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Introduction 

Artificial intelligence (AI) is one of the critical components in the modern game development project.  
With the exception of graphics and sound, there are very few elements that are as vitally important when 
it comes to establishing engaging gameplay. The AI breathes the life of the development team and the 
designers into the game, and presents the player with the challenges that keep the game interesting and 
fun to play. In many ways, artificial intelligence is the game. In fact, it is not uncommon for modern 
game engines to devote as much as 20% or more of their processing time solely to artificial intelligence.  
 
Artificial intelligence can be an awkward subject to define because many game developers hold a 
different set of ideas about what it means and what exactly it constitutes. So let us begin by trying to 
establish a working definition and then we will move on to what components it encompasses. 
 
We all have a pretty good understanding about what the term “artificial” means. It is a man-made 
substitute for something natural (i.e., a simulation). But “intelligence” immediately begs the question, 
“What do we mean when we say something is intelligent?” Since this is not a Psychology course, we 
need not delve too deep to arrive at a useful answer. Certainly there are many ways that people 
intuitively characterize intelligence. We often think of intelligence as a measure of one’s ability to 
acquire knowledge and learn from experience. A more utilitarian definition might focus on the use of 
reasoning faculties to solve problems.  
 
By combining and simplifying these various concepts we can arrive at a fairly good standard definition: 
artificial intelligence is the application of simulated reasoning for the purposes of making informed 
decisions and solving problems. This seems like a fair enough way to characterize AI and it probably 
sits well with what most of you had in mind when pondering the nature of the terminology.  
 
In the relatively young field of artificial intelligence, the definition we have constructed here is quite 
applicable. Much research has gone, and continues to go, into creating machines that simulate human 
intelligence. Some people might place specific methods of solving problems in different AI categories 
while others bind it all up into a single unified AI concept, but whether taken collectively or not, this is 
probably a good overall means for understanding AI conceptually.  
 
But an important question to ask is, “is this what we mean when we talk about AI in games?” Well, in a 
manner of speaking, yes. But for our purposes as game developers, we will simplify even further and 
define artificial intelligence as the means by which a system approximates the appearance of intelligent 
decision processes.  This concept of the “appearance” of intelligence is a very critical point.  It is 
significantly important because there is obviously a distinct difference between artificial intelligence 
being intelligent and artificial intelligence appearing intelligent.   
 
A quick story will illustrate this point. While working on the game Psi Ops: The Mindgate 
Conspiracy™, our team spent a good deal of time making the various enemies behave more 
intelligently.  We programmed them to crouch and duck, roll out and fire, hide behind cover, throw 
grenades from cover, dodge objects thrown at them, chase a fleeing player, and pull alarms when they 
needed help. Despite all this effort, the game designers did not think that the enemies were intelligent 
enough.  They wanted them to be “smarter” and exhibit even more complex and intelligent behaviors.  
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The AI programming team’s initial response to this request was simply to double the hit points of the 
minions.  The results of this small modification may surprise you -- the designers were thrilled with the 
“intelligence enhancement.” But in reality, it is clear that the characters were no more intelligent than 
they were before the hit-point increase. Essentially what we learned was that the enemies were dying too 
quickly for the designers to fully appreciate their intelligence. While it may not immediately jump out at 
you, this story illustrates an important point: when it comes to artificial intelligence in games, more 
often than not, it is all about end user perception. 
 
That is, for game development, it is fair to say that if it looks smart, it is smart. It is ultimately irrelevant 
to the player how an AI system makes the decisions it does. They care only that the system seems to 
produce behaviors that give at least the outward appearance of having been thoughtfully considered. In 
other words, game AI is essentially a results-oriented concept. How the AI was able to arrive at the 
decision it did (and we will explore some of the methods for handling decision making in this course) is 
not remotely as important as the action that took place when the decision was finally made.    
 
This is not a new concept of course. Alan Turing’s famous test of machine intelligence is a good 
example. The Turing Test conceived of locking away a human interrogator in one room while a human 
and a computer were situated in another room. The means of communication between the two rooms 
would be text only. The central question was, could the interrogator tell the difference between the 
human and the computer based on an interactive exchange of questions and dialog? Turing suggested 
that the measure of the machine’s intelligence was its ability to convince the human interrogator that it 
was interacting with another human.  
 
This is not that far from where we find ourselves today. After all, our goal is to design an AI that makes 
the player believe that the entities in the game world are behaving the way one would expect an 
intelligent being to behave.    
 
To be sure, this was not always the case in the game field. Indeed the earliest games used virtually no AI 
at all. Games like Space Invaders, Centipede, Galaga, and Donkey Kong made little effort to convince 
the player that they were interacting with truly intelligent beings. Hardware limitations resulted in 
gameplay that relied almost exclusively on pattern-driven events with some varying degree of 
randomness. Eventually, a good player would recognize and memorize those patterns (e.g., where the 
next enemy would appear at the top of the screen) and use that knowledge to advance in the game.     
 
Today’s games exhibit a considerably more sophisticated set of artificial intelligence than those early 
titles could provide. As the rendering of more realistic scenery and in-game characters continues the 
steady march forward, the AI programmer will feel the pressure of having to maintain pace. Physically 
realistic looking game characters are expected to be paired with realistic looking behavioral traits. 
However, in modern game systems, graphics and sound have their own dedicated hardware, while AI 
remains CPU bound. So our job is to build AI systems that can provide that added realism without 
consuming all of the processing load needed for other important game tasks that aid in player immersion 
(like realistic physics models for example).  
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1.1 A Few Guidelines 

Before we begin discussion about the different types of artificial intelligence we are going to examine in 
this course, let us first take a moment to establish a few helpful guidelines that will come in handy when 
designing artificial intelligence for games.  

1.1.1 Love and Kisses 

One of the most important things to remember is the “KISS” method.  KISS is an acronym that stands 
for “Keep It Simple Stupid”.  As games become more advanced and hardware becomes ever faster, the 
software simulations are becoming more advanced to follow suit. As AI developers, not only do we not 
have the luxury of infinite processing time, but we will soon learn that we do not need the systems to be 
overly complicated.  This is where our second and related acronym comes in: “LOVE”. This is short for 
“Leave Out Virtually Everything”. In most cases, the simplicity of the artificial intelligence used in 
many games would probably shock you.  Remember the mantra from earlier: artificial intelligence 
approximates the appearance of intelligent decision processes. In other words, the AI only needs to 
convince the player that it is doing something smart. To be sure, there is a fine line that the AI developer 
must always be aware of. While simplicity can be a beautiful thing, we must be careful to make sure that 
the simplicity of our implementation does not come at the cost of the player experience. The last thing 
we want is for our game AI to become predictable and boring.  

1.1.2 Hard Does Not Equal Fun 

It is probably fair to say that most people do not want to play a game where it takes fourteen hours to 
complete a small level because the puzzles are too hard or they keep dying over and over again. Indeed 
it is not complicated to code artificial intelligence that is so difficult to beat that the game is no longer 
any fun to play. Real time strategy (RTS) games can easily fall into this trap.  Since an RTS game is 
deeply mathematical, it is very easy for a developer, who has advance knowledge of all of the inner 
workings of the simulation, to build an artificial intelligence system that makes optimal use of its 
resources, buildings, and units all of the time.  The problem with this approach is that a human player 
could never be as efficient as the computer driven artificial intelligence. Apart from the obvious 
advantage of pure calculation ability that the computer maintains, on a more practical level, at any given 
time a player can only interact with so many units and can only view a subset of the entire map. This 
places him at an impossible disadvantage versus the AI opponent.  You should always be aware of these 
types of imbalances which the game interface imposes on the player. Certainly in this case it is obvious 
that the player will never be able to play as effectively as the artificial intelligence and allowances will 
need to be made.  
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1.1.3 Play Fair 

Taking a cue from our last rule, as much as possible, you should make the artificial intelligence play by 
the same rules that the player must abide by.  It is supremely frustrating to play a game where the 
artificial intelligence “cheats”.  Once again, real time strategy games often exhibit a tendency to cheat in 
this fashion.  For example, in many cases, the game AI knows where the player units are located and 
often it does not need to pay the same costs for unit production.  This is grossly unfair to the player. But 
RTS games are not the only culprits. In many first person shooters, the artificial intelligence also knows 
where the player is, and when alerted, relentlessly chases him down, regardless of where he runs. 
Additionally, enemies in many shooters do not have to worry about ammunition resources. All of this 
adds up to an unfair advantage and potentially, a very disenchanted player. 

1.2 Fundamental Artificial Intelligence 

There are many subcategories of artificial intelligence, each of which has its own usage scenario. Some 
of these types tend towards the complex and as such, remain more in the domain of academic research 
than in game development (although there is often some crossover). 
 
Classification, for example, is a type of artificial intelligence that typically takes some input data and 
classifies it as something else.  For instance, there may be a system that looks at a small bitmap and 
determines what letter of the alphabet or number it is.  Types of classification systems include neural 
networks and fuzzy systems.  These systems require “training” in order to produce the classifications 
desired.  This training typically involves showing the system examples of each of the things which need 
to be classified, along with the expected result.  The training algorithm then adjusts the internals of the 
classification system to attempt to produce the desired output on the fly.  Here we see the concept of an 
AI actually learning and getting smarter as a result. These systems can be very difficult to build and 
perfect and are not widely used in games. However, the idea of simulated “learning” makes these 
systems very popular in the wider AI research field. We will not be discussing classification much in 
this course since it tends to be a more esoteric type of AI which is often more complicated than we will 
need in the typical commercial game. 
 
