11 SHADERS CH11 4/19/04 11:07 AM Page 199 $

CHAPTER 11

MIRROR, MIRROR, -
ON THE WALL

n the last few chapters, you learned how lighting is an important component in mak-

ing realistic graphics. You may remember that not all materials behave the same way

or have specific properties. This chapter is the first in a series that addresses how dif-
ferent materials interact with their environment.

In this chapter, you will learn about the essentials you need to know when dealing with
materials that are translucent and reflective. I will be covering the topics of reflection and
refraction and how they interact. By the end of this chapter, you will be able to render
materials that exhibit both translucency and reflectivity.

Although there may be different approaches to doing both reflections and refractions, we
will concentrate on using cube environment maps. This method is a great way of repre-
senting the captured environment from a specific point within your scene and is easy to
use for reflections and refractions.

From Reflections to Refractions

Many materials, as you know, have properties that allow them to either reflect or refract
light. Probably the most obvious example is glass, which presents both phenomena at the
same time. On the other hand, other materials that have glossy surfaces, such as car paint,
also show reflections under the right lighting conditions.

Before we examine the details of how reflection and refraction can be reproduced, I must
address two topics. First, I need to explain why cubemap environments are so well suited
for such effects. Second, you must build the basic shader that you’ll use throughout this
chapter.

199

11 SHADERS CH11 4/19/04 11:07 AM Page 200 $

200

Chapter 11 = Mirror, Mirror, On the Wall

So why cubemaps? Cubemaps were covered in Chapter 6, “Blurring Things Up,” but they
are worth revisiting.

A cubemap is a set of six textures grouped together forming a cube centered on a single
point in space, with each face being a snapshot of the scene along a specific axis as shown
in Figure 11.1. Although this may not seem like a natural way of representing an environ-
ment from a single point in space, it is a very efficient way for your hardware to do so.

Because of the way a cubemap is formed, looking up the environment map is easily done
when given a direction vector to look at. The major axis of the vector is used to find out
which face of the cube will be sampled; the remaining two components of the vector are
used to access the cubemap face as if it were a regular texture.

note

Because of the nature of cubemaps and environment maps, there is an aspect you will need to keep
in mind. Because the environment map represents a snapshot of your environment from a particu-
lar point in space, this implies that everything within it is considered to be at an infinite distance
from that point; in simpler terms, because the environment is pre-cooked, it will not contain any
perspective.

Accessing a cubemap is simply a matter of determining which face to access and then
accessing it as a regular texture. This makes the cubemap a natural and easy feature to
implement with existing hardware architectures. Another added benefit is how easy a
cubemap is to build.

Figure 11.1 lllustration of how a cubemap is formed.

o

11 SHADERS CH11 4/19/04 11:07 AM Page 201 $

From Reflections to Refractions 201

Building a cubemap from scratch is simply a matter of setting up six cameras with a 90
degree field of view facing all three major axes in both directions. At the end of this chap-
ter, I will show you how you can dynamically construct a cubemap for use in a reflection
and refraction shader. The process for building static environment maps, such as Snow.dds,
generally involves authoring each face separately and using a specialized tool such as the
Microsoft Texture Tool to composite them together.

Enough about cubemaps for now, though. Let’s set up the basic shader that we will use
throughout this chapter.

The basic shader you will use in this chapter is similar to the one developed for the heat
haze and depth of field effects. The scene is composed of two passes. The first pass ren-
ders the environment cubemap you will use for this chapter to a sphere to create a back-
ground environment for the scene. (I recommend using Snow.dds, which is included on
the CD-ROM source code directory for this chapter.)

The second rendering pass renders a standard teapot object to the scene. For now, you will
simply render the teapot using a wood texture, but you will add reflection and refraction
to this object later on. See Chapter 6 to learn how the workspace is set up. Right now, let’s
go back to the first pass and see how the shader code is formed.

When rendering an environment to a sphere in this way, you must take a few things into
account. First of all, the sphere model you have is a unit-sized sphere centered on the ori-
gin. However, because you will be using this sphere to map an environment onto the cam-
era, this sphere needs to be re-centered around the camera that is rendering it. This can
easily be done by offsetting the sphere vertex positions by the camera’s position, as defined
by the built-in variable, before transforming it.

