

Advanced
2D Game

Development

Jonathan S. Harbour

Course Technology PTR
A part of Cengage Learning

Australia . Brazil . Japan . Korea . Mexico . Singapore . Spain . United Kingdom . United States

Advanced 2D Game Development
Jonathan S. Harbour

Publisher and General Manager, Course
Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Jordan Casey

Senior Acquisitions Editor: Emi Smith

Project Editor/Copy Editor: Cathleen D. Small

Technical Reviewer: Dave Calkins

PTR Editorial Services Coordinator:
Erin Johnson

Interior Layout Tech:
ICC Macmillan Inc.

Cover Designer: Mike Tanamachi

CD-ROM Producer: Brandon Penticuff

Indexer: Katherine Stimson

Proofreader: Tonya Cupp

�C 2009 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the
publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions

Further permissions questions can be e-mailed to
permissionrequest@cengage.com

All trademarks are the property of their respective owners in the United
States and/or other countries.

Library of Congress Control Number: 2006909739

ISBN-13: 978-1-59863-342-9

ISBN-10: 1-59863-342-2

Course Technology
25 Thomson Place
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09

eISBN-10: 1-59863-697-9

For teachers Greg and Joann Dallmann and the inaugural student body

at Vision Christian Academy: Jeremiah, Caleb, Ashley, Madison,

Chris, Kayleigh, Stephen, Luke, Nathan, Sarah, Macy, Braden, Julie, and Bryce.

I owe a special thank you to many people who shared their technical knowledge,

advice, software, and encouragement while this book was being written. Thanks

to Cathleen Small for managing and editing; to Emi Smith at Cengage Learning;

to Dave Calkins for technical review and help with math; to Bloodshed Software

(www.bloodshed.net) for their free compiler, Dev-Cþþ; to G-Productions

(www.g-productions.net) for their DirectX DevPak, and to Jeremy Kerfs for his

tutorial; to PUC-Rio for maintaining Lua (www.lua.org); to the members of

the www.jharbour.com forum for testing and feedback; to Todd Spencer for

allowing the use of his tracks entitled ‘‘Strange Exploration’’ and ‘‘Mixed Martial

Arts’’; to Brett Paterson of Firelight Technologies (www.fmod.org) for FMOD;

to Thom Wetzel (www.lmnopc.com) for Bitmap Font Builder; to the Space

Telescope Science Institute (www.stsci.edu) for the Hubble photographs; to

Microsoft for their free compiler, Visual Cþþ 2005 Express; to Ari Feldman

(www.flyingyogi.com) for SpriteLib; to Reiner Prokein (www.reinerstileset.de)

for his artwork; to the developers and contributors of Anim8or, Audacity,

Blender, GIMP, Notepadþþ, and Pro Motion—the tools that make my life

easier; to Chuck and Tim at Comics Legends and Heroes (www.thelegendshop.

com) for an enjoyable weekly diversion; to my lovely wife, Jennifer, and our noisy

children: Jeremiah, Kayleigh, Kaitlyn, and Kourtney; to my extended family at

Vision (www.visionbaptistchurch.com); to my parents, Ed and Vicki; to George

Noory at Coast To Coast AM (www.coasttocoastam.com); to my students and

fellow faculty at UAT (www.uat.edu), thanks for making each day an adventure.

Acknowledgments

www.bloodshed.net
www.g-productions.net
www.lua.org
www.lmnopc.com
www.stsci.edu
www.flyingyogi.com
www.jharbour.com
www.fmod.org
www.reinerstileset.de
www.thelegendshop.com
www.thelegendshop.com
www.visionbaptistchurch.com
www.coasttocoastam.com
www.uat.edu

Jonathan S. Harbour is an Associate Professor of Game Development at the

University of Advancing Technology in Tempe, Arizona. His current game

project is Starflight: The Lost Colony (www.starflightgame.com). He lives in

Arizona with his wife, Jennifer, four children (Jeremiah, Kayleigh, Kaitlyn,

Kourtney), a dog (Lucy), a cat (Missy), and six temperamental computers (ages 1

to 8). He can be reached at www.jharbour.com.

About the Author

www.starflightgame.com
www.jharbour.com

This page intentionally left blank

Chapter 1 Building a 2D Game Engine . 1

Compiler Support . 2

DirectX SDK Support . 4

Why Do We Need an Engine? . 5

Creating the Engine Project. 7

Dev-Cþþ Project . 8

Visual Cþþ Project . 13

Engine Source Code . 18

Compiling the Engine Project . 33

Testing the Engine . 34

The TestEngine Source Code. 34

Dev-Cþþ Library Test Project . 35

Visual Cþþ Library Test Project. 38

Chapter 2 3D Rendering. 43

Rendering Basics . 44

Adding Rendering Support . 45

Adding Camera Support . 48

Adding Mesh Support . 51

Rendering Meshes. 56

Runtime Cubes. 56

Bouncing Balls . 58

Direct Lighting . 63

Directional Light . 64

Spot Light . 65

vii

Contents

viii Contents

Point Light. 65

Creating Lights. 66

Chapter 3 2D Rendering. 73

Basic 2D Rendering . 74

Raising Happy Sprites . 78

Creating Vectors . 79

Testing Vector3 . 83

Creating a Reusable Sprite Class . 85

Rendering Sprites with Transparency . 92

Color Key Transparency . 93

Alpha Channel Transparency . 95

Chapter 4 Animation . 99

Animation Demo . 101

Sprite Rotation and Scaling . 105

Animation with Transforms . 107

Particles . 110

Chapter 5 Input . 123

Keyboard Input. 123

DirectInput Device . 124

Initializing the Keyboard . 125

Reading Key Presses . 126

Mouse Input . 127

Initializing the Mouse . 127

Reading the Mouse . 128

Engine Modifications . 129

Input Class . 130

Engine Changes . 132

Testing Keyboard and Mouse Input . 134

Chapter 6 Audio . 139

Designing an Audio System . 139

What Is FMOD? . 140

Using the FMOD SDK . 140

Audio Classes . 142

Sample Class . 142

Audio Class . 143

Adding FMOD to the Game Engine . 148

Audio Test . 149

Chapter 7 Entities . 153

Building an Entity Manager. 154

The Entity Class . 155

Modifying the Engine . 158

Modifying the Sprite Class . 165

Testing Sprites as Entities . 165

Modifying the Mesh Class. 168

Testing Meshes as Entities . 168

Chapter 8 Fonts . 173

Creating a Font. 173

Loading and Rendering a Font . 176

Font Class . 176

Using the New Font Class . 178

Chapter 9 Physics. 185

Collision Detection . 185

Automated Collision Detection . 186

Bounding Rectangle Collision Test . 192

Distance-Based Collision Test . 204

Chapter 10 Math . 213

Math Class . 214

Math Class Header . 214

Math Class Implementation . 215

Math Test . 218

Linear Velocity . 220

Angle to Target . 226

Drop-Down Console . 237

Console Class . 237

Console Test . 240

Chapter 11 Threading . 243

Introducing the POSIX Threads Library. 243

Installing POSIX Threads . 245

Using POSIX Threads . 246

Programming POSIX Threads . 248

ThreadDemo Program . 251

Threading the Game Engine . 262

Threaded Garbage Collection . 262

Testing the Newly Threaded Engine . 264

Contents ix

x Contents

Chapter 12 Scripting . 271

Introducing Lua . 272

Running Lua from the Command Prompt 272

Lua and Cþþ . 286

Lua Script Class . 287

Linking with the Lua Library. 291

Script Test . 292

Chapter 13 Games . 297

Scrolling Example . 299

Blocks Game . 301

Alien Invaders. 302

Epilogue . 303

Index . 307

Building a 2D Game
Engine

Game development is analogous to architecture and engineering. Just as an

architect designs a construction project, such as a bridge or a skyscraper, so a

game designer or game architect designs game construction projects, with many

of the same designer workbench tools. Just as a construction engineer builds the

bridge or skyscraper designed by an architect, so a software engineer builds the

game created by the designer. Game development involves art and engineering.

As I’m sure you would agree, a construction engineering team can do nothing on

their own without a blueprint created by an architect; they cannot even start

working on a foundation without the blueprint. In like fashion, a software

engineering team can do nothing on their own without a software blueprint (or

design document).

Game development encompasses both of these fields, and game development

methodologies have been formulated in the past decade to emulate the two fields of

architecture and engineering. Many of the tools are the same. A game designer

creates a design document (or blueprint) filled with concept artwork and highly

detailed specifications for the game. A truly well-done design document could

theoretically be passed on to an engineering team in order to completely build the

game entirely from the design. But in practice, this is seldom the case because—like

a skyscraper—a game is amonumental project that is just too large for a designer to

completely encompass in the design up front. So, the architect or designer works

closely with the engineering team during construction.

1

chapter 1

The example programs featured in this book are mostly derived from popular old

arcade games, to aid in the learning process. When you are already familiar with

the play mechanics of a game (that is, its funativity—a term borrowed from the

game design field known as Ludology), then it is easier to work on the source code

for a game because the gameplay is already familiar, and the rules are often

simple. Examples include Atari’s classics such as Space Invaders and Breakout,

which are something of a cliché in this field today, but that is only because these

simple games are good as educational examples. (For instance, both of these

games are useful when explaining sprite collision detection.)

Compiler Support
To develop a professional game engine that is to be taken seriously—even if our

goal is to build 2D games rather than 3D games—we will benefit from writing

code that is not tied down to any single development tool (which I like to call

being vendor agnostic). In other words, several different compilers will compile

the engine in this book without modification. Youmight be surprised how ‘‘lazy’’

your Cþþ coding can become when you get too used to a single vendor’s tool

(such as Visual Cþþ) and that tool’s automatic features. I’ve run into numerous

cases where my Visual Cþþ code generates warnings—if not errors—in another

compiler (such as GCC). Writing code for multiple compilers teaches you to

write robust code that is hardened against bugs. One good example is Microsoft’s

sprintf_s function, which does not exist in the standard C library—it’s a custom

version of sprintf in the Microsoft libraries. By being aware of problems like

this, you can learn to avoid them altogether. (In this case, I would prefer to use

std::ostringstream to format a string instead.)

My favorite compiler is not Visual Cþþ. I have nothing against Microsoft—they

developed DirectX, after all, which is what we’re basing most of our engine on.

The problem with Visual Cþþ is that it is in the midst of a family feud of sorts.

There are now several generations of the compiler that disagree with each

other—the versions from 1998, 2003, 2005, and 2008, to be specific. While the

old Visual Cþþ 6.0 dating back to 1998 might be considered grossly out of date

today, I certainly would expect Visual Cþþ 7.1 from 2003 to still be in favor. But

the reality of the situation is that none of these versions is compatible with

each other. If you create a project in one version, it will most likely not work

in another. That makes it very difficult to support Visual Cþþ because most

aspiring Cþþ programmers (namely, beginners) usually assume that the

2 Chapter 1 n Building a 2D Game Engine

product name is the most important measure of compatibility—if it’s called

Visual Cþþ, then it will compile Visual Cþþ code, right? Hmm. One would

assume as much, but the situation is complicated by the fact that each new

version breaks compatibility with prior versions. Software is complicated enough

without throwing these strange problems into the mix. When professional

developers struggle with compatibility problems, one can only wonder how

beginners fare!

So, what can we do about this problem? The most important thing is that we

write code that will compile on all of these compilers. For all intents and pur-

poses, each version of Visual Cþþ must be treated like a different compiler. It

helps to even consider them as the products of different vendors, since Microsoft

changes direction with the wind—and there’s nothing more frustrating to a

Cþþ programmer than finding his or her two- to three-year old engine or library

no longer works with the latest compiler (which is the case today).

Here is a list of compilers that are still relevant today, which should all be able to

compile the engine and examples from this book. Specifically, I am focusing on

Dev-Cþþ 5.0 and Visual Cþþ 2005 SP1 and providing projects for these two

compilers on the book’s CD. Due to the way the projects are configured, you will

find it very easy to add additional compiler support to the existing configura-

tions—as long as a compatible DirectX 9 library is available for your compiler.

Note that in the case of theMicrosoft compilers, the Professional, Enterprise, and

Express (free) editions all function the same.

n Dev-Cþþ 5.0 (MinGW / CygWin)

n Borland Cþþ 6.0

n Visual Cþþ 7.1 (2003)

n Visual Cþþ 8.0 (2005)

n Visual C++ 8.0 (2005 SP1)

n Visual Cþþ 9.0 (2008)

Adv i c e

Projects for the compilers shown in bold text in the compiler list are available on the CD.

Compiler Support 3

If you are completely new to game development, you will find this book to be a

serious challenge because we don’t cover the basics here—this is an Advanced

title. However, if you aren’t sure where to begin, I recommend you use Dev-Cþþ
5.0 (technically, the version is 4.9.9.2 beta). Why? First of all, Dev-Cþþ is based

on the world-class GCC compiler, which is used in all of the professional console

development kits (for systems like the Wii and PS3). Secondly, Dev-Cþþ is

small. The installer is tiny, and the full installation is only about 120 MB.

(Contrast that with Visual Cþþ, which weighs in at five times that size.) Third,

Dev-Cþþ has fewer dependencies, and its binary executable code (built with

GCC) does not embed a manifest file like Visual Cþþ does.

Adv i c e

A manifest file describes the runtime libraries required to run an executable program built with
Visual Studio (any language). The manifest was supposed to eliminate the DLL dependency
problems that developers had to deal with in past versions of Microsoft’s development tools.
However, ‘‘DLL nightmare’’ has been replaced with ‘‘Manifest nightmare,’’ to the extent that many
Visual Cþþ programs will not even run on the same PC they are compiled on.

We want to be able to write advanced 2D games with the least amount of

difficulty, which is why I’m making so many strong suggestions this early on. If

you use a complex compiler, plan to deal with complex challenges inherent in

using such software. But if you don’t need feature overload, going with a simpler

compiler (such as Dev-Cþþ) will make game development equally simple and

painless.

Adv i c e

As of late 2007, Firaxis Games was still using Visual Cþþ 2003. You can tell by downloading the
latest Civilization IV SDK (for the Beyond the Sword expansion). This is a fairly common situation
in game engine ‘‘mod’’ development kits.

DirectX SDK Support
Microsoft’s official DirectX SDK can be downloaded from http://msdn.microsoft

.com/directx/sdk. The current version at the time of this writing is 9.21.1148,

dated November 2007. However, we are not using Direct3D 10—this book does

not venture beyond Direct3D 9. If you are using Dev-Cþþ, you do not need

Microsoft’s DirectX SDK, only the runtime.

4 Chapter 1 n Building a 2D Game Engine

http://msdn.microsoft.com/directx/sdk
http://msdn.microsoft.com/directx/sdk

Adv i c e

Direct3D is the only DirectX component that has been updated to version 10. None of the other
components (DirectSound, DirectInput, and so on) has changed much (if at all) since around 2004.
All this means is that DirectInput does what it needs to do just fine and needs no new updates,
just as DirectSound supports high-definition audio systems and 3D positional sound without
needing to be updated further. However, Direct3D is updated regularly to keep up with the latest
graphics hardware.

I recommend you use an older version of DirectX, even if you’re using Visual

Cþþ. Although the November 2007 and future releases may work, there is no

guarantee, as Microsoft is not dedicated to preserving backwards compatibility.

For instance, the October 2006 release is a good one that I use most often (and

this is the version provided on the CD). Just remember this advice when it comes

to game development—the latest and greatest tools are not always preferable for

every game project.

Adv i c e

We do not study the basics of DirectX in this advanced book. If you have never written a line of
DirectX code in your life, then you will need a crash course first. I recommend Beginning Game
Programming, 2nd Edition (Course Technology, 2006), which will teach you all of the basics at a
very slow pace. The first four chapters cover Windows programming before even getting into
DirectX, and only ambient lighting is covered to keep the examples simple for beginners.

Why Do We Need an Engine?
What is the purpose or advantage of a game engine, as opposed to, say, just

writing all the code for a game as needed? Why invest all the time in creating a

game engine when you could spend that time just writing the game?

These are valid questions that I have pondered over the years while developing

small and large game projects (especially those for college courses). The simple

answer is: You don’t need an engine to write a game. But that is a loaded answer

because it implies that either 1) The game is very simple, or 2) You already have a

lot of code from past projects. The first implication is that you can just write a

simple game with DirectX or OpenGL code. The second assumes that you have

some code already available, perhaps in a game library—filled with functions

you’ve written and reused. A game library saves a lot of time. For instance, it’s a

given that you will load bitmap files for use in 2D artwork or 3D textures, and

once you’ve written such a function, you do not want to have to touch it again,

because it serves a good purpose. Anytime you have to open up a function and

Why Do We Need an Engine? 5

modify it, that’s a good sign that it was poorly written in the first place. (Then

again, it’s possible you have gained new knowledge and want to improve your

functions, which is valid.)

In my opinion, there are three key reasons why a game engine will help a game

development project: teamwork, cross-compiler support, and logistics. Let’s

examine each issue.

1. Teamwork is much easier when the programmers in a team use a game

engine rather than writing their own core game code, because the engine

code facilitates standardization across the project. While each programmer

has his or her own preferences about how timing should be handled, or how

rendering should be done, a game engine with a single high-speed game loop

forces everyone on the team to work with the features of the engine. And

what of features that are lacking? Usually one or two team members will be

the ‘‘engine gurus’’ who maintain the engine based on the team’s needs.

2. Cross-compiler support is almost impossible without the use of a game

engine. Although many programmers are adept at writing standard Cþþ
code that will build on multiple platforms and compilers, game code usually

does not fall into that realm due to its unique requirements (namely, ren-

dering). Cross-compiler support is the ability to compile your game with

two or more compilers, rather than just your favorite (such as Visual Cþþ).

Adv i c e

Writing code that builds on compilers from more than one vendor teaches you to write good,
standard code, without any ties to a specific platform. It’s hard to write platform-independent
code! Be prepared for a serious workout!

3. Logistics in a large game project can be a nightmare without some

coordinated way to organize the entities, processes, and behaviors in your

game. Logistics is the problem of organizing and supporting a large system,

and is often used to describe military operations (for example, the logistics

of war—equipping, supplying, and supporting troops). The logistics of a

game involve the characters, vehicles, crafts, enemies, projectiles, and

scenery—in other words, the ‘‘stuff’’ in a game.Without a system in place to

assist with organizing all of these things, the game’s source code can become

an unmanageable mess.

6 Chapter 1 n Building a 2D Game Engine

Let’s summarize all of these points in a simple sentence: A game engine makes it

easy—sometimes ridiculously easy—to make a game. Contrast that with the

problems associated with creating a game from scratch using your favorite APIs,

such as Direct3D or OpenGL for graphics, DirectInput for mouse and keyboard

support, Winsock for networking, FMOD for audio, and so forth. The logistics of

keeping up with the latest updates to all of these libraries alone can be a nightmare

for a game developer. But by wrapping all of these libraries and all of your own

custom game code into a game engine, you eliminate the headache of maintaining

all of those libraries (including their initialization and shutdown) in each game. The

best analogy I can come up with is this: ‘‘Rolling your own’’ game code for each

game project is like fabricating your own bricks, forging your own nails, and cutting

down your own trees in order to build a single house. Why would you do that?

Indeed!

But perhaps the most significant benefit to wrapping an API (such as DirectX)

into your own game engine classes is to provide a buffer around that API’s

unpredictable future revisions. Whenever a change occurs in a library that you

regularly use in your games, you can accommodate those changes in your engine

classes without having to revise any actual game code in the process. Based on my

comments already about the problems with compatibility in software today, this

is an especially important point to take to heart.

Creating the Engine Project
We are going to create the core game engine project in this chapter and then

expand it over the next half-dozen chapters to include all of the features we need

to build advanced 2D games. The starting point is the core engine developed in

this chapter, which will include WinMain, Direct3D initialization, D3DXSprite

initialization, the basic starting game event functions (game_init(), and so on),

timing and automatic frame-rate maintenance, and of course, a game loop. The

great thing about doing all of this right now, at the very beginning, is that we will

not have to duplicate any of this code in future chapters—it will already be

embedded in the game engine.

Let’s get started creating the engine project so that we’ll have a foundation with

which to discuss the future design of our engine. The Engine class is embedded in

a namespace called Advanced2D. This namespace will contain all of the engine

classes so there will not be any conflicts with other libraries you may need to use

Creating the Engine Project 7

in a game. I will go over the project creation for two compilers in detail now and

show you which libraries you will need to include in the project, so that you may

refer to this chapter again for future projects. We will continue to build on the

Engine project (which you are about to create) in future chapters.

Dev-Cþþ Project

(Note: If you are using Visual Cþþ, you may skip this section.) Dev-Cþþ 5.0 is

a modern Cþþ compiler based on the GCC MinGW kit for Windows, and it

is available for install from the book’s CD. The actual revision at the time of this

writing is 4.9.9.2. You may check www.bloodshed.net for updates. By default,

Dev-Cþþ includes Win32 compatibility, meaning you can compile Windows

code with it using GCC versions of the Windows API. The API is really just a

collection of library files (such as gdi32 and winmm). The library file extension

for GCC libraries is .a, while the library file extension for MSVC libraries is .lib,

and they are not compatible. Since Dev-Cþþ includes theWin32 API, that really

simplifies configuration.

However, DirectX is not included, so wemust install it. The DirectX SDK distributed

by Microsoft does not work with Dev-Cþþ (because of the library file format), but

there is a third-party version of the DirectX SDK available for Dev-Cþþ (and GCC

compilers in general), which is available on the book’s CD.

First, install Dev-Cþþ if you have not done so already. The installer is available

on the CD-ROM, or you may download it from www.bloodshed.net/dev/

devcpp.html. After you have installed Dev-Cþþ, then you can install the DirectX

DevPak, either from the CD or from this URL: www.g-productions.net/

list.php?c=files_devpak. (Be sure to download the 9.0c version.) The DirectX

installer is shown in Figure 1.1. After installation is complete, the DirectX library

will show up in the Package Manager, as shown in Figure 1.2.

With the DirectX library now available, we can create a new project. Open Dev-

Cþþ and click File, New, Project. This will bring up the New Project dialog

shown in Figure 1.3. Name this new project ‘‘Engine’’ (or whatever you choose).

Make sure you chooseWindows Application and Cþþ Project (from the options

on the lower right). Although a DirectX template is available (as you can see on

the New Project dialog tabs list), we will not be using the template because it

includes too much code, and we want to start off with a simple, empty project.

More than likely, the provided DirectX template won’t meet your needs anyway

8 Chapter 1 n Building a 2D Game Engine

www.bloodshed.net
www.bloodshed.net/dev/devcpp.html
www.bloodshed.net/dev/devcpp.html
www.g-productions.net/list.php?c=files_devpak
www.g-productions.net/list.php?c=files_devpak

Creating the Engine Project 9

Figure 1.2
The Package Manager shows the packages that have been installed.

Figure 1.1
Installing the DirectX 9.0c DevPak.

because it is a bit out of date, and we will be writing all of the DirectX code from

scratch on our own!

Dev-Cþþ does not automatically save the project file when you create the

project—it simply starts a new project in memory, and youmust save it. Now is a

good time to talk about folders, because we will be organizing the engine project

into sub-folders for multiple-compiler support.

Creating the New Engine Project

Create a new folder where you would like to store your game engine. I’ve called

my main folder simply ‘‘Engine.’’ Now create a new folder inside Engine called

devcpp. The folder structure will be Engine\devcpp. This is where you must save

the Dev-Cþþ engine project. I’ve called my project Engine, and this will be the

name of the class, but I saved it to a file called Advanced2D.dev. I encourage you

to do the same. Now, if you haven’t done so already, save the project. You should

find the project file located here if you have saved it correctly: \Engine\devcpp\

Advanced2D.dev. If your Dev-Cþþ project came with a main.cpp file, you may

remove it without saving, as we’ll be creating our own files.

Now you’re going to create six new files in the Engine project. You can create a

new file using the File, New, Source File menu option. When you create a new file

in Dev-Cþþ, it lets you begin writing code and save it later. You must save these

files in the main engine folder. I called my folder Engine, so to keep this tutorial

simple I recommend you do the same. The source files should be saved in

\Engine, not in \Engine\devcpp. Why? It’s a matter of logistics, which we

10 Chapter 1 n Building a 2D Game Engine

Figure 1.3
Creating a new project in Dev-Cþþ.

discussed earlier. The source code files will be shared by all of the compilers, and

each compiler will have its own dedicated folder, where it will output all object

files and other intermediate files generated during compilation. When prompted

to add each of these files to the project, select Yes. This keeps the engine project

clean. Just save each of these files to \Engine as you create them:

n Advanced2D.h

n Timer.h

n winmain.h

n Advanced2D.cpp

n Timer.cpp

n winmain.cpp

We’ll go over the source code for these files in the upcoming section titled

‘‘Engine Source Code.’’ I’ve created two filters in the project file list: Source Files

and Header Files. You may create similar filters for your project and drag your

source files to the filtered items if you wish, as I have done. The compiler will not

create actual folders; it will only organize your files. We’ll leave the new files

empty for a while. The project should look something like Figure 1.4 at this point.

Adv i c e

You can rename a project at any time! Open the Project menu, select Project Options, and you will
see a text field where the project name may be edited.

Configuring the New Project

Although the source code files are still empty, we’ll just go ahead and configure

the project now, while we’re on the subject of Dev-Cþþ. Open the Project menu

and select Project Options to bring up a dialog of the same name. In the General

tab, which comes up first, change the project type to Win32 Static Lib, as shown

in Figure 1.5.

Next, click the Build Options tab. Change the field labeled Executable Output

Directory to ..\lib. Change the next field, labeled Object File Output Directory, to

.\obj, as shown in Figure 1.6. Finally, enable Override Output Filename and enter

libAdvanced2D.a as the library filename. These options will cause the compiler to

Creating the Engine Project 11

12 Chapter 1 n Building a 2D Game Engine

Figure 1.5
Setting the project type to a static library.

Figure 1.4
The Dev-Cþþ engine project has files but needs source code!

output all object files to a folder called \Engine\devcpp\obj and output the

resulting library file to \Engine\lib. Note the library output folder is located under

\Engine, rather than \Engine\devcpp. We want the library file (libAdvanced2D.a)

to be created in \Engine\lib so it is easy to find.

Visual C++ Project

(Note: If you are using Dev-Cþþ, you may skip this section.) Now we’ll create

the Visual Cþþ project for the game engine. I am using Visual Cþþ 2005 SP1,

so that is the format of the projects on the CD. If you are using Visual Cþþ 2008,

the projects will open after they are automatically upgraded to the new

project format. Open the File menu and select New, Project to open the New

Project dialog shown in Figure 1.7. If you are using an Express edition, you will

see fewer items in the list of project templates.

Creating the New Engine Project

This dialog can be pretty convoluted if you aren’t familiar with it. I recommend

minimizing everything in the tree besides Visual Cþþ. Locate the Win32 section

and choose Win32 Project. The project name should be either Advanced2D or

Creating the Engine Project 13

Figure 1.6
Configuring the project output.

Engine. Let’s first create a new folder to contain the engine project. I have called

the folder \Engine, but you may use any name you wish (as long as you note the

difference when referring to figures in this tutorial). The Visual Cþþ 2005 (that

is, MSVC8) project will be stored in a folder called \Engine\msvc8. (If you

skipped the previous section, note that we created the Dev-Cþþ project in

\Engine\devcpp.)

The source code files will be stored in \Engine, but the solution and project files

will be stored in \Engine\msvc8. Why? The main reason is to keep the project

clean. If you store your project file in the same folder with your sources, then

the sources will be cluttered with all of the output files generated by the

compiler, not to mention the output folders (Debug or Release). Then there are

the program database files (.pdb), object files (.obj), IntelliSense file (.ncb), and

so forth. Let’s try to keep the project organized, and it will have a more

professional feel to it.

14 Chapter 1 n Building a 2D Game Engine

Figure 1.7
Creating a new Win32 project in Visual Cþþ.

Adv i c e

If you ever close Visual Cþþ and it does not respond for 10 to 15 minutes, that is a known bug
with the IntelliSense update process that ignores the user’s desire to shut down and continues
plodding away. If you want to avoid this bug, one way is to make the project’s .ncb file read only.

Adv i c e

When the project wizard appears, you will want to choose Static Library for the project type and
uncheck the Precompiled Header option. In addition, be sure to uncheck the Create Directory for
Solution option. If you forget to disable this option, Visual Cþþ will create an additional directory
inside .\Engine\msvc8, which will not work the way we want.

Now you’re going to create six new files in the Engine project. You can create a

new file using the Project, AddNewmenu option, and then choose the type of file

you want to have added to the project. When you create a new file in Visual

Cþþ, it lets you begin writing code and save it later. (The new file will be called

something like Source1.cpp by default.) You must save the source files in the

main engine folder, \Engine. The source files should be saved in \Engine, not in

\Engine\msvc8. Why? It’s a matter of logistics, which we discussed earlier. The

source code files will be shared by all of the compilers, and each compiler will

have its own dedicated folder, where it will output all object files and other

intermediate files generated during compilation. This keeps the engine project

clean. Just save each of these files to \Engine as you create them:

n Advanced2D.h

n Timer.h

n winmain.h

n Advanced2D.cpp

n Timer.cpp

n winmain.cpp

We’ll go over the source code for these files in the upcoming section titled

‘‘Engine Source Code.’’ We’ll leave the new files empty for a while. The project

should look something like Figure 1.8 at this point. By default, Visual Cþþ will

also create a new Resources filter in your project file listing, which you may

remove or leave as is. (It’s irrelevant.)

Creating the Engine Project 15

Configuring the New Project

Although the source code files are still empty, we’ll just go ahead and configure the

project now because the section with the source code (coming up shortly) is

applicable to all compilers. Remember: Single source code set, multiple compilers.

Select the project name in the project manager, then right-click and choose

Project Properties. (Or youmay open the Project menu in Visual Cþþ and select

Properties.) Visual Cþþ automatically configures new projects to output

intermediate files to a folder called either Debug or Release, depending on the

configuration currently in use, so we don’t need to specify the object folder as we

did for Dev-Cþþ. But we do need to tell Visual Cþþ where to output the library

file.

Open the Configuration Properties item in the tree view and change the Output

File field to $(ProjectDir)..\lib\$(ProjectName).lib, as shown in Figure 1.9. This

16 Chapter 1 n Building a 2D Game Engine

Figure 1.8
The Visual Cþþ engine project has files but needs source code!

tells the compiler to send the output file up one folder from the project file (which

should be \Engine), and from there go into a folder called lib. The entire folder

path should be \Engine\lib. This is the same folder where we configured Dev-Cþþ
to output its library file. Note the difference in filenames, though: Advanced2D.lib

versus libAdvanced2D.a for Dev-Cþþ (which I will explain later).

Adv i c e

You will need to make the same configuration changes for both Debug and Release builds;
otherwise, the Release build will not be configured properly and will not build when you are ready
to create the faster version of the engine. In the settings dialog, make the changes as noted and
click Apply, then choose Release in the Configuration drop-down list and do the same.

Adv i c e

I recommend disabling the precompiled header option. Open the Project Settings dialog, choose
Configuration Properties, then C/Cþþ, then Precompiled Headers. Set the Create/Use Precompiled
Headers option as appropriate.

Creating the Engine Project 17

Figure 1.9
Setting the output file for the Visual Cþþ static library project.

Adv i c e

Dev-Cþþ object files have an extension of .o, while for Visual Cþþ it’s .obj. The library files of
Dev-Cþþ have an extension of .a, while for Visual Cþþ it’s .lib. These extensions are just the
standard output extensions for GCC-based tools. The resulting executable file still ends up being
.exe.

Engine Source Code

Every Cþþ project in this book will have the same basic folder structure. First,

there will be a main folder named after the project (for instance, Alien Invaders).

This folder will contain the source code files for the project. Contained within

this folder will be subfolders named for the compilers that are supported (in the

form of project files—.sln for Visual Cþþ and .dev for Dev-Cþþ). The Dev-

Cþþ folder is called devcpp, while the Visual Cþþ 2005 folder is called msvc8. If

you have a different compiler, you can just follow the basic instructions in this

chapter to create the project for your preferred compiler, and if you have a

DirectX library available for it, then the code will be shared. This is the only way

to build a game engine; don’t even bother building one for a single compiler,

because that is not practical. Even if you are a diehard Microsoft fan, you still

need to make project files available for all the various versions of Visual Cþþ
(because none of them are compatible).

Adv i c e

Visual Cþþ solution files have an extension of .sln. A solution may have multiple project files,
which each have an extension of .vcproj.

Within the main project folder (that is, \Engine), there will be a .\bin folder that

will contain the compiled executable for a given project. In this .\bin folder you

should put any assets that are needed by your game. Obviously this doesn’t apply

to the engine itself, only to games you build using the engine. (Consider this a

free tip for future reference.) Because the .\bin folder is not a default option, we

must set it in the project, and this is not an issue now because we are not yet

working on an executable program, just a library project.

Adv i c e

An asset in the context of a game includes all media and data files used by the game (such as art
assets, model assets, audio assets, and so on), and therefore must be distributed with the game.

18 Chapter 1 n Building a 2D Game Engine

Are you ready? The codewe’ll be going over here in order to build the core enginewill

require tons of serious mental torque! So, it’s time to downshift and get your RPMs

way up as we enter the first corner of the proverbial track toward building this engine.

Advanced2D.h

Here is the source code for the Advanced2D.h header file. The code is the same

regardless of whether you are using Dev-Cþþ or Visual Cþþ. The only prob-

lems you may experience (other than the usual typos that must be fixed) are

linker errors related to the project configuration. This file describes the core

structure of the game engine at this point.

// Advanced2D Engine
// Main header file

#ifndef _ADVANCED2D_H
#define _ADVANCED2D_H 1

#include <iostream>
#include <windows.h>
#include <d3d9.h>
#include <d3dx9.h>
#include <dxerr9.h>
#include "Timer.h"

#define VERSION_MAJOR 1
#define VERSION_MINOR 0
#define REVISION 0

//external variables and functions
extern bool gameover;
extern bool game_preload();
extern bool game_init(HWND);
extern void game_update();
extern void game_end();

namespace Advanced2D
{

class Engine {
private:

int p_versionMajor, p_versionMinor, p_revision;
HWND p_windowHandle;

Creating the Engine Project 19

LPDIRECT3D9 p_d3d;
LPDIRECT3DDEVICE9 p_device;
LPDIRECT3DSURFACE9 p_backbuffer;
LPD3DXSPRITE p_sprite_handler;
std::string p_apptitle;
bool p_fullscreen;
int p_screenwidth;
int p_screenheight;
int p_colordepth;
bool p_pauseMode;
D3DCOLOR p_ambientColor;
bool p_maximizeProcessor;
Timer p_coreTimer;
long p_frameCount_core;
long p_frameRate_core;
Timer p_realTimer;
long p_frameCount_real;
long p_frameRate_real;

public:
Engine();
virtual ~Engine();
int Init(int width, int height, int colordepth, bool fullscreen);
void Close();
void Update();
void message(std::string message, std::string title = "ADVANCED 2D");
void fatalerror(std::string message, std::string title = "FATAL ERROR");
void Shutdown();
void ClearScene(D3DCOLOR color);
void SetDefaultMaterial();
void SetAmbient(D3DCOLOR colorvalue);
int RenderStart();
int RenderStop();
int Release();

//accessor/mutator functions expose the private variables
bool isPaused() { return this->p_pauseMode; }
void setPaused(bool value) { this->p_pauseMode = value; }
LPDIRECT3DDEVICE9 getDevice() { return this->p_device; }
LPDIRECT3DSURFACE9 getBackBuffer() { return this->p_backbuffer; }
LPD3DXSPRITE getSpriteHandler() { return this->p_sprite_handler; }
void setWindowHandle(HWND hwnd) { this->p_windowHandle = hwnd; }
HWND getWindowHandle() { return this->p_windowHandle; }

20 Chapter 1 n Building a 2D Game Engine

std::string getAppTitle() { return this->p_apptitle; }
void setAppTitle(std::string value) { this->p_apptitle = value; }
int getVersionMajor() { return this->p_versionMajor; }
int getVersionMinor() { return this->p_versionMinor; }
int getRevision() { return this->p_revision; }
std::string getVersionText();
long getFrameRate_core() { return this->p_frameRate_core; };
long getFrameRate_real() { return this->p_frameRate_real; };
int getScreenWidth() { return this->p_screenwidth; }
void setScreenWidth(int value) { this->p_screenwidth = value; }
int getScreenHeight() { return this->p_screenheight; }
void setScreenHeight(int value) { this->p_screenheight = value; }
int getColorDepth() { return this->p_colordepth; }
void setColorDepth(int value) { this->p_colordepth = value; }
bool getFullscreen() { return this->p_fullscreen; }
void setFullscreen(bool value) { this->p_fullscreen = value; }
bool getMaximizeProcessor() { return this->p_maximizeProcessor; }
void setMaximizeProcessor(bool value) { this->p_maximizeProcessor = value;}

}; //class

}; //namespace

//define the global engine object (visible everywhere!)
extern Advanced2D::Engine *g_engine;

#endif

Advanced2D.cpp

The Advanced2D.cpp file contains the source code for the Engine class. Note that

the Engine class is embedded inside a namespace called Advanced2D. This was

done to keep the Engine and its support classes and functions contained to

prevent conflicts with other entities in the global namespace.

Adv i c e

Are you getting lost already with these discussions of namespaces and so forth? This is basic
Cþþ programming! If you’re struggling with it, you’ll need a crash course before proceeding. I
recommend Effective Cþþ, 3rd Edition (Addison-Wesley Professional, 2005) by Scott Meyers. If
you are a complete Cþþ newbie and you need serious help, then read Cþþ Programming for the
Absolute Beginner (Course Technology PTR, 2002) by Dirk Henkemans and Mark Lee.

Creating the Engine Project 21

// Advanced2D Engine
// Main source code file

//includes
#include "Advanced2D.h"
#include <cstdlib>
#include <ctime>
#include <string>
#include <sstream>
#include <list>
#include "winmain.h"

namespace Advanced2D
{

Engine::Engine()
{

srand((unsigned int)time(NULL));
p_maximizeProcessor = false;
p_frameCount_core = 0;
p_frameRate_core = 0;
p_frameCount_real = 0;
p_frameRate_real = 0;
p_ambientColor = D3DCOLOR_RGBA(255,255,255, 0);
p_windowHandle = 0;
p_pauseMode = false;
p_versionMajor = VERSION_MAJOR;
p_versionMinor = VERSION_MINOR;
p_revision = REVISION;

//set default values
this->setAppTitle("Advanced2D");
this->setScreenWidth(640);
this->setScreenHeight(480);
this->setColorDepth(32);
this->setFullscreen(false);

//window handle must be set later on for DirectX!
this->setWindowHandle(0);

}

Engine::~Engine()
{

22 Chapter 1 n Building a 2D Game Engine

if (this->p_device) this->p_device->Release();
if (this->p_d3d) this->p_d3d->Release();

}

std::string Engine::getVersionText()
{

std::ostringstream s;
s << "Advanced2D Engine v" << p_versionMajor << "." << p_versionMinor

<< "." << p_revision;
return s.str();

}

void Engine::message(std::string message, std::string title)
{

MessageBox(0, message.c_str(), title.c_str(), 0);
}

void Engine::fatalerror(std::string message, std::string title)
{

this->message(message,title);
Shutdown();

}

int Engine::Init(int width, int height, int colordepth, bool fullscreen)
{

//initialize Direct3D
this->p_d3d = Direct3DCreate9(D3D_SDK_VERSION);
if (this->p_d3d = = NULL) {

return 0;
}

//get system desktop color depth
D3DDISPLAYMODE dm;
this->p_d3d->GetAdapterDisplayMode(D3DADAPTER_DEFAULT, &dm);

//set configuration options for Direct3D
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));
d3dpp.Windowed = (!fullscreen);
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;

Creating the Engine Project 23

d3dpp.BackBufferFormat = dm.Format;
d3dpp.BackBufferCount = 1;
d3dpp.BackBufferWidth = width;
d3dpp.BackBufferHeight = height;
d3dpp.hDeviceWindow = p_windowHandle;

//create Direct3D device
this->p_d3d->CreateDevice(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
this->p_windowHandle,
D3DCREATE_HARDWARE_VERTEXPROCESSING,
&d3dpp,
&this->p_device);

if (this->p_device = = NULL) return 0;

//clear the backbuffer to black
this->ClearScene(D3DCOLOR_XRGB(0,0,0));

//create pointer to the back buffer
this->p_device->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &this-

>p_ backbuffer);

//use ambient lighting and z-buffering
this->p_device->SetRenderState(D3DRS_ZENABLE, TRUE);
this->p_device->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
this->SetAmbient(this->p_ambientColor);

//initialize 2D renderer
HRESULT result = D3DXCreateSprite(this->p_device, &this->p_sprite_handler);
if (result != D3D_OK) return 0;

//call game initialization extern function
if (!game_init(this->getWindowHandle())) return 0;
//set a default material
SetDefaultMaterial();
return 1;

}

void Engine::SetDefaultMaterial()
{

D3DMATERIAL9 mat;

24 Chapter 1 n Building a 2D Game Engine

memset(&mat, 0, sizeof(mat));
mat.Diffuse.r = 1.0f;
mat.Diffuse.g = 1.0f;
mat.Diffuse.b = 1.0f;
mat.Diffuse.a = 1.0f;
p_device->SetMaterial(&mat);

}

void Engine::ClearScene(D3DCOLOR color)
{

this->p_device->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
color, 1.0f, 0);

}

void Engine::SetAmbient(D3DCOLOR colorvalue)
{

this->p_ambientColor = colorvalue;
this->p_device->SetRenderState(D3DRS_AMBIENT, this->p_ambientColor);

}

int Engine::RenderStart()
{

if (!this->p_device) return 0;
if (this->p_device->BeginScene() != D3D_OK) return 0;
return 1;

}

int Engine::RenderStop()
{

if (!this->p_device) return 0;
if (this->p_device->EndScene() != D3D_OK) return 0;
if (p_device->Present(NULL, NULL, NULL, NULL) != D3D_OK) return 0;
return 1;

}

void Engine::Shutdown()
{

gameover = true;
}

void Engine::Update()
{

static Timer timedUpdate;

Creating the Engine Project 25

//calculate core framerate

p_frameCount_core++;
if (p_coreTimer.stopwatch(999)) {

p_frameRate_core = p_frameCount_core;
p_frameCount_core = 0;

}

//fast update with no timing
game_update();

//update with 60fps timing
if (!timedUpdate.stopwatch(14)) {

if (!this->getMaximizeProcessor())
{

Sleep(1);
}

}
else {

//calculate real framerate
p_frameCount_real++;
if (p_realTimer.stopwatch(999)) {

p_frameRate_real = p_frameCount_real;
p_frameCount_real = 0;

}

//begin rendering
this->RenderStart();

//done rendering
this->RenderStop();

}
}

void Engine::Close()
{

game_end();
}

} //namespace

Did the code in the Engine class seem like a huge and complex detail that we

simply skipped over? Not to worry—you will become familiar with it in future

chapters. But our immediate goal is to get the core engine built and working in

26 Chapter 1 n Building a 2D Game Engine

order to delve into advanced rendering in the next chapter. That calls for a

blitzkrieg of code. I apologize if the term invokes negative connotations from

World War II, but it is a good term—we need to blitz through the basics and get

the core engine built quickly, without stopping to regroup until the goal has been

achieved.

Timer.h

The Timer class provides quick and easy timing facilities to your games, and to

the core engine itself in the form of frame-rate estimation and reporting. The

Timer’s stopwatch() method was designed to be self-contained so that you can

repeatedly call stopwatch() until the specified amount of time (in milliseconds)

has passed—at which point the Timer object will reset itself for the next call to

stopwatch(). It is an elegant design that greatly simplifies timing code.

/* Timer class provides timing and stopwatch features to the engine */
#pragma once
#include <time.h>
#include <windows.h>
namespace Advanced2D {
class Timer
{
private:

DWORD timer_start;
DWORD stopwatch_start;

public:
Timer(void);
~Timer(void);
DWORD getTimer();
DWORD getStartTimeMillis();
void sleep(int ms);
void reset();
bool stopwatch(int ms);

};
};

Timer.cpp

The implementation of the Timer class’ methods is contained in the Timer.cpp

file. There are several accessor methods, such as getStartTimeMillis() (which

Creating the Engine Project 27

returns the number of milliseconds since the program started), in addition to the

valuable stopwatch() method.

#include "Timer.h"
namespace Advanced2D {
Timer::Timer(void)
{

timer_start = timeGetTime();
reset();

}

Timer::~Timer(void)
{
}

DWORD Timer::getTimer()
{

return (DWORD) (timeGetTime());
}

DWORD Timer::getStartTimeMillis()
{

return (DWORD) (timeGetTime() - timer_start);
}

void Timer::sleep(int ms)
{

DWORD start = getTimer();
while (start + ms > getTimer());

}

void Timer::reset()
{

stopwatch_start = getTimer();
}

bool Timer::stopwatch(int ms)
{

if (timeGetTime() > stopwatch_start + ms) {
stopwatch_start = getTimer();
return true;

}

28 Chapter 1 n Building a 2D Game Engine

else return false;
}
};

winmain.h

The winmain header file contains just the few include statements needed by the

winmain source code file (coming up next).

#ifndef _WINMAIN_H
#define _WINMAIN_H 1

#define WIN32_LEAN_AND_MEAN
#define WIN32_EXTRA_LEAN
#include <iostream>
#include <windows.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include "Advanced2D.h"
#endif

winmain.cpp

#include <sstream>
#include "winmain.h"
#include "Advanced2D.h"

//macro to read the key states
#define KEY_DOWN(vk) ((GetAsyncKeyState(vk) & 0x8000)?1:0)

HINSTANCE g_hInstance;
HWND g_hWnd;
int g_nCmdShow;

//declare global engine object
Advanced2D::Engine *g_engine;

bool gameover;

//window event callback function
LRESULT WINAPI WinProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

Creating the Engine Project 29

{
switch(msg)
{

case WM_QUIT:
case WM_CLOSE:
case WM_DESTROY:

gameover = true;
break;

}
return DefWindowProc(hWnd, msg, wParam, lParam);
}

int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int
nCmdShow)
{

MSG msg;
srand((unsigned int)time(NULL));
g_hInstance = hInstance;
g_nCmdShow = nCmdShow;
DWORD dwStyle, dwExStyle;
RECT windowRect;

/**
* Create engine object first!

