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Preface Xi

This book is the culmination of an idea that was not ours
uniquely, but one that has probably occurred to anyone who
has spent long hours at the terminal writing Image
Processing programs and routines. The programmer is often
found surrounded by a library of texts, loaded with formulas
and mathematically described algorithms. It is then
necessary to engage in the arduous task of writing computer
code from the mathematical description. In addition, if one
does not have an adequate background in signal processing,
the difficulty of this task is further compounded.

Programmers often spend time flipping from book to book,
index to index, as they search for a useful mask or filter
technique. In this book we have tried to bring within a
single, desktop friendly cover--in a simple, easy to use
format--the most popular of the vast ensemble of image
processing algorithms. We chose the C programming
language as our algorithm description format because of it's
popularity, portability and widespread use in image
processing systems. Also, the C language is compact and
easy to learn, and a plethora of texts and tutorials exist in the
literature for both the novice and seasoned programmer.
Appendix B contains the complete code for a simple image
processing program that may be used as a template for
implementing any of the code in this handbook.

It is our hope that all programmers (in the end, are we not all
programmers?) of Image Processing systems will find this
book useful--both as a reference guide and for the implicit
tutorial nature of our descriptions. Students should find our
simple and direct discussion effective as a supplement to
their classroom text or tutorial guides. Seasoned users will
find the format convenient to keep close to the terminal for
quick reference and easy access to definitions and
algorithms.

Harley R. Myler
Arthur R. Weeks
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TOPICAL LAYOUT

This book is intended to serve as a ready reference and
imaging system user and developer companion. Algorithms
and definitions covered in this book are arranged
alphabetically and typically occupy one or two pages. Each
algorithm follows a similar formart that is illustrated by the
miniaturized sample page graphic to the left, below.

Pizel 7] Each topic is identified by

name in bold print in the
CLASS; Image Fundamentals header region of each page
DESCRIPTION with the page number. The

A e of Picture Element, is te smellest wit posible in

T aT ey & | class of algorithms to

compuaional 2z & lmied oty vy ve menory ot 0 | which the topic belongs is

amexprsacnotyuel aze The duyeh of eyt ewonans | jdentified next. There are

ome bitdeey 13« Voary image. The example v sovie | fifieen classes, which are:

Lrusheel image With TW0 levels of expansion © show the
ind{vidvel pixels.

EXAMPLE:  Adaptive Filters

« Coding and Compression
« Color

« Graphics

« Histogram Operations

« Image Fundamentals

PROGRAM EXAMPLE: » Mensuration
/e 512 x 512 9-bit/pixel */ I H
el iet o . MQrphologxc.al Filters
/+ 1024 x 1024 24-bit/pixel RGD inaga =/ + Noise
char RGBIwage(3](1024][10241+ » Nonlinear Fil[CrS

7+ 156 x 256 tloating point image, pixel

Gatarmined by float definition =/ » Segmcmation
float RealImage[256][256]) . .
+ Spatial Filters
seEaLs0 » Spatial Frequency Filters
Quentization; Sempling. . StOrage FOrmatS
« Transforms

Each class is described on a separate page and appears in
alphabetic order with the topics. Classes are distinguished
from topics by a bullet (+) in front of the class name in the
page header.

A description of the algorithm or the definition of the topic
follows the class designation. This is followed by an
example of the algorithm or description discussed. Examples
may be graphic illustrations or irages. The algorithm in C is
then given, if appropriate to the topic, followed by suggested
follow-on topics under the SEE ALSO heading.
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FINDING TOPICS

Well-known topics, such as thresholding, may be looked up
rapidly by thumbing through the headers at the top of each
page. If the class of an algorithm is known, you may go
directly to the class description, which will list all the topics
that fall under that class.

The Table of Contents in the front of the book lists all of the
topics and class descriptions as they appear in alphabetical
order with their page numbers.

The Class Groupings Index, following this discussion, lists
the classes alphabetically and their topics along with page
numbers.

The Subject Index, at the end of the book, lists subject areas
and page numbers.

ALGORITHM PROGRAMMING

The C programming language algorithms given in this book
have been written in as simple a fashion as possible, with as
little dependence on sophisticated programming technique as
possible. In the words of Einstein, "make everything as
simple as possible, but not simpler.” It is a relatively easy
matter for the experienced programmer to make the C
routines presented more efficient and elegant; however, it is
not a simple matter for an inexperienced programmer to read
and understand, i.e., simplify, a program that has been
written in a complex and obtuse way with the goal of
computational efficiency.

Throughout the book an image data structure has been used
that allows flexibility while maintaining clarity. Image
representation within a computer is best expressed as a
rectangular array; however, when dealing with more than
one pixel data type across a set of algorithms, a C data
structure is the best solution for maintaining consistency
throughout the algorithm ensemble. The data structure used
here contains the rectangular size of the image, the type of
data each pixel in the image represents, and a pointer to the
image data itself.
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Another consideration in the use of a data structure are the
differences that exist between hardware platforms. Images,
by nature, are large data objects. The structure that we use
assumnes that the user has ailocated a data space large enough
to accommodate the image being processed within any
restrictive boundaries that may exist on the hardware being
used.

The example graphic below shows our data structure and its
relationship to an image.

Struct Image{ Columns
int Rows; R i Data
int Cols; o
unsigned char *Data; w
unsigned char Type; s
Yi

The *Data pointer is a contiguous sequence of bytes whose
type is described by the Type variable. The following four
types of image data pixels are used:

Type =0 Unsigned Character (BASIC)
Type =2 Integer (UINT)

Type =4 Float (REAL)

Type =8 Complex (CMPLX)

For example, a rectangular image with Rows = 64 and
Columns = 256 and a Type = 0 will require that 16,384 (256
x 64) bytes of storage be allocated for the *Data pointer. If
Type = 2 and if an integer on the host machine requires 4
bytes, then four times the previous amount will have to be
allocated.

One must also apply special data type modifiers when
programming MS-DOS™ systems. The far and huge
keywords must precede large data space pointers. Proper use
of these modifiers is discussed further in Appendix B.

A complex image is a special case. Here, each datum
represents a real and imaginary component using a float
data type. If the host computer requires 4 bytes to represent a
float value, then each datum in the *Data buffer will consist
of 8 bytes: the first 4 bytes for the real part of the datum, and
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the second 4 bytes for the imaginary part.

Consider the diagram below as representing an image, where
each pixel is represented by a square and the total number of
pixels is unspecified. The pixels have been lettered to
facilitate the discussion. The first row of the image consists
of the set of pixels {A, B, ..., C}, the second row is {D, E, ...,
F}, and the last row is {G, H, ..., I}. We can easily generalize
this to sets of columns, as well.

alBl .
D[E

Using our image data structure and assuming pixels of Type
0, the arrangement of data for this image in memory would
be as follows, where each pixel requires one byte of storage:

Data

....'.......

Data will point to a series of bytes that represent the pixel
values in column-row order. If Type = 2 and an integer in
our machine requires two bytes of storage (often this is the
size of an int ) then the internal representation will be:

Data

[A[A]B[B]: - *[C[C[P[DIE]E]- -+

So pixel 'A’ requires 2 bytes of storage, and so on. If the
image is complex (Type = 8) and a float in the machine
requires 4 bytes, the memory map will be:
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Data

[ATATATATATA[A[AIB[B]BB]B]BB]B]- -
real imaginary real imaginary
A A B B

A complicity in programming arises in the accessing of the
data using cartesian coordinates. The data structure allows
for easy representation of a large number of pixel data
formats and conforms readily to the idea of memory as a
contiguous sequence of bytes; however, access of the data by
coordinate is tricky. We must convert from the cartesian
coordinate pair into a single value so that we may index into
the linear image data array.

Consider the diagram below. We can visualize the pixels of
the small 4 x 3 image to the left , with pixel values A
through L, in terms of their row-column coordinates. The
programming description could be specified as the array,
Img. Pixel G would then be Img[1][2]. Alternatively, we
can specify an image structure as described earlier, with the
C statement struct Image Img. To access pixel G using our
structure, we have to index into the data vector one row and
three columns. The data in either case is stored as a sequence
of bytes. The Data pointer of the image structure will be
initialized to point to the start of this sequence, as shown in
the graphic to the right, after the space has been allocated.

01 23 pua
OrATB[CID
L[{EJF[G[H
S K[ [A]B]c]D[E]F[G[H][1]J]K]L]

Using the structure format, the value of pixel G would be:
*(Img.Data + (R * Img.Cols) + C)

Where R is the row number (indexed from zero) and C is the
column. For this example, *(Img.Data + 1*4 + 2) will yield
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the value, G. There are other ways to formulate access
schemes into linear arrays that have two-dimensional data
mapped to them, and some of these are illustrated in the
various program sections of the book. A C program header
file listing for the data structure is given in Appendix A, and
a complete image processing program listing is described in
Appendix B.

The routines presented in this book assume different image
pixel data formats and the user must observe some caution
when incorporating the algorithms in their own programs.
The most popular pixel size is, of course, the unsigned
character. For this reason, it was chosen as the base pointer
data type in our image structure. Image transforms such as
the Fourier and filters that operate in the spatial frequency
domain use complex pixels. Other processes use float pixels.
We have indicated the type of pixel data required by the
algorithm in the description, but in the interest of
compactness and simplicity have put no error detection
mechanisms in the code. It is assumed that the user has
allocated the correct data space for the algorithm called.

To simplify this concept of variable data widths for image
pixels, we have provided an example of a multiple data
format image 1/O routine at the end of Appendix B.

Finally, a Glossary has been included with a large range of
image processing terms defined as a convenience to the
reader.
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This index is for reference by class membership. The classes
and page numbers are:

* Adaptive Filters 16
* Coding and Compression 47
« Color Image Processing 48
+ Graphics Algorithms 93
« Histogram Techniques 115
» Image Fundamentals 129
» Mensuration 151
+ Morphological Filters 162
* Noise 167
+ Nonlinear Filters 168
» Segmentation 207
« Spatial Filters 220
« Spatial Frequency Filters 222
« Storage Formats 224
+ Transforms 244

Ddaptive Filters Class

Adaptive DW-MTM Filter 13
Adaptive MMSE Filter 17

I- Coding and Compression Class

Chain Codes 32
Huffman Coding 125
Run Length Encoding 200
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I » Color Image Processing Class 4‘
C.LE. Chromaticity Diagram 29
Color Saturation Correction 49
Color Tint Correction 51
HSI Color Model 97
Pseudocolor 187
Pseudocolor Display 190
RGB Color Model . 192
True-Color Display 245
YIQ Color Model 264

LGraphics Algorithms Class

Dithering 75
Flip 80
Morphing 160
Rotate 199
Warping 252
Zooming 268
hHistogram Techniques Class ]
Brightness Correction 27
Contrast Correction 57
Graylevel Histogram 95
Histogram Equalization 110
Histogram Specification 112

Nonlinear Transformations 169
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l * Image Fundamentals Class 1
Discrete Convolution 63
Discrete Correlation 65
Graylevel 94
Mask 144
Pixel 184
Quantization 191
Sampling 204
Scaling 205
Spatial Frequency 221

LMensuration Class j
Area 23
Centroid 30
Circularity 35
Clustering 44
Compactness 33
Maximum Axis i 145
Minimum Axis 154
Moments 157
Perimeter 183

I;Morphological Filters Class

Closing (Binary) Filter 40
Closing (Graylevel) Filter 42
Dilation (Binary) Filter 59
Dilation (Graylevel) Filter 61
Erosion (Binary) Filter 76
Erosion (Graylevel) Filter 78

Hit -Miss (Binary) Filter 116
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FMorphological Filters Class (continued) —J
Opening (Binary) Filter 171
Opening (Graylevel) Filter 173
Outline (Binary) Filter 178
Skeleton (Binary) Filter 208
Thickening (Binary) Filter 229
Thinning (Binary) Filter 234
Top-Hat (Graylevel) Filter 241

F Noise Class —_’
Gamma Noise 82
Gaussian Noise 85
Negative Exponential Noise 165
Rayleigh Noise 196
Salt and Pepper Noise 202
Uniform Noise 246

FNonlinear Filters Class —'
Alpha-Trimmed Mean Filter 20
Contra-Harmonic Filter 54
Geometric Mean Filter 87
Harmonic Mean Filter 102
Maximum Filter 147
Median Filter 149
Midpoint Filter 152
Minimum Filter 155
Range Filter 194
Weighted Median Filter 257

Yp Mean Filter 265
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[ +» Segmentation Class

Line Detector 137
Multi-Graylevel Thresholding 163
Optimum Thresholding 175
Point Detector 185
Thresholding 239

« Spatial Filters Class

Arithmetic Mean Filter 25
Gaussian Filters 84
Gradient Mask 89
High Pass Spatial Filters 109
Laplacian Filter 135
Low Pass Spatial Filters 140
Robert's Filter 198
Sobel Filter 218
Spatial Masks 223
Weighted Mean Filter - 254

+» Spatial Frequency Filters Class

Circularly Symmetric Filter 37
Homomorphic Filter 119
Inverse Filter 130
Least Mean Squares Filter 136
Wiener Filter 260

‘Wiener Filter (Parametric) 261
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Rtorage Formats Class l

Graphics Interchange Format (GIF) 90
Joint Photographic Experts Group (JPEG) 133
MacPaint File Format (MAC) 141
PC Paintbrush (PCX) 180
Tagged Interchange File Format (TIF) 225
' * Transforms Class j
Discrete Cosine Transform 67
Discrete Fourier Transform 70
Fourier Transform Properties 81
Hadamard Transform 99
Hartley Transform 105
Hough Transform 122
Slant Transform 212

‘Walsh Transform 248
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CLASS: Adaptive Filters

DESCRIPTION:

The adaptive double window modified trimmed mean (DW-
MTM) filter overcomes the difficulties of using the MMSE
filter in the presence of impulsive noise by using the median
estimator to estimate the local mean. A new local mean is
then computed using only pixels within a small graylevel
range about the median. This effectively removes outliers in
the calculation of the mean estimate, hence improving the
overall performance of the mean filter in the presence of
outliers such as salt and pepper noise.

The adaptive DW-MTM filter algorithm is described as
follows. Given a pixel located at x, y within the image, a
median filter (MED{g(x, y)]} is computed within an n X n
local region surrounding the location x, y. The median
value computed from this filter is used to estimate the mean
value of the n x n local area. Next, a larger-sized window
surrounding the pixel at location x, y of size g % q is used to
calculate the mean value. In computing the mean value in
the q x q window, only pixels within the graylevel range of

MED|g(x, y)] — ¢ to MED|g(x, y)] + ¢

are used, eliminating any outliers from the mean calculation.
The output of the DW-MTM filter is the ¢ x q mean filter.
The value of ¢ is chosen as a function of the noise standard
deviation as

c=K: oy

Typical values of K range from 1.5 to 2.5. This range for K
is based on the assumption that for Gaussian noise statistics
the peak-to-peak graylevel variations will be in the range of
+26, 95% of the time and any values outside this range are
more than likely outliers. For K = 0, the DW-MTM filter
reduces to a n X n median filter, and for K very large, the
DW-MTM reduces to a q x q mean filter. Hence, as K
decreases, the filter does a better job of filtering impulsive
noise, but does a poor job of filtering uniform and Gaussian-
type noise.



14 Adaptive DW-MTM Filter

EXAMPLE:

(a)

(a) The original Gaussian (variance = 200) and salt and
pepper noise (probability = 10%) corrupted image and
(b) the DW-MTM filtered image withn=3,q =5,
K=1.5, and oy, = 40.963. .

ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored ‘in the structure IMAGE. The program also assumes
that the standard deviation of the noise and the threshold
parameter K is passed to the program upon execution. The
program first computes the median in a 3 x 3 local window.
This median value is then used to determine which points
are excluded in the 5 X 5 mean filter calculation. Upon
completion of the program, the filtered image is stored in the
structure IMAGEL.

DWMTM_filter (struct Image *IMAGE, struct
Image *IMAGEl, float NSTD, float K)

{

int X, Y, x1, yl, med[9];

int median;

int gray, 1, j, temp;

long int total, sum, R;

R=IMAGE->Cols;

for{y= 2; Y<IMAGE->Rows-2; Y++!

for(X=2; X<IMAGE->Cols-2; X++)
{
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total=0;
for(yl=-1; yl<=1; yl++)
for(xl=-1; xl<=1; xl++)
{
med[totall=
* {IMAGE->Data+
X+x1+ (long) (Y+y1l) *R) ;
total=total+l;
}
for(j=1; j<=8;Jj++)
{
temp = med[j];
i=3-1;
while(i»>=0 && med[i] >temp)

med[i+1]= med[i];
i:i‘li

}

med{i+l)=temp;

median=med (4] ;
sum=0; total=0;
for(yl=-2; yl<=2; yl++)
for(xl=-2; x1<=2; xl++)
{
gray= *(IMAGE->Data
+X+x1+(long) (Y+yl) *R);
if (gray>=(median-K*NSTD) )
if (gray<={median+K*NSTD) )
{
sum=sum+gray;
total = total +1;
}

}
* (IMAGEl->Data+X+{long)Y*R)
=(unsigned char)
({float)sum/ (float)total);
}
}
|7'}SFE ALSO: Adaptive MMSE Filter
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Adaptive Filters

DESCRIPTION:

Depending on the type of noise that is present within an
image, the type of filter that is chosen to remove the noise
can radically affect the important details that must remain
unaffected by the filtering operation.  For example,
Gaussian type noise is better filtered using a mean filter
while Salr and Pepper type noise is better filtered using a
median filter. The disadvantage of using a mean filter over
a median filter is that the mean filter removes high spatial
frequencies which blurs the edges within an image.

An ideal filter 10 use on an image is a filter that adaptively
changes its filtering characteristics depending on the image
content within a local window. For example, if the image
content within a local window contains only edges, then a
median filter would be used to preserve the edge details. If,
within a local window, a uniform background is detected,
then the filter would change its characteristics to perform a
mean filter within this local window. Filters that
dynamically change their filtering characteristics as they are
scanned through the image are known as adaptive filters.

CLASS MEMBERSHIP:
DW-MTM Filter
MMSE Filter

SEE ALSO: Noise, Nonlinear and Spatial Filters
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CLASS: Adaptive Filters

DESCRIPTION:

The Minimum Mean-Square Error filter (MMSE) makes use
of the knowledge of the local variance to determine if a
mean filter is to be applied to the local region of an image.
This filter works best for additive type short 1ail noise. The
output of the MMSE filter for a pixel located at the
coordinates x, y in an image g(x, y) is

2 e
n

X yy=(- n) g+ K,
"1 9

where 0'2 is the variance of the noise, and 612 is the local
variance hbout the pixel located at x, y.

The parameter K is the output from a local mean filter which
is usually a 3 x 3 or 5 X 5 mean filter. In background
regions the local variance is approximately equal to the noise
variance reducing the adaptive MMSE to approximately a
local mean filter. Near edges, the local variance will be
much larger than the noise variance and the adaptive MMSE
filter reduces to the original unfiltered image.

EXAMPLE:

(a) (b)

(a) The original additive Gaussian noise corrupted image
(variance = 200) and (&) the 5 x 5 MMSE filtered image.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program also assumes
that the variance of the noise is known and is passed to the
program upon execution. The program first computes the
local variance over a N x N window from the local first and
second moments. Next, the program computes the MMSE
filter output using the N x N mean computed in the first
step. Upon completion of the program, the filtered image is
stored in the structure IMAGEL.

MMSE_filter{struct Image *IMAGE, struct
Image *IMAGEl, float NVAR)
{

int X, Y, x1, y1, N, g;
long int total, sum, suml, R;
float FSECOND, FVAR, FMEAN;
R=IMAGE->Cols;
N=5;
for{Y= N/2; Y<IMAGE->ROWS-N/2; Y++)}
for (X=N/2;X<IMAGE->C0ls-N/2; X++}
{
sum=0;
sumf=0;
total =0;
for(yl=-N/2; yl<=N/2; yl++)

{
for({xl=-N/2; x1l<=N/2; x1l++}
{

sum=sum + * (IMAGE->Data +
X+x1+(long) (Y+yl) *R);
suml=suml +
{long) * (IMAGE->Data +
X+x1+(long) (Y+yl) *R} *
(long) * (IMAGE->Data +
X+x1l+ (long) (Y+yl) *R);
total = total +1;
}

}

FSECOND= (float)suml/

(float) total;

FMEAN = (float)sum/

(float)total;

FVAR=FSECOND - FMEAN*FMEAN;

if (FVAR ==0.0)
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g={int) {FMEAN+.5);
else
g={int} ( (1-NVAR/FVAR}* *(
IMAGE->Data+X+ {long) Y*R) +
NVAR/FVAR*FMEAN+.5) ;
if (g>255)
g:255,’
if (g<0)
g=0;
* {IMAGEl->Data+X+{long}Y*R)=g;
}

}
SEE ALSO: Adaptive DW-MTM Filter
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CLASS: Nonlinear Filters

DESCRIPTION:

The alpha-trimmed mean filter is based on order statistics
and varies between a median and a mean filter. It is used
when an image contains both short and long tailed types of
noise. For example, many images contain both Gaussian
and salt and pepper type noise. To define the alpha-trimmed
mean filter, all pixels surrounding the pixel at the coordinate
X, y in the image A which are specified by an input mask
A(i) are order from minimum to maximum graylevel value

A} SA)SA3SA4S - SAN- SAN .
The aipha-trimmed mean filter is then given as
N-P

AlphaMean (4) = —1— ¥ 4;,
N-2p. 7}

where N — 2P is the total number of pixels included in the
average calculation.

EXAMPLE:

(@) (b)

(a) A Gaussian and salt and pepper noise corrupted image
and (b) the alpha-trimmed mean filtered image using a 5 x
5 square mask and P = 3.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program computes the
alpha-trimmed mean filter over a set of pixels contained
within a square N x N region of the image centered at the
pixel X, Y. The size of the filtering operation is determined
by the variable N and should be set to an odd number and be
less than 12. The parameter P passed to the program
determines how many of the endpoint pixels are eliminated
from the ordered data. For example, if P = 1, the pixels with
the minimum and maximum graylevel values are not
included in the average calculation. For the special cases of
P=0and P= (N * N)/ 2 - 1/2 the alpha-trimmed mean filter
becomes the mean and median filters respectively. Upon
completion of the program, the alpha-trimmed mean filtered
image is stored in the structure IMAGE1.

AlphaMean {struct Image *IMAGE, int P,
struct Image *IMAGE1)
{

int X, ¥, I, J, SUM, Z;
int N, AR[121], A;
N=7;
for(¥Y=N/2; Y<IMAGE->Rows-N/2; Y++)
for(X=N/2; X<IMAGE->C0ls-N/2; X++}
{
7Z=0;
for(J=-N/2; J<=N/2; J++!}
for(I=-N/2; I<=N/2; I++)
{
AR([Z]=*{IMAGE->Data+X
+I+(long) (Y+J)
*IMAGE->Cols) ;
Z++;

}
for(J=1; J<=N*N-1;J++}

o~

= A
=J-1
ile

R{J];
while

I>=0 && AR[I] >A)

i

R{I+1]1=AR[I];
=I-1

- .-
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AR[I+1]=A;

SUM=0;Z=0;
for (J=P; J<=N*N-1-P;J++)

{

SUM = SUM + AR[J};

Z++;

}

* {IMAGEl->Data+X+(long)Y

*IMAGE->Cols) = {unsigned
char) { (float)sSuUM/ (float)Z
+.5);

SEE ALSO: Geometric, Yp, Harmonic and Arithmetic Mean
Filters, Median, and other Nonlinear Filters.
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CLASS: Mensuration
DESCRIPTION:

Area algorithms measure the number of pixels contained
within an object in an image. The boundary of the object
must be defined, or the region wherein the object lies as well
as the pixel value to be counted as part of the object must be
known. In the image below, a region is delineated and a pair
of objects lie within the region. The area algorithm given
returns an area calculation for an object given a specific
graylevel. When the physical size of a pixel is known, the
actual area in size units can be calculated.

The example below shows the original image on the left. To
the right is a thresholded, binarized, and eroded image that
has a region drawn around a white object that represents the
"end" key. The white pixels in this region, when counted,
represent the area of the object.

EXAMPLE:

Region

ALGORITHM:

The algorithm accepts an image structure pointer, In, that is
assumed to be an 8-bit unsigned character picture. The
coordinates of the region containing the object,
(x1,y1,x2,y2), and the object graylevel, ObjVal, are also
passed. The area is computed by counting the number of
pixels in the area at the graylevel value. This value is
returned.

Objects that contain spaces or multiple objects within the
region containing pixels at the object graylevel value are also
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counted. Other methods of area calculation can avoid these
problems, but require the contour pixels of the object. If the
contour is known, the area can be calculated line by line by
counting candidate pixels between contour coordinates. The
macro pix is used for simplified access to the pixels of the
image by coordinates.

#define pix(Im,x,y} \
* (Im->Data + (x)*Im->Cols + (y))
/* Compute and return area for objects */

int area(struct Image *In,int x1,int y1l,
int x2,int y2,unsigned char Objval)
{

long i, j,rows;
int area value = 0;

for (i=x1; i<=x2; ++i)
for (J=yl:; J<=y2; ++3j){
if (pix(In,i,j)==0Objval)++area value;

return{area_value);

SEE ALSO: Maximum Axis, Minimum Axis
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CLASS: Spaual Filters

DESCRIPTION:

An arithmetic mean filter operation on an image removes
short tailed noise such as uniform and Gaussian type noise
from the image at the cost of blurring the image. The
arithmetic mean filter is defined as the average of all pixels
within a local region of an image. Pixels that are included in
the averaging operation are specificd by a mask. The larger
the filtering mask becomes the more predominant the
blurring becomes and less high spatial frequency detail that
remains in the filtered image. The definition of an
arithmetic mean filter in terms of an image A is

Mean(AJ=§E SAX+L y+j),
iLpeM
where the coordinate x +1i, y +j is defined over the image A
and the coordinate i, j is defined over the mask M. The total

number of pixels specified by the mask and included in the
average operation is given by N<.

EXAMPLE:

(a) b)

(a) The original Gaussian noise corrupted image and
(b) the mean filtered image using a 7 x 7 mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then performs
a N x N arithmetic mean filter on the image. The size of the
filtering operation is determined by the variable N and
should be set to an odd number. Upon completion of the
program the filtered image is stored in the structure
IMAGEL.

Mean (struct Image *IMAGE, struct Image
*IMAGEL)
{

int X, Y;
int I, J;

int N, SUM;
N=7;

for(¥Y=N/2; Y<IMAGE->ROwWS-N/2; Y++)
{
for(X=N/2; X<IMAGE->Cols-N/2; X++)
{

SUM=0;
for(IJ=-N/2; J<=N/2; J++)
{
far(I=-N/2: I<=N/2: I++)
{
SUM=SUM + *(IMAGE->Data+X
+I+(long) (Y+J)
*IMAGE->Cols) ;
}

}
* (IMAGEl->Data+X+(long)yY
*IMAGE->Cols} = SUM/N/N;
}

SEE ALSO: Median, Minimum, Maximum, and other
Nonlinear Filters
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CLASS: Histogram Operation

DESCRIPTION:

Brightness correction is used to enhance the visual
appearance of an image. Brightness modification of an
image is defined as

i = gj + brightness ,

where sj is the ith graylevel value of the brightness enhanced
image, and gj is the ith graylevel value of the original image.

EXAMPLE:

(@) )
(a) The original image and (b) the brightness corrected
image.
ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program adds the value
passed to the program in the brightness parameter to each
pixel in the image. Upon completion of the program, the
brightness corrected image is stored in the structure
IMAGEL.

Brightness (struct Image *IMAGE, struct
Image *IMAGEl, 1int brightness)
{
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int X, Y, I;
for{y=0; Y<IMAGE->ROWS; Y++)
{
for(X=0; X<IMAGE->Cols; X++)
{
I= *(IMAGE->Data+X+(long)y*
IMAGE->Cols} + brightness;
if(I> 255)
I=255;
1L 41<0Y )
I=0;
* (IMAGEl->Data+X+ (long}Y*
IMAGE->Cols) = I;
}

SEE ALSO: Graylevel Histogram, Histogram Specification,
Contrast Correction, and Nonlinear Graylevel Transforma-
nons
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CLASS: Color Image Processing

DESCRIPTION:
C.1.E. Chromaticity Diagram

9—‘ 520
.8
Wavelength
7 in
GREEN+ Nanometers
G s
R
E
E .54
N
A 4
X +WHITE
s .3 §20
780
.2—
1
I I | I | I I T 1
0 1 3 4 5 6 7 8 .9

RED Axis

1 =Red + Green + Blue
or

Blue = 1- Red - Green

SEE ALSQO:. RGB and YIQ Color Models, Hue and
Saturation Correction, and Pseudocolor
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CLASS: Mensuration

DESCRIPTION:

Centroid refers to center and is a measure of the geographic
center of an object. The centroid is expressed in coordinates
and is calculated using the following expression:

N N
1 1
Xe=x2X Ye=72Y
i=1 i=1
where X¢ and Y¢ are the centroid coordinates, X and Y are
the coordinates of the ith object pixel, and A is the object
area. The centroid may also be calculated as the first central

moment. The example graphic illustrates the computation of
the centroid of an object using the formula given above.

EXAMPLE:
Xc=39/13=3
01 2;456?6‘3
Yc=52/13=4 -3
ALGORITHM:

The algorithm accepts an 8-bit unsigned character image, In
and the coordinates of the region containing the object
(x1,y1,x2,y2) and the object graylevel, ObjVal. The object
area is computed by calling the area function (See Area).
Row and column coordinates are then accumulated for the
object. These accumulations are divided by the computed
area for the object and the resulting centroid coordinates are
returned as the x and y members of the coord data structure.
Integer arithmetic assures that a coordinate value will be
returned. If area_value computes to zero, negative
coordinates are returned.
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/* coordinates structure */
struct coord {

float x,y:
b

/* Compute and return centroid */

void *centroid(struct Image *In,int x1,
int yl,int x2,int y2,
unsigned char Objval,
struct coord *coords)

long i,7:
int area value, Xcent=0, Ycent=0;

area_value =
area(In, x1, yl, x2, y2,0bjval);

if (area_value == Q) {
coords->x = -1; coords->y = -1;
return;

}

for{i=x1l; i<=x2; ++i)
for(j=yl; Jj<=y2; ++i){
if (pix(In, i, j)==0bival) {
Xcent += j;
Ycent += i;

}

coords->x
coords->y

Xcent/area_value + 1;
Ycent/area_value + 1:

return;

SEE ALSO: Area, Maximum Axis, Minimum Axis,
Moments
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CLASS: Coding and Compression

DESCRIPTION:

Chain Coding is used to define object boundaries for the
purpose of measurement and identification. A chain code
follows the boundary of an object and indicates the change
in direction according to a 4- or 8-direction pattern as shown
here:

1

3
The code is dependent on where on the boundary the code
sampling starts, but may be normalized using a number of
techniques.

EXAMPLE:

N
\ Contour Mappings

N
. L
Contour \/ \/

A contour is shown with the directional mappings given to
the right. The 8-direction chain code for this contour would

77777710071,
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ALGORITHM:

The routine is passed an image structure pointer of unsigned
character data containing the open ended contour, In, the x
and y coordinates of the start of the contour to be coded, and
a threshold value, thresh, used to determine membership in
the contour from a pixel neighborhood. The routine is also
supplied a character string pointer, code, which must be
initialized to the maximum expected length of the code. The
routine returns the length of the code in the int pointer
length. Caution must be exercised in that the code string will
contain zeroes that indicate the right horizontal direction and
not string termination.

The routine uses a macro, idx, to simplify coordinate access
into the image array.

/* compute 8-direction chain code given
start point of contour */

#define idx(m,n)/
* (In->Data+{(m)+((n)*In->Cols}))

chain_8(struct Image *In, int x, int vy,
char *code,int *length,
unsigned char thresh)

*length = 1;
for (;:){
idx(x,y) = 0;

if (idx (x+1,y)>thresh) { /* => */
* (codet++) = 0;
++X;
++{*length) ;
continue;

1f(idx(x+1,y-1)>thresh) { /*x ] %/
*(code++) = 1;
--y; X}
++{(*length) ;
continue;
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if (idx(x,y-1)>thresh) {
*(code++) = 2;
++(*length),
continue;

}

if (idx(x-1,y~1)>thresh){
* (code++) = 3;
PR
++(*length);
continue;

if (idx(x~1,y)>thresh) {
* (code++) = 4;
—-—x;
++(*length};
continue;

if (idx(x-1,y+1)>thresh) {
* (code++) = 5;
+ty;-=-x;
++(*length);
continue;

}

if (idx(x,y+1l)>thresh){
*(code++) = 6;
++y;
++(*length)
continue;

}

if (idx(x+1,y+1)>thresh) {
*(code++) = T;
4y R
++{*length) ;
continue;

return;

}
SEE ALSO: Mensuration

*/

/*\

*/

/*

<- */

/*

/*/

*/

/%N */
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CLASS: Mensuration

DESCRIPTION:

Circularity 1is the measure of an object's closeness to
circular shape. It can be expressed as the variance of the
boundary pixel's distance to the centroid. If the object is
perfectly circular, this variance will be zero. The limit on
circularity is one-half the major axis.

ALGORITHM:

The circularity algorithm requires both the boundary pixels
of the object in question as well as the centroid. The
boundary may be determined by subtracting the single pixel
erosion (See Erosion) of the object from the object. The
algorithm accepts an 8-bit unsigned character image, In and
the coordinates of the region containing the object (x1, y1,
x2, y2) boundary and the object graylevel, ObjVal. The
object centroid is computed by calling the centroid function
(See Centroid); then a euclidian distance measure is applied
to each boundary pixel with the centroid. These values are
accumulated and the variance calculated.

/* coordinates structure */
struct coord {

float x,y:;
b

/* Compute and return circularity */

double circularity(struct Image *In,long x1,
long yl1,long x2,long y2,
unsigned char Objval)

struct coord Ocenterx;
long i,Jj,rows,points=0;
double mean=0.0,temp,stdev=0.0,variance;

centroid(In,x1,yl,x2,y2,0bjvVal, &Ocenter) ;

/* compute mean */
for (i=x1; i<=x2; ++i)
for (j=yl; Jj<=y2; ++3){
if (pix(In,i,3)==0bjval) {
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mean += sqrt({

(i-Ocenter.x) *(i-Ocenter.x)+
(j-Ocenter.y) *(j-Ocenter.y)):

++points;
}

if(points==0)retur§(-l):

mean f= {douple)piiTite;

/* compute variance */
for (i=x1l; i<=x2; ++i)
for (j=yl; j<=y2; ++J){
if (pix(In,i,3)==0bjval}{

temp = sqgrt ({i-Ocenter.
(i-Ocenter.
(j-Ocenter,
(j-Ocenter.

stdev += temp*temp;

}
stdev /= (double)points;
variance = sqgrt(stdev):
return(mean/variance)’

}

Xx) *
X) +
y) *
y))- mean;

SEE ALSO: Centroid, Maximum Axis, Minimum Axis,

Moments
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CLASS: Spatial Frequency Filters

DESCRIPTION:

The Circularly Symmetric Filter allows for powerful
frequency domain filtering using the FFT or a sequency-
based transform such as the Walsh or Slant. The filter begins
with a single dimension function that is rotated about it's
vertical axis to create a filter volume that is applied to the
frequency spectra of an image. Consider the following
function, H(u) and the rotation H(u,v):

H{u) H{u,v)

v
If the function H(u,v) as shown above is normalized to a
maximum value of 1.0 and then multiplied with the
frequency spectra of an image, F(u,v), the inverse FFT of the
result will be a filtered picure. This assumes that the spectra
has been centered in the spatial frequency domain. To center
the spectra, each pixel in the original image can be multipled
by (-1)X*Y prior to taking the FFT. This takes advantage of
the translation property of the Fourier. Otherwise, the filter
origin must be shifted, as diagrammed below:

Image of Filter Filter after origin shifting
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Filters can be generated by a number of techniques, the
simplest of which is to assume an ideal filter and use a
binary image as the filter function. This will most often yield
undesirable results as the filtered image will display ringing,
the subsampling artifacts that occur due to the convolution
taking place. A convenient function for producing smooth
transition filters is a two dimensional lowpass Butterworth,
given by the following expression:

Hwwv) = 1 +[_113¢] I

u“+v

The filter function shown on the previous page is derived
from this equation. Other shapes are possible, including
filters that selectively attentuate bands of frequencies or
regions of the image. Inversion of the fraction in brackets
will yield a high pass filter.

EXAMPLE:

Original Image
(uncentered)

Magnitude after ﬁlr Filtered (blurred) result
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ALGORITHM:

The routine described, circ_fil, accepts a N x N Image
structure pointer, filt, that is of type complex (sequential real
and imaginary pixels of type float) and returns a shifted
Butterworth lowpass filter function in the structure. N should
be a power of 2 so that the filter may be multiplied with an
image spectra. Filter parameters such as the spatial cutoff
frequency, Do, and the filter order, n, are also passed. The
filter shown in the discussion was generated by this function
on a 128 x 128 image structure with n = 1 and Do = 64.