In addition to centering the sphere at the center of the camera, the environment map rep-
resents visual information that is located at infinity, relative to where the camera is
located. This has the consequence that the environment will need to be rendered first, and
the ZWRITE render state must be set to D3D_FALSE to avoid writing any depth information to
the Z-buffer.

The other item that is needed by this shader is the view direction so the environment map
can be sampled properly. Because the 3D sphere we are using is an origin-centered unit
sphere, the view direction simply becomes the position of the sphere vertex. The vertex
shader code that renders the environment cubemap to a sphere is as follows:

floatdx4d view_proj_matrix;
float4 view_position;
struct VS_OUTPUT
{
float4d Pos: POSITION;
float3 dir: TEXCOORDO;

11 SHADERS CH11 4/19/04 11:07 AM Page 202 $

202 Chapter 11 = Mirror, Mirror, On the Wall
b

VS_OUTPUT vs_main(float4 Pos: POSITION)
{
VS_OUTPUT Out;

// Center environment around camera
Qut.Pos = mul(view_proj_matrix, float4(Pos.xyz + view_position, 1));
Qut.dir = Pos.xyz;

return Out;
}

Within the pixel shader for this pass, all you have to do is read in the view direction passed
in from the vertex shader and use it as a texture coordinate to look up the environment
map. Doing so yields the following pixel shader code:

sampler Environment;
float4 ps_main(float3 dir: TEXCOORDO) : COLOR
{
return texCUBE(Environment, dir);
}

The second pass needed for this basic
shader simply renders a model with a
texture applied to it. No point in
describing shader code here because
this is as simple as it gets.

rﬂ DirectX 9.0 Preview:: Scene effect

With this shader compiled and run-
ning, you should get results similar to
the one shown in Figure 11.2. This
template shader has been included on
the CD-ROM as shader_l.rfx in the
directory for this chapter and is in fact
very similar to the template shader
developed in Chapter 7, “It’s Getting
Hot in Here.”

You are now all set up and ready to

start shading. So let’s start with the Figure 11.2 Rendering output for this chapter’s
first topic at hand: reflections. template shader.

11 SHADERS CH11 4/19/04 11:07 AM Page 203 $

From Reflections to Refractions

Reflections

You may recall our discussion on specular lighting in Chapter 10, “Shiny Little Pixels.”
Light from a source bounces off a polished surface onto the viewer. Although this may
seem different from reflection, it is the same process. The specular lighting equation emu-
lates the same phenomenon but from the point of view of a single light. The reality is that
all visible objects in a scene can be seen as a source of light and treated in the same way,

especially when you are dealing with highly glossy surfaces.

The most obvious example of a reflective material is a mirror, which reflects every ray of
light it encounters almost perfectly. But some more subtle examples, such as water or

glass, also exhibit reflections under the right set of circumstances.

Reflections occur when a ray of light emanating from a source of light (or another lit
object) hits the surface of the reflective material and is bounced towards the viewer. As
Figure 11.3 shows, the basic concept behind reflection is simple. The angle between the
incident light angle and the surface normal is the same as the angle between the reflected
ray and the surface normal. Figure 11.3 also shows how the reflected vector can be calcu-

lated from the incident light vector and surface normal.

note

Remember that HLSL has built-in functions for both reflection and refraction. Unless you have spe-
cific needs, you should use those built-in functions because it gives the compiler a better under-

standing of what you are trying to accomplish and results in more optimized code.

Angle of

Angle of
Reflection (r)

Incidence (i)

Incident
Ray (Vi) Reflected

Ray (Vr)

V,==(V,=2#(V;eN)*N)

Figure 11.3 How rays of light reflect off a surface towards the
viewer and the standard reflection equation.

203

11 SHADERS CH11 4/19/04 11:07 AM Page 204 $

204

Chapter 11 = Mirror, Mirror, On the Wall

With this information, rendering the scene with reflection on your teapot should be fairly
straightforward. However, there is one aspect you must consider. In the preceding para-
graphs, I discussed how light comes from a source, such as a scene object, bounces off
your reflective surface, and heads toward the viewer. Actually, when rendering such a
scene, you need to do this process upside-down. Because you cannot practically consider
all sources of light in your scene, which would mean all pixels of your environment map,
you need to start from your camera and trace the reflection in its reverse path to see what
gets reflected.

