 
want to keep the viewer at the origin, then whenever the viewer wants to move in some direction, we 
can instead move the whole game world in the opposite direction. Similarly, if the viewer wants to rotate 
his or her head to look up, we can rotate the game world down. 
 
This procedure can be formalized. The coordinate system where the game world exists is called world 
space. The viewer can have any position and orientation in this world space. To massage the geometry 
into a form we can easily project, we first change the underlying coordinate system by translating 
everything in the game world, including the viewer, by the negative of the viewer's position. This nicely 
places the viewer at the origin, but the viewer still has its own orientation -- one not necessarily looking 
down the positive z-axis. So we change the underlying coordinate system again, this time rotating 
everything in the game world, including the viewer, by the opposite of the viewer's orientation relative 
to the positive z-axis. This orients the viewer so that he is looking down the positive z-axis. 
 
The final coordinate system created in this process is sometimes called view space or camera space. 
Once everything has been transformed into this space, projection is easy, and can be done with the 
matrix introduced in this chapter or the equations derived in Chapter Four. 
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Now let us get specific. Suppose the viewer has position v, and its orientation is described by the three 
rotation angles rx, ry, and rz, which indicate the extent of the viewer's rotation along the x-, y-, and z-
axes, respectively. Further, suppose we choose rx = ry = rz = 0 to indicate the direction of the positive z-
axis. Then, to transform the game world from world space into view space, we must perform the 
following two tasks: 
 
1. Translate everything in the game world by -v. 
2. Rotate everything in the game world by -rx, -ry, and -rz, along the x-, y-, and z-axes, respectively. 
 
Lastly of course, we would want to project the geometry onto the screen. 
 
Using the linear transformation matrices defined earlier, the matrix that pulls all this magic off is going 
to look something like this: 
 

TRRRSP xyz ×××××  
 
The homogenous points transformed with this matrix have to be homogenized, and then they can be 
displayed on the computer screen. 
 
Notice that we slipped the scaling matrix S into the above transformation. This allows you to control the 
final scale of the projected points (i.e. how big or small objects appear on the screen). 
 
Also note that the order of rotation is x-axis rotation, followed by y-axis rotation, followed by z-axis 
rotation. The order is significant, as it gives meaning to the rotation angles that describe the viewer's 
orientation. The particular order we have chosen means that the viewer's rotation should be such that if 
the viewer is rotated first by -rx radians around the x-axis, followed by -ry radians around the y-axis, and 
then by -rz radians around the z-axis, the viewer should be facing the direction of the positive z-axis. It is 
not always obvious how the rotation angles should be chosen for a given viewer orientation, but this 
problem is solved nicely by the use of quaternions (the topic of our next lesson). 
 
The above transformation matrix (or one very much like it) is at the heart of all computer games. It gives 
players the freedom to roam the game world at their pleasure. Knowing what it looks like and how it 
works, you could very easily create a basic 3D game right now (although these days you would probably 
end up using a 3D API like Direct3D for your games, both to take advantage of hardware acceleration 
and to simplify game development). 
 
In the next section, we will discuss rotation matrices in a bit more depth, and end up developing an 
alternate method of transforming from world space to view space -- one that has some advantages to the 
composition of separate x, y, and z rotation matrices. 
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9.5 Another Look at Rotation 

The rotation phase of the world-to-view transformation comes after the translation phase. That is, points 
are first translated by the negative of the viewer's position, and then rotated by the opposite of the 
viewer's orientation. 
 
Suppose we say that, after points have been translated, they exist in translated world space (TW space 
for short). In this space, the viewer is situated at the origin, but can have any orientation. 
 
Instead of using angles, we can describe the orientation of the viewer with three vectors. The first is the 
direction or look-at vector, which describes the direction the viewer is looking. The second is the up 
vector, which, if the viewer were wearing a cone-shaped party hat, would describe the direction the tip 
of the hat was pointing. (The up vector allows the viewer to tilt his or her head side to side. With only 
the direction vector, this would be impossible.) The third vector is the right vector and describes the 
direction the viewer's right side is facing (this is simply the cross product of the direction and up vectors, 
in that order). This method of describing the viewer's orientation is shown in Figure 9.2. 
 

 
Figure 9.2: Describing viewer orientation with the direction, up, and right vectors. 

 
The rotation phase is a transformation from TW space to view space. In this transformation, the viewer's 
direction vector gets aligned with the positive z-axis, the up vector gets aligned with the positive y-axis, 
and the right vector gets aligned with the positive x-axis. 
 
The critical thing to notice is this: the viewer's direction, up, and right vectors can be used as the basis 
vectors for view space. That is, we can represent all points in view space as linear combinations of these 
three vectors. More formally, if we call these vectors d, u, and r, then we can write any vector v in view 
space in the following form: 
 

durv 321 vvv ++=  
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In view space (i.e. after the rotation transformation), the vectors r, u, and d are aligned with the standard 
basis vectors i, j, and k, respectively. In TW space, however, the vectors are not aligned with anything; 
they just encode the orientation of the viewer before the rotation transformation. 
 
We need to relate vectors in view space to vectors in TW space (since this will provide a means of 
transforming vectors from one space to the other). The obvious way to do this is to relate the basis 
vectors in view space to the basis vectors in TW space. To do this, we are going to need an orthonormal 
basis for TW space. Suppose we call the basis vectors e1, e2, and e3. Then any vector u can be written as 
follows: 
 
u = u1e1 + u2e2 + u3e3 
 
where u1, u2, and u3 are the coordinates of the vector in TW space. 
 
Since the above result is true for any vector, in particular, we can represent our three basis vectors for 
view space as a linear combination of e1, e2, and e3. Suppose these vectors have the following 
representations in TW space: 
 
r = <r1, r2, r3> = r1e1 + r2e2 + r3e3 
u = <u1, u2, u3> = u1e1 + u2e2 + u3e3 
d = <d1, d2, d3> = d1e1 + d2e2 + d3e3 
 
Then plugging these equations into our expression for a vector v in view space, we get the following 
results: 
 
v = v1(r1e1 + r2e2 + r3e3) + v2(u1e1 + u2e2 + u3e3) + v3(d1e1 + d2e2 + d3e3) 
   = v1r1e1 + v1r2e2 + v1r3e3 + v2u1e1 + v2u2e2 + v2u3e3 + v3d1e1 + v3d2e2 + v3d3e3 
   = v1r1e1 + v1r2e2 + v1r3e3 + v2u1e1 + v2u2e2 + v2u3e3 + v3d1e1 + v3d2e2 + v3d3e3 
   = (v1r1 + v2u1 + v3d1)e1 + (v1r2 + v2u2 + v3d2)e2 + (v1r3 + v2u3 + v3d3)e3 
 
This is actually very cool. We have just expressed a vector v in view space as a vector in TW space. So 
the above equations transform a vector from view space into TW space. 
 
That is not exactly the result we need, though. What we are really after is a way to transform a vector 
from TW space into view space, since that is what is required by the world-to-view transformation. But 
we can still use the above results. All we need to do is compute the induced matrix for the above 
transformation, and then invert it (which we can do by taking its transpose -- recall that the inverse of 
any rotation-only matrix is equal to the transpose of that matrix). Since the induced matrix transforms 
from view space into TW space, the inverse matrix will transform from TW space into view space. We 
can find the induced matrix by applying the transformation to the columns of the 33×  identity matrix. 
The result is shown below: 
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The transpose of this matrix -- which is the transformation we really seek -- is shown below: 
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The equivalent 44×  transformation matrix (for compatibility with all of the other matrices introduced in 
this lesson) is as follows: 
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Now let us recap our discovery. If you define the viewer's orientation by the right, up, and direction 
vectors, all defined in TW space, then the above matrix will transform vectors from TW space to view 
space. (Note that the translation part of the world-to-view transformation does not affect the viewer's 
orientation, so you can think of the right, up, and direction vectors as being defined in world space.) 
 
This result is helpful in several ways. First, it frees you from having to keep track of angles. If you want, 
you can describe the orientation of the viewer entirely by vectors (rotating these vectors whenever the 
viewer changes orientation), and use these vectors to directly generate the rotation transformation 
matrix. 
 
Second, even if you still want to use angles, you can use the above results to extract the right, up, and 
direction vectors from any rotation matrix -- even one created by concatenating separate x, y, and z 
rotation matrices. This is useful, for example, if you are using angles to generate the rotation matrix but 
for some reason you need a vector describing the direction of the viewer (this is found in the third row of 
the rotation matrix). 
 
If you represent the viewer's position with the vector v, then the complete world-to-view transformation 
matrix can be found by multiplying the above rotation matrix with a translation matrix that translates 
points by the negative of v. This matrix is shown below: 
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This is a very clean result (using angles to represent viewer orientation produces a matrix wider than the 
width of this page!), and this is, perhaps, yet another reason why game developers favor this approach. 
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This lesson's material is nearly at an end. We have seen how to compute the induced matrix for any 
linear transformation, we have looked at common transformation matrices, and we have developed 
methods to display a 3D world given a viewer position and orientation (quite a feat for a single chapter). 
 