**/
g_engine = new Advanced2D::Engine();

//let main program have a crack at things before window is created
if (!game_preload()) {

MessageBox(g_hWnd, "Error in game preload!", "Error", MB_OK);
return 0;

}

//get window caption string from engine
char title[255];
sprintf(title, "%s", g_engine->getAppTitle().c_str());

//set window dimensions
windowRect.left = (long)0;
windowRect.right = (long)g_engine->getScreenWidth();
windowRect.top = (long)0;
windowRect.bottom = (long)g_engine->getScreenHeight();

30 Chapter 1 n Building a 2D Game Engine

//create the window class structure

WNDCLASSEX wc;
wc.cbSize = sizeof(WNDCLASSEX);

//fill the struct with info
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WinProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = NULL;
wc.lpszMenuName = NULL;
wc.lpszClassName = title;
wc.hIconSm = NULL;

//set up the window with the class info
RegisterClassEx(&wc);

//set up the screen in windowed or fullscreen mode?

if (g_engine->getFullscreen())
{

DEVMODE dm;
memset(&dm, 0, sizeof(dm));
dm.dmSize = sizeof(dm);
dm.dmPelsWidth = g_engine->getScreenWidth();
dm.dmPelsHeight = g_engine->getScreenHeight();
dm.dmBitsPerPel = g_engine->getColorDepth();
dm.dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT;

if (ChangeDisplaySettings(&dm, CDS_FULLSCREEN) != DISP_CHANGE_SUCCESSFUL) {
MessageBox(NULL, "Display mode failed", NULL, MB_OK);
g_engine->setFullscreen(false);
}

dwStyle = WS_POPUP;
dwExStyle = WS_EX_APPWINDOW;
ShowCursor(FALSE);

}

Creating the Engine Project 31

else {
dwStyle = WS_OVERLAPPEDWINDOW;
dwExStyle = WS_EX_APPWINDOW | WS_EX_WINDOWEDGE;

}

//adjust window to true requested size
AdjustWindowRectEx(&windowRect, dwStyle, FALSE, dwExStyle);

//create the program window
g_hWnd = CreateWindowEx(0,

title, //window class
title, //title bar
dwStyle | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
0, 0, //x,y coordinate
windowRect.right - windowRect.left, //width of the window
windowRect.bottom - windowRect.top, //height of the window
0, //parent window
0, //menu
g_hInstance, //application instance
0); //window parameters

//was there an error creating the window?
if (!g_hWnd) {

MessageBox(g_hWnd, "Error creating program window!", "Error", MB_OK);
return 0;

}

//display the window
ShowWindow(g_hWnd, g_nCmdShow);
UpdateWindow(g_hWnd);

//initialize the engine
g_engine->setWindowHandle(g_hWnd);
if (!g_engine->Init(g_engine->getScreenWidth(), g_engine->getScreenHeight(),

g_engine->getColorDepth(), g_engine->getFullscreen())) {
MessageBox(g_hWnd, "Error initializing the engine", "Error", MB_OK);
return 0;

}

// main message loop
gameover = false;
while (!gameover)
{

32 Chapter 1 n Building a 2D Game Engine

while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
g_engine->Update();

}

if (g_engine->getFullscreen()) {
ShowCursor(TRUE);

}

g_engine->Close();
delete g_engine;

return 1;
}

Compiling the Engine Project

Assuming you have typed the code into the specified files without any mistakes,

you should be able to compile the engine project. There should be no

dependencies for the engine because the compiler assumes that you will pro-

vide the needed libs at link time (when you create an executable using the

engine’s lib). This is a rather complex issue that we’ll examine again over the

next several chapters as we enhance the engine with new modules and func-

tionality. You should not see any linker errors, only compiler errors if you have

made a mistake while typing in the code. If all else fails and you do not

understand how to correct an error, then I suggest you copy the core engine

project from the CH01 folder on the CD-ROM to your hard drive and try to

compile it.

To compile in Dev-Cþþ, press CtrlþF9 or use the Execute menu. To compile in

Visual Cþþ, press CtrlþShiftþB or use the Build menu.

If that project fails, then you have a compiler configuration problem, not a source

code problem. Because this is a very challenging issue, I strongly recommend that

you not continue to the next step before fully comprehending what’s going on

with your engine project and its resulting library file. It’s essential that you

understand what’s happening at this stage before moving on.

Creating the Engine Project 33

Adv i c e

You will need to set your Visual Cþþ project to compile with a multi-byte character set rather
than Unicode. To do this, open the Project menu, choose Project Settings, Configuration Properties,
General, and set the Character Set field to Use Multi-Byte Character Set.

Testing the Engine
Although this has been a long chapter already, I would be remiss if I didn’t

provide a test project that will allow you to determine whether you have con-

figured the engine properly. We’ll write a short test program and configure it so

that it will utilize the Advanced2D.lib (or libAdvanced2D.a for Dev-Cþþ).

The TestEngine Source Code

We’re just going to jump right into the source code for the library test project,

and then I will show you how to configure Dev-Cþþ and Visual Cþþ to build

with the game engine library. First, create a new Win32 standard executable

project using whichever compiler you prefer. Save the project file at the same

folder level where you created the Engine folder, so that TestEngine (the name

I have used) is in the same root folder as Engine. The reason for this is that wemust

tell our test project to look ‘‘up’’ one folder into \Engine in order to locate the

library file. Remember we had the engine project output the lib into \Engine\lib?

That is where we expect it to be located. In other words, you must have compiled

the engine already for this test program to work.

Add a new source code file to the project called Main.cpp. This test program is

going to be very small! Type the code into Main.cpp using whichever compiler

you’ve chosen to use while working through this book. At a certain point, I will

stop going over the project creation and configurations and just present source

code for study.

#include <iostream>
#include "..\Engine\Advanced2D.h"
bool game_preload()
{

//display engine version in a message box
g_engine->message(g_engine->getVersionText(), "TEST ENGINE");
//return fail to terminate the engine
return false;

}

34 Chapter 1 n Building a 2D Game Engine

bool game_init(HWND hwnd) { return 0;}
void game_update() {}
void game_end() {}

See, I told you it was a short one! We’re taking advantage of the Windows API

MessageBox() function (wrapped into the engine via the message()method). This

function will display a pop-up message box with any text you want to display.

Normally the message box is used to report critical errors in the game, but we’ll

cheat a bit and use it for output! The alternative is to load up a font, initialize the

rendering system, and display text on the program window—which, of course, is

ridiculously ambitious at this early stage.

There are four unknown functions in this program:

n bool game_preload()

n bool game_init(HWND hwnd)

n void game_update()

n void game_end()

These are the first of many such game events that will be called automatically by

the game engine at key times during the runtime of the game engine. One such

time is at the very beginning of WinMain, when game_preload() is called. This is

a very fortuitous time for us to initialize the game’s screen resolution, depth,

fullscreen/windowed mode, and other basic settings. It’s important to set these

things before the program window is created. Thus, game_preload() is called near

the beginning of WinMain.

The game_init() event is called after the programwindowhas been created, Direct3D

has been initialized, and the rendering device is available for loading textures and

mesh objects and so forth. This event function is where you will load game assets.

The last two event functions—game_update() and game_end()—are self-

explanatory. game_update() is called once per frame from the untimed portion of

the game loop. There is also a timed portion of the game loop that tries to achieve

a stable 60 FPS. We’ll get into rendering in the next chapter.

Dev-C++ Library Test Project

Let’s double check the configuration of your Dev-Cþþ project to get it prepared

to link in the game engine and all support libraries required at this point

Testing the Engine 35

(including the DirectX libs). Open the Project menu and select Project Options.

When you create the project, be sure to add the Main.cpp file located one

folder above the project folder (that is, \TestEngine\Main.cpp, not \TestEngine\

devcpp\Main.cpp, which is incorrect).

First things first. Click the Directories tab and add a new item to the list of Library

Directories. We’re going to tell Dev-Cþþ where it can find the engine library.

Add an entry with this text: ..\..\Engine\lib (assuming your game engine project is

located in the Engine folder—change if needed). See Figure 1.10.

Next, click on the Parameters tab. On the right is a text field labeled Linker. Enter

all of the following items into the Linker field:

n -lAdvanced2D

n -ld3d9

n -ld3dx9

n -ldxguid

n -lwinmm

36 Chapter 1 n Building a 2D Game Engine

Figure 1.10
Setting the location of the game engine library in the Dev-Cþþ project.

These are the library files required by the program. The linker is a program that

takes all of the object files (.o for GCC) and combines them into a single

executable file that’s ready to run. See Figure 1.11.

Adv i c e

Although the Dev-Cþþ library file was specified as libAdvanced2D.a, we do not enter the entire
name into the linker options. In GCC-land, the prepended lib and the extension are both assumed.
Thus, libAdvanced2D.a is added as a linker option using -lAdvanced2D.

You must make one last setting, and then you can compile the project. We need

to tell Dev-Cþþ where to put the resulting executable file, because the default is

not a good location. Do you remember back when you were creating the engine

library project and you configured Dev-Cþþ to send the file to a folder called

.\lib? Well, for an executable, we want the output to go to .\bin (which is short for

binary). The .\bin folder is where you will save game assets that the executable

needs to load up, so we might as well get into the habit of doing this for each

project now. Open the Project Options again. Click the Build Options tab. In the

Executable Output Directory field, enter .\bin. For the Object File Output

Directory field, enter .\obj, as shown in Figure 1.12.

Testing the Engine 37

Figure 1.11
The Linker field includes the complete list of libs required by the project.

Finally, it’s time to compile! To compile the program in Dev-Cþþ, press

CtrlþF9 or use the Execute menu. You may also just press F9 to build and run (if

there are no compile errors). In order to run the program, you will need to copy

the d3dx9.dll file into the same folder as the TestEngine.exe file. This dll is

provided on the CD-ROM (duplicated in every chapter’s project folders for

convenience).

Visual C++ Library Test Project

Visual Cþþ has the same list of linker files, but the configuration dialog is

quite different, so let’s see how to do it. We need to tell the linker what libs the

project needs in order to run (including the DirectX libs). When you create the

project, be sure to add the Main.cpp file located one folder above the project

folder (that is, \TestEngine\Main.cpp, not \TestEngine\msvc8\Main.cpp,

which is incorrect).

Open the Project menu and select Project Options. From the tree-view list,

open Linker, Input, as shown in Figure 1.13. In the Additional Dependencies

field, add the following list of library files. (You can bring up the mini dialog

38 Chapter 1 n Building a 2D Game Engine

Figure 1.12
Setting the output folders for the project.

shown in the figure by clicking the little ellipsis on the right side of the text

field.)

n ..\..\Engine\lib\Advanced2D.lib

n d3d9.lib

n d3dx9.lib

n dxguid.lib

n winmm.lib

The long pathname for Advanced2D.lib is kind of annoying—especially con-

sidering that we’ll be duplicating this list of libs in every project. You can tell

Visual Cþþ where the lib file is by adding a new folder to the linker search path.

This is optional, but it will save time in the long run. However, note that this is a

Testing the Engine 39

Figure 1.13
Configuring the Visual Cþþ project’s linker dependencies.

user preference setting, not a project setting, so the new linker path will not be

saved with the project file.

Open the Tools menu and select Options. In the tree-view list, expand Projects

and Solutions and select VCþþ Directories. There is a drop-down list on the

right side where you can choose Library Files. Add the folder to this list where

your engine’s lib file is located, and then you can specify simply Advanced2D.lib

in the linker configuration without needing to prepend the relative folder

location. See Figure 1.14.

To compile in Visual Cþþ, press CtrlþShiftþB or use the Build menu. If you

have no errors in your code, you can press F5 to build and run the program. If the

program compiles without error and runs, you should see the message box

pop up, as shown in Figure 1.15.

What you do not see in this simple example is the program window coming up

automatically. I’ve short-circuited the window from appearing by returning 0 in

game_preload(). When the preload function fails, the game engine shuts down

(assuming that something catastrophic failed). If you want to see the program

40 Chapter 1 n Building a 2D Game Engine

Figure 1.14
Adding the engine’s lib folder to the compiler’s library search path (optional).

window come up with Direct3D rendering (doing nothing but clearing the

window, but functioning nonetheless), change the return 0 to return 1 in

game_preload().

That’s all for now. You should now have a functioning core engine that is eager to

start rendering, so let’s move on to the next chapter to do just that.

Testing the Engine 41

Figure 1.15
It’s working! It’s working!

This page intentionally left blank

3D Rendering

Rendering is the process of transforming an entity’s data into a visual repre-

sentation. I hesitate to use the terms ‘‘two-dimensional’’ or ‘‘three-dimensional’’

explicitly because it’s possible to render in more ways than what is viewed

through a computer monitor. We cannot limit the theory to a simple computer

monitor because it’s now possible to scan a 3D object, as well as sculpt a 3D

object. This technology is called 3D printing. For our purposes, though, we’ll be

learning about rendering graphics on a monitor. In this chapter, you will learn

about the rendering system of a game engine, and you will add the rendering

module to the Advanced2D engine (created in the first chapter).

We’re attempting to tackle a rather large and complex subject in a single chapter,

so it might seem a bit overwhelming at first. But if you study the code, you’ll see

that it just builds on the basic engine project started in the previous chapter. This

is called the iterative process of software development, and it is a flexible, robust

way to write code. (The inflexible, or brittle, method would be to write an entire

engine all up front and then work out its subsequent bugs, also all at once.) When

you are writing a lot of code, and especially when you are building a complex

system such as a game engine, you want to have a fast iterative process.

What does iterative mean? Iteration is a repetitive action. When building code, a

single step of iteration is to write some code, compile, fix any mistakes, and test.

That’s right, test. A fast iterative process is helpful only if the code you are writing

is free of syntax errors as well as logic errors. One of the best ways to test while

43

chapter 2

building is to have a large-scale project in mind for the test subject, such as a

graphics demo or a game.

So, what do we need to do to get started? Let’s begin by opening the Advanced2D

project from the previous chapter, and then add to it. This project is the game

engine, and you will write a client or test program that will consume the engine’s

functionality in order to do something useful. That is the whole point of a game

engine, after all—to simplify the front-end code, or rather, the code that you

must write for each new game. A game engine separates the programmer from

the platform-specific APIs and SDKs (such as Direct3D) as much as possible.

Adv i c e

Everything in this chapter---the text of these pages, the Direct3D source code, the Cþþ projects,
the 3D mesh files, the textures---was developed using completely free open-source software---and
I’m not talking about any Express software either. Just to prove that it is possible, I installed
Windows XP on a new hard drive and neglected to install any Microsoft tools----not even the
DirectX SDK. And believe it or not, it is entirely possible to develop a high-end Direct3D game
using free software, without any funky workarounds.

n Words: OpenOffice 2.4 (www.openoffice.org)

n Meshes: Blender (www.blender.org)

n Images: GIMP 2.4 (www.gimp.org)

n Programs: Dev-Cþþ 5.0 (www.bloodshed.net)

n Graphics: Direct3D 9.0c DevPak (www.g-productions.net)

Of course, if you want to use Visual Cþþ 2005 with Microsoft’s official DirectX SDK, you’re
welcome to---the code is all the same. When we get into subjects such as audio, scripting, and
level editing, I’ll share with you the free tools used for those purposes as well!

Rendering Basics
I understand your double-take upon reading this chapter title. After all, this is

supposed to be a book that teaches advanced 2D graphics programming, right?

Yes, indeed it is. But today it’s a given that even a retro-style 2D game may have

some 3D features. For instance, you can do some really nice special effects

with shaders in a pseudo-2D game—that is, an essentially 3D game played in a

2D orientation with only width and height represented (and lacking the

third dimension of depth). A good example of this sort of game is Sid Meier’s

44 Chapter 2 n 3D Rendering

www.openoffice.org
www.blender.org
www.gimp.org
www.bloodshed.net
www.g-productions.net

Civilization IV, which is an advanced 3D game with a flat board-game style

orientation. The simple fact is that we can’t do any advanced 2D rendering (the

goal of the book) without at least touching upon the subject of 3D rendering first.

After all, the 2D output goes through the 3D system with a fixed camera angle.

Adding Rendering Support
We will not be covering the theory of 3D graphics programming in great detail,

although a brief discussion of each major issue is needed. I will just present you

with the key concepts, and we’ll take it one step at a time. First, we need to add

rendering to the game engine that currently doesn’t know how to render. As

you’ll recall from the last chapter, there are currently only four methods in the

external game functions:

bool game_preload();
bool game_init();
void game_update();
void game_end();

Although we can do some initialization and updating, there is no way to render

anything with this game engine. The best we were able to do last chapter was

display a message in a message box.

Adv i c e

The Advanced2D engine is being presented in a step-by-step format as an aid to learning, but
as you might imagine, a game engine grows quite large very quickly, and our engine here is no
exception. The ‘‘follow along and type in the code’’ style of learning will not survive beyond
this chapter because there is too much code---even though the engine is being developed in
parallel with each chapter. Instead, in future examples, we will just go over the engine code
with the assumption that you have opened the project available on the CD-ROM.

Do you have the Advanced2D project open? Bring up the winmain.cpp file again

and scroll down to the bottom, where the while loop is located. This is the

primary loop of the game engine. The PeekMessage, TranslateMessage, and

DispatchMessage function calls are just part of the Windows ‘‘message pump’’

that is standard in every winmain function. What I want you to take notice of is

the call to g_engine->Update() located in the loop:

// main message loop
gameover = false;
while (!gameover)

Adding Rendering Support 45

{
while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
g_engine->Update();

}

Although only one function call is located here, this single function call will give

power to the entire game engine. Think of this winmain loop as the heart of the

system, and that Update function call is the pulse. Or, from the engineering point

of view, winmain is the distributor, and the Update function is the electrical pulses

that fire the spark plugs. We will be doing a lot of things within that single

function. Now you may close the winmain.cpp file because it is complete, and no

changes are needed.

Next, let’s open the Advanced2D.h and Advanced2D.cpp files. You might recall

from the previous chapter that these are the main source code files for the engine

itself. Open the Advanced2D.h file and add the following line of code noted in

bold. This is the next function we’ll add to the engine, giving our client source

code file the ability to render something.

//external variables and functions
extern bool gameover;

extern bool game_preload();
extern bool game_init(HWND);
extern void game_update();
extern void game_end();
extern void game_render3d();

This new function must be added to your game’s source code because now the

engine expects this function to exist. If you forget to add it to your game, you will

get a linker error when you try to build the project. The engine is already capable

of rendering 3D objects, and that will be possible as soon as we add the call to

game_render3D to the engine’s Update method. Why don’t we just do that right

now, while we’re on the subject?

Scroll down in Advanced2D.cpp until you find the Engine::Update method.

You’ll be adding a single line of code, a call to game_render3D(), as discussed

previously. By adding this function call between the RenderStart and RenderStop

46 Chapter 2 n 3D Rendering

functions, we effectively give the game the ability to do 3D rendering. Here’s the

whole Update method with the new lines highlighted:

void Engine::Update()
{

static Timer timedUpdate;

//calculate core framerate
p_frameCount_core++;
if (p_coreTimer.stopwatch(999)) {

p_frameRate_core = p_frameCount_core;
p_frameCount_core = 0;

}

//fast update with no timing
game_update();

//update with 60fps timing
if (!timedUpdate.stopwatch(14)) {

if (!this->getMaximizeProcessor())
{

Sleep(1);
}

}
else {

//calculate real framerate
p_frameCount_real++;
if (p_realTimer.stopwatch(999)) {

p_frameRate_real = p_frameCount_real;
p_frameCount_real = 0;

}

//begin rendering
this->RenderStart();

//allow game to render
game_render3d();

//done rendering
this->RenderStop();

}
}

Adding Rendering Support 47

We will come back to this method again in the next chapter, when we add 2D

rendering support to the engine.

Adding Camera Support
The twomost important considerations when writing a renderer for the first time

are the camera and the light source. If either of these is set improperly, you might

see nothing on the screen and incorrectly assume that nothing is being rendered.

In fact, something is often being rendered even when you don’t see anything, but

due to the camera’s orientation or the lighting conditions of the scene, you might

not see anything. Remember those two issues while you peruse the code in this

chapter—camera and lighting.

Let’s add camera support to the Advanced2D engine. The camera determines

what you see on the screen. The camera may be positioned anywhere in 3D space,

as well as pointed in any direction in 3D space. The following Camera.h definition

provides support for the projection and view matrices for our engine. Because we

aren’t truly studying 3D rendering—only using Direct3D as a tool for our

upcoming 2D game projects—I will leave the details to another resource. Note

that the Camera.h file has already been added to the list of included files in

Advanced2D.h. So any new project you create using the Advanced2D engine may

simply include Advanced2D.h, rather than all of the individual header files.

Adv i c e

Here are two good reference books that will teach you the ins and outs of Direct3D rendering: 3D
Game Engine Programming (Thomson Course Technology PTR, 2004) by Stefan Zerbst and Oliver Duvel
and Advanced Visual Effects with Direct3D (Thomson Course Technology PTR, 2005) by Peter Walsh.

#pragma once
#include "Advanced2D.h"

namespace Advanced2D {
class Camera
{
private:

D3DXMATRIX p_matrixProj;
D3DXMATRIX p_matrixView;
D3DXVECTOR3 p_updir;

D3DXVECTOR3 p_position;
D3DXVECTOR3 p_target;

48 Chapter 2 n 3D Rendering

float p_nearRange;
float p_farRange;
float p_aspectRatio;
float p_fov;

public:
Camera(void);
~Camera(void);
void setPerspective(float fov, float aspectRatio, float nearRange,

float farRange);
float getNearRange() { return p_nearRange; }
void setNearRange(float value) { p_nearRange = value; }
float getFarRange() { return p_farRange; }
void setFarRange(float value) { p_farRange = value; }
float getAspectRatio() { return p_aspectRatio; }
void setAspectRatio(float value) { p_aspectRatio = value; }
float getFOV() { return p_fov; }
void setFOV(float value) { p_fov = value; }
void Update();

D3DXVECTOR3 getPosition() { return p_position; }
void setPosition(float x, float y, float z);
void setPosition(D3DXVECTOR3 position);
float getX() { return p_position.x; }
void setX(float value) { p_position.x = value; }
float getY() { return p_position.y; }
void setY(float value) { p_position.y = value; }
float getZ() { return p_position.z; }
void setZ(float value) { p_position.z = value; }

D3DXVECTOR3 getTarget() { return p_target; }
void setTarget(D3DXVECTOR3 value) { p_target = value; }
void setTarget(float x, float y, float z) {

p_target.x = x; p_target.y = y; p_target.z = z;
}

};
};

Now for the Camera.cpp source code. Because our header file included so many

accessors and mutators, the implementation file is rather short in comparison.

#include "Camera.h"

namespace Advanced2D {

Adding Camera Support 49

Camera::Camera(void)

{
p_position = D3DXVECTOR3(0.0f,0.0f,10.0f);
p_updir = D3DXVECTOR3(0.0f,1.0f,0.0f);

//hard coded to 1.3333 by default
float ratio = 640 / 480;
setPerspective(3.14159f / 4, ratio, 1.0f, 2000.0f);

}

Camera::~Camera(void) { }

void Camera::setPerspective(float fov, float aspectRatio, float nearRange,
float farRange)
{

this->setFOV(fov);
this->setAspectRatio(aspectRatio);
this->setNearRange(nearRange);
this->setFarRange(farRange);

}

void Camera::Update()
{

//set the camera’s perspective matrix
D3DXMatrixPerspectiveFovLH(&this->p_matrixProj, this->p_fov,

this->p_aspectRatio, this->p_nearRange, this->p_farRange);
g_engine->getDevice()->SetTransform(D3DTS_PROJECTION, &this->p_matrixProj);

//set the camera’s view matrix
D3DXMatrixLookAtLH(&this->p_matrixView, &this->p_position,

&this->p_target, &this->p_updir);
g_engine->getDevice()->SetTransform(D3DTS_VIEW, &this->p_matrixView);

}

void Camera::setPosition(float x, float y, float z)
{

this->p_position.x = x;
this->p_position.y = y;
this->p_position.z = z;

}

50 Chapter 2 n 3D Rendering

void Camera::setPosition(D3DXVECTOR3 position)
{

this->setPosition(position.x, position.y, position.z);
}
};

Be sure to add both files (Camera.h andCamera.cpp) to your engine project. Or you

may just open the Engine project located on the CD-ROM in this chapter’s folder.

Adding Mesh Support
Direct3D provides some procedural mesh creation functions that we can use to

create a mesh at runtime without having to load a mesh from a file. Arguably,

loading a mesh is a simple process because Direct3D can handle that task, too.

But, first things first—let’s focus on generating and then rendering a simple

geometric shape. We’re going to quickly go over a Mesh class that encapsulates the

best Direct3D can give us with regard to mesh loading and rendering support. I

will assume that either you are already familiar with this code or you have

another reference available because we aren’t going to discuss the details. (Refer

to the two books I suggested earlier.)

There are three important tasks that I want our Mesh class to handle auto-

matically. First, it should be able to quickly and easily load a mesh file (from the

.X format). Second, it should handle all transformations internally and provide a

mechanism for easily moving, rotating, and scaling the mesh. Finally, it should be

able to render itself (via the Direct3D device, of course).

Adv i c e

This is the very same mesh code introduced in Beginning Game Programming, 2nd Edition (Muska
& Lipman, 2003)! But now it is nicely packaged in a class with additional functionality, such as
automatic rotation, scaling, and velocity-based movement.

Now let’s see the implementation of the Mesh class in the Mesh.cpp file. You will

find this class already included in the new Engine project on the CD-ROM. Note

that the Mesh.h file has already been added to the list of included files in

Advanced2D.h. So any new project you create using the Advanced2D engine may

simply include Advanced2D.h, rather than all of the individual header files.

#include "Mesh.h"
#include <string>
namespace Advanced2D {

Adding Mesh Support 51

Mesh::Mesh(void)
{

mesh = 0;
materials = 0;
d3dxMaterials = 0;
matbuffer = 0;
material_count = 0;
textures = 0;
position = D3DXVECTOR3(0.0f,0.0f,0.0f);
velocity = D3DXVECTOR3(0.0f,0.0f,0.0f);
rotation = D3DXVECTOR3(0.0f,0.0f,0.0f);
scale = D3DXVECTOR3(1.0f,1.0f,1.0f);

}

Mesh::~Mesh(void)
{

if (materials != NULL) delete[] materials;

//remove textures from memory
if (textures != NULL) {

for(DWORD i = 0; i < material_count; i+ +)
{

if (textures[i] != NULL)
textures[i]->Release();

}
delete[] textures;

}
if (mesh != NULL) mesh->Release();

}

int Mesh::GetFaceCount()
{

return this->mesh->GetNumFaces();
}

int Mesh::GetVertexCount()
{

return this->mesh->GetNumVertices();
}

bool Mesh::Load(char* filename)

52 Chapter 2 n 3D Rendering

{
HRESULT result;

//load mesh from the specified file
result = D3DXLoadMeshFromX(

filename, //filename
D3DXMESH_SYSTEMMEM, //mesh options
g_engine->getDevice(), //Direct3D device
NULL, //adjacency buffer
&matbuffer, //material buffer
NULL, //special effects
&material_count, //number of materials
&mesh); //resulting mesh

if (result != D3D_OK) {
return false;

}

//extract material properties and texture names from material buffer
d3dxMaterials = (LPD3DXMATERIAL)matbuffer->GetBufferPointer();
materials = new D3DMATERIAL9[material_count];
textures = new LPDIRECT3DTEXTURE9[material_count];

//create the materials and textures
for(DWORD i=0; i < material_count; i+ +)
{

//grab the material
materials[i] = d3dxMaterials[i].MatD3D;

//set ambient color for material
materials[i].Ambient = materials[i].Diffuse;
//materials[i].Emissive = materials[i].Diffuse;
materials[i].Power = 0.5f;
//materials[i].Specular = materials[i].Diffuse;

textures[i] = NULL;
if(d3dxMaterials[i].pTextureFilename != NULL &&

lstrlen(d3dxMaterials[i].pTextureFilename) > 0)
{

//load texture file specified in .x file
result = D3DXCreateTextureFromFile(g_engine->getDevice(),

d3dxMaterials[i].pTextureFilename, &textures[i]);

Adding Mesh Support 53

if (result != D3D_OK) {
return false;

}
}

}

//done using material buffer
matbuffer->Release();

return true;
}

void Mesh::CreateSphere(float radius, int slices, int stacks)
{

D3DXCreateSphere(g_engine->getDevice(), radius, slices, stacks, &mesh,
NULL);
}

void Mesh::CreateCube(float width, float height, float depth)
{

D3DXCreateBox(g_engine->getDevice(), width, height, depth, &mesh, NULL);
}

void Mesh::Draw()
{

if (material_count = = 0) {
mesh->DrawSubset(0);

}
else {

//draw each mesh subset
for(DWORD i=0; i < material_count; i+ +)
{

// Set the material and texture for this subset
g_engine->getDevice()->SetMaterial(&materials[i]);

if (textures[i])
{

if (textures[i]->GetType() = = D3DRTYPE_TEXTURE)
{

D3DSURFACE_DESC desc;
textures[i]->GetLevelDesc(0, &desc);
if (desc.Width > 0) {

54 Chapter 2 n 3D Rendering

g_engine->getDevice()->SetTexture(0, textures[i]);
}

}
}
// Draw the mesh subset
mesh->DrawSubset(i);

}
}

}

void Mesh::Transform()
{

//set rotation matrix
float x = D3DXToRadian(rotation.x);
float y = D3DXToRadian(rotation.y);
float z = D3DXToRadian(rotation.z);
D3DXMatrixRotationYawPitchRoll(&matRotate, x, y, z);

//set scaling matrix
D3DXMatrixScaling(&matScale, scale.x, scale.y, scale.z);

//set translation matrix
D3DXMatrixTranslation(&matTranslate, position.x, position.y, position.z);

//transform the mesh
matWorld = matRotate * matScale * matTranslate;
g_engine->getDevice()->SetTransform(D3DTS_WORLD, &matWorld);

}

void Mesh::Rotate(D3DXVECTOR3 rot)
{

Rotate(rot.x,rot.y,rot.z);
}

void Mesh::Rotate(float x,float y,float z)
{

rotation.x + = x;
rotation.y + = y;
rotation.z + = z;

}

void Mesh::Update()

Adding Mesh Support 55

{
position.x + = velocity.x;
position.y + = velocity.y;
position.z + = velocity.z;

}

void Mesh::LimitBoundary(float left,float right,float top,float bottom,float
back,float front)
{

if (position.x < left || position.x > right) {
velocity.x *= -1;

}
if (position.y < bottom || position.y > top) {

velocity.y *= -1;
}
if (position.z < front || position.z > back) {

velocity.z *= -1;
}

}
}; //namespace

Rendering Meshes
I think it’s time for a respite from engine coding for a little while. We need to see

whether the new 3D rendering capabilities of our engine are indeed working, so a

demo is in order. Let’s start simple, with a generic cube. Our cube will be

rendered with ambient lighting for now. This is just a case where we want to get

something up on the screen. It’s our first render test, after all! This is the part

where all our hard work on the engine begins to pay off. Not only will you never

have to write any of the previous segments of code again, but it’s very likely that

you will never even have to look at that code again. Instead, we’ll just focus on

game code, so to speak.

Runtime Cubes

Now let’s write the code for the Cube demo program. This will be a new project.

First we set the basic properties in the game_preload event. In game_initwe create

the cube and set the ambient lighting. Finally, in game_render3D we clear the

scene, set the identity (thus returning the current focus to the origin), and then

rotate and render the cube.

56 Chapter 2 n 3D Rendering

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;
Camera *camera;
Mesh *mesh;

bool game_preload()
{

g_engine->setAppTitle("CUBE DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(1024);
g_engine->setScreenHeight(768);
g_engine->setColorDepth(32);
return true;

}

bool game_init(HWND)
{

//create a cube
mesh = new Mesh();
mesh->CreateCube(2.0f, 2.0f, 2.0f);

//set the camera and perspective
camera = new Camera();
camera->setPosition(0.0f, 2.0f, 6.0f);
camera->setTarget(0.0f, 0.0f, 0.0f);
camera->Update();

//set the ambient color
g_engine->SetAmbient(D3DCOLOR_XRGB(40,40,255));

return true;
}

void game_update() { }
void game_end()
{

delete camera;
delete mesh;

}

void game_render3d()
{

Rendering Meshes 57

//clear the scene using a dark blue color
g_engine->ClearScene(D3DCOLOR_RGBA(30,30,100, 0));

//return to the origin
g_engine->SetIdentity();

//rotate and draw the cube
mesh->Rotate(2.0f, 0.0f, 0.0f);
mesh->Transform();
mesh->Draw();

}

In order to compile this program using the Advanced2D engine’s new rendering

capabilities, you will need to provide your Cube program with the following

library files (added to the linker options):

n Advanced2D

n d3d9

n d3dx9

n dxguid

n winmm

For each file listed, prepend the file with -l (lowercase letter L) for Dev-Cþþ,

or append .lib for Visual Cþþ. If you aren’t sure how to do this, refer to the

previous chapter.

All things considered, this is a ridiculously short code listing even if we are just

rendering a flat-shaded cube with ambient lighting (see Figure 2.1).

Bouncing Balls

I can think of a few things already, just after a quick perusal of that last source code

listing, where we might move even more of the code into the engine. For example,

you will always need to clear the scene and set the identity. Secondly, I would like

to abstract the color system into amore generic RGBA (red-green-blue-alpha) set,

rather than using the Direct3D-based color macros—something to consider for a

future engine update.

58 Chapter 2 n 3D Rendering

Adv i c e

A mesh is the technical term for a 3D model, but the 3D industry does not use the word model
because it is not specific. You might have noticed that our Mesh class has the ability to load a .X file,
which will usually contain references to texture files (included with the .X file but not embedded).

Direct3D is a state-based rendering system, which means it continues to operate

as it is currently set until something is changed. When you set the current texture

in the Direct3D device, it will obediently use that texture for all rendering output

until it is told to change the texture.

If we were building an advanced 3D rendering system, one optimization would

be to create a texture cache so that Direct3D’s state wouldn’t have to be changed

so often. Basically, you figure out which textures are shared by all polygons in the

scene, and you render all of those polys before changing the texture and ren-

dering all polys that use the new texture, and so on.

Adv i c e

Changing state in a rendering system (such as changing the current texture or shader program) is
a very time-consuming process and should be done infrequently. But for the purposes of
demonstration and learning, don’t be concerned with performance until later.

Rendering Meshes 59

Figure 2.1
The Cube demo renders a flat-shaded cube with ambient lighting.

Our BouncingBalls program is a bit of a leap beyond the crude Cube program, as

it features a Cþþ Standard Library container called vector to manage the balls

(or rather, spheres) in this demonstration program. A vector is a good general-

purpose container that mimics a Cþþ array in many ways, including the ability

to index into the ‘‘array’’ using brackets and an index (for instance, spheres[1]).

Instead of creating the sphere at runtime (as we did previously with the cube), the

sphere will be loaded from a .X file. The sphere was created, textured, and

exported using Blender, as shown in Figure 2.2.

Adv i c e

If you are not familiar with the Cþþ Standard Library, I encourage you to pick up a good book on
the subject because it’s crucial to making a game engine. One good reference is Cþþ Standard
Library Practical Tips (Charles River Media, 2005) by Greg Reese.

60 Chapter 2 n 3D Rendering

Figure 2.2
Using Blender to create the sphere mesh used in BouncingBalls.

Since the Camera and Mesh class header files have already been included in

Advanced2D.h, you will not need to include them separately in this or any other

new project; you need only include Advanced2D.h. As is the common practice in

this book, each new program listing assumes that it is part of a new project. If you

have not already done so, create a new project (as described in the previous

chapter) and name it BouncingBalls. Include the same list of linked library files

shown for the previous example program.

#include <vector>
#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

//we need this keyboard macro to detect Escape key
#define KEY_DOWN(vk) ((GetAsyncKeyState(vk) & 0x8000)?1:0)

//camera object
Camera *camera;

//define the number of spheres
#define SPHERES 100

//create the entity vector and iterator
typedef std::vector<Mesh*>::iterator iter;
std::vector<Mesh*> entities;

bool game_preload()
{

g_engine->setAppTitle("BOUNCING BALLS");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(1024);
g_engine->setScreenHeight(768);
g_engine->setColorDepth(32);
return true;

}

bool game_init(HWND)
{

srand(time(NULL));

//set the camera and perspective
camera = new Camera();
camera->setPosition(0.0f, 2.0f, 10.0f);

Rendering Meshes 61

camera->setTarget(0.0f, 0.0f, 0.0f);
camera->Update();

//create ball meshes
Mesh *ball;
for (int n=0; n<SPHERES; n+ +)
{

ball = new Mesh();
ball->Load("ball.x");
ball->SetScale(0.3f,0.3f,0.3f);
ball->SetPosition(0.0f,0.0f,0.0f);
float x = (float)(rand()%8+1) / 100.0f;
float y = (float)(rand()%8+1) / 100.0f;
float z = (float)(rand()%8+1) / 100.0f;
ball->SetVelocity(x,y,z);
ball->SetRotation(0.1f,0.2f,0.01f);

//add this ball to the vector container
entities.push_back(ball);

}
return true;

}

void game_update()
{

//update entity positions and limit the boundary
for (iter i = entities.begin(); i != entities.end(); + +i)
{

(*i)->Update();
(*i)->LimitBoundary(-5,5,4,-4,4,-4);

}

//escape key will terminate the program
if (KEY_DOWN(VK_ESCAPE)) g_engine->Close();

}

void game_end()
{

delete camera;

//destroy all balls from the vector
for (iter i = entities.begin(); i != entities.end(); + +i) {

delete *i;

62 Chapter 2 n 3D Rendering

}
//empty the vector
entities.clear();

}

void game_render3d()
{

static DWORD start=0;

//clear the scene using a dark blue color
g_engine->ClearScene(D3DCOLOR_RGBA(30,30,100,0));

//return to the origin
g_engine->SetIdentity();

//draw entities
for (iter i = entities.begin(); i != entities.end(); + +i)
{

//remember, every entity must be moved individually!
(*i)->Transform();
(*i)->Draw();

}
}

This program is far more complex than the Cube demo, and yet the source code

listing is only a few lines longer! Why do you suppose that is? First of all, our

engine is handling most of the details for us now, but we also benefited from the

use of a standard vector, which simplified the code. Figure 2.3 shows the output

from the BouncingBalls program. There is no rhyme or reason behind this

program; it just sets the balls at random X,Y,Z velocities and lets them go. The

Mesh class automatically updates the position of each ball based on its position

and velocity when the Update() method is called.

Direct Lighting
Direct3D supports three types of direct lighting in addition to the ambient level:

n Point light

n Spot light

n Directional light

Direct Lighting 63

You can use up to eight lights in your game, and can define any one of the lights

(0 to 7) as a point, spot, or directional light. Let’s take a look at how to create each

of these three lights in turn.

Directional Light

Directional lights are peculiar in that you specify the direction of the light, but

not its source position. The directional light emits parallel light rays from a

distant source that you need not specify. This vector is referred to as a normal

vector because it points in the desired direction and has a length of 1.0. You can

create a normal vector using the Normalize function on an existing vector.

Normalize results in a vector pointing in the same direction with a length of 1.0.

Why must the length of a normalized vector be 1.0? Because when that vector is

multiplied by another vector or matrix, its value determines direction rather than

length (by multiplying those values by 1.0). The following example code creates a

directional light above the target (direction vector) pointing downward.

//NOTE: This is not a complete program
D3DLIGHT9 light;
light.Type = D3DLIGHT_DIRECTIONAL;
light.Diffuse.r = 1.0f;

64 Chapter 2 n 3D Rendering

Figure 2.3
The BouncingBalls program demonstrates how to load, manipulate, and render a mesh.

light.Diffuse.g = 1.0f;
light.Diffuse.b = 1.0f;
light.Diffuse.a = 1.0f;
light.Range = 1000;
D3DXVECTOR3 direction(0.0f,2.0f,0.0f);
D3DXVec3Normalize((D3DXVECTOR3*)&light.Direction, &direction);

Spot Light

Spot lights are quite different from directional lights because they are limited in

range and focus on a specific target. You can specify the inner and outer cone of a

spot light, where the inner cone is the bright beam of light and the outer cone is

the light spillage or aura around the beam, much like a flashlight or street lamp.

This is the most complicated light to set up. In the following example, Theta is the

spread of the inner cone, and Phi is the spread of the outer cone, while Falloff is

the decrease in illumination at the outer edge.

D3DLIGHT9 light;
light.Type = D3DLIGHT_SPOT;
light.Diffuse.r = 1.0f;
light.Diffuse.g = 1.0f;
light.Diffuse.b = 1.0f;
light.Diffuse.a = 1.0f;
light.Position = position;
light.Direction = direction;
light.Range = 200;
light.Theta = 0.5f;
light.Phi = 1.0f;
light.Falloff = 1.0f;
light.Attenuation0 = 1.0f;

Point Light

A point light is a single light source that emits in all directions like a lightbulb.

You set the position, color, and attenuation, which is the amount of a decrease

in light over distance. The range is the maximum distance that the light will

illuminate your 3D objects.

D3DLIGHT9 light;
light.Type = D3DLIGHT_POINT;
light.Diffuse.r = 1.0f;
light.Diffuse.g = 1.0f;

Direct Lighting 65

light.Diffuse.b = 1.0f;
light.Position = position;
light.Attenuation0 = 0.1f;
light.Range = range;

Creating Lights

After configuring a light, you must assign it to one of the eight hardware lights

and then enable it.

device->SetLight(0, &light);
device->LightEnable(0, TRUE);

Now let’s package up this light functionality into a reusable class so it will be easy

to create one of the three light types, and then add the class to our Advanced2D

engine. First up is the header:

#pragma once
#include "Advanced2d.h"
namespace Advanced2D {

class Light
{
private:

D3DLIGHT9 p_light;
D3DLIGHTTYPE p_type;
int p_lightNum;

public:
Light(int lightNum, D3DLIGHTTYPE type, D3DXVECTOR3 position, D3DXVECTOR3

direction, double range);
~Light(void);
void setX(double value) { p_light.Position.x = (float)value; }
double getX() { return p_light.Position.x; }
void setY(double value) { p_light.Position.y = (float)value; }
double getY() { return p_light.Position.y; }
void setZ(double value) { p_light.Position.z = (float)value; }
double getZ() { return p_light.Position.z; }
D3DLIGHTTYPE getType() { return p_type; }
void setColor(D3DCOLORVALUE color) { p_light.Diffuse = color; };
D3DCOLORVALUE getColor() { return p_light.Diffuse; }
void setDirection(D3DXVECTOR3 direction) { this->p_light.Direction = direction; }
void setDirection(double x,double y,double z) {

setDirection(D3DXVECTOR3((float)x,(float)y,(float)z));

66 Chapter 2 n 3D Rendering

}
D3DXVECTOR3 getDirection() { return this->p_light.Direction; }
void setPosition(D3DXVECTOR3 pos) { p_light.Position = pos; }
void setPosition(double x,double y,double z) {

setPosition(D3DXVECTOR3((float)x,(float)y,(float)z));
}
D3DXVECTOR3 getPosition() { return p_light.Position; }
void Update();
void Show();
void Hide();

};
}; //namespace

Now for the Light class implementation, and then we’ll test it.

#include "Advanced2D.h"
namespace Advanced2D {

Light::Light(int lightNum, D3DLIGHTTYPE type, D3DXVECTOR3 position,
D3DXVECTOR3 direction, double range)
{

this->p_lightNum = lightNum;
ZeroMemory(&p_light, sizeof(D3DLIGHT9));

p_light.Diffuse.r = p_light.Ambient.r = 1.0f;
p_light.Diffuse.g = p_light.Ambient.g = 1.0f;
p_light.Diffuse.b = p_light.Ambient.b = 1.0f;
p_light.Diffuse.a = p_light.Ambient.a = 1.0f;

switch(type)
{

case D3DLIGHT_POINT:
p_light.Type = D3DLIGHT_POINT;
p_light.Position = position;
p_light.Attenuation0 = 0.1f;
p_light.Range = (float)range;
break;

case D3DLIGHT_SPOT:
p_light.Type = D3DLIGHT_SPOT;
p_light.Position = position;
p_light.Direction = direction;
p_light.Range = (float)range;

Direct Lighting 67

p_light.Theta = 0.5f;
p_light.Phi = 1.0f;
p_light.Falloff = 1.0f;
p_light.Attenuation0 = 1.0f;
break;

case D3DLIGHT_DIRECTIONAL:
default:

p_light.Type = D3DLIGHT_DIRECTIONAL;
p_light.Range = (float)range;
//create a normalized direction
D3DXVec3Normalize((D3DXVECTOR3*)&p_light.Direction, &direction);

break;
}

//enable the light
Show();
Update();

}

Light::~Light(void) { }

void Light::Update()
{

g_engine->getDevice()->SetLight(p_lightNum, &p_light);
}

void Light::Show()
{

g_engine->getDevice()->LightEnable(p_lightNum,TRUE);
}

void Light::Hide()
{

g_engine->getDevice()->LightEnable(p_lightNum,FALSE);
}
}; //namespace

Now let’s put this class to the test. By adding the Light.h and Light.cpp files to the

game engine, it will be possible to load up a mesh and apply direct lighting to it in

a scene with only a handful of code. Let’s give it a try. The following code is found

in the LightingDemo project on the CD-ROM (and it assumes that you’re using

68 Chapter 2 n 3D Rendering

the version of the Engine provided on the CD-ROM with the Light class already

set up).

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;
//macro to read the keyboard asynchronously
#define KEY_DOWN(vk) ((GetAsyncKeyState(vk) & 0x8000)?1:0)
//game objects
Camera *camera;
Light *light;
Mesh *mesh;

bool game_preload()
{

g_engine->setAppTitle("LIGHTING DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(1024);
g_engine->setScreenHeight(768);
g_engine->setColorDepth(32);
return true;

}

bool game_init(HWND)
{

//set the camera and perspective
camera = new Camera();
camera->setPosition(0.0f, 2.0f, 40.0f);
camera->setTarget(0.0f, 0.0f, 0.0f);
camera->Update();

//load the mesh
mesh = new Mesh();
mesh->Load("cytovirus.x");
mesh->SetScale(0.1f,0.1f,0.1f);

//create a directional light
D3DXVECTOR3 pos(0.0f,0.0f,0.0f);
D3DXVECTOR3 dir(0.0f,-1.0f,0.0f);
light = new Light(0, D3DLIGHT_DIRECTIONAL, pos, dir, 100);

//set a low ambient level
g_engine->SetAmbient(D3DCOLOR_XRGB(20,20,20));

Direct Lighting 69

70 Chapter 2 n 3D Rendering

return true;
}

void game_update()
{

//rotate the cytovirus mesh
mesh->Rotate(-0.1f,0.0f,0.05f);
//exit when escape key is pressed
if (KEY_DOWN(VK_ESCAPE)) g_engine->Close();

}

void game_end()
{

delete camera;
delete light;
delete mesh;

}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
g_engine->SetIdentity();

mesh->Transform();
mesh->Draw();

}

Figure 2.4 shows the output from the LightingDemo program, as shown in the

listing with a directional light.

By changing the key code in the program that creates the light, we can test a spot

light fairly easily (demonstrating the usefulness of the Light class). This code

change will convert the directional light into a spot light, resulting in the output

shown in Figure 2.5.

