

Hel@rik Wann Jensen

UB limenau

Sunthesis

Using Photon

Mapp1ng

p mr

>

Foreword by Pat Hanrahan

Realistic Image Synthesis
Using Photon Mapping

Henrik Wann Jensen

Department of Computer Science
Stanford University

A K Peters
Natick, Massachusetts

TeamLRN

Foreword

Making realistic images using a computer is now commonplace. As a
result, directors can create convincing, imaginary worlds; and designers
can virtually prototype, visualize, and evaluate potential products and
spaces. Although not that long ago it was easy for anyone to distinguish
computer-generated images from photographs, nowadays even experts are
easily fooled. It is hard to separate the real from the virtual in a movie or
magazine these days.

However, creating algorithms and building systems to produce such
images is a challenging task. Fundamentally it involves understanding
the physics—how light interacts with the materials in the world—and the
psychophysics —how we perceive the light rays entering our eye. Artists
and scientists throughout the ages have studied the causes of appearance
and the resulting visual cues: motion, shape, occlusion, perspective, light-
ing, reflection, texture, and color. All these generators of appearance may
now be modeled on a computer. We can model and simulate the processes
that form patterns and textures, the physics of light reflecting from a sur-
face or scattering in a media, and the propagation of light as it travels from
light sources through the scene to the camera.

TeamLRN v

Vi Foreword

The two breakthrough algorithms in image synthesis were ray tracing
and radiosity. Ray tracing involves first casting rays from the eye through
a pixel and into the scene, recursively generating reflected and refracted
rays. Stochastic or distributed ray tracing was invented to deal with mo-
tion blur, depth of field and reflections from glossy surfaces, and path trac-
ing extended the algorithm to deal with mutual interreflection. Radiosity
takes a different approach: it assumes the world consists of diffuse surface
patches, and then solves a matrix equation for the amount of light reaching
each patch.

Over the past 15 years or so, these algorithms have been studied and
refined. The common physics of light and light transport has been iden-
tified and unified into Kajiya’s rendering equation. This equation is now
expressed in precisely-defined physical quantities such as radiance and the
bidirectional reflectance-distribution function. An applied mathematicians
recognizes the rendering equation as an integral equation. And a numerical
analyst maps these different approaches onto the basic methods of scien-
tific computing; path tracing is an example of the application of the Monte
Carlo Method (the generalized algorithm we call Monte Carlo Ray Trac-
ing or MCRT), and radiosity is an example of the application of the finite
element method.

Time has also indicated that the most general and robust approach is
Monte Carlo Ray Tracing. In order to apply finite element methods to
image synthesis requires simplifying assumptions. For example, surfaces
are assumed to be diffuse and planar; generalizing the finite element for-
mulation for non-diffuse surfaces and complex geometries has proven to be
practically and theoretically very difficult. Unfortunately, Monte Carlo Ray
Tracing has also had its problems. Brute force application of the Monte
Carlo Method to image synthesis leads to a very slow algorithm; as a result,
not enough rays are traced and the resulting images often are noisy. This
has limited the usability of MCRT in production environments.

But recently a breakthrough occurred: a subtle and simple method
Photon Mapping—was invented by Henrik Wann Jensen to speedup MCRT.
The idea is to break ray tracing into two passes: the first casts photons
into the scene from the light sources, and the second collects the photons
to produce an image. Although this idea had been proposed and tried
by others, to get good results meant it must be implemented with great
care. This book describes how to do it right. It presents the entire story,
from the theory of why it works to the practice of how to add it to your
system.

Photon mapping means that indirect lighting may be computed effi-
ciently and robustly. Now we can add a whole new class of scenes to the
repetoire of computer-generated imagery. These include dazzling under-

TeamLRN

Foreword vii

water pictures of streaming beams of light, outdoor illumination of clouds
and landscapes, light focusing through a glass of cognac, and more recently
translucent materials such as marble. Read the book, implement the algo-
rithm, and enjoy the images!

Pat Hanrahan

TeamLRN

Contents

Preface

XV

1 Introduction 1

1.1 Realistic Inage Synthesis 2

12 Global Mlumination:.c:c ¢ & ¢ S 8885 5o @ a9 aiesaxs 3

1.2.1 Ray-Tracing Techniques 4

1.2.2 Finite Element Radiosity Techniques 5

1.2.3 Hybrid and Multi-Pass Techniques §

1.2.4 Photon Mapping 7

1.3 Overviewof ThisBook 7

2 Fundamentals of Global Illumination 11

2.1 The Natureof Light 11

2.2 Lighting Terminology « . « v v o v v oo n wmw o s oo 13

221 Radiometry « v owv v oo s v v s s vansnannss 13

2.22 Photometry o o0 15

223 ‘TheSolid Angle - o o vs o v w5 o v a0 55 o 16

2.3 Light Bmission o« i s s &6 s s 6w 55 9% 5% & 8 % 4 5 i 17
TeamLRN

X Contents

2.4 Light Scattering 18
241 TheBSEBRDE . & 55 5 v 6w 6 5 s evemmmmme @ o 6 18
242" TheBRDFE s cwnunenssowwidses g 19
24.3 TheReflectance 20
2.4.4 Diffuse Reflection 21
2.4.5 Specular Reflection 22
2.4.6 Reflection Models 24

2.5 The Rendering Equation 27
2.5.1 The Radiosity Equation 29
2.5.2 Neumann Series Expansion 29
2.5.3 Path Integral Formulation 30

2.6 Light Transport Notation 30

3 Monte Carlo Ray Tracing 33

3.1 Classic Ray Tracing 34
3.1.1 Algorithm 36

3.2 Path Tracing, 37
3.21 Algorithm 42

3.3 Bidirectional Path Tracing 43
1 LWL UL 7y (T s e R T 47

3.4 Metropolis Light Transport 47
341 Algorithm 50

4 The Photon-Mapping Concept 51

4.1 Motivation 51

4.2 Developing the Model 53

4.3 Overview 54

5 Photon Tracing 55

5.1 Photon Emission, 55
5.1.1 Diffuse Point Light 56
8:1.2 SphericalTight « - < o 5 5 4 5w 5 4w omsmwae o 5 57
B:1.3 SquareBight . o cu g i s neas e aamvie i e 58
5.1.4 Directional Light 58
5.1.5 Complex Light 58
5.1.6 Multiple Lights 59
5.1.7 Projection Maps, 59

52 Phobtore SCattebing o s v ww s v s us 595 6 8 5w 60
5.2.1 Specular Reflection 60
5.2.2 Diffuse Reflection 60
5.2.3 Arbitrary BRDF Reflection 61
5.2.4 Russian Roulette 61

TeamLRN

Contents Xi

53 Photon Storing 64

6 The Photon Map Data Structure 67
6.1 ‘TheDataStructure: 5 5 & 5 6 5§ 4 4 @ SR sEe & § 8 67
6.2 Photon Representation 69
6.3 TheBalanced Kd-Tree v v v v v v v vt 70
6.3.1 Memory Layout 71

6.3.2 Balancing Algorithm 71

6.4 Locating the Nearest Photons Efficiently 72
6.4.1 Algorithin o o v s s 5 5 5 5 8 45 e mrme v v 0o 72

7 The Radiance Estimate Z5
7.1 Density Estimation 75
T2 Derivation s s o v 5 5 = & & & & 4 % 5 SUe SUEEE R & @ 8 8§ W 77
7.3 Algorithm v v v i v i i s ve o n e 80
T4 PIHETE « o « w2 5 6 m w5 5 5 % 8 ersmssimess & o 0 & 5 & ¢ 80
741, TheCopePilter ;i iizonmrmEss s agass 81

7.42 The Gaussian Filter . .. « v cosve v oo v s v v v s 82

7.4.3 Differential Checking 83

7.5 Photon Gathering 83

8 Visualizing the Photon Map 85
8.1 Rendering Caustics 86
8.2 Rendering Color Bleeding 87
8.2.1 Excluding Direct Hllumination 89

83 Fast Approximations 0. 39
84 Caustics Examples i v v v smsew s b oo v o v v w s 91
8.4.1 Reflection Insidea Ring 91

8.4.2 Prism with Dispersion 91

8.4.3 Caustics on a Non-Lambertian Surface 92

8.4.4 A Glass of Cognac on a Rough Surface 92

9 A Practical Two-Pass Algorithm 95
0.1 OVEIVIEW . . . ot it e e e e e e e e e e e e e 95
9.2 Solving the Rendering Equation 96
9.3 Pass 1: Photon Tracing 97
9.3.1 The Caustics Photon Map 97

9.3.2 The Global Photon Map 99

TeamLRN

xii Contents
94 Pass2: Rendering . . .« . i wuwwwvws s vanwnssa 100
9.4.1 Direct lllumination 101
9.4.2 Specular and Glossy Reflection 102
943 Catstics « o v v 5 a5 s wow e p S D 8 R W 102
9.4.4 Multiple Diffuse Reflections 103

95 Exampleso e 104
9.5.1 The Four Rendering Components 105
952 FractalBox ;55 s wmameees v i o 8553 105
9.5.3 Box with Water. 106
9.5.4 Global Illumination on a Point Cloud 110
9.5.5 A Mountain Landscape 110
9.5.6 The Courtyard House by Mies van der Rohe 111

10 Participating Media 113
10.1 Light Scattering in Participating Media 114
10.2 The Volume Rendering Equation 115
10.3 The Phase Function 115
10.3.1 Isotropic Scattering 116
10.3.2 The Henyey-Greenstein Phase Function 116
10.3.3 The Schlick Phase Function 117
10.3.4 Other Phase Functions 118

104 Ray Marchingo, 119
10.4.1 Adaptive Ray Marching 121

10:5 Photon TYacing = « s s 5 4 « acomacvmness & & & & 5 6 & 5 = 8 & 121
10.5.1 Photon Scattering . « wwieise s o s ¢ o v w v & 8 ¢ 4 123
10.5.2 Photon Storing o 123
10.5.3 Photon Emission oo oo v 123

10.6 The Volume Radiance Estimate 124
10.7 Rendering Participating Media 125
10.8 Subsurface Scatteringo 127
10.8.1 Photon Tracing:: -« wiwase s i ¢ § o b 88 90 & & % 127
10.8.2 Rendering o oo oo 128

109 Examples: « « x5 2 % o 6 wosminmsre & 0 6 v oo w e b @ e s 4 129
10.9.1 Rising'Smaoke & & wsssisemme ¢ o & 8 & 5 & 88 5 5 w5 129
10.9.2 Smoke Flowing past a Sphere 129
IS A Voliuiie Caustit vsmmms v o v s es v m o s 130
10.9.4 Michelangelo’s David 130
10.9.5 A Weathered Granite Sphinx 134
10.9.6 A Translucent Marble Bust 135

TeamLRN

Contents

11 Optimization Strategies
11.1 Irradiance Caching

11.2

114
11.5
11.6

11.1.1 Irradiance Gradients
11.1.2 Irradiance Caching and Photon Mapping
Importance Sampling. oo v i v i i
11.3 Visual Importance
11.3.1 A Three-Pass Technique
Efficient Stratification of Photons
Faster Shadows with Shadow Photons
Precomputed Irradiance
11.7 Parallel Computations

A Basic Monte Carlo Integration
A.1 The Sample Mean Method
A.2 Variance-Reduction Techniques

B A Photon Map Implementation in C++

C A Cognac Glass Model

Bibliography

Index

TeamLRN

Xiii

139
139
142
143
144
145
147
147
148
151
151

153
153
154

157

167

169

181

Preface

This book is a practical as well as an in-depth guide to photon mapping.
Photon mapping is an efficient global illumination technique for realistic im-
age synthesis that has been developed in computer graphics in the last few
years. The main advantages of photon mapping compared to other image
synthesis techniques is that it is both very versatile and fast. With pho-
ton mapping it is easy to simulate caustics (for example, the light focused
through a glass onto a table), color bleeding (such as the soft reddening of
a white wall due to light reflected off an adjacent red carpet), participating
media (for example, a room filled with smoke), and subsurface scattering
(particularly noticeable in translucent materials such as marble, where light
propagates into the material). Several illumination effects such as caustics
on arbitrary surfaces, volume caustics, and general subsurface scattering
were first simulated using photon mapping. In addition the method is very
practical, and several commercial and free software rendering packages have
started adding support for photon mapping.

Anyone with an interest in realistic image synthesis should find this
book useful. Technical directors and others interested in rendering will
find a description of what is under the hood in many rendering packages.
Understanding this will make it much easier to control the rendering soft-
ware. Experienced readers who have implemented a ray tracer should be

TeamLRN
XV

XVi Preface

able to take the information in this book and immediately begin simulat-
ing caustics as well as global illumination and participating media. To ease
such an implementation, the appendix includes source code for the photon
map data structure. Experts should also find the book useful as it gives the
details of the photon mapping method and provides a much more coherent
description than the existing papers.

My motivation for writing this book is a hope that more people will
be able to enjoy the creation of photorealistic images as I have for many
years. I developed the photon mapping algorithm as part of my PhD
studies in 1993-1994 and published the first papers on the method in 1995-
1996. The “photon map” name was introduced in 1994. After using the
concept of illumination maps (texture maps with illumination) for some
time, the idea of storing individual photons made the name photon map
seem natural. Later, I discovered that this name is used in physics as well
for a very similar concept (a map of photon hits). In 1998 and 1999 I was
involved in the extension of the method to simulate participating media
and subsurface scattering. You will find these extensions and much more
explained in detail in this book.

At the ACM SIGGRAPH conference in 2000 1 presented a course with
Niels Jorgen Christensen entitled “A practical guide to global illumination
using photon maps”. This book significantly extends the material that was
written for this course. The course notes included a substantial amount
of material from my PhD dissertation—this book even more so. In addi-
tion several chapters with background information have been added and
the description of the photon mapping algorithm has been extended signif-
icantly, including a new chapter on participating media and a new chapter
on optimization strategies. The reference list has also been expanded to
include more than 120 publications. This should make it easy for the in-
terested reader to obtain more information. Finally, the book includes an
implementation of the photon map that should be very easy to integrate
in a ray-tracing program.

It is my hope that this book will serve both as a useful tutorial and
as a reference book. It contains many rendered images as well as little
notes, tips, and formulas that I have collected through the years, and that
I wished could have been found in one place.

Acknowledgements

Thanks to Pat Hanrahan for providing me with a very stimulating envi-
ronment at Stanford University, for letting me take the time to write this
book, and for contributing the Foreword.

TeamLRN

Preface Xvii

The seed for this book was the SIGGRAPH 2000 course on photon map-
ping. Thanks to Niels Jorgen Christensen for being involved in this course
and to Per Henrik Christensen for being very supportive and contributing
to the course material. Cheers to Alan Chalmers for suggesting this course
in the first place over a beer in Key West.

Special thanks to Maryann Simmons and Steve Marschner for very de-
tailed and insightful comments and for reviewing several drafts of this book.
Also, many thanks to Philip Dutré, Eric Lafortune, Tim Purcell, Peter
Shirley, and Frank Suykens for expert comments on most of the sections of
the book.

Thanks to Ron Fedkiw for providing the smoke simulations used to
illustrate participating media, and to Julie Dorsey for giving me permission
to use the weathered models of the Sphinx and the marble bust model.
Thanks to Marc Levoy for letting me use the model of Michelangelo’s David,
and to the graphics group at the University of Utah for allowing me use
the model of Little Matterhorn. Thanks to Stephen Duck for modeling and
letting me use Ludwig Mies “Courtyard House with Curved Elements.”

Many thanks to A K Peters. To Alice and Klaus Peters for suggesting
that T write this book, and to the staff at A K Peters (particularly Ariel
Jaffee) for being instrumental in making this book a reality.

Finally, thanks to my family, friends, and colleagues for being very
understanding of the time-consuming process it is to write a book.

Henrik Wann Jensen
May 2001

TeamLRN

Introduction

The world around us contains many beautiful phenomena. In the outdoors
we can experience amazing sunsets, moonlight scattered through clouds,
early morning fog at a lake, underwater sunbeams, and much more as
described by Minnaert, in his classic book [66]. If we move inside we can
see flames in the fireplace, light focused through a glass of cognac onto a
table, the translucent appearance of an orchid, steam rising from a cup
of coffee, the soft flickering illumination from a candle flame. The list is
endless.

Today we can simulate these phenomena with computers. The creation
of realistic-looking synthetic images has reached a state that makes it pos-
sible to simulate almost any phenomena. We can render images of sunsets
and sunrises using computers without having to wait for a clear day and
the right time. We cannot yet reproduce the same experience as being
outside observing a sunset, but this is mainly a limitation of the display
devices available, and not a limitation of the underlying global illumination
algorithms.

The last few years have seen an explosion in the use of computer graph-
ics and realistic image synthesis. This is particularly the case in the en-
tertainment industry where movies often make extensive use of computer-

TeamLRN

2 1. Introduction

Figure 1.1. A wireframe rendering of a model (upper left) blended with a full
global illumination simulation of sunlight entering the house (lower right).

cenerated special effects that seamlessly integrate with real filmed footage.
Computer games are presenting increasingly realistic worlds in real time
getting closer to the dream of virtual reality. Outside entertainment, syn-
thetic photorealistic images are used in design, architecture, hospitals, ed-
ucation, advertising, and more. These areas also use non-photorealistic
images (such as technical illustrations), but the “final product” is most of-
ten presented using photorealistic rendering. This is often the most natural
visualization technique since it is what we are used to seeing.

1.1 Realistic Image Synthesis

Realistic image synthesis is the process of creating synthetic images that
are indistinguishable from images (such as photographs) of the real world.
Ever since the first lines and dots were generated using computers there has
been substantial interest in the creation of synthetic photorealistic images.
The first techniques for this purpose were naturally limited by the available

TeamLRN

1.2. Global lllumination 3

(a) (b)

Figure 1.2. Global illumination algorithms simulate all light reflections in a scene.
The images show a daylight simulation of an architectural model. Image (a) was
rendered using ray tracing and contains only direct illumination and specular re-
flections while (b) was rendered using photon mapping and has global illumination.
(See Color Plate 111.)

technology and were mainly hacks to obtain a desired effect, such as smooth
appearance and highlights. It was not until 1980 with the introduction of
ray tracing and 1984 with the introduction of radiosity that realistic image
synthesis began using physically-based simulations. These methods make
extensive use of the physical nature of light, and they both existed in other
fields prior to their introduction in computer graphics, with ray tracing
being popular in optics and radiosity being widely used for problems in
heat transfer.

1.2 Global Illumination

The physically-based simulation of all light scattering in a synthetic model
is called global illumination. The goal of global illumination is to simulate
all reflections of light in a model and enable an accurate prediction of the
intensity of the light at any point in the model. The input to a global illu-
mination simulation is a description of the geometry and the materials as
well as the light sources. It is the job of the global illumination algorithm
to compute how light leaving the light sources interacts with the scene.
Figure 1.2 shows an example of an architectural model rendered with and
without global illumination. There is a substantial visual difference be-
tween the two renderings. The global illumination simulation is necessary
to capture the indirect illumination that is illuminating most of the model.
These effects are critical for realistic image synthesis; without them the
illumination often looks flat and synthetic.

TeamLRN

4 1. Introduction

Figure 1.3. A typical ray-traced image. Ray tracing is good at rendering mirror
reflections, and spheres are very simple to ray trace.

Several global illumination algorithms have been developed. Most of
them are based on two major techniques:

e Point sampling (ray tracing)
e Finite elements (radiosity)

In addition, there are hybrid techniques combining both radiosity and ray
tracing. Each of these methods has strengths and weaknesses, and the
following sections contain a brief review of these methods.

1.2.1 Ray-Tracing Techniques

Ray tracing is a point-sampling technique that traces infinitesimal beams
of light through a model. Basic ray tracing as introduced in 1980 [120]
traces light rays backwards from the observer to the light sources. This
approach can only handle mirror reflections/refractions and direct illumi-
nation. Important effects such as depth of field, motion blur, caustics,
indirect illumination, and glossy reflection cannot be computed. To simu-
late these effects ray tracing has been extended with Monte Carlo meth-
ods [21, 20, 52] in which rays are distributed stochastically to account for
all light paths. Monte Carlo ray-tracing methods can simulate all types of
light scattering. The only problem these methods have is variance—seen as
noise in the rendered images. Eliminating this noise requires a large num-
ber of sample rays. Several researchers have investigated how to reduce the
noise by distributing rays more carefully [41, 58, 87, 89, 92, 109, 110] and

TeamLRN

1.2. Global lllumination 5

Figure 1.4. A typical radiosity scene. Thisis a replica of the widely used Cornellbox
which is a box scene with two cubes and a square light source at the top. Radiosity
is good at handling diffuse reflection and polygonal surfaces. (See Color Plate I1.)

for example, by using bidirectional Monte Carlo ray tracing [57, 56, 108],
in which rays are traced simultaneously from the light and the eye. How-
ever, these pure unbiased Monte Carlo-based ray-tracing methods are still
very time-consuming. An alternative is biased Monte Carlo ray tracing,
in which other convergence properties are accepted. Some of the most
successful optimizations are in this category. One example is irradiance
caching which stores and re-uses indirect illumination on diffuse surfaces
via an interpolation scheme [118, 117].

Ray-tracing based techniques are point sampling methods in which
geometry is treated like a black box —rays are traced into the model and
they return some illumination value. This can be a major advantage in
scenes with complex geometry since point-sampling methods only deal
with the complexity of the illumination. The independence of geometry
can, however, mean that obvious relationships between neighboring objects
are not easily recognized, and therefore require many samples to render
accurately.

1.2.2 Finite Element Radiosity Techniques

Finite element radiosity techniques are an alternative to ray-tracing meth-
ods, in which the equilibrium of the light exchange between surfaces in
a model is computed. This is done by subdividing the model into small
patches that can form a basis for the final light distribution. The light-
ing distribution is found by solving a set of linear equations for the light
exchange between all the patches.

TeamLRN

6 1. Introduction

Radiosity was initially introduced for scenes with only diffuse (Lam-
bertian) patches [29, 16, 71] where it is assumed that the reflected light
from each patch can be represented by a constant, independent of direc-
tions. Later radiosity was extended to handle more complex reflection mod-
els [37, 112, 95, 30, 15, 103], but simple curved specular surfaces are still
not handled properly. Basic radiosity algorithms compute a complete view-
independent global illumination solution which is useful for walk-throughs
but costly in terms of compute time and storage requirements. To improve
efficiency the radiosity algorithm has been extended with view-dependent
calculations [99], clustering [98], and hierarchical techniques [33]. These
techniques reduce the time complexity of the radiosity algorithm by reduc-
ing the accuracy in the exchange of light between remote patches, or for
patches that are less important for the final rendered image.

The radiosity algorithm is quite efficient at computing the lighting dis-
tribution in a simple model with diffuse materials, but it becomes very
costly for complex models and models with non-diffuse materials. The
high cost for complex models is due to the fact that the radiosity algorithm
computes values for every patch in the model. Furthermore, radiosity algo-
rithms represent the solution in a finite mesh, a tessellated representation
of the real geometry. The representation can be very inaccurate if the
mesh is not carefully constructed, and as a result radiosity algorithms have
problems computing sharp features in the illumination—a classic example
is sharp shadow boundaries which radiosity algorithms tend to blur. One
technique for addressing this problem is discontinuity meshing, where the
goal is to precompute the shadow boundaries and construct the tessellated
representation accordingly [63]. Unfortunately, discontinuity meshing is
very costly to compute, it only solves part of the problem, and it often
results in models with a very large number of patches. These properties
make the radiosity algorithm impractical for complex models.

1.2.3 Hybrid and Multi-Pass Techniques

Hybrid techniques have been developed that combine radiosity and ray-
tracing-based methods with the aim of getting the best of both worlds.
Radiosity is good at diffuse reflection whereas ray tracing is good at spec-
ular reflection. It seems natural to combine the two. The first hybrid
methods used ray tracing to add specular reflections to radiosity [112]-

these methods only used ray tracing to include the effect of visible specular
surfaces. Later, the ray-tracing methods were extended to compute shad-
ows seen by the eye [88], and light ray tracing using illumination maps [2]
was used to render caustics [88]. Visible artifacts in the radiosity algorithm
caused several researchers [13, 82, 123] to use path tracing for all types of

TeamLRN

a1 Febed T AT T0 Ve RPN

1.3. Overview of This Book 7

light scattering seen directly by the eye with the exception of caustics.
These algorithms only use radiosity to compute the indirect illumination
on the diffuse surfaces. This works quite well since Monte Carlo ray tracing
is good at rendering all the details required in the final image but not as
good at estimating indirect diffuse illumination in the scene. Indirect illu-
mination on the diffuse surfaces is computed using the radiosity algorithm.
The use of radiosity algorithms does unfortunately limit the complexity of
the models that can be rendered. This problem has been attacked using
geometry simplification [82], in which the radiosity algorithm is used on a
simplified version of the rendered model. The simplification is based on the
idea that radiosity is used only for computing indirect illumination, which
often changes slowly and does not require fine detail in the geometry. This
concept is very nice but limited by the fact that simplification of the model
often has to be done manually due to the lack of tools or algorithms for
simplifying any general class of geometry. A more significant problem is
understanding how simplified geometry affects the global illumination in
the model, which is necessary to avoid errors in the rendered image.

1.2.4 Photon Mapping

Photon mapping, as described in this book, takes a different approach than
the hybrid techniques. The idea is to change the representation of the illu-
mination. Instead of tightly coupling lighting information with the geome-
try, the information is stored in a separate independent data structure, the
photon map. The photon map is constructed from photons emitted from
the light sources and traced through the model. It contains information
about all photon hits, and this information can be used to efficiently render
the model in a similar spirit as radiosity is used in hybrid techniques. The
decoupling of the photon map from the geometry is a significant advantage
that not only simplifies the representation but also makes it possible to use
the structure to represent lighting in very complex models. The combi-
nation of photon mapping and a Monte Carlo ray-tracing-based rendering
algorithm results in an algorithm that is as general as pure Monte Carlo
ray tracing but significantly more efficient.

1.3 Overview of This Book

The book can be divided into three main topics.

Chapters 2 and 3 contain background information. Chapter 2 is a review
of the physics of light and light scattering as well as the mathematics used
to describe light transport. Chapter 3 is a review of the state-of-the-art in

TeamLRN

8 1. Introduction
Symbol Description
x Position
z’ Position of incoming light
7l Normal at z(always normalized: |7i| = 1)
o Direction (away from surface)
i Direction of incoming radiance (away from surface)
da Differential solid angle (da = sin 6 df d¢)
(6,0) Direction in spherical coordinates
L Radiance
L(x,d) Radiance at x in direction &
L(z,d") | Incident radiance at z from direction &'’
L(z' — x) | Radiance leaving =’ in the direction of x
Le Emitted radiance
L, Reflected radiance
L; Incident radiance
6] Flux
E Irradiance
T BRDF
fa Diffuse BRDF
fs Specular BRDF
p Reflectance
Q Hemisphere of directions
Qux Sphere of directions
n Index of refraction
A Albedo
Tq Absorbtion coefficient
O Scattering coefficient
ot Extinction coefficient
T Optical depth
Az Small step
£ Uniformly distributed random number between 0 and 1
&1,...,&x | N uniform random numbers between 0 and 1

Figure 1.5. Frequently used symbols and their meaning.

pure Monte Carlo ray-tracing techniques. This chapter is intended to give
an understanding of the algorithms and their specifics, their strengths and
their weaknesses.

Chapters 4-9 give a detailed description of the photon mapping al-
gorithm. These chapters describe photon tracing, the photon map data
structure, and a number of rendering algorithms including the two-pass
algorithm introduced in the original photon mapping paper.

TeamLRN

1.3. Overview of This Book 9

Chapter 10 contains an in-depth description of participating media and
subsurface scattering. This chapter contains both a description of the
physics of participating media as well as a description of how to use photon
mapping to render participating media and subsurface scattering. Chap-
ter 11 contains several tips and tricks as well as ideas for how to further
improve and optimize a photon mapping implementation.

The appendices contain information on basic Monte Carlo integration,
as well as a full implementation of the photon map.

The most important symbols that we will use are listed in Figure 1.5.

TeamLRN

Fundamentals of
Global lHlumination

Understanding the nature of light and how it scatters in the environment
is essential to correctly simulate global illumination. After all, global illu-
mination algorithms are trying to mimic the behavior of light in a model.
This chapter is divided into three parts: the first part gives an overview of
the physical nature of light and the terminology used to describe it. The
second part deals with the interaction of light and surfaces and the termi-
nology used. Finally, the third part introduces the rendering equation-—the
fundamental equation that all global illumination algorithms strive to solve.

2.1 The Nature of Light

The nature of light is complicated and still not completely understood.
Many theories have been proposed through the ages to describe the physical
properties of light. The Greeks around 350 B.C. believed that light was
emanating from the eyes and touching the objects that we see. This theory
was not seriously attacked until Alhazen (A.D. 956-1038) described how

TeamLRN 11

12 2. Fundamentals of Global Illumination

light traveled in straight lines and was reflected by a mirror. He used a
camera obscura (a pinhole camera) as a model for the eye. The next two
breakthroughs in the understanding of light were reached by Christiaan
Huygens (1629-1695) and Isaac Newton (1642-1727). Huygens described
how light can be understood as a wave motion and how this could be used
to explain the laws of reflection and refraction. Newton demonstrated how
white light is made of colored light that can be separated out (and combined
again) using a prism. Newton, however, used the particle model of light
and described how light particles are emitted from the light sources and
move in straight lines until they hit a surface. Newton published his theory
of light in his Optics treatise where he argued heavily against Huygens wave
model, and since Newton was such an eminent scientist his theory of light
dominated for several hundred years. It was not until the early 19th century
when Thomas Young (1773-1829) and Augustin Fresnel (1788-1827) began
studying effects due to polarization and diffraction that the wave theory
gained acceptance [12]. This theory was further established when James
Maxwell (1831-1879) introduced four equations describing the properties
of electromagnetic waves. Unfortunately, not all was perfect. In the early
20th century Albert Einstein (1879-1955) introduced the use of photons to
describe the photo-electric effect, and in 1913 Niels Bohr demonstrated how
quantum mechanics could be used to describe the emission and absorption
spectra for hydrogen. However, the wave model of light was still necessary
to describe phenomena such as interference and diffraction—Niels Bohr
called this the complementary nature of light.

Currently, the physics of light is often explained using several different
models based on the historic developments in the understanding of light.
These are [83]:

Ray optics models light as independent rays that travel in different op-
tical media according to a set of geometrical rules. Ray optics can
be used to describe most of the effects we see, such as reflection,
refraction, and image formation.

Wave optics models light as electromagnetic waves and can be used to
model all the phenomena that ray optics can model and, in addition,
interference and diffraction.

Electromagnetic optics includes wave optics and, in addition, explains
polarization and dispersion.

Photon optics provides the foundation for understanding the interaction
of light and matter.

TeamLRN

2.2. Lighting Terminology 13

In computer graphics there is an almost exclusive use of ray optics (also
known as geometrical optics) and this book is no exception. Despite the
name, photon mapping uses ray optics as the fundamental model for light
scattering. The interaction of light with matter is based on high-level mod-
els that abstract away the actual scattering of photons by molecules and
atoms. This means that we ignore effects such as diffraction and interfer-
ence. We also ignore polarization even though ray optics can be extended
to include polarization quite easily [121].

Another assumption is that light has infinite speed. This means that
when a light source is turned on, the illumination in the model immediately
reaches a steady state.

Despite all these approximations we can simulate almost all of the light-
ing phenomena that we see around us.

2.2 Lighting Terminology

In this section we will introduce radiometry, the basic terminology used
to describe light [38]. Radiometry is generally accepted for this purpose,
even though photometry is also used. The difference between the two is
that photometry takes into account the perception of light by a human
observer.

2.2.1 Radiometry

The basic quantity in lighting is the photon. The energy, ey, of a photon
with a wavelength A is

o = L, (2.1)

A

where h &~ 6.63 - 10734.J - s is Planck’s constant, and ¢ is the speed of light
(in a vacuum ¢ = ¢o = 299, 792,458 m/s).
The spectral radiant energy, Qx, in ny photons with wavelength A is

he
Q) = nyex = m; . (2.2)

Radiant energy, Q, is the energy of a collection of photons and is com-
puted by integrating the spectral energy over all possible wavelengths:

= i dX . 2.3
Q an,\ (2.3)

TeamLRN

14 2. Fundamentals of Global Illumination

L

dA

Figure 2.1. Radiance, L, is defined as the radiant flux per unit solid angle, du,
per unit projected area, dA.

Radiant fluxz, @, is the time rate of flow of radiant energy:

gt
dt
® is often just called the flux. For wavelength dependence there is the
spectral radiant fluxr, @, which is the time rate flow of spectral radiant
energy.

The radiant fluz area density is defined as the differential flux per dif-
ferential area (at a surface), d®/dA. Radiant flux area density is often
separated into the radiant exitance, M, which is the flux leaving a surface
(this quantity is also known as the radiosity, B), and the irradiance, E,
which is the flux arriving at a surface location, z:

(2.4)

dd
E(z)=— . 2.5
The radiant intensity, I, is the radiant flux per unit solid angle, d&:
d®
&) = — . 2.6
@) =—= (2.6)

Radiance, L, is the radiant flux per unit solid angle per unit projected
area (see Figure 2.1):

L(z,&) = dA | (2.7)

d*® B /“’ diny he
cosfdAdT J, cos@dddAdtd\ A

where the last term represents radiance expressed as the integral over wave-
length of the flow of energy in ny photons per differential area per differ-
ential solid angle per unit of time. Radiance is a five-dimensional quantity

TeamLRN

2.2. Lighting Terminology 15

Symbol | Quantity Unit

Q> Spectral radiant energy Jnm™!