The filter is applied by multiplying each pixel of the
complex spectra of an image by the filter image returned in
filt. This may be accomplished using a simple pixel by pixel
multiply routine. Note the multiply is the dot product of each
image pixel real and imaginary part with each filter image
real and imaginary part.

circ_filt (struct Image *filt,float Do, int n)

int i,3,1,m,N;
float *f,Huv;

= (float *)filt->Data;
= filt->Rows;
for (i=0,1=N-1; i<N/2;++i,--1)
for (j=0,m=N-1; J<N/2;++3,--m) {
/* low pass butterworth at (i,j) */
Huv = 1.0/(1.0 +
pow{sqrt {i*i+3*j)/Do,2*n)};

/* <REAL> <IMAGINARY> */
/* upper left quadrant */
*(£+(1*N+3)) = *(£+(i*N+j)+1) = BHuv;

/* lower right quadrant */
* (E+ (L¥N+m)) = * (£+(1*N+m)+1) = Huv;
/* upper right quadrant */
*(f+ (1*N+m)) = *(f+(i*N+m)+1) = Huv;
/* lower left quadrant */
*(E+(1*N+3)) = % (E+(1*N+3)+1) = Huv;

}
SEE ALSO: Fourier Transform
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CLASS: Morphological Filters

DESCRIPTION:

Morphological closing of a binary object is defined as the
dilation of that object followed by the erosion of the dilated
object. The closing filter operation will reduce small inward
bumps and small holes within the object..

Close(A,B)= A®BYOB
EXAMPLES:

® L ]
OBJECTA

OBJECTA
L J [ ]

(a) (b)

(a) The original binary image of object A and (b) the closed
image of object A with a circular structuring function B.

)

(a) The original image and (b) the closed image.
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ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
The N x N structuring function is stored in array MASK[]{].
Upon completion of the program, the closed image is stored
in the structure FILTER. The binary erosion and dilation
functions used by the algorithm can be found under binary
erosion and dilation respectively.

#define N 5

Close{struct Image *IMAGE, int
MASK[] [N], struct Image *FILTER)
{
int X, Y;
Dilation(IMAGE, MASK, FILTER});
for(¥=0; Y<IMAGE->RowS; Y++)
{
for{X=0; X<IMAGE->Cols; X++)

{
* (IMAGE->Data+ X +
{long)Y *IMAGE-> Cols: =
*(FILTER->Data+ X + (long)Y¥
* IMAGE->Cols});
}
}
Erosion (IMAGE, MASK, FILTER);
FILTER->Rows=IMAGE->ROwWS;
FILTER->Cols=IMAGE->Cols;
}

SEE ALSO: Binary Dilation, Erosion, and Opening Filters
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CLASS: Morphological Filters

DESCRIPTION:

Morphological closing of an image is defined as the
graylevel dilation of the image followed by the graylevel
erosion of the dilated image. The closing filter operation
will reduce small negative oriented graylevel regions and
negative graylevel noise regions generated from salt and
pepper noise.

Close(A,B)= A®B)OSB

EXAMPLES:

(@)

(b)

(a) The original image and (b) the closed image using
an all zero 7 X 7 mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The N x N structuring
function is stored in the array MASK(][]. Upon completion
of the program, the closed image is stored in the structure
FILTER. The graylevel erosion and dilation functions used
by the algorithm can be found under graylevel erosion and
dilation respectively.

#define N 5

CloseGray {(struct Image *IMAGE, int
MASK[] [N], struct Image *FILTER)
{
int X, Y;
DilationGray {IMAGE, MASK, FILTER);
for(¥=0; Y<IMAGE->Rows; Y++)
{
for(X=0; X<IMAGE->Cols; X++)
{
* (IMAGE-~>Data+X+ (long)y*
IMAGE->Cols)= *(FILTER->
Data+X+ (long) Y*IMAGE~>Cols) ;
¥

}
ErosionGray {IMAGE, MASK, FILTER);
FILTER~>ROWS=IMAGE->RowWS;
FILTER~>C0ls=IMAGE->Cols;
}

SEE ALSO: Graylevel Dilation, Erosion, Top-Hat, and
Opening Filters
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CLASS: Mensuration

DESCRIPTION:

Clustering is the process of counting and labeling of objects
within an image. Clusters consist of pixel groupings that are
related to one another by a predetermined measure. This
measure can be defined as a distance between clusters or a
similarity measure such as pixel value, or it may be a
complex set of identifiers and constraints that define
membership in a cluster. The cluster may ultimately be
mapped into a binary image as a unique object.

One of the simplest approaches is to specify a size in pixels
that the clusters should be. If we assume a binary image, the
clustering algorithm processes each pixel and when one is
found that is nonzero, it becomes part of the first cluster and
is marked. The next nonzero pixel found is tested to see if
the distance between it and the previous pixel is less than or
equal to the desired cluster pixel size. If it is, it is marked as
a member of the first cluster and the search continues. If it is
not, it becomes the first member of the second cluster and is
marked accordingly. This process continues until all pixels
have been evaluated.

The example shows a graphic of a set of similar-sized
objects that have been labelled by grayscale value.

EXAMPLE:

111 11
I

LI I |
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ALGORITHM:

The following variables, with their descriptions, are used in
the cluster analysis function:

i, 3.k Loop variables.
n Cluster count variable.
In Unsigned character image

data structure pointer to
binary image.

In->Rows Rows in Image
In->Cols Columns in Image
clustx][] Temporary storage for x-

coordinate of last pixel in
cluster [].

clusty/(] See clustx.

new_clust Flag for new cluster.

edist Euclidean distance.

clust_size Size of clusters to be
found.

At the completion of the function, the In data array contains
pixel values that reflect their membership in the clusters
found that meet the criteria of being clust_size apart.
Clusters of pixels that are larger than clust_size size will be
partitioned into pieces as they are found in the image. The
image is scanned from the upper left corner origin in
column-row order.

cluster (struct Image *In, int clust_size)

int n, i, j, k, new_clust;
float edist, clustx[256],clusty[256];

/* initialize cluster count variable n */
n=0;

/* double-loop through each pixel
of binary image */
for(i=0; i < In->Rows; ++1i)
for (j=0; j < In->Cols; ++3j)
if (n==0)}{
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/* only do for lst cluster */

if (pix(In,i,3J) !=0){
n=1; /* 1lst cluster found */

/* store X coord. */
clustx([1l] = i;
/* store y coord. */
clusty(1l] = 3;

/* mark pixel as cluster 1 */
pix(In,i,3) = 1;
}

}
/* test for membership in all
known clusters */
else if(pix(In,i,J) != 0){
/* marker for new cluster */
new_clust = 0;
/* compute Euclidean distance */
for(k = 1; k <= n; ++k){
edist = sqrt((i-clustx(k]}*
(i-clustx[k])+
(j-clusty[k])*
(3—clusty(kl));
/* test against cluster
size desired */
if(edist <= clust_size) {
/* set pixel to cluster number */
pix(In, i, 3) =
(unsigned char)k;
new clust = 1;
k =n + 1;

}

}

/* add a new cluster */

if (new_clust == 0 && n <= 255){
n=mn-+1;
clustx[n] = i;
clustyl[n] = 3
pix(In,i,3) =

(unsigned char)n;
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Coding and Compression Class

DESCRIPTION:

Coding is a broad term that can refer to data encryption,
representation, or compression schemes. Although images
are often encrypted for security purposes, these methods are
beyond the scope of this book. Only one representation
coding is covered in this book, chain codes. Chain codes
play an important role in image understanding and computer
vision studies and allow the user to describe contours and
edges in a compact and useful way.

Compression is an important aspect of image processing
simply because the data sets are so large. Clearly, an RGB,
512 x 512 pixel image at 24 bits per pixel requires 786,432
bytes of storage. Two such pictures exceed the capacity of
most magnetic floppy diskettes. If the image data is fairly
correlated, the compression ratio possible can exceed 50 to
1. Of course, the basic drawback to compression is the time
it takes to compress and the time it takes to decompress.
However, special hardware is available that can maximize
the speed of the compress/decompress cycle to real-time
image display rates.

Although image Storage Formats constitute a separate class
in themselves, formats often incorporate compression
schemes as a part of their standard.

CLASS MEMBERSHIP:
Chain Codes
Huffman Coding
Run Length Encoding (RLE)

SEE ALSO: Storage Formats
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Color Image Processing

DESCRIPTION:

A new and very powerful field of image processing is color
image processing. Color image processing can be separated
into two general areas: (1) the enhancement of color images,
and (2) the pseudocoloring of graylevel images. The en-
hancement of a color image involves either the enhancement
of the three color (Red, Blue, and Green) components of an
image or the enhancement of the tint or saturation of an
image. In contrast, pseudocoloring makes use of color to
represent the graylevel values of an image. In this way,
certain attributes of an image can be easily visualized. The
human eye is much more sensitive to color variations than to
graylevel variations. For example, arteries within an x-ray
image can be hilighted in red to improve the accuracy in
locating blocked arteries.

CLASS MEMBERSHIP:
C.LE. Chromaticity Diagram
Color Saturation Correction
Color Tint Correction
HSI Color Model
Pseudocolor
Pseudocolor Display
RGB Color Model
True-color Display
YIQ Color Model



Color Saturation Correction 49

CLASS: Color Image Processing

DESCRIPTION:

This algorithm adjusts the color saturation of an RGB color
image in a similar manner as the color control on a color
television. The algorithm is based upon the R ~ Y, G - Y,
and B - Y color model used in many of today's color
televisions. The color components in terms of R, G, and B
are

R-Y =0.70R - 0.59G - 0.11B
B-Y=-0.30R - 0.59G + 0.89B
G-Y=-030R+041G-0.11B,

where the illuminance component Y is defined as

Y =0.30R + 0.59G + 0.11B

ALGORITHM:

The program assumes that the original image is a 24-bit
color image of spatial size of RED->Rows X RED->Cols
pixels. The program assumes that the image is a RGB image
and is stored in three structures: RED, GREEN, and BLUE.
Passed to the program in the variable saturation is an integer
number that is greater than zero that represents in percent the
amount of color to be added back to the illuminance or black
and white image. The first thing the program does is
compute the R—Y, G- Y, and B — Y components. Next, it
scales these values using the variable saturation and adds
them back to the illuminance component to generate the new
RGB values. Upon completion of the program, the saturated
corrected image is returned in the three structures RED,
GREEN, and BLUE.

Saturation(struct Image *RED, struct Image
*BLUE, struct Image *GREEN,
int saturation)
{
int ¥, RY, BY, GY, RYl, BYl, GY1;
int ¥, R, B, G, Bl, Rl, GI1;
long int K;
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for{¥=0; Y<RED->Rows; Y++)

{

for(X=0; X<RED->Cols; X++)
{
K=X+ (long)Y*RED->Cols;
Rl= * (RED->Data+K);
Gl= *(GREEN->Data+k);
Bl= * (BLUE->Data+K};
RYl= {{(int) (70* (int)R1~
59* (int)Gl-11*(int)B1)/100)
BYl={(int) (-30*(int)R1-
59* (int)}G1+89* (int)B1)/100) ;
GYl={int) ((-30* {int)R1+
41* (int)Gl-11*(int)B1)/100);
Y=({int) (30* (int)R1l+
58* (int)Gl+11*(int)B1)/100);
BY=(BYl*saturation) /100;
RY={RYl*saturation)/100;
GY=(GY¥l*saturation)/100;
R= RY +Y;G= GY + Y;B = BY + Y;
1f(R <0) R=0;

£{

£(G <0) G=0
1f(R>255) R=

£f(B »255) B H
1f(G >255) G=255;
* (GREEN->Data+K) =
(unsigned char)G;
*{BLUE->Data+K) =
(unsigned char)B;
* (RED->Data+K) =
(unsigned char)R;
}

}

SEE ALSO: RGB, HSI and YIQ Color Models, C.LE. Color
Chart, Pseudocolor, and Color Tint Correction
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CLASS: Color Image Processing

DESCRIPTION:

This algorithm adjusts the tint of an RGB color image in a
similar manner as the tint control on a color television. The
algorithm is based upon the R-Y, G -Y, and B — Y color
model used in many of today's color televisions. The color
components in terms of R, G, and B are

R-Y=0.70R-0.59G - 0.11B
B -Y =~0.30R ~ 0.59G + 0.89B
G-Y=-0.30R +0.41G - 0.11B,

where the illuminance component Y is defined as
Y =0.30R +0.59G + 0.11B

ALGORITHM:

The program assumes that the original image is a 24-bit
color image of spatial size of RED->Rows x RED->Cols
pixels. The program assumes that the image is a RGB image
and is stored in three equal sized structures: RED, GREEN,
and BLUE. Passed to the program in the variable tint is an
integer number in degrees between -180 and +180 that
represents the angle in which the tint of the image is to be
rotated. Positive angles give the color image more of a
green tint while negative angles give the color image more
of a red tint. The first thing the program does is compute the
R - Y and B - Y components. Next, it rotates these two
vectors by the angle given in the variable tint. Finally, the
program then recomputes the new RGB values placing them
in the three color image arrays. Upon completion of the
program, the tint corrected image is returned in the three
structures RED, GREEN, and BLUE.

Hue (struct Image *RED, struct Image *BLUE,
struct Image *GREEN, int tint)
{
int X, RY, BY, GY, RY1l, BYl;
int Y, R, B, G, S, C, R1, G1, BI;
long int K;
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float theta;

theta=(3.14159* (float)tint)/180.0;
C=256*cos { (double)theta};
S=256*sin{ (double)theta);

for(y=0; Y<RED->Rows; Y++)

{

for{X=0; X<RED->Cols; X++)}
{
K=X+{long)Y*RED->Cols;
R1= *(RED-»>Data+K);
Gl= * (GREEN->Data+K);
Bl= *(BLUE->Data+K};
RYl= ({int) (70* (int)R1l~
59* (int)Gl-11* (int)B1)/100);
BY1={({int) {-30* (int)R1-
59* (int)G1+89* (int)B1)/100);
Y=((int) { 30* (int)R1l+
59* (int)Gl+11* (int)B1)/100);
BY=(C*BYl - S*RY1)/256;
RY=(S*BY1l + C*RY1)/256;
GY=({int) (-51*RY -
19*BY) /100};
R= RY +Y;G= GY + Y;B = BY + Y;
if (R <0) R=0; .
if (B <0) B=0;
if (G <0) G=0;
if (R>255) R=255;
if(B »255) B=255;
if (G »255) G=255;
* {GREEN~->Data+K) =
tunsigned char)G;
* (BLUE->Data+K) =
(unsigned char)B;
* (RED->Data+K) =
{unsigned char)R;

}

SEE ALSO: RGB, HSI and YIQ Color Models, C.LE. Color
Chart, Pseudocolor, and Color Saturation Correction
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CLASS: Mensuration

DESCRIPTION:

Compactness is an object distribution measure similar to
circularity, but is defined as the perimeter squared divided
by the area. The compactness value will be minimal for a
circular object, but it is not insensitive to noise in the
perimeter measure. Objects with noisy boundaries will have
a large perimeter measure with respect to similar sized
objects with smooth boundaries, hence different
compactness values in spite of circular shape. No algorithm
is given as compactness can be readily calculated from the
area of the object and the area of the object boundary
(perimeter). Examples are shown, however, of compactness
measurements on various objects.

EXAMPLE:

IRENE 11
1 1 11

L
E)
w

Each of the objects shown has the same area, 32 pixels.
Compactness for each object is as follows:

A: 703 B:8 C:1515 D:15.15

Objects A and B are similarly shaped and have very close
compactness values. Objects C and D, however, are very
different in shape in spite of identical compactness values.

SEE ALSO: Area, Circularity, Perimeter
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CLASS: Nonlinear Filters

DESCRIPTION:

The contra-harmonic mean filter is member of a set of
nonlinear mean filters which are better at removing Gaussian
type noise and preserving edge features than the arithmetic
mean filter. The contra-harmonic mean filter is very good at
removing positive outliers for negative values of P and
negative outliers for positive values of P. If all the pixels
included in the calculation of the contra-harmonic mean are
zero, the output of the contra-harmonic filter will also be
zero. The definition of the contra-harmonic mean filter is

> A +i, y+j)P"'1
(i,)e M

zA(x+i, y+j)P
(i.j)e M

contra-harmonic Mean(4) =

where the coordinate x + i, y + j is defined over the image A
and the coordinate i, j is defined over the mask M. The
mask M determines which pixels are to be included in the
contra-harmonic mean calculation. The parameter P chooses
the order of the filter.

EXAMPLE:

(a) (7

(a) The 10% negative outlier corrupted image and (b) the
contra-harmonic mean filtered image ( 3 x 3 mask, P = 2).
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program computes the
contra-harmonic filter over a set of pixels contained within a
square N x N region of the image centered at the pixel X, Y.
The program expects the order of the filter to be passed to it
upon execution. The size of the filtering operation is
determined by the variable N and should be set to an odd
number and should be less than 12. Upon completion of the
program, the filtered image is stored in the structure
IMAGEIL.

ContraharmonicMean (struct Image *IMAGE,
int P, struct Image *IMAGELl;
{
int X, Y, I, J, Z;
int N;
int AR[121], A;
float SUM;
float SUM1;
N=5;
for{¥Y=N/2; Y<IMAGE->Rows-N/2; Y++)
for (X=N/2; X<=IMAGE->Cols-N/2; X++)
N
2=0;
for(J=-N/2; J<=N/2; J++}
for{I=-N/2; I<=N/2; I++)
{
AR([Z]=* (IMAGE->Data+X
+I+{long) (Y+J)}
*IMAGE->Cols) ;
Z++;

}
7=0;
SUM=0,0;
SUM1=0.0;
for(J=0; J<=N*N-1;J++)
{
if(AR([J]==0 && P<0)
Z=1;
else
{
SUM=SUM+pow { idouble)AR[J],
(double) (P+1});
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SUM1=SUMl+pow ( {double}
AR[J], (double)P);
}
}
if (z==1)
* {IMAGEl->Data+X +(long)yY

*IMAGE->Cols)=0;
else

{
if (SUM1==0.0)

A=0.0;
else

A= (int) (SUM/SUMI1) ;
if(a »255)

A = 255;

* (IMAGEl->Data+X+ (long}y
*IMAGE->Cols) =

(unsigned char)A;

SEE ALSO: Geometric, Yp, Harmonic and Arithmetic mean
Filters, Median, and other Nonlinear Filters
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CLASS: Histogram Operation

DESCRIPTION:

Contrast correction is used to enhance the visual appearance

of an image. Contrast modification of an image is defined as
sj = contrast - (gj - average) + average ,

where sj is the ith graylevel value of the contrast enhanced
image, g; is the ith graylevel value of the original image, and
average is the mean value of the original image given by

L NNy
average =35 o Y YPpXY),
NNy ¥ ov0

where Ny and Ny are the dimension of the image in the x
and y directions respectively, and P(X , Y) is the graylevel
value of the pixel at the X, Y coordinate.

EXAMPLE:

(a) (b)
(a) The original image and (b) the contrast corrected
image.
ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
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stored in the structure IMAGE. The program then compuies
the average of the image and removes this value from the
original pixel.  Next, the averaged removed pixel is
multiplied by the specified contrast parameter. The last step
the program implements is to add back the average to the
contrast corrected pixel and store this result in the structure
IMAGET1.

Contrast (struct Image *IMAGE, struct Image
*IMAGELl, float contrast)

{

int X, ¥, I:

long int SuUM, J, R;

float AVG;

J=0;

R=IMAGE->Cols;

SUM=0;

for(y=0; Y<=IMAGE->Rows; Y++)

for (X=0; X<=IMAGE->Cols; X++)
{

SUM=SUM +
* (IMAGE->Data+X+ (long) Y*R);
J++;
}
AVG= (float)SUM/ (flecat)J;
for(y=0; Y<IMAGE->ROwWS; Y++)
{
for(X=0; X<IMAGE->Cols; X++)
{
I= contrast*{(float)
* (IMAGE->Data+X+ (long) Y*R) -
AVG) +AVG;
if (I> 255)
I=255;
1f (I<0)
I=0;
* (IMAGEl->Data+X+ (long)Y*R) = I;
}

SEE ALSO: Graylevel Histogram, Histogram Specification,
Brightness Correction and Nonlinear Graylevel Transforma-
tions
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CLASS: Morphological Filters

DESCRIPTION:

Derived from Minkowski addition, binary dilation of an
object increases its geometrical area by setting the
background pixels adjacent to an object's contour 1o the
object's graylevel value. Dilation is defined as the union of
all vector additions of all pixels a in object A with all pixels
b in the structuring function B.

A@®B={teZ%t=a+b,ac A, be B},
where the vector t is an element of the image space Z2,

EXAMPLES:

®
OBIECT A OBIECTA

(@) ()]

(a) The binary image of a rectangle and (b) the dilated image
of object A with a circular structuring function B.

(a) The original image and (b) the dilated image.
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ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
The N x N structuring function is stored in array MASKJ][].
Upon completion of the program, the dilated image is stored
in the structure FILTER.

#define N 5

Dilation(struct Image *IMAGE, int
MASK({] [N], struct Image *FILTER)
{
int X, Y, I, J, smax;
for(Y=N/2; Y<IMAGE->ROwsS-N/2; Y++)
for (X=N/2; X<IMAGE->C0ls-N/2; X++)}

smax=0;
for{J=-N/2; J<=N/2; J++)

{
for(I=-N/2; I<=N/2; I++)

{
1f (MASK[I+N/2] [J+N/2] ==1}
{
if (* (IMAGE->Data+X+I+
(long) (Y+J)
*IMAGE->Cols) >smax)
{
smax=* (IMAGE->Data+X+I+
(long) (Y+J) *IMAGE->Cols);
}

}
}

}
*(FILTER->Data+ X +
(long)Y * IMAGE->Cols) = smax;
FILTER->Rows=IMAGE->Rows;
FILTER->Cols=IMAGE->Cols;
}
}

SEE ALSO: Maximum and Minimum Filters, Binary,
Erosion, Opening, and Closing Filters
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CLASS: Morphological Filters

DESCRIPTION:

Graylevel dilation of an image is used to smooth small
negative graylevel regions. Graylevel dilation is defined as
the maximum of the sum of a local region of an image and a
given graylevel mask

A@B=max[ Ax+1,y+j)+ B j],
where the coordinate x + i, y + j is defined over the image A
and the coordinate 1, j is defined over the mask B. For the
special case when all the mask values are 0, graylevel
dilation reduces to the maximum filter.

EXAMPLES:

e

(b)

(a) The original image and () the dilated image using
an all zero 3 x 3 mask applied recursively 3 times.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The N x N structuring
function is stored in the array MASKIJ][]). Upon completion
of the program, the dilated image is stored in the structure
FILTER.

#define N 5

DilationGray {struct Image *IMAGE, int
MASK[][N], struct Image *FILTER)
{
int alN][N];
int ¥, Y, I, J, smax;
for(¥Y=N/2; Y<IMAGE->Rows-N/2; Y++)
for (X=N/2; X<IMAGE->Cols-N/2; X++)
{
smax=0;
for(J=-N/2; J<=N/2; J++}
for(I=-N/2; I<=N/2; I++)
alI+N/2] [J+N/2]=
* {IMAGE->Data
+X+I+(long) (Y+J)
FIVAGE->TOLsY) +
MASK([I+N/2) [J+N/2];
for{J=-N/2; J<=N/2; J++)
{
for{I=-N/2; I<=N/2; I++)

{

1if(alI+N/2]1[J+N/2) > smax)
smax = alI+N/2][J+N/2]1;

}

if (smax>255)
smax=255;
*(FILTER->Data + X+{long)yY*
IMAGE->Cols) =smax;
}
FILTER->ROwsS=IMAGE->RowWS;
FILTER->Co0ls=IMAGE->Cols;
}

SEE ALSO: Graylevel Erosion, Opening, Closing and Top-
Hat, and Minimum Filters
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CLASS: Image Fundamentals

DESCRIPTION:

Discrete Convolution is best described as a combining
process that copies one image into another and is the
fundamental result of a filtering operation. Any number of
filters may be applied to an image by convolving the filter
mask with the original image. The equation for the two-
dimensional discrete convolution is given by:

M-1 N-1
Out(ij)=X X In(m,n)Mask(i-m,j-n)
m=0 n=0

Where In is the input image, Mask is the convolution mask,
and Out is the output image. The dimension of the images is
M by N, the Mask image is normally of substantially
smaller size than M by N; however, the mask is filled in with
zeroes to allow for consistency in the indexing.

The convolution algorithm will generate results that are
greater than the range of original values of the input image.
Therefore, a scaling operation is required to restore the result
to the same graylevel range of the original picture.

The example below shows the original image (256 x 256) on
the left and the result of convolution with a 5 x 5 sharpening
mask on the right. Note the border around the convolved
result; this is a side effect of the algorithm as the overlaying
mask passes over the boundary of the original image.

EXAMPLE:
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ALGORITHM:

The algorithm computes the two-dimensional discrete
convolution between two images, In and Mask, and leaves
the result in the image Out. It is assumed that the
dimensions of the images are congruent and that they are of
unsigned character type. Note that overflow and underflow is
truncated. This routine is easily modified to operate on
integer or real images followed by a scaling procedure.

/* 2-D Discrete Convolution */

void Convolve(struct Image *In,
struct Image *Mask,
struct Image *Out)

long i,j,m,n,idx, jdx;
int ms,im,val;
unsigned char *tmp:

for (i=0;i<In->Rows;++i)
for (3=0; j<In->Cols;++7) {
val = 0;
for (m=0;m<Mask->RowSs; ++m}
for (n=0;n<Mask->Cols;++n) {
ms = (signed char)*(Mask->Data
+ m*Mask->Rows + n);
idx = i-m;
jdx = j-n;
if (idx>=0 && Jjdx>=0)
im = *{In->Data +
idx*In->Rows + jdx);
val += ms*im;

}
if (val > 255)val 255;
if(val < 0) wval 0;
tmp = Out->Data + i*Qut->Rows + j;
*tmp = {(unsigned char)val;

}

SEE ALSO: Discrete Correlation, Mask, Scaling, Spatial
Filters
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CLASS: Image Fundamentals

DESCRIPTION:

Discrete Correlation is a process by which one image is
compared mathematically with another. The resulting image
is a two-dimensional expression of equivalence. The
equation for the two-dimensional discrete correlation is
given by:

M-1 N-1
Outi,j) =¥ X Inl(m,n)In2(i+m,j+n)
m=0 n=0

Where Inl and In2 are the input images and Out is the
output image. The dimension of the images is M by N, the
input images may be of different dimensions; however, the
sizes are filled in with zeroes so that the images going into
the algorithm are M x N to allow for consistency in the
indexing.

The second image, In2, is often called the template and the
correlation is then called template matching. The output
picture's maximum value will reveal the spatial postion of
greatest match between the original image and the template,
as illustrated in the example below, where the dotted line
surrounding UCF in the first picture is the match template.
The second picture has a maximum at the location of best
match, or correlation between the template and original
image. Since the result of correlation produces values that
may be out of the range of the original picture grayscale,
scaling should be applied to the result.

EXAMPLE:
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ALGORITHM:

The algorithm computes the two-dimensional discrete
correlation between an image, In and a template Tmpl, and
leaves the result in the image Qut. It is assumed that the
dimensions of the images are congruent and that they are of
type unsigned character. Note that overflow and underflow is
truncated. This routine is easily modified to operate on
integer or real images followed by a scaling procedure.

/* 2-D Discrete Correlation */

void Correlate(struct Image *In,
struct Image *Tmpl,
struct Image *Out)

long i, j,m,n,idx,jdx;
int tm,im,val;
unsigned char *tmp;

/* the outer summation loop */
for (i=0;i<In->Rows;++1i)
for (j=0;3<In->Cols;++3} {
val = 0;
for (m=0;m<Tmpl->Rows; ++m)
for (n=0;n<Tmpl->Cols; ++n) {
tm = (signed char)*(Tmpl->Data
+ m*Tmpl->Rows + n);
idx = i+m;
jdx = j+n;
if (idx>=0 && jdx>=0)
im = *(In->Data +
idx*In->Rows + jdx):;
val += tm*im;

}
if(val > 255)val 255;
if(val < 0) wval 0;
tmp = Out->Data + i*OQut->Rows + j;
*tmp = (unsigned char)val;

}
SEE ALSO: Discrete Convolution, Scaling
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CLASS: Transform

DESCRIPTION:

The discrete cosine transform is used in image coding and
compression.  One nice feature of the discrete cosine
transform is that it can be easily computed in the same
manner as the two-dimensional Fourier transform. This
transform is very similar to the real part of the Fourier
transform.

The discrete cosine transform defined in two dimensions is
given by

N-1 N-1

Cn,m) = knkim) X 2 f(X,Y)-
Y=0 X=0

2X +1 | 2Y + 1
COS| ©n' 2N - COS| Tmy 2N

where n and m are defined from 1to N ~ 1, and

1
\/I?I forn=0

2 .
N otherwise

k(n) =

The inverse discrete cosine transform is given by

N-1 N-1
Yy = 3, Y k) - kim) Fo, m) -
n=0 m=0

22X+ 1 2Y +1
COs{ I IN - CO8| T N
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ALGORITHM:

The program assumes that the original image is a floating
point square image of size IMAGE->Rows stored in the
structure IMAGE. Passed to the program is the dir variable.
This variable determines if a forward (dir = 1) or if an
inverse (dir = -1) discrete cosine transform is to be
performed. The program first computes the discrete cosine
transform in the x direction followed by the discrete cosine
transform in the y direction. Upon completion of the
program, the discrete cosine components are returned in the
floating point structure IMAGEL.

DiscreteCosine(struct Image *IMAGE, struct
Image *IMAGEL, int dir)
{
int X, Y, n, m, num;
float sum, pi,k0,kl, ktx, kty, A;
pi=3.141592654;
num=IMAGE->ROwWS ;
kO=sgrt ( {double) 1.0/ (double)num) ;
kl=sqgrt { {double)2.0/ (double)num) ;
for (m=0; m<num; m++)
for (n=0; n<num; n++)
{
sum=0.0;
for(¥Y=0; Y<num; Y++)

{
if (dir==1)
A=cos { (double) ((2.0*
(float)y+1)*
m*pi/2.0/num)};
if(dir==-1)
A=cos{ (double) ((2.0*
{(float)m+1)*
Y*pi/2.0/num;} ) ;
for (X=0; X<num; X++)
{

if (dir==-1)

{

if (X==0)
ktx=k0;

else
ktx=k1;

if(Y==0)
kty=kO0;

else
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}

kty=kl;
sum=sum + *(IMAGE->Data +
X+ (long)Y* IMAGE->Rows)*
cos { {double) ((2.0* (float}
n+1)*X*pi/2.0/ (float)num}
) *A*ktx*kty;
}

if (dir==1)
{
kex=1;
kty=1;
sum=sum + *{IMAGE->Data +
X+ (long)Y* IMAGE->Rows)*
cos { (double) ((2.0* (float}
X+1)*n*pi/2.0/ (float)num)
) *Ar*ktx*kty;
}

}

}
if(dir==1}

{
if (n==0)

sum=sum*k0;

else

sum=sum*kl;

if (m==0)

sum=sum*k0;

else

sum=sum*kl;

}
* (IMAGEl->Data + n + {(long)m *
IMAGE->Rows) = sum;

IMAGEl->Rows=IMAGE->ROWS;
IMAGEl->Cols=IMAGE->Cols;

SEE ALSO: Fourier Transform Properties, Hadamard and
Walsh Transforms, and the Discrete Fourier Transform
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CLASS: Transform

DESCRIPTION:

The mathematical formulation of a function as a series of
sine and cosine functions was first developed by the French
mathematician Baptiste Joseph Fourier (1768-1830). The
discrete Fourier transform decomposes an image into a set of
cosines and sines each of which represents the frequency
components of an image. Assuming an image of size X = N
by Y = M pixels, the two-dimensional and its inverse
discrete Fourier transform are defined as

1 N-1 N-1
Fnm) = o 2 2 fX.Y):
Y=0 X=0

[cos(2rnX/N) + j sin(2rnX/N)] -
lcos(2rmY/M) + j sin(2rmY/M)]

N-1 N~-1
f(X,y)= ¥ 23 Fn,m-
n=0 m=0

[cos(2rnX/N) — j sin(2rAnX/N)] -
[cos2nmY/M) — jsin(2rmY/M)],

where both f(x, y) and F(n, m) are complex two-dimensional
functions.

Given the real and imaginary Fourier frequency components
of F(n, m), the magnitude and phase terms are defined as

IFn, m)l = \/{Fr(n, m)}2 + {Fy(n, m)}2

F j(n, m)
ang[F(n, m)} = arctan m
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The function IF(n, m)! is known as the magnitude spectrum
of f(x, y), and the function ang[F(n, m)] is known as the
phase spectrum of f(x, y).

EXAMPLE.

(a) The original image of a square and (b) the two-
dimensional DFT magnitude image.

ALGORITHM:

The program assumes that the original image is a complex
floating point square image of size IMAGE->Rows stored in
the structure IMAGE. The maximum allowable size of the
discrete Fourier transform is limited to a 512 x 512
transform. Adjacent elements in the structure IMAGE are
the real and imaginary components of the image F(X, Y) as
shown below.

—— X Direction
0 N
o [R1 R[ |
RIAT """ R
Y . .
Direction .
R[ | R
N[RIT] """ [R]T

Storage format of the floating point image and its
Fourier transformed components.
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For example, the first data value given is the real component
while the second data value given is the imaginary
component of the first pixel of the image. Passed to the
program is the dir variable. This variable determines if a
forward (dir = 1) or if an inverse (dir = -1) Fourier transform
is to be performed. The program first computes the discrete
Fourier transform in the x direction followed by the discrete
Fourier transform in the y direction using the Fast Fourier
Transform algorithm. Upon completion of the program, the
real and imaginary Fourier components are returned in the
structure IMAGE. Every other adjacent element in the
structure IMAGE represents the real and imaginary Fourier
frequency components of F(n, m).

DiscreteFourier (struct Image *IMAGE,
float dir)
{
int X, Y, num;
long int R;
float datall024], scale;
num=IMAGE->Rows;
if(dir == 1.0}
scale= num*num;
else
scale=1.0;
for (Y=0; Y<num; Y++)
{
R=(long} Y*IMAGE->Rows*2;
for (X=0;X<=2*num-1; X++)
data[X]=* (IMAGE->Data+X+R};
ffr(data, num, dir);
for (X=0;X<=2*num-1; X++)
* (IMAGE->Data+X+R)=datal[X];

}
for(X=0; X<=2*num-1; X+=2}
{
for(y=0;Y<num; Y++}
{
R={long) Y*IMAGE->ROwWs*2;
datal2*Y]= *(IMAGE->Data+X+R);
data[2*Y+1]=
* (IMAGE->Data+X+1+R};
}
fft (data, num, dir);
for(y=0;Y<num; Y++)
{
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R={(long)Y*IMAGE->Rows*2;

* (IMAGE->Data+X+R)=data[2*Y]/
scale;

* (IMAGE->Data+X+1+R}
=data[2*Y+1]/scale;

}

}

fft (float datall,int num, float dir)
{
int array_size, bits, ind, 3j, jil;
int i, i1, u, step, inc;
float sine([513], cose{513];
float wcos, wsin, tr, ti, temp;
bits=log{num)/log(2)+.5;
for(i=0;i<num+1;i++)
{
sine[il=dir*sin{3.141592654*i/num) ;
cose[i]=cos{3.141592654*i/num) ;
}
array size=num<<l;
for(i=0;i<num;i++)

uuuuuuuu
{
u=l<<j;ind=(ind<<l}+{{u&i)>>7j);
}

ind=ind<<l;j=i<<1;
if (j<ind)

{

temp=data(j]; datal[jl=data(ind];
data[ind]=temp;temp=datalj+1];
data[j+ll=data[ind+1];
data(ind+l]=temp;

}
}

for{inc=2;inc<array_size;inc=step)

step=inc<<l;
for (u=0;u<inc;u+=2)

{
ind=({long)u<<bits)}/inc;
wcos=cose[ind];wsin=sine[ind];
for(i=u;i<array_size;i+=step)

{
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j=i+inc; jl=j+1; il=i+1;
tr=wcos*datal[j]-
wsin*data([jl];
ti=zwcos*data(jl]+
wsin*datalj];
datal[jl=datal(i]-tr;
datalil=datalil+tr;
data([jl]l=data[il)-ti;
datalill=data(il]+ti;
}

}
}

SEE ALSO: Fourier Transform Properties, Hadamard and
Walsh Transforms, and the Discrete Cosine Transform
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CLASS: Graphics

DESCRIPTION:

Dithering is the process of producing graylevel images on
printers capable of only printing black dots of one intensity
on white paper. The process uses a pattern of dots to
represent a given graylevel value. The higher the black dot
concentration in a fixed area the darker the area will appeas.
Shown below are 33 graylevels represented by 33 unique dot
patterns.

EXAMPLE:

(c) @)

An example of 3 different dithering patterns: (@) the original
graylevel image and (b) - (d) the three dithering patterns.

SEE ALSO: Morphing, Warping, and Zooming
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CLASS: Morphological Filters
DESCRIPTION:

Derived from Minkowski subtraction, binary erosion of an
object reduces its geometrical area by setting the contour
pixels of an object to the background value. Erosion is
defined as the complement of the resulting dilation of the
compliment of object A with structuring function B.

AO©B= (A ® B)
EXAMPLES:

o

OBJECTA Object A

(a) b)

(a) The original binary image of a cross and (b) the eroded
image of object A with a circular structuring function B.

(a) The original image and (b) the eroded image.
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ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
The N x N structuring function is stored in the array
MASKI(]{]. Upon completion of the program, the eroded
image is stored in the structure FILTER.