D3DXVECTOR3 pos(-10.0f,-20.0f,0.0f);
D3DXVECTOR3 dir(0.0f,2.0f,0.0f);
light = new Light(0, D3DLIGHT_SPOT, pos, dir, 1000);

Now let’s change the code to produce a point light. The following code produces

the output shown in Figure 2.6.

D3DXVECTOR3 pos(0.0f,-22.0f,0.0f);
D3DXVECTOR3 dir(0.0f,0.0f,0.0f);
light = new Light(0, D3DLIGHT_POINT, pos, dir, 20);

Direct Lighting 71

Figure 2.4
The LightingDemo program set to use a directional light.

Figure 2.5
The LightingDemo program set to use a spot light.

Although you can change the position, direction, range, and other properties for

a light source after it has been created, you cannot change the type of light source.

Of course, you could just delete the Light object and create a new light at any

time, or you could selectively turn off and on some lights based on the situation

in your game.

Well, I think that’s enough of a feature set for the engine’s 3D rendering cap-

abilities! We do not have any advanced rendering ability in this engine, but then

3D is not our focus so what we can do here is more than enough for a 2D

renderer—which is the focus of the next chapter.

72 Chapter 2 n 3D Rendering

Figure 2.6
The LightingDemo program set to use a point light.

2D Rendering

Wehavemade good progress on the Advanced2D engine in short time, andwe have

a few more key features to add before we’ll have a viable engine for building the

games we need to explore later in this book. It goes without saying that we need 2D

rendering support! Even the most advanced 3D engine today needs to support 2D

rendering for things such as text output and a graphical user interface.

There are two ways to render 2D objects in Direct3D. First, you can create a quad

(or rectangle) comprised of two triangles with a texture representing the 2D

image you wish to draw. This technique works with and even supports transparency,

responds to lighting, and can be moved in the Z direction. The second method

available in Direct3D for rendering 2D objects is with sprites—and this is the

method we will focus on in this chapter. A sprite is a 2D representation of a game

entity that usually must interact with the player in some way. A tree or rockmight

be rendered in 2D and interact with the player by simply getting in the way,

stopping the player by way of collision physics.

We must also deal with game characters that directly or indirectly interact with the

player’s character (whichmight be a spaceship, an Italian plumber, or a spiky-haired

hedgehog). The types of sprites that interact with the player might be an enemy ship

or a laser in a space combat game—I could go on and on with examples.

Adv i c e

The Advanced2D engine will evolve from one chapter to the next as it gains new classes and
capabilities. This is normal for software development----nothing is set in stone yet! Every aspect of

73

chapter 3

the engine will change over time to accommodate new features and needs that are identified
through the development of demo programs. By presenting the engine in lock-step fashion as you
see here, you are able to watch the engine develop from its early stages into the fully featured
version used in the final chapters.

Basic 2D Rendering
We will get to sprite rendering soon, but first we need to add basic 2D rendering

support to the Advanced2D engine. We’ll then use this basic support to develop

more complex rendering techniques (such as a sprite system) later in this chapter.

Open the Advanced2D engine project from the CD-ROM in the folder for this

chapter. The engine project is called Engine.dev for Dev-Cþþ or Engine.sln for

Visual Cþþ. We aren’t going to update or maintain the engine project here; I’m

just going to show you the new features of the engine in this chapter (and likewise

in the chapters to come). Open the Advanced2D.h file, as shown in Figure 3.1.

74 Chapter 3 n 2D Rendering

Figure 3.1
The Advanced2D engine project in Dev-Cþþ.

Now, scroll down a little ways to where the public methods are declared in the

Advanced2D::Engine class. Note the two new lines highlighted in bold. These are

two new methods added to the class. Although they are declared as public, they

will not need to be called from outside the class.

public:
Engine();

virtual ~Engine();
int Init(int width, int height, int colordepth, bool fullscreen);
void Close();
void Update();
void message(std::string message, std::string title = "ADVANCED 2D");
void fatalerror(std::string message, std::string title = "FATAL ERROR");
void Shutdown();
void ClearScene(D3DCOLOR color);
void SetDefaultMaterial();
void SetAmbient(D3DCOLOR colorvalue);
int RenderStart();
int RenderStop();
int Render2D_Start();
int Render2D_Stop();
int Release();

All the existing code was part of the project from the previous chapter, and we’ve just

added the two newmethods to the class here. Figure 3.2 shows the code inDev-Cþþ.

Now let’s review the code for these method definitions. Switch to the Advan-

ced2D.cpp file and scroll down to the Engine::RenderStart and Engine::

RenderStop definitions where the new methods have been added. I’m showing

you the code here only for reference—there’s no need to type it into the engine

project, which has already been modified.

int Engine::Render2D_Start()
{

if (p_sprite_handler->Begin(D3DXSPRITE_ALPHABLEND) != D3D_OK)
return 0;

else
return 1;

}
int Engine::Render2D_Stop()
{

p_sprite_handler->End();
return 1;

}

Basic 2D Rendering 75

The sprite_handler variable was defined in the Advanced2D.h file like so:

LPD3DXSPRITE p_sprite_handler;

This sprite handler object is created in Engine::Init (located in Advanced2D

.cpp):

//initialize 2D renderer
HRESULT result = D3DXCreateSprite(this->p_device, &this->p_sprite_handler);
if (result != D3D_OK) return 0;

After initializing the sprite handler as part of the engine’s startup process, we

can then use this D3DXSprite object to render 2D graphics. The rendering

step for 2D must be done within the 3D rendering process, as you’ll see in a

moment.

The Engine::Update() function needs some modification to enable 2D rendering

within the game loop. The new function calls are highlighted in bold text.

76 Chapter 3 n 2D Rendering

Figure 3.2
Adding new functionality to the Advanced2D engine.

void Engine::Update()
{

static Timer timedUpdate;

//calculate core framerate
p_frameCount_core++;
if (p_coreTimer.stopwatch(999)) {

p_frameRate_core = p_frameCount_core;
p_frameCount_core = 0;

}

//fast update with no timing
game_update();

//update with 60fps timing
if (!timedUpdate.stopwatch(14)) {

if (!this->getMaximizeProcessor()) {
Sleep(1);

}
}
else {

//calculate real framerate
p_frameCount_real++;
if (p_realTimer.stopwatch(999)) {

p_frameRate_real = p_frameCount_real;
p_frameCount_real = 0;

}

//begin rendering
this->RenderStart();

//let game do it’s own 3D
game_render3d();
//2D rendering
Render2D_Start();
game_render2d();
Render2D_Stop();

//done rendering
this->RenderStop();

}
}

Basic 2D Rendering 77

Raising Happy Sprites
It’s one thing to know how to render a sprite—even a complex sprite with

transparency and animation—but it’s quite another matter to do something

useful with it. Some software engineers cannot see beyond the specifications, are

unable to design creative gameplay, and, as a result, focus their time on

mechanics of the game. What we’re doing now is managing the logistics of 2D

games by building this game engine and providing support facilities within the

engine to simplify the engineering side of 2D game development. There are

literally hundreds of game engines at repositories such as SourceForge, but they

are mostly the result of failed game projects. When you design an engine from the

outset with reuse and multi-genre support in mind, then you will more likely

finish the game you have planned, as well as end up with a useful engine out of

the deal.

We need to build a sprite engine that is powerful enough to support a myriad of

game genres—from fixed-screen arcade-style games, to scrolling shooters, to

board games, and so on. In other words, our 2D rendering system must be

robust, fully featured, and versatile. That calls for some iterative programming!

Adv i c e

Iterative programming is a development methodology in which a system (such as a game) is built
in small stages and is more like the growth of a life form than the construction of a building
(a common analogy in software engineering theory). The term ‘‘iterative’’ comes from the edit-
compile-test process that is repeated over and over until the code functions as desired.

This contrasts sharply with other methodologies that call for extensive preparation and design of
every facet of a system in advance. In my experience, a large software project is more comparable
to a life form than to an inanimate object, and iterative development seems to produce better
results in many cases.

The interesting thing about iterative development is that it is often adopted when a project runs
over budget or misses its completion dates, at which point the team will resort to iterative
programming to finish the project. Why spend most of the time with a faulty methodology when
the most effective one is only reserved to complete a failed development plan? Game developers
have been writing iterative code for decades!

Now that we have a 2D rendering subsystem available, we need to code up some

functionality that actually does something useful with sprites. You could just

load up an image and draw it with D3DXSprite. But to what end? We need the

ability to manipulate game entities that will move on the screen in interesting

ways and interact with each other, not to mention animate themselves. (We’ll

explore entity management in more detail in Chapter 7, ‘‘Entity Management.’’)

78 Chapter 3 n 2D Rendering

Creating Vectors

The most useful concept we will need in order to manipulate sprites effectively is

a vector. A vector is a mathematical construct that represents two things at

once—a point as well as a direction. A vector is not merely a point, nor is it

merely a direction; otherwise, we would use one term or the other to describe it.

However, we can use a vector to represent simple points, or positions, for game

entities such as sprites and meshes.

A vector with its own built-in functionality will be incredibly helpful to a Sprite

class. We will be able to give a sprite properties, such as position, direction, and

velocity, as well as calculate the trajectory to a target, the normal angle of a

polygon, and other helpful functions (some of which we may not need but which

are available nonetheless). We will use the Vector3 class (listed in the following

section) to do the ‘‘heavy lifting’’ for the upcoming Sprite class.

Adv i c e

I found the following URL to be a helpful reference for the math behind computer graphics
concepts such as points, lines, vectors, and matrices: http://programmedlessons.org/VectorLessons/
vectorIndex.html.

Vector3.h

Here is the Vector3 class definition as it appears in the Vector3.h file:

#include "Advanced2D.h"
#pragma once
namespace Advanced2D {

class Vector3 {
private:

double x, y, z;

public:
Vector3();
Vector3(const Vector3& v);
Vector3(double x, double y, double z);
Vector3(int x, int y, int z);
void Set(double x1,double y1,double z1);
void Set(const Vector3& v);
double getX() { return x; }
void setX(double v) { x = v; }
double getY() { return y; }

Raising Happy Sprites 79

http://programmedlessons.org/VectorLessons/vectorIndex.html
http://programmedlessons.org/VectorLessons/vectorIndex.html

void setY(double v) { y = v; }
double getZ() { return z; }
void setZ(double v) { z = v; }
void Move(double mx,double my,double mz);
void operator+=(const Vector3& v);
void operator-=(const Vector3& v);
void operator*=(const Vector3& v);
void operator/=(const Vector3& v);
bool operator==(const Vector3& v) const;
bool operator!=(const Vector3& p) const;
Vector3& operator=(const Vector3& v);
double Distance(const Vector3& v);
double Length();
double DotProduct(const Vector3& v);
Vector3 CrossProduct(const Vector3& v);
Vector3 Normal();

}; //class
}; //namespace

Vector3.cpp

Here is the Vector3 class implementation. Most of the code in Vector3 will not be

used immediately, but I want to provide the complete class right now rather than

modifying it later with new functionality, even if some of its methods are

unknown to you.

#include "Advanced2D.h"
namespace Advanced2D {

Vector3::Vector3()
{

x = y = z = 0;
}

Vector3::Vector3(const Vector3& v)
{

*this = v;
}

Vector3::Vector3(double x, double y, double z)
{

Set(x, y, z);
}

80 Chapter 3 n 2D Rendering

Vector3::Vector3(int x, int y, int z)
{

Set((double)x,(double)y,(double)z);
}

void Vector3::Set(double x1,double y1,double z1)
{

x=x1; y=y1; z=z1;
}

void Vector3::Set(const Vector3& v)
{

x=v.x; y=v.y; z=v.z;
}

void Vector3::Move(double mx,double my,double mz)
{

x+ =mx; y+ =my; z+ =mz;
}

void Vector3::operator+=(const Vector3& v)
{

x+ =v.x; y+ =v.y; z+ =v.z;
}

void Vector3::operator-=(const Vector3& v)
{

x-=v.x; y-=v.y; z-=v.z;
}

void Vector3::operator*=(const Vector3& v)
{

x*=v.x; y*=v.y; z*=v.z;
}

void Vector3::operator/=(const Vector3& v)
{

x/=v.x; y/=v.y; z/=v.z;
}

//equality operator comparison includes double rounding
bool Vector3::operator==(const Vector3& v) const
{

Raising Happy Sprites 81

return (
(((v.x - 0.0001f) < x) && (x < (v.x + 0.0001f))) &&
(((v.y - 0.0001f) < y) && (y < (v.y + 0.0001f))) &&
(((v.z - 0.0001f) < z) && (z < (v.z + 0.0001f))));

}

//inequality operator
bool Vector3::operator!=(const Vector3& p) const
{

return (!(*this = = p));
}

//assign operator
Vector3& Vector3::operator=(const Vector3& v)
{

Set(v);
return *this;

}

//distance only coded for 2D
double Vector3::Distance(const Vector3& v)
{

return sqrt((v.x-x)*(v.x-x) + (v.y-y)*(v.y-y));
}

//Vector3 length is distance from the origin
double Vector3::Length()
{

return sqrt(x*x + y*y + z*z);
}

//dot/scalar product: difference between two directions
double Vector3::DotProduct(const Vector3& v)
{

return (x*v.x + y*v.y + z*v.z);
}

//cross/Vector product is used to calculate the normal
Vector3 Vector3::CrossProduct(const Vector3& v)
{

double nx = (y*v.z)-(z*v.y);
double ny = (z*v.y)-(x*v.z);

82 Chapter 3 n 2D Rendering

double nz = (x*v.y)-(y*v.x);
return Vector3(nx,ny,nz);

}

//calculate normal angle of the Vector
Vector3 Vector3::Normal()
{

double length;
if (Length() = = 0)

length = 0;
else

length = 1 / Length();
double nx = x*length;
double ny = y*length;
double nz = z*length;
return Vector3(nx,ny,nz);

}
}

Testing Vector3

Because the Vector3 class is so complicated (and important!), I want to test its

functionality before plugging it into the upcoming Sprite class. On the CD is a

project called VectorTest, which is a Win32 Console project that does not need

the whole game engine, just the Vector3 class. The Vector3.h and Vector3.cpp

files had to be modified a bit to allow the class to compile on its own. (The

Advanced2D.h include and namespace lines were commented out.) As a console

program, we need only a main function and will use iostream for output. Among

other things, the VectorTest program demonstrates how you can manipulate a

vector using operators such as þ, —, þ=, and —=. See Figure 3.3.

#include <iostream>
#include "Vector3.h"
using namespace std;

int main(int argc, char *argv[])
{

cout << "VECTOR TEST" << endl;

Vector3 A(5,5,1);
cout << "A = " << A.getX() << ","

<< A.getY() << "," << A.getZ() << endl;

Raising Happy Sprites 83

Vector3 B(90,80,1);
cout << "B = " << B.getX() << ","

<< B.getY() << "," << B.getZ() << endl;

cout << "Distance A to B: "
<< A.Distance(B) << endl;

cout << "Length of A: " << A.Length() << endl;
cout << "Length of B: " << B.Length() << endl;

A.Move(5, 0, 0);
cout << "A moved: " << A.getX() << ","

<< A.getY() << "," << A.getZ() << endl;

Vector3 C = A;
cout << "C = " << C.getX() << "," << C.getY()

<< "," << C.getZ() << endl;

cout << "Dot Product of A and B: "
<< A.DotProduct(B) << endl;

Vector3 D = A.CrossProduct(B);
cout << "Cross Product of A and B: " << D.getX()

<< "," << D.getY() << "," << D.getZ() << endl;

D = A.Normal();

cout << "Normal of A: " << D.getX() << ","
<< D.getY() << "," << D.getZ() << endl;

A.Set(2.1,2.2,2.3);
B.Set(3.1,3.2,3.3);
cout << "A = " << A.getX() << "," << A.getY()

<< "," << A.getZ() << endl;
cout << "B = " << B.getX() << "," << B.getY()

<< "," << B.getZ() << endl;

A + = B;
cout << "A + B: " << A.getX() << "," << A.getY()

<< "," << A.getZ() << endl;

A -= B;
cout << "A - B: " << A.getX() << "," << A.getY()

84 Chapter 3 n 2D Rendering

<< "," << A.getZ() << endl;

A *= B;
cout << "A * B: " << A.getX() << "," << A.getY()

<< "," << A.getZ() << endl;

A /= B;
cout << "A / B: " << A.getX() << "," << A.getY()

<< "," << A.getZ() << endl;

cout << "A = = B: " << (A = = B) << endl;

system("pause");
return 0;

}

Creating a Reusable Sprite Class

The Vector3 class will greatly simplify the code in the Sprite class, which

otherwise would have to calculate things such as velocity on its own. In some

cases, we’ll use Vector3 just for a simple x,y position. This might seem wasteful

when the Vector3 class is so powerful, but it keeps our code uniform and pre-

dictable. I’m a firm believer in writing maintainable code rather than slightly

faster code.

Raising Happy Sprites 85

Figure 3.3
The VectorTest program tests the features of the Vector3 class.

What do we want to do with sprites? When it comes right down to it, the answer

is almost everything! Sprites are at the very core of 2D games, which is, of course,

our focus here. We need to load and draw simple sprites (with no animation, just

a single image), as well as the more complex animated sprites (with frames of

animation). There is a need for both static and animated sprites in every game. In

fact, most game objects are animated, which begs the questions how do we create

an animation, and how do we animate a sprite? We’ll get to the first question

later, when we create some complete game projects. We’ll get to the second

question in just a moment.

Sprite.h

To answer the second question requires a bit of work. Let’s take a look at the

Sprite class header first. This class is feature rich, meaning that it is loaded with

features we haven’t even gone over yet and will not go over until we use some of

these features in future chapters (for instance, collision detection, which is not

covered until Chapter 9, ‘‘Physics’’).

#include "Advanced2D.h"
#pragma once
namespace Advanced2D {

enum CollisionType {
COLLISION_NONE = 0,
COLLISION_RECT = 1,
COLLISION_DIST = 2

};

class Sprite {
private:

bool visible;
bool alive;

int lifetimeLength;
Timer lifetimeTimer;
int objecttype;

Vector3 position;
Vector3 velocity;
bool imageLoaded;
int state;
int direction;

86 Chapter 3 n 2D Rendering

protected:
Texture *image;
int width,height;
int animcolumns;
int framestart,frametimer;
int movestart, movetimer;
bool collidable;
enum CollisionType collisionMethod;
int curframe,totalframes,animdir;
double faceAngle, moveAngle;
int animstartx, animstarty;
double rotation, scaling;
D3DXMATRIX matRotate;
D3DXMATRIX matScale;
void transform();
D3DCOLOR color;

public:
//screen position
Vector3 getPosition() { return position; }
void setPosition(Vector3 position) { this->position = position; }
void setPosition(double x, double y) { position.Set(x,y,0); }
double getX() { return position.getX(); }
double getY() { return position.getY(); }
void setX(double x) { position.setX(x); }
void setY(double y) { position.setY(y); }

//movement velocity
Vector3 getVelocity() { return velocity; }
void setVelocity(Vector3 v) { this->velocity = v; }
void setVelocity(double x, double y) { velocity.setX(x); velocity.setY(y); }

//image size
void setSize(int width, int height) { this->width = width; this->height =

height; }
int getWidth() { return this->width; }
void setWidth(int value) { this->width = value; }
int getHeight() { return this->height; }
void setHeight(int value) { this->height = value; }

bool getVisible() { return visible; }
void setVisible(bool value) { visible = value; }

Raising Happy Sprites 87

bool getAlive() { return alive; }
void setAlive(bool value) { alive = value; }

int getState() { return state; }
void setState(int value) { state = value; }

int getDirection() { return direction; }
void setDirection(int value) { direction = value; }

int getColumns() { return animcolumns; }
void setColumns(int value) { animcolumns = value; }

int getFrameTimer() { return frametimer; }
void setFrameTimer(int value) { frametimer = value; }

int getCurrentFrame() { return curframe; }
void setCurrentFrame(int value) { curframe = value; }

int getTotalFrames() { return totalframes; }
void setTotalFrames(int value) { totalframes = value; }

int getAnimationDirection() { return animdir; }
void setAnimationDirection(int value) { animdir = value; }

double getRotation() { return rotation; }
void setRotation(double value) { rotation = value; }
double getScale() { return scaling; }
void setScale(double value) { scaling = value; }
void setColor(D3DCOLOR col) { color = col; }

int getMoveTimer() { return movetimer; }
void setMoveTimer(int value) { movetimer = value; }

bool isCollidable() { return collidable; }
void setCollidable(bool value) { collidable = value; }
CollisionType getCollisionMethod() { return collisionMethod; }
void setCollisionMethod(CollisionType type) { collisionMethod = type; }

public:
Sprite();
virtual ~Sprite();
bool loadImage(std::string filename, D3DCOLOR transcolor = D3DCOLOR_

XRGB(255,0,255));

88 Chapter 3 n 2D Rendering

void setImage(Texture *);
void move();
void animate();
void draw();

}; //class
}; //namespace

Sprite.cpp

That was a large header file, I’ll admit, but it was jam-packed with features that

we’ll need later, and—as I mentioned back at the Vector3 listing—I prefer to give

you the complete listing for a reusable class rather than modifying it. Here is the

Sprite class implementation:

#include "Advanced2D.h"
namespace Advanced2D {

Sprite::Sprite()
{

this->image = NULL;
this->imageLoaded = false;
this->setPosition(0.0f,0.0f);
this->setVelocity(0.0f,0.0f);
this->state = 0;
this->direction = 0;
this->width = 1;
this->height = 1;
this->curframe = 0;
this->totalframes = 1;
this->animdir = 1;
this->animcolumns = 1;
this->framestart = 0;
this->frametimer = 0;
this->animcolumns = 1;
this->animstartx = 0;
this->animstarty = 0;
this->faceAngle = 0;
this->moveAngle = 0;
this->rotation = 0;
this->scaling = 1.0f;
this->color = 0xFFFFFFFF;
this->movetimer = 16;
this->movestart = 0;

Raising Happy Sprites 89

this->collidable = true;
this->collisionMethod = COLLISION_RECT;

}

Sprite::~Sprite() {
if (imageLoaded)

delete image;
}

bool Sprite::loadImage(std::string filename, D3DCOLOR transcolor)
{

//if image already exists, free it
if (imageLoaded && image != NULL) delete image;

//create texture and load image
image = new Texture();
if (image->Load(filename,transcolor))
{

this->setSize(image->getWidth(),image->getHeight());
imageLoaded = true;
return true;

}
else

return false;
}

void Sprite::setImage(Texture *image)
{

this->image = image;
this->setWidth(image->getWidth());
this->setHeight(image->getHeight());
this->imageLoaded = false;

}

void Sprite::transform()
{

D3DXMATRIX mat;
D3DXVECTOR2 scale((float)scaling,(float)scaling);
D3DXVECTOR2 center((float)(width*scaling)/2, (float)(height*scaling)/2);

90 Chapter 3 n 2D Rendering

D3DXVECTOR2 trans((float)getX(), (float)getY());
D3DXMatrixTransformation2D(&mat,NULL,0,&scale,¢er,(float)rotation,

&trans);
g_engine->getSpriteHandler()->SetTransform(&mat);

}

void Sprite::draw()
{

//calculate source frame location
int fx = (this->curframe % this->animcolumns) * this->width;
int fy = (this->curframe / this->animcolumns) * this->height;
RECT srcRect = {fx,fy, fx+this->width, fy+this->height};

//draw the sprite frame
this->transform();
g_engine->getSpriteHandler()->Draw(

this->image->GetTexture(),&srcRect,NULL,NULL,color);
}

void Sprite::move()
{

if (movetimer > 0) {

if (timeGetTime() > (DWORD)(movestart + movetimer)) {
//reset move timer
movestart = timeGetTime();

//move sprite by velocity amount
this->setX(this->getX() + this->velocity.getX());
this->setY(this->getY() + this->velocity.getY());

}
}
else {

//no movement timer- -update at cpu clock speed
this->setX(this->getX() + this->velocity.getX());
this->setY(this->getY() + this->velocity.getY());

}
}

void Sprite::animate()
{

//update frame based on animdir
if (frametimer > 0) {

Raising Happy Sprites 91

if (timeGetTime() > (DWORD)(framestart + frametimer)) {
//reset animation timer
framestart = timeGetTime();
curframe + = animdir;

//keep frame within bounds
if (curframe < 0) curframe = totalframes-1;
if (curframe > totalframes-1) curframe = 0;

}
}
else {

//no animation timer--update at cpu clock speed
curframe += animdir;
if (curframe < 0) curframe = totalframes-1;
if (curframe > totalframes-1) curframe = 0;

}
}

}

This is a pretty awesome sprite implementation, if I do say so myself. We have

here the ability to render a sprite to any desired scale, at any angle of rotation,

with timed animation, using alpha channel transparency and timer-based

movement. Whew! Obviously, the Sprite class has a lot of functionality that we

won’t be able to take advantage of for a while, but when we do, it will greatly

simplify our future code!

Rendering Sprites with Transparency
We need to put the new Vector3 and Sprite classes through some minor tests to

determine how well they function together. We’ll explore transparency while

testing the Sprite class.

D3DXSprite doesn’t care whether your sprites’ source images use a color key or

an alpha channel for transparency—it just renders the image as requested. If

you have an image with an alpha channel—for instance, a 32-bit targa—then it

will be rendered with alpha, including translucent blending with the back-

ground if your image has partial alpha ranges defined. But if your image has no

alpha because you are using a background color key for transparency—for

instance, a 24-bit bitmap—then it will be drawn without the color-keyed

pixels.

92 Chapter 3 n 2D Rendering

Color Key Transparency

Looking at the sprite functionality at a lower level, you can tell the sprite

renderer (D3DXSprite) what color you want to use for the color key; our Sprite

class defines magenta (with an RGB of 255, 0, 255) as the default transparent

color key. Figure 3.4 shows the sprite we’re using in the upcoming demo. This

example program is called ColorkeyDemo and is ready to go on the CD-ROM.

Adv i c e

The rocket ship featured here was modeled by UAT graduate Nathan Cox, who----after a stint with
EA on Medal of Honor: Airborne----now works for Nihilistic Software.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;
Sprite *sprite;
bool game_preload()
{

Rendering Sprites with Transparency 93

Figure 3.4
This sprite (being edited in GIMP) will be rendered with color-keyed transparency.

g_engine->setAppTitle("SPRITE COLOR KEY DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(640);
g_engine->setScreenHeight(480);
g_engine->setColorDepth(32);
return 1;

}
bool game_init(HWND)
{

//load sprite
sprite = new Sprite();
sprite->loadImage("fatship_colorkeyed.bmp");
return true;

}

void game_update()
{

//exit when escape key is pressed
if (KEY_DOWN(VK_ESCAPE)) g_engine->Close();

}
void game_end()
{

delete sprite;
}
void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
g_engine->SetIdentity();

}
void game_render2d()
{

//calculate center of screen
int cx = g_engine->getScreenWidth() / 2;
int cy = g_engine->getScreenHeight() / 2;

//calculate center of sprite
int sx = sprite->getWidth() / 2;
int sy = sprite->getHeight() / 2;

//draw sprite centered
sprite->setPosition(cx-sx,cy-sy);
sprite->draw();

}

94 Chapter 3 n 2D Rendering

I’ve called this program ColorkeyDemo, and it is available on the CD. Figure 3.5

shows the output from the code just listed.

Alpha Channel Transparency

You can make an entire game using just color-keyed transparency, but there is a

limitation on the quality when using this technique because you must have

discrete pixels in such an image unless some sort of render-time blending is

performed. Although it is possible to do alpha blending at runtime, it’s not a

good way to develop a game—it’s best to prepare your artwork in advance.

The preferred method for rendering with transparency (especially among artists)

is using an alpha channel. One great advantage to alpha-blended images is

support for partial transparency—that is, translucent blending. Rather than

using a black border around a color-keyed sprite (the old-school way of high-

lighting a sprite), an artist will blend a border around a sprite’s edges using an

alpha level for partial translucency, which looks fantastic in comparison! To do

that, you must use a file format that supports 32-bit RGBA images. Targa is a

good choice, and PNG files work well, too. Let’s take a look at the spaceship sprite

again—this time with an alpha channel rather than a color-keyed background.

Note the checkerboard pattern in the background; this is a common way of

Rendering Sprites with Transparency 95

Figure 3.5
The SpriteDemo program demonstrates sprite transparency.

showing the alpha channel in graphic editors. Figure 3.6 shows the fatship sprite

with a new alpha channel.

Adv i c e

Oddly enough, the latest version of the Windows Bitmap format now supports 32-bit RGBA color
with an alpha channel, too!

The AlphaDemo program (shown in Figure 3.7) is nearly identical to the

ColorkeyDemo program, so I won’t list it here again. The only changes that have

been made are the program’s title and the filename (using the fatship_alpha.tga

file instead of fatship_colorkeyed.bmp). The output from the program is the

same as the previous one, but this program now renders the sprite with an

alpha—we’re not using it to its full potential, but we will in due time.

Speaking of potential, these are very basic sprite demos. We can’t see movement,

rotation, or animation, so what was the point of all this? It’s important, in my

96 Chapter 3 n 2D Rendering

Figure 3.6
This sprite will be rendered with alpha channel transparency.

opinion, to focus on the technology first, and then when that is covered, to focus

on use or implementation. We have just added some quite advanced vector and

sprite support to the Advanced2D engine and verified that 2D rendering is

working (with both color-keyed and alpha transparency). Next, we need to test

the more advanced features of the Sprite class, which we’ll do in the next

chapter.

Rendering Sprites with Transparency 97

Figure 3.7
The AlphaDemo program demonstrates sprite rendering with an alpha channel.

This page intentionally left blank

Animation

Let’s talk about sprite animation. The simplest way to animate a sprite is to load

up several images representing an animation sequence and draw those images,

one at a time, with some timing. The most obvious problem with this is that you

must deal with many image files for each animation sequence—and the typical

animated sprite has 30 or so frames! Imagine if you had just a dozen sprites!

Obviously, that is not a good way to go about it.

A better solution is to use a sprite sheet. A sprite sheet is an image containing

many frames for an animation sequence laid out in tiles that are arranged into

rows and columns, as shown in Figure 4.1. In this sprite sheet, each horizontal

row represents a direction that the sprite can face, with 8 frames of animation and

8 directions, for a total of 64 frames in all.

Using the Sprite class developed in the previous chapter, we could create a

dragon sprite with code like this:

Sprite *dragon = new Sprite();
dragon->loadImage("dragon.tga");

This is as far as we’ve gotten up to this point, but the Sprite class supports

animation too—we just need to tap into it. Each sprite can have its own indi-

vidual properties for animation, such as the total frames, number of columns (in

the sprite sheet), and animation timing. Let’s see how those might be set for the

dragon sprite. First, we have to tell the Sprite class how large each frame is,

because it sets the width and height to the full size of the image by default. The

99

chapter 4

image size is the size of the whole sprite sheet, while the frame size is the size of

each cell of animation.

dragon->setSize(96,96);

The total number of frames of animation must be set as well. When we’re doing

animation, the range of valid frame numbers (which are zero-based) will be 0 to

totalFrames minus 1. The following line of code will cause the animation system

to animate the dragon based on frames 0 to 63, and then auto-wrap around to 0.

dragon->setTotalFrames(64);

To turn on the animation system, you must set the frame timer. This is a

millisecond timer that can be used to animate a sprite based on a constant timer

100 Chapter 4 n Animation

Figure 4.1
Animated dragon sprite stored in a sheet of rows and columns.

regardless of the game’s frame rate (60 fps or otherwise). There are additional

properties in the Sprite class that we will use in some of the future game projects.

For instance, the lifetime property can be used to automatically terminate a sprite

after a fixed number of milliseconds has passed. (The lifetime of a sprite can be

set to cause that sprite to automatically terminate after a fixed duration, which is

useful for such things as bullets and explosions.)

Once a sprite is configured with the desired properties, you can animate and

draw a sprite using the Sprite::animate() and Sprite::draw() methods. The

animate() method looks like this:

void Sprite::animate()
{

//update frame based on animdir
if (frametimer > 0) {

if (timeGetTime() > (DWORD)(framestart + frametimer)) {
//reset animation timer
framestart = timeGetTime();
curframe += animdir;
//keep frame within bounds
if (curframe < 0) curframe = totalframes-1;
if (curframe > totalframes-1) curframe = 0;

}
}

else {
//no animation timer--update at cpu clock speed
curframe += animdir;
if (curframe < 0) curframe = totalframes-1;
if (curframe > totalframes-1) curframe = 0;

}
}}

Note that if you do not set the animation timer, then the animation will run at

the full processor clock speed. Since the time is specified in milliseconds, the

value you use will be based on the desired frame rate for the sprite. Average rates

vary from around 20 to 50 milliseconds per frame.

Animation Demo
Now we will create an example program to demonstrate a single animated sprite.

By keeping the demos short and simple, it’s my belief that the code is easier to

Animation Demo 101

102 Chapter 4 n Animation

Figure 4.2
The AnimationDemo program draws an animated explosion.

Figure 4.3
The sprite sheet for an animated explosion.

understand and learn from. This short program will animate a single explosion,

rendering an alpha-transparent targa image at random locations around the

screen, as shown in Figure 4.2.

The explosion is composed of 30 128� 128 sprite frames in a sheet with six

columns. Figure 4.3 shows the sprite sheet of the explosion; note the effective use

of alpha to produce transparent regions as the explosion dissipates. This shows

just howmuch better alpha is versus the older color-key technology. You can also

very easily cause sprites to fade in or out to produce effects such as cloaking or

shielding (in the case of a spaceship, for instance). Another popular trick with

alpha is to cause a sprite to flicker on and off repeatedly after a collision. One of

my favorite tricks is to cycle a sprite’s alpha through the red color component

when the sprite ‘‘dies.’’

Now for the code.

Adv i c e

The explosion animation was provided courtesy of Reiner Prokein and is available at
www.reinerstileset.de.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

Sprite *explosion;

bool game_preload()
{

g_engine->setAppTitle("SPRITE ANIMATION DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(800);
g_engine->setScreenHeight(600);
g_engine->setColorDepth(32);
return true;

}

bool game_init(HWND)
{

explosion = new Sprite();
explosion->loadImage("explosion_30_128.tga");
explosion->setTotalFrames(30);
explosion->setColumns(6);
explosion->setSize(128,128);
explosion->setFrameTimer(40);

Animation Demo 103

www.reinerstileset.de

return true;

}

void game_update()
{

int cx,cy;

//animate the explosion sprite
explosion->animate();
if (explosion->getCurrentFrame() == explosion->getTotalFrames() - 1)
{

//set a new random location
cx = rand()%(g_engine->getScreenWidth()-128);
cy = rand()%(g_engine->getScreenHeight()-128);
explosion->setPosition(cx,cy);

}

//exit when escape key is pressed
if (KEY_DOWN(VK_ESCAPE)) g_engine->Close();

}

void game_end()
{

delete explosion;
}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));

}

void game_render2d()
{

//draw the current frame of the explosion
explosion->drawframe();

}

Adv i c e

I have moved the SetIdentity() function call directly into the engine’s main loop because it
was redundant in the game code---since it must be set every frame anyway when rendering in 3D.
It’s all part of the engine’s evolution!

104 Chapter 4 n Animation

Sprite Rotation and Scaling
We can rotate and scale a sprite with relative ease thanks to the D3DX library. If

we want to draw a single-frame sprite, draw a single cell from a sprite sheet, or do

full-blown animation, we can use the same multipurpose Sprite::draw()

function, which looks like this:

void Sprite::draw()
{

//calculate source frame location
int fx = (this->curframe % this->animcolumns) * this->width;
int fy = (this->curframe / this->animcolumns) * this->height;
RECT srcRect = {fx,fy, fx+this->width, fy+this->height};
//draw the sprite frame
this->transform();
g_engine->getSpriteHandler()->Draw(this->image->GetTexture(),

&srcRect,NULL,NULL,color);
}

The draw() method calls on transform() to perform the translation, rotation,

and scaling operations on the sprite before it is rendered.

void Sprite::transform()
{

Sprite Rotation and Scaling 105

Figure 4.4
The RotateScaleDemo program draws a sprite with rotation and scaling.

3DXMATRIX mat;
D3DXVECTOR2 scale((float)scaling,(float)scaling);
D3DXVECTOR2 center((float)(width*scaling)/2, (float)(height*scaling)/2);
D3DXVECTOR2 trans((float)getX(), (float)getY());
D3DXMatrixTransformation2D(&mat,NULL,0,&scale,¢er,(float)rotation,&trans);
g_engine->getSpriteHandler()->SetTransform(&mat);

}

The D3DX library does it all for us with a single function call, D3DXMatrix

Transformation2D. This single function creates a matrix with scaling, rotation, and

translation all combined. Let me show you what you can do with it. Following is an

example called RotateScaleDemo, and a screenshot is shown in Figure 4.4.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

Sprite *ship;

bool game_preload()
{

g_engine->setAppTitle("SPRITE ROTATION AND SCALING DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(800);
g_engine->setScreenHeight(600);
g_engine->setColorDepth(32);
return true;

}

bool game_init(HWND)
{

//load sprite
ship = new Sprite();
ship->loadImage("fatship.tga");

return true;
}

void game_update()
{

static float scale = 0.01f;
float r,s;

//set position
ship->setPosition(400,300);

106 Chapter 4 n Animation

//set rotation
ship->setRotation(timeGetTime()/600.0f);

//set scale
s = ship->getScale() + scale;
if (s < 0.01 || s > 2.5f) scale *= -1;
ship->setScale(s);

//exit when escape key is pressed
if (KEY_DOWN(VK_ESCAPE)) g_engine->Close();

}

void game_end()
{

delete ship;
}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));

}

void game_render2d()
{

ship->draw();
}

Animation with Transforms
We can apply this functionality to animation as well. Since D3DXSprite is used to

draw single- or multi-frame sprites, you can use the same transformation to

rotate and scale a sprite regardless of whether it’s animated. Figure 4.5 shows a

sprite sheet containing frames from an animated space rock or asteroid.

This program uses the same transforms that were applied to the fatship sprite in

the previous example; the difference now is that we’re dealing with an animated

sprite. What’s the difference? As far as Direct3D is concerned, there is none. Our

Sprite::draw() method handles single ‘‘static’’ sprites as well as sprites with

animation.

Let’s give animation with rotation and scaling a try. Figure 4.6 shows the output

from the RotateAnimDemo program, with the code listing to follow.

Animation with Transforms 107

108 Chapter 4 n Animation

Figure 4.5
A 64-frame animated asteroid.

Figure 4.6
The RotateAnimDemo program draws an animated sprite with rotation and scaling.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

Sprite *asteroid;

bool game_preload()
{

g_engine->setAppTitle("SPRITE ANIMATE/ROTATE/SCALE DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(800);
g_engine->setScreenHeight(600);
g_engine->setColorDepth(32);
return true;

}

bool game_init(HWND)
{

//load sprite
asteroid = new Sprite();
asteroid->loadImage("asteroid.tga");
asteroid->setTotalFrames(64);
asteroid->setColumns(8);
asteroid->setSize(60,60);
asteroid->setFrameTimer(30);

return true;
}

void game_update()
{

static float scale = 0.005f;
float r,s;

//set position
asteroid->setPosition(400,300);

//set rotation
asteroid->setRotation(timeGetTime()/600.0f);

//set scale
s = asteroid->getScale() + scale;
if (s < 0.25 || s > 5.0f) scale *= -1;
asteroid->setScale(s);

Animation with Transforms 109

//exit when escape key is pressed
if (KEY_DOWN(VK_ESCAPE)) g_engine->Close();

}

void game_end()
{

delete asteroid;
}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));

}

void game_render2d()
{

asteroid->animate();
asteroid->draw();

}

Particles
Particles are tiny sprites that are rendered with about 50-percent alpha trans-

parency so that they seem to glow. The key to creating a particle system—that is,

an emitter or other special effect—is to start with a good source particle image.

Figure 4.7 shows an enlarged view of a 16� 16 particle sprite. Note the amount

of alpha transparency in the image—only the central white portion is fully

opaque, while the rest will blend with whatever background the particle is

rendered over.

Sprite-based particles differ significantly from shader-based particles rendered by

the 3D hardware. Three-dimensional particles can emit light (emissive) or reflect

light (reflective) and can be used to simulate real smoke and fog. Sprite-based

particles can be used to generate smoke trails behind missiles and spaceships,

among other things.

A so-called particle system is a managed list of particles that are rendered in

creative ways. That list takes the form of an std::vector—something we have

demonstrated before, but have not yet fully utilized in the game engine. (That is

the subject of Chapter 7, ‘‘Entities.’’). An std::vector will work slightly faster

110 Chapter 4 n Animation

than an std::list when your list does not need to change very often. Our

particle emitter will create particles but not remove any (until the object is

destroyed, that is). An std::list would be preferred if you needed to add and

remove items regularly, but it’s not quite as fast as an std::vector when it comes

to sequential iteration.

To make working with particles more reasonable, we’ll code up the most obvious

functionality into a class. Following is the definition for the ParticleEmitter

class. This class uses an std::vector filled with Sprite objects to represent the

entities in the emitter. The class is otherwise completely self contained and can

handle most types of particle systems that I have seen over the years. Basically, a

great particle system works in such a way that the player shouldn’t notice that it’s

a particle at all. When a spaceship is cruising through space, it can emit a flame

and smoke with the use of two particle emitters, for example. This code belongs

in the ParticleEmitter.h file.

#include "Advanced2D.h"
#pragma once
namespace Advanced2D {

class ParticleEmitter
{

Particles 111

Figure 4.7
Source particle image.

private:
typedef std::vector<Sprite*>::iterator iter;
std::vector<Sprite*> particles;
Texture *image;
Vector3 position;
double direction;
double length;
int max;
int alphaMin,alphaMax;
int minR,minG,minB,maxR,maxG,maxB;
int spread;
double velocity;
double scale;

public:
void setPosition(double x, double y) { position.Set(x,y,0); }
void setPosition(Vector3 vec) { position = vec; }
Vector3 getPosition() { return position; }
void setDirection(double angle) { direction = angle; }
double getDirection() { return direction; }
void setMax(int num) { max = num; }
void setAlphaRange(int min,int max);
void setColorRange(int r1,int g1,int b1,int r2,int g2,int b2);
void setSpread(int value) { spread = value; }
void setLength(double value) { length = value; }
void setVelocity(double value) { velocity = value; }
void setScale(double value) { scale = value; }

ParticleEmitter();
virtual ~ParticleEmitter();
bool loadImage(std::string imageFile);
void draw();
void update();
void add();

}; //class
}; //namespace

Following is the implementation file for the ParticleEmitter class. I’ll explain

how it works at the end of the code listing.

#include "Advanced2D.h"
namespace Advanced2D {

ParticleEmitter::ParticleEmitter()
{

112 Chapter 4 n Animation

//initialize particles to defaults
image = NULL;
max = 100;
length = 100;
direction = 0;
alphaMin = 254; alphaMax = 255;
minR = 0; maxR = 255;
minG = 0; maxG = 255;
minB = 0; maxB = 255;
spread = 10;
velocity = 1.0f;
scale = 1.0f;

}

bool ParticleEmitter::loadImage(std::string imageFile)
{

image = new Texture();
return image->Load(imageFile);

}

ParticleEmitter::~ParticleEmitter()
{

delete image;

//destroy particles
for (iter i = particles.begin(); i != particles.end(); ++i)
{

delete *i;
}
particles.clear();

}

void ParticleEmitter::add()
{

static double PI_DIV_180 = 3.1415926535 / 180.0f;
double vx,vy;

//create a new particle
Sprite *p = new Sprite();
p->setImage(image);
p->setPosition(position.getX(), position.getY());

Particles 113

//add some randomness to the spread
double variation = (rand() % spread - spread/2) / 100.0f;

//set linear velocity
double dir = direction - 90.0;
vx = cos(dir * PI_DIV_180) + variation;
vy = sin(dir * PI_DIV_180) + variation;
p->setVelocity(vx * velocity,vy * velocity);

//set random color based on ranges
int r = rand()%(maxR-minR)+minR;
int g = rand()%(maxG-minG)+minG;
int b = rand()%(maxB-minB)+minB;
int a = rand()%(alphaMax-alphaMin)+alphaMin;
p->setColor(D3DCOLOR_RGBA(r,g,b,a));

//set the scale
p->setScale(scale);

//add particle to the emitter
particles.push_back(p);

}

void ParticleEmitter::draw()
{

//draw particles
for (iter i = particles.begin(); i != particles.end(); ++i)
{

(*i)->draw();
}

}

void ParticleEmitter::update()
{

static Timer timer;

//do we need to add a new particle?
if ((int)particles.size() < max)
{

//trivial but necessary slowdown
if (timer.stopwatch(1)) add();

}

114 Chapter 4 n Animation

for (iter i = particles.begin(); i != particles.end(); ++i)
{

//update particle’s position
(*i)->move();

//is particle beyond the emitter’s range?
if ((*i)->getPosition().Distance(this->position) > length)
{

//reset particle to the origin
(*i)->setX(position.getX());
(*i)->setY(position.getY());

}
}

}

void ParticleEmitter::setAlphaRange(int min,int max)
{

alphaMin=min;
alphaMax=max;

}

void ParticleEmitter::setColorRange(int r1,int g1,int b1,int r2,int g2,int b2)
{

minR = r1; maxR = r2;
minG = g1; maxG = g2;
minB = b1; maxB = b2;

}
}

Using the ParticleEmitter class is very easy; you just have to supply the source

image. That image can be any reasonably nice-looking circle on a bitmap, or

perhaps a simple square image if you want to produce a blocky effect. I have

created a circle on a 16� 16 bitmap with several shades of alpha built into

the image. Combined with the color and alpha effects we’ll apply when drawing

the image, this will produce the particles in our emitter. However, you can

produce quite different particles using a different source image—something to

keep in mind!

Here is how you can create a simple emitter. This example code creates a new

particle emitter using the particle16.tga image; sets it at screen location 400,300;

sets the angle to 45 degrees; sets a maximum of 1,000 particles; sets an alpha range

Particles 115

of 0 to 100 (which is faint); sets the random spread from the given angle to

30 pixels; and sets the range to 250 pixels.

ParticleEmitter *p new ParticleEmitter();
p->loadImage("particle16.tga");
p->setPosition(400,300);
p->setDirection(45);
p->setMax(1000);
p->setAlphaRange(0,100);
p->setSpread(30);
p->setLength(250);

After creating the emitter, you need to give it a chance to update its particles and

draw itself. The ParticleEmitter::update() method should be called from your

game_update() function, while ParticleEmitter::draw() should be called from

your game_render2d() function.

Following is an example program called ParticleDemo that demonstrates just a

few of the possibilities! This example creates two normal emitters, a rotation

pattern, and then two emitters together, rotating in a circle, generating a smoke-

like effect. Figure 4.8 shows the output with a white background. To really

116 Chapter 4 n Animation

Figure 4.8
Particle demonstration with a white background.

appreciate the alpha blending taking place here, you must see it with a dark

background, as shown in Figure 4.9.