In the next and final section, we will explore a slight difference between the matrices presented in this 
course and those you might find elsewhere -- a difference that has been the source of many a headache 
for the aspiring game developer. 

9.6 Row versus Column Vectors 

Throughout this chapter, we have been using single-column matrices to represent vectors. Due to the 
rules of matrix multiplication, this means that the only way we can multiply a matrix by a vector and get 
a vector is if the order of multiplication is matrix-times-vector. 
 
However, we can also use single-row matrices to represent vectors. In this case, the only way we can 
multiply a matrix by a vector and get a vector is if the order is vector-times-matrix. 
 
Most math texts, and a good deal of computer science texts, use single-column matrices to represent 
vectors. However, many sources do not, especially in the world of game development (for a reason we 
will discuss later, most game developers prefer using single-row matrices to represent vectors). 
 
The transformation matrices used for column vectors will not, in general, be the same as the 
transformation matrices for row vectors. To see the relationship between them, suppose we have a 
column vector v that is equal to the product of multiple transformation matrices times some other vector 
u. If the transformation matrices are labeled T1, T2, ..., Tn-1, Tn, we can express this as follows: 
 
v = TnTn-1...T2T1u 
 
To make see what happens when v is a single-row vector, we can transpose both sides of the equation 
(which will change both v and u into row vectors): 
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Two effects are apparent: using row vectors transposes the transformation matrices and changes the 
order of multiplication. So the moral of this story is that if you want to use row vectors instead of 
column vectors, then you will have to transpose all the matrices listed in this lesson. Also, you will have 
to change the order in which you would otherwise perform multiplication. 
 
Why do game developers tend to prefer using row vectors? Because the order of multiplication reflects 
the order in which the transformations are applied to the vector. Using column vectors, the first matrix in 
the product is actually the last transformation applied to the vector. Using row vectors, it is the first. 
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Conclusion 

In our next lesson, we are going to introduce several new classes of numbers. One of these classes, 
called quaternions, will enable us to compute the world-to-view transformation matrix without having to 
bother with angles or the up, right, and direction vectors. Quaternions will also give us a means to rotate 
points around any axis we want (as opposed to just the x-, y-, and z-axes). 

Exercises 

1. Prove that the transformation xxx ⋅=)(T  is not linear. 
 
2. Determine if the transformation )(Proj)( xx n=T  (vector projection for a fixed vector n) is linear. If it 
is, construct the induced matrix of the transformation. 
 
3. Determine if 2D rotation around an arbitrary point (cx, cy) is a linear transformation. If it is, construct 
the induced matrix of the transformation. 
 
*4. Describe in detail how you could use matrices to animate a complex 3D shape (such as a character), 
using hierarchies to minimize redundant transformations. 
 
*5. In the projection matrix introduced in this chapter, the factor of d encodes the field of view of the 
camera. This setup assumes the horizontal field of view is equal to the vertical field of view. Devise a 
projection matrix that allows for a vertical field of view that is different than the horizontal field of view. 
(Hint: Division/multiplication of individual vector components by constants does not change the 
linearity of a given transformation.) 
 
!6. Find the induced matrix for a transformation that takes a 2D vector and reflects it off the x-axis. 
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Chapter Ten 
 

 

 
Quaternion Mathematics 
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Introduction 

When one of my younger brothers first started attending college, I persuaded him to take a course in pre-
calculus, for the good of his soul (he was a business major). Math was not his favorite subject, and 
despite my hopes that pre-calculus would cure him of that (you learn to do so many neat things in pre-
calc), he came out of that course with a newfound determination to bash mathematics at every 
opportunity. The reason? He stumbled onto the subject of imaginary numbers, and in his view, the fact 
that imaginary numbers were introduced to give meaning to square roots of negative numbers proved 
that mathematics is a hodge-podge; a collection of concepts so confused and inadequate that they require 
mathematicians in subsequent years to keep patching them up to prevent the whole of mathematics from 
crumbling. And I thought I was helping him by suggesting that he take that course! 
 
This may all seem a bit confusing if you have not been introduced to imaginary numbers before. After 
all, we did just mention "the square root of a negative number". Prior to imaginary numbers, the domain 
of the square root function was strictly the set of non-negative numbers, such as 2 or 3.1415926. The 
reason for that is not too difficult to grasp; the square root of a negative number, such as -1, would have 
to be some number such that, when multiplied by itself, was equal to -1. But we learned way back in 
grade school that a negative number times a negative number is a positive number, and, of course, that a 
positive number times a positive number is also a positive number. What this means is that for any real 
number x, x2 is always positive, and hence, there exists no real number such that, when multiplied by 
itself, is equal to -1 (or any other negative number, for that matter). 
 
I can almost hear my brother screaming now, "Hole in math! Hole in math!" Is there really a hole in 
mathematics that we need to patch up? Not really. We have decided for various reasons that a negative 
real number times a negative real number is a positive real number. An implication of that decision is 
that there is no real number such that, when multiplied by itself, is equal to a negative number. You 
cannot have your cake and eat it too. 
 
Now, we could always go back and by fiat decide that the product of two negative numbers is a negative 
number. But that would have some very unpleasant implications. Consider the distributive property of 
multiplication with respect to addition, which says that a(b+c)=ab+ac. Suppose we want to compute       
-5(6-4). Performing the addition inside the parentheses first, we see that this is -10. But if we use the 
distributive property with our new rule (a negative number times a negative number is negative), 
remembering that -5(-4) is really negative, then we get -30 + -20 = -50! As we can see, the assumption 
that the product of two negative numbers is a positive number is deeply ingrained in algebra, and any 
change to that assumption would radically alter all the rules that we have come to depend on. 
 
So we cannot change the way things are defined already without losing the power of our existing 
definitions. One thing to ask is, "Why do we even need the square root of a negative number, anyway?" 
 
Sometimes in mathematics, something is invented and then a use for it is found. But in the case of 
square roots of negative numbers, it seems the original motivation was categorizing the roots of 
polynomials. The roots (i.e. places where the polynomial evaluates to 0) of a quadratic, for example, are 
given by the quadratic formula introduced in Chapter Three. If the quadratic cannot possibly evaluate to 
zero (which is the case for x2+1, for example), then the discriminant (the values inside the square root in 
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the quadratic formula) turns out to be a negative number. By counting these solutions too (even though 
there are no such real numbers), you can prove the so-called Fundamental Theorem of Algebra, which 
states that every polynomial of degree n has exactly n roots (some of them possibly duplicate or non-
real). As its name suggests, this is an important theorem in algebra, one responsible for a number of 
other important mathematical results. 
 
In any case, what you are really concerned with is whether or not square roots of negative numbers have 
any application to game development. The answer is yes! Such square roots come with an entirely new 
arithmetic, and have proven themselves fundamental to many real-world problems, such as quantum 
mechanics (where you cannot flip a page without encountering them), electricity and magnetism (yes, a 
knowledge of negative square roots really did go into building your computer), and much more. In our 
case, it will turn out that these strange square roots can be used to represent rotations around arbitrary 
axes in a slick and efficient manner that lends itself to the needs of game development. 
 
This is all going to be made possible through the concept of imaginary numbers. 

10.1 Imaginary Numbers 

If you want to get accused of being a lame know-it-all (and who does not enjoy that?), here is a little 
trick you can play on some poor hapless soul: draw a number, say 5, on a card, and hold the card out to 
the person and ask, "What is this?" They will doubtless respond, "The number 5." Then tear up the card 
and exclaim in your most mocking voice, "Oh, no! What are we to do now that I have destroyed the 
number 5!"  
 
Of course, by tearing up the card you really did not destroy the number five, because that symbol on the 
paper was not, in fact, the number 5. Rather, it represented the number five. So what, you ask, is the 
number 5? The number 5, just like all other numbers, is a concept, and it exists only in peoples’ heads.  
 
So in that sense, all numbers are imaginary. They are concepts, and although we can apply the concepts 
to things in the real world, which exist, the concepts themselves can never escape the confines of our 
minds. 
 
The degree to which we can successfully apply the concept of numbers to the real world depends greatly 
on the context. We do not talk about negative quantities of cows in a herd, for example, because there is 
no obvious way to make sense of negative quantities of cows. On the other hand, we have no problem 
talking about negative amounts of money -- that is, deficits or debt -- as we throw around such phrases 
as "That car repair put me $4,500 in the hole." Similarly, there is no meaningful way to spell a word 
with six and a half letters, although you can easily measure the time to be six and a half hours past 
midnight. 
 
What this means is that in some sense, mathematics exists on its own, and that as we are able, we apply 
its concepts to things in the real world in order to extract some benefit from doing so. Numbers and the 
whole of mathematics exist in an abstract realm -- a realm of the “imaginary”. 
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Why do I philosophize on this point? I do so because we are about to encounter a new fundamental set 
of numbers; the set of imaginary numbers. Do not be misled by the name -- imaginary numbers are no 
more or less “imaginary” than real numbers are “real”. Like real numbers, imaginary numbers are 
concepts, ones that exist in peoples’ minds, and which happen to have their own set of properties. These 
properties, as we will see later on, turn out to give imaginary numbers an edge over real numbers in 
certain circumstances; that is, we can apply imaginary numbers to real world problems in places where 
we cannot apply real numbers. 
 