Life Systems are another type of artificial intelligence that is popular in AI research, but less so in 
games.  Genetic algorithms are a popular example.  Life Systems work by creating a set of artificial 
intelligence systems, letting them perform, and then rating them. The ones with the highest rated 
performances survive and evolve, while the ones with the lowest rated performances are killed off.  
Clearly we see a relationship to the study of evolution at work here. What is most interesting about these 
systems is the concept of emergent behaviors. Rather than scripted sequences that are hardwired into the 
AI, such systems will often produce completely unexpected behaviors that emerge as a result of the AI 
adapting and maturing over time. This kind of AI can be a lot of fun to observe and study, but there is a 
major downside. Emergent behaviors tend to lead to systems that are very idiosyncratic.  Sometimes you 
will get the behavior you expect, and other times you will not. The problem is, when you cannot control 
the outcomes, scenario design becomes very difficult. While there are some games that make use of this 
AI (e.g., SimCity™), most games do not. The Adaptable AI seminar here at the Game Institute explores 
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an interesting way to approach Life Systems by utilizing concepts from biology, evolution and genetic 
science. It is a great way to follow up the material we will study in this course if you are interested in 
investigating this area further.  
 
It is worth noting upfront that in this course, we are going to adopt a practical approach to studying AI. 
Our goal is not to learn a little bit about everything, but rather to zero in on the key areas of study that 
the typical game AI programmer will need to master if he wants to join a professional programming 
team. As such, we are going to spend almost all of our time focusing on two of the most fundamental 
artificial intelligence systems that game developers need to learn and understand: decision making and 
environment navigation (or “pathfinding”).  

1.2.1 Decision Making 

Decision making is the core component of all artificial intelligence systems. It is a compilation of 
routines which help the AI entities decide what they want to do next.  This system typically determines 
decisions such as what to build, when to attack, when to look for cover, when to shoot, when to run 
away, when to get health, etc.  Decision making is the chief means by which the artificial intelligence 
appears intelligent.  State machines, decision trees, and squad behaviors will be examples of decision 
making that we will talk about in this course. 

1.2.2 Pathfinding 

Pathfinding is the aspect of artificial intelligence systems which assists the AI driven entities with 
navigating in the game environment.  At its simplest, this means moving the entity from one location to 
the next without running into things.  Pathfinding is arguably the most fundamental type of artificial 
intelligence for games because without it, entities will remain unable to take on any convincing physical 
presence. Indeed there are very few genres of games where these algorithms will not be needed.  
 
The combination of just these two AI types can lead to the production of virtually any game scenario 
you desire. You can create NPCs that range from the simplest of life-forms to emotionally complex 
entities that exhibit sophisticated reasoning ability. Of course, we know that appearances can be 
deceiving and that under the hood things may not be nearly as complicated as what the behaviors would 
indicate. But as we discussed earlier, perception is everything and results are what matters. The decision 
making and environment navigation systems we develop together in this course will serve as a solid 
foundation for your AI engine and will provide you with the ability to really express yourself creatively 
in future projects. If you are also taking the Graphics Programming series here at the Game Institute, 
then combined with this course, you will have a very impressive set of tools that you can leverage to 
build tech demos for your next interview or even complex games for your own enjoyment.  
 
While our focus in this course will be on the AI fundamentals, please feel free to drop by the live 
discussion sessions if you would like to talk about other types of AI that we will not cover in the text. 
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1.3 Getting Started 

Now that we have had a quick overview of the various types of artificial intelligence and some ground 
rules have been established, we will waste no time in getting started. We will begin our AI studies 
together with one of the most important areas of artificial intelligence: pathfinding. This topic will serve 
as a good lead-in for Decision Making because in a sense, pathfinding represents the simplest decision 
making process of all. The decision centers around the question: how do I get from point A to point B? 
The decisions themselves are ultimately a choice between directions of travel. That is, if I am ‘here’ and 
I want to go ‘there’, what is the next step I should take? Should I go left, right, up, down, etc.? What step 
should I then take after that? And so on. At first you might think that this does not really seem to be 
artificial intelligence. But recall our earlier emphasis on the appearance of intelligence. Even if your 
game engine simply selected random points in the world at random times and said to an NPC, “go 
there”, from the player’s perspective the NPC would appear to have some particular purpose as he 
wandered by. So by providing the means to get from A to B, we have instilled the NPC with some very 
basic, but still very important game AI capability.   
 
In remainder of this chapter the following questions will be addressed: 
 

 What is pathfinding? 
 Why is pathfinding useful or necessary? 
 What is a graph? 
 What is a weighted graph? 
 What is a directed graph? 
 What are the traditional types of pathfinding methods? 
 How are the traditional types of pathfinding methods implemented? 
 Who is E. Dijkstra? 
 What is Dijkstra’s Algorithm? 
 What are some traditional implementations of Dijkstra’s Algorithm? 

1.4 Introduction to Pathfinding 

Pathfinding is a critical component in just about every game on the shelves.  Without pathfinding, 
autonomous entities would not be able to get from place to place.  Think of a simple case where you 
have a large field and a tractor that needs to go from one side to the other.  The tractor starts on one side 
and proceeds in a straight line to the other side.  When the tractor reaches the other side, it stops.  Did it 
use a pathfinding algorithm? Of course! It may be very simple and rudimentary, but it found a straight-
line path from one side of the field to the other.  If the field had ditches to avoid, this particular 
algorithm would not have been the best choice.  How would the tractor get across in that case?  That 
question is one of many we will learn the answer to as we progress in this course.  
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1.4.1 Graphs and Pathfinding 

Pathfinding is ultimately about the traversal of a graph.  For our purposes, a graph is simply a set of 
points connected by paths between them (see Figure 1.1). 
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Figure 1.1 
 
A graph can contain any number of points (also called ‘nodes’) as well as any number of connections 
between those points.  The interesting thing about a graph is that there are actually an infinite number of 
paths from any point on the graph to any other point on the graph.  Pathfinding in the gaming world 
typically means finding the shortest path.  It would not make sense to have an avatar running back and 
forth between points, or going in circles multiple times before reaching the destination.   
 
Graphs can also have costs associated with traveling a particular path between points. A cost is a value 
that indicates an implied relative expense for choosing one path over another. Depending on how we 
choose to interpret this value, one path will be deemed more cost-effective to traverse than another, so 
we will generally want to choose that path over the alternative(s). This type of graph is referred to as a 
weighted graph (see Figure 1.2). 
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Figure 1.2 
 
Weighted graphs are identical to un-weighted graphs in all respects, except that there are weights/costs 
associated with the paths between points. This weight might be fixed or it might even be a function. 
 
Lastly, there is the concept of a directional graph.  In directional graphs, each path between the points 
can be considered to be one-way (see Figure 1.3). 
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Figure 1.3 
 
Like a weighted graph, a directional graph can contain weights on the paths between its nodes.  These 
types of graphs can be more complex, as the entity cannot always go back from the direction it came. 
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1.5 Graph Traversals 

Pathfinding is simply a shortest distance graph traversal.  Let us imagine that we are traversing the un-
weighted graph in Figure 1.1, and we want to get from A to E. We would want to travel from A to B to 
D to E because this path is the most direct route.  However, in the case of the weighted graph (Figure 
1.2), we would choose the path, A to B to D to F to G to E, as it is the least expensive path in terms of 
cost.  In the case of the directed graph (Figure 1.3), we would choose the path A to B to D to F to E.  
How we determined that those paths were the least expensive is covered in the next topic. But first we 
need to redefine our graph.   
 
The graphs we have already seen are a bit contrived, so let us change our design to something more like 
a map, as this is a fairly common graph layout in games.  For now, we will define our graph as a 
regularly spaced grid of points where one can travel N, NE, E, SE, S, SW, W, or NW (Figure 1.4). 
 

 
 

Figure 1.4 
 
A graph such as the one in Figure 1.4 represents a map which can be found in many top-down real time 
strategy games because such games typically take place over vast expanses of terrain.  In most games, 
terrain geometry is built using a uniform grid of polygons, and this lends itself well to such a 
representation. Units can move in any of the cardinal directions.  To prevent movement to a particular 
node requires only the removal of the node from the graph, simply marking it as impassable.  To make it 
more expensive to travel to a given node, a cost can be associated either with the node itself or the path 
to the node. 
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Figure 1.5  

 
Although the graph displayed in Figure 1.4 is the primary type of graph we will be examining in this 
course, it is very difficult to read in that form.  From now on, we will look at graphs as shown in Figure 
1.5.  The green dot represents where we start (our origin) and the red dot represents where we wish to go 
(our destination).  Valid paths of travel are in all of the cardinal directions. As grid squares become 
increasingly more expensive to travel through, they will become darker gray.  Impassable grid squares 
will be black. 
 