There’s a lot of code in the ParticleTest program, which is listed below. But most

of this is setup code to configure the many particle emitters demonstrated in the

program. Once the emitters are configured, the rest of the program listing is fairly

short, with just calls to update and draw each emitter.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

ParticleEmitter *pa;
ParticleEmitter *pb;
ParticleEmitter *pc;
ParticleEmitter *pd;
ParticleEmitter *pe;

bool game_preload()
{

g_engine->setAppTitle("PARTICLE DEMO");
g_engine->setFullscreen(false);

Particles 117

Figure 4.9
Particle demonstration with a black background.

g_engine->setScreenWidth(1024);
g_engine->setScreenHeight(768);
g_engine->setColorDepth(32);
return 1;

}

bool game_init(HWND)
{

g_engine->setMaximizeProcessor(true);

pa = new ParticleEmitter();
pa->loadImage("particle16.tga");
pa->setPosition(100,300);
pa->setDirection(0);
pa->setMax(500);
pa->setAlphaRange(100,255);
pa->setSpread(30);
pa->setVelocity(2.0);
pa->setLength(250);

pb = new ParticleEmitter();
pb->loadImage("particle16.tga");
pb->setPosition(300,100);
pb->setDirection(180);
pb->setScale(0.6);
pb->setMax(500);
pb->setAlphaRange(0,100);
pb->setColorRange(200,0,0,255,10,10);
pb->setVelocity(2.0);
pb->setSpread(40);
pb->setLength(200);

pc = new ParticleEmitter();
pc->loadImage("particle16.tga");
pc->setPosition(250,525);
pc->setDirection(0);
pc->setScale(0.5);
pc->setMax(2000);
pc->setAlphaRange(100,150);
pc->setColorRange(0,0,200,10,10,255);
pc->setVelocity(0.2);
pc->setSpread(5);

118 Chapter 4 n Animation

pc->setLength(180);

pd = new ParticleEmitter();
pd->loadImage("particle16.tga");
pd->setPosition(750,650);
pd->setScale(0.75);
pd->setMax(10);
pd->setAlphaRange(50,100);
pd->setColorRange(210,50,0,255,255,1);
pd->setVelocity(2.0);
pd->setDirection(0);
pd->setSpread(40);
pd->setLength(100);

pe = new ParticleEmitter();
pe->loadImage("particle16.tga");
pe->setPosition(730,575);
pe->setScale(4.0f);
pe->setMax(1000);
pe->setAlphaRange(1,20);
pe->setColorRange(250,250,250,255,255,255);
pe->setVelocity(2.0);
pe->setDirection(0);
pe->setSpread(80);
pe->setLength(800);

return true;
}

void game_update()
{

//move particles
pa->update();
pb->update();

//update the circular emitter
float dir = pc->getDirection() + 0.2f;
pc->setDirection(dir);
pc->update();

//update the rotating emitter
static double unit = 3.1415926535 / 36000.0;
static double angle = 0.0;

Particles 119

static double radius = 150.0;
angle += unit;
if (angle > 360) angle = 360 - angle;
float x = 750 + cos(angle) * radius;
float y = 500 + sin(angle) * radius;
pd->setPosition(x,y);
pd->update();

//update smoke emitter
pe->setPosition(x,y);
pe->update();

//exit when escape key is pressed
if (KEY_DOWN(VK_ESCAPE)) g_engine->Close();

}

void game_end()
{

delete pa;
delete pb;
delete pc;
delete pd;
delete pe;

}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,0));
}

void game_render2d()
{

pa->draw();
pb->draw();
pc->draw();
pd->draw();
pe->draw();

}

There is so much more potential for particles than what you’ve seen here! In

Chapter 10, ‘‘Math,’’ you will learn to calculate the angle between two sprites,

which will make it possible to emit a particle stream from the rear direction of a

120 Chapter 4 n Animation

spaceship or rocket and have that stream point in the right direction. You could

also create a slow particle emitter to simulate smoke and have it appear as if a

ship, aircraft, or other type of game object is damaged!

Now it feels as if we’ve been dealing with sprites for a long time now, so let’s take

a break! The next two chapters cover device input and game audio, which will be

a nice change of pace.

Particles 121

This page intentionally left blank

Input

Getting input from the user is as important as rendering, but this subject does not

often get as much attention because, frankly, it just doesn’t change very often.

We’re going to use DirectInput to get input from the keyboard and the mouse in

this chapter. DirectInput hasn’t changed in many years and is still at version 8.1.

Contrast that with the huge changes taking place with Direct3D every year!

Although we can use a joystick, it’s such a non-standard device for the PC that it’s

not worth the effort. Granted, if you’re working on a game that would benefit

from a joystick, by all means support it! Just note that most PC gamers prefer a

keyboard and mouse. If you want to support an Xbox 360 controller, you can

look into the XInput library, which is now packaged with the DirectX SDK

(as well as included with XNA Game Studio).

Keyboard Input
The keyboard is the standard input device, even for games that don’t specifically

use it, so it is a given that your games must support a keyboard one way or

another. If nothing else, you should allow the user to exit your game or at least

bring up an in-game menu by pressing the Escape key. (That’s the standard.) The

primary DirectInput object is called IDirectInput8; you can reference it directly

or use the LPDIRECTINPUT8 pointer. Why is the number ‘‘8’’ attached to these

interfaces? Because DirectInput has not changed version 8.1. The DirectInput

library file is called dinput8.lib (libdinput8.a for Dev-Cþþ), so be sure to add

123

chapter 5

this file to the list of linked files for your project. I’ll assume that you read the

previous chapters and learned how to set up a project to support DirectX.

DirectInput Device

Here is how to scan the keyboard for key presses. You will want to first define the

primary DirectInput object used by your program, along with the device:

LPDIRECTINPUT8 dinput;

LPDIRECTINPUTDEVICE8 dinputdev;

After defining these objects, you can then call DirectInputCreate8 to initialize

DirectInput. This function creates the primary DirectInput object. The first

parameter is the instance handle for the current program. A convenient way to get

the current instance when it is not immediately available (normally this is only

found in Winmain) is by using the GetModuleHandle function. The second para-

meter is the DirectInput version, which is always passed as DIRECTINPUT_VERSION,

defined in dinput.h. The third parameter is a reference identifier for the version of

DirectInput that you want to use, which is usually IID_IDirectInput8. The fourth

parameter is a pointer to the DirectInput object pointer (yes, that’s a pointer to a

pointer), and the fifth parameter is always NULL. Here is an example of how you

might call this function:

HRESULT result = DirectInput8Create(
GetModuleHandle(NULL),
DIRECTINPUT_VERSION,
IID_IDirectInput8,
(void**)&p_dinput,
NULL);

After initializing the object, you can then use it to create a DirectInput device for

a specific input device (usually just a keyboard or a mouse) by calling the

CreateDevice function on the returned DirectInput object.

The first parameter is a value that specifies the type of object you want to create,

which should be either GUID_SysKeyboard or GUID_SysMouse.

The second parameter is your device pointer that receives the address of the

DirectInput device. The third parameter is always NULL. Here is how you might

call this function:

result = p_dinput->CreateDevice(GUID_SysKeyboard, &dikeyboard, NULL);

124 Chapter 5 n Input

Initializing the Keyboard

Once you have created a DirectInput keyboard device, you can then initialize the

keyboard handler to prepare it for input. The next step is to set the keyboard’s

data format, which instructs DirectInput how to pass the data back to your

program. It is abstracted in this way because there are hundreds of input devices

on the market with myriad features, so there has to be a uniform way to read

them all.

Setting the Data Format

The SetDataFormat function specifies which data format will be used.

The single parameter to this function specifies the device type. For the keyboard,

you want to pass the value of c_dfDIKeyboard as this parameter. The constant for

a mouse would be c_dfDIMouse. Here, then, is a sample function call:

HRESULT result = dikeyboard->SetDataFormat(&c_dfDIKeyboard);

Note that you do not need to define c_dfDIKeyboard yourself; it is defined in

dinput.h.

Setting the Cooperative Level

The next step is to set the cooperative level, which determines how much of the

keyboard DirectInput will give your program by way of priority. To set the

cooperative level, you call the SetCooperativeLevel function. The first parameter

is the window handle. The second parameter is the interesting one—it specifies

the priority that your program will have over the keyboard or mouse. The most

common values to pass when working with the keyboard are DISCL_EXCLUSIVE

and DISCL_FOREGROUND (in either full-screen or windowed mode). When you gain

exclusive use of the keyboard, DirectInput will still allow key combinations such

as Alt+Tab and Ctrl+Alt+Delete because those key combinations are detected at

a lower level within Windows. So, here is how you might call the function:

HRESULT result = dikeyboard->SetCooperativeLevel(hwnd,
DISCL_NONEXCLUSIVE | DISCL_FOREGROUND);

There is a valid argument to be made for acquiring the keyboard and mouse in

nonexclusive mode in order to support screen captures and minimizing the

window, among other reasons. While developing a game, I like to work in

nonexclusive mode so I can do these things without having to restart a program

Keyboard Input 125

using DirectInput. If the program window loses focus, then DirectInput loses the

devices—requiring a manual re-acquire on our part. That being the case, using

exclusive mode does not really cause any problems. I recommend nonexclusive

for the keyboard and exclusive for the mouse. Give it a try, in both windowed and

full-screen modes, and determine which level of control you prefer.

Acquiring the Device

The last step in the process is to acquire the keyboard device using the Acquire

function. If the function returns a positive value (DI_OK), then you have suc-

cessfully acquired the keyboard and you are ready to start checking for key

presses.

Remember to always release the keyboard when you are done using it, or you

could leave the keyboard handler in an unknown state. You cannot rely on

Windows or DirectInput to clean up after you. Each DirectInput device has an

Unacquire function.

Reading Key Presses

Somewhere in your game loop you need to poll the keyboard to update its key

values. We need to define the array of keys that are to be populated with the key

states:

char keys[256];

You must poll the keyboard to fill in this array of characters, and to do that you

call the GetDeviceState function. This function is used for all devices regardless

of type, so it is standard for all input devices. The first parameter is the size of the

device state buffer to be filled with data, and the second parameter is a pointer to

the data. Here is how you can poll the keyboard state:

dikeyboard->GetDeviceState(sizeof(keys), (LPVOID)&keys);

You can then check the keys array for values corresponding to the DirectInput

key codes, which are all listed in the dinput.h header file.

To check the state of a key, you need to perform a simple bit-mask comparison

with one of the DirectInput key codes. Here is how to check the state of the

Escape key:

if (keys[DIK_ESCAPE] & 0x80) . . .

126 Chapter 5 n Input

By putting this sort of comparison inside a loop that scans all keys, you can

automatically detect key presses within the game engine and pass on the key-

press events to the game in more of an event-based system (rather than a polled

system). We’ll get into that later in the chapter, after going over the mouse-

specific code.

Mouse Input
After you have written a handler for the keyboard, the mouse is a bit easier to deal

with because the DirectInput object will already exist. The code to initialize and

poll the mouse is very similar to the keyboard code. First, define the mouse device

variable:

LPDIRECTINPUTDEVICE8 dimouse;

Next, create the mouse device:

result = p_dinput->CreateDevice(GUID_SysMouse, &dimouse, NULL);

Initializing the Mouse

Assuming the DirectInput object is already initialized, the next step is to set the

data format for the mouse, which instructs DirectInput how to pass the data back

to your program.

Setting the Data Format

We’ll use the SetDataFormat function for the mouse as well as for the keyboard.

The single parameter to this function specifies the device type, which for the

mouse should be the predefined c_dfDIMouse. Here is an example:

HRESULT result = dimouse->SetDataFormat(&c_dfDIMouse);

Note, again, that you do not need to define c_dfDIMouse, because it is defined in

dinput.h.

Setting the Cooperative Level

The next step (again, like the keyboard interface) is to set the cooperative level,

which determines how much priority over the mouse DirectInput will give your

program. To set the cooperative level, you call the SetCooperativeLevel function

Mouse Input 127

with the window handle and the mouse priority. Common values are DISCL_

EXCLUSIVE and DISCL_FOREGROUND (which has the added benefit of hiding the

stock Windows cursor from view). If your game is running full screen, then you

may consider gaining exclusive access to the input devices. I often use non-

exclusive mode in my code. Here is an example:

HRESULT result = dimouse->SetCooperativeLevel(hwnd,
DISCL_EXCLUSIVE | DISCL_FOREGROUND);

Acquiring the Device

The last step is to acquire the mouse device using the Acquire function. If the

function returns DI_OK, then you have successfully acquired the mouse and you

are ready to start checking for movement and button presses. As with the key-

board device, you must unacquire the mouse and release the mouse device after

you are finished using it.

Reading the Mouse

Somewhere in your game loop you need to poll the mouse to update the mouse

position and button status using the GetDeviceState function (again, the same as

with the keyboard). You will use the DIMOUSESTATE struct to poll the mouse:

typedef struct DIMOUSESTATE {
LONG lX;
LONG lY;
LONG lZ;
BYTE rgbButtons[4];

} DIMOUSESTATE;

To fill the DIMOUSESTATE struct, call the GetDeviceState function:

DIMOUSESTATE mouse_state;
dimouse->GetDeviceState(sizeof(mouse_state), (LPVOID)&mouse_state);

There is an alternate struct available for your use when you want to support

complex mouse devices with more than four buttons, in which case the button

array is doubled in size but the struct is otherwise the same:

typedef struct DIMOUSESTATE2 {
LONG lX;
LONG lY;
LONG lZ;

128 Chapter 5 n Input

BYTE rgbButtons[8];
} DIMOUSESTATE2;

Because multi-button mouse devices are rare and cannot be relied upon for

standard input in a game, it’s usually best to support only two or three mouse

buttons, at least for standard input. You might support additional mouse but-

tons as a shortcut or macro for common game functions (such as grouping units

or doing a double jump or something similar).

After polling the mouse, you can then check the mouse_state struct for x and

y motion and button presses. You can check for mouse movement, also called

mickeys, using the lX and lY member variables. What are mickeys? Mickeys

represent motion of the mouse rather than an absolute position, so you must

keep track of the old position if you want to use these mouse-positioning values

to draw your own pointer. Mickeys are a convenient way of handling mouse

motion because you can continue to move in a single direction, and the mouse

will continue to report movement, even if the ‘‘pointer’’ would have reached

the edge of the screen.

As you can see from the struct, the rgbButtons array holds the result of button

presses. If you want to check for a specific button (starting with 0 for button 1),

here is how you might do that:

button_1 = obj.rgbButtons[0] & 0x80;

A more convenient method of detecting button presses is by using a macro

definition in code:

#define BUTTON_DOWN(obj, button) (obj.rgbButtons[button] & 0x80)

By using the macro definition, you can check for button presses like this:

button_1 = BUTTON_DOWN(mouse_state, 0);

Engine Modifications
You now have all the information you need to add keyboard and mouse support

to your games. But let’s transform this code into something more reusable and

avoid having to write any DirectInput code again in the future. To maximize

code reuse, I’ve written a helper class called Input that encapsulates the keyboard

andmouse. This class will be utilized by the Advanced2D engine to automatically

provide keyboard and mouse events to a game.

Engine Modifications 129

130 Chapter 5 n Input

Input Class

Here is the definition of the Input class:

#include "Advanced2d.h"
#pragma once
namespace Advanced2D {

class Input {
private:

HWND window;
IDirectInput8 *di;
IDirectInputDevice8 *keyboard;
char keyState[256];
IDirectInputDevice8 *mouse;
DIMOUSESTATE mouseState;
POINT position;

public:
Input(HWND window);
virtual ~Input();
void Update();
bool GetMouseButton(char button);

char GetKeyState(int key) { return keyState[key]; }
long GetPosX() { return position.x; }
long GetPosY() { return position.y; }
long GetDeltaX() { return mouseState.lX; }
long GetDeltaY() { return mouseState.lY; }
long GetDeltaWheel() { return mouseState.lZ; }

};
};

Now we’ll take a look at the implementation of the Input class, which is also

rather short. This class just wraps a DirectInput keyboard and device without

providing any additional processing of input data.

#include "Advanced2D.h"
namespace Advanced2D {

Input::Input(HWND hwnd)
{

//save window handle
window = hwnd;

//create DirectInput object
DirectInput8Create(GetModuleHandle(NULL), DIRECTINPUT_VERSION,

IID_IDirectInput8, (void**)&di, NULL);

//initialize keyboard
di->CreateDevice(GUID_SysKeyboard, &keyboard, NULL);
keyboard->SetDataFormat(&c_dfDIKeyboard);
keyboard->SetCooperativeLevel(window,

DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);
keyboard->Acquire();

//initialize mouse
di->CreateDevice(GUID_SysMouse, &mouse, NULL);
mouse->SetDataFormat(&c_dfDIMouse);
mouse->SetCooperativeLevel(window,DISCL_FOREGROUND|DISCL_NONEXCLUSIVE);
mouse->Acquire();

}

Input::~Input()
{

di->Release();
keyboard->Release();
mouse->Release();

}

void Input::Update()
{

//poll state of the keyboard
keyboard->Poll();
if (!SUCCEEDED(keyboard->GetDeviceState(256,(LPVOID)&keyState)))
{

//keyboard device lost, try to re-acquire
keyboard->Acquire();

}

//poll state of the mouse
mouse->Poll();
if (!SUCCEEDED(mouse->GetDeviceState(sizeof(DIMOUSESTATE),&mouse-

State)))
{

//mouse device lose, try to re-acquire
mouse->Acquire();

}

//get mouse position on screen
GetCursorPos(&position);
ScreenToClient(window, &position);

Engine Modifications 131

}

bool Input::GetMouseButton(char button)
{

return (mouseState.rgbButtons[button] & 0x80);
}

};

Engine Changes

We are not trying to build the engine in a step-by-step fashion in this book

because, as mentioned previously, it’s too difficult to keep track of the changes.

Instead, I’ll show you the key code and classes added to the engine whenever a

modification takes place, and I’ll recommend that you open the Engine project in

the chapter to examine the code that has been added.

I mentioned earlier that we want to encapsulate keyboard and mouse input and

transform it from a polled system to an event-based system. This means that we

don’t want to poll the keyboard and mouse every frame—we want the game

engine to do that and just tell us when input has been detected.

In the Advanced2D.h file, the following new external functions have been added.

These are the functions that will be called in the game’s code, so these functions

must all be defined in your game to avoid a linker error. (Even if you don’t need

them all, they must all be included.) We have events for key press and release,

mouse buttons, mouse relative movement, mouse position, and mouse wheel!

extern void game_keyPress(int key);
extern void game_keyRelease(int key);
extern void game_mouseButton(int button);
extern void game_mouseMotion(int x,int y);
extern void game_mouseMove(int x,int y);
extern void game_mouseWheel(int wheel);

Also in the Advanced2D.h header, we add an object variable from the Input class

and two helper functions: UpdateKeyboard() will poll and process key events,

while UpdateMouse() will handle mouse events.

Input *p_input;
void UpdateKeyboard();
void UpdateMouse();

132 Chapter 5 n Input

In addition to these definitions, we must include the dinput.h file in Advanced2D.h

so the DirectInput library is available for use in the game engine. Note that

the Input object is a private property; there’s no need to expose it. Over in

the Advanced2D.cpp file we have a few things to do. First, the keyboard and

mouse must be initialized by creating a new instance of the Input

class. Examine the Engine::Init() method where the following code has been

added:

//initialize DirectInput
p_input = new Input(this->windowHandle);

Next, scrolling down to the Engine::Update() method, look for the section of

code that performs the frame rate calculation, and you will find the following

new code that updates the keyboard and mouse states:

//update input devices
p_input->Update();
this->UpdateKeyboard();
this->UpdateMouse();

Finally, there are the two class methods mentioned earlier that must be imple-

mented in the Advanced2D.cpp file, as follows:

void Engine::UpdateMouse()
{

static int oldPosX = 0;
static int oldPosY = 0;
int deltax = p_input->GetDeltaX();
int deltay = p_input->GetDeltaY();

//check mouse buttons 1-3
for (int n=0; n<4; n+ +) {

if (p_input->GetMouseButton(n))
game_mouseButton(n);

}

//check mouse position
if (p_input->GetPosX() != oldPosX || p_input->GetPosY() != oldPosY) {

game_mouseMove(p_input->GetPosX(), p_input->GetPosY());
oldPosX = p_input->GetPosX();
oldPosY = p_input->GetPosY();

}

Engine Modifications 133

//check mouse motion
if (deltax != 0 || deltay) {

game_mouseMotion(deltax,deltay);
}

//check mouse wheel
int wheel = p_input->GetDeltaWheel();
if (wheel != 0)

game_mouseWheel(wheel);
}

void Engine::UpdateKeyboard()
{

static char old_keys[256];
for (int n=0; n<255; n++)
{

//check for key press
if (p_input->GetKeyState(n) & 0x80) {

game_keyPress(n);
old_keys[n] = p_input->GetKeyState(n);

}
//check for release
else if (old_keys[n] & 0x80) {

game_keyRelease(n);
old_keys[n] = p_input->GetKeyState(n);

}
}

}

Testing Keyboard and Mouse Input
That’s a lot of code, and we’ve burned through the keyboard and mouse input

subject quickly in this chapter! A demo is called for to test the functionality of the

new input routines in the engine, as well as the new event functions added to the

exports. I’ve got a great idea: We’ll create a demo that uses the mouse to draw

particles! I’ve wanted to work more with the ParticleEmitter class again, and

this is a good way to play with it while simultaneously testing input. The new

DirectInput keyboard events will replace the old KEY_DOWNmacro for the purpose

of exiting the program via the Escape key. The mouse is used to draw particles

with random velocities. See Figure 5.1.

134 Chapter 5 n Input

Although the InputDemo program runs fine in a window, I recommend running

it in full-screen and windowed mode to see for yourself how the exclusive or

nonexclusive mode affects the mouse and keyboard. If you’re using exclusive

mode, the mouse will be completely trapped by the program unless you Alt+Tab

to another window. Because the Input class intelligently handles the loss of

devices, it will re-acquire the keyboard and mouse when you return to the demo.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

ParticleEmitter *p;
Sprite *cursor;

bool game_preload()
{

g_engine->setAppTitle("INPUT DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(1024);
g_engine->setScreenHeight(768);
g_engine->setColorDepth(32);
return 1;

}

Testing Keyboard and Mouse Input 135

Figure 5.1
The InputDemo program demonstrates keyboard and mouse input.

bool game_init(HWND)
{

p = new ParticleEmitter();
p->loadImage("particle16.tga");
p->setMax(0);
p->setAlphaRange(50,200);
p->setDirection(0);
p->setSpread(270);
p->setScale(1.5f);
p->setLength(2000);

//load cursor
cursor = new Sprite();
cursor->loadImage("particle16.tga");

return true;
}

void game_update()
{

p->update();
}

void game_keyPress(int key) { }
void game_keyRelease(int key)
{

if (key = = DIK_ESCAPE) g_engine->Close();
}

void game_mouseButton(int button)
{

switch(button) {
case 0: //button 1

p->setVelocity((rand() % 10 - 5) / 500.0f);
p->add();
break;

}
}

void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y)

136 Chapter 5 n Input

{
float fx = (float)x;
float fy = (float)y;
cursor->setPosition(fx,fy);
p->setPosition(fx,fy);

}
void game_mouseWheel(int wheel) { }

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,0));
}

void game_render2d()
{

p->draw();
cursor->draw();

}

void game_end()
{

delete p;
delete cursor;

}

That’s it for input. You can load up the current implementation of the Advan-

ced2D engine and build a game with the tools developed so far. But we still have

much ground to cover! For instance, we have no way to support sound effects or

music yet. Good thing that is coming up in the next chapter.

Testing Keyboard and Mouse Input 137

This page intentionally left blank

Audio

Good audio is an absolutely crucial aspect of a successful game. Sound can literally

make or break a game! Can you think of a game you’ve played at one time or

another that had such dreadful sound effects or music that you could not con-

tinue playing? Conversely, have you ever played a game with such dramatic

sound or music that it drew you further into the game than would have otherwise

been possible with just the graphics? I remember the first time I played Halo:

Combat Evolved for the first time in the fall of 2001. Sure, it’s part of pop culture

now, but back then it was a niche game that was relatively unknown—at least,

for the first few weeks! I remember the graphics and incredibly realistic physics,

but it was the music soundtrack (composed by Martin O’Donnell and Michael

Salvatori) and sound effects that really sold me on the incredible quality of the

game. Even a small game, such as a hobby project, should have carefully chosen

or composed audio.

Adv i c e

Killer Tracks is a company that specializes in providing licensable audio for video games. See their
offerings at www.killertracks.com.

Designing an Audio System
So, we know that audio is important in our games. The real question is this: How

do we write an audio system for a game? I’ll bet you were expecting me to bring

up DirectSound at about this time. Am I right? On the contrary, DirectSound is a

139

chapter 6

www.killertracks.com

terrible library that cannot even load a WAV file on its own, let alone any other

audio format. DirectSound is a very low-level (almost device driver–level)

interface to the sound hardware with a mixer. We are not going to waste our time

with it. Instead, we’re going to use a professional audio system called FMOD.

What Is FMOD?

FMOD is a professional audio engine used in most commercial games today,

including those for PC and the major consoles, with support for Nintendo Wii,

Microsoft Xbox 360, and Sony PS3. Most surprisingly, FMOD is available free for

noncommercial use. This is an extraordinarily generous gesture by Firelight

Technologies, the developers of FMOD. Beyond the library’s pedigree, it is just

plain easy to use and it works great. The website for FMOD is www.fmod.org,

and this is where you will want to visit to download the latest version. The

current version of FMOD available at the time of this writing (officially labeled

FMOD Ex 4.12) is on the CD-ROM in the \libraries folder. Let’s talk about what

makes FMOD tick.

FMOD can load and play many different audio files, but the two formats we’re

concerned with are Windows .wav (WAV) files and Ogg Vorbis .ogg (Ogg) files.

You can use WAV files for sound effects and Ogg files just for music, or you can

use Ogg files for both sound andmusic. Due to the compression rate and file size,

I recommend against using WAV files for music.

Adv i c e

We can’t use MP3 because it’s a licensed, proprietary format. To use the MP3 format, you must
secure a license! For more information, visit www.mp3licensing.com. Due to this licensing lim-
itation, the alternative Ogg Vorbis format is preferred for distributed games. According to
www.vorbis.com, ‘‘Ogg Vorbis is a completely open, patent-free, professional audio encoding and
streaming technology with all the benefits of Open Source.’’

If you want to convert audio files to Ogg (for instance, music files), I recommend

the free but awesome Audacity sound editing program available at audacity

.sourceforge.net. Audacity is not as powerful as a commercial tool, but it gets the

job done quickly and easily. Among its many features is the ability to convert

MP3s to Ogg files.

Using the FMOD SDK

If you’re new to FMOD, I recommend using the version included with the book

to ensure compatibility, since a high-quality book like this one will remain on the

140 Chapter 6 n Audio

www.fmod.org
www.mp3licensing.com
www.vorbis.com

market for many years. When you are familiar with FMOD, visit Firelight

Technologies’ website at www.fmod.org and download the latest version.

FMOD is composed of a library file, a DLL, and these header files:

n fmod.h

n fmod.hpp

n fmod_codec.h

n fmod_dsp.h

n fmod_errors.h

n fmod_output.h

If you’re writing code in C, then use the fmod.h header, but if you’re using Cþþ,

use the fmod.hpp header. You only need to include the main header, because it

includes the others. An FMOD library file is available for Visual Cþþ and Dev-

Cþþ and is included in the example project for this chapter (a program called

AudioTest that we’ll go over later). Here are the library files:

n Visual Cþþ: fmodex_vc.lib

n Dev-Cþþ: libfmodex.a

Of course, these files from the FMOD SDK are only needed to compile your game

with FMOD support. Once your game is built, you no longer need these files.

Instead, you will need the FMOD runtime file (which is the same for both

compilers):

n fmodex.dll

Adv i c e

FMOD cannot be distributed freely unless you abide by the terms of use specified by Firelight
Technologies at the www.fmod.org website. If you release a freeware game, you must include
Firelight’s official copyright notice! I secured permission to include the FMOD SDK files with this
book.

The best way to learn how to use the FMOD SDK is to see an example. Instead of

a demo program, I’m going to show you a pair of Cþþ classes that encapsulate

FMOD into convenient properties and methods. Don’t get me wrong—FMOD

is not difficult to use. But rather than going over the initialization and usage of

Designing an Audio System 141

www.fmod.org
www.fmod.org

142 Chapter 6 n Audio

FMOD and its support functions, we’ll instead examine the code used to build

the classes.

Audio Classes
As usual when we’ve come up with reusable code, it needs to be packaged and

added to the Advanced2D game engine so that it’s available to any game that uses

the engine, and the audio system is no exception. What we need to do is write a

wrapper for FMOD. Although FMOD already comes with a Cþþ implementa-

tion, we’re just using the C function library version of FMOD because it is fully

supported on both Visual Cþþ and Dev-Cþþ (while the Cþþ version is not

available for GCC at the time of this writing).

But, I have an idea to make the process of loading and playing audio even more

interesting. Instead of just loading up a sample and playing it, what if we were to

create an audio manager that would make it possible to load up a sample and

store it in an std::vector by name? It should then be possible to play any

previously loaded sample by just using the sample name. This sounds better than

having a bunch of global audio sample objects in the game’s source code file.

We’re going to need two classes to make this work. First, a generic Sample class

that just wraps up an FMOD_SOUND object and an FMOD_CHANNEL object for playback,

in addition to keeping track of its own name. Next, we’ll write an Audio class that

simplifies the FMOD library. Although FMOD is already easy to use, we want the

game engine to automatically handle the mundane tasks, such as updating the

audio system.

Sample Class

The Sample class is not useful without the Audio class, so Sample is stored in the

same class definition (Audio.h) and implementation (Audio.cpp) files with the

Audio class. Following is the Sample class definition. Note the names of the FMOD

objects in this listing: FMOD_SOUND and FMOD_CHANNEL. FMOD_SOUND is a sound buffer

or sample, while FMOD_CHANNEL is a playback channel. Although you may reuse a

single channel when playing multiple samples, it is simpler to use one channel per

sample in our classes. (Note: The Sample class is embedded in the Audio.h and

Audio.cpp files along with the Audio class.)

class Sample
{
private:

std::string name;

Audio Classes 143

public:
FMOD_SOUND *sample;
FMOD_CHANNEL *channel;
Sample(void);
~Sample(void);
std::string getName() { return name; }
void setName(std::string value) { name = value; }

};

I’m not overly concerned about accessors and mutators in the Sample class. It is

more convenient to expose the sample and channel pointers publicly to simplify

the code in the Audio class.

And now for the Sample class implementation, which is stored in the Audio.cpp

file with the Audio class implementation. The Sample class’ most important

responsibility is to free the memory used by an audio sample using the

FMOD_Sound_Release function.

Sample::Sample()
{

sample = NULL;
channel = NULL;

}

Sample::~Sample()
{

if (sample != NULL) {
FMOD_Sound_Release(sample);
sample = NULL;

}
}

Audio Class

The Audio class is the real workhorse of the two classes, providing numerous

methods to load and play samples. The Audio class provides a built-in sound

manager that can store samples internally so you need not maintain global

sample objects in your game’s code listing. You can load and play a sound

from the Audio class in a ‘‘fire and forget’’ style of programming that is very

easy to implement and use. On the other hand, there may be cases when you

want to manage your own samples, and the Audio class supports that as well,

with the ability to both load and play a sample using a Sample object that you

provide.

There are some interesting methods in this class. You can play and stop a sample

by name. (Yes, that’s right, using a string rather than an object!) The class also has

the ability to stop all samples in the output buffer. During testing, I had a specific

but unusual need to stop playback of all sounds except for one, and that spawned

the StopAllExcept() method! Another interesting method is FindSample(),

which will search through its internal list of samples (by name) and return a

pointer to the Sample object. (Just remember that it points to the object in the

audio manager, so you should not delete any sample retrieved in this way.)

Now, let’s see the definition for the Audio class found in Audio.h:

class Audio
{
private:

FMOD_SYSTEM *system;
typedef std::vector<Sample*> Samples;
typedef std::vector<Sample*>::iterator Iterator;
Samples samples;

public:
Audio();
~Audio();
FMOD_SYSTEM* getSystem() { return system; }
bool Init();
void Update(); //must be called once per frame
bool Load(std::string filename, std::string name);
Sample* Load(std::string filename);
bool Play(std::string name);
bool Play(Sample *sample);
void Stop(std::string name);
void StopAll();
void StopAllExcept(std::string name);
bool IsPlaying(std::string name);
bool SampleExists(std::string name);
Sample *FindSample(std::string name);

};

Finally, we come to the implementation of the Audio class, which does all of the

real work. This class will make it very easy to load and play a sample. There’s a lot

of Cþþ Standard Library code in here, so if you are not familiar with it, you

might feel a bit lost. We’ll be using STL constructs even more in Chapter 7,

‘‘Entities,’’ while building an entity manager.

144 Chapter 6 n Audio

Audio::Audio()
{

system = NULL;
}

Audio::~Audio()
{

//release all samples
for (Iterator i = samples.begin(); i != samples.end(); + +i)
{

(*i) = NULL;
}
FMOD_System_Release(system);

}

bool Audio::Init()
{

if (FMOD_System_Create(&system) != FMOD_OK) {
return false;

}
if (FMOD_System_Init(system,100,FMOD_INIT_NORMAL,NULL) != FMOD_OK) {

return false;
}
return true;

}

void Audio::Update()
{

FMOD_System_Update(system);
}

Sample* Audio::Load(std::string filename)
{

if (filename.length() = = 0) return false;

Sample *sample = new Sample();
FMOD_RESULT res;
res = FMOD_System_CreateSound(

system, //FMOD system
filename.c_str(), //filename
FMOD_DEFAULT, //default audio
NULL, //n/a
&sample->sample); //pointer to sample

Audio Classes 145

if (res != FMOD_OK) {
sample = NULL;

}
return sample;

}

bool Audio::Load(std::string filename, std::string name)
{

if (filename.length() = = 0 || name.length() = = 0) return false;
Sample *sample = new Sample();
sample->setName(name);
FMOD_RESULT res;
res = FMOD_System_CreateSound(

system, //FMOD system
filename.c_str(), //filename
FMOD_DEFAULT, //default audio
NULL, //n/a
&sample->sample); //pointer to sample

if (res != FMOD_OK) {
return false;

}
samples.push_back(sample);
return true;

}

bool Audio::SampleExists(std::string name)
{

for (Iterator i = samples.begin(); i != samples.end(); + +i)
{

if ((*i)->getName() = = name) {
return true;

}
}
return false;

}

bool Audio::IsPlaying(std::string name)
{

Sample *samp = FindSample(name);
if (samp = = NULL) return false;

int index;
FMOD_Channel_GetIndex(samp->channel, &index);

146 Chapter 6 n Audio

// FMOD returns 99 if sample is playing, 0 if not
return (index > 0);

}

Sample *Audio::FindSample(std::string name)
{

Sample *sample = NULL;
for (Iterator i = samples.begin(); i != samples.end(); + +i)
{

if ((*i)->getName() = = name) {
sample = (*i);
break;

}
}
return sample;

}

bool Audio::Play(std::string name)
{

FMOD_RESULT res;
Sample *sample = FindSample(name);
if (sample->sample != NULL) {

//sample found, play it
res = FMOD_System_PlaySound(

system,
FMOD_CHANNEL_FREE,
sample->sample,
true,
&sample->channel);

if (res!= FMOD_OK) return false;
FMOD_Channel_SetLoopCount(sample->channel, -1);
FMOD_Channel_SetPaused(sample->channel, false);

}
return true;

}

bool Audio::Play(Sample *sample)
{

FMOD_RESULT res;
if (sample = = NULL) return false;
if (sample->sample = = NULL) return false;

Audio Classes 147

148 Chapter 6 n Audio

res = FMOD_System_PlaySound(
system,
FMOD_CHANNEL_FREE,
sample->sample,
true,
&sample->channel);

if (res!= FMOD_OK) return false;
FMOD_Channel_SetLoopCount(sample->channel, -1);
FMOD_Channel_SetPaused(sample->channel, false);
return true;

}

void Audio::Stop(std::string name)
{

if (!IsPlaying(name)) return;
Sample *sample = FindSample(name);
if (sample = = NULL) return;
FMOD_Channel_Stop(sample->channel);

}

void Audio::StopAll()
{

for (Iterator i = samples.begin(); i != samples.end(); + +i)
{

FMOD_Channel_Stop((*i)->channel);
}

}

void Audio::StopAllExcept(std::string name)
{

for (Iterator i = samples.begin(); i != samples.end(); + +i)
{

if ((*i)->getName() != name) {
FMOD_Channel_Stop((*i)->channel);

}
}

}

Adding FMOD to the Game Engine
The Audio class is very easy to use, so we don’t need to abstract it any further

inside the game engine; it will suffice to just add a public Audio object to

the engine so it’s available via the global g_engine. The object will be called

Adding FMOD to the Game Engine 149

audio, and you will be able to access it via g_engine->audio. Let’s take a look

at the minor changes made to the engine to accommodate the new audio

system.

In the Advanced2D.h header, an Audio class instance is defined as public:

//simplified public Audio object
Audio *audio;

Over in the Advanced2D.cpp engine implementation file, scroll down to the

Engine::Init method and you will find the audio initialization:

//create audio system
audio = new Audio();
if (!audio->Init()) return 0;

Scrolling down a ways in the file, locate the Engine::Update method and the

following lines of code:

//update audio system
audio->Update();

The FMOD system is not multi-threaded, so it does not automatically update the

audio stream in the background—we must call a function to give FMOD an

opportunity to update audio playback.

The last change made is to the destructor, where we need to wipe the audio object

from memory:

Engine::~Engine()
{

audio->StopAll();
delete audio;
delete p_input;
if (this->p_device) this->p_device->Release();
if (this->p_d3d) this->p_d3d->Release();}

Audio Test

‘‘Testing 1, 2, 3’’ What’s the point of writing this fancy new audio system

when we haven’t heard anything out of it yet? Let’s take the audio system for a

spin. Following is an example program called AudioTest. Since there is nothing

displayed by this program, I will skip a screenshot this time. You can use the

mouse buttons to play sound effects by clicking the program window.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

//independent sample
Sample *wobble;

bool game_preload()
{

g_engine->setAppTitle("AUDIO TEST");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(640);
g_engine->setScreenHeight(480);
g_engine->setColorDepth(32);
return true;

}

bool game_init(HWND)
{

g_engine->message("Press mouse buttons to hear sound clips!");

//load sample into audio manager
if (!g_engine->audio->Load("gong.ogg", "gong")) {

g_engine->message("Error loading gong.ogg");
return false;

}

//load sample into audio manager
if (!g_engine->audio->Load("explosion.wav", "explosion")) {

g_engine->message("Error loading explosion.wav");
return false;

}

//load independent sample
wobble = new Sample();
wobble = g_engine->audio->Load("wobble.wav");
if (!wobble) {

g_engine->message("Error loading wobble.wav");
return false;

}

return true;
}

150 Chapter 6 n Audio

void game_keyRelease(int key)
{

if (key = = DIK_ESCAPE) g_engine->Close();
}

void game_mouseButton(int button)
{

switch(button) {
case 0:

//play gong sample stored in audio manager
g_engine->audio->Play("gong");
break;

case 1:
//play explosion sample stored in audio manager
g_engine->audio->Play("explosion");
break;

case 2:
//play woggle sample stored independently
g_engine->audio->Play(wobble);
break;

}
}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(100,0,0));
}

void game_end()
{

g_engine->audio->StopAll();
delete wobble;

}

//unused game events
void game_update() { }
void game_keyPress(int key) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_render2d() { }

Adding FMOD to the Game Engine 151

To compile the AudioTest program you will need to add the FMOD static library

to your project’s linker options. At this point in the engine’s development, the

linker options described in Table 6.1 are required.

That about wraps up the audio system. This has been a pretty fast romp through

some heavy code for a third-party library. But, would it surprise you to learn that

this is the norm rather than the exception in game development?

152 Chapter 6 n Audio

Table 6.1 Linker Options

Visual C++ Dev-C++

Advanced2D.lib -lAdvanced2D

d3d9.lib -ld3d9

d3dx9.lib -ld3dx9

dxguid.lib -ldxguid

dinput8.lib -ldinput8

winmm.lib -lwinmm

fmodex_vc.lib -lfmodex

Entities

The difference between a real game engine and an SDK wrapper is the level of

abstraction evident in the game code. Up to this point, we have merely been

writing more convenient Cþþ classes for key game library components, such as

rendering, input, audio, and so forth. Those classes do not make a game engine,

they are merely tools. A true engine must run, for one thing! Imagine it this way:

You have a block, crankshaft, heads, camshafts, pistons, spark plugs, a fuel

injection intake, and a throttle body; do these parts individually produce power?

An engine performs work. Every component is crucial to the correct running of

the engine, but the engine is far more than just the sum of its parts. Let’s follow

the same analogy when thinking about our game engine, and then work on

putting the components together, from individual pieces to a whole machine that

can produce work.

An entity can be just about any thing you can imagine, but in the context of game

development, an entity is usually an instance of an encapsulated system that

performs some function. For instance, you might think of a sound effect as an

entity, and that might be a valid description, but it doesn’t quite fit. I think of a

sound effect as a result of some action performed by an entity, not as an entity

itself. What types of objects in a game are likely to perform actions or interact in

some way? Most likely, only a mesh or a sprite is likely to interact in a game. So,

let’s imagine that mesh and sprite objects share at least one behavior—they are

both entities in a game. By sharing basic properties, such as position and velocity,

we can manipulate both sprites and meshes using a single call to shared function

153

chapter 7

names. This takes the form of virtual methods in the class definition. Pure

virtuals are methods declared with = 0 in the definition, which is equivalent to

setting the function pointer to null. On the technical side of Cþþ, class function

names are actually pointers to the shared function code in memory, and a pure

virtual means that the subclasses override the base class’ function names. I’m

using the word ‘‘function’’ to describe the process, while ‘‘method’’ is the proper

name for functions defined within a class.

Building an Entity Manager
The entity management system in a game engine shouldn’t care what type of

object you add to it, as long as that object is derived from a base entity. You

should be able to subclass an entity into as many different entity types as you

want to use in your game! For our game engine, we’ll modify the Sprite and Mesh

classes (created in previous chapters) so they can be used as entities. You

probably wouldn’t want to treat things such as lights and cameras as entities

because those are part of the props and equipment of a game, not entities. But, if

you’re interested in experimenting, you could technically add those types of

objects to the entity manager—I’m just not sure how useful that would be.

An entity should provide base properties and methods that will be shared by all

entities (regardless of its actual functionality in the game). We want to be able to

add an entity by name or identifier number, among other things, and the entity

class should provide these facilities.

An entity manager will automatically process the entities and then report the

results to the game (or rather, to you, the programmer). This will only work if the

entities are properly initialized before they are added. The properties will affect

how each entity is drawn, moved, animated, and so forth. If we set an entity’s

properties a certain way, it should automatically move and animate. In the

future, we may want to add behavior to game entities so they interact with their

environment in an even higher level of automation (which is the subject of A.I.).

Before that will be possible, however, the entity manager must be programmed

with the basic logistics of managing entities.

The entity manager should make it easy to manipulate entities once they’re in

the system. We need functionality that makes it possible to add, find, and delete

entities from the game code. In the engine itself, we need to automatically move,

animate, and draw entities based on their properties. This is the part where game

154 Chapter 7 n Entities

programming really starts to get fun, because at this point we’re working at a

higher level, more in the realm of designing gameplay than doing low-level stuff

like rendering. This automated functionality is possible through the use of

the Standard Template Library; specifically, an std::list. We could use a

std::vector, which is faster at consecutive iteration. In other words, when the

entity manager goes through the group of entities and processes each one, in a

sequential manner, a vector is faster than a list. Youmay not notice any difference

until there are a few tens of thousands of entities, and really it’s a matter of

preference. In the end, we need to use an std::list because it is better at deleting

items, which is more challenging with an std::vector (which tends to complain

quite a bit if you remove an item while it’s iterating through its members).

Adv i c e

If your STL knowledge is a bit rusty, I recommend Cþþ Standard Library Practical Tips (Thomson
Course Technology PTR, 2005) by Greg Reese.

The Entity Class

Let’s start with a new class called Entity. This simple class is more of a place-

holder with a few minor properties used to identify the type of entity being

subclassed. Some of the methods in Entity are declared as pure virtual, meaning

you must subclass Entity into a new class; you cannot use an Entity alone. The

properties are all important and are used by the entity manager to process the

entities. Actually, the manager doesn’t really care whether your entity is a sprite, a

mesh, or a Hobgoblin; it will just process the virtual methods and use the

properties you provide it.

Although a strongly typed engine might define specific entity types with an

enumeration or some constant values (such as ObjectType), I did not want to

regulate the engine too much—it’s up to you to set the properties when you

create your entity objects and add them to the manager, and then write the code

to respond to the events based on object type. One very interesting property

is lifetime (composed of two variables—lifetimeLength and lifetimeTimer).

Using this property, you can set an entity to auto-expire after a fixed amount of

time (measured in milliseconds). If you want an entity to participate in the game

for only 10 seconds, you can set its lifetime to 10000, and it will be automatically

removed when the time expires. This can be extremely handy for many types of

games in which you would otherwise have to add logic to terminate things such

as bullets and explosions manually.

Building an Entity Manager 155

However, there is one property that we must set in order to perform the correct

type of rendering, either 2D or 3D. You cannot render 2D and 3D objects

together because 2D sprites must be rendered by D3DXSprite within the 3D

rendering pipeline. The Entity class, defined in a moment, includes an enu-

meration called RenderType that also falls inside the overall Advanced2D

namespace (so it’s visible to the Entity class). We need to use this simple enu-

meration to determine whether an entity should be rendered in 2D or 3D. That

will be done by modifying the Sprite and Mesh constructors later. The Entity

class has a constructor with a mandatory parameter that is called by the con-

structors of Sprite and Mesh with the appropriate 2D or 3D setting. It’s auto-

matic once the classes are defined.

#include "Advanced2D.h"
#pragma once
namespace Advanced2D {

enum RenderType {
RENDER2D = 0,
RENDER3D = 1

};

class Entity {
private:

int id;
std::string name;
bool visible;
bool alive;
enum RenderType renderType;
int objectType;
int lifetimeLength;
Timer lifetimeTimer;

public:
Entity(enum RenderType renderType);
virtual ~Entity() { };
virtual void move() = 0;
virtual void animate() = 0;
virtual void draw() = 0;
void setID(int value) { id = value; }
int getID() { return id; }
void setRenderType(enum RenderType type) { renderType = type; }
enum RenderType getRenderType() { return renderType; }

156 Chapter 7 n Entities

std::string getName() { return name; }
void setName(std::string value) { name = value; }
bool getVisible() { return visible; }
void setVisible(bool value) { visible = value; }
bool getAlive() { return alive; }
void setAlive(bool value) { alive = value; }

int getLifetime() { return lifetimeLength; }
void setLifetime(int milliseconds) {

lifetimeLength = milliseconds; lifetimeTimer.reset();
}
bool lifetimeExpired() {

return lifetimeTimer.stopwatch(lifetimeLength);
}
int getObjectType() { return objectType; }
void setObjectType(int value) { objectType = value; }

};
};

Here is the Entity class implementation. All we need here is the constructor to

initialize the property variables; otherwise, the Entity class is mostly made up of

accessor and mutator methods in the header. Note that Entity does not have a

default constructor, only one with the RenderType parameter. You must tell an

entity whether it should be rendered in 2D or 3D, and this takes care of that

requirement.