To do this in a shader is simply a matter of determining the camera-to-object vector, and
performing the reflection from this vector to get the source of the reflection from which
to look up the environment map. The camera-to-object vector can be defined as the dif-
ference between the vertex position and the camera position (through the use of the built-
in view_position variable).

For this shader, you only need to do the reflection calculations on the vertex shader to
maximize shader efficiency. You will be asked to repeat the same process per-pixel in the
exercises at the end of the chapter. After you calculate the reflection vector, it simply needs
to be passed to the pixel shader, where it will be used to read from the environment map.
Doing so yields the following vertex shader code:

floatdxd view_proj_matrix;
float4 view_position;
struct VS_OUTPUT
{
float4d Pos: POSITION;
float2 TexCoord: TEXCOORDO;
float3 Reflect: TEXCOORDI;
}s

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORDO)

VS_OUTPUT Out;
// Compute the projected position and send out the texture coordinates
Qut.Pos = mul(view_proj_matrix, inPos);

Out.TexCoord = inTxr;

// Compute the reflection vector

11 SHADERS CH11 4/19/04 11:07 AM Page 205 $

From Reflections to Refractions 205

Out.Reflect = -reflect(view_position-inPos,inNormal);

return Out;
}

Notice the negative sign in front of the reflect function call. Because you are tracing the
reflection from its destination to its source, you need to invert the resulting vector from
the reflect function so that it points in the right direction within the environment cube-
map. The pixel shader code simply needs to take in the reflection direction vector and
sample the environment map by using the texCUBE function. Taking this environment
value, proper reflection can be done by adding it to the object’s texture to create glossiness
on it. Following is an example of how this can be done, assuming a material with 40 per-
cent reflectivity:

sampler Wood;
sampler EnvMap;
float4 ps_main(float2 inTxr: TEXCOORDO,float3 inReflect: TEXCOORD1) : COLOR
{
// Qutput texture color with reflection map
return 0.6*tex2D(Wood,inTxr)+0.4*texCUBE(EnvMap,inReflect);
}

With this shader compiled and running,
your output should look similar to that
shown in Figure 11.4. The complete
version of this shader is included on the
CD-ROM as shader_2.rfx.

|3 DirectX 9.0 Preview:: Scene effect

Figure 11.4 Screenshot of the reflection shader
in action.

11 SHADERS CH11 4/19/04 11:07 AM Page 206 $

206

Chapter 11 = Mirror, Mirror, On the Wall

Refraction

On the other end of the spectrum is the refraction effect. Translucent materials, such as
glass, let rays of light through their surface. However, as I mentioned in Chapter 7, these
rays of light are affected by the differences in density between the two media they cross,
causing the rays of light to be deviated. This deviation is defined by Snell’s Law, described
through illustration and equation in Figure 11.5.

Snell’s Law
F'\ n,sini =n,sinr
Angle of n
Incidence (i) r = arcsin(—-sin i)
Incident)
Ray
Medium 1(n1)
Medium 2 (n2)
Refracted
Angle of Ray
Refraction (1)

Figure 11.5 How refraction happens, and a description of the
Snell’s Law equation.

As you can see from the equation in Figure 11.5,
the relationship between entering and exiting Table 11.1 Refraction

angles is dependent on the ratio of the index of Indexes for Various Materials
refraction between the two media involved. The Material Refraction
index of refraction is defined as the ratio between Index
the two surface densities, that is, IOR = nl/n2. Air 100
Table 11.1 summarizes the IOR (index of refrac- lce o
tion) for many common materials. Alcohol 13
Keep in mind that the IOR generally varies slightly Water 133
in relationship to the color of light. The values Plastic 1.46
given in Table 11.1 assume a midrange yellow- Plexiglass 1.51
colored light. In the second exercise at the end of Glass 152
this chapter, I will ask you to expand on the refrac- Emerald 1.58
tion shader to consider the color of light in the Mercury 12
refraction equation. R9by 1.76
Diamond 2.42

11 SHADERS CH11 4/19/04 11:07 AM Page 207 $

From Reflections to Refractions 207

With this, writing a refraction shader should be a simple matter of taking our previous
shader and substituting the reflect function call with the refract one. However, at the
time of this writing, the refract function does not always work as expected. Because of
this, we will take the long way to solving the problem.