Q Radiant energy J

d Radiant flux W

s Radiant intensity W sr—!

E Irradiance (incident) Wm™?

M Radiant exitance (outgoing) | Wm=?

B Radiosity (outgoing) Wm™?2

L Radiance Wm2sr!

Ly Spectral radiance Wm2sr ' nm™!

Table 2.1. Radiometric symbols, names, and units.

(three for position and two for the direction), and is often written as L(z, @)
where x is the position and & is the direction.

Radiance is arguably the most important quantity in global illumina-
tion, since it most closely represents the color of an object—this applies to
any device that detects light, such as a human observer. Radiance can be
thought of as the number of photons arriving per time at a small area from
a given direction, and it can be used to describe the intensity of light at a
given point in space in a given direction. In a vacuum, radiance is constant
along a line of sight. This is a very important property that is used by
all ray-tracing algorithms. The exceptions to this rule are the presence
of participating media (Chapter 10) and nonlinear media (i.e., where the
index of refraction varies continuously [102]).

Equation 2.7 computes radiance from flux. If the radiance field on
a surface is available then the flux can be computed by integrating the
radiance field over all directions Q and area A:

@:f L(z, &) (& -) d' dz (2.8)
AJO

where 7i is the normal of the surface at z.
The radiometric terms are summarized in Table 2.1.

2.2.2 Photometry

The important difference between radiometry and photometry is that the
photometric values include the visual response of a standard observer.

Luminous fluz, ®,, is the visual response to radiant flux. It is computed
as:

P, = DLV (AN)dA 2.9
AA()A (2.9)

TeamLRN

16 2. Fundamentals of Global lllumination

where V() is the visual response of a standard observer, and A is the wave-
lengths for the visible spectrum (see, for example, the table from 380 nm
780 nm in [122]).

The luminous flur area density, %‘* is called the illuminance, E,, if
incident, and luminous exitance, M, if outgoing.

Luminous intensity, I, is the flux per solid angle %ﬂ, and the lumi-
nance, L, is:

d*®,

Ll e 20
(&:9) = cn0dAds

(2.10)

Luminance is the photometric equivalent of radiance and often used in
global illumination programs.

In this book, we deal only with the physical properties of light and
therefore use radiometry exclusively. However, the visual response by
an observer can be added as a post-process. This is referred to as tone
mapping.

2.2.3 The Solid Angle

The differential solid angle, d@, is used extensively in the description of
light. It relates the raw stream of photons (the flux) to the intensity of
the light, and it is almost exclusively the integration variable of choice in
Monte Carlo ray tracing when the incoming radiance is integrated.

The solid angle represents the angular “size” of a beam as well as the
direction. We can think of the solid angle as representing both a direction
and an infinitesimal area on the unit sphere. We can express this direction
and size in spherical coordinates (6,¢). This requires a base coordinate
system (e.g., a surface normal, 7, and two orthogonal vectors, b, and Ey, in
the surface tangent plane). The size of a differential solid angle in spherical
coordinates is given by:

dd =sinfdfdg . (2.11)

Here, # is the angle between the direction and 7i, and ¢ is the angle between
the direction projected onto the surface tangent plane and b,. The right-
hand side of the equation is expresses the infinitesimal area on the unit
sphere as a product of the length of the longitude arc (df) and the length
of the latitude arc (sin 0 do).

Given the spherical coordinates we can compute the direction, o, of the
solid angle:

& = sinf cos ¢ by + sinfsin ¢ by, + cos i . (2.12)

TeamLRN

2.3. Light Emission 17

A frequently encountered expression is the integral over the incoming di-
rections on the hemisphere, 2. When evaluating this integral it is often
convenient to rewrite it as an integral in spherical coordinates:

2x pw/2
/f(ﬁ,qb)d&;":/ £(0, ¢) sin@do do (2.13)
Q JO 0

2.3 Light Emission

Light in the form of photons is generated at light sources. Sources of
light include light bulbs and natural sources such as the sun, fire, and
biochemical processes.

The intensity of a given light source is often given as the power or the
wattage of the source. For a small (point) light source with power @ that
emits light, uniformly in all directions, we can compute the irradiance, E,
at a surface as:

@,

Ble}= d7r2 cosh '

(2.14)
where is the distance from & to the light source, and 8 is the angle between
the surface normal and the direction to the light source. This equation is
intuitive: imagine a small source sending photons in all directions, where
the density of the photons decreases with the distance to the source. The
rate at which the photon density decreases is proportional to the surface
area of a sphere at the same distance (one can think of each batch of
emitted photons as sitting on an expanding sphere). The surface area of
the sphere is 4wr2. The cosine factor in the denominator is due to the
surface orientation. A surface facing the source will receive more photons
per area than a surface that is oriented differently.

It is common to refer to the color temperature of a light source. This
quantity has an exact physical meaning since it is related to the blackbody
radiation. For a blackbody at a given temperature the spectral radiant flux
can be computed using Planck’s formula [94]:

2nCy

oy = N5(eC2/(T) — 1)

(2.15)
Here T is the temperature of the object, C = h¢f ~ 3.7418 - 10~ 16 and
Cy = heo/k ~ 1.4388 - 102, where k ~ 1.38 - 1072*J/K is Boltzmann’s
constant. As an example the color temperature of the sun is approximately
5900K [122].

TeamLRN

18 2. Fundamentals of Global Illumination

Figure 2.2. When a beam of light hits a material it is often scattered inside the
material before being “reflected” at a different location. This general concept can
be described using a BSSRDF.

2.4 Light Scattering

When light encounters an obstacle it is either scattered or absorbed. The
obstacle can be the surface of a different material or medium. It can also be
a very small particle or a molecule, but this case requires special scattering
techniques which we will describe in Chapter 10. In this section we will
introduce tools for modeling the local light scattering at surfaces: i.e., what
happens when a beam of light strikes a given surface. In graphics this is
also known as local illurmination.

First we present the theoretical framework used to describe light scat-
tering, and then we present a few reflection models commonly used in com-
puter graphics. Unless stated we assume that the wavelength of light does
not. change as a result of scattering (i.e., fluorescence), and we therefore
omit the wavelength parameter in our description.

2.4.1 The BSSRDF

When a beam of light is scattered by a material it normally enters the
material and then scatters around before leaving the surface at a different
location. This is particularly noticeable for translucent materials such as
marble and skin, but it happens to some degree for all non-metallic ma-
terials. We can describe this scattering using the Bidirectional Scattering
Surface Reflectance Distribution Function or BSSRDF [69]. The BSSRDF,
S, relates the differential reflected radiance, dL,, at z in direction &, to the

TeamLRN

2.4, Light Scattering 19

Figure 2.3. The BRDF models the local reflection of light by assuming that all light
is reflected at the same location at which it hits the surface. This approximation
works well for most materials.

differential incident flux, d®; at &’ from direction o':*

_ dL,(z,d)

T dd(2, &) (2.16)

Notice that S is a function of both the incoming position and direction
as well as the outgoing position and direction. This is the most general
description of light transport. The only assumption is that there is some
interaction at some point in space and that some flux incident at some
location is scattered to some other location as a result of this interaction.
Unfortunately, the BSSRDF is eight-dimensional and costly to evaluate,
and it has only been used in few papers in computer graphics [32, 23,
50, 77, 51]. These papers all deal with subsurface scattering, where light
enters the material and scatters before leaving the material. Even though
subsurface scattering is the most common case, the BSSRDF can be used
to describe scattering between the elements of a rough metallic surface as
well, but this case is typically dealt with in the rendering algorithm.

2.4.2 The BRDF

The Bidirectional Reflectance Distribution Function, BRDF, was intro-
duced by Nicodemus et al. [69] as a tool for describing reflection of light at
a surface. The BRDF is an approximation of the BSSRDF. For the BRDF
it is assumed that light striking a surface location is reflected at that same
surface location. This reduces the BRDF to a six-dimensional function.

IThe vectors & and &' always point away from the surface. For incident illumination
such as d®;(x, &) we will assume that &' is the direction from where the illumination
is coming.

TeamLRN

20 2. Fundamentals of Global Illlumination

This may not seem like a big win, but it enables a series of simplifications
that will be described in the following paragraphs.

The BRDF, f,, defines the relationship between reflected radiance and
irradiance:

CdL(x,@) dL(2.d)
T dE(z,@) L@@ -f)dd

where 7i is the normal at z. At first it may seem strange that the BRDF
is defined as the ratio of reflected radiance and irradiance instead of as the
ratio between incident and reflected radiance. The reason for this is that
the change in the reflected radiance is proportional to the solid angle and
cosf’ for L;. By including these values in the denominator we avoid having
to include this fundamental factor in the BRDF.

The BRDF describes the local illumination model. If we know the inci-
dent radiance field at a surface location then we can compute the reflected
radiance in all directions. This is done by integrating the incident radiance,
L,;:

L,-(;c,dr'):Lfr(x,ﬁ',ﬁ)dE(;r,ﬁ’):/Qf,.(;r,J’,J})Li(a:,ﬁ’)(d}"-ﬁ)ddr".
' (2.18)

fr(z, &\ @) (2.17)

Here 7i is the normal at the surface location, z (note that (J’- 1) = cos#’),
and 2 is the hemisphere of incoming directions at z.

An important property of the BRDF is Helmholtz’s law of reciprocity,
which states that the BRDF is independent of the direction in which light
flows:

fr(@,d', @) = fr(z,d,d) . (2.19)

This is a fundamental property that is used by most global illumination
algorithms, since it makes it possible to trace light paths in both directions,
as the following chapters will demonstrate. It also provides a simple method
for checking if a BRDF is valid by making sure it is reciprocal.

Another important physical property of the BRDF is due to energy
conservation. A surface cannot reflect more light than it receives, and the
BRDF must satisfy the following equation:

folz, &\ &)@ -A)dd’ <1, V. (2.20)
Q

2.4.3 The Reflectance

To quantify the amount of light reflected by a surface we can use the ratio
of reflected to incident flux. This quantity is known as the reflectance, p,

TeamLRN

2.4. Light Scattering 21

(a) (b)
Figure 2.4. A diffuse material reflects light in all directions: (a) shows general
diffuse reflection and (b) shows Lambertian (ideal) diffuse reflection.
of the surface, and it is given by [69]:

(@) = 2] Jo Jo fr(@, &, &) Li(x, ') d&' dis
pz) = dd;(x) Jo Li(x, &) d&' .

(2.21)

p(z) is the fraction of the incident light that is reflected by the surface;
the remaining part is either transmitted or absorbed. For physically-based
rendering it must be in the range from zero to one.

2.4.4 Diffuse Reflection

A surface with diffuse reflection is characterized by light being reflected in
all directions when it strikes the surface. This type of reflection typically
oceurs at rough surfaces or for materials with subsurface scattering, where
light is reflected in some random direction, as shown in Figure 2.4 (a).

A special case of diffuse reflection is Lambertian or ideal diffuse reflec-
tion, in which the reflected direction is perfectly random (see Figure 2.4
(b)). As a result the reflected radiance is constant in all directions regard-
less of the irradiance. This gives a constant BRDF, f; 4

Lo(2,&) = fra(z) /ﬂ dEi(z,&') = fra(z)Ei() . (2.22)

Using this relationship we can find the diffuse reflectance, pq, for a
Lambertian surface:

_ d®.(z) Le(z)dA [, d

pdl2) = G5y = T Ei(m)dA

=7 fralT) (2.23)

since [, doj = .
The reflected direction of the light is, as mentioned, perfectly random for
a Lambertian surface. Given two uniformly distributed random numbers

TeamLRN

22 2. Fundamentals of Global lllumination

(a) (b)

Figure 2.5. A specular surface reflects the incoming light in the mirror direction.
(a) shows glossy specular reflection (i.e., a rough mirror surface), and (b) shows
perfect specular reflection (a mirror surface).

& €0,1] and & € [0, 1] we find that this randomly reflected direction, &q,
is distributed as:

@i = (6, ¢) = (cos™ ' (V/&),2n&) | (2.24)

where we have used spherical coordinates (6, ¢) for the direction: # is the
angle with the surface normal, and ¢ is the rotation around the normal.

2.4.5 Specular Reflection

Specular reflection happens when light strikes a smooth surface—typically
a metallic surface or a smooth dielectric surface (such as glass and water).
Most surfaces have some imperfection and as a result light is reflected in
a small cone around the mirror direction (Figure 2.5 (a)). The degree
of imperfection is often a parameter (such as roughness and gloss) in the
reflection models, and these surfaces are called glossy (more detail in the
next section). For perfectly smooth surfaces where light is reflected only in
the mirror direction we have perfect specular reflection (Figure 2.5 (b)).
The reflected radiance due to specular reflection is

g —f ‘
L.(x,ds) = ps(x)Li(z, ") . (2.25)
For perfect specular reflection the mirror direction, o, is:
o iy —+f —+y —» —+/ v
Gy =2(d" -w)in — " . (2.26)
Notice that &, and &' both point away from the surface as shown in Fig-
ure 2.6.
We can express the perfect mirror reflection as a BRDF by using spher-

ical coordinates for the direction [69]:

frs(@, &, &) = 2p,0(sin® @' — sin®)d(¢' —p £) , (2.27)

TeamLRN

2.4. Light Scattering 23

where Dirac’s delta function, §(x), is used to limit the direction in which
the BRDF is nonzero (recall that é(z) is nonzero only when x = 0). Note
that & = (0, ¢) and &' = (¢, ¢').

The Fresnel Equations

For smooth homogeneous metals and dielectrics the amount of light re-
flected can be derived from Maxwell’s equations, and the result is the Fres-
nel equations. Given a ray of light in a medium with index of refraction 7
(see Figure 2.6) that strikes a material with index of refraction 7, we can
compute the amount of light reflected as:

12 cos By — 11 cos Oz

i N2 cos By + 1y cos Oz

1 cos By — 12 cos Oy

— . 2.28
L 7)o cos 01 + 1y cos Oy ()

These coefficients take into account polarization: pj is the reflection coeffi-
cient for light with the electric field being parallel to the plane of incidence,
and p is the reflection coefficient for light with the electric field being or-
thogonal to the plane of incidence. The value of the index of refraction can
be found in most textbooks on optics. For commonly used materials: air
(n = 1.0), water (n =~ 1.33), and glass (p ~ 1.5 — 1.7 depending on the type
of glass). Note also that the index of refraction can be complex. This is the
case for metals where the imaginary component specifies the absorption of
light by the metal (i.e., the fact that metals are not transparent).

For unpolarized light the specular reflectance (also known as the Fresnel
reflection coefficient F,.) becomes:

1.7 - . dd,

For unpolarized light a good approximation to the Fresnel reflection
coefficient was derived by Schlick [85]:

F.(8) ~ Fy + (1 — Fp)(1 — cosf)® , (2.30)

where Fy is the value of the real Fresnel reflection coefficient at normal
incidence.

Refraction
The Fresnel Equation 2.28 contains the factor cosflz, where s is the angle
of the refracted ray. It is computed from Snell’s law:

7 sinfl; = nesinfs . (2.31)

TeamLRN

24 2. Fundamentals of Global lllumination
:¢:
4
n, [0} [O%
0, 6,
W 2 &

Figure 2.6. The geometry of refraction and reflection.

The geometry for refraction is shown in Figure 2.6. Using Snell’s law,
the direction, &,, of the refracted ray (for a perfectly smooth surface with
normal 1) is computed as:

2
&= -5 (- A)iA) - \/1 - (f’i) (1-(@-m)2) | 7i. (232
: 2
For the refracted ray the amount of transmitted light can be computed
as 1 — F,.

2.4.6 Reflection Models

Most materials reflect light in a complicated way that cannot be described
by the simple Lambertian and perfect specular reflection models. To ad-
dress this problem several reflection models have been developed for com-
puter graphics.

The early models such as the Phong model [78] were phenomological
models with no physical basis. The Phong model is used to simulate high-
lights due to either area lights or glossy reflections of a point source. This is
done by adding a simple blur to the reflection of the light sources. With the
rise of physically-based simulations it was noticed that the Phong model
results in a surface that reflects more light than it receives. This problem
was addressed by Lewis [62] who derived a normalizing factor for the Phong
model.

The first physically-based reflection models were derived outside the
field of computer graphics. One of the best known is the Torrance-Sparrow
model [106], introduced to the computer graphics field by Blinn [10]. The

TeamLRN

2.4. Light Scattering 25

Torrance-Sparrow model uses the concept of microfacets to explain several
observed phenomena of light reflection—in particular the off-specular peaks
where light is reflected mostly to a location slightly away from the mirror
direction. The microfacet theory assumes that the surface is made of many
tiny facets where each facet has perfect specular reflection. The facets are
distributed according to some known distribution—for example, one can
assume that the average slope angle can be modeled using a Gaussian dis-
tribution. This knowledge can be used to compute the local self-shadowing
of light by the microfacets, as well as the distribution of the reflected light
based on the orientation of the facets.

The Torrance-Sparrow model explains specular-related phenomena (in
particular off-specular peaks). It is still necessary to add some diffuse term.
For rough diffuse surfaces the model by Oren and Nayar [72] is better. It
builds upon a v-groove theory similar to the microfacet theory; however it
uses facets with Lambertian diffuse reflection. The Oren-Nayar model can
simulate the retroreflection of rough diffuse surfaces such as clay, where
local indirect illumination and self-shadowing is important.

Another special class of materials is brushed metals. Brushed metals
often exhibit anisotropic reflection, where the amount of light reflected
depends on the rotation of the surface around the normal. This can be
modeled by assigning two roughness parameters that control the slope of
the microfacets in different directions. Commonly used is the model by
Ward [115] and the model by Poulin and Fournier [79].

There are several other reflection models in graphics. The model by
Lafortune et al. [59] supports importance sampling, but the model para-
meters are not intuitive and are most easily obtained by fitting the model
to measured data.

The Schlick Model

A simple, intuitive, and empirical reflection model for physically plausible
rendering has been proposed by Schlick [85]. In addition this model is
computationally efficient and it supports importance sampling, which is
useful for Monte Carlo methods. The model is not derived from a physical
theory of surface reflection. Instead it is a mix of approximations to existing
theoretical models and some intuition of light reflection behavior.

The model has three parameters:

e [, the specular reflection at normal incidence.

e o, a roughness factor (o = 0 is perfectly smooth and specular, ¢ = 1
is very rough and Lambertian).

TeamLRN

26 2. Fundamentals of Global lllumination

e 1, an isotropy factor (¢ = 0 is perfectly anisotropic and 9 = 1 is
isotropic)

The o parameter is particularly useful since it provides a simple way to
continuously adjust the surface properties from perfect specular to Lam-
bertian.

Schlick’s BRDF is a combination of a specular factor S(u) and a term
controlling the amount of diffuse (d), glossy (g), and specular (s) reflection:

fr(z,&,d") = S(u) {-f? + gD(t,v, v, w) + Sf,‘.s(ﬂ?,ﬁ,t;"!)} , (2.33)

where f,, is the BRDF for perfect specular reflection as given in Equa-
tion 2.27 and D(t,v,v',w) is a directional term controlling the glossy re-
flection. The parameters u,t,v,v’, and w are computed from the surface
orientation and the incoming and outgoing directions:

Be ol
||@ + &'l
w= & H
t= #-H
v= W-n
V= o'-n
e i H-7#-H
Y= T WE-RB

H is the half-vector between the incoming and the outgoing radiance, and T
is a surface tangent vector in the direction of the scratches on an anisotropic
material.

The specular factor S(u) is given by the Fresnel approximation (Equa-
tion 2.30):

S(u)=Fo+ (1 —F)(1—u)’. (2.34)

The directional factor D(t,v,v’,w) accounts for the microfacet orienta-
tion via two terms Z(t) and A(w), as well as the geometrical constraints of
the microfacets via a geometrical term, G(v). These terms are given by:

= & - ¥ 5
Z(t) = ot —7) and A(w) = \/W e (2.35)

and
o) =——; (2.36)

og—ov+v

TeamLRN

2.5. The Rendering Equation 27

The directional factor D then becomes:
_ G(v)G")Z(t)A(w) + 1 - G(v)G(v')

dmor’

D(t,v,v", w) (2.37)

Equation 2.33 contains the three factors d, g, and s controlling the
amount of diffuse, glossy, and specular reflection respectively. Schlick sug-
gested automatically setting these factors based on the roughness factor:

§ = Aoli=e) (2.38)
_ 0 for o0 < 0.5

W= { 1—g otherwise (2.39)
- 1—g foro<0.5 |

b { 0 otherwise. (2.40)

To compute a direction for light reflected due to Schlick’s BRDF we
need to pick one of the modes (Lambertian, glossy, or specular). This
can be done randomly based on the importance of each term (techniques
for this will be presented in more detail in Chapter 5). We have already
described the methods for computing a reflected direction for a Lambertian
and a specular BRDF. For the glossy component of Schlick’s BRDF it is
possible to construct a function based on Z(t)A(w) to compute a glossy
reflected direction. The expression for this in spherical coordinates around
the half-vector H is [85]):

Ve
1~$+$w)’ i

where & and & are uniform random numbers between 0 and 1. Note
that this expression does not take into account the geometry factor, and
the amount of reflected light therefore needs to be scaled by G as in
Equation 2.37.

™

t= \/Ea ~&o+ & and w = cos (5

2.5 The Rendering Equation

The rendering equation forms the mathematical basis for all global illu-
mination algorithms. It states the necessary conditions for equilibrium of
light transport in models without participating media (participating me-
dia is described in Chapter 10). The rendering equation can be used to
compute the outgoing radiance at any surface location in a model. The
outgoing radiance, L,, is the sum of the emitted radiance, L. and the
reflected radiance, L,.:

Lo(2,d) = Le(a, @) + Ly (2, @) . (2.42)

TeamLRN

28 2. Fundamentals of Global lllumination

By using Equation 2.18 to compute the reflected radiance we find that:
L,(z,&) = Le(z,d) +/ fr(z,d &) Li(z,d") (& - 7i) dd’ . (2.43)
o

This is the rendering equation as it is often used in Monte Carlo ray-tracing
algorithms including photon mapping.

For finite element algorithms the rendering equation is normally ex-
pressed as an integral over surface locations. This can be done by using
the following formula for the differential solid angle:

(@ - i')dA!

W) = e

(2.44)

Here 2’ is another surface location, and 7’ is the normal at /. By intro-

ducing a geometry term G where

(@) (& - 1)
|z’ —z|]2

we can rewrite the rendering equation as:

G(z,2') = (2.45)

Lo(z,&) = Le(z, @) + / frlz,z' = z,d)Li(a’ — z)V(z,2")G(z,2")dA" .
S
(2.46)

Here we have used the notation L;(z" — x) to denote the radiance leaving
z' in the direction towards z, S is the set of all surface points, and V(. z')
is a visibility function:

Vi = { 1 and z’ are mutually visible (2.47)

0 otherwise.

We can formulate the rendering equation entirely in terms of surface
locations x, ', and z":

Lo(z' =) = Le(a' = z)+
/ fr(iz" = 2’ = 2)Li(z" = &)V (', ")G(',z")dA" .
&
(2.48)

This is very similar to the original rendering equation as presented by Ka-
jiva [52] in his seminal paper, where he showed how both finite element
methods (radiosity) and Monte Carlo methods are solving the same equa-
tion. Finite element methods use a discretized approximation (of the ra-
diosity equation), and most Monte Carlo ray-tracing methods use a contin-
uous Markov chain random walk, based on the Neumann series expansion
or the path integral version of the rendering equation.

TeamLRN

2.5. The Rendering Equation 20

2.5.1 The Radiosity Equation

One strategy for solving the rendering equation is to simplify the problem.
One simplification is to assume that every surface in the model is Lamber-
tian, so that the reflected radiance is constant in all directions. This means
that we can replace the computation of radiance with the simpler radiant
exitance term, also known as the radiosity, B. This simplification reduces
Equation 2.46 to:

B(x)

B.(z) + / fralz)B(a)V(z,2')G(x, ') dA’
JS
= B.(a)+ f—'*fr'—"”)/B(-.a:')V(z,x')G(.-n,.n’)dA’, (2.49)
5

where B, is the emitted radiosity.

The finite element radiosity algorithm solves this integral by discretiz-
ing it into a system of linear equations [17]. This is done by picking an
appropriate basis; a common choice is N elements with constant radiosity
which results in:

N
B;=B.;+p Y BiF, (2.50)
j=1
where B; is the radiosity for patch i and p; is the diffuse reflectance for
this patch. The form factor, Fy;, is computed as:

' it . P
F;.J.:_l_j] Vi, & Jot) ot i, (2.51)
A'i Ai JA; ™

The form factor, F};, represents the fraction of the power leaving patch i
that arrives at patch j.

A significant amount of research has been devoted to solving the radios-
ity equation efficiently. These techniques have been described in several
books (see, for example, [17] for a good overview).

2.5.2 Neumann Series Expansion

The rendering equation cannot be directly evaluated since the radiance
value is on both sides of the equation. One way to get around this problem
is to recursively replace the radiance on the right side of the equation
with the expression for radiance. For this purpose it is more convenient
to use integral operator notation in which the rendering equation can be
represented using the following compact form:

L=L.+TL. (2.52)

TeamLRN

30 2. Fundamentals of Global lllumination

Here the integral operator T is:
Ty s la.d)= / Folz,3,)g(z, 3T -7)dd . (2.59)
Q

Recursive evaluation of Equation 2.52 gives:
&

b= Lat Phgt T2E 4+ TPLhe F T L e = z T™L, . (2.54)

m=0

This is the Neumann series expansion of the rendering equation, and it
forms the basis for several Monte Carlo ray-tracing algorithms (most no-
tably the path-tracing algorithm introduced by Kajiya [52]). An intuitive
interpretation of the Neumann series is that it sums terms representing
light reflected 0,1,2,3,... times. This can be formulated slightly differ-
ently using the path integral formulation.

2.5.3 Path Integral Formulation

Using the concept in the Neumann series we can rewrite the rendering
equation as a sum over all paths of length k. This gives:

Lo(xo,) :Z[["'/K(a:k,:rk_l,:rk_z)-‘-K(atl.:r:n,a:_l) X
k—0V/S /s s

Lc(Ik - :Bk_l)d.‘lkdx‘ik_] ...dAy .
(2.55)

where & = x_; — g (i.e., x_; is the location of the observer), and K is:
K", 2',z) = fo(a” = a2’ - 2)V(2",2")G(z",a') . (2.56)

To evaluate this path integral we need an algorithm that can compute
the radiance from any path of length k. This is the topic of the next
chapter.

2.6 Light Transport Notation

When describing a light path it is often necessary to distinguish between
different types of surface reflections along the path. Heckbert [34] has
introduced a compact notation for exactly this purpose. In Heckbert’s
notation the “vertices” of the light path can be:

TeamLRN

2.6. Light Transport Notation 31

Figure 2.7. The light transport notation makes it easy to classify different paths. In
this scene, with a glass ball and two diffuse walls, the paths shown are: (a) LDSSE,
(b) LDSE, and (c) LSSDE.

L a light source
E the eye
S a specular reflection

D a diffuse reflection

For example, LDDSE means a path starting at the light source, having two
diffuse reflections followed by a specular reflection before reaching the eye.
Note that we assume that a BRDF can be composed into a specular-like
component and a diffuse-like component. For some applications it may be
useful to introduce a glossy, G, reflection also.
To describe combinations of paths it is common to use regular expres-

sions:

(k)+ one or more of k events

(k)* zero or more of k events

(k)? zero or one k event

(klk’) a k or ak’event

As an example L(S|D)+DE means a path starting at the light source having
one or more diffuse or specular reflections before being reflected at a diffuse
surface towards the eye.

TeamLRN

Monte Carlo Ray Tracing

Monte Carlo ray-tracing techniques are the most general class of global illu-
mination methods. All of these methods use point sampling to estimate the
illumination in a model. A point sample consists of tracing a ray through
the model and computing the radiance in the direction of this ray. This
concept has several advantages over finite element radiosity techniques:

e Geometry can be procedural.

e No tessellation is necessary.

e It is not necessary to precompute a representation for the solution.
e Geometry can be duplicated using instancing.

e Any type of BRDF can be handled.

e Specular reflections (on any shape) are easy.

e Memory consumption is low.

e The accuracy is controlled at the pixel/image level.

TeamLRN 33

34 3. Monte Carlo Ray Tracing

Figure 3.1. A ray-traced image of a simple box scene. The box contains a mirror
sphere and a glass sphere illuminated by a square light source just below the ceiling.
The ray tracing algorithm can render shadows and specular reflections, but it does
not simulate the indirect illumination of diffuse surfaces.

e Complexity has empirically been found to be O(log N) where N is
number of scene elements. Compare this with O(Nlog N) for the
fastest finite element methods [17].

In addition the Monte Carlo ray-tracing algorithms that we describe here
have the property that they are unbiased. In practice this means that the
only error in the result is seen as variance (noise).

This chapter contains a review of the basic ray-tracing algorithm as well
as several extensions for simulating global illumination.

3.1 Classic Ray Tracing

Ray tracing was popularized for computer graphics by Whitted in 1980 [120]
with the introduction of the recursive ray-tracing algorithm. Ray tracing
is an elegant and simple algorithm that makes it easy to render shadows and
specular surfaces. An example of a ray-traced image is shown in Figure 3.1.

The key idea in ray tracing is that light can be traced backwards from
the observer to the light sources. In nature the light sources emit pho-
tons that scatter through the scene. Only a very tiny fraction of these
photons reach the eye, and a naive simulation of this process is not prac-
tical. However, we can use the fact that photons move along straight lines

TeamLRN

3.1. Classic Ray Tracing 35

Figure 3.2. The ray-tracing algorithm traces rays (backwards) from the observer to
the light. At each intersection point the direct illumination is computed. The visi-
bility of the light source is evaluated using shadow rays (dotted lines). If the surface
is specular then a specular ray is traced in the reflected or transmitted direction.

through empty space—that radiance is constant along a line of sight (see
Section 2.2.1). In addition we can use the fact that light scattering at sur-
faces is symmetric (see Section 2.4.2). These two properties enable us to
trace light backwards from the observer to the light sources.

The input to a ray tracer is the position of the observer, an image plane
(viewing direction and field of view), and a scene description of the geome-
try and the materials as well as the light sources (as shown in Figure 3.2).
The goal is to compute the color (the average radiance) of each pixel in the
image plane. This can be done by tracing one or more rays through each
pixel in the image and averaging the radiance returned by the rays. The
rays from the observer through the pixels are called the primary rays. A
ray, r, has the form:

rlz,d)=z+d &, (3.1)

where z is the origin of the ray, @ is the direction of the ray, and d is the
distance moved along the ray.

To compute the radiance of a primary ray we must find the nearest
(smallest d) object intersected by the ray (this is the object that is seen
through the pixel). For the example ray in Figure 3.2, the sphere is the
first object intersected.

Given an intersection point, z, we need to find the outgoing radiance
in the direction of the ray. For this purpose we need to know the surface
normal, 71, at = as well as the BRDF, f.. With this information we can

TeamLRN

36 3. Monte Carlo Ray Tracing

compute the illumination from each light source by estimating the irradi-
ance at x. As an example the reflected radiance, L,, due to a point light
source with power ®; at a position p can be computed as:

4 IR 0 d L
L(,@) = fo(@,8,8) s V (@ p)ﬁ : (3.2)

where &' = (p — z)/||p — || is a unit vector in the direction of the light
source. The visibility function, V, is evaluated by tracing a shadow ray
from x to the light. If the shadow ray intersects an object between x and
the light then V = 0 (z is in shadow); otherwise V = 1.

For specular surfaces ray tracing can evaluate the specular reflection by
tracing a ray in the mirror direction, &y (computed using Equation 2.26).
The radiance computation for this reflected/refracted ray proceeds exactly
in the same way as for the primary ray. This is the reason why the method
is called recursive ray tracing. The recursive nature of the algorithm can
be seen in Figure 3.3

Ray tracing is not a full global illumination algorithm. It cannot com-
pute the indirect illumination on diffuse surfaces. Only for perfect specular
materials can the incoming light be computed by tracing a ray in the re-
fracted or the mirror direction. In the light transport notation we find that
ray tracing can compute light paths of the form:

LD?S*E

In addition the basic ray-tracing algorithm does not compute soft shad-
ows, focusing effects due to camera lens, and motion blur. To simulate
these phenomena it is necessary to use Monte Carlo sampling as explained
for the path-tracing algorithm.

3.1.1 Algorithm

The ray-tracing algorithm is shown in Figure 3.3. There are two functions
found in every recursive ray tracer. The trace function traces rays through
the scene, and finds the first intersection point with the scene objects.
When an intersection is found, trace() calls the shade() function which
is responsible for computing the reflected radiance (color). This is done by
adding the contribution (if any) from each light source, as well as tracing
reflected or transmitted rays for specular surfaces.

A practical implementation of ray tracing can be quite complex. For
scenes with many objects it is wasteful to check for an intersection with
each object for every ray. In this situation it is better to partition the
model into smaller regions, and only test the objects in the regions that

TeamLRN

3.2. Path Tracing 37

render image using ray tracing
for each pixel
pick a ray from the eye through this pixel
pixel color = trace(ray)

trace(ray)
find nearest intersection with scene
compute intersection point and normal
color = shade(point, normal)
return color

shade(point, normal)
color = 0
for each light source
trace shadow ray to light source
if shadow ray intersects light source
color = color + direct illumination
if specular
color = color + trace(reflected/refracted ray)
return color

Figure 3.3. The ray-tracing algorithm.

a ray passes through. The most common acceleration schemes include
grids [100], hierarchical grids [55], octrees [26], bsp-trees [39], and bounding
volume hierarchies [53]. An example implementation of a bsp-tree can be
found in [104].