#include "Advanced2D.h"
namespace Advanced2D {

Entity::Entity(enum RenderType renderType)
{

this->renderType = renderType;
this->id = -1;
this->name = "";
this->visible = true;
this->alive = true;
this->objectType = 0;
this->lifetimeLength = 0;
this->lifetimeTimer.reset();

}
};

The three pure virtual methods are Entity:move(), Entity::animate(), and

Entity::draw(), which means these three must, at minimum, be implemented in

Building an Entity Manager 157

a subclass. We’ll get to that in a bit, with the Sprite and Mesh classes. First, we

need to make some changes to the core engine.

Modifying the Engine

The engine will need to be modified to support entity management. This is the

part where we begin to take all of the components (Sprite, Mesh, and so on) and

begin assembling them into a functional engine. We’ll begin with some changes

to the Advanced2D class with the following new game event functions:

extern void game_entityUpdate(Advanced2D::Entity*);
extern void game_entityRender(Advanced2D::Entity*);

These functions, which must be present in the game’s code file, will receive entity-

related events. Specifically, game_entityUpdate is called whenever an entity is

manipulated in some way (moved, animated, and so on), while game_entityRender

is called after an entity is rendered. Why would this be necessary, you may be

wondering? It’s helpful if you want to quickly and easily add something to the

rendering pipeline, such as a manually rendered force field or a special effect

drawn over a specific entity. There is some overhead involved with these function

calls. A possible future optimization would be a flag that determines whether

these events are called by the engine. After all, if you don’t ever plan to use an

event, it’s wasteful to have it called several thousand times per frame (dependent,

of course, on the number of entities in your game).

I’ve mentioned ‘‘entity manager’’ quite a bit in the chapter so far, but I haven’t

really explained what it is. The manager is not a class; it’s just some new

functionality in the engine, in the form of new methods that automatically

handle the entities. We need to define the entity list in the Advanced2D.h private

section:

std::list<Entity*> p_entities;

This is template-based code. When the std::list class is used to create the

instance called p_entities, we must tell the container what type of object it will

contain. The std::list is a container for other objects. When this code is

compiled, the Cþþ compiler creates a new class based on a container of Sprite

objects.

Also in the private section of the Engine class are three management methods

used internally by the engine to update, draw, and delete entities.

158 Chapter 7 n Entities

void UpdateEntities();
void DrawEntities();
void BuryEntities();

That odd-sounding BuryEntities method is actually quite descriptive, because

its job is to remove all ‘‘dead’’ entities from the list. But how does an entity die,

you wonder? Very simply, by setting its ‘‘alive’’ property to false.

Adv i c e

The magnificent thing about the entity manager is that you can dynamically add new entities to
your game, and it then automatically updates and draws them. And, if you set the lifetime
property, the entity manager will even terminate your game’s entities automatically.

Let’s jump over to the Advanced2D.cpp class implementation file in order to add

the functional code for the entity manager.

New Engine::Update

Scrolling down in the Advanced2D.cpp file, locate the Engine::Update() method.

Here is the complete source code for the method, with the new entity manager

code highlighted in bold.

void Engine::Update()
{

static Timer timedUpdate;
//calculate core framerate
p_frameCount_core++;
if (p_coreTimer.stopwatch(999)) {

p_frameRate_core = p_frameCount_core;
p_frameCount_core = 0;

}
//fast update with no timing
game_update();

//update entities
if (!p_pauseMode) UpdateEntities();

//update with 60fps timing
if (!timedUpdate.stopwatch(14)) {

if (!this->getMaximizeProcessor()) { Sleep(1); }
}
else {

//calculate real framerate
p_frameCount_real++;

Building an Entity Manager 159

if (p_realTimer.stopwatch(999)) {
p_frameRate_real = p_frameCount_real;
p_frameCount_real = 0;

}
//update input devices
p_input->Update();
this->UpdateKeyboard();
this->UpdateMouse();
//update audio system
audio->Update();
//begin rendering
this->RenderStart();
game_render3d();
//render 3D entities
if (!p_pauseMode) Draw3DEntities();
//render 2D entities
Render2D_Start();
game_render2d();
//render 2D entities
if (!p_pauseMode) Draw2DEntities();
//done rendering
Render2D_Stop();
this->RenderStop();

}
//remove dead entities from the list
BuryEntities();

}

Engine::UpdateEntities

The UpdateEntitiesmethod is called from Engine::Update to process everything

in the entity list. Process here means to move, animate, and check the lifetime of

each entity, and call the game event functions for each entity that is updated (but

rendering is done elsewhere). If you want to add functionality to the entity

manager, this is where you will want to do that because this code runs at the core

clock speed—not the slow framerate speed. This is where we will add some

physics code in the near future.

void Engine::UpdateEntities()
{

std::list<Entity*>::iterator iter;
Entity *entity;

160 Chapter 7 n Entities

iter = p_entities.begin();
while (iter != p_entities.end())
{

//point local sprite to object in the list
entity = *iter;

//is this entity alive?
if (entity->getAlive()) {

//move/animate entity
entity->move();
entity->animate();

//tell game that this entity has been updated
game_entityUpdate(entity);

//see if this entity will auto-expire
if (entity->getLifetime() > 0)
{

if (entity->lifetimeExpired()) {
entity->setAlive(false);

}
}

}
+ +iter;

}
}

Engine::Draw3DEntities

The Engine::Draw3DEntities method is called from Engine::Update to process

all 3D entities (if any). The entire entity list is iterated through; any entities with a

RenderType of RENDER3D have their draw() method called. Any other entities are

ignored.

void Engine::Draw3DEntities()
{

Entity *entity;
std::list<Entity*>::iterator iter = p_entities.begin();
while (iter != p_entities.end())
{

//temporary pointer
entity = *iter;

Building an Entity Manager 161

//is this a 3D entity?
if (entity->getRenderType() = = RENDER3D) {

//is this entity in use?
if (entity->getAlive() && entity->getVisible()) {

entity->draw();
game_entityRender(entity);

}
}
+ +iter;

}
}

Adv i c e

Do your instincts tell you that it’s wasteful to iterate through the entire entity list twice to process
the 3D and 2D entities separately? That means you are anticipating how the machine will run your
code, which is a good thing. However, processors are extremely good at doing loops today, with
their multiple pipeline architectures and cache memory, so don’t worry about duplicating loops for
different processes. In the end, the only code that takes clock cycles is the code in called functions,
while the code in the loop is pipelined and probably would not even show up in profiling. As it
turns out, we cannot combine these loops anyway because the 2D and 3D rendering must be done
at different times.

Engine::Draw2DEntities

Like the Draw3DEntitiesmethod, Draw2DEntities also iterates through the entity

list and picks out objects with a RenderType of RENDER2D and calls the draw()

method for each one.

void Engine::Draw2DEntities()
{

Entity *entity;
std::list<Entity*>::iterator iter = p_entities.begin();
while (iter != p_entities.end()) {

//temporary pointer
entity = *iter;
//is this a 2D entity?
if (entity->getRenderType() = = RENDER2D) {

//is this entity in use?
if (entity->getAlive() && entity->getVisible()) {

entity->draw();
game_entityRender(entity);

}
}

162 Chapter 7 n Entities

+ +iter;
}

}

Adv i c e

Don’t worry about slowing down your game by drawing too many sprites, because Direct3D
batches sprite rendering and does it extremely quickly in the 3D hardware. What you should be
concerned with is code that updates sprites that may slow down the game.

Engine::BuryEntities

The last of the private entity manager support methods is BuryEntities. This

method iterates through the entity list (p_entities), looking for any objects that

are ‘‘dead’’ (where the alive property is false). Thus, to delete an object from

the entity manger, just call setAlive(false), and it will be removed at the end of

the frame update loop. Although you will create a new entity on the heap (with

new) and then add it to the entity manager, you will not need to remove entities

because the list::erasemethod automatically calls delete for each object as it is

destroyed. As a result, we can use a ‘‘fire and forget’’ policy with our entities and

trust that the container is cleaning up afterward.

void Engine::BuryEntities()
{

std::list<Entity*>::iterator iter = p_entities.begin();
while (iter != p_entities.end()) {

if ((*iter)->getAlive() = = false) {
iter = p_entities.erase(iter);

}
else iter++;

}
}

Now that the entity manager has been added to the engine for internal proces-

sing, we need to add the public access methods that allow the game to access the

entity manager. Following are methods for adding and locating entities by either

object type or by name. If you want to truly give entities their own unique

identifier, you must be sure to assign each one a distinct object type number in

order to locate it later (if that’s even necessary). You may also locate entities by

name, but again it’s up to you to give each one a unique name.We have no way to

return multiple entities by object type or name (although perhaps a FindNext

method would be helpful. . .).

Building an Entity Manager 163

164 Chapter 7 n Entities

Engine::addEntity

The Engine::addEntity method is used by the game to add an entity to the

manager. First, you must create a new object from a class derived from Entity,

instantiate the class, set its properties, and then add it to the list.

void Engine::addEntity(Entity *entity)
{

static int id = 0;
entity->setID(id);
p_entities.push_back(entity);
id+ +;

}

Engine::findEntity

There are two Engine::findEntity methods available for searching the entity list.

The first one searches by object type (via an integer parameter) and is user-

definable, so this is a property that you must set in your game object if you want

to search for it by object type. Every entitymust have some form of identification,

or you will not be able to respond to it in your game’s update event (for instance,

to detect when a bullet hits an enemy ship). The entity manager automatically

assigns a sequential ID value to each new entity that you may read with the

getID() method, but this does not help identify the type of entity unless you

manually set it with Entity::setObjectType().

Entity *Engine::findEntity(int objectType)
{

std::list<Entity*>::iterator i = p_entities.begin();
while (i != p_entities.end())
{

if ((*i)->getAlive()==true && (*i)->getObjectType()==objectType)
return *i;

else + +i;
}
return NULL;

}

The second form of Engine::findEntity searches by name and is also based on the

name property that you set in the object prior to adding it to the entity manager.

Entity *Engine::findEntity(std::string name)
{

std::list<Entity*>::iterator i = p_entities.begin();
while (i != p_entities.end()) {

if ((*i)->getAlive() = = true && (*i)->getName() = = name)
return *i;

else + +i;
}
return NULL;

}

Modifying the Sprite Class

Let’s see what must be changed in the Sprite class to support the entity manager.

As it turns out, we only need to change the class name definition by adding Entity

as the parent class, and no other changes are needed to either the definition or the

implementation file.

class Sprite : public Entity {
//sprite class code omitted

};

Testing Sprites as Entities

Now let’s see how the entity management system works in a real example. On the

CD is a project called SpriteEntityDemo that you may open and run. Figure 7.1

shows the output from the program.

Building an Entity Manager 165

Figure 7.1
This program automatically moves, animates, and renders 10,000 sprite entities.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

#define OBJECT_SPRITE 100
#define MAX 10000

Texture *image;

bool game_preload()
{

g_engine->setAppTitle("SPRITE ENTITY DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(1024);
g_engine->setScreenHeight(768);
g_engine->setColorDepth(32);
return 1;

}

bool game_init(HWND)
{

Sprite *asteroid;
image = new Texture();
image->Load("asteroid.tga");
for (int n=0; n < MAX; n+ +) {

//create a new asteroid sprite
asteroid = new Sprite();
asteroid->setObjectType(OBJECT_SPRITE);
asteroid->setImage(image);
asteroid->setTotalFrames(64);
asteroid->setColumns(8);
asteroid->setSize(60,60);
asteroid->setPosition(rand() % 950, rand() % 700);
asteroid->setFrameTimer(rand() % 100);
asteroid->setCurrentFrame(rand() % 64);
if (rand()%2==0) asteroid->setAnimationDirection(-1);
//add sprite to the entity manager
g_engine->addEntity(asteroid);

}
std::ostringstream s;
s << "Entities: " << g_engine->getEntityCount();

166 Chapter 7 n Entities

g_engine->message(s.str());
return true;

}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
}

void game_keyRelease(int key)
{

//exit when escape key is pressed
if (key = = DIK_ESCAPE) g_engine->Close();

}

void game_entityUpdate(Advanced2D::Entity* entity)
{

//type-cast Entity to a Sprite
Sprite* sprite = (Sprite*)entity;

//this is where you can update sprite properties
}

void game_entityRender(Advanced2D::Entity* entity)
{

//engine automatically renders each entity
//but we can respond to each render event here

}

void game_end()
{

delete image;
}

void game_update() { }
void game_render2d() { }
void game_keyPress(int key) { }
void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }

Building an Entity Manager 167

Adv i c e

If you see a linker warning that refers to ‘‘uuid.lib’’, you may ignore it. This is an unavoidable
warning caused by a ‘‘#pragma comment’’ statement in one of the DirectX header files. The use of
#pragma to add a library reference to a project is a bad coding practice because it bypasses the
normal makefile-based build process.

Modifying the Mesh Class

The Mesh class was first introduced way back in Chapter 2 and provided basic 3D

rendering support to the engine (a feature that will get little use in actual practice,

since we’re focusing our attention on 2D games). Here is the only change that is

needed to bring the Mesh class into the Entity family.

class Mesh : public Entity
{

//entity class code omitted
};

Testing Meshes as Entities

Let’s see whether the entity manager can handle Mesh objects. I’m using a high-

poly mesh (the cytovirus.x file from the DirectX SDK examples), so the load time

is lengthy if you increase the number of entities in this demo. To enable the

program to start up in a reasonable time, it defaults to only 10 mesh objects. (You

could optionally use a low-poly mesh such as the ball.x file featured in the

BouncingBalls demo back in Chapter 2.) In addition to demonstrating howmesh

entities are handled, this program also highlights the weaknesses in the 3D

rendering portion of the engine.

Let’s face it, we’re building a 2D engine here, we have ignored advanced 3D

rendering and optimization issues completely, and we are rendering each mesh

subset individually. Since Direct3D is a state-based renderer, it must change its

state every time a new mesh subset is rendered, which is extremely slow. This

engine needs a vertex buffer—badly. But we aren’t going to create one. There are

plenty of books about 3D engine development, but this is not one of them, and it

does not pretend to be.

Figure 7.2 shows the output from the MeshEntityDemo program. The entity-

based code in the following listing is highlighted in bold.

168 Chapter 7 n Entities

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;
#define MAX 10
Camera *camera;
Light *light;

bool game_preload()
{

g_engine->setAppTitle("MESH ENTITY DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(1024);
g_engine->setScreenHeight(768);
g_engine->setColorDepth(32);
return 1;

}

bool game_init(HWND)
{

//set the camera and perspective
camera = new Camera();
camera->setPosition(0.0f, 2.0f, 50.0f);

Building an Entity Manager 169

Figure 7.2
This program automatically updates and renders mesh entities.

camera->setTarget(0.0f, 0.0f, 0.0f);
camera->Update();

//create a directional light
D3DXVECTOR3 pos(0.0f,0.0f,0.0f);
D3DXVECTOR3 dir(1.0f,0.0f,0.0f);
light = new Light(0, D3DLIGHT_DIRECTIONAL, pos, dir, 100);
light->setColor(D3DXCOLOR(1,0,0,0));
g_engine->SetAmbient(D3DCOLOR_RGBA(0,0,0,0));

//load meshes
Mesh *mesh;
for (int n=0; n<MAX; n++) {

mesh = new Mesh();
mesh->Load("cytovirus.x");
mesh->SetScale(0.02f,0.02f,0.02f);
float x = rand() % 40 - 20;
float y = rand() % 40 - 20;
float z = rand() % 10 - 5;
mesh->SetPosition(x,y,z);
//add mesh to entity manager
g_engine->addEntity(mesh);

}

return 1;
}

void game_update()
{

//nothing to update!
}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_RGBA(0,0,60,0));
g_engine->SetIdentity();

}

void game_keyRelease(int key)
{

if (key = = DIK_ESCAPE) g_engine->Close();
}

170 Chapter 7 n Entities

void game_entityUpdate(Advanced2D::Entity* entity)
{

if (entity->getRenderType() = = RENDER3D) {
//type-cast Entity to a Mesh
Mesh* mesh = (Mesh*)entity;
//perform a simple rotation
mesh->Rotate(0,0.2f,0);

}
}

void game_entityRender(Advanced2D::Entity* entity)
{

//type-cast Entity to a Mesh
Mesh* mesh = (Mesh*)entity;

//engine automatically renders each entity
//but we can respond to each render event here

}

void game_end()
{

delete camera;
delete light;

}

void game_render2d() { }
void game_keyPress(int key) { }
void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }

That wraps up entity management, at least for the time being. We’ll come back

to the subject again two chapters from now, when we add physics-related

features to the engine. But first, let’s spend some more time in sprite animation

code in the next chapter and build a font system. Not only will that permit text

output in a game, but more importantly, it will let us print out debugging info

on the screen.

Building an Entity Manager 171

This page intentionally left blank

Fonts

One of the most crucial features of a game engine is the ability to display text on

the screen, also called font output. This is a challenging problem because font

output has the potential to bring a game engine to its knees if it is not imple-

mented properly. The font system included with the DirectX SDK (CD3DXFont)

is a good example of how not to render text, because it is very slow! Why is it

slow? Because CD3DXFont renders text to a scratch texture and then blits the

image to the screen, and that rendering is done withWindows GDI functions. All

of the professional game engines use what is known as bitmapped fonts. A bit-

mapped font is a font stored on a bitmap. (How witty is that?) Figure 8.1 shows a

bitmapped font.

Rendering a bitmapped font is extremely fast because we can just use our Sprite

class to render text! As you learned earlier, D3DXSprite batches sprite drawing so

that it is extremely efficient in the 3D hardware.

Creating a Font
I’ve included several bitmapped fonts on the CD for your use. These fonts were

created with a very useful tool called Bitmap Font Builder by Thom Wetzel, Jr.

(www.lmnopc.com), which is included on the CD. You can use Bitmap Font

Builder (shown in Figure 8.2) to create a bitmapped font from any TrueType

font installed on your Windows system. The font shown in the figure is 10-point

Verdana.

173

chapter 8

www.lmnopc.com

The settings are important. I recommend setting the Texture Size field to Auto

with 0-pixel spacing for best results. If the Character Set is configured to render

two fonts, change it using the menu to a single ASCII font, as shown in the figure.

Although you will never use most of those unusual ASCII characters, you never

174 Chapter 8 n Fonts

Figure 8.1
This is the System 12-point font in ASCII order.

Figure 8.2
Bitmap Font Builder is used to render a TrueType font onto a bitmap.

know, and the code for rendering the font is simpler when you are using a font

with characters numbered 0–255.

When you have configured the font you want to produce, open the File menu,

choose Save 32-bit TGA (RGBA), and enter a filename. This will save a new

32-bit Targa file with an alpha channel. Saving the 10-point Verdana font

produces a Targa file shown in Figure 8.3. You can experiment with different

fonts to come up with one you like for your games. When you are setting up a

font, note that it will look sharper in your game than it looks in the BFB preview;

although youmay be tempted to output a font in bold, that usually is not needed.

After you have saved the font to a Targa image, you will need to export the font

width data, which will be used to render the font proportionally. BFB makes this

very easy by exporting the width data into a simple binary data file that you can

read and use when rendering a font (using an animated sprite).

Open the File menu in BFB and choose Save Font Widths (Byte Format). You

will be prompted for a filename. I find it makes sense to use the same filename

that I used for the font, but append a .dat extension. This data file will

be composed of 256 font width values stored in binary format for a total of

512 bytes (two bytes per ASCII character width).

Creating a Font 175

Figure 8.3
Bitmap Font Builder automatically generates an alpha channel for transparency.

Loading and Rendering a Font
You could load a bitmapped font into a Sprite object and render it by treating

each character as a frame in the font ‘‘animation’’ sheet. In fact, this is exactly

what we will do. But there is too much configuration and custom code to be

duplicated that way. Instead, a new subclass of Sprite will do nicely. The new

class will be called Font and will inherit its basic functionality from Sprite and

add some of its own new features.

Font Class

Let’s take a look at the new Font class, which is now available in the Engine

project on the CD (under this chapter’s folder). Here’s the header file:

#include "Advanced2D.h"
#pragma once
namespace Advanced2D {

class Font : public Sprite {
private:

int widths[256];
public:

Font();
virtual ~Font(void) { }
void Print(int x,int y,std::string text,int color = 0xFFFFFFFF);
int getCharWidth() { return this->width; }
int getCharHeight() { return this->height; }
void setCharWidth(int width) { this->width = width; }
void setCharSize(int width, int height) {

setCharWidth(width);
this->height = height;

}
bool loadWidthData(std::string filename);

};
};

Now let’s take a look at the implementation file Font.cpp. There are just two

methods in the implementation file, with the most important method being

Print, which actually displays text on the screen. The Print method accepts four

parameters that are self-explanatory: x, y, text, and color. The code in Print goes

through each character of the string and prints out a character from the font

image based on the ASCII code of the character (from 0 to 255). This is very easy

by just setting the sprite’s current frame to the ASCII code! When that’s done,

176 Chapter 8 n Fonts

presto—the character corresponding to that ‘‘animation frame’’ will be ren-

dered. Furthermore, because BFB saved the Targa with an alpha channel, we have

automatic transparency support built in.

The second method, aside from the constructor, loads the proportional font

width data. An std::ifstream reads 512 bytes at once and then copies out

the width data from every other byte in the buffer. The end result is an array

called widths that contains custom proportional values for each character in the

bitmapped font.

#include "Advanced2D.h"
namespace Advanced2D {

Font::Font() : Sprite()
{

//set character widths to default
memset(&widths, 0, sizeof(widths));

}

void Font::Print(int x, int y, std::string text, int color)
{

float fx = (float)x;
float fy = (float)y;

//set font color
this->setColor(color);

//draw each character of the string
for (unsigned int n=0; n<text.length(); n+ +) {

int frame = (int)text[n];
this->setCurrentFrame(frame);
this->setX(fx);
this->setY(fy);
this->draw();
//use proportional width if available
if (widths[frame] = = 0) widths[frame] = this->width;
fx + = widths[frame] * this->scaling;

}
}

bool Font::loadWidthData(std::string filename)
{

unsigned char buffer[512];

Loading and Rendering a Font 177

//open font width data file

std::ifstream infile;
infile.open(filename.c_str(), std::ios::binary);
if (!infile) return false;

//read 512 bytes (2 bytes per character)
infile.read((char *)(&buffer), 512);
if (infile.bad()) return false;
infile.close();

//convert raw data to proportional width data
for (int n=0; n<256; n+ +) {

widths[n] = (int)buffer[n*2];
}
return true;

}
};

Using the New Font Class
We now have a multipurpose bitmapped font class that can load and render

proportional fonts, so let’s put it to the test and see how fast it is! Figure 8.4 shows

the FontDemo program included on the CD. This program demonstrates pro-

portional as well as non-proportioned font output to show the difference, which

is significant. Without the font width data, we would have to condense the font

by hard-coding the width data inside the program because non-proportioned

text just looks too unprofessional. As you can see from the figure, we can display

any TrueType font once it has been converted using a tool such as BFB. As a

bonus, we have all of the features of the sprite renderer available, too. That means

you can print text in any color with rotation and scaling support.

Adv i c e

Direct3D colors can be a bit confusing because there are many support functions and macros
defined by the SDK to assist with color conversion. I find it easier at times to just define a color
using a hexadecimal code. The format is 0xAARRGGBB, where AA is the 16-bit alpha component,
RR is the 16-bit red component, and likewise for green and blue. White can be coded as
0xFFFFFFFF (note that the first two ‘‘FF’’ characters are alpha). If you want to draw a sprite with
50-percent transparency, the color would be 0x99FFFFFF. If you want to create a simpler RGB
color, you may use one of the macros, such as D3DCOLOR_XRGB(r,g,b).

178 Chapter 8 n Fonts

Here is the listing for the FontDemo program. It’s quite lengthy compared to most

of the examples we’ve seen so far! This is due to the amount of output in this demo,

not a result of the Font class being difficult to configure. In addition, this program is

paving the way for a console that will be added to the game engine soon. As you saw

in the last figure, the font output was being rendered on top of a transparent panel

overlay, with a background and moving sprites underneath. This panel is hard-

coded into the FontDemo program at this point as a proof of concept, but it will

soon find its way into the engine as a reusable component. So, here is the listing. I

recommend you open and run this program now because it looks very cool.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

#define SCREENW 1024
#define SCREENH 768
#define OBJECT_BACKGROUND 1
#define OBJECT_SPRITE 100
#define MAX 50

Using the New Font Class 179

Figure 8.4
The FontDemo program demonstrates proportional bitmapped font rendering.

Sprite *panel;
Texture *asteroid_image;
Font *system12;
Font *nonprop;
Font *verdana10;

bool game_preload()
{

g_engine->setAppTitle("FONT DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(SCREENW);
g_engine->setScreenHeight(SCREENH);
g_engine->setColorDepth(32);
return 1;

}

bool game_init(HWND)
{

//load background image
Sprite *background = new Sprite();
background->loadImage("orion.bmp");
background->setObjectType(999);
g_engine->addEntity(background);

//load asteroid image
asteroid_image = new Texture();
asteroid_image->Load("asteroid.tga");

//create asteroid sprites
Sprite *asteroid;
for (int n=0; n < MAX; n+ +)
{

//create a new asteroid sprite
asteroid = new Sprite();
asteroid->setObjectType(OBJECT_SPRITE);
asteroid->setImage(asteroid_image);
asteroid->setTotalFrames(64);
asteroid->setColumns(8);
asteroid->setSize(60,60);
asteroid->setPosition(rand() % SCREENW, rand() % SCREENH);
asteroid->setFrameTimer(rand() % 100);

180 Chapter 8 n Fonts

asteroid->setCurrentFrame(rand() % 64);
if (rand()%2==0) asteroid->setAnimationDirection(-1);
asteroid->setVelocity((float)(rand()%10)/10.0f, (float)(rand()%10)/10.0f);
//add asteroid to the entity manager
g_engine->addEntity(asteroid);

}

//load the panel
panel = new Sprite();
panel->loadImage("panel.tga");
float scale = SCREENW / 640.0f;
panel->setScale(scale);
panel->setColor(0xBBFFFFFF);

//load the System12 font
system12 = new Font();
if (!system12->loadImage("system12.tga")) {

g_engine->message("Error loading system12.tga");
return false;

}
system12->setColumns(16);
system12->setCharSize(14,16);
if (!system12->loadWidthData("system12.dat")) {

g_engine->message("Error loading system12.dat");
return false;

}

//load System12 without proportional data
nonprop = new Font();
nonprop->loadImage("system12.tga");
nonprop->setColumns(16);
nonprop->setCharSize(14,16);

//load the Verdana12 font
verdana10 = new Font();
if (!verdana10->loadImage("verdana10.tga")) {

g_engine->message("Error loading verdana10.tga");
return false;

}
verdana10->setColumns(16);
verdana10->setCharSize(20,16);
if (!verdana10->loadWidthData("verdana10.dat")) {

Using the New Font Class 181

g_engine->message("Error loading verdana10.dat");
return false;

}

return true;
}

void game_update() { }
void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
}

void game_render2d()
{

std::ostringstream os;
std::string str;

panel->draw();

nonprop->Print(1,1,
"This is the SYSTEM 12 font WITHOUT proportional data",
0xFF111111);

nonprop->Print(1,20,
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789",
0xFF111111);

nonprop->Print(1,40,
"abcdefghijklmnopqrstuvwxyz!@#$%^&*()_+{}|:<>?",
0xFF111111);

system12->setScale(1.0f);
system12->Print(1,80,

"This is the SYSTEM 12 font WITH proportional data",
0xFF111111);

system12->Print(1,100,
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789",
0xFF111111);

system12->Print(1,120,
"abcdefghijklmnopqrstuvwxyz!@#$%^&*()_+{}|:<>?",
0xFF111111);

182 Chapter 8 n Fonts

for (float s=0.5f; s<2.0f; s+ =0.25f) {

verdana10->setScale(s);
int x = (int)(s * 20);
int y = (int)(100 + s * 120);
os.str("");
os << "VERDANA 10 font scaled at " << s*100 << "%";
verdana10->Print(x,y, os.str(), 0xFF111111);

}

verdana10->setScale(1.5f);
verdana10->Print(600,140, g_engine->getVersionText(), 0xFF991111);

os.str("");
os << "SCREEN : " << (float)(1000.0f/g_engine->getFrameRate_real()) << " ms";
verdana10->Print(600,180, os.str(), 0xFF119911);

os.str("");
os << "CORE : " << (float)(1000.0f/g_engine->getFrameRate_core()) << " ms";
verdana10->Print(600,220,os.str(),0xFF119911);

}

void game_entityUpdate(Advanced2D::Entity* entity)
{

switch(entity->getObjectType())
{

case OBJECT_SPRITE:
Sprite* spr = (Sprite*)entity;
if (spr->getX() < -60) spr->setX(SCREENW);
if (spr->getX() > SCREENW) spr->setX(-60);
if (spr->getY() < -60) spr->setY(SCREENH);
if (spr->getY() > SCREENH) spr->setY(-60);
break;

}
}

void game_keyRelease(int key)
{

if (key = = DIK_ESCAPE) g_engine->Close();
}

void game_end()
{

Using the New Font Class 183

delete panel;
delete asteroid_image;
delete system12;
delete nonprop;
delete verdana10;

}

void game_keyPress(int key) { }
void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_entityRender(Advanced2D::Entity* entity) { }

The background used in this chapter should be credited. The Orion nebula was

technically created by God, but the photo was snapped by the Hubble Space

Telescope, courtesy of NASA and our tax dollars. However, I’ve looked and

looked and have never seen anything other than white dots in the sky. It must be

up there somewhere—HST was tax revenue well spent!

184 Chapter 8 n Fonts

Physics

This chapter covers some basic physics features that will improve the capabilities

of the game engine. We will explore two different ways to detect collisions

between entities. Real games have sprites that interact, with bullets and missiles

that hit enemy ships and cause them to explode, sprites that must navigate amaze

without going through walls, and sprites that can run and jump over crates and

land on top of enemy characters (such as how Mario jumps onto turtles in Super

Mario World to knock them out). All of these situations require the ability to

detect when two sprites have collided, or touched each other. Sprite collision

opens up the world of game programming and makes it possible for you to build

a real game! The key to collision testing is to identify where two sprites are on the

screen, and then compare their bounding rectangles. That is why this type of

collision testing is called bounding rectangle collision detection. We will also

consider circular collision based on the distance between two entities.

Collision Detection
The only real ‘‘physics’’ we’re going to deal with in this chapter concerns the

detection of collisions between entities and the response to those collision events.

The two types of collision testing we will utilize are bounding rectangle and distance.

If you know the location of two sprites and you know the width and height of

each, then it is possible to determine whether the two sprites are intersecting.

Bounding rectangle collision detection describes the use of a sprite’s boundary

185

chapter 9

for collision testing. You can get the upper-left corner of a sprite by merely

looking at its X and Y values. To get the lower-right corner, add the width and

height to the X and Y values. Collectively, these values may be represented as left,

top, right, and bottom.

Automated Collision Detection

The game engine is capable of handling collision detection automatically using

its internal entity list. What we want the engine to do is automatically perform

collision detection, but then notify the game when a collision occurs. In the

Advanced2D.h file is a new external function definition:

extern void game_entityCollision(Advanced2D::Entity*,Advanced2D::Entity*);

The game_entityCollision function will be called (and is therefore required) in

your game’s source code file. Also in the engine header file is the definition of four

new support functions used internally by the engine to perform collision testing:

bool collision(Sprite *sprite1, Sprite *sprite2);
bool collisionBR(Sprite *sprite1, Sprite *sprite2);
bool collisionD(Sprite *sprite1, Sprite *sprite2);
void TestForCollisions();

Adv i c e

Although we have an opportunity to support collision with other types of entities, the code here is
written specifically for Sprite entities. If you want to support collision detection with other types
of entities, you can duplicate this code and adapt it.

Over in the engine implementation file, Advanced2D.cpp, the Engine::Update

method now includes the call to TestForCollisions. (You can ignore the timer code;

we’ll go over it later in the chapter.)

void Engine::Update()
{

//calculate core framerate
p_frameCount_core++;
if (p_coreTimer.stopwatch(999)) {

p_frameRate_core = p_frameCount_core;
p_frameCount_core = 0;

}

186 Chapter 9 n Physics

//fast update with no timing
game_update();

//update entities
if (!p_pauseMode) UpdateEntities();

//perform global collision testing
if (!p_pauseMode && collisionTimer.stopwatch(50)) {
TestForCollisions();

}

Just as the UpdateEntities call includes logic to support pausing the game, so too

is there logic for pausing the game included when calling TestForCollisions.

Also in this logic is a timer that limits the collision detection to 20 Hz (every

50 ms). This is a critical section of code in the engine! Collision testing is a time-

consuming process. If you allow it to run all out without a timer slowing it down,

it will kill your engine’s performance (by a factor of one hundred or worse—

that’s right, one percent of its full potential). Timing is very important in the

game loop. An engine might be capable of awesome performance and frame

rates, but one little mistake in timing could give one the impression that the

engine isn’t very good. So, be careful with such details!

Now, down a bit further in the Advanced2D.cpp file, we will find the newly added

TestForCollisionsmethod. This rather complex function goes through the entity

list and performs several conditional tests before actually calling on the collision

support function to perform a collision test. First, the RenderType of the entity is

tested because we are currently only concerned with collisions between sprites,

not meshes (which is an entirely different process not particularly suited to 2D

games). When the entity has been verified to be a sprite, then its alive, visible, and

collidable properties are examined—and the sprite is skipped if any of them are

false. If a sprite jumps all of these hurdles, then it becomes the focus of attention

for a while—as all other sprites are compared to this sprite to determine whether a

collision has occurred. For every other sprite in the list, the same set of com-

parisons is made. Although it seems that this is a lot of logic that only slows down

the collision process, note that Boolean logic is optimized by the compiler and

Boolean logic is very predictable—so it will be highly pipelined in the processor.

void Engine::TestForCollisions()
{

std::list<Entity*>::iterator first;
std::list<Entity*>::iterator second;

Collision Detection 187

Sprite *sprite1;
Sprite *sprite2;

first = p_entities.begin();
while (first != p_entities.end())
{

//we only care about sprite collisions
if ((*first)->getRenderType() = = RENDER2D)
{

//point local sprite to sprite contained in the list
sprite1 = (Sprite*) *first;

//if this entity is alive and visible...
if (sprite1->getAlive() && sprite1->getVisible() && sprite1->

isCollidable())
{

//test all other entities for collision
second = p_entities.begin();
while (second != p_entities.end())
{

//point local sprite to sprite contained in the list
sprite2 = (Sprite*) *second;

//if other entity is active and not same as first entity...
if (sprite2->getAlive() && sprite2->getVisible() &&

sprite2->isCollidable() && sprite1 != sprite2)
{

//test for collision
if (collision(sprite1, sprite2)) {

//notify game of collision
game_entityCollision(sprite1, sprite2);

}
}
//go to the next sprite in the list
second++;

}
}
//go to the next sprite in the list
first++;

}//render2d
} //while

}

188 Chapter 9 n Physics

Now let’s check out the collision methods that do all the real work of performing

a collision test. We need two methods for the two collision tests supported by the

engine—bounding rectangle and distance-based. In addition, one method

merely called collision will determine what type of collision the sprite is

configured to use and then call the bounding rectangle or distance version to test

for the collision. The Sprite class defines COLLISION_RECT (located in enum

CollisionType) by default. The other two types of collision that can be set are

COLLISION_DIST and COLLISION_NONE (to skip collision detection—this is

equivalent to setting the collidable property to false).

bool Engine::collision(Sprite *sprite1, Sprite *sprite2)
{

switch (sprite1->collisionMethod) {
case COLLISION_RECT:

return collisionBR(sprite1,sprite2);
break;

case COLLISION_DIST:
return collisionD(sprite1,sprite2);
break;

case COLLISION_NONE:
default:

return false;
}

}

Here’s the bounding rectangle method:

bool Engine::collisionBR(Sprite *sprite1, Sprite *sprite2)
{

bool ret = false;

Rect *ra = new Rect(
sprite1->getX(),
sprite1->getY(),
sprite1->getX() + sprite1->getWidth()*sprite1->getScale(),
sprite1->getY() + sprite1->getHeight()*sprite1->getScale());

Rect *rb = new Rect(
sprite2->getX(),
sprite2->getY(),

Collision Detection 189

sprite2->getX() + sprite2->getWidth()*sprite2->getScale(),
sprite2->getY() + sprite2->getHeight()*sprite2->getScale());

//are any of sprite b’s corners intersecting sprite a?
if (ra->isInside(rb->getLeft(), rb->getTop()) ||

ra->isInside(rb->getRight(), rb->getTop()) ||
ra->isInside(rb->getLeft(), rb->getBottom()) ||
ra->isInside(rb->getRight(), rb->getBottom()))

ret = true;

delete ra;
delete rb;
return ret;

}

The collisionBR method made use of a non-existent class called Rect. What

gives? Well, the class is new in this chapter, after all, so you might not have met it

yet. Here’s the definition:

class Rect {
public:

double left,top,right,bottom;
public:

Rect(int left,int top,int right,int bottom);
Rect(double left,double top,double right,double bottom);
virtual ~Rect() { }
double getLeft() { return left; }
double getTop() { return top; }
double getRight() { return right; }
double getBottom() { return bottom; }
bool isInside(Vector3 point);
bool isInside(int x,int y);
bool isInside(double x,double y);

};

And now for the Rect implementation:

Rect::Rect(int left,int top,int right,int bottom)
{

this->left = (double)left;
this->top = (double)top;
this->right = (double)right;
this->bottom = (double)bottom;

}

190 Chapter 9 n Physics

Rect::Rect(double left,double top,double right,double bottom)

{
this->left = left;
this->top = top;
this->right = right;
this->bottom = bottom;

}

bool Rect::isInside(Vector3 point)
{

return this->isInside(point.getX(), point.getY());
}

bool Rect::isInside(int x,int y)
{

return this->isInside((double)x, (double)y);
}

bool Rect::isInside(double x,double y)
{

return (x > left && x < right && y > top && y < bottom);
}

The second collision method uses the distance between two sprites to determine

whether they are colliding based on their radii—where the radius is the width or

height divided by two. Fortunately, we already have the Vector3 class with its own

Distance method that will handle this nicely. (The Vector3 class was first

introduced in Chapter 3.) Most of the code in the collisionD method is setup

code to load the two Vector3 objects before calculating the distance between

them. If the distance is less than the radius of each sprite, then they are over-

lapping and a collision has occurred!

bool Engine::collisionD(Sprite *sprite1, Sprite *sprite2)
{

double radius1, radius2;

//calculate radius 1
if (sprite1->getWidth() > sprite1->getHeight())

Collision Detection 191

radius1 = (sprite1->getWidth()*sprite1->getScale())/2;
else

radius1 = (sprite1->getHeight()*sprite1->getScale())/2;

//point = center of sprite 1
double x1 = sprite1->getX() + radius1;
double y1 = sprite1->getY() + radius1;
Vector3 vector1(x1, y1, 0.0);

//calculate radius 2
if (sprite2->getWidth() > sprite2->getHeight())

radius2 = (sprite2->getWidth()*sprite2->getScale())/2;
else

radius2 = (sprite2->getHeight()*sprite2->getScale())/2;

//point = center of sprite 2
double x2 = sprite2->getX() + radius2;
double y2 = sprite2->getY() + radius2;
Vector3 vector2(x2, y2, 0.0);

//calculate distance
double dist = vector1.Distance(vector2);

//return distance comparison
return (dist < radius1 + radius2);

}

Bounding Rectangle Collision Test

Collision testing is fast for your average, reasonable game. But what if you have

several hundred or a thousand or more sprites on the screen at once, and each

one needs to be included in collision testing? The number of collision tests that

must be performed is equal to the square of the number of sprites. So, if there are

100 sprites, there will be 10,000 collision tests. A quick and fairly easy optimi-

zation of the collision testing system is possible here. Rather than testing every

sprite with every other sprite, twice through the loop, it would be better to run

two loops and compare every even sprite with every odd sprite in the list. This is

something to keep in mind if you create a game that will require a lot of collision

tests (which is not the norm).

192 Chapter 9 n Physics

The CollisionDemo (bounding rectangle version) is really fascinating to watch

because it draws translucent boxes over the sprites when collisions occur.

Figure 9.1 shows the program running, while Figure 9.2 shows some stats. The

program does not run very well with a large number of sprites, mainly due to the

boxes being rendered each time. If you have 1,000 sprites—with a corresponding

1,000,000 collision tests—then there could be upwards of 20,000 or so collision

events per frame. The boxes are automatically removed after a few milliseconds,

but they still slow down the program. But, it does run nicely with 100 or so sprites

(which is far more than what you will usually find in a game during a single frame).

Let’s see the source code for the CollisionDemo_BR program (which focuses on

the bounding rectangle method). We’re getting a bit ahead of ourselves here by

using the unknown Console class, but I wanted you to see the results of the

collision test without interrupting the subject at hand. The source code for

Console is provided in the next chapter.

Collision Detection 193

Figure 9.1
The CollisionDemo program demonstrates bounding rectangle collision detection using translucent
collision boxes.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

#define SCREENW 1024
#define SCREENH 768
#define OBJECT_BACKGROUND 1
#define OBJECT_SPRITE 100
#define MAX 40

Texture *asteroid_image;
Font *font;
Console *console;
std::ostringstream ostr;
Texture *collisionBox;
int collisions;

bool game_preload()
{

g_engine->setAppTitle("COLLISION DEMO");
g_engine->setFullscreen(false);

194 Chapter 9 n Physics

Figure 9.2
The stats of the CollisionDemo program show that the translucent boxes really hurt performance!

g_engine->setScreenWidth(SCREENW);
g_engine->setScreenHeight(SCREENH);
g_engine->setColorDepth(32);
return 1;

}

bool game_init(HWND)
{

//load background image
Sprite *background = new Sprite();
if (!background->loadImage("orion.bmp")) {

g_engine->message("Error loading orion.bmp");
return false;

}
background->setObjectType(OBJECT_BACKGROUND);
background->setCollidable(false);
g_engine->addEntity(background);

//create the console
console = new Console();
if (!console->init()) {

g_engine->message("Error initializing console");
return false;

}

//load asteroid image

asteroid_image = new Texture();
if (!asteroid_image->Load("asteroid.tga")) {

g_engine->message("Error loading asteroid.tga");
return false;

}

//create asteroid sprites
Sprite *asteroid;
for (int n=0; n < MAX; n+ +)
{

//create a new asteroid sprite
asteroid = new Sprite();
asteroid->setObjectType(OBJECT_SPRITE);
ostr.str(""); ostr << "ASTEROID" << n;
asteroid->setName(ostr.str());
asteroid->setImage(asteroid_image);
asteroid->setScale((float)(rand() % 150 + 50) / 100.0f);

Collision Detection 195

196 Chapter 9 n Physics

//set animation properties
asteroid->setTotalFrames(64);
asteroid->setColumns(8);
asteroid->setSize(60,60);
asteroid->setPosition(rand() % SCREENW, rand() % SCREENH);
asteroid->setFrameTimer(rand() % 90 + 10);
asteroid->setCurrentFrame(rand() % 64);
if (rand()%2==0) asteroid->setAnimationDirection(-1);

//set movement properties
float vx = (float)(rand()%10 - 5)/10.0f;
float vy = (float)(rand()%10 - 5)/10.0f;
asteroid->setVelocity(vx, vy);

//collision toggle
asteroid->setCollidable(true);

//movement timer keeps sprite consistent at any framerate
asteroid->setMoveTimer(16);

//add asteroid to the entity manager
g_engine->addEntity(asteroid);

}

//load the Verdana10 font
font = new Font();

if (!font->loadImage("verdana10.tga")) {
g_engine->message("Error loading verdana10.tga");
return false;

}
font->setColumns(16);
font->setCharSize(20,16);
if (!font->loadWidthData("verdana10.dat")) {

g_engine->message("Error loading verdana10.dat");
return false;

}

//load highlight image used to show collisions
collisionBox = new Texture();
if (!collisionBox->Load("highlight.tga")) {

g_engine->message("Error loading highlight.tga");
return false;

}

return true;
}

void updateConsole()
{

int y = 0;
console->print(g_engine->getVersionText(), y+ +);
y+ +;

ostr.str("");
ostr << "SCREEN : " << (float)(1000.0f/g_engine->getFrameRate_real())

<< " ms (" << g_engine->getFrameRate_real() << " fps)";
console->print(ostr.str(), y++);
y+ +;

ostr.str("");
ostr << "CORE : " << (float)(1000.0f/g_engine->getFrameRate_core())

<< " ms (" << g_engine->getFrameRate_core() << " fps)";
console->print(ostr.str(), y++);

ostr.str("");
ostr << "Processor throttling: " << g_engine->getMaximizeProcessor();
console->print(ostr.str(), y++);
y++;

ostr.str("");
ostr << "Screen: " << g_engine->getScreenWidth() << ","

<< g_engine->getScreenHeight() << "," << g_engine->getColorDepth();
console->print(ostr.str(), y+ +);
y++;

ostr.str("");
ostr << "Entities: " << g_engine->getEntityCount();
console->print(ostr.str(), y++);

ostr.str("");
ostr << "Collisions: " << collisions;
console->print(ostr.str(), y++);
y++;

ostr.str("");
ostr << "Press F2 to toggle Processor Throttling";
console->print(ostr.str(), 27);

}

Collision Detection 197

void game_update()
{

updateConsole();
collisions = 0;

}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
g_engine->SetIdentity();

}

void game_render2d()
{

font->Print(1,SCREENH-20,"Press ~ or F12 to toggle the Console");
//draw console
if (console->isShowing()) console->draw();

}

void game_keyRelease(int key)
{

switch (key) {
case DIK_ESCAPE:

g_engine->Close();
break;

case DIK_F12:
case DIK_GRAVE:

console->setShowing(!console->isShowing());
break;

case DIK_F2:
g_engine->setMaximizeProcessor(!g_engine->getMaximizeProcessor());
break;

}
}

void game_end()
{

delete console;
delete asteroid_image;
delete font;

}

198 Chapter 9 n Physics

void game_entityUpdate(Advanced2D::Entity* entity)

{
switch(entity->getObjectType())
{

case OBJECT_SPRITE:
Sprite* spr = (Sprite*)entity;
if (spr->getX() < -60) spr->setX(SCREENW);
if (spr->getX() > SCREENW) spr->setX(-60);
if (spr->getY() < -60) spr->setY(SCREENH);
if (spr->getY() > SCREENH) spr->setY(-60);
break;

}
}

void game_entityCollision(Advanced2D::Entity* entity1,Advanced2D::Entity* entity2)
{

Sprite *box;
Sprite *a = (Sprite*)entity1;
Sprite *b = (Sprite*)entity2;

if (a->getObjectType() == OBJECT_SPRITE && b->getObjectType() == OBJECT_SPRITE)
{

collisions++;

//add first collision box
box = new Sprite();
box->setColor(0x33DD4444);
box->setImage(collisionBox);
box->setPosition(a->getPosition());
box->setScale(a->getWidth() * a->getScale() / 100.0f);
box->setLifetime(100);
g_engine->addEntity(box);

//add second collision box
box = new Sprite();
box->setColor(0x33DD4444);
box->setImage(collisionBox);
box->setPosition(b->getPosition());
box->setScale(b->getWidth() * b->getScale() / 100.0f);
box->setLifetime(100);
g_engine->addEntity(box);

}
}

Collision Detection 199

void game_keyPress(int key) { }
void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_entityRender(Advanced2D::Entity* entity) { }

One of the most obvious performance improvements that can be made to a 2D

game is in the collision detection department. Figure 9.3 shows the same Col-

lisionDemo program running, but this time there are 1,000 sprites with

bounding rectangle collision detection turned on. This demo performs 1,000,000

collision tests, each of which requires a call to the isInside function—so, one

conditional and four function calls, times 1,000,000, every frame. The framerate

has dropped to 2 fps, which is slideshow rate.