1.5.1 Non-Look-Ahead Iterative Traversals 

With this new graph to navigate, and an easier way to look at it, let us briefly talk about some of the 
methods that might be used to get from origin to destination, but which typically have pitfalls.  These 
methods all have one thing in common; they do not look ahead to find a good path to the goal.  They 
will make their decision based solely on their current position and the position/direction of the goal.  The 
concept itself is simple: take one step at a time towards the goal.  The system becomes more 
complicated when obstacles in the environment must be navigated around.  So first, let us examine the 
most common methods of avoiding obstacles in non-look-ahead iterative traversals. 
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1.5.1.1 Random Backstepping 

 
Figure 1.6 

 
The simplest method is to take one step at a time in the direction of the goal.  If an obstacle is 
encountered, try to step around it.  If the obstacle is too large/long (i.e. 3 or more squares long centered 
on the current location), take a step back in a random direction, and try again.  This method encounters 
serious problems if a cul-de-sac is encountered as it only takes a single step back (see Figure 1.6). 

1.5.1.2 Obstacle Tracing 

 
Figure 1.7 
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Another method is to move one step at a time in the direction of the goal, and if an obstacle is 
encountered, trace around it to the right.  This method encounters problems in complicated graphs, as it 
can get caught in a cycle where it repeats (see Figure 1.7).  To prevent this method from entering 
infinite loops, a common solution is to detect if the path taken traces across the path again.  However, 
this does not make the method any more successful.  Another method is to trace to the right until the 
path is crossed, then trace to the left until the path is crossed.  In the case of this graph, tracing to the left 
would have succeeded. 

1.5.2 Look-Ahead Iterative Traversals 

Now that we have seen some of the methods that can be used to traverse a graph without looking ahead, 
let us take a look at some methods that plan the entire path before taking a single step.   

1.5.2.1 Breadth First Search 

 
Figure 1.8 

 
One of the most fundamental graph traversal methods is Breadth First Search.  This method finds the 
shortest path in an un-weighted graph by iteratively searching the neighbors of the start position until it 
reaches the end position (see Figure 1.8).  This is a robust method which will always find the shortest 
path, but it can require much CPU time doing it. 
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1.5.2.2 Best First Search 

 

 
Figure 1.9 

 
Another method which is very similar to the Breadth First Search is the Best First Search.  This method 
iteratively searches all the neighbors of the start node of an un-weighted graph, but it chooses the 
neighbor with the perceived best chance of having a path first (see Figure 1.9).  This method will 
always find a path if there is a path to be found, but it may not be the shortest.  It sacrifices the shortest 
path for the speed in which it finds a path using a heuristic. 

1.5.2.3 Dijkstra’s Method 

 

 
Figure 1.10 
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Another method, created by E. Dijkstra and now called Dijkstra’s method, is a very robust method of 
traversing graphs.  This method finds the shortest path of a weighted graph by keeping track of the cost 
to every node (see Figure 1.10).  This is a useful method but it is not the fastest method when dealing 
with large graphs.  

1.5.2.4 A* Method 

 

 
Figure 1.11 

 
One of the most efficient pathfinding methods available is known as A* (A-star).  This method is a very 
robust weighted graph traversal that makes use of heuristics to find the goal in a timely manner (see 
Figure 1.11).  This method is very powerful as it allows extra knowledge about the graph to be 
leveraged in the heuristic.  This method will be the center of discussion in the next chapter. 
 

1.5.3 Look-Ahead Recursive Traversals 

Some graph traversal methods are most easily implemented via recursion.  The most popular of these 
methods is the Depth First Search traversal.  Instead of searching all the neighbors as in other methods, 
it searches deep into the graph first.  This method can have problems if the depth of the search is not 
limited.  Many times this is handled by limiting the depth by guessing the distance to the goal, via a 
heuristic, and increasing the depth until the goal is found.  This can be a very time consuming traversal, 
and dangerous in large graphs, due to recursive depth. 
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1.6 Non-Look-Ahead Iterative Methods, In Depth 

We have discussed performing pathfinding one step at a time and mentioned some methods for dealing 
with navigating around obstacles when they are encountered.  Now let us take a closer look at these 
obstacle avoidance strategies to better understand them. 

1.6.1 Random Backstepping 

The Random Backstepping (or Random Bounce) method is simple in its execution; it moves a step at a 
time towards the goal.  If it runs into an obstacle, however, it chooses a random direction in which to 
move and tries moving toward the goal again.  Though simple and elegant, this method will fail to get 
out of deep cul-de-sacs. 

The Algorithm 

bool RandomBounce(Node start, Node goal) 
{ 
 Node n = start; 
 Node next; 
 while(true) 
 { 
  next = n.getNodeInClosestDirectionToGoal(goal); 
  if (next == goal)  
   return true; 
  while (next.blocked) 
   next = n.getRandomNeighbor(); 
  n = next; 
 } 
 
 return false; 
} 

Listing 1.1 
 
The method outlined in Listing 1.1 is straightforward.  View it in its entirety, and then read on for more 
detailed discussion. 
 
bool RandomBounce(Node start, Node goal) 

 
Let us start with the declaration itself.  We will provide a start node and the goal node at which we are 
attempting to arrive.  When we are done, we will return true if we arrived at the goal node, and false if 
we fail. 
 
 Node n = start; 
 Node next; 
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First, some locals are defined to keep track of the starting node and the next node to which we plan to 
go.  The node is initialized to be the starting node which was passed in. 
 
 while(true) 

 
This method will run until we find a solution.  Presumably, if we fail at finding a solution, we will give 
up after some number of iterations rather than cycling forever as this particular loop does. 
 
  next = n.getNodeInClosestDirectionToGoal(goal); 

 
The method getNodeInClosestDirectionToGoal() is graph specific, but it will always return the best 
neighbor node to this node which will put us closer to the goal.   
 
  if (next == goal)  
   return true; 

 
If the next node returned is the goal node, then we successfully made it to the goal.   
 
  while (next.blocked)  
   next = n.getRandomNeighbor(); 

 
Here is where the obstacle avoidance is applied.  If the next best node that leads us towards the goal is 
blocked, a randomly selected neighbor to this node will be selected and tested.  This is done until a 
neighbor node is found which is not blocked.  Presumably, we would exit if it was discovered that all of 
our neighbor nodes are blocked. 
 
 n = next; 

 
After a valid next node is returned, it will be set to our current node and iteration continues. 
 
The idea is to take a step at a time towards the goal, and if the step we wish to take is blocked, pick a 
random direction and go in that direction instead.  This process is continued until we reach our goal.  
This is very different from any of the algorithms that we are going to implement in this course, as it does 
not keep track of the path it took; it just knows where it is, and where it wants to go.  It also never gives 
up in its search for the goal.  An enhancement to this algorithm might be to add some kind of maximum 
iteration count which is checked periodically so that it does not continue to fail forever.  In many cases 
this is adequate for some games, even if it may be a little boring. 

1.6.2 Obstacle Tracing 

Obstacle Tracing is exactly like the Random Bounce method in its means for getting to the goal. The 
difference is that it attempts to trace around an encountered obstacle until it can head toward its goal 
again.  A more robust method would change the direction in which it traces, or wait until it crosses a line 
from the start to the goal again before attempting to approach the goal. 
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The Algorithm 

bool Trace(Node start, Node goal) 
{ 
 Node n = start; 
 Node next; 
 while(true) 
 { 
  next = n.getNodeInClosestDirectionToGoal(); 
  if (next == goal)  
   return true; 
  while (next.blocked) 
   next = n.getLeftNeighbor(next); 
  n = next; 
 } 
 
 return false; 
} 

Listing 1.2 
 
The method outlined in Listing 1.2 is identical to the random bounce method with the exception of what 
it does when its desired node is blocked.  Review the code in its entirety and read on for more in-depth 
discussion. 
 
bool Trace(Node start, Node goal) 

 
Let us start with the declaration itself.  Just like Random Bounce, a start node and the goal node at which 
we are trying to arrive will be given.  We will return true if we arrived at the goal node, and false if we 
fail. 
 
 Node n = start; 
 Node next; 

 
Some local variables are defined to keep track of the current node, and the next node we plan to go to.  
The start node which was passed in will be initialized as our starting node. 
 
 while(true) 

 
Just as with RandomBounce, this method will run until a solution is found.  Presumably, we will give up 
after some number of iterations rather than continuing forever as this loop does. 
 
  next = n.getNodeInClosestDirectionToGoal(goal); 

 
Just as with the Random Bounce method, getNodeInClosestDirectionToGoal() is graph specific, but it  
will always return the best neighbor node to this node, which will put us closer to the goal.   
 
  if (next == goal)  
   return true; 
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If the next node returned is the goal node, then we successfully made it to the goal.   
 
  while (next.blocked)  
   next = n.getLeftNeighbor(next); 

 
This is where the Obstacle Tracing method differs from the Random Bounce method.  Rather than 
grabbing a random neighbor, the neighbor of this node which will take us to the left of the node passed 
in will be selected.  The method getLeftNeighbor is graph specific, but it will always return the node 
which will take you to the left of the input node. We will keep looking to the left until we get a node that 
is not blocked.  Presumably, we would exit if we found ourselves in a condition where there was no way 
out. 
 
 n = next; 

 
After a valid next node is returned, it is set to our current node and iteration is continued. 
 
