
Forschungsseminar aus Computergraphik und Digitaler Bildverarbeitung (SS2006)

A. Wilkie, G. Zotti, R. Habel (Editors)

Directional Lightmaps

Peter Houska†

Institute of Computer Graphics & Algorithms, TU Vienna, Austria

Abstract

This report explains the basic idea behind directional lightmaps. The explanation is based on a presentation about

Valve Software’s Source Engine. The engine was used for the game Half-Life 2 and heavily relies on directional

lightmaps to produce realistic lighting effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three Dimensional Graph-

ics and Realism

1. Introduction

While computer hardware keeps improving, also the cos-

tumer, e.g. someone who buys and plays a 3D computer

game, expects the graphics to look more realistic. Lighting

effects are crucial for providing this perception. It is of great

interest for software-developers to come up with solutions

that look good and work fast. In the early days of hardware

accelerated graphic-cards, it was sufficient to apply a so

called lightmap together with the “traditional” texture. This

concept was first introduced with the game Quake by id

Software. In the lightmap the static diffuse light interaction

in the scene is stored and since the diffuse lighting solution

is view-independent, the light-intensities at each position in

the scene can be precalculated. At runtime, only a lookup

is performed. This means, that the lightmap is just another

texture that is attached to each polygon and if multitexturing

is supported by the video adapter, then there is no additional

cost at runtime, since both textures are rendered in one pass.

A well known and often applied technique for generating

lightmaps in the preprocessing step is the radiosity. For

further information, read [Had02] and [HA01].

In the first part of this paper directional lightmaps

are presented in more detail. By doing so, the advantages

and boundaries of the technique are pointed out, too. With

the help of various illustrations each step for creating the

needed data is presented in a less abstract way. It is also

† e9907459@student.tuwien.ac.at

shown, that directional lightmaps are a refined version of

classic lightmaps. Only minor changes are made to the

preprocessing step and there is more work to do at runtime,

but it is still a fast and yet accurate method. It remains to

say, that Valve refers to directional lightmaps as radiosity

normal maps.

Besides directional lightmaps, another innovative solu-

tion, which was given the name ambient cube is presented

in the second part. This approach helps integrate characters

with the world and its static lighting-environment. One

can think of ambient cubes as cubemaps with a resolution

of 1x1 pixels where the stored images essentially only

represent a single color-value instead of an environment.

2. World vs. Model

Valve Software’s Source Engine distinguishes 2 classes of

geometry, namely world and model geometry, respectively.

Each of these 2 classes is handled differently by the renderer.

The term world geometry denotes large and static data,

e.g. the level in which the player moves around. Radiosity

light maps are used to give the scene a more realistic look.

See section 4 for a detailed description in how the Source

Engine enhances traditional radiosity light maps.

Physics props and animated characters belong to the

c© ICGA/TU Wien SS2006.



P.Houska / Directional Lightmaps

model geometry class. Ambient cubes are employed for

their realistic integration with the world. Again, an in depth

look at the topic is given later, in section 5.

3. Important terms

As mentioned earlier, the methods described in this paper

are enhancements to well known techniques. To improve the

readers understanding for the following explanations, a brief

revision of these concepts will be presented in this section.

If the reader is familiar with radiosity (section 3.1), the tan-

gent space (section 3.3), normal maps (section 3.2) and

environment maps (section 3.4), the following subsections

can be skipped. For those who want to know more about a

specific topic, some references are given, too.

3.1. Radiosity

Half-Life 2’s radiosity normal maps rely on a radiosity

solution. The radiosity solution determines the diffuse

lightinteraction in the scene. This includes subtle effects

such as indirect lighting (even if from a paricular position

in the scene the lightsource is not visible, light can still be

transfered through reflection from other positions in the

scene) and colorbleeding (if white light is reflected from

a red wall, it will become reddish for the next bounce). If

enough preprocessing time is invested, soft shadows are

produced. Look at figure 1 to get an impression of a sample

radiosity solution.

Figure 1: This figure shows a scene that was calculated

with the radiosity method. It shows subtle effects like indirect

lighting, color bleeding as well as soft shadows in a diffuse

lighting setup. Image taken from [Wil05]; see section 3.1.