Although one may argue that 1,000 sprites is a gross exaggeration of what will

ever be found in a real game, the exaggeration helps to identify bottlenecks that

slow down the engine. Here’s a good question: What if you just want to draw a

200 Chapter 9 n Physics

Figure 9.3
This sprite collision demo is a performance punishment test!

thousand or so sprites, without concern for collisions? That’s a good point. The

Sprite class has a property called collidable (with support methods isCollidable

and setCollidable). Turning off collision testing for the asteroid sprites results in a

very healthy improvement, as shown in Figure 9.4.

What this illustrates is a need for optimization. Before attempting to speed up the

code, let’s start with the compiler. If you’re using Visual C++, change the

configuration in both the Engine and CollisionDemo projects from Debug to

Release build (and perform a Rebuild All), which will automatically optimize the

project. If you’re using Dev-C++, open the Project Options and choose Com-

piler, Optimization, and Best Optimization.

Adv i c e

Dev-C+ + supports multiple compiler configurations too, but not by default. Open the Tools menu
and choose Compiler Options, and you can create new configurations using the dialog that
appears (including Debug and Release) and set each configuration using the Settings tab.

Collision Detection 201

Figure 9.4
The engine supports sprite rendering without collision detection.

With compiler optimizations turned on for a Release build, the new non-collision

results are shown in Figure 9.5. As you can see, the framerate nearly doubled!

But how will the Release build improve the framerate with collisions turned back

on? Let’s go back into the game_init function and turn collision back on for all

asteroid sprites. When run, the output results in 3 fps, as shown in Figure 9.6. The

same 90-percent improvement is seen here, but the small framerate is rounded

down (and is really closer to 4 fps).

Still not satisfied with the result? Sixty million collision tests per second (one

million per frame) is some very heavy processing—a heavy load for a game.

There is a simpler improvement that can be made here—reducing the number of

times collision testing is performed. In a perfect world, where everyone owns a

quantum computer that’s capable of performing nearly instantaneous calcula-

tions, we could just throw as many collision tests as we want at the engine, and it

would handle them with ease.

202 Chapter 9 n Physics

Figure 9.5
Changing from Debug to Release build nearly doubled performance!

Wewould not want to drop the rate to once per second because that would result

in noticeable artifacts (such as clear hits going undetected in a high-speed arcade

game). In your typical arcade-style shooter, bullets are the fastest sprites, capable

of crossing the screen in about one second. That’s a velocity of about 1,000 pixels

per second, or one pixel per millisecond—which is extremely fast. Taking that

into account and considering that the average sprite is 64 pixels wide, we come

up with a figure of 60 fps (~16 ms)—the screen refresh rate. That’s the ideal rate

in order to catch all collisions immediately when they occur. But it is simply

overkill for a sprite-based game and is an inefficient use of cycles.

A cleaner number is more like 10 to 20 times per second. If we sample collisions

at 10 Hz, we can catch fast-moving sprites at a granularity of 100 pixels (at most).

Sampling at 20 Hz cuts it down to 50-pixel granularity—that is, the position of

the sprite every 50 ms, based on the assumption that the screen contains at least

1,000 pixels in one direction (for instance, horizontally). But remember, these are

extremes! We’re just estimating based on the extreme cases, and it’s rare for a

sprite to move that fast in practice. At any rate, we should reduce the collision

testing to 20 Hz. (Note: This was done retroactively in Engine::Update earlier in

the chapter.)

Collision Detection 203

Figure 9.6
With collisions turned back on, the framerate improved by the same amount (percentage-wise).

So, what solution can we come up with to improve collision processing to an

acceptable level? In addition to the even/odd optimization mentioned earlier,

another way to optimize the sprite collision system is by dividing the screen up

into partitions or squares and only testing sprites that exist in the same area of the

screen (like a 2D version of binary space partitioning, an optimization used to

improve 3D games).

Distance-Based Collision Test

The game engine also supports collision detection using the distance between the

centers of two sprites. Using this method, the center point of each sprite is

determined, and then the distance function is used to calculate the distance

between the two centers. Taking the radius of each sprite and accounting for the

scaling factor (if any), this method then determines whether the distance between

the two sprites is short enough for them to collide.

Figure 9.7 shows the CollisionDemo_D program output. This version is running

with 50 sprites. There is a new art set used in this demo to differentiate it from the

204 Chapter 9 n Physics

Figure 9.7
The distance-based collision demo with 50 sprites.

bounding rectangle demo. Distance-based collision detection results in some

very accurate-looking collision response when dealing with circular-shaped

sprites, such as the images used in this example. One interesting aspect of this

program is the way it responds to sprite collisions. Rather than just showing a

collision box, it actually causes the sprites to bounce off of each other. (See

game_entityUpdate for the response code.)

Figure 9.8 shows another version of the program running. This time there are 500

sprites, but the core is still achieving a tenth of a millisecond (approximately

9,000 fps). What is the main difference between this program and the previous

one, which seemed to have performance problems? The real slowdown was due

to the hundreds of translucent boxes being added to the entity manager every

frame and then deleted shortly thereafter. So, this situation begs the question,

what kind of performance would we see using bounding rectangle collision—but

without the boxes? I’ll let you explore the possibility!

Collision Detection 205

Figure 9.8
The distance-based collision demo with 50 sprites.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

#define SCREENW 1024
#define SCREENH 768
#define OBJECT_BACKGROUND 1
#define OBJECT_SPRITE 100
#define MAX 50
#define SCALE 70

Texture *ball_image;
Font *font;
Console *console;
std::ostringstream ostr;
int collisions;

bool game_preload()
{

g_engine->setAppTitle("COLLISION DEMO (DISTANCE)");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(SCREENW);
g_engine->setScreenHeight(SCREENH);
g_engine->setColorDepth(32);
return 1;

}

bool game_init(HWND)
{

//load background image
Sprite *background = new Sprite();
if (!background->loadImage("craters.tga")) {

g_engine->message("Error loading craters.tga");
return false;

}
background->setObjectType(OBJECT_BACKGROUND);
background->setCollidable(false);
g_engine->addEntity(background);

//create the console
console = new Console();
if (!console->init()) {

g_engine->message("Error initializing console");
return false;

}

206 Chapter 9 n Physics

//load asteroid image
ball_image = new Texture();
if (!ball_image->Load("lightningball.tga")) {

g_engine->message("Error loading lightningball.tga");
return false;

}

//create sprites
Sprite *sprite;
for (int n=0; n < MAX; n+ +)
{

//create a new sprite
sprite = new Sprite();
sprite->setObjectType(OBJECT_SPRITE);
sprite->setImage(ball_image);
sprite->setSize(128,128);
sprite->setScale((float)(rand() % SCALE + SCALE/4) / 100.0f);
sprite->setPosition(rand() % SCREENW, rand() % SCREENH);
sprite->setCollisionMethod(COLLISION_DIST);

//set velocity
float vx = (float)(rand()%30 - 15)/10.0f;
float vy = (float)(rand()%30 - 15)/10.0f;
sprite->setVelocity(vx, vy);

//add sprite to the entity manager
g_engine->addEntity(sprite);

}

//load the Verdana10 font
font = new Font();
if (!font->loadImage("verdana10.tga")) {

g_engine->message("Error loading verdana10.tga");
return false;

}
if (!font->loadWidthData("verdana10.dat")) {

g_engine->message("Error loading verdana10.dat");
return false;

}
font->setColumns(16);
font->setCharSize(20,16);

return true;
}

Collision Detection 207

void updateConsole()
{

int y = 0;
console->print(g_engine->getVersionText(), y+ +);
y+ +;
ostr.str("");
ostr << "SCREEN : " << (float)(1000.0f/g_engine->getFrameRate_real())

<< " ms (" << g_engine->getFrameRate_real() << " fps)";
console->print(ostr.str(), y+ +);
ostr.str("");
ostr << "CORE : " << (float)(1000.0f/g_engine->getFrameRate_core())

<< " ms (" << g_engine->getFrameRate_core() << " fps)";
console->print(ostr.str(), y+ +);
ostr.str("");
ostr << "Entities: " << g_engine->getEntityCount();
console->print(ostr.str(), y+ +);
ostr.str("");
ostr << "Press F2 to toggle Processor Throttling";
console->print(ostr.str(), 27);

}

void game_update()
{

updateConsole();
collisions = 0;

}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));

}

void game_render2d()
{

font->Print(1,SCREENH-20,"Press ~ or F12 to toggle the Console");
//draw console
if (console->isShowing()) console->draw();

}

void game_keyRelease(int key)
{

switch (key) {

208 Chapter 9 n Physics

case DIK_ESCAPE:
g_engine->Close();
break;

case DIK_F12:
case DIK_GRAVE:

console->setShowing(!console->isShowing());
break;

case DIK_F2:
g_engine->setMaximizeProcessor(!g_engine->getMaximizeProcessor());
break;

}
}

void game_end()
{

delete console;
delete ball_image;
delete font;

}

void game_entityUpdate(Advanced2D::Entity* entity)
{

switch(entity->getObjectType())
{

case OBJECT_SPRITE:
Sprite* spr = (Sprite*)entity;
float w = (float)spr->getWidth() * spr->getScale();
float h = (float)spr->getHeight() * spr->getScale();
float vx = spr->getVelocity().getX();
float vy = spr->getVelocity().getY();

if (spr->getX() < 0) {
spr->setX(0);
vx = fabs(vx);

}
else if (spr->getX() > SCREENW-w) {

spr->setX(SCREENW-w);
vx = fabs(vx) * -1;

}
if (spr->getY() < 0) {

spr->setY(0);
vy = fabs(vy);

}

Collision Detection 209

else if (spr->getY() > SCREENH-h) {
spr->setY(SCREENH-h);
vy = fabs(vy) * -1;

}

spr->setVelocity(vx,vy);
break;

}
}

voidgame_entityCollision(Advanced2D::Entity*entity1,Advanced2D::Entity*entity2)
{

Sprite *box;
Sprite *a = (Sprite*)entity1;
Sprite *b = (Sprite*)entity2;

if (a->getObjectType() == OBJECT_SPRITE && b->getObjectType() == OBJECT_SPRITE)

{
collisions++;

//get position of both sprites
double x1 = a->getX();
double y1 = a->getY();
double x2 = b->getX();
double y2 = b->getY();

//get velocity of both sprites
double vx1 = a->getVelocity().getX();
double vy1 = a->getVelocity().getY();
double vx2 = b->getVelocity().getX();
double vy2 = b->getVelocity().getY();

//compare sprite orientation toward each other
if (x1 < x2) {

vx1 = fabs(vx1) * -1;
vx2 = fabs(vx1);

}
else if (x1 > x2) {

vx1 = fabs(vx1);
vx2 = fabs(vx2) * -1;

}

210 Chapter 9 n Physics

if (y1 < y2) {
vy1 = fabs(vy1) * -1;
vy2 = fabs(vy2);

}
else {

vy1 = fabs(vy1);
vy2 = fabs(vy2) * -1;

}

//set new velocities
a->setVelocity(vx1,vy1);
b->setVelocity(vx2,vy2);

}
}
void game_keyPress(int key) { }
void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_entityRender(Advanced2D::Entity* entity) { }

That wraps up physics for our game engine. Because the collision detection

implementations are built into the core of the engine (as an early design goal), we

do not need to invoke a Physics class to make use of it. When you create a

sprite object, you can set its collisionMethod property to COLLISION_RECT or

COLLISION_DIST, and the engine will take care of the rest. That’s good! Collision

response is then done in the game_entityCollision event function in your main

code file—and that is where all the real action is to be found! As with any solution

to a programming problem, there are alternatives and even better ways of doing

things. As we discussed in this chapter, there are ways to optimize sprite collision

algorithms. You should consider optimizing the collision system to work best

with the type of game you’re building at any particular time.

Collision Detection 211

This page intentionally left blank

Math

This chapter covers some basic math functions that will improve the support

library within the game engine. First we will look at linear velocity, then we’ll

examine a more advanced technique for calculating the angle between two points

(which is helpful when targeting an enemy in a game or for moving a sprite along

a path set by waypoints). Note that this chapter is not about the theory behind

any of these math functions, nor does this text attempt to derive any of the math

functions—we are simply coding some of the more common math functions

into our game engine.

The versatile Vector3 class, introduced in Chapter 3, already has many com-

monly used math functions built in. You may want to review the Vector3 class

because it provides the following:

n Distance between two vectors

n Length of a vector

n Dot product

n Cross product

n Normalized vector

213

chapter 10

Because this assortment of math functions is already very useful as contained

within Vector3, you may use them when convenient, but I believe it is helpful to

provide, in the engine, more generic versions of these and the new math

functions we develop this chapter. More specifically, we need a Math class

embedded in the game engine (like g_engine->audio for the audio system).

Math Class
The Math class will be added to the latest version of the game engine in this

chapter on the CD-ROM. The first step is to incorporate some of the more useful

math functions from the Vector3 class that may be helpful in a more generic

context (although having those functions embedded in Vector3 is still a good

idea). The Math class will include some overloaded versions of these functions

that work with double data type parameters (as well as Vector3 parameters) and

some new functions introduced in this chapter:

n Distance

n Vector length

n Dot product

n Cross product

n Normalized vector

n Converting radians to degrees

n Converting degrees to radians

n X velocity of an angle

n Y velocity of an angle

n Angle to target vector

Math Class Header

Here is the header for the Math class with some constants predefined for

convenience:

#include "Advanced2D.h"
#pragma once

214 Chapter 10 n Math

namespace Advanced2D {
const double PI = 3.1415926535;
const double PI_over_180 = PI / 180.0f;
const double PI_under_180 = 180.0f / PI;

class Math {
public:

double toDegrees(double radian);
double toRadians(double degree);
double wrapAngleDegs(double degs);
double wrapAngleRads(double rads);
double LinearVelocityX(double angle);
double LinearVelocityY(double angle);
Vector3 LinearVelocity(double angle);
double AngleToTarget(double x1,double y1,double x2,double y2);
double AngleToTarget(Vector3& source,Vector3& target);
double Distance(double x1,double y1,double x2,double y2);
double Distance(Vector3& v, Vector3& vec2);
double Length(Vector3& vec);
double Length(double x,double y,double z);
double DotProduct(double x1,double y1,double z1,

double x2,double y2,double z2);
double DotProduct(Vector3& vec1, Vector3& vec2);
Vector3 CrossProduct(double x1,double y1,double z1,

double x2,double y2,double z2);
Vector3 CrossProduct(Vector3& vec1, Vector3& vec2);
Vector3 Normal(double x,double y,double z);
Vector3 Normal(Vector3& vec);

};
};

Math Class Implementation

Now we can go over the code for the Math implementation file. The Math class

includes the angular velocity and angle to target functions, which I will explain in

detail in subsequent sections of the chapter.

#include "Advanced2D.h"
namespace Advanced2D {

double Math::toDegrees(double radians)
{

return radians * PI_under_180;
}

Math Class 215

double Math::toRadians(double degrees)
{

return degrees * PI_over_180;
}

double Math::wrapAngleDegs(double degs)
{

double result = fmod(degs, 360.0);
if (result < 0) result + = 360.0f;
return result;

}

double Math::wrapAngleRads(double rads)
{

double result = fmod(rads, PI * 2.0);
if (result < 0) result + = PI * 2.0;
return result;

}

double Math::LinearVelocityX(double angle)
{

angle -= 90;
if (angle < 0) angle = 360 + angle;
return cos(angle * PI_over_180);

}

double Math::LinearVelocityY(double angle)
{

angle -= 90;
if (angle < 0) angle = 360 + angle;
return sin(angle * PI_over_180);

}

Vector3 Math::LinearVelocity(double angle)
{

double vx = LinearVelocityX(angle);
double vy = LinearVelocityY(angle);
return Vector3(vx,vy,0.0f);

}

double Math::AngleToTarget(double x1,double y1,double x2,double y2)
{

double deltaX = (x2-x1);

216 Chapter 10 n Math

double deltaY = (y2-y1);
return atan2(deltaY,deltaX);

}

double Math::AngleToTarget(Vector3& source,Vector3& target)
{

return AngleToTarget(source.getX(),source.getY(),target.getX(),
target.getY());

}

double Math::Distance(double x1,double y1,double x2,double y2)
{

double deltaX = (x2-x1);
double deltaY = (y2-y1);
return sqrt(deltaX*deltaX + deltaY*deltaY);

}

double Math::Distance(Vector3& vec1, Vector3& vec2)
{

return Distance(vec1.getX(),vec1.getY(),vec2.getX(),vec2.getY());
}

double Math::Length(double x,double y,double z)
{

return sqrt(x*x + y*y + z*z);
}

double Math::Length(Vector3& vec)
{

return Length(vec.getX(),vec.getY(),vec.getZ());
}

double Math::DotProduct(double x1,double y1,double z1,
double x2,double y2,double z2)

{
return (x1*x2 + y1*y2 + z1*z2);

}

double Math::DotProduct(Vector3& vec1, Vector3& vec2)
{

return DotProduct(vec1.getX(),vec1.getY(),vec1.getZ(),
vec2.getX(),vec2.getY(),vec2.getZ());

}

Math Class 217

218 Chapter 10 n Math

Vector3 Math::CrossProduct(double x1,double y1,double z1,
double x2,double y2,double z2)

{
double nx = (y1*z2)-(z1*y2);
double ny = (z1*y2)-(x1*z2);
double nz = (x1*y2)-(y1*x2);
return Vector3(nx,ny,nz);

}

Vector3 Math::CrossProduct(Vector3& vec1, Vector3& vec2)
{

return CrossProduct(vec1.getX(),vec1.getY(),vec1.getZ(),
vec2.getX(),vec2.getY(),vec2.getZ());

}

Vector3 Math::Normal(double x,double y,double z)
{

double length = Length(x,y,z);
if (length != 0) length = 1 / length;
double nx = x*length;
double ny = y*length;
double nz = z*length;
return Vector3(nx,ny,nz);

}

Vector3 Math::Normal(Vector3& vec)
{

return Normal(vec.getX(),vec.getY(),vec.getZ());
}

};

Now that you have the Math class available, you can begin exploring its features in a

more convenient way (as opposed towriting examples with C++ functions, and then

porting them to the class afterward—you can now just defer to the class directly).

Math Test

Before getting into the new math functions, let’s run the Math class through a few

tests to make sure it’s working as expected. This is always a good idea before

plugging a new module or class into the engine (and assuming it works without

testing). Figure 10.1 shows the output of the MathTest program. Note that this

program is using the same values that were used in the VectorTest program back

in Chapter 3, but the output has been changed. (Since we know that the Vector3

class is working as expected, the property tests have been removed.) The

Math Class 219

calculations are now being performed by the Math class rather than by Vector3’s

methods. Pay particular attention to the outputs for ‘‘Angle to target’’ and

‘‘Linear velocity,’’ which demonstrate these functions that will be covered next.

#include <iostream>
#include <iomanip>
#include "Math.h"
using namespace std;

int main(int argc, char *argv[])
{

Math math;
float angle,x,y;
cout << "MATH TEST" << endl << endl;
cout.setf(ios::fixed);
cout << setprecision(2);

Vector3 A(5,5,1);
cout << "A = " << A.getX() << "," << A.getY() << "," << A.getZ() << endl;

Vector3 B(90,80,1);
cout << "B = " << B.getX() << "," << B.getY() << "," << B.getZ() << endl;
cout << endl << "Distance: " << math.Distance(A, B) << endl;
cout << "Dot Product: " << math.DotProduct(A, B) << endl;

Vector3 D = math.CrossProduct(A,B);
cout << "Cross Product: " <<

D.getX() << "," << D.getY() << "," << D.getZ() << endl;

Figure 10.1
This program demonstrates the functionality of the Math class.

220 Chapter 10 n Math

D = math.Normal(A);
cout << "Normalized A: " << D.getX() << ","

<< D.getY() << "," << D.getZ() << endl;
D = math.Normal(B);
cout << "Normalized B: " << D.getX() << ","

<< D.getY() << "," << D.getZ() << endl << endl;

angle = math.AngleToTarget(A, B);
cout << "Angle to target: " << angle << " radians (";
cout << math.toDegrees(angle) << " degrees)" << endl << endl;

for (angle=0; angle<360; angle+ =45) {
x = math.LinearVelocityX(angle);
y = math.LinearVelocityY(angle);
cout << "Linear velocity (" <<

setprecision(0) << angle << " degrees): ";
cout << setprecision(2) << x << "," << y << endl;

}
system("pause");
return 0;

}

Linear Velocity

Have you ever wondered how some shooter-style games are able to fire projectiles

(be they bullets, missiles, plasma bolts, phaser beams, or what have you) at any odd

angle away from the player’s ship, as well as at any angle from enemy sprites? These

projectiles are moving using velocity values (for X and Y) that are based on the

object’s direction (or angle) of movement. Given any angle, we can calculate the

velocity needed to move in precisely that direction. This applies to aircraft, sea

vessels, spacecraft, as well as projectiles, missiles, lasers, plasma bolts, or any other

object that needs to move at a given angle (presumably toward a target).

The X velocity of a game entity can be calculated for any angle, and that value is

then multiplied by the speed at which you want the object to move in the given

direction. The LinearVelocityX function (following) automatically orients the

angle to quadrant four of the Cartesian coordinate system and converts the angle

from degrees to radians. Since the cosine function gives us the horizontal value of

a point on a circle, we use cosine to calculate X velocity as if we were drawing a

circle based on a small radius.

float Math::LinearVelocityX(float angle)
{

angle -= 90;

if (angle < 0) angle = 360 + angle;
return cos(angle * PI_over_180);

}

Likewise for the Y velocity value, we use the Y position on the edge of a circle

(based on radius) for the calculation using the sine function.

float Math::LinearVelocityY(float angle)
{

angle -= 90;
if (angle < 0) angle = 360 + angle;
return sin(angle * PI_over_180);

}

So, as it turns out, the ‘‘velocity’’ of an object based on an angle—that is, its linear

velocity—is simply the same pair of X,Y values that would be calculated when

tracing the boundary of a circle (based on a radius). The example program called

VelocityDemo (shown in Figure 10.2) demonstrates how you can use these math

functions in a game.

Math Class 221

Figure 10.2
The VelocityDemo program shows how to move an object in any direction.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

#define SCREENW 1024
#define SCREENH 768
#define VELOCITY 0.0001
#define ROCKETVEL 3.0
#define OBJECT_SHIP 100
#define OBJECT_ROCKET 200

Font *font;
Console *console;
Sprite *ship;
Vector3 velocity;
Texture *rocket_image;

bool game_preload()
{

g_engine->setAppTitle("VELOCITY DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(SCREENW);
g_engine->setScreenHeight(SCREENH);
g_engine->setColorDepth(32);
return 1;

}

bool game_init(HWND)
{

//create the console
console = new Console();
if (!console->init()) {

g_engine->message("Error initializing console");
return false;

}

//create ship sprite
ship = new Sprite();
ship->setObjectType(OBJECT_SHIP);
ship->loadImage("fatship256.tga");
ship->setRotation(g_engine->math->toRadians(90));
ship->setPosition(10, SCREENH/2-ship->getHeight()/2);
g_engine->addEntity(ship);

222 Chapter 10 n Math

//load rocket image
rocket_image = new Texture();
rocket_image->Load("fatrocket64.tga");

//load the Verdana10 font
font = new Font();
if (!font->loadImage("verdana10.tga")) {

g_engine->message("Error loading verdana10.tga");
return false;

}
if (!font->loadWidthData("verdana10.dat")) {

g_engine->message("Error loading verdana10.dat");
return false;

}
font->setColumns(16);
font->setCharSize(20,16);

//maximize processor
g_engine->setMaximizeProcessor(!g_engine->getMaximizeProcessor());

return true;
}

void updateConsole()
{

std::ostringstream ostr;
int y = 0;
console->print(g_engine->getVersionText(), y+ +);
ostr.str("");
ostr << "REFRESH : " << (float)(1000.0f/g_engine->getFrameRate_core())

<< " ms (" << g_engine->getFrameRate_core() << " fps)";
console->print(ostr.str(), y+ +);
ostr.str("");
ostr << "Entities: " << g_engine->getEntityCount();
console->print(ostr.str(), y+ +);

}

void game_update()
{

updateConsole();
}

Math Class 223

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
g_engine->SetIdentity();

}

void game_render2d()
{

font->Print(1,SCREENH-20,"Press ~ or F12 to toggle the Console");
font->Print(1,SCREENH-40,"Press SPACE to fire!!!");

//draw console
if (console->isShowing()) console->draw();

}

void game_keyRelease(int key)
{

switch (key) {
case DIK_ESCAPE:

g_engine->Close();
break;

case DIK_F12:
case DIK_GRAVE:

console->setShowing(!console->isShowing());
break;

}
}

void game_end()
{

delete console;
delete font;
delete ship;

}

void game_entityUpdate(Advanced2D::Entity* entity)
{

float y;
Sprite *ship, *rocket;
Vector3 position;
switch(entity->getObjectType())
{

case OBJECT_SHIP:
ship = (Sprite*)entity;

224 Chapter 10 n Math

position = ship->getPosition();
y = position.getY() + velocity.getY();
if (y < 0) {

y = 0;
velocity.setY(0);

}
if (y > SCREENH-128) {

y = SCREENH-128;
velocity.setY(0);

}
position.setY(y);
ship->setPosition(position);
break;

case OBJECT_ROCKET:
rocket = (Sprite*)entity;
if (rocket->getX() > SCREENW)

rocket->setAlive(false);
break;

}
}

void game_entityCollision(Advanced2D::Entity* entity1,
Advanced2D::Entity* entity2) { }

void firerocket()
{

Sprite *ship = (Sprite*)g_engine->findEntity(OBJECT_SHIP);
if (!ship)
{

g_engine->message("Error locating ship in entity manager!","ERROR");
g_engine->Close();

}

Sprite *rocket = new Sprite();
rocket->setObjectType(OBJECT_ROCKET);
rocket->setImage(rocket_image);
rocket->setMoveTimer(1);
rocket->setCollidable(false);
float randrot = rand() % 40 - 20;
float angle = 90 + randrot;
rocket->setRotation(g_engine->math->toRadians(angle));
float x = ship->getX() + ship->getWidth();

Math Class 225

float y = ship->getY()+ship->getHeight()/2-rocket->getHeight()/2;
rocket->setPosition(x,y);
float vx = g_engine->math->LinearVelocityX(angle) * ROCKETVEL;
float vy = g_engine->math->LinearVelocityY(angle) * ROCKETVEL;
rocket->setVelocity(vx, vy);
g_engine->addEntity(rocket);

}

void game_keyPress(int key)
{

float y;
switch(key)
{

case DIK_UP:
case DIK_W:

y = velocity.getY() - VELOCITY;
if (y < -3.0) y = -3.0;
velocity.setY(y);
break;

case DIK_DOWN:
case DIK_S:

y = velocity.getY() + VELOCITY;
if (y > 3.0) y = 3.0;
velocity.setY(y);
break;

case DIK_SPACE:
case DIK_LCONTROL:

firerocket();
break;

}
}

void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_entityRender(Advanced2D::Entity* entity) { }

Angle to Target

Calculating the angle from one point to another (as in the case where one sprite is

targeting another) is extremely useful (if not crucial) in most games. Imagine you

226 Chapter 10 n Math

are working on a real-time strategy game. You must program the game so that

the player can select units with the mouse and right-click a target location where

the unit must move to. Even a simple process like that requires a calculation—

between the unit’s location and the selected target location in the game. In the

space shooter genre, in order to fire at the player’s ship, enemies must be able to

face the player to fire in the correct direction. I could provide you with many

more examples, but I suspect you get the point. The key to this important need is

a calculation that I like to call angle to target.

The calculation is very simple—about as simple as calculating angular velocity,

which is much simpler than the Distance function. We need to use another

trigonometry function this time: atan2(). This is a standard C math library

function that calculates the arctangent of two deltas—first the Y delta, then the

X delta. A delta is the difference between two values. For our purposes here, we

need to get the delta of both X and Y for two points. For instance, if Point A is

located at X1,Y1, and Point B is located at X2,Y2, then we can calculate the delta

of the two points like so:

deltaX = X2 - X1
deltaY = Y2 - Y1

The atan2() function requires the deltaY first, then the deltaX parameter. Here

is the AngleToTarget method as it appears in the Math class:

float Math::AngleToTarget(float x1,float y1,float x2,float y2)
{

float deltaX = (x2-x1);
float deltaY = (y2-y1);
return atan2(deltaY,deltaX);

}

I have coded an overloaded version of this function so you can pass Vector3 values:

float Math::AngleToTarget(Vector3& src,Vector3& tgt)
{

return AngleToTarget(src.getX(),src.getY(),tgt.getX(),tgt.getY());
}

See, it’s like I said, fairly simple. But, wow, is this unassuming function useful! I

would be remiss by not providing a demo program that shows off this newfound

tool. The TargetingDemo program (shown in Figure 10.3) is one of my favorite

demos! It’s the reverse of what you usually find in a video game. In this demo,

Math Class 227

you (the player) are in control of the asteroids, and the computer has to shoot

them! The program first needs to figure out which asteroid is closest. Then it

must calculate the angle to that target asteroid. Finally, it can fire a bullet at the

target. It’s really quite fun watching the computer frantically shoot down

asteroids—and get confused when there is a large cluster of asteroids close by!

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

#define SCREENW 1024
#define SCREENH 768
#define BULLET_VEL 3.0
#define ASTEROID_VEL 3.0

#define OBJECT_BACKGROUND 1
#define OBJECT_SHIP 10
#define OBJECT_BULLET 20
#define OBJECT_ASTEROID 30
#define OBJECT_EXPLOSION 40

228 Chapter 10 n Math

Figure 10.3
The TargetingDemo program demonstrates the utility of angle to target.

Font *font;
Console *console;
Texture *bullet_image;
Texture *asteroid_image;
Texture *explosion_image;
Vector3 ship_position;
Vector3 nearest_asteroid;
Vector3 target_lead;
float ship_angle = 90;
float nearest_distance;
Timer fireTimer;

bool game_preload()
{

g_engine->setAppTitle("TARGETING DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(SCREENW);
g_engine->setScreenHeight(SCREENH);
g_engine->setColorDepth(32);
return 1;

}

bool game_init(HWND)
{

//create the background
Sprite *background = new Sprite();
background->setObjectType(OBJECT_BACKGROUND);
if (!background->loadImage("craters.tga")) {

g_engine->message("Error loading craters.tga");
return false;

}
g_engine->addEntity(background);

//create the console
console = new Console();
if (!console->init()) {

g_engine->message("Error initializing console");
return false;

}

//create ship sprite
Sprite *ship = new Sprite();

Math Class 229

ship->setObjectType(OBJECT_SHIP);
if (!ship->loadImage("spaceship80.tga")) {

g_engine->message("Error loading spaceship.tga");
return false;

}
ship->setRotation(g_engine->math->toRadians(90));
ship->setPosition(10, SCREENH/2-32);
g_engine->addEntity(ship);

//load bullet image
bullet_image = new Texture();
if (!bullet_image->Load("plasma.tga")) {

g_engine->message("Error loading plasma.tga");
return false;

}

//load asteroid image
asteroid_image = new Texture();
if (!asteroid_image->Load("asteroid.tga")) {

g_engine->message("Error loading asteroid.tga");
return false;

}

//load the explosion image
explosion_image = new Texture();
if (!explosion_image->Load("explosion_30_128.tga")) {

g_engine->message("Error loading explosion");
return false;

}

//load the Verdana10 font
font = new Font();
if (!font->loadImage("verdana10.tga")) {

g_engine->message("Error loading verdana10.tga");
return false;

}
if (!font->loadWidthData("verdana10.dat")) {

g_engine->message("Error loading verdana10.dat");
return false;

}

230 Chapter 10 n Math

font->setColumns(16);
font->setCharSize(20,16);

//load sound effects
if (!g_engine->audio->Load("fire.wav","fire")) {

g_engine->message("Error loading fire.wav");
return false;

}

if (!g_engine->audio->Load("boom.wav","boom")) {
g_engine->message("Error loading boom.wav");
return false;

}

//maximize processor
g_engine->setMaximizeProcessor(!g_engine->getMaximizeProcessor());

return true;
}

void updateConsole()
{

std::ostringstream ostr;
int y = 0;
console->print(g_engine->getVersionText(), y+ +);
ostr.str("");
ostr << "REFRESH : " << (float)(1000.0f/g_engine->getFrameRate_core())

<< " ms (" << g_engine->getFrameRate_core() << " fps)";
console->print(ostr.str(), y+ +);

ostr.str("");
ostr << "Entities: " << g_engine->getEntityCount();
console->print(ostr.str(), y+ +);

ostr.str("");
ostr << "Nearest asteroid: " << nearest_asteroid.getX() << "," << nearest_

asteroid.getY();
console->print(ostr.str(), y+ +);

ostr.str("");
ostr << "Nearest distance: " << nearest_distance;

Math Class 231

console->print(ostr.str(), y+ +);

ostr.str("");
ostr << "Leading target: " << target_lead.getX() << "," << target_lead.getY();
console->print(ostr.str(), y+ +);

ostr.str("");
ostr << "Angle to target: " << ship_angle;
console->print(ostr.str(), y+ +);

}

void addAsteroid()
{

//add an asteroid
Sprite *asteroid = new Sprite();
asteroid->setObjectType(OBJECT_ASTEROID);
asteroid->setVelocity(-ASTEROID_VEL, 0);
asteroid->setPosition(SCREENW,50+rand()%(SCREENH-150));
asteroid->setImage(asteroid_image);
asteroid->setTotalFrames(64);
asteroid->setColumns(8);
asteroid->setSize(60,60);
asteroid->setFrameTimer(rand() % 100);
asteroid->setCurrentFrame(rand() % 64);
if (rand()%2==0) asteroid->setAnimationDirection(-1);
g_engine->addEntity(asteroid);

}

void firebullet()
{

//get the ship from the entity manager
Sprite *ship = (Sprite*)g_engine->findEntity(OBJECT_SHIP);
if (!ship)
{

g_engine->message("Error locating ship in entity manager!","ERROR");
g_engine->Close();

}

//create bullet sprite
Sprite *bullet = new Sprite();
bullet->setObjectType(OBJECT_BULLET);
bullet->setImage(bullet_image);
bullet->setMoveTimer(1);
bullet->setLifetime(5000);

232 Chapter 10 n Math

//set bullet equal to ship’s rotation angle
float angle = g_engine->math->toRadians(ship_angle);
bullet->setRotation(angle);

//set bullet’s starting position
float x = ship->getX() + ship->getWidth()/2;
float y = ship->getY() + ship->getHeight()/2-8;
bullet->setPosition(x,y);

//set bullet’s velocity
float vx = g_engine->math->LinearVelocityX(ship_angle) * BULLET_VEL;
float vy = g_engine->math->LinearVelocityY(ship_angle) * BULLET_VEL;
bullet->setVelocity(vx, vy);

//fire bullet
g_engine->addEntity(bullet);
g_engine->audio->Play("fire");

}

void targetNearestAsteroid(Sprite *asteroid)
{

//get asteroid’s position
Vector3 target = asteroid->getPosition();

//calculate distance to target
float dist = ship_position.Distance(target);
if (dist < nearest_distance) {

nearest_asteroid = target;
nearest_distance = dist;

//lead the target for better accuracy
target_lead.setX(asteroid->getVelocity().getX() * 0.01f);
target_lead.setY(asteroid->getVelocity().getY() * 0.01f);
nearest_asteroid.setX(nearest_asteroid.getX() + target_lead.getX());
nearest_asteroid.setY(nearest_asteroid.getY() + target_lead.getY());

//calculate angle to target
ship_angle = g_engine->math->AngleToTarget(ship_position,nearest_

asteroid);
ship_angle = 90 + g_engine->math->toDegrees(ship_angle);

}

Math Class 233

//is there a target to shoot at?
if (nearest_distance < 1200) {

if (fireTimer.stopwatch(100)) {
firebullet();

}
}

}

void game_update()
{

updateConsole();
}

void game_render2d()
{

font->Print(1,SCREENH-20,"Press ~ or F12 to toggle the Console");
font->Print(1,SCREENH-40,"Press SPACE to launch an asteroid!!!");
if (console->isShowing()) console->draw();
nearest_distance = 999999;

}

void game_end()
{

delete console;
delete font;
delete bullet_image;
delete asteroid_image;
delete explosion_image;

}

void game_entityUpdate(Advanced2D::Entity* entity)
{

float y;
Sprite *ship, *bullet, *asteroid;
Vector3 position;

switch(entity->getObjectType())
{

case OBJECT_SHIP:
ship = (Sprite*)entity;
ship_position = ship->getPosition();
ship->setRotation(g_engine->math->toRadians(ship_angle));

234 Chapter 10 n Math

break;
case OBJECT_BULLET:

bullet = (Sprite*)entity;
if (bullet->getX() > SCREENW)

bullet->setAlive(false);
break;

case OBJECT_ASTEROID:
asteroid = (Sprite*)entity;
if (asteroid->getX() < -64) asteroid->setX(SCREENW);
targetNearestAsteroid(asteroid);
break;

}
}

void game_entityCollision(Advanced2D::Entity* entity1,Advanced2D::Entity*
entity2)
{

if (entity1->getObjectType() = = OBJECT_ASTEROID)
{

Sprite *asteroid = (Sprite*)entity1;

if (entity2->getObjectType() = = OBJECT_BULLET)
{

//create an explosion
Sprite *expl = new Sprite();
expl->setObjectType(OBJECT_EXPLOSION);
expl->setImage(explosion_image);
expl->setColumns(6);
expl->setCollidable(false);
expl->setSize(128,128);
float x = asteroid->getPosition().getX();
float y = asteroid->getPosition().getY();
expl->setPosition(x-32,y-32);
expl->setTotalFrames(30);
expl->setFrameTimer(40);
expl->setLifetime(1000);
g_engine->addEntity(expl);

//remove the asteroid
entity2->setAlive(false);

Math Class 235

//remove the bullet
entity1->setAlive(false);

//play explosion sound
g_engine->audio->Play("boom");

}
}

}

void game_keyPress(int key)
{

switch (key) {
case DIK_SPACE:

addAsteroid();
break;

}
}

void game_keyRelease(int key)
{

switch (key) {
case DIK_ESCAPE:

g_engine->Close();
break;

case DIK_F12:
case DIK_GRAVE:

console->setShowing(!console->isShowing());
break;

}
}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
}

void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_entityRender(Advanced2D::Entity* entity) { }

236 Chapter 10 n Math

Drop-Down Console
The drop-down console featured in the example programs in this and the pre-

vious chapter is in need of some explanation because we’ve just ignored it so far.

The first crude console was introduced two chapters ago, while the current one

you see here was actually built in the previous chapter; I reserved a study of the

Console class until now. The Console class has nothing to do with math, but we

need to go over it now for reference.

So, what is the console all about anyway?

A console window is a non-intrusive way to communicate with the developer—or

the game’s player. The console may be toggled on or off with a key or key

combination. Some consoles have an input prompt that allows the user to type in

commands to interact with the engine—to change settings, run debugging

scripts, load game levels, and so forth.

Our console does not have an input prompt, although you are welcome to add

one. At this stage, the console only needs to display information, so that is all it

does. The console does have its own list of strings that may be used to print text

with the System12 font. These text lines may be printed sequentially, with auto

line feed, or a specific line may be printed manually.

Console Class

Here is the header file Console.h that has been included in the Engine project:

class Console {
private:

bool showing;
Sprite *panel;
Font *font;
int currentLine;
std::vector<std::string> textlines;
std::vector<std::string>::iterator iter;

public:
Console();
virtual ~Console();
bool init();
void draw();
void clear();

Drop-Down Console 237

238 Chapter 10 n Math

void print(std::string text, int line = -1);
bool isShowing() { return this->showing; }
void show() { this->showing = true; }
void hide() { this->showing = false; }
void setShowing(bool value) { this->showing = value; }

};

The implementation file Console.cpp is next. Note how the console auto-

matically loads an image that is rendered with alpha transparency onto the game

screen. This adds a dependency to all games that use the engine—the panel.tga

file must be included. But that is to be expected; once an engine begins to

incorporate new features, additional dependencies must be provided (such as

font image and data files).

#include "Advanced2D.h"
namespace Advanced2D {

Console::Console()
{

showing = false;
currentLine = 0;
clear();

}

Console::~Console()
{

delete font;
delete panel;

}

bool Console::init()
{

//load the panel image
panel = new Sprite();
if (!panel->loadImage("panel.tga")) return false;
double scale = g_engine->getScreenWidth() / 640.0f;
panel->setScale(scale);
panel->setColor(0x99FFFFFF);

//load the font
font = new Font();
if (!font->loadImage("system12.tga")) return false;

font->setColumns(16);
font->setCharSize(14,16);
if (!font->loadWidthData("system12.dat")) return false;
return true;

}

void Console::draw()
{

int x = 5, y = 0;
if (!showing) return;
//draw panel background
panel->draw();
//draw text lines
for (unsigned int n = 0; n < textlines.size(); n+ +)
{

font->Print(x,y*14, textlines[n], 0xFF000000);
y + = 1;
if (y > 26) {

if (x > 10) break;
x = g_engine->getScreenWidth()/2 + 5;
y = 0;

}
}

}

void Console::print(std::string text, int line)
{

if (line > -1) currentLine = line;
textlines[currentLine] = text;
if (currentLine++ > 52) currentLine = 0;

}

void Console::clear()
{

for (int n=0; n<55; n+ +)
textlines.push_back("");

}
};

Drop-Down Console 239

Console Test

The ConsoleDemo program shows the console over a simulation of—you

guessed it—asteroids. Figure 10.4 shows the program running normally

without the console, demonstrating how the console can be used to reduce the

clutter of debug text that normally fills a game screen during development.

Figure 10.5 shows the console displayed over the ‘‘game’’ screen. Note the

alpha blending with the sprite objects underneath. The console can be ren-

dered with more or less alpha by just modifying the color used to render the

console image.

240 Chapter 10 n Math

Figure 10.4
The game screen that is normally seen.

That wraps up our math chapter! You now have the tools you need to make a

complete 2D game using Direct3D and the other libraries we’ve explored in the

book thus far. Next we’ll get into a bit of theory by studying multi-threading in

the next chapter, and after that, scripting.

Drop-Down Console 241

Figure 10.5
The game screen with the console drawn over the top with alpha blending and text output.

This page intentionally left blank

Threading

Today’s modern processors come with multiple cores, each of which runs inde-

pendently to run programs and significantly increase the throughput compared to

a single-core processor. The clock speed is no longer the most important factor,

because a quad-core processor will outperform most dual-core processors even if

there is a clock speed discrepancy. In this chapter you will learn how to create

threads using the POSIX Threads library—a popular cross-platform library that is

part of the core Linux operating system (and available for Windows as well).

A thread is a set of instructions, usually in a loop, that runs in parallel with other

sets of instructions (or threads) in a program. In amultitasking operating system,

every program has at least one thread—itself—because the operating system

breaks down every running process into one or more threads that may take

advantage of dual-core or multiple processors in a computer system.

Introducing the POSIX Threads Library
Every modern operating system uses threads for essential and basic operation

and would not be nearly as versatile without threads. A thread is best described as

a function that runs within the memory space of a program but is executed in

parallel. This section will provide a short overview of multi-threading and how it

can be used (fairly easily) to enhance a game. I will not go into the vast details of

threaded programming because the topic is too huge and unwieldy to fully

explain in only a few pages. Instead, I will provide you with enough information

and example code that you will be able to start using threads.

243

chapter 11

To be multi-threaded, a program will create at least one thread that will run in

addition to that program’s main loop. Any time a program uses more than one

thread, youmust take extreme caution when working with data that is potentially

shared between threads. It is generally safe for a program to share data with a

single thread (although it is not recommended), but when more than one thread

is in use, you must use a protection scheme to protect the data from being

manipulated by two threads at the same time.

To protect data, you canmake use ofmutexes that will lock data inside a single thread

until it is safe to unlock the data for use in the main program or in another thread.

The locking and unlocking must be done inside a loop that runs continuously inside

the thread callback function. Note that if you do not have a loop inside your thread

function, it will run once and terminate. The idea is to keep the thread running—

doing something—while the main program is doing the delegating work. You

should think of a thread as a new employee who has been hired to alleviate the

amount of work done by the program (or rather, by the main thread).

We disseminate the subject as if it’s just another C function, but threads were at

one time an extraordinary achievement that was every bit as exciting as the first

connection in ARPAnet in 1969 or the first working version of UNIX. In the

1980s, parallel programming was as hip as virtual reality, but like the latter, it was

not to be a true reality until the early 1990s. Multi-threaded programming is the

engineers’ term for parallel processing and is a solution that has been proven to

work. The key to parallel processing came when software engineers realized that

the processor is not the focus; rather, software design is. In the words of Agent

Smith from The Matrix, ‘‘We lacked a programming language with which to

construct your world.’’

A single-processor system should be able to run multiple threads. Once that goal

was realized, adding two or more processors to a system provided the ability to

delegate those threads, and this was a job for the operating system. No longer

tasked with designing a parallel-processing architecture, engineers in both the

electronics and software fields abstracted the problem so the two were not reliant

upon each other. A single program can run on a motherboard with four CPUs

and push all of those processors to the limit—if that single program invokes

multiple threads. As such, the programs themselves were treated as single

threads. And yet, there can be many non-threaded programs running on our

fictional quad-processor system, and it might not be taxed at all. It depends on

what each program is doing.