In addition it can be costly to trace rays through every pixel of the
image. Often an image has regions of slowly changing radiance values (for
example, if an object with the same color is seen through several pixels).
For these regions it is faster to interpolate the pixel values from neighboring
pixels. The decision whether to interpolate the value between two pixels
can be decided based on the contrast [67] between the two pixels or the
local variance [60, 73].

For a more detailed overview of the ray-tracing algorithm see the books
by Glassner [27] and Shirley [91].

3.2 Path Tracing

Path tracing is an extension of the ray-tracing algorithm that makes it
possible to compute a complete global illumination solution. Path tracing
can simulate all possible light bounces in a model: L(S|D)*E. Figure 3.4
shows an example of a path-tracing rendering of the simple box scene.

TeamLRN

38 3. Monte Carlo Ray Tracing

Figure 3.4. The box scene rendered using path tracing. Path tracing simulates all
light bounces, unlike the ray-tracing algorithm (Figure 3.1). This image was rendered
using 1000 paths/pixel. Notice the illumination of the ceiling and the caustic below
the glass sphere.

The path-tracing technique was introduced by Kajiya in 1986 [52] as a
solution to the rendering equation (introduced in the same paper!). The
path-tracing algorithm is based on ideas introduced by Cook et al. in
1984 [21] in the distribution ray-tracing algorithm. Distribution ray tracing
uses stochastic sampling to compute effects such as soft shadows, motion
blur, and depth of field. The path-tracing algorithm extends this idea by
stochastically sampling all possible light paths.

Path tracing is a straightforward extension to ray tracing that makes
it possible to compute lighting effects that requires evaluating integration
problems such as area lights and indirect light reflected by a diffuse surface.
These integration problems are handled by tracing a “random” ray within
the integration domain to estimate the value of the integral. For example, if
aray intersects a diffuse material then the indirect illumination is computed
by tracing a diffusely reflected ray. In the case of a Lambertian surface the
direction of the reflected ray is computed using Equation 2.24.

To understand why this strategy works it is necessary to understand
the concept of Monte Carlo integration (see Appendix A for a brief intro-
duction). In path tracing the unknown function (the lighting distribution)
is sampled by tracing rays stochastically along all possible light paths. By
averaging a large number of sample rays for a pixel we get an estimate of
the integral over all light paths through that pixel.

TeamLRN

3.2. Path Tracing 39

(a)

Figure 3.5. The main problem with path tracing is noise. If too few samples are
used the rendered image will have noisy pixels. The two images show the same box
scene rendered with (a) 10 paths/pixel (see Color Plate 1) and (b) 100 paths/pixel.
Even 100 paths/pixel is not enough to eliminate the noise for this simple scene.

Mathematically, path tracing is a continuous Markov chain random
walk technique for solving the rendering equation [81]. The solution tech-
nique can be seen as a Monte Carlo sampling of the Neumann series outlined
in Section 2.5.2.

An important aspect of the path-tracing algorithm is that it uses only
one reflected ray to estimate the indirect illumination (in addition one or
more rays may be used to sample the light sources). As an alternative it
would have been possible to use several rays per scattering event. However,
since path tracing is a recursive algorithm this would result in an exponen-
tial growth in the number of rays as the number of reflections increases.
For example, if ten rays are used to compute irradiance, and each of these
ten rays intersect another diffuse surface, again use ten rays to compute the
irradiance then the result is 100 rays used to compute diffuse light reflected
twice before being seen by the observer. Kajiya noticed that it is better to
focus the computations on events that have undergone few reflections. By
tracing only one ray per bounce, the path-tracing algorithm ensures that
at least the same effort is invested in surfaces seen directly by the observer.
To compute an accurate estimate for the pixel it is necessary to average
the result of several primary rays (often thousands of rays).

The only problem with path tracing is variance in the estimates, seen
as noise in the final image. The noise is a result of using too few paths per
pixel (too few samples to accurately integrate the illumination). Figure 3.5
shows two images of the box scene rendered with 10 and 100 paths/pixel.
Such a small number of rays is usually not sufficient to render an image.
The rendering of the box scene in Figure 3.4 used 1,000 paths/pixel, and
the noise, while still visible, does not distract from the rendering,.

TeamLRN

40 3. Monte Carlo Ray Tracing

Figure 3.6. Path tracing can handle complex geometry, but in a complex lighting
situation such as this architectural model it is necessary to use a very high number
of samples. This image was rendered with 1,000 paths/pixel and it still contains a
significant amount of noise. Even at 10,000 paths/pixel the noise is visible for this
model.

1,000-10,000 paths/pixel seems to be typical for most “noise-free” path-
tracing images. However, if the complexity of the illumination is high then
it may be necessary to use an even higher number of samples. Figure 3.6
shows an architectural model with complex indirect illumination rendered
with 1,000 paths/pixel (approximately one billion primary rays for the
entire image!). Even with this substantial number of rays and a very long
rendering time the image is very noisy.

If the indirect illumination varies slowly, for example, for an outdoor
model with a simple constant-colored skylight, then the path-tracing algo-
rithm can be relatively efficient. The Jaguar model rendered in Figure 3.7
is an example of such a scene. The illumination of the car is due to a con-
stant white hemispherical light source covering the model. In this case 100
paths/pixel is enough to get an image with little noise. The reason why
path tracing works well in this case is that the function (the light) that we
are trying to integrate is slowly varying. Therefore even a few samples can
give a good estimate of the integral.

TeamLRN

3.2. Path Tracing 41

Figure 3.7. Path tracing works well if the indirect illumination varies slowly. This
example shows a Jaguar model illuminated by a constant colored hemispherical
light source covering the entire model. The rendered image has little noise even
though it was rendered with just 100 paths/pixel.

All of the images that we have shown that were rendered with path trac-
ing contain visible noise. Unfortunately it is costly to completely eliminate
this noise. As explained in Appendix A this is due to the basic property of
Monte Carlo integration that states that the standard error is proportional
to 1/v/N, where N is the number of samples. This means that to halve
the error (the noise) it is necessary to use four times as many samples!
Figure 3.8 illustrates this for the center pixel in the image of the box scene.

The noise and the cost of eliminating it is clearly a problem for path
tracing and Monte Carlo ray tracing in general. Fortunately, there are
several variance reduction techniques available. If the shape of the function
being integrated is known, then it is possible to use importance sampling
to concentrate the samples in the important parts of the function. For
path tracing this means that if we know where the bright regions are then
we can concentrate our samples towards them. This has been done using
photon mapping [41] and also by dynamically building a representation of
the radiance in the model [58]. Other useful optimizations include stratified
sampling in which the samples are placed in cells on a grid. This ensures
that the samples are properly spaced, which reduces variance. Properly
stratifying the samples is an important optimization since it improves the
convergence to 1/N. For all the optimization techniques the key idea is that
all the knowledge about the problem should be included in the sampling
strategy. More discussion about this in the context of photon mapping can
be found in Chapter 11.

Another very important optimization for path tracing is Russian roulette.
Russian roulette makes it possible to trace a ray through a finite number
of bounces, and still get the same result as if an infinite number of bounces

TeamLRN

42 3. Monte Carlo Ray Tracing

L Ll
Reference value

One estimator -

Min of 1000 runs -
Max of 1000 runs

Average L

0.06 r

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Paths/pixel

Figure 3.8. Example of the convergence for one pixel (center pixel of the box
scene). The estimator curve shows a representive value of one estimator. This
estimator is the average of n paths/pixel as indicated on the x-axis. The min and
max curves represent the minimum and the maximum average value observed out
of 1000 estimators. Note the jaggies on the example estimator curve. This type of
appearance is typical; here the jaggies occur when a sample ray hits the light source
via one of the specular surfaces in the model. This gives a significant contribution
to the estimate and causes a jump in the average value.

had been performed. This is done using a statistical technique described
in Section 5.2.4.

For a good general overview of Monte Carlo sampling techniques in
computer graphics see [87, 56, 24, 107].

3.2.1 Algorithm

The path-tracing algorithm is illustrated in Figure 3.9. Notice the similarity
with the basic ray-tracing algorithm in Figure 3.3. The main difference here
is that all rays (not just specular reflections) are traced in the shade()
function, and that additional elements for each ray (such as time and pixel
position) can be sampled stochastically.

TeamLRN

3.3. Bidirectional Path Tracing 43

render image using path tracing
for each pixel

color = 0

for each sample
pick ray from observer through random position in pixel
pick a random time and lens position for the ray
color = color + trace(ray)

pixel-color = color/#samples

trace(ray)
find nearest intersection with scene
compute intersection point and normal
color = shade(point, normal)
return color

shade(point, normal)
color = 0
for each light source
test visibility of random position on light source
if visible
color = color + direct illumination
color = color + trace(a randomly reflected ray)
return color

Figure 3.9. The path-tracing algorithm.

3.3 Bidirectional Path Tracing

Bidirectional path tracing was introduced by Lafortune and Willems [57]
in 1993 and independently in 1994 by Veach and Guibas [108] as an exten-
sion to the path-tracing algorithm. Bidirectional path tracing traces paths
starting from both the eye as well as the light sources.

The idea behind bidirectional path tracing is to exploit the fact that
certain paths are most easily sampled from the eye whereas other paths
can be sampled better by starting at the light. A particular example is
caustics (LS+DE paths). To sample caustics using traditional path tracing,
it is necessary to trace a random diffusely reflected ray such that it goes
through a series of specular bounces before hitting the light source. This is
often an event with a small probability but a significant contribution, and
caustics are indeed a major source of noise in path tracing. Starting the
path from the light source makes the problem easier, since the light has to
reflect off the specular surface, hit the diffuse surface, and then be projected
onto the image plane. This concept was first introduced by Arvo [2] when
he demonstrated how tracing rays from the light sources could be used to
render caustics.

TeamLRN

44 3. Monte Carlo Ray Tracing

Figure 3.10. Bidirectional path tracing traces paths starting from both the eye and
the light sources. The path vertices are connected via shadow rays (dashed lines),
and the final estimate is computed as a sum of weighted averages of the different
path combinations.

Bidirectional path tracing begins by tracing two paths through the
scene: one path, y, starting at a light source, and one path, x, starting
at the eye. This is shown in Figure 3.10. The next step is combining the
information in the two paths. This is done by connecting all the path ver-
tices, where a path vertex is an intersection point along a path including
the endpoints (the light and the eye). The vertices on the eye path are
denoted z;, and the vertices on the light path are y;. Here i and j are the
number of bounces since the eye and the light.

For each vertex-vertex pair, @; and y;, the visibility function, V' (z;, y;),
is evaluated with a shadow ray (shown as dashed lines in Figure 3.10).
The next step is computing the individual contribution from the light path
vertices to the eye path. Here it is important to pay attention to the fact
that the light propagates flux, and not radiance. We cannot simply connect
the two paths and take the value from the light vertex. Instead the reflected
radiance at z; due to y; is computed as:

|[yj _3’-17:) ' 1r_i:r.' |

Hxi = {,'J“? I(yj - J:‘i) *

(3.3)

Lij(xi = xi1) = fr(yj 2 zi 2 zi-1)V (@i, y5)

Here we have used the path notation introduced in Section 2.5. x;_; refers
to the previous vertex on the eye path, and 7i,, is the normal at ;. I(y; —
z;) is the radiant intensity leaving y; in the direction of z;. Note that
special care needs to be taken when i = 0: for ¢ = j = 0 the light source
is directly visible; i = 0,7 > 0 is a light ray reaching the eye, and the flux

TeamLRN

3.3. Bidirectional Path Tracing 45

must be accumulated at the appropriate pixel. See [57, 107] for the details
on this case.

The radiant intensity, I(y; — x;), for a vertex on the light path is
computed as:

I(y; — i) = Pily;)|(y; = xi) - Ry | (Y51 2 y5 — @) - (3.4)

Here ®;(y;) is the flux of the incoming photon at y;. The origin of this
photon is vertex y;_1. 7i,, is the normal at y;.

Given Equation 3.3 (and taking into account the special case i = 0) we
can compute the weighted sum of contributions from all paths:

Ni

N;
LP = ZZ“"'JL’"J y (JE’)

i=0 j=0

where L, is an estimate for the pixel. This equation assumes that we have
used perfect, importance sampling for all BRDF’s (otherwise we would have
to scale subpaths on the eye path that do not contain zy). Note that i = 0
will be estimates for other pixels in the image. The weights w; ; must be
normalized:

N
ZH-‘,‘_N_I' =1 fﬂl‘ N 20,1,2.3,... . (30)

i=0

This ensures that the weights for paths of length 0, 1, 2, 3, ... each add
up to 1.
It is easy to see that:

1 fori=20 B
Weg _{ 0 otherwise 4.7)

is the standard path-tracing algorithm.

The choice of weights has a substantial influence on the variance of the
combined estimate. Veach and Guibas [109] introduced a technique for
combining estimators based on different sampling techniques (or different
paths). They argued that the power heuristic gives good results for bidi-
rectional path tracing. With the power heuristic the weights are computed
as:

]
L , (3.8)

i+j

T.L-'i__-'.' =]
k=0Pr,itj—k

TeamLRN

46 3. Monte Carlo Ray Tracing

where the power 3 = 2. p;; is the probability density for generating
the path xg.... .x;. y;,... .yo. This path probability can be computed by
multiplying the probability of generating each of the vertices in the path:

|{‘F!- — Ty t I) 2 ﬁ.‘!',‘“{'ri = .f'j+1) e ﬁr;;:,-_._; |

ez — @1l ®

plx; = xi41) = pg. (T = Tigq)

(3.9)

Here py, (2; — 2;41) is the probability density for sampling the direction
x; —+ iy with respect to the projected solid angle. For a Lambertian
surface using Equation 2.24 to generate a sample direction, we find that
Ps. = pa, where pg is the diffuse reflectance. Note that the probabilities
for the path starting points are different; they depend on the sampling
technique used for the light source and for the pixel (see [110] for details).

The final image is computed as in path tracing by averaging a large
number of estimates per pixel. Bidirectional path tracing uses fewer sam-
ples per pixel than path tracing. This is easy to see since a bidirectional
path-tracing sample is a superset of a path-tracing sample. However, path
tracing may still be faster since the cost of each sample in bidirectional
path tracing is higher as it involves the combination of two paths.

The only problem with bidirectional path tracing is noise. Exactly as
with path tracing the final image will be noisy unless enough samples are
used. For problems with small sources of strong indirect illumination (such
as caustics) bidirectional path tracing is much better than path tracing. For
outdoor scenes where the observer is seeing only a small part of the model it
is often preferable to use path tracing (for example, sending light rays from
the sun towards the earth is not very useful). As mentioned caustics are
a good case for bidirectional path tracing due to the light path. However,
mirror reflections of caustics still represent a problem that is very hard
to sample for bidirectional path tracing. In this situation bidirectional
path tracing is no better than path tracing. In general path tracing is
best when the light sources are “easiest” to reach from the eye—otherwise
bidirectional path tracing is preferable.

Another problem with bidirectional path tracing arises when the dis-
tance between the eye vertex and the light vertex is very short (such as in
corners). The square of this distance is in the denominator of Equation 3.3
and the estimate can become arbitrarily large. This problem can fortu-
nately be eliminated by using the power heuristic (Equation 3.8) since the
weights associated with these short paths will be very low.

TeamLRN

3.4. Metropolis Light Transport 47

render image using bidirectional path tracing
for each pixel
for each sample
pos = random position in pixel
trace_paths(pos)

trace_paths(pixel pos)
trace primary ray from observer through pixel pos
generate an eye path of scattering events from the primary ray
emit random photon from the light source
generate a light path of scattering events from the photon
combine(eye path, light path)

combine(eye path, light path)
for each vertex y; on the light path
for each vertex r; on the eye path
if Vix,y;) == 1 Are the vertices mutually visible?
compute weight for the w; —y; path
add weighted contribution to the corresponding pixel

Figure 3.11. The bidirectional path-tracing algorithm.

3.3.1 Algorithm

The pseudocode for bidirectional path tracing is shown in Figure 3.11.
Here the shade () function of the path-tracing algorithm has been replaced
with the computation of scattering probabilities for the path vertices. The
combine () function resolves the weighting issue and the visibility issue for
the path vertex pairs.

3.4 Metropolis Light Transport

The Metropolis Light Transport technique, MLT, was introduced by Veach
and Guibas [110] in 1997 as a method for exploiting the knowledge of the
path space more efficiently.

The concept in the Metropolis sampling algorithm is quite different from
path tracing and bidirectional path tracing. Instead of randomly sampling
a function to compute the value of an integral, the Metropolis method
generates a distribution of samples proportional to the unknown function.
This concept was first introduced by Metropolis et al. in 1953 [64]. For
rendering this means that the MLT algorithm samples the image with a
ray density proportional to the radiance. This is a useful feature since it
automatically concentrates work in the bright regions of the image.

TeamLRN

48 3. Monte Carlo Ray Tracing

To achieve this sampling distribution the MLT algorithmn starts with a
random sampling (using bidirectional path tracing) of the space of all light
paths in the model. These paths are then randomly cloned and modified
(mutated). If the newly mutated path y is invalid (for example, if it goes
through a wall) then it is thrown away, and the current path z is used
again for an image contribution as well as for a new mutation. If the new
path y is valid then it may be accepted as a new candidate path based on
an acceptance probability a(y|x):

fW)T(x|y) } _ (3.10)

f(@)T(ylx)

Here a(y|z) is the acceptance probability of the path y given path x. f(y)
is the radiance due to path y, and T(y|x) is the probability of obtaining
path y given path x.

By using this acceptance probability the mutated paths will be dis-
tributed according to the radiance. This is the basic Metropolis sampling
scheme.

The Metropolis light transport algorithm uses several strategies for mu-
tating paths:

a(y|r) = min {1,

Bidirectional mutations: Randomly replace segments of a path with
new segments. This mutation strategy ensures that the entire path
space will be visited (necessary to ensure convergence).

Pertubations: These include lens pertubations, caustic pertubations, and
multi-chain pertubations. Each of these mutation strategies are tar-
geted towards specific important effects such as caustics. If a caustic
path (LS+DE) is encountered then the caustic pertubation strategy
may be used. This strategy works by making a small change to the
ray connecting the specular and the diffuse surface. This makes it
possible to sample small localized caustic effects.

These mutation strategies are described in more detail in [110, 107].

For each mutation strategy the acceptance probability must be evalu-
ated. This involves evaluating the radiance returned by the newly mutated
path (done using the same techniques as for bidirectional path tracing). In
addition the transition probabilities T'(x|y) and T(y|®) must be evaluated
(i.e., the probability of changing z into y and vice versa)—notice that these
probabilities normally are not symmetric.

The MLT algorithm is quite sophisticated and it is particularly good at
simulating lighting situations that are normally considered difficult. These
are cases where a concentrated region of space is responsible for most of the

TeamLRN

3.4. Metropolis Light Transport 49

illumination in the scene. This can be a small hole in a wall next to a room
with a bright light. Once the MLT algorithm finds a path through the hole
it will mutate and explore this path in order to capture the illumination.
This is much more efficient than path tracing and bidirectional path tracing,
where new random paths are used for each sample.

For scenes with normal illumination such as the box scene that we have
used in this chapter it does not seem likely that MLT will be very helpful.
The specialized mutation strategies will not help much (except for the
caustics) since the entire space is important for the indirect illumination.
Since mutations are cheaper than sampling a complete path it may be that
MLT is faster. For scenes that do not have any coherence—an example
would be the box scene with a grid full of holes in the middle— MLT can
converge more slowly since it will be “caught” in a hole and not properly
investigate the illumination from other holes.

Caustics due to mirror reflections are still difficult with MLT. Even
though the multi-chain pertubation was introduced to handle this case, its
efficiency gets worse as the light source gets smaller, and for point sources
it does not work. Neither MLT or bidirectional path tracing can render

render image using MLT
clear image
generate /N random paths
for each path
MLT(=)

MLT(path =)
add contributions from & to the image
if done
return
select mutation strategy
y = mutate path x
if y is valid
compute T'(x|y) and T'(y|x)
compute L(x) and L(y)
compute a(y|x)
if € < aly|z) £ € [0,1] is a random number
MLT(y)
else
MLT(x)
else
MLT(x)

Figure 3.12. The Metropolis light transport algorithm.

TeamLRN

50 3. Monte Carlo Ray Tracing

mirror reflections of caustics due to a point source. An example where this
type of illumination can occur is the illuminated area of a table as seen
through the base of a wine glass.

Another difficulty with MLT is that it has several parameters that signif-
icantly influence the variance in the final image. Of particular importance
are the probabilities of picking the different mutation strategies. The right
choice is highly scene-dependent.

3.4.1 Algorithm

The Metropolis light transport algorithm is outlined in Figure 3.12. The
choice of when to stop (if done) can be made by comparing the changes
to the image as more paths are explored, or by using a fixed number of
paths.

TeamLRN

The Photon-Mapping
Concept

This purpose of this chapter is to give an overview of the photon-mapping
approach and give some insight into the reasoning that motivated the de-
velopment of the method. The presentation here is designed to provide
an intuitive understanding; the details will be presented in the following
chapters.

4.1 Motivation

Our goal is an algorithm that is capable of efficiently rendering high-quality
images of complex models with global illumination. We want an algorithm
capable of handling any type of geometry and any type of BRDF.

Pure finite element radiosity techniques do not satisfy our requirements.
Radiosity methods suffer from mesh artifacts, have problems with general
BRDF representations (in particular specular materials), and they are too
costly for complex geometry.

T
eamLRN 51

52 4. The Photon-Mapping Concept

An alternative to pure finite element radiosity is multi-pass techniques
that use finite element techniques to compute an initial coarse solution.
The final image is then rendered with a Monte Carlo ray-tracing algorithm
such as path tracing (see for example [13]). These two-pass methods are
faster than pure Monte Carlo ray tracing and generate images of better
quality than pure finite element methods, but they suffer from the lim-
itations of the finite element techniques. In particular they cannot deal
with complex geometry since the finite element preprocessing becomes too
costly. One paper [82] has addressed this issue using geometry simplifica-
tion, where the finite element algorithm is performed on a coarse represen-
tation of the model. This reduces the complexity of the two-pass methods.
However, geometry simplification is hard and not an automatic procedure.
Furthermore, the errors resulting from using simplified geometry are not
understood.

Ilumination maps are an alternative to the mesh-based finite element
representations, where a texture map with illumination values is used to
represent the irradiance in the model. This approach does, however, suf-
fer from the same problems as finite element methods. For illumination
maps the problem is computing the resolution of the map. It is also too
costly to use illumination maps in complex models, and finally it is dif-
ficult to use illumination maps on arbitrary surfaces even if they can be
parameterized [19].

The only methods that can simulate global illumination in complex
models with arbitrary BRDF’s are Monte Carlo ray-tracing-based tech-
niques such as those described in the previous chapter. These techniques
have several advantages:

e All global illumination effects can be simulated

e Arbitrary geometry (no meshing)

e Low memory consumption

e Result is correct except for variance (seen as noise).

The main problem with these methods is noise (variance), and, as discussed
in the previous chapter, it is very costly to eliminate this noise.

Photon mapping was developed as an efficient alternative to the pure
Monte Carlo ray-tracing techniques. The goal was to have the same ad-
vantages, but at the same time obtain a more efficient method which does
not, suffer from the high-frequency noise.

TeamLRN

4.2. Developing the Model 53

4.2 Developing the Model

To achieve the same general properties as Monte Carlo ray tracing it seems
natural to use the same fundamental ray-tracing-based sampling technique.
In addition it seems clear that an efficient light transport algorithm must
perform a sampling of the scene both from the light sources as well as from
the observer. Both the observer and the lights are the important elements
in a model: we see the scene from the point of view of the observer, but
the lighting comes from the lights. Furthermore, we have already seen how
certain effects are most efficient to simulate with sampling from the lights
(such as caustics) or the eye (such as mirror reflections).

We want to utilize the Monte Carlo ray-tracing techniques we saw in the
previous chapter, but we also want an efficient method. As such we want
to exploit the fact that the radiance field in most models is often smooth
over large regions. For these regions it makes sense to store and reuse
information about the illumination. However, we do not want to tessellate
the model or use illumination maps, since this limits the complexity of the
types of models that we can handle.

The primary idea for solving this problem is to decouple the represen-
tation of the illumination from the geometry. This allows us to handle
arbitrary geometry as well as complex models.

The second idea is that illumination can be stored as points in a global
data structure, the photon map. Several alternatives to points were consid-
ered, but they all failed to satisfy three conditions: the ability to represent
highly varying illumination, being decoupled from geometry, and being
compact. In addition points are an extremely flexible representation that
makes it possible to handle non-Lambertian surfaces (by including infor-
mation about the incoming direction of the light) and other information to
make the computations more efficient.

The photon map can be seen as a cache of the light paths in bidirectional
path tracing, and it would indeed be possible to use it as such. However, it
also enables a different method for estimating illumination based on density
estimation. Density estimation using the photon map has the advantage
that the error is of low frequency rather than the high-frequency noise
seen with traditional Monte Carlo ray tracing. This is a desirable property
from a perceptual point of view since noise is much more distracting than
slowly varying illumination. Finally, the density estimation method is much
faster than pure Monte Carlo ray tracing (even if the latter uses the photon
map as a cache). The price we pay for using density estimation to compute
illumination statistics is that the method is no longer unbiased. This means
that the average expected value of the method may not be the correct value.
However, the technique is consistent, which means that it will converge to
the correct result as more points/photons are used.

TeamLRN

54 4. The Photon-Mapping Concept

We use the name photon mapping for an algorithm that generates,
stores, and uses illumination as points, and the photon map is the data
structure used to process these points.

Photon tracing is the technique used to generate the points representing
the illumination in a model. Since this algorithm is ray-tracing-based and,
since the photon map uses points as the fundamental primitive, we get the
advantages of the ray-tracing algorithm: complex geometry, no meshing,
specular reflections, and more.

4.3 Overview

The photon-mapping method is a two-pass method where the two passes
are:

Photon tracing: Building the photon map structure by tracing photons
from the lights through the model.

Rendering: Rendering the model using the information in the photon
map to make the rendering more efficient.

There are various ways that the two steps can be designed and these
are discussed in the following chapters.

TeamLRN

Photon Tracing

Photon tracing is the process of emitting photons from the light sources
and tracing them through a model. It is the technique used to build the
photon map (Figure 5.1 illustrates the concept). This chapter contains
the details of photon tracing. We describe how photons are generated at
light sources and how they are traced efficiently through the model. The
techniques in this chapter form a fundamental basis for building a good
photon map.

5.1 Photon Emission

Photons are created at the light sources in the model. These lights can
be typical computer graphics light sources such as point lights, directional
lights, and area light sources, or they can be physically based sources with
arbitrary geometry and distributions. Any type of light source can be used.

Just as in nature, a large number of photons is typically emitted from
each light source. The power (“wattage”) of the light source is divided
among all the emitted photons, and each photon therefore transports a
fraction of the light source power. It is important to note that the power

TeamLRN 55

56 5. Photon Tracing

Figure 5.1. The photon map is built using photon tracing in which photons are
emitted from the light sources and stored as they interact with the diffuse surfaces
in the model.

of the photons is proportional only to the number of emitted photons and

not to the number of photons stored in the model (more detail later).
The following sections contain more detail on how to emit photons from

different. types of light sources. Some examples are shown in Figure 5.2.

Figure 5.2. Photon emission from different light sources: (a) point light, (b) square
light, and (c) complex light.

5.1.1 Diffuse Point Light

The diffuse point light is one of the simplest types of light sources. Photons
from a diffuse point light are emitted uniformly in all directions.

TeamLRN

5.1. Photon Emission 57

emit_photons_from.diffuse point light() {

e =0 number of emitted photons
while (not enough photons) {
do { use rejection sampling to find new photon direction
r = £ £, € [0,1] is a random number
y =& £3 € [0,1] is a random number

=& £4 € [0, 1] is a random number
1 'thle (22492 +2:22>1)

< T, U, = =

light source position

trace photon from p in direction d
The = Ne + 1

}

scale power of stored photons with 1/n.

}

d
P

Figure 5.3. Pseudocode for emission of photons from a diffuse point light using
rejection sampling.

To generate photons at a diffuse point light we use Monte Carlo samp-
ling. There are two major techniques for sampling a sphere uniformly:
explicit sampling or rejection sampling. Explicit sampling maps the ran-
dom numbers to the surface of the sphere, typically by randomly sampling
the angles of a spherical mapping (see [90] for details). The rejection samp-
ling technique uses repeated evaluation of random numbers until a certain
property is present. In the case of the diffuse point light, rejection sampling
works by generating random points inside the unit cube. If a point in the
unit cube is also inside the unit sphere, then it is accepted as the direc-
tion in which to emit the photon. Pseudocode for the rejection sampling
technique is shown in Figure 5.3.

5.1.2 Spherical Light

To emit photons from a spherical light source with a given radius we can
first pick a random position on the surface (using, for example, a rejection
sampling technique similar to the one used for picking directions for the
point light), and next a random direction in the hemisphere above this
position. For a diffuse spherical light the probability of selecting a given
outgoing direction should be proportional to the cosine of the outgoing
angle. This is necessary to take into account the fact that the receiver sees
the projected area of the light source. See Section 2.4.4 for information on
how to generate this direction.

TeamLRN

58 5. Photon Tracing

5.1.3 Square Light

Emission of photons from a square light source is similar to the procedure
for the spherical light. First a random position on the square is selected,
and then a random direction is selected. Similarly for a diffuse square light
the probability of selecting a given outgoing direction should be propor-
tional to the cosine of the outgoing angle (Equation 2.24).

5.1.4 Directional Light

A directional light is a non-physical light: no such concept exists in nature.
Nonetheless it can be a useful approximation for very distant lights such as
the sun. For directional lights we need to know the bounding volume (for
example, a sphere) around the entire model. A photon direction is found
by selecting a random position within the projected bounding volume. The
origin of this photon should be outside the bounding volume. Note that in
the case of directional lights, the power of the light source should be given
as radiant emittance, so that it is independent of the size of the scene. Each
photon still transports flux, but the projected area of the scene also needs
to be taken into account.

5.1.5 Complex Light

For a complex light with arbitrary shape and emission profile, the photons
should be emitted with a density proportional to the distribution of the
light source. Generating photons with a density that matches the emission
profile ensures that the power of the emitted photons is the same. This is
a good property that gives better photon map statistics (in particular for
the radiance estimate discussed in the next chapter).

The simplest way to handle a complex light source is to choose some
random position and direction on the light and then simply scale the power
of the photon according to the emission profile of the light. This may result
in photons that have highly varying power levels, and thus can reduce the
quality of the statistics of the photon map.

Another simple technique for handling complex lights is rejection samp-
ling. This works by picking a random photon (position and direction), and
computing the probability, p, of generating this photon (the intensity of
the light source in that direction divided by the total power of the light
source). Another random number, &, is then compared with p, and only if
& < pis the photon emitted; otherwise another random location and direc-
tion is selected. This technique may be slow for light sources with varying
intensity distributions, but it has the advantage that the emitted photons
with have the same power.

TeamLRN

5.1. Photon Emission 59

5.1.6 Multiple Lights

If the scene contains multiple light sources, photons should be emitted from
each light source. More photons should be emitted from brighter lights than
from dim lights, to make the power of all emitted photons approximately
even. One might worry that scenes with many light sources would require
many more photons to be emitted than scenes with a single light source.
Fortunately, it is not so. In a scene with many light sources, each light
contributes less to the overall illumination, and typically fewer photons
can be emitted from each light. If, however, only a few light sources are
important one might use visual importance [76, 105] to concentrate the
photons in the areas that are of interest to the observer. This is described
in more detail in Chapter 11.

5.1.7 Projection Maps

In scenes with sparse geometry, many emitted photons will not hit any ob-
jects. Emitting these photons is a waste of time. To optimize the emission,
projection maps can be used [40, 47]. A projection map is a map of the
geometry as seen from the light source. This map is made of many little
cells. A cell is “on” if there is geometry in that direction, and “off” if not.
For example, a projection map is a spherical projection of the scene for
a point light, and it is a planar projection of the scene for a directional
light. To simplify the projection it is convenient to project the bounding
sphere around each object or around a cluster of objects [47]. This also
significantly speeds up the computation of the projection map since we
do not have to examine every geometric element in the scene. The most
important aspect about the projection map is that it gives a conservative
estimate of the directions in which it is necessary to emit photons from the
light source. A conservative estimate is essential to ensure that we capture
all important effects such as caustics, which can be very localized.

The emission of photons using a projection map is very simple. One
can loop over the cells that contain objects and emit a random photon into
the directions represented by the cell. This method can, however, lead to
a biased result since the photon map can be “full” before all the cells have
been visited. An alternative approach is to generate random directions
and check if the cell corresponding to that direction has any objects (if
not a new random direction should be tried). This approach usually works
well, but it can be costly in sparse scenes. For sparse scenes it is better
to generate photons randomly for the cells which have objects. A simple
approach is to pick a random cell with objects and then pick a random
direction for the emitted photon for that cell [40]. In all circumstances it
is necessary to scale the power of the emitted photons based on the solid
angle of the active cells in the projection map [40].

TeamLRN

60 5. Photon Tracing

Another important optimization for the projection map is to identify ob-
jects with specular properties (i.e., objects that can generate caustics) [40].
As will be described later, caustics are generated separately, and since spec-
ular objects often are distributed sparsely, it is very beneficial to use the
projection map for caustics.