#define N 5

Erosion(struct Image *IMAGE, int MASK[] [N],
struct Image *FILTER)
{
int X, ¥, I, J, smin;
for(Y=N/2; Y<IMAGE->Rows-N/2; Y++)
for (X=N/2; X<IMAGE->Cols-N/2; X++)
{
smin=255;
for{J=-N/2; J<=N/2; J++)
{
for{I=-N/2; I<=N/2; I++)

{
if (MASK[I+N/2] [J+N/2]1==1)

-

if (* (IMAGE->Data+X+I+

(long) (Y+J) *IMAGE->Cols)

< smin)
{

smin= * (IMAGE->Data+X+I+
{long) {Y+J) *IMAGE->Cols) ;
}

}
}

}
*{FILTER->Data+ X +
(long)Y * IMAGE->Cols) = smin;
FILTER->ROows=IMAGE->ROwWS;
FILTER->C0ls=IMAGE->Cols;
}
}

SEE ALSO: Minimum and Maximum Filters, Binary
Dilation, Opening, and Closing Filters
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CLASS: Morphological Filters

DESCRIPTION:

Graylevel erosion of an image is used to smooth small
positive graylevel regions. Graylevel erosion is defined as
the minimum of the difference between a local region of an
image and a given graylevel mask

AO©B=min[Ax+1,y+j)—-BGj)1,
where the coordinate x + 1, y + j is defined over the image A
and the coordinate i, j is defined over the mask B. For the
special case when all the mask values are 0, graylevel
erosion reduces to the minimum filter.

EXAMPLES:

(a) The original image and (b) the eroded image using
an all zero 3 x 3 mask applied recursively 3 times.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows X IMAGE->Cols pixel image
stored in the structure IMAGE. The N x N structuring
function is stored in the array MASKJ][]. Upon completion
of the program, the eroded image is stored in the structure
FILTER.

#define N 5

ErosionGray (struct Image *IMAGE, int
MASK[] [N], struct Image *FILTER)

{
int a[N] [N];
int X, Y, 1, J, smin;
for(Y=N/2; Y<IMAGE->Rows-N/2; Y++}
for (X=N/2; X<IMAGE->Co0ls-N/2; X++)
{
smin=255;
for(J=-N/2; J<=N/2; J++)
for(I=-N/2; I<=N/2; I++)
alI+N/2)}[J+N/2]=
* {IMAGE->Data
+X+I+{(long) (Y+J)
* IMAGE->Cols) -
MASK[I+N/2] [J+N/2];
for(J=-N/2; J<=N/2; J++)

{
for{I=-N/2; I<=N/2; I++)

{
if(alI+N/2][J+N/2]) < smin)
smin = al[I+N/2] [J+N/2];
}
}
if (smin<0)
smin=0;
* (FPILTER->Data + X+(long)Y*
IMAGE->Cols) =smin;
}
FILTER->Rows=IMAGE->Rows;
FILTER->Cols=IMAGE->Cols;
}

SEE ALSO: Graylevel Dilation, Opening, Closing and Top-
Hat, and Minimum Filters
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CLASS: Graphics Algorithms
DESCRIPTION:

Flipping is different from rotation, a similar operation, in
that the image is mirrored to itself. The example shows a
top-to-bottom flip; notice the word Panic is now backwards.

EXAMPLE:

ALGORITHM:

The routine flip flips the image passed by the image data
structure pointer In vertically into the image data structure
Out. The macro idx is used for simplified access to the
pixels of the image by coordinates.

#define idx(Im,i,j) \

*(Im->Data + (i)*Im->Cols + (j))
flip(struct Image *In, struct Image *Out)
{

int i, 3,k;
k = In->Rows;
for(i=0; i1 < In->Rows; ++1){
for (j=0; j< In->Cols; ++3)
idx (Out, k,j) = idx(In,i,J):
--k;
}

SEE ALSO: Rotate
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CLASS: Transforms

DESCRIPTION: Several important properties of discrete
Fourier transforms permit the manipulation of the frequency

components of an image.

Listed here is a summary of

several important discrete Fourier transform properties.

Let f{x, y) and g(x, y) be the original graylevel images of
size N x M, and F(n, m) and G(n, m) be their discrete
Fourier transform components, respectively.

(X, Y)
IMAGE

F(n, m)
MAGNITUDE

A cos 2rnaX - cos 2nbY

A/4at(a,b) A/4at(—a,b)
A/d at (3, -b) A/4 at (—a, -b)

A

Aatn=0,m=0

AaaX=0,Y=0
0 elsewhere

A

NM

X, Y)-DX +Y)

F(n, m) centered

f(aX, bY)

1/1ablF{n/a, m/b)

fiX,Y) + gX, Y)

F(n, m) + G(n, m)

exp[-n(X2 + Y2)]

exp[—n(n2 + mz)/N]

F(n, m)

f(-X,—Y)

f(X, Y) rotated by an
angle 0

F(n, m) rotated by an
angle 6

SEE ALSO: Discrete Fourier Transforms, Hadamard and
Walsh Transforms, and the Discrete Cosine Transform
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CLASS: Noise

DESCRIPTION:

Gamma type noise is the result of lowpass filtering an image
containing negative exponential noise as the result of
acquiring an image which is illuminated by a coherent laser.
Its histogram is defined as

a-1
Gi exp (Gifa)
e <Gj <o
hj - ad for0<Gj <os, >0,
where Gj is the ith graylevel value of the image and a2ot is
the variance. The parameter o determines the shape of the
histogram; o = 1 a negative exponential histogram; and o =
<o a Gaussian histogram.

1

00 255

Graylevei

A histogram of gamma noise (o = 4).

EXAMPLES:

@ T W

(a) The original image and (b) the gamma noise
degraded image with a variance = 500, a0 = 2.
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ALGORITHM:

The program generates a gamma noise image of 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE for integer values of o.. The
program assumes that the function rand() generates a
uniform random number in the range of 0 to 32767. The
desired variance and o parameter are passed to the program
upon execution and the minimum value for o must be
greater than or equal to 1. If the noise graylevel value
generated exceeds the 256 graylevel range, the noise
graylevel value is truncated to either 0 or 255.

Gamma (struct Image *IMAGE, float VAR,
int ALPHA}
{
int NOISEl, I, X, Y;
float Rx, Ry, NOISE, A, IMAGEl, theta;
A=sqgrt { (double)VAR/ (double)ALPHA) /2;
for{Y¥=0; Y<IMAGE->Rows; Y++)
for(X=0; X<IMAGE->Cols; X++)
{
IMAGE1=0.0;
for (I=1;I<=ALPHA;I++)
{
NOISE=sgrt{-2 * A *
log(l.0-(float)rand()
32767.1));
theta=(float)randi)*
1.9175345E-4 - 3.14159265;
Rx = NOISE*cos (theta);
Ry = NOISE*sin(theta);
NOISE = RX*Rx + RY*Ry;
IMAGE1=IMAGE1+NOISE;
}
NOISEl = (int) (IMAGEl +.5):
if (NOISE1 »255) NOISEl =255;
* (IMAGE->Data+X+ {long)Y*
IMAGE->Cols) = NOISEL;
}
}

SEE ALSO: Gaussian, Uniform, Salt and Pepper, Rayleigh,
and Negative Exponential Noises
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CLASS: Spatial Filters

DESCRIPTION:

Gaussian Filters are masks formed
from a two-dimensional Gaussian
distribution. The masks remove high
frequency noise but cause blurring.
The larger the mask, the greater the
defocus. Shown here are 7 x 7 and
15 x 15 Gaussian masks.

o] to] ] |

| o] b} £ v 20 —
pof dof ] oo] = | NI
=] o] ro] o] o] —|

AR
—
I ENES N ESENIS

7 = =[]

3] = =] vl v} o] —| |

»

aussian mas

il W oy o N W Wl B Ly N )

Wf Lof K A A o o & L] L B] o rof
v o i ] <o ~of o 00| oo ~af i} L] & oo 1)

3
r:y
6
7
9
10
10
11
10
10
9
7
6
7
3

DY ol A af <3 od] 0o oo] ~af ] L &) wof v
]
=
|
)
o
Jn
=
—|
=
)
(=
—
9
]
=
Jun
=
—
aEREEEEEEEEEE R

[ IS R

15 x 15 Gaussian mask

Letter 'G' blurred by 7 x 7 and
15 x 15 Gaussian masks

ALGORITHM:

Apply algorithm for Discrete Convolution using the masks
given above.

SEE ALSO: Discrete Convolution, Low Pass Spatial Filters
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CLASS: Noise

DESCRIPTION:

Gaussian noise is a common type of noise that appears
within images. The Gaussian noise histogram is defined as

exp™ (Gi ~m)%202

hij = for =< Gj<eo,
1 M 1

where Gj is the ith graylevel value of the image and the
parameters m and ¢ are the mean and standard deviation of
the noise respectively.

1

Graylevel

A histogram of Gaussian noise.

EXAMPLES:

(@) ()

(a) The original image and (b) the (additive) Gaussian
noise degraded image with a mean = 0 and a
variance = 800.
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ALGORITHM:

The program generates a Gaussian noise image of 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program assumes the
function rand() generates a uniform random number in the
range of 0 to 32767. Both the desired mean and variance are
passed to the program upon execution. If the noise graylevel
value generated exceeds the 256 graylevel range, the noise
graylevel value is truncated to either 0 or 255.

Gaussian{struct Image *IMAGE,
float VAR, float MEAN)

{

int X, Y;

float NOISE, theta;

for (¥=0; Y<IMAGE->ROWS; Y++)

for(X=0; X<IMAGE->Cols; X++)
{
NOISE=sgrt{-2 * VAR * log(1.0-
(float)rand{(} / 32767.1});
theta=(float)rand() *
1.9175345E-4 - 3.14159265;
NOISE = NOISE * cos{theta);
NOISE = NOISE + MEAN;
if (NOISE > 255}
NOISE = 255;
1f (NOISE < 0)
NOISE = 0;

* (IMAGE->Data+X+ (long) Y*IMAGE
->Cols)=(unsigned char) (NOISE
+.5);
}

SEE ALSO: Rayleigh, Uniform, Negative Exponential, Salt
and Pepper, and Gamma Noises
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CLASS: Non-linear Filters

DESCRIPTION:

The geometric mean filter is member of a set of nonlinear
mean filters which are better at removing Gaussian type
noise and preserving edge features than the arithmetic mean
filter. The geometric mean filter is defined as the product of
N pixels within a local region of an image to the 1/N power.
Pixels that are included in the computation of the geometric
mean are specified by an input mask. The geometric mean
filter is very susceptible to negative outliers. A pixel with a
zero graylevel value included in the filtering operation will
result in the filtered pixel being zero. The definition of a
geometric mean filter is

Geometric Mean4) =[] [Ax+1i, y+pI/N,
iL.jeM

where the coordinate X +, y +j is defined over the image A
and the coordinate i, j is defined over the mask M. The
mask M determines which pixels are to be included in the
geometric mean calculation. The parameter N is equal to the
mimdhar Gf piraly dncibubdt i die oo coltmasiag

EXAMPLE:

(@) (b)

(a) The Gaussian noise corrupted image and (b) the geo-
metric mean filtered image using a 3 x 3 square mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then performs
a product of all pixels contained within a square N X N
region of the image centered at the pixel X, Y. The size of
the filtering operation is determined by the variable N and
should be set to an odd number and be less than 12. Upon
completion of the program, the filtered image is stored in the
structure IMAGEL.

GeometricMean (struct Image *IMAGE, struct
Image *IMAGE]L)
{
int X, Y, I, J., Z;
int N, AR[121], A;
float PRODUCT, TAR([121];
N=5;
for (¥Y=N/2; Y<=IMAGE->Rows-N/2; Y++}
for(X=N/2; X<=IMAGE->C0ls-N/2; X++){
7Z=0;
for(J=-N/2; J<=N/2; J++)
for{I=-N/2; I<=N/2; I++) {
AR[Z]= *(IMAGE->Data+X
+I+{long) (Y+J)
*IMAGE->Cols) ;
Z4++; )}
for(J=0; J<=N*N-1;J++} {
TAR[J] = pow((double)AR[J],
(double) (1.0/ (float) (N*N}});}
PRODUCT=1.0;
for(J=0; J<=N*N-1;J++)}
PRODUCT*=TAR[J] ;
if (PRODUCT »>255)
* (IMAGEl->Data+X +(long)yY
*IMAGE->Cols)=255;

else
*{IMAGEl->Data+X +{long)Y
*IMAGE->Cols} = {unsigned

char) PRODUCT; }
}

SEE ALSO: Harmonic, Contra-Harmonic, Y, and
Arithmetic Mean Filters, Median, and other Nonlinear
Filters
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CLASS: Spatial Filters
DESCRIPTION:

Gradient Masks, also called Prewitt masks, enhance edges in
specific directions and may be combined to form various
edge enhancement schemes. The compass direction masks
are:

A1-20-1 -1 01 1]10]-1 11211
0[{0}O 210012 210(-2 G610
11211 271 1]1]07]-1 1211

071-1]-2 21110 ol1]2 21-110
11of-1 110]-1 1101 1101
2110 ol-1]-2 21-110 Ofj11(2
Northeast Southeast Southwest Northwest

EXAMPLE:

ALGORITHM:

The algorithm for Discrete Convolution is applied using the
masks given above.

SEE ALSO: Discrete Convolution, High Pass Spatial Filters
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CLASS: Storage Formats
DESCRIPTION:

The Graphics Interchange File format, -
or GIF, is a trademark of the GIF Signature
Compuserve Corporation who GIF7a
developed it for the efficient storage Df:ﬁpr;:r
and transfer of image data. The format
is copyrighted and trademarked, Glo%,?iSObr
however, use of the standard is free. optional
The GIF format has become a well- Tmage
respected standard for images because Descriptor
Fhe structure is well defined and the Locsl 00151'
image data is always compressed. The Map
general file format of a GIF image is
shown in the graphic to the right.

Raster
The GIF Signature is a six-character DATA
ASCII string that identifies the file as a
GIF image. The first three characters of
the string will be "GIF” while the last .
three will be a version identifier. The .
majority of GIF images will have the
strijng "GIFSTa" at therr start. ey mpet
The Screen Descriptor consists of gr;;s
seven bytes of data that describe the Terminator
pixel size (height, width, and depth) of ;

the image, a flag bit to indicate the
presence of a Global Color Map, and
the index into the map of the background color.

If a Global Color Map is present, it follows the Screen
Descriptor and contains three entries for every color possible
in the image. The number of possible colors is determined
from the number of bits/pixel. If each pixel is one byte, eight
bits, deep, then the total number of colors possible is 256
(28). Each three-byte entry in the Global Color Map will
define the proportions of Red, Green, and Blue intensity
required for the color determined by the entry's sequence
position in the map, from zero to the total number of entries
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minus one. The Global Color Map allows the user to
accurately specify the correct color mappings for a particular
image.

The Global Color Map, or Screen Descriptor if no map is
present, is followed by any number of Image Descriptor
blocks. An Image Descriptor begins with an image
separation character, an ASCII ', (comma) followed by a set
of bytes defining the start location of the image in cartesian
coordinates with respect to the height and width data given
in the Screen Descriptor data, the size in pixels of the image,
and a flag byte. The flag byte determines whether the Local
Color Map (whose data follows, if needed) or Global Color
Map should be used for the image. The flag also indicates
whether the data is in sequential or interlaced order and what
the pixel depth is in bits. The Raster Data, the actual image
data, follows and is compressed using the Lempel-Ziv-
Welch (LZW) algorithm. The LZW algorithm is a Huffman
type encoding scheme that is capable of compressing and
decompressing data streams very rapidly. When no futher
image hlocks are nresent, 2 GIF Terminator character. the
semicolon (;) indicates the end of the file.

The GIF format is extensible through the use of GIF
Extension Blocks. An Extension Block appears as Raster
Data, but is introduced with an exclamation (!) character and
is not compressed. Unique extensions may be defined by
individuals as all GIF interpreters may ignore an extension
that they have not been programmed for; however,
Compuserve prefers to define and document extensions to
provide for a more robust and globally understood standard.

ALGORITHM:

It is well beyond the scope of this book to provide a
complete GIF evaluation program; however, we show a
simple GIF file evaluator that indicates whether a file is GIF,
then lists the important format data that are present in the
non-local portion of the file. The routine is passed a file
descriptor and it outputs basic information about the image
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or the message "Not a GIF file!".

GIF_eval (FILE *£fp)

{
unsigned char buf[6],flg,bg;
int wd, ht:

fread(buf,6,1,£fp);

if(buf [0]!="G'e&buf (1] !="I"g&buf [2]!="F")

{ printf ("Not a GIF file!\n");
return(-1});

}

printf("Evaluating GIF file:\n"):;

fread(&wd, 2,1, fp);
wd >>=8;
printf ("Screen Width: sd\n", wd) ;

fread(&ht, 2,1, fp):
ht >>=8;
printf ("Screen Height: %d\n",ht);

fread(&flg,1,1,£fp):
printf ("Global Flag: sx\n"v, flqg) ;

fread(sbg, 1,1, fp);
printf ("Background: sd\n", bg};

fread(buf, 1,1, fp):

if(buf{0}){
printf ("Problem in GIF header!\n'"};
return(-1);

}
fclose (fp) ;

SEE ALSO: Huffman Coding
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Graphics Algorithms Class

DESCRIPTION:

Graphics algorithms typically manipulate the position or
number of pixels in an image. Graphics as an independent
area of study seeks to create images by way of algorithms, as
opposed to image processing where algorithms are used to
manipulate images derived from nature. Graphic image
generation algorithms are not covered in this book.
However, many graphics algorithms are useful in image
processing and they are grouped in this class.

Dithering is the means by which images are often rendered
into hardcopy and converted from one viewing medium to
another. Warping and Morphing are methods of image
distortion and find use in multimedia, desktop publishing,
and in the correction of remotely sensed data to maps.
Zooming is important to general image manipulation and
provides a direct algorithmic link to optical processes.

CLASS MEMBERSHIP:
“Tiftnering
Flip
Morphing
Rotate

Warping
Zooming
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CLASS: Image Fundamentals

DESCRIPTION:

Graylevel is the value of gray from a black and white
(monochrome) image that a pixel is assigned. The grayscale
is the range of gray shades, or graylevels, corresponding to
pixel values that a monochrome image incorporates.

EXAMPLE:

Grayscale from white to black. Each point on the horizontal
axis defines a graylevel. In an image with 256 graylevels, the
white vlaue is typically 255, while the black is represented as
zero. This is an arbitrary designation and can be changed to
fit the nature of the algorithm or data being described.

SEE ALSO: Quantization
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CLASS: Histogram Operation

DESCRIPTION:

A graylevel histogram of an image gives the graylevel
distribution of the pixels within the image. The histogram of
an image is defined as a set of M numbers (the number of
possible graylevels) defining the percentage of an image at a
particular graylevel value. The histogram of an image is
defined as

hi=%i fori=0to(M-1),

where n; is the number of pixels within the image at the ith
graylevel value and ny is the total number of pixels in the
image.

EXAMPLE:

HISTOGRAM

64 128 192 256
GRAYLEVEL

(a) (b)
(a) The original image and (b) its graylevel
histogram.
ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then computes
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the histogram of the image storing the histogram result in the
floating point array HISTI[].

Histogram{struct Image *IMAGE,
float HISTII])
{
int X, ¥, I, J;
long int IHIST[256], SUM;
for(I=0;I<=255;I++)
IHIST([I])=0;
SUM=0;
for(¥=0; Y<IMAGE-»ROWS; Y++)

{

for(X=0; X<IMAGE->Cols; X++)
{
J=* (IMAGE->Data+X+ {long)Y
*IMAGE->Cols);
IHIST[J)=IHIST[J]+1;
SUM=SUM +1;
}

}

for(I=0;I<=255;I++)
HIST[I]=(float)IHIST[I]/
(float)SUM;

SEE  ALSO: Histogram  Equalization, Histogram
Specification, Contrast, and Brightness Correction
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CLASS: Color Image Processing

DESCRIPTION:

In many instances a color is represented in terms of its hue
(H), saturation (S), and intensity (I) which is called the HSI
color model. The HSI color model is a very popular model
in that it allows for the manipulation of a color's features in
the same manner in which humans perceive color. The hue
describes the actual wavelength of the color, for example,
blue versus green, while the saturation is a measure of how
pure a color is. It indicates how much white light is added
1o a pure color. For example, the color red is a pure 100%
saturated color. The brighmess of a color refers to the
intensity of the color. The use of a color’s hue and saturation
is defined as the chromaticity of a color.

Figure a shows the standard HSI triangle with the vertices of
the triangle representing the three normalized primary colors
(red, blue, green) in terms of their trichromatic coefficients.
At the center of the triangle is the point of equal color,
WHITE. At this point, all three of the trichromatic
coefficients (normalized color components) are equal to one-
third. The HSI triangle does not give the intensity, I, of the
color, but only defines a color's hue and saturation. A
color's intensity is given by

1=%{R+B+G}.

A color’'s hue, 6, is defined as the angle between the location
of a color within the HSI triangle to the line from WHITE to
RED. The following equation defines a color's hue in terms
of its normalized color components as

N O
Bz%(r‘é)'ib’%)";(géj '



98 HSI Color Model

6 — arccod B
= arcco [2)1/2 .
Als

Whenever b > g, the hue angle, 6, will be greater than 1800.
For this case, since the arccos is defined only over the range
of 0 to 1809, 9 is replaced by 3600 — 6.

BLUE

RED GREEN
(aj The standard HSI color model triangle.

A color's saturation is defined as how far the color is located
from the center of the HSI triangle. Colors located at the
outer edge of the triangle are fully saturated while pastel
colors are located near the center of the triangle. The
saturation, S, of a color is simply defined as 1 minus 3 times
the minimum of the normalized red, blue, and green color
comporents:

S=1-3 min(r,g,b).

SEE ALSO: RGB and YIQ Color Models, C.ILE. Color
Chart, and Pseudocolor
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CLASS: Transform

DESCRIPTION:

The Hadamard transform decomposes an image into a set of
square waves. It is typically used in image compression.
Another transform similar to the Hadamard transform is the
Walsh transform. The two dimensional Hadamard transform
of a N x N image is defined as

, N=IN-1
Fo,m = g7 £ XX Y)-
Y=0 X=0
q-1
Y bi(X)bj(n) + bj(Y)bj(m)
=D i=o

and its inverse

N-1 N-1
f(X,Y)= X 2 Fm,m)-
m=0 m=0

q-1
> bi(X)bi(n) + bi(Y)bjim) ,

1=0

where g is the total number of bits i.e., N= 24 and bj(x) is
the ith bit of the binary representation of the number x. For
example, if the total number of bits (q) equals 4 (hence N =
16) and X equals 5 (0101), then by(5) = 1, by(5) = 0, by(5)
=1, and b3(5) = 0.

ALGORITHM:

The program assumes that the original image is a floating
point square image of size IMAGE->Rows stored in the
floating point structure IMAGE. Passed to the program is
the variable dir which is used to determine if a forward (dir
= 1) or if an inverse (dir = 0) Hadamard transform is to be
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computed. The program first sets the unsigned character
pointer *(B +1i+x - q) of size ¢ x IMAGE->Rows to the 1/0
bit representation of the number x using the bitrep
subroutine. The index x is used to access the number and
the index i is used to access the bit within the number. The
least significant bit of the number x corresponds to the index
i equal to zero. The program then computes the Hadamard
transform in the x direction followed by the Hadamard
transform in the y direction. Upon completion of the
program, the Hadamard components are returned in the
floating point structure IMAGEL.

Hadamard(struct Image *IMAGE, struct Image
*IMAGELl, int dirj
{

int X, ¥, n, m, num, I, g;
int suml, A, temp;
unsigned char *B;
float KO, sum;
num=IMAGE->ROWS;
g={int) {log({double)
IMAGE->Rows) /log(2.0)+.5);
B=malloc (num*q};
bitrep (B,q,num) ;
KO=num*num;
for (m=0; m<num; m++)
{
for(n=0; n<num; n++)
{
sum=0;
for(¥=0; Y<num; Y++)
{
for(X=0; X<num; X++)
{
suml=0;
for(I=0;T<=g-1;I++)
{
suml=suml+
(* (B+I+X*q)
+* (B+I+Y*qQ)
}
if ({suml/2)*2==suml)
temp=1;
else
temp=-1;
sum=sum+ * (IMAGE->Data

*

(B+I+n*q)
*(B+I+m*q) ) ;

*
*
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+X+{long)¥Y*
IMAGE->Rows )} *temp;
}
}
* (IMAGEl->Data+n+ (long)m*
IMAGE->Rows) =sum;
}
}
if(dir==1)
{

for (X=0; X<num; X++)
for(Y=0; Y<num; Y++)
* (IMAGEl->Data+X+{long)y*
IMAGE->Rows) =
* (IMAGEl->Data+X+ (long)y*
IMAGE->Rows) /KO;

}

bitrep (unsigned char *b, int g, int num)
{

int x,1i, bit;
for (x=0;x<num; x++)

bit=1;

for(i=0;1i<q;i++)
{
*{b+i+x*qg)= (x&bit)/bit;
bit=bit<<l;
}

}

}

SEE ALSO: Fourier Transform Properties, the Walsh

Transform, the Discrete Cosine Transform, and the Discrete
Fourier Transform
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CLASS: Nonlinear Filters

DESCRIPTION:

The harmonic mean filter is a member of a set of nonlinear
mean filters which are better at removing Gaussian type
noise and preserving edge features than the arithmetic mean
filter. The harmonic mean filter is very good at removing
positive outliers. A pixel with a zero graylevel value
included in the filtering operation will result in the filtered
pixel being zero. The definition of a harmonic mean filter is

N

1 ,
Z AX+1i, y+j)

i,j)e M

Harmonic Mean(A) =

where the coordinate x +1i, y +j is defined over the image A
and the coordinate i, j is defined over thc mask M. The
mask M determines which pixels are to be included in the
harmonic mean calculation. The parameter N is equal to the
number of pixels included in the summation calculation.

EXAMPLE:

(@) (b)

(a) The 10% positive outlier corrupted image and (&) the
harmonic mean filtered image using a 3 X 3 square mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then performs
a sum of the reciprocal of all pixels contained within a
square N X N region of the image centered at the pixel X, Y.
The size of the filtering operation is determined by the
variable N and should be set to an odd number and be less
than 12. Upon completion of the program, the filtered
image is stored in the structure IMAGEL.

HarmonicMean (struct Image *IMAGE, struct
Image *IMAGEL)

{

int X, Y, I;

int J, Z;

int N, AR[121], A;
float SUM;

N=5;

for(Y=N/2; Y<IMAGE->Rows-N/2; Y++)
for(X=N/2; X<IMAGE->Cols-N/2; X++)

{

72=0;

for(J=-N/2; J<=N/2; J++)

Tor(l=-N/2; 1<=N/Z; 1++}

{
AR[Z]=* {(IMAGE->Data+X
+I+(long) (¥Y+J)
*IMAGE->Cols) ;
Z++;
}

z2=0;

SUM=0.0;

for (J=0; J<=N*N-1;J++)
{

1f(AR[J]==0)
{Z2=1;3SUM=0;}
else .
SUM=SUM+1.0/ {(float}AR[J];
}
if(Z2==1)
*({IMAGEl->Data+X +{(long)Y
*IMAGE->Cols)=0;
else
{
A=(int) ((float) (N*N} /SUM+.5};
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if (A >255)
A = 255;
* {IMAGEl->Data+X+ (long) Y
*IMAGE->Cols)=A;
}

}

SEE ALSQ: Geometric, Contra-Harmonic, Y, and
Arithmetic Mean Filters, Median, and other Nonlinear
Filters
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CLASS: Transforms

DESCRIPTION:

The two-dimensional Hartley Transform is similar to the
Fourier in that it decomposes an image into spatial frequency
components. The Hartley is a real-valued transform, thus it
does not require complex numbers and is computationally
advantageous over the Fourier for this reason. The
expression for the Discrete Hartley Transform is given by:

N-1
H(k) = Z F(n) cas(2nkn/N),
n=0

where cas(a) = cos(a) + sin(a) and F(n) is a single-
dimensional function. The Hartley is symmetric, thus the
inverse Hartley is the same as the forward transform with the
exception that a multiplicative factor of 1/N must be applied
to the inverse operation.

The Discrete Fourier Transform can be derived from the
Discrete Hartley using the following expressions:

F(k) = E(k) - O(k)/
where

E(o = HEO +2H(N-k)

and Ok = HO.- HOH)

For the two dimensional case, the Hartley, vis @ vis the
cas(+) function, does not possess the seperability properties
of the Fourier and so we may not simply apply the single-
dimension formula to the rows then the columns of an
image. The two-dimensional Hartley transform can be
derived from:
Nzl Ni-l
Tky.ko) = 2 z F(ny,np)cas(2rkny/Ny)cas(2nkyny/Ny)

n=0n =0
using the trigonometric identity:

2cas(a+b) =  cas(a)cas(b) + cas(a)cas(-b) +
cas(-a)cas(b) - cas(-a)cas(-b).
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We can now write the two-dimensional Hartley as:

2H(k1k2)= T(k1.k2) + T(N1-k1,k2)
T(k1.N2-k2) - T(N1-k1,N2-k2).
or
2H(k1,k2) = A + B + C - D. Where the capital letters
correspond to a rectangular region of the image. The
computations are facilitated by first computing

1
=3[A+D)-(B+O),
then using the in place calculations:

A=A-E

B=B+E
C=C+E
D=D-E.

This discussion was derived from A. A. Reeves, Optimized
Fast Hartley Transform for the MC68000 with Applications
in Image Processing, Master's Thesis, Dartmouth College,
1990.

ALGORITHM:

The Hartley Transform is implemented as a one-dimensional
form shown above, using a decimation algorithm described
in the reference given. Faster algorithms are possible and the
reader is invited to consult the reference given in the
description for more effecient implementation strategies. The
routine hartley processes a float vector In that must contain
the sequence to be transformed, in place. The length variable
must contain the power-of-two size of the vector. The
direction flag, dir, specifies the forward transform when
non-zero and the inverse when zero.

#define swap{a,b) tmp=(a};(a)=(b}; (b)=tmp;

void hartley(float In[], int length,
unsigned char dir)

int stage, gpNum, gpIndex,

gpSize, numGps,N12;
int n,i,j,m, idx,q,num;
int bfNum, numBfs;
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int AdO, Adl, Ad2, Ad3, Ad4, CSAd:
float *C, *S;
float rtl, rt2, rt3, rt4,

tmp, theta, dTheta,pi:;

C = (float *)
calloc(length,sizeof(float));

S = {(float *)
calloc(length,sizeof (float));

pi = 22.0/7.0;
theta = 0;
dTheta = 2 * pi / length;
for( i = 0; i < length % 4; ++1i){
*(C+i) = cos(theta):
= sin(theta):
theta = theta + dTheta;

}
N12 = loglO(length)/logl0(2);
n = length << 1;
J=1;
for (i=l;i<n;i+=2}{
if (3>1){
swap(In[(j-1)],In[(i-1)1);
}
m=n>>1;
while (m>=2 && j>m){

gpSize = 2;

numGps = length % 4;

for (gpNum = 0; gpNum < numGps - 1; ++i){
1

Adl = gpNum * 4;

Ad2 = Adl + 1;

Ad3 = Adl + gpSize;

Ad4 = Ad2 + gpSize;

rtl = In{Adl] + In[Ad2];
rt2 = In[Adl] - In[Ad2];
rt3 = In[Ad3] + In[Ad4]:
rt4 = In[Ad3] - In[Ad4]:
In[Adl] = rtl + rt3;
In[Ad2] = rt2 + rt4;
In[Ad3} = rtl - rt3;
In[Ad4] = rt2 - rt4;
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if( N12 > 2) {
gpSize = 4;
numBfs 2;
numGps = numGps % 2;
for{stage = 2; stage<N1l2; ++stage){
for (gpNum=0; gpNum<numGps ; ++gpNum) {
AdO gpNum * gpSize * 2;

Adl = AdO;

Ad2 = Adl + gpSize;

Ad3 = Adl + gpSize % 2;

Ad4 = Ad3 + gpSize;

rtl = In[Adl);

In{Aadl] = In[Adl] + In([Ad2]:

IniAad2] = rtl - In[Ad2]);

rtl = In[Ad3];

In[Ad3] = In[Ad3] + In(Ad4]:
In{ad4] rtl - In[Ad4];

for (bfNum=1; bfNum<numBfs; ++bfNum) {

Adl = bfNum + AdO;
Ad2 = Adl + gpSize:;
Ad3 = gpSize - bfNum + AdO;
Ad4 = Ad3 + gpSize:;

CSAd = bfNum * numGps;

rtl = In{Ad2] * *(C+CSAd)+
In{Ad4] * *(S+CSAd)/

rt2 = In[Ad4] * *(C+CSAd) -
In[Ad2] * *(S+CSAd);

In{Ad2] = In[Adl] - rtl;

In[Adl] = In[Adl] + rtl;

In{Ad4] In[Ad3] + rt2;
In(Ad3] In[Ad3] - rt2;
}
}
gpSize = gpSize * 2;
numBfs = numBfs * 2;
numGps = numGps % 2;

if(tdir) /* compute inverse Hartley */
for{(i = 0; i < length:; ++1)
In[i] = In[i] / length;
free(C):
free(S):;
}

SEE ALSOQ: Fourier Transform
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CLASS: Spatial Filters

DESCRIPTION:

The High Pass Spatial Filters operate to attenuate low
frequency spatial variations and accenuate high spatial
frequencies. These filters are characterized by negative
values in their masks, which clearly yields a subtractive
effect between neighborhood pixels during the convolution
process. Their overall effect is to sharpen edges.

EXAMPLE:

Original leeage 2 % 3 Sharpening

ALGORITHM:
of-11-1T-1T0
247271
7T -I-4]13T-47-1
1190 (-1 A2 1-47271-1
J-1)-1 0 1[1]-1]0
3 x 3 Sharpen 5 x 5 Sharpen

The algorithm for Discrete Convolution is applied using the
masks given above.

SEE ALSO: Discrete Convolution, Spatial Frequency
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CLASS: Histogram Operation

DESCRIPTION:

Histogram equalization uniformly redistributes the graylevel
values of the pixels within an image so that the number of
pixels at any one graylevel is about the same. The graylevel
transformation to histogram equalize an image is

M-i L
gi="p Zni .

i=0
where ny is the total number of pixels in the image, nj is the
number of pixels at graylevel i, and M is the total number of
graylevels possible.

EXAMPLE:

(a) (b

(a) The original image and (b) its histogram
equalized image.

ALGORITHM:

The program assumes that the original image is a 256
grayleve] x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then computes
the histogram of the image using the histogram program
given in this text storing the histogram result in the floating
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point array HIST[l.  Finally, the program stores the
equalized image in the structure IMAGEL.

Histogram_Equalization({struct Image *IMAGE,
struct Image *IMAGEL)
{

int X, v, I, J;
int HISTEQ[256];
float HISTI256], SUM;
Histogram(IMAGE, HIST);
for(I=0; I<=255; IT++)
{
SUM=0.0;
for(J=0; J<=I; J++)
SUM=SUM+HIST[J];
HISTEQ[I]=(int) (255*SUM +.5);

¥
for{y=0; Y<IMAGE->Rows; Y++)

{
for(X=0; X<IMAGE->Cols; X++)}
{

*{IMAGEl->Data+X+(long)y*
IMAGE->Cols)=

HISTEQ([* (IMAGE->Data+X+ (long)yY*
IMAGE->Cols)];

¥

}

SEE ALSO: Graylevel Histogram, Histogram Specification,
Contrast, and Brightness Corrrection
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CLASS: Histogram Operation

DESCRIPTION:
Histogram specification can be used to darken, brighten or
improve the contrast of an image. Let hg; be the desired
histogram. Then the first step is to equalize the desired
histogram is
i
si=(m-1)- Zhdi’
=0
where m is the number of graylevels within the image and i
is the ith graylevel value. Next, the original image is
histogram equalized
i
g=Pd)=m-1) Y hyj.
=0
The final step is to find the inverse of the equalized specified
histogram given in step 1
o =P sy

and to apply this inverse transformation to the graylevel
values of the pixels within the equalized image.

EXAMPLE:

(a) (b)

(a) The original and () the histogram specified images.
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HISTOGRAM

0 64 128 192 2586
GRAYLEVEL

The specified histogram

ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE and that the desired
histogram is stored in the floating point array SPEC[]. The
program first histogram equalizes the original image using
the histogram equalization program given in this text. Next,
the program equalizes the desired histogram. The program
then stores the histogram specified image in the structure
IMAGEL.

HistogramSpecify (struct Image *IMAGE,
struct Image *IMAGEl, flocat SPECI[])
{
int X,Y,I, minval, minj;
int HISTSPEC[256]1, J;
int InvHist[256];
float SsUM;
Histogram_Equalization (IMAGE,
IMAGE]L) ;
for (I=0; T<=255; I++)
{
SUM=0.0;
for(J=0; J<=I; J++)
SUM=SUM+SPEC [J] ;
HISTSPEC[I]=(int) (255*3UM+.5) ;
}

for(1=0; I<=255; I++)



114 Histogram Specification

{
minval=abs (I-HISTSPEC[0]);

minj=0;
for(J=0; J<=255; J++)

{
if(abs(I ~ HISTSPECI[J])

minval)

{

minval=abs{I -
HISTSPEC[J]) ;
minj=J;

}

InvHist[I] = minj;

}

<

}
for(y=0; Y<IMAGE->Rows; Y++)
for(X=0; X<IMAGE->Cols; X++)
* (IMAGEl->Data+X+ {long)¥Y*

IMAGE->Cols) =
InvHist [* (IMAGEl->Data+X+{long)Y*

IMAGE->Cols) ];
}
SEE ALSO: Graylevel Histogram, Histogram Equalization,
Nonlinear Transformations, Contrast and Brighiness
Correction
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Histogram Techniques

DESCRIPTION:

Histogram techniques treat the graylevel content of an image
as a set of random numbers that can be represented by a
histogram. By modifying the graylevel histogram of an
image, its appearance can be improved. For example, a dark
low contrast image can be lightened and have its contrast
increased.

The two histogram techniques that are commonly used are
histogram equalization and histogram specification. Both
operations are nonlinear and are used to increase the overall
contrast and brightness within an image. Graylevel scaling
operations such as nonlinear graylevel transformations, and
contrast and brightness correction, modify an image's
histogram by operating on each pixel within the image,
changing the pixel's graylevel values. Contrast and
brightness correction are linear operations and are reversible.
Histogram operations can operate on an entire image or
within a local region within an image.