The first step in determining the refraction is to take the view vector and apply a dot prod-
uct with the surface normal. As you may remember, the dot product of two vectors essen-
tially gives you the cosine of the angle between the two vectors. However, to solve Snell’s
equation, you need the sine and not the cosine of the angle. This can be resolved by using
the following identity: sine = sqrt(1 — cosine*cosine).

With this result, you can use your refraction indices to deduce the angle of the exiting ray.
However, this angle only gives us a direction, not a vector! Because the refracted ray will
be in the same plane as that formed by the surface normal and the incident ray of light,
you can determine a 3D basis from the two vectors and then use the sine/cosine of the
refracted ray angle to define the refracted ray vector.

The following code shows how this can be done:

floatdxd view_proj_matrix;
float4d view_position;
struct VS_OUTPUT
{
float4 Pos: POSITION;
float2 TexCoord: TEXCOORDO;
float3 Refract: TEXCOORDI;
}s

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORDO)

VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);

Out.TexCoord = inTxr;

float3 viewVec = normalize(view_position - inPos);

// Compute the reflection vector using Snell's Law

/] the refract HLSL function does not always work properly

// n_i * sin(theta_i) = n_r * sin(theta_r)

// sin(theta_i) : Determine the sine of the incident vector

o

11 SHADERS CH11 4/19/04 11:07 AM Page 208 $

208 Chapter 11 = Mirror, Mirror, On the Wall

float cosine = dot(viewVec, inNormal);
float sine = sqrt(l - cosine * cosine);

// sin(theta_r) : Determine cosine of the refracted vector
// Note that the saturate(x) function is equivalent to

// using clamp(0,1,x). Also, 1.14 is the IOR for this

// shader.

float sine2 = saturate(1.14 * sine);

float cosine2 = sqrt(l - sine2 * sine2);

// Determine the refraction vector be using the normal and tangent
// vectors as basis to determine the refraction direction

float3 x = -inNormal;

float3 y = normalize(cross(cross(viewVec, inNormal), inNormal));
Qut.Refract = x * cosine2 + y * sine?;

return Out;
}

On the pixel shader side, all you need to do is sample the environment map and output
the color as the following code does:

sampler Wood;
sampler EnvMap;
float4 ps_main(float2 inTxr: TEXCOORDO,float3 inRefract: TEXCOORDI) : COLOR
{
// Qutput texture color with reflection map
return texCUBE(EnvMap,inRefract);

} | & DirectX 9.0 Preview:: Scene effect

With this shader compiled and running, your '
output should look similar to the one shown \
in Figure 11.6. The complete version of this "

shader is included on the CD-ROM as
shader_3.rfx in the directory for this chapter. p-- .

You may have noticed the gray border on the ' L4 i
-

{
!

sides of the object. This is a natural phenome-
non that I will address in the next section.

Figure 11.6 Rendering output for the final
refraction shader.

o

11 SHADERS CH11 4/19/04 11:07 AM Page 209 $

From Reflections to Refractions 209

Walking Hand in Hand

As you have seen from the rendering for the refraction shader, there are regions where no
refraction occurs, and the result is a grayish color. The reason behind this result is not a
coding error or similar glitch, but a natural phenomenon that occurs when dealing with
refraction.

If you look at a container of water, such as an aquarium, dead-on, you will see through
the water without any difficulty. However, if you look at the same container from a shal-
low angle, it will not be transparent anymore and will start behaving more like a mirror.

This phenomenon happens because refraction will stop happening past a certain angle,
called the critical angle. At this angle, the refraction angle is equal to 90 degrees, and any
incident rays past this angle exhibit a phenomenon called total internal reflection (or TIR),
which in essence means that the surface will then behave as a mirror instead of being
transparent. Figure 11.7 shows the transition of a refractive material towards TIR.

As you can see, because of total internal reflection, reflection and refraction actually go
hand in hand, and this is exactly the next shader you will be writing. But before you can
do so, you need to find out how the reflection and refraction combine.