5.2 Photon Scattering

When a photon is emitted, it is traced through the scene using photon
tracing. Photon tracing works in exactly the same way as ray tracing, ex-
cept for the fact that photons propagate flux whereas rays gather radiance.
This is an important distinction since the interaction of a photon with a
material can be different than the interaction of a ray. A notable exam-
ple is refraction, where radiance is changed based on the relative index of
refraction [31]-—this does not happen to photons.

When a photon hits an object, it can either be reflected, transmitted,
or absorbed. Whether it is reflected, transmitted, or absorbed is decided
probabilistically based on the material parameters of the surface. The tech-
nique used to decide the type of interaction is known as Russian roulette. In
the following we will describe how to reflect a photon off different types of
materials and how to utilize the photons more efficiently by using Russian
roulette.

5.2.1 Specular Reflection

If a photon hits a mirror surface a new photon is reflected in the mirror
direction. Given a normal, 77, and an incoming direction, &’, the reflected
direction, &, is found as:

G =2 -&)i-d . (5.1)

where the incoming direction is assumed to point away from the intersec-
tion point. This equation is the same that is used in ray tracing to trace
specularly reflected rays. The power of the reflected photon should be
scaled by the reflectivity of the mirror (unless Russian roulette sampling is
used).

5.2.2 Diffuse Reflection

When a photon hits a diffuse surface it is stored in the photon map. The
direction of the diffusely reflected photon (from a Lambertian surface) is

TeamLRN

5.2. Photon Scattering 61

found by picking a random direction in the hemisphere above the intersec-
tion point with a probability proportional to the cosine of the angle with
the normal. The expression for this is given in Equation 2.24.

The power of the reflected photon is found by scaling the power of the
incoming photon with the diffuse reflectance (unless Russian roulette is
used).

5.2.3 Arbitrary BRDF Reflection

Given an arbitrary BRDF the new photon direction should be computed
by importance sampling the BRDF. For several reflection models the impor-
tance-sampling function can be found analytically. Examples includes
Ward’s anisotropic model [115] and Lafortune’s reflection model [59].

If the importance-sampling function is not available, then a random
direction can be selected. The power of the reflected photon should then
be scaled according to the BRDF as well as the reflectivity of the material.
Alternatively, it may be better to use rejection sampling similar to the
approach described for the complex lights.

Photon Scattering with Schlick’s Model

For Schlick’s model presented in Chapter 2 we need to pick the type of
reflection (Lambertian, glossy, or specular). This can be done using Russian
roulette as described in the next section. For the glossy reflection we do
not have a perfect importance-sampling function (only for the Z(t)A(w)
terms), so this factor has to be scaled with the geometrical factor G as
explained in Section 2.4.6.

5.2.4 Russian Roulette

A very important technique in photon tracing is Russian roulette. It is
a stochastic technique used to remove unimportant photons so that the
effort can be concentrated on the important photons. It is also used to
ensure that the stored photons have approximately the same power. This
is important for good quality of the radiance estimate that will be presented
in Chapter 7.

Russian roulette is a standard Monte Carlo technique introduced to
speed up computations in particle physics [101]. Russian roulette was in-
troduced to graphics by Arvo and Kirk [3].

The basic idea in Russian roulette is that we can use probabilistic samp-
ling to eliminate work and still get the correct result. It can be thought
of as an importance-sampling technique where the probability distribution
function is used to eliminate unimportant parts of the domain. Given a

TeamLRN

62 5. Photon Tracing

probability, p, that another radiance estimate, L,, is evaluated we find
that:

T
[o%]

Ln={5<7’ E (5.2)

otherwise 0

Here L is computed typically by tracing another ray. To see why this works
we can compute the expected value of the estimator for L:

E{L}:(l—p)-O—kp-%:E{L}. (5.3)

Here we see that the Russian roulette scheme does give us the right unbiased
estimate of L. The fact that we get the correct result even though we do
not evaluate all of the problem is important. It means that we can trace a
ray through a finite number of bounces and still obtain the correct result
as if the ray had been traced through an infinite number of bounces!

In the following we give some examples of the use of Russian roulette. It
is often used to decide whether a photon should be reflected, absorbed, or
transmitted, and to decide whether a reflected photon should be reflected
diffusely or specularly.

Reflection or Absorption?

Given a material with reflectivity d, and an incoming photon with power
®,, we can use Russian roulette to decide if the photon should be reflected
or absorbed. This is illustrated in the following pseudocode:

p=d probability of reflection
£ = random() £ € [0,1] is a uniformly distributed random number
if (£ <p)
reflect photon with power @,
else

photon is absorbed

The intuition behind this algorithin is very simple. Imagine shooting
1000 photons at a surface with reflectivity 0.5. We can either reflect 1000
with half the power, or we can reflect 500 photons with full power. Russian
roulette enables us to select those 500 photons. As shown by this example,
Russian roulette can be a powerful technique for reducing the computa-
tional requirements for photon tracing.

Specular or Diffuse Reflection?

Another simple example is in the case of a surface with both specular and
diffuse reflection. The diffuse reflectance is pg and the specular reflectance

TeamLRN

.

5.2. Photon Scattering 63

coefficient is ps (with pg + ps < 1). Again we use a uniformly distributed
random variable £ € [0, 1] and make the following decision:

€ €0, pdl — diffuse reflection
€ €lpa, ps + pa)] — specular reflection
& €lps + pa,1] — absorption

If the photon is reflected, the power should not be modified—correctness
is ensured by averaging several photon interactions over time.

Specular or Diffuse Reflection (RGB)?

With more color bands (for example, RGB colors), the decision gets slightly
more complicated. Consider again a surface with some diffuse reflection and
some specular reflection, but this time with different reflection coefficients
in the three color bands. To select the type of reflection we can use the
same approach as described in the previous section. For the reflectance
we can use the average diffuse reflectance, pg qvg, and the average specular
reflectance, pg qug:

Pd,r + Pd,g + Pdb

Pdavg = 3 (54)
Ps,avg — Pae = p;g i Reb . (55)

Here the subscripts r, g,b denote reflectance in the red, green, and blue
band respectively.
Using the average reflectance values we find that:

€ € [0, pa,avg] — diffuse reflection
€ €]pd.avgs Ps,avg + Pd,avg] — specular reflection
€ €]ps.avg + Pd,avg> 1] — absorption

To account for the fact that the reflection should have used a spectral
reflectance value, we need to scale the power of the reflected photon. If
specular reflection is chosen we get:

q)s.r — (I’i,r Ps‘r/ps,cwg
q)ﬁyg — q)i‘y ps,g/ps.m'_q
(I)s.b = ‘I)i..b Ps.b/ps.avg b

where (®;,,®;,,®;s) is the spectral power of the incoming photon, and
(®y.r, Ps g, Psp) is the spectral power of the reflected photon.

It is simple to extend the selection scheme also to handle transmission,
to handle more than three color bands, and to handle combinations of
multiple BRDFs.

TeamLRN

64 5. Photon Tracing

Why use Russian Roulette?

Why do we go through this effort to decide what to do with a photon?
Why not just trace new photons in the diffuse and specular directions and
scale the photon energy accordingly? There are two main reasons why the
use of Russian roulette is a very good idea. Firstly, we prefer photons
with similar power in the photon map. This makes the statistics of the
photon map much better. Secondly, if we generate, say, two photons per
surface interaction then we will have 2% photons after eight interactions.
This means 256 photons after eight interactions compared to one photon
coming directly from the light source! Clearly this is not good. We want
at least as many photons that have only 1-2 bounces as photons that have
made 5-8 bounces. The use of Russian roulette is therefore very important
in photon tracing.

There is one caveat with Russian roulette: it increases variance on the
solution. Instead of using the exact values for reflection and transmission
to scale the photon energy we now rely on a sampling of these values that
will converge to the correct result as enough photons are used.

More details on photon tracing and Russian roulette can be found
in [101, 88, 74, 28|.

5.3 Photon Storing

As already mentioned photons are stored only when they hit diffuse sur-
faces (or, more precisely, non-specular surfaces). The reason is that storing
photons on specular surfaces does not give any useful information: the
probability of having a matching incoming photon from the specular di-
rection is small (and zero for perfect specular materials); so, if we want to
render accurate specular reflections, the best way is to trace a ray in the
mirror direction using standard ray tracing. For all other photon-surface
interactions, data is stored in a global data structure, the photon map. Note
that each emitted photon can be stored several times along its path. Also,
information about a photon is stored at the surface, where it is absorbed
if that surface is diffuse.

It is important to realize that photons represent incoming illumination
(Alux) at a surface. This is a valuable optimization that enables us to use
a photon to approximate the reflected illumination at several points on a
surface even if the surface is textured (more details in Chapter 7).

Figure 5.4 shows the stored photons (estimated flux density) in the box
scene. Notice how the photons estimate the incoming illumination and how
the density is higher in regions with strong incoming illumination, such as
for the caustic below the glass sphere.

TeamLRN

1]

.3. Photon Storing 65

w

Figure 5.4. The photons stored in the box scene. The top picture shows the box
scene, and the lower image shows the photon hits. We used 100,000 photons in
this image. The photon hits represent incoming flux in the model. Each photon
shows the incoming flux density—the power of the photons multiplied by the local

photon density.

TeamLRN

The Photon Map
Data Structure

The photon map is a representation (a map) of all the stored photons in the
model. A fundamental aspect of the photon map is that it is decoupled from
the geometry in the model. This means that we do not associate photons
with certain geometry, but instead keep them in a separate structure. This
chapter describes the actual data structure used and efficient techniques
for representing and using it.

6.1 The Data Structure

Photons are only generated during the photon tracing pass. When the
image is rendered, the photon map is a static data structure that is used
to compute statistics of the illumination in the model. The statistics are
based on the nearest photons at any given point, and can be computed at
all locations in the model. In order for the photon-mapping algorithm to
be practical, the data structure has to be fast when it comes to locating
nearest neighbors in a three-dimensional point set. At the same time it
should be compact since we intend to use millions of photons.

TeamLRN 67

68 6. The Photon Map Data Structure

(a) (b)

Figure 6.1. A two-dimensional point set classified using (a) a kd-tree and (b) a
Voronoi diagram.

We can immediately discard simple structures such as multi-dimensional
arrays and lists, since searching through these for the nearest neighbors is
far too costly.

A simple data structure for maintaining proximity within a set. of points
is the three-dimensional grid in which a cube containing the photons is
divided uniformly along z, y, and z into a number of sub-cubes, each
containing a number of photons. A search for the nearest neighbors is
simply a matter of finding the right sub-cube and examining the photons
in the cube and perhaps the neighboring cubes. This strategy is near
optimal if data is uniformly distributed in three-dimensional space. This
is, however, not the case with the photons. Since photons are stored at
surfaces they will be distributed highly non-uniformly for most models.
Furthermore certain important light effects such as caustics can focus light
and thus generate a very high concentration of photons in a small volume.
This non-uniform nature of the photons makes the three-dimensional grid
impractical.

A data structure that is much better at handling the non-uniform dis-
tribution of photons is the kd-tree [5, 6, 7] (see Figure 6.1 (a)). The kd-tree
is a multi-dimensional binary search tree in which each node is used to
partition one of the dimensions (a one-dimensional kd-tree is simply a bi-
nary tree). The photon map is a three-dimensional point set and we need a
three-dimensional tree quite similar to the BSP-tree [104] to store the pho-
tons. Each node in the tree contains one photon and pointers to the left and
right subtrees. All nodes except for the leaf nodes have one axis-orthogonal
plane that contains the photon and cuts one of the dimensions (z, y, or z)
into two pieces. All photons in the left subtree are below this plane and
all photons in the right subtree are above the plane. This structure makes

TeamLRN

L% -

6.2. Photon Representation 69

it possible to locate one photon in the kd-tree with n photons in O(logn)
time on average but O(n) worst time if the tree is very skewed. If the tree
is balanced, the worst case time becomes O(logn). It has been shown that
on average the time it takes to locate the k nearest neighbors is on the
order of O(k + logn) [6] which, combined with the fact that kd-trees can
be represented very efficiently, makes makes the kd-tree a good candidate
for storing the photon map.

Another efficient, structure for solving nearest-neighborhood queries is
the Voronoi diagram [4, 8] (see Figure 6.1 (b))—the dual of the Delauney
triangulation. In the Voronoi diagram each node is linked to its nearest
neighbors (the natural neighbors). Locating the nearest points can be done
by starting at a random node (point) and then performing a directed walk
towards the node (point) of interest by recursively selecting the next node
as the one nearest to the point of interest. Having found the node, it
is trivial to make a recursive examination of the nearest neighbors. The
directed walk can be rather complex in three dimensions and to optimize it
one can construct a natural tree [119] (which is good for locating a specific
node) upon the Voronoi diagram. Voronoi diagrams support queries for k
nearest neighbors in O(k logn) time [4]. Furthermore the Voronoi diagram
can provide information on the density of the points—this information is
used when radiance is estimated (Chapter 7). Unfortunately the Voronoi
diagram requires O(n?) storage in three dimensions [4] which is too costly
for use with the photon map.

Given our requirements for efficiency, the kd-tree seems a natural choice
for the photon map. In addition to being a reasonably fast structure for
locating nearest neighbors, the kd-tree provides a very compact represen-
tation. In the following sections we will give the details of how to manage
the kd-tree, including how to balance the kd-tree and how to efficiently
locate the nearest photons in this balanced tree.

6.2 Photon Representation

For each photon-surface interaction, the position, incoming photon power,
and incident direction are stored.
Expressed in C the following structure is used for each photon [42]:

struct photon {

float x,y,Z; // position (3 x 32 bit floats)
char pl4]; // power packed as 4 chars

char phi, theta; // compressed incident direction
short flag; // flag used in kdtree

TeamLRN

70 6. The Photon Map Data Structure

The power of the photon is represented compactly as four bytes using
Ward’s shared-exponent RGB-format [114]. If memory is not of concern,
one can use three floats to store the power in the red, green, and blue color
band (or, in general, one float per color band if a spectral simulation is
performed).

The incident direction is a mapping of the spherical coordinates of the
photon direction to 65536 possible directions. They are computed as:

phi = 256 * atan2(dy,dx) / (2%PI)
theta = 256 * acos(dx) / PI

where atan2 is from the Standard C library. Recall that atan2(y,x) re-
turns the absolute angle (0 — 27) of the vector (x,y) with the positive -
axis. The direction is used to compute the contribution for non-Lambertian
surfaces [44], and for Lambertian surfaces it is used to check if a photon
arrived at the front of the surface. Since the photon direction is used often
during rendering, it pays to have a lookup table that maps the theta, phi
direction to three floats directly instead of using the formula for spherical
coordinates, which involves the use of the costly cos () and sin() functions.

A minor note is that the flag in the structure is a short. Only two bits
of this flag are used (this is for the splitting plane axis in the kd-tree),
and it would be possible to use just one byte for the flag. However for
alignment reasons it is preferable to have a 20-byte photon rather than a
19-byte photon—on some architectures it is even a necessity, since the float
value in subsequent photons must be aligned on a four-byte address.

We might be able to compress the information more by using the fact
that we know the cube in which the photon is located. The position is,
however, used very often when the photons are processed and, by using
standard float, we avoid the overhead involved in extracting the true posi-
tion from a specialized format.

During the photon-tracing pass, the photon map is arranged as a flat
array of photons. For efficiency reasons this array is reorganized into a
balanced kd-tree before rendering, as explained in Section 6.3.2.

6.3 The Balanced Kd-Tree

The complexity for locating one photon in a balanced kd-tree is O(log N),
where N is the number of photons in the tree. Since the photon map is
created by tracing photons randomly through a model, one might think that
a dynamically built kd-tree would be quite well-balanced already. However,
the fact that the generation of the photons at the light source is based
on the projection map combined with the fact that models often contain

TeamLRN

6.3. The Balanced Kd-Tree 71

highly directional reflectance models easily results in a skewed tree. Since
the tree is created only once and used many times during rendering, it is
quite natural to consider balancing the tree. Examples of using a balanced
versus an unbalanced kd-tree can be found in [44].

6.3.1 Memory Layout

The balanced kd-tree or more precisely left-balanced kd-tree can be rep-
resented very compactly by using a heap-like data structure [86]. In this
structure it is not necessary to store pointers to the sub-trees explicitly. In
the heap structure the array element at index 1 is the root, and element. i
has element 2i as left child and element 2i + 1 as the right child. Left-
balancing the tree ensures that the heap does not contain empty slots. Not
storing pointers saves eight bytes (on a 32-bit architecture), which is 40%
in the case of the compact 20-byte photon representation. This can lead
to substantial savings when a large number of photons is used.

6.3.2 Balancing Algorithm

Balancing a kd-tree is similar to balancing a binary tree. The main differ-
ence is the choice at each node of a splitting dimension. When a splitting
dimension of a set is selected, the median of the points in that dimension
is chosen as the root node of the tree representing the set, and the left and
right subtrees are constructed from the two sets separated by the median
point. The choice of a splitting dimension is based on the distribution of
points within the set. One might use either the variance or the maximum
distance between the points as a criterion. We prefer a choice based upon
maximum distance since it can be computed very efficiently (even though
a choice based upon variance might be slightly better). The splitting di-
mension is thus chosen as the one which has the largest maximum distance
between the points.

Figure 6.2 contains a pseudocode outline for the balancing algorithm [43].

To speed up the balancing process,it is convenient to use an array of
pointers to the photons. In this way only pointers need to be shuffled
during the median search. An efficient median search algorithm can be
found in most textbooks on algorithms—see for example [86] or [22].

The complexity of the balancing algorithm is O(N log N), where N is
the number of photons in the photon map. In practice, this step only takes
a few seconds even for several million photons.

TeamLRN

72 6. The Photon Map Data Structure

kdtree *balance(points) {
Find the cube surrounding the points
Select dimension dim in which the cube is largest
Find median of the points in dim
sl = all points below median
82 = all points above median
node = median
node.left = balance(sl)
node.right = balance(s2)
return node

Figure 6.2. Pseudocode for balancing the photon map.

6.4 Locating the Nearest Photons Efficiently

Efficiently locating the nearest photons is critical for good performance of
the photon-mapping algorithm. In scenes with caustics, multiple diffuse
reflections, and/or participating media, there can be a large number of
photon map queries.

6.4.1 Algorithm

Fortunately the simplicity of the kd-tree permits us to implement a simple
but quite efficient search algorithm. This search algorithm is a straightfor-
ward extension of standard search algorithms for binary trees [22, 86, 36]. It
is also related to range searching, where kd-trees are commonly used as they
have optimal storage and good performance [80]. The nearest-neighbors
query for kd-trees has been described extensively in several publications
by Bentley et al., including [5, 6, 7, 8]. More recent publications include
(80, 86]. Some of these papers go beyond our description of a nearest-
neighbors query by adding modifications and extensions to the kd-tree to
further reduce the cost of searching. We do not implement these extensions
because we want to maintain the low storage overhead of the kd-tree, as
this is an important aspect of the photon map.

Locating the nearest neighbors in a kd-tree is similar to range searching
[80] in the sense that we want to locate photons within a given volume. For
the photon map it makes sense to restrict the size of the initial search range,
since the contribution from a fixed number of photons becomes small for
large regions. This simple observation is particularly important for caustics
as they often are concentrated in small regions. A search algorithm that
does not limit the search range will be slow in such situations, since a
large part of the kd-tree will be visited for regions with a sparse number of
photons.

TeamLRN

6.4. Locating the Nearest Photons Efficiently 73

Given the photon map, a position x and a mazx search distance d?
this recursive function returns a heap h with the nearest photons.
Call with locate_photons(1) to initiate search at the root of the kd-tree.

locate_photons(p) {
if (2p+ 1 < number of photons) {
examine child nodes
Compute distance to plane (just a subtract)
8§ = signed distance to splitting plane of node n
if (<0 {
We are left of the plane—search left subtree first
locate_photons(2p)
if (62 <d?)
locate_photons(2p+1) check right subtree
} else {
We are right of the plane—search right subtree first
locate_photons(2p+ 1)
if (82 <d®)
locate_photons(2p) check left subtree
}

}
Compute true squared distance to photon
4% = squared distance from photon p to «
if (62 <d?) { Check if the photon is close enough?
insert photon into max heap h
Adjust maximum distance to prune the search
d? = squared distance to photon in root node of h

}
}

Figure 6.3. Pseudocode for locating the nearest photons in the photon map.

A generic nearest-neighbors search algorithm begins at the root of the
kd-tree and adds photons to a list if they are within a certain distance.
For the n nearest neighbors, the list is sorted such that the photon that is
furthest away can be deleted if the list contains n photons and a new closer
photon is found. Instead of naive sorting of the full list it is better to use
a max heap [80, 86, 36]. A max heap (also known as a priority queue) is a
very efficient way of keeping track of the element that is furthest away from
the point of interest. When the max heap is full, we can use the distance
d to the root element (i.e., the photon that is furthest away) to adjust the
range of the query. Thus we skip parts of the kd-tree that, are further away
than d.

Another simple observation is that we can use squared distances—we
do not need the real distance. This removes the need of a square root
calculation per distance check.

The pseudocode for the search algorithm is given in Figure 6.3. Appen-
dix B has the source code of an implementation of this routine.

TeamLRN

74 6. The Photon Map Data Structure

For this search algorithm it is necessary to provide an initial maximum
search radius. A well-chosen radius allows for good pruning of the search,
reducing the number of photons tested. A maximum radius that is too
low will, on the other hand, introduce noise in the photon map estimates.
The radius can be chosen based on an error metric or the size of the scene.
The error metric could, for example, take the average power of the stored
photons into account and compute a maximum radius from that, assuming
some allowed error in the radiance estimate.

A few extra optimizations can be added to the search routine: for exam-
ple, a delayed construction of the max heap to the time when the number
of photons needed has been found. This is particularly useful when the
requested number of photons is large.

TeamLRN

The Radiance Estimate

Given a photon map we can begin computing various types of statistics of
the illumination in the model. We have already seen how the density of the
photons indicates how much light a given region receives. In this chapter
we demonstrate how the photon map can be used to estimate the reflected
radiance at any surface location in the model.

7.1 Density Estimation

The photon map represents incoming flux in the model. Each photon
transports a fraction of the light source power, and a photon hit in a re-
gion indicates that this region is receiving some illumination from the light
source either directly or indirectly. However, based on a single photon we
cannot say how much light the region receives. This is given by the pho-
ton density, d®/dA, and to estimate the irradiance for a given region we
therefore need to compute the density of the photons.

The first methods using photon tracing [2, 87] used illumination maps
(similar to texture maps, but storing illumination instead of color) to bin
the photons. Later approaches used a tessellated version of the geometry
to store the photons [74]. In all of these approaches the individual photons

TeamLRN 75

76 7. The Radiance Estimate

are not stored explicitly. Instead the power carried by the photons is accu-
mulated for some local region. Knowing the area of this region immediately
gives an estimate of the photon density. This approach can be seen as a
histogram approach to density estimation.

Density estimation is a research area in statistics, and several books
have been written about density estimation problems [96, 97]. It is well
known that the histogram-based density estimation approach is inferior to
another class of density estimation approaches: the kernel density estima-
tion techniques. Kernel density estimation techniques operate directly on
the individual elements, in our case the photon hits, and use a local kernel
operator to smooth the estimate.

Storing the individual photon hits makes it possible to use kernel den-
sity estimation, but it also has several other advantages. The histogram
approach is only practical as long as the number of elements is not too
large. In addition all histogram approaches so far have been restricted to
Lambertian surfaces, where the incoming direction of the photons can be
ignored. This reduces the dimensionality of the density estimation prob-
lem and makes it possible to use fewer photons. Unfortunately, it limits the
simulation to consider only illumination on Lambertian surfaces. We re-
move the Lambertian surface restriction of previous approaches by storing
the incoming direction of the photons in the photon map.

The photon map is decoupled from the geometry. A similar decoupling
has not been demonstrated for the histogram approach. Storing illumina-
tion in illumination maps or with the geometry represents a tight coupling
with the geometry that puts a limitation on the complexity of the models
that the histogram methods can handle. In particular the histogram meth-
ods rely on a “good” bin size to get good statistics; for complex models
the size of the individual geometric elements can vary significantly. For
example, in a room the door handle might be modeled very accurately
with many tiny polygons. Getting good local statistics for these polygons
requires tracing enough photons through the model such that these poly-
gons each receive at least some photons. In most cases a histogram-based
approach will risk getting zero photons in small polygons, resulting in no
illumination, which can result in black pixels in the rendered image—for
high-quality image synthesis this is not acceptable. As a contrast, the use
of individual photons makes it possible to get a reasonable estimate of the
illumination at any point in the model regardless of the geometry. For
the door handle case, this means that we do not need a photon for every
polygon, but instead just a few photons to estimate the incoming flux in
the region around the door handle. The radiance estimate that is derived
in the next section is capable of providing an estimate of the illumination
even in situations where there are fewer photons than polygons.

TeamLRN

7.2. Derivation 77

7.2 Derivation

To compute reflected radiance at a surface location we need to evaluate the
expression for reflected radiance (from Section 2.5):

Ldaa)z/}qnﬁtamdnamﬁfﬁnmy. (7.1)

where L, is the reflected radiance at in direction &. €2, is the hemisphere
of incoming directions, f,. is the BRDF (see Section 2.4.2) at x, and L;
is the incoming radiance. For this integral we need information about the
incoming radiance. Since the photon map provides information about the
incoming flux, we have to rewrite this term. This can be done using the
relationship between radiance and flux:

d*®;(x,d")

L,’_(;F.u.)) = mm . {72)
and we can rewrite the integral as
= i d*®;(x,d") sy
{1z, = D) ————— (1 " dd'
Ly(z,d) jf(l_u,! J(ﬁm-ﬁ’)d&‘;dAt-(n &) d&
2,
3 (f2‘1> d*®i(z, '))
" ; T
- [rea =g i

The incoming flux ®; is approximated using the photon map by locating
the n photons that have the shortest distance to x. Each photon p has the
power A®,(d,) and, by assuming that the photon intersects the surface at
., we obtain

. 5) Ay (:y)
L.(z,d) = gf,_ T, Wy, W — g (7.4)

The procedure can be imagined as expanding a sphere around z until
it contains n photons (see Figure 7.1) and then using these n photons to
estimate the radiance.

Equation 7.4 still contains AA, which is related to the density of the
photons around z. By assuming that the surface is locally flat around x,
we can compute this area by projecting the sphere onto the surface and
use the area of the resulting circle. This is indicated by the grey area in
Figure 7.1 and equals:

AA = wr?, (7.5)

TeamLRN

78 7. The Radiance Estimate

Figure 7.1. Reflected radiance is evaluated by locating the nearest photons in the
photon map in order to estimate the local photon density. This approach can be
seen as expanding a sphere around the intersection point until it contains enough
photons. The photon density is estimated based on the surface area covered by the
sphere.

where r is the radius of the sphere—i.e., the largest distance between x and
each of the photons. This is equivalent to using a nearest-neighbor density
estimation technique [96].

The result is an equation that makes it possible to compute an estimate
of the reflected radiance at any surface location using the photon map:

N
Lo(z,@) ~ —5 Y frl@,&p, 0) A%, (2,5p) - (7.6)

The radiance estimate is based on many assumptions and the accuracy
depends on the number of photons used in the photon map and in the
formula. Since a sphere is used to locate the photons, one might easily
include wrong photons in the estimate, in particular in corners and at
sharp edges of objects. Edges and corners also cause the area estimate to be
wrong. The size of those regions in which these errors occur depends largely
on the number of photons in the photon map and in the estimate. As more
photons are used in the estimate and in the photon map, Equation 7.6
becomes more accurate. If we ignore the error due to limited accuracy
of the representation of the position, direction, and flux, then we can go
to the limit and increase the number of photons to infinity. This gives the
following interesting result where N is the number of photons in the photon
map:

[N?]

. 1 i . i’
Jim — Z; Frl@, @y, @) A®,(2,&,) = Lo(2,&) Y a€)0,1[. (7.7)

TeamLRN

Plate [. Path tracing can simulate full Plate 1[l. Finite element radiosity

global illumination, but often results in algorithms are good at simulating dif-

nooisy images as seen in this simple box fuse interreflection as seen in this

scene. (See Figure 3.5) replica of the widely used Cornellbox.
(See Figure 1.4)

Plate Ill. Photon mapping can simulate full global illumination in complex models
as seen in this rendering of an architectural model. (See Figure 1.2)

TeamLRN

Plate IV. A caustic through a glass of cognac. (See Figure 8.9)

TeamLRNPlate V. A clos up of the casutic in Plate V. (See Figure 8.10)

Plate V1. The box scene ray-traced. (See Figure 9.10)

Plate VTlearhkeRNx

12:30pm

6:30pm

Plate VIII. A rendering of a geometric model of Little Matterhorn with trees (200
million polygon) in the middle of the day and at sunset. We used just 100,000
photons for this model to simulate the illumination from the sun as well as the sky.
(See Figure 9.16)

TeamLRN

Plate IX. Sequence of rendered images from a simulation of smoke flowing past a
sphere (from [25]). (See Figure 10.11)

TeamLRN

7am Ham

10am Ipm

6pm 7pm
Plate X. A simulation of the lighting in the unbuilt “Courtyard House with Curved
Elements” by Ludwig Mies van der Rohe. (See Figure 9.17)

TeamLRN

{a) (b}

() (ch)

Plate XI. A weathering simulation of a granite sphinx from [23]. (a) is the fresh
granite, (h) shows erosion due to sall, (¢} shows reddening due to dissolved iron, and
(d) shows the combined weathering effect due to salt and iron. (See Figure 10.14)

TeamLRN

& 3

Plate XII.

A translucent marble bust. (See Figure 10.16)

’late X1, A diffuse rendering of the marble bust. (See Figure 10.17)
TeamL |N ! 5 5 d

7.2. Derivation 79

Figure 7.2. In corners the sphere location technique can include photons from the
wall that do not belong to the radiance estimate as shown on the left. To avoid this
problem the sphere can be compressed into a disc in the direction of the normal.

This formulation applies to all points z located on a locally flat part of a
surface for which the BRDF does not contain the Dirac delta function (this
excludes perfect specular reflection). The principle in Equation 7.7 is that
not only will an infinite number of photons be used to represent the flux
within the model, but an infinite number of photons will also be used to
estimate radiance, and the photons in the estimate will be located within
an infinitesimal sphere. The different degrees of infinity are controlled by
the term N® where a €]0,1[(the open brackets mean 0 < a < 1). This
ensures that the number of photons in the estimate will be infinitely fewer
than the number of photons in the photon map.

Equation 7.7 says that we can obtain arbitrarily good radiance estimates
by just using enough photons! In finite element-based approaches, it is more
complicated to obtain arbitrary accuracy, since the error depends on the
resolution of the mesh, the resolution of the directional representation of
radiance, and the accuracy of the light simulation.

Figure 7.1 shows how locating the nearest photons is equivalent to ex-
panding a sphere around z and using the photons within this sphere. It is
possible to use other volumes than the sphere in this process. One might
use a cube instead, a cylinder, or perhaps a disc. This could be useful to
obtain an algorithm that is either faster at locating the nearest photons or
perhaps more accurate in the selection of photons. If a different volume is
used, then AA in Equation 7.4 should be replaced by the area of the inter-
section between the volume and the tangent plane touching the surface at
2. The sphere has the obvious advantage that the projected area and the
distance computations are very simple and thus efficiently computed. A
more accurate volume can be obtained by modifying the sphere into a disc
(ellipsoid) by compressing the sphere in the direction of the surface normal
at x (shown in Figure 7.2) [43]. The advantage of using a disc would be
that fewer “false photons” are used in the estimate at edges and in corners.
This modification works pretty well at the edges in a room, for instance,
since it prevents photons on the walls to leak down to the floor. One is-

TeamLRN

80 7. The Radiance Estimate

Figure 7.3. If the radiance estimate is computed close to a wall, then the projected
area of the disc may not correctly represent the true area covered by the photons.
This problem can be eliminated by computing the convex hull of the photons or,
alternatively, it can be reduced via filtering.

sue that still occurs, however, is that the area estimate might be wrong or
photons may leak into areas where they do not belong. As illustrated in
Figure 7.3, this is the case at edges where a large part of the disc is inside
the wall. The projected area does not truly reflect the photon density in
this case. One way to eliminate this problem is to compute the convex hull
of the photons (there are several standard algorithms for this purpose [86]).
A simpler strategy is the use of filtering, which will be described later in
this chapter.

7.3 Algorithm

The pseudocode for computing the radiance estimate is shown in Figure 7.4.
It is a straightforward implementation of Equation 7.6. For Lambertian sur-
faces the code can be simplified further. The BRDF evaluation f,.(x,d’, pg)
can then be replaced with a simple dot product comparison to exclude pho-
tons hitting the backside of the surface.

7.4 Filtering

If the number of photons in the photon map is too low, the radiance esti-
mates become blurry at the edges of sharp features in the illumination. This
artifact can be pleasing when the photon map is used to estimate indirect
illumination for a distribution ray tracer (see Chapter 9 and Figure 9.7),
but it is unwanted in situations where the radiance estimate represents
caustics. Caustics often have sharp edges, and it would be nice to preserve
these edges without requiring too many photons.

TeamLRN

7.4. Filtering 81

radiance _estimate(=, &', 7) {
locate n nearest photons
r = distance to the nth nearest photon
Yflux = 0
for each photon p do {
pg = photon direction
$, = photon power
Yflux += fr(x,d’,pa) * $p

L, = Xflux/(2nr?)
return L,

Figure 7.4. Pseudocode for computing a radiance estimate for an incoming ray
with direction &’ hitting a surface location & with normal 7i. The n nearest photons
are located and evaluated using Equation 7.6.