CLASS MEMBERSHIP:
Brightness Correction
Contrast Correction
Graylevel Histogram
Histogram Equalization
Histogram Specification
Nonlinear Transformations
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CLASS: Morphological Filters

DESCRIPTION:

Binary hit-miss operation is used to extract geometrical
features from a binary object. The masks used in the
operation determines the type of features that are extracted.
The hit-miss operation is defined as

HitMiss( A, B, C) =(A© B)n (A © (),

where A is the image which is being operated on, and B and
C are the specified structuring masks with the requirement

BnC=9.

EXAMPLES:

(a) (b)

(a) The original image and () the hit-miss filtered
image which extracts left vertical edges using the masks
given in the following algorithm.
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ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
Upon completion of the program, the hit-miss filiered image
is stored in the HITMISS structure. The masks M1[] and
M2[] which are chosen for this example extract the left edge
from the binary image as seen in Figure b. The binary
erosion function used by the algorithm can be found under
binary erosion.

Define two 3 x 3 arrays as

M1 M2
01010 0jojo
0f1]1 11010
01010 01010

#define N 3

HitMiss{struct Image *IMAGE,
struct Image *HITMISS,
int M1[][N], int M2[][N])

int X, Y, I, J;
struct Image *IMAGEC;
struct Image A;
IMAGEC=&A;
/* Use this line for Non MS-DOS
systems*/
IMAGEC->Data=(unsigned char *)
malloc({long)IMAGE->Cols* (long)
IMAGE->Rows) ;
/*Use this line for MS-DOS systems */
/*IMAGEC->Data=(unsigned char huge *)
farmalloc{(long)IMAGE->Cols* (long)
IMAGE->Rows);*/
IMAGEC->Rows=IMAGE->RowWsS;
IMAGEC->Cols=IMAGE->Cols;
for{¥=0; Y<IMAGE->Rows; Y++)

for(X=0; X<IMAGE->Cols; X ++)

{
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*{IMAGEC->»Data + X
+(long! Y*IMAGE->Cols) =255~
* (IMAGE->Data + X + {long)Y
*IMAGE->Cols) ;
}
Erosion (IMAGE, M1, HITMISS);
Erosion (IMAGEC, M2, IMAGE);
for(¥=0; Y<IMAGE->ROWS; Y++}
for(X=0; X<IMAGE->Cols; X++)
* (HITMISS->Data + X
+(long) Y*IMAGE->Cols) =
*{HITMISS->Data + X +
(long) Y*IMAGE->Cols) &
* {IMAGE->Data + X
+{long} Y*IMAGE->Cols) ;
HITMISS->Rows=IMAGE->Rows;
HITMISS->Cols=IMAGE->Cols;
}

SEE ALSO: Binary Erosion, Dilation, Opening, Closing,
Thickening , and Thinning Operations
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CLASS: Spatial Frequency Filters

DESCRIPTION:

A Homomorphic Filter combines aspects of two or more
domains, such as a nonlinear mapping function and a spatial
frequency filter. It is this type of filter that is discussed here.
If we assume an image model where high spatial frequency
variations are attributed to reflective components of the pic-
ture and low frequency variations are associated with illumi-
nation components, then a spatial frequency filter that oper-
ates on these elements independently can effect drastic
changes in either component. In real images a problem exists
because illumination and reflectance components are multi-
plicative. The basic model is given by:

f(x,y) = Ix,y)R(x,y)
where f(x,y) is the image, I(x,y) is the image illumination
component, and R(x,y) is the
2o reflectance (Note: this is not Real and
Yoew) "~ Imaginary in this case). This is
% ///% illustrated in the graphic to the left. If
@ the log of the picture is taken this will

allow independent processing of the
components. For example:

log(f(x,y)) = log(I(x,y)) + log(R(x.y)).

If we now take the Fourier transform of the log image, where
log is the natural log, and apply a filter, a low pass filter will
have greatest effect on illumination and a high pass filter
will affect reflectance. This filtering has more robust effects
against poor contrast in a picture than histogramming
techniques because of the spatial relationship of the log and
Fourier transform to scene components in the picture.

In the example, the ultrasound (sonogram) image to the left
is the original and that to the right is the result of
homomorphic filtering of the high spatial frequency
components of the log image of the original. Note that this
filtering sharpened the reflectance components of the fetus
shape and gave the appearance of increased illumination in
the areas of the bone structure. Unlike spatial filtering with a
mask, the edges have not moved or been affected otherwise.
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EXAMPLE:

ALGORITHM:

The subroutine homomorphic_filter is passed the image
data structures for the picture to be filtered, In, and the filter
function Filt. Data storage for the images must be initialized
as complex (sequential real and imaginary pixels of type
float) and the image shape be square with Row and Column
sizes as powers of 2 (128, 256, 512, etc.). The filter is
assumed to be off-center and circularly symmetric, however,
more complex filters may be used at the discretion of the
user. The lowpass Butterworth filter returned by the circ_filt
function discussed in the Circularly Symmetric Filter topic
may be called prior to the homomorphic function described
here. The lowpass Butterworth will selectively increase
contrast over the illumination component.

Processing begins by computing the natural log, log(),
function of the input image, then the two dimensional FFT is
called. The filter is then applied and the inverse FFT taken.
The routine concludes by computing the exponential
function, exp(), of the output picture. The filtered image is
returned in place of the input picture.

#include <math.h>
#include “Image.h™

#define forward 1.0
#define inverse -1.0

homomorphic_filter (struct Image *In,
struct Image *Filt)
{
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int 1i,3;
float *pix, *fpx;
extern DiscreteFourier (
struct Image *IMAGE,float dir):;

/* take ln of (real part) of picture */
pix = (float *)In->Data;
for (i=0; i<In->Rows; ++i)
for (j=0; j<In->Cols; ++3j){
*pix = log(*pix);
pix +=2;
}

/* take fft of log image */
DiscreteFourier (In, forward);

/* compute filter */

pix = (float *)In->Data;

fpx = (float *)Filt->Data;

for (i=0; i<In->Rows; ++1i)

for (j=0; j<In->Cols; ++3j){

*pix = (*pix) * (*fpx)/255.0;
++pix;
*pix = (*pix) * (*fpx)}/255.0;
fpx+=2;

/* take ifft of filtered image */
DiscreteFourier(In,inverse);

/* take exp of (real part) of picture */
pix = (float *)In->Data;
for (i=0; i<In->Rows; ++i)
for (j=0; j<In->Cols; ++3){
*pix = exp(*pix);

SEE ALSO: Discrete Fourier Transform, Spatial Frequency,
Circularly Symmetric Filter
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CLASS: Transforms

DESCRIPTION:

The Hough Transform is a mapping algorithm that processes
data from a cartesian coordinate space into a polar parameter
space. It is most useful for finding geometric lines and
shapes in binary images.

In the simplest realization, line detection, we want to map all
collections of points from an input image (binary) to a single
accumulative value that can describe a single line in the
original space. Examine the binarized image and graphic
charts below:

The vertical oval in the binary image encircles a vertical line
in the picture, the left edge of the end keycap. This is
reproduced to the right in the x-y cartesian plot. Using the
expression given below:

xcos O+ysin@=p,

we can map the points in the x-y plane to an ensemble of
sinusoids in the polar plane, 6—p. Where these sinusoids
intersect represents a common line. This is illustrated in the
plot with the 6—p axes. The process of computing the 6~p
space from the original x-y is the Hough Transformation.

ALGORITHM:

To realize the Hough, we create a matrix, the accumulator
matrix, which is the discretization of the 8—p space. We then
examine each pixel in the original image and solve the
parametric equation given above for each x-y point and for
each value possible of either theta or rho. Typically, theta is
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incremented across the space and the equation solved for
rho. This is the procedure used in the algorithm given below.

To use the results of the transformation, one orders the
accumulator matrix from largest accumulation to smallest.
The accumulator matrix cell with the largest value will
correspond to a set of points in the original image lying on
the line given by the parametric equation.

The routine accepts a binarized input image structure
pointer, Img, an accumulator matrix in the form of a real
image structure pointer, Ace, an optional threshold for the
accumulator matrix, Thresh, and pointers to integer theta
and rho return variables. These return variables specify the
angle and distance from origin of the line found with length
Thresh. The line length is not returned, but printed to the
console prior to return.

/* Simple maximum line finding
Hough transform

*/

hough (struct Image *Img,struct Image *Acc,
int Thresh,int *theta, int *rho)
{

long 1i,3j,k,trho;

/* test each image pixel
*/
for (i=0; i<Img->Rows; ++1)
for (j=0; j<Img~>Cols;++3)
if (* (Img->Data +(i)*Img->Cols + 3j}){
/* Pixel found
evaluate the parametric egn
for the pixel's coordinates
and increment the accumulator
matrix (image) at rho & theta
*/
for (k=0;k<Acc->Rows;++k) {
trho = i*cos(k) + j*sin(k);
++ (* (Acc~>Data +
k* {(Acc->Rows)+ trho)):
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/* Scan accumulator for max value */
for (i=0; i<Acc->Rows;++i)
for(3=0; j<Acc->Cols;++3){
if (* (Acc->Data + i*Acc->Rows + j) >=
Thresh) {
Thresh = *(Acc->Data +
i*Acc->Rows + J):
/* Rho and Theta correspond to
highest accumulation */
*rho = j;
*theta = i;

}
printf("line length: %d\n",Thresh);

} /* end Hough */
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CLASS: Coding and Compression

DESCRIPTION:

Huffman Coding is a compression scheme that uses statistics
of the data set to be compressed to determine variable length
codes. Probabilities of occurrence are computed on all
possible values in the data set (the image) and these are then
ordered. The shortest code word is assigned to the data
values with the highest probability and so on. Since the code
is variable length binary, the code assignment is done by
pairing the smallest probabilities recursively until a binary
tree is generated with a root of two probabilities. This is best
explained by example.

EXAMPLE:

Assume that you have an eight graylevel image, whose
grayscale probabilities are given by the following:

0.300 0.250 0.220 0.200 0.017 0.007 0.005 0.001
these assumptions will generate the binary tree:

0.300 | 0.300 ] 6.300 ] 0.300] 0.300{ 0.550
00 00 00 00 00 0
0.250 ] 0.250 ] 0.250 | 0.250 | 0.250 | 0.450
01 01 01 01 0l 1
0.220 ] 0.220 ] 0.220 | 0.220 [ 0.450
10 10 10 10 1

0.200 | 0.200 | 0.200 ] 0.230
110 110 110 11
0.017 ] 0.017 | 0.030

1110 1110 111

Probabilities are accumulated as we move horizontally
across the tree. Numbers in bold are the Huffman codes. The
left-most column represents the final code. The tree is
generated from left-to-right, then the codes are inserted from
right-to-left. Note that the codes are unique, but that a look-
ahead to the next bit position is required for decoding.
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ALGORITHM:

The algorithm for Huffman Coding is complicated by three
factors: (1) the data set statistics must be generated, (2) the
code is of variable length, and (3) the code keys must be
stored for the decompression of the data. Once the statistics
are calculated and the code computed, the compression is
quite fast. The Huffman image compression routine given
here was developed from algorithms described in Segewick's
text, Algorithms in C, listed in the bibliography.

The code below accepts a pointer to an unsigned character
image structure, In, and a character string, filename, that is
used to name the file to contain the compressed data. Two
accessory routines are called, heapsort, used to order the
indirect heap that manages the Huffman code tree, and bits,
a routine that yields the value of a specified set of bits in an
variable,

void huff compress(struct Image *In,
char *filename)

{

extern void heapsort (int k,int heap(],
int countl],int N):

extern unsigned bits (unsigned x,int k,
int j):

FILE *hp;

long i,3,sz:

int k,t,x;

int node[512],code{256],1len([256]);
int heap[256],N,count(512];

hp = fopen(filename, "wb"):

/* compute statistics */
for (1i=0;1<=256;i++)count [1]=0;
sz = In->Rows * In->Cols;
for (i=0;i<sz;i++)
count [ (int) * (In->Data + i) ]++;

/* generate heap */

for (i=0, N=0; i<= 256; i++)
if (count[i] Yheap[++N] = i;

for (k=N;k>0;k--)
heapsort (k, heap, count,N) ;
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/* generate Huffman tree */
while (N>1) {
t = heap[l]:
heap[1l] = heap[N--];
heapsort (1, heap, count,N);

count [256+N] = count [heap(l]]+count[t];
node [t] = 256+N;
node [heap[1l]}] = -256-N;

heap[l] = 256+N;
heapsort (1, heap, count,N);
}

node [256+N] = 0;

/* construct the Huffman code */
for (k=0;k<=256; k++)
if (!lcount(k]) {
code{k] = 0;

len{k]) = 0;
} else {
i=0; j=1; t=nodelk]; x=0:
while (t) {
if (t<0) {
X += 3; t = -t;

}
t = node(t]; j+=3j; i++;

}
code[k] = x; len[k] = i;
}

/* send compressed data to file.
Note, this is not true "compression®,
each bit uses 1 ASCII byte in the
file */
for(j=0; Jj<sz; j++)
for (i=len[* (In->Data + j)}]:; i>0; i--)
fprintf (hp, "%1d",
bits(code[* {In->Data+3j)],1i-1,1});

fclose (hp);
}

unsigned bits(unsigned x,int k,int j)

return (x>>k) & ~(~0 << Jj);



128 Huffman Coding

/* routine for indirect, bottom up heap
for sorting and maintenance of Huffman
code tree */

void heapsort(int k,int heapl[]l,int count[],
int N)
{
int 3, tmp:

trp = heapl(k]:
while(k <= N/2){
J = k+k;
if (j<N && countf{heap(]jl]>
count [heap[j+1]]) j++;
if (count [tmp]l<count [heap[j]])break:;
heap[k] = heap{ij];
k = 3;

}
heap[k] = tmp;
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Image Fundamentals Class
DESCRIPTION:

This class was included in this book primarily for
completeness and to allow the handbook to also serve as a
dictionary of imaging terms and basic processes.

CLASS MEMBERSHIP:
Discrete Convolution
Discrete Correlation
Grayscale
Mask
Pixel
Quantization
Sampling
Scaling
Spatial Frequency
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CLASS: Spatial Frequency Filters

DESCRIPTION:

The Inverse Filter solves the image degradation function
directly. Given the function in the spatial frequency (Fourier)
domain:

assuming no noise, we can solve directly for the original
image f(x,y) by dividing the transform of the degradation
function into the transform of the degraded image and taking
the inverse transform of the result. This assumes the
degradation function is known. In computation, one must be
cautious of zeroes in the denominator of the filter. These can
be ignored in most cases.

If noise is present in the picture, then the filter becomes:
G(u,v) B N(u,v)

H(u,v) H(u,v)

If the noise (and the degradation function) is known exactly,
then the filter will be exact.

FQu,v) =

In the example, there are four images. The upper left hand
picture is the original image. The upper left hand image is
the magnitude function of the Fourier transform of this
picture. The picture in the lower left is the magnitude of the
Fourier transform of the original picture multiplied by the
transform of a 10 pixel horizontal line. Multiplication in the
spatial frequency domain equates to convolution in the
spatial domain. The inverse Fourier transform of this
function is shown in the fourth picture at the lower right of
the image set. The original image has been blurred and the
blur effect extends for 10 pixels.

If the Fourier transform of the blurred image is divided by
the Fourier transform of the line, then the Fourier transform
of the original picture will remain. The inverse transform of
this will reveal the original image. This is the basis of
inverse filtering.

The difficulty of inverse filtering is determining the exact
nature of the degradation. This is relatively easy to do with
degradations such as motion blur (camera movement during
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image acquisition). Methods exist to identify and
characterize image degradation functions and the reader is
referred to the texts listed in the bibliography for more
extensive treatment of this subject.

EXAMPLE:

ALGORITHM:

The routine for inverse filtering is called with pointers to the
complex image structures (sequential real and imaginary
pixels of type float) containing the Fourier transforms of the
image to be filtered, InFFT and the degradation function,
HFFT. The images are divided by calling the complex
division function exdv.

Zeroes in the division function cause the calculation at that
pixel to be zeroed. The routine can be easily changed to
ignore the pixel if desired.

/* Inverse Filter */

inverse_filter (struct Image *InFFT, struct
Image *HFFT)



132 Inverse Filter

extern void cxdv(float a, float b,
float ¢, float d,
float *R,float *I);
long i,sz;
float *pixI, *pixH;
float a,b,c,d;

/* Pointers to pixel data */

pixI = (float *)InFFT->Data;
pixH = (flcat *)HFFT->Data;

sz = InFFT->Rows * InFFT->Cols;

for (i=0;i<sz:++1i){

*(pixI);

*(pixI+l);

* (pixH);

d *(pixH+1);
cxdv(a,b,c,d,pixI, pixI+l);
pixI += 2;

pixH += 2;

a
b
c

ok

/* Complex divide function */

void cxdv(float a,float b,float c,
float d,float *R,float *I)

{

float denom;

denom = (c*c)+(d*d);
if (denom == 0.0) {
*R = 0;
*I = 0;
}
*R

(a*c)+(b*d)) /denom;
{

=
*I = ((b*c)-(a*d))/denom;

SEE ALSO: Wiener Filter, Wiener Filter (parametric)
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CLASS: Storage Formats

DESCRIPTION:

The Joint Photographic Experts Group, or JPEG, images are
compressed files that incorporate a lossy algorithm and are
identified as JPEG File Interchange Format (JFIF) files. The
lossy algorithm means that image information is sacrificed in
favor of compression efficiency. JPEG images are intended
for human viewing and limitations of the human visual
system have been taken into account in the design of the
algorithms so that lost information is not critical to
perception. JPEG does not accommodate binary images or
image sequences. The amount of compression may be varied
in JPEG pictures so that a quality vs compression trade-off
can be evaluated. Since the technique is lossy, repeated
compression will result in repeated degradation (JPEG is not
areversible technique).

The compression scheme used is based on the Discrete
Cosine Transform (DCT) which is less computationally
restrictive than the Fourier transform as it does not require
complex operations. Also, the DCT has symmetry properties
(mirror image) that allow block encoding schemes not
possible with other techniques.

In the example below, the left-side picture is a normal
quality JFIF picture while that on the right is a low quality,
high compression picture. This image, when stored in GIF
format, requires 16K. The normal quality JFIF file is 10K
and the low quality (high compression) is only 6K!

EXAMPLE:




134 JPEG

ALGORITHM:

The JPEG format is of a complexity well beyond the scope
of this handbook, and the reader is directed to the
bibliography for sources on the JPEG image standard.
However, we do provide a small routine to test a file to
determine whether or not it contains a JFIF format image.

The routine accepts a file pointer to the image file in
question and tests to see if the first byte is OxFF. If so, it
checks for the presence of the string 'JFIF' at the seventh
byte position (thus indicating a JFIF picture file). It returns
zero if the file is not JFIF and one if it is.

Is_JFIF(FILE *£fp)
{
unsigned char tst([S5]:

/* 1st byte of file must be OxFF */
fread(tst,1,1,fp);

1f(tst[0]!=0xFF)tst[0])=0;
else(
/* skip 5 bytes */
fread(tst, 5,1, £fp):
/* see if next four bytes is
the string 'JFIF' */
fread(tst,4,1,fp);
if (tst[0]=="'J" && tst[l)=='F"
&& tst[2]=="I" && tst[3]=="F")
tst[0)=1; else tst[0])=0;
}

/* close file */
fclose (fp);

return({tst[0]);
}

SEE ALSO: Discrete Cosine Transform(DCT), Graphics
Interchange Format (GIF)
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CLASS: Spatial Filters

DESCRIPTION:

The Laplacian is a generalization of the second derivative
taken in two-dimensions. It has the effect of enhancing
changes, and only changes. This is best illustrated by the
diagram below, where we consider a one-dimensional step
edge, its derivative (the basic result of an edge detector), and
its second derivative, or Laplacian:

— I __—_ N

EXAMPLE:

Original Image 3 x 3 Laplacian

ALORITHM: T I
0T-1]0 SI-T]-1f-11-1
-1f4]-1 T[-1|2A 11

119 T[T 1]1
S1P-17-11-11 -1
3 x 3 Laplacian 5 x 5 Lapalcian

The algorithm for Discrete Convolution is applied using the
masks given above.

SEE ALSO: Discrete Convolution, High Pass Spatial Filters
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CLASS: Spatial Frequency Filters
DESCRIPTION:

See Wiener Filter and Wiener Filter (parametric)
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CLASS: Segmentation

DESCRIPTION:

Horizontal, vertical, left, and right diagonal line detection
can be used to find line discontinuities within an image.
Line detection Wwithin an image is accomplished by
performing spatial filtering on the image using the following
3 x 3 masks

Horizontal Vertical

A1f-1la A1l 2f-1
212142 11211
-1 -14-1 -1 -1

Left Diagonal Right Diagonal

21-1]-1 -1p-1)2
1P 2 )1 1121
1)1 2 2)-1]-1

The 3 x 3 spatial filtering operation reduces to

gx,y) =M1 fx-Ly-H)+My -fix-1y)
+My-fx-Ly+1)+My-fix,y—1)
+ Mg (X, )+ Mg - (X, y+ 1)
+ M7 fx+Ly-D+Mg-f(x+1,y)
+Mg-fix+1,y+1),

where f(x, y) is the original image, and g(x, y) is the point
detected image using the mask defined as

Mask Definition

M1 | Mg | M7
M2 | M5 | Mg
M3 | Mg [ Mg
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EXAMPLE:

(a) )

(a) The original image and (b) the vertical line detected
image using the 3 x 3 mask given in the text.

ALGORITHM:

The program assumes thal the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The type of line detection
desired is passed to the program within the 3 x 3 array
MASK(J][]. The program then computes the line detected
image using the 3 X 3 mask and upon completion of the
program, the line detected image is stored in the structure
IMAGEIL.

LineDetector {struct Image *IMAGE, struct
Image *IMAGEL,int MASK[]I[3])

{

int X, ¥, I, J, SUM;

for(Y¥Y=1; Y<=IMAGE->Rows-1; Y++)

{
for{X=1; X<=IMAGE->Cols-1; X++)
{
SUM=0;
for(I=-1;I<=1;I++)
{
for(J=-1;J<=1;J++)

{
SUM=SUM+
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* (IMAGE->Data+X+1I
+{long) (Y+J) *IMAGE-=>Cols) *
MASK[I+1]({J+1];

i

}
if (SUM>255}
SUM=255;
if (SUM<0}
SUM=0;
* (IMAGEl->Data+X+(long}y*
IMAGE->Cols)=SUM;
}

SEE ALSO: Thresholding, Multi-graylevel Thresholding
Point Detector, and Optimum Thresholding

>
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CLASS: Spatial Filters

DESCRIPTION:

The Low Pass Spatial Filters operate to smooth high spatial
frequencies and accentuate low spatial variations in an
image. These filters are characterized by positive values in
their masks, which yields an additive, hence smoothing,
effect between neighborhood pixels during the convolution
process. Their overall effect is to smooth edges.

EXAMPLE:
»

Original Image 3 x 3 Smoothing

ALORITHM:
1Tp1J1{1]1
1414141
TT2 11 11412141
2142 T{4[4a|4][1
1121 TTT]1]1]1
3 x 3 Smooth 5 x 5 Smooth

The algorithm for Discrete Convolution is applied using the
masks given above.

SEE ALSO: Discrete Convolution, Spatial Frequency
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CLASS: Storage Formats

DESCRIPTION:

MacPaint images were first created in the early 1980s with
the introduction of the Macintosh and there are quite a
number of these images available. The pictures are 576 x
720 binary pixels (which yield an 8 x 10 inch picture when
printed at 72 dots per inch) and many are clip art graphics
and half-tones or dithers. When these images appear on
operating systems other than that of the Macintosh, the
MAC extension is often applied to distinguish them.

EXAMPLE:

(,8) 1dd 7 ® S1oX1d 9L

‘ S

720 Pixels @ 72 DPI (10")

ALGORITHM:

MacPaint picture files may or may not have a 128-byte name
block at the beginning of the file. If the second byte of the
file is nonzero, then it contains the length of an ASCII name
string for the image, which follows and will be up to 126
bytes long (the size of the name block). If the second byte of
the file is zero, then a name block is not present. The next
block of data is 512 bytes and contains fill pattern data that
is generally of use only to Macintosh programs. This is
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followed by the picture data as 720 run-length-encoded lines
that decode to 72 bytes or 576 bits (pixels) each.

Each byte in the coded data is either a count or data byte. If
the count byte is negative (MSB=1), then the next byte is
duplicated by the absolute value of the count minus 1. If the
count is positive, then the next count bytes are used as
picture data.

The routine decode_MAC accepts a file pointer, fp, to an
opened binary stream and an image structure pointer to a
MacPaint format image. This means that Img->Cols = 576
and Img->Rows = 720 and the unsigned character Data
space has been initialized for 414,720 bytes (576*720). The
file is read, decoded, and the data written into the image
structure. The mechanism is wasteful as the MacPaint image
is bit-mapped, or 1 bit per pixel, and the decoded picture is 1
byte per pixel. However, the decoder allows for the reading
of MacPaint images for further processing using the routines
given throughout the book.

/* Decode MacPaint® files */

decode MAC(FILE *fp, struct Image *Img)

{
int 1i,3;
unsigned char md, *imd, bufl[l28], tmp;
unsigned char cnt;

/* Assume that image is 576 X 720 *x/
imd = Img-~>Data;

fread(&md,1,1,fp): /* read lst byte */
fread(&md,1,1,£fp); /* read 2nd byte */

/* if name block present, read the rest
of the name (126 bytes) then the 512
byte pattern block, otherwise, just
read the rest of the pattern block.
The 128 byte buffer saves on memory--
data from the blocks is not used.

*/

if (md) {
fread (buf,126,1,fp); /* rest of name */
fread(buf,128,1,fp); /* 1/2 pattern */
fread(buf,128,1,fp); /* 1/2 pattern */
}
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else |
/* rest of lst quarter */
fread(buf,126,1,fp);
/* remainder of 512 bytes */
fread(buf,128,1,fp);
fread(buf,128,1,fp):
fread(buf,128,1,fp);

}

/* Data decode loop:
reads byte, tests to see if negative,
if negative, then use as count for RLE
of next byte in file; else just read
that number of bytes. */

while (fread(&cnt,1,1,£fp)){
if (ent & 0x80){
fread(émd,1,1,£fp);

cnt = (~cnt)+2;
for(i=0; i<cnt; ++i){
tmp = md;

for (j=0; 3<8; ++3j){
if (tmp&0x80) *imd = Oxff;
else *imd = 0;
++imd;
tmp = [tmp<<1)s0xff,;
}

}
} else {
cnt += 1;
for (i=0; i<ent; ++i)({
fread(smd,1,1,£fp);
for (j=0; j<8; ++3){
if (md&0x80) *imd = Oxff;
else *imd = 0;
++imd;
md = (md<<1)&0x£ff;

}

fclose (fp);
}

SEE ALSO: Run Length Encoding
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CLASS: Image Fundamentals

DESCRIPTION:

A mask defines a small image that is used to set parameters
and define the area of operation to take place on a larger
image when performing a discrete convolution or
correlation. In the case of convolution, the mask is called the
filter and when used in correlation, the mask is generally
called a template. Kernel is also a term used to refer to a
mask and is used primarily when discussing image

transforms.
EXAMPLE:
20 +1 2-1-2
-1 0+1 000
2 042 +2+1+2

4 x 4 Vertical and Horizontal Edge Detection Masks.

ALGORITHM:

/* Mask declaration and initialization
for Vertical Edge Detector */

int Mask[3][3];

Mask(07{0] =-2; Mask(G](1]=0; Mask{G](2]=1;
Mask({1][0] = ~1; Mask[1][1]=0; Mask{1][2]=1;
Mask[2][0] =-2; Mask[2][1]=0; Mask[2][2]=2;

The mask may also be described as a small image structure,
This is the format used by the convolution and correlation
algorithms described in this book. An example of this form
is shown in Appendix B.

SEE ALSO: Discrete Convolution, Discrete Correlation,
Spatial Filtering, Spatial Masks
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CLASS: Mensuration

DESCRIPTION:

The Maximum Axis of an object is formally defined as the
axis of minimum inertia (dispersion) passing through the
centroid. There are a number of ways to calculate this, the
most accurate being to compute the eigenvalues and
eigenvectors of the scatter matrix comprised of the
coordinate points of the object. The eigenvector
corresponding to the largest eigenvalue will be the maximal
axis. Another method is to fit an ellipse to the object
perimeter to derive the maximum axis. A far simpler
method uses central moments in the following formula to
derive the slope, 9, of the Maximum Axis:
map- m

tan2 0 + % tan 9120,

m

This quadratic can then be solved for tan 6.

The Maximum Axis is also known as the Principal Axis in the
literature.

EXAMPLE:

\ Maximal Axis

Minimum Dispersion

ALGORITHM:

The algorithm below assumes that the central moments have
been calculated (¢cm20, cm02, cmll) and it returns the slope
of the maximal axis. Note that the algorithm uses the include
file math.h and the special functions sqrt and atan. The
include file is a generalized standard amongst C compilers,
as are the functions. If your library does not include these



146 Maximum Axis

functions, sqrt returns the square root of its argument and
arctan the arc tangent.

#include <math.h>
/* compute and return slope of maximum axis
*/

double max_axis_slope (struct Image *In,int
x1,int yl,int x2,int y2)
{

float cm20,cm02,cmll,b;

float theta;

cm20 = cmoment(2,0,In,xl,yl,x2,y2);
cm02 = cmoment (0,2,In,xl,yl,x2,y2);
cmll = cmoment (1,1,In,x1,yl,x2,y2);

/* solve quadratic for tangent theta */
b = (cm20 - em02)/cmll;
theta = ((-1.0*b)*sqrt(b*b + 4.0))/2.0;

/* compute theta and return */
return (atan(theta)):;

}
SEE ALSO: Minimum Axis, Centroid, Dilation, Moments
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CLASS: Nonlinear Filters

DESCRIPTION:

The maximum filter is typically applied to an image to
remove negative outlier noise. The maximum filter is also
used in the computation of binary morphological dilation
and is defined as

Maximum{A) = max] A(x +1, ¥ +j)],
where the coordinate x + 1, y +j is defined over the image A
and the coordinate i, j is defined over the mask M. The
mask M determines which pixels are used in the maximum
calculation.

EXAMPLE:

b)

(a) The original image and (b) the maximum filtered
image using a 7 x 7 mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows X IMAGE->Cols pixel image
stored in the structure IMAGE. The program performs an N
x N maximum filter storing the resulting filtered image in
the structure IMAGE]1. The only restriction on the program
is that the size of the mask N should be odd and be less than
12.

Maximum(struct Image *IMAGE, struct Image
*IMAGEL;
{
int X, v, I, J, smax, N, al[ll][11];
N=3;
for(Y=N/2; Y<IMAGE->ROwS-N/2; Y++)
{
for(X=N/2; X<IMAGE->C0ls-N/2; X++)
{
smax=0;
for(J=-N/2; J<=N/2; J++)
for(I=-N/2; I<=N/2; I++){
al[I+N/2][J+N/2]= * (IMAGE->
Data+X+I+{long) (Y+J)*
IMAGE->Cols);}
for (J=0; J<=N-1; J++)
{

for(I=0; I<=N-1; I++)

if(alI]l[J] > smax)
smax = alIllJ];
}
}
* (IMAGEl->Data+X+(long)Y
*IMAGE->Cols) =smax;

SEE ALSO: Minimum, Arithmetic Mean, Median, and other
Nonlinear Filters.
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CLASS: Nonlinear Filters

DESCRIPTION:

A median filter operation on an image removes long tailed
noise such as negative exponential and salt and pepper type
noise from an image with a minimum blurring of the image.
The median filter is defined as the median of all pixels
within a local region of an image. Pixels that are included in
the median calculation are specified by a mask. The median
filter performs much betier than the arithmetic mean filter in
removing salt and pepper noise from an image and in
preserving the spatial details contained within the image.
The median filter can easily remove outlier noise from
images that contain less than 50% of its pixels as outliers.
The definition of a median filter in terms of an image A is

Median(A) = Median[A((x +i, y +j)],

where the coordinate x + i, y + j is defined over the image A
and the coordinate i, j is defined over the mask M. The
mask M determines which pixels are to be included in the
median calculation.

EXAMPLE:

(a) (b)

(a) The original salt and pepper noise corrupted image
and (b) the median filtered image using a 5 X 5 mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then performs
a N x N median filter on the image. The size of the filtering
operation is determined by the variable N and should be set
to an odd number and be less than 12. Upon completion of
the program, the filtered image is stored in the structure
IMAGEL.

Medianistruct Image *IMAGE, struct Image
*IMAGEL:
{
int X, ¥, I, J, Z;
int N, AR[121], A&;
N=7;
for (Y=N/2; Y<IMAGE->ROwWS-N/2; Y++)
for (X=N/2; X<IMAGE->Cols-N/2; X++)
{Z=0;
for(J=-N/2; J<=N/2; J++:
for(I=-N/2; I<=N/2; I++)
{
AR([Z]= *(IMAGE->Data+X
+I+{long) {(Y+J}
*IMAGE->Cols) ;
Z++;

i
for (J=1; J<=N*N-1;J++)

{
A = AR[J);
I=J-1;
while(I>=0 && AR[I] >A)
{
AR[I+1]=AR[I];
=I-1;
AR[I+1]=A;

3
* (IMAGEl->Data+ X +{long)Y
*IMAGE->Cols) = AR[N*N/2);

}

SEE ALSO: Arithmetic Mean, Minimum, Maximum, and
other Nonlinear Filters
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Mensuration Class
DESCRIPTION:

Mensuration is a sophisticated term for measurement. In
image processing, it refers to the evaluation of features
associated with objects extracted from images. These
measurements may be used to classify objects, both for
recognition schemes and for database purposes. Mensuration
algorithms are well known to the medical imaging field for
the evaluation of tumors, cell structures, and fetal tissues.
Image object measurement is often tightly coupled to
interactive graphic processing, where boundaries and objects
are specified by a human operator using a pointing device.
The algorithms presented here are useful in this instance or
when objects are extracted automatically. It is beyond the
scope of this book, however, to go into greater depth than a
simple clustering algorithm for the automatic extraction of
image objects.

Measures on the spatial distribution of pixels and pixel
values are the most common and simplest to implement.
These include the moments, area, and axes of image objects.
There are a large number of measures that have been
reported in the literature and only a sampling of them, the
most popular, are presented in this book.

CLASS MEMBERSHIP:
Area
Centroid
Circularity
Clustering
Compactness
Maximum Axis
Minimum Axis
Moments
Perimeter
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CLASS: Nonlinear Filters

DESCRIPTION:

The midpoint filter is typically used to filter images
containing short tailed noise such as Gaussian and uniform
type noises. The midpoint filter output is the average of the
maximum and minimum graylevel values within a local
region of the image determined by a specified mask. The
definition of the midpoint filter is

max{ A(X+1, y+j) ]+ minf A(x+1,y+]j
Midpoint(A) = [ A( y J)J2 i A¢ y J)]’

where the coordinate x + i, y +j is defined over the image A
and the coordinate i, j is defined over the mask M. The
mask M determines which pixels are to be included in the
range calculation.

EXAMPLE:

(@) (b)

(a) An uniform noise corrapted image (Variance = 8§00,
Mean = 0) and (b) the midpoint filtered image using a
3 % 3 square mask.

ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program computes the
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midpoint filter over a set of pixels contained within a square
N x N region of the image centered at the pixel X, Y. The
size of the filtering operation is determined by the variable N
and should be set to an odd number and be less than 12.
Upon completion of the program, the midpoint filtered

image is stored in the structure IMAGE]1.

midpoint (struct Image *IMAGE, struct Image

*TMAGELS
{
int X, ¥, I, J, smin, smax, N;
int al[l1][11];
N=3;
for(Y=N/2; Y<IMAGE~>ROws-N/2; Y++)

for(X=N/2; X<IMAGE->COls-N/2; X++)

{
smin=255; smax=0;
for (J=-N/2; J<=N/2; J++)
{
for(I=-N/2; I<=N/2; I++}
{

alI+N/2] [J+N/2]=
Data+X+I+(long) (Y+J)}
*IMAGE->Cols);

}

3

b
for(J=0; J<=N-1; J++!
for(I=0; I<=N-1; I++}

if(alI}[J] < smin}
smin = alI][J];

}
for(J=0; J<=N-1; J++!}
for{I=0; I<=N-1; I++)
{
if(a(1]1({J] > smax}
smax = alI][J];

}
* (IMAGEl->Data+X+(long}y
*IMAGE->Cols) = (smax+smin) /2;
}
}

* {IMAGE->

SEE ALSO: Geometric, Y, Harmonic, Arithmetic Mean,

Median, and other Nonlinear Filters.
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CLASS: Mensuration

DESCRIPTION:

Minimum Axis of an object is formally defined as the axis of
maximum inertia (dispersion) passing through the centroid.
There are a number of ways to calculate this, the most
accurate being to compute the eigenvalues and eigenvectors
of the scatter matrix comprised of the coordinate points of
the object. The eigenvector corresponding to the smallest
eigenvalue will be the minimal axis. Another method is to fit
an ellipse to the object perimeter to derive the minimum
axis.

If the maximum axis is known, then the minimum axis may
be computed as the line 90° to it.

EXAMPLE:

Minimal Axis

/

ALGORITHM:

The algorithm assumes that the central moments have been
calculated (cm20, cm02, cm11) and returns the slope of the
minimum axis as the line 90° to the maximum axis.