We know that refraction will stop happening when the critical angle is, hit or in other
words, when the refraction angle is equal to 90 degrees. Because you already have the sine
and cosine of the exiting angle, you can use this value to determine the correct ratio of
reflected and refracted environment. Because the sine of this angle is already in the zero
to one range, it makes a great candidate to be used as a blending factor.

Refracted Rays Emerging

/ //' Medium 2
1 \ Medium 1
Total Internal
Reflection

Incident Rays at
Various Angles

Figure 11.7 lllustration of how the total internal reflection phenomenon
happens and the relationship between reflected and refracted light.

o

11 SHADERS CH11 4/19/04 11:07 AM Page 210 $

210

Chapter 11 = Mirror, Mirror, On the Wall

After you determine the blending factors for both reflection and refraction, which will
also be passed to the pixel shader through one of the TEXCO0RD variables, combining the two
effects is simply a matter of putting the two code bases together and passing the blend fac-
tors, the reflection vectors, and the refraction vectors on to the pixel shader. Once the
changes are done, you should end up with the following vertex shader code:

float4x4 view_proj_matrix;
float4 view_position;
struct VS_OUTPUT

{

}s

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,

floatd Pos: POSITION;
float2 TexCoord: TEXCOORDO;
float3 Refract: TEXCOORDI;
float3 Reflect: TEXCOORDZ;
float2 Factors: TEXCOORD3;

float2 inTxr: TEXCOORDO)

VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates

Qut.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

float3 viewVec = normalize(view_position - inPos);

// Compute reflection
Out.Reflect = reflect(-viewVec,inNormal);

// Compute the reflection vector using Snell's Law
/] the refract HLSL function does not always work properly
// n_i * sin(theta_i) = n_r * sin(theta_r)

// sin(theta_i)
float cosine = dot(viewVec, inNormal);
float sine = sqrt(l - cosine * cosine);

// sin(theta_r)

float sine2 = saturate(l.14 * sine);
float cosine2 = sqrt(l - sine2 * sine?2);

o

11 SHADERS CH11 4/19/04 11:07 AM Page 211 $

From Reflections to Refractions 211

// Determine the refraction vector be using the normal and tangent
// vectors as basis to determine the refraction direction

float3 x = -inNormal;

float3 y = normalize(cross(cross(viewVec, inNormal), inNormal));
Qut.Refract = x * cosine2 + y * sine2;

// Determine proper reflection and refraction factors through
// a Fresnel approximation. (x = reflect, y = refract)
Out.Factors.x = sinez;

Out.Factors.y = (1 - sine2);

return Out;
}

The pixel shader for this combined reflection/refraction shader needs to take in three val-
ues. The first two are the lookup vectors for the environment cubemap lookup for the
reflection and refraction, and the last value is the blending factors to use. Once you have
looked up both environment values, combining them is a straightforward process.

Keep in mind that if you are applying a texture to your object, the refraction environment
map value for refraction needs to be modulated with the object texture value because the
texture has the effect of tinting the rays of light as they traverse the object. The following
is an example pixel shader code detailing how the refraction and reflection can be com-
bined:

sampler Wood;
sampler EnvMap;
float4 ps_main(float2 inTxr: TEXCOORDO,float3 inRefract: TEXCOORDI,
float3 inReflect: TEXCOORDZ,float2 inFct: TEXCOORD3) : COLOR

// Qutput texture color with reflection map
// Note the addition of 0.4 to the reflection/refraction
// results to ensure a certain amount of ambient lighting
return infFct.x * texCUBE(EnvMap,inReflect) +
(inFct.y * texCUBE(EnvMap,inRefract) + 0.4)
* tex2D(Wood,inTxr);
}

With this shader compiled and running, your output should look similar to the one
shown in Figure 11.8. The complete version of this shader is included on the CD-ROM as
shader_4.rfx in the directory for this chapter.

11 SHADERS CH11 4/19/04 11:07 AM Page 212 $

212 Chapter 11 = Mirror, Mirror, On the Wall

| $8 DirectX 9.0 Preview:: Scene effect

Figure 11.8 Rendering for the combined
reflection and refraction shader.

Building Dynamic Environment Maps

All these reflection and refraction shenanigans are nice for static scenes with one object,
but when your scene gets more dynamic or contains many objects, our current scheme
falls short. Because the environment map contains only a static, prebuilt scene, any reflec-
tions or refractions done with it will not contain any other objects in your scene. Doesn’t
make much sense to do refraction on a teapot if you will not see the elephant right behind
it, right?