To reduce the amount of blur at edges, the radiance estimate can be fil-
tered. The idea behind filtering is to increase the weight of photons that are
close to the point of interest, x. Since we use a sphere to locate the photons,
it would be natural to assume that the filters should be three-dimensional.
However, photons are stored at surfaces, which are two-dimensional. The
area estimate is also based on the assumption that photons are located
on a surface. We therefore need a two-dimensional filter (similar to image
filters) which is normalized over the region defined by the photons.

The idea of filtering caustics is not new. Collins [18] has examined
several filters in combination with illumination maps. The filters described
in the following are two radially symmetric filters: the cone filter and the
Gaussian filter [43], and the specialized differential filter introduced in [47].
For examples of more advanced filters see [68].

7.4.1 The Cone Filter

The cone filter [43] assigns a weight, wy., to each photon based on the
distance, d,,, between x and the photon p. This weight is:

d
Wpe = L= ﬁ) (78)

where k > 1 is a filter constant characterizing the filter and r is the maxi-
mum distance. The normalization of the filter based on a two-dimensional

TeamLRN

82 7. The Radiance Estimate

Figure 7.5. The caustic from a lens on a cube using 10,000 photons. The left
image is the unfiltered radiance estimate and has some blur at the edges. The right
image shows the result of using the cone filter with k = 1.1—note how the edges
are much sharper and more well-defined.

distribution of the photons is 1 — ﬁ and the filtered radiance estimate
becomes:

N
2: f,.{.:‘..J.‘p.J]A‘l‘jr,{,r.ﬁplu';,{.

p=1

Lp(z,&) = (7.9)

Ih'l’

)2

'[]":s

=

The effect of the cone filter is illustrated in Figure 7.5.

7.4.2 The Gaussian Filter

The Gaussian filter [43] has previously been reported to give good results
when filtering caustics in illumination maps [18]. It is easy to use the
Gaussian filter with the photon map since we do not need to warp the
filter to some surface function. Instead we use the assumption about the
locally flat surfaces, and we can use a simple Gaussian filter [75]; the weight
wyy of each photon becomes

U",,H — ¥ I —17_4 3 {Tl”:l
e—f

where d, is the distance between the photon p and x and o = 0.918 and
B = 1.953 (see [75] for details). This filter is normalized, and the only
change to Equation 7.6 is that each photon contribution is multiplied by

Wpg'

N
L (z,8) = Y fol@,dp, G) Ay (x, Gp)wpg - (7.11)

p=1

TeamLRN

7.5. Photon Gathering 83

7.4.3 Differential Checking

The differential checking approach is a technique for deciding how many
photons to include in the radiance estimate [47]. The idea is to detect
regions near edges in the estimation process and use fewer photons in these
regions. This may result in noise near the edges, but that is often preferable
to blurry edges.

The radiance estimate is modified based on the following observation:
when adding photons to the estimate, near an edge the changes of the
estimate will be monotonic. For example, if we are just outside a caustic
and we begin to add photons to the estimate (by increasing the size of the
sphere centered at x that contains the photons), then it can be observed
that the value of the estimate is increasing as we add more photons—
and vice versa when we are inside the caustic. Based on this observation,
differential checking can be added to the estimate —we stop adding photons
and use the estimate available if we observe that the estimate is either
constantly increasing or decreasing as more photons are added. In practice
this can be a bit tricky to control, and in general the cone filter or the
Gaussian filter are better to use.

7.5 Photon Gathering

The radiance estimate derived in this chapter uses density estimation to
compute reflected radiance from the photon map. This is not the only
method by which radiance can be estimated from the photon map.

Another approach which does not use density estimation is to consider
each photon as a light source (it is necessary to include the BRDF at the
position where the photon is stored). Photons that have been reflected n
times before being stored represent n + 1 bounces of indirect illumination.

To compute reflected radiance at a given point the photon map is sim-
ply used as a collection of lights in addition to the real light sources in the
model. Each light source and photon is sampled to compute the contribu-
tion to the reflected radiance. Since the photon map typically stores more
than 100,000 photons, this approach is very costly. It can be optimized
by randomly selecting photons instead of sampling all of them. This could
also be done using importance sampling by finding the most important
photons.

This photon gathering approach can be seen as a special case of bidirec-
tional path tracing where light rays are traced through multiple bounces.
The intersection locations of these light rays are cached and re-used mul-
tiple times.

TeamLRN

Visualizing the
Photon Map

The radiance estimate derived in the previous chapter allows us to begin
rendering images. The first step is building a photon map using photon
tracing as described in Chapter 5. This photon map can then be visualized
directly (via the radiance estimate) by using a simplified ray tracer. This
ray tracer uses the radiance estimate to compute the reflected radiance
from all diffuse materials and standard recursive ray tracing for specular
materials. This is illustrated in Figure 8.1.

Is this simple visualization a full solution to the rendering equation? To
answer this question we can look at the paths traced by the photons and
the rays and see if they cover the space of all paths.

L(S|D)#D are all the paths represented by the photon map.
(LS*E)|(DS*E) are all the paths traced by the ray tracer.

The combination of these paths shows that the method does indeed trace
all paths between the eye and the light source. Pure ray tracing handles the
case where the light is directly visible or seen through one or more specular

TeamLRN 85

86 8. Visualizing the Photon Map

Figure 8.1. The photon map can be visualized directly using a simple ray tracer.
For all diffuse surfaces the ray tracer uses the radiance estimate from the photon
map, whereas standard recursive ray tracing is used for specular surfaces.

reflections. The photon map combined with the ray tracer handles all the
cases where there is at least one diffuse reflection between the eye and the
light source. In particular, this approach can be used to render caustics
efficiently.

8.1 Rendering Caustics

Caustics are formed when light reflected from or transmitted through one or
more specular surfaces strikes a diffuse surface. As discussed in Chapter 3,
caustics and reflections of caustics are particularly difficult to handle with
standard Monte Carlo ray-tracing techniques. In contrast caustics are very
easy to compute using photon mapping.

In Figure 8.2 we see a simple example of a caustic. It is a glass ball on
a wood table. When light illuminates the glass ball, it is focused through
the ball and it forms a concentrated spot of light, a caustic, on the table.

We can simulate just the caustics by storing only the photons that
have been reflected or transmitted by the glass ball. The result of this
caustics simulation is shown in Figure 8.2 (a). This example uses just
10,000 photons in the photon map. Note that even this relatively small
number of photons results in a nice focused caustic, and it is very fast to
render.

TeamLRN

8.2. Rendering Color Bleeding 87

(a) (b)

Figure 8.2. A caustic is formed as light is focused through a glass ball onto a wood
table. Image (a) was rendered using photon mapping, and (b) was rendered using
path tracing.

In comparison Figure 8.2 (b) shows the same glass ball scene rendered
using path tracing with 1000 paths/pixel. Even with this large number of
rays and a rendering time that is several hundred times longer than for the
photon mapping example, we still get a very noisy caustic. This illustrates
the observation in Chapter 3 that Monte Carlo ray-tracing techniques have
problems simulating caustics and their mirror reflections (as seen in the
glass ball).

8.2 Rendering Color Bleeding

Having seen the success by which we could render caustics it seems natural
to try using the same approach to render other types of illumination, such
as color bleeding. Color bleeding is a result of light exchange between
diffuse surfaces— an example is the red glow on a white wall due to light
reflected off an adjacent red carpet. This type of illumination has typically
been simulated with finite element algorithms.

With photon mapping we can use the exact same approach as for caus-
tics. The result of such a simulation on the simple box scene is shown in
Figure 8.3.

Figure 8.3 (a) shows a simulation using just 10,000 photons in the pho-
ton map and 100 photons in the radiance estimate. Even this small number
of photons gives a reasonable estimate of the overall illumination in the
box (compared with the reference image in Figure 9.9). However, using
only 10,000 photons does give a number of unwanted artifacts, such as the
lack of detail as well as a bumpy appearance due to variance in the radi-
ance estimate. Compared to the 1,000,000 pixels in the rendered image,

TeamLRN

88 8. Visualizing the Photon Map

(a) (b)

Figure 8.3. The box scene simulated using a direct visualization of the photon
map. Image (a) uses 10,000 photons in the photon map and 100 in the radiance
estimate, and image (b) uses 500,000 in the photon map and 500 in the radiance
estimate.

10,000 photons is a low number, and it is sufficiently low that the assump-
tion about the surface being locally flat is no longer valid. A workaround
could be to remove this assumption and try estimating the photon density
using more accurate techniques. Another approach could be simply using
more photons.

A simulation with 500,000 photons in the photon map and 500 in the
radiance estimate is shown in Figure 8.3 (b). This image is clearly better
than the previous image with 10,000 photons. There is better detail, and
the artifacts along the edges have been reduced significantly.

To improve the results further one can use more photons. This strategy
has been advocated in a number of papers [93, 113] under the name density
estimation. To obtain good quality these techniques often nse more than
100 million photons and more than 10,000 photons in the density estimate.
Due to this extreme number of photons, the underlying structures are dif-
ferent from those used in the photon map. Density estimation uses a large
file on a local hard disk to store all the photons. Each photon is stored with
just a hit position within a given triangle. This data can be represented us-
ing just six bytes, and this makes it possible to store more than 100 million
photons. The photons are later processed per triangle in order to estimate
irradiance (only for Lambertian surfaces since the incoming direction of
the photon is not stored). The density estimation algorithm can be used to
capture fine detail in caustics and indirect illumination, but the processing
time is very high. Tracing and processing several hundred million photons
takes several hours or even days for complex scenes. Furthermore, it would
be even more costly to include non-diffuse surfaces in the algorithm. But

TeamLRN

8.3. Fast Approximations 89

Figure 8.4. A simulation of global illumination in the box using 10,000 photons in
the photon map and 500 photons in the radiance estimate. For this image we used
only the photon map to compute the indirect illumination. The direct lighting is
computed using standard ray-tracing techniques. Even though the indirect lighting
is blurry (in particular the caustic below the glass sphere) the overall quality of the
illumination is reasonable.

for complex scenes with diffuse surfaces, density estimation can be used to
compute accurate walkthrough solutions [113], and for this purpose it is
probably more practical than finite element methods.

8.2.1 Excluding Direct lllumination

Another technique for improving the accuracy of the rendered image is to
use the photon map only for indirect illumination, and then use ray tracing
to compute the direct illumination. This is similar to strategies used for
radiosity [87] to improve the accuracy of shadow boundaries. For scenes
that are dominated by indirect illumination this approach is less useful, and
a large number of photons may still be necessary for accurate simulations.
But for simple scenes it does give a relatively practical approach that is
fairly robust. See Figure 8.4 for an example of this approach.

8.3 Fast Approximations

In the previous section it was shown how increasing the number of pho-
tons in the photon map can be used to simulate color bleeding accurately.

TeamLRN

90 8. Visualizing the Photon Map

Figure 8.5. A fast simulation of the box scene. This example was rendered faster
than just using ray tracing. The trick is to use only 200 photons in the photon map
and 50 in the radiance estimate. A consequence of this simple approximation is
that the illumination is very blurry (even the shadows are missing).

Increasing the number of photons does, however, increase both the time it
takes to build the photon map and the time it takes to render the image.
What if we are just interested in an approximate representation of the in-
direct illumination? Can we go in the other direction using fewer photons
and get fast results? One technique for obtaining a fast approximation is
to use very few photons. This results in a blurry estimate, which for some
applications may be acceptable.

Figure 8.5 shows a simulation of the box scene using just 200 photons
in the photon map and 50 photons in the radiance estimate. The illumi-
nation is very blurry and as a consequence the shadows and the caustics
are missing, but the overall illumination is approximately correct, and this
visualization is representative of the final rendering shown in Figure 9.9.
This image was rendered faster than the ray-tracing image, and the main
reason is that we are using ray tracing only to compute the first intersection
and the mirror reflections and transmissions. The cost of using the photon
map is almost negligible in this example.

Another fast visualization technique [68, 111] for walkthroughs com-
putes irradiance from the photons only at the vertices of a mesh. The
photons can also be used to refine the mesh where necessary.

TeamLRN

8.4. Caustics Examples 91

Figure 8.6. Cardioid-shaped caustic due to reflection inside a metal ring.

8.4 Caustics Examples

As shown in this chapter, directly visualizing the photon map works best
for caustics, and the examples for this chapter are all related to caustics.

8.4.1 Reflection Inside a Ring

Figure 8.6 shows a caustic formed on a table due to light reflected inside a
metal ring. This cardioid-shaped caustic can be observed very often among
real objects—for example, on the bottom of a coffee cup or by placing a
metal ring on a table. The caustic was simulated using 50,000 photons.
The reason why we can use this relatively small number of photons is that
they are stored where the caustic is most intense.

8.4.2 Prism with Dispersion

The classic example of dispersion with a glass prism is shown in Figure 8.7.
Here dispersion is simulated by using a different index of refraction for
each of the three “wavelengths” corresponding to red, green, and blue.
Even though only three separate wavelengths have been sampled, the color
variations in the caustics are smooth. An accurate color representation
would require more wavelength samples; such an extension to the photon
map is easy to implement. 500,000 photons were used in the caustics and
80 photons were used in the radiance estimate.

TeamLRN

92 8. Visualizing the Photon Map

Figure 8.7. Caustics through a prism with dispersion.

8.4.3 Caustics on a Non-Lambertian Surface

Figure 8.8 shows one of the standard models used to illustrate caustics.
The cardioid caustic is formed by placing a light source on the edge of a
cylinder which has a reflective inner side. The incoming direction of the
light at the edge of the cardioid equals the tangent to the cardioid. This
information is useful for analyzing the changes as we change the reflective
properties of the receiving surface. It allows us to predict how the caustic
should look as the surface becomes more glossy. The figure contains four
rendered images showing how the caustic looks as we change the roughness
(using Schlick’s reflection model) of the surface from 1 to 0.01. As expected
the intensity of the caustic is reduced most greatly in those parts where the
incoming direction of the light differs most from the incoming direction of
the viewing ray. We used approximately 340,000 photons in all four images
corresponding to 7 MB of memory.

8.4.4 A Glass of Cognac on a Rough Surface

Figure 8.9 demonstrates the caustic from a glass of cognac onto a sand
surface. The sand is a procedural surface (with 22! triangles) with a syn-
thetic sand texture. We used Schlick’s reflection model with ¢ = 0.6 for
the sand —using a Lambertian approximation makes the sand look more
unnatural and fat.

TeamLRN

8.4. Caustics Examples 93

Figure 8.8. Four images demonstrating the looks of the cardioid caustic created
as light is reflected inside a cylinder ring. The receiving surface is changed from
Lambertian (top left) to glossy specular (lower right). For this purpose we used
Schlick’s reflection model with & = 1.0, 0.5, 0.1, and 0.01 (from top left to lower
right).

Figure 8.9. A glass of cognac on a sand surface. The sand is a fractal surface with
a synthetic sand texture. Schlick’s reflection model with a roughness o = 0.6 was
used for the sand. (See Color Plate IV.)

TeamLRN

94 8. Visualizing the Photon Map

Figure 8.10. Close-up of the caustic in Figure 8.9. Notice that all of the-illuminated
! 5

area below the glass is part of the caustic. The shadow boundary below the cognac

glass is simulated with the photon map whereas the shadow outside the glass is

computed using standard ray-tracing techniques. (See Color Plate V.)

The caustic in this image was rendered using approximately 350,000 pho-
tons. Notice how the red-looking caustic is formed as light is transmitted
through several layers of glass and cognac. The intensity of each photon is
modified based on the distance it moves through the glass and cognac media
(using Beer’s law). Figure 8.10 is a close-up of the caustic in Figure 8.9.

TeamLRN

A Practical
Two-Pass Algorithm

In the previous chapters a number of tools and techniques were developed
for building and using a photon map. In this chapter we show how to com-
bine these techniques into an efficient and practical two-pass algorithm [42].
In this chapter we will ignore the presence of participating media (tech-
niques for handling participating media are presented in Chapter 10).

9.1 Overview

The two steps in the algorithm are:
Pass 1 : Building the photon maps using photon tracing.

Pass 2 : Rendering using these photon maps.

Unlike the previous chapter, the rendering method here is a distribution
ray tracer that computes both the direct and the indirect illumination
(except for caustics). This makes it possible to render accurate images
using a small number of photons.

TeamLRN 95

96 9. A Practical Two-Pass Algorithm

We first show mathematically how to split the rendering equation into
several components that can be computed separately. In the following
sections, we describe how each of these components can be evaluated effi-
ciently.

9.2 Solving the Rendering Equation

As shown in Section 2.5 the outgoing radiance, L,, at a given surface
location, x, can be computed as:

Lo(z,&) = Le(z,&) + Li(2,&) , (9.1)

where the reflected radiance, L,, is computed by the following integral:
Li(zydd) = / folz, &' &) Ly(z,d') (& - 1) da’ . (9.2)
Q

To evaluate this integral efficiently it is worth considering the properties of
the BRDF, f,, and the incoming radiance, L;.

The BRDF is often a combination of two components: a smooth (dif-
fuse) and a sharp (specular) component. This information is very useful
when evaluating the BRDF, and we therefore split the BRDF into the sum
of two terms: a specular/glossy term, f.g, and a diffuse term, f.p (note
that these do not have to be Lambertian f,. 4 or perfect specular f;.s):

frl(@, @, @) = frs(2,&,&) + frp(x, &, &) (9.3)
Similarly the incoming radiance is the sum of three components:
Li(z,&) = Lij(z,d") + Lic(x,&") + Lia(, o', (9.4)
where
o L;(x,&) is direct illumination from the light sources.

o L, .(x,&') is caustics—indirect illumination from the light. sources via
specular reflection or transmission.

o L; 4(z,&') is indirect illumination from the light sources that has been
reflected diffusely at least once.

We can combine our classifications of the BRDF and the incoming ra-
diance and split the expression for reflected radiance into a sum of four
integrals:

TeamLRN

9.3. Pass 1: Photon Tracing 97
L.(z,&) = /f, &) Li(z,&')(& - i) d’
- /fru &) Lig(w, &)@ - 7) d +
fv s(2,@',@)(Lic(®,d") + Li a(x, &))@ - 7) dd’ +
f, plz, &, &) Li.o(z, &)@ - 77)dd +
/f, @'\ @)L g(z, &) (& - i) dd’ . (9.5)

This is the equation used whenever we need to compute the reflected
radiance from a surface. In the following sections we discuss the evaluation
of each of the integrals in the equation in more detail.

9.3 Pass 1: Photon Tracing

As shown in the previous section the incoming radiance is split into a sum
of several components. In particular there is a caustics component and an
indirect illumination component.

We have already seen how caustics are difficult to compute using stan-
dard Monte Carlo ray-tracing techniques, whereas the photon map is very
efficient for caustics. For efficiency reasons it is therefore desirable to have
a caustics photon map that only represents caustics. In addition we can use
a global photon map to represent all illumination including caustics and di-
rect illumination. It will become clear in the rendering section (Section 9.4)
why this is useful.

9.3.1 The Caustics Photon Map

The caustics photon map contains photons that have been reflected or
transmitted via one specular surface before hitting a diffuse surface. In the
path notation these are LS+D.

Figure 9.1 illustrates the computation of the caustics photon map. Pho-
tons are emitted toward the glass sphere and stored as they hit the diffuse
floor in the model. Once a caustic photon hits a diffuse material, it is
terminated. Diffuse materials do not generate caustics.!

I For scenes with strong indirect illumination it may be useful to allow caustic photons
to reflect diffusely also. This might make it possible to render caustics due to indirect
illumination more efficiently. Here, these types of “caustics” are rendered using Monte
Carlo ray tracing.

TeamLRN

98 9. A Practical Two-Pass Algorithm

Figure 9.1. The caustics photon map is built by tracing photons only towards the
specular surfaces in the model. All photons that are reflected or transmitted by a
specular surface will be stored if they hit a diffuse surface. Once a photon hits a
diffuse surface it is terminated.

The caustics photon map is used to render caustics that are seen directly
by the eye, and it should therefore be of high quality. This means containing
enotigh photons such that the amount of blur and other potential artifacts
are reduced to an acceptable minimum. Fortunately, caustics are often
focusing phenomena, in which case even very few photons can give good
results.

To build the caustics photon map quickly it pays off to concentrate
the emitted photons in the directions toward the specular surfaces. These
can either be identified by the renderer, or for more control, explicitly
(meaning that a person specifies exactly which objects generate caustics).
For artistic control this concept can be extended such that the renderer
only allows such objects to actually generate caustics. Similarly it may be
useful to place constraints on which objects can receive a caustic. This
would allow an animator to specify, for example, that a glass of cognac
should create a caustic only on a table. This information gives more control
to the animator, but it also makes it possible to make the renderer faster
by computing only a limited number of caustics.

The projection map is particularly useful for computing caustics. It is
often the case that a model contains a small object (such as a glass) that
creates a caustic. The projection map makes it possible to concentrate the
emitted photons towards this small object. This is better than using a sto-

TeamLRN

9.3. Pass 1: Photon Tracing 99

S
/ 3

@ ¢

AN | “

\\\ I;I, \\\\

A / N
'~.\ X \\
m_____h_ \\\. .;.;'I.' P \\
T & \.

Figure 9.2. The global photon map is created by tracing photons towards all objects
in the model. During photon tracing all surfaces can reflect and transmit photons.
All photons that hit a diffuse surface are stored in the global photon map.

chastic approach, which might miss important caustic generators. Caustics
in particular can be very intense even from small objects, and the projec-
tion map can give very good speedups while ensuring that these important
caustics are simulated.

9.3.2 The Global Photon Map

The global photon map contains all photons that hit diffuse surfaces in
the model. The photons in the global photon map represent direct illu-
mination, indirect illumination, and caustics (in path notation: L(S[D)*D).
This obviously means that we cannot just add the caustics photon map
and the global photon map to get a full solution. The rendering step must
be careful not to add terms twice.

The global photon map is built by tracing photons towards all objects
in the model and storing these as they hit diffuse surfaces. Diffuse surfaces
also reflect photons, unlike the caustics photon map. This is shown in
Figure 9.2.

The ideas and optimizations that apply to the caustics photon map also
work for the global photon map. The renderer does not have to identify
specular surfaces, but it might still be useful to build in tools to allow
a technical director to control which surfaces should generate indirect il-
lumination and which surfaces should display indirect illumination. The

TeamLRN

100 9. A Practical Two-Pass Algorithm

Figure 9.3. The radiance through a pixel is estimated by tracing a ray from the eye
through the pixel and computing the reflected radiance at the first surface intersected
by the ray.

projection map is still useful for the global photon map in order to con-
centrate emitted photons towards the geometry (for example, in a model
where light sources are far away from the geometry).

9.4 Pass 2: Rendering

The final image is rendered using distribution ray tracing, in which the ra-
diance of each pixel is evaluated by averaging a number of sample estimates.
Each sample estimate is computed by tracing a ray from the eye through
a pixel into the scene (see Figure 9.3). At the first surface intersected by
the ray we evaluate Equation 9.5.

In the following it will be explained how each component of Equation 9.5
is computed. We distinguish between two different types of computations:
an accurate and an approximate.

The accurate cm'npﬁtatinn is used if the surface is seen directly by the
eye or perhaps via a few specular reflections. It is also used if the distance
between the ray origin and the intersection point is below a small threshold
value—to eliminate potential inaccurate color bleeding effects in corners.
The approximate evaluation is used if the ray intersecting the surface has
been reflected diffusely since it left the eye or if the ray contributes little
to the pixel radiance.

TeamLRN

9.4. Pass 2: Rendering 101

v

T

Figure 9.4. Direct illumination is evaluated accurately using ray tracing. A shadow
ray is traced between the light source and the point of interest to determine if the
point is illuminated or in shadow.

9.4.1 Direct lllumination

Direct illumination is given by the term
] folz, &, &) Liy(2,&") (& - 7) ', (9.6)
ﬂ,._

and it represents the contribution to the reflected radiance due to direct
illumination. This term is often the most important part of the reflected
radiance and it has to be computed accurately, since it determines lighting
effects to which the eye is highly sensitive, such as shadow edges.

The accurate computation of the direct illumination is quite simple in
ray-tracing-based methods. At the point of interest, shadow rays are sent
towards the light sources to test for possible occlusion by objects. This
is illustrated in Figure 9.4. If a shadow ray does not hit an object, the
contribution from the light source is included in the integral; otherwise it
is neglected. For large area light sources, several shadow rays are used to
properly integrate the contribution and correctly render penumbra regions.
This strategy can, however, be very costly, since a large number of shadow
rays is needed to properly integrate the direct illumination.

It is also possible to use an extension to the photon-mapping algorithm
in which shadow photons are used to classify regions with full illumination,
penumbra, and shadow [46]. Shadow photons are photons with negative

TeamLRN

102 9. A Practical Two-Pass Algorithm

power created by tracing photons from the light source through objects
and storing them on diffuse surfaces. By examining the local distribution
of shadow photons and photons coming directly from the light source, it
is possible to quickly estimate the shadow properties of a given region.
This approach can lead to considerable speedups in scenes with large area
light sources that are normally very costly to render using standard ray
tracing. The approach is stochastic though, so it might miss shadows from
small objects in case these aren’t intersected by any photons. This is a
problem with all techniques that use stochastic evaluation of visibility. See
Section 11.5 for more detail on the shadow photon approach.

The approximate evaluation of the direct illumination is the radiance
estimate obtained from the global photon map (no shadow rays or light
source evaluations are used!). This is seen in Figure 9.7 where the global
photon map is used in the evaluation of the incoming light for the secondary
diffuse reflection.

9.4.2 Specular and Glossy Reflection

Specular and glossy reflection is computed by evaluation of the term

frs(@, &, &) (Lio(2,&') + Lig(x,d")) (& - 71) da’ . (9.7)
Q.

The photon map is not used in the evaluation of this integral since it
is strongly dominated by f, s, which has a narrow peak around the mirror
direction. Using the photon map to optimize the integral would require
a huge number of photons in order to make a useful classification of the
different directions within the peak of f,. s (we have shown that this can
be done in Figure 8.8). To save memory this strategy is not used, and
the integral is evaluated using standard Monte Carlo ray tracing optimized
with importance sampling based on f,. 5. This is still quite efficient for
glossy surfaces and the integral can in most situations be computed using
only a small number of sample rays. This is illustrated in Figure 9.5.

9.4.3 Caustics

Caustics are represented by the integral
[frp(@, & @) Li o(z, &')& - 7) d’ . (9.8)
s-23:

The evaluation of this term is dependent on whether an accurate or an
approximate computation is required.

TeamLRN

9.4. Pass 2: Rendering 103

Figure 9.5. Specular and glossy reflections or transmissions are evaluated using
recursive ray tracing. Ray tracing is good at integrating the contribution from the
narrow peak in the BRDF. For glossy reflections it is possible to use a photon map,
but this would require a large number of photons to get an accurate directional
estimale.

For an accurate computation, the term is evalnated using a radiance
estimate from the canstics photon map (see Figure 9.6). The number of
photons in the caustics photon map is large, and we can expect good qual-
ity of the estimate. Caustics are never computed using Monte Carlo ray
tracing, since this is a very inefficient method when it comes to rendering
caustics.

The approximate evaluation of the caustics term is included in the ra-
diance estimate from the global photon map.

9.4.4 Multiple Diffuse Reflections
The last term in Equation 9.5 is
fenl(z, & @)L q(z,&") (& - i) dd’ . (9.9)
Ja,

This term represents incoming light that has been reflected diffusely at
least once since it left the light source. The light is then reflected diffusely
by the surface (using f, p). Consequently the resulting illumination is very
i, L4 1Y

soft”.

TeamLRN

104 9. A Practical Two-Pass Algorithm

Figure 9.6. Caustics seen directly by the eye are rendered using the radiance
estimate from the caustics photon map. No additional rays are traced.

The aceurate evaluation of the integral is caleulated using Monte Carlo
ray tracing. Monte Carlo ray tracing is normally expensive for comput-
ing diffuse indirect illumination, but this integral has several properties
that make it simpler. The indirect illnmination is very smooth, since we
have separated out canstics (computed using the causties photon map).
Canstics are often the main source for noise in Monte Carlo ray tracing.
FFurthermore, we can use information in the photon map about the incom-
ing Hux at . This allows us to importance-sample not only according to
the BRDF, but also according to the incoming lighting [41]. The details of
this approach are deseribed later in Chapter 11. Another very important
optimization for Lambertian surfaces is the use of irradiance caching. Irra-
diance caching is a method that enables sparse evaluations of the irradiance
by interpolating from previously cached values [118]. This method is also
described in more detail in Chapter 11.

The approximate evaluation of indirect illhimination is computed us-
ing the radiance estimate from the global photon map. Notice that this
radiance estimate can be combined for canstics, direct illmmination, and
indirect. ilhnnination this is the reason why the global photon map con-
tains all the types of illnmination. The computation of indirect diffuse
ilhunination is illustrated in Figure 9.7,

9.5 Examples

The following pages contain several images and examples demonstrating
the two-pass photon-mapping technicque.

TeamLRN

9.5. Examples 105

Figure 9.7. Indirect diffuse illumination is evaluated accurately by distribution ray
tracing, where a number of sample rays are used to estimate the incoming light. For
approximate evaluations (when these sample rays intersect another diffuse surface)
the radiance estimate from the global photon map is used.

9.5.1 The Four Rendering Components

The four components (direct, specular, caustics, and indirect ilhnninat ion)
are shown in Figure 9.8 for the box scene (with a mirror ball to the loft
and a glass ball to the right). The sum of these four components (images)
is the full global illumination solution shown in Figure 9.9.

For comparison the image in Figure 9.10 is a classic ray-tracing solution.
Figure 9.11 includes soft shadows (distribution ray tracing), and Figure 9.12
includes eaustics. Note that only the full global illumination solution in
Figure 9.9 is capable of capturing the indirect illumination of the ceiling in
the box.

9.5.2 Fractal Box

An example of a more complex scene is shown in Figure 9.13. The walls
have been replaced with displacement-mapped surfaces (generated using
a fractal midpoint subdivision algorithm) and the model contains more
than 1.6 million elements. Notice that each wall segment is an instanced
copy of the same fractal surface. With photon maps it is easy to take
advantage of instancing, and the geometry does not have to be explicitly
represented. We used 200,000 photons in the global photon map and 50,000

TeamLRN

106 9. A Practical Two-Pass Algorithm

Direct illumination Specular reflection

Caustics Indirect ilhmnmination

Figure 9.8. The different components of the rendered solution.

in the canstics photon map. This is the same munber of photons as in the
simple box scene, and our reasoning for choosing the same values is that
the complexity of the ilhinination is more or less the same as in the siimple
box scene. We want to capture the color bleeding from the colored walls
and the indirect illumination of the ceiling. All in all we used the same
parameters for the photon map as in the simple box model.

9.5.3 Box with Water

In the box scene in Figure 9.14 we have inserted a displacement-imapped
water surface. To render this scene we nused 500,000 photons in both the
caustics and the global photon map, and up to 100 photons in the radiance
estimate. We used a higher munber of caustic photons due to the water
surface, which causes the entire floor to be illuminated by the photons
in the caustics photon map. Also the number of photons in the global
photon map has been increased to account for the more complex indirect
illmmination in the scene. The water surface is made up of 20,000 triangles.

TeamLRN

9.5. Examples 107

Figure 9.9. The box scene with full global illumination. (See Color Plate V1)

Figure 9.10. The box scene ray-traced. (See Color Plate VL)

TeamLRN

108 9. A Practical Two-Pass Algorithm

Figure 9.11. The box scene with soft shadows.

Figure 9.12. The box scene with caustics.

TeamLRN

9.5. Examples 109

Figure 9.13. Fractal box.

Figure 9.14. Box with water.

TeamLRN

110 9. A Practical Two-Pass Algorithm

Figure 9.15. Two bunnies represented using points. The shape of each bunny
is represented using roughly 35,000 points. Using a technique for ray tracing
points [84], we can compute global illumination and caustics for this model us-
ing photon mapping. Notice the caustic on the wood bunny—here the photons are
stored on a point cloud.

9.5.4 Global lllumination on a Point Cloud

Figure 9.15 demonstrates a simulation of global illumination in a model
with point-sampled geometry. Each bunny is represented using less than
35,000 points. Using a technique for ray tracing points (introduced in [84])
we can store photons on this geometry. This allows us to simulate caustics
on the point-sampled wood bunny due to light focused through the point
sampled glass bunny.

9.5.5 A Mountain Landscape

Figure 9.16 demonstrates a mountain landscape (Little Matterhorn) illumi-
nated with sky and sunlight. To represent the illumination of the landscape,
we used approximately 100,000 photons emitted both from the sun as well
as the skyv. The low number of photons compared with the high number of
polygons (200 million) is possible due to the relatively simple illumination
configuration.

TeamLRN

9.5. Examples 111

12:30pmn

6:30pm

Figure 9.16. A rendering of a geometric model of Little Matterhorn with trees (200
million polygons) in the middle of the day and at sunset. We used just 100,000
photons for this model to simulate the illumination from the sun as well as the sky.
(See Color Plate VIIL.)

9.5.6 The Courtyard House by Mies van der Rohe

Photon mapping makes it possible to simulate global illumination in com-
plex models, such as the architectural model shown in Figure 9.17. The
images are from an animation [49] that demonstrates how the natural light-
ing (skylight and sunlight) of a model changes during a day.

TeamLRN

112 9. A Practical Two-Pass Algorithm

Tam Sam

10am dpm

Gpim Tpm

Figure 9.17. A simulation of the lighting in the unbuilt “Courtyard House with
Curved Elements” by Ludwig Mies van der Rohe. (See Color Plate X.)