An imaginary number is basically just the square root of a negative number. “But wait,” you say, “I 
thought there is no real number such that, when multiplied by itself, is a negative number?” That is 
exactly correct; there is no such real number. But there is such an imaginary number. By definition, 
when you multiply an imaginary number by itself, the result is a negative real number. Specifically, the 
result is equal to whatever is inside the square root sign. 
 
An example is in order. The number 5−  is an imaginary number. When you multiply this number by 
itself, you get a negative real number because of the way multiplication is defined for imaginary 
numbers. Notice how this result strongly contrasts with the real numbers, where if you multiply any 
number by itself, the result is positive. This is the critical difference between the two number systems. 
 
There is a standard way to designate all imaginary numbers using the symbol i, which is defined to be 

1− . The imaginary number 5−  can be written as i515)1)(5( =−=− . Thus, an alternate way 
of defining imaginary numbers is any number that can be expressed as the product of a non-zero real 
number and i, the fundamental imaginary number. 
 
Imaginary numbers behave very much like real numbers, except for the peculiar property of imaginary 
numbers that says that the product of two of them is a negative real number. But nevertheless, some of 
the ways this rule manifests itself are not obvious, so in the next few sections we will examine the places 
where imaginary number arithmetic differs markedly from real number arithmetic. 
 

10.1.1 Raising Imaginary Numbers to Powers 

Suppose you want to raise an imaginary number in the form ai to some integer power, say n. This is 
written as (ai)n, and expands as anin, just like in ordinary arithmetic. Now a is just a real number, so you 
can compute an just like you would in real number arithmetic. The interesting question is, what is the 
value of in? 
 
Suppose n = 2. Then our number becomes ani2 = an(ii). What is the quantity ii? We can expand this as 

11 −− , which, by the definition of imaginary numbers, is equal to -1. Thus ani2 = -an. As you can see, 
this process ultimately depends on what power of n we raise i to.  
 
Table 10.1 shows the results for powers of i from 0 to 5. The pattern you see there continues. 
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n in 
0 1 
1 i 
2 -1
3 -i 
4 1 
5 i 

 
Table 10.3: The powers of i. 

 
You may also be wondering what happens if you raise i to fractional powers, like 0.1 or 5.92. It turns out 
the result is not an imaginary number at all, but a complex number (which we will introduce later). 
Game developers, however, are generally only interested in integer powers of i. 

10.1.2 Multiplying/Dividing Imaginary Numbers 

Suppose you have two imaginary numbers, x = ai and y = bi. Then their product is simply: 
 
 xy = aibi = abi2 = -ab  
 
If you were to divide x by y, then you get just x/y (i/i is just 1). 
 
From this discussion, you can see that both the product and the division of any two imaginary numbers 
is a real number. 

10.1.3 Adding/Subtracting Imaginary Numbers 

To add or subtract two imaginary numbers x = ai and y = bi, just group like terms: 
 
 x + y = ai + bi = (a + b)i. 
 
Subtraction is performed in like manner, so that ai - bi = (a - b)i. If a = b, then the result is a real number 
(namely zero), but otherwise, the result is imaginary. 
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10.2 Complex Numbers 

Our tale of strange mathematical numbers does not end with imaginary numbers, since if it did, there 
would be little benefit to covering them since imaginary numbers in themselves have no direct 
application to game development. 
 
Rather, it is with imaginary numbers that our story begins. Imaginary numbers are necessary 
components of complex and hypercomplex numbers -- and it is only after we have covered the latter 
topic that we start getting into results that game developers can use. 
 
A complex number is the sum of a real number and an imaginary number. Complex numbers are written 
in the form a + bi, where both a and b are real numbers. Both real numbers and imaginary numbers are 
subsets of complex numbers, as you can see if you let b = 0 and a = 0, respectively. The peculiar trait of 
complex number arithmetic is also that peculiar trait of imaginary number arithmetic; the product of two 
imaginary numbers is a negative real number. 
 
A complex number a + bi can be viewed as the ordered point (a, b) on a Cartesian coordinate system 
(see Figure 10.1). This geometric interpretation is quite important. 
 

 
 

Figure 10.1: Representing points as complex numbers. 
 
In the next few sections, we will discuss complex number arithmetic. 
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10.2.1 Adding/Subtracting Complex Numbers 

Suppose you have two complex numbers, x = a + bi, y = c + di, and you want to compute x + y. All you 
have to do is add the real and imaginary components separately. Thus: 
 
 x + y = (a + bi) + (c + di) = (a + c) + (b + d)i. 
 
Subtraction is performed in like manner: 
 
 x - y = (a + bi) - (c + di) = (a - c) + (b - d)i. 
 
Geometrically, addition or subtraction of complex numbers corresponds to a translation. 

10.2.2 Multiplying/Dividing Complex Numbers 

To multiply two complex numbers together, you use the distributive property, remembering that the 
product of imaginary numbers is a negative real number. 
 
If x = a + bi, y = c + di, then: 
 
 xy = (a + bi)( c + di)  
      = ac + adi + bci + bdi2  
      = ac + (ad + bc)i - bd  
      = (ac - bd) + (ad + bc)i.  
 
Thus, we have the following result: 
 
(a + bi)( c + di) = (ac - bd) + (ad + bc)i 
 
Division is a bit trickier. Suppose we want to compute (a + bi)/( c + di). The first step (which will seem 
to come out of nowhere, but will actually make more sense when we introduce complex conjugates) is to 
multiply both the top and bottom of the fraction by (c - di), which you can do without changing the 
value of the fraction. This leads to the following result: 
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Notice that the result is a complex number. Also note that if c = b, then the division is undefined (since it 
leads to a division by zero). 
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You can also multiply or divide a complex number by a real number. To do this, just multiply or divide 
each term of the complex number by that real number. 

10.2.3 Raising Complex Numbers to Powers 

To compute (a + bi)n, all you have to do is multiply the quantity (a + bi) by itself n times. Here are a few 
examples: 
 
(a + bi)2 = a2 + 2iab - b2 

(a + bi)3 = a3 +3ia2b - 3ab2 -ib3 

(a + bi)4 = a4 +4ia3b - 6a2b2 - 4iab3 + b4 

10.2.4 The Complex Conjugate  

The complex conjugate of a complex number (or even an entire expression involving complex numbers, 
for that matter) is what you get when you replace all occurrences of 'i' with '-i'. The complex conjugate 
of x = a + bi, for example, is a - bi. This is denoted x*. 
 
An interesting thing happens when you multiply a complex number by its complex conjugate -- the 
imaginary part disappears. For example, (a + bi)(a + bi) = a2 + b2. (When computing the division of 
complex numbers, in order to get rid of the imaginary part of the denominator, we multiplied both the 
top and bottom of the fraction (a + bi)/(c + di) by the complex conjugate of (c + di).) 

10.2.5 The Magnitude of a Complex Number 

The magnitude of a complex number x = (a + bi), denoted |x|, is defined as follows: 
 

22))((*|| babiabiaxxx +=+−==  
 
Geometrically, you can interpret this as the distance from the origin to the point (a, b). 
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10.3 Introduction to Quaternions 

On October 16th, 1843, William Rowan Hamilton was strolling with his wife along the Royal Canal in 
Ireland. At that moment, he was not thinking about his wife, the Royal Canal, or Ireland. Rather, he was 
thinking about a problem he had been working on, which involved the nature of hypercomplex numbers. 
Somewhere on his stroll, the solution to his problem came to him, and he was so excited with the result 
he carved it into the nearby Broome Bridge. What did he think was so important as to carve it into 
Broome Bridge? The formula he carved is shown below: 
 
 i² = j² = k² = ijk = -1 
 
On the left, you see i², and on the right, -1. Look familiar? Yes, that is right -- i is indeed an imaginary 
number. In fact, i, j, and k are all imaginary numbers, but not exactly the kind of imaginary numbers that 
we have spent time studying. It is easiest to think of these imaginary numbers not as square roots of 
negative numbers, but as symbols that obey Hamilton's rules. (This may seem stranger than square roots 
of negative numbers, but it really is the easiest way to think about it.) 
 
In order to understand the significance of Hamilton's rules, it is necessary to introduce the concept of 
hypercomplex numbers, the very thing Hamilton was studying when he had his revelation. 

10.3.1 Hypercomplex Numbers and Quaternions 

A hypercomplex number is the sum of one real number and several imaginary numbers. The 
hypercomplex numbers that are of interest to game developers are called quaternions. These are 
hypercomplex numbers of the following form: 
 
q0 + q1i + q2j + q3k 
 
where i, j, and k are the imaginary numbers discussed in the last section, and the rest of the numbers are 
real numbers. 
 
If q0 = 0 in the above quaternion representation, then the quaternion is said to be a pure quaternion. 
 