Maximum Dispersion

/* compute and return slope of minimum axis
*/

float min_axis_slope (struct Image *In,int
x1l,int yl,int x2,int y2)
{
return(max_axis_slope(In,x1l,yl,x2,y2}+
(1.5714285714)) ;

SEE ALSO: Maximum Axis, Centroid, Moments
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CLASS: Nonlinear Filters

DESCRIPTION:

The minimum filter is typically applied to an image to
remove positive outlier noise. The minimum filter is also
used in the computation of binary morphological erosion and
is defined as

Minimum(A) = min[ A(X+1, y+j)],
where the coordinate x + 1, y + j is defined over the image A
and the coordinate i, j is defined over the mask M. The
mask M determines which pixels are used in the minimum
calculation.

EXAMPLE:

(b)

(a) The original image and (b) the minimum filtered
image using a 7 x 7 mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program performs an N
X N minimum filter storing the resulting filtered image in
the structure IMAGE1. The only restriction on the program
is that the size of the mask N should be odd and be less than
12.

Minimum(struct Image *IMAGE, struct Image
*IMAGEL)
{
int X, Y, I, J, smin, N, al[ll][11];
N=5;
for(Y=N/2; Y<IMAGE->Rows-N/2; Y++}

{
for (X=N/2; X<IMAGE->C0ols-N/2; X++}

smin=255;
for(J=-N/2; J<=N/2; J++!}
for(I=-N/2; I<=N/2; I++)}

{

alI+N/2] [J+N/21= * (IMAGE->
Data+X +I+{long) (Y+J)*IMAGE->
Colst;

}

for(J=0; J<=N-1; J++)
{
for{(I=0; I<=N-1; T++)

{

if(alIl{J] < smin)
smin = a[I][J];

}

}
* {IMAGEl->Data+X+ (long)¥
*IMAGE~>Cols) = smin;
}

SEE ALSO: Maximum, Arithmetic Mean, Median, and
other Nonlinear Filters.
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CLASS: Mensuration

DESCRIPTION:

Moments are a measure of the distribution of values across
an axis. In imaging, we use two-dimensional moments to
describe distributions of grayscale values. Moments are
scalars and often provide excellent measures of an object for
pattern analysis or recognition purposes. The two-dimen-
sional moments, mp,, are given by:

M-1 N-1

mpq = E E Xpyq f(x,y).
x=0 y=0

We may also define the central moments, given by:

M-1 N-1
M= 2 X x-xPly- y)? fxy),
x=0 y=0
where
< =20 —_Mo1
X =200 Y mo:
EXAMPLE:

Xc=39/13 = 27

0123456789

Yc=52/13=4 -

€8L9SHEZ LD

The centroid of an object (above) is nothing more than the
first central moment.
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ALGORITHM:

The code given below calculates a desired central moment
specified by p and q on a rectangular image region given by
x1, y1, x2, y2 in unsigned character image In. It returns the
requested moment as the function's double value.

The macro pix is used for simplified access to the pixels of
the image by coordinates.

#define pix(Im,x,y) \
* (Im->Data + (x)*Im->Cols + (y))

/* Compute central moments */

double cmoment (int p,int q,
stxuct Image *In,
int x1,int yl,int x2,int y2)

int i,j,xb,yb;
double m00=0.0,m10=0.0,m01=0.0,upg=0.0;

/* code takes advantage of a number of
symmetry properties of the central
moments */

if ((p==1 && g==0) || (p==0 && g==1))
return(upq) ;

for (i=x1; i<x2; ++i})
for(3=yl; j<y2: ++j)
m00 += pix(In,i,3):
if (p==0 && g==0)return (m00);
for (i=x1; i<x2; ++i)
for (j=yl; 3j<y2; ++3)
ml0 += j * (pix(In,i,3§));
for (i=x1; i<x2; ++i)
for (J=yl; j<y2; ++j)
m0l += i * (pix(In,i,3));

xb

)

floor(0.5 + (ml0/m00});
yb

1]

floor (0.5 + (m01/m00));
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if(p == 0){
for (i=xl; i<x2; ++i)
for(j=yl; j<y2; ++3)
upq += pow(j-yb,q)*pix(In,i,J);
return (upq) ;
}

if(g == 0){
for (i=x1; i<x2; ++1i)
for (j=yl; j<y2; ++3)
upq += pow(i-yb,p)*pix(In,i,j):
return (upq) ;
}
for (i=x1; i<x2; ++i)
for (3=yl; j<y2: ++3J)
upg += pow(i-xb,p)*
pow (j-yb,q) *pix (In, i, j);

return (upq) ;

SEE ALSO: Centroid
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CLLASS: Graphics Algorithms

DESCRIPTION:

Morphing is used to distort one image into another, or
provide a smooth transition from one image to another and
thus create the illusion of a transformation. The term was
coined by the special effects industry and implies using an
image processing algorithm to effect a dynamic shape
change from one object into another. One may define a
simple morphing that uses a fade or dissolve process that
decrements or increments pixel values from a source image
until they equal pixel values from a destination image. More
advanced morphing uses a warping process in addition to the
fade/dissolve to slowly bring into alignment the shapes of
the start and end pictures. This adds to the smooth transition
of the process and yields a dramatic effect when "morphing"
one human face into another or a human face into (or from)
an inanimate object or animal.

The example shows how objects of the same shape can be
"morphed” using a fade from the start image to the end
image. In this case, the Panic key is changed into the Delete
key.

EXAMPLE:

ALGORITHM:

The algorithm given fades one image into another and is
intended to be called until completion. Three images are
passed to the routine with a completion (Done) and status
(Stat) flag. The first two image structure pointers are the
Start and End images, and the third is the working image,
Out, that is displayed after each call to the routine. The flags
must be initialized to zero on the first call and all images
passed must be of congruent dimension. When the routine is
finished, the Done flag will be nonzero.
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When called initially, Stat and Done equal zero, the Start
image is copied to the QOut and the routine returns.
Successive calls increment or decrement the Out image
pixels until they equal the End image. This will occur after
no more than 256 calls. A faster fade can be achieved by
modifying the increment-decrement loop.

A sequence of fades can be saved and warping done on the
images in the sequence to effect a more sophisticated morph.

/* Simple fading Morph routine */
morph_fade (struct Image *Start,

struct Image *End,

struct Image *Qut,

unsigned char *Stat, char *Done)

long 1i,3j,sz;
unsigned char *tmpO, *tmpE;

if (*Done)return;
tmpO = Out->Data;

if (*Stat == 0){

for (i=0;i<Start->Rows*Start->Cols;++1i)
* (tmpO++) = *(Start->Data + 1i);

*Stat = 1;
return;

}

++ (*Stat) ;

if (*Stat==256){ *Done = 1; return;}

tmpE = End->Data;
sz = Start->Rows*Start->Cols:

/* Increment/Decrement Loop */
for (i=0;i<sz;++i, ++tmpO, ++tmpE) {

if (*tmpO == *tmpE)continue;
if (*tmpO < *tmpE) *tmpO += 1;
else *tmpO —= 1;

SEE ALSO: Warping
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Morphological Filters

DESCRIPTION:

The image processing of an image prior to pattern
recognition and identification usually involves the
morphological filtering of an image to change the
geometrical shape of objects within an image. The goal of
morphological filters is to smooth the contours of objects
and to decompose an image into its fundamental geometrical
shapes for image recognition.

Morphological filtering operations can be separated into two
categories: (1) binary morphological filtering of binary
images, and (2) graylevel morphological filtering of
graylevel images. All of the fiitering operations for both
binary and graylevel morphological filtering are derived
from the two fundamental morphological operations of
dilation and erosion.

CLASS MEMBERSHIP:

Binary:
Closing Filter Dilation Filter
Erosion Filter Hit-Miss Filter
Opening Filter Outline Filter
Skeleton Filter Thickening Filter

Thinning Filter

Graylevel:
Closing Filter Dilation Filter
Erosion Filter Opening Filter

Top-hat Filter
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CLASS: Segmentation

DESCRIPTION:

Multi-graylevel thresholding is used in image processing to
separate different graylevel regions within an image. Multi-
graylevel thresholding converts a multi-graylevel image into
an image containing a small number of graylevel values.
The multi-graylevel threshold operation defined over four
graylevel regions is

Gz if fix,y) > T3

Gy if Tp <f(x,y) < Ty
gx,y) = : s

Gy if Ty <f(x,y)<Tp

Gy iff(x, y) ST

where f(x, y) is the original image, g(x, y) is the multi-
graylevel thresholded image, T), Ty, and T3 are the
threshold values, and Gy, G, Gp, and Gy are the graylevel
values used in the muiti-graylevel thresholded image.

EXAMPLE:

(a) (b)

(a) The original image and (b) the thresholded image
using two thresholds of Ty = 40 and T5 = 113 and three
graylevel values of Gg = 0, G| = 128, and Gy = 255.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program computes a 3-
graylevel image by comparing each pixel of the image
against the threshold parameters THRES1 and THRES2. If
a pixel's graylevel value is greater than the THRESI]
parameter, it is set to the graylevel value given by the G2
parameter and if the pixel's graylevel value is between
THRES1 and THRES2 the pixel's graylevel value is set to
the graylevel value given by the G1 parameter; otherwise it
is set to the graylevel value given by the GO parameter. The
resulting threshold image is returned by the program in the
structure IMAGEL.

MultiThresheold(struct Image *IMAGE, struct
Image *IMAGEl, int THRES1, int THRES2)
{
int X, Y, G2, Gl, GO, GR;
G2=255;
G1=128;
G0=0;
for{y=0; Y<IMAGE->ROWS; Y++}
{
for(X=0; X<IMAGE->Cols; X++)
{
GR=* (IMAGE->Data+X+ (long)Y¥*
IMAGE->Cols};
if(GR > THRES2)
GR = G2;
if (GR <= THRES2 &&
GR > THRESL)

GR= G1;
if (GR < THRES1)

GR= GO;
*{IMAGEl->Data+X+(long)Y*
IMAGE->Cols)= (unsigned char)GR;

}

SEE ALSO: Thresholding, Point Detector, Line Detectors,
and Optimum Thresholding
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CLASS: Noise

DESCRIPTION:

Negative exponential type noise is the result of acquiring an
image illuminated with a coherent laser. The optics
community refers to this type of noise as laser speckle. Its
histogram is defined as

— (Gij/a)
i=e—z2 ! for0<Gj <oo ,
where G is the ith graylevel value of the image and a2 is the
variance.

Graylevel

A histogram of negative exponential noise.

EXAMPLES:

@) (b)

(a) The original image and (b) the negative exponential
noise degraded image with a variance = 800.
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ALGORITHM:

The program generates a negative exponential noise image
of 256 graylevel X IMAGE->Rows x IMAGE->Cols pixel
image stored in the structure IMAGE. The program assumes
that the function rand() generates a uniform random number
in the range of 0 to 32767. The desired variance is passed to
the program upon execution. If the noise graylevel value
generated exceeds the 256 graylevel range, the noise
graylevel value is truncated to ¢ither 0 or 255.

NegExp {struct Image *IMAGE,

float VAR)

{

int X, Y;

float NOISE, A, theta, Rx, Ry, Rz;

for(Y=0; Y<IMAGE->Rows; Y++)

for(X=0; X<IMAGE->Cols; X++)
{
A= sqgrti{(double)}VAR)/2;
NOISE=sqgrt (~2 * A * logi{l.0-
(floatirand() / 32767.1)});
theta=(float)rand() *
1.9175345E-4 - 3.14159265;
Rx = NOISE*cos{theta);
Ry = ROLSE*sin{theta);
NOISE = RX*RxX + Ry*Ry;
if (NOISE > 255)
NOISE = 255;

* {IMAGE->Data+X+ (long)Y*
IMAGE->Cols) = (unsigned
char) (NOISE +.5);
}

SEE ALSO: Gaussian, Uniform, Salt and Pepper, Rayleigh
and Gamma Noises
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Noise

DESCRIPTION:

The ability to add a controlled amount of noise to an image
is imperative in the development of image processing
filtering algorithms. The controlled degradation of noise
free images allows for an easy comparison of a filter's
performance against various noise conditions that are
encountered. For example, Gaussian type noise is better
filtered using a mean filter, while Salr and Pepper type noise
is better filtered using a median filter. Gaussian noise
appearing in an image is usually the result of camera
electronic noise, while Salt and Pepper noise is the result of
inoperative or "dead” pixels within the camera sensor.

CLASS MEMBERSHIP:
Gamma Noise
Gaussian Noise
Negative Exponential Noise
Rayleigh Noise
Salt and Pepper Noise
Uniform Noise

SEE ALSQ: Spatial, Nonlinear and Adapiive Filters
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Nonlinear Filters

DESCRIPTION:
A large portion of image processing filters fall under the
nonlinear filtering category. Nonlinear filters operate on an
image by computing a given nonlinear function over a local
window and replacing a specified pixel within the local
window with this value. One of the most important of the
nonlinear filters which is based upon order statistics is the
median filter. It is typically used to remove salt and pepper
noise from an image while offering the advantages over the
arithmetic mean filter of preserving the edge information
within an image. Nonlinear filters are not just limited to the
removal of noise from an image. The range filter, for
example, can be used to detect edges within an image.
CLASS MEMBERSHIP:

Alpha-Trimmed Mean Filter

Contra-Harmonic Filter

Geometric Mean Filter

Harmonic Mean Filter

Maximum Filter

Median Filter

Midpoint Filter

Minimum Filter

Range Filter

Weighted Median Filter

Yp Mean Filter

SEE ALSO: Spatial and Adaptive Filters
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CLASS: Histogram Operation

DESCRIPTION:

Nonlinear graylevel transformation of an image is used to
increase the contrast for certain graylevel values of an image
while decreasing the contrast for other graylevel values.
Graylevel transformation T of an image is defined as

s =Ty ,
where gj is the ith graylevel value of the original image and

sj is the ith graylevel value of the nonlinear graylevel
transformed image.

EXAMPLE:

(@) (b)

(a) The original image and (b) the non-linear graylevel
transformed image.

GRAYLEVEL TRANSFORMATION

w
o
=3

N
=3
=3

o
=3

OUTPUT GRAYLEVEL

op

=

64 128 192 258
INPUT GRAYLEVEL

The specified nonlinear transformation.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE and that the desired graylevel
transformation is stored in the integer array TRANS[]. The
program then transforms the original image's graylevels
using the TRANSI] array. Upon completion of the program,
the new image is stored in the structure IMAGE]L.

NonLinGraylevel (struct Image *IMAGE, struct
Image *IMAGEl, int TRANSI[])
{

int X,Y;
for(Y=0; Y<IMAGE->Rows; Y++!
for (X=0; X<IMAGE->Cols; X++)
* (IMAGEl->Data+X+{(long)yY*
IMAGE->Cols) =
TRANS [* (IMAGE->Data+X+ (long)Y*
IMAGE->Cols)];
}

SEE ALSO: Graylevel Histogram, Histogram Equalization,
Histogram Specification, Contrast, and Brightness Correc-
tion
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CLASS: Morphological Filters

DESCRIPTION:
Morphological opening of a binary object is defined as the
erosion of that object followed by the dilation of the eroded
object. The opening filter operation will reduce small
outward bumps and small narrow openings.

Open(A,B)= (ASB)®B

EXAMPLES:

n
(@) (b)

(a) The original binary image of object A and (b) the opened
image of object A with a circular structuring function B.

(a) The original image and (b) the opened image.
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ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
The N x N structuring function is stored in array MASK[][].
Upon completion of the program, the opened image is stored
in the structure FILTER. The binary erosion and dilation
functions used by the algorithm can be found under binary
erosion and dilation respectively.

#define N 5

Open {struct Image *IMAGE, int
MASK[] [N], struct Image *FILTER)
{
int X, Y;
Erosion (IMAGE, MASK, FILTER);
for(vy=0; Y<IMAGE->Rows; Y++)
{
for(X=0; X<IMAGE->Cols; X++)

(IMAGE->Data+ X +

long}Y * IMAGE->Cols! =
*(FILTER->Data+ X + {(long)Y
*IMAGE->Cols) ;

}

{
*
{
L

}
Dilation (IMAGE, MASK, FILTER});
FILTER->Rows=IMAGE->ROWS;
FILTER->C0ls=IMAGE->Cols;
}

SEE ALSO: Binary Dilation, Erosion, and Closing Filters
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CLASS: Morphological Filters

DESCRIPTION:

Morphological opening of an image is defined as the
graylevel erosion of an image followed by the graylevel
dilation of the eroded image. The opening filler operation
will reduce small positive oriented graylevel regions and
positive graylevel noise regions generated from salt and
pepper noise.

OpentA,B)= (A©B)®B
EXAMPLES:

(b)

(a) The original image and (b) the opened image using
an all zero 7 X 7 mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The N x N structuring
function is stored in the array MASKJ][]. Upon completion
of the program, the opened image is stored in the structure
FILTER. The graylevel erosion and dilation functions used
by the algorithm can be found under graylevel erosion and
dilation respectively.

#define N 5

OpenGray (struct Image *IMAGE, int
MASK (] [N], struct Image *FILTER)
{
int X, Y;
ErosionGray (IMAGE, MASK, FILTER);
for{y=0; Y<IMAGE->ROows; Y++)
{
for (X=0; X<IMAGE->Cols; X++)
{

* (IMAGE->Data+X+ (long}yY*
IMAGE->Cols)= *(FILTER->
Data+X+ {long) Y*IMAGE->Cols);
}
}
DilationGray (IMAGE, MASK, FILTER});
FILTER->ROWS=IMAGE->ROWS;
FILTER->Cols=IMAGE->Cols;
}

SEE ALSO: Graylevel Dilation, Erosion, Top-Hat, and
Closing Filters
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CLASS: Segmentation

DESCRIPTION:

Optimum thresholding of an image assumes that an image's
histogram contains two predominant peaks, one due to the
background and one due to an object. The goal of optimum
thresholding is to find the valley between the two peaks and
threshold the image at this graylevel value. The histogram
below illustrates the location of the optimum threshold
value.

Background Object

Graylevel

EXAMPLE:

(a) b)

(a) The original image containing additive Gaussian
noise containing a variance of 600 and (b) the optimum
thresholded image with T = 127 .
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HISTOGRAM

64 128 192 256
GRAYLEVEL

The histogram of the original image showing two
predominant peaks.

ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE and that the image's
histogram only contains two predominant peaks, one due the
object and one due to the background. The program first
starts by computing the histogram of the image using the
algorithm given in this text. The program then smoothes the
histogram curve using a 31 x 1 mean filier 1o reduce error in
finding the optimum threshold value. Finally, ignoring the
two end points of the histogram curve, the program locates
the valley between the two peaks and uses this graylevel
value as the optimum threshold value in creating the
binarized image. Upon completion of the program, the
binarized image is returned in the structure IMAGE].

OptimumThreshold(struct Image *IMAGE,
struct Image *IMAGEL)
{

int X, Y, FLAG, J, THRES, GO, GB;
float HIST[256], SUM;
G0=255;
GB=0;
Histogram(IMAGE, HIST);
for(Y=0;Y<=255;Y++}

{

SUM=0.0;J=0;

for(X=-15; X<=15; X++)

{
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J++;
if ((Y-X)>=0)
SUM= SUM + HIST[Y-X]:;

}
HIST[Y]=SUM/ (float)J;
}
Y=2;
FLAG=0;
THRES=0;
while (FLAG==0 && Y< 254)
{
if ((HIST[Y-1] >= HIST[Y]) &&
(HIST(Y] < HIST[Y+1]))
{
FLAG=1;
THRES=Y;
}
Y++;
}
for(y=0; Y<=511; Y++)
{
for{X=0; X<=511; X++)

{
1f (* {IMAGE->Data+X+(long}y*
IMAGE->Cols) > THRES)
* (IMAGEl->Data+X+ (long)yY*
IMAGE->Cols)= GO;
else
* {IMAGEl->Data+X+(long)Y*
IMAGE->Cols)= GB;

SEE ALSO: Multi-graylevel Thresholding, Point Detector,
Line Detector, and Thresholding
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CLASS: Morphological Filters

DESCRIPTION:

Binary outlining of an object is the process of changing all
of an object's pixels to the background graylevel value
except those pixels that lie on the object's contour. Binary
outlining is defined as the eroded image subtracted from the
original image or the original image subtracted from the
dilated image. The width of the contour is determined by
the size of the structuring function B.

Outline(A, B)=A-(A©B) ,
or
Qutline(A,B)= A®B)-A

EXAMPLES:

OBJECTA

(a) )
(a) The original binary image and (b) the outlined image.

(@) (b)

(a) The original image and (b) the outlined image.
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ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
The N x N structuring function is stored in array MASK[][].
Upon completion of the program, the outlined image is
stored in the structure FILTER. This program is modified to
the second binary outline filter by changing the following
lines:

(Old) *(FILTER->Data + X + (long)Y*IMAGE->Cols) =
*(IMAGE->Data + X + (long) Y* IMAGE->Cols) -
*(FILTER->Data + X + (long)Y* IMAGE->Cols);

(New) *(FILTER->Data + X + (long)Y*IMAGE->Cols) =
*(FILTER->Data + X + (long) Y* IMAGE->Cols) -
*(IMAGE->Data + X + (long) Y* IMAGE->Cols);

(0ld) Erosion(IMAGE, MASK, Filter);
(New) Dilation(IMAGE, MASK, Filter);

#define N 5

Outline(struct Image *IMAGE, inmt MASK(] N},
t Image *FILTER)

int X,¥, I, J;

Erosion{(IMAGE, MASK, FILTER);

for(Y=0; Y<IMAGE->Rows; Y++)
for (X=0; X<IMAGE->Cols; X++)
*{FILTER->Data + X + (long)¥Y*
IMAGE->Cols)= *{IMAGE->Data + X
+ (long)yY* IMAGE->Cols) -
*{FILTER->Data + X + (long)Y*
IMAGE->Cols);

FILTER->ROws=IMAGE->ROWS;

FILTER->Cols=IMAGE->Cols;

}

SEE ALSO: Edge Detection, Binary Erosion, Dilation,
Closing, and Opening Filters
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CLASS: Storage Formats

DESCRIPTION:

PC Paintbrush, or PCX, files are images created or intended
to be accessed by the PC Paintbrush program by ZSoft. This
sofware is classified as a drawing program and allows the
user to draw and fill objects, add text to pictures, and
manipulate color or grayscale palettes.

ALGORITHM:

PCX files consist of a 128-byte header followed by data. The
header for these files may be described by the following
structure:

struct PCX header{
char manufacturer; /* always Ox0a */
char wversion;
char encoding; /* always 1 */
char pixel depth;
int x min,y min:; /* image origin */
int x max,y_max; /* image size */
int hor_res; /* horiz/vert. */
int ver_res; /* resolution */
char palette{48]; /* color palette for
16-color images */
char reserved;
char color_planes; /* # of planes */
int line_bytes; /* line buffer size */
int palette type; /* 1l: grayscale
2: color %/
char filler[58]; /* £ill to make header
128-bytes total */
};

Bytes following the header are run length encoded image
data compressed line-by-line. The length of an
uncompressed line is given by the line_bytes variable from
the header, hence the decompression algorithm knows when
to stop decompressing a line. The byte-by-byte decoding
starts by examining the two most significant bits of the
compressed byte. If these are set, the byte is accepted as is. If
not, the byte becomes a run length count when ANDed with
001111117 (or 3F16) and the byte following is duplicated
accordingly. Decompression stops when line_bytes have
been extracted from the compressed data.
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Two routines are provided, the first, rd_PCX_hdr, reads in
and returns a PCX header structure pointer, rt_pcx, from the
binary file stream pointed to by fp. A zero is returned if fp
does not contain a PCX file. Note also the use of the rword
routine, which is described under the TIF topic description.
This routine may or may not be needed depending on the
target system being used. If erroneous results are returned
from a known PCX file, then the byte order is not swapped
and the last value passed to rword should be changed to
zZero.

The second routine, decode_PCX, should be called after
rd_PCX_hdr. The routine decodes the RLE PCX data from
the file stream fp into the data buffer of the image structure
pointed to by In. The Rows and Cols variables of In must be
initialized from the PCX header data. The decoder assumes
an 8 bits per pixel image.

rd_PCX_hdr (FILE *fp,
struct PCX header *rt_pcx)
{
fread(&rt_pcx->manufacturer,1,1,fp);
1f{xrt_pex-»manufactureri=0xba)rerurni{dy;

fread(&rt_pcx->version,1,1,£fp);
fread(&rt_pcx->encoding, 1,1, fp);
fread(&rt_pcx->pixel depth,1,1,fp);

rt_pcx->x min rword (£p,1);
rt_pcx->y _min rword(fp,1);
rt_pcx->x_max rword(fp,1);
rt_pcx->y_max rword (fp,1);

rt_pcx->hor_res
rt_pcx->ver_res
rt_pcx->ver_res
rt_pcx->ver_ res

rword (fp,1):
rword {fp,1);
rwoxrd (fp, 1} ;
rword (fp,1);

R ow o don

fread(&rt_pcx->palette,48,1,{p):
fread(srt_pcx->reserved,1,1,fp):
fread(&rt_pcx->color_planes, 1,1, fp):

rt_pcx->line bytes = rword{fp, 1}
rt_pcx->palette type = rword{fp,1);
fclose (fp)
return(l};
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decode_PCX(FILE *fp,struct Image *In)
{

long i

unsigned char *ind, ¢, j, tmp[128];

/* skip PCX header */
fread(tmp,128,1, fp);
ind = In->Data;

while (i< (long) In->Rows * (long)In->Cols) {
¢ = (unsigned char) (fgetc(fp)&0x£ff);
if ((c&0xc0) == 0xc0){
j =c & Ox3f;
¢ = (unsigned char) (fgetc{fp)&OxEff);

while(3--){
*ind++ = ¢;
++1i;
}
} else {
*ind++ = c;
++i;
}
}
fclose (fp) :

}

SEE ALSO: Run Length Encoding, Tagged Interchange File
Format (TIF)
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CLASS: Mensuration

DESCRIPTION:

Perimeter is the number of pixels in an object's boundary.
The boundary may be computed by subtracting the erosion
of an object from the original object, or by using an edge
detector to trace the boundary. The area function can then be
used to compute the number of pixels left in the boundary,
hence the perimeter. The perimeter is useful in computing
the compactness of an object.

No algorithm is given here, however, the sequence of steps
used to compute the perimeter of an object in a region is
shown in the example.

EXAMPLE:

Left: Original object.
Middle: Object boundary (single pixel erosion).
Right: Region for area calculation.

SEE ALSO: Area, Compactness, Erosion, Edge Detection
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CLASS: Image Fundamentals

DESCRIPTION:

A pixel, or Picture Element, is the smallest unit possible in
an image. The physical size of a pixel is determined by the
display or output device that expresses it, while the
computational size is limited only by the memory of the
machine processing the picture. The sampling of an image is
an expression of pixel size. The depth of the pixel expresses
the level of quantization. An image where pixels are only
one bit deep is a binary image. The example below shows a
graylevel image with two levels of expansion to show the
individual pixels.

EXAMPLE:

PROGRAM EXAMPLE:
/* 512 X 512 8-bit/pixel */
char Image([512](512];

/* 256 X 256 floating point image, pixel
range determined by float definition */

float Reallmage{256] [256];
/* 512 X 512 Image Structure */
struct Image In;
In.Rows = In.Cols = 512;
/* In[i][3] = 255; */
*(In.Data + i*In.Cols + j) = 255;
SEE ALSO: Quantization, Sampling
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CLASS: Segmentation

DESCRIPTION:

Point detection can be used to find point discontinuities
within an image. Point detection within an image is
accomplished by performing spatial filtering using the
following 3 x 3 mask

1f-1]-1
-1 8]-1
-1]-1]-1

The 3 x 3 spatial filtering operation reduces to

2gx, y)=8-flx,y)—fx-1Ly-1)-f(x-1,y)
—fx-Ly+D-fx,y-1-f(x,y+ 1)
—fx+Ly-1-f(x+1,y)
-fx+1Ly+1)

where f(x, y) is the original image and g(x, y) is the point
detected image.

EXAMPLE:

(a) (b)

(a) The original image and (b) the point detected
image using the 3 x 3 mask given in the text.
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ALGORITHM:

The program assumes that the orignal image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then computes
the point detected image using the 3 x 3 mask given in the
text. Upon completion of the program, the line detected
image is stored in the structure IMAGEL.

PointDetector (struct Image *IMAGE, struct
Image *IMAGEL)
{
int X, ¥, I, J, SUM;
int MASKI3]I[31;
MASK[0]{0]=-1;MASK[0][1
MASK([0][2]=-1;MASK[1] (0]
MASK[1](1)= 8;MASK[1][2]=-1;
MASK[2][0]=-1;MASK[2][1]
MASK([2] [2]=-1;
for{¥Y=1; Y<IMAGE->Rows-1; Y++)
{
for(X=1; X<IMAGE->Cols-1; X++)

SUM=0;
for{I=-1;I<=1;I++)
for (I=-1;0<=0h; Ty

{
SUM=SUM+
* (IMAGE->Data+X+I+
(long) (Y+J) *IMAGE->Cols) *
MASK[I+1][J+1];
}

if (SUM>255)
SUM=255;
if (SUM<0)
SUM=0;
* (IMAGEl->Data+X+{long)Y*
IMAGE->Cols) =SUM;
}

SEE ALSO: Thresholding, Multi-graylevel Thresholding,
Line Detectors, and Optimum Thresholding
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CLASS: Color Image Processing

DESCRIPTION:

To pseudocolor a graylevel image, the individual graylevels
within the image must be mapped to a set of red, blue, and
green color images.

RED
Ry} 7 "IMAGE

GRAYLEVEL
IMAGE 1 Fix,y) Bixy) |—eBUE

i R

(a) A block diagram that implements pseudocoloring.

Consider an image with N discrete graylevel values
represented by the function F. An image can be considered
as a collection of graylevel values given by the function F
for all the pixels within the image. Next, this function, F,
can be mapped to three functions R, B, and G that produce
the output colors red, blue, and green. Figure a shows a
block diagram that pseudocolors an image. The graylevel
image F(x, y) is mapped to three images R(x, y), B(x, y) and
G(x, y). Each of these images is then used to modulate the
red, blue, and green guns of the imaging display's picture
tbe or CRT.

To display a graylevel image, the mapping functions, R, B,
and G, coniain the same identical mapping function given by
the input graylevel values, F. The three mapping functions
can also be used to control the brightness and contrast of the
image by modifying all three mapping functions equally.
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For example, to reduce the contrast of an image R=B =G =
0.5F. The output intensity values of the three images are
one half the graylevel values of the input image.

For example, to highlight a particular graylevel value T in
red, the following equation can be used:

F:RB:G:O for Fx,y)=T
gix. y) R=G=B=F elsewhere

In the above equation, for F(x, y) equal to the desired
graylevel value T, both the blue and green images are set to
zero or 1o a low intensity, and the red image is set to the
input image's graylevel value. For all other graylevel values,
the red, blue, and green images are set equal to the input
image's graylevel values, producing a black and white image
for these input graylevel values.

ALGORITHM:

The program assumes that the original image is a 256
graylevel X IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then performs
a 3 x 3 Sobel edge detection of the original image. Upon
completion of the program, edges within the image are
highlighted in red and stored in the three structures RED
GREEN and BLUE. The three color structures are assumed
1o be of the same size and type as the original image.

Pseudo_edge (struct Image *IMAGE, struct
Image *RED, struct Image *BLUE, struct
Image *GREEN, int T)
{
int ¥X,Y, x1, v1, mask1([3][3];
int mask2([31[3];
int GX, GY, EDGE;
long int R, R1;
maskl[0] [0]=-1; maskl[1]([0]=-2;
mask1l[2] [0]=-1;
mask1 (0] [1]
maskl{2] (1]
mask1{0]{2]
maskl[2][2]

maskl{1]{1])= 0;

= 0;
= 0;
= 1; mask1l[1l] [2]= 2;
= 1;
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mask2{0][0)=-1;
mask2([2][0)= 1;
mask2 [0} [1]=-2;
mask2[2][1)= 2;
mask2[0](2]1=-1;
mask2[2] [2]= 1;

mask2([11[0]= 0;

mask2 [1] [1]

I

0;

mask2([1][2]= O;

for(Y=1; Y<IMAGE->Rows-1; Y++)
for(X=1; X<IMAGE->Cols-1; X++)

{

GX=0; GY=0;

for(yl=-1;

yvil<=1l; yl++)

for(xl=-1; xl<=1l; Xl++)}

R=X+x1+{long) (Y+yl)*
IMAGE->Cols;
Rl=X+(long)Y*IMAGE->Cols;
GX += maskl[x1+1][yl+1]1*
* (IMAGE->Data+R) ;

GY += mask2[x1+1] [yl+1]1~*
* (IMAGE->Data+R) ;

}
EDGE=abs (GX) +abs (GY} ;
if (EDGE > T)

{

* (RED->Data+R1)=255;
* (BLUE->Data+R1}=0;
* (GREEN->Data+R1)=0;

}
else

RED->Data+R1)=
IMAGE->Data+R1};
BLUE->Data+Rl) =

)
GREEN->Data+R1) =
)

*
*(
*{
* (IMAGE->Data+R1
*{
* (IMAGE->Data+R1
}

}

;

SEE ALSQ: RGB, HSI and YIQ Color Models, Pseudocolor

Display, and CIE Color chart
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CLASS: Color Image Processing

DESCRIPTION:

A pseudocolor display is not a true-color display system. It
gives the user the capability of choosing a subset of colors
from a huge assortment of colors. A pseudocolor display
system is shown in Figure a. This imaging system has only
one image storage area of size 512 x 512 pixels by 256
graylevels, requiring 262,144 bytes of memory. The output
of the image memory is mapped through three Look-Up-
Tables (LUTs) of 8 bits each. The LUTs are used to map
each of the 256 graylevel values to the colors red, blue, and
green. The output of the LUTSs drives three digital-to-analog
converters that become the red, blue, and green inputs to the
color display.

RED COLOA DISPLAY
- BIT
DIGITAL .
TO- .
ANALOG .
CONVERTER
INPUT IMAGE BLUE
8- BIT
DISPLAY MEMORY DGITAL
512X512X256 -TO-
ANALOG ANALOG
262144 BYTES CONVERTER

GREEN
8- BIT

{a) Pseudocolor display system

The LUTs are implemented using three 256 bytes by 8 bits
digital read/writc memory devices. These memories are
used to hold the mapping coefficients for the three primary
light colors yielding 16 million possible color combinations.

SEE ALSO: RGB, HSI and YIQ Color Models, C.I.E. Color
Chart and True-color Display
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CLASS: Image Fundamentals

DESCRIPTION:

Quantization describes the range of values that a pixel may
take. It is determined by the digitization of the image and
how many brightness values can be distiguished by the
hardware and ultimately represented by the software.
Typically, monochrome images are quantized to 256
graylevels, which is more than adequate for human
perception. This means that a pixel value can be represented
by a single byte of data. The example shows the result of
various quantization levels. The binary image is a special
case where each pixel takes on one of two values and is
represented by black or white. The binary image is used
extensively in morphological filtering and in mensuration.

In the example, the top left picture is 256 levels, top right 16,
bottom left is 4, and the bottom right is a binary, or 2 level
image.

EXAMPLE:

SEE ALSO: Graylevel, Pixel, Sampling, Thresholding
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CLASS: Color Image Processing

DESCRIPTION:

The analysis of color has been undertaken by many scientists
and engineers for many years. In the seventeenth century,
Sir Isaac Newton showed that a beam of sunlight passing
through a glass prism emerged as a rainbow of colors.
Newton concluded that white light was made from many
different colors. Table a lists the six major color regions
and their corresponding wavelengths in nanometers.

Table (a) Approximate wavelengths for the six major
color regions.

Color Wavelength
Violet 400 - 450 nm
Blue 450 - 480 nm

Green 480 - 550 nm
__yellow 550 - 580 nm
Orange 580 - 610 nm
Red 610 - 700 nm

In the late nineteenth century, Clerk E. Maxwell showed that
a color image could be created using three color images. He
proposed that three basic colors red (R), blue (B), and green
(G), mixed in proportions, were all that were needed to
create a color image. Figure a shows the 3 primary colors of
light and their corresponding secondary colors.

NEV
\/

(a) Mixtures of the three primary colors of light.
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The percentage of red, blue, and green in a color is known as
the color's trichromatic coefficients:

_ R
T=R¥B+G
B
b=R+B:G
and
_ G
E=R+B+G"’

where R, B, and G are the amount of red, blue, and green
light, respectively. The trichromatic coefficients differ from
the actual color intensity values R, B, and G in that the
trichromatic coefficients have been normalized between 0
and 1. The sum of the three trichromatic coefficients yields

r+b+g=1.

The trichromatic coefficients are computed from the C.I.E.
chart (see C.LE. color chart) from the color's hue and
saturation. The x axis gives the red, r, while the y axis gives
the green, g, trichromatic coefficients. The blue trichromatic
coefficient, b, can then computed using b=1-r- g For
example, the point labeled red in the C.LE. chart with a
wavelength of 625 nm has the following trichromatic
coefficients: r = 71%, b = 0%, and g = 29%, yielding a color
combination of 0% white and a saturated color hue of 71%
red and 29% green.

SEE ALSO: HSI and YIQ Color Models, C.I.E. Color
Chart, and Pseudocolor
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CLASS: Nonlinear Filters

DESCRIPTION:

The range filter can be used 1o find edges within an image.
The range filter output is the difference between the
maximum and minimum graylevel values within a local
region of the image determined by a specified mask. The
definition of the range filter is

Range(A) = max{ A(x +1i,y+j) | -min[ Ax+1i,y+j) ],

where the coordinate x + i, y + j is defined over the image A
and the coordinate i, j is defined over the mask M. The
mask M determines which pixels are to be included in the
range calculation.