We could make this routine a little more robust by checking to see where we started tracing and trace all 
the way around until we returned to where we started.  If we did return to our start position, we can try 
to trace the other way, or just give up.  We could also calculate the line between our start point and our 
end point, and if we passed that line twice while tracing, we could give up or try something other than 
tracing (maybe resorting to a little random bouncing). 

1.7 Look-Ahead Iterative Methods, In Depth 

We mentioned a variety of look-ahead iterative methods which plan the entire route from the starting 
point to the goal in advance.  This ensures the path chosen will be effective, and in most cases, the 
shortest.  Let us look at these methods in more detail, as well as an implementation example for each. 

1.7.1 A Note on Implementation Examples 

Both implementation examples we are going to discuss are taken from the code provided in the course 
projects.  
 
 
typedef std::vector<std::string> stringvec; 
 
class MapGridWalker   
{ 
public: 
 
 typedef enum WALKSTATE {  
  STILLLOOKING,  
  REACHEDGOAL,  
  UNABLETOREACHGOAL } WALKSTATETYPE; 
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 MapGridWalker(); 
 MapGridWalker(MapGrid* grid) { m_grid = grid; } 
 virtual ~MapGridWalker(); 
 
 virtual void drawState(CDC* dc, CRect gridBounds) = 0; 
 virtual WALKSTATETYPE iterate() = 0; 
 virtual void reset() = 0; 
 virtual bool weightedGraphSupported() { return false; }; 
 virtual bool heuristicsSupported() { return false; } 
 virtual stringvec heuristicTypesSupported()  
  { stringvec empty; return empty; } 
 
 virtual std::string getClassDescription() = 0; 
 
 void setMapGrid(MapGrid *grid) { m_grid = grid; } 
 MapGrid *getMapGrid() { return m_grid; } 
 
protected: 
 MapGrid *m_grid; 
}; 

Listing 1.3 
 
In order to make the chapter demo display the path as it was being discovered, objects derived from 
MapGridWalker will do their traversals one step at a time during the iterate() method.  After they iterate 
each step of the traversal, drawState() is called to draw the current state of the traversal.  For the sake of 
brevity, we will only discuss the contents of the iterate() method and any heuristic functions that apply 
to the pathfinding algorithm.  Of course, in most games, you would want to find the entire path in one 
pass rather than iterating repeatedly.   Let us discuss a few of the elements of this class in more detail. 
 
 typedef enum WALKSTATE {  
  STILLLOOKING,  
  REACHEDGOAL,  
  UNABLETOREACHGOAL } WALKSTATETYPE; 

 
The WALKSTATE enumeration will provide information on the progress of the algorithm in its search 
for the goal.  STILLLOOKING represents that the algorithm is still searching for the goal, and has not 
encountered any problems as yet.  REACHEDGOAL means the algorithm has reached the goal and a 
path has been created.  UNABLETOREACHGOAL is returned when the algorithm cannot build a path 
from the start and goal nodes given. 
 
 MapGridWalker(); 
 MapGridWalker(MapGrid* grid) { m_grid = grid; } 

 
The class supports a default constructor as well as a constructor, both of which take the grid upon which 
it will walk as a parameter.  If the default constructor is used, the grid must be set separately. 
 
 virtual ~MapGridWalker(); 

 
The class has a virtual destructor so that derived classes can properly clean up their resources if delete is 
called on a MapGridWalker pointer. 
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 virtual void drawState(CDC* dc, CRect gridBounds) = 0; 

 
The drawState method allows the class to draw its current progress into the given device context within 
the bounds given.  This allows the UI to visualize the progress of the algorithm. 
 
 virtual WALKSTATETYPE iterate() = 0; 

 
The iterate method is the primary interface to the class.  This method will perform one iteration of the 
graph traversal and return its state. 
 
 virtual void reset() = 0; 

 
This method resets the algorithm so it can start again. 
 
 virtual bool weightedGraphSupported() { return false; }; 
 virtual bool heuristicsSupported() { return false; } 
 virtual stringvec heuristicTypesSupported()  
  { stringvec empty; return empty; } 

 
These methods inform us if the given class instantiation can support weighted graphs or heuristics.  
Additionally, the interface for which heuristics are supported are given as strings for the UI. 
 
 virtual std::string getClassDescription() = 0; 

 
This method returns a description of the class for the UI. 
 
 void setMapGrid(MapGrid *grid) { m_grid = grid; } 
 MapGrid *getMapGrid() { return m_grid; } 

 
These accessors provide access to the map grid which the walker is traversing. 

1.7.2 Breadth First Search 

The Breadth First Search algorithm is a simple traversal of the graph, where each neighbor is visited 
before its siblings are.  This method does not care about weighted graphs, as it finds the shortest path in 
steps from start to finish.  The largest problem with this algorithm is encountered with large graphs -- 
this traversal can take a very long time. 
 
bool BreadthFirstSearch(Node start, Node goal) 
{ 
 Queue open; 
 Node  n,  child; 
 start.parent = NULL; 
 
 open.enqueue(start); 
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 while(!open.isEmpty()) 
 { 
  n = open.dequeue(); 
  n.setVisited(true);  
  if (n == goal)  
  { 
   makePath(); 
   return true; 
  } 
 
  while (n.hasMoreChildren()) 
  { 
   child = n.getNextChild(); 
   if (child.visited()) 
    continue; 
   child.parent = n; 
   open.enqueue(child); 
  } 
 } 
 return false; 
} 

Listing 1.4 
 
Take a moment and examine the algorithm in Listing 1.4.  Notice how it ends in the event that it fails to 
find a path, unlike the non-look-ahead methods.  As mentioned before, this method, as well as all of the 
other methods we will discuss henceforth, builds the entire path before it takes a single step.  Let us look 
at the method in more detail. 
 
bool BreadthFirstSearch(Node start, Node goal) 

 
First, the method expects a starting node and goal node.  It will return true if it finds a path to the goal, 
and false if it does not.  This algorithm will find the entire path before returning.  Our implementation of 
this algorithm (which we will address later) takes place on the inside of the while loop so that we can 
inspect each iteration. 
 
 Queue open; 
 Node  n,  child; 
 start.parent = NULL; 

 
A queue is needed to hold the nodes which we plan to visit, as well as a couple of nodes to keep track of 
where we are currently, and which child we are about to visit.  We make sure to set the parent pointer of 
the starting node to NULL since this is where we started. 
 
 open.enqueue(start); 

 
Our queue is primed by adding the start node to it. This is the first node which we will visit since we are 
starting at this node. 
 
 while(!open.isEmpty()) 
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We will iterate through every node in the queue until we find the goal, at which point we will abort the 
loop.  If the queue becomes empty and the goal was not found, we cannot reach the goal node from the 
start node. 
 
  n = open.dequeue();  

 
Once inside the loop, the next node from the queue is returned and set as our current node. 
 
  n.setVisited(true);  

 
We will mark this child as visited so that we do not visit it again.  Remember, a neighbor of this node 
has this node as a neighbor.  Thus, it will try to visit this node unless it is specified that it has already 
been visited before. 
 
  if (n == goal)  
  { 
   makePath(); 
   return true; 
  } 

 
If the current node is the goal node, we will make the path and return success. 
 
  while (n.hasMoreChildren()) 

 
Next, we will iterate across all the children of the current node. 
 
   child = n.getNextChild(); 

 
The current child is set as the next child of the current node. 
 
   if (child.visited()) 
    continue; 

 
If this child has been visited already, we will skip it. 
 
   child.parent = n; 
   open.enqueue(child); 

 
This child’s parent is set as the current node so that we know how we reached it. Then, the child node 
will be added to the queue to be visited later. 
 
To summarize, first a queue is built and our starting position placed onto it.  Iteration occurs until our 
queue is empty or until a path is found.  During each step of the iteration, a node is removed from our 
queue, marked as visited, and tested to see if it is our goal. Then, each of our children is added to the 
queue if they have not been visited before.  This last step is of utmost importance.  If the children are not 
tested for prior visitation, we will never leave the first node, as each neighbor of the first node also has 
the first node as its neighbor.  So basically they would go about adding each other to the queue ad 
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infinitum!  Also, by using a queue, we are guaranteeing that each node we add to the queue will be 
checked in the order they were visited, thereby enforcing the breadth first traversal.  Using a stack would 
make it depth first (with some other modifications, as we will see later).  As each node is added to the 
queue, we also ensure that we set the child’s parent to be the node we grabbed from the queue. This 
allows a path to be built and also shows how we arrived to our current location. 
 