Hamilton's rules tell you what happens when you multiply the imaginary parts of hypercomplex 
numbers together. The quantity ijk, for example, is defined to be 1. Hamilton's rules also imply the 
following relations (which you should be able to derive easily): 
 
ij = k 
jk = i 
ki = j 
ji = -k 
kj = -i 
ik = -j 
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Generally speaking, as with complex and imaginary numbers, the arithmetic for quaternions is the same 
as the arithmetic for real numbers, except that you must use the above rules whenever imaginary 
components are multiplied together. In the few sections that follow, we will see how this is done. 

10.3.2 Adding/Subtracting Quaternions 

Adding two quaternions is exactly like adding two complex numbers. Simply add like terms. 
 
For example, the addition of the quaternions p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k is shown 
below: 
 
p + q = (p0 + p1i + p2j + p3k) + (q0 + q1i + q2j + q3k) = (p0 + q0) + (p1 + q1)i + (p2 + q2)j + (p3 + q3)k 
 
Subtraction is performed similarly: 
 
p - q = (p0 + p1i + p2j + p3k) - (q0 + q1i + q2j + q3k) = (p0 - q0) + (p1 - q1)i + (p2 - q2)j + (p3 - q3)k 

10.3.3 Multiplying Quaternions 

Multiplication of two quaternions is a bit trickier, since we have to remember all the rules for 
multiplying the imaginary numbers (although we can still expand the product in the usual fashion). 
 
If p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k, then we can compute their product as follows: 
 
pq  =  (p0 + p1i + p2j + p3k)(q0 + q1i + q2j + q3k)  
 
 = (p0)q0  + (p0)q1i  + (p0)q2j    + (p0)q3k  + 

            (p1i)q0  + (p1i)q1i + (p1i)q2j   + (p1i)q3k  + 
            (p2j)q0  + (p2j)q1i + (p2j)q2j   + (p2j)q3k  + 
            (p3k)q0 + (p3k)q1i + (p3k)q2j  + (p3k)q3k 
 

 = (p0q0)  + (p0q1)i   + (p0q2)j   + (p0q3)k  + 
            (p1q0)i  + (p1q1)ii  + (p1q2)ij  +(p1q3)ik  + 
            (p2q0)j  + (p2q1)ji  + (p2q2)jj  + (p2q3)jk  + 
            (p3q0)k  + (p3q1)ki + (p3q2)kj +(p3q3)kk 
 

 = (p0q0)  + (p0q1)i       + (p0q2)j  + (p0q3)k         + 
            (p1q0)i  + (p1q1)(-1)  + (p1q2)k  + (p1q3)(-j)      + 
            (p2q0)j  + (p2q1)(-k)  + (p2q2)(-1)  + (p2q3)(i)   + 
            (p3q0)k + (p3q1)(j)    + (p3q2)(-i)  +(p3q3)(-1) 

 
 
 



 221

 = (p0q0)  + (p0q1)i       + (p0q2)j      +  (p0q3)k  + 
            (p1q0)i   + (-p1q1)      + (p1q2)k     + (-p1q3)(j)  + 
            (p2q0)j   + (-p2q1)(k)  + (-p2q2)     +  (p2q3)(i)  + 
            (p3q0)k  + (p3q1)(j)    + (-p3q2)(i)  + (-p3q3) 
 

 = (p0q0 - p1q1 - p2q2 - p3q3)  + 
  (p0q1 + p1q0 + p2q3 - p3q2)i   +  
  (p0q2 - p1q3 + p2q0 + p3q1)j   + 

               (p0q3 + p1q2 - p2q1 + p3q0)k 
 
From the above result, you can see that multiplication is not commutative (although it is associative and 
distributive with respect to quaternion addition). Despite this slight drawback, however, multiplication is 
one of the most important operations for quaternions, for reasons that will soon become clear. 

10.3.4 The Complex Conjugate 

The complex conjugate of a quaternion is very similar to the complex conjugate of a complex number. 
Just replace each imaginary number by its negative. So if q = q0 + q1i + q2j + q3k, then the complex 
conjugate of q, designated q*, is q0 - q1i - q2j - q3k. 
 
One important property of complex conjugation is that (pq)* = q*p*. In words, the complex conjugate of 
the product of two quaternions is equal to the product of the individual complex conjugates, but in the 
opposite order. 
 
The product q*q, if you calculate the result, turns out to be 2

3
2
2

2
1

2
0 qqqq +++ . Note that the result is 

entirely real (which is not a coincidence, as Hamilton formulated his rules to produce this result). Also 
note that q commutes with q* -- that is, q*q = qq*. 

10.3.5 The Magnitude of a Quaternion 

The magnitude of a quaternion q, denoted |q|, is defined as follows: 
 

qqq *|| =  
 
This also implies that |q|2 = q*q. 

10.3.6 The Inverse of a Quaternion 

The inverse of a quaternion is indeed a multiplicative inverse. Multiply it by the quaternion, and you get 
the real number 1. The inverse is unique. 
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For a quaternion q, the inverse is denoted q-1 and is given by the following equation: 
 

2
1

||
*

q
qq =−  

 
To prove this really is a multiplicative inverse, all we have to do is multiply it by q, and see if we get 1: 
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Notice that if the magnitude of q is already 1, then the inverse is equal to the complex conjugate of q. 

10.4 Using Quaternions for Rotations 

All the math you just learned about imaginary numbers is about to start paying dividends. Quaternions 
are not just odd looking mathematical constructs -- rather, hidden beneath the strange sum of a real 
number and three imaginary numbers is a very powerful and elegant way to rotate points around any 
axis. To uncover this important concept, let us take another look at the standard quaternion 
representation: 
 
q0 + q1i + q2j + q3k 
 
It is possible to think of i, j, and k as "imaginary" vectors i, j, and k that obey Hamilton's rules. Under 
this interpretation, the components q1, q2 and q3 become the components of a vector, say q, where q = 
q1i + q2j + q3k. Our quaternion then becomes: 
 
q0 + q 
 
If the quaternion is a pure quaternion, so that q0 = 0, then we can think of the quaternion as representing 
a vector in three-dimensional space -- namely, the vector q. 
 
Now suppose we have a vector represented by a pure quaternion v, and a unit quaternion (that is, a 
quaternion with magnitude 1) denoted by q. Then it is possible to show that the product qvq* is the 
vector v rotated around an axis encoded in the quaternion q, by an angle also encoded in q (the product 
is a pure quaternion, and thus really can be interpreted as a vector). 
 
This is a remarkable fact, but it is not sufficient. The question still remains -- exactly how does the 
quaternion q encode a rotation around an axis? Suppose q is expressed in the following form: 
 

uq ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=+=

2
sin

2
cos0

ααqq  

 
where u is a unit vector. Then the product qvq* is the vector v rotated by an angle α  around the axis u. 
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This is the exact result we seek, since it tells us how to construct a quaternion q in such a fashion that we 
can use it to rotate vectors around any axis we choose, by any angle we want (see Figure 10.2). 
 

 
Figure 10.2: A quaternion rotation. 

 
You can combine multiple quaternion rotations into a single quaternion. To show this, suppose we 
wanted to rotate the vector represented by the pure quaternion v by q, and then by p. The result of the 
first operation is qvq*. Applying the second rotation, we get p(qvq*)p*. Since quaternion multiplication 
is associative, we can rewrite this as (pq)v(q*p*). However, (q*p*) = (pq)*, so we can write our rotated 
vector as (pq)v(pq)*. If we let r = pq (the quaternion product of p and q), then we see that the rotated 
vector is simply rvr*. This is how you can combine quaternion rotations. 
 
The next logical thing to do would be to develop a formula for qvq*. But what is typically done instead 
is to calculate the matrix induced by qvq* (the quaternion transformation is indeed linear), and then use 
this matrix to transform points. This is more efficient than transforming points directly, since you can 
combine the matrix with other matrices. 
 
We will be skip the math derivation (since it is very ugly) and just look at the induced matrix of qvq*: 
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Note: This particular matrix obeys the right-hand rule for determining the rotation direction. Point your 
thumb in the direction of the axis; positive angles correspond to the direction your fingers curl in, and 
negative angles correspond to the opposite direction. 
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Most of this chapter has been leading up to this result. With the above matrix, you can rotate points 
around any axis you want. Not only that, but you can combine any number of these rotations along with 
all the standard linear transformations (such as scaling and translation) into a single matrix. 
 
What may not be clear right now is exactly how quaternions can benefit game developers. We will 
explore this in the next section. 

10.4.1 Quaternions and the World-to-View Transformation 

We noted in Chapter Nine that when you are creating the world-to-view transformation matrix, it is 
sometimes difficult to choose the x, y, and z rotation angles for the rotation matrices. You might think to 
set all these angles to zero, and then tie them to the keyboard (say) in the following way: 
 
When the user presses the left or right arrow keys, increment or decrement the y rotation angle. 
When the user presses the up or down arrow keys, increment or decrement the x rotation angle. 
When the user presses some other two keys, increment or decrement the z rotation angle. 
 