TeamLRN

Participating Media

In the previous chapters it was assumed that all photon interactions hap-
pen at surfaces. This is only the case in a vacuum. Even clean air scatters
photons — this is the reason why the sky is blue. Often, we can ignore the
presence of clean air in a model, but this is no longer the case for large (out-
door) models or when the air is filled with dust and other particles. Dusty
air, clouds, and silty water are all examples of participating media, and the
presence of these phenomena requires new light transport techniques.

Another class of participating media is translucent materials such as
marble, skin, and plants. To perform a full simulation of the subsurface
scattering inside such materials, it is necessary to solve the same basic
equations as in the case of general participating media.

Photon mapping is very good at handling participating media, and it
was the first method that demonstrated a full simulation of subsurface
scattering in graphics [23, 50], and the first method to efficiently simulate
volume caustics [48].

Before going into the details of how to use photon mapping in partici-
pating media this chapter begins by reviewing the light transport properties
of participating media.

TeamLRN 113

114 10. Participating Media

10.1 Light Scattering in Participating Media

When a photon enters a participating medium, it can either continue unaf-
fected through the medium or it can interact with the medium at a given
location. When a photon interacts with a medium one of two things can
happen: it is either absorbed or scattered. The probability of a photon
being either scattered or absorbed as it moves through a medinm is given
by the scattering coefficient, o, and the absorption coefficient, o,. For
a light ray moving through the medium, this can be seen as a continuous
change in the radiance of the ray.

The change in radiance, L, in the direction, &, due to out-scattering is
given by the following equation:

(@-V)L(z,d) = —os(z)L(z,d) , (10.1)
and the change due to absorption is:
(- V)L(z,d) = —0q(z)L(z,d) . (10.2)

As it can be seen from these equations the radiance is reduced due to light
being either scattered or absorbed. The combined loss in radiance is given
by:

(&-V)L(z,&d) = —oy(x)L(x,d) , (10.3)

where a; = g, + 0, is the extinction coefficient.

As we move through the media there will also be a gain in radiance
due to in-scattering of light. The change of radiance due to in-scattering
is given by:

(@ V)L(z,d) = 04(z) / pla, &, &) Li(z, &) d' (10.4)
9. Jrpm

where the incident radiance, L;, is integrated over all directions on the
sphere, Q. p(z,d’,d) is the phase function describing the distribution of
the scattered light.

Finally, there can be a gain in radiance due to emission, L., from the
medium (i.e., a flame), and it is given by:

(&J-V)L(z,0) = o4(x)Lo(2,&) . (10.5)

By combining Equations 10.3, 10.4, and 10.5 we find the total change
in radiance per unit distance:

(b-V)L(x,&d) = oq4(x)Le(z,d)— oi(x)L(x,d) +
r}'s(.r')/ ple, &, &) Li(x,&") did’. (10.6)
Sy

TeamLRN

10.2. The Volume Rendering Equation 115

10.2 The Volume Rendering Equation

By integrating Equation 10.6 on both sides for a segment of length s, and
adding the contribution of incoming radiance from the other side of the
medinm we find that:

L(z,d) = j e~ @) g (2 Le(2') dx’ +
0

/ r-_T[-"»'f"’as(:r."}/ p(a’ &', &)Li(z', &) dd' da’ +
0 Qyr
{‘—T{.i'.J'+$JJL{J_. ¥ .‘s’uj.u.:”) {]UT}

where the optical depth 7(x,2’) is given by:

(&, 7)) = / () dt . (10.8)

Equation 10.7 is the volume rendering equation, and it is the equation that
must be solved in order to render participating media. The equation is
more complex than the rendering equation. It is describing radiance in a
five-dimensional space compared with the four-dimensional space (surface
and direction) for the rendering equation (Section 2.5). This is due to the
fact that light is influenced by light at every point in space, not just the
points on other surfaces. This is one of the reasons why participating media
is costly to simulate.

10.3 The Phase Function

The phase function describes the distribution of the scattered light in par-
ticipating media. Unlike the BRDF for surfaces, the phase function must
integrate to one over the sphere:

[plz, &', &@)dd' =1. (10.9)
S,

Even though it seems similar to the BRDF used for surfaces, there are
two important differences: the phase function is unitless and normalized
(the amount of scattering and absorption is controlled by the scattering
and absorption coefficients).

The phase function often depends only on the angle, 8, between the
incoming ray and the scattered ray, and it can be written as p(#) where
= 0 is the forward direction and 8 = & is the backward direction. To

TeamLRN

116 10. Participating Media

specify the preferred scattering direction of the phase function (forward or
backward) one can compute the average cosine of the scattered direction,
g, as:

glr) = / pla, &' &) cos@dd’ . (10.10)
S

The value of g € [—1, 1] will be positive for forward scattering and negative
for backward scattering. It is also the parameter for the commonly used
Henyey-Greenstein phase function (described later).

The shape of the phase function is also used to classify the participating
medinm. The scattering is either isotropic or anisotropic. That is, any
phase function with a preferential scattering direction is anisotropic (this
is the most common case); otherwise the scattering is isotropic. If the
phase function further depends on the orientation of the medium, then
the medinm is anisotropic; otherwise it is isotropic. Notice that, unlike
surfaces, we have two components that are either isotropic or anisotropic.

10.3.1 Isotropic Scattering

The phase function for isotropic scattering is a constant:
1
p(d) = — . (10.11)
T 4w

This means that a photon that is scattered will be scattered in any random
direction withont a history where it came from (Figure 10.1 (a)).

10.3.2 The Henyey-Greenstein Phase Function

The most commonly used phase function is the empirical Henyey-Greenstein
phase function [35]. It was introduced to explain scattering by intergalac-
tic dust, but it has since been used to describe scattering in oceans, clouds,
skin, stone; and more.

The function is:

0) 1 —-g2
n(0) = — -,
! 4r(1 + g2 — 2gcosd)Lo

(10.12)

where g €] — 1, 1] is an asymmetry parameter equal to the average cosine
of the scattered directions (see Equation 10.10). Positive g gives forward
scattering and negative g gives backward scattering (g = 0 is isofropic
scattering). Higher values of g makes the scattering more preferential (g =
1 gives pure forward scattering in the same direction). This is illustrated in

TeamLRN

10.3. The Phase Function 117

Figure 10.1. The Henyey-Greenstein phase function with different g. From left to
right g — 0.0, g = 0.3, and g = 0.9.

Figure 10.1. The function is essentially giving ellipsoid-shaped scattering
distributions where the shape of the ellipsoid is controlled by g.

For more complex types of scattering one can use a combination of
several Henyey-Greenstein functions.

N N

1 — q'f .
— ey - = T A § A —] o :
plo) E “’-lrr{l { !J’f ~2g; cosO)1 where E w; (10.13)

i=1 =1

Here g; controls the shape of cach lobe and w; the weight. Such a multi-
lobed fimetion can be used to model more complex scattering, and it can
give very realistic results. Commonly used is a sum of a forward scattering
and a backward scattering lobe.

Another advantage of the Henyey-Greenstein function is that it can
be importance-sampled very easily. Given the incoming direction, d, of a
photon, the angle, @, of the new scattered direction is given by:

¥ b
1 : 1 * - .
costl = — [1+ f;" - (_—f,'_ : (10.14)
29| ' 1 — g+ 2g§

where € is a uniform random mumber between zero and one. 6 is the same
angle as in the phase function. The rotation ¢ is uniformly distributed.

10.3.3 The Schlick Phase Function

For most applications the accurate shape of the empirical Henyey-Greenstein
phase function is less important. Since the shape of the function is close to
an ellipsoid, one might approximate it by an ellipsoid and thereby eliminate
the relatively costly 1.5 exponent in the denominator. This observation was
made by Schlick [9] who used the following phase function:

1 - k?

B . 10.15
PO) = i + koos)2 (10.15)

TeamLRN

118 10. Participating Media

where b €] —1, 1] is used to control the preferred direction of the scattering
(similar to g in the Henyey-Greenstein function). k = 0 gives isotropic
scattering, b > 0 is forward scattering, and & < 0 is backward scattering.

The Schlick phase function is also very simple to importance-sample.
The angle, 8, of the new scattered direction is given by:

2+ k-1 ,
cosfl = m N (1(]1())

where € is a uniformly distributed random number between zero and one.
The rotation is uniformly distributed.

10.3.4 Other Phase Functions

There are many other phase functions available to deseribe seattering of
light. In particular a munber of analytical phase functions have been de-
rived for the scattering of electromaguetic waves from special geometries.

The type of geometry most frequently used is homogencous spheres.
This makes the medinm isotropic, and the scattering can be explained
with a phase function that takes only the scattered angle as a parameter.
Phase functions have been derived for the case when the medinm contains
many small spheres that each reflect light diffusely according to Lambert’s
law. More interesting phase functions have been derived for dielectric and
metallic spherical particles.

Scattering from very small spheres (smaller than the wavelength of
light) is explained by Rayleigh scattering [11]. The phase function is al-
most. uniform, but the scattering coefficient. includes a dependency on the

ravelength raised to the fourth power. This makes the scattering highly
wavelength-dependent, with blue light being scattered much more than the
other components of the light. Rayleigh scattering can be used to model
scattering of light from molecules in the atmosphere, and to model the blue
sky and red sunsets.

For homogeneous spheres of arbitrary size the scattering pattern be-
comes more complex. It is necessary to use Mie theory [65] to compute the
phase function. These formulas are quite complex and difficult to nuse, and
it. makes sense to use them only when accurate scattering of homogeneous
spheres is needed. An interesting observation is that Mie scattering often is
characterized by a strong forward scattering component and a smaller back-
ward scattering component. This scattering pattern can, for most graphics
simulations, be adequately modeled with a multi-lobed Henyey-Greenstein
phase function.

TeamLRN

10.4. Ray Marching 119

Figure 10.2. The ray-marching algorithm computes the contribution from the
medium by dividing the ray into smaller segments. For each segment the medium
is assumed to be homogeneous.

10.4 Ray Marching

The volume rendering equation (Equation 10.7) can, except for the sim-
plest. cases, only be solved by using numerical integration. A numerical
integration can be done by taking small steps through the medinm and
making some local simplifying assumptions within the segment considered.
This approach is called ray marching.

In ray marching the ray is divided into little segments of length Aw. For
each segment it is assumed that the incoming light is constant and that
the properties of the medium are constant. With these simplifications the
radiance from a small segment due to direct illumination can be computed

as:
N

L(x,&) .-ZL;{.f?.u?;)p{.r.ﬁ;.Lﬁ}ﬂx(;t‘).&..{' + e AT (1 + GAR, D) ,
1
(10.17)

where N is the number of light sources in the scene, and L; is the radiance
from each light source. The first term sums the contribution from the
segment due to direct illumination and the last term is the radiance entering
the segment at the backside.

For a medium of a finite size, ray marching can be used to compute the
radiance due to direct illumination (single scattering) by recursively calling
the formula to move backwards through the medium (see Figure 10.2).

N
Lpyi(z.d) = Z Li(x,&))p(x, &), @)os(x)Az + e~ AL (24 Az, D) .
!
(10.18)

TeamLRN

120 10. Participating Media

s

//47\

Figure 10.3. The contribution from the light source must be attenuated based
on the medium along the shadow ray. In non-homogeneous media this requires a
ray-marching integration for each shadow ray.

Notice that the direct illmmination must be attenuated properly based on
the distance that the shadow ray moves through the medinm (for non-
homogeneons media it is often necessary to integrate this using another
ray-marching evaluation). This is shown in Figure 10.3.

To improve visual appearance and reduce aliasing artifacts it is often
useful to randomly pick the sample position at which the direct ilhunination
is computed. This can be done ecither locally within each segment, or
globally by adding a small random offset to the entry point of the ray.

Equation 10.18 includes only single scattering. For a multiple scatter-
ing simulation, it is necessary to integrate all of the in-scattered radiance
at every segment. This can be done by sampling the sphere of directions
around the segment (point) of interest, which leads to the following formu-
lation:

N
Lyvi(z.d) = Z La(x.&))p(e, &) &)og(r)Ar +
!

5
& 3 Lol @)ple, @ 5) p o) Ar +

§=1

{'_m('“i\'!.L” (_;_' + A, u‘j) (10.19)

Here S sample rays are used to estimate the in-scattered light. The contri-
bution from each sample ray is found by recursively evaluating this formula

TeamLRN

10.5. Photon Tracing 121

(which is already recursive!). As such this formula is very costly to eval-
nate, and one of the reasons why most simulations of participating media
have excluded multiple scattering. In many cases, however, multiple scat-
tering is essential to get the correct appearance. For example, a cloud
will look very flat and dark grey without multiple scattering. In general
it is necessary to simulate multiple scattering in media with a high albedo
(i.c., scattering dominates over absorption). Fortunately, the photon map
provides an efficient solution to this problem.

10.4.1 Adaptive Ray Marching

The ray marcher in Equation 10.19 is based on a uniform step size through
the medium. For non-homogeneous media and media with local variations
in the lighting (such as shadows), it is better to use adaptive ray ma rching.
Adaptive ray marching uses segments of varying length to capture local
changes more efficiently. This is usually done by adjusting the step size on
the fly, based on the observed illumination and scattering properties. If a
contrast in the illumination is seen or if the scattering properties (albedo
or extinction coefficient) changes significantly in one step, then the seg-
ment can be subdivided into a sequence of smaller segments. The simplest
method for doing this is a recursive ray marcher, where the midpoint of
the segment is sampled recursively until the length of the segment is be-
low a certain threshold, or until the contrast between the endpoints of the
segment is sufficiently low.

Another simple method for non-homogeneous media is to adjust the step
size based on the observed extinction coefficient. For media with unknown
properties this can be very efficient. One possibility is to use a random
step size computed as:

log
oi(x)

where € €]0 : 1] is a uniform random number. In this way the average step
size will be the same as the average distance that a photon moves through
the medium before an interaction.

A;J' =

(10.20)

10.5 Photon Tracing

When tracing photons in a scene with participating media, the photons in-
teract with the media and are scattered and/or absorbed. If a photon hits
a surface we use the techniques described in Chapter 5, and the photon is
either absorbed, reflected, or transmitted. When a photon enters a partici-
pating medium, it does not scatter at the boundary of the medium. Instead

TeamLRN

122 10. Participating Media

[

Figure 10.4. Photon tracing in a scene with a participating medium. The photons
that enter the medium can be either scattered or absorbed. These photons are stored
at the location of the interaction in a separate volume photon map. Photons that
hit surfaces are scattered using the standard techniques for surfaces.

it moves through the medium until it is either scattered or absorbed. The
probability that such an interaction happens is determined from the ex-
tinction coefficient. The average distance, d, that a photon moves through
a medium before the next interaction is given by:

d=—. (10.21)

A beam of light passing through a medinm will have its intensity re-
duced by e~ 7% where s is the distance through the medium. For non-
homogeneous media oy is replaced by 7(0, d), which is then evaluated using
ray marching. When tracing photons, we can importance-sample according
to this formula by using the following expression for the distance, d, to the
next interaction:

d=—108C (10.22)

Ty

where £ €]0,1] is a uniformly distributed random number. If we use this
formula to determine the distance to the next event, then we do not have
to reduce the power of the photon as it moves through the medium.

TeamLRN

10.5. Photon Tracing 123

10.5.1 Photon Scattering

At the point of interaction the photon is either absorbed or scattered. The
probability of scattering is given by the scattering albedo, A:

A=, (10.23)
Tt

Based on the value of A, a new scattered photon can be generated by scaling
the power of the incoming photon with A. This approach will work, but
it will in many cases lead to a large number of photons in the media with
a very low power. This is wasteful. A better approach is to use Russian
roulette to decide whether the photon is scattered or absorbed. This is
done by comparing a random number € € [0, 1] to A:

£ < A Photon is scattered

9
& > A Photon is absorbed (10:24)

Given £ € [0,1] — {
If the photon is scattered it will continue with the same power (no scaling
by A is necessary). For colored photons it may be necessary to use an
average albedo, and then scale the individual components of the scattered
photon (similar to the use of Russian roulette for surfaces).

The direction of a scattered photon should be computed by importance-
sampling the phase function. The phase functions for participating media
are often highly anisotropic, and a uniform sampling is therefore very ineffi-
cient. It is much better to use the importance-sampling formulas presented
in Section 10.3.

10.5.2 Photon Storing

When a photon interacts with a medium it is stored (independent of whe-
ther the event is scattering or absorption). For participating media we use
a separate volume photon map. This is due to the fact that the radiance
estimate in a participating media is different than the estimate for surfaces
(see Section 10.6G).

A useful optimization for participating media is to store only photons
that have been scattered at least once before (as shown in Figure 10.4).
In this way the contribution due to direct illumination is omitted this
component can be computed very easily using traditional techniques. See
Section 10.7 for more detail.

10.5.3 Photon Emission

Photons can also be emitted from the participating media. An accurate
model of a candle flame might simulate the motion and temperature of

TeamLRN

124 10. Participating Media

the hot gas, and, based on these parameters, photons can be emitted from
locations in the media with a spectrum based on the local conditions. This
wotuld be more accurate than approaches that try to approximate the fame
with a point light source.

10.6 The Volume Radiance Estimate

How can we estimate the out-scattered radiance at a given point inside the
medinm, based on the stored photons? The two-dimensional approximation
for surfaces cannot be used. To compute the out-scattered radiance, L,,
we need to evaluate Equation 10.4:

(J-V)Ly(z,&) = a_q{:r)/ plz, &', &) L(z,d") dd’ . (10.25)

Qyx

The stored photons represent incoming fliux, so this equation should be con-
verted to an integral over incoming flux. This is done using the relationship
between flux and radiance in a participating medium:

A2 (x, &)

W) = ——— 10.26
L) o) dddV (10-26)
Combining Equations 10.25 and 10.26 we get [48]:
i Po(x, &
(F-V)L,(z,d) os(x) ‘/n,,r plz.d', &) Tﬂ;@m‘%ﬂw
o AP(2, D)
os(x) Jo.. pla,w ,) m dw
2B
= /n.“ plz, &,) % (10.27)

Notice the similarity with the surface radiance estimate (Equation 7.6).
Again we have an equation where we need to estimate the local photon
density. However, for participating media, the density should be measured
over the entire volume instead of just a surface.

Using the same strategy as for the surface radiance estimate we can
locate the n nearest photons, and using the same assumptions for the esti-
mate we get:

TeamLRN

10.7. Rendering Participating Media 125

L
« o
.
* .
.
® e .
. Ld .
. .
-
. - .

Figure 10.5. Out-scattered radiance is evaluated by locating the nearest photons
in the volume photon map in order to estimate the local photon density. This
approach can be seen as expanding a sphere around the intersection point until it
contains enough photons. The photon density is estimated based on the volume of

the sphere.

(& - V) Lo, &) / il i i))
it dV

A‘bp{ i ..,1..;’

~ § : it & P
p=1 1) AV
AD, (1.5
~ N fla &) !“; D (10.8)
Z -

p=1

Here we have substituted the small volmme AV with the volmne of the
sphere (m1%) containing all the photons. Similar to the surface estimate,
this can ht‘ seen as expanding a sphere around the intersection point until
it contains the n nearest photons. The volume of the sphere determines
the density of the photons. This is shown in Figure 10.5.

10.7 Rendering Participating Media

With the volume photon map and the ability to compute a radiance es-
timate, we have the tools necessary to render scenes with participating
media. The rendering technique is an extension of the two-pass algorithm
presented in Chapter 9: the first pass is emitting photons from the light
sources and storing them as they hit the surfaces or the media in the model;
the second pass uses ray tracing to render the image. If a ray hits a surface,
we use the approach described in Chapter 9. If the ray enters a participat-
ing medium, we use ray marching to integrate the illumination. We split

TeamLRN

126 10. Participating Media

Figure 10.6. Participating media is rendered using ray marching. When a ray enters
the medium, a ray-marching algorithm integrates the contribution from multiple
scattering and direct illumination (single scattering). Multiple scattering is computed
using the volume photon map and direct illumination is computed using ray tracing.
If the ray hits a surface, we use the techniques described in Chapter 9.

the in-scattered radiance into single scattering, L, and multiple scattering,

Lm:
L(z,&) = Ly(%,) + Lim(z,) . (10.29)

The single scattering term is evaluated using ray tracing, and the multiple
scattering term is computed using the volume radiance estimate. This is

shown in Figure 10.6.
By inserting the volume radiance estimate in the ray-marching algo-

rithm (Equation 10.19) we get:

N
Lupi(x,&) =) Li(x,d)p(z,&.0)o.(x)Ax +
1

> flx.a.6

p=1
(J—(r,{J-)A.p-L”(J_ o Ai"lﬁ] . (l[)‘ﬂ]]

Ad,(x,d!
) R (I '”J Ax 4

13
L

This is the equation used to integrate the contribution from participating

media.

TeamLRN

10.8. Subsurface Scattering 127

&

"\

(a) (b)

Figure 10.7. Traditional surface-based reflection shown in (a); subsurface scattering
shown in (b).

10.8 Subsurface Scattering

Subsurface scattering happens in all non-metallic materials. In computer
graphics it is often approximated by a diffuse reflection term where the as-
sumption is that light entering the material leaves the material at the same
location in a random direction (shown in Figure 10.7 (a)). For translu-
cent materials such as marble, skin, and milk, this is a bad approximation.
Translucent materials often have a soft appearance and light will bleed
through thin slabs of the material. An example is a piece of paper illumi-
nated from behind.

To accurately render translucent materials it is necessary to take into
account the fact that light entering a material can leave the material at a
different location, as shown in Figure 10.7 (b). The first method that fully
simulated this phenomena was based on photon mapping and presented
in [23, 50]. It uses the photon-mapping algorithm for participating media
with some improvements specific to subsurface scattering.

10.8.1 Photon Tracing

To simulate subsurface scattering with photon mapping, we first build a
photon map using photon tracing as shown in Figure 10.8. Here the photons
are refracted at the material interface and traced through the material
medinm using the same techniques described earlier in this chapter. Each
time a photon interacts with the material it is stored in the volume photon
map. We exclude photons coming directly from the light source, as is the
case for participating media since this contribution can be computed (with
some approximations) using standard ray-tracing techniques.

TeamLRN

128 10. Participating Media

Figure 10.8. Photon tracing for subsurface scattering.

10.8.2 Rendering

Rendering of materials with subsurface scattering proceeds in a similar way
as rendering of participating media. When a ray intersects a subsurface
scattering material, it is refracted into the medium. Ray marching is used
to evaluate the contribution from the medinm along the refracted ray. For
efficiency reasons the step size for the ray marcher is varied locally, based
on the extinetion coeflicient. A good value is Ax(r) log /oy (), where
€ €]0.1[is a uniform random number. For dense materials this ensures a
small step size. Furthermore, the ray marcher should be stopped using
Russian roulette sampling once the optical depth reaches a certain value.

A it L S

Figure 10.9. Rendering materials with subsurface scattering using the photon map.

TeamLRN

10.9. Examples 129

The contribution due to in-scattered radiance is computed as a sum of
two terms: a direct single-scattering term and a indirect multiple-scattering
term. The indirect multiple-scattering term is computed using the voluine
radiance estimate described ecarlier, and the direct illmmination is com-
puted using ray tracing. The ray-tracing technique traces a shadow ray
to the light source to check for visibility. This shadow ray goes straight
through the material boundary; this is an approximation since the shadow
ray should be refracted, but the configuration for the refraction is difficult
to compute exactly. The only way to avoid this approximation is to use the
photon map for all types of illumination. We can make the computation of
direct illumination more accurate by estimating the true distance that the
refracted ray would have moved through the medium:

[edd - i

d; = d; . |
\/1 ' (#)HU_— @3- AP)

Here d; is the observed distance and df is the estimate of the true distance;
i is the normal at the surface location intersected by the shadow ray. The
attenuation of the light from the light source should be modified using this
equation.

(10.31)

10.9 Examples

The following pages contains several examples illustrating the simulation
of participating media and subsurface scattering with photon mapping.

10.9.1 Rising Smoke

Figure 10.10 shows a multiple-scattering simulation in turbulent smoke.
The smoke simulation is due to techniques described in Fedkiw et al. [25].
To render the smoke we used roughly two million photons. Multiple scatter-
ing is important for the realisim of the smoke. A single-scattering simulation
looks flat in comparison.

10.9.2 Smoke Flowing Past a Sphere

Figure 10.11 is another smoke simulation from [25]. It illustrates a multiple-
scattering simulation for an animation showing smoke flowing past a sphere.
Roughly 1 2 million photons were used per frame in this animation.

TeamLRN

130 10. Participating Media

Figure 10.10. A simulation of multiple scattering in turbulent smoke rising due to
buoyancy (from [25]).

10.9.3 A Volume Caustic

Figure 10.12 shows a volume caustic. The volume caustic is a result of light
being focused through the glass sphere and illmminating the fog medinm.
Here the volume caustic is simulated nsing 1,500,000 photons. For this
simulation the adaptive ray-marching algorithm significantly reduces the
rendering time by concentrating the effort on the focused beam rather
than the other less interesting parts of the smoke.

10.9.4 Michelangelo’s David

Fignre 10.13 shows a rendering of Michelangelo’s David (from [61]). The
model has approximately 8 million triangles. We nsed one million photons
to capture the multiple scattering component of the subsurface scattering
simulation.

TeamLRN

10.9. Examples 131

Figure 10.11. Sequence of rendered images from a simulation of smoke flowing

past a sphere (from [25]). (See Color Plate 1X.)

TeamLRN

132 10. Participating Media

Figure 10.12. A volume caustic created as light focused through a glass ball

illuminates the fog medium.

TeamLRN

10.9. Examples 133

Figure 10.13. The David represented using approximately 8 million triangles. This
image was rendered with subsurface scattering using photon mapping with roughly

one million photons.

TeamLRN

134 10. Participating Media

(b)

(c) (d)

Figure 10.14. A weathering simulation of a granite sphinx from [23]. (a) is the
fresh granite, (b) shows erosion due to salt, (c) shows reddening due to dissolved
iron, and (d) shows the combined weathering effect due to salt and iron. (See Color
Plate XI.)

10.9.5 A Weathered Granite Sphinx

The four images in Figure 10.14 demonstrate how photon mapping and
subsurface scattering can render the result of a complex weathering simu-
lation [23]. Subsurface scattering is the only way to correctly render the
effect of weathering, which is due to changes in the material structure. Dis-
solved iron, in particular, is often present below the surface. Even without
the weathering simulation the simulation of subsurface scattering is impor-
tant for the overall appearance of granite.

TeamLRN

10.9. Examples 135

Figure 10.15. A marble bust. Subsurface scattering is essential to capture the soft

appearance of marble.

10.9.6 A Translucent Marble Bust

Marble is a translucent material and subsurface scattering is essential to
capture the appearance of marble. Figure 10.15 is a simulation of a mar-
ble bust. Only 200,000 photons were used in this simulation. Subsurface
scattering is important for the smooth appearance of marble, but it is also
critical for correctly simulating translucency. This is particularly notice-
able in Figure 10.16, which shows a close-up of the marble statue now
illuminated from behind. Note how the light bleeds through the hair and

TeamLRN

136 10. Participating Media

Figure 10.16. A translucent marble bust. (See Color Plate XII.)

the nose and still gives a soft appearance of the marble. Compare this with
the diffuse rendering of the same model and the same lighting conditions
in Figure 10.17. The diffuse rendering lacks the smooth and soft appear-
ance and looks very hard and unattractive compared with the subsurface
scattering simulation.

TeamLRN

o

10.9. Examples 1.

Figure 10.17. A diffuse rendering of the marble bust. Notice the substantial
difference with the full subsurface scattering simulation. The diffuse approximation

gives the impression of a hard material. (See Color Plate XIilL.)

TeamLRN

1

Optimization Strategies

This chapter contains several different techniques for making a photon-
mapping implementation faster and more efficient. Some of these ideas are
fairly general, some are very important (such as irradiance caching), and
some are special tricks for the photon map.

11.1 Irradiance Caching

The irradiance caching idea was introduced by Ward et al. in 1988 [118] as
a method for speeding up the computation of indirect illumination (color
bleeding) in a Monte Carlo ray tracer (Radiance [116]). It is a method
for caching and re-using (via interpolation) irradiance values on Lamber-
tian surfaces. As mentioned in Chapter 9 it can (and should!) be used
in the rendering step of the two-pass photon-mapping algorithm to cache
irradiance values at Lambertian surfaces.

Indirect illumination on diffuse surfaces is often the most costly com-
ponent to compute in a Monte Carlo ray tracer, since it requires a large
number of sample rays. This is the case even in the two-pass photon-
mapping algorithm where only the first bounce of diffuse illumination is
computed. Speeding up this computation is very important.

TeamLRN 139

140 11. Optimization Strategies

The irradiance at a location, z, on a diffuse surface is computed by
sampling the incident radiance above z. This is equivalent to evaluating the
integral in Equation 2.18. Instead of sampling the hemisphere uniformly,
we can include the cosine from the diffuse BRDF, which gives the following
equation for sampling the irradiance:

M N
™
E(z) = m;;&.ﬂ%-@) ; (11.1)
where
e o 1—&
0; = sin~! M‘ and ¢; =2 N% (11.2)

Here & € [0, 1] and & € [0, 1] are uniformly distributed random numbers,
and M and N are the subdivision of the hemisphere. Note that we could
have used #; = sin™'(/&7) and ¢; = 27&; instead; however, the formulation
in Equation 11.2 includes a stratification of the hemisphere, which gives
much better results than a naive random sampling.

The evaluation of Equation 11.1 requires tracing M * N rays to estimate
the incident radiance from different directions. To get good estimates it
is usually necessary to use M * N = 200-5000 sample rays. This is very
costly. An important observation made by Ward et al. [118] is that indirect
illumination on diffuse surfaces often changes slowly in a model. As such
it seems like a natural candidate for interpolation. The idea is to compute
irradiance only at selected locations on the surfaces in the model and then
interpolate irradiance for the remaining locations.

The decision whether to interpolate or compute irradiance at a location
is based on the previously computed values. If we want to compute a new
irradiance value at @ we first look at the previously computed irradiance
values. For each of those values we compute a weight, w;, that tells us if
we can use the value for interpolation.

For an irradiance value at x; the weight is computed as:

1

wi(z, @) =
where €(z) is an estimate of the amount of change in the irradiance from
2; to z. This change is estimated based on a split-sphere model [118]. This
model assumes a hemisphere above z; which is is black on one half of the
hemisphere and white on the other half. This type of hemisphere represents
a sharp boundary in the incident illumination, and it can provide a good
estimate of the worst change in the irradiance that we can observe as we

TeamLRN

11.1. lrradiance Caching 141

move away from x;. The two possible changes are: a change to the surface
location and a change in the surface orientation (the normal). From this
model the change in irradiance can be estimated as [118]:

E(;L’, IE) = Ef(;l’,‘,;) {%“—J%U + V220 F;'}) {114)

where 7i; is the surface normal at x;. FEy is the irradiance at x; and Ry
is the harmonic mean distance to the objects seen from x;. This value is
computed as the reciprocal of the sum of reciprocal distances recorded for
each ray when evaluating Equation 11.1.

For the weight w;, we can use a slightly simplified version of Equa-
tion 11.4 and we find that:

1
w; = ; (11.5)

leemrll 4 VT=Tit -

The value of this weight is an indication of how good an estimate the
irradiance F; is of the irradiance at x. The higher the weight the better
the estimate. If it is too low then we cannot use it. Ward suggested only
using weights where:

wi(e,n) > l 5 (11.6)
[}
where a is a user-controlled parameter that is proportional to the maximum
allowed error on the estimate.
To compute an estimate of the irradiance at z, we compute a weight
for all the previously computed irradiance values. For the irradiance values
where w; > 1/a we get:

N wile, i) Ei(x;)

au>1/a

> wi(x,n)

iawi>1/a

E(x, i) ~ (11.7)

If there is no previously computed irradiance value with a sufficiently high
weight, then we compute a new one.

This is the basic principle in the irradiance caching algorithm. There
are a number of techniques to make it practical. Firstly, it is very costly
to compute the weight for all irradiance values over and over. It is clear
that each irradiance value is useful only in a small region of the model. We
can precompute the maximum size of this region by ignoring the change in
surface normal and only looking at the value of the weight as a function
of the distance. The distance at which the weight becomes too low is the

TeamLRN

142 11. Optimization Strategies

maximummn distance. It defines a sphere in which the irradiance value is
useful. We can place this sphere in an octree structure. This structure is
efficient when we want to query if a previously computed irradiance value
can be re-used, since we can search down the octree based on our current
location and check only those irradiance values that are placed at the voxels
of the octree. -

Another check for making the irradiance computations practical is to
automatically reject all previously computed samples that are above the
tangent plane of the current surface location. This is necessary since we
may see important objects that are not visible from the samples in front
of us.

11.1.1 lrradiance Gradients

It is possible to further improve the quality of the irradiance estimate by
including information about the gradient of the irradiance with each ir-
radiance value. The gradient can be estimated from the rays used in
Equation 11.1. There is a gradient for both the orientation, V,E, and
the position, V,E. Ward and Heckbert [117] derived the formulae for the
gradients. They found that the position gradient could be estimated as:

A = 2 M sin ;. cos? 0;

VoE = T;

- N = 111111(()31,‘,1%'_1‘;)

T isi118j+ — sinf; (Lis—Liiy)
- min(d; ;. dj_1;) Jie dii—1

(Lii—Li 1)+
(11.8)

=1
where
L;; is the radiance from direction j.i
dj; is the distance to the object seen in direction j.i
T; is a vector orthogonal to the normal in the direction ¢;

is a vector orthogonal to the normal in the direction ¢; + 7 /2
i issinTYW/j/M
0;, issin”'\/(j+1)/M

D is 2w k/N
The rotational gradient is estimated as:

N M
VeE=—=S{TY —Lj;tang; o , (11.9)

f==] F=1

1

where T; is a vector orthogonal to the normal in the direction ¢; + /2.