EXAMPLE:

(a) (b)

(a) The original image and (b) the range filtered image
using a 5 X S square mask.

ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program computes the
range filter over a set of pixels contained within a square N
x N region of the image centered at the pixel X, Y. The size
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of the filtering operation is determined by the variable N.
The variable N should be set to an odd number and be less
than 12. Upon completion of the program, the range filtered
image is stored in the structure IMAGEL.

Range (struct Image *IMAGE, struct Image
*IMAGEL)
{
int X, ¥, I, J, smin, smax, N;
int afl1](11];
N=3;
for(Y=N/2; Y<IMAGE->ROwWS-N/2; Y++)}
for (X=N/2; X<IMAGE->Co0ls-N/2; X++){
smin=255; smax=0;
for(J=-N/2; J<=N/2; J++)

{
for(I=-N/2; I<=N/2; I++)
{

al[I+N/2] [J+N/2)=* (IMAGE->
Data+X+I+(long) (Y+J)
*IMAGE->Cols) ;

}

}
for(J=0; J<=N-1; J++)
{
for(I=0; I<=N-1; I++)

if(alI]l[J) < smin)
smin = a[I]l[J];
}

}
for(J=0; J<=N-1; J++)
{
for(I=0; I<=N-1; I++}

if(alI]l{J] > smax)
smax = al[Il(J];
}
¥
* {IMAGEl->Data+X+ (long)yY
*IMAGE->»Cols) = smax - smin;
}
}

SEE ALSO: Geometric, Yp, Harmonic, Arithmetic Mean,
Median, and other Nonlinear Filters.
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CLASS: Noise

DESCRIPTION:

Rayleigh type noise appears typically in radar range and
velocity images and is derivable from uniform noise. The
Rayleigh noise histogram is defined as

2
G; ...—G;l2a?
hj = _2La exp for 0 Gj<oo ,

where G;j is the ith graylevel value of the image. The mean
can be defined in terms of the parameter a as mean = jn/2a.

1

0 255
Tiraylevel

A histogram of Rayleigh noise.

EXAMPLES:

(a) (b)

(a) The original image and (b) the (additive) Rayleigh
noise degraded image with a variance = 600
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ALGORITHM:

The program generates a Rayleigh noise image of 256
graylevel X IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program assumes the
function rand() generates a uniform random number in the
range of 0 to 32767. The desired variance is passed to the
program upon execution. If the noise graylevel value
generated exceeds the 256 graylevel range, the noise
graylevel value is truncated to either 0 or 255.

Rayleighistruct Image *IMAGE,
float VAR)
{
int X, Y;
float NOISE, A;
for(¥=0; Y<IMAGE->Rows; Y++)
for(X=0; X<IMAGE->Cols; X++)

{
A= 2.3299 * VAR;
NOISE=sqgrt{-2 * A * log(l.0-
(floatirand() / 32767.1));
if (NOISE > 255}

NOISE = 255;
if (NOISE < 0)

NOISE = 0;
* {IMAGE->Data+X+ (long)Y*
IMAGE->Cols) = (unsigned

char) (NOISE +.5);
}

SEE ALSQO: Gaussian, Uniform, Negative Exponential, Salt
and Pepper and Gamma Noises
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CLASS: Spatial Filters

DESCRIPTION:

Robert’s Filter , or Robert's gradient is a simple 2 x 2 mask
that computes the difference between a pixel and its
horizontal and vertical neighbors. The Robert's mask is given
below:

EXAMPLE:

i

Original Image Robert's Gradient

ALGORITHM:

The algorithm for Discrete Convolution is applied using the
masks given above.

SEE ALSO: Discrete Convolution, High Pass Spatial Filters



Rotate 199

CLASS: Graphics Algorithms

DESCRIPTION:

Rotation is used to turn an image. This is often useful when
comparing objects in pictures or when generating graphics.

EXAMPLE:

ALGORITHM:

The routine rotate_90 rotates the image passed by the image
data structure pointer In by 90° into the image data structure
Out. More complex rotations, e.g., 45°, such as shown above
may be accomplished by the warp function. The macro idx
is used for simplified access to the pixels of the image by
coordinates.

#define idx(Im,i,3) \
*(Im->Data + (i)*Im->Cols + (3))

rotate_90 (struct Image *In,
struct Image *Out)
{

int i,3,k;

k = In->Cols;
for{i = 0; i<In->Rows;++1){
k = In->Cols;
for(j = 0; j<In->Cols;++3j)
idx (Out,k--,i) = idx(In,i,3]);
}
}

SEE ALSO: Flip, Warping
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CLASS: Coding and Compression

DESCRIPTION:

Run Length Encoding (RLE) is a simple, powerful scheme
for the compression of images. In its simplest form, it
consists of a repeat count (sometimes called the index)
followed by a repeat value. RLE takes advantage of
homogeneous areas of an image with long runs of identical
pixels.

EXAMPLE:

The 6 x 6 image is of a black background (0 values) with a
small white square in the center (255), 8-bit grayscale. This
picture would require 36 bytes of storage. The RLE
compression (count, value) format, is shown to the right and
would require 10 bytes of storage.

o|O0|jojo]ofoO

ojo0otojoflo}o (14,0)

0|0 |ossl255) 0 § O (2,255)
—_— (A,

0|0 |ossless] 0 ] 0 (2,255)

oloJolofo]o (14,0

ojo|lo|ojo]o

If the image pixel values are highly uncorrelated, then the
RLE encoding can require more storage area than the actual
data.

ALGORITHM:

The rle routine codes or decodes the unsigned character data
pointed to by the image structure pointer, In. The coded data
is written or read from the file, filename. The direction flag,
dir, is set to non-zero for compression, or zero for decoding,.

The RLE scheme used is that of paired bytes, where the first
byte of the pair identifies the run length and the second byte
specifies the run value.
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/* Run-Length Encoding Algorithm */

rle{struct Image *In,char *filename,
char dir)
{
int sz;
unsigned char *Im,run,val;
FILE *fp;

/* Init image size index & data ptr */
sz = In->Rows * In->Cols;
Im = In->Data;

if (dir){ /* COMPRESS */
fp = fopen(filename, "wb");
do{
val = *(Im++);
=-=-8Z;
run = 1;
while((val == *Im) && sz){
++run;
++Im;
-—SZ;
if (run==0xff)break;
}
fputc (run, £fp); /* write index */
fputc(val,fp); /* write value */
} while (sz);
}
else { /* DECOMPRESS */
fp = fopen(filename, "rb");
do{
/* get index */
run = fgetc(fp) & Oxff;
/* get value */
val = fgetc(fp) & Oxff;
*Im++ = val;
while (-~run && --sz)*Im++ = val;
} while (sz);

1
fclose(fp);

SEE ALSO: PCX, MAC
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CLASS: Noise

DESCRIPTION:

Salt and pepper type noise typically occurs in images that
are acquired by cameras containing malfunctioning pixels.
Salt and pepper noise is named after the white and black
appearance it adds to images. Its histogram is defined as

pepper noise with probability p forGj=a
hj = {salt noise with probability p forGij=b ,
0 elsewhere

where G;j is the ith graylevel value of the image. The salt
and pepper noises each occur at graylevel values a and b
with probability p.
1
Pepper, Salt
Probability p

0 a b 25
Graylevel

A histogram of salt and pepper noise.

EXAMPLES:

@ )

(a) The original image and (b) the salt and pepper noise
degraded image with a combined probability of 20%.
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ALGORITHM:

The program generates a salt and pepper noise image of 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program assumes that
both salt and pepper noises are equally likely of occurring.
Also, the program assumes the function rand() generates a
uniform random number in the range of 0 to 32767. The
desired probability of occurrence for both the salt and
pepper noises are passed to the program upon execution.
The pepper noise is given a graylevel value of 0 while the
salt noise is assigned a graylevel value of 255.

SaltPepper (struct Image *IMAGE,
float PROBABILITY)
{
int X, Y, DATA, DATAl, DATAZ;
float NOISE;
DATA= (int) (PROBABILITY*32768
f2y;
DATA1=DATA + 16384;
DATA2=16384 - DATA;
for{Y=0; Y<IMAGE->Rows; Y++)
for(X=0; X<IMAGE->Cols; X++)
{
TATA=randl) ;
1f (DATA>=16384 && DATA<DATAL)
* (IMAGE->Data+X+{long)yY
*IMAGE->Cols) = 0;
if (DATA>=DATA2 && DATA<16384})
* (IMAGE->Data+X+(long)yY
*IMAGE->Cols) = 255;

SEE ALSO: Gaussian, Uniform, Negative Exponential,
Rayleigh and Gamma Noises
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CLASS: Image Fundamentals

DESCRIPTION:

Sampling describes the spatial distribution of the image
acquisition. We assume that pixels ajoin each other with no
space between them. The ratio of the number of pixels in a
row or column with the width or height of the image defines
the spatial frequency, or sample rate. Images are generally
sampled at binary multiples, such as 256 x 256, 512 x 512, or
1024 x 1024. The resolution of an image, or how much
spatial detail may be resolved, is largely determined from the
sample rate. In the example below, the same image is shown
with two different sample rates, and different sized pixels. If
the pixels remain the same size, the image with more pixels
will show greater detail. Images are typically represented as
matrices in the computer, although more elaborate data
structures are possible.

EXAMPLE:

Image sampled at 64 x 64 pixels. Image at 256 x 256 pixels.

SEE ALSO: Pixel, Quantization, Spatial Frequency-.
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CLASS: Image Fundamentals

DESCRIPTION:

Scaling as discussed here refers to min-max scaling of the
result of an image process to a quantization scale. For
example, the result of an algorithm will often be an image
with floating point values. To output this image, the values
must often be scaled to a particular grayscale, most often
within the range of 0-255. The algorithm given accepts a
floating point input image and outputs an image where each
pixel is represented by a scaled byte (character) value. The
formula for scaling a 256 graylevel image is:
. 255 . .

OutPixel = max-mmin (InPixel - min)
where the max and min values are the global maximum and
minimum value of all pixels in the input image.

ALGORITHM:

The algorithm accepts two image structures of type float and
no checking is made to verify this. The initializing values of
the min and max test variables, FLT _MAX and FLT_MIN,
should be predefined by the system being used, but for this
example have been set to arbitrary values. Look for these, or
similar defines, in the math.h, limits.h, and float.h include
files on your system. The InD and OuD float pointers are
used as convenience indexes for the scale evaluation loops.

If the data is of exceedingly large range, then an exponential
scaling can be applied by taking the log of the input image
values prior to scaling.

#define FLT MAX 99999999
#define FLT MIN -99999999

/* Scale image */
void Scale(struct Image *In,
struct Image *Qut}
{
float min, max, *InD, *OuD;
long ImSize, i;

FLT MAX;:
FLT MIN;

min
max

[}
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InD = (float *)In->Data;
ImSize = In->Rows * In->Cols;

/* scan input for min/max values */
for(i=0;i<ImSize;++i){
if(*InD < min)
min = *InD;
if (*InD > max)

max = *InD;
++InD;
}
InD (float *)In->Data:

OouD = (float *)Out->Data;

/* scale the Output */
for (i=0;i<ImSize;++i)
*OuD= (255/ (max-min) ) * (*InD-min} ;

}

SEE ALSO: Discrete Convolution, Discrete Correlation,
Graylevel, Histogram Operations
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Segmentation

DESCRIPTION:

An important area of image processing is the segmentation
of an image into various components for object recognition.
The goal of segmentation is 10 separate thc object's pixels
within an image from the background pixels. Thresholding
techniques separate an object from the background based
upon the graylevel histogram of an image. If the graylevel
values of an object within an image are quite different than
the background graylevel value, then finding the optimum
threshold value 1o threshold the image is quite simple.

Other segmentation techniques wuse the graylevel
discontinuities within an image to detect lines or points
within the image. These discontinuities are then used to
separate objects within an image from the background.
CLASS MEMBERSHIP:

Line Detector

Multi-Graylevel Thresholding

Optimum Thresholding

Point Detector

Thresholding
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CLASS: Morphological Filters

DESCRIPTION:

Skeletonization of an object, initially proposed by H. Blum,
defines a unique compressed geometrical representation of
an object. Skeletonization of an object is often referred to as
the Medial Axis Transform. Morphological skeletonization
is defined as the union of the set of pixels computed from
the difference of the nth eroded image and the opening of
the nth eroded image.

Kp(A) = Erodep(A) — open(Erode(A4), B) ,

where Eroden(A) = A © nB and is the nth erosion of the
original image A with the structuring function B.

The skeleton image is then given by the union of all Ky(A)
over all erosions. The total number of erosions N required
by the skeleton algorithm is the number of erosions of the
original image A by the structuring function B that yields the
null image.

@ =Eroden(A) = A © NB

EXAMPLES:

OBJECTA >———<

(a) b)

(a) The original binary image and (b) the skeleton image.
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(a)

(b)

(a) The original binary image of an airplane silhouette
and (b) the skeleton image.

ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
A N x N structuring function is used by the algorithm and is
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stored in array MASKI][]. Upon completion of the
program, the skeleton image is stored in the structure
SKELETON. The erosion and dilation functions used by
the algorithm can be found under binary erosion and dilation
respectively.

#define N 3

Skeleton{struct Image *IMAGE,int MASK([] [N],
struct Image *SKELETON}

{
int X, Y, I, J;:
int pixel_on, false, true, pixel;
struct Image *FILTER, *FILTER1l, A, Al;
FILTER=&A;
FILTER1=&Al;
/* Use these 2 lines for Non MS-DOS
systems*/
FILTER->Data=(unsigned char *)
malloc( (long)IMAGE->Cols* {long)
IMAGE->ROWS) ;
FILTER->Data={(unsigned char *)}
malloc{{long) IMAGE->Cols* (long)
IMAGE->Rows) ;
/*Use these 2 lines for MS-DOS systems
*

/*FILTER->Data={unsigned char huge ~*)
farmalloc((long) IMAGE->Cols* (long)
IMAGE->ROWS ) ;
FILTER1->Data={unsigned char huge *)
farmalloc{{long) IMAGE->Cols* (long)
IMAGE->Rows) ; */
FILTER->ROows=IMAGE->ROWS;
FILTER->Cols=IMAGE~->Cols;
FILTER1->Rows=IMAGE->Rows;
FILTER1->Cols=IMAGE->Cols;
true=1l; false=0; pixel_on = true;
for(¥Y=N/2; Y<IMAGE->Rows-N/2; Y++)
for{(X=N/2; X<IMAGE->C0ls-N/2; X ++)
* (SKELETON->Data + X
+(long) Y*IMAGE->Cols)=0;
while(pixel_on == true}

pixel_on=false;

Erosion (IMAGE, MASK, FILTER);
Dilation (FILTER, MASK,FILTER1);
for(Y=N/2; Y<IMAGE->ROws-N/2; Y++)
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for (X=N/2; X<IMAGE->Cols~N/2Z; X++})

pixel=* (IMAGE->Data + X
+{long) Y*IMAGE->Cols)~
* (FILTERL1->Data + X
{long)Y*IMAGE->Cols) ;
{(SKELETON->Data + X
{long) Y*IMAGE->Cols})=
(SKELETON->Data + X
{long)Y*IMAGE->Cols) |
pixel;
if{pixel==255)
pixel_con=true;

* (IMAGE->Data + X
+{long) Y*IMAGE->Cols) =
*{FILTER->Data + X

+(long) Y*IMAGE->Cols);

+
*
+
*
+

}

SEE ALSO: Binary Erosion, Dilation, Opening, and Closing
Filters
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CLASS: Transforms

DESCRIPTION:

The Slant Transform uses sawtooth waveforms as a basis set.
The transform is symmetric and real and so is easily
implemented using matrix cross product multiplication. The
transform matrix may be defined recursively from the
following expressions:

SZ:»/LZH -11]

10
[aNbN [ aNbN
I
= 12)-2 — (N/Z)-2
Sn= 1 ] 0 -1] 0
-bnan. bnan =
——0- I NR2)-2 2 I MNR2)-2

N|»—n

251 2
3IN“ V5 N
a,n=[ =5—|z2 b
2N ( 4N2-1) INT (4N2 J
where N=20
and the tranform itself is then just the original image

multiplied by the transform matrix and the transpose of the
transform matrix as follows:

Fstant = Sstant [f] S'stant

with the inverse:

[f]= S'sians Fsiant Ssiant

The simplest realization of the transform is to have
precomputed slant matrices as there is no direct method of
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computing them, then use matrix utilities to process the
transform. The advantage of the slant transform over others
is the closer approximation one derives to the optimal basis
set expansion without entering the complex domain.

The transform represents coefficients of sequency, as with
the Walsh-Hadamard transforms.

ALGORITHM:

The Slant algorithm assumes that a slant matrix has been
computed for the size N x N input image, In. This matrix
may be computed using the routine slant_matrix, given
below. This routine computes the data values for the Slant
image structure and should be run offline and the slant
matrix stored. If the direction variable d passed to the
transform routine is nonzero, the forward transform is
computed, if zero, the inverse transform is processed. The
image utilities, Multiply, Transpose and Copy form the
core of the transform and may be used with other
multiplicative kernels such as the Walsh and Hadamard
matrices. In fact, the image structure Slant may be filled
with either of those kernels and the routine will yield those
transforms.

The user should be aware that these routines allocate
memory as needed and no error checking is performed. This
is particularly important in the slant_matrix routine as it is
recursive and generates a large number of matrices. Also, the
routines use access macros, specifically the Multiply
routine. for easy cartesian access to the matrix arrays.

/* Slant transform */
/* calls Multiply, Transpose and Copy
routines */
Slant {struct Image *In, struct Image *Slant,
struct Image *Out, char d)
{

struct Image Scratch;
float tmpf;

Scratch.Rows = Scratch.Cols = In->Rows;
Scratch.Data = (unsigned char ¥*)
calloc(In->Rows,sizeof (tmpf)*In~>Cols);
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if(d) {
Multiply(Slant, In,Out);
Transpose (Slant, &Scratch) ;
Copy (&Scratch, Slant);
Copy (Out, &Scratch) ;
Multiply(&Scratch,Slant,Out);
}
else{
Multiply{(In,Slant,Out);
Transpose (Slant, &Scratch) ;
Copy (&Scratch, Slant) ;
Copy (Out, &Scratch) ;
Multiply(Slant, &Scratch,Out);

}

/* compute the recursive a(N) coefficient
x/
float SLa(int N) {

extern float SLb(int N);

if (N==2)return(1.0):
return(2.0*SLb(N)*SLa (N/2)}:
}

/* compute the recursive b(N) coefficient
*
float SLb(int N} {
return(1.0/
sqrt (1.0+4*(SLa(N/2)*SLa(N/2)))):

#define idx (i, ) *(tmp + (i)*Scr.Cols + j)

void slant_matrix(struct Image *SLM, int N)
{

float K2, *tmp,*tmpR;

struct Image Scr,Scr2, SRM;

long NI, i, 3;

K2 = 1.0/sgrt(2.0);

if (N==2) {
SLM->Rows = 2;
SIM->Cols = 2;
SLM->Data = (unsigned char *)

calloc(4,sizeof (K2)}:
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tmp = (float *)SLM->Data;

*tmp++ = K2;
*tmp++ = K2;
*tmp++ = K2;
*tmp = -1.0%*K2;
return;
}
Scr.Rows = N;
Scr.Cols = N;
Scr.Data = (unsigned char *)

calloc (N*N,sizeof (K2)) ;
NI = N/2 - 2;

tmp = (float *}Scr.Data;

idx(0,0) = K2;
idx(0,1) = 0.0;
idx(1,0) = SLa(N);
idx(1,1) = SLb(N):
idx (0, 2+NI) = K2;
idx(0,3+NI) = 0.0;
idx(1,2+NI) = -1.0*SLa(N);
idx(1,3+NI) = SLb(N);
idx (2+NI,0) = 0.0;
idx (3+NI,0) = -1.0*SLb(N);
idx (2+NI, 1) = K2;
idx (3+NI, 1) = SLa(N);
idx (2+NI,2+NI) = 0.0;
idx (2+NI,3+4NI) = -1.0*K2;
1dx (3+NI,2+NI) = SLb(N);
idx (3+NI,3+NI} = SLa(N):
1f (NI) {
J=2*NI;
for(i=2; i<2+NI; ++i){
idx (i, i) = K2;
idx (i,i+3) = K2;
idx(i+j,1) = K2;
idx(i+3,1i+3) = K2;
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/* Compute recursive multiplier */
slant_matrix (&Scr2,N/2);

/* Generate the Recursive Multiplier */

SRM.Rows = N;

SRM.Cols = N;

SRM.Data = {(unsigned char *)
calloc (N*N,sizeof (K2});

tmp = (float *)SRM.Data;

tmpR = (float *)}Scr2.Data:;

for (i=0;i<N/2;++1) {
for (J=0;4<N/2;++7)
*tmp++ = *(tmpR + i*Scr2.Rows + j):
tmp += N/2;
}
tmp = (float *)SRM.Data;
tmp += (N/2)*SRM.Rows + N/2;
tmpR = (float *)Scr2.Data;
for(i=0; i<N/2;++i) {
for (3=0; 5<N/2;++73)
*tmp++ = *{tmpR + 1i*Scr2.Rows + J);

tmp += N/2;
}
SILM->Rows = N;
SIM->Cols = N;
SILM~>Data = (unsigned char *)

calloc (N*N,sizeof (K2});
Multiply (&Scr, &SRM,SLM) ;
}

#define Z (i, 3) *(OD + (i)*sz + j)
#define A(i, J) *{(AD + (i)*sz + 3)
#define B(i, j) *(BD + (1i)*sz + j)

/* Image Multiply (Cross-Product) */

void Multiply(struct Image *A,
struct Image *B,
struct Image *Out)

long i,3j,k,sz;
float *AD, *BD, *OD;

sz = A->Rows;

AD = (float *)A->Data;
BD = (float *)B->Data;
OD = (float *)Out->Data;
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for(i=0;i<sz*sz:++1i) * (OD++)=0.0;
0D = (float *)OQut->Data;

for(i=0; i < sz; ++i)
for(j=0; j < sz; ++3j)
for(k=0; k < sz; ++k)
Z(i,3) = Z(i,3) + A(i,k)*B(k,3);
}

/* Image Transpose */
void Transpose(struct Image *In,
struct Image *Qut)
{
long i,3;
float *OD, *ID:

OD = (float *)Out->Data;
ID = (float *)In->Data;

for (i=0; i< In->Rows; ++i)
for(j=0; j< In->Cols; ++3j)
*(OD++) = *(ID + i + j*In->Cols);

}

/* Image Copy */
void Copy(struct Image *In,
struct Image *Qut)
{
long i;
float *OD,*ID;

oD
D

(float *)Out->Data:
{float *)In->Data;

(Il

for(i=0; i< In->Rows*In->Cols; ++i)
*(OD++) = *(ID++);

}
SEE ALSO: Walsh Transform, Hadamard Transform
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CLASS: Spatial Filters

DESCRIPTION:

The Sobel Filter is an edge detector whose results yield the
magnitude and direction of edges by applying the horizontal
and vertical line enhancement masks given below:

-11-21-1 NYEKRE
010 210712
11211 11201

Horizontal (Gy) Vertical (Gv)

The formulas for edge magnitude and phase are given by

_ 2 2 .1/ Gv
Mjobel =7\ Gy + Gy bsobel = tan (_GH_)
A simpler form for Mgppe/ using absolute values is given by
Mgobet = |G| +|Gv|

and may be used in place of the radical form.

The image Tormed from the Sobel magnitude expression yields the
edge detection. An image formed from the phase computation is
visually interesting, bui difficult to interpret. Each pixel value
represents not intensity, but edge direction (units are dependent on
scale factors and how the inverse tangent was computed).

EXAMPLE:

s

Original Sobel Magnitude
(absolute value form)
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ALGORITHM:

The algorithm for Discrete Convolution is applied using the
horizontal and vertical masks given above and the scaled
results processed for magnitude and direction.

SEE ALSO: Discrete Convolution, High Pass Spatial Filters
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Spatial Filters Class
DESCRIPTION:

The Spatial Filters are basically discrete convolution filters
or filters that convolve one image with another. The filter
image is typically very small with respect to the target image
and is called a spatial mask. The simplest definition for
convolution without resorting to complex mathematical
constructs is that it is an operation that copies one image at
each pixel location of another while allowing for the effects
of all pixel values in the area where the copy takes place.
This is accomplished by a multiplying, adding, and shifting
operation, hence the term convolve, which means to roli,
twist, or coil together. Convolution can occur when signals,
such as images, are modified by optical, electronic, or
nervous systems. The modification of signals in this way
yields desirable results when the outcome extracts
information that would not be obtainable otherwise, such as
in an edge-detection process. Undesirable results occur when
a signal is distorted by a defocused lens, and this too is a
convolution process.

Many different spatial filter masks can be generated for a
variety of functions. The spatial filtering process is
especially attractive to image processing because of the
computational simplicity of the discrete convolution
algorithm and the easy extension of the process into parallel
architectures for extremely fast execution.

CLASS MEMBERSHIP:
Gaussian Filters
Gradient Masks
High Pass Spatial Filters
Laplacian
Low Pass Spatial Filters
Robert's Filter
Sobel Filter
Spatial Masks
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CLASS: Image Fundamentals

DESCRIPTION:

Spatial Frequency is a measure of the periodicity of a two
dimensional data set with respect to a distance measure.
Periodic changes in brightness values across an image are
defined in terms of spatial frequency, or periods/distance. If
the period of a brightness pattern is 300 pixels and the size
of a pixel is 1/150th of an inch, then the spatial frequency of
the data set is 2 cycles/inch.

The black and white lines in the example of low spatial
frequency below are 25 pixels wide, giving a period of 50
pixels. A complete period starts with a black line and ends at
the next black line, moving horizontally. The lines are
printed at 150 pixels/inch, thus the spatial frequency of the
lines is 2 cycles/inch. The high spatial frequency lines to the
right are approximately half as wide with a 4 cycle/inch
frequency.

The Discrete Fourier Transform resolves the spatial
frequency components of an image. In complex images, low
spatial frequencies are characterized by slow. broad changes
in brightness, like the wide lines in the example below. High
spatial frequencies occur when there are abrupt, sharp
changes in brightness, such as when an image contains fine
lines and sharp edges, also illustrated in the example.

EXAMPLE:

Low Spatial Frequency High Spatial Frequency

SEE ALSO: Discrete Fourier Transform, Quantization,
Sampling
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Spatial Frequency Filters Class

DESCRIPTION:

Image processing filters within this class operate directly on
the spatial frequency decomposition of the image, unlike
spatial filters, in the spatial frequency domain. To do this,
the image must first be transformed into a frequency domain
representation, and this is most often accomplished through
use of the Fourier Transform.

Filters within this class are most often used for restoration
purposes (the exception being the circularly symmetric and
homomorphic filters, which are used for enhancement).
Restoration algorithms seek to remove a degradation and/or
noise that has corrupted the image. The general model
assumed for restoration purposes is given by the following
block diagram:

n(xy)

tcy) ——[ 1 |—E@— )

Here an image, f(x,y), is convolved with a degradation
function, H, followed by the addition of a noise function,
n(x,y), to yield a noisy, degraded picture, g(x,y).

CLASS MEMBERSHIP:
Circularly Symmetric Filter
Homomorphic Filter
Inverse Filter
Least Mean Squares Filter
Parametric Wiener Filter
Wiener Filter

SEE ALSQ: Spatial Filters, Fourier Transform
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CLASS: Spatial Filters

DESCRIPTION:

Spatial Masks are arrays of numbers that are applied to
images using the Discrete Convolution Algorithm. They are
the basis of spatial filters and are sometimes called windows
or frames. The application of a mask is a computionally
intensive operation, hence masks are generally 3 x 3 arrays.
Application of a mask is a neighborhood process and issue
exists as to which element of the neighborhood will serve as
the replacement point of the computation. Typically, masks
contain a center value and have an odd number of elements
on each side. This is by no means a requirement (see
Robert’s Filter), but adhering to the convention makes
computation simpler. Hence, one often sees 3 x 3, 5 x 5, and
9 % 9 masks, as shown in the example below.

EXAMPLE:

G
Original 3 x 3 Laplacian
5x 5 Laplacian 9 x 9 Laplacian



224 « Storage Formats

Storage Formats Class

DESCRIPTION:

Images contain large amounts of data that is derived from a
wide range of sources in various formats. It is only natural
that specialized data formats were created to handle the
storage, transmission, and exchange of image data. The
number of image storage formats available is nearly as
numerous as the number of image acquisition and display
hardware devices available. In the early days of computer
image processing, each imaging system had a unique way of
representing the image data that it created and used. As
networking became popular, it became important (1) that
images could move easily from platform to platform, and (2)
that image data be compressed so as to minimize the time
and storage required for these huge data entities. Format
schemes became popular either because a large number of
desirable images were formatted using it or because it was
used by a popular hardware or software system. In any
event, this class includes five well-known image file format
techniques.

CLASS MEMBERSHIP:
Graphics Interchange Format (GIF)
Joint Photographic Experts Group (JPEG)
MacPaint File Format (MAC)
PC Paintbrush (PCX)
Tagged Interchange File Format (TIF)

SEE ALSO: Coding and Compression
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CLASS: Storage Formats

DESCRIPTION:

The Tagged Interchange File Format, or TIF, is an image
storage format based on a sequence of individual fields
defined by unique tags. These tags are descriptors, or
pointers, to defined fields containing data and data
descriptions of an image. This pointer structure allows TIF
to describe virtually any type of image data and be
extensible when new formats are developed. A TIF file
consists of a sequence of up to 232 bytes that a reader
program interprets as a tag that tells it what to do with the
data that follows, or as specific data associated with a
description identified by the tag, including compressed or
encoded data.

The TIF file consists of an §-byte header followed by one or
more image file directories. The data contained in the
directories are identified by their tags which are read as 2-
byte integers. This allows for up to 65,535 different tags.
Fortunately, there are not that many defined--yet!

The first two bytes of the file define whether Intel lirtle-
endian or Motorola big-endian byte word ordering is to be
used when accessing the files data. If these bytes are 'II'
(0x4949), then Intel is specified and the order of a word is
from least significant to most significant. If the first byte is
‘MM’ (0x4D4D), then word ordering is from most significant
to least. This holds for both 2 and 4 byte words. Character
strings are stored sequentially.

The next two bytes of the file are the version number. This is
most often 42 (0x002A or 0x2A00) and may be ignored.

The last four bytes of the header indicate the offset into the
file, in bytes, of the first image directory. This is most often
8, indicating that the first directory follows the header.

The Image File Directory (IFD) is a variable length data
structure that consists of a 2-byte count followed by count
12-byte IFD fields, followed by the 4-byte offset to the next
IFD, or zero if the IFD is the last one in the file,

The first two bytes of the IFD field specify the Tag for the
field. The next two bytes are the field Type (length in bytes
is given in parenthesis): 1=BYTE(1l), 2=ASCII(1),
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3=SHORT(2), 4=LONG(4), and 5=RATIONAL(8). The
RATIONAL type consists of two LONG values, the first
being the integer numerator of a fraction and the second the
denominator. Following the Type is a 2-byte integer that
specifies the Count or how many values of length Type are
in the IFD. Finally, the last four bytes contain the Value
Offset of the IFD data. The data may be anywhere in the file.

The value of the Tag indicates how the data in the IFD is to
be interpreted. A selection of TIF tag values is included in
Appendix C for reference purposes.

ALGORITHM:

It is well beyond the scope of this book to provide a
complete TIF evaluation program; however, we show a
simple TIF file evaluator that indicates whether a file is TIF,
then lists the important format data and Tags that are present
in the file. This can provide the basis for a reader that then
evaluates each of the tags as they appear and according to
their specification. The routine TIF _eval accepts a pointer,
fp, to an opened file and evaluates the file for TIF data. If the
file is not TIF, a negative value is returned. The rword and
rlong routines are called to evaluate the int and long int tag
data according to the data storage convention used in the file.
These conventions are determined from the first two bytes of
a TIF file, either II for Intel and little endian, or MM for
Motorola and big endian. The routines reorder the data read
based on the system used to store it. The actual platform that
the routine is run on is unimportant.

/* TIF tag types */
char *Typer[6] ={"",
"BYTE™, "ASCII", "SHORT", "LONG", "RATIONAL"};

TIF_eval (FILE *fp)
{

unsigned char buf[128];

unsigned int rword(FILE *fp,char kind);
unsigned long rlong(FILE *fp,char kind):;
unsigned int Version,Tag, Type, Ent;
unsigned long offset, Count, Voffset;
char kind;

int i;
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fread(buf,2,1,fp); /* byte order */

/* here we set the byte order flag for
integer reads */

switch (buf [0]) {

case 'I': /* intel */
kind = 1;
printf("Byte-order is Intel.\n"):
break;

case 'M': /* motorola */
kind = 0;
printf ("Byte~order is Motorola.\n");
break;

default:
printf("Not TIF file!\n"):;
return(-1);
}
Version = rword(fp,kind):
printf ("Version:%d\n",Version);

/* get offset & move to IFD start */
offset = rlong(fp,kind);
fseek (fp,offset,0);

Entries = rword(fp,kind);
printf ("%$d entries found in IFD\n", Ent):

/* loop through the fields */
for (i=0;i<Ent;++1i) {

Tag = rword (fp, kind);
Type = rword(fp,kind);
Count = rlong(fp, kind);
Voffset = rlong{fp,kind};

printf ("\nTAG:\t%d\n", Tag);

printf ("Typ:\t%s\n", Typer [Typel);

printf (*Count:\t%lu\n", Count) ;

printf("Offset:\t%1lx\n",Voffset});
¥

fclose (fp);
}
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unsigned long rlong(FILE *fp,char protocol)
{
/* protocol 1 is Intel else Motorola */
if (protocol)
return ((unsigned long)
(fgetc (fp) §0x£ff) +
((unsigned long)
(fgetc (fp) &0xff) <<8) +
((unsigned long)
(fgetc (fp)&Oxff)<<l6)+
( (unsigned long)
(fgetc (fp) &0xff)<<24));
else
return{{(unsigned long)
(£getc (fp) &0xXEF) <<24) +
((unsigned long)
(fgetc (fp) &0xff)<<16)+
((unsigned long)
(fgetc (fp)sOxff)<<8) +
(unsigned long)
(fgetc (£p) &0xfE)) ;
}

unsigned int rword{(FILE *fp, char protocol)
{
/* protocol 1 is Intel else Motorola */
if (protocol)
return((fgetc(fp)&0xff)+
((fgetc (fp)&0xfLf)<<8));
else

return (( (fgetc (fp) &0xff)<<8)+
(fgetc (fp) &0x£ff) ) ;
}

SEE ALSO: PC Paintbrush (PCX)
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CLASS: Morphological Filters

DESCRIPTION:

The binary thickening operation is the dual of binary
thinning and is used to increase the geometric size of an
object. Usually this operation is used iteratively until the
desired image is obtained. The thickening operation is
defined as

foriequal 1 t0 8 o
A1 = AU [HitMiss(Al, BY, V)]
Thickening( A) =AY

where A7 is the original image, AY is the thickened image,
and B! and C! are the ith set of eight masks given by

Bl cl
11 ]1 olo]o
0lolo 111 ]1
alola 1111
B2 Cc?
0fofo 1]1]1
0folo {1 ]t
1[1]1 0Jolo
B3 c3
1 [oJo o111
1Jo]o 0l1]1
1[o]o 0]1]1
B4 ct
0lo]1 1110
0Jo]1 1[1]o
0lo] 11100
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B 5
oT1 ]t tJoTo
ool 1]1 1o
0fofo 111}
B6 6
0]olo 111
1Jo]o o [1]1
1{1]o0 olo]1
B7 c7
0oJolo 11111
0]o 1|1 ]o
o171 1]o]o
B3 8
111 o 0]o
1]o]o o111
ololo 1111
EXAMPLES:

(a) (b)

(a) The original image of 3 squares and (b) the thickened
image.
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ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
Upon completion of the program the thickened image is
stored in the THICKEN structure. The number of iterations
performed by the program is given by the variable MAXIT.
The binary hit-miss function used by the algorithm can be
found under binary hit-miss.