This simplistic scheme may not always give you the results you want. For example, suppose the user 
rotates 90 degrees around the x-axis, so he or she is facing the negative y-axis. Then any rotation 
performed on the z-axis will appear to the user as a rotation around the y-axis, and similarly, any rotation 
performed on the y-axis will appear to the user as a rotation around the z-axis. (See Figure 10.3.) 
 

 
Figure 10.3: Problems using rotation angles. 

 
This situation (called gimbal lock) occurs because each rotation is performed independently; first the x-
axis rotation, then the y-axis rotation, and finally the z-axis rotation. Merging the rotation matrices into a 
single rotation matrix does not solve that problem. (Remember, the composite matrix does exactly the 
same thing as the three rotation matrices do separately when they are applied in sequence.)  
 
You can fix this particular problem by changing the order of rotation, but no matter what order you 
ultimately select, there will still be many cases where rotation is not intuitive; where you should be 
rotating around one axis, you are actually rotating around another (or even several).  
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Not surprisingly (given the content of this chapter), quaternions are the solution to this problem. The 
reason is that quaternions perform rotation around a single axis, and by using a single angle, the 
problems associated with matrices simply cannot occur. 
 
To create a quaternion-based rotation matrix for the world-to-view transformation matrix: 
 
1. Create a quaternion that does not do anything to points. (It could rotate them around any old axis by 0 
radians, for example.) Call this the view quaternion. 
 
2. Whenever the user presses a key, generate a temporary quaternion for rotation around the axis 
corresponding to that key. The direction of rotation should be opposite to the direction the user is turning 
in. For example, if the user presses the right arrow key, generate a quaternion that rotates leftward, 
around the y-axis. 
 
3. Multiply the view quaternion by the temporary quaternion. Use the result to update the view 
quaternion. 
 
4. Create a rotation matrix that corresponds to the updated view quaternion, and use this matrix in the 
world-to-view transformation matrix. 
 
This approach will work flawlessly, and yet still allow you to use matrices to transform your geometry. 
The only issue you have to be aware of is that after extended periods of time, the quaternion may cease 
having a magnitude of 1 (due to floating-point inaccuracies). To solve this problem, just renormalize it 
from time to time by dividing the components of the quaternion by its magnitude. 
 
Note that under this scheme, there are no rotation angles, so you may wonder how you can figure out 
which direction the user is facing. This is easy. Either extract a direction vector from the rotation matrix, 
or use the inverse quaternion on the vector <0, 0, 1> (the positive z-axis direction). The latter approach 
works since the quaternion will transform the look-at vector to the vector <0, 0, 1>, so the inverse 
quaternion will transform the vector <0, 0, 1> to the look-at vector. 
 
How do we know the inverse quaternion will undo the transformation of the quaternion? The proof is 
quite simple. Recall the form of the rotation quaternion: 
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The quaternion that will undo this rotation has the same axis, but opposite angle. So plugging in α−  
into this equation, and calling the result q', we get the following: 
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This is just the complex conjugate of q, by definition. Recall that for quaternions with magnitude 1 -- the 
only kind of quaternions that represent rotations -- the inverse is equal to the complex conjugate. So we 
have just shown that for a rotation quaternion q, the quaternion that will undo the rotation is equal to the 
inverse of q. 
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Quaternions have many other uses as well. For example, many high-end 3D graphics tools export 
animations using quaternions instead of rotation matrices. Further, it is possible to smoothly interpolate 
between two different quaternions, which is nice if you have a prerecorded series of orientations, stored 
as quaternions, and want to generate in between orientations. Other times you may just want to use 
quaternions to rotate points around arbitrary axes, for your own reasons. 
 
Whatever kind of game you are interested in designing, chances are there are many places where you 
can incorporate quaternions instead of standard rotation matrices. And thanks to the elegance of 
quaternion rotation, doing just that will likely simplify your job considerably. Fortunately, you will not 
have to start from scratch. As part of the math library with this course, you will find a quaternion class 
that will make using quaternions a breeze.  

Conclusion 

In our next lesson, we tackle various problems in analytic geometry, using the all of the new math we 
have covered since Chapter Six. 

Exercises 

1. Construct the matrix for rotating points around the <1, 4, -1> axis. 
 
2. What are the solutions of the polynomial equation x2 + 1 = 0? 
 
*3. You can use quaternions to represent the orientation of the camera in a 3rd person game like Tomb 
Raider™. One of the main advantages to doing so is that you can then smoothly change the camera 
orientation by interpolating the underlying quaternions. The interpolation algorithm commonly used is 
known as SLERP (Spherical Linear intERPolation). Read about the technique at 
http://www.gamasutra.com/features/19980703/quaternions_01.htm and summarize your findings. 
 
*4. What does multiplication of a complex number by i correspond to, geometrically? 
 
!5. Describe how you can use the cross product operation and quaternion rotation to determine how a 3D 
vector v reflects off a plane with normal n. (This is not the actual method used for reflecting vectors, but 
it is instructive, nonetheless.) 
 
*6. If you constructed a quaternion to rotate points around the positive x-axis, would the corresponding 
matrix (given by the quaternion-to-matrix formula shown in this lesson's material) be identical to the x-
axis rotation matrix introduced in the last chapter? Why or why not? (Hint: Rotation matrices are 
invertible and all inverse matrices are unique.) 
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Introduction 

In Chapter Six, we saw some of the amazing things you can do when you give geometric shapes 
algebraic representations. Since that lesson, we have covered quite a bit of new material -- vectors, 
matrices, linear transformations, and quaternions. With that new material comes many new applications 
in the realm of analytic geometry. Some of these applications were introduced with the topics 
themselves, but many of them span multiple topics or could not be explained adequately with a half-
page or so of material stuck on the end of a lesson. This chapter is dedicated to exploring those topics in 
a thorough and mathematically rigorous manner -- in a manner that will leave you fully prepared to pick 
up where this course leaves off, and take all the concepts and techniques you have learned and use them 
to solve your own problems. 
 
This lesson is also going to be our last purely mathematical lesson. In our next lesson, we will come 
down from our ivory tower, venture into the real-world and start writing equations in C++ instead of 
math lingo -- creating, as we go, a 3D game, built using all of the math we have been talking about 
during this course. 

11.1 Basic Collisions in 2D 

Imagine that you are writing a pool (billiards) game. In this game you have a virtual cue that you use to 
strike balls in hopes of getting them into the six pockets lining the perimeter of the pool table. One of the 
physical facts that pool players take advantage of is that when the balls collide with the edges of the pool 
table or other balls, they bounce off at approximately the same angle they came in at. This observation, 
illustrated in Figure 11.1, opens up a world of possibilities for good pool players (as anyone who has 
watched a real-world competitive pool game knows). 
 

 
Figure 11.1: Recoiling in the game of pool. 
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As a game designer, you will face two obvious challenges in simulating the physics of the situation: (1) 
determining when one ball collides with another or with the edges of the pool table and (2) determining 
how balls should recoil when striking other objects or react when being struck. 
 
When thinking about how to solve these problems, what you should not do is panic! You may not have a 
clear intuition about how to proceed, but if you approach the problems in a calm, systematic manner, 
you will gain a much better understanding about what is going on and what you have to do to solve the 
problems. 
 
The first step in solving any problem is simple: divide the problem into manageable tasks. In the case of 
the pool game, we have two problems to solve, and each of those problems can be further divided. The 
choice of subdivisions is shown below: 
 

• How to detect the collision of one ball with another ball. 
• How to detect the collision of a ball with the edges of the pool table. 
• How a ball should recoil when it hits another ball. 
• How a ball should recoil when it hits the edges of the pool table. 
• How a ball should react when it is hit. 

 
The second step is to simplify each task as much as possible. For example, the pool table and the balls 
are three-dimensional objects, yet they really interact with each other only in two dimensions. Picture a 
plane drawn through the exact center of the balls. When balls collide with each other or with the edges 
of the pool table, the colliding parts will always be in this plane. What this suggests is that we can 
simplify the problems by reducing them to two dimensions. 
 
The third step in solving the problem is simple. Draw a picture of what is happening in each task, and 
make sure the picture contains all of the information you know about the problem. Sometimes this is not 
possible, depending on the kind of problem you are trying to solve, but whenever it is possible, do it. 
Humans are visual creatures and generally have a much easier time understanding something when they 
can see it in front of them (hence all the figures and drawings in this course). 
 
In our case, we have five individual problems to solve, and hence, at least five pictures to draw were we 
to solve all of them (in this lesson we will only solve three). The picture for the first problem is shown in 
Figure 11.2. 

 
 

Figure 11.2: Detecting the collision of one ball with another ball. 
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In Figure 11.2 you can see two balls, each represented by a circle, and each having radius r. Task (1) is 
determining how to detect the collision of one ball with another ball. That translates into detecting when 
one of the circles either grazes the edges of the other or actually overlaps with it. 
 
Task (1) depends on the distance between the balls. At far away distances, the balls will not penetrate 
each other. At closer distances, the balls will. So what we need to determine is the minimum distance 
that must separate the balls. If the balls are closer to each other than this minimum distance, then they 
have penetrated each other. 
 