To process a scene, first all surfaces are subdivided into

so called patches. Each patch will finally be assigned one

light intensity, so the more patches a surface is subdivided

in, the smoother the shadows will look. The light intensity

for a single patch is computed iteratively. Initially, only the

patches that represent light sources have positive intensities,

all other patches’ intensities are set to zero. Since the

influence of patch A on patch B depends on their relative

orientation, form factors are introduced. These form factors

encode the energy transfer between patches. In the literature,

form factors are written as Fi j, which denotes the fraction

of light originating at patch i that reaches patch j. It is

important to note, that they depend only on the geometry,

not on the illumination of the scene. This is a convenient

property, since form factor calculation is time-expensive,

but needs to be done only once per geometric setup and

can then be reused, if for example lightintensities of the

lightsources are altered.

There are various ways to calculate the form factors

for a scene. The main distinction is between analytic and

numeric approaches. In computer games, hemisphere

sampling, which is a numeric method is commonly used.

The hemisphere is placed on each patch (according to the

surface normal that the patch belongs to) and then for every

other patch it is determined, how much of the hemisphere

is “occluded” by this other patch. This fractional part for

each pair of patches is their shared form factor. Additional

information can be otained by studying [Wil05] or [HB04],

in particular the radiosity rendering equation. It is not so

important to understand the complete radiosity solution, but

rather how the form factors are determined to understand

directional light mapping.

In fact, the hemisphere is often replaced by a more

convenient hemicube (see Figure 2). By doing this, an

ordinary scanline renderer can be used to determine the

form factors. The camera that is placed on each patch and

five snapshots, that represent the “panorama” of the patch

are taken. For rendering, the patches only get unique colors

as identifier - so the result looks somehow abstract. Compare

this technique to the automatic creation of environment

maps in section 3.4.

To actually determine the form factor for each pair of

patches, consider this example: the camera is placed on patch

A and the panorama, which has NA pixels, is generated by

rendering all other patches with their respective identifier-

colors. Patch B, which has color CB is visible on NAB pixels

in this panorama. This means that the form factor between

patch A and B is NAB / NA. Note that this technique is simi-

lar to generating cube maps [FK03], which are discussed in

more detail in section 3.4.

3.2. Normal Maps

In the early days of computer games, textures were just

“photographs” attached to polygons. This increased the per-

c© ICGA/TU Wien SS2006.



P.Houska / Directional Lightmaps

Figure 2: A hemicube is used to determine the form factor

between 2 patches. The dark gray area on the surface of the

hemicube corresponds to the projection of one patch onto the

hemicube. The fractional part of dark gray hemicube “pix-

els” to the overall hemicube pixel count is the form factor

between those two patches. Image taken from [Wil05]; see

section 3.1.

cepted detail - a brick wall consisted only of a single surface

with a corresponding texture applied to it. One disadvantage

was that the lighting was statically incorporated into the

texture and could not be altered at runtime to adapt to a new

lighting situation in the scene.

To overcome this limitation, bump maps were intro-

duced [Koe00]. Bump maps are special textures that carry

depth information in one RGB channel, just like a height

field. Normal maps are an improvement to bump maps

since they carry information in each of the three RGB

channels. This makes it possible to encode a normal for

each texel of the normal map. The red channel encodes the

normal vector’s x component, the green channel encodes the

normal vector’s y component and the blue channel specifies

its z component. 100% red denotes a vector facing right, 0%

red represents a vector facing left. Note that the blue channel

in a normal map is never smaller than 50%, since this would

describe a vector that points “behind” the surface [HT]. This

is also the reason why normal maps appear bluish when

viewed with an ordinary image viewer.

While the silhouette of the surface is not affected by

a normal map, it associates a particular direction with

each texel. This vector can be used for lighting calcu-

lations (http://developer.valvesoftware.com/wiki/

Normal_Maps). More about geometry detail classification

can be studied in [Pre06].

3.3. Tangent Space

If normal maps are used to increase surface detail, calcu-

lations for lightintensities are usually carried out per pixel.

Since the normal map is defined with respect to the attached

surface, there is now yet another coordinate system - the co-

ordinate system that is attached to this surface. This coordi-

nate system is called tangent space and the per-pixel cal-

culations are carried out in this space. The three, pairwise

perpendicular basis vectors are the normal ~N, the tangent
~T and the binormal ~B. The vector ~N is equal to the surface

normal, ~T points in the direction in which the first texture

coordinate u increases and ~B points in the direction in which

the second texture coordinate v increases [Pre06], [Koe00].

3.4. Environment Maps

Environment maps simulate reflection on object surfaces.