244 Chapter 11 n Threading

Math-intensive processes, such as 3D rendering, can eat a CPU for breakfast. But

with the advent of threading in modern operating systems, programs such as 3D

Studio Max, Maya, LightWave, and Photoshop can invoke threads to handle

intense processes, such as scene rendering and image manipulation. Suddenly,

that dual-G5 Mac is able to process a Photoshop image in four seconds, whereas

it took 45 seconds on your G3 Mac! Why? Threads and multiple processor cores.

However, just because a single program is able to share four CPUs, that doesn’t

mean each thread is an independent entity. Any global variables in the program

(main thread) can be used by the invoked threads as long as care is taken that

data is not damaged. Imagine 10 children grasping for an ice cream cone at the

same time and you get the picture. What your threaded program must do is

isolate the ice cream cone for each child, and only make the ice cream cone

available to the others after that child has released it. Get the picture?

How does this concept of threading relate to processes? As you know, modern

operating systems treat each program as a separate process, allocating a certain

number of milliseconds to each process. This is where you get the term multi-

tasking; many processes can be run at the same time using a time-slicing

mechanism. A process owns a heap (the thing used for global variables and

dynamically allocated memory via new or malloc). The process heap is shared by

all the threads in the process. Each thread in the process (the main thread and any

additional worker threads you start) gets its own stack (used for local variables).

The vast majority of Linux and UNIX operating system flavors will already have

the pthread library installed because it is a core feature of the kernel. Other

systems might not be so lucky. Windows uses its own multi-threading library. Of

course, a primary goal of this book is to keep this code 100-percent portable. So

what you need is a pthread library that is compatible with the POSIX systems.

After all, that is what the ‘‘p’’ in pthread stands for—POSIX threads. An

important thing you should know about the Windows implementation of

pthread is that it abstracts the Windows threading functionality, molding it to

conform to pthread standards.

Installing POSIX Threads

Although Red Hat’s pthread library is open source, I have chosen not to dis-

tribute it with the book and have only included the libs, dlls, and key headers.

You can download the pthread library and find extensive documentation at

http://sources.redhat.com/pthreads-win32. I encourage you to browse the site

Introducing the POSIX Threads Library 245

http://sources.redhat.com/pthreads-win32

and get the latest version of Pthreads-Win32 from Red Hat. The pthreads library

is composed of three header files, a library file, and a DLL runtime file (which

must be distributed with the program’s executable). The three header files are:

n pthread.h

n sched.h

n semaphore.h

These files should be copied to your compiler’s .\include folder for best results.

Optionally, you can add a folder to your compiler’s include path so that it can

find the pthread headers (wherever you have copied them to your hard drive).

Due to the way the pthread headers are defined, you cannot include them

locally—they must be referenced globally by your compiler.

Second, you must copy the pthread library file into your compiler’s .\lib folder,

or add a library path to your compiler. For Dev-C++, the library file is called

libpthreadGC.a, and you will add it as a linker option using -lpthreadGC. For

Visual C++, the library file is called pthreadVC.lib, and you will add it to the list

of additional dependencies by its filename: pthreadGC.lib.

Third, to run a program compiled with the pthread library, you must include the

runtime DLL file. For Dev-C++, the file is pthreadGC.dll. For Visual C++, the

file is pthreadVC.dll. The library file just provides a link between your program

and the DLL, where the compiled pthread code is located and linked into your

program at runtime. You will need to distribute the pthreadxx.dll file just as you

must include the fmodex.dll file for FMOD audio support. If you’re a Dev-C++

user, you must also provide the custom d3dx9.dll for Direct3D support too

(although this file is installed with the normal DirectX runtime when you build

with Visual C++).

Adv i c e

On the CD-ROM under \libraries, you will find a folder called .\pthreads that includes ready-to-use
headers, libs, and DLLs for Dev-C++ and Visual C++. You may want to install these files in your
compiler’s install folder in order to use the Pthreads-Win32 library.

Using POSIX Threads

There are two ways to use threads to offload processing from your game loop.

The first method is to write a thread function that runs once and then returns.

246 Chapter 11 n Threading

The second method is to write a thread function with its own while loop that

runs continually in parallel with your game loop. There are advantages and

drawbacks to both methods. The single-run function method uses more pro-

cessor cycles because the thread function is being called many times per second,

but it will result in fewer mutex waits (which happen when the thread is locked by

another process). The continually running function with its own while loop is

more efficient because it is only called once in order to run in parallel, but the

drawbacks are less versatility and more instances of mutex waits. Neither method is

better than the other, as both types of thread function will be useful in a game. I tend

to favor the single-run thread functions over the embedded loop functionmethod, if

only because it allows for smaller, more mission-specific functions. There’s no

reason why you cannot write many single-purpose thread functions that run once

depending on the conditions in the game.

Let me give you some examples to help you visualize both scenarios. First, you

have a game that creates a thread before launching its own main loop. Inside the

thread function you have programmed it to update all of the sprites in the entity

manager. Since the entities are created on the heap with new, each entity in the

list is really just a pointer. Thus, iterating through the entity list means we go

through a list of pointers to gain access to each mesh or sprite object in the list.

The thread function runs in a tight loop with no timing whatsoever, so it runs

really fast. In your game loop, however, each time an entity is updated, there is a

call to the game_entityUpdate function in your game’s source code, and a pointer

to the entity is passed to this function each time. Now, if your tightly written

thread loop tried to read data in a specific sprite while the game_entityUpdate

function was writing data to the same sprite, that would crash the whole

program—or at best, lock up the thread due to the mutex, which would cause the

game to freeze as if it were paused.

Let’s take a look at this scenario from the single-run thread function point of

view. In the engine, the entity list is iterated and a thread function is called to

update each entity (with movement, animation, collision detection, and so

forth). But now, most of that processing is being called from the game loop, not

from the thread loop. Whenever we need to update a sprite, a thread function is

called, and when that update is finished, the thread is terminated. Our game

experiences quite a bit of overhead with all of the function calls, but the

advantage is that now we can update an entity in game_entityUpdate or

game_entityCollision without causing a mutex lock. How? If, inside one of the

single-run thread functions, we experience a thread lock, that thread will wait

Introducing the POSIX Threads Library 247

until the lock is released, and it will then finish its processing and kill the thread.

However, in a tight thread loop, the mutex in the main program could be locked

instead! This could potentially lock up the game loop. Although the engine’s

threads would continue to run just fine (hogging the system, so to speak), the

game loop that communicates by way of our event functions (game_keyPress and

so forth) would be interrupted. We can predict this because the game loop has

timing code in it. That timing code means the game loop can be easily inter-

rupted. The thread loop will have no such timing code, because it is designed to

run as fast as possible.

As you can imagine, a lot of thought must be put into a multi-threaded game

engine before we just haphazardly create a tight thread function at engine startup

and then assume that, with our newfound threading power, the engine will run

faster. In reality, the thread locks are probably slowing it down!

Returning to the subject of single-run thread functions, there is another draw-

back that I have not mentioned yet. When you create a new thread, the point in

the program where the thread was created continues to the next statement. The

program doesn’t need to wait until the thread function returns before it executes

the next line. This means we can actually create many threads simultaneously,

with each one updating a single object in memory without conflict. This is

inevitably faster than a monolithic thread function if we have a multi-core

processor, since a looping thread will only utilize a single core. Our multiple-

thread function call theory would utilize multiple cores, since the operating

system decides where threads are run and balances them among all available

processor cores.

The drawbacks seem to outweigh the advantages to the single-run threads. Since

the threads are being created and destroyed thousands of times per second, the

overhead will be high, outweighing any advantages we would otherwise gain by

supporting any number of processor cores. In addition, creating and destroying

threads repeatedly can cause some instability in the framerate of the game loop,

making it difficult to maintain a smooth and reliable core. Due to these issues, we

will use a single thread function—but we can create more than one if we need to.

Programming POSIX Threads

I am going to cover the key functions in this section and let you pursue the full

extent of multi-threaded programming on your own using the references I have

suggested.

248 Chapter 11 n Threading

Creating a New Thread

First of all, how do you create a new thread? New threads are created with the

pthread_create function.

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*start) (void *),
void *arg);

Yeah! That’s what I thought at first, but it’s not a problem. Here, let me explain.

The first parameter is a pthread_t struct variable. This struct is large and complex,

and you really don’t need to know about the internals to use it. (‘‘Ignorance is bliss,’’

to quote Cipher from The Matrix.) If you want more details, I encourage you to

pick up Butenhof’s book Programming with POSIX Threads (Addison-Wesley

Professional, 1997) as a reference.

The second parameter is a pthread_attr_t struct variable that usually contains

attributes for the new thread. This is usually not used, so you can pass null to it.

The third parameter is a pointer to the thread function used by this thread for

processing. This function should contain its own loop, but should have exit logic

for the loop when it’s time to kill the thread. (I use a done variable.)

The fourth parameter is a pointer to a numeric value for this thread to uniquely

identify it. You can just create an int variable and set it to a value before passing it

to pthread_create.

Here’s an example of how to create a new thread:

int id;
pthread_t pthread0;
int threadid0 = 0;
id = pthread_create(&pthread0, NULL, thread0, (void*)&threadid0);

So you’ve created this thread, but what about the callback function? Oh, right.

Here’s an example:

void* thread0(void* data)
{

int my_thread_id = *((int*)data);
while(!done)
{

//do something!

Introducing the POSIX Threads Library 249

}
pthread_exit(NULL);
return NULL;

}

Killing a Thread

This brings us to the pthread_exit function, which terminates the thread.

Normally you’ll want to call this function at the end of the function, after the

loop has exited. Here’s the definition for the function:

void pthread_exit (void *value_ptr);

You can get away with just passing null to this function because value_ptr is an

advanced topic for gaining more control over the thread.

Mutexes: Protecting Data from Threads

At this point you can write a multi-threaded programwith only the pthread_ create

and pthread_exit functions, knowing how to create the callback function and

use it. That is enough if you only want to create a single thread to run inside the

process with your program’s main thread. But more often than not, you will want

to use two or more threads in a game to delegate some of the workload.

Therefore, it’s a good idea to use a mutex for all your threads. Recall the ice cream

cone analogy. Are you sure that new thread won’t interfere with any globals?

Have you considered timing? What if you are using a thread for rendering while

another thread is writing to the back buffer? Most memory chips cannot read and

write data at the same time. It is very likely is that you’ll update a small portion of

the buffer (by drawing a sprite, for instance) while the buffer is being blitted to

the screen. The result is some unwanted flicker—yes, even when using a double

buffer. What you have here is a situation that is similar to a vertical refresh

conflict, only it is occurring in memory rather than directly on the screen. What I

am trying to point out is that threads can step on each other’s toes, so to speak, if

you aren’t careful to use a mutex.

A mutex is a block used in a thread function to prevent other threads from

running until that block is released. Assuming, of course, that all threads use the

same mutex, it is possible to use more than one mutex in your program. The

easiest way is to create a single mutex, and then block the mutex at the start of

each thread’s loop, unblocking at the end of the loop. Creating a mutex doesn’t

require a function; rather, it requires a struct variable. In our simplistic approach

250 Chapter 11 n Threading

here, I’m using only a single mutex for the entire program, but in practice you

would want to use many mutexes.

//create a new thread mutex to protect variables
pthread_mutex_t threadsafe = PTHREAD_MUTEX_INITIALIZER;

This line of code will create a new mutex called threadsafe that, when used by all

the thread functions, will prevent data read/write conflicts. You must destroy

the mutex before your program ends; you can do so using the pthread_mutex_

destroy function.

int pthread_mutex_destroy (pthread_mutex_t *mutex);

Here is an example of how it would be used:

pthread_mutex_destroy(&threadsafe);

Next, you need to know how to lock and unlock amutex inside a thread function.

The pthread_mutex_lock function is used to lock a mutex.

int pthread_mutex_lock (pthread_mutex_t * mutex);

This has the effect of preventing any other threads from locking the same mutex,

so any variables or functions you use or call (respectively) while the mutex is

locked will be safe from manipulation by any other threads. Basically, when a

thread encounters a locked mutex, it waits until the mutex is available before

proceeding. (It uses no processor time; it simply waits.)

Here is the unlock function:

int pthread_mutex_unlock (pthread_mutex_t * mutex);

The two functions just shown will normally return zero if the lock or unlock

succeeded immediately; otherwise, a non-zero value will be returned to indicate

that the thread is waiting for the mutex. This should not happen for unlocking,

only for locking. If you have a problem with pthread_mutex_unlock returning non-

zero, it means the mutex was locked while that thread was supposedly in control

over the mutex—a bad situation that should never happen. But when it comes to

game programming, bad things do often happen while you are developing a new

game, so it’s helpful to print an error message for any non-zero return.

ThreadDemo Program

We need an example to see how threading works and to see how the pthread

library is used. The ThreadDemo program (shown in Figure 11.1) includes all of

Introducing the POSIX Threads Library 251

the thread code directly, outside of the engine, so you can learn from it. This

program draws translucent sprites over the background just as a visual cue that the

game loop is not being affected by the threads. We want to make sure threading

does not screw up the framerate, and these circle sprites help in that regard.

Afterward, we will incorporate threads into the engine and run some punishing

tests (by creating thousands of sprites) to see whether there’s a performance gain.

Adv i c e

A game built with our Advanced2D library will normally use seven threads already due to its
libraries. Use this number as a baseline when you examine your program running in Task Manager.

Figure 11.2 shows the Task Manager while the ThreadDemo program is running.

Surprisingly enough, the game engine is actually running on core #2 with the

engine set to minimal processor usage (with a core update time of 1.7 ms).

The third core, which is maxed out, is where the thread function is running! The

252 Chapter 11 n Threading

Figure 11.1
The ThreadDemo program increments a variable in a separate thread.

thread is running ludicrously fast because all it has to do is increment a variable.

If you want to really see a better balance between the two cores, you would need

to add some load to the thread function (by performing some higher math

calculations, such as Distance or AngleToTarget).

By pressing F2 to turn off processor throttling, we can maximize the speed of the

core game loop—up from 1.7 ms to 0.03 ms (a six-fold increase that results from

skipping the Sleep(1) line in the core)—which has been built into the engine all

along, so that’s nothing new. The interesting thing is that the thread counter does

not speed up or slow down based on the core throttling—it just continues to

increment at a steady (but insanely fast) rate. Our engine core is running at about

33,000 fps, but the rate is only that fast because we are doing next to nothing in

this demo—just moving a few sprites around. Add some mesh objects and

lighting and a few hundred entities, and the rate would drop significantly.

Now let’s take a look at the Task Manager while the ThreadDemo program is

running with a maximized core. As Figure 11.3 shows, the second core is now

under load, as that is where our engine core is now running at full speed. The third

Introducing the POSIX Threads Library 253

Figure 11.2
Processor core usage in Task Manager while ThreadDemo is running.

core, though, has dropped down to about 25 percent. What could account for the

drop? I might have expected both cores to be running at peak now. There are no

mutex locks occurring because the program keeps track of any locks (and it is

showing up at zero).

Adv i c e

The background image used in the ThreadDemo program is titled ‘‘The Antennae Galaxies/NGC
4038-4039,’’ photographed by Hubble Space Telescope. This image was made available by NASA-
STScl at www.hubblesite.org.

This is really just an artifact of the operating system assigning tasks to the pro-

cessor. If you create more threads, you will see that they are balanced more

equitably on a multi-core processor, as shown in Figure 11.4. In this example,

processor throttling is turned off, and the engine core is running at 0.04 ms (about

40 microseconds—millionths of a second).

254 Chapter 11 n Threading

Figure 11.3
The second core is under load, and the third core has dropped to about 25 percent.

www.hubblesite.org

Here is the source code for the ThreadDemo program, which is on the CD-ROM

in the \sources\ch11 folder.

#include <pthread.h>
#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

#define SCREENW 1024
#define SCREENH 768
#define OBJECT_BACKGROUND 1
#define OBJECT_SPRITE 100
#define MAX 50
#define SCALE 70

Texture *circle_image;
Font *font;
Console *console;
std::ostringstream ostr;
int collisions;

Introducing the POSIX Threads Library 255

Figure 11.4
More threads are balanced more equitably on a multi-core processor.

256 Chapter 11 n Threading

//THREAD STUFF
#define MAXTHREADS 2
bool done = false;
unsigned long thread_counter = 0;
void* thread_function(void* data);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int thread_waits = 0;

void* thread_function(void* data)
{

while(!done)
{

//lock the mutex
if (pthread_mutex_lock(&mutex) != 0) thread_waits++;

//increment thread counter
thread_counter++;

//do something more intensive
Vector3 vector1(100,200,300);
Vector3 vector2(400,500,600);
double dist = g_engine->math->Distance(vector1,vector2);
double dist_squared = dist*dist;
double square_root_of_dist = sqrt(dist);
double answer = square_root_of_dist;

//unlock the mutex
if (pthread_mutex_unlock(&mutex) != 0) thread_waits++;

}
pthread_exit(NULL);
return NULL;

}

bool game_preload()
{

g_engine->setAppTitle("THREAD DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(SCREENW);
g_engine->setScreenHeight(SCREENH);
g_engine->setColorDepth(32);
return 1;

}

Introducing the POSIX Threads Library 257

bool game_init(HWND)

{
int n;
//load background image
Sprite *background = new Sprite();
if (!background->loadImage("galaxies.tga")) {

g_engine->message("Error loading galaxies.tga");
return false;

}
background->setObjectType(OBJECT_BACKGROUND);
background->setCollidable(false);
g_engine->addEntity(background);

//create the console
console = new Console();
if (!console->init()) {

g_engine->message("Error initializing console");
return false;

}
console->setShowing(true);

//load sprite image
circle_image = new Texture();
if (!circle_image->Load("circle.tga")) {

g_engine->message("Error loading circle.tga");
return false;

}

//create sprites
Sprite *sprite;
for (n=0; n < MAX; n++)
{

//create a new sprite
sprite = new Sprite();
sprite->setObjectType(OBJECT_SPRITE);
sprite->setImage(circle_image);
sprite->setColor(D3DCOLOR_RGBA(255,255,255,50));
sprite->setSize(128,128);
sprite->setScale((float)(rand() % SCALE + SCALE/4) / 100.0f);
sprite->setPosition(rand() % SCREENW, rand() % SCREENH);
sprite->setCollisionMethod(COLLISION_DIST);

//set velocity
float vx = (float)(rand()%30 - 15)/10.0f;

float vy = (float)(rand()%30 - 15)/10.0f;
sprite->setVelocity(vx, vy);

//add sprite to the entity manager
g_engine->addEntity(sprite);

}

//load the Verdana10 font
font = new Font();
if (!font->loadImage("verdana10.tga")) {

g_engine->message("Error loading verdana10.tga");
return false;

}
if (!font->loadWidthData("verdana10.dat")) {

g_engine->message("Error loading verdana10.dat");
return false;

}
font->setColumns(16);
font->setCharSize(20,16);

//create the thread(s)
int id;
for (n = 0; n < MAXTHREADS; n++) {

pthread_t mythread;
int mythread_id = n;
id = pthread_create(&mythread, NULL, thread_function, (void*)&mythread_ id);

}

return true;
}

void updateConsole()
{

int y = 0;
console->print(g_engine->getVersionText(), 1);
ostr.str("");
ostr << "CORE : " << (float)(1000.0f/g_engine->getFrameRate_core())

<< " ms (" << g_engine->getFrameRate_core() << " fps)";
console->print(ostr.str(), 3);
ostr.str("");
ostr << "THREAD_COUNTER: " << thread_counter;
console->print(ostr.str(), 5);
ostr.str("");

258 Chapter 11 n Threading

ostr << "THREAD_WAITS: " << thread_waits;
console->print(ostr.str(), 7);
console->print("Press F2 to toggle Processor Throttling", 27);
ostr.str("");
ostr << "Entities: " << g_engine->getEntityCount();
console->print(ostr.str(), 29);

}

void game_update()
{

//any code that touches thread variables must be wrapped in a mutex
pthread_mutex_lock(&mutex);
updateConsole();
collisions = 0;
pthread_mutex_unlock(&mutex);

}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
}

void game_render2d()
{

font->Print(1,SCREENH-20,"Press ~ or F12 to toggle the Console");
if (console->isShowing()) console->draw();

}

void game_keyRelease(int key)
{

switch (key) {
case DIK_ESCAPE:

g_engine->Close();
break;

case DIK_F12:
case DIK_GRAVE:

console->setShowing(!console->isShowing());
break;

case DIK_F2:
g_engine->setMaximizeProcessor(!g_engine->getMaximizeProcessor());
break;

}
}

Introducing the POSIX Threads Library 259

void game_end()

{
//kill the persistent thread
done = true;
pthread_mutex_destroy(&mutex);

//delete objects
delete console;
delete circle_image;
delete font;

}

void game_entityUpdate(Advanced2D::Entity* entity)
{

switch(entity->getObjectType())
{

case OBJECT_SPRITE:
Sprite* spr = (Sprite*)entity;
float w = (float)spr->getWidth() * spr->getScale();
float h = (float)spr->getHeight() * spr->getScale();
float vx = spr->getVelocity().getX();
float vy = spr->getVelocity().getY();
if (spr->getX() < 0) {

spr->setX(0);
vx = fabs(vx);

}
else if (spr->getX() > SCREENW-w) {

spr->setX(SCREENW-w);
vx = fabs(vx) * -1;

}
if (spr->getY() < 0) {

spr->setY(0);
vy = fabs(vy);

}
else if (spr->getY() > SCREENH-h) {

spr->setY(SCREENH-h);
vy = fabs(vy) * -1;

}

spr->setVelocity(vx,vy);
break;

}
}

260 Chapter 11 n Threading

void game_entityCollision(Advanced2D::Entity* entity1,Advanced2D::Entity*
entity2)
{

Sprite *box;
Sprite *a = (Sprite*)entity1;
Sprite *b = (Sprite*)entity2;

if (a->getObjectType() == OBJECT_SPRITE && b->getObjectType() == OBJECT_
SPRITE)

{
collisions++;

float x1 = a->getX();
float y1 = a->getY();
float x2 = b->getX();
float y2 = b->getY();

float vx1 = a->getVelocity().getX();
float vy1 = a->getVelocity().getY();
float vx2 = b->getVelocity().getX();
float vy2 = b->getVelocity().getY();

if (x1 < x2) {
vx1 = fabs(vx1) * -1;
vx2 = fabs(vx1);

}
else if (x1 > x2) {

vx1 = fabs(vx1);
vx2 = fabs(vx2) * -1;

}
if (y1 < y2) {

vy1 = fabs(vy1) * -1;
vy2 = fabs(vy2);

}
else {

vy1 = fabs(vy1);
vy2 = fabs(vy2) * -1;

}
a->setVelocity(vx1,vy1);
b->setVelocity(vx2,vy2);

}
}

Introducing the POSIX Threads Library 261

void game_keyPress(int key) { }
void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_entityRender(Advanced2D::Entity* entity) { }

Threading the Game Engine
We should not add threads to the game engine unless there is a solid reason for

doing so. In a simple demo program, additional threads might slow things down

a bit. But in a large, complex game or a demowithmany entities, the addition of a

thread or two (if done carefully) should reap a significant performance boost. In

other words, we want to see the core timing improve or remain steady under load

by utilizing additional processor cores.

One issue that crops upwhenmaking the paradigm shift to a threaded engine is the

problem of lists and iteration, especially when the engine is shutting down. There

are many iterations going on in the engine core: moving, animating, drawing,

collision testing. Each of these processes involves an iteration at various stages with

function calls to game events. If you assume that the game is shutting down and

you destroy a mutex while that mutex is in use, it will crash or hang the game. To

resolve this problem, every iterative loopmust have an added condition that causes

it to break out when the game is shutting down. This is done by checking the global

gameover flag in every engine function that iterates through the entity list.

Threaded Garbage Collection

Although we could move quite a bit of the engine into one or more threads, I do

not want to add a level of instability to the engine just as we’re nearly finished

with it and ready to start building some game examples. So, while it is feasible, we

will not thread the entity update or collision detection methods in the engine.

Instead, I have moved the garbage collection system into a thread function. As

you may recall, we added entity management to the engine back in Chapter 7,

and included with that new functionality was a function called BuryEntities.

The purpose of this function is to destroy any entities that have been disabled

(by having their ‘‘alive’’ property set to false).

262 Chapter 11 n Threading

The new thread is created in Engine::Init:

mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_t thread_bury_entities;
int threadid = 1;
int id = pthread_create(&thread_bury_entities, NULL, thread_function_bury_
entities, (void*)&threadid);

The thread callback function is defined as a prototype in Advanced2D.h:

void* thread_function_bury_entities(void* data);

Here is the entire function as it appears in Advanced2D.cpp. Note that this function

is not part of the Advanced2D class, but it is contained in the Advanced2D

namespace.

void* thread_function_bury_entities(void* data)
{

static Timer timer;
std::list<Entity*>::iterator iter;
while(!gameover)
{

if (timer.stopwatch(2000))
{

pthread_mutex_lock(&g_engine->mutex);

//iterate through entity list
iter = g_engine->getEntityList()->begin();
while (iter != g_engine->getEntityList()->end())
{

if ((*iter)->getAlive() == false)
{

delete (*iter);
iter = g_engine->getEntityList()->erase(iter);

}
else {

iter++;
if (gameover) break;

}
}
if (gameover) break;
pthread_mutex_unlock(&g_engine->mutex);
} //if

} //gameover

Threading the Game Engine 263

pthread_exit(NULL);
return NULL;

}

Over in the Engine::Updatemethod, we need to add some thread security to the

many function calls in this core method using mutex locks. I will let you open

the Engine project from \sources\ch11 on the CD-ROM. Here is the first sec-

tion of code in the method, just to give you an example. Note how the

game_update() call has been wrapped inside a pair of functions that lock and

unlock the mutex. This is common in a threaded application, and our game

engine is no exception. Without mutex protection at key areas of the game loop

that are accessed in multiple places, we could end up with a very unstable and

crash-prone engine.

void Engine::Update()
{

//calculate core framerate
p_frameCount_core++;
if (p_coreTimer.stopwatch(999)) {

p_frameRate_core = p_frameCount_core;
p_frameCount_core = 0;

}
//fast update with no timing
pthread_mutex_lock(&mutex);
game_update();
pthread_mutex_unlock(&mutex);

Testing the Newly Threaded Engine

We’ll now take the new engine for a spin with a new test program. The source

code for this example is very similar to the ThreadDemo program earlier in the

chapter. But in this example, all of the thread code has been removed (since it’s

now in the game engine), and there are many more sprites in this version! The

chapter files on the CD-ROM are located under two main folders:

n Non-threaded engine

n Threaded engine

The Engine project in the non-threaded engine folder is the pre-thread version of the

engine used to build the ThreadDemo program earlier in the chapter. The threaded

engine folder contains another copy of the Engine project, but this one now has the

264 Chapter 11 n Threading

thread code built into it, and this version of ThreadDemo utilizes the engine’s thread

support. By separating the sources into these two folders you can open the Engine

project in both cases and rebuild it as needed.

The goal of the new ThreadDemo program is to give the engine’s threaded

garbage collection system a solid performance test with thousands of entities

being added and destroyed very quickly for a long period of time. This should not

only test the performance of the garbage collector, but also test the stability of the

engine with its new thread support. Stability is a real challenge when you are first

beginning to work with threading. You have to be careful about protecting data

that could be accessed by multiple threads at the same time.

Think of your thread variables as antimatter. If your main game loop touches any

variables that are being manipulated in a thread at the same time, it’s like

combining matter and antimatter—you’ll get a huge explosion! The new

ThreadDemo program is shown in Figure 11.5.

Threading the Game Engine 265

Figure 11.5
The new ThreadDemo program demonstrates the engine’s new garbage collection system.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;

#define SCREENW 1024
#define SCREENH 768
#define OBJECT_BACKGROUND 1
#define OBJECT_SPRITE 100
#define MAX 5000
#define SCALE 20

Texture *circle_image;
Font *font;
Console *console;
std::ostringstream ostr;

bool game_preload()

{
g_engine->setAppTitle("ENGINE THREAD DEMO");
g_engine->setFullscreen(false);
g_engine->setScreenWidth(SCREENW);
g_engine->setScreenHeight(SCREENH);
g_engine->setColorDepth(32);
return 1;

}

void add_sprite()

{
Sprite *sprite = new Sprite();
sprite->setObjectType(OBJECT_SPRITE);
sprite->setImage(circle_image);
D3DCOLOR color = D3DCOLOR_RGBA(0,rand()%255,rand()%255,rand()%100);
sprite->setColor(color);
sprite->setSize(128,128);
sprite->setScale((float)(rand() % SCALE + SCALE/4) / 100.0f);
sprite->setPosition(rand() % SCREENW, rand() % SCREENH);
sprite->setCollidable(false);
sprite->setLifetime(rand() % 30000);
//set velocity
float vx = (float)(rand()%30 - 15)/10.0f;
float vy = (float)(rand()%30 - 15)/10.0f;
sprite->setVelocity(vx, vy);
//add sprite to the entity manager
g_engine->addEntity(sprite);

}

266 Chapter 11 n Threading

bool game_init(HWND)

{
int n;
//load background image
Sprite *background = new Sprite();
if (!background->loadImage("galaxies.tga")) {

g_engine->message("Error loading galaxies.tga");
return false;

}
background->setObjectType(OBJECT_BACKGROUND);
background->setCollidable(false);
g_engine->addEntity(background);

//create the console
console = new Console();
if (!console->init()) {

g_engine->message("Error initializing console");
return false;

}
console->setShowing(true);

//load sprite image
circle_image = new Texture();
if (!circle_image->Load("circle.tga")) {

g_engine->message("Error loading circle.tga");
return false;

}

//create sprites
for (n=0; n < MAX; n++)

{
add_sprite();

}

//load the Verdana10 font
font = new Font();
if (!font->loadImage("verdana10.tga")) {

g_engine->message("Error loading verdana10.tga");
return false;

}
if (!font->loadWidthData("verdana10.dat")) {

g_engine->message("Error loading verdana10.dat");
return false;

}

Threading the Game Engine 267

font->setColumns(16);
font->setCharSize(20,16);

//maximize processor
g_engine->setMaximizeProcessor(true);

return true;
}

void updateConsole()
{

static Timer timer;
if (!timer.stopwatch(50)) return;

console->print(g_engine->getVersionText(), 0);
ostr.str("");
ostr << "CORE : " << (float)(1000.0f/g_engine->getFrameRate_core())

<< " ms (" << g_engine->getFrameRate_core() << " fps)";
console->print(ostr.str(), 2);
console->print("Press F2 to toggle Processor Throttling", 27);
ostr.str("");
ostr << "Entities: " << g_engine->getEntityCount();
console->print(ostr.str(), 29);

}

void game_update()
{

//increase size of entity list
add_sprite();
//update console info
updateConsole();

}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
}

void game_render2d()
{

font->Print(1,SCREENH-20,"Press ~ or F12 to toggle the Console");
if (console->isShowing()) console->draw();

}

268 Chapter 11 n Threading

void game_keyRelease(int key)
{

switch (key) {
case DIK_ESCAPE:

g_engine->Close();
break;

case DIK_F12:
case DIK_GRAVE:

console->setShowing(!console->isShowing());
break;

case DIK_F2:
g_engine->setMaximizeProcessor(!g_engine->getMaximizeProcessor());
break;

}
}

void game_end()
{

delete console;
delete circle_image;
delete font;

}

void game_entityUpdate(Advanced2D::Entity* entity)
{

switch(entity->getObjectType())
{

case OBJECT_SPRITE:
Sprite* spr = (Sprite*)entity;
float w = (float)spr->getWidth() * spr->getScale();
float h = (float)spr->getHeight() * spr->getScale();
float vx = spr->getVelocity().getX();
float vy = spr->getVelocity().getY();
if (spr->getX() < 0) {

spr->setX(0);
vx = fabs(vx);

}
else if (spr->getX() > SCREENW-w) {

spr->setX(SCREENW-w);
vx = fabs(vx) * -1;

}

Threading the Game Engine 269

if (spr->getY() < 0) {
spr->setY(0);
vy = fabs(vy);

}
else if (spr->getY() > SCREENH-h) {

spr->setY(SCREENH-h);
vy = fabs(vy) * -1;

}

spr->setVelocity(vx,vy);
break;

}
}

void game_keyPress(int key) { }
void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_entityRender(Advanced2D::Entity* entity) { }
void game_entityCollision(Advanced2D::Entity* entity1,Advanced2D::Entity*
entity2) { }

Writing a multi-threaded game is now within your grasp! The result from this

chapter is a slightly threaded version of the game engine and an example that uses

threads in the game code instead. These two different ways of approaching

threadingwill give you the ability to choose whichway you prefer to gowith threads.

For the sake of simplicity, I will continue using the non-threaded engine in the

chapters to come.

270 Chapter 11 n Threading

Scripting

A script language for a game engine is a programming language that can be

used to write script programs that do not need to be compiled. A script

program can be edited after a game has been compiled, thus changing the

properties and functionality of the game. High-level scripting languages allow

for rapid development, content creation, and interactive events, and they

drive many of today’s most powerful game engines and tools. Used for both

game logic and automation tools, scripting language has become a mainstay

in game production.

When a game is ‘‘scripted,’’ it means the game supports a script language. We can

use a script language in many ways. The simplest use of a script is to define basic

properties for a game (such as screen dimensions, full-screen mode, and color

depth). We call such properties script globals. Script programs can also contain

functions. These functions can accept parameters, perform calculations, and

return results to the calling program (that is, your game). On the converse, a

script program can call on C++ functions in your game. When a game has been

scripted, by adding support for a script language and providing facilities within

the game to support it, then the game takes on a whole new dimension for the

game designer. No longer forced to go through programmers for gameplay

changes, a game’s designer can make changes to scripts to modify the game’s

look, feel, and other aspects.

271

chapter 12

Adv i c e

This chapter does not teach the Lua language beyond a quick overview, as our main concern is
enhancing the game engine with scripting support. The online Lua manual is an excellent resource
at www.lua.org/manual/5.1/. Several books have been written about Lua, including Alex Varanese’s
Game Scripting Mastery (Course Technology PTR, 2002) and Tom Gutschmidt’s Game Programming
with Python, Lua, and Ruby (Course Technology PTR, 2003).

Introducing Lua
I have chosen to use Lua for my game projects, and therefore will share this

wonderful script language with you. Lua is distributed from www.lua.org under

MIT’s ‘‘liberal license,’’ which is far more open than even GPL or LGPL. You can

download and freely distribute Lua, port it to new systems, and do whatever you

want with it without license. Lua (pronounced LOO-ah) means ‘‘moon’’ in

Portuguese. As such, it is neither an acronym nor an abbreviation, but a noun.

Lua is a name—the name of the Earth’s moon and the name of the language. Like

most names, it should be written in lowercase with an initial capital—that is, Lua.

Lua is a powerful, fast, lightweight, embeddable scripting language. It combines a

procedural syntax with an associative array-based system for variables and has

extensible semantics. Lua is dynamically typed and runs by interpreting byte-

codes for a register-based virtualmachine (similar to theway inwhich Java programs

work). Lua has automatic memory management with incremental garbage collec-

tion. It is a proven and robust language, used in industrial equipment and embedded

systems, and it is the leading scripting language used in games.

Lua is fast! It is most likely the fastest language in the realm of interpreted

scripting languages because it is based on the standard C library. Lua is portable,

distributed in a small package that can be compiled for any platform that has

an ANSI/ISO C compiler. Lua runs on all flavors of UNIX and Windows and on

many mobile devices, such as BREW, Symbian, and Pocket PC. It also runs on

embedded microprocessors, such as ARM. Lua is free, distributed under a liberal

license, and can be used for any purpose (including commercial) at no cost. Lua

was born and raised at Tecgraf, the Computer Graphics Technology Group of

PUC-Rio (Pontificia Universidad Catolica de Rio de Janeiro in Brazil).

Running Lua from the Command Prompt

Most game developers test their Lua scripts from the command prompt before

plugging them into a game—to verify that the script runs as expected without

bugs. You can use the Lua interpreter to do that. The Lua binaries include

272 Chapter 12 n Scripting

www.lua.org/manual/5.1/
www.lua.org

lua5.1.exe (the interpreter) and luac5.1.exe (the script bytecode compiler). To

simplify running the programs from the command line, I recommend renaming

them to lua.exe and luac.exe. lua.exe (as I will refer to it from now on) is the

interpreter, and you will use it to run Lua script files. luac.exe (as it will be known

from now on) is the compiler, which converts a script into a bytecode file. You do

not need to compile a Lua script in order to run it. You may compile it into

bytecode if you don’t want anyone to edit or copy your scripts when you release a

program to the public.

Let’s run a script from the command prompt. First, open a command prompt.

In Windows, click Start, All Programs, Accessories, Command Prompt.

Optionally, you may click Start, Run and type cmd into the text field (then hit

Enter).

The first thing you need to do is change the current directory to where your

project files are or will be stored. All of the script files demonstrated in this

chapter are available on the book’s CD-ROM in the .\sources\ch12\sample

scripts folder.

You can use the cd command to change the current directory. You can type in

absolute paths (such as C:\Program Files\Microsoft Visual Studio 2005) as well as

relative paths (such as .\projects). The goal is to get into the directory where you

have extracted the Lua interpreter (lua.exe).

Adv i c e

After you type in a command, such as cd, when you are about to type in a directory or file name,
you may type in the first few letters and hit the Tab key (once or multiple times) to cycle through
the files and/or folders that begin with the characters you have entered.

If you do not know where the files are located, try copying everything from

\sources\ch12\sample scripts into the root folder of C:\ or in a subfolder called

C:\Advanced2D (just as an example). Once you have used cd to reach the folder

where the files are located, you can proceed.

Command-prompt programming is how users and programmers used to

interact with the operating system in the old days, and it was not user friendly or

easy to learn. Most Linux gurus still prefer their beloved shell rather than a fancy

GUI because typing is usually much faster than clicking and moving a mouse.

Here’s a helpful command:

dir

Introducing Lua 273

This gives you a listing of the current directory. But you can also pass a folder

name to dir to list the contents of any folder on your system. Figure 12.1

illustrates.

Text Output

Before running the Lua interpreter, we need a script file. You can use Notepad,

but while we’re in the command prompt, let’s do it the keyboard way. Type this:

notepad hello.lua.

Notepad will open with a new file called hello.lua, ready for your use. If the file

already exists, Notepad will open the file. Here’s a sample script you can type into

the hello.lua file:

-- My first Lua program
print("Hello World!")
print("Version: ",_VERSION)

Let’s verify that the script file has been created by using another useful command:

type hello.lua

Figure 12.2 shows the output.

274 Chapter 12 n Scripting

Figure 12.1
Using the command prompt to navigate the file system.

Adv i c e

If you are serious about Lua script programming, you will need a better editor. I recommend
Notepad++, a free editor that provides colored syntax highlighting and a tabbed interface.
Notepad++ is provided on the CD-ROM and is also available for download at http://notepad-plus.
sourceforge.net.

The Lua interpreter is so small that you can just copy it into your current project

folder so that you can run it from the command line to test your script files. (Just

be sure to copy the lua5.1.dll library file with Lua.exe since it’s a dependency.)

Adv i c e

If you run Lua.exe without a script file, it will go into command mode. Just press Ctrl+C to exit.

Assuming you’re in the right folder, you have copied lua.exe and lua5.1.dll into

that folder, and you have created your first script file (whew!), let’s give it a test

run:

lua hello.lua

Figure 12.3 shows the output from the hello.lua program.

Variables

Let’s talk about how Lua handles variables. In Lua, everything is an object. But

since ‘‘object’’ is such a generic term these days, to be more specific, Lua uses a

Introducing Lua 275

Figure 12.2
Viewing the contents of a file at the command prompt.

http://notepad-plus.sourceforge.net
http://notepad-plus.sourceforge.net

276 Chapter 12 n Scripting

dictionary-style container for all variables (where a dictionary stores each data

item with a lookup value). Here is an example script showing how variables are

declared and used.

-- Doing variables in Lua
--simple variables
myinteger = 100
mydouble = 3.1415926535
mystring = "some string"
print("myinteger = ", myinteger)
print("mydouble = ", mydouble)
print("mystring = ", mystring)

--complex variable (table)
Person = {

age = 30,
name = "John"

}
print("Person’s name: ", Person.name)
print("Person’s age: ", Person.age)

This program produces the following output:

myinteger = 100
mydouble = 3.1415926535
mystring = some string
Person’s name: John
Person’s age: 30

Figure 12.3
Running the hello.lua script program.

Introducing Lua 277

As you can see from the output, when using the print() function, multiple

parameters can be separated by a comma, which inserts a tab character into the

output stream. If you want to just append text, you must use Lua’s unusual text

concatenation operator, .. (double dot), like so:

print("mystring = " .. mystring)

Random Numbers

Lua has a weak random-number generator because it cannot be easily initialized

with a random seed. Although Lua provides a function called math.randomseed(),

it does not work properly because Lua does not provide an epoch-based milli-

second timer. Lua initializes its timer when the script begins to run, which means

the best we can do is send 0 to math.randomseed(). We need tomix up the random-

number generator (math.random()) with some large numbers and the use of

modulus (math.mod()) to produce a pseudo-random result. It’s messy. But it can

be put into a reusable function.

function gen_random(max)
local temp = math.mod((42 * math.random() + 29573), 139968)
local ret = math.mod(((100 * temp)/139968) * 1000000, max)
return round(ret + 0.5)

end

This function has a dependency—a function called round. Here is the round

function (which supports rounding to any number of decimal places):

function round(num, places)
local mult = 10^(places or 0)
return math.floor(num * mult + 0.5) / mult

end

Those two functions work pretty well to produce a random number up to the

passed maximum value parameter. But more often than not, we need to generate

a random number within a fixed range (such as 100 to 150). That’s easy enough:

function random_range(min,max)
return gen_random(max-min) + min

end

We can now create random numbers with pretty good consistency. Here is an

example:

math.randomseed(os.time())
output = ""

for n = 1,10 do
a = random_range(1,1000)
output = output .. tostring(a) .. ","

end
print(output)

The output from this program is a list of 10 random numbers in the range of 1 to

1,000:

63,52,806,319,700,189,617,981,852,15,

Arrays and Tables

Lua variables can contain complex data types, similar to a C++ struct (and even a

class through some convoluted code). To define a table, set a variable name equal

to an empty set of brackets:

grades = {}

After defining the table, you can fill it in with data like so:

grades[1] = 90.5
grades[2] = 78.3
grades[3] = 85.8
grades[4] = 76.2
grades[5] = 68.1
grades[100] = 50.3
grades[200] = 100.0

Did you notice that the last two elements in the grades table are out of order

(100 and 200)? Lua allows you to do that, but it will not fill in the missing

elements leading up to those numbers—they will all be nil unless they are

defined (which is true of any variable in Lua). Just remember that every variable

is an entry in Lua’s dictionary container. In that case, grades[100] is more of a

name than an array element (though that’s a simplification). Let’s examine a

more complex type of Lua table—one containing multiple named items:

persons = {}
persons[1] = { name = "John", age = 30, weight = 180, IQ = 120 }
persons[2] = { name = "John", age = 18, weight = 150, IQ = 113 }
persons[3] = { name = "Sue", age = 19, weight = 110, IQ = 125 }
persons[4] = { name = "Dave", age = 20, weight = 160, IQ = 110 }
persons[5] = { name = "Laura", age = 24, weight = 100, IQ = 118 }

278 Chapter 12 n Scripting

persons[6] = { name = "Don", age = 18, weight = 130, IQ = 122 }
persons[7] = { name = "Julie", age = 22, weight = 120, IQ = 105 }
persons[8] = { name = "Craig", age = 21, weight = 180, IQ = 112 }
persons[9] = { name = "Sarah", age = 20, weight = 115, IQ = 130 }

The persons table contains four properties: name, age, weight, and IQ. You can

legally violate the syntax of any one element in the table, and Lua will not

complain—although you could wind up with a program crash. For instance, I

could redefine persons[8] like so:

persons[8] = { something = 1, something_else = "blah" }

and Lua will accept it. But, although you can do this, it makes no sense to do so

because the most common use for a table is for iteration.

Lua provides a library called table that you can use to get information about one

of your tables. The function table.getn() will tell you how many items are

contained in your table. For instance:

print(table.getn(persons))

will display the number of elements in the persons table (which is 9). Odd as it

may seem to your C++ training, table is a Lua library, and your own custom-

defined tables are not objects with methods such as size or length. You must pass

the name of your table to table.getn() instead. With this new information, we

can print out the data in the persons table. Note in this example that you can

access properties in a table using two different formats (interchangeably)—either

the property name as an index or the property name with the dot operator.

print("PERSONS")
size = table.getn(persons)
for n = 1, size do

print("Person #" .. n)
print(" Name = " .. persons[n]["name"])
print(" Age = " .. persons[n].age)
print(" Weight = " .. persons[n]["weight"])
print(" IQ = " .. persons[n].IQ)

end

This produces the output:

PERSONS
Person #1

Introducing Lua 279

Name = John
Age = 30
Weight = 180
IQ = 120

Person #2
Name = John
Age = 18
Weight = 150
IQ = 113

Person #3
Name = Sue
Age = 19
Weight = 110
IQ = 125

Person ...

Timing

Lua provides functions to retrieve the current date and time. The os.date()

function returns the current date with a default format that includes the time

(and you may modify the format if you wish):

Date: 04/12/08 13:04:24

The os.time() function returns the number of seconds that have passed since

January 1, 1970 (on most systems—though this start date may vary from system

to system):

Time: 1208030664

Dividing this number by 60 produces the minutes since the beginning of the

epoch. Dividing by another 60 results in hours. Then, dividing by 24 hours and

again by 360 days, you will calculate the number of years. Now let’s look into

more specific timing features of the Lua language.

There are times when you may wish to profile or benchmark your script code to

see whether it’s slowing down the game much (if at all). We can use Lua’s os

library to get the current time in a number of ways. I’ve mentioned already that

Lua does a poor job of seeding the random number generator due to its lack of an

epoch-based millisecond timer. But once the program starts up, you can retrieve

milliseconds in order to profile your script code. Here is a function called

280 Chapter 12 n Scripting

Stopwatch() that I find useful for slowing down the output of profiling code (for

instance, limiting the print calls to once per second):

start_time = 0
function Stopwatch(ms)

if Timer() > start_time + ms then
start_time = Timer()
return true

else
return false

end
end

Stopwatch() just returns true or false depending on whether the desired number

of milliseconds has passed. To profile a function in Lua, as in C++, you must call

it many times, getting a baseline time value, and then divide that time by the

number of iterations. This is the only way to get the actual time taken to call a

function since the processor can perform a function call in a matter of micro-

seconds (millionths of a second) or nanoseconds (one billionth of a second),

while a millisecond is only one thousandth of a second.