This raises the question, what do we mean by the distance between the balls? One way to define this is 
to say it means the distance between the centers of the balls. (You can define it other ways, however, 
and still solve the problem.) Presumably, we would represent the location of each ball as an (x, y) pair, 
which designates the location of the center of the ball. So if we designated the location of one ball by 
(x1, y1), and the location of the other ball by (x2, y2), then we could use the distance formula to calculate 
the distance between them. If we call this d, then we have, 
 

2
01

2
01 )()( yyxxd −+−=  

 
Figure 11.3 shows the situation when the balls are so close that the edges touch each other. This would 
be considered a collision between the balls. 
 

 
Figure 11.3: The case of collision. 

 
Notice that from the way the figure is drawn, it is obvious that the minimum distance is 2r. (If this 
geometric deduction is not satisfying to you, you can represent each of the circles with an equation and 
prove that you will only get intersection points between the two circles if the distance between them is 
less than or equal to 2r.) Thus, if rd 2≤ , then we have a collision. Otherwise, we do not. 
 
We have just solved task (1). 
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Figure 11.4 depicts task (2). 
 

 
Figure 11.4: Detecting the collision of a ball with the edges of the pool table. 

 
Task (2) is more complicated than task (1), since previously we just had to detect collisions between two 
circles. Now we have to detect collisions between a circle and the edges of the pool table. 
 
We can represent the edges of the pool table with lines. The task then reduces to figuring out if a line 
and a circle intersect. 
 
The solution to the last problem might suggest a solution to the current one. If the distance between the 
line and the center of the circle is less than the radius of the circle, then the ball has penetrated the edge 
of the pool table. Here the distance between the line and the center of the circle is defined as the 
"minimum distance" -- the distance along a vector perpendicular to the line. Figure 11.5 illustrates this 
idea. 
 

 
 

Figure 11.5: Detecting the collision of a ball with the edges of the pool table. 



 232

This is indeed a good way to solve the problem. We could determine what the distance is between a line 
and a point (it is not too hard), or we can just refer back to Chapter Seven, which stated that if you have 
a line with direction u, and a point on the line p, you can find the distance between the line and the point 
q with the following equation: 
 

||
|)(|

u
upq ×−

=D  

 
That wraps up task (2).  
 
Tasks (3) and (5) require knowledge of college-level physics, so we will not solve them here. (The 
Game Physics course does indeed discuss and solve these problems, so you will get your chance to 
tackle this later in your studies.) But we can certainly solve task (4). 
 
In task (4), the object is to figure out how a ball should rebound when it hits the edge of the pool table. If 
we ignore concepts like friction, the spin of the ball, and so on, the speed of the ball before impact is 
exactly the same as the speed of the ball after impact, and the outgoing angle is equal to the incoming 
angle. This is depicted in Figure 11.6. 
 

 
Figure 11.6: Determining how a ball should recoil when it hits the edges of the pool table. 

 
We again need to represent the edges of the pool table with lines. The most convenient representation of 
a line here is the slope intercept form: 
 
y = mx + b 
 
A line perpendicular to the edge has slope -1/m (from Chapter Six), so the vector n = <1, -1/m> is 
perpendicular to the edge. This vector, along with the incoming velocity of the ball, which we have 
designated v, and the outgoing velocity of the ball, which we have designated v', are illustrated in Figure 
11.7. (In physics, and here, velocities are vectors; they describe both direction and speed.) 
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Figure 11.7: The vectors describing the situation. 

 
After looking at the figure for a while, it may occur to you that if we project v onto n, we will get 
another vector, say u. Then if we form the difference (u - v), and add this result to u, we will get the 
vector -v', and so we can just multiply this by -1 to get v'. This is indeed correct (see Figure 11.8). 
 

 
Figure 11.8: The solution to task (4). 

 
So we can write v' as follows: 
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This formula is always valid, although keep in mind that using the slope-intercept form of the equation 
for a line, you can never represent perfectly vertical lines (and hence, you cannot have perfectly vertical 
edges for the pool table). However, you can represent lines that are as close to vertical as you want -- 
just increase m until the resulting line is indistinguishable from a vertical line. (Alternatively, you can 
use a different representation of the line, such as the vector form, and re-derive the equations, although 
the results will be somewhat more complicated.) 
 
This result is applicable to more than just our pool game. If you wanted to create a two-dimensional 
ping-pong game, or any two-dimensional game that has some objects bouncing off of edges, then the 
equations above will do the job. 
 
The next thing we could do is extend these physical reflection equations to the third dimension, but 
rather than do just that, we will instead look at how to do basic reflection (the equations are the same). 

11.2 Reflection in 3D Games 

One of the more amazing special effects that games are sporting these days is realistic reflection. Fly 
across a lake or look into a mirror in one of today's games, and you are more likely than ever to see 
something reflected back at you. How do the game developers pull off these feats? With magic of course 
-- the magic of mathematics. 
 
If the reflective surface is flat, then games will often create a temporary viewer and place it in just the 
right place, with just the right orientation, so that what the temporary viewer sees is what the user sees 
reflected in the surface. The games will then place an image of what the temporary viewer sees into an 
off-screen buffer (a chunk of memory that holds graphics but is not visible to the user). Then when 
displaying the scene for the user, they will use the contents of this off-screen buffer to "paint" the 
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reflective surface, blending it with its own colors. (If the reflective surface was water, for example, the 
off-screen buffer would be blended with a picture of water.) Figure 11.9 shows the process. 
 

 
 

Figure 11.9: Reflection in games. 
 
The challenging part of reflection is figuring out exactly where to place the temporary viewer and giving 
it an appropriate orientation. Of these problems, the former one is the easiest, so we will solve that one 
first. 
 
When you look into a mirror that is positioned at a distance d from you, you see the reflected version of 
yourself at a distance 2d from you. (This can be proven with optical physics.) Another thing you will 
notice is that if you were to draw a straight line from your eyes to the eyes of your reflected self, the line 
would be perpendicular to the surface of the mirror. These facts suggest that we should place the 
temporary viewer a distance 2d from the real viewer, behind the reflective surface, along a line 
perpendicular to the normal of the reflective surface. This is illustrated in Figure 11.10. 
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Figure 11.10: Placing the temporary viewer. 

 
Note: Since the temporary viewer is placed behind the reflective surface, when creating the off-screen 
buffer, you must take care not to render the backside of the reflective surface. 

 
Suppose the location of the viewer is given by the vector v, the normal of the reflective surface is given 
by n, and a point on the reflective surface is given by p. Then we can find the location of the temporary 
viewer in the following way. First, we project the vector (v - p) onto n. This creates a vector 
perpendicular to the reflective surface, with a magnitude equal to the distance between the viewer and 
the surface. Next, we multiply this vector by -2. This scales the vector so that its magnitude is equal to 
twice the distance between the viewer and the surface and changes its direction so that it points into the 
surface. Last, we add this vector to v, to give us v', the location of the temporary viewer (see Figure 
11.11). 
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Figure 11.11: Deriving the location of the temporary viewer. 

 
In mathematical notation, we can write the location of the temporary viewer as follows: 
 

)(2' pvvv n −−= proj  
 
Now we must solve the second problem. The easiest way to do this is to use the rotation matrix 
generated for the world-to-view transformation, since this matrix contains the viewer's up, right, and 
direction vectors (see Chapter Nine). To find the orientation of the temporary viewer, we just reflect 
each of these vectors on the surface. The result will be the up, right, and direction vectors for the 
temporary viewer, which we can use in its world-to-view transformation. 
 
So now we need to know how to reflect a three-dimensional vector on a plane. This is not much harder 
than reflecting a two-dimensional vector on a line. Figure 11.12 shows the basic setup for the problem. 
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Figure 11.12: Reflecting a three-dimensional vector on a plane. 
 
As suggested in the figure, given a vector u, a plane with normal n, and a point p on the plane, the 
reflected vector, u', is given by the following equation: 
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Notice this has the exact same form as the two-dimensional reflected vector. 
 
Apply this formula to each of the rows of the rotation matrix, and you will get the rotation matrix for the 
temporary viewer. With this information, and the location of the temporary viewer (which we just 
calculated), you can create a new world-to-view transformation matrix. Use this to generate the scene 
from the point-of-view of the temporary viewer, but instead of displaying the result on the computer 
screen, store it in memory and use it to paint the reflective surface later on using texture mapping. 
 
The operation of reflecting a vector is a linear transformation, so it has an induced matrix. Assuming n is 
the normal of the surface, the form of this matrix is shown below: 
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The matrix form can be helpful if you want to reflect a collection of vectors on a given plane. 
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11.3 Polygon/Polygon Intersection 

When objects in the real world collide, they either stop moving or ricochet off each other. When objects 
in a game world collide, however, they just sail right through each other -- unless, of course, you detect 
those collisions and prevent the objects from penetrating. That is what collision detection is all about. 
 
The task is fairly straightforward once we simplify it to detecting collisions between two polygons. 
(Objects are made of polygons, so this simplification is no loss of generality.) In this case, collision 
detection becomes a matter of checking all the edges of the first polygon to see if they penetrate the 
second, and then all the edges of the second polygon to see if they penetrate the first. This is the only 
way the two polygons can penetrate each other (see Figure 11.13). 
 