TeamLRN

11.1. Irradiance Caching 143

Figure 11.1. The irradiance cache works very well in the box scene. The bright
dots superimposed on the darkened box image represent the position at which a
new irradiance sample was computed. Notice how large parts of the model can
use an interpolated irradiance value.

Using these gradients, the irradiance estimate in Equation 11.7 can be
extended as:

S wiz, @A) {Ei(z;) + (x — ;) VpEi + (n; x 1)V, Ei}

> wi(z, 1)

t,aw;>1/a

(11.10)

Figure 11.1 illustrates irradiance caching in the box scene.

11.1.2 Irradiance Caching and Photon Mapping

Photon mapping and irradiance caching work very well together. In the
two-pass photon-mapping algorithm, the indirect illumination is soft, since
the high-frequency caustics contribution is computed using the caustics
photon map. This is very important since it eliminates the main cause
for error in the irradiance cache. Caustics break the assumptions of the
interpolation scheme, and, if they are included in the irradiance cache, the
results will be suboptimal.

Furthermore, the photon map can provide additional information to the
irradiance sampling. Instead of distributing the sample rays uniformly in

TeamLRN

144 11. Optimization Strategies

all directions, it is possible to use the approximate representation of the
flux in the photon map to importance-sample in the direction of the bright
indirect sources. This is described in the following section.

11.2 Importance Sampling

Besides providing a radiance estimate, the photon map can be used to
sample the scene more efficiently. Most Monte Carlo approaches use just
the BRDF to select the region to sample. This is fine for specular surfaces,
but for diffuse surfaces it is better to use information about where the light
is coming from. The photon map has this information and the approximate
flux representation has been demonstrated to reduce noise in Monte Carlo
ray tracing [41].

The optimal probability distribution function, p(x,d’), for importance
sampling when integrating the reflected radiance at a surface location, z, is:

p(z, &) x folz,d,d)Li(x,d") (& - 7A)
d®2(z,)

= ff‘(a:!w!w) dAdd—j; (11'11)

We have already seen how the photon map can provide information about
the distribution of the flux d® at . We can get a sampling of the flux at
by locating the nearest photons around z. We assume that these photons
all hit = and, as such, are representative of the flux at x.

A simple way to importance-sample according to both the BRDF as
well as the flux distribution from the photons was presented in [41]. The
concept is simple. Consider first importance sampling of a BRDF. Given an
outgoing (reflected) direction we have a function that, given two random
numbers, provides a direction in which to sample the incident radiance.
For a Lambertian surface this function is:

& = (0,4') = (cos*/€1,2nE) , (11.12)

where & € [0,1] and & € [0,1] are the two random numbers. This func-
tion maps two random numbers in the unit square to a direction on the
hemisphere.

Instead of just uniformly sampling the square with £ and &, we can
include further information about the flux. This can be done by dividing
the square into a number of cells. A cell represents a region on the hemi-
sphere (a set of directions). For each cell we accumulate the power of the
photons from the directions represented by the cell. We can find the cell
that a photon maps to by inverting the importance-sampling probability

TeamLRN

11.3. Visual Importance 145

Figure 11.2. The photon map can be used to importance-sample based on the in-
cident flux as well as the BRDF. The left image shows standard importance sampling
using only the BRDF, and the right image shows importance sampling using the pho-
ton map. Both images have been rendered using path tracing with 50 paths/pixel.

distribution function used for the BRDF. In case of a diffuse surface this
function is:
@

% (11.13)

(u,v) = (cos®0, s

Here u, v are the coordinates in the unit square. Based on the recorded
power in the cells, we can build a histogram of the power accumulated by
the cells. The modified importance sampling proceeds by picking cells in
the histogram with a probability proportional to the power accumulated
in each cell. A new random position is then selected within the cell and
mapped to a direction. A sample ray is then traced in the selected direction
to estimate the radiance. The returned estimate should be divided by the
probability of picking the cell.

Figure 11.2 gives an example of path tracing using the photon-map-
based importance-sampling scheme. Note how the amount of noise in the
photon map image is much lower.

It is easy to to use this photon-map importance-sampling method with
the irradiance-caching scheme. It is also faster since the histogram only
has to be built once for a new irradiance sample.

11.3 Visual Importance

For large models of which only a small part is visible to the observer, it is
wasteful to store photons all over the model. In this situation it would be
better to inform the photon-tracing step about the position of the observer
and the “important” regions of the model.

TeamLRN

146 11. Optimization Strategies

One technique for doing this is by initially emitting “photons” from the
observer to identify the regions of the scene that are important for the final
image. This approach was used by Peter and Pietriek [76]. They intro-
duced the term importons for photons emitted from the observer. To build
the photon map, they used the importance-sampling technique from [41]
as presented in the previous section: for each photon traced from a light
source they queried the importon map to importance-sample the scattered
direction of the photon. Their results demonstrated that they were able
to get a higher density photon map in the visually important parts of
the model. Unfortunately, their results also suffered from highly varying
photon power in the generated photon map due to their unbiased impor-
tance-sampling strategy. Intuitively, their method could generate an impor-
tant photon even by sampling a direction with a low probability.
Since importance sampling requires dividing by the probability it is possi-
ble to generate high-powered photons that can cause the radiance estimate
to be poor.

Another approach to controlling the visual quality of the generated pho-
ton map was introduced by Suykens and Willems [105]. They introduced
the concept of density control for the photon map. The idea in density
control is to limit the density of photons in bright regions of the model.
These bright regions may not be the visually important parts of the model,
and they may even be so bright that the intensity is clipped before being
displayed. Both these issues makes it valuable to limit the photon density
in order to reduce the memory requirements for the photon map. Limiting
the photon density locally in bright regions leaves room for more photons
in darker regions that are visually important.

Density control works by imposing an upper limit on the number of
photons per area (for example, 80,000 photons/m?). Before storing a pho-
ton in the photon map, the current local density is first examined. The
new photon is only stored if this density is below the limit. Otherwise, the
power of the photon is distributed among the existing local photons in the
photon map. This ensures that the power received locally will be correct.

Suykens and Willems demonstrated how density control could be used
to generate images of similar quality as the standard photon map method,
but with the number of photons reduced by a factor of 2-4.

The exciting aspect about. density control is that it may be used to an-
swer the question: how many photons are necessary? Suykens and Willems
did take the first steps in that direction by investigating the relationship be-
tween visual importance and photon density. They computed the local re-
quired density based on an importons map similar to Peter and Pietrik [76].
The next step is coupling this work with models from perception to tune
the photon map density to the requirements of the observer.

TeamLRN

11.4. Efficient Stratification of Photons 147

11.3.1 A Three-Pass Technique

A simple three-pass technique [43] that includes visual importance can
be made by a simple extension to the two-pass technique presented in
Chapter 9.

e The first step is the creation of a visual importance map (or im-
portons map) by emitting visual importance (or importons) from the
observer into the model. These importons are traced through at most
one diffuse reflection (similar to the rendering step in the two-pass
method).

e The second step is building the photon map by tracing photons
through the model. This step is enhanced using the visual impor-
tance map. Photons are only stored when there is a “sufficient”
density of visual importance in the region; otherwise the photon is
thrown away. This strategy is clearly biased, but remember that we
throw away power only in regions that are classified as unimportant.

e The third step is rendering using the photon map. This step proceeds
in the same way as described in Chapter 9.

11.4 Efficient Stratification of Photons

One important technique for improving the quality of the photon map is
making sure that the photons are distributed evenly. This improves the
radiance estimate and is a good alternative to just using more photons.

It is well known that the accuracy of Monte Carlo integration is im-
proved when clumping of the random samples is avoided. The classic way
to reduce clumping is to stratify the samples [81]. This concept is directly
applicable to photon mapping. One way to stratify photons is at the light
sources. This is easily done by using the projection map, which already is a
stratification of the directions at the light source. By alternately selecting
projection map cells with “active” objects, there will be at least a minimal
stratification of the photons. In [47] it was suggested refining each cell in
the projection map further to obtain an even finer level of stratification.
Extending this concept to several dimensions is more complicated since the
number of photons that are emitted often is unknown.

One way to stratify photons in several dimensions is quasi-Monte Carlo
(QMC) sampling [70]. QMC sampling uses special quasi-random [low-
discrepancy sequences to distribute the samples. Here quasi-random samp-
ling means that the sequence often can replace the random sequence used
in Monte Carlo integration and still give the same result. However, these

TeamLRN

148 11. Optimization Strategies

quasi-random sequences are not random. They are clever constructs used
to distribute samples evenly over a domain such that clumping is avoided.
The elimination of clumping is measured by the discrepancy of the se-
quence. Discrepancy is a measure of how well-spaced the samples are. Low
discrepancy means that we want to try to maximize the local distance
between the samples.

The great advantage about QMC sequences is that they converge as
fast as stratified sampling [1] without requiring knowledge about how many
samples will be used. Therefore if we use QMC to select the directions in
which to emit photons, then we automatically get evenly spaced photons
no matter how many photons are emitted. In addition, QMC sequences
can provide a stratification of several dimensions. For photon tracing this
means that not only are the emitted photons properly strafied, but the first
reflected photons will also be stratified. This property has been demon-
strated to give better results that randomly emitted photons [54].

The problems with QMC sampling is that it can result in aliasing in the
solution, to which the eye is very sensitive. For caustics that are visualized
directly, the quasi-random sequences can give very noticeable patterns. A
way to avoid this is to add some randomness to the sequence, and this may
indeed be a very good way to emit photons.

11.5 Faster Shadows with Shadow Photons

In scenes with many lights or with large area light sources, it can be very
costly to compute the direct illumination. This is mainly due to the fact
that the visibility of each light is evaluated using shadow rays. Tracing a
shadow ray through the scene is costly. Most scenes have large regions that
are either fully illuminated or completely in shadow, and it seems wasteful
to trace shadow rays for each point to see if there is a shadow. The penum-
bra regions, for which the light source visibility can be complex, usually
cover a much smaller fraction of the scene. Based on these observations it
seems natural to try to identify the different regions (shadow, illuminated,
or penumbra) of a scene, since this can significantly reduce the number of
shadow rays traced.

A simple extension to the photon map makes it possible to classify
the different illuminated regions of a model by introducing the concept of
shadow photons [46]. Shadow photons are created in regions that are in
shadow. As shown in Figure 11.3, this is done by tracing photons from the
light source through the objects in the model. On all the objects beyond the
first one we store shadow photons. We store the shadow photons only on
the side of the object that is facing the light source (i.e., the surface normal

TeamLRN

11.5. Faster Shadows with Shadow Photons 149

Direct
® Shadow
Indirect

Figure 11.3. Shadow photons are created by tracing photons from the light sources
through all objects in the scene and storing them on all the objects beyond the
first one. On the first object the stored photon is tagged as representing direct
illumination. The remaining photons represent indirect illumination.

points towards the light source). If the normal points away from a light
source, then we can trivially conclude that the point is in shadow. With
each shadow photon we store the negative power carried by the photon
the reasons for this will become clear later.

In addition to the shadow photons, a few minor modifications to the
existing photon map is necessary. Each photon has a bit that is set if the
photon comes directly from a light source. Furthermore, all photons are
extended to include a light source number (for scenes with less than 2
lights this number can be folded into the flag of the photon structure shown
in Chapter 6).

There are several ways in which we can use this extended photon map
to speed up the direct illumination computation. These include two fast
approximations and one fairly aceurate. For all of these methods, we locate
the nearest photons in the photon map that come directly from the light
source and examine the distribution of shadow photons.

The two fast approximations do not use any shadow rays. One approach
is to always compute the full direct illumination from the light source and
then add a radiance estimate based on the shadow photons (recall that
they carry negative power). This is similar to splatting shadows based
on the shadow photon density. Another simple approach is to estimate
the visibility of the light source based on the relative amount of direct
illumination photons in the located photons:

nd

_ 11.14
nid+ Mis (}

W,fu:s(==

Here nq is the number of direct illmmination photons, and n; . is the
number of shadow photons received from the light source, I. Vj rqq 18 an

TeamLRN

150 11. Optimization Strategies

Figure 11.4. 492 shadow photons have been used to identify the penumbra region
in this cognac glass model. Even with this low number of photons we are able to
get a good estimate of where the shadow boundary is, and this enables a reduction
of more than 70% in the number of shadow rays.

estimate of the visibility of I (i.e., the fraction of the light source that
is visible from the current location). This fraction is multiplied by the
irradiance from a fully visible light source to estimate the actual amount
of received irradiance.

Both of the fast approximations can result in blurry shadows if too few
photons are used, and for scenes with many light sources it can be costly
to obtain good local statistics. For more accurate results it is better to use
a conservative approach that traces shadow rays in the penumbra regions.
The penumbra regions contain the shadow boundaries and they can be
identified, since they have a mix of shadow photons and direct illumination
photons. This means that if the nearest photons contain both shadow
photons and direct illumination photons (even if it is just one of both),
then we classify the region as a penumbra region and use shadow rays to
evaluate the light source visibility. Tracing shadow rays in the penumbra
regions makes sense since the eye is highly sensitive to shadow boundaries.

In Figure 11.4 we show a model of a cognac glass that has been rendered
with the identified penumbra region highlighted (the constant colored area
around the glass) to illustrate the result of the light source visibility clas-
sification. All the other parts of the model have been classified as being
either fully illuminated or in shadow. The global photon map uses just
31.994 photons of which only 492 are shadow photons. Even with this
approximate representation, the number of shadow rays is reduced more
than 70%.

TeamLRN

11.6. Precomputed Irradiance 151

11.6 Precomputed Irradiance

Another extension of the photon map was presented by Christensen [14].
The idea is to precompute the irradiance value for all the photons in the
global photon map. In the rendering step, the sampling of the indirect
illumination results in many queries to the global photon map, and by
having precomputed irradiance values we can make this computation faster,
since only the nearest photon is needed.

The precomputed irradiance values increase the size of the photon struc-
ture with six bytes (four bytes for a compressed representation of the irra-
diance and two bytes for the surface normal).

After the photon-tracing step, the irradiance for all photons is com-
puted. This is done using the radiance estimate applied to each photon
(by locating the nearest photons around it, etc.). The preprocessing step
can be quite costly, and therefore Christensen suggested only precomputing
the irradiance for every fourth photon (and use only these photons in the
global photon map to compute irradiance).

In the rendering step the queries to the global photon map are simplified
since only the nearest photon is needed. To avoid artifacts it is necessary
to locate the nearest photon at a surface with a similar normal (this is the
reason why the surface normal is stored with the photons).

The precomputed irradiance optimization works for all Lambertian sur-
faces (for other materials it is still necessary to use the general photon map
radiance estimate). Christensen reported very good speedups (a factor of
six) for some scenes. Even with a time-consuming precomputation of the
irradiance values, the overall speedup was good.

11.7 Parallel Computations

The photon map is very easy to parallelize and very good results can be
obtained (see for example [45]).

Since photons are independent they can be traced in parallel using mul-
tiple threads and/or multiple machines. Photon tracing is usually pretty
fast, so multiple threads on the same machine is often preferable to multiple
machines. In the case of multiple machines, it can be simpler to compute
the full photon map locally—this may also be faster since the photon map
does not have to be transmitted over the network.

Rendering in parallel using the photon map can also be very efficient.
As reported in [45] it is even possible to get super-linear speedups using
a parallel rendering step. The rendering step is also straightforward to
parallelize since rays are independent and can be traced in parallel. The

TeamLRN

152 11. Optimization Strategies

only slightly tricky element of a parallel implementation is the irradiance
caching (if it is used), since it requires a locking mechanism to allow dy-
namic updates as new values are computed.

TeamLRN

Basic Monte Carlo
Integration

In rendering and in particular global illumination, we often encounter multi-
dimensional integration problems of functions (light fields) with many dis-
continuities. Since these integrals cannot be evaluated efficiently using
standard quadrature rules, it is better to use another class of techniques
based on Monte Carlo integration.

A.1 The Sample Mean Method

Monte Carlo integration uses random sampling of the function of interest
to examine its properties. Given a function, f(r), that we wish to integrate
over a one-dimensional domain from a to b:

b
I :/ flx)dz . (A.1)

An intuitive way to evaluate this integral is by computing the mean value
of f(x) over the interval a to b, and then multiply this mean by the length
of the interval b — a. For this purpose we can average the values of f(r) at

TeamLRN 153

154 A. Basic Monte Carlo Integration

numbers between a and b. This gives:

N
In=(b- u.)%r- > &) - (A.2)

’ i=1
Here 1,, is the Monte Carlo estimate of the integral. As we increase the
number of samples, N, this estimate becomes more accurate and in the
limit we find that:
lim I, =1 (A.3)
N—oo
How fast does the estimate I,,, converge towards the correct result I7
To answer this question we can compute the variance o? of our estimate I,

2_1 b’Z_ 1. I‘Z A4
=5 /ﬂf(.?:)u:— : (A.4)

Since the standard deviation o is the square root of the variance, we find
that:
1
0 X — . (A.5)
VN
In other words to halve the error we must quadruple the number of samples!
This is the caveat of Monte Carlo integration. It is very easy to use on
most problems, but the convergence is slow. However, for high-dimensional
integrals (such as those in rendering), the convergence is often better than
any other method can give [81].
We can also estimate the variance o2 of our sampling distribution:

N
1 :
of = 51 2 (F&) — In)) - (A.6)

i=1
This estimate contains the factor 1/(N — 1), which shows that the vari-
ance (the noise) of our samples converges as slowly as the variance of our
estimate,
Fortunately there are several variance-reduction techniques available.

A.2 Variance-Reduction Techniques

To improve the quality of our estimate we must reduce the variance. The
basic strategy is to use as much knowledge as we have about the function
that we wish to integrate.

TeamLRN

A.2. Variance-Reduction Techniques 1:55

A technique that is very commonly used in rendering is importance
sampling. The idea in importance sampling is to concentrate the samples
of the function in the important parts of the function. For example, if
the function has a high value in a small interval, then it pays to use more
samples in this interval.

For this purpose we construct a probability density function, p.d.f., that
“has the same shape” as f(x). Given a stochastic variable X with p.d.f.
p(x), x € |a.b] such that p(z) > 0 when f(z) # 0 we find that:

b r
r X =
f(x) ple) dx --E{iﬂ—;}-} (A.7T)
Jo p(@)’ p(X)
At first glance this may not seem very useful. The power of this method
relies on the ability to construct random samples ¢y, N from X. This

gives the following estimator I,,; for I:

""1

(A.8)

fH!' ==

ful

The variance of this estimate will still be proportional to 1/N, but by
picking a good p.d.f. we can make it arbitrarily low. The optimal p.d.f.,
Dopt (), 1s:

Popt = @ . (A.‘;)}

With this p.d.f. the variance is always zero! Unfortunately, it requires
knowledge of I, which is the quantity that we are trying to compute. In
general we can improve our estimate by adding small knowledge to the
sampling distribution. In rendering it may be that we know that a cer-
tain object is brighter than the rest, and we can improve our sampling by
sending more rays towards this object.

Another powerful variance-reduction technique is stratified sampling.
The simplest form of stratified sampling divides the domain [a.b] into N
subdomains. In each subdomain we place one sample. It can be shown [81]
that this simple technigue cannot result in higher variance than the ran-
dom sampling approach, and if the function is smooth it often results in
significantly better estimates. The variance is proportional to 1/N?, which
is much better than naive random sampling. As such, stratified sampling
should be nsed whenever possible! It is only when the number of samples
to be taken is unknown that stratified sampling is problematic.

There are several other variance-reduction techniques available for
Monte Carlo integration. See the classic book by Rubinstein [81] for a
good overview.

TeamLRN

A Photon Map
Implementation in C++

This appendix contains a full C++ implementation of a photon map class.
This class can be integrated into any ray tracer to provide the basic tool
to add caustics and simple global illumination. The only additional code
to add to such a ray tracer is photon tracing (emission of photons from
the lights, and scattering and storing of photons by the materials). These
photons can then be handled by the photon map implementation provided
below. The usage of the implementation should be fairly easy to under-
stand.

// photonmap.cc

// An example implementation of the photon map data structure
/N

// Henrik Wann Jensen - February 2001

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

TeamLRN 157

158 B. A Photon Map Implementation in C++

/#* This is the photon

* The power is not compressed so the
* size is 28 bytes

*/

S EereE

typedef struct Photon {

20 [/ ERErrrsserannkeraherer

float pos[3]; // photon position

short plane; // splitting plane for kd-tree

unsigned char theta, phi; // incoming direction

float power[3]; // photon power (uncompressed)
} Photon;

/* This structure is used only to locate the
* nearest photons
30 =/
/ftmttnmtttamxvnwttvttttmttt*tm&
typedef struct NearestPhotons {
S EEEREEEE
int max;
int found;
int got_heap;
float pos[3];
float *dist2;
const Photon #+*index;
40 } NearestPhotons;

/* This is the Photon_map class
*/

S/ ererereerennreinn

class Photon_map {
J/erkernrrenneeeens

public:
Photon_map(int max_phot);
50 ‘Photon_mnp():
void store(
const float power[3], // photon power
const fleat pos([3], // photon position
const float dir[3]); // photon direction
void scale_photon_power(
const float scale); // 1/(number of emitted photons)
60 void balance(void); // balance the kd-tree (before use!)
void irradiance_estimate(
float irrad[3], // returned irradiance
const float pos[3], // surface position
const float normall[3], // surface normal at pos
const float max_dist, // max distance to look for photons
const int nphotons) const; // number of photons to use
void locate_photons(
0 NearestPhotons *const np, // np is used to locate the photons
const int index) const; // call with index = 1
void photon_dir(
float #*dir, // direction of photon (returned)
const Photon *p) const; // the photon
private:

void balance_segment (
80 Photon *=*pbal,
Photon **porg,
const int index,

TeamLRN

B. A Photon Map Implementation in C++

100

+

110
[
-
-
*/
I/

const int start,
const int end);

void median_split(
Photon **p,
const int start,
const int end,
const int median,
const int axis);

Photon *photons;

int stored_photons;

int half_stored_photons;
int max_photons;

int prev_scale;

float costheta[256];
float sintheta[2566];
float cosphi[266];
float sinphil[2566];

float bbox_min[3]; // use bbox_min;
float bbox_max[3]; // use bbox_max;

This is the constructor for the photon map.
To create the photon map it is necessary to specify the
maximum number of photons that will be stored

R o * FEREEEREERE

Photon_map :: Photon_map(const int max_phot)

1/
{

130

140

//

_—

stored_photons = 0;
prev_scale = 1;
max_photons = max_phot;

photons = (Photon*)malloc(sizeof(Photon) + (max_photons+l));

if (photons == NULL) {
fprintf (stderr,"Dut of memory initializing photon mapin”);
exit(-1);

le8f;

bbox_min[0] = bbox_min[1] = bbox_min[2]
= -1leBf;

bbox_max[0] = bbox_max[1] = bbox_max[2]

// initialize direction conversion tables
e =

for (int i=0; 1<256; i++) {
double angle = double(i)*(1.0/266.0)+M_PI;
costheta[i] = cos(angle);
sintheta[i] = sin(angle);
cosphi [i] cos(2.0%angle);
sinphi [i] sin(2.0%angle);

nmuwwuwn

ok e o o e o o R R

Photon_map :: “Photon_map()

1/

10 {

ET T T TR e e R d P s R Lttt

free(photons);

TeamLRN

159

170

200

210

220

160 B. A Photon Map Implementation in C++

/+ photon_dir returns the direction of a photon

»/
ff R R LR LS S S IS S A S S S PRt Rt b
void Photon_map :: photon_dir(float =dir, const Photon *p) const
ff‘ttttttttttttti‘t**‘!k!ﬂlt--ltt.-tt--tt.t*tﬁtttvtti‘ttti—tl!ltt-l
{

dir[0] = sintheta[p->theta] *cosphi[p->phil;

dir[1] = sintheta[p->theta]*sinphi[p->phi];

dir[2] = costheta[p->thetal;

/#* irradiance_estimate computes an irradiance estimate
*# at a given surface position

=/
ff**ttt*ltttmtttitt**‘*i‘-l‘--“““.!“tiﬁﬁﬁﬁtt
void Photon_map :: irradiance_estimate(
float irrad[3], // returned irradiance
const float pos[3], // surface position
const float normall[3], // surface normal at pos
const float max_dist, // max distance to loock for photons
const int nphotons) const // number of photons to use
ff"‘t“--“-“tt“*mtttt!tt!‘ttt*l**"*“-t‘-‘t
2

irrad[0] = irrad[1] = irrad[2] = 0.0;

NearestPhotons np;
np.dist2 = (float*)allocal sizeof(float)*(nphotons+1));
np.index = (const Photon**)alloca(sizeof(Photon*)#(nphotons+1});

np.pos[0] = pos[0]; np.pes[1] = pos[1]; np.pos[2] = pos[2];
np.max = nphotons;

np.found = 0;

np.got_heap = 0;

np.dist2[0] = max_dist*max_dist;

// locate the nearest photons
locate_photons(&np, 1);

// if less than 8 photons return
if (np.found<8)
return;

float pdir([3];

// sum irradiance from all photons
for (int i=1; i<=np.found; i++) {
const Photon *p = np.index[i];
// the photon_dir call and following if can be omitted (for speed)
// if the scene does not have any thin surfaces
photon_dir(pdir, p);
if ((pdi.r[OTtnormal[O]-'-pd:Lr[1]tnnmn1[1]+pdir[2]*noml[?]) <0.0f) {
irrad[0] += p->power([0];
irrad[1] += p->power([1];
irrad[2] += p->power[2];

}
const float tmp=(1.0f/M_PI)/(np.dist2[0]); // estimate of density
irrad[0] *= tmp;

irrad[1] *= tmp;
irrad[2] *= tmp;

/* locate_photons finds the nearest photons in the
* photon map given the parameters in np
*/

ff‘.‘*'!tt*?“*ttttt‘tt“t*‘l!*.“!‘-tt.ttt-

TeamLRN

230

240

250

260

aro

280

200

B. A Photon Map Implementation in C++

void Photon_map :: locate_photons(

NearestPhotons *const np,
const int index) conmst

e L e e e Lttt Ll

{

const Photon *p = &photons[index];

float distl;

if (index<half_stored_photons) {

distl = np->pos[p->plane

1 - p->pos[p->plane];

if (dist1>0.0) { // if distl is positive search right plane
locate_photons(np, 2*index+l);
if (distlsdistl < np->dist2[0])
locate_photons(np, 2+index);

} else { // distl

is negative search left first

locate_photons(np, 2*index);
if (distl=distl < np->dist2[0])
locate_photons(np, 2*index+l);

}
}

// compute squared distance between current photon and np->pos

distl = p->pos[0] - np->pos[0];

float dist2 = distixdistl;

distl = p->pos[1] - np->pos(1i];

dist2 += distixdistl;

distl = p->pos[2] - np->pos(2];

dist2 += distlsdistl;

if (dist2 < np->dist2[0])

{

// we found a photon :) Insert it in the candidate list

if (np->found < np->max)

1

// heap is not full; use array

np->found++;

np->dist2[np->found] = dist2;

np->index [np->found]
} else {
int j,parent;

if (np->got_heap==0) { // Do we need to build the heap?

// Build heap
float dst2;
const Photon *phot;

P

int half_found = np->found>>1;
for (int k=half_found; k>=1; k--) {

parent=k;
phot = np->index[k];
dst2 = np->dist2[k];

while (parent <= half _found) {

j = parent+parent;

if (j<np->found k& np->dist2[j]<np->dist2[j+1])

j++;

if (dst2>=np->dist2[j])

break;
np->dist2[parent]
np->index [parent]
parent=j;

}
np->dist2[parent]
np->index[parent]
}
np->got_heap = 1;

= np->dist2[jl;
= np->index[j];

dst2;
phot;

// insert new photon into max heap

// delete largest element, insert new, and reorder the

parent=1;

TeamLRN

heap

161

162 B. A Photon Map Implementation in C++

=2
while (j <= np->found } {
if (j < np->found && np->dist2[j] < np->dist2[j+1])
3+
300 if dist2 > np->dist2[j])
break;
np->dist2[parent]
np->index [parent]
parent = j; -

np->dist2[j];
np->index[j];

3 =03
}
np->index [parent] = p;
np->dist2[parent] = dist2;
310 np->dist2[0] = np->dist2[1];
}
}

/* store puts a photon into the flat array that will form
* the final kd-tree.
*

* Call this function to store a photon.

a0 */
e
void Photon_map :: store(

const float power[3],

const float pes([3],

const float dir[3])
/lf.““"’-“-‘-“.-‘t‘--“-‘

if (stored_photons>max_photons)
return;
330
stored_photons++;
Photon *const node = kphotons[stored_photons];

for (int i=0; i<3; i++) {
node->pos[i] = posl[il;

if (node->pos[i] < bbox_min[i])
bbox_min[i] = node->pos[il;

if (node->pos[i] > bbox_max[i])
340 bbox_max[i] = node->pos[il;

node->power [i] = power[il;

int theta = int(acos(dir[2])*(266.0/M_PI));
if (theta>255)
node->theta = 255;
else
node->theta = (unsigned char)theta;

int phi = int(atan2(dir[1],dir[0])=(266.0/(2.0%M_PI)));
if (phi>258)
node->phi = 255;
else if (phi<0)
node->phi = (unsigned char)(phi+256);
else
node->phi = (unsigned char)phi;

360
/* scale_photon_power is used to scale the power of all
* photons once they have been emitted from the light
* source. scale = 1/(#emitted photons).
* Call this function after each light source is processed.
*/

S/ R FEEEEEEREE TR

TeamLRN

B. A Photon Map Implementation in C++ 163
void Photon_map :: scale_photon_power(const float scale)
et EEEEEE * * .

7o for (int i=prev_scale; i<=stored_photons; i+) {
photons[i] .power[0] *= scale;
photons[i] .power[1] #= scale;
photons[i] . power[2] *= scale;

prev_scale = stored_photons;

/* balance creates a left-balanced kd-tree from the flat photon array.
ss0 * This function should be called before the photon map
* is used for rendering.

*/
S e * eI
void Photon_map :: balance(void)
j}l’tt“ttiﬂ e ok e e
{

if (stored_photons>1) {
// allecate two temporary arrays for the balancing procedure
Photon **pal = (Photon**)malloc(sizeof (Photon#)*(stored_photons+1));
390 Photon **pa2 = (Photon**)malloc(sizeof (Photons)*(stored_photons+1));

for (int i=0; i<=stored_photons; i++)
pa2[i] = &photons[il;

balance_segment(pal, pa2, 1, 1, stored_photons };
free(pa2);

// reorganize balanced kd-tree (make a heap)
int d, j=1, foo=1;
400 Photon foo_photon = photons[jl;

for (int i=1; i<=stored_photons; i++) {
d=pal[j]-photons;
pallj] = NULL;
if (d !'= foo)
photons[j] = photons[d];
else {
photons[j] = foo_photon;

410 if (i<stored_photons) {
for (;foo<=stored_photons; foo++)
if (pallfoo] != NULL)
break;
foo_photon = photons[foo];
j = foo;
}
continue;
T
i=dg

b
free(pal);
}

half_stored_photons = stored_photons/2-1;
}

#define swap(ph,a,b) { Photon =ph2=ph[a]; phla] =ph[bl; phlbl=ph2; }

40 // median_split splits the photon array into two separate
// pieces around the median, with all photons below the
// the median in the lower half and all photons above
// the median in the upper half. The comparison
// criteria is the axis (indicated by the axis parameter)
// (inspired by routine in "Algorithms in C++" by Sedgewick)
Sl enmrnrrreen * EEEEEEREERE R
void Photon_map :: median_split(

TeamLRN

440

450

460

4T

164

Photon *=*p,

B. A Photon Map Implementation in C++

const int start, // start of photon block in array
const int end, // end of photon block in array
const int median, // desired median number
const int axis) // axis to split along

I R * P

{
int left = start;
int right = end;-

while (right > left) {

const float v = plright]->pos[axis];

int i=left-1;
int j=right;
for (5;) {

while (p[++i]->pos[axis] < v)

vhile (pl--jl->pos[axis] > v &k j>left)

A£ (1 5=)
break;
swap(p,i,j);
}

swap(p,i,right);

if (i >= median)
right=i-1;

if { i <= median)
left=i+1;

// See "Realistic Image Synthesis using Photon Mapping” Chapter 6

// for an explanation of this function

ff!tvtl*¥*ltt¥¥ttt¥ittt‘ttt‘l‘
void Photon_map :: balance_segment(

Photon *#*pbal,

Photon **porg,

const int index,

const int start,

const int end)
P L

{

// compute new median

e e

int median=1;

while ((4*median) <= (end-start+1))
median += median;

if ((3*median) <= (end-start+1)) {

median += median;
median += start-1;
} else

median = end-median+1;

T i =
// find axis to split along
e

int axis=2;

if ((bbox_max[0]-bbox_min[0])>(bbox_max[1]-bbox_min[1]) &&
(bbox_max [0] -bbox_min[0])>(bbox_max[2] -bbox_min[2]))

axis=0;

else if ((bbox_max[1]-bbox_min[1])>(bbox_max[2]-bbox_min[2]))

axis=1;

// partition photon block around the median

TeamLRN

510

520

540

B. A Photon Map Implementation in C++ 165

/- e
median_split(porg, start, end, median, axis):

pbal[index] = porgl median 1;
pbal[index]->plane = axis;

4 =
// recursively balance the left and right block
[mmmmmm e mmm S oo s =]

if (median > start) {

// balance left segment

if (start < median-1) {
const float tmp=bbox_max[axis];
bbox_max[axis] = pballindex]->pos[axis];
balance_segment(pbal, porg, 2+index, start, median-1 };
bbox_max[axis] = tmp;

} else {
pbal[2+index] = porglstart];

}
if (median < end) {
// balance right segment
if (median+l < end) {
const float tmp = bbox_min[axis];
bbox_min[axis] = pbal[index]->pos[axis];
balance_segment(pbal, porg, 2+index+1, mediantl, end X3
bbox_min[axis] = tmp;
} else {
pbal[2*index+l] = porglend] ;
}
}

TeamLRN

A Cognac Glass Model

This appendix contains the data used for the cognac glass model which has
appeared in several images in this book. It is a good model for simulating
caustics.