#define N 3

Thickened (struct Image *IMAGE,
struct Image *THICKEN, int MAXIT)
{
int X,Y,I,J,2, ML1{3]1(3]1([8], M4[3](3];
int M2[3]1[3]118], stpflg=0, M3([3]1(3];
long int R;
struct Image *FILTER, *IMAGEC, A, Al;
FILTER=&A;
IMAGEC=&AL;
/* Use these 2 lines for Non MS-DOS
systems*/
IMAGEC->Data= (unsigned char *)
malloc((long)IMAGE->Cols* {long)
IMAGE->Rows) ;
FILTER->Data=(unsigned char *)
malloc{{long) IMAGE->Cols* (long)
IMAGE->Rows) ;
/*Use these 2 lines for MS-DOS systems
*/
/*IMAGEC~>Data= (unsigned char huge *)
farmalloc ( (long) IMAGE->Cols* (long)
IMAGE->Rows) ;
FILTER->Data={(unsigned char huge *)
farmalloc{{long)IMAGE->Cols* (long)
IMAGE->Rows) ;*/
IMAGEC->Rows=IMAGE->Rows;
IMAGEC->Cols=IMAGE->Cols;
FILTER->Rows=IMAGE->ROWS;
FILTER->Cols=IMAGE->Cols;
R=IMAGE->Cols;
for(Z=0; Z<=7; Z++)

for(J=0; J<=2; J++)
for(I=0; I<=2; I++)
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M1[I][ 2]1=0;
M1[0])([1][0]=1; Ml[ JI1110
ML[2][1][0]=1;

M1{0][2][0]=1; M1[1][2][0]=1;
M1[2](2]1(0]=1;

M1[0][0)[1]=1; M1[1][0][1]=
M1[2][0][1)=1;

MI(O)[1)[1]=1; MI[1]{1]1[1])=1;
M1({2]1[1]1(1]1=1;

MI1{01[0]([2]=1; Mi[1][0][2)=1;
M1[0]1[1][2]=1;

M1[1])([1][2]=1; M1[O][2][2]=1;
M1[1]1[2](2]=1;

ML{1](01031=1; M1(2](0)I[31=1;
MI[1701][3]=1;

MI[2)[1](3}=1; ML{1](2](3]=1;
M1[2][2][3]=1;

M1[0I[0][4]=1; MI[0]{1]1(4]1=1;
MI[13[1][4])=1;

M1(0)[2][41=1; M1([1]12)[4)=1;
M1{2]1[2]1(41=1;

MI1[0]1[0]1[51=1; M1[1]1[0]1([5]=1;
M1[2]1[01[51=1;

M1[0][1]1([5]1=1; ML1[1][1)(5]=1;
M1[0][2]([5]1=1;

MILRY R Ry =Ty WLILY R 18 =Ny
M1(2][0][6]1=L;

MI[11(1}[6]1=1; ML1[2][1]1[6]1=1;
M1[2][2][6]=1;

M1[{2]1[0](7)=1; MI[11{11[7]1=1;
M1{2]1[1][7]1=1;

M1[0][2]1(71=1; M1[1])[2]1[7)=1;
M1{2]1(2]([7]=1;

for(2=0; Z<=7; Z++)

for(J=0; J<=2; J++)
for(I:O; I<=2; I++)
M2[II[JY[Z]=1-M1[T](J](2]);
while(stpflg<MAXIT)

{
for(z=0; Z<=7; Z++)
{
for(J=0; J<=2; J++)
for{I=0; I<=2; I++)
{
M3[I][J] =M2[I][J)[2]);
M4[I]I[J] Ml[I][ 1102);
¥
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for(Y=0; Y<IMAGE->Rows; Y++)
for(X=0; X<IMAGE->Cols; X ++)
{
* {IMAGEC->Data + X
+({long) Y*IMAGE->Cols)=255-
* (IMAGE->Data + X + {long)Y
*IMAGE->Cols)
}
Erosion{(IMAGE, M3, FILTER);
Erosion (IMAGEC, M4, THICKEN) ;
for (¥=N/2; Y<IMAGE->ROWS-N/2; Y++)
for (X=N/2; X<IMAGE->Cols-N/2; X++)
* (FILTER->Data + X
+{long)Y*IMAGE~>Cols) =
* (FILTER->»Data + X +
(long) Y*IMAGE->Cols) &
* (THICKEN->Data + X
+{long) Y*IMAGE->Cols);
for (¥Y=N/2; Y<IMAGE->ROWS-N/2;Y++)
for{X=N/2;X<IMAGE->C0Ols~-N/2;X++)

{
* (THICKEN->Data+X+ (long) Y*R) =
* {IMAGE-~>Data+X+{long)Y*R) |
*{FILTER~>Data +
X+ {long}Y*R};
* (IMAGE->Data+X+(long)Y*R) =
* (THICKEN->Data+X+ (long)} ¥Y*R};
}
}
stpflg++;
}
THICKEN->Rows=IMAGE->ROWS;
THICKEN->Cols=IMAGE->Cols;

SEE ALSO: Binary Hit-Miss, Closing, Opening, Erosion,
Dilation, and Thinning Filters
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CLASS: Morphological Filters

DESCRIPTION:

The binary thinning operation is used to reduce the
geometric size of an object. Usually this operation is used
iteratively until the desired image is obtained or until no
further changes occur in the thinned image. The thinning
operation is defined as

for i equal 1 10 8 L
AT = A ~ [HitMiss(AL, B, CH¢
Thinning( A) = A9

where Al is the original image, A is the thinned image, and
Bland C* are the ith set of eight masks given by

Bl ¢l
0olo]o 11 ]
111 ] olofo
1[1]1 oloJo
B2 2
111 0lolo
111 0{ofo
olofo 111t
B3 3
D11 1{o o
0f1]1 1fo]o
0111 1]of]o
B4 (0
11 do olol1
1]1]o 0o
1]1]o 0ol
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B3 5
1]oTo 0171
1]1]o 0]0]1
111 0lolo
B6 o]
11 0lolo
o111 1 [oTo
olo1 1]17]o
B7 c7
1]1]1 0loJo
1]1]o 0]ol1
1]o]o 0l1711
BS s
0JoT1 1170
0]1]1 11o]o
1]1]1 0lo]o
EXAMPLES:

(a) (b)

(a) The original image of a rectangle and (b) a partially
thinned version.
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ALGORITHM:

The program assumes that the original binary image is an
IMAGE->Rows x IMAGE->Cols pixel image with a
background graylevel value of 0 and an object graylevel
value of 255 (object) and is stored in the structure IMAGE.
Passed to the program in the variable ITERATION is the
number of times the thinning operation is to be performed.
Upon completion of the program, the thinned image is stored
in the structure THINNED.

#define N 3

Thinned(struct Image *IMAGE,
struct Image *THINNED, int ITERATICN)
{
int X,Y,I,J,Z, M1[31131[8]), M4[3][3];
int M2{3}(31(8), stpflg=0, M3[3]11(3];
long int R;
struct Image *FILTER, *IMAGEC, A, Al;
FILTER=&A;
IMAGEC=&AL;
/* Use these 2 lines for Non MS-DOS
systems*/
IMAGEC->Data= (unsigned char *)
malloc{(long) IMAGE->Cols* {long)
IMAGE->Rows) ;
FILTER->Data={(unsigned char *)
malloc{{long)IMAGE->Cols* (long)
IMAGE->Rows) ;
/*Use these 2 lines for MS-DOS systems
*/
/*IMAGEC->Data=(unsigned char huge *)
farmalloc{{long)IMAGE->Cols* (long)
IMAGE->Rows) ;
FILTER->Data=(unsigned char huge *)
farmalloc({{long) IMAGE->Cols* (long)
IMAGE->Rows) ; */
IMAGEC->Rows=IMAGE->Rows;
IMAGEC->C0ols=IMAGE->Cols;
FILTER->Rows=IMAGE->Rows;
FILTER->C0ls=IMAGE->Cols;
R=TMAGE->Cols;
for{Z2=0; 2<=7; Z++)
for(J=0; J<=2; J++)}
for(I=0; I<=2; I++)
M1[I]1([J](Z]=0;
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M1{0]([11(0
M1[2][1]1[0
M1[0](2](0
M1[2]([2]1[0
M1003(01(1
Mi[(2j(o](1
MI1[0]({1](1
M1{2]({1](2
M1{0](0][2
M1{o]([1]([2
M1{1](1](2
M1[1](2](2
M1[1][0][3
MI[1](1)(3
M1[2][1]I[3
M1[2)[2)1[3
M1[0])[0][4
M1{1]01)(4
M1[0])[2][4
M1[2]1[2][4
M1[0][0])I5
M1{2]11011(5
M1{0][1]1(5

5

6

6

6

6

7

7

7

7

L L | L T | [ T T 1 T I 1 BT}

ool adlndoelonl ol ool ol el ol onlontontanlloul sl uull el el ol nll el

M1[0][2](
ML{O][0]I

M1[2]
M1{0]([2]
M1{2]([2](
for(z=0; 2z
for(J=0; J<=
for(I=0;

]
]
]
]
]
]
]
]
]
1
]
)
]
1
]
]
]
]
]
<

M2[I)[J)[Z])=1-M1[1I][J][2};

M1{13y(11(001=1;
ML(1]}[2]1[0]1=1;
ML{1](0}{1]=1;
M1[1](1](1)=1;
ML[1][0}[2]=1;
Ml[O][2][2]:1;

; ML[2][0](31=1;

; MI[17[2]131=1;

Ml[0][1][4]=1;
Ml[l][2][4]=1;
M1[1][0]([5])=%;
MI{1]({1](5]=1;
Mi{1l] (0] [6]=1;
Ml[2][l][6]=l;
MI{1](1][7]=
i ML{1][2][7]=1;
Z++)

2; J++)
I<=2; I++)}

while (stpf1lg<ITERATION)
{

for(z=0; 2Z2<=7;

{

for(J=0; J<=

for(I=0;

Z++)

2; J++)
I<=2; I++}

{
M3[I][J]1=M1[I]1({J][2Z];
M4[I][J]I=M2[I]1[J][Z];
}

for{y=0; Y<IMAGE->Rows; Y++)
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for(X=0; X<IMAGE->Cols; X ++}

{
* {IMAGEC->Data + X
+{long) Y*IMAGE->Cols) =255~
* (IMAGE->Data + X + (long)¥Y
*IMAGE->Cols) ;
}
Erosion(IMAGE, M3, FILTER);
Erosion (IMAGEC, M4, THINNED):
for{Y=N/2; Y<IMAGE->Rows-N/2; Y++)
for (X=N/2; X<IMAGE->Co0ls-N/2; X++)
*{FILTER->Data + X
+{long) Y*IMAGE->Cols) =
*{FILTER->»Data + X +
(long) Y*IMAGE->Cols) &
* (THINNED->»Data + X
+{long) Y*IMAGE->Cols) ;
for {(Y=N/2; Y<IMAGE->Rows-N/2;Y++)}
for {X=N/2; X<IMAGE->C0ls-N/2;X++)

{
* (THINNED->Data+X+ (long) ¥Y*R) =
* (IMAGE->Data+X+ (long)Y*R) &
(255-* (FILTER->Data +
X+ {long)Y*R));
* {IMAGE->Data+X+ {(long)Y*R} =
* (THINNED->Data+X+{long) Y*R};
}
}
stpflg++;
}
THINNED->ROows=IMAGE->ROwWS;
THINNED->Cols=IMAGE->Cols;

}

SEE ALSO: Binary Hit-Miss, Closing, Opening, Erosion,
Dilation, and Thickening Filters
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CLASS: Segmentation

DESCRIPTION:

Thresholding is used in image processing to separate an
object’s pixels from the background pixels. Thresholding
converts a multi-graylevel image into a binary image
containing two graylevel values. The threshold operation is
defined as

B {Go iff(x,y)>T
EXY) = G, iffxy<T®

where f(x, y) is the original image, g(x, y) is the binarized
image, T is the threshold value, G is the object graylevel
value after the thresholding operation, and Gy is the
background gravlevel value after the thresholding operation.

EXAMPLE:

e 4

(a) (b)
(a) The original image and (b) the thresholded image
with T =70.
ALGORITHM:

The program assumes that the original image is a 256
graylevel X IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then compares
each pixel of the image against the threshold parameter
THRES. If a pixel's graylevel value is greater than the
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THRES parameter it is set to the graylevel given by the GO
parameter; otherwise it is set to the graylevel value given by
the GB parameter. Upon completion of the program, the
resulting binary image is stored in the structure IMAGEL.

Threshold{struct Image *IMAGE, struct Image
*IMAGEl, int THRES)

{

int X, Y, GO, GB;

G0=255;

GB=0;

for(Y=0; Y<=IMAGE->ROWS; Y++)

{

for (X=0; X<=IMAGE->Cols; X++)
{
if (* (IMAGE->Data+X+ (long)Y*
IMAGE->Cols) > THRES)
*{IMAGEl->Data+X+{long)Y*
IMAGE->Cols}= GO;
else
*(IMAGEl->Data+X+{long)Y*
IMAGE->Cols)= GB;
}

SEE ALSO: Multi-graylevel Thresholding, Point Detector,
Line Detectors, and Optimum Thresholding



Top-Hat Filter 241

CLASS: Morphological Filters

DESCRIPTION:

Morphological top-hat of an image is defined as the
difference between the original image and the graylevel
opened image. The top-hat filter is used to enhance low
contrast high spatial frequency features within an image.

TopHat(A, B) = A —open(A, B)

EXAMPLES:

]

(a) The original image and (b) the top-hat image using
an all zero 7 x 7 mask.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel X IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The N x N structuring
function is stored in the array MASK{][]. Upon completion
of the program, the top-hat image is stored in the structure
FILTER. The graylevel opening filter used by the algorithm
can be found under graylevel opening.

#define N 5

TopHat {struct Image *IMAGE, int
MASK[] [N],struct Image *FILTER)
{
int X, Y, B;
struct Image *TEMP, A;
TEMP=&A;
/* Use this line for Non MS-DOS
systems*/
TEMP->Data={unsigned char *)
malloc( (long)IMAGE->Cols* (long)
IMAGE->Rows) ;
/*Use this line for MS-DOS systems
* /
/*TEMP->Data={unsigned char huge *)
farmalloc {{long)IMAGE->Cols* (long)
IMAGE->Rows) ; ¥/
TEMP->Rows=IMAGE->ROWS;
TEMP->Cols=IMAGE->Cols;
for{Y=0; Y<IMAGE->ROWS; Y++)
{
for (X=0; X<IMAGE->Cols; X++)
{
* (TEMP->Data+X+{long}yY
*IMAGE->Cols) =
* (IMAGE->Data+X+ (long)Y*
IMAGE->Cols);
}
}
OpenGray (IMAGE, MASK, FILTER);
for({Y=0; Y<IMAGE->ROWS; Y++)
{
for (X=0; X<IMAGE->Cols; X++)

B=* {(TEMP->Data+X+ (long) y*
IMAGE->Cols) -
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* (FILTER->Data+X+ (long)
Y*IMAGE->Cols) ;

if (B<0)

B=0;

* (FILTER->Data+X+ (long)yY
*IMAGE->Colg) =B;

}

}
FILTER->Rows=IMAGE->Rows;
FILTER->Cols=IMAGE->Cols;

}

SEE ALSO: Graylevel Opening, Closing, Erosion, and
Dilation Filters
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Transforms

DESCRIPTION:

A large area of image processing is two-dimensional image
transforms. These transforms are used to enhance, restore,
and compress images. Most important of the transforms is
the discrete Fourier transform. This transform decomposes
an image into a set of sine and cosine functions at different
frequencies. The components generated from the discrete
Fourier transform are then used to compute the magnitude
and phase spectrums of the image. Spatial frequency
filtering of an image involves the modification of these
spectral components and is typically used to enhance an
image. Other transforms such as the discrete cosine, Walsh,
and Hadamard transforms are used in image compression to
reduce the storage size of an image.

CLASS MEMBERSHIP:
Discrete Cosine Transform
Discrete Fourier Transform
Discrete Fourier Transform Properties
Hadamard Transform
Hartley Transform
Hough Transform
Slant Transform
Walsh Transform

SEE ALSO: Coding & Compression.
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CLASS: Color Image Processing

DESCRIPTION:

What separates a true-color display system from a
pseudocolor display system is that there are three input
image memories, one for each primary color. Figure a is the
block diagram for a true-color display system. Each image
memory contains the appropriate color intensity value for
each of the three primary colors for every pixel within the
image. In this way, true-color viewing of a color image is
possible. Each color image pixel can have one out of 16
million possible colors. With computer memory devices
becoming cheaper, more imaging systems are becoming
available that support true-color capability, which is also
known as a 24-bit color system.

RED INPUT IMAGE RED COLOR DISPLAY
8 -BIT
DISPLAY MEMORY DIGITAL .
512X 512x256 -TO- ¢
262144 BYTES ANALOG ¢
CONVERTER|
BLUE INPUT IMAGE BLUE
[ ] [T e-BT |
DISPLAY MEMORY DIGITAL
512X 512X256 AI:JTACI).'OG ANALOG
YTES
2621448 CONVERTER
GREEN INPUT IMAGE GREEN
8- BIT
DISPLAY MEMORY DIGITAL
512X512X256 AI;ILOLE)G
262144 BYTES CONESTER
DIGITAL
8-BITS

(a) True-color display system

SEE ALSO: RGB, HSI and YIQ Color Models, C.LE. Color
Chart, and Pseudocolor Display
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CLASS: Noise

DESCRIPTION:
Uniform noise is commonly used to degrade images in the

evaluation of image processing algorithms. The uniform
noise histogram is defined as

1
_— <Gi<
hy~{b-a forasGi<b

0 elsewhere
where Gj is the ith graylevel value of the image, and the

parameters a and b are the minimum and maximum
graylevel values of the uniform noise.

1

b 255
Graylevel

A histogram of uniform noise.

EXAMPLES:

@ b)

(a) The original image and (b) the (additive) uniform noise
degraded image with a variance = 800 and a Mean = 0.
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ALGORITHM:

The program generates a uniform noise image of 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program assumes the
function rand() generates a uniform random number in the
range of 0 to 32767. Both the desired mean and variance are
passed to the program upon execution. If the noise graylevel
value generated exceeds the 256 graylevel range, the noise
graylevel value is truncated to either 0 or 255.

Uniform(struct Image *IMAGE,
float VAR, flcat MEAN)
{
int X, Y;
float NOISE;
for(y=0; Y<IMAGE->ROWS; Y++)
for(X=0; X<IMAGE->Co0ls; X++)

{
NOISE = sqgrt{(double)VAR)
*1.057192E-4 *(float)rand()
+ MEAN - sgrt({double)VAR)
*1.7320508;
if (NOISE > 255)

NOISE = 255;
if (NOISE < Q)

NOISE = 0;
* (IMAGE->Data +X +{(long)y*
IMAGE->Cols) = (unsigned

char) (NOISE +.5);
}

SEE ALSO: Rayleigh, Gaussian, Negative Exponential, Salt
and Pepper and Gamma Noises
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CLASS: Transform

DESCRIPTION:

A transform that decomposes an image into a set of square
waves is known as the Walsh transform. It is typically used
in image compression. Another transform similar to the
Walsh transform is the Hadamard transform. The two-
dimensional Walsh transform of a N x N image is defined as

N-1 N-1
Fom) = 37 X XX Y)-
Y=0 X=0
q-1
H(-l)bi(x)bq— 1-i(n) + bj(¥)bgy 1 _j(m)
i=0
and its inverse
N-1 N-1
X, Y)= X Y Fn,m-
m=0 m=0
gq-1
H(_“bi(X)bq_ 1-itn) + bi(Y)bg_ 1 —j(m)
i=0

where ¢ is the total number of bits, i.e., N= 24 and bj(x) is
the ith bit of the binary representation of the number x. For
example, if the total number of bits (q) equals 4 (hence N =
16) and X equals 7 (0111), then b(7) = 1, by(7) = 1, ba(7)
=1, and b3(7) = 0.

ALGORITHM:

The program assumes that the original image is a floating
point square image of size IMAGE->Rows stored in the
floating point structure IMAGE. Passed to the program is
the variable dir which is used (0 determine if a forward (dir
= 1) or if an inverse (dir = 0) Walsh transform is to be
computed. The program first sets the unsigned character
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pointer *(B + i + X - g) of size ¢ x IMAGE->Rows to the 1/0
bit representation of the number x using the bitrep
subroutine. The index x is used to access the number and
the index i is used to access the bit within the number. The
least significant bit of the number x corresponds to the index
i equal to zero. The program then computes the Walsh
transform in the x direction followed by the Walsh transform
in the y direction. Upon completion of the program, the
Walsh components are returned in the floating point
structure IMAGEL.

Walsh(struct Image *IMAGE, struct Image
*IMAGELl, int dir)
{
int ¥, ¥, n, m, num, I, q;
int prod, A, temp;
unsigned char *B;
float KO, sum;
num=IMAGE->Rows;
g={int) (log{ (double)
IMAGE->Rows) /10g{2.0})+.5);
B=malloc (num*q) ;
bitrep (B, q,num) ;
if(dir==1)
{

KO:num*num;
for(m=0; m<num; m++)
{
for(n=0; n<num; n++)
{
sum=0;
for(vy=0; Y<num; Y++)

for {(X=0; X<num; X++)

{

prod=1;

for(I=0;I<=qg-1;I++}
{
A=
*(B+I+X*qg) *
*(B+q-1-I+n*qg) +
*(B+I+v*q) *
*(B+g-1-I+m*q};
if((A/2)*2==A}

temp=1;

else



250 Walsh Transform

temp=-1;
prod=prod*temp;
}

sum=sum+ * (IMAGE~>Data
+X+{long)Y*

IMAGE->Rows )} *prod;
}

* (IMAGEl->Data+n+ {long)m*
IMAGE->RoOwWS ) =sum;
}
}
for(X=0; X<num; X++)
for(¥=0; Y<num; Y++)
* (IMAGEl->Data+X+ (long)y*
IMAGE~>RoWS ) =
* ({IMAGEl->Data+X+(long)yY*

IMAGE->Rows) /KO;
i

if(dir==-1}

{
for(y=0; Y<num; Y++)
{

for(X:O; X<num; X++)

{
sum=0;
for (m=0; m<num; m++}
{
for (n=0; n<num; n++)
{
prod=1;

for(I=0;I<=g-1;I++!}
{

A=
*(B+I+X*qg) *
*(B+g-1-I+n*q) +
* (R+I+Y*g) *
*{B+g-1-I+m*q};
if ((A/2)*2==A)
temp=1;
else
temp=-1;
prod=prod*temp;
}
sum=sum+ *{IMAGE->Data
+n+ {long)m*
IMAGE~>Rows ) *prod;
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i
}

* (IMAGEL->Data+X+ (long) Y~
IMAGE->Rows} =Sum;

}

}
}
}

bitrep(unsigned char *p., int g, int num)
{
int x,i, bit;
for (x=0;x<num; X++)

{
bit=1;
forii=0;i<qg;i+t)

{
*(bri+x*qg)= (X&bit)/bit;
bit=bit<<l;
}
}
}

SEE ALSO: Fourier Transform Properties, the Hadamard
Transform, the Discrete Cosin¢ Transform, and the Discrete
Fourier Transform
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CLASS: Graphics Algorithms
DESCRIPTION:

Warping is the use of image mapping functions to produce
geometric distortions in images. The most common
transformation is based on the affine projection, given by the
following set of equations:

X,_aX+bY+c
Tix+jY+1

Y._dX+eY+f
Tix+jY+1

X, Y are the old coordinates and X', Y' the new. The
coefficients, a, b, ¢, d, e, f, i, and j are determined from a set
of four control points that correspond to the congruency
desired between the two images and the selected
template. The new coordinates do not all map to integer
pixel coordinates, thus it is necessary to interpolate the final
result in some way. The simplest method for doing this is
using a bilinear interpolation scheme that examines the
nearest neighbor values and averages between them.

EXAMPLE: A

ALGORITHM:

The algorithm given warps two rectangular coordinates from
the input image, Img, into any four coordinates of the
output image, Out. The input rectangle is supplied by the
integer coordinate pairs (sx, sy) and (ex, ey). The four warp-
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to coordinate pairs are supplied as pointers to two integer
arrays, Wx and Wy. The routine assumes that the
coordinates are consistent and that the output image will
accommodate the warp result. Multiple calls to this routine
can effect complex warping schemes on an image; however,
no attempt has been made to optimize the process in terms of
speed or interpolative smoothness. The warp algorithm may
also be used for interpolated zoom and dezoom as well as
rotation and translation operations.

/* Basic Warp Algorithm using
bilinear interpolation */

warp (struct Image *Img, struct Image *Out,
int sx,int sy,int ex,int ey, int *Wx,int *Wy)

{

float a,b,c,d,e, f,1,3,x%x,y,destX, destY;
int dy:

/* Set up Warp coefficients x/
(float) (- (*Wx) + *(Wx+1l))/(ey-sy);
(float) (- (*Wx) + *(Wx+3))/(ex—-s%);
(float) ((*Wx) - *(Wx+1l) + *(Wx+2) -
* (Wx+3))/ ((ey-sy) * (ex-sx));
(float) (*Wx) ;
(float) (- (*Wy) + *(Wy+l))/ (ex-sx);
(float) (- (*Wy) + *(Wy+3))/(ey-sy):
(float) ((*Wy) -~ *(Wy+1l)+ *(Wy+2)-
* (Wy+3))/ ((ey-sy) * (ex-sx));
j = (float) (*Wy);

a
b
c

P 0 Q.

LI |

/* warp */
for (y=sy: y<ey:; y+=0.5){
dy = {(int)y+0.5;
for (x=sx; x<ex; x+=0.5){
destX = a*x + b*y + c*x*y + d;
destY = e*x + f*y + i*x*y + j;
* (Out->Data + (Out->Cols *
(int) (dest¥+0.5)) + (int)destX) =
*(Img->Data +
(long) (y*Img->Cols)+ (long) (x+.05));
}

}
} /*end warp*/
SEE ALSO: Morphing, Zooming, Rotation
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CLASS: Spatial Filters

DESCRIPTION:

A weighted mean filter is used so that different weights can
be used for each pixel in the average calculation. The
weighted mean filter is defined as the weighted average of
all pixels within a local region of an image. Weights for
each pixel and which pixels are included in the averaging
operation are specified by an input mask. The larger the
filtering mask becomes the more predominant the blurring
becomes and less high spatial detail remains in the filtered
image. The definition of a weighted mean filter in terms of
an image A is

Zwi i A+ y+]))
(,j)e M

Mean (A) = .
X wi

i,j)e M

where the coordinate x + i, y + j is defined over the image A

and the coordinate i, j is defined over the mask M. The

weight w; i is the weight of the mask associated with the
pixel locale('!l at the coordinate (i + x, j + y) within the image.

EXAMPLE:

(a) h)

(a) A Gaussian noise corrupted image and (b) the weighted
mean filtered image using the 5 X 5 mask given in the text.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then performs
a N x N weighted mean filter on the image with the weights
passed to the program in the floating point array MASK]][].
The size of the filtering operation is determined by the
#define NUM 7 statement and should be set to an odd
number. Upon completion of the program, the filtered
image is stored in the structure IMAGEL.

Sample 5 x 5 mask

— N N N =
Lol ER N RO 0N RGN Eon
Ll SN SN S Bl
—_ === =

1
1
1
1
1

#define NUM 7

WeightedMean (struct Image *IMAGE, struct
Image *IMAGEL, float MASK[] (NUM]}
{

int X, Y;

int I, J;

int N;

float SUM, SUMW;
N=NUM;

for{Y=N/2; Y<IMAGE->ROWS-N/2; Y++)
{
for(X=N/2; X<IMAGE->Co0ls-N/2; X++)

{
SUMW=0.0; SUM=0.0;
for(J=-N/2; J<=N/2; J++)

{

for(I=-N/2; I<=N/2; I++)
{
SUM=5UM + *{IMAGE->Data+X
+I+(long) (Y+J} *IMAGE->Cols)
* MASK[I+N/2][J+N/2];
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SUMW=SUMW +
MASK([I+N/2][J+N/2];
}
}
* (IMAGEl->Data+X+ {long)¥Y
*IMAGE->C0ls) =
(unsigned char) (SUM/SUMW +.5);

SEE ALSO: Median, Minimum, Maximum, and other
Nonlinear Filters
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CLASS: Nonlinear Filters

DESCRIPTION:

A weighted median differs from a median filter in that
specified pixels within a local neighborhood are repeated a
given number of times in the computation of the median
value. The weighted median is defined as

Median(A) = Median[Repeat Qi»j times{A((x +i, y+j)}],

where the coordinate x + i, y + j is defined over the image A
and the coordinate 1, j is defined over the mask M. The
mask M determine which pixels are to be included in the
median calculation and the values of the mask Qj, j
determine how many times each pixel within the mask is t
be repeated in the median calculation. For example, the
following mask, when used with the weighted median filter,
will preserve one pixel wide horizontal lines.

LIT]1
31313
1[1]1

EXAMPLE:

(a) b

(a) The original salt and pepper noise corrupted image
and (b) the weighted median filtered image using the 3
X 3 mask given in the text above.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel X IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program then performs
a N x N weighted median filter on the image using the mask
passed to the program. The numbers in the mask determine
the number of times each pixel is repeated in the median
calculation. The only requirement is that the sum of all the
numbers in the mask must add up to an odd number. The
size of the filtering operation is determined by the constant
N and should also be set to an odd number. The total
number of values included in the median calculation must be
less than 150. Upon completion of the program, the filtered
image is stored in the structure IMAGEL.

#define N 7

WeightedMedian {struct Image *IMAGE, struct
Image *IMAGEl, int MASK[][N])
{
int X, Y, I, J, M, Z;
int AR[150], A;
for{Y=N/2; Y<IMAGE->Rows-N/2; Y++)
for (X=N/2; X<IMAGE->Cols-N/2; X++)
{
z=0;
for{(J=-N/2; J<=N/2; J++)}
for(I=-N/2; I<=N/2; I++)
{ .
for(M=1;M<=MASK{ (int)N/2
+I] [{(int)N/2+J); M++)
{
AR[Z]=* (IMAGE->Data+X
+1+(long)(Y+J)
*IMAGE->Cols}) ;
Z++;

AR[I+1]=ARI[I];
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I=I-1;

}

AR[I+1]=A;
3
* {IMAGEl~>Data+X +{long)¥
*IMAGE->Cols)=AR[Z/2];

}

SEE ALS(O: Arithmetic Mean, Minimum, Maximum,
Median, and other Nonlinear Filters
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CLASS: Spatial Frequency Filters

DESCRIPTION:

The Wiener Filter, also known as the Least Mean Square
filter, is given by the following expression:

Bluv) = H(u,v)*
Fu) LH(u,vlh[sn(u,vvs«u,vn o)

H(u,v) is the degradation function (* indicates complex
conjugate) and G(u,v) is the degraded image. The functions
Sf(u,v) and Sp(u,v) are the power spectra of the original
image (prior to degradation) and the noise. If the noise is
zero, the filter reduces to the inverse filter. If the power
spectral densities are unknown, they may be replaced by a
constant scalar. In this case, the evaluation may be
performed incrementally while changing the constant until a
satisfactory result is obtained.

The example shows the keyboard picture corrupted by noise
and the Wiener filtered result to the right. This picture was
prepared from an estimate of the power densities and not an
exact evaluation.

EXAMPLE:

ALGORITHM:
The algorithm for the Wiener filter is identical to that of the
parametric wiener filter, with the gamma term set equal to 1.

SEE ALSO: Inverse Filter, Least Squares Filter, Wiener
Filter (parametric)
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CLASS: Spatial Frequency Filters

DESCRIPTION:

The ParametricWiener Filter is given by the following
expression:

. H(u.v)"
Hav)= JH(u,v)? + ¥[So{u,v¥S{u,v)] o)

H(u,v) is the degradation function and G(u,v) is the degraded
image. The functions S¢(u,v) and Sp(u,v) are the power
spectra of the original image (prior to degradation) and the
noise. If the noise is zero, the filter reduces to the inverse
filter.

The vy is the Wiener parameter and is adjusted so that the
least squared error constraint is satisfied. The filter can be
shown to be optimal when y = 1. The parameter can be
adjusted and thus affect the outcome of the filter by giving
more or less weight to the effect of the power spectrum
terms. In this case, the parameter is adjusted incrementally
after each filter pass.

If the power spectral densities are unknown, they may be
repiaced dy a constant scaiar. Unce again, the evafuation
may be incremental until a satisfactory result is obtained.

The example shows the keyboard picture corrupted by noise
and the Wiener filtered result to the right. This picture was
prepared from an estimate of the power densities and not an
exact evaluation.

EXAMPLE:
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ALGORITHM:

The algorithm given computes the parametric Wiener filter
on the Fourier transform of a degraded image, Guv, with
noise image spectra N, degradation function Huv, and
original image Img. The computation is in place so that the
filtered version of the input is returned in the original image
variable. The original and noise images are either
estimations from some predictive function or ad hoc
approximations. If the noise image is zero, the process
reduces to the inverse filter.

The Wiener parameter gamma is passed to the algorithm as
g. If this parameter is 1.0, the filter is non-parametric.
Methods exist in the literature to derive the parameter value,
however, it is sometimes determined from trial and error.

void p_wiener filter(struct Image *Img,
struct Image *Huv, struct Image *N,
struct Image *Guv, float g)

extern void cxdv(float a,float b,float c,
float d,float *R,float *I),

cxml (float a,float b,float c,
float d,float *R,float *I};

float *In, *No, *H, *G;
long i,sz;
float Nr,Ni,Dr,Di,Hsr,Hsi;

In = (float *) (Img->Data);
H = (flocat *) (Huv->Data):
No = (float *) (N->Data);

G = (float *) (Guv->Data):
sz = Img->Rows * Img->Cols;

for{i=0; i<sz;i+=2){
/* noise spectral density, computed
in place with wiener gamma.
IF:
gamma == 1, wiener filter
ELSE:
parametric wiener
*/
cxml (g* (* (No+1) ), g* (* (No+i+1l)), *No+i,
-1.0* (* (No+i+1)),No+i,No+i+1l);
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/* image spectral density */
cxml (* (In+i), *(In+i+1),*{(In+i),
-1.0*(*(In+i+1}),&Dr,&Di);

/* denominator spectral density term */
cxdv (* (No+i), * (No+i+1l),Dr,Di, &Dr, &Di);

/* degradation power spectrum */
cexml (* (H+1i), * (H+i+1),* (H+1),
-1.,0* (* (H+i+1)),&Hsr, &Hsi);

/* numerator term */
cxml (* (H+i),=1.0% (* (H+i+1)), *(G+i),
* (G+i+1), &Nr, &Ni) ;

/* final calculation */
cxdv (Nr,Ni,Hsr+Dr,Hsi+Di, In+i, In+i+l)

}

/* Complex divide */

void cxdv(float a,float b,float ¢,
float d,float *R,float *I)

{

float denoms

denom = (c*c)+(d*d);
if (denom == 0.0) {

*R = 0;

*T = 0;
}
*R = {{a*c)+(b*d)) /denom;
*1 = ((b*c)=-(a*d))/denom;

}

/* Complex multiply */
void cxml(float a,float b,float c,
float d, float *R,float *I)
{
*R
*T

(a*c) - (b*d);
(axd) - (b*c);

SEE ALSO: Inverse Filter, Least Squares Filter, Wiener
Filter
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CLASS: Color Image Processing

DESCRIPTION:

The YIQ color system is based upon the color television
standard. It divides a color into three components: its
luminance (Y), an in phase (I), and a quadrature phase (Q).
The hue and saturation information of a color is contained in
the I and Q color components. The YIQ components in
terms of the three primary colors red (R), green (G), blue
(B) are

Y =0.30R + 0.59G + .11B
I=0.28G + 0.59R - 0.32B
Q=-0.53G +0.2IR + 0.31B

Figure a shows a two-dimensional piot of the T and Q
components. The angle © presents the tint of the color while
the length of the color vector T from the origin represents the
purity or saturation of the color. The larger the vector T is,
the purer the color is. At the origin, the color only contains
luminance information. We call this color a black and white
RAVC

Q
Color (R, G, B)

Satul_ration

T Tint
]

(a) A plot of the I and Q color components

SEE ALSO: HSI, RGB and YIQ Color Models, C.L.LE. Color
Chart and Pseudocolor
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CLASS: Nonlinear Filters

DESCRIPTION:

The Y, mean filter is member of a set of nonlinear mean
filters which are better at removing Gaussian type noise and
preserving edge features than the arithmetic mean filter. The
Y, mean filter is very good at removing positive outliers for
negative values of P and negative outliers for positive values
of P. If all the pixels included in the calculation of the
harmonic mean are zero, the output of the Yp filter will also
be zero. The definition of the Y mean filter is

L y+i
Yp Mean(d) = z MsrhyrD VP
GieM

where the coordinate x +1, y + j is defined over the image A
and the coordinate i, j is defined over the mask M. The
mask M determines which pixels are to be included in the
Y, mean calculation and the value of N is the number of
pixels used. The parameter P chooses the order of the filter.

EXAMPLE:

(a) (b)

(a) The 10% positive outlier corrupted image and (&) ther
mean filtered image using a 3 x 3 square mask and P = -2.
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ALGORITHM:

The program assumes that the original image is a 256
graylevel x IMAGE->Rows x IMAGE->Cols pixel image
stored in the structure IMAGE. The program compuites the
Y, filter over a set of pixels contained within a square N x
N'region of the image centered at the pixel X, Y. The size
of the filtering operation is determined by the variable N and
should be set to an odd number and be less than 12. Upon
completion of the program, the filtered image is stored in the
structure IMAGEL.

YpMean (struct Image *IMAGE, int P, struct
Image *IMAGEL)}
{
int X, Y;
int I, J, Z;
int N, AR[121], A;
float SUM;
N=5;
for(Y=N/2; Y<IMAGE->ROWS-N/2; Y++)
for(X=N/2; X<IMAGE->Co0ls-N/2; X++)
{
Z2=0;
for(J=-N/2; J<=N/2; J++)
for(I=-N/2; I<=N/2; I++)
{
AR[Z]}=* (IMAGE->Data+X
+I+{long) (¥Y+J)
*IMAGE->Cols);
Z++;
}
2=0;
SUM=0.0;
for{(J=0; J<=N*N-1;J++)

{
if(AR[J]==0 && P<O0}
Z=1;
else
SUM=SUM+pow ( {(double}AR[J],
(double) P} ;
}
if(z==1}
* ({IMAGEl->Data+X +(long)Y
*IMAGE->Cols)=0;
else
{
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if (SUM==0.0}
A=0.0;

else
A={int)pow( (double) SUM/
{double} (N*N}, (double) (1.0
/Py

if (A >255)

A = 255;

* (IMAGEl->Data+X +(long)Y

*IMAGE->Cols) =A;

}

}
}

SEE ALSO: Geometric, Contra-Harmonic, Harmonic and
Arithmetic Mean Filters, Median, and other Nonlinear
Filters
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CLASS: Graphics Algorithms

DESCRIPTION:

Zooming (Dezooming) algorithms magnify (or minify)
images. Since the size and number of pixels ultimately
determines the size of a picture, zooming creates pixels, and
dezooming deletes pixels. In the simplest realization, we can
zoom an image 200% by simply duplicating each pixel into a
four-pixel neighborhood and dezoom to 50% by removing
three pixels from each four-pixel neighborhood (subsample).
This is itlustrated in the graphic below:

Zoom’

Picture

B
Dezoom E % -\.'.'I‘:-«.‘-j

This method is simple to implement but requires that the
final size be an integer multiple of two. Also, zooming
reduces the sampling rate of the picture and causes blocking
effects. Dezooming removes information from the original
picture that cannot be recovered from the minimized image.
Interpolation methods minimize the blocking effect
problems (and allow for fractional zoom/dezoom). In these
algorithms, an estimate is made of what the graylevels in the
transformed pixel neighborhood should be. The basis of this
estimate yields various interpolative algorithms. The
example picture shows the result of a noninteger zoom
(125%) and dezoom (75%) using an interpolation algorithm.
Interpolative zooming may also be accomplished using a
warping algorithm, where the image is warped to a larger
(smaller) proportional shape.