 
Figure 11.13: The two cases that lead to penetration. 

 
Fundamentally, then, we need to be able to determine if a line segment (the edge of a polygon) 
penetrates a polygon. For someone who knows as much math as you, this is a proverbial walk in the 
park! 
 
Here is the basic idea. First, check to see if the two points defining the line segment lie on opposite sides 
of the polygon. If they do not, then there is no possible way the line segment penetrates the polygon. If 
the points do lie on different sides of the polygon, however, then determine where the line segment 
intersects the plane containing the polygon. We call this the intersection point. Last, see if the 
intersection point actually lies within the boundaries of the polygon itself. 
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The first step is easy. Plug each of the points into the plane equation (Ax + By + Cz + D = 0). The 
equation will evaluate to zero for points on the plane, negative for points on one side, and positive for 
points on the other side (see Chapter Six). If the equation evaluates to zero for one of the points, then 
you have an intersection -- that point is the intersection point. Otherwise, just check the signs. If they are 
both negative or both positive, then both points lie on one side of the plane and there is no intersection. 
Otherwise, the points lie on opposite sides of the polygon and you must proceed to the next step. 
 
The second step is easy too (we have done it before). Suppose the two points of the line segment are p1 
and p2. We can create a parametric equation that describes all points on this line as follows: 
 
P(t) = p1 + (p2 - p1)t 
 
Writing p1 = <p1x, p1y>, and p2 = <p2x, p2y>, the equation can be written: 
 
px(t) = p1x + (p2x - p1x)t 
py(t) = p1y + (p2y - p1y)t 
py(t) = p1z + (p2z - p1z)t  
 
We want the point that satisfies both of these equations and the plane equation, which we can get by 
substituting the above three equations into the plane equation, as done below: 
 
A(p1x + (p2x - p1x)t) + B(p1y + (p2y - p1y)t) + C(p1z + (p2z - p1z)t) + D = 0 
 
After much math, solving this equation for t gives: 
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Plug this value of t into the parametric equation for the line segment, and you get the intersection point. 
 
The third step is the most challenging. We have the intersection point and need to determine if it lies 
within the boundaries of the polygon. The problem would be much simpler if the polygon and point 
were both two-dimensional. So what we do first is project both polygon and point onto an axis-aligned 
plane -- the x-y plane, the x-z plane, or the y-z plane. This essentially involves simply dropping the x, y, 
or z coordinate, depending on which plane we pick (see Figure 11.14). 
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Figure 11.14: Projecting the polygon and the intersection point onto an axis-aligned plane. 

 
In general, it does not matter what plane we use for the projection. But if the polygon is aligned with one 
of the planes, then projecting it onto that plane will produce a straight line, which makes it a bit difficult 
to determine whether or not the intersection point is inside the boundaries. For this reason, it is best to 
choose the plane whose surface normal (either in one direction or the other) most closely matches the 
normal of the polygon. This will ensure the broadest possible projection, as shown in Figure 11.15. 
 

 
 

Figure 11.15: Choosing the projection plane based on the polygon's normal. 
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Once the problem is reduced to two-dimensions, it simplifies considerably. We only have to see if a 
two-dimensional point lies within the boundaries of a two-dimensional polygon. 
 
To make the problem even simpler, we are going to assume that the polygon is convex. (That is, a line 
drawn from any two points in the polygon will never cross the boundaries of the polygon.) Since all 
polygons can be represented as a set of convex polygons, and since hardware generally only handles 
triangles (the simplest of all convex polygons), we do not really lose anything with this assumption. 
 
This setup is shown in Figure 11.16. 
 

 
Figure 11.16: The simplified problem. 

 
To determine whether a point lies within the boundaries of the polygon, we must first give those 
boundaries a mathematical representation. Suppose the points defining an edge of the polygon are given 
by the vectors p1 = <p1x, p1y> and p2 = <p2x, p2y>. Then we can represent the edge parametrically by the 
following two-dimensional vector equation: 
 
P(t) = p1 + (p2-p1)t 
 
Notice the vector p2-p1 describes the orientation of the line. If we rotate this vector by 2/π  radians, to 
get another that is perpendicular to the direction of the line, then we get the vector                        
p' = <p2y - p1y, p1x - p2x>. (You can check this using the standard rotation formulas.) This vector gives us 
a way to check which side of the line a point is on. For checking the point q, all we have to do is form 
the vector q-p1, and then dot it with p'. Since the dot product is positive when the angle between the 
vectors is less than 2/π , and negative otherwise, the sign of the dot product effectively tells us which 
side of the line the point q is on (see Figure 11.17). 
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Figure 11.17: Determining which side of the line a point q lies on. 
 
This helps us because all we have to do is test the intersection point against all the edges of the polygon. 
If the intersection point is on the interior side of each edge, then the intersection point lies within the 
boundaries of the polygon. Otherwise, it does not. This concept is illustrated in Figure 11.18. 
 

 
 

Figure 11.18: Checking to see if the intersection point lies within the boundaries of the polygon. 
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All we need to do now is determine which sign (positive or negative) goes with the inside of the polygon 
for each edge. This is easy. Just take a point known to be inside the polygon, send it through the above 
calculations, and check the sign of the dot product. If it is the same as the sign of the intersection point, 
then the intersection point lies on interior side. Otherwise, it lies on the exterior side. 
 
You can find a point inside the polygon by averaging all the points defining the polygon. The resulting 
average is the geometric center of the polygon. (This trick works only with convex polygons.) 
 
Let us summarize the procedure now. Suppose the points defining the polygon are given by the two-
dimensional vectors p1, p2, ..., pn. Further suppose that q is the intersection point. Then to determine 
whether or not q lies within the boundaries of the polygon, follow these steps: 
 

Compute 
n

n21 pppc +++
=

L , the geometric center of the polygon. 

 
For each edge defined by pi, pj (there are n+1 of them, the last defined by pn, p1), calculate the following 
quantity: 
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If s is positive, then the signs match, and the intersection point lies on the same side of the edge that the 
geometric center does. If s is negative, however, they lie on opposite sides and you know the intersection 
point does not fall inside the polygon. If s is zero, then the intersection point falls exactly on the edge of 
the polygon, and how you handle this case is up to you. 

If s is positive (or non-negative, depending on how you handle the zero case) for each of the n+1 lines, 
then the point lies inside the polygon, and otherwise it does not. 

This is all rather straightforward, but unfortunately, it is also computationally expensive. To speed up 
the process, you should compute for each object a bounding sphere; that is, a sphere that completely 
encloses (bounds) all of the points of the object. Then if you want to see if two objects have collided, 
first check their bounding spheres to see if they penetrate each other. (This is very fast, since all you 
have to do is compute the distance between the centers of the spheres and compare it to the sum of the 
radii.) Only if the bounding spheres penetrate each other should you perform the polygon-to-polygon 
intersection test outlined above. 
 
Computing a bounding sphere is not difficult at all. Just find the geometric center of the object, call that 
the center of the bounding sphere, and compute the distances from the geometric center to all the points 
defining the object. The maximum distance is the radius of the bounding sphere.  
 
Once you know a collision has taken place, you need to handle it. In general, this requires some heavy-
duty physics, but if the collision is between the viewer and, say, a polygon, then you probably just want 
to slide the viewer along the polygon. One of the exercises at the end of this chapter asks you to derive 
equations to handle this. (Hint: use vector projection and the normal of the polygon.) 
 
In the next section, we will derive the math behind the shadows you see in most of today's games. 
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11.4 Shadow Casting 

Realistic lighting models can produce stunning results (as demonstrated in the movie Final Fantasy), but 
unfortunately, the better the mathematical model, the more time it takes the computer to display the 
scene. Since games have to update the display very frequently (more than 30 times per second) in order 
to produce fluid animation, they usually have to compromise when it comes to lighting. 
 
In the case of generating shadows, the compromises are significant. In general, only point light sources 
are permitted (sources that emanate light from a single point), light is not allowed to bend (it travels in a 
straight line, thus producing very sharp shadows), and only select polygons can cast shadows (it is 
typically too time-consuming to generate real-time shadows for all polygons in a game world). 
 
Still, even with these simplifications, the results can be impressive, and are certainly far more realistic 
than having no shadows at all. One only has to look at a game like Doom III™ to see the amazing 
results of real-time shadows.  
 
So how can we add shadows to a game? Well if you want an object to cast shadows on very simple 
surroundings, like a flat, level surface, then you can project the polygons comprising the object onto the 
surface by creating rays from the light source to the vertices of the polygons. The intersection of these 
rays with the surface will give you a number of polygons that you can display with a dark, slightly 
transparent texture. (You just have to be sure not to shade the same pixel twice.) This method of shadow 
casting is shown in Figure 11.19. 
 

 
 

Figure 11.19: A simple method of shadow casting for planes. 
 