The data is given as three contour curves. There is a contour for the
cognac-air interface, the glass-air interface, and the cognac-glass interface.
The three interfaces are necessary to properly account for Fresnel effects.
Modeling a volume of cognac inside a glass with a tiny bit of air between
the two would not be correct.

The contour curves can be typed into most modeling programs. The
cognac glass is then created by rotating this curve around the center axis
(radius=0).

The data for the cognac-air interface contour is:

Height | Radius
6.5 3.8
6.48 3.76
6.45 3.75

6.45 0

TeamLRN 167

168 C. A Cognac Glass Model

The data for the glass-air interface contour is:

Height | Radius || Height | Radius
6.50 3.80 cont’d | cont’d
6.05 3.79 4.33 2.70
5.60 3.73 3.95 1.98
5.15 3.55 3.58 1.06
4.70 3.20 3.20 0.00

The data for the glass-cognac interface contour is:

Height Radius Height Radius Height Radius

0.90000 | 0.000000 cont’d cont’d cont’d cont’d

0.77500 | 0.087946 || 1.00000 | 0.500000 [| 10.16250 | 2.807188
0.65000 | 0.167857 || 1.30000 | 0.500000 || 10.55000 | 2.700000
0.52500 | 0.338839 || 1.60000 | 0.500000 || 10.57250 | 2.695273
0.40000 | 0.700000 [| 1.90000 | 0.500000 [| 10.59500 | 2.692188
0.31250 | 1.178594 (| 2.20000 | 0.500000 [| 10.61750 [2.690508
0.22500 | 1.821250 || 2.27500 | 0.515031 [| 10.64000 | 2.690000
0.13750 | 2.465781 || 2.35000 | 0.556750 [| 10.65375 | 2.690469
0.05000 | 2.950000 || 2.42500 | 0.620094 [| 10.66750 | 2.688750
0.03775 | 2.981703 || 2.50000 | 0.700000 || 10.68125 | 2.680156
0.02550 | 2.993875 || 2.81250 | 1.149888 [| 10.69500 | 2.660000
0.01325 | 3.009109 (| 3.12500 | 1.710119 || 10.69625 | 2.650594
0.00100 | 3.050000 || 3.43750 | 2.277790 || 10.69750 | 2.633250
0.00075 | 3.062539 (| 3.75000 | 2.750000 || 10.69875 | 2.616781
0.00050 | 3.088437 || 4.01250 | 3.048824 || 10.70000 | 2.610000
0.00025 | 3.113867 || 4.27500 | 3.294114 (| 10.66250 | 2.592930
0.00000 | 3.125000 || 4.53750 | 3.492347 || 10.62500 | 2.595313
0.05000 | 3.218750 || 4.80000 | 3.650000 || 10.58750 | 2.607539
0.10000 | 3.250000 || 5.22500 | 3.831752 (| 10.55000 | 2.620000
0.15000 | 3.218750 || 5.65000 | 3.937946 || 10.16250 | 2.724063
0.20000 | 3.125000 || 6.07500 | 3.987667 || 9.77500 | 2.840625
0.36250 | 2.497187 || 6.50000 | 4.000000 || 9.38750 | 2.966875
0.52500 | 1.642500 || 7.12500 | 3.916016 || 9.00000 | 3.100000
0.68750 | 0.885313 || 7.75000 | 3.709375 || 8.37500 | 3.332422
0.85000 | 0.550000 || 8.37500 | 3.448047 7.75000 | 3.559375
0.88750 | 0.540078 || 9.00000 | 3.200000 7.12500 | 3.731641
0.92500 | 0.523125 || 9.38750 | 3.063750 || 6.50000 | 3.800000
0.96250 | 0.507109 || 9.77500 | 2.930625

TeamLRN

(1]

(5]
[6]

Bibliography

Masaki Aono and Ryutarou Ohbuchi. “Quasi-Monte Carlo rendering with
adaptive sampling.” Technical Report RT0167, IBM Tokyo Research Lab-
oratory, 1996.

James Arvo. Backward Ray Tracing. In Developments in Ray Tracing,
SIGGRAPH 86 Seminar Notes, volume 12, August 1986.

James Arvo and David B. Kirk. “Particle Transport and Image Synthesis.”
Computer Graphics (Proc. SIGGRAPH ’90) 24(4): 63-66 (August 1990).
Franz Aurenhammer. “Voronoi diagrams—a survey of a fundamental geo-
metric data structure.” ACM Computing Surveys 23(3): (September 1991).
Jon L. Bentley. “Multidimensional binary search trees used for associative
searching.” Communications of the ACM 18(9): 509-517 (1975).

Jon L. Bentley. “Multidimensional binary search trees in database appli-
cations.” IEEE Trans. on Soft. Eng. 5(4): 333-340 (July 1979).

Jon L. Bentley and Jerome H. Friedman. “Data structures for range search-
ing.” Computing Surveys 11(4): 397-409 (1979).

Jon L. Bentley, Bruce W. Weide, and Andrew C. Yao. “Optimal expected-
time algorithm for closest point problems.” ACM Trans. on Math. Soft.
6(4): H63-580 (1980).

TeamLRN 169

T

170

9]

[10]

(11]
[12]

13]

[14]

[15]

(16]

[17]
18]
[19]
[20]

(21]

(22]

[23]

[24]

Bibliography

Philippe Blasi, Bertrand Le Saec, and Christophe Schlick. “A rendering
algorithm for discrete volume density objects.” Computer Gaphics Forum
(FEurographics '93) 12(3): 201-210 (1993).

James F. Blinn. "Models of light reflection for computer synthesized pic-
tures.” Computer Graphics (Proc. SIGGRAPH '77) 11(2): 192-198 (July
1977).

Craig Bohren and Donald Huffman. Abserption and Scattering of Light by
Small Particles. New York: John Wiley & Sons, 1983.

Jed Z. Buchwald. The Rise of the Wave Theory of Light. Chicago: The
University of Chicago Press, 1989.

Shenchang Eric Chen, Holly E. Rushmeier, Gavin Miller, and Douglass
Turner. “A progressive multi-pass method for global illumination.” Com-
puter Graphics (Proc. SIGGRAPH '91) 25(4): 165-174 (July 1991).

Per H. Christensen. “Faster photon map global illumination.” Journal of
Graphics Tools 4(3): 1-10 (April 2000).

Per H. Christensen, Eric J. Stollnitz, David H. Salesin, and Tony D.
DeRose. “Global illumination of glossy environments using wavelets and
importance.” ACM Transactions on Graphics 15(1): 37-71 (January 1996).
Michael F. Cohen and Donald P. Greenberg. “The Hemi-Cube: A ra-
diosity solution for complex environments.” Computer Graphics (Proc.
SIGGRAPH '85) 19(3): 31-40 (August 1985).

Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image
Synthesis. San Diego, CA: Academic Press, 1993.

Steven Collins. “Adaptive splatting for specular to diffuse light transport.”
In Fifth Eurographics Workshop on Rendering, pp. 119-135, June 1994.

Steven Collins. Wavefront Tracking for Global Illumination Solutions. PhD
thesis, Dept. Computer Science, Trinity College Dublin, 1996.

Robert L. Cook. “Stochastic sampling in computer graphics.” ACM Trans-
aclions on Graphics 5(1): 51-72 (Jan 1986).

Robert L. Cook, Thomas Porter, and Loren Carpenter. “Distributed ray
tracing.” Computer Graphics (Proc. SIGGRAPH ’84) 18(3): 137-45 (July
1984).

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. Cambridge, MA: MIT Press, 1989.

Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, and
Hans Kohling Pedersen. “Modeling and rendering of weathered stone.” In
Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual
Conference Series, edited by Alyn Rockwood, pp. 225-234, Reading, MA:
Addison-Wesley, 1999.

Philip Dutré. Mathematical Frameworks and Monte Carlo Algorithms for
Global Illumination in Computer Graphics. PhD thesis, University of Leu-
ven, 1998.

TeamLRN

Bibliography 171

[25]

[26]
[27]
28]

[29]

30]

31]

(32|

38]

(39]

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. “Visual simulation of
smoke.” In Proceedings of SIGGRAPH 2001, Compuler Graphics Proceed-
ings, Annual Conference Series, to appear.

Andrew S. Glassner. “Space subdivision for fast ray tracing.” IEEE Com-
puter Graphics and Applications 4(10): 15-22 (October 1984).

Andrew S. Glassner. An Introduction to Ray Tracing. London: Academic
Press, 1989.

Andrew S. Glassner. Principles of Digital Image Sythesis. Los Altos: Mor-
gan Kaufmann, 1995.

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett
Battaile. “Modelling the interaction of light between diffuse surfaces.”
Computer Graphics (Proc. SIGGRAPH °84) 18(3): 212-22 (July 1984).

Steven J. Gortler, Peter Schroder, Michael F. Cohen, and Pat Hanrahan.
“Wavelet radiosity.” In Proceedings of SIGGRAPH *93, Computer Graphics
Proceedings, Annual Conference Series, edited by James T. Kajiya, pp.
221-230, New York: ACM Press, 1993.

Roy Hall. Illumination and Color in Computer Generated Imagery. New
York: Springer-Verlag, 1989.

Pat Hanrahan and Wolfgang Krueger. “Reflection from layered surfaces
due to subsurface scattering.” In Proceedings of SIGGRAPH 93, Com-
puter Graphics Proceedings, Annual Conference Series, edited by James T.
Kajiya, pp. 165-174, New York: ACM Press, 1993.

Pat Hanrahan, David Salzman, and Larry Aupperle. “A rapid hierarchical
radiosity algorithm.” Computer Graphics (Proc. SIGGRAPH '91) 25(4):
197-206 (July 1991).

Paul S. Heckbert. “Adaptive radiosity textures for bidirectional ray trac-
ing.” Computer Graphics (Proc. SIGGRAPH "90) 24(4): 145-154 (August
1990).

L. G. Henyey and J. L. Greenstein. “Diffuse radiation in the galaxy.”
Astrophysics Journal, 93: 70-83, 1941.

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed. Fundamentals of
Data Structures in . New York: W. H. Freeman & Co., 1993.

David S. Immel, Michael F. Cohen, and Donald P. Greenberg. “A ra-
diosity method for non-diffuse environments.” Computer Graphics (Proc.
SIGGRAPH ’86) 20(4): 133-142 (August 1986).

American National Standard Institute. Nomenclature and Definitions for
Hlumination Engineering. ANSI report, ANSI/IES RP-16-1986, 1986.

Frederik W. Jansen. “Data structures for ray tracing.” In Data Structures
for Raster Graphics, edited by L. R. A. Kessener, F.J. Peters, and M. L.
P. van Lierop, pp. 5773, Berlin: Springer-Verlag, 1985.

TeamLRN

172

(40]

[41]

j42)

[43]

[44]

[45]

[46]

(47]

(48]

[49)

[50]

[52]

[53]

Bibliography

Henrik Wann Jensen. Global illumination via bidirektional Monte Carlo
ray tracing. Naster’s thesis, Technical University of Denmark, 1993.

Henrik Wann Jensen. “Importance driven path tracing using the photon
map.” In Eurographics Rendering Workshop 1995, edited by P. Hanrahan
and W. Purgathofer, pp. 326-335, Eurographics, June 1995.

Henrik Wann Jensen. “Global illumination using photon maps.” In FEu-
rographics Rendering Workshop 1996, edited by Xavier Pueyo and Peter
Schréder, pp. 21-30, Vienna: Springer-Verlag, 1996.

Henrik Wann Jensen. The photon map in global illumination. PhD thesis,
Technical University of Denmark, September 1996.

Henrik Wann Jensen. “Rendering caustics on non-Lambertian surfaces.”
In Graphics Interface '96, edited by Wayne A. Davis and Richard Bartels,
pp- 116-121, Canadian Information Processing Society, Canadian Human-
Computer Communications Society, May 1996.

Henrik Wann Jensen. Parallel global illumination using photon mapping.
SIGGRAPH 2000 Course Notes, New York: ACM Press, July 2000.

Henrik Wann Jensen and Niels J. Christensen. “Efficiently rendering shad-
ows using the photon map.” In Compugraphics 95, edited by Harold P.
Santo, pp. 285-291, December 1995.

Henrik Wann Jensen and Niels Jorgen Christensen. “Photon maps in
bidirectional Monte Carlo ray tracing of complex objects.” Computers &
Graphics 19(2): 215-224 (March 1995).

Henrik Wann Jensen and Per H. Christensen. “Efficient simulation of light
transport in scenes with participating media using photon maps.” In Pro-
ceedings of SIGGRAPH °98, Computer Graphics Proceedings, Annual Con-
ference Series, edited by Michael Cohen, pp. 311-320, Reading, MA: Ad-
dison Wesley, 1998.

Henrik Wann Jensen and Stephen Duck. “The light of Mies van der Rohe,
July 2000.” Animation in SIGGRAPH’2000 Electronic Theater.

Henrik Wann Jensen, Justin Legakis, and Julie Dorsey. “Rendering of wet
materials.” In Rendering Techniques '99, edited by D. Lischinski and G. W.
Larson, Vienna: Springer-Verlag, 1999.

Henrik Wann Jensen, Steve Marschner, Marc Levoy, and Pat Hanrahan.
“A practical model for subsurface light transport.” In Proceedings of SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Conference Series,
to appear.

James T. Kajiva. “The rendering equation.” Computer Graphics (Proc.
SIGGRAPH ’86) 20(4): 143-150 (August 1986).

Timothy L. Kay and James T. Kajiya. “Ray tracing complex scenes.”
Computer Graphics (Proc. SIGGRAPH ’86) 20(4): 269-278 (August 1986).

TeamLRN

Bibliography 173

/54]

159]

[60]

[61]

[62)

63]

[64]

(65]

66]

Alexander Keller. “Quasi-Monte Carlo radiosity.” In Eurographics Ren-
dering Workshop 1996, edited by Xavier Pueyo and Peter Schroder, pp.
101-110, Vienna: Spinger-Verlag, 1996.

Kryzsztof S. Klimansezewski and Thomas W. Sederberg. “Faster ray trac-
ing using adaptive grids.” IEEE Computer Graphics & Applications 17(1):
42-51 (January-February 1997).

Eric P. Lafortune. Mathematical Models and Monte Carlo Algorithms for
Physcially Based Rendering. PhD thesis, University of Leuven, 1996.

Eric P. Lafortune and Yves D. Willems. “Bidirectional path tracing.” In
Compugraphics '93, pp. 95-104, 1993.

Eric P. Lafortune and Yves D. Willerns. “A 5D tree to reduce the vari-
ance of Monte Carlo ray tracing.” In FEurographics Rendering Workshop
1995, edited by Patrick Hanrahan and Werner Purgathofer, pp. 11-20, Eu-
rographics, June 1995.

Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Don-
ald P. Greenberg. “Non-linear approximation of reflectance functions.” In
Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, edited by Turner Whitted, pp. 117-126, Reading, MA:
Addison Wesley, 1997. ISBN 0-89791-896-7.

Mark E. Lee, Richard A. Redner, and Samuel P. Uselton. “Statistically
optimized sampling for distributed ray tracing.” Computer Graphics (Proc.
SIGGRAPH °85) 19(3): 61-67 (July 1985).

Mare Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Gins-
berg, Jonathan Shade, and Duane Fulk. “The digital michelangelo project:
3d scanning of large statues.” In Proceedings of SIGGRAPH 2000, Com-
puter Graphics Proceedings, Annual Conference Series, edited by Kurt Ake-
ley, pp. 131-144, Reading, MA: Addison Wesley, 2000.

Robert Lewis. “Making shaders more physically plausible.” In Fourth
Eurographics Workshop on Rendering, edited by Michael F. Cohen, Claude
Puech, and Francois Sillion, pp. 47-62, Eurographics, June 1993.

Daniel Lischinski, Filippo Tampieri, and Donald P. Greenberg. “Discon-

tinuity meshing for accurate radiosity.” IEEE Computer Graphics and
Applications 12(6): 25-39 (November 1992).

Nicholas Metropolis, Arianna Rosenbluth, Marshall Rosenbluth, Augusta
Teller, and Edward Teller. “Equation of state calculations by fast comput-
ing machines.” The Journal of Chemical Physics 21(6): 1087-1092 (1953).

Gustav Mie. “Beitrige zur Optik triiber Medien, speziell kolloidaler Met-
alllssungen.” Annalen der Physik 25: 377-445 (1908).

M. Minnaert. Light and Color in the Outdoors. Berlin: Springer-Verlag,
1993.

TeamLRN

174

(67]

[68]

(69]

[70]
(71]

(72]

(73]

(74]

(76]

(77]

(78]

[79]

[80]

Bibliography

Don P. Mitchell. “Generating antialiased images at low sampling densities.”
Computer Graphics (Proc. SIGGRAPH "87) 21(4): 65-72 (July 1987).

Karol Myszkowski. “Lighting reconstruction using fast and adaptive density
estimation techniques.” In Furographics Rendering Workshop 1997, edited
by Julie Dorsey and Philipp Slusallek, pp. 251-262, Vienna: Springer-
Verlag, 1997. -

I. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and
T. Limperis. Geometric considerations and nomenclature for reflectance.
Monograph 161, National Bureau of Standards (US), October 1977.

Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. Philadelphia: STAM, 1992,

T. Nishita, I. Okamura, and E. Nakamae. “Shading models for point and
linear sources.” ACM Transactions on Graphics 4(2): 124-146 (April 1985).

Michael Oren and Shree K. Nayar. “Generalization of Lambert’s reflectance
model.” In Proceedings of SIGGRAPH 94, Computer Graphics Proceed-
ings, Annual Conference Series edited by Andrew Glassner, pp. 239246,
New York: ACM Press, July 1994,

James Painter and Kenneth Sloan. “Antialiased ray tracing by adaptive
progressive refinement.” Computer Graphics (Proc. SIGGRAPH '89) 23(3):
281-288 (July 1989).

Sumant N. Pattanaik. Computational Methods for Global Illumination and
Visualisation of Complex 3D Environments. PhD thesis, Birla Institute of
Technology & Science, 1993.

Mark J. Pavicic. “Convenient anti-aliasing filters that minimize bumpy
sampling.” In Graphics Gems I, edited by Andrew S. Glassner, pp.144
146, Cambridge, MA: Academic Press, 1990.

Ingmar Peter and Georg Pietrek. “Importance driven construction of pho-
ton maps.” In Rendering Techniques '98 (Proceedings of the Ninth Euro-
graphics Workshop on Rendering, edited by G. Drettakis and N. Max, pp.
269-280, Vienna: Springer-Verlag, 1998.

M. Pharr and P. Hanrahan. “Monte Carlo evaluation of non-linear scat-
tering equations for subsurface reflection.” In Proceedings of SIGGRAPH
2000, Computer Graphics Proceedings, Annual Conference Series, edited
by Kurt Akeley, pp. 75-84, July 2000.

Bui-T. Phong. “Illumination for computer generated pictures.” Commu-
nications of the ACM 18(6): 311-317 (June 1975).

Pierre Poulin and Alain Fournier. “A model for anisotropic reflection.”
Computer Graphics (Proc. SIGGRAPH '90), 24(4): 273282 (August
1990).

Franco P. Preparata and Michael Ian Shamos. Computational Geomelry
An Introduction. New York: Springer-Verlag, 1985.

TeamLRN

Bibliography 175

81]

(82]

83]

84

(88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. New
York: John Wiley & Sons, 1981.

Holly Rushmeier, Charles Patterson, and Aravindan Veerasamy. “Geo-
metric simplification for indirect illumination calculations.” In Proceedings
of Graphics Interface "93, pp. 227-236, Toronto: Canadian Information
ProcessingSociety, 1993.

B. Saleh and M. Teich. Fundamentals of Photonics. New York: John Wiley
& Sons, 1991.

Gernot Schaufler and Henrik Wann Jensen. “Ray tracing point sam-
pled geometry.” In Rendering Techniques 2000, edited by B. Peroche and
. Rushmeier, pp. 319-328, Vienna: Springer-Verlag, 2000.

Christophe Schlick. “A customizable reflectance model for everyday render-
ing.” In Fourth Burographics Workshop on Rendering, edited by Michael F.
Cohen, Claude Puech, and Francois Sillion,pp. 73-84, Eurographics, June
1993.

Robert Sedgewick. Algorithms in C++. Reading, MA: Addison-Wesley,
1992,

Peter Shirley. Physically Based Lighting Calculations for Computer Graph-
ics. Ph.D. thesis, Dept. of Computer Science, U. of Illinois, Urbana-
Champaign, November 1990.

Peter Shirley. “A ray tracing method for illumination calculation in diffuse-
specular scenes.” In Proceedings of Graphics Interface "90, pp. 205-212,
Toronto: Canadian Information Processing Society, May 1990.

Peter Shirley. “Discrepancy as a quality measure for sample distributions.”
In Eurographics '91, edited by Werner Purgathofer, pp. 183-194, Amster-
dam: North-IHolland, September 1991.

Peter Shirley. “Nonuniform random point sets via warping.” In Graphics
Gems 11, edited by David Kirk, pp. 80-83, San Diego: Academic Press,
1992.

Peter Shirley. Realistic ray tracing. Natick, MA: A K Peters, 2000.

Peter Shirley and Kenneth Chiu. Notes on adaptive quadrature on the
hemisphere. Technical Report 411, Indiana University, 1995.

Peter Shirley, Bretton Wade, Phillip Hubbard, David Zareski, Bruce Wal-
ter, and Donald P. Greenberg. “Global illumination via density estimation.”
In Rendering Techniques 95, edited by P. Hanrahan and W. Purgathofer,
pp. 219-230, Vienna: Springer-Verlag, 1995,

Robert Siegel and John R. Howell. Thermal Radiation Heat Transfer.
Washington, DC: Hemisphere Publishing Corp., 1981.

Francois X. Sillion, James R. Arvo, Stephen H. Westin, and Donald P.
Greenberg. “A global illumination solution for general reflectance distrib-
utions.” Computer Graphics (Proc. SIGGRAPH '91) 25(4): 187-196 (July
1991).

TeamLRN

176

[96]

[97]

[98]

(99]

[100]

[101]

[102]

[103]

(104]

[105]

(106]
(107)

[108]

(109]

Bibliography

B. W. Silverman. Density Estimation for Statistics and Dala Analysis.
Chapman & Hall, 1986.

Jeffrey S. Simonoff. Smoothing methods in statistics. New York: Springer-
Verlag, 1996.

Brian Smits,.James Arvo, and Donald Greenberg. “A clustering algorithm
for radiosity in complex environments.” In Proceedings of SIGGRAPH
94, Computer Graphics Proceedings, Annual Conference Series, edited by
Andrew Glassner, pp. 435442, New York: ACM Press, July 1994.

Brian E. Smits, James R. Arvo, and David H. Salesin. “An importance-
driven radiosity algorithm.” Computer Graphics (Proc. SIGGRAPH '92)
26(2): 273282 (July 1992).

John M. Snyder and Alan H. Barr. “Ray tracing complex models containing
surface tessellations.” Computer Graphics (Proc. SIGGRAPH ’87) 21(4):
119-128 (July 1987).

Jerome Spanier and Ely Gelbard. Monte Carlo Principles and Neutron
Transport Problems. Reading, MA: Addison-Wesley, 1969.

Jos Stam and Eric Languénou. “Ray tracing in non-constant media.” In
Eurographics Rendering Workshop 1996, edited by Xavier Pueyo and Peter
Schrider, pp. 225-234, Vienna: Springer-Verlag.

Marc Stamminger, Philipp Slusallek, and Hans-Peter Seidel. “Three point
clustering for radiance computations.” In Rendering Techniques’98, edited
by G. Drettakis and N. Max, pp. 211-222, Vienna: Springer-Verlag, 1998.

Kelvin Sung and Peter Shirley. “Ray tracing with the bsp tree.” In Graphies
Gems I1I, edited by David Kirk, pp. 271-274, San Diego: Academic Press,
1992,

Frank Suykens and Yves D. Willems. “Density control for photon maps.”
In Rendering Techniques 2000, edited by B. Peroche and H. Rushmeier,
pp. 23-34, Vienna: Springer-Verlag, 2000.

K. E. Torrance and E. M. Sparrow. “Theory for off-specular reflection from
roughened surfaces.” Journal of Optical Society of America 57(9): (1967).

Eric Veach. Robust Monte Carlo methods for light transport simulation.
PhD thesis, Stanford University, 1997.

Eric Veach and Leonidas Guibas. “Bidirectional estimators for light trans-
port.” In Fifth Eurographics Workshop on Rendering, pp. 147-162, Euro-
graphics, 1994.

Eric Veach and Leonidas J. Guibas. “Optimally combining sampling tech-
niques for Monte Carlo rendering.” In Proceedings of SIGGRAPH 95, Com-
puter Graphics Proceedings, Annual Conference Series, edited by Robert
Cook, pp. 419-428, Reading: MA, Addison Wesley, August 1995.

TeamLRN

Bibliography 177

[110]

[111]

[112]

(113]

[114]
[115]

[116]

(117

(18]

[119]

[120]

[121]

[122)

[123]

Eric Veach and Leonidas J. Guibas. “Metropolis light transport.” In Pro-
ceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Con-
ference Series, edited by Turner Whitted, pp. 65-76, Reading, MA: Addison
Wesley, August 1997.

Vladimir Volevich, Karol Myszkowski, Andrei Khodulev, and Edward A.

Kopylov. - Perceptually-informed progressive global illumination solution.
Technical Report 99-1-002, University of Aizu, 1999.

John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. “A two-pass
solution to the rendering equation: A synthesis of ray tracing and radiosity
methods.” Computer Graphics (Proc. SIGGRAPH °87) 21(4): pp. 311-320
(July 1987).

Bruce Walter, Philip M. Hubbard, Peter Shirley, and Donald F. Green-
berg. “Global illumination using local linear density estimation.” ACM
Transactions on Graphics 16(3): 217-259 (July 1997).

Greg Ward. “Real pixels.” In Graphics Gems II, edited by James Arvo,
pp- 8083, San Diego: Academic Press, 1991.

Gregory J. Ward. “Measuring and modeling anisotropic reflection.” Com-
puter Graphics (Proc. SIGGRAPH ’92) 26(2): 265-272 (July 1992).
Gregory J. Ward. “The RADIANCE lighting simulation and rendering sys-
tem.” In Proceedings of SIGGRAPH °94, Computer Graphics Proceedings,
Annual Conference Series edited by Andrew Glassner, pp. 459-472, New
York: ACNI Press, July 1994.

Gregory J. Ward and Paul Heckbert. “Irradiance gradients.” In Third
Eurographics Workshop on Rendering, pp. 85-98, Eurographics, May 1992.

Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. “A ray
tracing solution for diffuse interreflection.” Computer Graphics (Proc. SIG-
GRAPH '88) 22(4): 85-92 (August 1988).

David Watson and Alistair Mees. “Natural trees—neighbourhood-location

in a nut shell.” International Journal of Geographical Information Systems,
1996.

Turner Whitted. “An improved illumination model for shaded display.”
Communications of the ACM 23(6): 343-349 (June 1980).

Lawrence B. Wolff and David J. Kurlander. “Ray tracing with polarization
parameters.” IEEE Computer Graphics and Applications 10(6): 44-55
(November 1990).

G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods,
Quantitative Data and Formulae. New York: John Wiley & Sons, 1982.

Kurt Zimmerman and Peter Shirley. “A two-pass realistic image synthesis
method for complex scenes.” In FEurographics Rendering Workshop 1995,
edited by Patrick Hanrahan and Werner Purgathofer, pp. 284-295 Euro-
graphics, June 1995.

TeamLRN

Absorption, 18

Absorption coefficient, 114
Adaptive ray marching, 121
Anisotropic reflection, 25
Artistic control, 98, 99

Balanced kd-tree, 70
Algorithm, 72

Bidirectional path tracing, 43

Blackbody radiation, 17

BRDF, 19

BSSRDI, 18

Caustics photon map, 97
Classic Ray Tracing, 34

Combined estimator, 45
Consistent, 53

Density control, 146
Density estimation, 76, 88
Nearest neighbor, 78
Depth of field, 38
Diffraction, 12

TeamLRN

Index

179

Diffuse point light, 56
Diffuse reflection, 21, 60
Directional light, 58
Dispersion, 12

Distribution ray tracing, 38

Emitting photons, 55
Extinction coefficient, 114

Finite element, techniques, 5
Flux, 14

Form factor, 29

Fresnel equations, 23

Fresnel reflection coefficient, 23

Geometry simplification, 7, 52
Global illumination, 3

Global photon map, 97

Helmholtz law, 20

Henyey-Greenstein phase function, 116

Hybrid techniques, 6

180

[Muminance, 16

[Mlumination maps, 52, 75
Importance sampling, 41, 144, 155
[mportons, 146

Intensity, 14

Interference, 12

Irradiance, 14

Irradiance caching, 139

Irradiance gradients, 142
[rradiance sampling, 140

Kd-tree, 68
Kernel density estimation, 76

Light intensity, 17

Light transport notation, 30
Local illumination, 18, 20
Low-discrepancy sequence, 147
Luminance, 16

Luminous exitance, 16
Luminous flux, 15

Luminous flux area density, 16
Luminous intensity, 16

Metropolis Light Transport, 47
Microfacets, 25

Monte Carlo integration, 153
Motion blur, 38

Nearest, neighbors, 67
Neumann series, 29
Normalized Phong model, 24

Oren-Nayar model, 25

Participating media, 113
Absorption coefficient, 114
Anisotropic medium, 116
Anisotropic scattering, 116
Isotropic medium, 116
[sotropic scattering, 116
Phase function, 115
Photon tracing, 121
Radiance estimate, 124
Ray marching, 119
Scattering albedo, 123
Scattering coefficient, 114

TeamLRN

Index

Subsurface scattering, 127
Volume photon map, 123
Volume rendering equation, 115
Path integral, 30
Path tracing, 37
Penumbra region, 150
Phase function, 115
Henyey-Greenstein, 116
Isotropic scattering, 116
Mie theory, 118
Rayleigh, 118
Schlick, 117
Phong model, 24
Photometry, 15
Photon, 13
Photon emission, 55
Photon gathering, 83
Photon map, 54
Balanced kd-tree, 70
Balancing algorithm, 71
Data structure, 67
Kd-tree, 70
Locating photons, 72
Memory layout, 71
Photon structure, 69
Radiance estimate, 78
Photon mapping, 54
Photon optics, 12
Photon scatiering, 60
Photon structure, 69
Photon tracing, H4
Physically-based simulation, 3
Planck’s formula, 17
Point light, 56
Point light source, 36
Polarization, 12
Power heuristic, 45
Primary rays, 35
Projection map, 59, 98

QMC, 147
Quasi-Monte Carlo, 147

Radiance, 14
Radiance estimate, 78
Pseudocode, 81

Index

Radiant, energy, 13
Radiant exitance, 14
Radiant flux, 14
Radiant intensity, 14
Radiometry, 13
Radiosity, 5, 14, 29
Radiosity equation, 29
Ray marching, 119
Ray optics, 12
Ray tracing, 34
Algorithm, 36
Realistic image synthesis, 2
Reciprocity, 20
Recursive ray marching, 121
Recursive ray tracing, 34
Reflectance, 20
Reflection, 60
Reflection models, 24
Relraction, 23
Rendering equation, 27
Russian roulette, 61, 123

Scattering coeflicient, 114

Schlick’s Reflection Model, 25, 61
Shadow photons, 101, 148

TeamLRN

Shadow ray, 36

Snell’s law, 23

Specular reflection, 22, 60
Specular refraction, 23
Spherical light, 57

Square light, 58

Stochastic sampling, 38
Stratified sampling, 41, 155
Subsurface scattering, 19, 127

Tone mapping, 16
Torrance-Sparrow model, 24

Unbiased, 34, 53

Variance reduction, 41
Visibility function, 28

Visual importance, 145
Volume photon map, 123
Volume radiance estimate, 124
Voronoi diagram, 69

Wattage, 17
Wave optics, 12
Wavelength, 18

181

Henrik Wann Jensen N

Realistic Image
Sunthesis
Using Photon
[=]=/=Rgl=!

Foreword by Pat Hanrahan

The creation of realistic three-dimensional images is central to
computer graphics. Photon mapping, an extension of ray tracing,
makes it possible to efficiently simulate global illumination in
complex scenes. Photon mapping can simulate caustics (focused
light, such as shimmering waves at the bottom of a swimming pool),
diffuse inter-reflections (e.g., the bleeding of colored light from a red
wall onto a white floor, giving the floor a reddish tint), and
participating media (e.g., clouds or smoke). This book is a practical
guide to photon mapping; it provides both the theory and the
practical insight necessary to implement photon mapping and
simulate all types of direct and indirect illumination efficiently.

=

A K PETERS LTD.