Imagine a ray that hits a mirror. What is seen is not the

mirror, but rather what is hit by the reflected ray. Since it is

computationally expensive to actually determine the correct

color for each such reflected ray - this is what is done

in raytracing [Wil05] - a simplification is necessary. In a

computer game it is often enough to see the reflection of the

sky in objects that are highly reflective. Only the reflected

ray is computed and then used to access a previously

generated texture map - the environment map. It is common

to organize the environment map as a cube map.

A cube map consists of 6 images which correspond to

what is seen along the positive and negative X, Y and Z axis,

respectively. Apparently without extensions this method

cannot handle reflection of objects in the scene that move

around or of anything that is not stored in the cube map.

This is a consequence of the assumption that what is seen in

the cube map is “infinitely” far away. The reflective object

itself may move around without destroying the illusion of a

correct reflection.

Cube Maps can easily be created by taking six snapshots

when viewing along the positive and negative x, y and z

axis, respectively. The camera should be configured to have

a field of view of 90◦ and an aspect ratio of 1. Interestingly,

this technique is quite similar to form factor calculation us-

ing hemicubes and a camera, already presented in section 3.1

For further information, consult [FK03], [Koe00] or

[HA01].

4. Radiosity Normal Mapping

Radiosity normal mapping combines radiosity and normal

mapping. Realistic diffuse lighting with soft shadows can be

obtained from a radiosity preprocessor. Even though this is

computationally expensive, it is an acurrate, stable and fully

c© ICGA/TU Wien SS2006.



P.Houska / Directional Lightmaps

automatic way for producing game content. Normal maps

on the other hand introduce higher surface detail through

elaborated lighting calculations and work with both diffuse

and specular lighting models.

Normal mapping typically requires each lightsource to be

handled in a separate pass. This is done by summing multiple
~N .~L terms, where ~N is the current surface normal from the

normal map and~L is the current lightsource’s light vector. It

is obvious that the number of lights is limited because of this

property.

Radiosity normal mapping on the other hand effectively

bump maps with respect to an arbitrary number of lights in

one pass [McT04]. This property is achieved by preprocess-

ing the lightsources with the radiosity method. In contrast to

the traditional radiosity method, one lightmap is computed

for each of the three vectors of the basis for radiosity normal

mapping (see sections 4.1 and 4.2). It does not matter how

many diffuse lights are placed in the scene, since all informa-

tion is extracted in a preprocessing step and made available

during runtime through the three lightmaps for each surface.

These three lightmaps together with the normal map can al-

ways be combined in one pass!

4.1. Basis for Radiosity Normal Mapping

In order to produce three lightmaps per surface, three

slightly different radiosity solutions are computed. Tradi-

tionally one patch gets is assigned a single color value,

because the form factor is calculated with respect to the

surface normal only (for example by placing a hemicube

at the surface, pointing into the direction of the surface

normal). If we were to place three hemicubes on each patch,

facing into the direction of three vectors, this would result

in three different form factors and therefore three different

color values per patch. These three surface vectors are the

basis for radiosity normal mapping. In order to do so,

the basis must be transformed into the tangent space of this

surface.

Figure 3 shows how the basis looks like if the surface lies

in the εxy plane and its normal is





0

0

1



 . The individual

vectors are









−
1√
6

−
1√
2

1√
3









,









−
1√
6

1√
2

1√
3









,







√

2
3

0
1√
3






.

At first sight the basis looks quite arbitrarily chosen. This

is actually not the case. The two constraints for the basis

vectors are, that they need to be pairwise orthogonal to each

other and that they should evenly cover the hemisphere in the

direction of the surface normal. Figures 4 and 5 should con-

Figure 3: Basis for radiosity normal mapping. Note that

the basis vectors form a cartesian coordinate system, where

every two basis vectors are orthogonal to each other. Image

taken from [McT04] (slightly modified); see section 4.1.

vince the reader, that both properties hold for this particular

choice for the vectors.

Figure 4: The basis vectors are “centered” around the sur-

face normal, which is the z-axis in this case. The angle be-

tween each basis vector and the surface normal is approxi-

mately 54,74◦; see section 4.1.

4.2. Directional Components

By calculating 3 different radiosity solutions, three slightly

different lightmaps per surface are generated. Each lightmap

is associated with the corresponding basis vector that was

used for form factor calculation. Therefore each lightmap is

bound to a certain direction and the lightmaps are referred

to as directional components. Take a look at figure 8 to

get an impression of how the directional lightmaps look like.