The Stopwatch() function has a dependency on another function we have not yet

seen. The Timer() function returns the number of milliseconds since the pro-

gram started with the help of os.clock(). This function normally returns just

seconds, but it also provides a decimal value containing the milliseconds as well.

By multiplying os.clock() by 1,000, we can convert floating-point seconds into

integer milliseconds.

function Timer()
return os.clock() * 1000

end

Here is an example that prints out the raw clock value and the convertedmillisecond

value once every second:

repeat
if Stopwatch(1000) then

print("os.clock(): " .. os.clock())
print("Timer(): " .. Timer())

end
until false

Introducing Lua 281

That script program produces the following output:

os.clock(): 1.015
Timer(): 1015
os.clock(): 2.015
Timer(): 2015
os.clock(): 3.031
Timer(): 3031
os.clock(): 4.046
Timer(): 4046

The millisecond timer is indeed returning milliseconds, as you can see in this

output, because the data is being printed out once per second.

The last thing I want to go over with you regarding timing is a function profiling

program. The purpose of this program is to demonstrate how to test the runtime

of a single function. To slow down the function call, we will calculate square

root—which is notoriously difficult for most processors to calculate. First, we’ll

get a random number, then get the square root of the number using math.sqrt(),

and return the value for good measure.

function SlowMathFunction()
r = random_range(1,999999)
num = math.sqrt(r)
return num

end

Why do we set the square root value equal to a variable first, before returning it?

The Lua interpreter might be smart enough to optimize code like this, so we need

to physically store the result of the calculation in a variable to actually use a

processor cycle.

This program uses a for loop that runs the function a couple million times in

order to calculate the time taken to run the function once, and the results are

printed out.

print("Profiling function...")
TOTAL = 2000000

start = Timer()
for n = 1,TOTAL,1 do

var = SlowMathFunction()
end
finish = Timer()

282 Chapter 12 n Scripting

delta = finish-start
print("Total run time: " .. delta .. " ms")
print("Function run time: ")
milli = round(delta / TOTAL, 8)
micro = round(milli * 1000, 8)
nano = round(micro * 1000, 8)
print(" milliseconds: " .. milli)
print(" microseconds: " .. micro)
print(" nanoseconds : " .. nano)

Here is some sample output. As you can see, it takes about one and a half

microseconds to run the SlowMathFunction() just once.

Profiling function...
Total run time: 3218 ms
Function run time:

milliseconds: 0.001609
microseconds: 1.609
nanoseconds : 1609

Just out of curiosity, let’s see how much of that 1.6 microsecond figure is taken

up in the function calls (including the random function). Here’s a revised version

of the program that has the math calculation embedded in the for loop:

Total run time: 2796 ms
Function run time:

milliseconds: 0.001398
microseconds: 1.398
nanoseconds : 1398

Look at that! There’s a difference of 211 nanoseconds. Interestingly, this program

calls the SlowMathFunction() two million times, so there seems to be a noticeable

but infinitesimally small amount of overhead in each function call. The value will

differ from one system to the next and will depend on processor speed, but I

calculated one-tenth of a picosecond (which is, for all practical purposes, too

small to be relevant).

Distance

In general, you will want to code your math functions in C++, rather than in Lua,

because despite Lua’s solid performance, it is an interpreted language and it

cannot compete with a compiled binary for performance. But there are times

when a designer may wish to just perform some range tests or gameplay tests to

Introducing Lua 283

see whether a game is doing what it’s supposed to do in unusual situations. One

common calculation is to derive the distance between two points. A point can

represent the position of any game entity. The following program prints out the

distance between two points:

function distance(x1,y1,x2,y2)
return math.sqrt((x2-x1)^2 + (y2-y1)^2)

end
x1 = 100
y1 = 150
x2 = 780
y2 = 620
print("Point 1: " .. x1 .. "," .. y1)
print("Point 2: " .. x2 .. "," .. y2)
print("Distance = " .. distance(x1,y1,x2,y2))

Feel free to change the point locations. The output using these points is:

Point 1: 100,150
Point 2: 780,620
Distance = 826.6196223173

Velocity

We explored linear velocity and incorporated velocity calculations in the Math

class back in Chapter 10. We can code these functions in Lua as well. Here are the

Lua versions of VelocityX() and VelocityY() with some test code:

function VelocityX(angle)
return math.cos((angle-90) * math.pi/180)

end
function VelocityY(angle)

return math.sin((angle-90) * math.pi/180)
end
ang = 120
vx = round(VelocityX(ang),2)
vy = round(VelocityY(ang),2)
print("Velocity(" .. ang .. ") = " .. vx .. "," .. vy)

This example script produces the following output:

Velocity(120) = 0.87,0.5

284 Chapter 12 n Scripting

Targeting

For good measure, I’ll throw in one last math function that has been converted

from its C++ equivalent in the Math class: calculating the angle between two

points. Like the C++ atan2() function, Lua’s math.atan2() calculates an angle

based on delta Y and delta X for two points.

function target_angle(x1,y1,x2,y2)
deltaX = x2-x1
deltaY = y2-y1
return math.atan2(deltaY, deltaX)

end
x1 = 100
y1 = 100
x2 = 900
y2 = 600
print("Point 1 = " .. x1 .. "," .. y1)
print("Point 2= " .. x2 .. "," .. y2)
rangle = target_angle(x1,y1,x2,y2)
rangle = round(rangle,4)
dangle = math.deg(target_angle(x1,y1,x2,y2))
dangle = round(dangle,4)
print("Target Angle in radians = " .. rangle)
print("Target Angle in degrees = " .. dangle)

(Just grab a copy of the round() function from one of the other script listings for

use in this program—it was covered earlier in the chapter.) Here’s the output:

Point 1 = 100,100
Point 2= 900,600
Target Angle in radians = 0.5586
Target Angle in degrees = 32.0054

Guessing Game

Now let’s make a simple game entirely in Lua script! You can run this game

from a command prompt using the Lua interpreter. The guessing game script

first generates a random number from 1 to 100, and then asks the user to

continue guessing until he or she gets the answer right. Each time a number is

entered, the game tells the player whether the answer is higher or lower.

Here is the source code for the game. Not shown are the common functions

we’ve gone over previously: round(), gen_random(), and random_range().

Introducing Lua 285

function GetInput()
return io.stdin:read("*l")

end
print "Try To Guess My Secret Number (1-100)"
math.randomseed(os.time())
answer = random_range(1,100)
guess = 0
total = 0
repeat

input = GetInput()
guess = tonumber(input)
if guess > answer then

print("THE ANSWER IS LOWER")
elseif guess < answer then

print("THE ANSWER IS HIGHER")
end
total = total + 1

until guess == answer
print("You got it in " .. total .. " tries.")

Figure 12.4 shows the output of the guessing game script in a command prompt.

Lua and C++
Now we will plug Lua into the game engine to provide scripting support for our

future game projects. Distributed with the Lua library are the header files and

286 Chapter 12 n Scripting

Figure 12.4
The Guessing Game script program.

library file that must be added to a game project. In our case, we’ll be adding these

files to the Advanced2D engine project. Here are the headers:

n lua.hpp

n lua.h

n luaxlib.h

n luaconf.h

n lualib.h

You may copy these files into your compiler’s .\include folder so that they will

always be available for future projects, or you may copy the headers into your

project’s source code folder. Either way, you will need to include the lua.hpp

file. This extension (.hpp) is technically the proper file extension for a C++

header file, but .h is so common and familiar that most programmers still use

it. Although you need all of the Lua headers, you need only include lua.hpp as:

#include "lua.hpp"

Or, if referring to the file in your compiler’s .\include folder, like so:

#include <lua.hpp>

This single header includes the others so you need only include this one file.

Lua can be compiled into a binary executable directly, but the more common

way of including Lua support in a C++ program is with a library file. Included

in the Lua distribution are the full sources with makefiles for various compilers.

I have provided the precompiled library files for Dev-C++ and Visual C++ on

the CD-ROM under the folder for this chapter.

The Dev-C++ library file is called liblua.a and is added to the linker options with

-llua. The Visual C++ library file is called lua5.1.lib and is added to the linker

options with the whole filename.

Lua Script Class

I have written a simple Script class that encapsulates basic Lua scripting support,

which will keep the game code free of the somewhat messy Lua function calls.

The Script class does not support function parameters or return values. To keep

Lua and C++ 287

the class as simple and easy to use as possible, it only works with globals. If you

want to pass a parameter to a function, you can just set a global, call the function,

then retrieve the result (also a global). This simplicity may have limits as you

begin to gain experience with script programming—in which case you will be

able to add new functionality to the class.

Setting and retrieving globals is accomplished with functions. Here are the string

functions:

std::string getGlobalString(std::string name);
void setGlobalString(std::string name, std::string value);

To set a global string to be used by the Lua script, call setGlobalString. Likewise,

to retrieve a global string, use getGlobalString. Here is an example:

std::string Name = script.getGlobalString("NAME");
Name = "New Name String";
script.setGlobalString("NAME", Name);

There are also functions for working with global numbers and Booleans that

work in a similar fashion.

double getGlobalNumber(std::string name);
void setGlobalNumber(std::string name, double value);
bool getGlobalBoolean(std::string name);
void setGlobalBoolean(std::string name, bool value);

The Script class can run functions defined in your Lua script using the

runFunction method, which accepts as its single parameter the name of the

function. No parameters or return values are supported, although you can

accomplish the same thing using global variables.

void runFunction(std::string name);

Now let’s see the source code for the Script class, and afterward we’ll plug it into

the game engine. Here is the header file for the Script class:

#include "Advanced2D.h"
#pragma once
namespace Advanced2D {

class Script
{
private:

lua_State *luaState;

288 Chapter 12 n Scripting

public:
Script();
Script(std::string scriptfile);
virtual ~Script();

bool loadScript(std::string scriptfile);

std::string getGlobalString(std::string name);
void setGlobalString(std::string name, std::string value);

double getGlobalNumber(std::string name);
void setGlobalNumber(std::string name, double value);

bool getGlobalBoolean(std::string name);
void setGlobalBoolean(std::string name, bool value);

void runFunction(std::string name);
};

};

Next up is the Script class implementation.

#include "Script.h"
namespace Advanced2D {

Script::~Script()
{

lua_close(luaState);
}

Script::Script()
{

luaState = lua_open();
luaL_openlibs(luaState);

}
Script::Script(std::string scriptfile) : Script()
{

loadScript(scriptfile);
}

bool Script::loadScript(std::string scriptfile)
{

bool value = true;
try {

Lua and C++ 289

luaL_dofile(luaState, scriptfile.c_str());
}
catch(...) {

value = false;
}
return value;

}

std::string Script::getGlobalString(std::string name)
{

std::string value = "";
try {

lua_getglobal(luaState, name.c_str());
value = lua_tostring(luaState, -1);
lua_pop(luaState, 1);

}
catch(...) {
}
return value;

}

void Script::setGlobalString(std::string name, std::string value)
{

lua_pushstring(luaState, value.c_str());
lua_setglobal(luaState, name.c_str());

}

double Script::getGlobalNumber(std::string name)
{

double value = 0.0;
try {

lua_getglobal(luaState, name.c_str());
value = lua_tonumber(luaState, -1);
lua_pop(luaState, 1);

}
catch(...) {
}
return value;

}

void Script::setGlobalNumber(std::string name, double value)
{

290 Chapter 12 n Scripting

lua_pushnumber(luaState, (int)value);
lua_setglobal(luaState, name.c_str());

}

bool Script::getGlobalBoolean(std::string name)
{

bool value = 0;
try {

lua_getglobal(luaState, name.c_str());
value = (bool)(int) lua_toboolean(luaState, -1);
lua_pop(luaState, 1);

}
catch(...) {
}
return value;

}

void Script::setGlobalBoolean(std::string name, bool value)
{

lua_pushboolean(luaState, (int)value);
lua_setglobal(luaState, name.c_str());

}

void Script::runFunction(std::string name)
{

//call script function, 0 args, 0 retvals
lua_getglobal(luaState, name.c_str());
lua_call(luaState, 0, 0);

}
};

Adv i c e

This Script class began life in a real game project. Starflight: The Lost Colony (www
.starflightgame.com) uses Lua scripts extensively, for everything from the Starport, to the player’s
ship physics, to alien encounters. In particular, the encounter system features a dozen or so script
files with about 10,000 lines of script code!

Linking with the Lua Library

While the Advanced2D engine has no linked files (because it is a library itself, not

an object file), we do need to add the required linked files to our game projects.

Lua and C++ 291

www.starflightgame.com
www.starflightgame.com

At this stage in the engine’s development, our example programs and games

must include the following linker options for Dev-C++:

n -lAdvanced2D

n -ld3d9

n -ld3dx9

n -ldinput8

n -ldxguid

n -lwinmm

n -lfmodex

n -llua

If you’re using Visual C++, the linker options will need to include these files:

n ..\..\Engine\lib\Advanced2D.lib

n d3d9.lib

n d3dx9.lib

n dinput8.lib

n dxguid.lib

n winmm.lib

n fmodex_vc.lib

Script Test

The ScriptDemo program is a very simple program that demonstrates how to use

a Lua script to configure the screen and program title. The following properties

are stored in the script file:

PROGRAMTITLE = "SCRIPT DEMO"
FULLSCREEN = false
SCREENWIDTH = 640
SCREENHEIGHT = 480
COLORDEPTH = 32

292 Chapter 12 n Scripting

Figure 12.5 shows the ScriptDemo program window. You may experiment with

the properties in the script.lua file used by this program without needing to

recompile the program! Change any property you want to see how the change

affects the program when it loads up. This is the power of scripting—being able

to make dramatic changes to a program without recompiling its code.

#include "..\Engine\Advanced2D.h"
using namespace Advanced2D;
Font *font;
Script script;
std::string title;
int width;
int height;
int depth;
bool fullscreen;

bool game_preload()
{

script.loadScript("script.lua");
title = script.getGlobalString("PROGRAMTITLE");
width = (int)script.getGlobalNumber("SCREENWIDTH");
height = (int)script.getGlobalNumber("SCREENHEIGHT");
depth = (int)script.getGlobalNumber("COLORDEPTH");
fullscreen = script.getGlobalBoolean("FULLSCREEN");

Lua and C++ 293

Figure 12.5
The ScriptDemo program uses a configuration script.

g_engine->setAppTitle(title);
g_engine->setScreenWidth(width);
g_engine->setScreenHeight(height);
g_engine->setColorDepth(depth);
g_engine->setFullscreen(fullscreen);
return true;

}

bool game_init(HWND)
{

//load the Verdana10 font
font = new Font();
if (!font->loadImage("verdana10.tga")) {

g_engine->message("Error loading verdana10.tga");
return false;

}
if (!font->loadWidthData("verdana10.dat")) {

g_engine->message("Error loading verdana10.dat");
return false;

}
font->setColumns(16);
font->setCharSize(20,16);
return true;

}

void game_render2d()
{

std::ostringstream ostr;
font->Print(10,20,title);
ostr << "Screen Width: " << width;
font->Print(10,40,ostr.str());
ostr.str("");
ostr << "Screen Height: " << height;
font->Print(10,60,ostr.str());
ostr.str("");
ostr << "Color Depth: " << depth;
font->Print(10,80,ostr.str());
ostr.str("");
ostr << "Fullscreen: " << fullscreen;
font->Print(10,100,ostr.str());

}

294 Chapter 12 n Scripting

void game_end()
{

delete font;
}

void game_keyRelease(int key)
{

switch (key) {
case DIK_ESCAPE:

g_engine->Close();
break;

}
}

void game_render3d()
{

g_engine->ClearScene(D3DCOLOR_XRGB(0,0,80));
}

void game_update() { }
void game_keyPress(int key) { }
void game_mouseButton(int button) { }
void game_mouseMotion(int x,int y) { }
void game_mouseMove(int x,int y) { }
void game_mouseWheel(int wheel) { }
void game_entityRender(Advanced2D::Entity* entity) { }
void game_entityUpdate(Advanced2D::Entity* entity) { }
void game_entityCollision(Advanced2D::Entity* entity1,

Advanced2D::Entity* entity2) { }

That wraps up scripting support. The game engine has now been dramatically

improved as a result of this powerful new feature, and we will continue to utilize

it in the chapters to come.

Lua and C++ 295

This page intentionally left blank

Games

This final chapter of the book demonstrates the example game projects provided

on the CD-ROM that make use of the Advanced2D engine. It’s been a long haul

since the first chapter, and we’ve created a lot of fascinating code along the way.

Now we need to put it to good use. There are two important points that I want to

communicate to you before we take a look at the examples.

The first point that I want to drive home is to help you to understand the nature

of the Advanced2D engine: It is an ever-evolving engine that continues to see

improvement day by day. The example games in this chapter were developed as

prototypes before the Advanced2D engine was developed and indeed were used as

a trial run for the earliest entity management and collision detection tests. Now

that the engine is fully developed, these two games were upgraded to take

advantage of new features that I did not imagine originally. The result was a

feedback loop that manifested while upgrading to the latest engine specs. While

doing so, I found a need for new features (class properties and methods) in the

engine, either to simplify the front-end code or to improve performance.

The second point follows up on the first: A game engine is never finished; there

are only levels of functionality. Early in the project—back around Chapter 3—it

was possible to create a game with animation and crude keyboard input. It did

function, and the Sprite class worked. However, over the next 10 chapters, that

class (as well as others) saw continual improvements, bug fixes, and optimiza-

tions. Like a novelist or a film director, a game developer may feel that his or her

297

chapter 13

work is never truly finished, but due to deadlines and the fact that life must go

on, one must find a good stopping point. There, at that snapshot in time, you

deliver what outsiders might consider a finished product—but you feel that it is

never truly finished. I feel that I am nowhere near finished with the Advanced2D

engine! But what is in print need not stymie the game’s further development

online.

As youmay learn from exploring the book’s CD-ROM, I have provided examples

of research that I was conducting just prior to the book going to print—code that

might have become another engine class or example game. But the important

thing is that the engine works and is rock solid. Which brings me back to a topic

of iterative programming—a technique that resulted in a good measure of sta-

bility in this engine. If at any time you introduce a feature to a game that is really

cool but ultimately makes the program unstable, you must find a way to make it

stable or you must remove that feature. Such was the case with the threaded

garbage collector introduced into the engine back in Chapter 11.

In theory, threading provides enormous performance gains for a game engine

(just as more pistons in an automobile engine result in more power). However,

there are alternatives to the brute-force approach to performance. In the

automobile-racing realm, a turbocharger provides more power than additional

pistons, but it’s a complex technology that requires maintenance. For a one-shot

drag-racing engine, that’s a great solution because the engine will be rebuilt after

every run down the quarter mile. But for a NASCAR race, teams need moderate

power with great reliability, so they build race engines with hardened internals

but no power adders.

The thread-based code works great on its own, but more research will need to be

done to determine how to best support multiple-core processors while main-

taining stability in the engine.

What approach do you need to take for your engine? That will depend on your

design goals. I prefer strong stability over raw performance. There are many game

studios producing stable, high-quality games, but the one studio that stands out

every time is Blizzard Entertainment (developers of the Warcraft and Starcraft

series). Dating back to the early 1990s, Blizzard’s games have always maintained

an exceptionally high standard of quality, both in their code and artwork, and the

success of the company’s products is an obvious result. By focusing on quality

and stability first and basing your games on that foundation, you can introduce

new performance and visual upgrades later. I won’t single out any case examples,

298 Chapter 13 n Games

but there are many games released today for both PC and console that look terrific,

with all the latest fancy buzzwords built in (which marketing people love!), and yet

some games are riddled with bugs. Consider these issues while developing your

own games. What would improve the gameplay more—a normal mapping shader

or a more fluid animation system?

Scrolling Example
One of the additional examples provided on the CD-ROM with this chapter is a

research project in bitmap-based side scrolling. This technique is not new, of

course—side-scrolling games have been around for decades. But it will be a new

feature in the engine in due time. Bitmap scrolling layers along with tiled

scrolling layers will make possible some interesting new games, such as classic

Mario-style side scrollers with both bitmap and tiled layers rendered with parallax

perspective and alpha blending. Now I know what a film director goes through

during the final editing process. I would love to put the book on hold another

month to fully develop this subject! Alas, it will have to be continued online.

Figure 13.1 shows a prototype bitmap scroller class that provides the ability to

add multiple independently scrolling layers with alpha. In this example, two

layers are being drawn transparently over a starry background. Work will con-

tinue on this example.

Scrolling Example 299

Figure 13.1
This example demonstrates layered side scrolling with transparency.

The second screenshot, Figure 13.2, shows a working example of bitmap scrolling

in a small viewport on the screen. The texture was generated by a program called

TextureGenerator, which is based on the Perlin random noise library and is

provided in the \sources\bonus folder of the CD. We used this code to generate

real-time random planet textures in Starflight. The result: Every planet has a

unique textured surface that need not be stored in a bitmap file, and the planet

surface tiled scroller engine uses the texture for the tilemap! I’ve used the same

texture generator to produce a molten planet texture for use as an example layer

in this program.

Bitmap-based side scrolling is just the beginning of this future engine upgrade,

which will include scrolling in any direction and support for tiled layers. I have

covered these subjects in other books such as Beginning Game Programming, 2nd

Edition (the prequel to this book in many ways) and Game Programming All In

One, 3rd Edition, so the existing theory and example code will make it very easy to

add this old but fun technique to the Advanced2D engine. Here’s an intriguing

challenge: How would you integrate a scrolling layer system into the core engine

so that layers are automatically updated and rendered, while maintaining mesh

and sprite rendering at the same time?

300 Chapter 13 n Games

Figure 13.2
This example shows the algorithm that makes side scrolling work.

Blocks Game
Popularized by classic games such as Breakout and Arkanoid, the ball-and-paddle

block-bashing game genre is a fun exercise in game programming because it

requires fast-paced input, sprite control, animation, and collision detection—all

the nutrients you need for a healthy game in a little package. This is what I

consider the marquee demo game for the Advanced2D engine because it provides

a good overview of the engine’s core features.

The source code is about as tight as I could make it without resorting to complex

algorithms, and yet it is still 870 lines—or 30 pages of laid-out text (which is why

I’m not listing the code here). And yet, this is a tiny game by most standards. (In

contrast, most commercial games have more than 800 lines of code just for the

title screen.) Figure 13.3 shows a screenshot of the Blocks game.

From this figure, you can see that this is no ordinary Breakout-style game. First of

all, the ball is a light source that casts a shadow when it nears the paddle. Or is this

just a rendering trick? You can explore the source code to find out! Second, the

ball leaves a trail behind it as it moves. In addition, the blocks themselves are

rendered in varying levels of alpha, and you must hit them repeatedly to elim-

inate them. The ball’s power level increases as long as you don’t let it hit the floor.

Blocks Game 301

Figure 13.3
The Blocks game.

Unlike most games of this genre, this game doesn’t have ‘‘lives’’ in the normal

sense; instead, if you let the ball hit the floor, the power level drops back down to

one, and you have to build it back up again! The status information on top is

highlighted with smoky particles!

You may add new levels to the game by modifying the levels.h file. Here’s a

challenge: Modify the game so it uses Lua script to define the levels. By doing this,

anyone will be able to custom-design new block layouts and try them out without

recompiling the game.

Alien Invaders
The Alien Invaders game is a very old concept but has a lot of validity for a game

programming exercise because it demonstrates even more of the complexity

found in most games, such as advanced collision response. This game demon-

strates the flexibility of the engine with a trivial example that is slightly smaller

than Blocks, at just about 700 lines of code. It’s shorter because it doesn’t use as

many special effects, such as particles (although it’s ripe for such enhancement!).

However, unlike Blocks, this game does feature a 3D background scene (of a

rotating Earth) instead of a fixed background image. See Figure 13.4.

302 Chapter 13 n Games

Figure 13.4
The Alien Invaders game.

After much experimentation I decided to detach the invader sprites from the

engine’s entity manager because the code to move the invaders was too con-

voluted with those sprites being embedded. Although the entity manager does a

lot of work for us, in some cases (such as this) it actually becomes a hindrance.

No matter; it’s just as feasible handling the invader sprites in the front-end game

by responding to bullet update events instead of collision events. Of course,

things like bullets and explosions are still best left to the entity manager.

Epilogue
I would be remiss if I didn’t leave you with some ideas for further study. I want to

mention a significant game project that I have been involved with for the last year

and a half, because this project led to many of the C++ classes presented in this

book. Starflight: The Lost Colony is an official sequel to the original Starflight

series, developed by Binary Systems (owned by Rod McConnell) and published

by Electronic Arts. Many older gamers who remember playing Starflight in the

late 1980s and early 1990s (in particular, with the Sega Genesis port) consider this

to be the most enjoyable adventure sci-fi game ever made. Our goal with The Lost

Colony was to re-create the atmosphere of exploration and adventure in the

original games, while upgrading the gameplay to modern standards. Visit

www.starflightgame.com for more details about this freeware game and chat with

the game’s developers about their experiences.

Here’s a quick perusal of the game. The artwork is truly what makes this game so

engaging! (Art credit: Andrew Chason and Ronald Conley.) Figure 13.5 shows

the title screen, which is animated.

Figure 13.6 shows the Starport commons, which contain various modules, such

as crew assignments and ship upgrades.

Figure 13.7 shows an alien encounter taking place. Be careful in your attitude

toward aliens, or you could wind up at the business end of a missile! Of course,

the bread and butter of Starflight has always been about space exploration, and

The Lost Colony delivers, as you can see in Figure 13.8.

Finally, we come to another major module of the game—planet surface exploration.

See Figure 13.9. This is perhaps the most enjoyable part of the game—landing on

planets, collecting interesting life forms (or running away from them!), mining for

valuable minerals, and trading with alien civilizations. The tiled scroller used for

the planet surface module evolved from the one used for space travel in order to

Epilogue 303

www.starflightgame.com

304 Chapter 13 n Games

Figure 13.5
The title screen of Starflight.

Figure 13.6
The Starport is the center of action for human space travelers.

Epilogue 305

Figure 13.7
Engaging alien civilizations.

Figure 13.8
Exploring star systems is what it’s all about.

provide curved edges and two layers of overlay to improve its appearance. The

tile map is generated from the random planet texture (the same one viewed from

planet orbit).

Adv i c e

To continue the adventure, come join the game programming forum at www.jharbour.com/forum,
where we discuss new features in the Advanced2D engine, hold programming contests, and talk
about new demos and games. This forum is where I post all new updates to the engine and game
examples. Best of all, this forum is not advertiser driven. I look forward to chatting with you
online!

306 Chapter 13 n Games

Figure 13.9
Exploring a planet surface.

www.jharbour.com/forum

A
Acquire function

for keyboard device, 126

for mouse, 128

addEntity() method, 164

Advanced Visual Effects
with Direct3D (Walsh), 48

Advanced2D.cpp source code, 21–27

Advanced2D.h code, 19–21

Advanced2D namespace, 7–8

Alien Invaders game, 302–303

alive properties of sprite, 187

alpha channel transparency, 92

for explosion animation, 103

for particles, 110

for sprites, 95–97

AlphaDemo program, 96–97

angles

Math class functions, 214

target, calculating angle to, 226–236

animation, 99–121

demonstration for, 101–104

explosion animation, 102

frame timer, setting, 100–101

particles, 110–121

rotating sprites, 105–107

scaling sprites, 105–107

size of frame, 99–100

sprite sheets, 99

for explosion animation, 102–104

total number of frames of, 100

with transforms, 107–110

The Antennae Galaxies/NGC 4038-4039 image, 254

Arkanoid, 301
ARM, Lua on, 272

arrays in Lua, 278–280

ASCII fonts, 174–175

assets

defined, 18

folders for, 18

asteroid animation, 108

atan2() function, 227

Atari, 2

audio, 139–152. See also FMOD

classes, 142–148

designing system, 139–142

linker files, 152

testing, 149–152

Audio class, 143–148

definition for, 144

automated collision detection, 186–192

B
balls bouncing, rendering, 58–63

Beginning Game Programming, 2nd Edition
(Muska & Lipman), 5, 51, 300

behavior to entity, adding, 154

bin folder, 18

output to, 37–38

Binary Systems, 303

bitmap-based scrolling, 298–299

Bitmap Font Builder, 173–175

bitmapped fonts. See fonts

Blender, 44

for bouncing balls, 60

Blizzard Entertainment, 298–299

Blocks game, 301–302

bloodshed.net, 8

Booleans with Lua, 288

307

INDEX

Borland C++, 3

bouncing balls, rendering, 58–63

bounding rectangle collision detection, 185–186,

192–204

Breakout, 2, 301
BREW, Lua on, 272

bugs with Visual C++, 15

bullet sprites, 203

BuryEntities() method, 159, 163, 262–264

C
C++, 2

FMOD with, 141

Lua and, 286–287

C++ Programming for the Absolute Beginner
(Henkemans & Lee), 21

C++ Standard Library Practical Tips (Reese),

60, 155

C++ Standard Library vector feature, 60

Camera.h file, 48–51

cameras for 3D rendering, 48–51

cd command, 273

channel pointers, 143

Character Set for fonts, 174

Chason, Andrew, 303

Civilization IV, 4
collidable properties of sprite, 187

collision detection, 185–211

automated collision detection, 186–192

bounding rectangle collision detection, 185–186,

192–204

distance-based collision detection, 204–211

granularity settings, 203

collision method, 189

collisionBR method, 190–191

collisionD method, 191–192

CollisionDemo program, 193–204

collisionMethod property, 211

color key transparency, 92

for sprites, 93–95

colors

hexadecimal code, defining with, 178

with macros, 179

RGBA (red-green-blue-alpha) set, 58

command-prompt programming, 273

compilers, 2–4

for bounding box collision detection,

201–204

cross-compiler support, 6

for Lua, 272

compiling engine project, 33–34

Conley, Ronald, 303

Console class, 237–241

for bounding rectangle collision

detection, 193–200

header file, 237–238

implementation file, 238–239

testing, 240–241

ConsoleDemo program, 240–241

cooperative level

keyboard, setting for, 125–126

mouse, setting for, 127–128

core engine, creating, 7–8

Cox, Nathan, 93

CPUs, threading and, 245

CreateDevice() function, 124

cross-compiler support, 7

cross product as Math class function, 214

cubes, rendering, 56–59

D
degrees as Math class function, 214

deltas, arctangent of, 227

design documents, 1

Dev-C++, 3–4, 8–13, 44

compiler configurations, 201

configuring project, 11–13

file extensions for, 19

FMOD with, 141

installing, 8–9

Linker field for libraries, 37

new project, creating, 10–11

Package Manager, 9

with POSIX threads, 246

test project, 35–38

dictionaries, Lua using, 276–277

dir command, 274

Direct3D, 44. See also 3D rendering

lighting support, 63–72

reference books for, 48

texture cache, creating, 59

DirectInput, 5, 123, 124

directional lights in 3D rendering, 64–72

directory commands, 273–274

DirectPointer, 124

DirectSound, 5, 139–140

308 Index

Direct3D, 5

DirectX, 2

installing, 8

SDK support, 4–5

DispatchMessage, 45

distance

collision detection, distance-based,

204–211

in Lua, 283–284

Math class functions, 214

DLl dependency problems, 4

DLL file for POSIX threads, 246

dot product Math class function, 214

double data type parameters, 214

downloading pthread library, 245

draw() method, 105–106

Draw3D() method, 161–162

drop-down console, 237–241

D3DXMatrixTransformation2D()

function, 106

Duvel, Oliver, 48

E
Effective C++, 3rd Edition (Meyers), 21

Electronic Arts, 303

Engine class, 7–8

source code for, 21–27

Engine::Draw2DEntities() function, 162–163

Engine::Update() function

for 2D rendering, 76–77

for 3D rendering, 46–47

thread security to, 264

entities, 153–171. See also entity manager;

meshes; sprites

behavior to entity, adding, 154

defined, 153–154

game engine and, 158–165

list in private section, 158–159

Entity class, 155–158

definition, 156–157

implementation, 157–158

lifetime property, 155

RenderType in, 156

entity manager, 154–155

addEntity() method, 164

BuryEntities() method, 163

Draw2DEntities() method with, 162–163

Draw3DEntities() method with, 161–162

Engine::Update() method with, 159–160

explanation of, 158

findEntity() method, 164–165

Mesh class and, 168–171

public access methods, adding, 163–165

Sprite class modifications for, 165–168

UpdateEntities() method, 160–161

updating by, 159

Entity::animate(), 157–158

Entity::draw(), 157–158

Entity::move(), 157–158

Escape key, 123

explosion animation, 102

Express software, 44

F
files, 4

findEntity() method, 164–165

FindSample() method, 144

Firaxis Games, 4

Firelight Technologies, 140.

See also FMOD

FMOD

Audio class with, 143–148

classes for, 142–148

defined, 140

game engine, adding to, 148–149

Sample class with, 142–143

SDK, using, 140–142

folders, 18. See also bin folder

main engine folder, 10–11

Font class, 176–178

implementation of, 178–184

FontDemo program, 178–184

fonts, 173–184. See also TrueType fonts

implementation of, 176–178

loading fonts, 176–178

output, 173

width data, exporting, 175

widths array, 177

for loop in Lua, 282–283

frame-rate estimation/reporting, 27

freeware

FMOD as, 140

graphics software, 44

Lua as, 272

funativity, 2

function profiling program in Lua, 282–283

Index 309

G
game architecture, 1

game engine

compiling project, 33–34

creating projects, 7–8

entity management and, 158–165

FMOD, adding, 148–149

input, modifications for, 129

levels of functionality of, 297

purpose of, 5–7

testing project, 34–41

threading, 262–264

3D rendering support, adding, 45–48

game events, 35

Game Programming All In One,
3rd Edition, 300

game_end() event, 35

game_entityCollision(), 186

game_entityRender(), 158–165

game_entityUpdate(), 158–165

game_init(), 35

game_preload(), 35, 40–41

game_render3D(), 46–47

games, 297–306

Alien Invaders game, 302–303

Blocks game, 301–302

game_update(), 35

GCC, 2, 4. See also Dev-C++

gen_random in Lua, 277

GetDeviceState function

for keyboard, 126

for mouse, 128

GetModuleHandle() function, 124

getStartTimeMillis() method, 27–28

GIMP, 44

globals with Lua, 288

GPL, 272

granularity settings, 203

graphics software, 44

Guessing Game script program,

285–286

H
Halo: Combat Evolved, 139
header files

Advanced2D header file source code, 19–21

for Console class, 237–238

for Lua, 287

for Math class, 214–215

Visual C++ precompiled header option,

disabling, 17

winmain header file source code,

29–33

Henkemans, Dirk, 21

hexadecimal code, defining color with, 178

Hubble Space Telescope, 184, 254

I
IDirectInput8, 123–124

images, free software for, 44

input. See also keyboard; mouse

mickeys, checking for, 129

Input class, 130–132

InputDemo program, 135–137

installing POSIX threads, 245–246

iterative programming, 43–44, 78

and threaded game engine, 262

J
joysticks, 123

K
keyboard

acquiring keyboard device, 126

cooperative level, setting, 125–126

data format, setting, 125

initializing, 125–126

input, 123–127

key presses, scanning for, 124

reading key presses, 126–127

testing input, 134–137

Killer Tracks, 139

L
Lee, Mark, 21

LGPL, 272

libraries. See also Dev-C++; Visual C++

Lua library, linking with, 291–292

Perlin random noise library, 300

POSIX threads library, 243–245

runtime library files, 4

Standard Template Library, 155

XInput library, 123

lifetime properties, 155

310 Index

lighting

Direct3D support, 63–72

directional lights, 64–72

point lights, 65–72

source, 48

spot lights, 65–72

LightWave, 245

linear velocity, 220–226

in Lua, 284

lines, reference URL for, 79

linker files

for audio, 152

for Dev-C++, 37

with Lua library, 291–292

for Visual C++, 39

Linux, pthread library in, 245

lists and threaded game engine, 262

locking/unlocking mutexes, 251

logistics problem, 6–7

looping

POSIX threads with while loop,

247–248

threads and, 244

LPDIRECTINPUT8, 123–124

LPDirectInputDevice8, 127

Lua, 272–286

arrays in, 278–280

in C++, 286–287

command prompt, running from,

272–286

distance in, 283–284

function profiling program, 282–283

game creation in, 285–286

headers for, 287

implementation of Script class,

289–291

linking with Lua library, 291–292

random-number generator, 277–278

Script class, 287–291

implementation of, 289–291

script file for, 274–275

ScriptDemo program for, 292–295

Starflight: The Lost Colony, 291
tables in, 278–280

targeting in, 285

timing in, 280–283

variables in, 275–277

velocity in, 284

Ludology, 2

M
macros, colors with, 178

main engine folder, 10–11

manifest files, 4

Math class, 214–220

angle to target, calculating, 226–236

angles in, 214

header, 214–215

implementation, 215–218

linear velocity, 220–226

testing, 218–220

math functions, 213–241

atan2() function, 227

deltas, calculating, 227

in Vector3 class, 213–214

matrices, reference URL for, 79

Maya, 245

McConnell, Rod, 303

Mesh class, 168–171

Mesh.cpp file, 51–56

MeshEntityDemo program, 168–171

meshes. See also 3D rendering

defined, 59

free software for, 44

testing meshes as entities, 168–171

MessageBox() function, 35

Meyers, Scott, 21

mickeys, checking for, 129

Microsoft. See also DirectX; Windows

sprintf function, 2

Xbox 360, FMOD and, 140

mouse

acquiring device, 128

cooperative level, setting, 127–128

data format, setting, 127

initializing, 127–128

input, 127–129

mickeys, checking for, 129

reading the mouse, 128–129

testing input, 134–137

MP3 files, 140

multi-byte character set, 34

multi-threaded programs, 244

music soundtrack. See audio

mutexes, 244

iterative loops and, 262

locking/unlocking, 251

protecting data from threads with, 250–251

with single-run function method, 247

Index 311

N
namespace for Advanced2D, 7–8

naming/renaming projects, 11

Nintendo Wii and FMOD, 140

normalized vector Math class function, 214

Notepad, 274–275

Notepad++, 275

O
O’Donnell, Martin, 139

Ogg files, 140

FMOD and, 140

open-source software, 44

OpenOffice, 44

os.time() function, 280–281

Override Output Filename, enabling, 11–12

P
partial transparency, 95

particle system, 110–111

ParticleDemo program, 116–121

ParticleEmitter class, 111–116

input testing with, 134–137

ParticleEmitter::draw() method, 116

ParticleEmitter::update() method, 116

particles, 110–121

black background, demonstration with, 117

shader-based particles, 110

white background, demonstration with, 116

PeekMessage function, 45

p_entities, 158–159

Perlin random noise library, 300

Photoshop, threads in, 245

pixels

and color key transparency, 95

granularity settings, 203

platform-independent code, 7

PNG files for alpha channel transparency, 95

Pocket PC, Lua on, 272

point lights in 3D rendering, 65–72

points, reference URL for, 79

poling the mouse, 128

POSIX threads. See also mutexes

installing, 245–246

library, 243–245

new thread, creating, 249–250

pointer to thread function, 249

programming, 248–262

running programs, 246

single-run function method, 246–248

Task Manager with, 252–255

terminating, 250

ThreadDemo program, 251–262

with while loops, 247–248

working with, 246–248

Print method for fonts, 176–177

printing, 3D, 43

processor throttling with POSIX threads, 253

Programming with POSIX Threads (Butenhof), 249
programs, freeware for, 44

project files, 14

Project menu, 11

projects. See also Dev-C++; Visual C++

configuring Dev-C++ project, 11–13

pthread_create() function, 249–250

pthreads. See POSIX threads

pure virtual methods, 154

for Entity class, 154, 157–158

R
radian Math class function, 214

random numbers in Lua, 277–278

Red Hat. See POSIX threads

Reese, Greg, 60, 155

Release build for collisions, 202

rendering. See also 3D rendering

basics of, 44–45

bitmapped fonts, 173–175

RenderType in Entity class, 156

RGBA (red-green-blue-alpha) set, 58

RotateAnimDemo program, 108–110

RotateScaleDemo program, 105–107

rotating sprites, 105–107

round function in Lua, 277

runFunction() method with Lua, 288

runtime library files, 4

S
Salvatori, Michael, 139

Sample class with Audio class, 142–143

sample pointers, 143

scaling sprites, 105–107

Script class. See Lua

script globals, 271

312 Index

ScriptDemo program, 292–295

scripting, 271–291. See also Lua

scrolling, bitmap-based, 298–299

Sega Genesis, 303

SetCooperativeLevel() function, 125–126

SetDataFormat() function

for keyboard, 125

for mouse, 127

SetIdentity() function, 104

shader-based particles, 110

Sid Meier’s Civilization IV, 44–45
single-processor systems, multiple threads on, 244

SlowMathFunction() in Lua, 283

software engineers, 1

solution files, 14

Sony PS3 and FMOD, 140

sound effects. See audio

SoundForge, 78

source code, 14, 18–33

Space Invaders, 2
spot lights in 3D rendering, 65–72

sprintf function, 2

Sprite class. See also animation

collidable property, 201

creating, 85–92

entity manager, support for, 165–168

transparency with, 92–97

sprite sheets. See animation

Sprite::animate() function, 101

Sprite::draw() method, 101

SpriteEntityDemo program, 165–168

sprite_handler variable, 76

sprites, 78–85. See also animation; collision

detection; Sprite class

alpha channel transparency for, 95–97

bounding rectangle collision detection, 185–186,

192–204

bullet sprites, 203

color key transparency for, 93–95

distance-based collision detection, 204–211

granularity settings, 203

particles, 110–121

testing sprites as entities, 165–168

transparency, rendering sprites with, 92–97

vectors for, 79–85

Standard Template Library, 155

Starcraft, 298
Starflight: The Lost Colony, 291, 303–306

title screen for, 304

std::vector for particles, 110–111

StopAllExcept() method, 144

stopwatch() method, 27

in Lua, 281

Super Mario World, 185
Symbian, Lua on, 272

System 12-point font, ASCII order, 174

T
tables in Lua, 278–280

Targa files

for alpha channel transparency, 95

Verdana font as, 175

target vector Math class function, 214

TargetingDemo, 227–236

targets

angle to target, calculating, 226–236

in Lua, 285

Task Manager with ThreadDemo

program, 252–255

teamwork, 6

Tecgraf. See Lua

TestForCollisions, 186–187

testing. See also collision detection

audio, 149–152

Console class, 240–241

engine project, 34–41

keyboard input, 134–137

Math class functions, 218–220

meshes as entities, 168–171

mouse input, 134–137

sprites as entities, 165–168

threaded game engine, 264–270

Vector3 class, 83–85

text, freeware for, 44

texture cache, creating, 59

TextureGenerator program, 300

ThreadDemo program, 251–262

garbage collection system in, 262–264, 265

testing, 264–270

threading, 243–270. See also POSIX threads

definition of thread, 243

game engine, 262–264

garbage collection system, 262–264, 265

performance games with, 298

and processes, 245

testing threaded engine, 264–270

threadsafe mutex, 251

Index 313

three-dimensional particles, 110

3D Game Engine Programming
(Zerbst & Duvel), 48

3D printing, 43

3D rendering, 43–72

adding support for, 45–48

bouncing balls, rendering, 58–63

camera support, adding, 48–51

cubes, rendering, 56–59

directional lights in, 64–72

with entity manager, 161–162

lighting in, 63–72

meshes

rendering, 56–63

support, adding, 51–56

point lights, 65–72

spot lights in, 65–72

texture cache, creating, 59

3D Studio Max, 245

Timer class source code, 27–29

Timer() function in Lua, 281–282

Timer.cpp, 27–29

Timer.h, 27

timing in Lua, 280–283

transforms, animation with, 107–110

TranslateMessage function, 45

translucent blending, 95

transparency. See also alpha channel

transparency; color key transparency

scrolling with, 298–299

sprites with transparency, rendering, 92–97

TrueType fonts

displaying, 178

rendering, 174

2D rendering, 73–97. See also sprites

basic rendering, 74–77

with entity manager, 162–163

support, adding, 74–77

U
Unacquire function, 126

Unicode, 34

UNIX

Lua on, 272

pthread library in, 245

Update() method, 45–46

with entity manager, 159–160

UpdateEntities() method, 160–161

UpdateKeyboard() method, 132–134

UpdateMouse() method, 132–134

updating by entity manager, 159

V
variables in Lua, 275–277

Vector3 class, 79–85

for collision detection, 191–192

math functions in, 213–214

vectors

for bouncing balls, 60

for directional lights, 64–65

Math class functions, 214

reference URL for, 79

for sprites, 79–85

VectorTest program, 83–85

velocity

linear velocity, 220–226

in Lua, 284

Math class functions, 214

VelocityDemo, 221–226

vendor agnostic, 2

Verdana font, 173–175

visible properties of sprite, 187

Visual C++, 2–3

bugs with, 15

configuring new project, 16–19

Debug build, 17

file extensions for, 19

linker files for, 39

multi-byte character set, compiling with, 34

new project, creating, 13–16

precompiled header option, disabling, 17

Release build, 17

solution files, extension for, 18

Static Library project type, 14–15

test project, 34–41

Win32 project in, 13–14

W
Walsh, Peter, 48

Warcraft, 298
WAV files and FMOD, 140

Wetzel, Thom, Jr., 173

while loop with POSIX threads, 247–248

Windows

FMOD and, 140

Lua on, 272

RGBA color support for bitmap format, 96

314 Index

Index 315

winmain function, 45–46

winmain.cpp, 29–33

winmain.h, 29

X
Xbox 360 controllers, 123

XInput library, 123

Z
Z direction, 73

Zerbst, Stefan, 48

www.courseptr.com

www.courseptr.com

www.jogd.com
www.jogd.com
www.jogd.com
www.jogd.com

License Agreement/Notice of Limited Warranty
By opening the sealed disc container in this book, you agree to the following terms and

conditions. If, upon reading the following license agreement and notice of limited warranty,

you cannot agree to the terms and conditions set forth, return the unused book with

unopened disc to the place where you purchased it for a refund.

License
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc.

You are licensed to copy the software onto a single computer for use by a single user and to

a backup disc. You may not reproduce, make copies, or distribute copies or rent or lease

the software in whole or in part, except with written permission of the copyright holder(s).

You may transfer the enclosed disc only together with this license, and only if you destroy all

other copies of the software and the transferee agrees to the terms of the license. You may

not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty
The enclosed disc is warranted by Course Technology to be free of physical defects in materials

and workmanship for a period of sixty (60) days from end user’s purchase of the book/

disc combination. During the sixty-day term of the limited warranty, Course Technology

will provide a replacement disc upon the return of a defective disc.

Limited Liability
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST

ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL

COURSE TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES,

INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL

CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS

INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL,

OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF COURSE TECHNOLOGY

AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY

OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL

OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES

OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE,

OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF

IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL

DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other
This Agreement is governed by the laws of the State of Massachusetts without regard to choice

of law principles. The United Convention of Contracts for the International Sale of Goods

is specifically disclaimed. This Agreement constitutes the entire agreement between you and

Course Technology regarding use of the software.