The common solution to this problem is to use a dynamic cubemap instead of a static
one. In this section I will briefly review how this can be achieved. Unfortunately, at the
time of this writing, RenderMonkey does not support using cubemaps as render targets,
so you will not be able to implement a shader with this technique.

Because a cubemap is essentially a collection of six textures, building a cubemap dynam-
ically requires filling those textures one-by-one. When rendering with DirectX, each face
of a cubemap can be accessed as an individual texture, which, in turn, can also be used as
a render target. So the overall process is to render your scene six times, once for each face
of the cube, setting up the camera so that it matches the point of view from that particu-
lar cubemap face.

11 SHADERS CH11 4/19/04 11:07 AM Page 213 j\%

It's Your Turn! 213

note

At the time of this writing, cubemap textures are a special texture format that can only be read
from .DDS files. This means that you cannot directly render to these textures, or you will need to
use specialized tools such as the DirectX Texture Tool to author such textures. Also note that these
textures can only be accessed through the use of the texCUBE HLSL functions because you need to
tell the hardware you want to use a cubemap.

Because of the nature of a cubemap, rendering a face is a simple process. The camera
needs to be positioned at the point in space where you want to build your environment
map and must face the direction that matches the particular face you are rendering. You
may want to refer to Figure 11.1 to see how cubemap faces correspond to a specific axis
direction in world space.

The only other setting required for your camera to render cubemap faces is the field of
view angle. The field of view defines the angle of the viewing frustum cone that the cam-
era defines in space. Because all cubemap faces are of equal size, you need to set the FOV
for your camera to 90 degrees. Doing so ensures that the edges for each cubemap face
properly correspond and that the resulting environment appears seamless.

One last consideration when creating dynamic environment maps is performance.
Because you must render each face individually, your scene needs to be rendered six times
every time you update the cubemap. This may become a performance issue for some
applications, and you may need to avoid updating the environment map every frame and
try to spread the cost over time as much as possible.

It's Your Turn!

There you have it, your very own reflection and refraction shaders. The following exercises
will ask you to expand on those shaders to try out your own shading skills. And as always,
the solutions to these exercises are in Appendix D.

Exercise 1: DOING IT ALL PER-PIXEL

Starting with the combined reflection/refraction shader developed a few pages ago, mod-
ify it to do all of its operations on a per-pixel basis. This task should be simple and famil-
iar by now, especially considering that per-pixel lighting was the topic of Chapter 10, so
no hints will be given on how to perform this.

11 SHADERS CH11 4/19/04 11:07 AM Page 214 $

214

Chapter 11 = Mirror, Mirror, On the Wall

Exercise 2: COLOR-BASED REFRACTION

As mentioned earlier, the index of refraction, or IOR, for a particular material varies in
function based on the color of the light that passes through the object. So far, you have
assumed a constant IOR and have ignored this fact.

For this exercise, you are asked to implement a refraction shader which considers the color
dispersion due to the variation of the IOR based on the color of light. To do this, start off
with the per-pixel shader developed in the previous exercise and adapt it so that a differ-
ent refraction vector will be calculated for each color component (red, green, and blue)
and sample the environment once for each color component. Do not focus on trying to
correctly determine an IOR for each color; simply use three nearby values.

What's Next?

As you learned in this chapter, the interaction of light with translucent materials has many
aspects for you to consider, the main two being reflection and refraction. Although the
concepts behind those two effects are simple, they require you to render components of
your scene that are not necessarily easy to access.

This is where environment maps save the day! By estimating a full environment from a
specific point in your scene, you can take advantage of those powerful effects and signifi-
cantly enrich your renderings. However, when dealing with more dynamic environments,
you will have to take advantage of the nature of cubemaps and dynamically build an envi-
ronment map by rendering your scene to each face of the cubemap.

Now that you are on the topic of the interaction of light with surface materials, the next
chapter will discuss the topic of Bi-Directional Refractance Functions, or BDRFs. These
functions help define the properties for materials such as velvet, where the relationship
between the lighting and viewing angle cannot be described in terms of simple diffuse and
specular lighting.