Given this information, it is easy to realize that, depend-

ing on a normal from the normal map, the three lightmaps

c© ICGA/TU Wien SS2006.



P.Houska / Directional Lightmaps

Figure 5: The angle between the projected vectors onto the

surface, which is the εxy plane in this example, is 2
3 π. This

can be illustrated by looking at the vectors along the nega-

tive surface normal vector; see section 4.1.

can be combined (for details, see section 4.3) so that finally

the result looks approximately like a complete radiosity so-

lution for this direction. Since this combination is done ef-

ficiently at runtime, even animated normal maps or dynami-

cally blended normal maps are possible. For example when

a bullet produces a hole in a wall, the shading is adapted

according to the new “geometry” of the surface.

4.3. Radiosity Normal Mapping Math

During runtime all that remains to be done for each pixel

in the final image, is transform the normal from the normal

map into the new basis and blend between the three precom-

puted lightmaps based on the direction of the transformed

normal with respect to each of the basisvectors [McT04]:

di f f useLightColor =
lightmapColor[0]∗dot(bumpBasis[0],normal)+
lightmapColor[1]∗dot(bumpBasis[1],normal)+
lightmapColor[2]∗dot(bumpBasis[2],normal)

As a simple example consider a normal from the normal

map that coincides with the first basis vector bumpBasis[0] .

The first dot product is equal to 1 (the vectors are assumed

to be normalized), while the other two evaluate to 0 since the

basis vectors are orthogonal to each other. The color that is

assigned to this pixel is simply the color lightmapColor[0]
from the first lightmap.

4.4. Digression: Specular Lighting

So far, only diffuse lightinteraction is taken into account.

To improve the visual appearance, the Source Engine also

incorporates specular lighting that is based on cube maps.

This has nothing to do with radiosity normal mapping, but in

section 4.5 the individual results from each step are shown

and there is a path for a specular component, too, which

shows that specular lighting can easily be incorporated with

radiosity normal mapping. This is the reason for this short

excursus.

In section 3.4 it was already pointed out, that the environ-

ment that is stored in a cube map is assumed to be infinitely

far away, so that the relative position can be neglected and

all that matters is the reflected vector’s direction. If this

property does not hold, the observer will most likely notice

that the reflection does not look correct.

The approach that is realized in the Source Engine is

to use many cube maps. The sample points for those cube

maps are set by the designer inside the level-editor through

point entities. Each of the cube maps is valid only for a

small area in the level; this means that even though now

the environment that is stored in the cube map may be near

the observer, the reflection looks realistic anyway. Once the

reflecting object moves too far away from such an area,

another area is entered with yet another stored cube map

which is then assigned as the new environment map for this

object [McT04].

Please note that because the cube maps are preprocessed,

only the static world geometry is reflected on objects. In

order to reflected animated objects as well, the cube maps

would need to be updated periodically during runtime.

4.5. Shade Tree

In this section, the final rendering result is put together

step by step. Consider figure 6 which is our desired image.

Figure 7 shows an overview of the “assembly-process”.

Figure 6: Final result that is built step by step. Image taken

from [McT04]; see section 4.5.

Figure 8 shows the three different directional lightmaps

as well as a traditional lightmap for the same scene. The

traditional lightmap can be reproduced by blending the three

c© ICGA/TU Wien SS2006.



P.Houska / Directional Lightmaps

Figure 7: Schematic overview for how the individual parts

from several stages in the pipeline are combined to form the

desired result. The upper half shows the paths for the spec-

ular part, the lower half deals with the diffuse component -

this is where directional lightmaps are used. Image composi-

tion is from left to right. Image taken from [McT04] (slightly

modified); see section 4.5.

directional components.

Figure 9 illustrates, how the lightmaps can benefit

from normal mapping. Even though the geometry has not

changed, it seems that scene-detail has increased.

Figure 10 shows the signifcant improvement of direc-

tional lightmapping upon traditional lightmapping. The

figure reflects the enhancements of texturing in games since

texturing was first introduced.

Figure 11 shows the final result for this snapshot. The only

difference to the previous figure (10) is the integration of the

specular component. While in this image the difference is

not striking, the view-dependent specular part is well visi-

ble when the camera moves through the scene. The individ-

ual steps for producing the specular component are not pre-

sented in detail in this paper, which focuses on the diffuse

component only, but can be looked up in [McT04].