MapGridWalker::WALKSTATETYPE BreadthFirstSearchMapGridWalker::iterate() 
{ 
 if(m_open.size() > 0) 
 { 
  m_n = (MapGridNode*)m_open.front(); 
  m_open.pop(); 
  m_n->setVisited(true); 
  if(m_n->equals(*m_end))    
   return REACHEDGOAL; // we found our path... 
 
  int x, y; 
 
  // add all adjacent nodes to this node 
  // add the east node... 
  x = m_n->m_x+1; 
  y = m_n->m_y; 
  if(m_n->m_x < (m_grid->getGridSize() - 1)) 
   visitGridNode(x, y); 
 
  // The other directional checks go here, 
  // but that would take a tremendous amount of space 
 
  // add the north-east node... 
  x = m_n->m_x+1; 
  y = m_n->m_y-1; 
  if(m_n->m_y > 0 && m_n->m_x < (m_grid->getGridSize() - 1)) 
   visitGridNode(x, y); 
 
  return STILLLOOKING; 
 } 
 
 return UNABLETOREACHGOAL; // no path could be found 
} 

Listing 1.5 
 
void BreadthFirstSearchMapGridWalker::visitGridNode(int x, int y) 
{ 
 // if the node is blocked or has been visited, early out 
 if(m_grid->getCost(x, y) == MapGridNode::BLOCKED ||  
  m_nodegrid[x][y].getVisited()) 
  return; 
 
 // we are visitable 
 m_open.push(&m_nodegrid[x][y]); 
 m_nodegrid[x][y].m_parent = m_n; 
} 

Listing 1.6 
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Listing 1.5 and Listing 1.6 contain the important parts of the implementation of the breadth first search 
as found in our demo.  Let us go over this implementation. 
 
MapGridWalker::WALKSTATETYPE BreadthFirstSearchMapGridWalker::iterate() 

 
The iterate() method begins on the inside of the while loop from our algorithm snippet.  It will return the 
state of the current iteration in order to inform the application whether the algorithm is still looking for a 
path, has found a path, or has failed to find a path. 
 
 if(m_open.size() > 0) 

 
First we will check to see if the queue is empty.  If it is, there is no valid path from the start node to the 
goal node. 
 
  m_n = (MapGridNode*)m_open.front(); 
  m_open.pop(); 
  m_n->setVisited(true); 

 
The next node from the queue is returned and set as visited.  The setVisited method on the node simply 
sets a Boolean flag. 
 
  if(m_n->equals(*m_end))    
   return REACHEDGOAL; // we found our path... 

 
If the new node returned from the queue is the goal node, successful status is returned. This means a 
path to the goal node has been found. 
 
  // add all adjacent nodes to this node 
  // add the east node... 
  x = m_n->m_x+1; 
  y = m_n->m_y; 
  if(m_n->m_x < (m_grid->getGridSize() - 1)) 
   visitGridNode(x, y); 

 
Next we check each of our neighbors.  In the demo code, a grid represents our graph, so we do some 
border checking on the grid to ensure we have not overstepped the edge, and if this is true, we visit the 
node. 
 
void BreadthFirstSearchMapGridWalker::visitGridNode(int x, int y) 

 
The method visitGridNode visits the grid node specified at x and y. 
 
 if(m_grid->getCost(x, y) == MapGridNode::BLOCKED ||  
  m_nodegrid[x][y].getVisited()) 
  return; 

 
First, check to see if the node is blocked or visited.  If the node is either blocked or visited, it returns 
without visiting the node. 
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 m_open.push(&m_nodegrid[x][y]); 
 m_nodegrid[x][y].m_parent = m_n; 

 
If the node can be visited, it is added to the queue, and the parent of the visited node is set to be the 
current node in order to track how we arrived there. 
 
  return STILLLOOKING; 

 
After all of the neighbor nodes are visited, we return STILLLOOKING to indicate further iteration is 
required to find the goal. 
 
To summarize, the queue is checked first to determine whether it is empty. If it is, we cannot reach the 
goal from our current location.  Otherwise, we remove the first node in line from our queue, and test to 
see if we are at the goal.  If so, we return and iteration stops.  If the goal has not been reached, we add 
each of our neighbor nodes, provided that they exist (we live on a 2D grid and therefore edges occur), 
they are accessible, and we have not visited them yet.  We then return STILLLOOKING so that iteration 
will continue in the next time-slice.  The visitGridNode() method wraps up the parts of the algorithm 
that take care of all the things which need to happen when a node is visited.  It checks to see if the node 
is blocked or visited, and if so, aborts early.  If the node is not blocked or visited, the method pushes the 
node onto the queue, and sets the parent so we can see how we arrived. 

1.7.3 Best First Search 

The Best First Search is an optimized Breadth First Search in that is uses a heuristic to choose which 
nodes to traverse next instead of just traversing them in a sequential order.  This method also has the 
same disregard for weighted graphs, as it only cares about the number of nodes needed to traverse from 
start to finish.  This is a good method, as it is much faster than the Breadth First Search, but it might not 
always find the shortest path to the goal. Path length will be primarily dependent on the appropriateness 
of the heuristic chosen. 
 
bool BestFirstSearch(Node start, Node goal) 
{ 
 PriorityQueue open; 
 Node  n,  child; 
 start.parent = NULL; 
 
 open.enqueue (start); 
 while(!open.isEmpty()) 
 { 
  n = open.dequeue();  
  if (n == goal)  
  { 
   makePath(); 
   return true; 
  } 
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  while (n.hasMoreChildren()) 
  { 
   child = n.getNextChild(); 
   if (child.visited()) 
    continue; 
   child.parent = n; 
   child.setCost = findCost(child, goal); 
   open.enqueue(child); 
  } 
 } 
 
 return false; 
} 

Listing 1.7 
 
At a first glance, you are probably wondering how this method (Listing 1.7) is any different than the one 
we just discussed.  The magic is in the queue type we use.  The best first search uses a priority queue 
that is keyed on the perceived cost to the goal.  This allows the method to start traversing in a direction 
towards the goal before it would start investigating nodes that take us away from the goal.  Aside from 
the use of a priority queue, the only other difference is the cost heuristic.  Let us take a moment to 
discuss a few common heuristics. 

1.7.3.1 Max (dx, dy) 

The Max(dx, dy)  method uses the maximum of the x distance and the y distance to the goal.  Often, this 
heuristic underestimates the distance to the goal.  If the goal is directly above, below, left of, or right of 
the node (in a grid environment such as ours), the estimate is reasonably accurate.  If the node position is 
diagonal to the goal, the estimate becomes less accurate. 

1.7.3.2 Euclidean Distance 

The Euclidean distance method uses the standard Euclidean formula to determine the length of the 

vector from the node to the goal.  This formula is: ( ) ( )22
ngng yyxxd −+−=  An important point to 

remember when dealing with square roots is that, not only are they expensive, they require floating point 
precision.  If your costs are integers, you will lose precision and your estimate will be more inaccurate. 

1.7.3.3 Manhattan (dx + dy) 

The Manhattan (dx + dy) method uses the x distance added to the y distance to the goal.  Often this 
method overestimates the distance to the goal.  Like the Max(dx, dy) method, if the goal is directly 
above, below, left of, or right of the node (in a grid environment such as ours), the estimate is reasonably 
accurate.  If the node position is diagonal to the goal, the estimate becomes less accurate.   
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MapGridWalker::WALKSTATETYPE BestFirstSearchMapGridWalker::iterate() 
{ 
 if(!m_open.isEmpty()) 
 { 
  m_n = m_open.dequeue(); 
  m_n->setVisited(true); 
  if(m_n->equals(*m_end)) 
  { 
   // we found our path... 
   return REACHEDGOAL; 
  } 
 
  int x, y; 
 
  // add all adjacent nodes to this node 
  // add the east node... 
  x = m_n->m_x+1; 
  y = m_n->m_y; 
  if(m_n->m_x < (m_grid->getGridSize() - 1)) 
   visitGridNode(x, y); 
 
  // 
  // The other directional checks go here, 
  // but that would take a tremendous amount of space 
  // 
 
  // add the north-east node... 
  x = m_n->m_x+1; 
  y = m_n->m_y-1; 
  if(m_n->m_y > 0 && m_n->m_x < (m_grid->getGridSize() - 1)) 
  { 
   visitGridNode(x, y); 
  } 
   
  return STILLLOOKING; 
 } 
 
 return UNABLETOREACHGOAL; // no path could be found 
} 

Listing 1.8 
 
void BestFirstSearchMapGridWalker::visitGridNode(int x, int y) 
{ 
 // if the node is blocked or has been visited, early out 
 if(m_grid->getCost(x, y) == MapGridNode::BLOCKED ||  
  m_nodegrid[x][y].getVisited()) 
  return; 
 
 // we are visitable 
 m_nodegrid[x][y].m_parent = m_n; 
 m_nodegrid[x][y].m_cost = goalEstimate(&m_nodegrid[x][y]); 
 m_open.enqueue(&m_nodegrid[x][y]); 
} 

Listing 1.9 
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The above implementation is nearly identical to the prior algorithm with the exception of m_open being 
a priority queue keyed on the heuristic goal estimate.  The node’s cost is calculated only if it is added to 
the queue, in which case it is set via the goalEstimate() function. This function implements one of the 
heuristic methods we discussed above.  Let us walk through the code and discuss it in more detail. 
 
MapGridWalker::WALKSTATETYPE BestFirstSearchMapGridWalker::iterate() 

 
Like all of our implementations, the iterate method does the work, and returns information telling us 
whether it needs to be called again because it is still searching, whether it found the goal, or whether it 
cannot find the goal. 
 
 if(!m_open.isEmpty()) 

 
Just like the Breadth First Search, the first thing to check for is an empty queue.  If it is empty and we 
have not found the goal, we cannot get to the goal from the start position. 
 
  m_n = m_open.dequeue(); 
  m_n->setVisited(true); 

 
Next we take the first item off the priority queue and use that as our current node.  We also mark it as 
visited so we do not try to visit it again. 
 
  if(m_n->equals(*m_end)) 
  { 
   // we found our path... 
   return REACHEDGOAL; 
  } 

 
Next we determine if our current node is, in fact, the goal.  If it is, we return that we have reached our 
goal. 
 