If the geometry of the environment is more complex, however, then the above method will not work 
unless you add a lot of computational overhead (like clipping the projected polygons to the shape of the 
polygons they are projected on -- really not something you want to do in real-time). For complex 
environments, games often use a more general method based on the concept of shadow volumes. 
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Imagine rays extending from the light source to the vertices of a polygon, and then further outward to 
some finite (but faraway) distance, where they intersect the vertices of an enlarged copy of the original 
polygon. The volume defined by these rays and two polygons is called a shadow volume, and objects 
located in the volume are to be shadowed. Figure 11.20 shows an example shadow volume. 
 

 
 

Figure 11.20: A shadow volume for a polygon. 
 
The faces of the shadow volume, including the two polygons at the ends, are called shadow polygons. 
The backside of a shadow polygon is defined as the side that faces inward; the frontside is defined as the 
side that faces outward. These distinctions are shown in Figure 11.21. 
 

 
 

Figure 11.21: The two sides of a shadow polygon. 
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The basic procedure for determining if a point falls in the shadow is simple. Count the number of 
frontsides the viewer sees at that point, and call this x. Then count the number of backsides the viewer 
sees at the point, and call this y. If x > y, then the point falls in the shadow, and otherwise it does not. 
Figure 11.22 shows how this works for a couple of sample points. 
 

 
 

Figure 11.22: Determining whether or not points should be shadowed. 
 
The only math that this method requires is the creation of the shadow polygons. You can do this by first 
giving each ray a parametric representation. If pi is the ith vertex of the polygon, and c is the location of 
the light source, then the following equation describes the ith ray: 
 
Ri(t) = c + (pi - c)t 
 
Each polygon edge creates a four-sided shadow polygon (a quadrilateral). You can create both of these 
polygons and the enlarged polygon at the end of the shadow volume by choosing a sufficiently large 
value of t in the above equation. (Keep in mind that points outside the shadow volume never get 
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shadowed.) Strictly speaking, you do not need to create the enlarged polygon, since the shadow volume 
should extend far enough out that the viewer is not likely to go beyond it. 
 
If you are feeling ambitious, you might want to explore the idea of creating a shadow volume for an 
entire object, rather than just a single polygon. This can be a bit tricky, but if the object does not move 
relative to the light source, then this approach will be much faster, since you only have to compute the 
shape of the shadow volume once. One way of computing such a shadow volume is to project the entire 
object onto a plane perpendicular to the light source, and then generate shadow polygons for only those 
edges that are on the outside of the projected shape. You can safely ignore all the interior edges, which 
will result in an increase in performance. 
 
Shadow volumes and other forms of real-time shadowing in games are explored in detail in the Graphics 
Programming course series (Parts II and III), so you will encounter these concepts and their 
implementation a little later in your studies.  
 
In the next section, we will talk about the basic principles of lighting in games. 

11.5 Lighting in 3D Games 

The general problem of lighting is quite complicated. Each point in the world can receive light from 
light sources and also from all the objects around it. Further, each point reflects light to some degree 
depending on the material properties of the substance reflecting the light. There do exist techniques to 
model this complexity, most notably radiosity, but even supercomputers can take hours or days to 
compute lighting for scenes using these techniques. (You will learn more about implementing radiosity 
and other complex lighting models in the Graphics Programming course series later in your studies).  
 
So for the time being, simpler models will have to suffice. Just how simple? Most games today look at 
two things when determining how to light a point; whether or not there exists a clear line-of-sight 
between the point and a light source and what the orientation of the surface is relative to the light source 
at that point. 
 
Checking for a clear line-of-sight is straightforward. Create a line segment from the light source to the 
point, and then see if it intersects any polygons in between. (Bounding spheres improve performance, 
but are not necessary unless the objects or light sources are moving, since you can just generate the 
lighting information once and then reuse it.) 
 
You can determine the orientation of a surface relative to the light source by computing the dot product 
of the surface's normal and a vector describing the orientation of the light source. Then you can either hit 
the dot product with the inverse cosine function to get the angle between the two vectors (this assumes 
the vectors are normalized, if not you will first have to divide by the product of their magnitudes) or use 
the dot product directly to compute the shade at that point. Surfaces directly facing the light source 
should be brightest, and surfaces facing away from the light source should not receive any direct light 
from that source (see Figure 11.23). 
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Figure 11.23: Shading polygons based on their orientation relative to a light source. 
 
Of course, it would be a bit impractical to shade each and every point in the world. So what some games 
do instead is shade a single point on a polygon and use color that for the entire polygon. Other games 
will shade all of the vertices of the polygon and then smoothly interpolate the shading values across the 
face of the polygon when displaying it. This can produce crude shadowing, but nothing approaching the 
realism of the technique covered in the last section (not unless you use many extremely small polygons). 
There are other forms of lighting as well which we will discuss in the next chapter. Again, you will get 
into the real details on lighting in games when you begin your studies in the Graphics Programming 
course series. For now, we just want to nail down a theoretical foundation for understanding the 
techniques. 

Conclusion 

The applications we have looked at in this chapter are just a few of the countless ways to use math in 
computer games. In addition to applications in computer graphics, math is relied on exclusively in the 
realm of physics simulation -- a topic you will examine later when you take the Game Physics course. 
Even artificial intelligence makes heavy use of mathematical constructs like matrices and vectors and 
you will have a chance to look at some of these applications in the Introduction to Artificial Intelligence 
course a little later in your training. 
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Exercises 

*1. Suppose the viewer is located at (x, y), with a conical field of view of θ , and that an object with 
bounding sphere r is located at (s, t). (See Figure E11.1.) What is the angle between the viewer and the 
side of the bounding sphere closest to the viewer's field of view? 
 

 
 

Figure E11.1: The setup for Exercise 1. 
 
2. For this exercise, you will need the result of Exercise 1. Suppose the viewer can turn to the left or 
right at a maximum of ω  radians per second. If the viewer is stationary (or moving strictly forward), 
what is the minimum number of seconds required before the viewer can see the object mentioned in 
Exercise 1? (You can use this information to avoid transforming and displaying the object for the 
calculated number of seconds. Optimizations such as this exploit frame coherence -- the tendency of one 
frame to resemble the next.) 
 
*3. Devise a means of calculating the union, intersection, and difference of two objects composed 
entirely of triangles. (These operations are used extensively in 3D design programs like GILES™.) 
 
*4. Invent an angle-based method for determining if a 2D point falls within a 2D triangle. 
 
5. In previous exercises, you discovered how to determine if a computer character can see the player. 
But the technique used did not take into consideration the presence of objects that may be obstructing 
the character's line of sight. To fix this, you can send out rays from the character to a number of points 
on the player, and see how many of the rays intersect objects on their way from the character to the 
player. Describe how you can use the result of Exercise 4 to solve this problem. 
 
6. Devise a fast method for determining if a polygon lies within an axis-aligned box. 
 
!7. One method of shadow generation places a temporary viewer at the light source, and renders the 
view into an off-screen buffer. But instead of rendering colors into the buffer, the only information that 
is stored is the depth of each pixel. Describe how this information can be used to generate shadows, and 
derive any necessary equations. 
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Course Conclusion 

After finishing your exercises in this lesson, you will want to leave some time to begin preparing for 
your final examination. However, you are encouraged to try writing some of your own software that 
uses either some of the equations we have derived in this course, or new ones you come up with 
yourself. One way or the other, as you progress through the rest of your training here at Game Institute, 
this is going to happen anyway. 
 
Certainly, your training as a game developer is far from over. At this point you have gained some good 
insight into the mathematics that will be encountered as you work your way through the rest of the 
Game Institute curriculum, but there is much left to do. You will certainly have noticed that throughout 
this course we have referred to topics that will be studied in greater depth in other courses. Specifically, 
we mentioned the Graphics Programming course series a number of times. This was not done to duck 
the issue, but to allow you to tackle those concepts in a more appropriate setting where you can use them 
in a hands-on way.  
 
As you might have guessed, the Graphics Programming series (a multi-part series of courses that focuses 
on 3D graphics and game engine design) is where the true core of your game engine development 
training will occur. As you progress through the GP series, you will certainly see all of the mathematics 
we have discussed (and even some that we have not) being used in many different ways. Every single 
algorithm and technique that we only briefly touched upon (lighting and shadows, collision detection, 
reflections, etc.) will be thoroughly analyzed and put to use in an actual 3D game engine that you will 
build yourself over the course of the series. By the time you are done, not only will you have a thorough 
understanding of game mathematics in the context of a real game application, but you will also have a 
very powerful game engine that you can use to build your own commercial quality games.  
 
Keep in mind that your training will not stop there, nor will your use of mathematics. As mentioned a 
number of times, you will also try your hand at incorporating proper physics into your real-time game 
engine when you take the Game Physics course. You will even get to use a good deal of the math we 
discussed here in this course when you study artificial intelligence in the Artificial Intelligence course. 
Truth be told, there is really not a single course that you will encounter here at the Game Institute that 
does not include at least some of the math techniques we have discussed. So you are now in a much 
better position to be able to not only use the math, but to understand why you are doing so and how it all 
works. 
 
Best of luck to you as you continue on with your game programming adventures!  
 