5. Ambient Cube

A problem that needs to be solved is the integration of

mobile props and animated characters into the complexly lit

scene. Since processing power is limited, it is impossible

to compute a new radiosity solution for each frame. It

turns out that the radiosity solution can however be used to

address the problem. In the preprocessing step, right after

the radiosity solution is computed, so called ambient cubes

are generated at some predefined 3D grid-positions in the

whole level. Although in [McT04] there is no explanation

Figure 8: The three directional components in compari-

son to a traditional radiosity solution, which can be otained

by blending the three lightmaps from the directional com-

ponents. Each of the directional components is a radiosity

solution with the hemicube placed on the same patch but

each time facing along another basis vector. Through the 3

lightmaps directional dependencies are preserved and can

therefore be used together with normal maps for elaborated

shading effects on surfaces (see figure 9). Image(s) taken

from [McT04]; see section 4.5.

c© ICGA/TU Wien SS2006.



P.Houska / Directional Lightmaps

Figure 9: This figure illustrates the combination of

lightmaps and a normal map. Through elaborated shading

the detail in the scene is increased. Image(s) taken from

[McT04]; see section 4.5.

for how these ambient cubes are generated, one possible

approach would be to generate an environmental cube map

at each grid-position (see section 3.4).

While generating this special purpose cube map, only

the lightmaps are attached to the surfaces. In order not to

consume too much memory, the cube map’s six faces are

postprocessed. The mixed color of all pixels for a face is

determined, so finally a resolution of 1x1 pixels is sufficient

for each face of the ambient cube (see figure 12). Essentially

now each face stores a single color, which approximately

represents the ambient light flow through this volume in

space.

It is important to note, that again the ambient cubes are

generated in the preprocessing step. It is further possible to

compute them only once after level creation and store them

together with the geometric data, so that it does not take too

Figure 10: From top to bottom: Simple texturing (e.g.

Ultima Underworld, Castle Wolfenstein, Doom I) - photos

of a rock can be used for texturing the cave; Traditional

lightmapping (e.g. Quake I) - combine the lightmap from

the radiosity preprocessing step with the photo texture; Di-

rectional lightmapping (e.g. Half-Life 2) - three lightmaps

and a normal map increase the scene detail significantly

when combined with the photo texture. Image(s) taken from

[McT04]; see section 4.5.

much time to load a level. At runtime only a lookup into the

ambient cube data is performed to sample the colors for the

volume the object is currently in so that it can be seamlessly

integrated with the world via indirect lighting (take a look

at figure 13). Again a directional dependency emerges.

Ambient cubes can be seen as the volumetric equivalent to

directional lightmaps, which are defined for 2D surfaces.

Ambient cubes however do not produce shadows - the

shadows that objects cast, are generated with yet another

technique (again this is not mentioned in [McT04]). The

specular lighting for models works similar to the world spec-

ular lighting - the best / nearest cube map sample is cho-

c© ICGA/TU Wien SS2006.



P.Houska / Directional Lightmaps

Figure 11: The final result. Additionally to directional

lightmapping, the specular part has been integrated as well.

In the image the difference is hardly visible; since the spec-

ular part is view-dependent, the difference is better visi-

ble when the camera moves through the scene. Image taken

from [McT04]; see section 4.5.

sen every frame and then used for generating the reflection.

In the actual implementation, 2 local lights are additionally

used for rendering models (necessary for the shadows) and

any other local lights that are not important enough are added

to the ambient cube as well.

Figure 12: Ambient Cube. A single color value for each

face determines the lightflow along this direction through

this volume in space. Image taken from [McT04]; see sec-

tion 5.

5.1. Ambient Cube Math

Assume that worldNormal , nSquared and linearColor

are vectors with 3 float components and that isNegative is

a vector with 3 integer components. The ambient light is

sampled from the ambient cube’s data as follows [McT04]:

nSquared = worldNormal ∗worldNormal

isNegative = (worldNormal < 0.0)

Figure 13: Ambient Cube in action - two characters in-

tegrated into a complexly lit scene - from the left white /

bluish light strikes the characters, while from the right they

are softly lit by red light originating from the liquid in the

background. Image taken from [McT04]; see section 5.

linearColor =
nSquared.x∗ cAmbientCube[isNegative.x]+
nSquared.y∗ cAmbientCube[isNegative.y+2]+
nSquared.z∗ cAmbientCube[isNegative.z+4];

The value that is assigned to nSquared is actually the

length of worldNormal to the power of 2. Since it is

normalized, the length is equal to 1.