 
  // add all adjacent nodes to this node 
  // add the east node... 
  x = m_n->m_x+1; 
  y = m_n->m_y; 
  if(m_n->m_x < (m_grid->getGridSize() - 1)) 
   visitGridNode(x, y); 

 
We then visit all of our neighbors, just as we did in the Breadth First Search method.  Again, we have a 
visitGridNode method that does the work of visiting the node for us. 
 
void BestFirstSearchMapGridWalker::visitGridNode(int x, int y) 

 
As before, it takes an (x, y) coordinate of the node it is to visit on our grid.   
 
 // if the node is blocked or has been visited, early out 
 if(m_grid->getCost(x, y) == MapGridNode::BLOCKED ||  
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  m_nodegrid[x][y].getVisited()) 
  return; 

 
It checks to see if the node is blocked or already visited, and if either condition is true, it returns without 
visiting the node. 
 
 // we are visitable 
 m_nodegrid[x][y].m_parent = m_n; 
 m_nodegrid[x][y].m_cost = goalEstimate(&m_nodegrid[x][y]); 
 m_open.enqueue(&m_nodegrid[x][y]); 

 
If this node can be visited, it sets the parent of the child node as the current node, determines the cost of 
this node per our heuristic estimate as discussed above, and adds the node to the priority queue.  The 
priority queue automatically sorts the node into its proper place in the queue. 
 
  return STILLLOOKING; 

 
After we visit all of our neighbor nodes, we return that we need more iteration to find the goal. 

1.8 Edsger W. Dijkstra and his Algorithm 

Edsger W. Dijkstra was born in 1930 in The Netherlands.  He was one of the first to think of 
programming as a science in itself and actually called himself a programmer by profession in 1957.  The 
Dutch government did not recognize programming as a real profession, however, so he had to re-file his 
taxes as “theoretical physicist.”  He won the Turing Award from the Association for Computing 
Machinery in 1972, and was appointed to the Schlumberger Centennial Chair in Computer Science at 
the University of Texas in 1984.  He also is responsible for developing the prized “shortest-path” 
algorithm that has been integral to many computer games. 
 
E. Dijkstra’s shortest path algorithm is so useful and well-known, that it has simply been dubbed the 
“shortest path algorithm.”  It is so popular that if you were to mention pathfinding to most programmers, 
they would assume you were speaking of this particular algorithm.  Interestingly enough, E. Dijkstra’s 
algorithm varies a bit depending on where you look it up.  
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1.8.1 Three Common Versions of Dijkstra’s 

Let us analyze three common versions of the Dijkstra’s shortest path algorithm in a little more detail.  
First the algorithm will be shown, and then an example will be walked through for each of the versions. 

1.8.1.1 Version One 

procedure dijkstra(w, a, z, L) 
  L(a) := 0 
  for all vertices x ≠ a do 
     L(x) := ∞ 
  T := set of all vertices 
  // T is the set of vertices whose shortest distance  
  // from a has not been found 
  while z ∈ T do 
    begin 
    choose v ∈ T with minimum L(v) 
    T := T – {v} 
    for each x ∈ T adjacent to v do 
      L(x) := min{L(x), L(v) + w(v, x)} 
    end 
end dijkstra 

 
Listing 1.10 

 
Listing 1.10 shows a version of Dijkstra’s algorithm where it finds the shortest path from a to z.  In this 
algorithm, w denotes the set of weights where w(i, j) is the weight of the edge between point i and j, L(v) 
denotes the current minimum length from a to v.  This particular algorithm does not track the actual path 
from a to z, just the length of the path.  The algorithm works by first initializing L for all vertices, except 
a, to a very large value.  It then chooses a vertex with the shortest length, and removes it from the set of 
all vertices.  Then for each adjacent vertex, it calculates the new minimum distance. 
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1.8.1.2 Version One Example 
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Figure 1.12 
 
For the walkthrough of this algorithm, let us use this simple graph (Fig 1.12) as our example.  The 
vertices are marked a through z, and the cost for a given edge is labeled nearest the edge center. 
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Figure 1.13 
 
When the algorithm begins, it initializes the lengths from a to all the other vertices to a very large value.  
It also places each of the vertices in a list.   
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Figure 1.14 
 
In the first iteration, the algorithm naturally selects the a vertex, as it was initialized to 0 during 
initialization and is lowest.  It is removed from the vertex list, and all of the vertices adjacent to a (b and 
f) have their L values calculated. 
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Figure 1.15 
 
In the second iteration, the algorithm chooses vertex f as it has the lowest cost, and it is removed from 
the vertex list.  The adjacent vertices (d and g) have their L values calculated, and the algorithm moves 
on. 
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Figure 1.16 
 
In the third iteration, the algorithm chooses vertex b, as it has the lowest cost, and it is removed from the 
vertex list.  The adjacent vertices (d, e, and c) then have their L values calculated. The z vertex is now 
the only vertex that has not had an L value calculated. 
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Figure 1.17 
 
In the fourth iteration, the algorithm chooses the c vertex, and it is removed from the vertex list.  The 
adjacent vertices (z and e) have their L values calculated, and we now have all of the vertices in the 
graph with an L value. The algorithm would next pick d, and then finally z.  When z is removed from the 
vertex list, the algorithm stops and it is seen that the shortest path from a to z is 5 units long.  Of course, 
without going back and looking, we have no way of knowing that path to take is a-b-c-z, so it would be 
a good idea to keep track of this.  We do that in our algorithm, as you will see later. 
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1.8.1.3 Version Two 

Given the arrays distance, path, weight and included, initialize included[source] 
to true and included[j] to false for all other j. 
Initialize the distance array via the rule 
  if j = source 
    distance[j] = 0 
  else if weight[source][j] != 0 
    distance[j] = edge[source][j] 
  else if j is not connected to source by a direct edge 
    distance[j] = Infinity 
for all j 
Initialize the path array via the rule 
  if edge[source][j] != 0 
    path[j] = source 
  else 
    path[j] = Undefined 
Do 
  Find the node J that has the minimal distance 
    among those nodes not yet included 
  Mark J as now included 
  For each R not yet included 
    If there is an edge from J to R 
      If distance[j] + edge[J][R] < distance[R] 
        distance[R] = distance[J] + edge[J][R] 
          path[R] = J 
While all nodes are not included 

Listing 1.11 
 
The algorithm in Listing 2.2 utilizes 3 arrays to do its work.  It is similar to the former version in that the 
distance array is the L value, but it differs in that it tracks the actual path to the goal as well.  It also uses 
an array to mark vertices that have been chosen rather than removing them from the list.  The algorithm 
runs to completion when all nodes have been included.  We could shorten the algorithm easily by 
changing the while loop to “while the goal node is not included” since once the goal node is included, 
we have the shortest path. 
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1.8.1.4 Version Two Example 
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Figure 1.18 
 
Let us use the graph in Figure 1.18 for this version of the algorithm.  We will walk through the iteration 
of the algorithm and examine the contents of the various arrays along the way.  The walk-through for 
this graph will use our algorithm starting at vertex 1. 
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Figure 1.19 
 
First we initialize our distance, path, and included arrays.  All of the path array locations are set to 1 
(where we started) and none of the other vertices are marked as included. 
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Figure 1.20 
 
In the first iteration, we find the vertex with the smallest distance, which is vertex 5.  We then mark that 
vertex as included, and check to see if the distances from vertex 1 to vertex 5’s neighbors are smaller 
than the one already stored, which they are not. 
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Figure 1.21 
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In the second iteration, we see that vertex 4 has the shortest distance and is not included.  We mark it as 
included, and then update our distances. This is because the distance from vertex 1 to vertex 4 to vertex 
3 is shorter than the distance from vertex 1 directly to vertex 3.  We also update the path to vertex 3 to 
indicate that travel through vertex 4 from the source is the shortest path. 
 
 

5

4

1

3

2

410

1421

800

310

200

400

612

2985

distance[2] = 800 path[2] = 1 included[2] = true
distance[3] = 1210 path[3] = 2 included[3] = false
distance[4] = 310 path[4] = 1 included[4] = true
distance[5] = 200 path[5] = 1 included[5] = true

 
 

Figure 1.22 
 
In the third iteration, we see that vertex 2 has the shortest distance, so we mark it included.  We also see 
that by traveling through vertex 2 to vertex 3, it is shorter than traveling through vertex 4, so we update 
the distance for vertex 3 as well as the path.  
 