EXAMPLE:

Dezoom to
5%

Zoom to 125%
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ALGORITHM:

The zoom routine accepts two pointers to unsigned character
image data structures, In and Qut. The start coordinates, x
and y, and the horizontal (hor) and vertical (ver) sizes of the
region to be operated on are also passed. The operation flag
zd is set to nonzero for zooming and zero for dezooming.
The macro idx is used for simplified access to the pixels of
the image by coordinates.

#define idx(Im,i,3) \
*{Im->Data + (i)*Im->Cols + (3j))

/* Zoom/Dezoom */

zoom(struct Image *In, struct Image *Out,
int %, int y, int hor,int ver,
unsigned char zd)

int i,j,m=0, n=0;

if(zd){ /* Zoom */
for (i=y;i<ver;++i){
for (j=x; j<hor;:++3j) {
idx (Out,m,n)
idx (Out,m+1,n)
idx (Out,m,n+1}
idx (Out,m+1,n+1)

oy

idx(In, j,1i);

n += 2;
}
m 4= 2;
n = 0;

} else { /* DeZoom */
for (i=y;i<ver;i+=2) {
for (3=x; j<hor; j+=2) {
idx (Out,m,n) = idx(In,1i,j):
++n;
}
++m;
n = 0;

SEE ALSO: Warping
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/* Image.h include file

Handbook of
Image Processing Algorithms
in C

Harley R. Myler
Arthur R. Weeks */

struct Image {
/* # of rows in image */
int Rows:;
/* # of columns in image */
int Cols;
/* Pointer to image data */
unsigned char *Data;
/* type of image */
unsigned char Type;

}i

/* Image Types */

/* unsigned character image */
#define BASIC 0

/* unsigned integer image */
#define UINT 1

/* float image */
#define REAL 2

/* complex image float real, imaginary */
#define CMPLX 4

NOTE: for DOS applications, the Data pointer should be
specified huge.
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This appendix contains the complete source for a program to
compute the Laplacian on an image using the routines
contained in this handbook. You are free to copy it and use it
as the shell, or template, for your own image processing
programs. We also describe various image input and output
routines.

The program uses dynamic allocation of memory for the
image arrays. Images used are 256 x 256 pixels and the Dara
pointer of the Image structures /n and Out are dynamically
assigned to the 65,536 byte data blocks returned by the
calloc function. Calloc is a common memory allocation
routine available to C compilers. An include file that
contains the function declaration is often required; this
example uses memory.h. One must use caution when
allocating large arrays on small systems. Calloc requires two
arguments, the number of blocks desired and the size of the
blocks. We found it convenient to specify the number of
rows as the first argument and the number of columns as the
second. If unusual results or crashes occur, it is most often
the allocation, or misallocation, of memory.

For MSDOS™ systems, the data pointers should be
initialized as unsigned char huge, and the farmalloc system
call be used in place of calloc.

Another issue to consider is that of pixel depth, or the
number of bytes used to represent a pixel, which is
dependent on the implementation platform. Typically,
digitization produces a byte per pixel quantization, hence
pixels have a depth of 1 and are represented as unsigned
characters. This has been assumed in this example program
and the input and output image structure Type variables have
been initialized to BASIC, or unsigned character. Float or
complex pixels may be needed for certain imaging
operations, and this demands pixels of larger size. The C
macro sizeof() can be used to auto-specify the pixel depth
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independent of platform and we show an example of this at
the end of this discussion.

/** Basic Image Processing Program **/

#include <stdlib.h>
#include <memory.h>
#include "Image.h"

main ()

/* Functions called by main */

extern void Img_in(struct Image *In},
Convolve (struct Image *In,
struct Image *Out, struct Image *Mask}),
Img_out (struct Image *Out);

/* Declare Input & Output Images */
struct Image In, Out, Mask:

/* Indexes for mask generation section */
signed char *tmp; int i;

/* Init image parameters */

In.Rows = Out.Rows = 256;
In.Cols = Out.Cols = 256;
In.Type = Out.Type = BASIC:

/* Allocate the memory for the images */
In.Data = (unsigned char *)
calloc {(In.Rows, In.Cols);

Qut.Data = (unsigned char *)
calloc (Out.Rows,Out.Cols);
/* Set up a 5x5 Mask */
Mask.Rows = Mask.Cols = 5;
Mask.Type = BASIC;
Mask.Data = (unsigned char *)malloc(25):

/* Init the 5x5 Mask image as a
LaPlacian, which looks like:
-1 -1 -1 -1 -1
-1 -1 -1-1-1
-1 -1 24 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 ~1 */
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/* set all mask values to -1 */
tmp = (signed char *)Mask.Data;
for (i=0; 1<25; ++i){

*tmp = ~1;

++tmp;
}

/* now fix the middle one */
tmp = (signed char *)Mask.Data + 13:
*tmp = 24;

/* Now do the processing */
Img_in(&In); /* Input image file */
Convolve (&In, &Mask, &Out):
Img out (&0ut) ; /* Output the result */

The input of data involves the opening of files or the
accessing of an image hardware device. There are many
ways to load image data from a file; the following version of
Img_in is possibly the simplest. It assumes that the raw
image data is stored in a binary file called
MYIMAGE.RAW in row-column order. The term, raw, is
typically used to describe digitized data that has had no
processing applied. The routine accepts the pointer of an
image structure to be read, then loads it from the file a row at
a time(Img->Cols).

/* Input an image file */

void Img_in(struct Image *Img) {
FILE *ifile;
int i;

/* open the file for binary reading */
ifile = fopen("MYIMAGE.RAW", "rb");

/* read directly into the image array */
for (i=0; i<Img->Rows; ++1)
fread (Img->Data + i*Img->Cols,
Img->Cols,1l,ifile);
fclose(ifile};



274 Appendix B Example Program

The image processing aspect of the program is performed by
the Convolve function as described in the topics section of
this book. Here the Input image, In, is convolved with an
image mask, Mask, and the result placed in image Out. Note
that this is a circular convolution, where the mask is not
centered on the image pixel being operated on. The resulting
convolution is shifted by N/2 pixels, where N is the size of
the mask.

/* 2-D Discrete Convolution */

void Convolve(struct Image *In,
struct Image *Mask, struct Image *Out)
{
long i, j,m,n,idx, jdx;
int ms,im,val;
unsigned char *tmp;

/* the outer summation loop */
for (i=0;i<In->Rows;++i)
for (j=0;j<In~>Cols;++7) {
val = 0;
for (m=0;m<Mask->Rows; ++m)
for (n=0;n<Mask~->Cols;++n) {
ms = (signed char)
* (Mask—->Data +
m*Mask->Rows + n};
idx = i-m;
jdx = j-n;
if (idx>=0 && jdx>=0)
im = *(In->Data +
idx*In->Rows + Jjdx);
val += ms*im;

}
if(val > 255)val 255;
if(val < 0) wval 0;
tmp = Out->Data + i*Out->Rows + J;
*tmp = (unsigned char)val;

The final step in the program is to output the convolution
result. This is accomplished in a similar fashion to the way
that the image was input to the program. The file
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CONVOUT.RAW is opened for writing with the fopen
routine and the image data written to it. If the file exists, it is
written over, if it does not exist, it is created. In the simplest
case the Img_out routine is as follows:

/* Output an image to a file */
void Img_out (struct Image *Qut) {

FILE *ofile;
int 1i;

/* open (or create) a file for writing */
ofile = fopen ("CONVOUT.RAW", “wb");

/* Output the image by rows */
for (i=0; i<Qut->Rows; ++i)
fwrite (Out->Data + i*Qut->Cols,
Out->Cols,l,o0file);

fclose (ofile);
}

Notice that the image input and output routines are identical
except for the file open call, the filenames, and the use of
fread or fwrite in the loop. It would be a simple matter to
combine the read and write into a single call with a flag
indicating the direction of data flow. In addition, a character
pointer can be passed in the call to provide the file name to
open. A more advanced routine incorporating these changes
is given in the Img IO code below:

/* Input or output image data */

void Img_ IO(struct Image *IO,
char *filename, char dir)
{
FILE *fp;
int 1i;

/* dir is non-zero for reading */

if (dir) /* READ */
fp = fopen(filename, "rb"):;
else /* WRITE */

fp = fopen(filename, "wb"):
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/* process the image by rows */
for (i=0; i<IO->Rows; ++i)
if(dir)
fread (I0->Data + i*10->Cols,
10->Cols, 1, fp);
else
fwrite (IO0->Data + i*I0O->Cols,
I0->Cols, 1, fp):

fclose (fp);
}

It is important to understand how to access image files with
pixel data of other than type unsigned char. For example,
complex images consist of float type pixels (generally four
bytes per pixel) that are stored sequentially in pairs, the first
float pixel being the real component of the complex image
and the second pixel being the imaginary component. Below
is a routine to read a complex image. Note the casting of the
image data pointer to float.

/* Input a complex (float) image file */

void Img_in(struct Image *Img,
char *filename)
{

FILE *ifile;

int i,sz;
unsigned char c;
float *fptr;

/* open the file for reading */
ifile = fopen{filename, “rb"};

fptr = (float *}Img->Data;
sz = Img->Rows * Img->Cols;
/* read directly into the image array */
for (i=0; i<sz; ++i){
fread(fptr,sizeof (float),2,ifile);
fptr += 2;
}

fclose(ifile);
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From the previous example, the C macro sizeof{) was used to
specify the number of bytes to read of float data. The two
pixel components are then read one after the other for a total
of sz pixels. The image structure data pointer, fpir, was
incremented by two on each pass through the loop to
accommodate the real and imaginary components. It will
automatically change by sizeof(float) bytes because it was
declared as a float . The Img->Data pointer is cast from
unsigned char to float in the fpr assignment statement.

‘We can now, as a final exercise, rewrite Img_IO so that any
data type image may be read or written based on the value of
the image structure Type variable, as shown below:

void Img_IO(struct Image *IO,
char *filename, char dir)
{
FILE *fp:
int i,sz_pix;

if (dir)
/* open (or create) a file for read */
fp = fopen(filename, "rb"):;

else
/* open (or create} a file for write */
fp = fopen(filename, "wb"):

switch (I0~>Type) {
case BASIC:
sz_pix = sizeof (unsigned char);
break:

case UINT:
sz_pix = sizeof (unsigned int);
break;

case REAL:
sz_pix = sizeof (float):
break;

case CMPLX:
sz_pix = 2*sizeof (float):
break;
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/* process the image by rows */
for (i=0; i<IO->Rows; ++i}
if(dir)
fread {I0->Data + i*I0->Cols,
I0->Cols,sz_pix, fp);
else
fwrite (I0->Data + i*IO->Cols,
I0->Cols, sz_pix, fp};
fclose (fp) ;
}

The types and formats of image data structures are highly
variable and depend on the hardware that captures them, the
computer that processes them, and the terminals that display
them. Carefully select the data formats that you use, and if
problems or erratic results appear in your programs, look
first at your image data representation scheme.
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The table below is a partial list of Tags in TIF files. In some
cases, for brevity, the Tag names have been abbreviated.

Name Tag T Count
NewSubfileType 254 L1

SubfileType 2551811
ImageWidth 256 1S 11
ImageLength 257 S |1
BitsPerSample 258 | S | SamplesPerPixel
Compression 259 1S |1
PhotometricInterpretatn [262 |S |1
Thresholding 263[S 11

CellWidth 26418 |1

CellLength 2651S |1

FillOrder 266 ]S |1
DocumentName 269 JAlnja
ImageDescription 270 jAn/a

Make 271 [A]n/a

Model 272 | Aln/a
StripOffsets 273 | S [ StripsPerImage
Orientation 274 1S |1
SamplesPerPixel 2771S |1
RowsPerStrip 278 1S |1
StripByteCounts 279 | L | StripsPerlmage
MinSampleValue 280 ]S |1
MaxSampleVal 281 S 1
XResolution 282 [R]1
YResolution 283 [R1
PlanarConfiguration 284S |1

PageName 285 |An/a

XPosition 280 [R |n/a

YPosition 287 [R|n/a
FreeOffsets 288 L
FreeByteCounts 289 |L
GrayResponseUnit 290 [S |1
GrayResponseCurve 291 | S | 2**BitsPerSample
Group30Options 202 L1
Group4Options 293 |L |1
ResolutionUnit 296[S |1
PageNumber 297 [S ]2
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ColorResponseCurve 301 | S | 3*(2**BitsPerSample)
Software 305|Aln/a

DateTime 306 | A]20

Artist 315]Aln/a

HostComputer 316 1 A|n/a

Predictor 317 ]S |1

WhitePoint 318 |R 2
PrimaryChromaticities [319|R |6

ColorMap 320 | S | 3*(2**BitsPerSample)
T -- Tag Type:

A=ASCII, B=BYTE, S=SHORT,
L=LONG, R=RATIONAL.

Although the Aldus and Microsoft Corporations do not have
formal commitments to the maintenance of a TIF standard,
they are receptive to questions and issues regarding TIF, or
to requests for Tag assignments. They may be contacted at:

Developers Desk
Aldus Corporation
411 First Ave. South
Suite 200

Seattle, WA 98104
(206) 622-5500

Windows Marketing Group
Microsoft Corporation
16011 NE 36th Way

Box 97017

Redmond, WA 98073-9717
(206) 882-8080
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adaptive filters -- filters that change their characteristics as
they are applied to an image.

adaptive window edge detected filter -- this filter
adaptively changes its window size when an edge is
detected to preserve the details of the edge.

aperture -- size of a lens opening, often controlled with a
metal iris.

array processor -- specialized computer designed to
perform calculations on arrays (or images) rapidly.

aspect ratio -- ratio of height to width of an object either
captured by a camera or displayed by a monitor.

autoscaling -- alogrithm that scales an image between a
minimum and a maximum gray level value following the
application of an algorithm that modifies graylevel.

binary image -- image where pixels have only two values,
generally 0 and 1.

brightness -- the gray level value of a pixel within an image
that corresponds to energy intensity. The larger the gray
level value the greater the brightness.

Cathode Ray Tube (CRT) -- electronic tube that allows
display of images and graphics through the electronic
positioning of an electron beam; the glass screen of a
computer display or monitor.

CCD camera -- solid-state camera using a charge-coupled
device sensor.

C-mount -- common lens mounting system used on
electronic cameras, 1" in diameter with 32 threads/inch.

closing -- a morphological operation that smooths the
geometrical contour of objects within an image. This
operation is composed of a morphological dilation
operation followed by a morphological erosion operation.
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complex numbers -- number system represented by the sum
of a pair of real values a and b, written a +bj, where a is
called the real part(sometimes Re) and b the imaginary
part (sometimes Im). The term imaginary is used because
the second value, b, is multiplied by the imaginary
operator j=\-1.This is simply a convention that allows easy
representation of frequency dependent functions. The
usefulness of complex numbers is revealed when phase
and magnitude spectrums are derived from the results of
Fourier transformations.

composite video -- RS-170 video that includes
synchronization signals.

control point -- corresponding points selected between two
images so that they can be aligned to eah other using a
warping process.

contrast -- the amount of gray level variation within an
image

convolution -- See discrete convolution.
convolution mask -- small subimage, typically 3x3 to 7x7

in size, used as a filter in a discrete convoultion operation.
Examples of convolution masks are:

121
3x3 Low Pass (smoothing) Filterl: 24 2:]
121
0-11-10
-12 42 -1
5x5 High Pass (sharpening) Filter| -1 -4 13 4 -1
<12 42 -1
0-11-19

See discrete convolution.

cornea -- transparent outer surface of the eye that performs
the initial focussing process.
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cursor -- graphic object used in display systems to identify
the location of a pointing device, such as a mouse, joystick
or digitizing pad.

cutting & pasting -- process of outlining an area in an
image, removing it (cutting) or adding it (pasting) to either
the same image or a different one.

depth of field -- twice the distance an object in focus may
move from the object plane and still remain in focus.

digitizer -- electronic circuit that converts analog, or
continuous signals into discrete or digital data.

dilation (&) -- a morphological operation that enlarges the
geometrical size of objects within an image.

dither -- term used to describe computer algorithms that
simulate grayscale output on binary devices; see half-
toning.

discrete -- reters to signals or data that is divided into
samples, or fixed quantities.

Discrete Cosine Transform -- mathematical transformation
performed on discrete data that resolves additive real
sinusoidal components of the data that correspond to the
spatial frequency content of the data.

discrete convolution -- process where two images are
combined using a shift, multiply and add operation.
Typically, one image is substantiaily smaller than the other
and is called the mask or window. Masks can be designed
to perform a wide range of filtering functions. See mask,
spatial filter.

Discrete Fourier Transform -- mathematical
transformation performed on discrete data that resolves
additive complex sinusoidal components of the data that
correspond to the spatial frequency content of the data.
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double window modified trimmed mean adaptive filter --
filter that uses two windows that adaptively switch from a
3 by 3 median to a 5 by 5 mean filter.

electromagnetic spectrum -- range of known energy
wavelengths (or frequencies) and their corresponding
labels.

enhancement -- algorithms and processes that improve an
image based on subjective measures.

erosion (©) -- morphological operation that reduces the
geometrical size of objects within an image.

f-number -- aperture setting of a lens; ratio of the diameter
of the aperture to the focal length of the lens; the f is an
abbreviation for field, not focal length, as the f-number
determines the Depth of Field.

f-stop -- see f-number.

Fast Fourier Transform (FFT) -- a special formulation of
the Fourier Transform (see Discrete Fourier Transform)
that takes advantage of repetitive forms to increase the
speed of computer calculations.

focal length -- point at which the rays converged by a lens
meet; may be changed by the aperture setting, see f-
number.

frame -- term used to describe an image, typically in context
with a series of images, such as a single frame in an image
sequence.

frame-buffer -- computer memory designed to store an
image or set of images that have been captured and
digitized by a frame-grabber, or digitizer.

frame-grabber -- electronic circuit that converts (using
digitization) an analog video signal into a digital image,
see digitizer.
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frequency -- measure of periodicity of a data set, or how
often the data repeats a pattern in a given measure, such as
time or distance. See periodic, spatial frequency.

gamma -- basic measure of contrast; in film terminology,
gamma is the slope of the density vs exposure curve; in
electronic display terminology, gamma is the slope of the
brightness distribution curve; large gamma indicates a
steep slope and high contrast.

ganglia -- grouping of nerves in the retina that combine the
signals from the light sensory nerves giving rise to a low-
pass filtering effect.

gas-plasma  display -- display that uses the
electroluminescence of rare gases 1o create visible output
for a computer monitor.

gaussian noise -- a type of noise whose histogram is
Gaussian (bell) shaped.

graphic tablet -- computer input device that transforms pen
position on a surface into position coordinates.

Graphic Interchange Format©O(GIF) -- file storage format
for images developed by Compuserve Information Service,
Inc.; uses LZW compression.

graylevel -- value of gray from a black and white
(monochrome) image.

grayscale -- range of gray shades, or graylevels;
corresponding to pixel values that a monochrome image
incorporates.

Hadamard Transform -- transform that resolves a data set
into sets of square waves, where the maximum value is 1
and the minimum value is - 1. Sometimes called the Walsh-
Hadamard transform (see Walsh Transform), the
Hadamard Transform is distinguished from the Walsh in
that the transform matrices may be generated recursively
using the lowest order Hadamard matrix,
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and the recursive matrix,

[ HN HN]
HON _[ HN -HNJ"

The HpN matrix is the Hadamard matrix of order 2N and
higher orders are easily generated by applying the recursive
relation shown above.

half-toning -- technique for rendering a grayscale effect on
a binary (two-tone) output device.

histogram -- distribution of pixel graylcvel values. A graph
of number of pixels at each graylevel possible in an image.
A histogram is a probability distribution of pixels values
and may be processed using statistical techniques. These
processes result in changes to the brightness and contrast
in an image, but are independent of the spatial distribution
of the pixels. See uniform histogram, histogram stretching,
histogram equalization, histogram specification.

# of pixel

graylevel

histogram equalization -- process that converts an images
histogram to a uniform distribution. This is accomplished
by integrating (summing) the histogram over all graylevel
values. The effect of equalization is improved contrast in
the image.
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# of pixels # of pixels

graylevel graylevel

Onginal Histogram e Equalized Histogram

histogram specification -- process that changes the shape of
a given image histogram to that of another, specified by
the user. The process is used when the histogram of one
image is desired in another, or during an interactive
histogram modification scheme where the user is allowed
to change the histogram dynamically to acheive a desired
contrast result.

histogram stretching -- process that scales a histogram to
the fullest possible range. This is distinguished from
histogram equalization, which is the conversion of a
histogram to a uniform distribution.

homomorphic filter -- filter that uses logarithm to seperate
intensity and reflection components of an image so that
each can be modified independently.

Huffman Coding -- coding technique that calculates
probability of occurrance for data values and assigns
smallest codes to most frequent data.

illumination -- outside source of energy that illuminates a
scene or image.

integer numbers -- the set of whole numbers of the
following form 1, 2, 301, 1024 etc.

interlacing -- process of skipping every other line in a
output or input scheme.

intersection -- the overlapping region of two objects or sets.
Lempel-Ziv-Welch (LZW) Coding -- coding scheme

similar to Huffman (see above) where probabilities are
recalculated when performance changes.
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lens -- transparent device used to bend and focus light rays.

liquid-crystal display -- display that uses the light
attentuating effect of amorphous crystals to create visible
output for a computer monitor,

magnification -- ratio of the size of an objects image to the
actual size of the object.

magnitude spectrum -- spectrum of spatial frequency
magnitudes (or strengths) in an image. The magnitude
spectrym is an image where each pixel represents the
magnitude of the spatial frequency at that location from
the original image. The spectrum is derived from a
complex spatial frequency generating transform, such as
the Discrete Fourier. The magnitude(A) given pixel
location is given by the equation, A = \/Re2+1m2, where
Im is the imaginary portion of the complex transform and
Re is the real portion. See complex numbers, frequency,
spectrum.

mask -- generally refers to a small image used to specify the
area of operation to take place on a larger image in an
algorithm. Mask also refers to a discrete convolution filter.
See convoultion mask.

maximum filter -- this filter replaces the pixel being
operated on with the maximum graylevel of a set pixels
located under a spatial mask.

mean -- the average of a set of data values; e.g., for the set
of values:

{3,56,7,4,3,2,2}
the mean is (3+5+6+7+4+34242)/8 = 4,
medial axis transform -- the skeleton of an object.

median -- the middle value of a set of ordered data values;
e.g., for the set of values:

{3,5,6,7,4,3,2,2}
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the medianis {223314567}=3.5
mensuration -- measurement algorithms.

minimum filter -- this filter replaces the pixel being
operated on with the minimum gray level of a set pixels
located under a spatial mask. See maximum filter.

monochrome -- literally one color, also used to describe
black and white grayscale images.

monitor -- display used to output images or computer data.

mouse -- computer input device that is moved on a surface
and translates physical movement into position data.

multi-level threshold -- the process of thresholding the
graylevel values of an image into multiple levels.

negative exponential noise -- a type of noise that is
described by a negative exponential histogram.

NTSC -- acronym for National Television Standards
Committee; term used to describe RS-170 compatible
color video.

nyquist theorem -- sampling theorem that requires that a
signal be sampled, or digitized, at a rate (the nyquist rate)
that is twice the highest frequency present in the sampled
signal. When the nyquist rate is used, all components of
the sampled signal will be adequately represented.

null set -- a set of objects containing no members.

opening -- morpholgical operation that is used to smooth the
geometrical shape of objects within an image. Opening is a
morphological erosion followed by a morpholgical dilation
operation.

optic nerve -- nerve that carries image data from the eye to
the brain.
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optimum threshold -- this is the best threshold value for a
particular image to reveal the most possible objects.

order statistics -- the process of ordering a set of data from
minimum o maximum to obtain a set of statistics.

outliers -- pixels that contain gray level values that do not
represent the normal gray level value within a region of an
image.

outline -- the contour of objects within an image.
pel -- European term for pixel.

periodic -- when a data set, or signal, repeats itself, the data
is said to be periodic. The size of the data subset (typically
measured in time or distance) that repeats itself is called
the period of the data set. Frequency is the measure of
periodicity and is given as periods/time or
periods/distance.

phase spectrum -- spectrum of spatial frequency phase (or
directions) in an image. The phase spectrum is an image
where each pixel represents the phase of the spatial
frequency at that location from the original image. The
spectrum is derived from a complex spatial frequency
generating transform, such as the Discrete Fourier. The
phase(Q) angle at a given pixel location is given by the
equation, Q = tan-1(Im/Re), where Im is the imaginary
portion of the complex transform and Re is the real
portion. See complex numbers, frequency, spectrum.

pixel -- slang for picture element, the smatlest element of an
image; pixels are arranged in row and columns to create an
image, frame or picture.

pupil -- aperture of the eye; term used for variable aperture.

profile -- imaging function that plots or displays pixel data
along a line within an image to yield a cross section of
values.

quantization -- range of values that ¢ pixel can represent.



292 Glossary

real numbers -- a set number of the form 3.12, 4.518, 6.323
etc.

real-time -- 30 frames per second, or the number of frames
required so that normal motion is not blurred to a human
observer.

reconstruction -- algorithms and processes that attempt to
construct a two-dimensional image from one-dimensional
data functions (CAT scans, Synthetic Aperature Radar,
elc.).

reflectance -- portion of incident light that is relected from
objects or background in an image.

resolution -- smallest feature (spatial) or graylevel value
(quantization) that an image system can resolve.

restoration -- algorithms and processes that attempt to
remove a degradation (noise, blurring and defocussing
effects) based on an objective criterion.

retina -- spatial light sensor array of the eye.

rubber-band -- when a graphic selection contour or object
stretches to follow the input cursor.

RF modulator -- device that converts an RS-170 video
signal into a radio frequency signal so that a television can
receive it through its tuner.

RS-170 -- video standard of 525 lines, interlaced at 1/30
second.

Run-Length Encoding (RLE) -- simple coding scheme
consisting of number pairs where one number represents a
pixel value and the other the number of times the value is
repeated.

salt and pepper noise -- noise that contains both minimum
and maximum outlier pixels. In a 256 gray level image,
the pepper noise has gray level value of 0, while the salt
noise has a gray level value 255.
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sampling -- used to describe spatial resolution of an image.

sawtooth wave -- used within the slant transform

separability -- tiwo-dimensional (image) transform property
where the mathematical operations defining the transform
can be divided into two or more parts. This property is
advantageous from a computations standpoint. The
Fourier, Cosine, Walsh and Hadamard Transforms are
seperable.

set - a collection of objects combined together that ail
contain something in common.

signal adaptive median filter -- An adaptive median filter
that changes its window size and characteristics depending
on the input signal/image.

skeletonization -- algorithm used to find the central axis
(skeleton) of an image object.

Sobel -- directional edge detection discrete convolution
masks of the foliowing form:

101 -1-2 -1
vertical | -2 0 -2 | horizontal| 0 0 0

-101 121

solid-state cameras -- electronic cameras that use solid-state
arrays as their sensing element, see CCD camera.

spatial filter -- image filter that operates on the spatial
distribution of pixel values in a small neighborhood.
Although a spatial frequency filter operates on spatial
distributions of pixels, this term is generally reserved for
discrete convolutions while the latter term is used for
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filters derived from image transforms, See discrere
convolution.

spatial frequency -- measure of the periodicity of a data set
with respect to a distance measure. Periodic changes in
brightness values across an image are defined in terms of
spatial frequency, or periods/distance. If the period of a
brightness pattern is 20 pixels and the size of a pixel is
1/20th of a mm, then the spatial frequency of the data set
is 20 pixels/mm. See periodic, fregency.

spectrum -- a collection of ordered frequencies describing
the frequency content of a data set, or signal. For example,
the electromagnerc spectrum is the collection of light
frequencies that are physically known to science. See
electromagnetc spectrum, magnitude spectrum, phase
spectrum.

square wave - a rectangularly shaped signal ( I LI ).

standard image -- 512 by 512 pixels, 8-bits (1 byte)
quantization per pixel.

structuring set -- the set of pixels used to describe the
structuring function used in the morphological erosion and
dilation operations.

Tagged Interchange File Format (TIFF) -- image storage
file format developed by Microsoft and Aldus
corporations; most commonly used in desktop publishing
applications and with image scanner hardware.

template -- subimage used in image correlation or matching
function. Sometimes used to describe discrete convolution
mask. See discrete convolution.

threshold -- a value used to segment the graylevel values of
an image into two different regions. Also called the
binarization of an image. For example, if a threshold
value of 128 is chosen, then any pixel below this value
would be set to 0 and all pixels greater than and equal to
this value would be set to 255.
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touch-screen -- computer input device that reports the
coordinates of where the monitor screen was touched
either by a finger or wand.

trackball -- computer input device that moves the cursor
based on position of a ball mounted to free rotate in a
fixture. As the ball is rotated, the cursor tracks its motion
in the same direction.

uniform noise -- a type of noise described by a uniform
histogram.

union -- the process of combining two different sets into one
set.

variance -- the average value that a set of data values differ
from the mean of the set. Formally, it is the average value
of the squares of the deviations from the mean; e.g., for
the set of values:
{3,5,6,7,4,3,2,2}

the mean is 4 , the data set of differences from the mean
is:

{-1,-1,2,3,0,-1,-2, -2},
the data set of squares of the differences is:
{1,1,4,9,0, 1,4, 4},
and the mean of this set, the variance, is 3.
See mean..

Venn diagrams -- a graphical method of performing various
set operations such as union (or) and intersection (and).

ol O

AorB Aand B



296 Glossary

video -- signal that carries analog image information.

video output controller -- subunit of an image processing
system that controls and routes video signals in the sysiem.

vidicon -- electronic tube that images using a scanned
electron beam.

visible spectrum -- portion of the electromagnetic spectrum
that is visible to the human eye; color spectrum; see
electromagnetic spectrum.

WYSIWYG -- What You See Is What You Get; term used
to describe computer displays that show what text and
graphics will appear when a document is printed.

Walsh Transform -- transform that resolves a data set into
sets of square waves, where the maximum value is 1 and
the minimum value is -1. Sometimes calied the Walsh-
Hadamard transform (see Hadamard Transform), the
Walsh Transform is distinguished from the Hadamard in
that the transform has a fast form implementation similar
to that used by the Fast Foruier Transform. The Walsh-
Hadamard transforms have substantial advantages in
computation over other transforms dn ghat po camplex or
floating-point numbers are required.

warp -- to perform a geometric distortion operation on an
image using a computer algorithm.

weber ratio -- ratio of background intensity to foreground
intensity in human visual perception; this ratio remains
close to 20% over a large range of brightness values.

zoom -- process by which an image is magnified by a
computer algorithm.
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A

Accumulator matrix, 122
Adaptive
DW-MTM filter, 13
Filters Class, 16
MMSE filter, 17
Affine projection, 252
Algorithm programrming, 2
Alpha-trimmed mean filter, 20
Area, 23
Arithmetic mean filter, 87, 102, 149, 168, 265
ASCII, 91,141, 280

B

Bibliography, 281

Big-endian, 225

Binary image, 45, 191, 239

Binary object, 116

Brightness, 97, 115, 187
correction, 27

Butterworth, 38

C
C.1LE. chromaticity diagram, 29, 193
Centroid, 30, 145
Chain code, 32
Chromaticity, 97
Circularity, 35
Circularly symmetric filter, 37
Class Groupings Index, 7
Closing
binary filter, 40
graylevel filter, 42
Cluster, 44
Clustering, 44
Coding and Compression Class, 47
Color, 190, 192
Image Processing Class, 48
images, 48
saturation correction, 49
tint correction, 51
Compactness, 53
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Compass masks, 89

Contour, 24, 178

Contra-harmonic mean filter, 54

Contrast, 112, 115, 169, 187
correction, 57

Coordinates, 30

CRT, 187

D

Desktop publishing, 93
Digital memory, 190, 245
Dilation, 40, 147, 162,171, 178, 210
binary filter, 59
graylevel filter, 61
Directional mappings, 32
Discrete
convolution, 63
correlation, 65
cosine transform, 67
Fourier transform, 70, 244
Dissolve, 160
Dithering, 75
DOS, 270, 271

E

Edges, 194

Eigenvalue, 145, 154

Encryption, 47

Equalized image, 112

Erosion, 40, 117, 155, 162, 171, 178, 208, 210
binary filter, 76
graylevel filter, 78

Euclidian distance, 35, 45

Example program, 271

Exponential noise, 82

F

Fade, 160

Flip, 80

Fourier
transform properties, 81
transform, 67
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G

Gamma noise, 82
Gaussian, 16

filters, 84

histogram, 82

noise, 13, 20, 25, 54, 85, 87, 102, 152, 167, 265
Geometric mean filter, 87
Geometrical features, 116
Gradient, 198

masks, 89
Graphic Interchange Format (GIF), 90
Graphics Algorithms Class, 93
Graylevel, 94, 184

dilation, 42, 173

histogram, 95
Grayscale, 157, 205

H

Hadamard transform, 99, 248

Harmonic mean filter, 102

Hartley transform, 105

High pass spatial filters, 109

Histogram, 95, 110, 115, 175, 193, 196, 246
equalization, 110, 115
specification, 112, 115
Techniques Class, 115

Hit-miss binary filter, 116, 231

Homomorphic filter, 119

Hough transform, 122

HSI color model, 97

Hue, 97, 193, 264

Huffman coding, 125

I

Hluminance, 49, 51
Tllumination, 119
Image coding, 67

compression, 248
Image Fundamentals Class, 129
Intensity, 97, 193
Inverse filter, 130
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JFIF, 133
Joint Photographic Experts Group (JPEG), 133

K

Kemel, 144, 213

L

Laplacian filter, 135

Laser speckle, 165

Laser, 82

Least mean squares filter, 136
Line detector, 137
Little-endian, 225

Local variance, 17
Look-Up-Table (LUT), 190
Low pass spatial filters, 140
Luminance, 264

LZW, 91

M

MAC, 141
Macintosh, 141
MacPaint

file format, 141

image, 142
Magnitude spectrum, 71, 244
Mask, 84, 144
Maximum, 194

axis, 145

filter, 61, 147
Mean, 85

filter, 13, 16, 17, 20
Medial axis transform, 208
Median

estimator, 13

filter, 16, 149, 168, 257
Mensuration Class, 151
Midpoint filter, 152
Minimum, 194

axis, 154

filter, 78, 155
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Minkowski
addition, 59
subtraction, 76
MMSE filter, 13
Moments, 157
Morphing, 160
Morphological, 40, 147, 155, 162
Filters Class, 162
Multi-graylevel thresholding, 163
Multimedia, 93

N

Negative
exponential noise, 149, 165
outliers, 87, 147

Noise Class, 167

Nonlinear
filter, 54, 168
Filters Class, 168
graylevel transformations, 115
mean filter, 87, 102, 265
transformations, 169

o
Object, 23
Opening, 208, 242

binary filter, 171

graylevel filter, 173
Optimum thresholding, 175, 207
Order statistics, 20, 168
Outliers, 149
Outline binary filter, 178
Overflow, 64, 66

P

PC Paintbrush (PCX), 180
PCX, 180

Perimeter, 53, 183

Phase spectrum, 71, 244
Pixel, 184

Point detector, 185
Positive outliers, 54, 102
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Prewitt masks, 89
Primary colors, 192, 245
Pseudocolor, 187
display, 190, 245
Pseudocoloring, 48

Quantization, 184, 191

R
Range filter, 194
Raw image, 273
Rayleigh noise, 196
Recognition, 207
Reflectance, 119
RGB
color model, 192
color image, 49, 51
Robert's filter, 198
Rotation, 80, 199
Run Length Encoding (RLE), 200

S

Salt and pepper noise, 13, 16, 20, 42, 167, 173, 202

Sampling, 184, 204

Saturation, 48, 97, 98, 193, 264

Scaling, 63, 65, 205

Secondary colors, 192

Segmentation Class, 207

Sequency, 213

Sharpen, 109

Skeleton binary filter, 208

Slant transform, 212

Smooth, 140

Sobel filter, 218

Sonogram, 119

Spatial
filtering, 137, 185
Filters Class, 220
Frequency Filters Class, 222
frequency, 20, 221, 241, 244
masks, 223
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Standard deviation, 85
Storage Formats Class, 224

T

Tagged Interchange File Format (TIF), 225
Thickening binary filter, 229
Thinning, 229

bingry filter, 234
Threshold, 163, 175, 207
Thresholding, 239
TIF tags list, 279
Tint, 48, 51
Top-hat filter, 241
Topics, finding , 2
Transforms Class, 244
Trichromatic coefficients, 97, 193
True-color display, 190, 245

U

Underflow, 64, 66
Uniform noise, 13, 25, 152, 196, 246

\4

Variance, 35

w
Walsh transform, 99, 248
Warping, 252
Weighted
average, 254
mean filter, 254
median filter, 257
Wiener filter, 260
parametric, 261

Y
YIQ color imadel, 264
Yp mean filter, 265

Z

Zooming, 268