The value that is assigned to isNegative is a componen-

twise encoding of the test to determine, if worldNormal is

facing into the positive or the negative direction of the x, y,

or z axis. For example, the x-component of isNegative is set

to 1, if the x-component of worldNormal is smaller than 0,

otherwise the x-component of isNegative is set to 1.

In the final assignment nSquared is used as the scaling

factor (the sum of its components is equal to 1 as mentioned

before) and the encoded values in the new isNegative vec-

tor are used to distinguish “front- from backfacing” ambient

cube faces for the current normal vector.

6. Conclusions

Once again interactive frame-rates are bought at the cost of

complex preprocessing-calculations and increased memory

requirements (for the lightmaps, the ambient cubes and the

cube maps). Additionally throughout the text one could

see that an intelligent mixture of various approaches and

techniques can produce better effects than “monolithic”

solutions. Here, by monolithic is meant, that for example

specular and diffuse lighting effects are handled by the same

method instead of using two different methods that can only

c© ICGA/TU Wien SS2006.



P.Houska / Directional Lightmaps

handle either of the cases.

Through the preprocessing step it is possible to handle

an arbitrary number of lightsources at constant frame rates.

What is thereby achieved is a decoupling of complexity and

this is also the real strength of directional lightmaps. The

method is highly efficient and still introduces impressive

improvements in quality.

Ambient cubes address the need to integrate animated

characters and other, non static objects with the “perfectly

lit” world geometry. Again the method mainly increases pre-

processing time and memory requirements but consumes lit-

tle processing power during runtime.

Directional lightmaps and ambient cubes are not

used solely by the Source Engine. The Unreal3 en-

gine (see http://www.unrealtechnology.com/

html/technology/ue30.shtml) and the Cry-

sis engine (see http://crysis.4thdimension.

info/dlsarelogged/_images/videos/crysis_

gdc2006_4.jpg and http://selectivegamers.

com/content/view/390/146) will both be using

similar techniques for world and model shading. Other

developers are likely to integrate similar ideas into their

future state of the art engines.

References

[FK03] FERNANDO R., KILGARD M. J.: Cg Tu-

torial, The: The Definitive Guide to Programmable

Real-Time Graphics. Addison Wesley Professional,

2003. http://developer.nvidia.com/object/cg_

tutorial_excerpts.html, http://www.aw-bc.com/

samplechapter/0321194969.pdf.

[HA01] HAWKINS K., ASTLE D.: OpenGL Game Pro-

gramming. Prima Publishing, 2001.

[Had02] HADWIGER M.: Game Technology Evolu-

tion, 2002. http://www.vrvis.at, http://www.cg.

tuwien.ac.at/courses/CG2/SS2002/Gaming.pdf,

http://www.cg.tuwien.ac.at/courses/CG2/

SS2002/Gaming_slides.pdf.

[HB04] HEARN D., BAKER M. P.: Computer Graphics

with OpenGL, 3rd Edition. Pearson Prentice Hall, 2004.

[HT] HASTINGS-TREW J.: Creating Normal Maps

with Cinema 4d. http://planetpixelemporium.com/

tutorialpages/normal.html.

[Koe00] KOENIG A. H.: Texturing, Mar. 2000.

http://www.cg.tuwien.ac.at/courses/CG2/

SS2002/Texturing.pdf, http://www.cg.tuwien.ac.

at/courses/CG2/SS2002/Texturing_slides.pdf.

[McT04] MCTAGGART G.: Half-Life 2 / Valve

Source Shading. Tech. rep., Valve Software, Mar.

2004. http://www2.ati.com/developer/gdc/

D3DTutorial10_Half-Life2_Shading.pdf.

[Pre06] PREMECZ M.: Iterative Parallax Mapping with

Slope Information, 2006. http://www.cescg.org/

CESCG-2006, http://www.cescg.org/CESCG-2006/

papers/TUBudapest-Premecz-Matyas.pdf.

[Wil05] WILKIE A.: VO Rendering SS 2005, Unit 2: From

CG1 to Rendering, 2005. http://www.cg.tuwien.ac.

at/courses/Rendering/Slides_2005/RenderingVO_

SS2005_02.pdf.

c© ICGA/TU Wien SS2006.