In the fourth iteration, all that is left is vertex 3, so we mark it as included.  Nothing changes in terms of 
path or distance, so we now have the shortest distance as well as the path to all vertices from vertex 1. 
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1.8.1.5 Version Three 

void Dijkstra( Table T ) 
{ 
 Vertex V, W; 
  
 while( true ) 
 { 
  V = Smallest Unknown Distance Vertex; 
  if( V == Not A Vertex ) 
   break; 
 
  T[ V ] .Known = true; 
  for Each W Adjacent To V 
   if( !T[ V ].Known ) 
   { 
    // Update W. 
    decrease ( T[ W ].Dist To 
       T[ V ].Dist + C ( V, W ); 
    T[ W ].Path = V; 
   } 
 } 
} 

 
Listing 1.12 

 
This algorithm is very similar to the previous algorithm.  It maintains a list of vertices that are known, 
the distance to each vertex, as well as the path to each vertex.  The biggest difference is more of an 
architectural change.  Rather than keeping data in arrays, a table is used to manage the weights, and 
Vertex structures are used to store the related path data.  This method also finds the shortest path to each 
vertex in the graph. 
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1.8.1.6 Version Three Example 
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Figure 1.23 
 
For this last example, we will take a look at how things change when using a directed graph rather than a 
non-directed graph.  The graph above is a directed graph where travel is only allowed in the direction of 
the arrows.  Let us traverse this graph starting at v1. 
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Figure 1.24 
 
First we initialize all of the nodes to unknown, and the distances to infinity.  We also set the parent 
vertex, for each vertex, to 0. 
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Figure 1.25 
 
In the first iteration, we mark the starting vertex as known, and update the distance members of v2, and 
v4.  We also set both parents to v1. 
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Figure 1.26 

 
In the second iteration, we mark v4 as known, as it has the shortest distance so far, and update all of its 
neighbor’s distances.  For those neighbor vertices it does set the distance for, v4 makes itself their parent 
vertex as well. 
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Figure 1.27 
 
In the third iteration, we mark v2 as known, and update all of its neighbor’s distances.  In this case, there 
are no neighbors that need to be updated. 
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Figure 1.28 
 
In the fourth iteration, we mark v5 as known, and try to update neighbors.  Again, no updates are 
needed. 
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Figure 1.29 
 
In the fifth iteration, we mark v3 as known, and update neighbors.  This time, we actually find a shorter 
route to v6, and update its distance and make v3 its parent vertex. 
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Figure 1.30 
 
In the sixth iteration, we mark v7 as known, and update its neighbors.  Again we find a shorter path to v6, 
so it is updated and v7 is made its parent vertex.  The last iteration, we mark v6 as known, and no updates 
are needed.  Now we are done. 
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1.8.2 Our Version of the Algorithm 

 
bool DijkstraSearch(Node start, Node goal) 
{ 
 PriorityQueue open; 
 Node  n,  child; 
 
 start.parent = NULL; 
 start.cost = 0; 
 
 open.enqueue(start); 
 while(!open.isEmpty()) 
 { 
  n = open.dequeue();  
  n.setVisited(true); 
  if (n == goal)  
  { 
   makePath(); 
   return true; 
  } 
 
  while (n.hasMoreChildren()) 
  { 
   child = n.getNextChild(); 
   COSTVAL newcost = n.cost + cost(n, child); 
   if (child.visited()) 
    continue; 
   if (open.contains(child) && child.cost <= newcost) 
    continue; 
   child.parent = n; 
   child.cost = newcost; 
   if (!open.contains(child)) 
    open.enqueue(child); 
   else 
    open.reenqueue(child); 
  } 
 } 
 
 return false; 
} 

 
Listing 1.13 

 
Our version of the algorithm is very much like the last two versions we studied.  That is, we will keep 
track of the shortest distance we have found thus far at each node and also keep track of which nodes we 
have visited.  The biggest difference is how we pick which node to next traverse through. We use a 
priority queue to sort our unvisited nodes in order of their cost.  We then grab the top one off of the 
queue and do our traversal.  Let us discuss this particular version in more detail since it is the version we 
will be using in our demo. 
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bool DijkstraSearch(Node start, Node goal) 

 
Like the other algorithms, this one expects a start node and a goal node, and returns if it was capable of 
finding a path. 
 
 PriorityQueue open; 
 Node  n,  child; 

 
As in Best First Search, a priority queue is used to keep track of the nodes we need to visit, and we will 
have a current node as well as the current child we are visiting of the current node. 
 
 start.parent = NULL; 
 start.cost = 0; 

 
We will start out by setting the parent of our starting node to NULL to denote it is indeed the start. We 
also set the cost to 0. 
  
 open.enqueue(start); 

 
Next we will initialize the queue by adding our start node to it since we will want to visit it first. 
 
 while(!open.isEmpty()) 

 
While the queue is not empty, we will iterate through all the children of each node in the queue.  If the 
queue empties before we find the goal, there is no path from the start node to the goal. 
 
  n = open.dequeue(); 
  n.setVisited(true); 
  if (n == goal)  
  { 
   makePath(); 
   return true; 
  } 

 
For each iteration, we will grab a node off the queue and make it our current node.  We also mark this 
node as visited so we do not visit it again.  If this node is the goal node, we found the path, so we make 
it and return success.  
 
  while (n.hasMoreChildren()) 

 
We then iterate across each of the current nodes’ children. 
 
   child = n.getNextChild(); 
   COSTVAL newcost = n.cost + cost(n, child); 

 
For each child, we compute the cost from this node to the child and add it to the cost which this node has 
stored as the computed cost from the start node to it.  This allows us to keep track of the total cost it 
takes to get from the start node to every other node as we visit it. 
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   if (child.visited()) 
    continue; 
   if (open.contains(child) && child.cost <= newcost) 
    continue; 

 
Here is where the algorithm starts to differ from the other algorithms we have discussed so far.  Like the 
other algorithms, if we have visited this child node, we do not visit it again.  But if we have not visited 
this child, but we have already determined that we need to visit it, we check to see if the cost we’ve 
computed previously for this child is less than the cost we just computed.  This allows us to update the 
cost to this particular child if we found a shorter path to this child.  If we have a cost for this child 
computed already and it is shorter than the cost we just found, we ignore this path to the child node since 
we have a better one already. 
 
   child.parent = n; 
   child.cost = newcost; 
   if (!open.contains(child)) 
    open.enqueue(child); 
   else 
    open.reenqueue(child); 

 
If we determine that we want to visit this child, we set its parent to be our current node, set its cost to be 
our computed cost, and if the queue does not already contain the child, we add it.  If the queue does 
contain the node, we inform the queue that it needs to reinsert the child into its proper position now that 
its cost has changed. 
 

1.8.3 The Implementation of Our Version 

MapGridWalker::WALKSTATETYPE DijkstrasMapGridWalker::iterate() 
{ 
 if(!m_open.isEmpty()) 
 {  
  m_n = m_open.dequeue(); 
  m_n->setVisited(true); 
  if(m_n->equals(*m_end)) 
  { 
   // we found our path... 
   return REACHEDGOAL; 
  } 
 
  int x, y; 
 
  // add all adjacent nodes to this node 
  // add the east node... 
  x = m_n->m_x + 1; 
  y = m_n->m_y; 
  if(m_n->m_x < (m_grid->getGridSize() - 1)) 
  { 
   visitGridNode(x, y); 
  } 
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  // 
  // All other directions here, but that takes up too much space 
  //  
 
  // add the north-east node... 
  x = m_n->m_x + 1; 
  y = m_n->m_y - 1; 
  if(m_n->m_y > 0 && m_n->m_x < (m_grid->getGridSize() - 1)) 
  { 
   visitGridNode(x, y); 
  } 
   
  return STILLLOOKING; 
 } 
  
 return UNABLETOREACHGOAL; 
} 

Listing 1.14 
 
void DijkstrasMapGridWalker::visitGridNode(int x, int y) 
{ 
 int newcost; 
 bool inqueue; 
 
 if(m_grid->getCost(x, y) == MapGridNode::BLOCKED ||  
  m_nodegrid[x][y].getVisited()) 
  return; 
 
 newcost = m_n->m_cost + m_grid->getCost(x, y); 
  
 inqueue = m_open.contains(&m_nodegrid[x][y]); 
 
 if(inqueue && m_nodegrid[x][y].m_cost <= newcost) 
 { 
  // do nothing... we are already in the queue 
  // and we have a cheaper way to get there... 
 } 
 else 
 { 
  m_nodegrid[x][y].m_parent = m_n; 
  m_nodegrid[x][y].m_cost = newcost; 
   
  if(!inqueue) 
  { 
   m_open.enqueue(&m_nodegrid[x][y]); 
  } 
  else 
  { 
   m_open.remove(&m_nodegrid[x][y]); 
   m_open.enqueue(&m_nodegrid[x][y]); 
  } 
 } 
} 

Listing 1.15 
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Here is the actual implementation from our demo.  Similar to the algorithms we discussed already, it 
makes use of the priority queue to keep our nodes sorted in order of cost.  We grab the top node off our 
queue, see if it is traversable, update all of its neighbors, and continue on until we find the goal node.  
Let us go over our implementation of the algorithm in more detail. 
 
MapGridWalker::WALKSTATETYPE DijkstrasMapGridWalker::iterate() 

 
As in all our implementations, the iterate method starts inside the while loop of our algorithm snippet.  It 
returns a status of needing more iteration because it is still looking, whether it found the goal, or if it 
cannot find the goal. 
 
 if(!m_open.isEmpty()) 

 
 
We begin by checking to see if the queue is empty.  If it is, we cannot find a path from the start to the 
goal.  Otherwise we begin another iteration. 
 
  m_n = m_open.dequeue(); 
  m_n->setVisited(true); 

 
We grab the next node off the queue and make it our current node.  We also mark that node as visited so 
that we do not visit it again. 
 
  if(m_n->equals(*m_end)) 
  { 
   // we found our path... 
   return REACHEDGOAL; 
  } 

 
If the current node is, in fact, the goal node, we have reached our goal and return success. 
 
  // add all adjacent nodes to this node 
  // add the east node... 
  x = m_n->m_x + 1; 
  y = m_n->m_y; 
  if(m_n->m_x < (m_grid->getGridSize() - 1)) 
  { 
   visitGridNode(x, y); 
  } 

 
We then check each of the current node’s neighbors.  Again we make sure to stay within the bounds of 
our grid and let the visitGridNode method do the work. 
 
void DijkstrasMapGridWalker::visitGridNode(int x, int y) 

 
This method takes an (x, y) coordinate and visits the corresponding grid node. 
 
 if(m_grid->getCost(x, y) == MapGridNode::BLOCKED ||  
  m_nodegrid[x][y].getVisited()) 
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  return; 

 
First it checks to see if the node in question is blocked or already visited. If it is, it returns and does not 
visit the node. 
 
 newcost = m_n->m_cost + m_grid->getCost(x, y); 
  
 inqueue = m_open.contains(&m_nodegrid[x][y]); 

 
Next it computes the cost to this child node via the current node.  Also, we check to see if the node in 
question is already in our queue. 
 
 if(inqueue && m_nodegrid[x][y].m_cost <= newcost) 
 { 
  // do nothing... we are already in the queue 
  // and we have a cheaper way to get there... 
 } 

 
If we are already in the queue, and the new cost we computed is greater than the cost the child node 
already has, we ignore the node since we already have a cheaper way to get there. 
 
  m_nodegrid[x][y].m_parent = m_n; 
  m_nodegrid[x][y].m_cost = newcost; 

 
If we determine we have a cheaper way to get to the child node, we set its parent to the current node, and 
its cost to the cost we computed for it. 
 
  if(!inqueue) 
  { 
   m_open.enqueue(&m_nodegrid[x][y]); 
  } 
  else 
  { 
   m_open.remove(&m_nodegrid[x][y]); 
   m_open.enqueue(&m_nodegrid[x][y]); 
  } 

 
If the child node is not in the queue, we simply add it.  If it is in the queue, we remove it and add it again 
so it can be put in its proper place. 
 
  return STILLLOOKING; 

 
After we visit all of the neighbor nodes of the current node, we return STILLLOOKING to indicate that 
we need more iterations to find the goal. 
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1.9 Look-Ahead Recursive Methods 

As discussed earlier, there are some look-ahead pathfinding methods that are most easily implemented 
with recursion.  The prime example we discussed is the Depth First Search. Let us take a look at this 
algorithm, and discuss it in detail. 

1.9.1 Depth First Search 

The Depth First Search algorithm is a simple traversal for weighted or non-weighted graphs, in which 
siblings are visited before neighbors.  The method has a few caveats.  The Depth First Search method is 
recursive in nature, and unless the depth to which it searches is constrained, it will search to an infinite 
depth in an attempt to find its goal.  This method also has a tendency to wrap around unless we constrain 
it to moving towards the goal, if at all possible. 
 
bool DepthFirstSearch(Node node, Node goal, int depth, int length) 
{ 
 int d; 
 
 if (node == goal)  
 { 
  makePath(); 
  return true; 
 } 
 
 if (depth < MAXDEPTH) 
 { 
  while (node.hasMoreChildren()) 
  { 
   child = node.getNextChild(); 
   d = node.dist + node.getCost(child); 
   if (!isTowardsGoal(node, child, goal)) 
    continue; 
   if (child.visited() || d > child.cost) 
    continue; 
   child.parent = node; 
   child.visited = true; 
   child.cost = d; 
   if (DepthFirstSearch(child,  goal, depth+1,  child.cost)) 
    return true; 
   child.visited = false; 
  } 
 } 
 
 return false; 
} 

Listing 1.16 
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After looking over the algorithm in Listing 1.16, you should notice it is recursive in nature rather than 
iterative.  Use of recursion allows us to leverage the call stack rather than maintaining our own stack.  
We might have implemented this method using iteration, and it would have looked much like the others 
except for its use of a stack rather than a queue. However, using recursion for this method is much more 
elegant.  Let us go over this algorithm in a little more detail. 
 
bool DepthFirstSearch(Node node, Node goal, int depth, int length) 

 
The recursive method DepthFirstSearch takes a node to search from, a goal to get to, the depth to search 
to, and the current cost.  Each call to this method will change the node, depth, and length parameters 
while the goal will remain the same. 
 
 if (node == goal)  
 { 
  makePath(); 
  return true; 
 } 

 
If the node passed in is the goal, we make the path and return our success.  The true return value will 
trigger a full recursive unroll to get us out and back to the initial caller of the method. 
 
 if (depth < MAXDEPTH) 

 
If we have not exceeded our depth, we search further, otherwise we will return false to say we did not 
find the goal. 
 
  while (node.hasMoreChildren()) 

 
If we have not exceeded our depth, we will iterate across all the passed in node’s children. 
 
   child = node.getNextChild(); 
   d = node.dist + node.getCost(child); 

 
For each child, we will compute the distance to this child by adding our passed in node’s pre-computed 
cost to the cost of getting to the child node. 
 
   if (!isTowardsGoal(node, child, gloal)) 
    continue; 

 
Here we do a little trickery to keep the algorithm from doing loops.  We check to see if the child helps 
us to get towards the goal.  The implementation of isTowardsGoal is graph specific, but it will return 
true if the passed-in node is closer to the goal and false if it is not.  If the child does not take us closer to 
the goal, we do not traverse it since it might take us on a crazy, winding path. 
 
   if (child.visited() || d > child.cost) 
    continue; 
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If the child has been visited already or the child’s cost is cheaper than the computed cost, we also skip 
this child.  
 
   child.parent = node; 
   child.visited = true; 
   child.cost = d; 

 
Next we set the child’s parent to be the node passed in, mark the child as visited, and set its cost to be 
the cost we computed. 
 
   if (DepthFirstSearch(child,  goal, depth+1,  child.cost)) 
    return true; 

 
We then recursively call the method again using the child node as the node to pass in, increment the 
depth, and pass in the child’s cost as the length.  If this returns true, we found the goal and return 
immediately.  This will unroll the recursive stack back to the initial caller. 
 
   child.visited = false; 

 
Here is another tricky bit. After the recursive call, we mark the child as unvisited again, since we might 
need to go through it via another depth traversal. 
 
To summarize, we start by calling DepthFirstSearch() and pass the start node, the end node, a depth of 1, 
and a length of 0.  The algorithm would first check the node passed in to see if it is the goal. If so, we 
make the path and return all the way out of the recursive stack. Otherwise, if our depth is less than the 
max depth we wish to search to, we iterate through each child. If the child is in the direction of the goal, 
the child has not been visited, and the cost to the child is less than the child’s current remembered cost, 
we recursively call DepthFirstSearch on that child, incrementing depth and passing the cost to the child.  
It is important to be sure that the cost to the child is better than the last cost, and that we are moving in 
the direction of the goal. Otherwise, the algorithm will create curly, winding paths that lead nowhere.  
Also, it is important to mark nodes as visited as we traverse into the graph, and unmark them on our way 
back out. This is so that we do not visit the same node more than once on the way into the graph, but we 
are sure to try them again if a search to a given depth fails.  An added improvement that could be made 
is to iteratively increase the MAX_DEPTH value to enable searching deeper into the graph until we find 
a goal.  One might also attempt to calculate a beginning MAX_DEPTH using a heuristic goal estimate 
and implement the iterative deepening from that starting point so as to reduce the number of deepening 
iterations. 
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Conclusion 

In this chapter we have discussed pathfinding at its most basic.  We talked about graphs, what they are, 
and why they are important in pathfinding. We also examined single step path traversals, as well as 
iterative and recursive methods of pathfinding. These latter methods determine optimal paths through 
the graph to the goal.  Finally, we looked at some specific implementations for some of the common 
algorithms used in pathfinding. In the next chapter we will expand our understanding of pathfinding by 
looking at more complex pathfinding methods such as A* and hierarchical pathfinding.  
 
One thing you hopefully recognized is that even the simplest pathfinder requires decision making; even 
when that decision was as simple as “we hit a barrier, so try moving in some random direction to get 
around it”. As we progressed, we saw that the means for improving the efficiency of the search and the 
ability to circumnavigate obstacles involved more complex decision making criteria (such as the various 
heuristics we mentioned). Again, while this may not be the pure Decision Making AI that we will learn 
about later on, you can probably understand why some programmers tend to lump everything together 
into a single catch-all AI category (which we made efforts to define at the outset) while others might 
consider this just a branch on a larger tree. In a sense, they are both right. After all, the job of the 
pathfinder is to make an entity move from point A to point B in a manner such that, on screen, it looks 
like the entity “figured out” how to get there in the shortest or quickest way possible. To the player, the 
entity certainly looks like it knows what it is doing and is therefore exhibiting some manner of 
intelligence. According to our original definition of artificial intelligence, this certainly fits the bill. 
Keep these thoughts in mind as you work your way through the rest of the course. 


